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ABSTRACT

+

After reviewing some 6f the previous work concérning
rkinetic equations for desorpﬁion a comparison is made bet-
ween the Kramers—fokker;Planck eéuation, derived from clas-
A
sical mechanics, and a Fokker-Planck type equation (GKTT .
equation) recently developed by Gortel, Kreuzer et al, from
a guantum statisﬁical theory of phonon—meaiated desorption.
To faciiitate the comparison both equations are expressed’
in éerms of scaled action-angle.variablés. I£ is found that
by ignoring terms of the Qrder'of the thermél fluctuations
inAthe dKTT equation, it‘réduces to the low frictio; case
of Kramers' equation. The friction coefficiehtAié identi-
fied and when expressed in ﬁerms of the microscopic para-
meters is identical, up to a multiplicative constant, to

the expression obtained classically by Caroli €t al.

iv
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I. INTRODUCTION

A gas particle.is said to physisorb onto the surface
of a solid if. the net interaction bétween the gas particle
and the solid, accounted fof by an effective wall or
surface potential VS(;), localizes the gas particle near
the solid surface. The surface pétential typically
consists of a long-range attractive tail, which is essen-
tially the, interaction energy between ;he mutually inducegv
fluctuating dipole moments on the adsorbing gas particle
as well as in the solid, and, a shoft—range repulsive core
which is iargely due. to increasing‘charge density fluctua-
tions as the adsorbing particle becomes confined Clase to
the surface. Those gas particles trapped intp the bound
states of the surface potential constitute the adsorbate.
Typicél binding energies for physisorption, as measured by
the heat of.adsorption Q, are less than or even much le;s
than 1 eV; e.g; for Xe-Ww, Q:=0;402 eV and for He-C, Q =
0.012 ev. A

. Physisofﬁtion is one end of a range of adsorption
phenomena of which the other extremé is Cheﬁisorption.
For the latter the adéorbed molecule undergoes a ,chemical
éhange‘by,JfoL instance, forming bonding orbitals with the
solid. For chemisorption, Q is typically a féw electron-

volts. 1In this thesis we shall deal only with physi-

sorption.



1)

Theories of physisorption fall into two categories;
equilibrium and nonequilibrium. Whereas cquilibrium
theories attempt to calculate quantities such as the
adsorption isotherm, specific heats, isosteric heat of
adsorption etc., nonequilibrium theories address themselves
to the kinetics of the adsorption and desorptiom processes.
The first such kinetic theory was developed at a phenomen-
ological level by Langmuir in 19181. The first guantum
mechanical theory was put forward by Lennafd—Jones,
Devonshire and Strachan around 19352. They argued that
the desorbing gas particle acquires the energy necessary
to leave the potential trap through its coupling to_thé
phonon bath of the solid. This point of view has been
succeésfully exploited in the recent quantum mechanical
ﬁheory of Gortel, Kreuzer et al3’4,'where second order
perturbation theory was used to calculate the phonon-
mediadted desorption rates. The potentials considered in
the abo;e theory developed, at most, only a few bound
states.

Potentials with a large number of states and class-
ical theories have also been put forward. For gas-solid
systems at low coverage one argues that’a stochastic
description based on a master equation is sufficient. Such
master equations for desorption kiﬁetics have been cons-
tructed for classical models by, e.q. Pagnis, Pagni and

Keck6, Muller and Brenig7, etc.. A theory based on guantum

statistical mechanics has recently been developed by'

'



’ ¢
Kreuzer ot ulB')'lQ,

Once,confronted with a master equa-
tion one typically works at deriving a simpler partial
differential equation of the deker—?lanck type. This has

indeed been done by the latter authors, thus making a
connection to the pioneering work done by Kramers in 194011.
Al though the papers by Kreuzer et al derive a Fokker-
Planck‘type equation, which they use to study desorption
kinetics, an explicit comparison with‘Krdmers'work was not
given. This is the task of this thesis. In chapter II we
will briefly review the Kramers theory ahd later develop-
ments, and give an outline of the quantum statistical tHeory
of Kreuzer et al. To facilitate an explicit comparison of
these two theories, we will, in section 1II1.1-3, cast both
in terms of action-angle variables. 1In this form the
qgquantum statistical theory becomes somewhat more trans-
parent, allowing a justification of some of the earlier
approximations, and indéed to go beyond them. To our great
surprise we found that, in the low friction limit, the
microscopic expression for the friction coefficient in the
Kramers-Fokker-Planck equation, as derived from the guantum
statistical theory, is identical, up to a multiplicative
constant,. with that obtained from a classical theory by
“ Ccaroli et d1 12. This is explained by the fact that low
frictibn results from weak coupling in the gas-solid system
and hence many one-phonon pfocesseé must occur before a par-

ticle can desorb, a situation that can also be described by

classical mechanics,



I1. REVIEW OF PREVIOUS WORK ON KINETIC EQUATIONS FOR
DESORPTTON

1.1 Classical Theories

In 1940 Kramers developed a theory of a particle
trapped in a potential well out of which it can escape
through the action of‘itslurownian motionll. Intended as
a microscopic theory of chemical rchtions it has found
application in the problem of gas particles desorbing from
a solid surface. Kramers' theory, which we want to briefly
owtiine—in this section, requires the construction of a
Fokker-Planck type equation for the particle distribution

function in phase space.

