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Abstract

In this thesis we study the problem of reversibility for certain classes of diffu­

sion processes in finite and infinite dimensions. In the finite dimensional case 

we look at the generator of Brownian motion with drift, and we present two 

characterizations of reversibility: the criterion of Kolmogorov which establishes 

that reversibility is possible if and only if the drift is of gradient form, and a cri­

terion proving that reversibility of a measure is equivalent to quasi-invariance 

under the group of all translations with a cocycle given in terms of the drift 

coefficients. Later we use the ideas from the second characterization in finite 

dimensions to explore the property of reversibility for an Ornstein-Uhlenbeck 

process with values in an infinite dimensional Hilbert space.
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Introduction

Intuitively speaking, given a stochastic process X  — (Xt)o< t< T  one can define 
its time-reversal X  =  (X t)o<t<T as a new stochastic process whose value at 
time t is X t ■— ^T-t-  This time-reversed process X  runs the trajectories of X  
in the reverse direction, and it need not have the same probabilistic properties 
of the original process. In this setting, reversibility occurs when the process 
X  and its time reversal X  share the same finite-dimensional distributions, or 
in other words, when they do have the same probabilistic properties.

In this thesis we study characterizations of reversibility for certain classes 
of diffusion processes in finite and infinite dimensions. Our approach is to 
define the meaning of reversibility for a given diffusion in terms of its formal 
generator. This approach is also used in the papers [24], [25] of K.Handa, where 
reversibility of two particular kinds of diffusions is characterized in terms of a 
certain property called quasi-invariance. Motivated by these results, our goal 
is to characterize reversibility of an Ornstein-Uhlenbeck process with values 
in an infinite dimensional Hilbert space, a process of the kind described in 
the paper of A.Chojnowska-Michalik and B.Goldys [15], Before dealing with 
infinite dimensions, we work out in detail two characterizations of reversibility 
for a class of diffusions on Euclidean space. This work in finite dimensions has 
mathematical interest in its own right, and also helps to gain insight into the 
infinite dimensional case. This explains the title of this thesis.

Let us now briefly describe the contents of this thesis. In Chapter 1 we 
provide a quick and rather informal introduction to Markov processes and, in 
particular, to diffusion processes. Here, we start from the basic definitions con­
cerning stochastic processes and their finite dimensional distributions, and we 
present some examples of particularly important classes of processes, includ­
ing Brownian motion. After a brief section intended to introduce the notions 
of semigroups of operators and their generators, we move in the last section 
to Markov processes and especially to Feller-Dynkin diffusions on Euclidean 
space. To close this chapter we quote a result establishing that the gener­
ator of such processes, when restricted to a certain space of functions, is a 
second-order differential operator of elliptic type. It is our intention that this 
introductory chapter provide some context for the ensuing discussion.

1
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The next two chapters concentrate on reversibility for “Brownian motion 
with drift” , a class of finite dimensional diffusions corresponding to a specific 
type of second-order differential operator. In Chapter 2 we focus on the first 
characterization of reversibility, the criterion of Kolmogorov. We introduce the 
notions of invariant and reversible measures for a given differential operator 
of second order, we discuss the literature concerning existence and regularity 
of invariant measures, and we prove Kolmogorov’s criterion which establishes 
that reversibility is possible if and only if the drift is of gradient form. As a 
consequence we obtain that in one dimension reversibility is always possible.

Chapter 3 is devoted to the second characterization of reversibility in fi­
nite dimensions. Here we study quasi-invariance properties of measures under 
certain transformation groups, as well as the associated cocycles. The main 
result of this chapter, Theorem 3.1, establishes that reversibility of a measure 
is equivalent to quasi-invariance under all translations with cocycle given in 
terms of the drift coefficients. Closing this chapter we present a new result, 
Theorem 3.2, establishing that the cocycle identity implies that the drift is a 
conservative vector field.

The last chapter of the thesis, Chapter 4, explores the problem of reversibil­
ity for an Ornstein-Uhlenbeck process with values in an infinite dimensional 
Hilbert space. We introduce the formal generator of this process as an opera­
tor acting on cylindrical functions, and we define the meaning of invariant and 
reversible measures in this context. Here we rely on the ideas from the finite 
dimensional case to conjecture a characterization of reversibility in terms of 
quasi-invariance. Although we do not settle this conjecture completely, we 
make significant progress towards the proof. The solution of this problem, 
when finished, will constitute an original contribution to knowledge.

Throughout the thesis we provide indications as to which results were al­
ready known prior to our work and which are new. In some cases we provide 
our own proofs of previously known results.

2
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Chapter 1 

Basics about diffusion processes

1.1 S tochastic  processes
Any probabilistic discussion starts by specifying a probability space (Cl,X, P). 
Consider a measurable space (E,B)\  a stochastic process X  with index set I  
and state space E  is a function X  : I  x Cl —► E  such that for each t € I, 
the mapping X(t ,  •) : f2 —» E  is an if-valued random variable. The use of t 
for a generic element of the index set is not incidental since we are primarily 
interested in processes indexed by time. Consequently we will take /  =  [0, oo) 
for continuous time processes, or I  =  {0,1, 2, . . .} for discrete time processes.

It is customary to use the notation X t for the random variable X(t ,- )  
described in the previous paragraph. This notation suggests that we may 
think of a stochastic process X  as being a family of random variables indexed 
by time: X  = (Xt)t>o- Stochastic processes provide the mathematical model 
for systems that evolve in time according to some random mechanism.

Given a stochastic process X ,  for any fixed u  G II, there corresponds 
a function t h-» X t(u), called a trajectory of the process. In the literature 
trajectories are also called sample paths. The process X  — (Xt)t>o is called 
continuous (right continuous, left continuous) when it has continuous (resp. 
right continuous, left continuous) trajectories.

A collection of sub-cr-algebras of X  is called a filtration if X s C X t
for s < t. In particular, for a process X  we define the natural filtration 
{ X f } t>o by setting X *  to be the smallest cr-algebra with respect to which 
all the functions X s, s < t are measurable. In the usual measure-theoretic 
notation, X *  := a ( X s : s < t). Intuitively we think of X *  as the cr-algebra 
containing information about the history of the process X  up to time t. When 
the probability space (Cl, X ', P) is endowed with a filtration {Xt}t>o, we call 
the quadruple (Cl, X , {X t}t>o, P) a filtered probability space.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A process X  is said to be adapted to the filtration {Xt} when for each 
t > 0, the random variable X t is .Ft-measurable. Note that X  is {.Fij-adapted 
if and only if T *  C T t for each t >  0.

Let the stochastic process X  = (X t)t>0 be given. For any m  >  1 and
any list of distinct numbers t\, t 2 , ■ ■ ■, tm € [0, oo) we define fat t .... tm to be
the probability measure on B 0  • • • ® B (m factors) induced by the mapping 

. . , X tm) h-> E m, that is,

N *  (H  =  P[(xtl , ,  x trn) g r] for r  e b  ® • • • 0  b .

The probability measures {p-t t tm '■ m  > 1} thus defined are called the
finite dimensional distributions of X .  In particular, the probability measure 
fio(-) := P(Xo G •) is called the initial distribution of the process.

It is a fact of life that all the probabilistic properties of a given stochastic 
process X  are determined by its finite dimensional distributions. To establish 
this fact rigorously one has to construct another process called the canonical 
version of X \  the law of X  is then defined as the law of its canonical version. 
The construction of the canonical version, as a process defined on a product 
space, makes it evident that the law of the process is determined by its finite 
dimensional distributions, see [35, Section 1.3] for details on this.

On the other hand, if we are given a family tm : m > 1} of
probability measures, then a question arises whether there is a process X  
having this family as its finite dimensional distributions. This question is 
answered by the following theorem due to Kolmogorov, its proof can be found 
in [40, p. 8].

T h eo rem  1.1. Let E  be a complete separable metric space. Assume that the 
family of probability measures {p-t t tm : m > 1} satisfies the following 
consistency conditions:

(') = /it.iit.2,...>t.ro (Bh , . . . ,  Bim) for any permutation
A , . . .  ,im of the numbers 1 , . . . ,  m;

(ii)  (Bi, ■ ■ ■, B m-i,  E)  =  {Bi, ■ ■ •) B m- x).

Then there exists a stochastic process X  whose finite dimensional distributions 
are the given family of measures.

E xam ple  1.1 (P rocesses w ith  in d ep en d en t in crem en ts). Assume that 
E  is a linear space. A process X  — (Xt)t>o is said to be a process with 
independent increments if for any n  >  1 and any choice of to < ti < ■ ■ ■ < tn 
the random variables X to, X tl — X to, . . . ,  X tn — X tn_t are independent.

4
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Consider for instance E  =  Rd, and let (•, •) denote the usual inner product 
in this space. The characteristic function (pt0,...,tn(zo, ■ ■ ■ > z n )  of the random 
element (X to, . . . ,  X tn) is given by

<Pto,...,tn(zo, ■ ■ ■ ,Zn) = Eexp < * V , for z0, . . . , z n £ R d
{ k—0 )

Note that we can write 

<Pto,...,tr>(zo, ■■■,zn) =

{ n n
i ( J 2 zk ,X to) + i ( J 2 zk’X t i -  x t0) + ■ ■ ■ + i{zni X tn -  x tn̂ )

k=0 k=l

Let us write iptk,ti{z) =  Eexp{ i ( z ,X tk — X tl)}. Then using the independence 
of increments it follows that we can write

n

• • • ,Zn) = Vt0(zo H +  Z n ) Y [ A k-utk(Zk +  H Zn)-
k=1

Since the characteristic function of the random element ( Xto, ,  X tn) uniquely 
determines its distribution, we learn from this example that, in the case of 
a process with independent increments, to determine the finite dimensional 
distributions it suffices to know the one dimensional distributions of the process 
and the two-dimensional distributions of its increments. 0

E xam ple  1.2 (G aussian  processes). The real-valued process X  =  {Xt)t>o is 
called a Gaussian process if the random vector ( Xtl , ,  X tn) has the Gaussian 
distribution, for any choice of t \ , . . .  , fn. We call a(t) := E(Xt) the expecta­
tion function, and c(t,s) := E(XtX 3) — a(t)a(s) the covariance function. The 
characteristic function of the random vector (X tl , . . .  , X tn) is by definition

<pt (^i, • • • ,Zn) =  Eexp for (zu . . . , z n)<E Mn.

For fixed ( z i , . . ., zn) £ Mn let us define the random variable Y  := i zjX tr  
This is a Gaussian random variable (see for instance [20, Theorem 9.5.13] or 
[39, Theorem II. 13.1]), and a few computations show that

n n
E0 0  =  ^ Z j a i t j ) ,  Var(T) =  ZjZkcfa^k).

1=1 j,k=1

It is well known that if Z  is a Gaussian random variable with mean m  and 
variance a 2 then its characteristic function is given as

‘f z i t )  — exp |  i tm  — j  , for l e i .
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Using this and the obvious fact that (ptlt...ttn(z 1, . . .  , zn) — <£y(l) we can write 
the characteristic function of the random vector (X tl , . . . ,  X tn) as follows

f n 1 n 1
■ ■ ■, Zn) = exp l i  Zjditj) -  -  ZjZkcfo^k)  > •

I i = i J

Thus we learn from this example that for a Gaussian process, the finite dimen­
sional distributions are completely determined by its expectation function and 
its covariance function. <0

To close this section we would like to present a very important example of 
stochastic process.

