
Dynamic Modeling of Vehicular Platoons: Highlighting The Effects of
Communication Topologies on Safety, Robustness, and Scalability

by

Amir Zakerimanesh

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Control Systems

Department of Electrical and Computer Engineering
University of Alberta

© Amir Zakerimanesh, 2024



Abstract

Recent advancements in information and communication technologies have acceler-

ated the development of intelligent transportation systems. Among these, platooning

technology involves the coordinated movement of a lead vehicle and multiple followers

at specified inter-vehicle distances and synchronized speeds. Beyond its transforma-

tive potential in industries such as commercial transportation and traffic management,

intelligent vehicle platooning holds promise for enhancing safety, optimizing infras-

tructure utilization, increasing highway capacity, reducing aerodynamic drag and fuel

consumption, mitigating road traffic accidents, and stimulating economic growth.

However, realizing these benefits presents challenges. Factors such as transient

distance variations from desired values, limitations of individual vehicle speeds and

accelerations, effect of communication topologies, the effect of parity and disparity

between vehicles, and the identification of appropriate control gains must be addressed

to prevent potential collisions and avoid impractical accelerations and decelerations.

Additionally, the ability to decouple the proper control-gains identifications from

the leader vehicle’s speed is of paramount importance, providing the consideration

of various scenarios, including those with constant and varying speeds for the lead

vehicle during steady-state.

This research explores distributed linear controllers and transitioning from dis-

tinctions between follower-leader states to variations among neighboring vehicles, we

have unearthed the dynamics governing deviations in state from their target values.

Our findings demonstrate that these dynamics operate independently of the leader

vehicle’s state, enabling the assurance of desired distances and synchronized speeds
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even when the leader vehicle’s speed fluctuates during platoon’s steady-state. These

dynamics are presented for typical and non-typical communication topologies, re-

gardless of the number of vehicles, and under identical and nonidentical control gain

feedback.

Moreover, this study elucidates the profound influence of initial conditions on

the evolution of vehicle states and elucidates the intricate relationship between these

initial conditions and transient deviations, all within the context of communication

topologies, vehicle attributes, and control parameters. It strategically incorporates

collision and safe distance constraints, as well as feasible-velocity limitations, produc-

ing graphical pattern outputs based on varying control gains specific to each com-

munication topology. This approach allows for a comprehensive exploration of the

diverse effects of different communication structures. Additionally, it delves into the

dynamics of heterogeneous platoons and emphasizes the crucial role of broadcasting

the leader vehicle’s state in enhancing platoon scalability and robustness, offering

valuable insights into these two fundamental aspects of this complex domain.

In summary, this work offers valuable insights into the dynamics governing devia-

tions in states from their desired values and the influence of communication topologies,

initial conditions, vehicle features, and control parameters.
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Preface

The ultimate goal of this research is to pave the way for more efficient and safe trans-

portation systems by harnessing the power of effective communication and control

strategies in vehicular platoons. This thesis was mentored and led by Dr. Mahdi

Tavakoli (principal investigator) at the Department of Electrical and Computer En-

gineering, University of Alberta and Dr. Tony Z. Qiu at the Department of Civil and

Environmental Engineering. All of the work presented in this thesis was conducted

in the Telerobotic and Biorobotic Systems Lab and the Centre for Smart Transporta-

tion group at the University of Alberta. I was responsible for theoretical development,

results analysis and verification, simulation, and the manuscript preparation.

Chapter 1 presents the motivation and objectives of this project and summarized

the thesis organization and contributions.

Chapter 2 of this thesis is dedicated to literature review and preliminaries.

Chapter 3 of this thesis has been published as: Amir Zakerimanesh, Tony Z.

Qiu, Mahdi Tavakoli, Heterogeneous Vehicular Platooning With Stable Decentralized

Linear Feedback Control, IEEE International Conference on Autonomous Systems,

2021. The aim of this chapter was to highlight the complexity of stability analysis of

heterogeneous vehicular platoons.

Chapter 4 of this thesis, which is the revised version of a reviewed initial manuscript,

has been submitted to IEEE Transactions on Control Systems Technology as: Amir

Zakerimanesh, Tony Z. Qiu, Mahdi Tavakoli, Stability and Intervehicle Distance Anal-

ysis of Homogeneous Vehicular Platoons: Highlighting the Impact of Bidirectional

Communication Topologies. This chapter introduces a novel closed-loop dynamic
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model for platoon, suitable for the analysis of deviations of relative states from their

desired values. The focus of this chapter is on typical bidirectional communication

topologies.

Chapter 5 of this thesis is under review in IEEE Transactions on Control of Net-

work Systems as: Amir Zakerimanesh, Tony Z. Qiu, Mahdi Tavakoli, Impact of Com-

munication Topologies on Stability and Intervehicle Distances: Homogeneous Vehicu-

lar Platoons. This chapter takes a step further and reformulates the previous chapter,

tailoring the problem for any type of communication topologies.

Chapter 6 of this thesis is under review in IEEE Transactions on Cybernetics as:

Amir Zakerimanesh, Tony Z. Qiu, Mahdi Tavakoli, Stability and Distance Analysis:

Heterogeneous Platoons under Look-Ahead Topologies. This Chapter, unlike chapters

4-5, incorporates the heterogeneity of vehicles and control feedback gains into account.

The focus of this chapter is on look-ahead communication topologies.

Chapter 7 of this thesis is under review in IEEE Transactions on Intelligent Trans-

portation Systems as: Amir Zakerimanesh, Tony Z. Qiu, Mahdi Tavakoli, Effects of

Communication on Inter-Vehicle Distance and Scalability in Heterogeneous Vehicu-

lar Platoon Control: Considering Comprehensive Initial States. This chapter, unlike

the Chapter 6, adds the full initial conditions into problem development and solves

the previous problem for any type of communication topologies. This chapter high-

lights also the effect of communication topologies on robustness and scalability of the

platoon.
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ẍi+1 Acceleration (ai+1) of the (i+ 1)th vehicle
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ẋ∗i+1 Desired velocity of the (i+ 1)th vehicle
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a0 − ȧ0, a0 is leader acceleration

Ii+1 Set of vehicles from which the (i+ 1)th follower gets information

K =[k, b, 1 + h]

Ki+1 =[ki+1, bi+1, hi+1]

Ri+1 = Ii+1 − {i}

Ri = Ii − {i+ 1}

Ai+1
i System matrix for coupled dynamics of neighboring vehicles

Bi Vehicles behind (j ≥ i+ 1) providing info to ith follower in pair (i, i+ 1)

Ji Union of Mi and Bi

K =[k, b, h]

Mi Vehicles ahead (j ≤ i) providing info to (i+ 1)th follower in pair (i, i+ 1)

Q Matrix mapping initial conditions to TIDEs: ∆P̃ = Q−1Ψ

Xi+1 =[xi+1; ẋi+1; ẍi+1]
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Chapter 1

Introduction

In recent times, autonomous vehicles have garnered remarkable attention, widespread

acceptability, and growing popularity. This surge of interest has prompted automo-

tive manufacturers to invest heavily in this promising technology, striving to gain a

competitive edge in the automotive market. As a testament to the significance of this

industry shift, billions of dollars have been allocated for research and development.

ABI Research1 has even forecasted that by 2025, eight million autonomous or semi-

autonomous vehicles, equipped with SAE2 (Society of Automotive Engineers) levels

of automation including 3, 4 or 5, will be sold.

For decades, vehicles have served primarily as a medium for radio entertainment

and, more recently, as connected platforms offering enhanced features like navigation

and streaming services. However, there is a growing realization among automakers

that advanced communication technology is becoming integral to vehicle operation.

This technology is seen as a means to enhance road safety, improve fuel efficiency,

increase driver and passenger comfort, and, ultimately, foster economic growth and

customer satisfaction.

One pivotal technology in this domain is Vehicle-to-Vehicle (V2V) communication.

V2V technology enables vehicles to wirelessly exchange critical information about

their state, including speed, acceleration, location, and heading. Operating on a

1https://www.abiresearch.com/pages/about-us/
2https://www.sae.org/

1

https://docs.google.com/document/d/1zBwQhKY1sfgFgaURoPsMuJqHwyPObV7C/edit?usp=sharing&ouid=110176483794912636620&rtpof=true&sd=true
https://docs.google.com/document/d/1zD-lOOolo20qng1bUQwDVIZQuZBG_mYt/edit?usp=sharing&ouid=110176483794912636620&rtpof=true&sd=true
https://docs.google.com/document/d/1zDsJRpoVz4_ckQXPWPJS68KuYeM1QWL9/edit?usp=sharing&ouid=110176483794912636620&rtpof=true&sd=true
https://www.abiresearch.com/pages/about-us/
https://www.sae.org/


short-range broadcast model, V2V technology allows vehicles to broadcast and re-

ceive omnidirectional messages from neighboring vehicles at a frequency of up to 10

Hz. For instance, V2V technology can establish a 360-degree ”awareness” of other ve-

hicles, providing early warnings to drivers in the event of potential accidents. Another

application of this technology is vehicle platooning, which is an intelligent transporta-

tion system (ITS) aiming to connect multiple vehicles in a convoy while automatically

setting and maintaining close-proximity following distances, particularly on highways.

In a platoon, the leading vehicle sets the pace, while the following vehicles adapt to

its movements. However, it’s essential to note that full autonomy for the follower

vehicles in platooning is still an emerging technology. Regulatory and safety concerns

mean that, for now, drivers must remain actively engaged in the control loop.

Recent advancements in information and communication technologies have accel-

erated the development of platooning technology. Intelligent vehicle platooning holds

promise for enhancing safety, optimizing infrastructure utilization, increasing highway

capacity, reducing aerodynamic drag and fuel consumption, mitigating road traffic ac-

cidents, and stimulating economic growth.

Vehicle platooning is poised to make road transport safer, cleaner, and more effi-

cient in the future. It achieves this through:

1. Enhanced Safety: Platooning improves safety by enabling automatic and im-

mediate braking, significantly reducing reaction time compared to human drivers.

2. Lowered Fuel Consumption and Emissions: The close proximity of platooning

vehicles decreases air-drag friction, leading to lower fuel consumption and reduced

CO2 emissions.

3. Increased Efficiency: Platooning optimizes transport by using roads more effec-

tively, enabling faster goods delivery and reducing traffic congestion. It also provides

drivers with the flexibility to perform other tasks, such as administrative work or

making calls.

In summary, intelligent vehicle platooning not only fosters innovation and effi-
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ciency in industries like commercial transportation but also offers improved safety for

drivers and pedestrians, greater infrastructure efficiency, increased highway capacity,

reduced drag and fuel consumption, and ultimately contributes to economic growth.

It represents a significant advancement in the automotive industry and holds great

potential for a safer, cleaner, and more efficient future of road transport.

1.1 Motivation

The motivation for this research stems from the critical need to address various chal-

lenges associated with the implementation of distributed linear controllers in vehicular

platooning systems. In the quest to unlock the numerous benefits that these systems

can offer, we recognize several key hurdles that must be overcome.

One of the primary challenges lies in dealing with transient distance variations

from desired values. The limitations of individual vehicle speeds and accelerations

further compound the complexity of the problem. Additionally, the influence of com-

munication topologies, the effects of parity and disparity between vehicles, and the

identification of appropriate control gains all present formidable obstacles that de-

mand our attention. The overarching goal here is to prevent potential collisions and

avoid impractical accelerations and decelerations in platooning scenarios. Also, we

recognize that the ability to decouple the determination of proper control gains from

the leader vehicle’s speed is of paramount importance. This requirement ensures that

our approach is adaptable to a wide range of scenarios, including those involving

constant and varying speeds for the lead vehicle during steady-state platooning.

1.2 Thesis Objectives

The primary objective of this research is to address the substantial challenges en-

countered within the domain of vehicular platooning systems. We are motivated by

the imperative to enhance the performance, safety, and adaptability of these systems,
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which drives our investigation. To attain this overarching goal, we have delineated

specific objectives that serve as guiding principles for our research.

Our foremost objective is to shift our focus away from the traditional follower-leader

state differences and redirect it towards the disparities in states among neighboring

vehicles. This strategic shift in our research is aimed at uncovering the underlying

dynamics governing deviations in state differences between neighboring vehicles and

their target values. This marks a pivotal contribution, as it paves the way for the

identification of control gains necessary to achieve the desired transient behaviors of

these states before they stabilize at their intended values. To illustrate, the trans-

formed state coordinate, particularly in terms of position, assumes a critical role

in quantifying the deviation in intervehicle distances from their desired values. By

imposing constraints on these deviations, we can ensure the attainment of appropri-

ate transient distances, thus preventing them from falling below safe distances for

adjacent vehicles.

Another vital objective is to establish that the deviation dynamics remain en-

tirely independent of the leader vehicle’s state. This independence is instrumental in

providing analytical guarantees for the maintenance of desired distances and synchro-

nized speeds within the platoon. This is especially important in scenarios where the

leader vehicle’s speed undergoes changes during steady-state operation. By achieving

this independence, the dynamics become solely reliant on constant parameters associ-

ated with the platoon’s structure, such as vehicle characteristics and communication

topology. Also, we aim to ensure that our findings and solutions have broad applica-

bility, regardless of the number of vehicles, variations in vehicle capabilities, the use

of identical or non-identical control gains, and the type of communication topology.

Moreover, we investigate the impact of initial conditions on the evolution of vehicle

states. Our objective is to map these initial conditions to transient deviations based

on communication topology, vehicle characteristics, and control parameters. This

endeavor provides insights into the influence of platoon structure on this mapping.
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1.3 Thesis Outline

The subsequent chapters in this dissertation are structured as follows. In Chapter 2,

a comprehensive review of existing literature is presented, covering the fundamentals

of vehicle dynamics, controller systems, and communication topologies. This chapter

lays the theoretical groundwork for the subsequent analytical and experimental work.

Chapter 3 introduces innovative stability analysis techniques for heterogeneous pla-

toons, employing decentralized linear feedback controllers with non-identical gains

and various Information Flow Topologies (IFTs). It emphasizes the significance

of communication and the benefits of incorporating leader feedback into follower

controllers. In Chapter 4, the focus shifts to homogeneous platoons, introducing

a closed-loop distance dynamic model. This model facilitates a detailed investigation

of inter-vehicle distances (IDs) and discusses the impact of different Communication

Topologies (CTs) on platoon performance. Chapter 5 delves into achieving internal

stability and favorable transient dynamics in inter-vehicle distances. It scrutinizes the

strengths and weaknesses of bidirectional communication topologies (BDCTs) and the

significance of leader information dissemination. Chapter 6 extends the research be-

yond internal stability considerations, emphasizing a coupled distance dynamic model.

It examines how control parameters and initial conditions impact platoon stability

and distance errors, validated through high-fidelity simulations. In Chapter 7, the

impact of communication topologies on inter-vehicle distances in larger platoons is

explored. It highlights the potential for scalability while maintaining efficiency and

emphasizes the critical role of leader information dissemination. The subsequent

chapters in this dissertation are structured as follows. In Chapter 2, a comprehen-

sive review of existing literature is presented, covering the fundamentals of vehicle

dynamics, controller systems, and communication topologies. This chapter lays the

theoretical groundwork for the subsequent analytical and experimental work. Chapter

3 introduces innovative stability analysis techniques for heterogeneous platoons, em-
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ploying decentralized linear feedback controllers with non-identical gains and various

Information Flow Topologies (IFTs). It emphasizes the significance of communication

and the benefits of incorporating leader feedback into follower controllers. In Chap-

ter 4, the focus shifts to homogeneous platoons, introducing a closed-loop distance

dynamic model. This model facilitates a detailed investigation of inter-vehicle dis-

tances (IDs) and discusses the impact of different Communication Topologies (CTs)

on platoon performance. Chapter 5 delves into achieving internal stability and fa-

vorable transient dynamics in inter-vehicle distances. It scrutinizes the strengths and

weaknesses of bidirectional communication topologies (BDCTs) and the significance

of leader information dissemination. Chapter 6 extends the research beyond internal

stability considerations, emphasizing a coupled distance dynamic model. It examines

how control parameters and initial conditions impact platoon stability and distance

errors, validated through high-fidelity simulations. In Chapter 7, the impact of com-

munication topologies on inter-vehicle distances in larger platoons is explored. It

highlights the potential for scalability while maintaining efficiency and emphasizes

the critical role of leader information dissemination. Chapter 8 serves as the conclu-

sion, summarizing key findings and outlining future research directions. It underlines

the importance of communication strategies and leader information in enhancing pla-

toon performance and positions the research as a foundation for further innovation

in the field.
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Chapter 2

Literature Review and
Preliminaries

2.1 Literature Review

Platooning is a convoy of vehicles, typically consisting of one leader and several fol-

lowers, traveling in close formation along a designated track. The primary objective

of platooning is to maintain a desired spacing between the vehicles and ensure that

the followers track the leader vehicle’s velocity and acceleration. This coordinated

movement results in a reduction in aerodynamic drag between the vehicles, leading

to decreased fuel consumption [1, 2]. Additionally, the use of smaller spacing between

vehicles can increase the capacity of highways and improve safety and energy efficiency

by enabling rapid reactions when necessary [3–7]. Safety and energy constraints can

also be integrated into the platoon control system to enhance overall performance [8,

9].

2.1.1 Platoon Structure

Vehicles in platoons can be broadly categorized into two primary groups: homoge-

neous [10, 11] and heterogeneous [12, 13]. In homogeneous platoons, all vehicles

share similar characteristics, including size and degree of automation, resulting in a

uniform and standardized fleet. In contrast, heterogeneous platoons consist of vehi-

cles with differences in size or automation levels, leading to a diverse mix of vehicle
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types within the platoon. The desired inter-vehicle distances in a platoon can be

maintained through various spacing policies, which can be either constant or vary-

ing [14–16]. Two common spacing policies are the Constant Distance (CD) policy,

which aims to keep a fixed distance between consecutive vehicles, and the Constant

Time Headway (CTH) policy, where the spacing depends on the leader’s velocity

and, therefore, varies with time [14–16]. Other policies, such as the nonlinear dis-

tance policy [17] and the delay-based distance policy [18], offer different approaches

to maintaining inter-vehicle distances. Evaluating these spacing policies involves as-

sessing two key criteria: individual vehicle stability, which focuses on the convergence

of vehicle velocities and inter-vehicle distances to desired values, and string stability,

which examines the dissipation of small perturbations along the platoon [19–22]. For

a comprehensive overview of string stability definitions, please refer to [20, 23].

When considering only the longitudinal dynamics of vehicles in a platoon, the sys-

tem can be characterized by four main components: vehicles’ longitudinal motion, in-

formation flow topology (IFT), distributed controllers, and the chosen spacing policy

[22, 24]. The IFT, also referred to as communication topology (CT), defines how infor-

mation is exchanged between vehicles, specifying whether they receive data from vehi-

cles ahead, behind, or both [22, 24]. Examples of typical IFTs include PF (Predecessor

Following), MPF (Multiple-Predecessor Following), TPLF (Two-Predecessor-Leader

Following), PLF (Predecessor-Leader Following), TPF (Two-Predecessor Following),

BDL (Bidirectional-Leader), BD (Bidirectional), TBPF (Two-Bidirectional Predeces-

sor Following), TPSF (Two-Predecessor-Single-Following), and SPTF (Single-Predecessor-

Two-Following) [22, 24]. The structure of these IFTs is visually represented in Figure

2.1. Additionally, distributed controllers must be designed effectively to achieve the

platoon’s objectives [23, 25–28].
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Figure 2.1: Various communication topologies (CTs) between vehicles in the platoon.

2.1.2 Longitudinal Control

The term ”longitudinal controller” typically denotes any control system responsible

for managing the vehicle’s longitudinal motion, including factors like longitudinal

velocity, acceleration, or its distance from a preceding vehicle in the same highway

lane [29]. Longitudinal control is executed through actuators, namely the throttle and

brakes. A common illustration of longitudinal control is the standard cruise control

system found in most vehicles today. In this system, the driver sets a constant

desired speed for the vehicle. The cruise control system then autonomously adjusts

the throttle to maintain the specified speed. It remains the driver’s responsibility to

ensure that the chosen speed is safe for highway travel. If a preceding vehicle traveling

at a slower speed or closely following the ego vehicle appears on the highway, the driver
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must intervene and, if necessary, apply the brakes. Brake application automatically

disengages the cruise control system, restoring control of the throttle to the driver.

2.1.3 Distributed Control of Vehicular Platoon

In large-scale systems with interconnected processors, distributed estimation and/or

control algorithms are commonly used. The algorithm is divided into parts, each

of which is operated independently with limited information. Due to these charac-

teristics and to redeem computational complexity, rather than using central control

architecture, distributed algorithms are suitable to operate connected vehicles.

The platoon’s vehicle control module is divided into longitudinal and lateral control

components. Longitudinal control focuses on maintaining a pre-established distance

among platoon vehicles, ensuring uniform speed, and upholding the string stability

of the platoon against disturbances. On the other hand, lateral control governs the

platoon’s lateral motion during maneuvers, such as joining or leaving the formation.

The focus of this research is on longitudinal control.

Distributed longitudinal control of vehicular platoons has been extensively studied

in literature such that various techniques based on model predictive control [30–34],

sliding mode control [12, 13, 35], consensus-based control [36–39], event-triggered con-

trol [40–43], adaptive control [44–46], observer-based control [47–50], robust control

[13, 51], reinforcement learning-based control [52], and linear feedback control (LFC)

[27, 53–57] are utilized for coordination of platoon vehicles.

2.1.4 Safety Incorporation

Apart from stability and tracking performance, safety and collision analysis are crucial

aspects of platooning. In the realm of control systems, the significance of transient

performance equals that of steady-state performance. In certain dynamic systems,

transient performance takes precedence over steady-state performance. The efficacy

of Prescribed Performance Control [58] has been demonstrated as a formidable tool,
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ensuring that control system outputs/errors exhibit the desired transient performance

alongside steady-state performance [59]. In [60], a robust distributed control is sug-

gested for large platoons of vehicles with second-order uncertain nonlinear dynamics

under PF and BD topologies. Designer-specified performance functions guide tran-

sient and steady-state responses, preventing connectivity breaks and intervehicular

collisions arising from sensor limitations. In [61], a prescribed performance (PP)

platoon formation control is proposed for unmanned surface vehicles with input satu-

ration and dead zone. Prescribed performance constraints on line-of-sight range and

angular errors ensure both transient and steady-state performance, achieving colli-

sion avoidance and connectivity maintenance. In [62] and [63], adaptive finite-time

PP control schemes are devised for vehicular platoons with dead-zone and saturation,

such that, for the former, PP is achieved irrespective of the initial state.

Other than prescribed performance control, safety and collision have been con-

sidered in other control methods as well. In [64], a Distributed Model Predictive

Control has been used to address collision-free properties by employing coupled state

constraints and terminal sets. In [65], a proposed nonlinear adaptive cruise controller

for vehicular platoons under PF topology utilizes feedback controllers constructed

as nonlinear functions of the distance between successive vehicles and their speeds.

Safety (collision avoidance) and bounded vehicle speeds are achieved by explicitly

characterizing the set of allowable inputs. In [66], bilateral inequality constraints on

the spacing error between adjacent vehicles are formulated and integrated into an

adaptive controller to attain collision avoidance and compact formation performance.

In [67], a controller design is introduced with collision avoidance (CA) functionality to

ensure safety. The nominal controller is applied in a safe operational region, designed

independently of the CA function. If the nominal controller cannot ensure safety, a

predefined gradual braking strategy is implemented. In [68], conditions are estab-

lished for ensuring collision avoidance based on vehicle dynamics. It is demonstrated

that achieving these control objectives requires the controlled vehicles to be externally
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positive in both velocity and distance output, which is both necessary and sufficient.

In [69], an adaptive control architecture is devised with both emergency and nom-

inal controllers to guarantee safety and comfort. Safety is maintained through the

switching between the nominal controller, utilizing model predictive control to com-

pute optimal inputs for maintaining a safe distance, and the emergency controller,

which analytically determines the braking distance based on the host vehicle’s de-

celeration profile, assuming the leading vehicle can fully brake at each time step. In

[70], an adaptive platoon control is suggested for nonlinear vehicular systems with

asymmetric nonlinear input deadzone and inter-vehicular spacing constraints. To pre-

vent collisions between consecutive vehicles and maintain connectivity amid limited

sensing capabilities, a symmetric barrier Lyapunov function is utilized. Subsequently,

a neural-network-based terminal sliding mode control scheme with minimal learning

parameters is devised to simultaneously uphold inter-vehicle connectivity and avoid

collisions. In [71], a mathematical transformation scheme is introduced to limit the

spacing error. Building on this, a distributed control algorithm is developed to en-

sure the boundedness of the spacing error. In [72], the paper addresses a secure and

safe distributed cooperative control problem involving multiple platoons of automated

vehicles amidst unknown data falsification attacks on driving commands.

Control Barrier Function (CBF) analysis provides a robust framework to ensure

safety and performance assurances in intricate systems such as platoons. This method

utilizes barrier functions to establish safe operating zones, directing control design to

proactively prevent state trajectories from surpassing these boundaries, thus ensuring

effective collision avoidance. In [73], an innovative distributed adaptive backstepping

control scheme is presented utilizing barrier functions. This approach not only takes

into account third-order nonlinear vehicle models but also dynamically identifies un-

certain parameters in real-time. The control strategy guarantees the preservation

of full-state constraints while effectively accomplishing tracking control objectives.

In [74], utilizing fuzzy logic systems, the unknown nonlinear functions are approxi-
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mated. It introduces a control scheme featuring an auxiliary design system to tackle

input saturation. Notably, the design incorporates barrier Lyapunov functions to en-

force distance restrictions, ensuring collision avoidance and sustaining communication

connections among vehicles. In [75], a novel prescribed time performance recovery

fault-tolerant control method is introduced to maintain nominal platoon performance

despite multiple faults, encompassing actuator faults with deferred backup actuator

switching and leader-follower link faults. The key innovation lies in a barrier function-

based prescribed time sliding mode controller, designed to ensure platoon consensus

errors and convergence time within specified constraints under normal conditions.

2.1.5 Communication Effect

In recent years, there has been a notable surge in research addressing concerns about

the performance and resilience of distributed platooning algorithms, particularly in

the face of faults and adversarial behaviors [40, 76, 77]. Beyond traditional systems

and control tools, researchers have leveraged networks and graph theory to model

various structures of connected vehicles. The intersection of network science and sys-

tems and control, inherent in networked control systems, has been a dynamic area

of investigation [78, 79]. This interdisciplinary exploration involves advancements in

applied mathematics and systems theory, such as algebraic graph theory and struc-

tured systems theory. Researchers have actively redefined system-theoretic notions

from a network perspective. Noteworthy concepts introduced in this direction include

network coherence [79, 80], providing a system-norm interpretation of a networked

control system, and network robustness [81], which evaluates a network’s ability to

navigate adversarial conditions during the operation of distributed algorithms.

Recently some works have delved into the impact of platoon topologies on cooper-

ative adaptive cruise control algorithms. For example, [27, 82] investigated how the

platoon topology affects the stability and string stability of a vehicle platoon forma-

tion. In [83], researchers explored the influence of directed and bidirectional topologies
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on the robustness of platoons to communication disturbances. Proposed methods to

address communication delays in homogeneous cooperative adaptive cruise control

systems are outlined in [84]. Moreover, in [85], the impact of topology on robustness

to time delay is studied, revealing a trade-off between making the platoon robust to

time delays and disturbances or additive faults.

Communication topology plays a central role in determining platoon stability and

performance by governing how vehicles exchange critical information, such as posi-

tion, velocity, and acceleration. Although existing research has extensively examined

stability and performance within specific CTs, limited attention has been given to dif-

ferentiating the impact of CTs on platoon performance. Recent studies have started

to address this gap. In [86], a graph theory framework is applied to explore the impact

of connectivity measures within CTs on the performance of distributed algorithms.

This investigation assesses the ability of these algorithms to mitigate communication

disruptions, detect cyber-attacks, and uphold resilience against such challenges. Ad-

ditionally, [87] delves into the distinctions among three unidirectional communication

topologies and their implications on stability, robustness, safety, and emissions within

vehicle platoons. In terms of safety analysis, this study relies on two metrics, max-

imum time to collision (MTTC) and deceleration rate to avoid a crash (DRAC), to

assess and contrast the security performance of platoons operating under the influence

of three different UCTs. It is worth mentioning that in UCTs, vehicles only receive

data from vehicles ahead of them. The transient behavior of inter-vehicle distances,

a critical factor closely linked to platoon safety, is an aspect that has received limited

attention in existing literature.

2.2 Preliminaries

This research centers on Distributed Linear Feedback Controllers (DLFCs). While

existing literature has predominantly focused on the internal stability of platoons and

steady-state convergence for position, velocity, and acceleration, it has overlooked the
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transient behavior of inter-vehicle distances. To address this gap, we formulate the

coupled dynamics of neighboring vehicles, providing analytical expressions for inter-

vehicle distances and their derivatives. Our study encompasses both homogeneous

and heterogeneous platoons, considering various communication scenarios among ve-

hicles. We also comprehensively analyze initial conditions for platoons of any size.

Additionally, we introduce an analytical tool to differentiate between communication

topologies and assess their impact on safety, scalability and the robustness of pla-

toons. Our analysis sets the stage for investigating how communication topologies

influence the robustness of platoon performance in the presence of time delays.

In this Thesis, time-dependent signals will only be included if they enhance clar-

ity. To differentiate between elements within vertical and horizontal vectors, we will

utilize the semicolon and colon symbols, respectively. For instance, a 3-by-1 vector

is symbolized as [.; .; .], while a 1-by-3 vector takes the form of [., ., .]. This notation

will be consistently employed throughout the document to improve lucidity and ease

of reading.

2.2.1 Platoon Longitudinal Framework

Figure 2.2 shows a platoon that has n + 1 vehicles such that the one designated by

0 is the leader vehicle and the others labeled by 1, . . . , i, i + 1, . . . , n − 1, n are the

followers. The real and desired distance between consecutive vehicles i and i+ 1 are

denoted by Di+1
i and di+1

i , respectively. Also, Li presents the length of the ith vehicle,

and the x axis shows the position of the vehicles during their movement such that x0

and xi are the positions of the leader vehicle and the ith follower vehicle, respectively.

Furthermore, the notation pi+1
i ≜ xi−xi+1 is unitized for positions difference between

consecutive vehicles.
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Figure 2.2: A platoon divided to consecutive-pairwise vehicles.

Figure 2.3: Illustrating adjacent vehicles: Vehicle i + 1 as the follower and vehicle i
as the predecessor, showing constant and changing distances.

2.2.2 Representation of Constant and Changing Distances

Considering Figure 2.2, we use a left-to-right direction for vehicle movement, desig-

nated as → for positive direction, and ← for negative direction. Constant lengths

or distances are represented by ↔. To clarify this issue, in Figure 2.3 for instance,

Li and Li+1 indicate vehicle lengths, while di+1
i represents the desired constant gap

between them. Arbitrary defined variable distances s1, s2, s3, and s4 follow the for-

mulas: s1 = xi − xi+1, s2 = xi+1 − (xi − Li), s3 = xi+1, and s4 = xi. Here, xi and

xi+1 refer to the front-side positions of the vehicles.

2.2.3 Control Structure

Generally speaking, longitudinal control of a platoon consists of two parts. First is

the inner force/acceleration feedback linearization (FL) control, compensating for the

vehicles’ nonlinear dynamics. Second, an outer intervehicle distance control loop is

16



responsible for enforcing the desired spacing between the neighboring vehicles. The

FL control is based on the assumption that the vehicle dynamics and its parameters

are fully known which means that a perfect nonlinear dynamics cancellation can be

achieved. We assume that the FL part has already canceled the dynamics nonlinear-

ities and therefore we only focus on the inter-vehicle distance control loop. Consider

that for platooning, and as far as the leader vehicle is concerned, we only need its

position, velocity and acceleration, and it does not undergo any control process.

2.2.4 Vehicle Dynamics

Let the following formulation characterize the dynamics of the ith follower vehicle [55,

88]:

ȧi = fi (vi, ai) + gi (vi) ci i = 1, . . . , n (2.1)

in which vi and ai are the velocity and acceleration of the ith follower, and fi (vi, ai)

and gi (vi) are according to{︄
fi (vi, ai) = − 1

τi

(︂
ai +

σiAiCdiv
2
i

2mi
+ dmi

mi

)︂
− σiAiCdiviai

mi

gi (vi) =
1

τimi

(2.2)

where ci is the engine input. The parameters σi, Ai, Cdi, dmi, mi, τi are specific mass

of air, and vehicles’ cross sectional area, drag coefficient, mechanical drag, mass, and

engine time constant, respectively. Let the engine input ci be governed by following

FL controller [55]:

ci = uimi + 0.5σiAiCdiv
2
i + dmi + τiσiAiCdiviai (2.3)

substituting which into (2.1) results in [27, 31, 43, 46–48, 53, 54, 56, 57] a third-order

linear model mathematically describing each following vehicle’s behavior within the

platoon as follows. ⎧⎪⎨⎪⎩
ẋi = vi

v̇i = ai

ȧi = − 1
τi
ai +

1
τi
ui

(2.4)

in which ui is the input signal to be designed properly. Therefore, the FL transforms

the mathematical description of the nonlinear system into a simplified linear system.
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State-Space Presentation

Let Xi ≜ [xi; ẋi; ẍi] denote the state of the ith follower where ẋi = vi and ẍi = ai.

Thus, for i = 1, . . . , n and given (2.4), the state-space model for the ith follower can

be written as

Ẋi = AiXi +Biui =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

0 0 − 1
τi

⎤⎥⎥⎥⎦Xi +

⎡⎢⎢⎢⎣
0

0

1
τi

⎤⎥⎥⎥⎦ui (2.5)

2.2.5 Desired Distances: Constant Distance Policy

Assuming a constant distance policy for the platoon, the objective of designing the

controller ui is to guarantee that the followers’ velocities/accelerations reach to the

leader’s velocity/acceleration while desired constant inter-vehicle distances (≜ di+1
i )

are maintained between back-to-back vehicles. In other words, the aim is to have{︄
vi(t) = v0(t); i = 1, . . . n

xκ − xκ+1 = Lκ + dκ+1
κ ; κ = 0, . . . , n− 1

(2.6)

in which v0(t) is the leader vehicle’s velocity.