. . . 1
We start with the Kramers-Langevin equation 3,

= F(r) - np + 3(t) , (2.1)

Q-»‘Qa
[sdiee!

where p =mr is the momentum of the particle of mass m

AU (r)

trapped in the potential, r ft{\coordinate, F(x) =- T

is the force exerted on the particle by the potential, and

the friction coefficient n is related to the random force

F (t) by,
1 )
n :nk T I<ﬂ0)3(ﬂ>dt (2.2)
B
0
with
<F(O)F(t)> = C8&(t) p (2.3)

being the time correlation function for the stochastic

variable JF(t). From this stochastic equation an equivalent



Fokker-pPlanck equation may be derived for the probability

density n(r,p,t). If the particle underqgoes a random walk

tn phase space, then

/
n{r,p,t) = Jq(rq;),t;r',[>',t')rm(r',;)',t') dr' dp*' ,

where the propagator g(i,p,t;r',p', t') satisties the

Smoluchowski - Chapman-Kolmogorov equation

(’(r’[’)’ t.; I.l ,I"’,t,‘) [()(r,}), L;r",l)",t.")(l(r",})",t,";r-' '})l ,t‘.') .

3

<dr" dp” .

(2.4)

To derive a second order partial differential equa-

. 14 . . ‘ '
tion we follow Kac and Logan and define jump moments

small time increments At = t-t"

J r,p, t;r",p", t-at)drdp= < (r-r") » LLEptIat,
At
I(p p"Ygl(r,p, t;r",p", t-At) drdo= "(p—p")>At ~Ap(r",p")At,
[ Y (p-p")gl(r,p, tir", p", t-At)dr dp =< (r-r'{p—p ﬁht*EBrp(r
" L1} 2 " n -
Jp—p) g(r,p,t; ", p", t-At)drdp=< (p-p") "> ~Bpp(r p")AE
" " 2 " 11}
J(r -r")“g(r,p, t; ", p", t-At) drdp=<(r-r") "> ~Brr(r P"YAE .

-~

Now, multiply (2.5) by a well-behaved test function,

and integrate over variables r and p to obtain,

for

(2.6a)

(2.6Db)

") At ,

(2.6cC)

(2.64d)

(2.6e)

$(r,

p):



.
O

Jg(r,p)t;r',p]ft)¢(r,p)df dp=ng(r,p,t;r",p",t").

[

g(r",pﬁ,t“rrf,pf;t')¢(r,p0.dr"dp" drdp . (2.7)

Expanding ¢ (r,p) in'avTaylbr series about~(r",p"), 

" .} . " _ai " 3¢ _}_ n 3¢
¢'(rlp)‘=¢(r ,P") + (r-r") 3 (pp)ap . +2!.(rr)apap
p=p" R

324

arop|:

2, (p- p")

r=r" r=r
p=p" p=p"

o o . (2.8)
and. substituting into the right hand side of (2.7) gives,

f g(£,p, tix',B!,t) 0(r,p) dr dp= fg('r",p".‘t"; r',pl, t') o(z", p") dr"dp”

s Jg(r"',p",t',';vr',p',t'){g¢-- (A, (z",p") & +0((At) %)

+ 3 (r"_'P-."')At;+O'((At_)2)] o ;’r..gp.. B 5 (", ) 6+0( (86) )
+ 5-3'—1:2- rP +5 Bp op' = P

+ o(,(At)z)} ar apn . | (2.3)

We-integfate by parts, rearrange indices, and divide

by At to obtain



DI ' ' /
B .

A—-Efdb(r,p)» fg(x,p,t+At;x',p',t") -g(x,p,t;x',p',t") ]dr dp

=J¢(r;p){f:;FIAr(r’p)g(rfp'tffIP'ItW];-

N [Ap(rlp) g(r:Prtir',P',t')] + aiap [B (I',P) g(rypp‘t;I." lp_'rt')]
32 | . - A
+ [B (r,p)g(r,p,t:r",p',t' )] + 2[ (r,p)g(r,p,t'r' ) .t')]
23r \ o . ;‘/
+ O(At)} ar dp . | . * | ('2.1(05

Multlplylng both sides by n(r',p',t"), 1ntegrat1ng over r

/

and p', and flnally lettlng At »0 results 1n

fqb’(r.,p) (PR R g dpﬁftb(r,p){—gaf [Ar’<_r,p>n<r,g_,5c)3 -

- 55'[Ap<r{p,§)n(r(p,t)] +§-[...]}drydp ) ‘2.11)

and so, since the test function is arbitrary

on _ _ 93 _ 9 L 1] 3 23
5t .Br_[ArnJ ap_[A.pn]+ 5{;;5 [B.rrn]ﬁ-a/rap [Brpn]
32 ( S : | K |
+ —5 [B n]}. ~ ‘ : £ o (2.12)

7

The jump moments are calculated from the equatlons

of motlon. Integratlng p=mr glves

t+At t+At . . '
m(r-c") =m f r dt'= I p(E) at', ‘ ' (2.13)
t : t .
and’ so tHAt | o
oy N _ l : i ' v E ’
gr“r > = = f <p(t'")>dt xE At , S . (2.14)

t



«

:, which gives

) " "" _ P | ' | n . » S | - -
A_(r",p") m .\ - S !2-’154)
To obtain <(r—r“)2> we sduare (2.13)
t+At t+AL ‘ . .
<(r—r")2>v="lz-<f' J p(s)p(s') dsds'>
' m P tl T

=L <(pat) (pavy>

'..-. B '.(r",f_)") ~ 0 " ‘ ] - (2.16)

Similarly we may integrate (2.6a) and calculate the jump

. moments involving p, although it is necessary to use (2.2)
A | A | " [ tHAt o
and the fact that F(t) is random, i.e., . [ - F(t')dt' =0.:

Substituting these moments into (2.12).finally gives

the Kramers equation,

an _ L aV(r) en _pan .93 ..o oo0n |
+. ar 3p m 3T fj]ap [pn-+kaT ap] o | (2.17)