E xam ple  1.3 (B row nian  m otion ). We say that the process W  = (Wi)t>0 is 
a one dimensional Brownian motion with respect to the filtration F =  {Tt}t>o 
if it is adapted to the given filtration and has the following properties:

(1) W  starts at zero, i.e. W 0(uj) =  0 for all <u;

(2) W  has continuous trajectories;

(3) for s < t, the random variable Wt — Ws has distribution W(0, t — s) 
and is independent of T a.

When we take J°t =  to be the natural filtration generated by W, we 
simply say that W  is a Brownian motion. The essential conditions here are 
(2) and (3); for if W  = (Wt)t>o is a Brownian motion (starting at zero), we 
can construct the process (x + Wt)t>o which starts at the point x. Finally, let 
us remark that a d-dimensional Brownian motion is a d-dimensional process 
whose components are independent one-dimensional Brownian motions. <>

We will take for granted the existence of Brownian motion, a proof of this 
fact can be found in [36, Theorem 1.6.1]. The importance of the study of 
Brownian motion comes from the facts that it serves as a building block for 
other kinds of processes, and it can be taken as the first example of virtually 
every interesting class of processes. In particular, it is not difficult to see that 
Brownian motion is a Gaussian process with independent increments. The 
independence of the increments comes free of charge from the definition of 
Brownian motion, while its being a Gaussian process follows from the inde­
pendence of increments and the fact that the individual variables are Gaussian, 
see [35, p. 17]. More details about Brownian motion and its many properties 
can be found in [36, Chapter I].

6
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1.2 Sem igroups o f operators
This short section is an interlude on the theory of semigroups of bounded linear 
operators, and it has the sole purpose of presenting some definitions that may 
prove handy for what follows. Therefore no attem pt will be made to make it 
comprehensive, let alone self contained. Very good references for this theory 
are [21] and [33], see also [22, Chapter 1].

D efin ition  1.1. Let B  be a Banach space. A one parameter family (Tt)t>o of 
bounded linear operators from B  into B  is called a semigroup if it satisfies the 
following equations:

(i) To =  / ,  the identity operator on B ;

(ii) Tt+S = TtTs for every t, s > 0 (the semigroup property).

We may think of semigroups of operators as being the analogs of expo­
nential functions. It is well known that the exponential has the properties 
et+s __ etes an(j eo ^  which resemble the equations defining a semigroup. 
Consider the real function f ( t ) =  eat, it is clear that this function is completely 
determined by the parameter a, and this parameter in turn can be determined 
by the behavior of the function near zero: /'(0 ) =  a. In this sense we can say 
that the parameter a  “generates” the function eat. These ideas lead to the 
following definition.

D efin ition  1.2. The infinitesimal generator of the semigroup (Tt)t>o is the 
linear operator G : V(G)  C B  —> B  defined by

Here, T>(G) designates the domain of the operator G.

It should be pointed out that the domain of the generator of a semigroup 
is usually a proper subspace of the Banach space B, and it may be a hard 
problem to describe it. For our purposes the class of semigroups as presented 
above is too broad, and we will fix out attention in semigroups having the 
additional property of strong continuity.

D efin ition  1.3. A semigroup (Tt)t>0 of bounded linear operators on B  is 
called strongly continuous if

exists
ti o t

Ttx — x d+Ttx

( 1 .1)

Gx — lim
t|0 for x £ V(G)  (1.2)

lim Ttx = x  for every x  € B. t{ o

7
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For any strongly continuous semigroup (Tt)t>o there exist constants r/ >  0 
and M  >  1 such that ||Tt|| < Mevt for t > 0 (see [33, Theorem 1.2.2]). If it 
turns out that rj = 0, then reasonably enough we say that the semigroup is 
uniformly bounded. If in addition we have M  — 1, then each operator Tt is a 
contraction; in this case we say that (Tt)t>o is a strongly continuous semigroup 
of contractions.

The generator of a strongly continuous semigroup need not be a bounded 
operator. However, if G is the generator of a strongly continuous semigroup, 
then G is a closed operator, and is domain V(G)  is dense, i.e. T>(G) — B , 
(see [33, Corollary 1.2.5]). It can be proved that every bounded operator A  
generates a strongly continuous semigroup via the formula Tt — etA. On the 
other hand, if we are given an unbounded operator A  on B,  it is of particular 
interest for us to have conditions so that A  generates a strongly continuous 
semigroup of contractions. This is done by the theorem of Hille-Yosida, the 
reader is referred to [33] for details on this.

1.3 M arkov processes and their sem igroups
Intuitively speaking, a Markov process is a stochastic process with the property 
that, conditional on the knowledge of its present state, its future values are 
independent of its past history. The purpose of this section is to present a 
mathematical framework for Markov processes in which the above intuitive 
description makes sense.

From now on we will take E  to be a complete separable metric space, and 
we also assume E  to be locally compact (see [20] for these definitions). For 
measurability purposes we consider E  with its Borel c-algebra B(E).  We will 
use the following conventions:

M (E)  is the collection of all real-valued measurable functions on E

Mb{E) denotes the Banach space of bounded measurable functions with 
the norm ||/ | | =  supxeE\f(x)\,

C(E)  is the space of all continuous functions on E,

Cb(E) is the subspace of bounded continuous functions,

Co(E) is the subspace of (bounded) continuous functions on E  which 
vanish at infinity,

Cc(E) is the subspace of continuous functions with compact support.

8
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Consider a stochastic process X  — (Xt)t>o with state space (E, 13(E)). We 
have noted that the history of the process X  up to time s is modelled by the 
cr-algebra T *  := a ( X u, u < s). If X  is a Markov process (in the intuitive 
sense described at the beginning of this section), then for any A  G B(E)  and 
s < t the conditional probability

P ( X t e A \ F ? )

should be a function of the present state X s, so it may be written in the form 
g(Xs) for some measurable function g : E  —> [0,1]. But this function also 
depends on t and A, so it would be better to write gt(Xa,A)  to indicate this 
dependence. Let us concentrate on a couple of the properties that this function 
ought to have. Clearly, as a function of A, it should be a probability measure 
describing the chance that the process be found in A  at time t, knowing where 
it was at time s. On the other hand, for each A  fixed, it is clear that the map­
ping x  t—> gt(x,A)  should be measurable. These ideas motivate the following 
definition.

D efin ition  1.4. A kernel on E  is a map t t  : E  x 13(E) —> [0, Too] having the 
following properties

i) for every x  G E, the map A  7r(x, A) is a measure on (E, 13(E))-,

ii) for every A  G 13(E), the map x  i—> 7\(x, A) is measurable.

A kernel 7r is called a transition probability on E  when ir(x, E)  =  1 for every 
x  G E.

A transition probability t t  provides the mathematical description of a ran­
dom motion in E,  as we exemplify now in a discrete-time setting. Assume that 
at time zero the motion starts at x  G E. Then at time 1 the position x x is 
chosen at random according to the probability 7 r ( x ,  •), at time 2 the position 
22 is chosen according to 7r(2i, •), and so on and so forth.

D efin ition  1.5. A (homogeneous) transition function on (E, 13(E)) is a family 
Pt, t > 0 of transition probabilities on (E, 13(E)) such that for every pair of 
real numbers s , t >  0 we have

Pt+s(x,A) = J  Pt (x, dy)Ps(y, A)

for every x  G E  and A  G 13(E). This relation is called the Chapman- 
Kolmogorov equation.

9
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Assume that Pt is a transition function. From the definition above it follows 
that each Pt is a transition probability, so that Pt(x,E)  =  1 for every x. 
In the literature it is common to refer to this kind of transition function as 
being markovian. However, there are cases where we may need to require 
that Pt(x, E) < 1 for some x ’s and f  s, in this case we say that the transition 
function is submarkovian. If we think of the transition function as describing 
the random motion of a particle, the submarkovian case includes the possibility 
that the particle disappears or dies in a finite time.

It is possible to turn the submarkovian case into a markovian case by means 
of the following trick. We define a cemetery state A, and we adjoin this state to 
E  as an isolated point, thus producing an extended state space E A =  A'UjA}. 
In this case we also extend B(E)  to B(EA) := a(B(E),  {A}), the smallest cr- 
algebra on E A containing B{E) and {a}. The state A is considered to be 
absorbing, in the sense that once the particle enters this state, it stays there 
forever. The next definition was borrowed from [38].

D efin ition  1.6. Let (Xt)t>o> P) be a filtered probability space. We say
that X  =  ((Xt)t>o, (P2)2e-EA) a Markov process with respect to (Et)t>o, with 
state space E  and lifetime £ if

1. For every t  > 0, the map X t : Q —? E A is an T A-valucd random variable.

2. For each t > 0, X t is ^-measurable.

3. For every u  G H, X t (u) G E  for t <  £ (u), and X t(u>) =A for t >  ( ( uj).

4. (P z )zeEA is a  fam ily of p ro b ab ility  m easures on (fi, T )  such th a t  th e  m ap  
z i-> PZ(A) is H (£ 'A)-m easu rab le  for each A  G B(EA).

5. PzpL) =  z] — 1 for all z G E A.

6. (Markov property) For every s , t  > 0 and every z G E A,

Pz[Xt+s e A \ F t] = P * t p C  G A], Pz —a.e., for all A  G B{EA).

We will omit the specification of the filtration when we want to regard X  as 
a Markov process with respect to its natural filtration {E*}-  In this case we 
will simply say that X  is a Markov processes.

Every Markov process X  has an associated transition function Pt, which is 
defined by the expression

Pt{x, T) := Px[Xt G T] =  Ex[ lr (W)]- (1.3)

In fact, there is a one-to-one correspondence between Markov processes and 
transition functions, as we now establish.

10
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Recall that the initial distribution of X  is the probability measure /io on 
(E, 13(E)) defined by y 0(B) := P(X0 G B) for B  G 13(E). Assuming that the 
initial distribution fj,0 of the Markov process X  is known, its finite-dimensional 
distributions can be written as

P(X0 G To, X tl G Pi , . . . ,  X tn G r n) =  (1.4)

^ - t „ - i ( ^ n - i )dyn)Ptn_i_tn_2(yn_2,d3/n-i) •■■Pti (yo,dyi)ti0(dy0).

Thus it is clear that the finite-dimensional distributions of X  are completely 
determined if we know the transition function corresponding to this process.

On the other hand, it is established in [22, Theorem 1.1.1] that for any 
time homogeneous transition function Pt(x,T)  and probability measure yo on 
E  there is a Markov process X  with values in E  whose finite-dimensional 
distributions are uniquely determined by (1.4).

Thus we see that, as far as probabilistic properties are concerned, the study 
of a Markov process can be reduced to the study of its corresponding transition 
function, provided that the initial distribution is known.

E xam ple  1.4 (B row nian  m o tion ). The Brownian transition density is the 
function pt(x,y)  defined as follows:

pt(x,y) = - 7 , t >  0

Using this density we can explicitly determine the transition function for 
Brownian motion:

\ f r pt(x,y)dy, for t > 0,
p*(x,r) =  { (1.5)

( ^ ( r ) ,  for t = 0.

Note that this transition function is defined in terms of a Gaussian density, 
something to be expected since Brownian motion is a Gaussian process. 0

It should be pointed out that usually transition functions are not given 
by explicit formulas, the previous example being the most notable exception. 
Consequently, it is not advisable to rely on explicit definitions of transition 
functions for constructing Markov processes. To go around this difficulty we 
use the one-to-one correspondence existing between transition functions and a 
certain kind of semigroups of operators, as we next explain. First we need a 
couple of definitions.

11
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D efin ition  1.7 (M arkov sem igroup). Let B  be a Banach space of real­
valued functions on E. A semigroup (Tt)t>o of bounded linear operators on B  
is called a Markov semigroup if 0 <  /  < 1 implies 0 < Ttf  < 1 for /  G B,  and 
also Tt 1 =  1 for all t > 0.