2.2.6 Distributed Controller

To ensure the accomplishment of the aims mentioned in (2.6), the following dis-

tributed linear controller [89] is utilized:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ui = −

∑︂
j∈Ii

[k (xi − xj − dij) + b (ẋi − ẋj) + h (ẍi − ẍj)]

dij ≜ −sgn(i− j)
max(i,j)−1∑︂
κ=min(i,j)

ωκ+1
κ ; ωκ+1

k ≜ Lκ + dκ+1
κ

(2.7)

in which the notation ≜ is utilized for definition, and Ii ⊂ {{0, 1, . . . , n} − {i}} indi-

cates all the vehicles from which the ith vehicle receives information. For connections

between vehicles, let zji = 0 denote the case in which the ith vehicle does not receive

information from the jth vehicle, and zji = 1 if the other way around.
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Chapter 3

Heterogeneous Vehicular
Platooning With Stable
Decentralized Linear Feedback
Control1

In this chapter, a dynamic representation for platoons is established using linearized

longitudinal dynamic models for individual vehicles. A constant distance policy is

adopted, a distributed linear feedback controller is employed, and differences in dy-

namic models and feedback information across the vehicles are considered. The chap-

ter focuses on providing platoon stability analysis, with a particular emphasis on

highlighting the challenges associated with analyzing large platoons. As a case study,

a platoon with one leader and two followers is investigated through the proposed

strategy, with the stability conditions provided. The chapter also includes numerical

simulations to explore the stability range of control gains and discuss the effect of

different information flow topologies (IFTs) on the platoon’s performance.

3.1 Vehicle Model and Problem Formulation

Figure 3.1 depicts a platoon consisting of N + 1 vehicles, where the leader vehicle is

designated as 0 and the subsequent vehicles are labeled from 1 to N . The distance

1A version of this chapter has been published as Amir Zakerimanesh, Tony Z. Qiu, Mahdi
Tavakoli, Heterogeneous Vehicular Platooning With Stable Decentralized Linear Feedback Control,
IEEE International Conference on Autonomous Systems, 2021.
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between consecutive vehicles, denoted as Di+1
i , and the length of the ith follower

vehicle, represented by Li, are illustrated on the x-axis. This axis reflects the positions

of the vehicles during their movement, with x0 denoting the leader vehicle’s position

and xi indicating the position of the ith follower.

Broadly, the longitudinal control of this platoon involves two key components.

First, there’s an inner force/acceleration control loop known as feedback linearization

(FL) control, designed to compensate for the nonlinear dynamics of the vehicles. Sec-

ond, an outer control loop manages inter-vehicle distances, ensuring that the platoon

maintains the desired spacing as per the spacing policy.

The FL control operates under the assumption that both the vehicle dynamics and

its parameters are entirely known, allowing for the perfect cancellation of nonlinear

dynamics. This discussion will primarily focus on the inter-vehicle distance control

loop, as we assume that the FL component has already addressed the dynamics’

nonlinearities.

Figure 3.1: A platoon with constant inter-vehicle spacing.

Each following vehicle’s behavior within the platoon is described mathematically

using a third-order linear model as

τiȧi + ai = ui (3.1)

in which ui is an auxiliary input signal associated with the outer control loop to be

designed. Let Xi ≜ [xi, ẋi, ẍi] denote the states of the i
th follower where ẋi = vi and

ẍi = ai. Thus, given (3.1), the state-space model for the ith follower can be written
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as

Ẋi = AiXi +Biui =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

0 0 − 1
τi

⎤⎥⎥⎥⎦Xi +

⎡⎢⎢⎢⎣
0

0

1
τi

⎤⎥⎥⎥⎦ui (3.2)

where both the vehicles’ feedback-linearized dynamics (characterized by Ai, Bi and

τi) and the platoon’s controllers (characterized by ui) are nonidentical, meaning that

they are not the same for all follower vehicles, constituting a heterogeneous platoon.

Therefore, the problem formulation and stability analysis would be developed with

taking account of heterogeneity in the dynamic models and feedback information to

the vehicles.

In this chapter, the objective of designing the controller ui is to guarantee that when

the leader has a constant steady velocity (≜ vs0), the followers’ velocities track that

leading velocity while desired constant distances (≜ di+1
i ) are maintained between any

two back-to-back vehicles within the platoon. In other words, for κ = 1, . . . , N − 1,

the aim is to have

vi(t) = vs0(t)

xκ − xκ+1 = Lκ + dκ+1
κ ≡ Dκ+1

κ = dκ+1
κ

(3.3)

and to ensure which, we design a distributed controller with non-identical gains as

ui = −
∑︂
j∈Ii

[ki (xi − xj − dij) + bi (ẋi − ẋj) + hi (ẍi − ẍj)] (3.4)

where

dij ≜ −sgn(i− j)
max(i,j)−1∑︂
κ=min(i,j)

[︁
lκ + dκ+1

κ

]︁
(3.5)

and Ii ⊂ {{0, 1, . . . , N} − {i}} indicates the vehicles from which the vehicle i receives

information. Please note that the intention is to develop the platoon formulation

regardless of the type of communications between the vehicles such that any IFTs

can suit properly in the problem development. Having di+1
i as the desired spacing

between the consecutive vehicles and x0 as the position of the leader vehicle, the
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desired position and velocity of the ith follower can be defined accordingly as

x∗i ≜ x0 −
i−1∑︂
κ=0

[︁
lκ + dκ+1

κ

]︁
, ẋ∗i = vs0 = ẋs0 (3.6)

For conciseness in presentation and ease in later analysis, the state error of the ith

follower is defined as x̃i = xi−x∗i utilizing which readily results in xi−xj = x̃i−x̃j+dij,

and subsequently substituting which into the controller (3.4) gives

ui = −
∑︂
j∈Ii

[︂
ki (x̃i − x̃j) + bi

(︂˜︁ẋi − ˜︁ẋj)︂+ hi

(︂˜︁ẍi − ˜︁ẍj)︂]︂ (3.7)

and plugging (3.7) in (3.1) yields

...˜︁x i = −
|Ii| ki
τi

x̃i −
|Ii| bi
τi

ẋ̃i −
1 + |Ii|hi

τi
˜︁ẍi + ki

τi

∑︂
j∈Ii

x̃j +
bi
τi

∑︂
j∈Ii

˜︁ẋj + hi
τi

∑︂
j∈Ii

˜︁ẍj (3.8)

which obtained using the facts that ẍi = ˜︁ẍi and
...
x i =

...˜︁x i. Note that |Ii| is the

cardinality of the set Ii. Considering (3.8), knowing x̃0 = ˜︁ẋ0 = ˜︁ẍ0 = 0, and defining

the ith vehicle control gains as Ki = [ki , bi, hi] and platoon state error as X̃N ≜[︂
x̃1; ˜︁ẋ1; ˜︁ẍ1; . . . ; ˜︁xN ; ˜︁ẋN ; ˜︁ẍN]︂, the platoon closed-loop state-space dynamics model

can be characterized by

˜︁Ẋ N = ÃNX̃N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
11 A∗

12 . . . A∗
1N

A∗
21 A∗

22 . . . A∗
2N

... . . .
. . .

...

A∗
N1 A∗

N2 . . . A∗
NN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
X̃N (3.9)

where ÃN is overall closed-loop system matrix such that for a given follower i, we

have A∗
ii ≜ Ai − |Ii|BiKi and A∗

ij ≜ BiKi. Using ÃN , the determinant of the

block matrix sIN − ÃN , which can be obtained analytically [90], will provide the

characteristic polynomial of the platoon, using which the stability conditions with

respect to the control gains can be obtained. Note that IN is the identity matrix

of size N , and the closed-loop system would be stable if all the eigenvalues of ÃN

are negative. In the rest of this chapter, we will consider stability conditions for an

two-followers platoon.
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3.1.1 Case Study: Stability Analysis For N = 2.

Considering N = 2, (3.9) can be written as

˜︁Ẋ 2 = Ã2X̃2 =

⎡⎣A1 − |I1|B1K1 B1K1

B2K2 A2 − |I2|B2K2

⎤⎦ X̃2 (3.10)

where the platoon would be asymptotically stable if and only if all the eigenvalues of

the matrix Ã2 are negative. In this respect, the characteristic polynomial of matrix

Ã2 can be derived by the following determinant:⃓⃓⃓⃓
⃓⃓
⎡⎣sI3 −A∗

11 −A∗
12

−A∗
21 sI3 −A∗

22

⎤⎦⃓⃓⃓⃓⃓⃓ = |sI3 −A∗
11|
⃓⃓
(sI3 −A∗

22)−A∗
21 (sI3 −A∗

11)
−1A∗

12

⃓⃓
(3.11)

deriving which presents the characteristic polynomial as6+bs5+cs4+ds3+es2+fs1+g

in which the coefficients are according to the following formulas.

a = τ1τ2

b = τ1 (1 + h2 |I2|) + τ2 (1 + h1 |I1|)

c = τ1b2 |I2|+ (1 + h1 |I1|) (1 + h2 |I2|) + τ2b1 |I1| − h1h2

d = τ1k2 |I2|+ b2 |I2| (1 + h1 |I1|) + b1 |I1| (1 + h2 |I2|) + τ2k1 |I1| − b1h2 − b2h1

e = k2 |I2| (1 + h1 |I1|) + b1 |I1| b2 |I2|+ k1 |I1| (1 + h2 |I2|)− k2h1 − b1b2 − h2k1

f = b1 |I1| k2 |I2|+ k1 |I1| b2 |I|2 − k2b1 − b2k1

g = k1 |I1| k2 |I2| − k1k2
(3.12)

and if the first follower does not receive information from the second follower, or vice

versa, then we will have A∗
12 = 0 or A∗

21 = 0, respectively. Thus, the coefficients
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would be

a = τ1τ2

b = τ1 (1 + h2 |I2|) + τ2 (1 + h1 |I1|)

c = τ1b2 |I2|+ τ2b1 |I1|+ τ1 (1 + h2 |I2|) + τ2 (1 + h1 |I1|)

d = τ1k2 |I2|+ b2 |I2| (1 + h1 |I1|) + b1 |I1| (1 + h2 |I2|) + τ2k1 |I1|

e = k2 |I2| (1 + h1 |I1|) + b1 |I1| b2 |I2|+ k1 |I1| (1 + h2 |I2|)

f = b1 |I1| k2 |I2|+ k1 |I1| b2 |I|2

g = k1 |I1| k2 |I2|

(3.13)

Now, having (3.12)-(3.13) and using Routh–Hurwitz criterion, the stability conditions

can be obtained as follows.

1. a, b, c, d, e, f, g > 0

2. ad− bc ≤ 0

3. d (ad− bc) ≤ b (af − be)

4. (ad− bc)
[︁
b2g + f (ad− bc)

]︁
≤ (af − be) [d (ad− bc)− b (af − be)]

5.
(︁
b2g + f (ad− bc)

)︁ [︁
(ad− bc)

[︁
b2g + f (ad− bc)

]︁
− (af − be) [d (ad− bc)− b (af − be)]] ≥ bg [d (ad− bc)− b (af − be)]2

(3.14)

3.2 Simulation Results

In this section, simulation results are provided to evaluate the stability conditions

for different IFTs that are depicted in Fig. (3.2). For simulations, we consider a

velocity trajectory for the leader vehicle (see Fig. 3.4) and choose the vehicles’ initial

velocities and accelerations equal to zero. Also, the vehicles’ length are the same and

equal to 4m, and vehicles’ initial positions are selected as x0(0) = 0m, x1(0) = −10m,

and x2(0) = −20m. As you can see in the Fig. 3.4, the steady-state velocities (vs0) for

the leader vehicle are 30m/s (its maximum value) persisting for 12s, and 0m/s that

is associated with the time the leader vehicle brakes and stands still. Furthermore,

we choose di+1
i = 10m as the desired spacing between the vehicles.
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Figure 3.2: Schematic of different IFTs between the vehicles in the one-leader-two-
follower platoon.

Figure 3.3: The stability area (the blue area) with respect to the control gains k2 and
b2 for different IFTs sketched in Fig. 3.2.
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Figure 3.4: Error signals of the followers for the different IFTs.
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First, we assume that τ1 = τ2 = 0.5 s, and the controller gains of all the vehicles are

the same, i.e., k1 = k2, b1 = b2 and h1 = h2 = 1. Based upon the stability conditions

given in the work [27] and for IFT c illustrated in Fig. 3.2, we assign k1 = k2 = 3,

b1 = b2 = 5, and h1 = h2 = 1. Having k1, b1, h1, we choose h2 = h1 and let k2 and b2

to be selected within the stability conditions given in (3.14). Regarding (3.12)-(3.13),

this time we will find stability conditions with respect to the control gains k2 and b2

and for the four IFTs in Fig. 3.2. The results for the different IFTs are depicted in

Fig. 3.3. The stability areas are shown in Fig. 3.3. As you can see, by comparing

the stability areas of IFTs a and b, or IFTs c and d, or IFTs a and c, and or IFTs b

and d, an additional communication channel between the vehicles makes the stability

area larger. The IFT a has the smallest stability area and the IFT d has the largest

stability area.

In order to draw an analogy between the controller performances in different IFTs,

using root locus analysis for a given plausible k2 or b2 that belongs to all the stability

areas of Fig. 3.3, we assign k2 = 2.5 and b2 = 10. Therefore, the control gains become

k1 = 3, k2 = 2.5, b1 = 5, b2 = 10, and h1 = h2 = 1. Note here τ1 = 0.5 and τ2 = 0.5

are chosen for engines time constants. So, using this controller, the results for the

different IFTs are shown in Fig. 3.4 in which, for instance, IFT (a, 2) indicates the

position error for the second follower and implies that the controller is utilized within

the IFT of case a represented in Fig. 3.2. Note that the position error for the ith

follower is defined as ei(t) = xi(t)−x∗i (t). Investigating the simulation results for the

different IFTs, we can see that when the leader has a constant steady velocity, the

followers’ position errors asymptotically converge to zero. Also, in IFTs b and d, in

which both the first and second followers receive information from the leader, the error

signal exhibits better damping behavior that can come in handy when, for instance,

we want to enforce small desired spacing between the vehicles. To shed more light

on the damping behavior, let the following formula be defined as the error evaluation
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Figure 3.5: Vehicles’ positions using control gains k1 = 3, b1 = 5, h1 = 1, k2 = 10,
b2 = 2, and h2 = 1, and IFTs a and d.

criterion (EEC) for the transient behavior of the error signals of the followers.

EECi ≜
∫︂ t

0

|ei(t)| dt (3.15)

regarding which the results for the followers within the given IFTs are shown in Fig.

3.4. It is possible to see that the IFTs b and d provide better performance for the

platoon respecting EEC measure. Moreover, making a comparison between the IFTs

b and d, we can see that the communication from the second follower to the first

follower has increased the settling time and so the convergence occurs slower.

Fig. 3.5 shows the positions of the vehicles for the given velocity of the leader and

for the two IFTs a and d. As obvious from Fig. 3.3, for k2 = 10 and b2 = 2, the

platoon of the IFT a would be unstable and the platoon of the IFT d would be stable.

Accordingly, in Fig. 3.5, using the IFT d, the desired distances between the vehicles

are maintained, however, in the IFT a the system is unstable and numerous collisions
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occur.

3.3 Conclusion

In conclusion, the aim of this chapter was to illustrate the complexity of stability

analysis for heterogeneous platoons. By employing a decentralized linear feedback

controller with non-identical gains and accommodating various Information Flow

Topologies (IFTs), we developed a state-space model for these diverse platoons. This

approach allowed us to determine stability conditions using the Routh–Hurwitz cri-

terion for platoons of any size. As a case study, we presented simulation results for a

two-followers platoon and discussed the influence of different IFTs on system perfor-

mance. Our findings underscored the notion that increased inter-vehicle communica-

tion, as facilitated by various IFTs, affords greater flexibility in selecting control gains

that meet stability criteria. Furthermore, it was evident that incorporating feedback

signals from the leader into both followers’ controllers can significantly enhance the

overall performance of the platoon.
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Chapter 4

Stability and Intervehicle Distance
Analysis of Homogeneous
Vehicular Platoons: Highlighting
the Impact of Bidirectional
Communication Topologies1

Vehicular platooning, a configuration comprising a leading vehicle and multiple fol-

lower vehicles (FVs) seeks to achieve and maintain specific intervehicle distances (IDs)

while synchronizing FVs with the velocity and acceleration of the leading vehicle.

Prior to attaining a desired stable state, the IDs may undergo transient fluctuations.

While the attainment of internal stability is pivotal for realizing the intended spacing

between vehicles, it does not inherently guarantee that these transient fluctuations

remain within safe thresholds, thereby mitigating the risk of collisions. Communi-

cation between vehicles has a critical role in vehicular platooning and significantly

influences these transient distance fluctuations. Consequently, we present a mapping

a between the initial conditions and these transient fluctuations which hinges on the

communication topology, as well as the control parameters, and independent of the

state of the leading vehicle. Specifically, our focus is directed towards bidirectional

1A version of this chapter has been submitted as Amir Zakerimanesh, Tony Z. Qiu, Mahdi
Tavakoli, Stability and Intervehicle Distance Analysis of Homogeneous Vehicular Platoons: High-
lighting the Impact of Bidirectional Communication Topologies, IEEE Transactions on Control Sys-
tems Technology.
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communication topologies (BDCTs), wherein FVs possess the capability to commu-

nicate both with preceding and subsequent vehicles within the platoon. Investigation

of these mappings illuminates the advantages and disadvantages of various BDCTs.

Notably, we discern that within BDCTs, the receipt of information from a greater

number of vehicles situated behind may at times hinder the overall performance of

the platoon, resulting in larger deviations from the desired intervehicle distances or

the velocity and acceleration of the leading vehicle. In contrast, information derived

from vehicles located ahead, particularly the leading vehicle itself, serves to enhance

intervehicle distances and thereby contributes significantly to the safety of the pla-

toon. In conclusion, our theoretical insights are substantiated through a series of

simulations.

A group of vehicles, led by one primary vehicle and followed by several others, forms

what is known as a vehicular platoon. The primary objective of platooning is twofold:

firstly, to attain and maintain the desired intervehicle distances (IDs), and secondly,

to ensure that the follower vehicles (FVs) closely mirror the speed and acceleration of

the lead vehicle. This collaborative formation brings several advantages. Firstly, due

to the reduced space between vehicles, there is a significant decrease in aerodynamic

drag between them, resulting in a substantial reduction in fuel consumption [1, 2].

Furthermore, the tight spacing of vehicles in a platoon allows for the accommodation

of more vehicles on the road, thus enhancing highway capacity. Additionally, pla-

tooning systems are designed to enable automated and rapid responses by follower

vehicles to the lead vehicle’s actions, thereby contributing to the overall safety of

drivers [3, 4]. To achieve these objectives, various spacing policies have been utilized,

including constant time headway [16], nonlinear [17], delay-based [18], and constant

distance [14, 15] policies. This work focuses on the constant distance policy, which

seeks to establish and sustain fixed distances between adjacent vehicles. Platoon dy-

namics encompass considerations of vehicle dynamics, communication topology (CT),

distributed controllers, and spacing policies [22, 24]. In this study, the emphasis is
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placed on the longitudinal motion of vehicles and the utilization of distributed linear

controllers [27, 53, 55].

Communication topology, which governs how vehicles exchange essential informa-

tion such as position, velocity, and acceleration, holds a central position in determin-

ing platoon stability and performance. While existing literature extensively examines

the stability and performance of vehicle platoons within specific CTs, there is a limited

focus on differentiating the impact of CTs on platoon performance. Recent studies

have started addressing this gap. In [86], a general graph theory framework is ap-

plied to explore the impact of connectivity measures within CTs on the performance

of distributed algorithms. This investigation assesses the ability of these algorithms

to mitigate communication disruptions, detect cyber-attacks, and uphold resilience

against such challenges. Additionally, [87] delves into the distinctions among three

unidirectional communication topologies (UCTs) and their implications on stability,

robustness, safety, and emissions within vehicle platoons. In terms of safety analysis,

this study relies on two metrics, maximum time to collision (MTTC) and deceleration

rate to avoid a crash (DRAC), to assess and contrast the security performance of pla-

toons operating under the influence of three different UCTs. It is worth mentioning

that in UCTs, vehicles only receive data from vehicles ahead of them. On the other

hand, one aspect of platooning that has received limited attention in the existing

literature is the transient behavior of IDs, a critical factor closely linked to platoon

safety. It is worth noting that favorable transient behaviors, as well as steady-state

conditions, as studied in [60], can significantly contribute to preventing intervehicular

collisions and enhancing the overall safety of platooning.

Therefore, in addition to the roles of controllers, vehicle features, and initial con-

ditions, communication structures play a pivotal role in influencing platooning dy-

namics, particularly their impact on transient distances between vehicles. This study

thoroughly explores this critical aspect by focusing on transient intervehicle distance

errors (TIDEs). In our definition, TIDEs quantify momentary deviations in spacing
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between neighboring vehicles before their distances align with the intended values.

Our specific investigation centers on how various bidirectional communication topolo-

gies (BDCTs) affect TIDEs, as these transient distances are paramount in determin-

ing the safety and collision-free operation of platoons. Notably, unlike unidirectional

communication topologies (UCTs), BDCTs enable vehicles following one another to

exchange their current state information with both preceding and succeeding vehicles.

This chapter’s contributions can be summarized as follows:

1. Novel Dynamic Model: We have introduced a novel closed-loop dynamic model

for vehicular platoons, shifting our focus from differences between follower-

leader states to differences among neighboring vehicles. This approach allows

for the relaxation of the requirement for the leader vehicle’s velocity to remain

constant for intervehicle distance convergence and for followers to reach their

desired velocities and accelerations. As a result, the key determinant for the

convergence lies solely in achieving internal stability.

2. Analysis of Transient Intervehicle Distances: Our findings indicate that tran-

sient intervehicle distances are unaffected by the leader vehicle’s state. Instead,

they depend on crucial parameters such as initial conditions, control gains, the

engine time constants of follower vehicles (FVs), the number of FVs in the

platoon, and the communication type employed.

3. Analytical Distance Trajectories: We have developed analytical distance tra-

jectories for each pair of neighboring vehicles, revealing their behavior across

different bidirectional communication topologies (BDCTs).

4. Communication Topology Insights 1: We have highlighted the advantages and

disadvantages of various BDCTs. Our observations suggest that, within the

domain of distributed controllers, the collection of data from a greater number

of vehicles ahead, especially the leading vehicle, has the potential to reduce
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the likelihood of breaching safe intervehicle distances in BDCTs. Although our

focus differs from the study in [87], our findings align with their conclusion,

emphasizing that predecessor-leader-following (PLF) and multiple-predecessor-

leader-following (MPLF) configurations are notably superior to predecessor-

following (PF).

5. Communication Topology Insights 2: Conversely, incorporating information

from more vehicles behind can have an adverse impact on intervehicle distances,

elevating the risk of breaching the safe spacing between vehicles.

6. Enhanced Platoon Performance: We have demonstrated that broadcasting the

leader vehicle’s state to other vehicles has the potential to improve overall pla-

toon performance. This leads to smaller deviations from desired values during

transient states.

7. Simulation Validation: We have provided simulations to validate our theoretical

findings and support our research contributions.

In summary, this chapter emphasizes the importance of studying transient intervehicle

distances and their relationship with various bidirectional communication topologies.

4.1 Preliminaries

In this chapter, time-dependent signals will only be included if they enhance clarity.

To differentiate between elements within vertical and horizontal vectors, we will uti-

lize the semicolon and colon symbols, respectively. For instance, a 3-by-1 vector is

symbolized as [.; .; .], while a 1-by-3 vector takes the form of [., ., .]. This notation will

be consistently employed throughout the document to improve lucidity and ease of

reading.
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4.1.1 Bidirectional Communication Copologies (BDCTs)

Fig. 4.1 displays common BDCTs employed in vehicle platooning. In this context,

each follower vehicle (FV) possesses the ability to communicate its state, including

position, velocity, and acceleration, with both the vehicles ahead and those behind.

This interplay establishes a bidirectional flow of communication across all vehicles.

Subsequently, to maintain conciseness, unless specifically stated otherwise, we will

collectively denote the state information of each vehicle, comprising its position, ve-

locity, and acceleration, as simply ‘information’.

Figure 4.1: Different common BDCTs between vehicles. The leading vehicle (referred
to as the leader) is designated as 0, while the FVs are labeled from 1 to 5.

In the depicted bidirectional-leader (BDL) topology in Fig. 4.1, each FV receives

information from the leader vehicle. Simultaneously, every FV exchanges information

with both its immediate successive and preceding vehicles. Similarly, within the

bidirectional (BD) topology, each FV participates in information exchange with both

its following and preceding vehicles. In the two-bidirectional-predecessor-following

(TBPF) topology, each FV communicates with its two immediate followers and two

immediate predecessors. In the two-predecessor-single-following (TPSF) topology,

each FV obtains information from its two immediate predecessors and conveys its
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own state to its following vehicle. In the single-predecessor-two-following (SPTF)

topology, each FV acquires information from its predecessor and shares its state with

its two immediate preceding vehicles.

Consider the platoon shown in Fig. 4.1 and, in preparation for later use, let for

the pairwise vehicles (i, i + 1) where i ranges from 0 to n − 1 (with n = 5 for the

showcased platoon), the following sets be defined as:

1. Ii+1: Vehicles from which the (i + 1)th follower gets information. For example,

in TPSF topology for pair (2,3), I3 is {1, 2, 4}.

2. Ii: Vehicles from which the ith follower obtains information. In TPSF topology

for pair (2,3), I2 is {0, 1, 3}.

3. Ri+1: Vehicles, excluding vehicle i, providing information to the (i+1)th follower.

In SPTF topology for pair (2,3), R3 is {4, 5}.

4. Ri: Vehicles, excluding vehicle i + 1, supplying information to the ith follower.

In SPTF topology for pair (2,3), R2 is {1, 4}.

We also use zji to represent the information linkage between vehicles i and j, where

zji = 1 means vehicle i gets information from vehicle j, and zji = 0 means it does not.

For TPSF topology, examples are z13 = 1 and z14 = 0 (Figure 4.1).

4.1.2 Representation of Constant and Changing Distances

We use a left-to-right direction for vehicle movement, designated as → for positive

direction, and← for negative direction. Constant lengths or distances are represented

by ↔. In Figure 4.2, Li and Li+1 indicate vehicle lengths, while di+1
i represents the

desired constant gap between them. Variable distances s1, s2, s3, and s4 follow the

formulas: s1 = xi − xi+1, s2 = xi+1 − (xi − Li), s3 = xi+1, and s4 = xi. Here, xi and

xi+1 refer to the front-side positions of the vehicles.
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Figure 4.2: Illustrating adjacent vehicles: Vehicle i + 1 as the follower and vehicle i
as the predecessor, showing constant and changing distances.

4.1.3 Vehicles Dynamics and ‘Follower-Leader’ State Errors

We make the assumption that the leading vehicle does not undergo any control pro-

cess. Instead, the position, velocity, and acceleration of the leading vehicle are utilized

to govern the behavior of the subsequent vehicles. In this context, each following ve-

hicle’s behavior within the platoon is described mathematically using a third-order

linear model [27, 31, 43, 46–48, 53, 54, 56, 57]. This model is defined as:⎧⎪⎨⎪⎩
ẋi+1 = vi+1

v̇i+1 = ai+1 i = 0, . . . , n− 1

ȧi+1 = − 1
τ
ai+1 +

1
τ
ui+1

(4.1)

Here, ai+1, vi+1, and τ represent the acceleration, velocity, and engine time constant

of the (i + 1)th follower. Let Xi+1 ≜ [xi+1; ẋi+1; ẍi+1] define the state vector of the

(i+1)th follower, where ẋi+1 = vi+1 and ẍi+1 = ai+1. Consequently, for i = 0, . . . , n−1,

and given the equation (4.1), the state-space model for the (i + 1)th follower can be

represented as:

Ẋi+1 =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

0 0 − 1
τ

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

≜A

Xi+1 +

⎡⎢⎢⎢⎣
0

0

1
τ

⎤⎥⎥⎥⎦
⏞⏟⏟⏞
≜B

ui+1
(4.2)

The controller ui+1 will be discussed subsequently. For each index i = 0, . . . , n − 1,

the desired position denoted as x∗i+1, desired velocity denoted as ẋ∗i+1, and desired
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Figure 4.3: Desired positions and ‘follower-leader’ position errors of the follower ve-
hicles.

acceleration denoted as ẍ∗i+1 of the (i + 1)th follower with respect to the state of the

leader vehicle are defined as follows:

x∗i+1 ≜ x0 −
i∑︂

κ=0

(Lκ + dκ+1
κ ), ẋ∗i+1 = v0, and ẍ∗i+1 = a0 (4.3)

regarding which let the desired state vector of the (i + 1)th follower be denoted as

X∗
i+1 ≜ [x∗i+1; ẋ

∗
i+1; ẍ

∗
i+1]. It is important to observe that our specified reference

values in (4.3) are in contrast to those presented in [27, 53, 54], where ẍ∗i+1 was set

to 0. Through these considerations, the desired state of the followers are calculated

with respect to the state of the leader vehicle. Therefore, let ’follower-leader’ state

error of the (i + 1)th follower be defined as X̃i+1 ≜ Xi+1 −X∗
i+1 = [x̃i+1; ˜︁ẋi+1; ˜︁ẍi+1]

where x̃i+1 = xi+1 − x∗i+1, ˜︁ẋi+1 = ẋi+1 − ẋ∗i+1, and ˜︁ẍi+1 = ẍi+1 − ẍ∗i+1.

Illustrated in Fig. 4.3 is a vehicular platoon, where the desired positions and the

’follower-leader’ position errors, denoted as x̃i+1, are showcased for each follower. This

presentation spans the range of i = 0, . . . , n− 1 (with n = 5 in this instance). Since

state errors are calculated relative to the leading vehicle, we have x̃0 = ˜︁ẋ0 = ˜︁ẍ0 = 0.

4.1.4 Platoon Targeted-Kinematics, and Controllers

The primary goal of the controller ui+1 in (4.2) is to achieve synchronization between

the velocities and accelerations of the follower vehicles and those of the leading vehicle.

Additionally, it aims to maintain desired distances between adjacent vehicles, denoted
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as di+1
i . To put it more straightforwardly, for each value of index i within the range

from 0 to n− 1, the controller has two main aims: firstly, to eliminate the ’follower-

leader’ state errors, and secondly, to align the velocity vi+1 and acceleration ai+1

with the velocity and acceleration of the leading vehicle, indicated as v0 and a0,

respectively. To accomplish this dual objective, a distributed linear control law [89]

is utilized. The control law can be expressed using the following equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ui+1 = −

∑︂
j∈Ii+1

k(∆xji+1 − di+1,j) + b∆ẋji+1 +∆hẍji+1

di+1,j ≜ −sgn(i+ 1− j)
max(i+1,j)−1∑︂
κ=min(i+1,j)

lκ + dκ+1
κ

(4.4)

where ∆xji+1 ≜ xi+1 − xj, ∆ẋji+1 ≜ ẋi+1 − ẋj, and ∆ẍji+1 ≜ ẍi+1 − ẍj. Considering

that xi+1 − xj − di+1,j = x̃i+1 − x̃j, ẋi+1 − ẋj = ˜︁ẋi+1 − ˜︁ẋj, and ẍi+1 − ẍj = ˜︁ẍi+1 − ˜︁ẍj,
the controller (4.4) can be reformulated as:

ui+1 = −
∑︂
j∈Ii+1

K
(︂
X̃i+1 − X̃j

)︂
= −

∑︂
j∈Ii+1

K∆X̃
j

i+1 (4.5)

in which ∆X̃
j

i+1 ≜ X̃i+1 − X̃j and the vector K ≜ [k, b, h] is introduced as the

control-gain vector, which quantifies the impact of relative measurements between

the (i+ 1)th follower and the vehicles transmitting information to it.

4.1.5 Platoon Dynamics, and Internal Stability

To find the platoon closed-loop dynamics, first noting that ẍi+1 = ˜︁ẍi+1 + a0 and

...
x i+1 =

...˜︁x i+1 + ȧ0, and plugging (4.5) in (4.1), for i = 0, . . . , n − 1, yields (See

Appendix B)

...
x̃ i+1 = −

1

τ
Ki+1X̃i+1 +

∑︂
j∈Ii+1

1

τ
KX̃j + ϵi+1 (4.6)

in which ϵi+1 ≜ − 1
τ
a0(t)− ȧ0(t) and Ki+1 ≜ [ki+1, bi+1, hi+1] such that

ki+1 ≜ |Ii+1|k, bi+1 ≜ |Ii+1|b, hi+1 ≜ 1 + |Ii+1|h (4.7)
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where |Ii+1| denotes the cardinality of the set Ii+1. Now, considering (4.6), knowing

x̃0 = ˜︁ẋ0 = ˜︁ẍ0 = 0, and defining the platoon’s total ‘follower-leader’ state-error vector

by X̃t ≜ [X̃1; X̃2; . . . , X̃n], then the platoon’s closed-loop state-space dynamic model

can be compactly characterized by

Ẋ̃t = [In ⊗A−P⊗BK]⏞ ⏟⏟ ⏞
At

X̃t + I3n⏞⏟⏟⏞
≜Bt

Vec(ϵ1, ϵ2, . . . , ϵn)⏞ ⏟⏟ ⏞
≜ut

(4.8)

in which Vec(ϵ1, ϵ2, . . . , ϵn) = [ϵ1; ϵ2, . . . ; ϵn] where for i = 0, . . . , n − 1, ϵi+1 ≜

[0; 0; ϵi+1], I3n is the identity matrix of size 3n, and P ∈ Rn×n whose elements pκj are

according to

pκj =

⎧⎪⎨⎪⎩
|Iκ| if κ = j

0 if zjκ = 0

−1 if zjκ = 1

(4.9)

where κ, j = 1, . . . , n and |Iκ| shows the cardinality of the set Iκ.

Remark 1 Given (4.9) and Fig. 4.1, for BDCTs: BDL, BD and TBPF, since the

communication between followers is undirected, i.e., j ∈ Ii ⇐⇒ i ∈ Ij, i, j =

1, . . . , n− 1, then the matrix P has only real eigenvalues (λi, i = 1, . . . , n) [27]. Also,

for BDCTs: TPSF and SPTF, the matrix P has combination of real (λ̄i, i = 1, . . . , l)

and conjugate complex (σi ± jωi, i = 1, . . . , n−l
2
) eigenvalues [53].

Remark 2 For those BDCTs in which the matrix P has only real eigenvalues, the

platoon dynamics (4.8) would be asymptotically stable if and only if the resultant

matrices

A− λiBK (4.10)

are all Hurwitz, i.e., their eigenvalues are all negative [27]. Note that λi; i = 1, . . . , n−

1, denote the eigenvalues of the matrix P. Given that k, b, h > 0, using Routh-Hurwitz

stability criterion, the following condition can be found for the internal stability of the

platoon:

b >
kτ

1 + λminh
(4.11)

where λmin = mini{λi}.
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Remark 3 For those BDCTs in which the eigenvalues of the matrix P are combi-

nation of real and conjugate complex values, the platoon dynamics (4.8) would be

asymptotically stable if and only if the following resultant matrices⎧⎪⎨⎪⎩
1)A− λ̄iBK i = 1, . . . , l

2)I2 ⊗A−

[︄
σi ωi

ωi σi

]︄
⊗BK i = 1, . . . , n−l

2

(4.12)

are all Hurwitz, i.e., their eigenvalues are all negative [53]. Note that in (4.12), the

second matrix would result in a characteristic polynomial of degree six.