(%]
ct

where n En(i,p,t),

We next wénﬁ‘to'use the Kramers equatibn fé study
thsisofpﬁioq kineﬁigs. Becéusé a gas-particle éhyéisorbéd
*6nto a,;olid surféce-is rather Weakly coupled to the thermal
excitations of the_solia, it'will'perform maﬁy oscillétions

in the surface pdtentialiwefl before it acquires enough



o

‘ehergy to desorb.  This implies that the friction coe £fi-

.cient,n in-(2.l7) is'small, i.e. according to Suhl etal

that kT |
N << wg H P (2.18)
¢ where

wy =Y Tmo | | : » | (2.19)

is the angular frequency of oscillation at the bottom of the

P

well of depth U_and of :ange,y-{ iq'the low friction limit the

particle orbits in phase space, for many éuccessive oscill-
ations,Aare‘within the thermql fluctuatiOAS'in r and p énd‘
éan thgrefore be assuﬁed closed‘for;all practical pﬁrposes}
Thislailbws us to igtroduce, in a meaniﬂgful”way,;éttion

and angle variables:

J = % pdr -, o L (2.20)
- ve = SE ¢ S '»
w=vt=gt, _ (2.21) .

' Mathematically speaking,‘KramerS'équation cannot be written

AN

inlferms of the action ana7éngleJWithout specifying the

H

potential. However, Kramers has'arguéd that by averaging

(2;17) over an orbit in phése'space it may formally be

written as

an. _ 9 o=, o .00

5t - N 35 [J?+kaTv 551 (2.22)
/where

n(J,t) = % n(J,w,t) dw .. : (2.23)

Let us emphasize that (2.23) is only a fprmél relation.



To study (2.22) further, in the context of phy;isOrption
kinetics, we.peed the relation between the-action»variable
ﬁ and’the~frequency v, It thuswseéms worthwﬁile to connect
the action variable J to the\energy E of the particle
trapped‘in the surfacé poténtial;- This can only be dane
after a‘potential V(r) has been‘specified.

Bék.and Andersen'® choose a potentiél.v(r);=clr|n
and show that E =Jv. Elimiﬁating‘fhe action in'fa§our of
the enérgy in (2.22) and choosing.boundary conditions
appropriate for desorption, as well as an ansatz n(E,t) =
n(E).éxpk*%t), they have shown that n(E{ can be exp;essed
in terms of confluent hypergebmetric functioﬁs and that A~
can be identified as the dééorption time. We will present
sﬁch an analysis in Chépter I1I fbr the more realistic
Morse potential, ‘ |

: —2y(rfrb) —Y(r—ro) - .

V(rx = Uo(e - -2e ) (2.24)
after we have derived (2.22) from the quantum statistical’
thegry. \
Recently,'Caroli et al12 have derived the Kramers-
Lahgébin equation (2.1) sfafting from a micfoscopic\Tddel-
based on classical meéhanics. This theory yields, -for a
‘Morse potential, a ﬁicroscépic expression for the friction

coefficient; namely i
! L . o

u_ 2

n o~ 4w (=) | (2.25)

Jn
D M

l v

10



where ud::Uo/ﬁmD , r==2me/ﬁY2, w. is the Debye frequency

D
6f the solid, and MS is the mass of a solid atom.

II. 2 jQuaﬁtuﬁ Statistical Theory

| ‘.We will now'outline the'quantuh statistical theory
of phyéisorption as developed by Kreuzer et a18’9'lo.‘ ”
Accbrding to quantum mechanics the surféce pbtential_will
develop a number of bound states aﬁlenergies Ei which pay
be occupied by an adsOfbed gas particle. The probability
of the gas‘partiéle being in enefgy state Ei is'given by
~the occupation function,ni. It isfassqmed that the phonon-
mediated” transitions between differént bound states as wéll
 as't6 and from the gas particle continuum may be regarded
as a‘Markoviaﬁ prééess,and hence the'oécupation funcfions

n, are, at low coverage, subject to a set of rate equations,

N

i ‘ ‘ . o
= j;i R;j nj—.j;i 3jif¥"' (2.26)
where the indices i and j ruh'q&er_all bound sﬁatesvand
continuum states.accessible to the gas pafticle, The
transition probabiliﬁies Rij.have béen calculatgd by GoFtel,
Kreuzer and Teshima8 for a one dimensional Morse poténtial
(2.24) uéing second o6rder perturbation theory. |

For gas—-solid systems such as Xe-W thére are over a

hundred bound states. It therefore éeems reasonabie to

feplace the sums bver«i and j.by integrals over the scaled

energy °

11
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e = E/fw . \ (2.27)

~

Letting the occupation function go over into a function of
energy,

"ng(t) vn(E,t) ; _,‘ (2.28)

we may now write (2.26) as a continuous master equationg,

éﬂ%%LEL =‘J,d€'D(é')W(E,E')n(E',t)— J de'p(e")W(e',e)n(e, t),
) -u ; ‘ .

°c : ; s (2.29)

Ahwhere
pley = == L. - (2.30)
T

13

‘For the bound state-bound state transitions, i.e. for
—uba< e,e' < 0, Kreuzer et al9 givé the integration kernel

as

- -1
W(e,s')==3ﬂ/E(%)ﬁi/ee'y(e—e')3[exp[d(e—e')l]
S

F(/EG;V—/—reo-+%)T(%ruo-+/:f54-%)

I (/Tu_ - /=Fe" +3) T (/T4 +/=Te +3)

X108 (l-e+e')B(e-€")

1 e 1
T'(vru —-/-re' +z)I'{(/Tu +/-re' +3)
+0 (1-€'+2) 0 (&' —€) ° 2 o 2

— —_— 1 —_— . 1
WF(/LuO-—/—rs‘+ E)F(/ruo-+/—re + 5)
(2.31)
where 6 is the step function and 6 =‘ﬁwD/kBT.
They also give the integration kernel for bound state-

uCOntinuum,transitions, i.e. for -uo< e' <0 and 0 < g < =



-~

L

13

W(e,e') = %; [FwD ﬁi./-ee' B(l+e") 0 (L+e'-¢)
[ ’ )

- , o !
x‘(exp[é(e_el)] _1) l(E‘Ez') ‘ glnh(ZTr/Fe-) .
sinh” [n/T€] +cos [m/Tu_]

X

3 2
,‘II‘(»’ru\o +ivVTE + -21—) |
, (2.32)
P(Vruo + V-re' + %)I‘(/'ruo - Vere!? +%) X

~

and for continuum-bound state.ttansitions

W(e',e) = 37 YT w_. — /=cg!' 6(1%é})8(1+e'—e)
2 DM .