There is a particularly important class of Markov semigroups, the Feller- 
Dynkin semigroups. These are defined next.

D efin ition  1.8 (Feller-D ynkin  sem igroup). A Feller-Dynkin semigroup is 
a strongly continuous Markov semigroup (Tt)t>o of bounded linear operators 
on the space Cq{E).

Given a Markov process X  with corresponding transition function Pt , the 
expression

defines a contraction semigroup on Mb(E), as can be seen using the Chapman- 
Kolmogorov property. In fact, we can see without difficulty that equation
(1.6) defines a Markov semigroup on Mb{E). Thus it is clear that if we know 
the transition function Pt(x,T)  of the Markov process X ,  then its associated 
Markov semigroup (Tt) is determined.

Conversely, if we are given a Markov semigroup (Tt), we can recover the 
transition function applying formally the operators Tt on indicator functions 
of Borel sets:

This formal construction works well at least when (Tt) is a Feller-Dynkin semi­
group. In fact, the importance of this kind of semigroups comes from the 
fact that any Feller-Dynkin semigroup has a corresponding transition func­
tion Pt (x,T)  on (E, 13(E)) such that equation (1.6) holds for all functions 
/  G Mb(E ); a proof of this can be found in [35, Proposition III.2.2].

Thus we learn that, in order to study the probabilistic properties of a 
Markov process, it suffices to concentrate on the study of its associated semi­
group. This is a great gain since at this stage we can have at our disposal 
all the machinery developed for semigroups of operators on a Banach space. 
In particular, we can concentrate our efforts in studying the generator of the 
semigroup.

E xam ple  1.5 (B row nian  m o tion ). Using the transition function presented 
in Example 1.4 we can construct explicitly the semigroup (Tt) corresponding 
to Brownian motion: for any bounded Borel function /  : R —» R and t > 0 we 
have

( 1 .6 )

Pt (x,T) = Tt l r (x).

for t > 0

for t = 0.

12
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Here, the semigroup property for (Tt) follows from the Chapman-Kolmogorov 
equations. Let us consider the generator G of this semigroup, i.e. the operator 
defined as

Thus we see that the space (R) is contained in the domain of the generator

Recall that for a twice-differentiable function /  : Rn —> R we define the 
Laplacian of / ,  denoted A /, by means of the expression

It is established in [35, Proposition VII. 1.10] that for one-dimensional Brown­
ian motion the domain of the infinitesimal generator is V(G)  =  C'q(R) and we 
actually have G — |A  on this space, see also [36, p. 243]. For n-dimensional 
Brownian motion with n > 2 this is no longer the case, but the domain D(G) 
of the generator is larger and contains C'q(R) as a proper subspace. However, 
it is still true that the restriction of G to Cq(R) coincides with the operator

This definition is entirely analogous to that of the semigroup corresponding to 
one-dimensional Brownian motion, as presented in Example 1.5. Note, how­
ever, that now we are considering the operators Tt acting on the space Co(Rn).

i
for suitable functions / .  Note that for /  G C^(R) we have

Gf (x)

y/2ir
dy

where 9 G (0,1) depends on yyft. Calculating this limit we get

Gf{x)  = -  / ) ( x) =

of Brownian motion, and G f  — | / 7/ for /  G (R). 0

|A  (see [35, Proposition VII.1.11] and also [36, p. 257]).

Let E  = Rn, and let Pt(x, dy) denote the transition function of n-dimensional 
Brownian motion. For /  G Co(Rn) we set

T t f (x ) :=  /  f (y )P t (x,dy) (1.7)

13
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It can be proved that expression (1.7) defines a Feller-Dynkin semigroup on 
Co(Mn), see [36, p. 242]. Once again we emphasize that, for the case n =  1 the 
generator of this semigroup is the operator ( |A,Co(R));  while for n > 2 the 
situation is more complicated, and the generator of the semigroup is a proper 
extension of |A .

For the rest of this section we assume E  = Rn, but E  could equally well be 
an n-dimensional smooth manifold. Recall that the lifetime f  of the process 
X  is defined as follows:

C(o>) := inf{i >  0 : X t(u>) =A}.

Also, we point out that the process associated to a Feller-Dynkin semigroup is 
called a Feller-Dynkin process.

D efin ition  1.9 (Feller-D ynkin  diffusion). A Feller-Dynkin diffusion on R" 
is a Feller-Dynkin process X  with the additional properties that the trajectories 
1 1—> X t (u) are continuous on [0, £), and the domain V(G)  of the generator G 
of X  contains C“ (Rn), the space of infinitely differentiable functions with 
compact support.

From now on the word diffusion will be reserved to mean a Feller-Dynkin 
diffusion. Let A  be a diffusion, and denote by L  the restriction of G to 67?°(Rn). 
Then the operator L has the following properties:

(i) L is a linear map from Cj>0(Rn) to Co(Rn).

(ii) L is local: if the functions f , g  E C ^ R 71) agree in some open neighbor­
hood of a point x, then L f ( x ) =  Lg(x) on that neighborhood.

(iii) L satisfies th e  m ax im um  principle: if /  E C'^0(Rri) a tta in s  its  m ax im um  
a t  x  a n d  f ( x )  > 0, th e n  L f ( x ) <  0.

In addition, we have the following result, which we take as the basis for all 
our work in Chapter 2.

T h eo rem  1.2. Let G be the generator of a Feller-Dynkin diffusion. The re­
striction L of G to C ~ (R n) is a second-order elliptic operator of the form

1 r \2  r  h  o  P

L f (x ) =  2 aij^ dx dx ^  + ~i,j=l 1  ̂ i=l 1

where the functions ay(-), &;(•) and c(-) are continuous, the matrix (aij(x)) is 
symmetric and nonnegative-definite for each x, and c(x) > 0 for each x.

The proof of this result can be found in [36, p. 258].

14
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Chapter 2

R eversibility for Brownian  
m otion w ith drift: first criterion

2.1 Invariant and reversib le m easures
In this chapter we will consider diffusion processes with values in Rn, and 
we will describe them from the point of view of their infinitesimal generator. 
Recall from the previous chapter that the restriction of such generator to the 
space C'(T(R n) is a second-order differential operator of elliptic type. Our 
discussion will be restricted to operators of the form

L f ( x ) = l- A } ( x )  + Y / b , ( x ) ~ f ( x ) ,  for /  e  C r ( i r ) .  (2.1)
i=1 1

We saw in the previous chapter, comments after Example 1.5, that the operator 
( iA,C~(R") )  corresponds to Brownian motion on Rn. Thus it is natural to 
consider the operator L  described above as corresponding to a “Brownian 
motion with drift” , where the drift is determined by the first-order part.

We will assume from the outset that the drift coefficients 6,(x) are smooth 
functions. Note that we can gather these coefficients as the components of a 
vector b(x) = (bi(x) , . . . ,  bn(x)) and thus obtain a smooth vector field (i.e. a 
smooth map from Rn to Rn). Then the operator L  can be expressed as

L f  =  +  (b, V/ ) ,  for /  € C ? (IT),

where V /  =  ( | £ , . . .  , J^-) is the gradient of / ,  and (•, •) denotes the usual 
inner product in Rn.

Next we start to explore the relation between the operator L and certain 
measures on R” . Recall that a Borel measure on Rn is a measure defined on

15
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the Borel cr-algebra £J(Rn). In all that follows whenever we say “measure” we 
will mean a regular Borel measure which is finite on compact sets, see [7] for 
precise definitions of these terms.

D efin ition  2.1. A measure g  on Rn is said to be an invariant measure for the 
operator L  if

[  Lf(x)g{dx) = 0 V / e C c°°(R"). (2.2)
J R"

In case L has an invariant measure, we will say that L is well-behaved.

Remark. The term “well-behaved” that we have just defined is not standard, 
but we consider that giving a specific name to operators with an invariant mea­
sure will help improve the presentation. The definition of invariant measure 
as above does agree with the standard literature, see [10],[11],[24],[25].

D efin ition  2.2. A measure m  on Rn is called a symmetrizing measure for L 
if

[  L f (x )  g(x)m(dx)  = f  f (x )L g{x )m (dx )  \ / f , g £ C ™ ( Rn). (2.3)
JRn JRn

Symmetrizing measures are also called reversible. In case such a measure 
exists, the operator L is said to be symmetrizable or also reversible.

Remark. If X  is a diffusion process with semigroup (Tt)t>o, a (finite) measure 
g  is called invariant for (Tt)t>o (or for the corresponding process X ) if for all 
functions /  £ Co(Rn) and a l l t  > 0,

[  Ttf (x )g(dx)  = [  f(x)g(dx).  (2.2')
JWLn J R"

In this case the measure g  can be normalized to become a probability measure.
When there is an invariant probability measure g for the process X ,  setting g
as the initial distribution makes the process become stationary (i.e. it has the
same distribution at all times). For this reason invariant probability measures
are also called stationary distributions, see [25]. The link with the definition
of invariant measure we presented above is the following: If L  denotes the
generator of the semigroup (Tt)t>o and the measure /i satisfies (2.2'), then it
also satisfies (2.2), but the converse is not true (see [10, Remark 3.0]).

Similarly, a (finite) measure g is called symmetrizing for the semigroup
(Tt)t>o if for all f , 9  € Co(Rn) and all t > 0,

[  Ttf (x )g (x )  g(dx) = [  f ( x ) T tg(x)g(dx).  (2.3')
J Rn JM.n

When the semigroup (Tt)t>o has a symmetrizing measure g, the corresponding 
process X  becomes reversible, in the sense that if we set g  as the initial dis­
tribution, then both X  and its time reversal have the same law. The technical 
definition of time reversal can be consulted in [35, Section VII.4]. Once again, 
condition (2.3') is in general stronger than (2.3).

16
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The first result that we present establishes that every reversible measure 
is also invariant. The papers of K. Handa suggest that this result is widely 
known, see [24] and [25]. In [26, p. 291] this result is mentioned as “being 
clear” , though the authors deal with diffusions on a compact manifold there, 
and in this situation the proof is really trivial. We include our own proof of 
this implication for the particular kind of operators that we are considering.

P ro p o sitio n  2.1. Let L be an operator of the form (2.1), and let /a be a 
measure on Rn. I f  g is reversible for L, then p. is also invariant.

P r o o f . Let /  €  C£°(lRn) be arbitrary. Since both /  and L f  have compact 
support, we can find an open ball Hr (0) centered at the origin with radius 
big enough to contain the supports of both these functions. Take a function 
g € C£°(Rn) such that g = 1 on Br(0). We have

[  L f (x )g (d x )
J Rn

where in the last step we use the fact that Lg = 0 on B r(0). ■

In what follows we will need to use the following formula of integration by 
parts: for any f , g e  C'c1(Rn),

f  p - ( x ) g ( x ) d x  = -  [  f { x ) ^ - ( x ) d x '  for i = 1 , . . . , n. (2.4)
JR" UXi Jjjn OXi

This formula of integration by parts is standard in the theory of partial dif­
ferential equations, and in fact is taken as the basis for defining the notion of 
weak derivatives, see for instance [27, Definition 7.2.1] or any book on partial 
differential equations.

For functions / ,  g, let us denote (/, g) their inner product with respect to 
Lebesgue measure:

( f ,g)  ■= [  f(x)g(x)dx.
J Rn

Note that this expression makes sense at least for all continuous functions with 
compact support. Also note that, under this newly introduced notation, the 
equation (Lf ,  g) =  (/, Lg) would mean that the operator L  is reversible under 
Lebesgue measure.

P ro p o sitio n  2.2. The Laplace operator A satisfies (Af , g )  — ( f , Ag)  for all 
functions f , g  £ C ^ R ”).