Remark 4 Internal stability in platooning ensures that vehicle states (positions, ve-

locities, and accelerations) remain bounded over time for any bounded input. However,

it does not guarantee collision-free distances between vehicles, as we will show with

examples. Meeting internal stability conditions is crucial for stable platoon behavior

but does not always prevent collisions or unsafe distances caused by control gains that

meet these conditions. In simpler terms, relying solely on an internally stable pla-

toon will not guarantee favorable transient spacing between vehicles or even transient

speeds and accelerations of the FVs. To reiterate, ’transient’ simply pertains to the

duration of trajectories before they reach their desired values.

Remark 5 Considering (4.8), when a0(t) = 0, we arrive at ˜︁Ẋ t = AtX̃t. Ensuring

the internal stability conditions are met will lead to X̃t converging to zero in a steady

state, which implies that xi+1(t) = x∗i+1(t), ẋi+1(t) = ẋ∗i+1(t), and ẍi+1(t) = ẍ∗i+1(t)

for i = 0, . . . , n − 1. However, if a0 ̸= 0 in a steady state, the control input ut will

impact the convergence of IDs as well as the follower’s velocities and accelerations

toward their desired values. Nevertheless, we will demonstrate that by employing

a state coordinate transformation, the new states become independent of the leader

vehicle’s acceleration and jerk trajectories. Consequently, even if a0 ̸= 0 in a steady

state, satisfying the internal stability conditions will still be sufficient for achieving

convergence of IDs, velocities, and accelerations to their desired values.
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Figure 4.4: State coordinate transformation from ‘follower-leader’ errors to ‘follower-
predecessor’ errors.

4.2 State Coordinate Transformation

Highlighting the platoon’s dynamics, the closed-loop dynamics (4.8) emerges through

the incorporation of established state errors between the ’follower’ and ’leader’ units.

These errors are denoted as X̃i+1 where i = 0, . . . , n− 1, and their visual representa-

tion can be observed in Fig. 4.3. Nevertheless, achieving internal stability does not

inherently safeguard against momentary variable distances among neighboring vehi-

cles dropping below a safe threshold before attaining a desired intervehicle spacing.

On the other hand, the ‘follower-leader’ state errors do not provide direct information

about the state differences between adjacent vehicles. As such and as far as safety

and collision concerned, we need to have a direct formulation for distance between

every neighboring vehicles.
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Adding to this, the visual representation of ’follower-leader’ position errors, as

evident in Fig. 4.3, not only lacks an intuitive portrayal of distances between adja-

cent vehicles but also inadequately facilitates direct analysis of transient intervehicle

distances (TIDs). To establish a comprehensive framework surpassing internal sta-

bility considerations and fostering an intuitive TIDs examination, we undertake a

transformation of previous state coordinates from ’follower-leader’ errors to ’follower-

predecessor’ errors. This transformation yields ’follower-predecessor’ errors derived

from consecutive ’follower-leader’ errors, exemplified in Fig. 4.4. An instance of

this is the ’follower-predecessor’ error between followers 1 and 2, derived from the

’follower#1-leader’ and ’follower#2-leader’ pairs.

According to this coordinate transformation, we introduce coupled position, veloc-

ity, acceleration, and jerk errors between neighboring vehicles i and i + 1 as follows:

1. Coupled position error: Denoted as ∆p̃i+1
i ≜ x̃i − x̃i+1, representing the differ-

ence in position errors. 2. Coupled velocity error: Denoted as ∆ṽi+1
i ≜ ˜︁ẋi − ˜︁ẋi+1,

signifying the difference in velocity errors. 3. Coupled acceleration error: Denoted

as ∆ãi+1
i ≜ ˜︁ẍi − ˜︁ẍi+1, representing the difference in acceleration errors. 4. Coupled

jerk error: Denoted as i+1ג̃∆

i ≜
...˜︁x i −

...˜︁x i+1, indicating the difference in jerk errors.

With these formulations, the ’follower-predecessor’ state error and its derivative for

neighboring vehicles i and i+ 1 can be expressed as follows:

∆X̃
i+1

i ≜ X̃i − X̃i+1 ≜
[︁
∆p̃i+1

i ; ∆ṽi+1
i ; ∆ãi+1

i

]︁
∆˜︁Ẋ i+1

i ≜ ˜︁Ẋ i − ˜︁Ẋ i+1 ≜
[︂
∆ṽi+1

i ; ∆ãi+1
i ; i+1ג̃∆

i

]︂ (4.13)

Using these error terms, we derive the coupled distance dynamics governing neighbor-

ing vehicles in BDCTs. We will refer to ∆p̃i+1
i (.) as the transient intervehicle distance

error (TIDE) between vehicles i and i+1 in both the time and Laplace domains. Im-

portantly, ’follower-predecessor’ state errors between vehicles i and j (where j > i)

can be expressed as ∆X̃
j

i ≜ X̃i − X̃j.
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Figure 4.5: Desired positions and ‘follower-leader’ position errors of the follower ve-
hicles.

4.3 Platoon Distance Dynamic model

In this section, we present an alternative dynamic model based on (4.8), sharing the

previously mentioned internal stability conditions (Remarks 2-3). This model enables

the examination of TIDEs and the determination of control gains to prevent collisions

and maintain safe spacing between vehicles. To extract the dynamics governing neigh-

boring vehicles’ behavior under BDCTs (as shown in Fig. 4.1), we consider a small

sampling time 0 < ∆t≪ 1 and apply the Euler method, yielding:

∆X̃
i+1

i (t+∆t)−∆X̃
i+1

i (t)

∆t
≈ ∆Ẋ̃i+1

i (t) (4.14)

To find the coupled dynamics of pairwise neighboring vehicles i and i + 1, we need

i+1ג̃∆

i for i = 0, 1, . . . , n− 1.

Theorem 6 For i = 0, . . . , n− 1, the coupled jerk error between neighboring vehicles

i and i+ 1 under BDCTs (Fig. 4.3) is given by:

i+1ג̃∆

i = −1

τ
Ji∆X̃

i+1

i +
1

τ
K
∑︂
j∈αi

i−1∑︂
κ=j

∆X̃
κ+1

κ +
1

τ
K
∑︂
j∈βi

j−1∑︂
κ=i+1

∆X̃
κ+1

κ (4.15)

In this equation, Ji is defined as [|Ji|k, |Ji|b, 1 + |Ji|h], where |Ji| is determined as

follows:

|Ji| =

⎧⎪⎨⎪⎩
|Ii| if βi = ∅ & i ̸= 0

1 if i = 0

|Ii+1| if βi ̸= ∅ & i ̸= 0

(4.16)
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The sets αi and βi are defined as αi ≜ {j ∈ Ri | zji = 1 & zji+1 = 0 & j < i} and

βi ≜ {j ∈ Ri+1 | zji+1 = 1 & zji = 0 & j > i+ 1}, respectively. Refer to Table 4.1 for

sets αi, βi, and |Ii+1| values for the platoon under BDCTs (Fig. 4.1).

Proof. For i = 1, . . . , n− 1, using (4.6), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
...
x̃ i = −

1

τ
KiX̃i +

1

τ

∑︂
j∈Ii

KX̃j + ϵi

...
x̃ i+1 = −

1

τ
Ki+1X̃i+1 +

1

τ

∑︂
j∈Ii+1

KX̃j + ϵi+1

(4.17)

Therefore, given ϵi = ϵi+1 and i+1ג̃∆

i ≜
...
x̃ i −

...
x̃ i+1, we get

i+1ג̃∆

i =− 1

τ
Ki∆X̃

i+1

i − 1

τ
(Ki −Ki+1) X̃i+1 +

∑︂
j∈Ii

1

τ
KX̃j −

∑︂
j∈Ii+1

1

τ
KX̃j (4.18)

Since − 1
τ
(Ki −Ki+1) =

∑︁
j∈Ii+1

1
τ
K−

∑︁
j∈Ii

1
τ
K then (4.18) can be rewritten as

i+1ג̃∆

i = −1

τ
Ki∆X̃

i+1

i +
∑︂
j∈Ii

1

τ
K∆X̃

i+1

j −
∑︂
j∈Ii+1

1

τ
K∆X̃

i+1

j (4.19)

Also, as X̃j − X̃i+1 = X̃j − X̃i + X̃i − X̃i+1, (4.19) can be reformulated as

Table 4.1: Sets αi and βi, and values of |Ii+1| and |Ji| for the platoon and BDCTs
given in Fig. 4.1.

Pairs: (0, 1) (1, 2) (2, 3) (3, 4) (4, 5)

{α0, β0} & |I1| & |J0| {α1, β1} & |I2| & |J1| {α2, β2} & |I3| & |J2| {α3, β3} & |I4| & |J3| {α4, β4} & |I5| & |J4|

BDL {∅, {2}} & 2 & 1 {∅, {3}} & 3 & 3 {{1}, {4}} & 3 & 3 {{2}, {5}} & 3 & 3 {{3}, ∅} & 2 & 3

BD {∅, {2}} & 2 & 1 {{0}, {3}} & 2 & 2 {{1}, {4}} & 2 & 2 {{2}, {5}} & 2 & 2 {{3}, ∅} & 1 & 2

TBPF {∅, {2, 3}} & 3 & 1 {∅, {4}} & 4 & 4 {{0}, {5}} & 4 & 4 {{1}, ∅} & 3 & 4 {{2}, ∅} & 2 & 3

TPSF {∅, {2}} & 2 & 1 {∅, {3}} & 3 & 3 {{0}, {4}} & 3 & 3 {{1}, {5}} & 3 & 3 {{2}, ∅} & 2 & 3

SPTF {∅, {2, 3}} & 3 & 1 {{0}, {4}} & 3 & 3 {{1}, {5}} & 3 & 3 {{2}, ∅} & 2 & 3 {{3}, ∅} & 1 & 2

i+1ג̃∆

i =
1

τ

⎛⎝− (Ki +K) +
∑︂
j∈Ri

K−
∑︂

j∈Ri+1

K

⎞⎠∆X̃
i+1

i +
∑︂
j∈Ri

1

τ
K∆X̃

i

j −
∑︂

j∈Ri+1

1

τ
K∆X̃

i

j

(4.20)

Note that for the given BDCTs we have Ii = Ri ∪ {i + 1} and Ii+1 = Ri+1 ∪ {i}.

Splitting j ∈ Ri and j ∈ Ri+1 in two parts, i.e., j < i and j > i + 1, and using the
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fact that for part j > i+1, we have Xj − X̃i = Xj − X̃i+1−
(︂
X̃i − X̃i+1

)︂
, (4.20) can

be reformulated as

i+1ג̃∆

i =
1

τ

⎛⎝− (Ki +K) +
∑︂

j∈Ri<i

K−
∑︂

j∈Ri+1<i

K

⎞⎠∆X̃
i+1

i +
∑︂

j∈Ri<i

1

τ
K∆X̃

i

j−

∑︂
j∈Ri+1<i

1

τ
K∆X̃

i

j +
∑︂

j∈Ri+1>i+1

1

τ
K∆X̃

j

i+1 −
∑︂

j∈Ri>i+1

1

τ
K∆X̃

j

i+1

(4.21)

Remark 7 In the context of the provided BDCTs, when we examine any pair (i, i+1),

one of the following conditions holds: 1. Both the ith and (i + 1)th vehicles receive

information from vehicles either ahead or behind them. 2. Only the ith vehicle receives

information from specific vehicles ahead, while the (i+1)th vehicle does not. 3. Only

the (i + 1)th vehicle acquires information from specific vehicles behind, while the ith

vehicle does not.

Given Remark 7, and sets αi and βi, (4.21) can be simplified to

i+1ג̃∆

i =
1

τ

(︄
− (Ki +K) +

∑︂
j∈αi

K

)︄
∆X̃

i+1

i +
∑︂
j∈αi

1

τ
K∆X̃

i

j +
∑︂
j∈βi

1

τ
K∆X̃

j

i+1 (4.22)

Having |αi| as the cardinality of the set αi, (4.22) can be reformulated as

i+1ג̃∆

i =− 1

τ
(Ki +K− |αi|K)∆X̃

i+1

i +
∑︂
j∈αi

1

τ
K∆X̃

i

j +
∑︂
j∈βi

1

τ
K∆X̃

j

i+1 (4.23)

On the other hand, for i = 1, . . . , n− 1 and BDCTs, we have{︄
|Ii+1| = |Ii| − 1 & |αi| = 1if βi = ∅
|Ii+1| = |Ii|+ (1− |αi|) & |βi| = 1if βi ̸= ∅

(4.24)

which implies that

Ki +K− |αi|K =

{︄
Ki if βi = ∅
Ki+1 if βi ̸= ∅

(4.25)

Therefore, given (4.24), (4.23) can be rewritten as

i+1ג̃∆

i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

τ
Ki∆X̃

i+1

i +
∑︂
j∈αi

1

τ
K∆X̃

i

j;βi = ∅

−1

τ
Ki+1∆X̃

i+1

i +
∑︂
j∈αi

1

τ
K∆X̃

i

j +
∑︂
j∈βi

1

τ
K∆X̃

j

i+1;βi ̸= ∅
(4.26)
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Now, given that for the pair (i, i+ 1), ∆X̃
i

j and ∆X̃
j

i+1 can be rewritten in the

following form: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆X̃

i

j =
i−1∑︂
κ=j

∆X̃
κ+1

κ ; j < i

∆X̃
j

i+1 =

j−1∑︂
κ=i+1

∆X̃
κ+1

κ ; j > i+ 1

(4.27)

then substituting (4.27) into (4.26) yields

i+1ג̃∆

i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1

τ
Ki∆X̃

i+1

i +
1

τ
K
∑︂
j∈αi

i−1∑︂
κ=j

∆X̃
κ+1

κ ;βi = ∅

−1

τ
Ki+1∆X̃

i+1

i +
1

τ
K
∑︂
j∈αi

i−1∑︂
κ=j

∆X̃
κ+1

κ +
1

τ
K
∑︂
j∈βi

j−1∑︂
κ=i+1

∆X̃
κ+1

κ ;βi ̸= ∅

(4.28)

Now, let us study the pair (0, 1). For the given BDCTs, given that X̃0 = 0 we have

10ג̃∆ = −
1

τ
K1∆X̃

1

0 −
1

τ

∑︂
j∈R1

KX̃j = −
1

τ
K1∆X̃

1

0 +
1

τ

∑︂
j∈R1≥2

K
(︂
∆X̃

1

0 +∆X̃
j

1

)︂
= −1

τ
(K1 − |β0|K)∆X̃

1

0 +
1

τ

∑︂
j∈β0

K∆X̃
j

1

(4.29)

where β0 ≜ {j ∈ R1|j ≥ 2}. Also, for the pair (0, 1), since |β0| = |I1| − (1− |α0|),

then K1− |β0|K = K, where K ≜ [k, b, 1 + h]. Therefore, (4.29) can be rewritten as

10ג̃∆ = −
1

τ
K∆X̃

1

0 +
1

τ
K
∑︂
j∈β0

j−1∑︂
κ=1

∆X̃
κ+1

κ (4.30)

Subsequently (4.28) and (4.30) can be unified as a single formula. Let the set Ji

be defined as Ji ≜ {j | j ≤ i & zji+1 = 1} ∪ {j | j ≥ i + 1 & zji = 1}; i = 0, . . . , n− 1.

For i = 1, . . . , n− 1, first we split the set Ji in two sets: Mi ≜ {j | j ≤ i & zji+1 = 1}

and Bi ≜ {j | j ≥ i + 1 & zji = 1}, such that Ji = Mi ∪ Bi. Figs. 4.6a-4.6b depicts

these sets, respectively. Regarding the definition βi ≜ {j ∈ Ri+1 | zji+1 = 1 & zji =

0 & j > i+ 1}, we have two cases for the pair (i, i+ 1); i = 1, . . . , n− 1:

Case 1: βi = ∅

Having βi = ∅ implies that the followers behind from which the (i + 1)th follower

receives information (the followers Ii+1 −Mi, see Fig. 4.6a), also send information
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(a) Mi ≜ {j | j ≤ i & zji+1 = 1} which is depicted with solid green arrows. The dashed black

arrow represents the followers Ii+1−Mi from which the (i+1)th follower receives information.

(b) Bi ≜ {j | j ≥ i+ 1 & zji = 1} which is depicted with solid purple arrows.

Figure 4.6: Illustration of sets Mi and Bi

to the ith follower. Therefore, the set Bi (see Fig. 4.6b) can be obtained as Bi =

{i + 1} ∪ (Ii+1 −Mi). It is clear that |Ji| = |Mi| + |Bi| in which |.| denotes the

cardinality of the sets. As such, we have |Bi| = 1 + |Ii+1| − |Mi| and, therefore,

|Ji| = 1 + |Ii+1| = |Ii| (see (4.24)).

Case 2: βi ̸= ∅

Having βi ̸= ∅ implies that the followers behind (other than the (i + 1)th follower)

from which the ith follower receives information are only Ii+1 −Mi − βi. Therefore,

Bi = {i + 1} ∪ (Ii+1 −Mi − βi), and thus |Bi| = 1 + |Ii+1| − |Mi| − |βi| and |Ji| =

|Mi|+ |Bi| = 1 + |Ii+1| − |βi| = |Ii+1| (see (4.24)).

Finally, given the definition of the set Ji, we always have J0 = {0} and therefore

|J0| = 1. Thus, for i = 0, . . . , n− 1, (4.28) and (4.30) can be unified and the unified

coupled jerk error between the neighboring vehicles i and i + 1 under the BDCTs

given in Fig. 7.1 would be according to (4.15). Therefore, the proof completed.

Theorem 8 The state errors of ‘follower-leader’ pairs and the state errors of neigh-

boring ‘follower-predecessor’ pairs are governed by a shared internal stability condi-

tion.
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Proof. Considering (4.15), regarding the facts that d/dt{∆p̃i+1
i } = ∆ṽi+1

i and

d/dt{∆ṽi+1
i } = ∆ãi+1

i , assuming ∆ỹi+1
i = ∆p̃i+1

i as the output of the pairs cou-

pled dynamics, then for i = 0, . . . , n− 1, the state-space model for the pair (i, i+ 1)

can be presented as {︄
∆˜︁Ẋ i+1

i = Ai+1
i ∆X̃

i+1

i +Bi+1
i ∆ũi+1

i

∆ỹi+1
i = Ci+1

i ∆X̃
i+1

i

(4.31)

where Ci+1
i = [1, 0, 0], Bi+1

i = B, and Ai+1
i ∈ R3×3 and ũi+1

i ∈ R are

Ai+1
i =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

− |Ji|k
τ
− |Ji|b

τ
−1+|Ji|h

τ

⎤⎥⎥⎥⎦ (4.32)

and

∆ũi+1
i = K

∑︂
j∈αi

i−1∑︂
κ=j

∆X̃
κ+1

κ +K
∑︂
j∈βi

j−1∑︂
κ=i+1

∆X̃
κ+1

κ (4.33)

respectively. Note that that the sets Ji, αi and βi are mutually disjoint, i.e., Ji∩αi =

∅, Ji ∩ βi = ∅ and αi ∩ βi = ∅. Also, always α0 = ∅ and βn−1 = ∅. Defining

∆X̃t ∈ R3n×1 = [∆X̃
1

0; ∆X̃
2

1; . . . , ∆X̃
n

n−1], applying i = 0, . . . , n − 1 to the first

relation in (4.31), the stacked resultant relations can be compactly shown as

∆˜︁Ẋ t = Ãt∆∆X̃t =
[︁
In ⊗A− P̄⊗BK

]︁
∆X̃t (4.34)

where Ãt∆ = In⊗A−P̄⊗BK, and P̄ ∈ Rn×n whose elements p̄ij would be according

to

p̄ij =

⎧⎪⎨⎪⎩
− |Sj ∩ αi−1| if j < i

|Ji−1| if j = i

− |Vj ∩ βi−1| if j > i

(4.35)

where |.| denotes the cardinality of the relevant sets, Sj ≜ {j − 1, j − 2, . . . , 0} and

Vj ≜ {j, j + 1, . . . , n}. Also, p̄ij = 0 in case of Sj ∩ αi−1 = ∅ or Vj ∩ βi−1 = ∅.

Fig. 4.7, illustrates the platoon dynamics (4.8) which has been developed by using

the ‘follower-leader’ state errors, and the alternative dynamics (4.34) which obtained

after state coordinate transformation and utilizing neighboring ‘follower-predecessor’

state errors.
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Figure 4.7: Illustration of platoon dynamics with ‘follower-leader’ and neighboring
‘follower-predecessor’ state errors.

Following (4.9) and (4.35), for any BDCT depicted in Fig. 4.1, the eigenvalues of

the matrices P and P̄ are identical. For instance, for the case of having five followers

and using TBPF topology, the matrices are

P̄ =

⎡⎢⎢⎢⎢⎣
1 −2 −1 0 0

0 4 −1 −1 0

−1 −1 4 −1 −1

0 −1 −1 4 0

0 0 −1 −1 3

⎤⎥⎥⎥⎥⎦ , P =

⎡⎢⎢⎢⎢⎣
3 −1 −1 0 0

−1 4 −1 −1 0

−1 −1 4 −1 −1

0 −1 −1 3 −1

0 0 −1 −1 2

⎤⎥⎥⎥⎥⎦ (4.36)

both of which have eigenvalues: 0.2935, 2.1324, 3.3900, 5.0000 and 5.1841 and thus

are similar matrices. Please check Link for matrices P and P̄ of the other BDCTs.

Considering (4.8) and (4.34), since the system matrices Ãt and Ãt∆ are in similar

formats as

Ãt = [In ⊗A−P⊗BK] (4.37a)

Ãt∆ =
[︁
In ⊗A− P̄⊗BK

]︁
(4.37b)

and regarding the property that P and P̄ are similar, dynamics (4.34) can be utilized
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instead of (4.8) for internal stability analysis. Therefore, the two cases mentioned ear-

lier in the Remarks 2-3 are valid for the matrix P̄ as well. Thus the proof completed.

4.4 Transient Intervehicle Distance Errors (TIDEs)

Given (4.15) and BDCTs in Fig. 4.1, there is a coupling between the pair (i, i+1) and

the pairs in the set
(︁
∪j∈αi

∪i−1
κ=j ζκ

)︁
∪
(︁
∪j∈βi

∪j−1
κ=i+1 ζκ

)︁
in which the set ζκ is defined

as ζκ ≜ {(κ, κ + 1)}. Note that the sets αi and βi are not empty sets at the same

time. For i = 0, . . . , n− 1, assuming ∆ṽi+1
i (0) = ∆ãi+1

i (0) = 0, and all initial TIDEs

are equal to µ, i.e., ∆p̃i+1
i (0) = µ, in Laplacian domain we have

∆X̃
i+1

i (s) = T1∆p̃
i+1
i (s)−T2µ (4.38)

where T1 ≜ [1; s; s2] and T2 ≜ [0; 1; s]. Given (4.31), ∆p̃i+1
i (s), for i = 0, . . . , n −

1, would be the summation of zero-state (∆X̃
i+1

i (0) = 0) response and zero-input

(∆ũi+1
i = 0) response.

Theorem 9 Given (4.31) and (4.38), TIDE between neighboring vehicles would be

according to

∆p̃i+1
i (s) = Ψi(s) +Hi(s)

∑︂
j∈αi

i−1∑︂
κ=j

∆p̃κ+1
κ (s) +Hi(s)

∑︂
j∈βi

j−1∑︂
κ=i+1

∆p̃κ+1
κ (s) (4.39)

where

Hi(s) =
h
τ
s2 + b

τ
s+ k

τ

s3 + h̄is2 + b̄is+ k̄i
; αi ̸= ∅ or βi ̸= ∅ (4.40)

and

Ψi(s) =
µ
(︂
s2 + 1+(|Ji|−γi)h

τ
s+ (|Ji|−γi)b

τ

)︂
s3 + h̄is2 + b̄is+ k̄i

; i = 0, . . . , n− 1 (4.41)

in which h̄i =
1+|Ji|h

τ
, b̄i =

|Ji|b
τ
, k̄i =

|Ji|k
τ

, and γi =
∑︁

j∈αi
(i− j) +

∑︁
j∈βi

(j − i− 1).

Proof. Given (4.31), the zero-input response, let be defined as ∆p̃i+1
i,zi (s), would be

according to

∆p̃i+1
i,zi (s) = Ci+1

i

(︁
sI3 −Ai+1

i

)︁−1
∆X̃

i+1

i (0) =
µ
(︁
s2 + h̄is+ b̄i

)︁
s3 + h̄is2 + b̄is+ k̄i

(4.42)
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where I3 is the identity matrix of size 3. Also, the zero-state response, let be defined

as ∆p̃i+1
i,zs(s), would be

∆p̃i+1
i,zs(s) = Gi+1

i (s)∆ũi+1
i (s) (4.43)

in which given (4.33) and (4.38) we have Gi+1
i (s) = Ci+1

i

(︁
sI3 −Ai+1

i

)︁−1
B and

∆ũi+1
i (s) = KT1

∑︂
j∈αi

i−1∑︂
κ=j

∆p̃κ+1
κ (s)−KT2

∑︂
j∈αi

i−1∑︂
κ=j

µ

+KT1

∑︂
j∈βi

j−1∑︂
κ=i+1

∆p̃κ+1
κ (s)−KT2

∑︂
j∈βi

j−1∑︂
κ=i+1

µ

(4.44)

Simplifying (4.44) results in Gi+1
i (s) = 1

τ(s3+h̄is2+b̄is+k̄i)
and

∆ũi+1
i (s) =

(︁
hs2 + bs+ k

)︁
×

(︄∑︂
j∈αi

i−1∑︂
κ=j

∆p̃κ+1
κ (s) +

∑︂
j∈βi

j−1∑︂
κ=i+1

∆p̃κ+1
κ (s)

)︄

− (hs+ b)

(︄∑︂
j∈αi

i−1∑︂
κ=j

µ+
∑︂
j∈βi

j−1∑︂
κ=i+1

µ

)︄ (4.45)

substituting which into (4.43) yields

∆p̃i+1
i,zs(s) =

h
τ
s2 + b

τ
s+ k

τ

s3 + h̄is2 + b̄is+ k̄i
×

(︄∑︂
j∈αi

i−1∑︂
κ=j

∆p̃κ+1
κ (s) +

∑︂
j∈βi

j−1∑︂
κ=i+1

∆p̃κ+1
κ (s)

)︄

−
µ
(︂∑︁

j∈αi
(i− j) +

∑︁
j∈βi

(j − i− 1)
)︂ (︁

h
τ
s+ b

τ

)︁
s3 + h̄is2 + b̄is+ k̄i

(4.46)

Therefore, given (4.42) and (4.46) we have ∆p̃i+1
i (s) = ∆p̃i+1

i,zi (s) + ∆p̃i+1
i,zs(s) which

would be equal to (4.39). Therefore, the proof completed.

4.4.1 Mapping Between TIDEs and Initial Conditions

Calculating (4.39) for i = 0, . . . , n− 1 and stacking them together, after some math-

ematical manipulation, it is possible to reformulate (4.39) in the following compact

form:

∆P̃(s) = Q−1(s)Ψ(s) (4.47)
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such that ∆P̃(s) ≜
[︁
∆p̃10(s); ∆p̃

2
1(s); . . . ; ∆p̃

n
n−1(s)

]︁
,Ψ(s) ≜ [Ψ0(s); Ψ1(s); . . . ; Ψn−1(s)],

and Q(s) ∈ Cn×n whose elements are defined as

qij(s) =

{︄
1 if i = j

p̄ijHi−1(s) if i ̸= j
(4.48)

where p̄ij are defined in (4.35). Therefore, if we define the elements of Q−1(s) as

Q−1
(i+1)j(s), then exploring (4.47) yields

∆p̃i+1
i (s) =

n∑︂
j=1

Q−1
(i+1)j(s)Ψj−1(s); i = 0, . . . , n− 1 (4.49)

4.4.2 Different Scenarios for TIDEs

Given (4.49), it follows that ∆p̃i+1
i (t) represents the impulse response of ∆p̃i+1

i (s),

or equivalently the inverse Laplace transform of ∆p̃i+1
i (s). Consequently, for a given

K = [k, b, h], the appropriate control gains necessary to ensure safe and collision-

free distances can be determined based on the relationship between TIDEs, safe

and desired IDs. The different scenario are illustrated in Fig. 4.8. If ∆p̃i+1
i (t) >

−(di+1
i − dsi,i+1) holds during the travel time (TT), it leads to a stable-safe distance

over TT (cases a and b). Similarly, when ∆p̃i+1
i (t) > −di+1

i holds within the TT,

and ∆p̃i+1
i (t) < −(di+1

i − dsi,i+1) occurs during TT, it results in a stable-unsafe dis-

tance over TT (case c). Conversely, if ∆p̃i+1
i (t) ≤ −di+1

i takes place over the TT, it

leads to a stable-collision occurrence within platoon (case d). Note that, in Fig. 4.8,

Di+1
i (t) = xi(t) − xi+1(t) − Li = ∆p̃i+1

i (t) + di+1
i exhibits the real distance between

neighboring vehicles i and i+1. Please observe that when ∆p̃i+1
i (t) converges to zero,

signifying a stable platoon, the actual distance between adjacent vehicles will also

converge to the desired values.

4.5 Simulations and Results

In this section, we present simulation results that serve to validate the theoretical

findings. To do so, we consider a platoon comprising one leader and five followers,
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(a)

(b)

(c)

(d)

Figure 4.8: Portraying different situations featuring transient intervehicle distance
errors (TIDEs) among neighboring vehicles.

with a constant distance policy set at 5m. Within the simulations, all vehicles begin

with initial velocities and accelerations set to zero. Their lengths are uniform at 4m.
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Figure 4.9: Control Gain Categories: Unstable (red), Stable-Collision (yellow),
Stable-Unsafe (blue), and Stable-Safe (green). Desired and safe distances between
neighboring vehicles: 5m and 3m, respectively.

Additionally, we employ a sampling time of 0.01s. The simulation time is established

as 100s, though for the sake of clarity in presentation, results may be shown for time

intervals less than 100s. Furthermore, the safe distance between vehicles is set at 3m,

denoted as dsi,i+1 = 3m.

4.5.1 Comparing BDCTs Based on TIDE Performance

In the provided BDCTs (see Fig. 4.1), stability analysis reveals that BDL, BD, and

TBPF topologies exhibit real eigenvalues in their matrices P and P̄ (defined in (4.9)

and (4.35)), while TPSF and SPTF topologies feature a mix of real and conjugate

complex eigenvalues. Control gains k and b vary between 0.1 and 19.6 (with 0.5

increments), under the assumptions of τ = 1 and h = 4. Unstable control gains are

identified when stability conditions are not met, while stable control gains are those

satisfying the conditions.

Further analysis, using (4.49) and the approach detailed in the ’Different Scenarios
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for TIDEs’ subsection of the previous section, reveals which control gains lead to

unstable, stable-collision, stable-unsafe, or stable-safe distances between neighboring

vehicles. These findings are visually represented in Fig. 4.9, with red indicating

unstable, yellow for stable-collision, blue for stable-unsafe, and green for stable-safe

gains. Referring to Fig. 4.9, several noteworthy conclusions can be made:

1. BDL Reigns Supreme: BDL topology emerges as the front-runner, boast-

ing larger stable and stable-safe areas, indicating its superior performance in

platoon control.

2. Leader Broadcasting: Broadcasting the leader’s state, as demonstrated in

the BDL topology, significantly elevates platoon performance compared to the

conventional BD topology.

3. SPTF’s Limitations: SPTF displays limitations, with the smallest stable

area and the largest stable-collision area, suggesting challenges in maintaining

platoon stability.

4. BD vs. SPTF: Despite SPTF providing more information from vehicles be-

hind, BD outperforms it, highlighting the impact of information sources on

performance.

5. TPSF’s Advantage: TPSF outperforms TBPF, even though TBPF offers

additional information from vehicles behind, emphasizing the significance of

information exchange with vehicles ahead.

6. Information from Rear Impacts Performance: The introduction of extra

information from vehicles behind, beyond the immediate follower, is associated

with a degradation in platoon performance.

7. BD, TPSF, SPTF Comparison: TPSF, with additional information from

vehicles ahead, enhances performance compared to BD. Conversely, SPTF, with
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extra rearward information, diminishes performance.

8. BDL vs. TPSF Parity: BDL and TPSF exhibit comparable performance

levels. However, it appears that performance could further improve if the addi-

tional information from vehicles ahead originates from the leader vehicle.

Figure 4.10: Leader’s velocity and acceleration.

4.5.2 Analysis Validation for TIDE Study

Consider time interval t1i ≤ ti < t2i during which the leader vehicle’s acceleration

remains constant at a0i . Therefore, for each time interval we can apply basic physics

principles to find its velocity (v0i ) and position (x0i ):

v0i (t) = a0i (t− t1i ) + v0i (t
1
i )

x0i (t) =
1

2
a0i (t− t1i )2 + v0i (t− t1i ) + x0i (t

1
i )

(4.50)

Fig. 6.4 depicts an arbitrary acceleration and the associated velocity trajectories we

have considered for the leader vehicle for the simulations. Considering (4.8), and

assuming a sampling time of ∆t, we can calculate the updated X̃t(t+∆t) as follows:

X̃t(t+∆t) =
(︂
I3n + Ãt∆t

)︂
X̃t(t) + ∆tVec(ϵ1, ϵ2, . . . , ϵn) (4.51)
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Here, I3n is the identity matrix of size 3n. Now, Given the acceleration trajectory

of leader vehicle, using (4.3), and noting that X̃i+1(t) = Xi+1(t) − X∗
i+1(t), other

than TIDEs, we can find the follower vehicles’ position, velocity and acceleration

trajectories. The communication topology is considered to be the BDL topology, and

the initial positions are selected as xi(0) = −17 × i m, i = 0, 1, . . . , 5, where given

di+1
i = 5m, and di+1

i,s = 3m, the initial TIDE between neghboring vehicles would be

∆p̃i+1
i (0) = 8m.

Associated TIDE trajectories of selected points from the BDL topology (Fig. 4.9)

are illustrated in Fig. 4.11:

1. K = [16.1, 3.1, 4] (from the unstable area), error trajectories diverge, rendering

the platoon unstable.

2. K = [9.1, 3.6, 4] (from the stable-collision area) results in converging error tra-

jectories, but some cross the red-dashed line (−5m error), indicating collisions.