- +l}(e_€,)3 ;inh(zw/EE)Z
sinh“ (7V/r€) +cos (ﬂﬁi%)
2 - A}
I (/rag +i/——+%)| N
X . o (2.33)

P(/ruo-+/—r€' +5 )F(/ru -/—re'-+l)

x{(exp[6<e—e')]—1)

2

The integration kernel W(e,e') is plotted in figures

"1 and 2. Examining these figures we see that the bound

state-bound state transition rates are much larger than the
bound state-continuum transitions for most energy values.
Physically ‘this means that an adparticle will undergo many

bound state-bound state transitions before desorbing. This

- large separation in tlme scales leads us to belleve that the

adpartlcle is executing a random walk amongst the bound state
energy levels. We suspect that a Fokker- Planck equation will
describe the adparticle kinetics. We also note that near the
top of the potential (e=0) the bound state—beund state aﬁd\ )
bound state continuum transition rates are of the same order
of magnitude. We do not expect a Fokker-Planck type equation

/
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Fig. 2a and 2b.
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to be valid in this region.

Converting the integral operators in (2.28) into

differential operators will indeed yield a Fokker-Planck

equation. Toward this end we define a propagator g(eg,t;e't')

by <
n(c,t) = J de'g(e,t;e',t")n(c',t") , (2.34)

which, for small time increments At =t-t', can be expanded”’

as

[s ¢}

gle,t+At;e', t) =6(e—€')-+At{p(c)W(e,c') -8§(e~e") J de" -

-u
o]

'O(E")W(E",E')} . ’ (2.35)

Tt also satisfies the Smoluchowski—-Chapman-Kolmogorov

equation

gle,t;e', t') = j de" g(E,t;E“,t")g(E",t";Eht').(2.36)
{ u

o

Following the procedure used to develop the Kramers equa-
~tion, we ﬁultiply both sidés of (2.36) by a weil—behaved
test function Tt(g) andlintegrate with respect to €, to
obtain,

@ [oo]

LT(E) p(e)g(e,t;e',t') de =” p(e)t(e)gle, t;e", t") gle",t";e',t")-

- O -U.O -de de" (2.37)
The test function may be written as

i

T(e) = ) n—L (8-8")n%(n) (e") , o (2.38)°
n=0

which, upon substitution into the right hand side of (2.37)

gives,



)
Ll o

[ T(e)ple) gl ,t,‘f",(,')d!‘f-fj'l(l Yo e )glo, t"; 0", 8") de o

. l ~ " . . (n) N .l .
+At ) ~1 fa (€")gle,t;e't') 1 (e")de", (2.39)
n=1 n n

w

where, for small time intervals At =t-t",

an(c") :Z%'] dgp(t)(E—u")ng(c,t+At;g",t)
u

O

=p(c”) j p(E) (e-emyD W(e,dde =p (C")an(c") . (2.40)
: -u

o
Rearranging terms and performing some necessary partial

integration in (2.39) leaves us with,

[T(E)p(e) [l(&:tig"t') —A%(E’t-At;C"t')J e
T 0t o -
=[T(g) (E){ — (qa (E)Q(E,t;e',t'))}de
j ’ nZl nl o ogen

(2.41)

Taking the limit At -+ 0 and multiplying (2.41) by n(e',t')

‘and integrating over e' gives, using (2.34),

at nt n n

| _ - |
jﬂe){i (ple)n(e,t)) - § =L 87 & (e)n(e,t))}d€:0
' n=1 LES »(2.42)

Since (2.42) holds for any test function T(e), the expres-
sion in brackets is identically zero. Hence, (2.28) may be

rewritten as a Kramers-Moyal expansion,

n n

(-1) 9
N ;}?{ [an(e)o(e)n(e,t)] -} (2.43)

5t [p(eIn(e, )] =]
n=1

17
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(

Truncating the sgseries at n « 2 qivvs a Fokker-rlanck type

cquation,

se lnlon(, 0] = =55 (@ (olonle, ) 4+
1 32
"*5‘ :")“L—z“ ((,!2(()‘)((.‘)n(l,,t)) . (2.44)

We shall refer to this equation, with or without approxima-

tions to the moments al(r) and az(f), as the GKTT equation.

Kreuzer et al found approximate, analytic expres-

sions for the moments a, and a,, in the temperature regime,

1 2
é 1 << § << g x , (2.45)
3 u 5 u
o fe}
namely,’
- m -5 [10B _
al(c) x + 727 wDMS v-re A [7§r 1] , (2.46)
-5
o, ()~ 6nw. & re A (24,120 25208, (2.47)
2 D M 8 2 3
s A A’
where

A = _F_. _2 tanh—l / ._.__E . ' (2.483.)
vy u_/ -€ u
O o =
u u _ -
= Zi_,/ii_p.jg){ 1 —/:%-tanh 1 /—E-}. (2.48b)

£
u
o

w
|

Using these definitions and (2.44), Kreuzer et al were able

to derive an approximate expression for the desorption

timelo,

N

M du
1 -1 Mg 1 o
ts3 * 727 “p hm Su_ e ’ (2.49) .

clH
own
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~and a macroscopic law’,

AR

»

.

Where

1is the.