17

=  /  Lf(x)g(dx)  =  / Lf ( x)  g(x)g(dx)
J B r { 0) J  B r {  0)

=  /  Lf ( x )  g(x)g(dx) = / f (x)  Lg(x)ji(dx) 
JR" JRn

= [  f ( x ) Lg(x)fi(dx) = 0,
J B r {  0)
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PROOF. We use the formula of integration by parts (2.4). For arbitrary 
f , g e  Cc°°(]fr) we have

In this chapter we are interested in the study of conditions for operators 
L as in (2.1) to admit a reversible measure. As a consequence of Proposition
2.2 we see that the operator is reversible under Lebesgue measure. Thus 
it is natural to expect that whether L as defined above has the property of 
reversibility depends on the nature of the drift term. In Section 2.2 we will 
present Kolmogorov’s criterion of reversibility, which gives conditions on the 
drift term so that the operator L is reversible (see Theorem 2.2 ahead).

The following technical result is taken from [26, Proposition V.4.4], Since 
the authors present this result without a proof, we decided to include our own 
proof here.

P ro p o sitio n  2.3. Assume that the drift b(x) is smooth. Then for the operator 
L defined in (2.1) we have (L f , g ) — (f ,L*g), where L* is given by

Equivalently, we can write

L

P r o o f . Let us write L = L2 +  Zq, where

18
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We can read L; as “the i-th order part of L” . We will find L* in the form 
L* — L % + L \ , where L* corresponds to Lj by (Li f , g ) =  (f ,L *g ). As a 
consequence of Proposition 2.2 we know L?; =  L2, so it only remains to calculate 
L*. We will use the formula of integration by parts (2.4) to show that

Recall that the divergence of a vector field £ on IRn is defined by the expression

so we see that L\g(x) =  — div(g(x)b(x)). To establish the last part of the

We saw in Proposition 2.1 that, for a given operator L, reversible measures 
are necessarily invariant. The question arises whether invariant measures exist 
at all, for only when this question has a positive answer does it make sense 
to invest our efforts in studying the reversible measures. Next we turn our 
attention to the problem of existence of invariant measures. For this, the 
best references are the papers [10],[11] of V.Bogachev and M.Rockner. In 
particular, [11, Theorem 1.2] is a result of existence of invariant measures 
under conditions of local integrability of the drift b(x). Such condition clearly 
applies to our case since we are considering smooth drifts, but an important 
difference to point out is that this result is aimed at finding invariant probability 
measures, a restriction that we do not impose since, for instance, Brownian 
motion does not have an invariant probability measure, but it does have an 
invariant measure in the sense of Definition 2.1 (i.e. Lebesgue measure). The

For any f , g  e  C“ (Rn) we have

( L i f , g ) =  [  L xf ( x)  g(x)dx= [  V  k ( x ) ^ - ( x )  g(x)dx
JRn JWn - 1

^(x). Keeping this in mind we can write

( L i f , g ) =  [  f(x)[-d iv(g(x)b(x))]dx,
J  R e ­

claim it suffices to note that A f ( x)  =  div(V/(a:)). ■

19
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paper [10] has a whole section devoted to the problem of existence of invariant 
measures, although once again it is focused on invariant probability measures. 
An existence result is also presented in [26, Proposition V.4.5] for diffusions 
on a compact Riemannian manifold, and this result establishes also that the 
invariant measure is unique (up to a multiplicative constant). This result 
does not apply to the case which concerns us because we are working with 
diffusions on Mn, a non-compact space. In fact, we will see ahead in Example
2.1 that for the kind of operators we are considering there may be more than 
one invariant measure, so uniqueness does not hold. For more discussions on 
invariant measures the reader is referred to the papers [4],[8],[12],[14].

Next we quote without proof a result on regularity of invariant measures.

T h eo rem  2.1. Let L be a well-behaved operator of the form (2.1). I f  /i is an 
invariant measure for L (in the sense of (2.2)), then p has a smooth density 
with respect to Lebesgue measure, so we may write p(dx) =  ip(x)dx for some 
<p £ C°°(Rn). Moreover, ip is a strictly positive function.

Remark. This fact is established in [26, Proposition V.4.5], where the authors 
claim that the smoothness of invariant measures follows from a lemma due to 
H.Weyl. As stated in [42, Lemma 2], this latter result says that if u : R" —>■ R 
is a function such that

then u(x) is a harmonic function and, in particular, smooth. This result is 
also quoted in [27, p. 18] and [2, p. 319]; it seems to be known as Weyl’s 
lemma. The way it is used in [26] suggests an extension of Weyl’s lemma for 
second order differential operators of elliptic type. A more general version of 
Weyl’s lemma, probably the one that [26] intends to quote, is presented in 
[3, Theorem 6.6] as a regularity result for elliptic problems. In the context of 
elliptic operators, Weyl’s lemma establishes that if p, is a solution of L*p =  0, 
that is, if

then /i has a smooth density, so we may write fi(dx) = <p(x)dx for some 
£ C'°°(En). The fact that this density is a strictly positive function is also 

commented in [26, Proposition V.4.5].

The next proposition emphasizes the importance of the operator L* for 
computing the invariant measures of L.

P ro p o sitio n  2.4. Let the measure /i have a smooth density, say fj,(dx) =  
<p(x)dx where £ C°°(Rn). Then ji is an invariant measure for L if and only 
i f its density solves the equation L*p = 0.
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P r o o f . Equation (2.2) now reads

/  Lf{x)(p(x)dx = 0 V / e C c°°( IT),
JRn

or in the newly introduced notation, (Lf,<p) =  0 for all /  G CP°(Rn). But 
from Proposition 2.3 we know (L f , <p) =  (/, L*<p), so the claim follows. ■

Let L be a well-behaved operator of the form (2.1), and let /i be an invariant 
measure for L. Since the density of p. is positive, writing U(x) — — log(<p(a;)) 
we see that e~u^ d x  = <p(x)d:t — fi(dx). Thus any invariant measure for L can 
be written in the form e~u^ d x  for some appropriately chosen function U(x).  
The next result clarifies the meaning of “appropriately chosen” by establishing 
how the function U(x) must be linked to the vector field b(x) so that the 
measure e~u^ d x  is invariant for L. This and all remaining results in this 
section come from [26, Section V.4], Recall that a vector field £ on Rn is called 
divergence-free when div£(:r) =  0 for all x G Rn.

P ro p o sitio n  2.5. Let L be a well-behaved operator as in (2.1). A measure of 
the form e~u^ d x  is invariant for L if and only if  there is a divergence-free 
vector field f  on Rn such that

b(x) = - \ v U ( x )  + f{x)eu{x). (2.5)
£

P r o o f . Let us assume that e~u^ d x  is an invariant measure for L. Using 
the expression for L* obtained in Proposition 2.3 we get

L*{e~u{x)) = div Q v (e_l/(l)) -  e - u(-x)b(x)j  

= div (e~u{x) ^ V L ( r )  -  b(x

Define the vector field £ as follows

:= e - ^ )  U v t / ( i )  + b(x)\

Proposition 2.4 says that the invariant measures come from solving the equa­
tion L*(e~u ) =  0. Prom this and the previous calculation we see that the 
vector field £ must have divergence zero, and it is clear that b(x) and U(x)  are 
linked by equation (2.5).

Conversely, if U G C'°°(Rn) is a function that satisfies equation (2.5) for 
some divergence-free vector field £, then using Proposition 2.3 together with 
the above calculations we get

L*(e~u(x)) -  div (e~uix) ^~V C /(a;) -  b ( x ) ^  =  - d i v£ ( x )  =  0,
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so e u('x}dx must be an invariant measure by virtue of Proposition 2.4.

We have been using the notation (•, •) for the usual inner product in Rn. 
It is also customary to use the “dot” notation for this inner product; so that 
for instance, u • v is another way to write (u, v ) . The dot notation is especially 
suited for the vector calculus operations, and we will start using these two 
notations interchangeably, hoping that this causes no confusion on the reader.

P ro p o sitio n  2.6. Let L be a well-behaved operator as in (2.1). The measure 
e-v(x)dx is invariant for L if and only if  the function U satisfies

\vu • V U  +  b • VU  -  -  div(6) =  0. (2.6)

P r o o f . Using the result of Proposition 2.3, a simple calculation yields the 
following:

L*{e~v{x)) = e~u{x) l v U ( x )  • VU{x)  +  b(x) • VU(x)  -  ^A U (x)  -  div(b(x))

Thus we see that L*(e u x̂l) =  0 if and only if the function U(x) satisfies 
equation (2.6). ■

Given a measure of the form e~u^ d x ,  we will designate by (f , g ) u  the 
inner product associated to this measure:

(f , g ) u =  [  f (x)g(x)e~u{x)dx.
J Rn

P ro p o sitio n  2.7. For any operator L of the form (2.1) we have (L f ,g ) u  = 
( /, Lg)u, where L is given by

Lg =  t A g -  [b + VC/] • Vg  + 1 V t/ ■ VU + b ■ V U  -  ( A t/ -  div(6) 9-

P r o o f . As in the proof of Proposition 2.3, let us write L =  L 2 + we will 
compute L  in the form L — L 2 + L 1 , where Li corresponds to Lt by the equation 
(L i f ,g )u  = (f ,L ig )u , for i = 1,2. We will use the formula of integration by 
parts (2.4) to show that

Lig(x)  =  g(x)(b(x) • VU(x)) — g(x) divb(x) — b(x) • Vg(x).

and

L 2g(x) =  g(x) -  Vg(x)  • VU{x) -  l-g(x)AU{x)  +  ±g(x)VU(x)  • VU{x).
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Let us start with the calculation of L\. For any f,g<E C£°(R") we have 

( L i f , g ) = f  L i f ( x )  g{x)e~U{x)dx = j  b i{x)^ -{x )  g(x)e~u{x)dx

=  Y  I k ( x ) ^ - { x )  g(x)e u{x)dx 
i=1 J R" Vxi

=  ~ Y  /  f ( x )-K~ [bi(x)g(x)e~u(-x)] dx
•1 J]Rn uXii=I 
nIV n

Y m
i= 1 “' IR

= / A )

~ ( b i ( x )g ( x ) )  -  bi(x)g(x)~-(x)

n  f )  n  ATT

-  Y  Tfr. (9(x M x )) +  9{x) Y  h ( x ) d l - ( x )
i= 1 Z=1

e - u{x)dx 

e - u(x)dx

=  /  / (z )  [— div(g,(x)6(x)) +  g(x)b{x) • V£/(a:)] e u^ d x ,
J Rn

so upon computation of the divergence div(gb) we get the expression for L\. 
Now let us calculate L2. For arbitrary f , g £  C^°(Rn) we have

(L2f ,g )  = [  L 2f (x )  g{x)e~u{x)dx
Jun

=  / J ±

=l z £ ^ (x)s(x)e~V(*>dx
~ - ^ L ^ (x)̂ x>e'm]dx
= l Y j wJ W ] ^ 2  [9(x)e-u&] dx

i A  r  . d
IV n

2 g j A f c

A
<9zi

A ) ” s (A ( l ) ) 'r ‘,w  

A )-»wI A e"t'W

da:

dx ,
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so u p o n  d iffe ren tia ting  an d  fac to ring  o u t e th e  last expression  becom es

/JRn 1

dg d U \ .  ,dUk  ( k r 3 Z ) {x) ~ I S  - 9 i :J e~u{x)dx,

a n d  a fte r  perfo rm ing  th e  las t p a r t ia l  d iffe ren tia tion  we o b ta in  th e  expression 
for L 2. To conclude th e  p roo f we ju s t  need  to  p u t th e  tw o pieces L \  an d  L 2 
togethe r. ■

C oro llary  2.1. I f  e~u^ d x  is an invariant measure for L , then L is given by

Lg = - A g - [ b  + V U ]-V g .