3. K = [15.6, 10.1, 4] (from the stable-unsafe area) leads to converging error tra-

jectories, with some crossing the blue-red line (−2m error), signifying violations

of the safe distance.

4. K = [6.6, 17.6, 4] (from the stable-safe area) results in converging trajectories

that do not cross the red-dashed (collision) or blue-dashed (safe distance) lines,

ensuring the maintenance of a safe distance between vehicles.

Therefore, the error trajectories validate the identified unstable, stable-collision, stable-

unsafe, and stable-safe areas from the provided analysis elaborated on in Section VII.

4.5.3 Tracking Performance

Platooning aims to achieve two vital objectives: 1) aligning followers with the leader’s

velocity and acceleration, and 2) ensuring IDs converge to preset values, assumed here
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Figure 4.11: ∆p̃i+1
i (t) trajectories of selected points from the BDL topology (see Fig.

4.9).

to be 5m. In our demonstration within the BDL topology, we have chosen represen-

tative K points from each stability region (see Fig. 4.9). Fig. 4.12 displays position,

velocity, and acceleration trajectories for i = 1, . . . , 5 at these selected points. Within

stable regions (yellow, blue, and green areas), we observe velocities and accelerations

converging to match the leader’s values. The convergence times vary among points,
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with the stable-safe point showing the quickest convergence and the stable-collision

point the slowest.

In line with our explanation in the ’Verifying the Validity of the Areas’ section,

selected points within stable regions demonstrate error convergence to zero, ensuring

attainment of the predefined desired distances between neighboring vehicles.

Figure 4.12: Velocity, acceleration and position trajectories for BDL topology under
control gains K = [9.1, 3.6, 4] (stable-collision), K = [15.6, 10.1, 4] (stable-unsafe) and
K = [6.6, 17.6, 4] (stable-safe), respectively.

4.5.4 High-Fidelity Simulation of Truck Platooning

We have assessed the controller’s performance and communication topologies in real-

istic vehicle platooning using MATLAB’s Vehicle Dynamics Blockset for simulation,

employing both BDL and BD communications. Each vehicle’s dynamics in the pla-

tooning setup encompassed key aspects, including vehicle geometry, suspension, tire,

powertrain, and steering/braking systems. The platooning controller governed ac-

celeration input for each vehicle, maintaining a fixed steering angle of zero degrees,

focusing on longitudinal control.
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In addition to the intricate components of vehicle dynamics modeling, the platoon-

ing scenario also integrates vehicle-to-vehicle (V2V) communication for deployment.

In the realm of communication modeling, each vehicle within the platoon is equipped

with V2V transmitters and receivers. Specifically, we configure the communication

model to utilize BDL and BD communication protocols. The transmitters are re-

sponsible for transmitting basic safety messages (BSMs) containing pose information,

while the receivers within the platoon’s followers intercept and extract this valuable

data from the BSMs. Subsequently, the information obtained by the receivers of the

platoon followers is employed by their respective controllers to compute the necessary

acceleration for maintaining the desired following distance from the lead vehicle and

effectively tracking its movements.

The platooning setup includes one leader and four followers. Each follower has a

platooning controller (specified in (4.4)) that regulates longitudinal controls to main-

tain a constant spacing from the preceding vehicle while following the lead vehicle.

The inbuilt vehicle dynamics are modeled using a six degrees of freedom tractor-trailer

system, representing a three-axle tractor towing a three-axle trailer through a hitch.

Both the tractor and trailer have individual models for their vehicle body, wheels,

and suspension. The vehicle lengths are set at 17.2m, and the safe and desired inter-

vehicle spacing are established at 7m and 3m. Identical control gains are applied to

each follower vehicle, defined as K = [20, 25, 4]. Additionally, the initial positions for

the trucks are initialized as xi(0) = −32× i for i = 0 to 4.

Figs.4.13a and 4.13b illustrate the vehicle velocities under BDL and BD topologies.

This simulation emphasizes the substantial enhancement in velocity tracking for fol-

lower vehicles achieved through the broadcast of the leader vehicle’s state. Addition-

ally, in Figs. 4.14a and 4.14b, the desired and safe distances between vehicles, as well

as the actual distances between adjacent vehicles in the platoon, are presented. This

simulation outcome further underscores the improved platoon performance in coordi-

nating vehicles with the desired intervehicle distances, resulting from the broadcast
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of the leader vehicle’s state. It is noteworthy that in the BDL topology, the distances

between vehicles consistently remain above the safe distance threshold, while in the

BD topology, the distance between the leader and the first follower has breached the

safe distance threshold. Fig. 4.15 shows the corresponding truck platooning at times

t = 0s and t = 50s. Please note that an associated simulation video accompanies

these results as pointed out to in Fig. 4.15.

(a) Vehicles’ velocities under BDL topology

(b) Vehicles’ velocities under BD topology

Figure 4.13: Illustrating the beneficial impact of broadcasting the state of the leader
vehicle to FVs.

4.6 Conclusion

In conclusion, this chapter addressed the complexities of achieving not only internal

stability but also favorable transient dynamics in the intervehicle distances among

adjacent vehicles within a platoon. We accomplished this by introducing a novel

closed-loop distance dynamic model that shifted our focus from follower-leader state
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(a) Distance between trucks under BDL topology

(b) Distance between trucks under BD topology

Figure 4.14: Illustrating the beneficial impact of broadcasting the state of the leader
vehicle to FVs.

differences to neighboring-vehicle state differences.

Through this innovative dynamic model, we delved into both system stability and

transient intervehicle distance analysis. Regardless of the leader vehicle’s state, re-

lying solely on initial conditions, engine time constants, the number of vehicles, and

communication type, we analytically determined distance trajectories between adja-

cent vehicles. As part of our investigation, we explored various control gains, allow-

ing us to scrutinize distance trajectories across different bidirectional communication

topologies (BDCTs).

These investigations shed light on the strengths and weaknesses of different BDCTs.

Our findings revealed that, within BDCTs and with a given control gain, receiving in-

formation from vehicles further behind could potentially hinder platoon performance.
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Figure 4.15: Truck Platooning under BDL topology. States of platoon at t =
0s and t = 50s. Please check the link https://youtu.be/rxQ-XsYFaEM?si=
uJITOoELSiFWvoEH to watch the simulation video for BDL case.

Conversely, obtaining information from vehicles further ahead enhanced transient in-

tervehicle distances, ensuring they remained within a safe range. Furthermore, we

demonstrated that broadcasting the leader vehicle’s state to other vehicles had the

potential to elevate the overall performance of the platoon. Finally, to substanti-

ate our theoretical findings, we provided comprehensive simulations, illustrating the

practical implications of our research.
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Chapter 5

Impact of Communication
Topologies on Stability and
Intervehicle Distances:
Homogeneous Vehicular Platoons1

As a promising intelligent transportation technology, vehicle platooning has the po-

tential to improve highway capacity and throughput, fuel consumption, exhaust emis-

sion rate, transportation efficiency, and traffic safety [91–96]. Platooning refers to

coordinating a group of vehicles with a leader and several followers to travel at de-

sired intervehicle (IDs) distances and harmonious speeds. Based on some developed

spacing policies, IDs can be according to constant distance policy [27, 45, 49, 50, 97,

98], constant time headway policy [33, 99–102], nonlinear headway policy [103, 104],

delay-based distance policy [18], and energy-oriented spacing policy [9].

Distributed longitudinal control of vehicular platoons has been extensively studied

in literature such that various techniques based on model predictive control [30–34],

sliding mode control [12, 13, 35], consensus-based control [36–39], event-triggered con-

trol [40–43], adaptive control [44–46], observer-based control [47–50], robust control

[13, 51], reinforcement learning-based control [52], and linear feedback control [27,

53–57] are utilized for coordination of platoon vehicles.

1A version of this chapter has been submitted as Amir Zakerimanesh, Tony Z. Qiu, Mahdi
Tavakoli, Impact of Communication Topologies on Stability and Intervehicle Distances: Homoge-
neous Vehicular Platoons, IEEE Transactions on Control of Network Systems.
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The communication topology (CT), which determines the structure of information

exchange between vehicles, plays a crucial role in the performance of the platoon. The

control and stability of vehicle platoons for topologies with complex eigenvalues [53],

real eigenvalues [12], dynamic communication [105], undirected communication [54,

106], and switching communication [32, 46, 57, 107] have been properly investigated

in the literature. Switching in topologies may occur because of varying information

flow in the vehicular ad hoc network (VANET) [108]. As CTs goes, dynamic com-

munication topology is a solution to partial failures in the network due to packet

loss, signal blocking, or damage to vehicle communication module hardware which

can render the platoon unstable.

Though the literature has extensively studied the stability and performance of ve-

hicle platoons for individual CTs, enough attention and work have yet to devote to

the differentiation of the effect of CTs on vehicle platoons’ performance. Recently,

some papers have studied/differentiated the impact of communication topologies on

the vehicular platoon. The work in [86] has studied the effect of CTs on the perfor-

mance of platoons and shown that some topologies exhibit resilience to adversarial

actions in different distributed estimation and control algorithms. Also, in [87], the

effect differences of various CTs in stability region, robustness, safety, and emission

on vehicle platoons have been explored.

In this chapter, the study delves into the examination of the distinctions among

communication topologies (CTs) and their consequential effects on vehicular platoon

performance. The primary considerations revolve around aspects of stability and

transient intervehicle distances (IDs), all within the context of a distributed linear

feedback control scheme and the constant distance policy governing vehicle spacing.

A noteworthy observation is that the mere presence of internal stability does not

guarantee the absence of collisions within the platoon, as exemplified by counterex-

amples. Therefore, investigating the impact of various CTs on transient IDs emerges

as a pivotal endeavor.
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To facilitate this examination, the focus shifts from follower-leader state differences

to the concept of neighboring-vehicles state differences. Consequently, a novel closed-

loop distance dynamic model is introduced to enable internal stability analysis. This

model, utilizing neighboring-vehicles state differences, allows for the establishment of

a coupled dynamic model for adjacent vehicles, which, in turn, provides insights into

the variation in distances between consecutive vehicles.

With this closed-loop dynamic model in place, a correspondence between IDs and

initial position differences is established. Furthermore, followers’ velocities are derived

based on their IDs and the leader’s velocity. This information forms the basis for

determining control gains by setting collision and safe distance limits on IDs and

feasible-velocity constraints on follower velocities. These insights lead to valuable

conclusions regarding platoon performance under diverse CTs. The scope of this

study encompasses all static communication topologies, and the theoretical findings

are substantiated through extensive simulations.

5.1 Problem formulation and Preliminaries

Figure 5.1 depicts a platoon including n + 1 vehicles in which the leader vehicle is

designated by 0 and the follower ones are labeled by 1, . . . , i, i+ 1, . . . , n− 1, n. The

x axis shows the position of the vehicles during their travel such that x0 and xi are

the positions of the leader and the ith follower, respectively. The real and desired in-

tervehicle distances (IDs) between vehicles i and i+ 1 are denoted by Di+1
i and di+1

i ,

respectively. Also, Li shows the length of the ith vehicle. Furthermore, the notation

pi+1
i ≜ xi−xi+1 is unitized for positions difference between consecutive vehicles. Lon-

gitudinal control of a platoon generally consists of 1) inner force/acceleration control

loop, the feedback linearization (FL) control that compensates for the nonlinear dy-

namics of the vehicles, and 2) an outer ID control loop that is responsible for setting

a desired distance between consecutive vehicles. Let us take it for granted that the

FL part has already canceled the dynamics nonlinearities which makes it conducive
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to focus only on the ID control loop. For platooning, the leader does not undergo any

Figure 5.1: A platoon divided into consecutive-pairwise vehicles.

control process but its position, velocity and acceleration are utilized to control the

other vehicles. As such, the behavior of each follower vehicle (FV) within the platoon

is mathematically described by a third-order linear model [27, 31, 43, 46–48, 53, 54,

56, 57] as follows. ⎧⎪⎨⎪⎩
ẋi = vi

v̇i = ai

ȧi = − 1
τ
ai +

1
τ
ui

(5.1)

in which ai and vi are the acceleration and velocity of the ith follower, τ is the engine

time constant, and ui is control signal to be designed properly. Let Xi ∈ R3×1 be

defined as Xi ≜ [xi; ẋi; ẍi] which describes the states of the ith follower such that

ẋi = vi and ẍi = ai. Thus, for i = 1, . . . , n and given (5.1), the state-space model for

the ith follower can be presented as

Ẋi = AXi +Bui =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

0 0 − 1
τ

⎤⎥⎥⎥⎦Xi +

⎡⎢⎢⎢⎣
0

0

1
τ

⎤⎥⎥⎥⎦ui (5.2)

Assuming a constant distance policy for the platoon, the objective of designing the

controller ui is to guarantee that the followers’ velocities/accelerations reach to the

leader’s velocity/acceleration while desired constant IDs (≜ di+1
i ) are maintained
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between back-to-back vehicles. In other words, the aim is to have{︄
vi(t) = v0(t); i = 1, . . . n

xκ − xκ+1 = Lκ + dκ+1
κ ; κ = 0, . . . , n− 1

(5.3)

and to ensure which, we use the following distributed linear controller:

ui = −
∑︂
j∈Ii

[k (xi − xj − dij) + b (ẋi − ẋj) + h (ẍi − ẍj)] (5.4)

in which the set Ii ⊂ {{0, 1, . . . , n} − {i}} indicates all vehicles from which the ith

vehicle receives information and

dij ≜ −sgn(i− j)
max(i,j)−1∑︂
κ=min(i,j)

ωκ+1
κ ; ωκ+1

k ≜ Lκ + dκ+1
κ (5.5)

where the notation ≜ is utilized for definition. For later usage, let the notation zji = 0

be used to show that the ith vehicle does not receive information from the jth vehicle,

and zji = 1 if the other way around. Having di+1
i as the desired ID and x0 as the

position of the leader vehicle, the desired position (x∗i ), velocity (ẋ∗i ) and acceleration

(ẍ∗i ) of the i
th follower is defined as

x∗i ≜ x0 −
i−1∑︂
κ=0

ωκ+1
κ , ẋ∗i = v0 = ẋ0, ẍ∗i = 0 (5.6)

where ωκ+1
κ is already defined in (5.5). Now, the state error of the ith follower can be

defined as x̃i ≜ xi − x∗i utilizing which readily results in xi − xj = x̃i − x̃j + dij, and

substituting which into the controller (5.4) gives

ui = −
∑︂
j∈Ii

[︂
k (x̃i − x̃j) + b

(︂˜︁ẋi − ˜︁ẋj)︂+ h
(︂˜︁ẍi − ˜︁ẍj)︂]︂ (5.7)

Now, defining X̃i ∈ R3×1 where X̃i ≜
[︂
x̃i; ˜︁ẋi; ˜︁ẍi]︂ and plugging (5.7) in (5.1) yields

...˜︁x i = −
1

τ
KiX̃i +

∑︂
j∈Ii

1

τ
KX̃j (5.8)

where K ≜ [k, b, h] is defined as the control-gain vector of the measurements trans-

mitted from the jth vehicle to the ith vehicle, and Ki ≜ [ki, bi, hi] in which ki ≜ |Ii|k,
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bi ≜ |Ii|b and hi ≜ 1+ |Ii|h where |Ii| denotes the cardinality of the set Ii. Please note

that (5.8) has been obtained using the facts that ẍi = ˜︁ẍi and ...
x i =

...˜︁x i. Now, we go

over formulating the closed-loop dynamic model of the platoon. To this end, first, we

briefly explain the conventional method as Approach 1, and secondly, we elaborate

on our developed novel distance dynamic model for the platoon as Approach 2.

Approach 1: Like [27, 53, 54], the followers-leader state differences are consid-

ered as the states of the platoon. Therefore, considering (5.8), knowing x̃0 = ˜︁ẋ0 =

˜︁ẍ0 = 0, and defining the platoon’s total state-error vector (X̃t ∈ R3n×1) by X̃t ≜[︂
X̃1, X̃2, . . . , X̃n

]︂
, then the platoon’s closed-loop state-space dynamic model can be

compactly characterized by

˜︁Ẋ t = ÃtX̃t = [In ⊗A−P⊗BK] X̃t (5.9)

in which P ∈ Rn×n whose elements Pij are according to

Pij =

⎧⎪⎨⎪⎩
|Ii| if i = j

0 if zji = 0

−1 if zji = 1

(5.10)

Remark 10 Figs. 5.2 and 5.3 show typical unidirectional and bidirectional CTs

between vehicles. In unidirectional communication topologies (UCTs), all follow-

ers receive information only from vehicles ahead, and in bidirectional communication

topologies (BCTs), followers also receive information from vehicles behind. In typical

CTs, the communication between vehicles are according to some certain disciplines.

Having that said, Fig. 5.4 depicts some arbitrary nontypical CTs that do not follow

any certain practice in their communications.

Remark 11 Given (5.10) and Figs. 5.2-5.4, for typical CTs: PF, MPF, TPLF,

PLF, TPF, BDL, BD and TBPF, and nontypical CTs: a and d, since the communica-

tions between vehicles are either undirected, i.e., j ∈ Ii ⇐⇒ i ∈ Ij, i, j = 1, . . . , n−1,
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Figure 5.2: Some typical UCTs between vehicles.

Figure 5.3: Some typical BCTs between vehicles.

or the followers receive information only from vehicles ahead, then their associated

matrix P has only real eigenvalues (λi, i = 1, . . . , n) [27]. Also, for CTs: TPSF and

SPTF, the matrix P has combination of real (λ̄i, i = 1, . . . , l) and conjugate complex

(σi ± jωi, i = 1, . . . , n−l
2
) eigenvalues [53].

Remark 12 For those CTs in which the matrix P has only real eigenvalues, the

platoon dynamics (5.9) would be asymptotically stable if and only if the resultant

matrices

A− λiBK (5.11)
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Figure 5.4: Some arbitrary nontypical CTs.

are all Hurwitz, i.e., their eigenvalues are all negative [27]. Note that λi; i = 1, . . . , n−

1, denote the eigenvalues of the matrix P. Given that k, b, h > 0, using Routh-Hurwitz

stability criterion, the following condition can be found for the internal stability of the

platoon: b > kτ
1+λminh

where λmin = mini{λi}.

Remark 13 For those CTs in which the eigenvalues of the matrix P are combination

of real and conjugate complex values, the platoon dynamics (5.9) would be asymptot-

ically stable if and only if the following resultant matrices⎧⎪⎨⎪⎩
1)A− λ̄iBK i = 1, . . . , l

2)I2 ⊗A−

[︄
σi ωi

ωi σi

]︄
⊗BK i = 1, . . . , n−l

2

(5.12)

are all Hurwitz, i.e., their eigenvalues are all negative [53]. Note that in (5.12), the

second matrix would result in a characteristic polynomial of degree six.

Approach 2: Instead of using followers-leader state differences, we define neighboring-

vehicles state differences as the states of the platoon. Given (5.9) and having internal

stability conditions satisfied, one can guarantee that the error signals (i.e., X̃t) will

become finally zero (steady-state behavior). Thus, IDs will converge to their desired

values, and the followers will reach the leader vehicle’s velocity. However, internal sta-

bility analysis does not provide information about the transient behavior of distances
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between neighboring vehicles and whether they reduce below a non-collision safety

threshold. Also, for given initial conditions, it is possible to show with a counterex-

ample that the internal stability does not necessarily lead to a non-colliding platoon.

Therefore, it entails developing an alternative dynamic model through which besides

stability analysis it can offer a proper way to describe the transient behavior of the

IDs. In this chapter, presenting an approach to readily describe the IDs, we spot the

performance differences of the platoon under different CTs. Next section is dedicated

to finding the above-mentioned novel dynamic model for the platoon.

5.2 Novel Dynamic Model for the Platoon Using

Neighboring-Vehicles State Differences

In this section, we introduce an alternative dynamic model for (5.9) which results in

the same internal stability conditions (Remarks 12-13) but can be exploited to study

the transient IDs. To this end, we first extract the dynamics of pairwise consecutive

vehicles under any (typical/nontypical) CTs. As such, let the position, velocity,

acceleration and jerk errors between the consecutive vehicles characterize by

X̃
i+1

i ≜ X̃i − X̃i+1 ≜
[︁
p̃i+1
i , ṽi+1

i , ãi+1
i

]︁
˜︁Ẋ i+1

i ≜ ˜︁Ẋ i − ˜︁Ẋ i+1 ≜
[︂
ṽi+1
i , ãi+1

i , i+1ג̃

i

]︂ (5.13)

In other words, p̃i+1
i ≜ x̃i − x̃i+1, ṽ

i+1
i ≜ ˜︁ẋi − ˜︁ẋi+1, ã

i+1
i ≜ ˜︁ẍi − ˜︁ẍi+1 and i+1ג̃

i ≜
...˜︁x i −

...˜︁x i+1 . Furthermore, for j ∈ {i, i+ 1} and having 0 < ∆t≪ 1 as a quite small

sampling-time, we will have X̃j (t+∆t) = X̃j (t) +∆t˜︁Ẋ j (t), using which and (5.13),

it is obvious that

X̃
i+1

i (t+∆t)− X̃
i+1

i (t)

∆t
= ˜︁Ẋ i+1

i (t) (5.14)

Fig. 5.5 shows the possible connection types between adjacent vehicles, using which
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Figure 5.5: Connection types between neighboring vehicles.

we define the parameter ζ i+1
i as

ζ i+1
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if zii+1 = 1 and zi+1

i = 0

1 if zi+1
i = 1 and zii+1 = 1

0 if zi+1
i = 0 and zii+1 = 0

0 if zi+1
i = 1 and zii+1 = 0

(5.15)

in which, for instance, zi+1
i = 1 denotes that the ith vehicle receives information

from the (i + 1)th vehicle, and zi+1
i = 0 denotes that the ith vehicle does not receive

information from the (i + 1)th vehicle. Now using (5.15) and (5.8), i+1ג̃

i for i =

0, 1, . . . , n− 1 can be obtained as

i+1ג̃∆

i = −1

τ
NiX̃

i+1

i +
1

τ
K
∑︂
j∈αi

i−1∑︂
κ=j

X̃
κ+1

κ +
1

τ
K
∑︂
j∈βi

j−1∑︂
κ=i+1

X̃
κ+1

κ

− 1

τ
K
∑︂
j∈ᾱi

j−1∑︂
κ=i+1

X̃
κ+1

κ − 1

τ
K
∑︂
j∈β̄i

i−1∑︂
κ=j

X̃
κ+1

κ

(5.16)

in which Ni = [|Ni|k, |Ni|b, 1 + |Ni|h] and |Ni| denotes the cardinality of set Ni

which is defined as Ni ≜ {ζ i+1
i i} ∪

(︁
Ii ∪ β̄i − αi

)︁
. Also, sets αi, βi, β̄i, and ᾱi are

defined as αi ≜ {j ∈ Ri | zji = 1 & zji+1 = 0 & j < i}, βi ≜ {j ∈ Ri+1 | zji+1 =

1 & zji = 0 & j > i + 1}, βī ≜ {j ∈ Ri+1 | zji+1 = 1 & zji = 0 & j < i}, and

αī ≜ {j ∈ Ri | zji = 1 & zji+1 = 0 & j > i+1}, respectively. For the cases 1, 2, 3 and

4 in (5.15), we have defined and utilized Ri = Ii and Ri+1 = Ii+1−{i}, Ri = Ii−{i+1}

and Ri+1 = Ii+1−{i}, Ri = Ii and Ri+1 = Ii+1, and Ri = Ii−{i+1} and Ri+1 = Ii+1,

respectively.
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Proof. First, let define X̃
i+1

i ≜ X̃i − X̃i+1, X̃
i

j ≜ X̃j − X̃i and X̃
j

i+1 ≜ X̃i+1 − X̃j.

Now, for i = 1, . . . , n− 1 and using (5.8), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
...
x̃ i = −

1

τ
KiX̃i +

1

τ

∑︂
j∈Ii

KX̃j

...
x̃ i+1 = −

1

τ
Ki+1X̃i+1 +

1

τ

∑︂
j∈Ii+1

KX̃j

(5.17)

Therefore, for i+1ג̃

i ≜
...
x̃ i −

...
x̃ i+1, we get

i+1ג̃

i = −1

τ
KiX̃

i+1

i − 1

τ
(Ki −Ki+1) X̃i+1 +

∑︂
j∈Ii

1

τ
KX̃j −

∑︂
j∈Ii+1

1

τ
KX̃j (5.18)

Since − 1
τ
(Ki −Ki+1) =

∑︁
j∈Ii+1

1
τ
K−

∑︁
j∈Ii

1
τ
K, then (5.18) can be rewritten as

i+1ג̃

i = −1

τ
KiX̃

i+1

i +
∑︂
j∈Ii

1

τ
KX̃

i+1

j −
∑︂
j∈Ii+1

1

τ
KX̃

i+1

j (5.19)

Now, having X̃j − X̃i+1 = X̃j − X̃i + X̃i − X̃i+1, (5.19) is equal to

i+1ג̃

i =
1

τ

⎛⎝−Ki +
∑︂
j∈Ii

K−
∑︂
j∈Ii+1

K

⎞⎠ X̃
i+1

i +
∑︂
j∈Ii

1

τ
KX̃

i

j −
∑︂
j∈Ii+1

1

τ
KX̃

i

j (5.20)

which depending on how the connection is between the neighboring vehicles it can be

reformulated as

i+1ג̃

i = −1

τ

⎛⎝Ki + ζ i+1
i K−

∑︂
j∈Ri

K+
∑︂

j∈Ri+1

K

⎞⎠ X̃
i+1

i +
∑︂
j∈Ri

1

τ
KX̃

i

j −
∑︂

j∈Ri+1

1

τ
KX̃

i

j

(5.21)

where ζ i+1
i is defined in (5.15). Splitting j ∈ Ri and j ∈ Ri+1 in parts j < i

and j > i + 1, and using the fact that for part j > i + 1, we have Xj − X̃i =

Xj − X̃i+1 −
(︂
X̃i − X̃i+1

)︂
, then (5.21) can be reformulated as

i+1ג̃

i = −1

τ

⎛⎝Ki + ζ i+1
i K−

∑︂
j∈R<i

i

K+
∑︂

j∈R<i
i+1

K

⎞⎠ X̃
i+1

i + Z (5.22)

where Z = 1
τ

∑︁
j∈R<i

i

KX̃
i

j − 1
τ

∑︁
j∈R<i

i+1

KX̃
i

j +
1
τ

∑︁
j∈R>i+1

i+1

KX̃
j

i+1 − 1
τ

∑︁
j∈R>i+1

i

KX̃
j

i+1. It is

apparent that for {j | j ∈ Ri & j ∈ Ri+1} we have Z = 0. Therefore, depending
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on how the pair (i, i + 1) receives information from the other vehicles, the overall

connection types leading to Z ̸= 0 can be as the following:

a) The ith follower receives information from some vehicles ahead, from which the

(i + 1)th follower does not receive. Let the set be defined as αi ≜ {j ∈ Ri | zji =

1 & zji+1 = 0 & j < i}.

b) The (i+1)th follower receives information from some vehicles behind, from which

the ith follower does not receive. Let the set be defined as βi ≜ {j ∈ Ri+1 | zji+1 =

1 & zji = 0 & j > i+ 1}.

c) The (i+1)th follower receives information from some vehicles ahead, from which

the ith follower does not receive. Let the set be defined as βī ≜ {j ∈ Ri+1 | zji+1 =

1 & zji = 0 & j < i}.

d) The ith follower receives information from some vehicles behind, from which the

(i + 1)th follower does not receive. Let the set be defined as αī ≜ {j ∈ Ri | zji =

1 & zji+1 = 0 & j > i+ 1}.

Therefore, Z ̸= 0 can be rewritten as

Z =
∑︂
j∈αi

1

τ
KX̃

i

j +
∑︂
j∈βi

1

τ
KX̃

j

i+1 −
∑︂
j∈ᾱi

1

τ
KX̃

j

i+1 −
∑︂
j∈β̄i

1

τ
KX̃

i

j (5.23)

where substituting−
∑︁

j∈ᾱi

1
τ
KX̃

j

i+1 =
∑︁

j∈ᾱi

1
τ
K
(︂
X̃

i

j + X̃
i+1

i

)︂
and−

∑︁
j∈β̄i

1
τ
KX̃

i

j =

−
∑︁

j∈β̄i

1
τ
K
(︂
X̃

i+1

j − X̃
i+1

i

)︂
into (5.23), and subsequently the updated (5.23) into

(5.22), and using the fact that X̃
i

j and X̃
j

i+1 can be rewritten in the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X̃

i

j =
∑︁i−1

κ=j X̃
κ+1

κ ; j < i

X̃
i

j = −
∑︁j−1

κ=i X̃
κ+1

κ ; j > i+ 1

X̃
j

i+1 =
∑︁j−1

κ=i+1 X̃
κ+1

κ ; j > i+ 1

X̃
j

i+1 = −
∑︁i

κ=j X̃
κ+1

κ ; j < i

(5.24)
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yields

i+1ג̃

i = −1

τ

(︁
Ki +

(︁
ζ i+1
i + |β̄i| − |αi|

)︁
K
)︁
X̃

i+1

i +
1

τ
K
∑︂
j∈αi

i−1∑︂
κ=j

X̃
κ+1

κ +
1

τ
K
∑︂
j∈βi

j−1∑︂
κ=i+1

X̃
κ+1

κ

− 1

τ
K
∑︂
j∈ᾱi

j−1∑︂
κ=i+1

X̃
κ+1

κ − 1

τ
K
∑︂
j∈β̄i

i−1∑︂
κ=j

X̃
κ+1

κ

(5.25)

Now, let us study for i = 0 or to be exact for the pair (0, 1). For typical/nontypical

CTs, we have ᾱ0 = β̄0 = ∅ and given that X̃0 = 0, using (5.17) yields

10ג̃ = −
1

τ
K1X̃

1

0 +
1

τ

∑︂
j∈R≥2

1

K
(︂
X̃

1

0 + X̃
j

1

)︂
= −1

τ
(K1 − |β0|K) X̃

1

0 +
1

τ

∑︂
j∈β0

KX̃
j

1 (5.26)

where β0 ≜ {j ∈ R1|j ≥ 2}. Also, for the pair (0, 1), since |β0| = |I1| − (1− |α0|),

then K1− |β0|K = K, where K ≜ [k, b, 1 + h]. Therefore, (5.26) can be rewritten as

10ג̃ = −
1

τ

(︁
K0 + ζ10K

)︁
X̃

1

0 +
1

τ
K
∑︂
j∈β0

j−1∑︂
κ=1

X̃
κ+1

κ (5.27)

in which we define K0 ≜ [0, 0, 1]. Also, ζ10 = 1 as we suppose that the first

follower always receives information from the leader. Please note that α0 = ᾱ0 = ∅.

Therefore, for i = 0, . . . , n − 1 and any communication topology, (5.25) holds true.

Note that for unidirectional CTs, we have ᾱi = β̄i = ∅. Now, let define Ni ≜

Ki +
(︁
ζ i+1
i + |β̄i| − |αi|

)︁
K such that Ni = [|Ni|k, |Ni|b, 1 + |Ni|h] which holds true

by defining Ni as Ni ≜ {ζ i+1
i i} ∪

(︁
Ii ∪ β̄i − αi

)︁
. Thus, the proof completed.

Considering (5.16), regarding the facts that d/dt{p̃i+1
i } = ṽi+1

i and d/dt{ṽi+1
i } =

ãi+1
i , defining ỹi+1

i = p̃i+1
i as the output of the closed-loop dynamics of the neighboring

vehicles i and i+1, then for i = 0, . . . , n−1, the state-space model for the pair (i, i+1)

can be presented as (see (5.2)){︄
Ẋ̃i+1

i = Ai+1
i X̃

i+1

i +Bũi+1
i

ỹi+1
i = CX̃

i+1

i

(5.28)
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Table 5.1: Sets αi and βi, and values of |Ii+1| and |Ni| for the pair (i, i + 1) of a
platoon with five FVs within different typical communication topologies given in Fig.
5.2-5.3. For the topologies of Figs. 5.2-5.3, the sets ᾱi and β̄i are empty sets, i.e.,
ᾱi = β̄i = ∅.

Pairs: (0, 1) (1, 2) (2, 3) (3, 4) (4, 5)

{α0, β0} & |I1| & |N0| {α1, β1} & |I2| & |N1| {α2, β2} & |I3| & |N2| {α3, β3} & |I4| & |N3| {α4, β4} & |I5| & |N4|

PF {∅, ∅} & 1 & 1 {{0}, ∅} & 1 & 1 {{1}, ∅} & 1 & 1 {{2}, ∅} & 1 & 1 {{3}, ∅} & 1 & 1

MPF {∅, ∅} & 1 & 1 {∅, ∅} & 2 & 2 {∅, ∅} & 3 & 3 {{0}, ∅} & 3 & 3 {{1}, ∅} & 3 & 3

TPLF {∅, ∅} & 1 & 1 {∅, ∅} & 2 & 2 {∅, ∅} & 3 & 3 {{1}, ∅} & 3 & 3 {{2}, ∅} & 3 & 3

PLF {∅, ∅} & 1 & 1 {∅, ∅} & 2 & 2 {{1}, ∅} & 2 & 2 {{2}, ∅} & 2 & 2 {{3}, ∅} & 2 & 2

TPF {∅, ∅} & 1 & 1 {∅, ∅} & 2 & 2 {{0}, ∅} & 2 & 2 {{1}, ∅} & 2 & 2 {{2}, ∅} & 2 & 2

BDL {∅, {2}} & 2 & 1 {∅, {3}} & 3 & 3 {{1}, {4}} & 3 & 3 {{2}, {5}} & 3 & 3 {{3}, ∅} & 2 & 3

BD {∅, {2}} & 2 & 1 {{0}, {3}} & 2 & 2 {{1}, {4}} & 2 & 2 {{2}, {5}} & 2 & 2 {{3}, ∅} & 1 & 2

TBPF {∅, {2, 3}} & 3 & 1 {∅, {4}} & 4 & 4 {{0}, {5}} & 4 & 4 {{1}, ∅} & 3 & 4 {{2}, ∅} & 2 & 3

TPSF {∅, {2}} & 2 & 1 {∅, {3}} & 3 & 3 {{0}, {4}} & 3 & 3 {{1}, {5}} & 3 & 3 {{2}, ∅} & 2 & 3

SPTF {∅, {2, 3}} & 3 & 1 {{0}, {4}} & 3 & 3 {{1}, {5}} & 3 & 3 {{2}, ∅} & 2 & 3 {{3}, ∅} & 1 & 2

where C = [1, 0, 0], and Ai+1
i ∈ R3×3 and ũi+1

i ∈ R are

Ai+1
i =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

− |Ni|k
τ
− |Ni|b

τ
−1+|Ni|h

τ

⎤⎥⎥⎥⎦ (5.29)

and

ũi+1
i = K

∑︂
j∈αi

i−1∑︂
κ=j

X̃
κ+1

κ +K
∑︂
j∈βi

j−1∑︂
κ=i+1

X̃
κ+1

κ −K
∑︂
j∈ᾱi

j−1∑︂
κ=i

X̃
κ+1

κ −K
∑︂
j∈β̄i

i∑︂
κ=j

X̃
κ+1

κ

(5.30)

respectively. It is apparent that for a platoon with n followers, α0 = ᾱ0 = β̄0 = ∅

and βn−1 = ᾱn−1 = ∅ in which the notation ∅ shows an empty set. Furthermore, for

unidirectional CTs we have βi = ᾱi = ∅, and for typical CTs shown in Figs 5.2-5.3,

we have ᾱi = β̄i = ∅.