0
€ = J en(e,t)p(e) de
, ) v

O

average energy éf the adpa

rticle.

b
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" III. THE GKTT EQUATION IN ACTION-ANGLE VARIABLES

I1I.1 Action-Angle Variables for a Morse Potential

The major task of this thesis is toJrelate the
vKramers eqﬁation (2.22) used in the classical theqrieé of
'desorptioﬁ,vto\the~GKTTiequa£ion\(2.44), which was derived
from a gquantum mechanical_theory ofnphysisofption. To
~facilitate such a COmparison we first intro@uce into (2.44)
action and éngle variables. We;rééall that this equation
-wasiderivéd‘for gas»particles trapped in’ a one diménsional

Morse pofeﬁtial (2.24), wb%ch we prefer now to write as
| “Y(x-p) 2 o
v(r) = Uo(e //f -+ 1) : ‘ (3.1)

by adding a constant'UO to . (2.24). Starting from the
Hamilton-Jacobi equation16 for a gas particle of mass m
in the potential (3.1).

oW, 2

1 ) + V(r) = E , (3.2)

2m

(

N3
where W =W(r,p) is Hamilton's characteristic function, we
introduce in the standard way, the canonical momentum,

W ‘ ' '
p=23 . . | , (3.3)

This may be inserted into the definition for ‘the action
variable (2.20) to obtain’

3 [ W

J %pdr—%ar dr

- U —Y(r;r ) 2 | .
/szjg./l-g (e % -1) a . (3.4)

1l

20



- -y (r-r)) o
Setting y =e we get, T e

~ .Y ] ;-_
“,?-ZTTT'/Z—rn—[/fJ;-‘VUO-—EJ . (3.5)

,The action ranges in value from J =0 at the bottom of
the well (E =0) to "
o

J=J‘=‘T/2mu | o (3.6)

at the top, where E==UO. In dimensionless:units'we‘have

v

g (v2mo_ ) AS o T b _
’ JO = hl‘ "T_Y—* = ho . ) ] (3.7)
O

We may invert equatlon (3 5) .to express E as a function

of J ., ‘ o ‘ . ' B

‘ ’ .U . 2 2 S : Y. '

=l ._9. - —L .J;_ -7 -

- E nlsz (7 m | (3.8)
A word of warning,is in order here. The integral im (3.4)
is not defined when E = Uo’ i.e. when the particle is

no longer conflned to the surface reglon. It will be seen
later that thlS 1ntroduces 31ngular1t1es into the Fokker—
'Planck (GKTT) equatlon. However, the singularity structure

of the GKTT equation w1th suitably -chosen expre551ons for-

the moments doesn't change.

-~

We cen now. find the:frequency of oscillation in the -

Morse potentlal by dlfferentlatlng the _energy w1th respect :

to the actlon,

21



dE '
v s —-h 2. (3.9)
TY2m -
Using (3.8) the action J may be eliminated in favour of
<the energy E, L v
=L (2 oy - :
Vo= o - (Uo E) - o | (3.10)

lNotevthat this fréquency is energy dependent as it must
be for any realistic potential that develops both bound -
states :and continuum states. At the.bottom of the well the

frequency is

AV] =
O

y /% :
2m ‘ (3.11)
m J 2m ‘ : : : »
We check this result by examining the small bscillations

of the particle about the Well\minimum. Enérgy conserva-

tion gives us,

2 2 }—Y(rfr ) 2 )
E = %5'+ V(r) = gﬁ + U (e ° -1 . (3.12)

. % . . .
For small displacements (r—ro) from T, we may write the

exponential term as

-Y(r—ro)

e > 1 -Y(r—roy ' o > (3.13)

so that

(r-r ) . | ’ (3.14)

This is the energy of a particle‘exeCuting harmonic motion

with'frequency

22
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2 . '
| ﬁj
V=_‘ﬂ_=_l_.!ﬂ}_°Y_=l'_9 (3.11)
2T ‘ZTT N m m™~N2m . ' :

. N . - * .
matching the result obtained for the Morse potential at
E=0. 1In closing this section let us note that the angle

variable w, conjugate to the action J, is

W= vk +w = = 2 (U -E) +w , (3.15)

where W is a constant.

III.2 Transformation of the GKTT Egquation to Actidn—Angle
Variables ' ' .
Before transforming the GKTT eéuation to action-

angle variables we introduce. a dimensionless action

x = fL ., (3.16)
O
where
7 =2 /ST = ho . | ' (3.7)
e} Y (o] (o] ’ : .

is the action variable at the top of the Morse potential

well. The’frequenéy then is

il

w W u o '
D O D (o} o
= = 20 - - - -
v T (1-x) - T (1-x) , | »(3.17)

and the enexgy is given by

n(le)z =-u (l—x)2 . : "(3.18)

at l OQN



For .future reference we note that the Kramers equation

-

(2.22) in terms of the variable x reads

A _ [ 1 8 . x 8n,, 8 [ - ~
t ”{z—au—d 3% [T-x 3x) *ax [*0] } ' (3.19)

.“To transform the GKTT equation (2.44) we first differen-
Eiate egquation (3.18) with respect to x and get:
\ . .