P r o o f . Follows from Proposition 2.7 and equation (2.6).

2.2 K olm ogorov’s criterion

In this section we present and prove a very important characterization of re­
versibility, the criterion of Kolmogorov. This criterion establishes a condition 
for an operator L  to admit a reversible measure. As pointed out earlier, the 
condition is on the first-order part of L, and it says in brief that reversibility 
is equivalent to the vector field b(x) being conservative. This criterion can be 
found in [26, Theorem V.4.6] for the case of diffusions on a compact manifold, 
the proof that we offer below is an adaptation to the case of diffusions on Rn 
that we are considering.

T h eo rem  2.2. The operator L defined in (2.1) is symmetrizable ( i.e. has a 
reversible measure) if  and only if  b(x) = V F(x) for some F  E C°°(Rn). In 
this case, the reversible measures are of the form Constant • e2F^ d x .

PROOF. Suppose first that L is symmetrizable, and let m(dx ) be a reversible 
measure. Then m  is also an invariant measure (Proposition 2.1), so we can 
write m(dx) — e~u^ d x  for some function U. Reversibility under this measure 
means that (L f ,g ) u  = (f ,L g )u  holds for all f , g  E CF°(Rn). But Proposition 
2.7 says that we also have (L f , g)u =  (/, Lg)u for all / ,  g E C~(R "), so we get 
Lg =  Lg for all g E Cj’°(Rn). Taking into account Corollary 2.1 we see that 
b{x) = — [6(x) +  'VU(x)}, and in consequence b(x) = V ( —^U(x)).

Conversely, if b(x) = V F(x) for some function F E C°°(Rn), then it is 
easy to see that U(x) := —2F(x)  satisfies equation (2.6). Hence e~u^ d x  is an 
invariant measure, and we have

b(x) =  VF{x)  = ~ W U ( x ) .
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It follows that Lg — Lg for all g € C^°(En), which implies that (L f ,g ) u  =  
(f ,L g )u  holds for all / , j  6 C ^ R " ) .  But this says that L  is symmetrizable 
with reversible measure e^u^ d x .  ■

An immediate consequence of this theorem is the following

C oro llary  2.2. I f  the operator L is symmetrizable, then its reversible measure 
is unique (up to a positive multiplicative constant).

As another interesting consequence of Theorem 2.2, we will prove in the 
next corollary that in the one-dimensional case reversibility is always possible.

C oro llary  2.3. In the one-dimensional case every operator L of the kind (2.1) 
is reversible.

P r o o f . F irs t le t us p o in t o u t th a t  in th e  one d im ensional case th e  o p e ra to r  
L defined in  (2.1) ac ts  on functions /  accord ing  to  th e  expression

L f (x )  = \ f " ( x ) +  b(x)f (x) .

Assume that we are given an operator L as above, with a smooth drift coeffi­
cient b(x). Define the function F(x)  as follows

F(x) (  b(t)dt.
J o

Then it is clear that F'(x) = b(x) for all x e R ,  According to Theorem 2.2, we 
see that any operator L with a smooth drift coefficient is reversible, and the 
reversible measure is of the form e2F̂ d x  with F(x)  as defined above. ■

We know that reversible measures are invariant, and in fact the invariance 
of the measure e2F^ d x  from the previous proof can be checked directly using 
equation (2.6) with U(x) — —2F(x).  The question arises whether these are 
all invariant measures for the given operator, The answer to this question 
involves solving equation (2.6) for U(x), a problem that may be quite hard to 
tackle depending on the given drift b(x). We will give an explicit answer to 
this question in the next example, were a specific kind of drift is considered.

E xam ple  2.1 (O ne-d im ensional G aussian  case). Assume we fix U(x) — 
a x 2 with a > 0, so we are looking at the Gaussian measure e~ax dx. First we 
are going to find for which functions b{x) the operator L  has e~ax dx as an 
invariant measure. We know in this case the drift coefficient b(x) of L must 
satisfy relation (2.6), which in the present case yields the equation

b'(x) — 2 axb(x) — 2a2x 2 — a.
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This is a linear differential equation of first order, and we can solve it using 
the integrating factor ef(~2ax)dx =  e~~ax . After a few computations, we arrive 
at the general solution

b{x) = - a x  + Ceax\  (2.7)

where C  is an arbitrary constant. Note that this is nothing but equation (2.5), 
which we have obtained by a direct computation, the constant C  playing the 
role of the divergence-free vector field. Thus e~ax dx is invariant for L if and 
only if b(x) is of the above form. We see that there are many operators L 
that are invariant under e~ax dx, and the reversibility of these operators is 
guaranteed by Corollary 2.3. Let us pick a particular one of these operators, 
say by fixing C = 1, so the drift coefficient is

b(x) =  —ax  +  eax2.

We can find easily an antiderivative for this function, just define

F(x) : = - — + f  eat2dt.
2 J o

Note that the measure e2F^ d x  symmetrizes the operator L, where

2F(x) —a x2 +  2 f eat2dt.
J o

Being a reversible measure, this is also an invariant measure for the given
2

operator. But we know already that this operator is invariant under e~ax dx, 
a measure that is clearly different form e2F̂ d x  with F(x)  as above. Thus, we 
learn from this example that for a given operator L there may be more than 
one invariant measure. <C>

Let us continue the line of reasoning of the previous example and try to 
apply it to the n-dimensional case, for n > 2. Once again, let us assume we are 
given a function U(x), and we want to find operators L for which e^u^ d x  is 
an invariant measure. We have seen that there must be some divergence-free 
vector field £(x) =  (£ i(x),. . . ,  £n(^)) such that the drift coefficient b(x) and the 
function U(x) are linked by equation (2.5), which for convenience we rewrite 
here:

b(x ) = - \ v U { x )  +  ^(x)eu{-x). (2.5)

If £ =  0, it is clear that L is symmetrizable with reversible measure e^u^ d x .  
On the other hand, if £ is not the zero vector field, it is not immediate how we 
can construct a potential function F(x)  for b(x). Some additional conditions 
may be required for this to work. This is illustrated in the next example.
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E xam ple  2.2 (Tw o-dim ensional G aussian  case). Assume we are given the 
function U(x,y) = a x 2 -\-2(dxy + 8y2, where a, 8 are positive constants; and we 
want to see what kind of operators L are reversible under the Gaussian measure 
e~u x̂,y^dxdy. The discussion above tells us that in this case we must have 
b(x,y) = — \VU{x ,y ) ,  so it follows that b(x,y) =  — (ax + (3y,(3x +  Sy). Note 
that in particular the operators L  for which the Gaussian measure e~u x̂'v^dxdy 
is reversible must have linear drift. Linearity is obvious since we can write

b(x, y) =  — M  • (x, y)' where M  is the matrix M  =  ^  ^  .

On the other hand, assume we are given an operator L with linear drift 
coefficient b(x, y) — — (ax  + (3y, 7x  +  8y). We want to find conditions for L  to 
be reversible, and in the positive case to compute the reversible measure for 
such operator. This amounts to finding the corresponding function U(x,y).  
Taking £ =  0 in equation (2.5), we have

VU(x, y) =  —2b(x, y) =  (2ax  +  2f3y, 2^x +  25y).

Let us write f i ( x ,y )  = 2ax  +  2(3y and f 2 (x,y) — 2^x +  25y. The equation 
above says that we must have =  f i  and ^  =  / 2- Since U is smooth we
also have =  ^ 7, so necessarily But note that ^  =  2q and
^  =  2/3, so we conclude that 7 =  (3. Note in particular that reversibility

forces the matrix M  = ^  to be symmetric.

Next, from =  2ax  +  2(3y we find that the function U must be of the 
form U (x ,y ) =  a x 2 +  2(3xy + h(y) for some function h(y) which depends on 
y only. Differentiating this with respect to y we get =  2(dx +  h'(y). But 
we know ^  =  27a: +  25y, so taking into account the fact that 7 =  /? we find 
h(y) =  8y2 + k for some arbitrary constant k. Thus the general from of U is

U(x, y) =  a x 2 + 2Pxy +  by2 +  k.

Note that in this case the measure e~u<<-x'y^dxdy will be Gaussian precisely when 
a,5 > 0. 0

Remark. The previous example established incidentally that an operator L 
with linear drift b(x,y) =  — (ax  +  /3y, j x  + 8y) is reversible if and only if the

matrix M  =  is symmetric. This allows us to think of examples where

reversibility is not possible, just take operators L with linear drift correspond­
ing to a non-symmetric matrix M.
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Chapter 3

R eversibility for Brownian  
m otion w ith drift: second  
criterion

3.1 Q uasi-invariant m easures
This chapter explores the relation between reversibility and quasi-invariance 
for a measure on the state space of the process associated to a given operator L 
of the form (2.1). Let us recall that our focus so far has been on n-dimensional 
diffusions, i.e. the case when the state space is Rn. Since the discussion in 
this section is valid for more general state spaces, we will start working on 
an abstract state space E, and we will specialize to the case E  =  Rn in the 
next section, where we will present and prove a second characterization for 
reversibility.

Let E  be a topological space. For measurability purposes we equip E  with 
the Borel cr-algebra 13(E). By a measurable transformation on E  we mean a 
measurable bijection from E  to E  with a measurable inverse. For the sake 
of simplicity, we will use the word ‘transformation’ to refer to a measurable 
transformation.

D efin ition  3.1. Let FI be a topological space. A group of transformations on 
E  is a family T of transformations on E  which is closed under the operation 
of composition, contains the identity and also contains the inverse of each of 
its elements.

Suppose that the space E  is equipped with a transformation group T. Given 
a measure ji on E,  for each 7 G T we can define a new measure p7 by means 
of yU7(A) =  //(7(A)) =  /i((7_1)_1(A)), for A  G B(E). It is also customary to 
write fj, o 7 for the measure /r7 just defined.
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D efinition 3.2. Let E  be a topological space equipped with a transformation 
group T. A measure n on (E, 13(E)) is said to be T-quasi-invariant if for each 
7 G T the measures /i7 and /i are equivalent, i.e. they have the same sets of 
measure zero.

The definition of quasi-invariance we have just presented was borrowed 
from [29] where the study of quasi-invariant measures is approached from an 
abstract and rather general standpoint. For our specific purposes, we should 
keep in mind that the abstract space E  plays the role of the state space of a 
process under consideration (i.e. that corresponding to a given operator L), 
and we want to consider an analog of the group of “shifts” {Sf}  introduced in 
[24] to establish the connection between reversibility and quasi-invariance. The 
groups of transformations on E  that we consider are indexed by some vector 
space V, so we will write S  = {Sbluev to denote a generic transformation 
group on E. In other words, for each v £ V, the mapping Sv : E  —> E  is a 
bijection, and the following properties hold:

1) Su+V(x) =  Su(Sv(x)),
2) S q(x ) =  x.

With this in mind, we will adapt the definition of quasi-invariance to suit our 
purposes. The definition we present next coincides with that used by K. Handa 
in his papers [24], [25].

Definition 3.3. Let E  be a topological space equipped with a transformation 
group S  — { S ^ e v ,  and let A : V  x E  —> R be such that for each v £ V  the 
function x  i—> A(v, x) is Borel measurable. We say that a measure m  on E  is 
A-quasi-invariant with cocycle A if for each v € V  the measures m  and m  o Sv 
are equivalent and the density is given by

(l^ l o S .il [j:} =  eA(^); m_ a .s.
dm

The first result that we present concerns a certain identity that is neces­
sarily satisfied by the cocycle A corresponding to a quasi-invariant measure. 
This result is already mentioned in the papers [24], [25]; see also [37]. For the 
sake of clarity we present it here as a proposition with its own proof.