Tables (5.1)-(5.2) are prepared to provide an insight about the mentioned sets and

values for a platoon with one leader and five followers under CTs given in Figs. 5.2-

5.4. Note that the sets αi and ᾱi show the vehicles ahead/behind from which the

ith follower receives information but the (i+ 1)th follower does not. Also, the sets βi
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Table 5.2: Sets αi, βi, ᾱi, and β̄i, and also values of |Ii+1| and |Ni| for the pair (i, i+1)
of a platoon with five FVs within different nontypical communication topologies given
in Fig. 5.4.

Pairs: (0, 1) (1, 2) (2, 3) (3, 4) (4, 5){︁
α0, β0, ᾱ0, β̄0, |I1| , |N0|

}︁ {︁
α1, β1, ᾱ1, β̄1, |I2| , |N1|

}︁ {︁
α2, β2, ᾱ2, β̄2, |I3| , |N2|

}︁ {︁
α3, β3, ᾱ3, β̄3, |I4| , |N3|

}︁ {︁
α4, β4, ᾱ4, β̄4, |I5| , |N4|

}︁
a) {∅, ∅, ∅, ∅, 1, 1} {{0}, ∅, ∅, ∅, 1, 1} {{1}, ∅, ∅, ∅, 1, 1} {{2}, ∅, ∅, {1}, 2, 2} {{1}, ∅, ∅, ∅, 2, 2}

b) {∅, ∅, ∅, ∅, 1, 1} {{0}, {3, 5}, ∅, ∅, 3, 1} {{1}, ∅, {5}, {0}, 2, 4} {{0, 2}, {5}, ∅, ∅, 2, 1} {{3}, ∅, ∅, ∅, 1, 2}

c) {∅, {2}, ∅, ∅, 2, 1} {{0}, ∅, ∅, ∅, 1, 2} {{1}, ∅, ∅, {0}, 1, 1} {{0}, ∅, ∅, ∅, 1, 1} {{3}, ∅, ∅, ∅, 1, 1}

d) {∅, ∅, ∅, ∅, 1, 1} {∅, ∅, ∅, ∅, 1, 1} {∅, ∅, ∅, ∅, 1, 1} {∅, ∅, ∅, ∅, 1, 1} {∅, ∅, ∅, ∅, 2, 2}

and β̄i indicate the vehicles behind/ahead from which the (i + 1)th follower receives

information but the ith follower does not.

Defining X̃
∆

t ∈ R3n×1 =
[︂
X̃

1

0; X̃
2

1; . . . ; X̃
n

n−1

]︂
, applying i = 0, . . . , n − 1 to the

first relation in (5.28), the stacked resultant relations is compactly shown as

Ẋ̃∆
t = Ã

∆

t X̃
∆

t =
[︁
In ⊗A− P̄⊗BK

]︁
X̃

∆

t (5.31)

where Ã
∆

t ∈ R3n×3n. Also, P̄ ij as the elements of P̄ ∈ Rn×n are according to

P̄ ij =

⎧⎪⎨⎪⎩
⃓⃓
Sj ∩ β̄i−1

⃓⃓
− |Sj ∩ αi−1| if j < i

|Ni−1| if j = i

|Vj ∩ ᾱi−1| − |Vj ∩ βi−1| if j > i

(5.32)

in which the sets Sj and Vj are defined as Sj ≜ {j − 1, j − 2, . . . , 0} and Vj ≜

{j, j + 1, . . . , n}, respectively. Note that |.| denotes the cardinality of the relevant

sets.

Remark 14 Given the dynamic model (5.9) and the novel one (5.31), there is a

key property through which we can use (5.31) instead of (5.9) to study the internal

stability of the platoon. Following (5.10) and (5.32), for any CT (including the ones

in Figs. 5.2-5.4), the eigenvalues of the matrices P and P̄ are identical. For instance,

for the case of having five followers and using TBPF topology, the matrices are

P̄TBPF =

⎡⎢⎢⎢⎢⎣
1 −2 −1 0 0

0 4 −1 −1 0

−1 −1 4 −1 −1

0 −1 −1 4 0

0 0 −1 −1 3

⎤⎥⎥⎥⎥⎦ , PTBPF =

⎡⎢⎢⎢⎢⎣
3 −1 −1 0 0

−1 4 −1 −1 0

−1 −1 4 −1 −1

0 −1 −1 3 −1

0 0 −1 −1 2

⎤⎥⎥⎥⎥⎦ (5.33)
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both of which have eigenvalues: 0.2935, 2.1324, 3.3900, 5.0000 and 5.1841. Please

check link for matrices P and P̄ of the other CTs.

Remark 15 Considering (5.9) and (5.31), since the system matrices Ãt and Ã
∆

t are

in similar formats as

Ãt = [In ⊗A−P⊗BK] (5.34a)

Ã
∆

t =
[︁
In ⊗A− P̄⊗BK

]︁
(5.34b)

and regarding the property mentioned in Remark 14, it is clear that one can use

dynamics (5.34b) instead of (5.34a) for internal stability analysis. Therefore, the

two cases mentioned earlier in the Remarks 12-13 are valid for the matrix P̄ as well.

The next section formulates the transient IDs which then utilized to find the vehi-

cles velocities.

5.3 Description of the Transient Intervehicle Dis-

tances Based on the Matrix P̄

For the sake of simplicity, assuming ṽi+1
i (0) = ãi+1

i (0) = 0 and all initial position-

differences are equal to β, i.e., p̃i+1
i (0) = β, for i = 0, . . . , n− 1, we have

X̃
i+1

i (s) =
[︂
1; s; s2

]︂
p̃i+1
i (s)−

[︂
0; 1; s

]︂
β (5.35)

Therefore, given (5.28) and (5.35), we get the following formula for intervehicle-

distances error

p̃i+1
i (s) = Ψi(s) +Hi(s)

⎡⎣∑︂
j∈αi

i−1∑︂
κ=j

p̃κ+1
κ (s)−

∑︂
j∈β̄i

i−1∑︂
κ=j

p̃κ+1
κ (s)

+
∑︂
j∈βi

j−1∑︂
κ=i+1

p̃κ+1
κ (s)−

∑︂
j∈ᾱi

j−1∑︂
κ=i+1

p̃κ+1
κ (s)

]︄ (5.36)

in which

Hi(s) =
h
τ
s2 + b

τ
s+ k

τ

s3 + h̄is2 + b̄is+ k̄i
(5.37)
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where h̄i =
1+|Ni|h

τ
, b̄i =

|Ni|b
τ

, k̄i =
|Ni|k
τ

, and |Ni| denotes the cardinality of the set

Ni. Also,

Ψi(s) =
β
(︂
s2 + 1+(|Ni|−γi)h

τ
s+ (|Ni|−γi)b

τ

)︂
s3 + h̄is2 + b̄is+ k̄i

; i = 0, . . . , n− 1 (5.38)

where γi ≜
∑︁

j∈αi
(i− j) +

∑︁
j∈βi

(j − i− 1)−
∑︁

j∈β̄i
(i− j)−

∑︁
j∈ᾱi

(j − i− 1).

Proof. Given (5.28), the p̃i+1
i (s), for i = 0, . . . , n − 1, would be the summation

of zero-state (X̃
i+1

i (0) = 0) response and zero-input (ũi+1
i = 0) response. Therefore,

given (5.28), the zero-input response would be according to

p̃i+1
i,zi (s) = C

(︁
sI3 −Ai+1

i

)︁−1
X̃

i+1

i (0) =
β
(︁
s2 + h̄is+ b̄i

)︁
s3 + h̄is2 + b̄is+ k̄i

(5.39)

where h̄i =
1+|Ni|h

τ
, b̄i =

|Ni|b
τ

and k̄i =
|Ni|k
τ

, and I3 is the identity matrix of size 3.

Also, the zero-state response would be

p̃i+1
i,zs(s) = Gi+1

i (s)ũi+1
i (s) (5.40)

in which given (5.30) and (5.35) we have Gi+1
i (s) = C

(︁
sI3 −Ai+1

i

)︁−1
B and

ũi+1
i (s) =KT1

∑︂
j∈αi

i−1∑︂
κ=j

p̃κ+1
κ (s)−KT2

∑︂
j∈αi

i−1∑︂
κ=j

β

+KT1

∑︂
j∈βi

j−1∑︂
κ=i+1

p̃κ+1
κ (s)−KT2

∑︂
j∈βi

j−1∑︂
κ=i+1

β

−KT1

∑︂
j∈ᾱi

j−1∑︂
κ=i+1

p̃κ+1
κ (s) +KT2

∑︂
j∈ᾱi

j−1∑︂
κ=i+1

β

−KT1

∑︂
j∈β̄i

i−1∑︂
κ=j

p̃κ+1
κ (s) +KT2

∑︂
j∈β̄i

i−1∑︂
κ=j

β

(5.41)

where T1,T2 ∈ R3×1 are as T1 ≜ [1; s; s2] and T2 ≜ [0; 1; s]. Simplifying (5.41)
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results in Gi+1
i (s) = 1

τ(s3+h̄is2+b̄is+k̄i)
and

ũi+1
i (s) =

(︁
hs2 + bs+ k

)︁
×

[︄∑︂
j∈αi

i−1∑︂
κ=j

p̃κ+1
κ (s)

+
∑︂
j∈βi

j−1∑︂
κ=i+1

p̃κ+1
κ (s)−

∑︂
j∈ᾱi

j−1∑︂
κ=i+1

p̃κ+1
κ (s)−

∑︂
j∈β̄i

i−1∑︂
κ=j

p̃κ+1
κ (s)

⎤⎦
− (hs+ b)

[︄∑︂
j∈αi

i−1∑︂
κ=j

β +
∑︂
j∈βi

j−1∑︂
κ=i+1

β −
∑︂
j∈ᾱi

j−1∑︂
κ=i+1

β −
∑︂
j∈β̄i

i−1∑︂
κ=j

β

⎤⎦
(5.42)

substituting which into (5.40) yields

p̃i+1
i,zs(s) =

h
τ
s2 + b

τ
s+ k

τ

s3 + h̄is2 + b̄is+ k̄i
×

[︄∑︂
j∈αi

i−1∑︂
κ=j

p̃κ+1
κ (s)

+
∑︂
j∈βi

j−1∑︂
κ=i+1

p̃κ+1
κ (s)−

∑︂
j∈ᾱi

j−1∑︂
κ=i+1

p̃κ+1
κ (s)−

∑︂
j∈β̄i

i−1∑︂
κ=j

p̃κ+1
κ (s)

⎤⎦
− β

⎡⎣∑︂
j∈αi

(i− j) +
∑︂
j∈βi

(j − i− 1)−
∑︂
j∈β̄i

(i− j)−
∑︂
j∈ᾱi

(j − i− 1)

⎤⎦
×

h
τ
s+ b

τ

s3 + h̄is2 + b̄is+ k̄i

(5.43)

Therefore, given (5.39) and (5.43) we have p̃i+1
i (s) = p̃i+1

i,zi (s) + p̃i+1
i,zs(s) which results

in

p̃i+1
i (s) =

h
τ
s2 + b

τ
s+ k

τ

s3 + h̄is2 + b̄is+ k̄i
×

[︄∑︂
j∈αi

i−1∑︂
κ=j

p̃κ+1
κ (s)

+
∑︂
j∈βi

j−1∑︂
κ=i+1

p̃κ+1
κ (s)−

∑︂
j∈ᾱi

j−1∑︂
κ=i+1

p̃κ+1
κ (s)−

∑︂
j∈β̄i

i−1∑︂
κ=j

p̃κ+1
κ (s)

⎤⎦
+
β
(︂
s2 + 1+(|Ni|−γi)h

τ
s+ (|Ni|−γi)b

τ

)︂
s3 + h̄is2 + b̄is+ k̄i

(5.44)

where γi ≜
∑︁

j∈αi
(i− j) +

∑︁
j∈βi

(j − i− 1) −
∑︁

j∈β̄i
(i− j) −

∑︁
j∈ᾱi

(j − i− 1).

Therefore, the proof of (5.36) has been completed.

Calculating (5.36) for i = 0, . . . , n − 1 and stacking them together, it is possible

to formulate a mapping between initial conditions and IDs errors as the following
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compact form:

P̃(s) = Q−1(s)Ψ(s) (5.45)

where P̃(s) ≜
[︁
p̃10(s); p̃

2
1(s); . . . ; p̃

n
n−1(s)

]︁
; Ψ(s) ≜ [Ψ0(s); Ψ1(s); . . . ; Ψn−1(s)], and

Q(s) ∈ Cn×n whose elements are defined as

Qij(s) =

{︄
1 if i = j

P̄ ijHi−1(s) if i ̸= j
(5.46)

Therefore, if Q̄(s) ≜ Q−1(s), then one can conclude that

p̃i+1
i (s) =

n∑︂
j=1

Q̄(i+1)j(s)Ψj−1(s); i = 0, . . . , n− 1 (5.47)

which implies that p̃i+1
i (t) would be the impulse response of p̃i+1

i (s). Therefore, rela-

tion (7.42) maps the initial position errors to IDs such that for any given K = [k, b, h],

if p̃i+1
i (t) > −di+1

i ; i = 0, 1, . . . , n − 1 then we would have a non-colliding platoon.

Similarly, if p̃i+1
i (t) > −

(︁
di+1
i − di+1

i,s

)︁
in which di+1

i,s is considered to be a preset safe-

distance between neighboring vehicles, then the distance between consecutive vehicles

would be always higher than di+1
i,s . Note that, in control theory, the impulse response

represents a system’s reaction to a ’Dirac delta input’. This concept holds great

significance in the analysis of dynamic systems. The Laplace transform of the delta

function yields a value of 1, which means that the impulse response can be regarded

as the inverse Laplace transform of the system’s transfer function. Thus, the impulse

response of p̃i+1
i (s) (take it as a transfer function) would present p̃i+1

i (t).

Remark 16 Considering (5.36), for stable K = [k, b, h], and based on the final

value theorem of Laplace transform we have lim
t→∞

p̃i+1
i (t) = lim

s→0
sp̃i+1

i (s) = 0 and since

Di+1
i (t) = p̃i+1

i (t) + di+1
i then we get Di+1

i (t) = di+1
i ; i = 0, 1, . . . , n− 1 which implies

that all IDs finally reach to the desired constant intervehicle distances di+1
i .

We know that to have a feasible vehicular platoon, other than stability and safety

concerns, vehicles need to have positive velocities (in line with the leader’s velocity)
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throughout the travel time. To study this, given that ṽi+1
i (t) = d

dt

(︁
p̃i+1
i (t)

)︁
, then for

i = 0, . . . , n− 1 it is possible to conclude that

vi+1(t) = vi(t)− L−1
{︁
sp̃i+1

i (s)
}︁
+ p̃i+1

i (0)δ(t) (5.48)

where L−1 signifies the inverse Laplace transform operator and δ(t) is delta function

such that L−1
{︁
p̃i+1
i (0)

}︁
= p̃i+1

i (0)δ(t). Now, using (5.48) and assuming that p̃i+1
i (0) =

β, the velocity of the ith follower can be obtained according to

vi(t) = v0(t)− L−1

{︄
s

i−1∑︂
κ=0

p̃κ+1
κ (s)

}︄
+ iβδ(t) (5.49)

Now, substituting (5.47) into (5.49) yields

vi(t) = v0(t)− L−1

{︄
s

i−1∑︂
κ=0

n∑︂
j=1

Q̄(κ+1)j(s)Ψj−1(s)

}︄
+ iβδ(t) (5.50)

Therefore, for any given K = [k, b, h], if vi(t) > 0; i = 1, . . . , n then in terms of

vehicles’ velocities the platoon would be feasible. In a similar way that explained in

Remark 16, one can conclude that lim
t→∞

vi(t) = v0(t); i = 1, . . . , n.

5.4 Simulations and Results

For simulations, we consider a platoon with one leader and five followers and constant

distance policy equal to 5m. In the simulations, the initial velocities and accelerations

of the vehicles are all set to zero. The vehicles’ lengths are identical and equal to

4 m. Moreover, the simulations are done with sampling time equal to 0.01 s. Also,

let h = 4 and τ = 1, and the control gains k and b vary between 0.1 and 19.6 by

0.5 incremental. Note that in simulations, the simulation time for all trajectories is

equal to 100s. However, for the sake of clarity in presentation, results may provided

for times less than 100s. Also, the safe distance between vehicles is considered to be

equal to 3m, i.e. di+1
i,s = 3m. In the following, the simulations results are provided

separately for typical and nontypical communication topologies (CTs).
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5.4.1 Intervehicle Distances and Vehicle Velocities

Based on what explained in Section 6.5, we can find intervehicle distances (IDs) and

the velocity of vehicles for different K = [k, b, 4] and CTs between vehicles.

Typical CTs

In this part, we study the IDs and vehicles velocities for typical CTs (Figs 5.2-5.3):

Intervehicle Distances: Bases on Remarks 11-13, it is possible to find stable and

unstable control gains. As such, in (5.7), let h = 4 and control gains k and b vary

between values 0.1 and 19.6 by 0.5 incremental. AnyK = [k, b, 4] that does not satisfy

stability conditions is considered as an unstable control gain, otherwise a stable K.

Thus, for i = 0, . . . , n−1 and a given stable K, using (5.47), if −5m < p̃i+1
i (t) < −2m

then K is a stable-non-collision control gain. Similarly, if p̃i+1
i (t) < −5m, then we

name K a stable-collision control gain. Furthermore, if p̃i+1
i (t) > −2m, then K is

named a stable-safe control gain which implies that the IDs are always larger than 3m

which is assumed as the safe distance between neighboring vehicles. The results using

the mentioned scenarios are provided in Fig. 5.6 in which unstable, stable-collision,

stable-non-collision, and stable-safe gains are presented with red, yellow, blue, and

green colors, respectively.

Vehicles Velocities: For studying the feasibility of velocities under different typical

CTs, let the leader has a velocity trajectory. As such, we assume that it starts with

zero velocity and gradually increases its velocity with the acceleration of 4 m/s2 till

the one-third of simulation time, which afterwards the velocity becomes constant till

the two-thirds of the simulation time. After that the leader vehicle starts to decelerate

with the acceleration of −8 m/s2 till its velocity becomes zero and the leader vehicle

stops (see Fig. 5.7). The simulations are done for two time intervals:

1) [0, 2
3
simulation-time] during which the leader starts with zero velocity, accelerate

till the one third of the simulation-time and then reaches a constant velocity which

persists till two third of the simulation-time. The stable control gains K = [k, b, 4]
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Figure 5.6: (a): Unstable (red), stable-collision (yellow), stable-non-collision (blue)
and stable-safe (green) control gains K = [k, b, 4]. The collision distance is 5m,
therefore the control gains that result in p̃i+1

i (t) > −5m are called stable-non-collision
gains. Also, the safe distance is 3m, thus the control gains that result in p̃i+1

i (t) >
−2m are called stable-safe gains.

Figure 5.7: Leader’s velocity and acceleration.

using which all vehicles during the mentioned time interval have positive velocities

are depicted in Fig. 5.8 with cyan dots.

2) [0, simulation-time] during which the leader starts with zero velocity, accelerate

till the one third of the simulation-time and then reaches a constant velocity which

86



Figure 5.8: (a): Red dots depict unstable control gains K = [k, b, 4]. Cyan dots
show K = [k, b, 4] under which vi(t) > 0; i = 1, . . . , n for the time interval
[0, 2

3
simulation-time]. Magenta dots illustrate K = [k, b, 4] using which vi(t) > 0;

i = 1, . . . , n for the time interval [0, simulation-time].

persists till two third of the simulation-time. Then it decelerates and finally the

velocity becomes zero. The stable control gains K = [k, b, 4] using which all vehicles

during the mentioned time interval have positive velocities are depicted in Fig. 5.8

with magenta dots. Note that in Fig. 5.8, magenta dots are plotted over the cyan

dots.

Remark 17 In Fig. 5.8 magenta dots imply that under the associated control gains

K = [k, b, 4], whenever the leader’s velocity becomes zero, the followers simultane-

ously stand still and their velocity becomes zero. Accordingly, for cyan dots that do

not overlap with the magenta dots, whenever the leader’s velocity becomes zero, the

follower velocities may fluctuate a little bit around zero. Also, one can notice that

in terms of vehicle’s velocities, TPLF, MPF, PLF and TPF topologies have better

performance.

Nontypical CTs

Using the same approach and scenarios utilized for typical CTs, for the nontypical

CTs given in Fig. 5.4, the simulation results are provided in Fig. 5.9.
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Figure 5.9: (a): Unstable (red), stable-collision (yellow), stable-non-collision (blue)
and stable-safe (green) control gains K = [k, b, 4]. Cyan dots show K = [k, b, 4] under
which vi(t) > 0; i = 1, . . . , n for the time interval [0, 2

3
simulation-time]. Magenta

dots illustrate K = [k, b, 4] using which vi(t) > 0; i = 1, . . . , n for the time interval
[0, simulation-time].

5.4.2 Settling Time for Intervehicle Distances Errors

To have a better understanding of the effect of CTs on the performance of vehicles,

other than IDs and vehicles velocities, we also have studied the settling time (tis)

for p̃i+1
i (t) → 0 under different typical CTs. The results are shown in Fig. 5.10.

Investigation the results, we notice that SPTF, BD and TBPF are the first three CTs

with the weakest performance. Conversely, PLF, TPLF, MPF are the first three CTs

with the best performance.

5.4.3 Discussion on Communication Topologies

In this part, we study the impact of the CTs on the platoon performance. To this end,

we take three criteria into account: 1) intervehicle-distances such that those control

gains that lead to stable-non-collision and stable-safe distances, then the control gains

are favorable, 2) The feasibility of the velocities such that those control gains that

result in vi(t) > 0 are our favorable K, and 3) settling times for IDs errors such that

those control gains that lead to the smaller settling times, then considered as better
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Figure 5.10: Settling time (tis) for p̃
i+1
i (t); i = 0, 1, . . . , n− 1. Those K = [k, b, 4] that

result in tis ≤ 3, 3 < tis ≤ 6, 6 < tis ≤ 9, 9 < tis ≤ 12 and tis > 12 are depicted with
blue, yellow, black, magenta, and cyan colors, respectively.

K.

From Figs. 5.6 and 5.8-5.10, some important implications can be drawn as follows:

1. The TPLF, MPF, and PLF topologies surpass others in terms of the size of the

stable and stable-safe areas, the size of positive-velocity areas, and the size of smaller-

settling-times areas.

2. Comparing BD/BDL, PF/PLF and TPF/TPLF topologies: it is apparent that

broadcasting the leader’s state to the follower vehicles has starkly improved the per-

formance of the platoon.

3. SPTF has the smallest stable area, the smallest stable-safe area, the biggest stable-

collision area, the smallest positive-velocity area, and the biggest larger-settling-time

area.

4. Comparing PF/BD, and BD/SPTF topologies: under BD and SPTF topologies

and in comparison with PF and BD topologies respectively, the followers receive infor-

mation from one more vehicle behind which degrades the performance of the platoon

under BD and SPTF topologies when compared to those of PF and BD topologies,

respectively.
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5. Comparing BD/TPSF, and SPTF/TBPF topologies: under BD/SPTF topolo-

gies, follower vehicles receive information from one/two vehicles behind and one/one

vehicle ahead respectively, and under TPSF/TBPF they receive from one/two ve-

hicles behind and two/two vehicles ahead. Getting more information from vehicles

ahead improves the platoon performance under TPSF/TBPF with respect to those

of BD/SPTF topologies, respectively.

6. Comparing PLF/TPF, and BDL/TPSF topologies: the performance of PLF and

BDL are comparable to those of TPF and TPSF, respectively. However, it sounds

that if the additional information from vehicles ahead is actually from the leader ve-

hicle, then the performance would be slightly better.

7. Comparing TPLF, PLF, and nontypical CT d: there are subtle differences between

performances which imply that when followers are of “look-ahead” type, and receive

information from the leader, the leader’s data outweighs those of the other follow-

ers. In other words, the information followers receive from other non-leader vehicles

may be redundant which can be exploited to accomplished some other performance

specifications. This issue needs more reseach.

Investigating the simulation results, it seems that generally for a given CT, the

larger the difference between the number of cars ahead and behind from which each

follower receives information, the better the performance of the platoon would be.

Also, if for two CTs the differences are the same, then for the one under which the fol-

lowers receive information from larger number of vehicles ahead, then its performance

would be better. Comparing the typical CTs, Fig. 5.11 shows the performance-

comparison of platoon under typical CTs. As we can see, TPLF, MPF and PLF

topologies lead to better performance for the platoon. The numbers in the Fig. 5.11

show the number of vehicles ahead or behind from which each follower receives infor-

mation.
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Figure 5.11: The schematic of platoon performance under different typical CTs given
in Figs. 5.2-5.3.

5.4.4 Tracking Performance and Areas based on IDs: Vali-
dation

Our analysis on IDs and vehicles velocities led to formulations (5.47) and (5.50),

respectively. Based on these formulations and mathematical analysis we found un-

stable, stable-collision, stable-non-collision, stable-safe and positive-velocity areas.

Now, we examine the validity of the theoretical finding for one of the CTs. To this

end, we assume that the platoon works under PLF topology and vehicles’ initial-

positions are selected as xi(0) = −17 × i m, i = 0, 1, . . . , 5, i.e., p̃i,i+1(0) = 8m.

Let assume that the acceleration of the leader for the time interval t1 ≤ t < t2 is

a0(t) = a0 then based of Physics its velocity and position would be v0(t) = a0t+v0(0)

and x0(t) = 1
2
a0t

2 + v0(0)t + x0(0), respectively. Assuming sampling time equal to

∆t = 0.01s, it is possible to get

X̃t(t+∆t) =
(︂
I3n + Ãt∆t

)︂
X̃t(t) (5.51)

and reminding that X̃i(t) = Xi(t) −X∗
i (t), we have found and simulated the inter-

vehicle distances and vehicles velocities given the provided velocity and acceleration

trajectory for the leader in Fig. 5.7. For selected points from PLF topology (see

Fig. 5.6), the simulation results are depicted in Fig. 5.12. As we can see, for

K = [18.1, 1.6, 4] which is picked up from unstable area, the error trajectories have

91



diverged and so the platoon is unstable. For K = [12.6, 4.1, 4] which is selected from

stable-collision area, the error trajectories have converged to zero, however, some

have crossed the dashed-red line (error = −5m) which indicates that we have col-

lision occurrence in the platoon. Also, for K = [18.6, 9.6, 4] which is chosen from

stable-non-collision area, the error trajectories have converged to zero and we do not

have a collision occurrence. However, some trajectories have crossed the dashed-blue

line (error = −2m) which indicates that some IDs violated the safe distance. Finally,

for K = [9.6, 17.1, 4] which is taken from stable-safe area, the trajectories have con-

verged to zero, and they neither have crossed the red-dashed line (collision distance)

nor blue-dashed line (safe distance). Therefore, always the safe distance between

vehicles is maintained. Simulation results shows that what we have spotted as unsta-

ble, stable-collision, stable-non-collision, and stable-safe areas, through the analysis

provided in the paper, are all valid.

To show the tracking performance of the platoon - followers reach to the leader’s

velocity and acceleration - under PLF topology, we choose K = [9.6, 17.1, 4] from the

stable-safe area. The selected point is designated in Fig. 5.6. Under the selected

control gain, Fig. 5.13 shows the simulation results for the velocity and accelerations

of the vehicles, i.e., vi(t) and ai(t); i = 0, 1, . . . , 5. As we can see, the velocity and

accelerations of the followers have converged to the leader’s velocity and acceleration.

Also, all follower velocities are positive that matches with the simulation results shown

in Fig. 5.8 which we obtained from the provided analysis.

5.5 Conclusion

In summary, this chapter introduced a novel approach to platoon stability analysis

by utilizing neighboring-vehicles state differences in a closed-loop distance dynamic

model. The focus shifted from follower-leader state differences to explore the dy-

namics of a homogeneous platoon. The derived coupled dynamic model for adjacent

vehicles allowed for a detailed investigation of intervehicle distances (IDs). Notably, it
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Figure 5.12: p̃i+1
i (t) trajectories for PLF topology under control gains K =

[9.6, 17.1, 4] (stable-safe), K = [18.6, 9.6, 4] (stable-non-collision), K = [12.6, 4.1, 4]
(stable-collision) and K = [18.1, 1.6, 4] (unstable), respectively. Blue-dashed and red-
dashed lines indicate thresholds for safe and collision distances, i.e., p̃i+1

i (t) = −2m
and ∆p̃i+1

i (t) = −5m, respectively.

was demonstrated that the closed-loop dynamics enabled the derivation of IDs from

initial conditions, providing valuable insights into platoon behavior. Furthermore,

the velocity of each follower was determined using IDs and the leader’s velocity. By

imposing constraints on collision and safe distance limits for IDs, as well as feasible-

velocity limits for the followers, the chapter comprehensively examined the platoon’s

performance under various Communication Topologies (CTs). It is important to note

that the focus of this chapter was on the analysis of a homogeneous platoon, and the
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Figure 5.13: Tracking the velocity/acceleration of the leader under PLF communica-
tion topology and K = [9.6, 17.1, 4].

results obtained were substantiated through comprehensive simulations, thereby con-

tributing to a deeper understanding of platoon dynamics and behavior.
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Chapter 6

Stability and Distance Analysis:
Heterogeneous Platoons under
Look-Ahead Topologies1

This chapter presents a comprehensive investigation into the stability and intervehicle

distances (IDs) of heterogeneous platoons operating under look-ahead topologies, con-

sidering disparities in control gains for position, velocity, and acceleration feedback.

Ensuring transient intervehicle spacing within a non-colliding distance is a challenge,

as internal stability alone may not guarantee safe distances between neighboring vehi-

cles. Therefore, this study formulates the behavior of IDs during platoon travel and

numerically identifies suitable control gains that promote stable and collision-free

platoon operations. To address the issue, we divide the platoon into successive pairs

of vehicles and analyze the distance dynamics between neighboring vehicles. The

look-ahead structure of the platoon necessitates successive stable distance dynamics

for overall platoon stability. By imposing collision and safe distance limits on the

formulated IDs, appropriate control gains are determined to achieve a non-colliding

platoon configuration. The formulated approach is demonstrated through simulation

results, validating the theoretical findings.

The integration of vehicle platooning as an intelligent transportation technology

1A version of this chapter has been submitted as Amir Zakerimanesh, Tony Z. Qiu, Mahdi
Tavakoli, Stability and Distance Analysis: Heterogeneous Platoons under Look-Ahead Topologies,
IEEE Transactions on Cybernetics.
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holds significant promise in enhancing various aspects of highway operations, such

as capacity, fuel efficiency, emissions, transportation efficiency, and traffic safety [96].

Platooning involves a coordinated group of vehicles, led by one vehicle and followed by

others, traveling at harmonized speeds and maintaining desired intervehicle distances

(IDs). Different spacing policies, such as constant distance policy [49], constant time

headway policy [102, 109], nonlinear headway policy [104], delay-based distance policy

[18], and energy-oriented spacing policy [9], have been developed for managing these

IDs.

In the literature, substantial attention has been devoted to the study of dis-

tributed longitudinal control techniques for vehicular platoons, encompassing various

approaches based on model predictive control [31, 32], sliding mode control [12, 13,

110], consensus-based control [38, 39], event-triggered control [41, 43, 111], adaptive

control [44–46], observer-based control [48, 49], robust control [10, 13, 112], reinforce-

ment learning-based control [52], cross-coupling strategy [113], and linear feedback

control [27, 53–57] for platoon coordination.

The communication topology (CT), which governs the information exchange struc-

ture among vehicles, significantly impacts platoon performance. Researchers have ex-

plored the control and stability of vehicle platoons under various CTs, such as those

with complex eigenvalues [53], real eigenvalues [12], dynamic communication [105],

undirected communication [106], and switching communication [32, 46, 107, 114].

Switching communication is particularly relevant to address partial failures in the

vehicular ad hoc network (VANET) [108], ensuring platoon stability despite varying

information flow.

Besides stability and tracking performance, safety and collision analysis are of

paramount importance in platooning. Analyzing transient IDs is crucial to ensure

collision-free operations. However, previous works [27, 53–57] have often overlooked

this aspect, leaving a gap in the literature. In this paper, we address this void

and provide a comprehensive analysis of transient distances between platoon vehi-
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cles, even considering non-identical control gains. Incorporating non-identical control

gains offers greater flexibility in achieving stability and desired transient behavior,

particularly when small control gains are required.

In this chapter, we study the stability and ID of heterogeneous platoons operating

under look-ahead topologies, utilizing a distributed linear feedback control scheme

and a constant distance policy between vehicles. While internal stability has been

widely studied, it is demonstrated with a counterexample that it may not guarantee

a non-colliding platoon. Hence, to address collision concerns effectively, transient IDs

are examined. Instead of considering follower-leader state differences, neighboring-

vehicles state differences are used to develop a coupled dynamic model for adjacent

vehicles. By analyzing this model, stability conditions and ID variations are derived.

Consequently, collision and safe distance limits are imposed on IDs, leading to the

identification of proper control gains for a non-colliding and safe platoon. Thorough

simulations are performed to validate and provide further insights into the theoretical

findings.

6.1 Problem formulation: Preliminaries

Throughout this chapter, unless necessary for clarity, we omit explicit time-dependent

signals. We will use semicolon and colon symbols to differentiate elements of vertical

and horizontal vectors, respectively. For example, [.; .; .] represents a 3-by-1 vector,

and [., ., .] represents a 1-by-3 vector. This notation will be employed consistently

throughout the paper for better clarity and readability. In Figure 6.1, we illustrate a

platoon comprising a leader vehicle labeled as 0 and n followers denoted as 1, . . . , i, i+

1, . . . , n−1, n. The real intervehicle distance (ID) between neighboring vehicles i and

i + 1 is denoted by Di+1
i , while di+1

i represents the desired ID. The length of the ith

vehicle is indicated as Li, and the positions of the leader vehicle and the ith follower

are represented by x0 and xi, respectively. Additionally, p
i+1
i = xi − xi+1 denotes the

position difference between front sides of vehicles i and i+ 1.
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Regarding linear control, the longitudinal control of the platoon consists of two

main components: 1) Feedback linearization (FL) control, serving as the inner force/ac-

celeration control loop, where dynamics nonlinearities are already cancelled, and 2)

An ID control loop responsible for achieving the desired spacing between consecutive

vehicles. In this chapter, we concentrate on the ID control loop, assuming that the

FL control has already addressed the cancellation of nonlinearities in the dynamics.