Q

e
= - 2uo(; x) | . (3.20)

so that the partial derivatives with respect to e transform
. /

as ,
9f - 9x 9f _. 1 3f - |
Be T %e sx | Zu_(I-® ox ' oo (3-21a)
and b
a”f  ax 3"
== e £
d€
n
- [2u 1-x ax] f
O
‘ n n ‘ k
_ 1 f (=" j ok __(2n=l-k)i 3
lfx (2uo)n k=1 (k-1) ' (n-k) ! 54k
| R S . (3.21p)
e n-I=kif - : :

' Usingr(3.2la) the,GKTT‘equation (2.44) reads, in the

variable x,

9

3t

[p(x)n(x,t)] ==
‘ 8uO

5% ax [ 0ptonGR el (3.222)

. or since



p(x) = ———— ' C(3.23)

Ya_ (1-x)
04
an(x,t) _ 1 3 [ 1 3 [GZ(X)n(x,t)]
ot —Sh 1-x 9x (1-x)

D1 5 dl(x)n(x,t)
- EE; 7% | (1-x)

1 .. (3.22b)

\

. Alternatively, we may write (3.22) as,

2f _ 1 Ji ay(x) g a) (x) £ az(x)—(l—x)qé(x)

3
= [ 2] -2 + £]
Pt gul X 1y ? X 9x “2u UmEE T g2y 3
a, (x) a, (x) , - ‘
1 3 .72 : :
+ [ — + ‘ —1 £ , : : (3.24)
2u.(l X) 8u2 (1—x)4 - ‘ :
where
f = f(x,t) = p(x)n(x,t) . .- ' (3.25)

 III.3 Some Comments on the Kramers-Moyal Expansion

..The gKTT equation was derived9 from the master
"equation (2.28)_by a truncation of the Kfamers—Moyal
expanéion (2.43) at n=2. We want to examine briefly the
qﬁestion whether a‘Kramefs—MoYal.expansion in the vériable
x would after trﬁncation also lead to equation (3.22).

Using (3.21b) we get from (2.43),

9 . [ e ! (-1 2 Xk
5 PonG el = | LS T ek
ot _ n_=l n! 1-x (2u0,)n ko1
k a_ (%) p(x)n(x,t)
(2n-1-k)! o n _
D k) .k | 2A-T°K ]} (3.26)

X (1-x)



Substituting (3. 23) into (3.26), multlplylng by (1-x) and

1nterchanglng the n and k summations gives

© k
on(x, t) ) (—l) P
— T [B (x)n(x,t)] ' (3.27)
e T M
where ‘
P @ ' a. (%)

Bk(x)'=k 2k E (2n -1l-k)! ln n e . (3.28)
. n=k n'2 (n k)' Yo~ (1-x)

This is a power series in‘ﬁi-whica suggests taat for

u >>1 a truncation at n =2 is again possible, justifying

equations (3122)’andl(3:24). The—ccndltion u >>1, or,

UO >>ﬁwD implies that the deeorbing gas particles must

undergo a great number of individudl one—phonon abscrptlon

processes before it leaves the surface potentlal well.‘
Note alsobthat the thermal fluctuatlons in the X

variable, calculated w1th a Maxwell- Boltzmann dlstrlbutlon,

are

<x2> - <x>2 = g%_ == . ) ' (3.29l

_With the inherent restriction kBT'<<ﬁw needed to justify.

D’
the one—phonoﬁ calculation of the'transition probabilitles
W(e, E')'(Z 31), we see that the condltlon u.O >> 1 1mplles
‘that the fluctuations should be small This is important
to keep in mind at the stage’ where we will try to‘apprc—
ximate the mcments-dn(x).

It is noet known what relationship tt - expansicn

has to the method of expanding in a paramete ' here



17,18

¢ is large, used by van Kampen to jdstify the trunca-

tion of a Kramers-Moyal expansion.
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III.4 Approximation of the Moments a (x)
Apprbximate, analytic expressions for al(x) and
az(x), in the limit of large r, have been obtained in
. ! : . X
ref. [9] and appear, respecgively, as (2.46) and (2.47).
In the x variable these: equations read
m U3 ' 1., . .75 108 |
al(x) X +727 Wy ﬁ;';7 (1- x) [tanh™ (1—x)] A l], (3.3Q)
and _
u3 6 ‘l 24 1206 _2520B
- m o - - - =
az(x) x 6ﬂthi ) (1-x) " [tanh "~ (1 x)] [ A2 3 1,
(3.31)
where : .
) -1, S
_ [ x tanh " (1-x) ’
A =3 1=%) . | (3.32)
o .
and .
..l .
1 r 1 1 tanh ~(l1-x%)
B = = [ - - | (3.33)
4uo u, 1-x l—(l—x)z .(l X) :

: To\approximaie al(x) a?d azﬁx), for, intermediate values of

N

%, by yet»simpler_expressions we resort to examining some

numerical examples.

From.figures 3 and 4 we see that

al(x) and

_and x=1.

a, (x) are nearly quadratic in x away from x=0

They are both off centre w1thva degree of

depending on 8;

asymme try al(x) becomes more asymmet;ic
for decreasing § while the oppoéite is true for az(x).

" Both of the moments go to zero at x =1 and. begome very
. i ‘
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small at x=0. The moment al(x) crosses the x axis for a
small positive value of x.

We propose the following approximation,

3

o, (x) = =721 w —'1:1—9(—)(1—) (3.34)

1 E D W 5 (x-a x) , | .

s I
and
u3)1
- Jno o4 _
az(x) = 14§ﬂcﬁj Ms r2 ; (x+b) (1-x) . (3.35)

Note that the zeros a and -b are of the order of the ther-

mal fluctuations, —%— . Examining figure 5 shows that
)

Sug
20, (x) *
1 _ X-a .
“¥a,(x) © xb ‘ (3.36)

is qualitatively the correct form of the ratio of the

=+ -
moments. The correctness of the factor (l-x) can be seen
by examining figures 3 and 4, where we plot

&(x)

= —— (3.37)
, /E; (1-x)

a(x) = a(x)p(x)

If al(x) aﬁd aé(x) did not contain the factor - (1-x) then

the‘&l(x) and &z(x)‘would not remain finite at x =1. Figures

3 and 4 also show that &l(x) and az(x) are roughly linear,

with zeros near x =0. .