Proposition 3.1. Let E  be a topological space equipped with a transformation 
group S  =  {S'-yluev- Consider a measure m  on E, and assume that m  is 
quasi-invariant under S  with cocycle A. Then the map A satisfies the following 
identity:

A(u -f v, x) =  A(u, Sv(x)) +  A(v, x), m-a.s. (3.1)
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P r o o f . By definition we know that if m  is quasi-invariant under S, then for 
any v £ V  the measures m  and rn o Sv are mutually absolutely continuous. 
Then on one hand, from the definition of Radon-Nikodym density we have

dm o Su+V(x) = eA(u+v,x^dm(x).

On the other hand, using the transformation group properties we have

dm o Su+V(x) = dm o Su(Sv(x))

= eA{u'Sv[x))dm{Sv{x))

=  eA{u’Sv{x))eA{v’x)dm{x]

= eA{uA(x))+A{v'x)dm{x).

Hence we see that for m-almost every x, the following equality is valid

e A ( u +v , x )  _  gA(u,S»(x))+A(«,i).

and this in turn implies that A(v,x)  satisfies the identity (3.1). ■

In the literature equation (3.1) is commonly referred to as the cocycle 
identity. In fact, given a transformation group S  = {5'.( }.(.ey on the space E, a 
map A : V  x E  —> R is called an ^-cocycle when it satisfies (3.1). The reader 
can find more details about cocycles in the monograph [1],

3.2 R eversib ility  and Q uasi-invariance
Now let us ge t back  to  th e  case of fin ite-d im ensional diffusions, so from  now 
on we tak e  E  =  K n . For th e  res t of th is  section  we work w ith  a  specific g roup 
of tra n sfo rm a tio n s  in  R n defined as follows: Sv(x) := x  +  v for v e  Rn. In 
o th e r w ords, S  — {•S'^giRn is th e  g roup  of all tra n s la tio n s  in  Rn. T h e  nex t 
p ro p o sitio n  provides a  host of exam ples of quasi-invarian t m easures on  Rn.

P ro p o sitio n  3.2. Let S  = be a transformation group on Rn, and let
U : Rn —► M be a continuous function. Define the measure m(dx) — e~u^ d x .  
Then m  is S-quasi-invariant with cocycle

A{v, x) =  U(x) -  U{Sv{x)). (3.2)
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P r o o f . F irs t, le t us e s tab lish  th a t  a  function  A as defined in  (3.2) satisfies 
th e  cocycle iden tity :

A (u + v, x) =  U(x) -  U(Su+v(x))

= U(x) -  U(Sv(x)) + U(Sv(x)) -  U(Su+v(x))

= U{x) -  U(Sv(x)) + U(Sv{x)) -  U(Su{Sv(x)))

= A(v, x) +  A(u, Sv(x)).

Next, to prove the quasi-invariance, let v € V  be arbitrary. We have

(m o Sv)(dx) = e~u('Sv^ d x  =  eu x̂^ u Ŝv<KX̂ e~u^ d x  = eA(-v’x^m(dx), 

so we see that m  o Sv and m  are equivalent with the required cocycle. ■

It is worth pointing out that the proof of this proposition does not depend 
on the specific group of transformations being used. This fact makes it pos­
sible to extend this result to more general spaces, provided that they can be 
equipped with a “uniform measure” (that is an analog of Lebesgue measure). 
For instance, this is suggested in [24, comments right after Theorem 2.1] where 
the author uses equation (3.2) as starting point to derive the cocycle corre­
sponding to certain measure-valued diffusion. The next corollary imitates this 
derivation for the specific case that we are studying.

C oro llary  3.1. In the setting of Proposition 3.2, assume further that U is 
continuously differentiable. Then the measure m(dx) = e~u^ d x  is S-quasi- 
invariant with cocycle

A (v,x) =  -  f  WU(Stv(x)) • vdt.  (3.3)
J o

P r o o f . Note that we can write

U(x) -  U(Sv(x)) =  U(S0(x)) -  U(Sv(x)) =  -  J 1 j U { S tv{x))dt.

Using the chain rule we get

j U { S tv{x)) = VU{Stv(x)) • j t {Stv{x)) =  V U (S tv(x)) • v,

so it follows that the cocycle A(v,x)  can be expressed as in (3.3). ■

Let us comment on the usefulness of the previous two results for the re­
versible case. Consider an operator L as in (2.1), and assume that the measure 
m  is reversible for L. From the discussion in Chapter 2 we know that m  should
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be of the form m(dx ) =  e~u^ d x  for some “potential function” U. Then by 
Proposition 3.2 the measure m  is quasi-invariant with respect to {S„}„eRn, 
and from Corollary 3.1 the cocycle is given by the expression (3.3). Further­
more, we know from Kolmogorov’s criterion that in the reversible case we have 
b(x) — — I'VU(x),  where b(x) is the drift of the operator L. This allows us to 
further write the cocycle as follows:

K{v,x) — 2 f  b(Stv(x)) • vdt.  (3.4)
J o

The main theorem of this chapter, Theorem 3.1 ahead, will establish that 
a measure m  on Rn is a reversible measure for the operator L if  and only if 
m  is quasi-invariant under the group {S1, ,} , ,^  of all translations with cocycle 
defined as in (3.4).

This theorem makes evident the importance of the expression for the co­
cycle that we have derived. The proof of this result will be given at the end 
of this section, after we have established a couple of technical lemmas. It is 
also important to mention that the expression (3.4) of the cocycle A(v, x) also 
works for diffusions on more general state spaces. For instance, [24] uses for­
mally an expression similar to (3.4) for the cocycle associated to a reversible 
measure-valued Fleming-Viot process.

The next proposition summarizes some properties of the family of trans­
formations S  =  {S'l,}l,eRn that we may need to use. Note that property (S.l) 
below merely confirms the fact that this family is a transformation group. The 
proof will be omitted since it amounts to simple calculations.

Proposition 3.3. The family S  =  {S„}„gr« of all translations in Rn satisfies 
the following properties:

(5.1) So(x) — x and Su(Sv(x)) — Su+V(x). In particular, (S’,,)-1 =  S - v.

(5.2) For any x , y  G Rn, there is a unique v G Rn such that y — Sv(x).

(5.3) For each v G Rn, Sv(x) is continuously differentiable in x and

Dx(Sv(x)) = In, in other words,
OXj

The following technical lemma will be useful for establishing the proof of 
Theorem 3.1. This lemma is motivated by [25, Lemma 2.1].

Lemma 3.1. Let A be given by (3.4). Fix an arbitrary v G R". For any given 
g G C “ (Rn) and t  G R, define

gt ( x) =  g(S-tv(x)) exp{—A (tv, 5_to(a:))}.
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Then gt e  C^0(Rn) for all t € R, and

~jf9t(x) =  ~2(b(x) • u)#t (x) -  v • V ^(x). (3.5)

P r o o f .  Let us designate Ft(x) =  A (tv, S - tv(x)), so we can write the func­
tion gt as gt(x) =  g (S - tv(x))e~Fdx\  We can see from equation (3.4) that, as 
function of its second argument, A(v,x)  has continuous derivatives of all or­
ders; so it is clear that Ft e  C,00(Rn). Then it follows from property (S.3) that 
gt £ C%°(M.n). Note further that

Vgt(x) = e~F̂ V ( g  o S - tv)(x) -  gt(x)WFt(x). (3.6)

Using (S.3) we have V (go5_to)(x) -  Dx(S^tv(x))Vg(S^tv(x)) =  V g ( S . tv{x)), 
so it is clear that

v - V ( g o  S-tv){x) =  v • V g ( S - tv(x)) =  ~ ^ g ( S - tv(x)), (3.7)

where we have used the chain rule to establish the last equality. Now observe 
that

Ft(x) =  A (tv, S - t v ( x )) =  2 f  b ( S - r v { x ) )  • v dr. (3.8)
J o

Let us define an auxiliary function h(x) := b(x) • v, so we have (ho S - rv)(x) =  
h(S -rv(x)) = b(S-rv(x)) • v. Prom this and equation (3.8) it follows that

V F t (x) = 2 [  V ( h o  S-rv)(x) dr.
J o

Then using the same calculation as in (3.7) with h(x) instead of g(x) we get

V ' 'V F t (x) = 2 f  v • V(/i o S - rv)(x)dr 
J o

F d
=  —2 /  — h (S -rv(x))dr 

J o  dr

=  -2  [/i(A_to(x)) -  h(S0(x))\

= -2  [b(S-tv(x)) - v -  b(x) • v\

= Ft(x) +  2b(x) • v.

Combining the last calculation with expressions (3.6) and (3.7) we obtain

- ^ F t (x) +  2b(x) • v

= ~ J f 9t(x ) -  2(b(x ) ’ v)gt{x).
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This finishes the proof.

The next lemma establishes a useful way to prove reversibility of a measure. 
This result is already contained in [25, proof of Theorem 2.1]. The version that 
we present here is adapted to suit our purposes, and we also present an explicit 
proof.

Lemma 3.2. Let L be an operator of the form (2.1), and let m  be a measure 
on Rn. Then m  is a reversible measure for L if and only if

j (L f ) (x )g ( x )m (d x )  = - 1- J v f ( x ) - V g ( x ) m { d x )  V /,S e  C f(K “). (3.9)

PROOF. We know from equation (2.3) that m  is a reversible measure for L 
if and only if the following symmetry holds:

J  (Lf)(x)g(x)m(dx)  = J  f(x){Lg)(x)m(dx) V f ,g  € C“ (Rn).

Now, a direct computation shows that the following identity holds for any pair 
of smooth functions f ,g:

(.Lf)(x)g{x) +  f(x)(Lg)(x)  -  L(fg)(x)  = -V /( :r )  • Vg{x). (3.10)

Assume that the measure m  is reversible for L. In particular, this implies that 
m  is an invariant measure for L. Now take / ,  g £ C'“ (Rn), and note that their 
product f g  is also in Cf°(Rn), so J  L(fg)(x)m(dx)  = 0. Then integrating both 
sides of (3.10) with respect to m  we get (3.9).

Conversely, assume that (3.9) holds. Since the right hand side of this 
equation is symmetric in /  and g, this implies that the left hand side is also 
symmetric; i.e. (2.3) holds. ■

We are almost ready for the main result of this chapter, Theorem 3.1 to 
follow. Recall that, according with Definition 3.3, given a measurable function 
A on R" x Rn we say that the measure m  on Rn is quasi-invariant under 
{S)>KeR« with cocycle A if for every v £ Rn, the measures m  and m  o Sv — 
m  o (ST,,)-1 are mutually absolutely continuous with density given by

dm, ° S v {x) =  eA{-v'x\  m- a.s. (3.11)
dm

Note that in order to prove (3.11) we must show that for each v 6 i "  fixed,

f  &(S-V(x))m(dx) = f  <1>(x)eK{-v'x^m(dx)
J 1 "  J  R n
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holds for all functions <f> in some measure determining class V.  Moreover, 
replacing $ (2:) by $(x)e~A(v’x  ̂ we see that it is sufficient to prove

[  $ ( S - v{x))e-A{v'S- {x))m(dx) = f  $(x)m(dx),  V<f> £ V.  (3.12)
J W 1 J  Rn

For the proof of the next theorem we will need to use the notion of “bump 
function” . We will not construct such functions explicitly here, but merely 
recall that for any n > 1 and any 0 < r < R, there is a smooth function 
p  : R" —> R such that 0 <  p(x)  <  1 everywhere, tp = 1 on -Br (0) and p  =  0 on 
B r ( 0) . Such function p  is called a bump function for B r(0). Details on the 
construction of such functions can be found in [30, Lemma 2.22],

Now we are ready for the main result of this chapter. This result was 
established in [25, Theorem 2.1] for a certain kind of diffusions on a compact 
subset of Euclidean space. We present our own proof for the kind of diffusions 
that we are considering.