Please note that FL transforms nonlinear systems into linear equivalents using vari-

able adjustments and feedback control. This simplifies control design by mimicking

the more manageable behavior of linear systems. That being stated, this enables us

to direct our analysis towards attaining the designated IDs within the platoon.

Figure 6.1: A heterogeneous platoon: Kinematics of pairwise vehicles, i.e., the pairs
(0, 1), (1, 2), . . . , and (n− 1, n). Note that, throughout the paper, p̃i+1

i is mentioned
as intervehicle distance error (IDE) between neighboring vehicles.

6.1.1 Vehicles dynamics

We consider that the leader vehicle does not undergo any control procedure. Instead,

its position, velocity, and acceleration are used to control the following vehicles within

the platoon. Consequently, the dynamics of the follower vehicles are modeled by the

following third-order linear model [46, 48, 56]:⎧⎪⎨⎪⎩
ẋi+1 = vi+1

v̇i+1 = ai+1 i = 0, . . . , n− 1

ȧi+1 = − 1
τi+1

ai+1 +
1

τi+1
ui+1

(6.1)
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in which vi+1, ai+1, and τi+1 are velocity, acceleration, and engine-time-constant of the

(i+1)th follower. Also, ui+1 is the input signal of the (i+1)th follower to be designed

properly. Let Xi+1 ≜ [xi+1; ẋi+1; ẍi+1] denote the state of the (i+ 1)th follower such

that ẋi+1 = vi+1 and ẍi+1 = ai+1. Thus, given (6.1) and for i = 0, . . . , n − 1, the

state-space presentation of the (i+ 1)th follower would be according to

Ẋi+1 =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

0 0 − 1
τi+1

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Ai+1

Xi+1 +

⎡⎢⎢⎢⎣
0

0

1
τi+1

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞
Bi+1

ui+1
(6.2)

6.1.2 Aim and Controller

The objective of the controller ui+1 is to synchronize the velocities and accelerations

of the follower vehicles with those of the leader vehicle and also ensure that the

distances between adjacent vehicles in the platoon match the desired values, i.e.,

di+1
i . In essence, the controller aims to achieve velocity/acceleration tracking and

ID regulation to maintain the desired platoon formation. In other words, for i =

0, . . . , n− 1, the aim is to have{︄
vi+1 = v0

xi − xi+1 = Li + di+1
i ≡ Di+1

i = di+1
i

(6.3)

where ≡ denotes equivalence. To accomplish the mentioned aims, we use the following

distributed linear feedback control law [89] (i = 0, . . . , n− 1)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ui+1 = −

∑︂
j∈Ii+1

Kj
i+1 [xi+1 − xj − di+1,j; ẋi+1 − ẋj; ẍi+1 − ẍj]

di+1,j ≜ −sgn(i+ 1− j)
max(i+1,j)−1∑︂
κ=min(i+1,j)

ωκ+1
κ

(6.4)

in which ωκ+1
k ≜ Lκ + dκ+1

κ and Kj
i+1 ≜ [kji+1, b

j
i+1, h

j
i+1] is the control-gain vector of

the differences between measurements transmitted from the jth vehicle to the (i+1)th

follower, and the (i+1)th follower’s state. Also, the set Ii+1 ⊂ {0, 1, . . . , i} is associated

with the vehicles from which the (i+ 1)th follower gets information.
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6.1.3 Look-Ahead Topology

Figure 6.2 illustrates an arbitrary look-ahead CT employed in vehicle platooning. In

this topology, each follower vehicle exclusively receives information from vehicles that

are positioned ahead of it within the platoon. This means that communication is

unidirectional, with information flow limited to vehicles in the front.

Figure 6.2: A heterogeneous vehicle platoon under an arbitrary look-ahead CT.

6.1.4 The Controller Based on Desired-States of the Follow-
ers

For i = 0, . . . , n−1, the desired position (x∗i+1), velocity (ẋ∗i+1) and acceleration (ẍ∗i+1)

of the (i+ 1)th follower with respect to the state of the leader vehicles is defined as

x∗i+1 ≜ x0 −
i∑︂

κ=0

ωκ+1
κ , ẋ∗i+1 = v0, ẍ∗i+1 = 0 (6.5)

Therefore, the position error of the (i+ 1)th follower can be defined as x̃i+1 ≜ xi+1 −

x∗i+1, utilizing which readily results in xi+1− xj = x̃i+1− x̃j + di+1,j, and substituting

which into the controller (6.4) gives

ui+1 = −
∑︂
j∈Ii+1

Kj
i+1

(︂
X̃i+1 − X̃j

)︂
(6.6)

where X̃i+1 ≜
[︂
x̃i+1; ˜︁ẋi+1; ˜︁ẍi+1

]︂
and X̃j ≜

[︂
x̃j; ˜︁ẋj; ˜︁ẍj]︂ such that X̃i+1 and X̃j are

state errors of (i+ 1)th and jth vehicles, respectively. Also, for k ∈ {i+ 1, j}, ˜︁ẋk, ˜︁ẍk,
and

...˜︁x k are velocity, acceleration, and jerk errors of the kth vehicle.
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6.1.5 State-Space Presentation of the Platoon

Using the facts ẍi+1 = ẍ̃i+1 and
...
x i+1 =

...
x̃ i+1, and plugging (6.6) in (6.1) yields

...
x̃ i+1 = −

1

τi+1

Ki+1X̃i+1 +
∑︂
j∈Ii+1

1

τi+1

Kj
i+1X̃j (6.7)

in which Ki+1 ≜
[︁
k̄i+1, b̄i+1, h̄i+1

]︁
where

k̄i+1 ≜
∑︂
j∈Ii+1

kji+1, b̄i+1 ≜
∑︂
j∈Ii+1

bji+1, h̄i+1 ≜ 1 +
∑︂
j∈Ii+1

hji+1 (6.8)

Now, considering (6.7), knowing x̃0 = ẋ̃0 = ẍ̃0 = 0, and defining the platoon’s total

state-error vector by X̃t ≜
[︂
X̃1; X̃2; . . . ; X̃n

]︂
, then the platoon’s closed-loop state-

space presentation can be characterized by

Ẋ̃t = ÃtX̃t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
11 03×3 . . . 03×3

A∗
21 A∗

22 . . . 03×3

... . . .
. . .

...

A∗
n1 A∗

n2 . . . A∗
nn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
X̃t (6.9)

where Ãt is the overall closed-loop system matrix such that for i = 0, . . . , n − 1, we

have (κ = i+ 1)

A∗
κκ ≜ Aκ −BκKκ, A∗

κj ≜ BκK
j
κ; j < κ (6.10)

where Kκ ≜
∑︁

j∈Iκ K
j
κ.

6.1.6 Stability of the Platoon

Indeed, the determinant of the block matrix sIn − Ãt provides the characteristic

polynomial of the platoon. The roots of this polynomial correspond to the eigenvalues

of the system matrix Ãt. Here, In represents the identity matrix of size n.

The stability of the closed-loop system is determined by the sign of the eigenvalues

of Ãt. The system is stable if and only if all eigenvalues of Ãt have negative real parts.
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In other words, for the platoon to be stable, all eigenvalues of the system matrix Ãt

must lie in the left half of the complex plane.

Ensuring stability is a critical aspect in the control of vehicle platoons, as it guar-

antees that the system will behave in a predictable manner during platoon operations.

Analyzing the eigenvalues of the system matrix provides valuable insights into the sta-

bility properties of the platoon, enabling the design of control strategies that maintain

stability and robustness in various operational scenarios.

Remark 18 Ãt is a triangular block matrix, then det(sIn − Ãt) = Πn
κ=1det(sI3 −

A∗
κκ) which implies that the eigenvalues of the matrix Ãt constitutes the union of the

eigenvalues of the individual matrices A∗
κκ; κ = 1, . . . , n. Given the definition of A∗

κκ

in (7.10) and noting (7.2), Ãt would be stable if A∗
κκ; κ = 1, . . . , n are all stable which

is true if b̄κh̄κ > τκk̄κ such that k̄κ, b̄κ, and h̄κ need to be positive and nonzero.

6.2 Neighboring Vehicles Coupled Dynamics

In this section, we employ state-error differences between neighboring vehicles to de-

rive coupled distance dynamics between adjacent vehicles under look-ahead topolo-

gies. Before proceeding with the analysis, we introduce some preliminary formula-

tions. Specifically, we define coupled position, velocity, acceleration, and jerk errors

between neighboring vehicles as follows:

1. coupled position error: the difference between position errors of vehicles i and

i+ 1 which we denote as p̃i+1
i ≜ x̃i − x̃i+1.

2. coupled velocity error: the difference between velocity errors of vehicles i and

i+ 1 which we denote as ṽi+1
i ≜ ˜︁ẋi − ˜︁ẋi+1.

3. coupled acceleration error: the difference between acceleration errors of vehicles

i and i+ 1 which we denote as ãi+1
i ≜ ˜︁ẍi − ˜︁ẍi+1.
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4. coupled jerk error: the difference between jerk errors of vehicles i and i + 1

which we denote as i+1ג̃

i ≜
...˜︁x i −

...˜︁x i+1.

Given the above-mentioned formulas, let define the coupled state-error and its deriva-

tive between the neighboring vehicles i and i+ 1 as

X̃
i+1

i ≜ X̃i − X̃i+1 ≜
[︁
p̃i+1
i ; ṽi+1

i ; ãi+1
i

]︁
˜︁Ẋ i+1

i ≜ ˜︁Ẋ i − ˜︁Ẋ i+1 ≜
[︂
ṽi+1
i ; ãi+1

i ; i+1ג̃

i

]︂ (6.11)

These error formulations allow us to capture the differences in position, velocity, ac-

celeration, and jerk between adjacent vehicles in the platoon. Utilizing these error

terms, we will proceed to derive the coupled distance dynamics that govern the be-

havior of neighboring vehicles under the look-ahead CT. Also, from now on, we will

refer to p̃i+1
i (.) (in time-domain or Laplace-domain) as the intervehicle distance error

(IDE) between vehicles i and i+ 1.

Assumption 1 In the look-ahead CT between vehicles, a connection path exists be-

tween the leader and all other follower vehicles within the platoon. This means that

each follower vehicle can obtain information about the leader’s state either directly

or indirectly through a sequence of intermediate vehicles. As a result, every follower

has access to the leader’s state, allowing them to synchronize their movements and

maintain the desired IDs.

Assumption 2 Under the assumption that the look-ahead CT is satisfied, we use the

notation zii+1 = 0 to indicate that vehicle (i+1) does not receive information directly

from vehicle i. Conversely, if zii+1 = 1, it indicates that vehicle (i + 1) receives

information from vehicle i. In other words, zii+1 = 1 signifies that vehicle i directly

transmits its state information to vehicle (i+ 1).

Assumption 3 To simplify the analysis without loss of generality, we assume the

following initial conditions for i = 0, . . . , n− 1:
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1) Initial coupled velocity and acceleration: at time t = 0, the velocity error and

acceleration error between vehicles i and i+1 are set to zero, i.e., ṽi+1
i (0) = ãi+1

i (0) =

0.

2) Initial coupled position difference: the initial position difference between vehicles

i and i+ 1 is the same for all pairs and equal to β > 0, i.e., p̃i+1
i (0) = β.

With these initial conditions, the initial coupled-state vector for vehicles i and i+1

can be represented as Xi+1
i (0) = [β; 0; 0]. This initial condition vector indicates that

at t = 0, the position difference between vehicles i and i + 1 is β, while the velocity

and acceleration errors are both zero.

Theorem 19 With the given equations (6.1), (6.6), (6.8), and (6.11), and by defining

ỹi+1
i ≜ p̃i+1

i , for i = 0, . . . , n − 1, the coupled state-space representation of vehicles i

and i+ 1 based on their state differences is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ̃i+1
i =

⎡⎢⎣ 0 1 0

0 0 1

− k̄i+1

τi+1
− b̄i+1

τi+1
− h̄i+1

τi+1

⎤⎥⎦
⏞ ⏟⏟ ⏞

≜Ai+1
i

X̃
i+1

i +

⎡⎢⎣00
1

⎤⎥⎦
⏞⏟⏟⏞
≜Bi+1

i

ũi+1
i

ỹi+1
i =

[︂
1 0 0

]︂
⏞ ⏟⏟ ⏞

≜Ci+1
i

X̃
i+1

i

(6.12)

in which ũi+1
i is according to

ũi+1
i = − 1

τi
τ i+1
i

i−1∑︂
κ=0

X̃
κ+1

κ +
1

τi

∑︂
j∈Ii

i−1∑︂
κ=j

Kj
iX̃

κ+1

κ − 1

τi+1

∑︂
j∈Ri+1

i−1∑︂
κ=j

Kj
i+1X̃

κ+1

κ (6.13)

where τ i+1
i =

[︂
0, 0, τi−τi+1

τi+1

]︂
, and the set Ri+1 ≜ Ii+1−{i} if zii+1 = 1, and Ri+1 = Ii+1

if zii+1 = 0.

Remark 20 It is crucial, obvious and worth emphasizing that in (6.12), the input

ũi+1
i is totally independent of the coupled state variable X̃

i+1

i . In other words, for the

specific input ũi+1
i given in (6.13), it always holds that κ ̸= i. Also, note that for the

pair (0, 1), ũi+1
i = 0.
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Proof. First, for later usage, let define X̃
i

j ≜ X̃j − X̃i and X̃
j

i+1 ≜ X̃i+1 − X̃j. Now,

for i = 1, . . . , n− 1 and using (6.7), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
...
x̃ i = −

1

τi
KiX̃i +

1

τi

∑︂
j∈Ii

Kj
iX̃j

...
x̃ i+1 = −

1

τi+1

Ki+1X̃i+1 +
1

τi+1

∑︂
j∈Ii+1

Kj
i+1X̃j

(6.14)

Therefore, for i+1ג̃

i ≜
...
x̃ i −

...
x̃ i+1, we get

i+1ג̃

i =− 1

τi
KiX̃

i+1

i −
(︃
1

τi
Ki −

1

τi+1

Ki+1

)︃
X̃i+1 +

∑︂
j∈Ii

1

τi
Kj

iX̃j −
∑︂
j∈Ii+1

1

τi+1

Kj
i+1X̃j

(6.15)

Since −
(︂

Ki

τi
− Ki+1

τi+1

)︂
=
∑︁

j∈Ii+1

Kj
i+1

τi+1
−
∑︁

j∈Ii
Kj

i

τi
+

τ i+1
i

τi
then (6.15) can be rewritten

as

i+1ג̃

i =− 1

τi

(︁
Ki + τ i+1

i

)︁
X̃

i+1

i +
∑︂
j∈Ii

1

τi
Kj

iX̃
i+1

j −
∑︂
j∈Ii+1

1

τi+1

Kj
i+1X̃

i+1

j − 1

τi
τ i+1
i

i−1∑︂
κ=0

X̃
κ+1

κ

(6.16)

Now, having X̃j − X̃i+1 = X̃j − X̃i + X̃i − X̃i+1, (6.16) is equal to

i+1ג̃

i =−

⎛⎝τ̄ i+1
i +

∑︂
j∈Ii+1

1

τi+1

Kj
i+1

⎞⎠ X̃
i+1

i +
∑︂
j∈Ii

1

τi
Kj

iX̃
i

j

−
∑︂
j∈Ii+1

1

τi+1

Kj
i+1X̃

i

j −
1

τi
τ i+1
i

i−1∑︂
κ=0

X̃
κ+1

κ

(6.17)

in which τ̄ i+1
i =

[︂
0, 0, 1

τi+1

]︂
and depending on how the connection is between the

neighboring vehicles (zi+1
i = 1 or zi+1

i = 0), (6.17) can be reformulated as

i+1ג̃

i =−

⎛⎝τ̄ i+1
i + ζ i+1

i +
∑︂

j∈Ri+1

1

τi+1

Kj
i+1

⎞⎠ X̃
i+1

i +
1

τi

∑︂
j∈Ii

Kj
iX̃

i

j

− 1

τi+1

∑︂
j∈Ri+1

Kj
i+1X̃

i

j −
1

τi
τ i+1
i

i−1∑︂
κ=0

X̃
κ+1

κ

(6.18)

where Ri+1 = Ii+1 − {i} if zii+1 = 1, Ri+1 = Ii+1 if zii+1 = 0, and

ζ i+1
i =

{︄
1

τi+1
Ki+1

i if zii+1 = 1

0 if zii+1 = 0
(6.19)
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Now, defining Ai+1
i ≜ −τ̄ i+1

i − ζ i+1
i −

∑︁
j∈Ri+1

1
τi+1

Kj
i+1 = −τ̄ i+1

i −
∑︁

j∈Ii+1

1
τi+1

Kj
i+1 =

− 1
τi+1

Ki+1 (see (6.8)) and given that X̃
i

j =
∑︁i−1

κ=j X̃
κ+1

κ ; j < i, we get

i+1ג̃

i =− 1

τi+1

Ki+1X̃
i+1

i − 1

τi
τ i+1
i

i−1∑︂
κ=0

X̃
κ+1

κ

+
1

τi

∑︂
j∈Ii

i−1∑︂
κ=j

Kj
iX̃

κ+1

κ − 1

τi+1

∑︂
j∈Ri+1

i−1∑︂
κ=j

Kj
i+1X̃

κ+1

κ

(6.20)

Now, let study i+1ג
i for i = 0 or to be exact for the pair (0, 1). Given the fact

that X̃0 = 0 and using (6.14) yields 10ג̃ = − 1
τ1
K0

1X̃
1

0 which matches with (6.20). We

assume that the first follower always receives the leader vehicle’s state. Therefore,

for i = 0, . . . , n − 1, (6.20) holds true. Given (6.20) and (6.13), it is apparent that

i+1ג̃

i = − 1
τi+1

Ki+1X̃
i+1

i + ũi+1
i . Therefore, using (6.20), noting that d/dt{p̃i+1

i } = ṽi+1
i ,

d/dt{ṽi+1
i } = ãi+1

i , and ỹi+1
i = p̃i+1

i , then the state-space presentation (6.12) holds

true.

Remark 21 Let’s define the following constants to simplify the expression: k̄
i+1
i ≜

k̄i+1

τi+1
, b̄

i+1
i ≜ b̄i+1

τi+1
and h̄

i+1
i ≜ h̄i+1

τi+1
. With these definitions, and considering the equa-

tion (6.12), the characteristic polynomial of the pair (i, i + 1) can be represented as:

µi+1
i (s) = s3+h̄

i+1
i s2+b̄

i+1
i s+k̄

i+1
i . For the stability of the coupled dynamics of the pair

(i, i+ 1), it is imperative to have b̄
i+1
i h̄

i+1
i > k̄

i+1
i , or equivalently b̄i+1h̄i+1 > τi+1k̄i+1.

This condition ensures that the coefficients of the characteristic polynomial are such

that the system remains stable. Specifically, k̄i+1, b̄i+1, and h̄i+1 need to be positive

and nonzero to meet this stability requirement. This stability condition is of great

significance in the design and analysis of the coupled dynamics between vehicles i and

i+1, as it guarantees that the ID regulation remains stable during platoon operations.

By satisfying this condition for all vehicle pairs in the platoon, the overall stability of

the heterogeneous platoon can be assured.

Remark 22 Given (6.8) and investigating the stability condition b̄i+1h̄i+1 > τi+1k̄i+1

mentioned in Remark 21, one can squarely conclude that, in the CT, there should be at
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least one connection path between the leader and other follower vehicles as mentioned

in Assumption 1.

Remark 23 Noting relation (6.13), we have X̃
κ+1

κ (s) = [1; s; s2]p̃κ+1
κ (s) − [0; 1; s]β

where s is the Laplace variable. Thus, (6.13) in Laplace domain can be simplified to

ũi+1
i (s) = ũi+1

i,p (s) + ũi+1
i,β (s) where

ũi+1
i,p (s) =

∑︂
j∈Ii

i−1∑︂
κ=j

Kj
i

τi
T1p̃

κ+1
κ (s)−

i−1∑︂
κ=0

τ i+1
i

τi
T1p̃

κ+1
κ (s)−

∑︂
j∈Ri+1

i−1∑︂
κ=j

Kj
i+1

τi+1

T1p̃
κ+1
κ (s)

(6.21)

in which T1 ≜ [1; s; s2] and T2 ≜ [0; 1; s]. Also, ũi+1
i,β (s) =

(︁
Θi+1

i s+ Γi+1
i

)︁
β such

that Θi+1
i and Γi+1

i are defined as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Θi+1

i ≜
−1
τi

[︄∑︂
j∈Ii

(i− j)hji−
i (τi − τi+1)

τi+1

]︄
+
∑︂

j∈Ri+1

i− j
τi+1

hji+1

Γi+1
i ≜

−1
τi

∑︂
j∈Ii

(i− j) bji +
∑︂

j∈Ri+1

i− j
τi+1

bji+1

(6.22)

Note that ũi+1
i,β (s) is the fraction of input signal ũi+1

i (s) that is just out of the initial

conditions related to all neighboring pairs (κ, κ+1) satisfying (6.13) (see Remark 20).

Also, ũi+1
i,p (s) is the input signal ũi+1

i (s) when ũi+1
i,β (s) = 0.

6.3 Intervehicle Distance Error (IDE) Formulation

In this section, we present the formulation for the IDEs and demonstrate that there

exists a mapping between the trajectories of IDEs and the initial conditions. Note

that the IDE between vehicles i and i+ 1 was denoted as p̃i+1
i (see Fig. 6.1).

By analyzing the coupled dynamics, we show that the trajectories of the IDEs can

be determined based on the initial conditions of the platoon. The mapping between

the ID-error trajectories and the initial conditions highlights the interdependence

of the platoon’s behavior and its starting configuration. It indicates that the initial

conditions play a crucial role in shaping the evolution of IDEs as the platoon operates

over time. This knowledge can be leveraged to choose control gains that lead to
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desired IDs and ensure stable platoon operations under various scenarios and initial

conditions.

6.3.1 IDE Between Vehicles i and i+ 1

First, the Laplace-domain trajectory of the distance error between neighboring vehi-

cles i and i+1; i = 0, . . . , n−1, is presented. Analyzing this Laplace-domain equation

will allow us to understand the behavior of the distance errors and assess the stability

and performance of the platoon under different control gains and initial conditions.

Theorem 24 Given (6.12), Remarks 20 and 23, let the IDE out of the initial position

differences between vehicles i and i+1, and all vehicles κ and κ+1 satisfying (6.13),

be defined as ψi+1
i (s) and according to

ψi+1
i (s) = β

(︂
s2 +

(︂
h̄
i+1
i +Θi+1

i

)︂
s+ b̄

i+1
i + Γi+1

i

)︂
H i+1

i (s) (6.23)

in which H i+1
i (s) specified by

H i+1
i (s) =

(︂
s3 + h̄

i+1
i s2 + b̄

i+1
i s+ k̄

i+1
i

)︂−1

(6.24)

Proof. Given (6.12)-(6.13), and since the system is linear, p̃i+1
i (s) is equal to the

summation of zero-state response of the pair (i, i + 1) (X̃
i+1

i (0) = [0; 0; 0]) and its

zero-input response (ũi+1
i (s) = 0, see Remark 23). Reminding Remark 20, in the

zero-state response of the pair (i, i + 1), X̃
κ+1

κ (0) = [0; 0; β] for all pairs (κ, κ + 1)

satisfying (6.13) hold true. The zero-input response, let be defined as p̃i+1
i,zi (s), would

be according to

p̃i+1
i,zi (s) = Ci+1

i

(︁
sI3 −Ai+1

i

)︁−1
X̃

i+1

i (0) =
β
(︂
s2 + h̄

i+1
i s+ b̄

i+1
i

)︂
s3 + h̄

i+1
i s2 + b̄

i+1
i s+ k̄

i+1
i

(6.25)

in which I3 is the identity matrix of size 3. Also, given Remarks 20 and 23, the

zero-state response of the pair (i, i + 1) out of the initial conditions related to the

pairs (κ, κ+ 1) satisfying (6.13), let be defined by p̃i+1
i,zsβ(s), would be

p̃i+1
i,zsβ(s) = Ci+1

i

(︁
sI3 −Ai+1

i

)︁−1
Bi+1

i ũi+1
i,β (s) =

β
(︁
Θi+1

i s+ Γi+1
i

)︁
s3 + h̄

i+1
i s2 + b̄

i+1
i s+ k̄

i+1
i

(6.26)
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Therefore, given (6.25) and (6.26), and noting that ψi+1
i (s) = p̃i+1

i,zi (s)+ p̃i+1
i,zsβ(s), then

(6.23) holds true.

Theorem 25 Given Theorem 24, the IDE between vehicles i and i+ 1, independent

of all initial conditions, let be defined as p̃i+1
i,zsp(s), is governed by

p̃i+1
i,zsp(s) =

[︄∑︂
j∈Ii

i−1∑︂
κ=j

Kj
i

τi
T1p̃

κ+1
κ (s)−

i−1∑︂
κ=0

τ i+1
i

τi
T1p̃

κ+1
κ (s)

−
∑︂

j∈Ri+1

i−1∑︂
κ=j

Kj
i+1

τi+1

T1p̃
κ+1
κ (s)

⎤⎦H i+1
i (s)

(6.27)

Proof. Independent of all initial conditions conveys the zero-state response of the

pair (i, i+1), X̃
i+1

i = [0; 0; 0], when all other initial conditions related to pairs (κ, κ+1)

satisfying (6.13) considered to be zero as well. Therefore, given Remark 23, p̃i+1
i,zsp(s)

would be

p̃i+1
i,zsp(s) = Ci+1

i

(︁
sI3 −Ai+1

i

)︁−1
Bi+1

i ũi+1
i,p (s) (6.28)

using which and considering (6.21), (6.27) holds true.

Thus, given Theorems 19 and 24, the Laplace-domain trajectory of the distance

error between vehicles i and i + 1 can be obtained by p̃i+1
i (s) = p̃i+1

i,zi (s) + p̃i+1
i,zsβ(s) +

p̃i+1
i,zsp(s) which results in

p̃i+1
i (s) = ψi+1

i (s) +H i+1
i (s)

[︄∑︂
j∈Ii

i−1∑︂
κ=j

Kj
i

τi
T1p̃

κ+1
κ (s)

−
i−1∑︂
κ=0

τ i+1
i

τi
T1p̃

κ+1
κ (s)−

∑︂
j∈Ri+1

i−1∑︂
κ=j

Kj
i+1

τi+1

T1p̃
κ+1
κ (s)

⎤⎦ (6.29)

6.3.2 Mapping Between IDEs and Initial Conditions

Calculating (6.29) for i = 0, . . . , n−1 and stacking them together, a mapping between

initial conditions and the IDEs can be found as follows.

P̃(s) = Q−1(s)Ψ(s) (6.30)
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where Ψ(s) ≜
[︁
ψ1
0(s); ψ

2
1(s); . . . ; ψ

n
n−1(s)

]︁
in which all ψi+1

i (s) can be obtained by

(6.23), P̃(s) ≜
[︁
p̃10(s); p̃

2
1(s); . . . ; p̃

n
n−1(s)

]︁
, and Q(s) ∈ Cn×n whose elements are

based on (i = 0, . . . , n− 1 and κ = 1, . . . , n)

Q(i+1)κ(s) =

⎧⎪⎨⎪⎩
−Kκ

i,i+1T1H
i+1
i (s) if i+ 1 > κ

1 if i+ 1 = κ

0 if i+ 1 < κ

(6.31)

in which

Kκ
i,i+1 ≜

1

τi

∑︂
jκ

Kj
i −

1

τi+1

∑︂
j+κ

Kj
i+1 −

1

τi
τ i+1
i (6.32)

where jκ ≜ {j|j ∈ Ii & j ≤ κ− 1} and j+κ ≜ {j|j ∈ Ri+1 & j ≤ κ− 1}. Therefore, if

Q̄(s) ≜ Q−1(s), then one can conclude that

p̃i+1
i (s) =

n∑︂
j=1

Q̄(i+1)j(s)ψ
j
j−1(s); i = 0, . . . , n− 1 (6.33)

such that Q̄(i+1)j = 1 if i+ 1 = j and Q̄(i+1)j = 0 if i+ 1 < j.

Remark 26 Noting (6.23), (6.30) and (6.31), and by having initial conditions and

engines’ time constants, and for a given CT and control gains, one can form Ψ(s),

Q(s), Q̄(s) and consequently P̃(s), and so p̃i+1
i (s); i = 0, . . . , n− 1.

Remark 27 Given (6.33), to have all p̃i+1
i (s) stable, ψi+1

i (s); i = 0, . . . , n − 1, and

Q̄(i+1)j; i + 1 > j, all need to be stable. Therefore, given (6.23) and (6.31), and

reminding that Q(s) is a lower triangular matrix, it is imperative to have all H i+1
i (s);

i = 0, . . . , n−1 stable (see (6.24)). This entails to have b̄
i+1
i h̄

i+1
i > k̄

i+1
i , or equivalently

b̄i+1h̄i+1 > τi+1k̄i+1 such that k̄i+1, k̄i+1, and h̄i+1 need to be positive and nonzero.

This is in line with Remarks 18 and 21 and implies that to have a stable platoon

under look-ahead topologies discussed in this work, all coupled dynamics related to

pairs (i, i+ 1); i = 0, . . . , n− 1, need to be stable.

Remark 28 To find p̃i+1
i (t), which is the time-domain trajectory of the IDE between

vehicles i and i+1, we need to take the inverse Laplace transform of p̃i+1
i (s). However,
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if we consider p̃i+1
i (s) as if it is the transfer function of a system, then p̃i+1

i (t) would

the impulse response of the system p̃i+1
i (s).

Remark 29 Given Remark 28, suppose that, for a given stable control gains (see

Remark 27), one have found p̃i+1
i (t); i = 0, . . . , n − 1. Therefore, if exists p̃i+1

i (t) <

−di+1
i ; i = 0, . . . , n − 1, then, for the given control gains, we would have collision

occurrence in the platoon. Similarly, if all −di+1
i < p̃i+1

i (t) < −
(︁
di+1
i − di+1

i,s

)︁
in

which di+1
i,s is considered to be a preset safe-distance between neighboring vehicles, then

we would have a non-colliding platoon but the distance between consecutive vehicles

violate the safe distance. Also, if all p̃i+1
i (t) > −

(︁
di+1
i − di+1

i,s

)︁
, then the distances

between adjacent vehicles would be always higher than di+1
i,s .

Remark 30 For stable control gains, according to (6.29) and final value theorem

of Laplace transform, we have lim
t→∞

p̃i+1
i (t) = lim

s→0
sp̃i+1

i (s) = 0 and since Di+1
i (t) =

p̃i+1
i (t) + di+1

i then we get Di+1
i (t) = di+1

i ; i = 0, 1, . . . , n − 1 which implies that all

IDs finally converge to their corresponding desired values di+1
i (see Fig. 6.1).

6.4 Simulation Results

Consider a platoon with one leader and four followers under the communication topol-

ogy (CT) shown in Fig. A.1.

Figure 6.3: The look-ahead CT considered for simulations.

The assumed target distances among vehicles are as follows: d10 = 5m, d21 = 4.8m,

d32 = 4.6m, and d43 = 4.4m. The lengths of each vehicle are given as L0 = 2.7m,
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L1 = 4.1m, L2 = 2.6m, L3 = 2.4m, and L4 = 2.8m, respectively. All initial velocities

and accelerations are initialized to zero. Simulations are executed using a sampling

interval of 0.01 seconds. The safe distance between vehicles is set at 3m and denoted

as di+1
i,s = 3m. Furthermore, the engine time constants are defined as τ1 = 0.7,

τ2 = 0.6, τ3 = 1, and τ4 = 0.9, respectively.

6.4.1 Platoon Stability and Intervehicle Distances (IDs)

Let’s define the total control gain vector of the platoon asKt = [K0
1,K

1
2,K

0
2,K

2
3,K

1
3,K

3
4],

where each individual control gain vector is denoted as Kj
i = [kji , b

j
i , h

j
i ]. According

to Remark 27, the platoon shown in Figure A.1 will be stable if and only if

1. b01(1 + h01) > τ1k
0
1

2. (b12 + b02)(1 + h12 + h02) > τ2(k
1
2 + k02)

3. (b23 + b13)(1 + h23 + h13) > τ3(k
2
3 + k13)

4. b34(1 + h34) > τ4k
3
4

Referring to equation (6.33) and considering the aforementioned prerequisites for

Platoon Stability (PS), Table 6.1 outlines the impact, or lack thereof, of different pa-

rameters on both PS and IDs. The symbol ✓ signifies an influence, while the symbol

× denotes the absence of influence by the corresponding parameter. Various dis-

tance scenarios have been defined, encompassing the following: Unstable (U), Stable-

No-Collision (SNC), Stable-No-Collision-Safe (SNCS), Stable-No-Collision-Not-Safe

(SNCNS), and Stable-Collision (SC) IDs. These scenarios are elucidated alongside

their respective conditions in Table 6.2. Specifically, the U scenario demonstrates pla-

tooning instability, SNC signifies a stable platoon without collisions, SNCS mirrors

SNC but ensures that IDs never dip below a safe distance, SNCNS resembles SNC

but with some IDs falling below the safe distance, and lastly, SC indicates platoon

stability coexisting with collisions during platooning.

112



In Table 6.2, the symbol ✓ signifies the validity of the respective condition for

i = 0, . . . , 3, while the symbol × indicates the absence of validity for at least one of

the pairs. A ’-’ denotes that the relevant condition is no longer needed to be studied.

See Appendix A for a comprehensive explanation elucidating the rationale behind the

content presented in Table 6.1.

Table 6.1: The effect of parameters on IDEs and PS.

K0
1 K1

2 K0
2 K2

3 K1
3 K3

4 τ1 τ2 τ3 τ4 β

p̃10 ✓ × × × × × ✓ × × × ✓

p̃21 ✓ ✓ ✓ × × × ✓ ✓ × × ✓

p̃32 ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ × ✓

p̃43 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×

Table 6.2: Conditions for unstable (U), stable-no-collision (SNC), stable-no-collision-
safe (SNCS), stable-no-collision-not-safe (SNCNS), and stable-collision (SC) IDs.