~III.5 The New GKTT Equation \

Substituting (3.34) and (3.35) into (3.22b) gives

an (x,t) =.”aix{ L ox+b (X t) oy gy 1 )n(’x't)}’

ot ‘ 26u, 1-x IX 26uo(l-x)

 ('3.38)
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where
14
: m ug
1 ~=~Nnrun) Mo - (3.39)
s I
This is the new version of the GKTT equation. Since

a and b are of the order of the thermal fluctuations in x,
which are small by virtue of (2.45), we may make further

approximations, namely

x +b » x ,

and

1

* s (Isxy ¢ X oo
o

where it is understood that x does not approach the values

0 or 1. These approximations yield,
dn(x,t) _ 1 3 . x '9n(x,t) 3
3t {26uo % T-x ax 0 ¥ oax [x“(x’t)]}' (3.40)

This is identical to Kramers' classical equation (3:19).
By making appropriate approximations to the gquantum
statistical Fokker-Planck equation (2.44) [GKTT equation],
we have shown that it is equivalent to Kramers' equation
(3.19) provided that thermal fluctuations are ignored.
This constitutes a derivation of a classical equation from
a more basic quantum statistical theory.

Now that the GKTT équatiog has been related to
the Kramers' equation we may forﬁgﬁly identify n as a

friction coefficient. Before pyoceeding we wish to examine

an alternate form of‘(3.40); Starting with
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A
\

vt 1o %200 s Sp(0F a0-Gweio
-3t Bui X (lex)z 3ax 9x 2uo(l—x) 8U§(l;x)3fu v
o, {x) oL (%) v .
+ [ 1 + 3 2 4] £ - | - (3.20)

v . , 2 2 , K 3
2uo(;fx) : 8uO (1-x%)

\

where f is defined by (3.25), we substitute in equations

(3}34)>and (3.35) to obtain, after ignoring the thermal
'.fluctuations, '
C9f _ 1 3 . x 8f . 3 _ x | .
3t n{26uo 7% Tox ax) Tix XH 1% f} - (3.40)

‘By using (3.7), (3.11), (3,i3) and (3.14) we write

. equation (3.41) in terms of the action J and frggyency
of oscillation v,
5 - [3 3. . 3f, D 3V
35 = {a Txar 351 455 99 .gvf} - 434

e

It is readily seen that (3.42) contains no quantities

specific to the Morse potential and so-should hold for
any»realisﬁiq surface potential appropriate for physi-

’ - S
"sorption.
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III.6 The Macroscopic Law of Friction and the Friction

.Coe'fficient

Kreuzer et al have obtained an approximate macros-

copic law® : from (2.44), namely,
. A _ @ :
N R o (2.50)
e = %p(e) | | - . . :

where € is the average scaled energy. This can be re-

wnitten, using (3,31f, (3.15)€>and (3.26) as fo}lows:

_9e _ 3 3% _
L.H.S. =5 = 2% 5% (3.43)
~ where
R.H.S.= X) ==72T
= 2uon(1->‘c) (%-a) . . (3.44)

and so eqﬁating both sides and cancelling common factors -

gives us,
/

e
el %

5 - n(x-a) . | (3.45)

This is the macroscopic law of friction with friction -
coefficient n. The solution to equation (3.42) is

x=a+ (x-a)e "° ., - ~ (3.46)

where x_ is the initial action of the particle. Physically
this means that if a gas particle is put into a bound state

X=X, it will lose or gain energy, -exponentially, until

its average value of x is §==a,_where a is of the order of

a fluctuation from the‘bdttom of the surface potential well.

¢



35
- This is the same interpretation put forward in ref. [9].

~ Note, that the mlcroscoplc expre551on (3. 39) for

the frlctLon coefflclent,‘, -
2.4
- - m ug Yo .
n = 36n Wy ¥ 2= 9T - 3 - (3.39)
» ' s I nlM‘wD :

s
is,‘up to.a constent'the same as that obtaihed'by Caroli
et al in their miétoScopic'model based onvclassical
_ mechaﬁicsl?. ThlS agreement of quantum and cla551cal
‘theorles seems to. stem from the condltlon u > >>1 for the
-valldlty of the equatlons (3 22) and (3 24) which 1mp11es
‘that a large numbervof one—phonon transitions are‘necessary
© to desorb a particle'from the bottom of the surface poten—
tial weilgl- B | |
We can now calcuiate the friction‘coeffieient n for
,a.particuiar geé—solid,5ystem,‘whichkwe choose to be Xe-W,

to see if tﬁe low friction assumption is indeed satisfied.

With the parameterszV w, =5.3 x1013 71, §L= .714,
r=4969, and u_ =11.56, we find A = 2.3 ><1olo 1. To check

whether this value is appropriate fog the.low’friction
limit we rewrite n in terms of the oscillation frequency.

at the bottom of petentiel) i;e._wo =X.]§Q., to get

% > T oyem
u_ 3/2 kT _
- "m0y 'y B
n f,18n M_ ( r) Guo (90 UO) .- . ‘v(3.47).
. | © kpT. - KT
For Xe-W t%gs implies n = 0.1(u)o G —7—) and hence n <<uwg o

which is indeed Kramers' condition for low frictidn.



III.7 Desorption Kinetics . ‘ "'
In this final .section we“shall study desorption

.-kinetics based on = : -

an _ 3 [ 1 x+b 3n o [
3t "ox {Zéu 1-x §§:e(x 26u (l x))Il} 3.38)

Ve

Before examlnlng the time. dependent solutions of (3. 38) we
flrst find its equlllbrlum solution. Setting ng;O and

1gnor1ng texrms of,the order of,the_thermal-fluctuations

reduces (3;38)ato

(3.49)
where the constants are determined by the boundary condi-
tions. Setting c, =0 gives

- su_(1-x)2 ' :
n(x) = ¢y e OA ; =c, e r _ (3.50)

'whlch is a Maxwell Boltzmann distribution in the energy.