Theorem  3.1. Let L be an operator of the form (2.1), and let m  be a measure 
on Rn. Then m  is a reversible measure for L if and only i f m  is quasi-invariant 
under the group of all translations with cocycle defined as

A(v,x)  = 2 f  b(Stv(x)) • v dt. (3.13)
Jo

P r o o f . Let us take g £  C ^°(R ” ) and v £  R n arbitrary. Integrating both 
sides of (3.5) with respect to a measure m  we get

J (b(x) • v)gt(x)m(dx)  +   ̂J  v • Vgt (x)m{dx) = - i  J  ̂ g t (x)m(dx).

We are going to use this equation to get another, very useful one. For this, 
consider a ball Br(0) big enough to contain the supports of all the functions 
9t, for 0 < t < 1 (see Lemma 3.1 for the definition of gt), and take p  to be 
a bump function for Br (0). Now define the function f(x ) := (x • v)p(x). We 
may regard this kind of function /  as a “truncated polynomial” of first degree. 
Note that for x  € Br(0) we have f (x )  = x • v\ and by simple calculations we 
can also see that V /(x ) =  v and L f (x )  =  b(x) • v. For functions /  of the kind 
just defined the equation above can be given the following form:

f ( L f ) ( x ) g t (x)m(dx) +  \ f  Vf ( x )  ■ Vg,(x)m(dx) =  j g , { x ) m( dx ) .

(3.14)
We know that gt £ C “ (Rn) by Lemma 3.1.
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If m  is a reversible measure for L, then the left-hand side of (3.14) van­
ishes by (3.9). Therefore J g t(x)m(dx)  is constant in t and in particular 
f  gi(x)m(dx) = J  g0(x)m(dx), or equivalently

J  g(S-v(x)) exp{-A(u, S - V(x))}m(dx)  =  J  g(x)m(dx).

Since g G C ^ R ”) and » G 1 "  were chosen arbitrarily, we see that (3.12) is 
valid, and therefore m  is quasi-invariant under S  with the desired cocycle.

Conversely, assume that the measure m  is quasi-invariant under S  with the 
given cocycle A. Fix an arbitrary g G C ^ R " ) ,  and consider equation (3.14) 
for this fixed function g and for “truncated polynomials” /  of the kind defined 
a few lines above, i.e. f ( x )  — (x • v)(p(x) for some v G R”. It is clear that the 
right-hand side of (3.14) vanishes (see Lemma 3.1 and equation (3.12)). Thus 
(3.9) holds in this case.

Next we note that, for fixed g G C%°(Rn), the set of functions /  G C^°(Rn) 
that satisfy equation (3.9) is closed under multiplication. To see this, assume 
that f i ,  G C “ (Rn) satisfy (3.9). Then using (3.10) with f i f 2 replacing /  we 
have

J  (Lf i f2){x)g(x)m(dx) =

= J ( L f i ) ( x ) f 2g(x)m(dx) + J  f i ( x ) {Lf 2)(x)g(x)m(dx)

+ J [V/i(x) • V f 2{x)\g(x)m(dx)

= ~ \ /  ‘ ^  (hg){x)]m(dx) - ^ J  [V/2(x) • V ( / i  g)(x)]m(dx)

+ J [V/i(x) • V f 2(x)]g(x)m(dx)

= ' V9(x)}m(dx) f i ( x ) [Vf 2(x) • Vg(x)}m(dx)

= J [ V ( f i f 2)(x) • Vg(x)]m(dx),

so it is clear that the product f i f 2 also satisfies (3.9).
Since (3.9) holds for functions of the form f ( x )  — (x • v)tp{x) for some 

v G Rn, an inductive argument shows that (3.9) can be extended to all func­
tions f {x)  =  {x • v 1) ■ ■ • (x • vk)ip{x) with v 1, . . . , vk G Mn. Using the linearity 
in /  of (3.9) it follows that this expression must be true for all “truncated 
polynomials” f ( x )  of arbitrary degree. A suitable approximation procedure

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(see e.g. [22, Appendix 7]) shows that (3.9) is valid for all /  G C^°(R”). Since 
g G C^°(]Rn) was fixed arbitrarily, this establishes the reversibility of m. ■

Remark. We have established that for n-dimensional Brownian motion with 
drift, a measure is reversible if and only if it is quasi-invariant under the group 
of all translations, and the proof clearly relies on calculus in Rn. For other 
kinds of diffusions, with more general state spaces, it is possible to use similar 
ideas and establish equivalence between reversibility and quasi-invariance un­
der certain suitably defined groups of transformations on the state space of the 
process, see for instance [24], [25]. In those cases, the methods are analogous 
to those used in this section, but the calculus operations have to be defined 
according to the nature of the state space being used.

Corollary 3.2. I f  the operator L as in (2.1) has a reversible measure, then 
the expression defined in (3.13) is a cocycle.

P r o o f . J u s t  read  th e  first few lines of th e  p ro o f of T heorem  3.1. ■

The last result of this chapter is a partial converse to Theorem 3.1. This 
result seems to be new.

Theorem  3.2. Let b : Rn —> Rn be a smooth map, and define A as in (3.13). 
Assume that A satisfies the cocycle identity:

A(u +  v, x) — A(u, x + v) + A(v, x) Vw,r € RB,Va: G R". (3.15)

Then b has a potential, i.e. there is a function F  : Rn —> R (necessarily 
smooth) such that b = V F .

P r o o f . Note that it is enough to prove that

(dvb(x),u) = (dub(x),v) Vu,v G R",V r G 1 " . (3.16)

For if (3.16) holds, then taking u =  e*, v — we get djbi(x) =  dibj(x), and 
this condition is sufficient for b to have a potential (because the domain Rn 
is simply connected, see [44, Proposition 14.3.4]). Now let us establish (3.16). 
From the cocycle identity (3.15) we get

A(u, x +  v) +  A(v, x) =  A(v, x  + u) + A(u, x),

or equivalently

A (it, x  +  v) — A (u, x) = A(v, x +  u) — A(v, x).

Then using the definition of A we get

/ (b(x +  v + tu) — b(x + tu), u)dt =  / {b(x + u + tv) — b(x +  tv), v)dt.
J o  J o
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Replace u by 8u and v by ev, for some 8, e > 0. Then using the last equation 
we get

f 1 ,b(x + ev + Stu) — b(x + 8tu) . , f 1 ,b(x + 8u +  etv) — b(x +  etv) . ,
/ {-------------------------------------- , u )d t=  /  (---------------— -------------------,v)dt.

J o  £  J o  8

Letting first 8 —> 0 and then e —> 0 we get

/ (dvb(x),u)dt =  / (dub(x),v)dt,
J o  J o

from which (3.16) follows clearly. ■
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Chapter 4

R eversibility for the  
Ornstein-Uhlenbeck process on  
an infinite-dim ensional H ilbert 
space

4.1 S tatem en t o f th e  problem
Let us bring our consideration to the case where the state space is an infinite 
dimensional separable Hilbert space H. Consider the process X  =  (Xt)t>o 
that solves the following linear stochastic differential equation

j  dX t =  A X tdt +  dWt,
|  X 0 =  x.

We assume that the operator A : V(A)  C H  —> H  generates a strongly 
continuous semigroup {Tt} on H.  and the process W  is a standard cylindrical 
Wiener process on H, i.e. its covariance operator is given by the inner product 
on H. The reader is referred to the monographs [18], [19] of G.Da Prato and 
J.Zabczyk for accounts of the meaning of stochastic equations of the kind we 
mentioned above, as well as their solutions. The particular setting we have 
described is a special case of that presented in [15]. We say that X  is an infinite 
dimensional Ornstein-Uhlenbeck process.

Although we do not focus on applications, we would like to mention that 
the kind of processes described above, when considered in finite dimensions, 
have become interesting because of their various practical uses, for instance in 
fluid mechanics and mathematical finance. A specific example that motivates 
the study of infinite dimensional Ornstein-Uhlenbeck processes is a stochastic 
model of neural response proposed by J. Walsh, where H  is taken to be some 
L2 space, see [38] and references therein.
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We use the notation (•, ■)#• for the inner product of H. We need to define 
a special kind of functions on H, the cylindrical functions. Let D  C H* be a 
dense linear subspace of the dual H*. By T C^{D )  we denote the space of all 
functions /  : H  —» K of the form

f (x )  = ip(£i(x),. .. ,£n(x)) where n > 1, i p e C ^ ( R n), £ \ , . . .  ,£n € D \  {0}.

In case we take D = H*, we denote this space as £FC  ̂ for simplicity.

The generator L  of the process X ,  or more precisely of its corresponding 
semigroup, can be expressed formally as

L f (x )  =  i  Af { x )  +  {Ax, V f ( x ) )„ ,  for /  e  FC™. (4.1)

The definitions of gradient and Laplacian for cylindrical functions are presented 
in the next section. However, we should point out that expression (4.1) only 
makes sense for x  G T>(A)-, and this domain can be a proper subset of H. One 
way to overcome this inconvenience is to write the generator as follows:

L f (x )  = ~ A f ( x )  + {x ,A -V f (x ) )„ ,  for }  e  FC?{V(A ')) .  (4.1')

The advantage is that (4.1') is an expression that makes sense for all x € H. 
The price we pay for this advantage is that now the operator L is restricted to 
functions from the space XC^(V(A*)).

Next we recall the definitions of invariant measure and reversible measure 
for an operator L of the form (4.1'). First we specify the allowable measures 
we deal with. In the rest of this work, by “measure on H" we will always mean 
a Borel measure yU on H  satisfying the following condition:

f  e{x'h)Hfi{dx) < 00, V/i G H. (4.2)
J h

We impose this condition in order that the integrals we are going to deal with 
be finite. Also, to avoid trivialities we exclude the zero measure from our 
discussion.

We say that /i is an invariant measure for L when

[  Lf{x)iM(dx) = 0 \ / f e X C ? ( V ( A * ) ) .  (4.3)
JH

The measure p is reversible (or symmetrizing) for L if

[  L f ( x ) g ( x ) n ( d x ) =  I  f (x )Lg(x) t i (dx)  y f ,geXC ™ {V(A*)) .  (4.4) 
J h  J h
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The purpose of this chapter is to establish conditions for operators of the 
kind (4.1') to be symmetrizable in the sense of (4.4). Based on the intuition 
that comes from the finite dimensional case, we would like to establish that 
reversibility is equivalent to quasi-invariance with respect to certain transfor­
mation group. In the finite dimensional setting it is the group of all translations 
that makes this equivalence work. However, in the infinite dimensional case, it 
is well known that, except for the zero measure, no measure is quasi-invariant 
with respect to all translations, see [43, p. 111]. We may, however, look for 
quasi-invariance under some special set of translations, say the group of shifts 
by vectors from some proper subspace of H.

Let V  be a linear subspace of H. For simplicity, we will say that a measure 
(j, on H  is H-quasi-inva,riant when it is quasi-invariant under the group of all 
translations by vectors from V, i.e. under {S't,}„ey.