Condition Kt Kt Kt Kt Kt

b̄i+1h̄i+1 > τi+1k̄i+1 × ✓ ✓ ✓ ✓

p̃i+1
i > −di+1

i - ✓ - ✓ ×

p̃i+1
i > −(di+1

i − 3) - - ✓ × -

Result U SNC SNCS SNCNS SC

Based on the information in Table 6.1, the initial conditions (denoted as β) do

not have any impact on the stability of the platoon. Stability is determined by

other factors such as control parameters and engine time constants. However, the

initial conditions do affect all IDEs between the vehicles in the platoon. Moreover,
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it is observed that the IDE between the third and fourth followers (the last pair of

vehicles) is influenced by all control parameters, engine time constants, and initial

conditions. This indicates that the stability and behavior of this specific pair are

particularly sensitive to variations in these factors.

6.4.2 Control Gains Selection

For each i ranging from 0 to 3, and for every j belonging to the set of integers Ii+1,

we make the assumption that hji+1 remains constant at a value of ζ. Additionally,

kji+1 and bji+1 are allowed to vary within the range of positive values q1 to q2 with

incremental changes of ϵ. Utilizing the information from Table 6.2, it is possible

to perform a numerical assessment to determine whether a given Kt corresponds to

unstable, colliding, non-colliding, or safe conditions for IDs. As an example, let’s take

ζ = 4, q1 = 0.1, q2 = 4, and ϵ = 1. Moreover, we select control gains that ensure the

time-settling of IDEs are less than 15 seconds for the ’SNC’, ’SNCS’, and ’SNCNS’

cases. It’s important to note that the ’SNC’ scenario can manifest in either ’SNCS’ or

’SNCNS’ forms. Consequently, the simulations will present outcomes for the ’SNCS’,

’SNCNS’, and ’SC’ scenarios. The simulations are conducted within three distinct

scenarios:

Initial distances are beyond the safe distance (3m)

In this case, initial IDEs are uniformly set to β = 8m. Accordingly, given the vehicles’

lengths, and the desired distances illustrated in the Fig. A.1, the initial positions of

the vehicles are x1(0) = 15.7m, x2(0) = 32.6m, x3(0) = 47.8m, and x4(0) = 62.6m.

These initializations are based on the assumption that x0(0) = 0. Table 6.3, show

examples of Kt found for each distance scenario.

Verification of control gains: If we consider any time interval 0 < t1 ≤ t < t2

and assume that the leader vehicle’s acceleration, denoted as a0(t), remains constant
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Table 6.3: Selected control gains for each distance scenario.

Category Kt

SNC [1.1, 3.1, 4.0, 1.1, 3.1, 4.0, 1.1, 3.1, 4.0, 0.1, 3.1, 4.0, 1.1, 3.1, 4.0, 1.1, 3.1, 4.0]

SNCS [1.1, 3.1, 4.0, 0.1, 2.1, 4.0, 1.1, 3.1, 4.0, 0.1, 3.1, 4.0, 1.1, 3.1, 4.0, 1.1, 3.1, 4.0]

SNCNS [3.1, 3.1, 4.0, 2.1, 2.1, 4.0, 3.1, 3.1, 4.0, 2.1, 3.1, 4.0, 2.1, 3.1, 4.0, 1.1, 3.1, 4.0]

SC [2.1, 1.1, 4.0, 0.1, 2.1, 4.0, 1.1, 0.1, 4.0, 1.1, 2.1, 4.0, 2.1, 1.1, 4.0, 1.1, 2.1, 4.0]

with the value a0 during this period, we can apply principles of Physics to derive its

velocity and position as follows:

The velocity of the leader vehicle, denoted as v0(t), can be expressed as v0(t) =

a0t + v0(0), where v0(0) represents its initial velocity. Similarly, the position of the

leader vehicle, denoted as x0(t), can be determined using the equation x0(t) =
1
2
a0t

2+

v0(0)t + x0(0), where x0(0) represents its initial position. Figure 6.4 illustrates the

trajectory of the leader vehicle’s acceleration and its corresponding velocity.

Given (6.5) and reminding that X̃i(t) = Xi(t) −X∗
i (t), using (6.9) and assuming

that the sampling time is equal to ∆t, it becomes possible to calculate the state vector

X̃t(t+∆t) as follows:

X̃t(t+∆t) =
(︂
I3n + Ãt∆t

)︂
X̃t(t) (6.34)

Here, I3n represents the identity matrix of size 3n. Using the expression (6.34), it

becomes straightforward to determine both the IDEs and vehicle velocities. The

IDEs are visually represented in Fig. 6.5 for the control gains provided in Table 6.3.

The results strongly validate the analysis presented. For instance, when employing

SC sample control gains, the trajectories p̃10(t), p̃
2
1(t), p̃

3
2(t), and p̃

4
3(t) intersect with

the dashed line, which serves as the threshold for avoiding collisions between vehicles.

Tracking verification: The primary objective of platooning is not only to maintain

the desired distances between vehicles but also to achieve synchronization between
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Figure 6.4: Leader’s velocity and acceleration.

Figure 6.5: IDEs under leader velocity (Fig. 6.4) and sample control gains shown
in Table 6.3. Red and blue dashed lines show collision and safe distance thresholds,
respectively.

follower vehicles and the leader vehicle. This synchronization entails having the fol-

lower vehicles track the velocity and acceleration profiles of the leader vehicle. The

follower vehicles aim to replicate the speed and acceleration behavior of the leader to

maintain a cohesive and coordinated platoon movement. Figs. 6.6 and 6.7 visually

depict the follower vehicles’ tracking of the velocity and acceleration of the leader
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Figure 6.6: Follower vehicles’ velocities given leader velocity in Fig. 6.4 and sample
control gains shown in Table 6.3.

Figure 6.7: Follower vehicles’ accelerations given leader velocity in Fig. 6.4 and
sample control gains shown in Table 6.3.
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Figure 6.8: Truck platooning using Vehicle Dynamics Blockset under the controller
(6.4) and CT given in the Fig. A.1. Click to watch the video: https://youtu.be/
JEHl4JLRxKs

vehicle, respectively. These figures illustrate how well the followers are able to repli-

cate the leader’s speed and acceleration profiles over time. These figures are crucial

in evaluating the effectiveness of the platooning control strategy. If the follower vehi-

cles can accurately track the leader’s velocity and acceleration, it indicates that the

platoon is well-controlled, and the synchronization objectives are being met. Please

check the simulation videos for SNCS2, SNCNS3, and SC4 scenarios, respectively.

Initial distances fall below the safe distance (3m)

In the simulations of the previous scenario, the initial conditions were set beyond the

safe distance (i.e., 3m). However, since the provided analysis is general, the same

conclusions apply even if some of the initial IDEs are smaller than the safe distance.

Therefore, by choosing appropriate control gains based on the provided analysis, the

system can effectively coordinate vehicles and guide them back to a safe set from an

unsafe situation. In this case, the initial positions of the vehicles are set as follows:

x1(0) = −6.2m, x2(0) = −13.6m, x3(0) = −19.3m, and x4(0) = −24.6m, assuming

x0(0) = 0. In this case (β = −1.5m), given the vehicles’ lengths, and the desired

2
https://youtu.be/ExioKt5bMbk

3
https://youtu.be/jU3IgpfRQOI

4
https://youtu.be/sxwmQS78fdM
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distances illustrated in the Fig. A.1, the initial distance between the vehicles three

and four fall below the safe distance. Please check the associated simulation video5.

High-fidelity simulation of truck platooning

In the last scenario, to analyze the controller’s performance in realistic vehicle platoon-

ing, we used MATLAB Vehicle Dynamics Blockset for simulation. The platooning

setup includes one leader and four followers with vehicle-to-vehicle (V2V) communi-

cation, as illustrated in Fig. A.1. Each follower has a platooning controller (specified

in (6.4)) that regulates longitudinal controls to maintain a constant spacing from the

preceding vehicle while following the lead vehicle. The inbuilt vehicle dynamics are

modeled using a six degrees of freedom tractor-trailer system, representing a three-

axle tractor towing a three-axle trailer through a hitch. Both the tractor and trailer

have individual models for their vehicle body, wheels, and suspension. The platoon-

ing controller influences the acceleration input, while the steering angle is maintained

at zero. The V2V communication model between the five vehicles incorporates the

arbitrary look-ahead CT. Each vehicle in the platoon is equipped with a V2V trans-

mitter and receiver. The transmitter sends basic safety messages (BSMs) containing

pose information, and the receivers of the platoon followers receive and extract infor-

mation from these BSMs. This information is then used by each follower’s controller

to calculate the appropriate acceleration for maintaining the desired spacing from the

preceding vehicle and following the lead vehicle. The lengths of the vehicles are 17.2m

and control gains are considered to be identical for each follower vehicle such that

K0
1 = K1

2 = K0
2 = K2

3 = K1
3 = K3

4 = [2, 10, 10]. Fig. 6.8 shows the visualization of

the mentioned truck platooning. Please check the associated high-fidelity simulation

video6

5
https://youtu.be/UttMe5b9fg8

6
https://youtu.be/JEHl4JLRxKs
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6.5 Conclusion

In conclusion, this research introduced an innovative approach that goes beyond tra-

ditional internal stability considerations. By focusing on neighboring-vehicle state

differences and formulating a coupled distance dynamic model, we have advanced

our understanding of platoon dynamics. This model not only allows us to derive

intervehicle distances but also facilitates the analysis of collision possibilities and the

establishment of safe distance limits.

Through the careful setting of appropriate collision and safe distance limits, along

with the identification of control gains, our methodology ensures both stable and safe

behaviors for vehicles within a platoon. We conducted a comprehensive examination

of how control parameters and initial conditions impact platoon stability and inter-

vehicle distance errors, presenting a range of distance scenarios and their associated

conditions.

The theoretical findings presented here were rigorously validated through simu-

lations, including high-fidelity truck platooning scenarios in MATLAB Vehicle Dy-

namics Blockset. These simulations demonstrated the effectiveness of the proposed

control strategies in ensuring stability and safety within heterogeneous platoons oper-

ating under look-ahead topologies. This research contributes to our ability to optimize

platoon performance while prioritizing the safety of all vehicles involved.
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Chapter 7

Effects of Communication on
Inter-Vehicle Distance and
Scalability in Heterogeneous
Vehicular Platoon Control:
Considering Comprehensive Initial
States1

This chapter serves as the foundation for exploring the impact of communication

topologies (CTs) on the performance of heterogeneous vehicular platoons. It in-

vestigates Scalability, stability, and transient intervehicle distances (IDs) under a

distributed linear feedback control law, considering full-state initial conditions.

7.1 Preliminaries

Throughout this paper, the argument of time-dependent signals are left out unless

they are required for the sake of clarity. Also, we separate elements of vertical and

horizontal vectors by semicolon and colon symbols, respectively. For instance, [.; .; .]

shows a 3-by-1 vector and [., ., .] shows a 1-by-3 vector. Figure 7.1 depicts a platoon

1A version of this chapter has been submitted as Amir Zakerimanesh, Tony Z. Qiu, Mahdi
Tavakoli, Effects of Communication on Inter-Vehicle Distance and Scalability in Heterogeneous Ve-
hicular Platoon Control: Considering Comprehensive Initial States, IEEE Transactions on Intelligent
Transportation Systems.
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including the leader vehicle designated by 0, and the follower vehicles labeled by

1, . . . , i, i+ 1, . . . , n− 1, n. The x axis shows the movement direction of vehicles, and

the notations x0 and xi indicate the front positions of the leader and the ith follower

vehicle, respectively. The real and preset desired intervehicle distances (IDs) between

neighboring vehicles i and i + 1 are denoted by Di+1
i and di+1

i , respectively. Also,

Li shows the length of the ith vehicle. Furthermore, for i = 0, . . . , n − 1, pi+1
i ≜

xi − xi+1 denotes position difference between the consecutive vehicles. Accordingly,

p̃i+1
i ≜ pi+1

i − ωi+1
i in which ωi+1

i ≜ Li + di+1
i . Longitudinal control of a platoon

generally consists of 1) inner force/acceleration control loop, the feedback linearization

control that compensates for the nonlinear dynamics of the vehicles, and 2) an outer

ID control loop that is responsible for maintaining the desired distances between

consecutive vehicles. Let dynamics nonlinearities be already canceled by the FL part

and, thus, in the following we focus on the ID control loop.

Figure 7.1: A platoon divided into consecutive-pairwise vehicles.

7.1.1 Vehicles Dynamics

We assume that the leader vehicle does not undergo any control process but its

position, velocity and acceleration are utilized to control the following vehicles. As

such, the behavior of each follower vehicle (FV) within the platoon is mathematically
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described by a third-order linear model [27, 31, 43, 46–48, 53, 54, 56, 57] as follows.⎧⎪⎨⎪⎩
ẋi+1 = vi+1

v̇i+1 = ai+1 i = 0, . . . , n− 1

ȧi+1 = − 1
τi+1

ai+1 +
1

τi+1
ui+1

(7.1)

in which ai+1, vi+1, and τi+1 are acceleration, velocity, and engine-time-constant of

the (i + 1)th follower. Also, ui+1 is its input signal to be designed properly. Let

Xi+1 ∈ R3×1 be defined as Xi+1 ≜ [xi+1; ẋi+1; ẍi+1] which describes the states of the

(i + 1)th follower such that ẋi+1 = vi+1 and ẍi+1 = ai+1. Thus, for i = 0, . . . , n − 1

and given (7.1), the state-space model for the (i+ 1)th follower can be presented as

Ẋi+1 = Ai+1Xi+1 +Bi+1ui+1 =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

0 0 − 1
τi+1

⎤⎥⎥⎥⎦Xi+1 +

⎡⎢⎢⎢⎣
0

0

1
τi+1

⎤⎥⎥⎥⎦ui+1 (7.2)

7.1.2 Controller and Kinematics Aims

The controller ui+1 requires to make the velocities/accelerations of the follower ve-

hicles reach the leader’s ones and the distances between adjacent vehicles meet the

desired values (di+1
i ). In other words, for i = 0, . . . , n− 1, the aim is to have{︄

vi+1 = v0

xi − xi+1 = ωi+1
i = Li + di+1

i

(7.3)

and to ensure which, we use the following distributed linear feedback control law [89]

(i = 0, . . . , n− 1)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ui+1 = −

∑︂
j∈Ii+1

K [xi+1 − xj − di+1,j; ẋi+1 − ẋj; ẍi+1 − ẍj]

di+1,j ≜ −sgn(i+ 1− j)
max(i+1,j)−1∑︂
κ=min(i+1,j)

ωκ+1
κ

(7.4)

in which K ≜ [k, b, h] is the control-gain vector of measurements transmitted from

the jth vehicle to the (i + 1)th follower. Also, the set Ii+1 ⊂ ({0, 1, . . . , n} − {i + 1})

shows the vehicles from which the (i+ 1)th follower gets information.
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7.1.3 Desired States of the Followers

According to (7.3), for i = 0, . . . , n − 1, the desired position (x∗i+1), velocity (ẋ∗i+1)

and acceleration (ẍ∗i+1) of the (i+1)th follower with respect to the state of the leader

vehicle is defined as

x∗i+1 ≜ x0 −
i∑︂

κ=0

ωκ+1
κ , ẋ∗i+1 = v0, ẍ∗i+1 = 0 (7.5)

Therefore, the state error of the (i+1)th follower can be defined as x̃i+1 ≜ xi+1−x∗i+1,

utilizing which readily results in xi+1−xj = x̃i+1− x̃j +di+1,j, and substituting which

into the controller (7.4) gives

ui+1 = −
∑︂
j∈Ii+1

K
(︂
X̃i+1 − X̃j

)︂
= −

∑︂
j∈Ii+1

KX̃
j

i+1 (7.6)

in which X̃
j

i+1 ≜ X̃i+1 − X̃j where X̃i+1 ≜
[︂
x̃i+1; ˜︁ẋi+1; ˜︁ẍi+1

]︂
and X̃j ≜

[︂
x̃j; ˜︁ẋj; ˜︁ẍj]︂.

7.1.4 State-Space Presentation of the Platoon

Using the facts ẍi+1 = ẍ̃i+1 and
...
x i+1 =

...
x̃ i+1, and plugging (7.6) in (7.1) yields

...
x̃ i+1 = −

1

τi+1

Ki+1X̃i+1 +
∑︂
j∈Ii+1

1

τi+1

KX̃j (7.7)

in which Ki+1 ≜
[︁
k̄i+1, b̄i+1, h̄i+1

]︁
such that

k̄i+1 ≜ |Ii+1|k, b̄i+1 ≜ |Ii+1|b, h̄i+1 ≜ 1 + |Ii+1|h (7.8)

where |Ii+1| denotes the cardinality of the set Ii+1. Now, considering (7.7), knowing

x̃0 = ˜︁ẋ0 = ˜︁ẍ0 = 0, and defining the platoon’s total state-error vector by X̃t ≜[︂
X̃1; X̃2; . . . , X̃n

]︂
, then the platoon’s closed-loop dynamics can be presented as the

following state-space models. In the case that vehicles are not identical, we have

Ẋ̃t = ÃtX̃t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
11 A∗

12 . . . A∗
1n

A∗
21 A∗

22 . . . A∗
2n

... . . .
. . .

...

A∗
n1 A∗

n2 . . . A∗
nn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
X̃t (7.9)
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where Ãt is the overall closed-loop system matrix such that for i = 0, . . . , n − 1, we

have (κ = i+ 1, j = 1, . . . , n){︄
A∗

κκ ≜ Aκ −BκKκ

A∗
κj ≜ (zjκ ⊗ I3)BκK

(7.10)

where Kκ ≜ |Iκ|K, and Aκ and Bκ are according to (7.2). Note that we use zjκ = 1 if

the κth follower receives information from the jth follower, and zjκ = 0 if it does not.

Also, |Iκ| denotes the cardinality of the set Iκ.

7.1.5 Communication Topologies (CTs)

CTs determine the structure under which vehicles communicate witch each other

in the platoon. We split communication topologies into three categories (will be

elaborated on later) such that any communication topology can neatly fit in one the

following categories.

Typical Unidirectional CTs (UCTs)

In UCTs, all followers receive information only from vehicles ahead. Figs. 7.2 shows

typical UCTs, in each of which there is a certain practice in the communication

between vehicles. For instance, in Two-Predecessor-Following (TPF) topology, each

follower vehicle receives information from two vehicles ahead.

Typical Bidirectional CTs (BCTs)

In BCTs, contrary to the UCTs, all followers also receive information from vehicles

behind. Figs. 7.3 shows typical BCTs, in each of which there is a certain pattern in the

communication between vehicles. For instance, in Two-Predecessor-Single-Following

(TPSF) topology, each follower receives information from two vehicles ahead and one

vehicle behind.
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Figure 7.2: Some typical UCTs between vehicles.

Figure 7.3: Some typical BCTs between vehicles.

Nontypical CTs

In nontypical CTs, there is no specific pattern in the communication between vehicles.

Fig. 7.4 depicts some arbitrary nontypical CTs.

Remark 31 Fig. 7.5 shows the possible connection types between the adjacent vehi-

cles, using which we define the parameter ζ i+1
i as needs to be rephrased no longer uzed
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Figure 7.4: Some arbitrary nontypical CTs.

in the formulas

ζ i+1
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if zi+1

i = 0 and zii+1 = 1

zi+1
i if zi+1

i = 1 and zii+1 = 1

0 if zi+1
i = 0 and zii+1 = 0

zi+1
i if zi+1

i = 1 and zii+1 = 0

(7.11)

in which, for instance, zi+1
i = 1 and zi+1

i = 0 denote that the ith vehicle does/doesn’t

receive information from the (i+ 1)th vehicle, respectively.

Figure 7.5: Connection types between neighboring vehicles.

Remark 32 For any CT, for the pair (i, i+1), let define the following coupled control

gains

k̄
i+1
i ≜

(︃
1

τi+1

|I≤i
i+1|+

1

τi
|I≥i+1

i |
)︃
k

b̄
i+1
i ≜

(︃
1

τi+1

|I≤i
i+1|+

1

τi
|I≥i+1

i |
)︃
b

h̄
i+1
i ≜

(︃
1

τi+1

|I≤i
i+1|+

1

τi
|I≥i+1

i |
)︃
h+

1

τi+1

(7.12)
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where the sets I≤i
i+1 and I≥i+1

i are defined as I≤i
i+1 ≜ {j|j ∈ Ii+1 & j ≤ i} and I≥i+1

i ≜

{j|j ∈ Ii & j ≥ i + 1}, respectively. The notation |.| shows the cardinality of the

relevant set.

7.1.6 Internal Stability

Given (7.9), the determinant of the block matrix sIn − Ãt offers the characteristic

polynomial of the platoon, roots of which are the eigenvalues of the system matrix

Ãt. Note that In is the identity matrix of size n, and the closed-loop system would

be stable if and only if eigenvalues of Ãt are all negative.

7.2 Coupled Dynamics Between Neighboring Ve-

hicles

To find the novel dynamic model (DM), which we name it distance dynamic model

(DDM), first we split the platoon into successive pairs of neighboring vehicles, i.e.,

pairs (0, 1), (1, 2), . . . , (n−1, n), and extract coupled dynamics between the adjacent

vehicles. For i = 0, . . . , n − 1, let the position, velocity, acceleration, and jerk errors

between neighboring vehicles defined as p̃i+1
i ≜ x̃i − x̃i+1, ṽ

i+1
i ≜ ˜︁ẋi − ˜︁ẋi+1, ã

i+1
i ≜

˜︁ẍi − ˜︁ẍi+1, and i+1ג̃

i ≜
...˜︁x i −

...˜︁x i+1, respectively. Thus, it is possible to define the state

error between neighboring vehicles as

X̃
i+1

i ≜ X̃i − X̃i+1 ≜
[︁
p̃i+1
i ; ṽi+1

i ; ãi+1
i

]︁
˜︁Ẋ i+1

i ≜ ˜︁Ẋ i − ˜︁Ẋ i+1 ≜
[︂˜︁vi+1

i ; ãi+1
i ; i+1ג̃

i

]︂ (7.13)

Note that, from now on, we will refer to p̃i+1
i (.), ṽi+1

i (.), ãi+1
i (.) (in time-domain or

Laplace-domain) as intervehicle distance error, velocity error, and acceleration error

between vehicles i and i+1, respectively. Furthermore, for j ∈ {i, i+1} and having 0 <

∆t≪ 1 as a quite small sampling-time, we will have X̃j (t+∆t) = X̃j (t)+∆t˜︁Ẋ j (t),

using which and (4.13), it is obvious that

lim
∆t→0

X̃
i+1

i (t+∆t)− X̃
i+1

i (t)

∆t
= ˜︁Ẋ i+1

i (t) (7.14)
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Theorem 33 Given (7.13) and Remarks 31-32, defining ỹi+1
i ≜ ãi+1

i , for i = 0, . . . , n−

1, the state-space presentation of the coupled dynamics between the adjacent and het-

erogeneous vehicles i and i+ 1 within any CT is according to

˜︁Ẋ i+1

i =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

−k̄i+1
i −b̄i+1

i −h̄i+1
i

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

≜Ai+1
i

X̃
i+1

i +

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦
⏞⏟⏟⏞
≜Bi+1

i

ũi+1
i (7.15)

in which ũi+1
i is according to

ũi+1
i =

1

τi

∑︂
j∈R<i

i

i−1∑︂
κ=j

KX̃
κ+1

κ − 1

τi

∑︂
j∈R>i+1

i

j−1∑︂
κ=i+1

KX̃
κ+1

κ

+
1

τi+1

∑︂
j∈R>i+1

i+1

j−1∑︂
κ=i+1

KX̃
κ+1

κ − 1

τi+1

∑︂
j∈R<i

i+1

i−1∑︂
κ=j

KX̃
κ+1

κ − 1

τi
τ i+1
i

i−1∑︂
κ=0

X̃
κ+1

κ

(7.16)

where τ i+1
i =

[︂
0, 0, τi−τi+1

τi+1

]︂
, and for the pair (i, i+1) = (0, 1), R<i

i = R>i+1
i = R<i

i+1 =

∅ in which ∅ denotes the empty set.

Proof. First, let define X̃
i

j ≜ X̃j−X̃i and X̃
j

i+1 ≜ X̃i+1−X̃j. Now, for i = 1, . . . , n−1

and using (7.7), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
...
x̃ i = −

1

τi
KiX̃i +

1

τi

∑︂
j∈Ii

KX̃j

...
x̃ i+1 = −

1

τi+1

Ki+1X̃i+1 +
1

τi+1

∑︂
j∈Ii+1

KX̃j

(7.17)

Therefore, for i+1ג̃

i ≜
...
x̃ i −

...
x̃ i+1, we get

i+1ג̃

i =− 1

τi
KiX̃

i+1

i −
(︃
1

τi
Ki −

1

τi+1

Ki+1

)︃
X̃i+1 +

∑︂
j∈Ii

1

τi
KX̃j −

∑︂
j∈Ii+1

1

τi+1

KX̃j

(7.18)

Since −
(︂

Ki

τi
− Ki+1

τi+1

)︂
=

τ i+1
i

τi
+
∑︁

j∈Ii+1

K
τi+1
−
∑︁

j∈Ii
K
τi
, then (7.18) can be rewritten as

i+1ג̃

i = − 1

τi

(︁
Ki + τ i+1

i

)︁
X̃

i+1

i +
∑︂
j∈Ii

1

τi
KX̃

i+1

j −
∑︂
j∈Ii+1

1

τi+1

KX̃
i+1

j − 1

τi
τ i+1
i

i−1∑︂
κ=0

X̃
κ+1

κ

(7.19)
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which obtained using the fact that X̃0 = [0; 0; 0]. Thus

τ i+1
i

τi
X̃i+1 = −

τ i+1
i

τi

(︂
X̃0 − X̃i+1

)︂
= −τ i+1

i

τi

i∑︂
j=0

X̃
j+1

j (7.20)

Now, having X̃j − X̃i+1 = X̃j − X̃i + X̃i − X̃i+1, (7.19) becomes

i+1ג̃

i = −
(︃
τ̄ i+1
i +

|Ii+1|
τi+1

K

)︃
X̃

i+1

i +
∑︂
j∈Ii

1

τi
KX̃

i

j −
∑︂
j∈Ii+1

1

τi+1

KX̃
i

j −
1

τi
τ i+1
i

i−1∑︂
κ=0

X̃
κ+1

κ

(7.21)

in which τ̄ i+1
i =

[︂
0, 0, 1

τi+1

]︂
. Note that τ̄ i+1

i + |Ii+1|
τi+1

K = 1
τi+1

Ki+1 (see (7.8)). Now,

depending on how the connection is between the neighboring vehicles i and i+1 (see

Remark 31), (7.21) can be reformulated as

i+1ג̃

i = − 1

τi+1

(︃
Ki+1 +

ζ i+1
i τi+1

τi
K

)︃
X̃

i+1

i +
∑︂
j∈Ri

1

τi
KX̃

i

j−
∑︂

j∈Ri+1

1

τi+1

KX̃
i

j−
1

τi
τ i+1
i

i−1∑︂
κ=0

X̃
κ+1

κ

(7.22)

Splitting j ∈ Ri and j ∈ Ri+1 in parts j < i and j > i + 1, and using the fact that

for part j > i+ 1, we have Xj − X̃i = Xj − X̃i+1 −
(︂
X̃i − X̃i+1

)︂
, then (7.22) can be

reformulated as

i+1ג̃

i =

⎛⎝− 1

τi+1

Ki+1 −
zi+1
i

τi
K− 1

τi

∑︂
j∈R>i+1

i

K+
1

τi+1

∑︂
j∈R>i+1

i+1

K

⎞⎠
⏞ ⏟⏟ ⏞

≜A31
i,i+1

X̃
i+1

i

+
∑︂
j∈R<i

i

1

τi
KX̃

i

j −
∑︂

j∈R<i
i+1

1

τi+1

KX̃
i

j +
∑︂

j∈R>i+1
i+1

1

τi+1

KX̃
j

i+1

−
∑︂

j∈R>i+1
i

1

τi
KX̃

j

i+1 −
1

τi
τ i+1
i

i−1∑︂
κ=0

X̃
κ+1

κ

(7.23)

in which A31
i,i+1 is equivalent to

A31
i,i+1 = −

1

τi+1

Kj≤i
i+1 −

1

τi
Kj≥i+1

i = −
[︂
k̄
i+1
i , b̄

i+1
i , h̄

i+1
i

]︂
(7.24)

Now using the fact that X̃
i

j and X̃
j

i+1 can be rewritten in the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X̃

i

j =
i−1∑︂
κ=j

X̃
κ+1

κ ;j < i

X̃
j

i+1 =

j−1∑︂
κ=i+1

X̃
κ+1

κ ;j > i+ 1

(7.25)
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then (7.23) becomes

i+1ג̃

i =

(︃
− 1

τi+1

Kj≤i
i+1 −

1

τi
Kj≥i+1

i

)︃
X̃

i+1

i − 1

τi
τ i+1
i

i−1∑︂
κ=0

X̃
κ+1

κ

+
1

τi

∑︂
j∈R<i

i

i−1∑︂
κ=j

KX̃
κ+1

κ − 1

τi

∑︂
j∈R>i+1

i

j−1∑︂
κ=i+1

KX̃
κ+1

κ

+
1

τi+1

∑︂
j∈R>i+1

i+1

j−1∑︂
κ=i+1

KX̃
κ+1

κ − 1

τi+1

∑︂
j∈R<i

i+1

i−1∑︂
κ=j

KX̃
κ+1

κ

(7.26)

Now, let us study for i = 0 or to be exact for the pair (0, 1). Given that X̃0 = 0,

using (7.17) yields

i+1ג̃

i =
1

τi+1

Ki+1X̃i+1 −
1

τi+1

∑︂
j∈Ri+1

KX̃j

= − 1

τi+1

Ki+1X̃
i+1

i +
1

τi+1

∑︂
j∈Ri+1

K
(︂
X̃

i+1

i + X̃
j

i+1

)︂
= − 1

τi+1

Kj≤i
i+1X̃

i+1

i +
1

τi+1

∑︂
j∈R>i+1

i+1

KX̃
j

i+1

(7.27)

which given (7.25) and the fact that the leader does not receive any information, then

(7.27) can be rewritten as

i+1ג̃

i = − 1

τi+1

Kj≤i
i+1X̃

i+1

i +
1

τi+1

∑︂
j∈R>i+1

i+1

j−1∑︂
κ=i+1

KX̃
κ+1

κ (7.28)

Now, for the pair (0, 1), since the sets R<i
i , R>i+1

i , and R<i
i+1 are all empty sets, and

the leader does not receive any information, then (7.26) is valid for the pair (0, 1) as

well, and is equal to (7.28). Therefore, using (7.26), noting that d/dt{p̃i+1
i } = ṽi+1

i ,

d/dt{ṽi+1
i } = ãi+1

i , and ỹi+1
i = ãi+1

i , the state-space presentation (7.15) holds true.

Thus, the proof completed.

Remark 34 It is crucial, obvious and worth emphasizing that in (7.15), ũi+1
i is to-

tally independent of X̃
i+1

i . In other words, in (7.16), always we have κ ̸= i.

Remark 35 Let initial values of the coupled-dynamics states, associated with posi-

tions, velocities and accelerations of the adjacent vehicles i and i + 1, be defined as
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ϱi+1
i , νi+1

i , and φi+1
i , respectively, such that ϱi+1

i ≜ p̃i+1
i (0), νi+1

i ≜ ṽi+1
i (0) and φi+1

i ≜

ãi+1
i (0) and accordingly the initial state vector is defined as Ξi+1

i ≜ [ϱi+1
i ; νi+1

i ;φi+1
i ].

Therefore, for i = 0, . . . , n− 1, in Laplacian domain, we have

X̃
i+1

i (s) =

⎡⎢⎢⎢⎣
1
s2

1
s

1

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞
≜T1

ãi+1
i (s) +

⎡⎢⎢⎢⎣
1
s

1
s2

0

0 1
s

0

0 0 0

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

≜T2

Ξi+1
i

(7.29)

using which (7.16) can be explored in Laplacian domain as

ũi+1
i (s) =KT1Π

i+1
i (s)− 1

τi
τ i+1
i T1Mi+1

i (s) +
Θi+1

i s+ Γi+1
i

s
(7.30)

whereMi+1
i (s) =

∑︁i−1
κ=0 ã

κ+1
κ (s) and

Πi+1
i (s) ≜

1

τi

⎡⎣∑︂
j∈R<i

i

i−1∑︂
κ=j

ãκ+1
κ (s)−

∑︂
j∈R>i+1

i

j−1∑︂
κ=i+1

ãκ+1
κ (s)

⎤⎦
+

1

τi+1

⎡⎣ ∑︂
j∈R>i+1

i+1

j−1∑︂
κ=i+1

ãκ+1
κ (s)−

∑︂
j∈R<i

i+1

i−1∑︂
κ=j

ãκ+1
κ (s)

⎤⎦ (7.31)

Also, Θi+1
i = kϱi,i+1

t + bνi,i+1
t and Γi+1

i = kνi,i+1
t in which⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϱi,i+1
t ≜

1

τi

⎡⎣∑︂
j∈R<i

i

i−1∑︂
κ=j

ϱκ+1
κ −

∑︂
j∈R>i+1

i

j−1∑︂
κ=i+1

ϱκ+1
κ

⎤⎦
+

1

τi+1

⎡⎣ ∑︂
j∈R>i+1

i+1

j−1∑︂
κ=i+1

ϱκ+1
κ −

∑︂
j∈R<i

i+1

i−1∑︂
κ=j

ϱκ+1
κ

⎤⎦
νi,i+1
t ≜

1

τi

⎡⎣∑︂
j∈R<i

i

i−1∑︂
κ=j

νκ+1
κ −

∑︂
j∈R>i+1

i

j−1∑︂
κ=i+1

νκ+1
κ

⎤⎦
+

1

τi+1

⎡⎣ ∑︂
j∈R>i+1

i+1

j−1∑︂
κ=i+1

νκ+1
κ −

∑︂
j∈R<i

i+1

i−1∑︂
κ=j

νκ+1
κ

⎤⎦

(7.32)

It is worth reminding that, for the pair (i, i + 1) = (0, 1), R<i
i = R>i+1

i = R<i
i+1 = ∅

in which ∅ denotes the empty set.
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Remark 36 Given Remark 35, it is worth noting that Ψi+1
i (s) is shown up in (7.30)

as a consequence of the heterogeneity of the neighboring vehicles i and i+1. Further-

more, the scalar values Θi+1
i and Γi+1

i are because of initial state differences between

adjacent vehicles of those other than the the pair (i, i+ 1), see (7.32) where κ ̸= i.