;’a.. ;"

(3.48)
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This justlfles the use of the Maxwell- Boltzmann dlstrlbutlon

to calculate the’ fluctuatlons 1n x (3.29).
To study the timeedependent solutions of (3.38) we
assume that the variables can be separated and hence employ

the ansatzls’19

nix,t)=e " o), . o (3.51)
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. which, updn substitution into (3.38), gives

1 3 ,xtbdg, . B .. _ .. 1 1 . .
Tug o% 1-x ax) Tax T ¥gpas 1Rl 9t A9 =0 . (3.52)
Insertihg
; [26u_(b+a) (1+b)-1] -26u (b+a).(x+b} su_(1-x)
g(x) = (x+b) S e © e h(x)
| (3.53)
into (3.49) yields,
- 26u_(b+a) . . - .2
3| (x+B) o X Zéuo(b+a)(x+b) duo(l X) 5h (%)
x | 28u_(I-xm  © - © ax
~26u_(b+a) (x+b) +éu_(1-x)> [26u_(b+a)(1+b)-1] |
+re © (x+b) ° h (x)
=0 . | B S (3.54)

This is the standard form of a Sturm-Liouville equation.

Hence we may write the solution to (3.38) as

: . Su [?1fX)2-2(b+a)(X+b)j [26u (b+a)(1+b)—l]
n(x,t) =e ° - - ' (x+b) © -
© v—Ahnt‘ ‘

( I c e h (x) (3.55)
n= :

n . n
.

where A;'and hn(x).satisfy equation (3.54) plus boundary
conditions. ' For isothermal desorption'the appropriate

boundary conditions are,

n(x=l,t) =0 , | - . (3.56)
‘and - \ _ |
1 an(x,t)} ’ , S )
[l—x e ] =0 . R _ - (3.57)
L x=1 ~ .

«

v



Unforturiately the eigenvalue problem'defined by (3.54),
(3.56) and (3.57) has yet to be solved. However, following
Kreuzer and Teshimalo, we can flnd an approx1mate solution

of (3.38), plus boundary condltlons (3.56) and (3. 57), by -
¢
: maklng an ‘ansatz ‘

, —t/ty  bu_(1-x)7 I .

n(x,t) = ae (e -~ -1) , - (3.58)
which assumes a sihgle desorption time,.td, and an eqUili—
" brium x depeﬁdence. We also 1gnore terms of the order of

’the thermal fluctuatlons in (3.38) and get

an 9 1 X 3n : : '
3t 3% {26u0 T-% 3x ¥ Xn} . |  (3.40)

Sﬁbstitutihg (3.58) into (3.40)'and cancelling common
vfactprsvgiVes, '
y -1 _ O(l—x)2
\\‘td (e , -1) = n . ' : (3.59)
Now integrating both sides from zerb‘to one‘yields, after
rearranging terms,
L 2 Su
£ =21 6u0(l‘X)d'_' ) ..e 21 1M g 2 5%
a n\/¢ X * Zndu, " 727 YD m éuse ’

0 ) , o

~

(3.60)

which was obtained by Kreuzer and Teshima. ‘The'dependepce
on n, which has'élready been obtained by Kramersll, implies
that the aesdrptien process takes ldnger for smaller values
~of the friction. Smaller fricfioh results, c.f. (3.39),

when the‘range of the surface potential, %-,_increases.
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Although](3;60) was>previously obtained in ref. [10],

the above calculation dld serve to justify some of the h
’ approx1matlons made in the ansatz (3 58). 1In partlcular,
the exponential term is appropriate because all terms in
_the general.eigenfunction expansion (3.55) decay exponeu—

tially with time. For our'analysis we_also argued thatﬁthe.
QUasi—equilibrium assumption implies that terme'of‘the ’
order of the thermal fluctuatlons must be ignored.

_An 1mproved approx1matlon for. the desorptlon tlme
might st111 be attainable though Because equatlon (3.38)
is of-a relatlvely simple form we hope that keeplng the
thermal fluctuatlons may give a more accurate result for
t.. ’Alternatively, thetlowestAeigenvalue Ao’~€L might be.

d
. : Sd-
obtained from perturbation theory. -



IV. SUMMARY AND CONCLUSION

A detailed~comp§rison of the low friction Kramers'
equation, as derived from'considéfétions baged on_classiéél
mechanics, and the GKTT equation based on quantum statis-
tical.méchanics, has been made: ‘This wéé achieved by
casfing both equations in termsAof scaled action variables,
and approximating the moments of the: GKTT équation. It was
found that if terms of the same order as the thermal fluc-
tuations were ignored then the GKTT equation reauced to.
;Kramers' equation. In contrast to the derivatien of the
Krameré—Langevin equation, by Caroli et al, froﬁ classical
mechanics in the:éimit m>>M_, our derivation of Krémérs'
equation holds in the intermediate temperature regime,
> < § << 2T , for weakly coupled g$s+solid systems

3uO 5uo

‘with-a surface potential.which develops a large number of

"bound states. An expression for the friction coefficient
was also derived and was found to be identical, up to a
multiplicative constant, to tﬁat derived by Caroli et al.
This expression shows that the condition.ofbweak-coupling
is indeed equivalent to low friction. The. correspondence
between classicél and qﬁantum fheories we attribute to the
.lagge nﬁmber of one-phonon events necessary fo; désorptioﬁ
to take place in weakly coﬁpled ;as—sélid sys£ems. | -
Some problems on the éubject of Fokker-Planck

equatioﬁs'for desorpfion reﬁain. The derivafibn of the

~

' Fokker-Planck equation from a master equation has yet to

40



be entirely justified. 1In particular, the truncation of -

- the Kramersg-Moyal éxpansion for a system with finite
bouﬁdanies has yet to be tied in with the formalism of
van Kampen's large parémeter expansion. It is also
de51rable to solve the elgenfunctlon and elgenvalue
problem associated with the GKTT equation so that a- more

accurate expression of the desorption time may be found.

b
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