We want to prove the following

Conjecture. A measure /x on H  is symmetrizing for L if  and only if it is 
V(A*)-quasi-invariant with cocycle

A(v,x) = 2 (  (x +  tv, A*v ) h  dt. (4.5)
Jo

Remark. We conjectured this form of the cocycle based on the analogous ex­
pression for the finite dimensional case. In the present case, however, it is easy
to intergate out expression (4.5) to get a more useful equivalent form:

A(v,x)  = 2(x , A* v )h  +  (v , A* v ) h - (4.6)

4.2 T echnicalities
First we define some calculus operations with the cylindrical functions on H.
Recall that for a given dense linear subspace D of the dual H*, we say that
/  € IFC^iD) when the function /  : W —> R can be written in the form

f (x )  = <p(£i(x),.. . ,£n(x)) where n >  1, p  £ C ^ R " ) ,  i \ , . . .  ,£n E D \  {0}.

For these kinds of functions we define the notions of “gradient” V f ( x )  and 
“Laplacian” A f ( x )  as follows:

n

V /(x ) =  i(x ) ,.. , ,en(x))£i, (4.7)
2=1

n

& f ( x ) =  X ]  9idj(p{£i{x),. . .  ,£n{x))(ei,£j)H- (4.8)
i,j=1

These definitions are independent of the representation of the function /  in 
terms of ip and £\ , . . .  ,£n, see [38, Section 5].
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Remark. In this chapter we often identify H* with H  via £(x) — (£, x )h -

The next proposition says that the gradient and the Laplacian just defined 
behave similarly as their finite dimensional analogs with respect to products.

P ro p o sitio n  4.1. Let D be a dense linear subspace of H*. For any pair of 
functions f , g  E £FC^{D) the following identities are satisfied:

V(/9 ) = / V 9 + SV /.  

A ( / 9) = / A J +  9A / + ( V / , V s)a .

P r o o f .  Let f , g  E £FC™(D) be arbitrary. W ithout loss of generality we can 
consider these two functions depending on the same “coordinates” £ \ , . . .  ,£n, 
so we may write f (x )  = tp(£i(x),. . .  ,£n(x)) and g(x) =  ip(£i(x),. . .  ,£n(x)), 
where <p, if E C'°°(En). For the next computation we will use the shorthand 
x  = (£\(x), . . .  ,£n(x)) so that the expressions do not get too long. Then we 
have

n

V (/^)(x) =  Y ^ d t{<pf;){£i{x),.. , ,£n{x))£i
i = I  

n

— ^  [F(x)diip{x) + 4>(x)diip(x)} £i
i=1

n n

= <p(x) dii){x)£i + i)(x) di<p(x)£i
i=1 i=1

=  f{x)Vg{x)  + g{x)Vf{x).

Similar computations show the second identity. ■

Just as in the finite dimensional case, every reversible measure is also in­
variant. This is established in the next proposition.

P ro p o sitio n  4.2. Let p be a measure on H . I f  p is reversible for L, then it 
is also invariant.

P r o o f .  Let p  be a reversible measure for L, and let /  € £FC™(T>(A*)) be 
arbitrary. Write f ( x )  = <p(£i(x),. . .  ,£n(x)) with <p E C'^°(Mn) and £i, ■.. ,£n £ 
T>(A*). Let Br(0) C Mn be an open ball big enough to contain the support 
of <p, and let tjj E C |°(R n) be a bump function for B r(0). Define the function 
g(x) =  ip(£i(x),. . .  ,£n(x)). Also, define the set

Dr : = {x  E H  : (£i(x), . . . ,£n(x)) G f?r (0)}.
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Note that /  and L f  are identically zero on D f  We have

[  L f{x )n (dx ) =  [  L f(x)n(dx)  = [  L f ( x ) g(x)g(dx)
J H  J D r J D r

= [  L f (x) g(x )^(dx) =  [  f (x) Lg(x)g(dx)
J H  J H

=  [  f{x)  Lg(x)g(dx)  =  0,
J D r

where in the last step we use the fact that Lg — 0 on Dr. ■

The following technical lemma will be useful for the proof that reversibility 
implies quasi-invariance.

L em m a 4.1. Let A be given by (4.5). Fix an arbitrary v £ V(A*). For any 
given g £ TOff and t £ R, define

gt (x) = g(S„tv(x)) = g(x -  tv).

Then gt £ TCff  for all t £ R, and the following holds:

J t 9t(x ) = V9t(x))H• (4-9)

Furthermore, writing gt(x) :=  gt(x) e x p { — A(tv, S,__to(x))}  we have

=  ~{ v ,  Vgt (x))H -  2gt(x){x, A*v)H- (4.10)

P r o o f . To es tab lish  (4.9) we ju s t need to  use th e  defin ition  of gt an d  th e  
chain  rule. Now let us prove (4.10). U sing th e  expression (4.6) for th e  cocycle 
A we get

A (tv, x  — tv) — 2 t{x, A*v)h — t2(v, A*v)h . (4-11)

This is useful for computing derivatives of A(tv ,x  — tv), as will be needed 
ahead. Next we compute the gradient Vgt(x). We have

Vgt (x) =  e -Aitv’s- tvix))Vgt (x) + gt {x)Ve-Adv’s- ^ x))

= e- A{tv’s- tv{x))Vgt (x) -  gt(x)e-Aitv’s- ^ x)){2tA*v)

= e -A{tv'S- tv{x))Vgt{x) -  2tgt (x)A*v. (4.12)

Now we use the chain rule and (4.11) to compute the derivative of gt{:x) with 
respect to t. We have

^ 9 t(x) = e~A{tv's- tv(-x)) ^_gt (x) -  gt (x)e~Adv's~tv{x)) -^A(tv,  x -  tv)

= - e ~ A^ s- ^ ( v ,  Vgt (x))H - U x ) (2(x,A*v)H -  2t(v,A*v)H)

= -  2tgt{x)A*v)H -  2gt(x)(x, A*v)H.
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The proof is finished using (4.12) in the first term of the last expression. ■

Next we prove a technical lemma which gives an equivalent way to prove 
reversibility of L, this is analogous to Lemma 3.2 of the previous chapter.

Lemma 4.2. Let L be as in (4 .1 '), and let /i be a measure on H. Then p  is 
reversible for L if  and only if

j ( L f ) ( x ) g ( x M d x )  =  - \ J ( V ! ( x ) , V g ( x ) ) Hlx(dx) Vf , g  e  T C f ( V ( A r)).

(4.13)

P r o o f . Using the identities of Proposition 4.1 we can see that

(Lf)(x)g(x)  +  f (x )(Lg)(x)  -  L(fg)(x)  = -< V /(x ), Vg(x))H. (4.14)

Assume that the measure p  is reversible for L. In particular, this implies that 
p  is an invariant measure for L. Now take f , g  G and note
that their product f g  is also in JrC^‘(V{A*))) so f  L(fg)(x)/i(dx) — 0. Then 
integrating both sides of (4.14) with respect to p  we get (4.13).

Conversely, assume that (4.13) holds. Since the right hand side of this 
equation is symmetric in /  and g, this implies that the left hand side is also 
symmetric; i.e. (4.4) holds. ■

We will need to use a specific kind of truncation functions that we describe 
next. Recall that for any given r  > 0, there is a smooth function ip : R —> M 
which is identically equal to one on [—r, r] and vanishes outside some bigger 
closed interval. This is what we called a bump function for [—r, r]. We use this 
function to define a new one <f>(x) := xtp(x), x  G R. It is clear that $  is also 
smooth and compactly supported, and it has the nice property that it equals 
the identity function when restricted to [—r, rj. We will call the function <E> a 
truncation function for [—r, r].

P r o o f  o f  t h e  C o n j e c t u r e : r e v e r s ib il it y  im p l ie s  q u a s i- in v a r ia n c e . 
We assume here that the measure p  is reversible for the operator L. Fix 
v G T>(A*) arbitrary. Recall from the previous chapter, equation (3.12), that 
in order to establish quasi-invariance with the desired cocycle we must prove 
that for all functions g in some measure determining class we have

[  g (S -v(x))e~A{v’S- v(x)}/j,(dx) = [  g(x)p(dx). (4.15)
Jh Jh

Our strategy will be to prove that for any given g G TC£°,

Z(t) := j  gt(x)e~A{tv'x~tv)g{dx) = J  gt(x)g{dx)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is a constant function of £ 6 R. Once this is established we get (4.15) setting 
Z{ 1) = Z(0).

Fix an arbitrary g £ TC°^. Using the result of Lemma 4.1 we have

z '(t) =  J  ^ g t(x)n(dx)

= -  J ( v , V g t(x))Hg(dx) - 2  J  gt(x){x,A*v)Hlx(dx).

Let us write g(x) = ip(£i(x) , . . .  ,£n(x)), where ip £ C£°(Rn) and £ i , . . . , £ n € 
H*. Defining the function

1 p t ( y u  • • • ,Un)  =  *P(y  1 -  • , 1 / n  -  t £ n { v ) )

we can write gt{x) =  ipt(£i(x) , . . .  ,£n{x)), and note that ipt £ C'“ (Rn) for all 
t £ R. Take an open ball B™(0) C Mn (the superscript is used to emphasize 
the dimension) big enough to contain the supports of all the functions ipt for 
0 < t < 1. Let $  £ C£°(]R) be a truncation function for [—r, r], and define the 
function f ( x )  — $({x , v)h )- It is clear that /  £ Define the set

Dr := {x £ H  : {£i{x) , . . . ,£n{x) ,(x ,v)H) £ 5"(0) x [-r ,r]} .

Note that on the complement of Dr either /  vanishes or all the functions gt, 
0 <  t < 1 vanish. On the other hand, for x E Dr we have f (x )  = (x , v)h , 
V /(x ) — v and L f (x )  =  (x ,A*v)h - Then the last line in the computation of 
Z'{t) above yields

Z \ t )  =  -  J (V /(x), Vgt(x))H[x(dx) - 2  J  gt(x)Lf(x)g{dx)

Therefore the proof of this part is completed if we verify that the functions gt 
belong to a class for which (4.13) still holds (for every /  £ BC^) .  ■
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Conclusions

Here are the major highlights of this thesis.

In Chapter 2 we proved Kolmogorov’s criterion of reversibility establishing 
that an operator of the form (2.1) is reversible if and only if its drift term 
is of gradient form. This criterion was established in [26] for diffusions on a 
compact Riemannian manifold; we relied on this reference to provide our own 
proof of this criterion for the case of “Brownian motion with drift” , where the 
state space is all of Rn (a non-compact space). As immediate consequences of 
this criterion we saw that in the reversible case the reversible measure is unique 
(up to a multiplicative constant), and also that in dimension one reversibility 
is always possible.

In Chapter 3 we proved a second characterization of reversibility in finite 
dimensions. This characterization tests measures on Rn (the state space of 
the process) and establishes that reversibility is equivalent to quasi-invariance 
under the group of all translations with a cocycle given in terms of the drift 
coefficients. The proof of this theorem is more elaborate than the proof of 
the criterion of Kolmogorov, but it is worth the effort since this new criterion 
seems to be suited for diffusions in more general state spaces, as the papers 
[24], [25] of K.Handa suggested. The paper [25] is of particular importance in 
this chapter; we borrowed some of its ideas to construct our own proof of the 
characterization of reversibility in terms of quasi-invariance.

While in finite dimensions the characterizations of reversibility work nicely, 
in infinite dimensions some difficulties arise. As a consequence, our analysis of 
the link between reversibility and quasi-invariance for the infinite dimensional 
Ornstein-Uhlenbeck process is incomplete, and the goal of fully characterizing 
reversible measures for this case still awaits solution. However, we do make 
significant progress in this direction, and the approach we use in this thesis 
seems to show some promise.

Another major contribution of this thesis is the extensive list of meaningful 
references provided in the bibliography. This should furnish those who follow 
with a well-paved road for future research in this area.
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