Remark 37 Given (7.15), the transfer function, let be denoted by Gi+1
i (s), between

the input and output of the coupled dynamics would be

Gi+1
i (s) = Ci+1

i

(︁
sI3 −Ai+1

i

)︁−1
Bi+1

i = s2Υi+1
i (s) (7.33)

where Υi+1
i (s) ≜

(︂
s3 + h̄

i+1
i s2 + b̄

i+1
i s+ k̄

i+1
i

)︂−1

.

Theorem 38 Given Remark 35, the coupled intervehicle acceleration; ãi+1
i (s), ve-

locity; ṽi+1
i (s), and distance; p̃i+1

i (s), between the adjacent vehicles i and i + 1 are

according to

ãi+1
i (s) = KT1Π

i+1
i (s)Gi+1

i (s)⏞ ⏟⏟ ⏞
out of the coupled states of the other pairs

− 1

τi
τ i+1
i T1Mi+1

i (s)Gi+1
i (s)⏞ ⏟⏟ ⏞

out of the heterogeneity of the pair (i, i+ 1)

+Ha
i,i+1(s)Υ

i+1
i (s)⏞ ⏟⏟ ⏞

out of the initial conditions including the pair (i, i+ 1)

(7.34)

ṽi+1
i (s) = 1

s

(︁
ãi+1
i (s) + νi+1

i

)︁
, and p̃i+1

i (s) = 1
s

(︁
ṽi+1
i (s) + ϱi+1

i

)︁
, respectively, where

Ha
i,i+1(s) ≜ Λi,i+1

2,a s2 + Λi,i+1
1,a s + Λi,i+1

0,a such that the scalar values Λi,i+1
2,a , Λi,i+1

1,a , and

Λi,i+1
0,a are ⎧⎪⎨⎪⎩

Λi,i+1
2 ≜ φi+1

i

Λi,i+1
1 ≜ Θi+1

i − ϱi+1
i k̄

i+1
i − νi+1

i b̄
i+1
i

Λi,i+1
0 ≜ Γi+1

i − νi+1
i k̄

i+1
i

(7.35)

Proof. Defining ỹi+1
i ≜ ãi+1

i as the output of the coupled dynamics (7.15), we have

ỹi+1
i = Ci+1

i X̃
i+1

i such that Ci+1
i ≜ [0, 0, 1]. Therefore, ãi+1

i (s), for i = 0, . . . , n −

1, would be the summation of zero-state (Ξi+1
i = [0; 0; 0]) response and zero-input

(ũi+1
i = 0) response. As such, given (7.15), the zero-input response, let be denoted as

ãi+1
i,zi (s), is according to

ãi+1
i,zi (s) = Ci+1

i

(︁
sI3 −Ai+1

i

)︁−1
Ξi+1

i = Kini
i,i+1T1Gi+1

i (s) (7.36)
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where Kini
i,i+1 ≜

[︂
−νi+1

i k̄
i+1
i ,−ϱi+1

i k̄
i+1
i − νi+1

i b̄
i+1
i , φi+1

i

]︂
, and I3 is the identity matrix

of size 3. Also, given (7.33), the zero-state response, let be denoted by ãi+1
i,zs(s), would

be ãi+1
i,zs(s) = Gi+1

i (s)ũi+1
i (s) which considering (7.30) and (7.33), it is obtained as

ãi+1
i,zs(s) =KT1Π

i+1
i (s)Gi+1

i (s)− 1

τi
τ i+1
i T1Mi+1

i (s)Gi+1
i (s) + s

(︁
Θi+1

i s+ Γi+1
i

)︁
Υi+1

i (s)

(7.37)

Now, since ãi+1
i (s) = ãi+1

i,zi (s) + ãi+1
i,zs(s), using (7.36) and (7.37), and noting that

Gi+1
i (s) = s2Υi+1

i (s) results in (7.34). Therefore, the proof completed.

Remark 39 Defining Ψa
i,i+1(s) ≜ Ha

i,i+1(s)Υ
i+1
i (s) and calculating (7.34) for i =

0, . . . , n − 1 and stacking them together, a mapping between initial conditions and

coupled intervehicle accelerations can be found as follows.

ã(s) = Q−1(s)Ψa(s) (7.38)

where Ψa(s) ≜
[︁
Ψa

0,1(s); Ψ
a
1,2(s); . . . ; Ψ

a
n−1,n(s)

]︁
, ã(s) ≜

[︁
ã10(s); ã

2
1(s); . . . ; ã

n
n−1(s)

]︁
,

and Q(s) ∈ Cn×n whose elements are based on (j, κ = 1, . . . , n)

Qjκ(s) =

⎧⎪⎨⎪⎩
−Kκ−

j−1,jT1Gjj−1(s) if j > κ

1 if j = κ

−Kκ+
j−1,jT1Gjj−1(s) if j < κ

(7.39)

in which ⎧⎪⎨⎪⎩
Kκ−

j−1,j ≜
1

τj−1

|R≤κ−1
j−1 |K−

1

τj
|R≤κ−1

j |K− 1

τj−1

τ j
j−1

Kκ+
j−1,j ≜

1

τj
|R≥κ

j |K−
1

τj−1

|R≥κ
j−1|K

(7.40)

where R≤κ−1
j−1 ≜ {ϵ|ϵ ∈ Rj−1 & ϵ ≤ κ − 1}, R≤κ−1

j ≜ {ϵ|ϵ ∈ Rj & ϵ ≤ κ − 1},

R≥κ
j ≜ {ϵ|ϵ ∈ Rj & ϵ ≥ κ}, and R≥κ

j−1 ≜ {ϵ|ϵ ∈ Rj−1 & ϵ ≥ κ}.

Remark 40 Given (7.38) and noting that for i = 0, . . . , n − 1 we have ṽi+1
i (s) =

1
s

(︁
ãi+1
i (s) + νi+1

i

)︁
and p̃i+1

i (s) = 1
s

(︁
ṽi+1
i (s) + ϱi+1

i

)︁
, yields⎧⎪⎨⎪⎩

ṽ(s) =
1

s
(ã(s) + ν)

p̃(s) =
1

s
(ṽ(s) + ϱ) =

1

s2
ã(s) +

1

s2
ν +

1

s
ϱ

(7.41)

where ṽ(s) ≜
[︁
ṽ10(s); ṽ

2
1(s); . . . ; ṽ

n
n−1(s)

]︁
, ν ≜

[︁
ν10 ; ν

2
1 ; . . . ; ν

n
n−1

]︁
, ϱ ≜

[︁
ϱ10; ϱ

2
1; . . . ; ϱ

n
n−1

]︁
,

and p̃(s) ≜
[︁
p̃10(s); p̃

2
1(s); . . . ; p̃

n
n−1(s)

]︁
.

134



Remark 41 Given (7.38) and (7.41), for j = 1, . . . , n, we get we get

p̃(s) =
1

s2
Q−1(s)Ψa(s) +

1

s2
ν +

1

s
ϱ (7.42)

Therefore, if Q̄(s) ≜ Q−1(s), then one can conclude that

p̃jj−1(s) =
1

s
ϱjj−1 +

1

s2

(︄
νjj−1 +

n∑︂
κ=1

Q−1
jκ (s)Ψ

a
κ−1,κ(s)

)︄
(7.43)

where p̃jj−1(s), or p̃
i+1
i (s); i = 0, . . . , n−1, is the coupled intervehicle distance between

neighboring vehicles in the Laplacian domain, and Q−1
jκ (s) are the elements of the

matrix Q−1(s). Therefore, it is possible to obtain p̃i+1
i (t) as the impulse response of

the system p̃i+1
i (s). For any given K = [k, b, h], if p̃i+1

i (t) > −di+1
i ; i = 0, 1, . . . , n −

1, where di+1
i is the desired distance between the adjacent vehicles, then we would

have a non-colliding platoon. Similarly, if p̃i+1
i (t) > −

(︁
di+1
i − dsi,i+1

)︁
in which dsi,i+1

is a preset safe-distance between the neighboring vehicles, then the distance between

consecutive vehicles would be always higher than dsi,i+1.

Remark 42 Given (7.4) and splitting Ii+1 into the sets I>i+1
i+1 and I<i+1

i+1 where, for

instance, I>i+1
i+1 ≜ {j|j ∈ Ii+1 & j > i+ 1}, it is possible to get

ui+1 = −K

⎛⎝ ∑︂
j∈I>i+1

i+1

j−1∑︂
κ=i+1

X̃
κ+1

κ −
∑︂

j∈I<i+1
i+1

i∑︂
κ=j

X̃
κ+1

κ

⎞⎠ (7.44)

Defining X̃
t
(s) ≜

[︂
X̃

1

0(s); X̃
2

1(s); . . . ; X̃
n

n−1(s)
]︂
and regarding (7.29), we get

X̃
t
(s) = (In ⊗T1) ã(s)− (In ⊗T2)Ξt (7.45)

in which Ξt ≜
[︁
Ξ1

0;Ξ
2
1; . . . ;Ξ

n
n−1

]︁
. Now, substituting (7.38) into (7.45), we get

X̃
t
(s) = (In ⊗T1)Q

−1(s)Ψa(s)− (In ⊗T2)Ξt (7.46)

using which and defining Iκ ∈ R3×3n as the matrix comprised of (3(κ + 1) − 2)th till

(3(κ + 1))th rows of the matrix I3n, then for κ = 0, . . . , n − 1 one can conclude that

X̃
κ+1

κ (s) = IκX̃
t
(s), plugging which into (7.44), for i = 1 . . . , n, we get

ui(s) = −K

⎛⎝ ∑︂
j∈I>i+1

i+1

j−1∑︂
κ=i+1

IκX̃
t
(s)−

∑︂
j∈I<i+1

i+1

i∑︂
κ=j

IκX̃
t
(s)

⎞⎠ (7.47)

135



Note that I3n ∈ R3n×3n is the identity matrix of size 3n.

7.3 Simulation Results

In the simulation, we examine a platoon consisting of one leader vehicle and four

follower vehicles, employing various common communication topologies as illustrated

in Figures 7.2 and 7.3. The presumed desired distances between consecutive vehicles

are set at 5 meters, denoted as di+1
i for i ranging from 0 to 3. Each vehicle’s length is

fixed at 4 meters, represented as Li for i in the same range. Unlike previous chapters,

in this study, we introduce non-zero initial velocity and acceleration differences be-

tween neighboring vehicles. The simulations are conducted with a sampling interval

of 0.01 seconds. A safe following distance of 3 meters is considered between vehicles,

labeled as di+1
i,s = 3 meters. We specify the engine time constants as τ1 = 0.7, τ2 = 0.6,

τ3 = 1, and τ4 = 0.9. To create this scenario in the simulations, all vehicles initially

Figure 7.6: Leader’s velocity and acceleration.

start from a stationary state. As they begin to move, they gradually assume different

speeds and accelerations at various distances from each other. The platooning process

commences when the vehicles are at these varying states, forming different distances,

velocities, and accelerations. To facilitate this, we design a velocity trajectory for
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the leader vehicle, as depicted in Figure 7.6. This trajectory allows vehicles to start

moving, with each follower changing their position, speed, and acceleration to move in

the leader vehicle’s movement. After a period, we trigger the platooning at t = 2.28

seconds, bringing the vehicles closer together. Figure 7.7 provides a visual represen-

tation of this scenario. As a result of these distinct initial conditions, combined with

Figure 7.7: Initial velocity and acceleration differences are not zero.

various communication topologies and control parameters, different scenarios for the

inter-vehicle distances may emerge. These scenarios will be explored and discussed

in the following section.

7.3.1 Intervehicle Distances under Various Communication
Topologies

To extract the effect of communication topologies, we consider a platoon with one

leader and four followers. The vehicles are considered to be different such that τ1 =

0.7, τ1 = 0.6, τ1 = 1, and τ1 = 0.9. The lengths of vehicle are considered to be

identical and equal to 4 meters. The initial coupled states are assumed to be p̃10(0) =

1.7064m, p̃21(0) = 6.7185m, p̃32(0) = 0.5503m, p̃43(0) = 6.0885m, ṽ10(0) = −3.6585m/s,

ṽ21(0) = −1.2465m/s, ṽ32(0) = −4.1251m/s, ṽ43(0) = −1.0198m/s, ã10 = −0.1351m/s2,

ã21 = −0.7847m/s2, ã32 = −0.0594m/s2, and ã43 = −1.3249m/s2, where they are

calculated based on the following initial states of the vehicles:
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Vehicle Initial position Initial velocity Initial acceleration

Leader 10.3968 m 9.1200 m/s 4 m/s2

Follower 1 -0.3096 m 12.7785 m/s 4.1351 m/s2

Follower 2 -16.0281 m 14.0250 m/s 4.9197 m/s2

Follower 3 -25.5784 m 18.1501 m/s 4.9792 m/s2

Follower 4 -40.6669 m 19.1699 m/s 6.3040 m/s2

Table 7.1: Initial states of vehicles: xi, vi and ai; i = 0, . . . , 4

Let h = 4 and control gains k and b vary between values 0.1 and 19.6 by 0.5

incremental. Any K = [k, b, 4] that does not satisfy stability conditions is considered

as an unstable control gain, otherwise a stable K. Thus, for i = 0, . . . , n − 1 and

a given stable K, using Remark 41, if −5m < p̃i+1
i (t) < −2m then K is a stable-

non-collision control gain. Similarly, if p̃i+1
i (t) < −5m, then we name K a stable-

collision control gain. Furthermore, if p̃i+1
i (t) > −2m, then K is named a stable-safe

control gain which implies that the intervehicle distances are always larger than 3m

which is assumed as the safe distance between neighboring vehicles. The results using

the mentioned scenarios are provided in Fig. 7.8 in which unstable, stable-collision,

stable-non-collision, and stable-safe gains are presented with red, yellow, blue, and

green colors, respectively.

Effects of forward/backward communications

From Fig. 7.8, some important implications can be drawn as follows:

1. Comparing BD/BDL, PF/PLF and TPF/TPLF topologies: it is apparent that

broadcasting the leader’s state to the follower vehicles has starkly improved the per-

formance of the platoon.

2. SPTF has the smallest stable area, the smallest stable-safe area, the biggest stable-

collision area, the smallest positive-velocity area, and the biggest larger-settling-time
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Figure 7.8: Unstable (red), stable-collision (yellow), stable-non-collision (blue) and
stable-safe (green) control gains K = [k, b, 4]. The collision distance is 5m, therefore
the control gains that result in p̃i+1

i (t) > −5m are called stable-non-collision gains.
Also, the safe distance is 3m, thus the control gains that result in p̃i+1

i (t) > −2m are
called stable-safe gains.

area.

3. Comparing PF/BD, and BD/SPTF topologies: under BD and SPTF topologies

and in comparison with PF and BD topologies respectively, the followers receive infor-

mation from one more vehicle behind which degrades the performance of the platoon

under BD and SPTF topologies when compared to those of PF and BD topologies,

respectively.

4. Comparing BD/TPSF, and SPTF/TBPF topologies: under BD/SPTF topolo-

gies, follower vehicles receive information from one/two vehicles behind and one/one

vehicle ahead respectively, and under TPSF/TBPF they receive from one/two ve-

hicles behind and two/two vehicles ahead. Getting more information from vehicles

ahead improves the platoon performance under TPSF/TBPF with respect to those

of BD/SPTF topologies, respectively.

5. Comparing PLF/TPF, and BDL/TPSF topologies: the performance of PLF and

BDL are comparable to those of TPF and TPSF, respectively. However, it sounds

that if the additional information from vehicles ahead is actually from the leader ve-
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hicle, then the performance would be slightly better.

6. Comparing TPLF, PLF, and nontypical CT d: there are subtle differences between

performances which imply that when followers are of “look-ahead” type, and receive

information from the leader, the leader’s data outweighs those of the other follow-

ers. In other words, the information followers receive from other non-leader vehicles

may be redundant which can be exploited to accomplished some other performance

specifications. This issue needs more research.

7.3.2 Effect of Broadcasting Leader Vehicle’s State in Pla-
toon Scalability

As previously discussed, the performance of PLF is comparable to that of TPF,

and BDL’s performance closely matches that of TPSF. However, it appears that if

the supplementary information obtained from vehicles ahead originates specifically

from the leader vehicle, there is a slight improvement in performance. To further

investigate this matter, this section aims to explore the impact of broadcasting the

leader vehicle’s state on platoon scalability.

In order to demonstrate this effect, the simulation in this section involves increasing

the platoon size to 11 vehicles, consisting of one leader vehicle followed by ten others.

In order to demonstrate this effect, the simulation in this section involves increasing

the platoon size to 11 vehicles, consisting of one leader vehicle followed by ten others.

The parameters are as follows: τ1 = 0.7, τ2 = 0.6, τ3 = 1, τ4 = 0.9, τ5 = 0.7, τ6 = 0.6,

τ7 = 1, τ8 = 0.9, τ9 = 0.6, τ10 = 0.7, and initial coupled states of neighboring vehicles

are summarized in Table 7.2.

Following the guidelines provided in Remark 41, with h = 4 and varying the

control gains k and b with increments of 0.5 between 0.1 and 19.6, the results are

presented in Figure 7.9. An analysis of Figure 7.9 reveals that platoons operating

under communication topologies where the leader vehicle’s state is broadcast to all

following vehicles demonstrate robustness when increasing the platoon size.
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Pair p̃i+1
i (0) ṽi+1

i (0) ãi+1
i (0)

(0, 1) 1.7064 m -3.6585 m/s -0.1351 m/s2

(1, 2) 6.7185 m -1.2465 m/s -0.7847 m/s2

(2, 3) 0.5503 m -4.1251 m/s -0.0594 m/s2

(3, 4) 6.0885 m -1.0198 m/s -1.3249 m/s2

(4, 5) 1.7064 m -3.6585 m/s -0.1351 m/s2

(5, 6) 6.7185 m -1.2465 m/s -0.7847 m/s2

(6, 7) 0.5503 m -4.1251 m/s -0.0594 m/s

(7, 8) 6.0885 m -1.0198 m/s -1.3249 m/s2

(8, 9) 1.70641 m -3.6585 m/s -0.1351m/s2

(9, 10) 6.7185 m -1.2465 m/s -0.7847 m/s2

Table 7.2: Initial coupled states of neighboring vehicles.

Consequently, it is observed that under TPFL, PFL, and BDL topologies, even

with the platoon size almost tripling, the platoon maintains a performance similar to

what was achieved with five vehicles, as shown in the previous Figure 7.8.

7.3.3 Comparison Between Average Energy of Control In-
puts

Based on (7.47), we define average energy of control inputs for four followers, out of

stable control gains and under different communication topologies (CTs) as follows.

ECT =
1

#KCT
stable

⎛⎝ ∑︂
KCT

stable

(︄
1

4

(︄
4∑︂

i=1

∫︂ tend

t0

u2i (t)dt

)︄)︄⎞⎠ (7.48)

in which t0 is platooning triggering time, tend is simulation time, and #Kstable is the

number of stable control gains under the given communication topology (CT). The

results are shown in Fig. 7.10, in Which TPFL has the best performance while PF

the worst performance.
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Figure 7.9: Unstable (red), stable-collision (yellow), stable-non-collision (blue) and
stable-safe (green) control gains K = [k, b, 4]. The collision distance is 5m, therefore
the control gains that result in p̃i+1

i (t) > −5m are called stable-non-collision gains.
Also, the safe distance is 3m, thus the control gains that result in p̃i+1

i (t) > −2m are
called stable-safe gains.

Figure 7.10: Average energy of control inputs of four follower vehicles, out of stable
control gains.

7.4 Conclusion

In summary, this chapter has delved into two key aspects of heterogeneous platoon

dynamics. First, it has thoroughly examined the impact of communication topologies
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on intervehicle distances, even when platoons begin with highly diverse initial con-

ditions. Secondly, it emphasizes the pivotal role of broadcasting the leader vehicle’s

state in elevating platoon scalability.

Through our exploration, we expanded the platoon to include 11 vehicles, com-

prising one leader and ten followers. Notably, this expansion did not compromise

the platoon’s robustness, especially under specific communication topologies such as

TPFL, PFL, and BDL. Even as the platoon’s size nearly tripled, it maintained its

efficiency, resembling the performance levels achieved with smaller platoons.

This underscores the immense potential for enhancing platoon performance through

the dissemination of the leader’s state information. In essence, this chapter has shed

light on the critical dynamics of platoon behavior, offering insights into how com-

munication topologies and leader information can contribute to the robustness and

scalability of heterogeneous platoons.
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Chapter 8

Conclusions, Recommendations, &
Future Work

8.1 Conclusions

In this thesis, we have embarked on a comprehensive exploration of the complex dy-

namics and stability of heterogeneous platoons, with a particular emphasis on the

interplay between communication topologies and platoon behavior. The culmination

of our research efforts has yielded valuable insights into the intricacies of platoon

dynamics, stability, and scalability. In the following section, we summarize the key

contributions and overarching themes from each of the preceding chapters, weav-

ing together a holistic conclusion that advances our understanding of heterogeneous

platoons.

Chapter 3 presented an innovative approach to stability analysis for heterogeneous

platoons. By employing a decentralized linear feedback controller with non-identical

gains and accommodating various Information Flow Topologies (IFTs), we developed

a state-space model that enables the determination of stability conditions for pla-

toons of any size. Our simulation results for a two-followers platoon underscored the

significance of increased inter-vehicle communication, facilitated by various IFTs, in

enhancing platoon stability. Additionally, we highlighted the substantial benefits of

incorporating feedback signals from the leader into both followers’ controllers. These

findings emphasize the pivotal role of communication in platoon stability.
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Chapter 4 shifted our focus to the dynamics of a homogeneous platoon, introduc-

ing a closed-loop distance dynamic model that allowed for a detailed investigation

of inter-vehicle distances (IDs). We derived IDs from initial conditions, providing

valuable insights into platoon behavior. By imposing constraints on collision and safe

distance limits, as well as feasible-velocity limits for the followers, we comprehensively

examined the platoon’s performance under various Communication Topologies (CTs).

This chapter deepened our understanding of platoon dynamics and highlighted the

importance of constraints and communication in shaping platoon behavior.

Chapter 5 further delved into achieving both internal stability and favorable tran-

sient dynamics in inter-vehicle distances. The closed-loop distance dynamic model

and analytical distance trajectory determination provided a deeper understanding

of system stability and transient inter-vehicle distance analysis. We scrutinized the

strengths and weaknesses of different bidirectional communication topologies (BD-

CTs) and found that receiving information from vehicles further ahead could enhance

transient inter-vehicle distances, while broadcasting the leader’s state could elevate

overall platoon performance. The findings from this chapter reinforced the impor-

tance of communication topology in platoon dynamics.

Chapter 6 extended our research beyond traditional internal stability considera-

tions, emphasizing the formulation of a coupled distance dynamic model for platoons.

We conducted a comprehensive examination of how control parameters and initial con-

ditions impact platoon stability and inter-vehicle distance errors. The methodology

presented in this chapter ensured both stable and safe behaviors for vehicles within

a platoon. High-fidelity simulations further validated the effectiveness of our con-

trol strategies, emphasizing the importance of safety and stability in heterogeneous

platoons.

Chapter 7 explored the impact of communication topologies on inter-vehicle dis-

tances in larger platoons, highlighting the potential for scalability while maintaining

efficiency. The dissemination of the leader’s state information played a pivotal role
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in enhancing platoon performance, even as the platoon size increased. This chapter

reinforced the idea that communication topologies and leader information are critical

factors contributing to the robustness and scalability of heterogeneous platoons.

In conclusion, this thesis has advanced the field of heterogeneous platoon dynamics

by elucidating the intricate interplay between communication topologies, stability,

and scalability. Our findings emphasize that effective communication strategies and

the dissemination of leader information can significantly enhance platoon performance

and safety. These insights are invaluable for the development of future transportation

systems, autonomous vehicles, and the optimization of platoon behavior in real-world

scenarios. As we move forward, the knowledge generated from this research can serve

as a foundation for further exploration and innovation in the field of platoon dynamics.

8.2 Future Work

While this thesis has made significant strides in advancing our understanding of het-

erogeneous platoon dynamics and stability, it also opens the door to several promising

avenues for future research. In the scope of our research on intelligent vehicle platoon-

ing, our primary focus has been on the longitudinal dynamics and state deviations,

specifically addressing aspects related to longitudinal control within the platoon. Our

goal was to achieve a thorough understanding and effective control of longitudinal be-

haviors, such as acceleration, braking, and inter-vehicle spacing, to ensure stable and

efficient platoon operation.

In our research on intelligent vehicle platooning, we deliberately directed our at-

tention towards the nuanced intricacies of longitudinal dynamics and state deviations.

The decision to prioritize longitudinal control was a strategic choice aimed at achiev-

ing a focused and in-depth analysis within the constraints of available resources and

time. While lateral dynamics, covering critical elements such as lane keeping, turning

maneuvers, and responses to environmental disturbances, are undoubtedly essential

in ensuring overall platoon stability and safety, we acknowledge their significance.
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It is crucial to note that the exclusion of explicit consideration for lateral dynamics

should not be interpreted as a dismissal of their importance. On the contrary, we

recognize the vital role that lateral control plays in real-world scenarios. Therefore,

we intentionally left lateral dynamics as a part of potential future work. This strategic

approach allows us to incrementally expand our research scope, with the intention

to investigate and integrate lateral control mechanisms in subsequent phases, thus

providing a more holistic solution for intelligent vehicle platooning. Lateral control

in platooning can be effectively explored through prospective methods such as Model

Predictive Control (MPC) and game theory. These approaches offer the potential to

develop iterative predictive strategies for optimizing platoon lateral control.

The primary focus in this work was on continuous braking to lay the groundwork for

understanding platoon behavior within communication constraints. Anti-lock braking

system (ABS) is an integral to vehicles, as it prevents wheel lockup during intense

braking and ensures the retention of steering control. Therefore, it plays a crucial

role in real-world scenarios, preventing wheel lockup and influencing braking behavior

and vehicle stability. Recognizing the significance of ABS in practical applications, It

is beneficial to extend the current work to incorporate ABS activation and its impact

on platoon dynamics as a future research direction. By modeling ABS dynamics and

integrating them into the problem formulation, and utilizing proper controllers, the

aim would be to enhance the realism of the braking system and address potential

consequences such as unrealistic behavior, loss of stability, and limited applicability

in diverse driving environments.

The following section outlines other potential directions for future work, building

upon the foundations established in this study:

1. Enhancing Simulation Toolbox for Vehicle Platoons: To further aid researchers

and practitioners in the field, future work can focus on developing an enhanced sim-

ulation toolbox specifically tailored for vehicle platoons operating under distributed

linear controls. This toolbox could incorporate advanced modeling techniques and
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real-time simulation capabilities, allowing for more intricate and comprehensive anal-

ysis of platoon behavior.

2. Dynamic Communication Topologies: The investigation of dynamic communi-

cation topologies is an area with substantial potential. Future research can explore

the dynamic adaptation of communication structures in response to varying traf-

fic conditions, network constraints, and platoon goals. Implementing self-organizing

communication networks within platoons could enhance their adaptability and effi-

ciency.

3. Data Loss and Delay Analysis: The effect of data loss and communication delay

remains a critical aspect of platoon dynamics. Future studies could delve deeper into

this domain, exploring mechanisms for mitigating the impact of data loss and delay,

and designing robust control strategies that are resilient to these challenges. This

work might involve advanced error-correction techniques, communication protocol

optimizations, and novel control algorithms.

4. Leveraging AI for Online Control Tuning: The integration of artificial intel-

ligence, particularly reinforcement learning, to online control tuning is an exciting

avenue for future research. Developing intelligent control systems that can adapt

and optimize control gains in real-time, considering the dynamic environment and

platoon-specific conditions, could significantly improve platoon performance and sta-

bility.

5. Incorporating Control Input Optimization into Safe Distance Analysis:** Ex-

tending the concept of safe distance analysis to include optimization of control inputs

is a critical direction for future work. Integrating control input optimization within

the safe distance analysis framework can enhance safety and efficiency simultane-

ously. This might involve dynamic adjustments of control inputs to minimize energy

consumption or reduce traffic congestion.

6. Multimodal and Heterogeneous Platoons: Investigating platoons that consist

of various vehicle types, including autonomous and non-autonomous vehicles, as well
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as those with different propulsion systems, is an emerging field. Future research can

explore the challenges and benefits of managing heterogeneous platoons and develop

control strategies that can accommodate a wide range of vehicle characteristics.

7. Real-world Implementations: Taking theoretical findings from this thesis and

implementing them in real-world scenarios is crucial. Conducting field trials with

actual vehicle platoons and assessing the practicality and scalability of the proposed

methodologies will be instrumental in advancing the field and achieving safe and

efficient platoon operations.

8. Policy and Standardization: Collaborating with policymakers and regulatory

bodies to establish guidelines and standards for platoon operations is essential. Fu-

ture work can focus on contributing to the development of legal frameworks, safety

regulations, and certification processes for platooning technologies to facilitate their

widespread adoption.

9. Human-Machine Interaction: As platoons become more common on the road,

understanding the interaction between human-driven and autonomous vehicles within

platoons will be vital. Future research could explore how to improve the coexistence

and cooperation between human and automated drivers in mixed traffic environments.

10. Environmental Considerations: Investigating the environmental impact of ve-

hicle platooning, including its potential to reduce fuel consumption and greenhouse

gas emissions, is an area that requires further exploration. Future research can quan-

tify the environmental benefits and challenges of platooning and develop strategies

for optimizing its ecological footprint.

In summary, the potential for future research in the field of heterogeneous pla-

toon dynamics is vast. This thesis has laid a strong foundation, and the research

community has numerous exciting opportunities to explore, advancing the safety, ef-

ficiency, and sustainability of platoon-based transportation systems. These future

works hold the promise of shaping the future of transportation and contributing to

the development of intelligent and adaptive traffic systems.
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Appendix A: Details on Table 6.1

Figure A.1: A look-ahead topology in a heterogeneous platoon with 1 leader and 4
follower vehicles.

Based on equations (6.22)-(6.24), for i = 0, . . . , 3, we have:
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Having the above calculations, we can form the vectorΨ(s) = [ψ1
0(s);ψ

2
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3
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4
3(s)].

Also, based on the equation (6.30) of the manuscript which is P̃(s) = Q−1(s)Ψ(s), to

have the vector P̃(s) = [p̃10(s); p̃
2
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3
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4
3(s)], we need to find the matrix Q−1(s)

as well. Based on the equation (31) of the manuscript which is
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Finally, since Q̄(s) ≜ Q−1(s), we have P̃(s) = Q̄(s)Ψ(s) or to be exact:
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in which⎡⎢⎢⎢⎢⎢⎢⎣
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Now, for simplicity, if we show Q̄(s) as
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then using the relation obtained for P̃(s) above, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
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which is exactly the relation (6.33) of the manuscript. Note that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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The relation (A.1) shows the mapping in Laplace domain. Therefore, the relation in

time-domain would be⎧⎪⎪⎪⎨⎪⎪⎪⎩
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where L−1 signifies the inverse Laplace transform operator. Considering the relations

we illustrated for p̃i+1
i (t); i = 0, . . . , 3, in the following table the impact of control

gains and other parameters on the stability and intervehicle distances for the platoon

is shown.

Table A.1: The effect of control gains, initial conditions, and engine time constants
on intervehicle distance (ID) errors. The symbol ✓implies that the corresponding
parameter affects the ID error or platoon stability, and the symbol × indicates that
the relevant parameter does not affect the ID error or platoon stability.

K0
1 K1

2 K0
2 K2

3 K1
3 K3

4 τ1 τ2 τ3 τ4 β

p̃10(t) ✓ × × × × × ✓ × × × ✓

p̃21(t) ✓ ✓ ✓ × × × ✓ ✓ × × ✓

p̃32(t) ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ × ✓

p̃43(t) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Platoon Stability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×

We observe that the initial conditions have an impact on safety and intervehicle

distances, the initial conditions β affect all intervehicle distances. However, initial

conditions do not affect the internal stability of the platoon which is affected by all

control gains and vehicles’ engine-time-constants. It is worth pointing out that the

intervehicle distance between follower vehicles three and four is affected by all control

gains, initial conditions, and vehicles’ engine-time-constants.
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Appendix B: Details on (4.6)

We present (B.1), which describes the dynamics of each follower vehicle as follows:

ȧi+1 = −
1

τ
ai+1 +

1

τ
ui+1 (B.1)

Here, ȧi+1 =
...
x i+1 and ai+1 = ẍi+1. Additionally, we introduce (B.2), defining

desired states for each follower vehicle:

x∗i+1 ≜ x0 −
i∑︂

κ=0

(Lκ + dκ+1
κ ), ẋ∗i+1 = v0, and ẍ∗i+1 = a0 (B.2)

Given (B.2), we can derive
...
x ∗

i+1 = ȧ0, where ȧ0 represents the derivative of the

acceleration of the leader vehicle. Consequently, we have
...
x i+1 =

...˜︁x i+1 +
...
x ∗

i+1 =
...˜︁x i+1 + ȧ0 and ẍi+1 = ˜︁ẍi+1 + ẍ∗i+1 = ˜︁ẍi+1 + a0. We also describe the controller based

on (B.3):

ui+1 = −
∑︂
j∈Ii+1

KX̃i+1 +
∑︂
j∈Ii+1

KX̃j (B.3)

Substituting (B.3) into (B.1) and utilizing the aforementioned facts;
...
x i+1 =

...˜︁x i+1+

ȧ0 and ẍi+1 = ˜︁ẍi+1 + a0, we obtain:

...˜︁x i+1 + ȧ0 = −
1

τ
(˜︁ẍi+1 + a0)−

1

τ

∑︂
j∈Ii+1

K˜︁Xi+1 +
1

τ

∑︂
j∈Ii+1

K˜︁Xj

Notably, we express X̃i+1 as X̃i+1 ≜ [x̃i+1; ˜︁ẋi+1; ˜︁ẍi+1]. Consequently, we can

rewrite ˜︁ẍi+1 as ˜︁ẍi+1 = [0, 0, 1]X̃i+1. Substituting this into the previous equation, we

arrive at:
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...˜︁x i+1 = −
1

τ
[0, 0, 1]˜︁Xi+1 −

1

τ

∑︂
j∈Ii+1

KX̃i+1 +
1

τ

∑︂
j∈Ii+1

KX̃j −
1

τ
a0 − ȧ0

= −1

τ
Ki+1X̃i+1 +

∑︂
j∈Ii+1

1

τ
KX̃j + ϵi+1

This equation corresponds precisely to (4.6) in the manuscript where Ki+1 ≜

[ki+1,bi+1, 1 + hi+1] such that ki+1 =
∑︁

j∈Ii+1
k, bi+1 =

∑︁
j∈Ii+1

b, and hi+1 =

1 +
∑︁

j∈Ii+1
h. Therefore, in case that |Ii+1| = 1 then K = [k, b, 1 + h] which ex-

hibits itself in (4.30) of the manuscript.
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