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ABSTRACT

For a bivariate power series ‘A(z,y) with coefficients over a field, the notion of a
modular Padé form is introduced. A modular Padé form is a bivariate rational expres-

sion P(z,¥)/Q(3,y) where P(z,y) is a polynomial of degree k and m io 2 and y, respec-

tiveg. and Q(z,y) is a polynomial of degree k and n in 2 and y, respectively, such that
coeflicients of the terms 2'y/ for 0si<k, O0Sj<m+n in the power series

A(z,9)Q(z,y) + P(z,y) are sero.

Modular Padé forms for s power series A(z,y) always exist, but are never unique.
For any given k, m and n, a full characterization of all modular Padé forms is
obtained and expressed as a linear combination of one or of k fundamental solutiony of
a triangular block Hankel system. '

An algorithm is developed for constructing modular Padé forms of type (k,m;,n,)
along an of-diagonal path m;—n, = m-n. Using classical arithmetic the cost of the

algorithm, when A(O,y) is normal, is 0(k%m+ n)n) operations in the field of

coefficients. When A(0,y) is abnormal the complexity of the algorithm increases
according to the nature of abnormality.

Also developed is a new algorithm for constructing Padé fractions for univariate
power series with coeficients over an arbitrary integral domain. The algorithm is built
around a generalized notion of power seties pseudo-division and power ‘series
‘remainder sequences for formal power series and is O(m+ n) faster than fraction-free
methods when the power series is normal. When applied to polynomials, rather than
to power series, the algorithm, for one specific off-diagonal path, corresponds to
Euclid's extended algorithm for computing greatest comson divisors of polynomials.

iv
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Chapter 1
Introduction
The central problem of Padé theory for ut;iv:riate functions over a field D is that
of finding a rational function
-
Paaly) _ 2"

. ' (1.1) .
Qumaly) 3 ow ‘

1=0

whose Maclaurin expansion agrees with a given power series

4(”’)- 2 ﬂ,y’ (l2)0

1=0

as far as possible. The foundations for the Padé theory were laid in Cauchy's (1821)
"Cours d’Analyse”, and certain algorithmic aspects of the pro’blem were studied (Fro- |
benius ;881) sometime before Padé finally gave it recognition in his doctoral disserta-
tion. Since then the problem has been studied in great depth, and the properties of
Padé approximants are now well rgscarcbcd. Indepth surveys of the algebraic and

analytical aspects of Padé theory can be found in Gragg [20] and Baker [2], for exam-

ple.

In a more convenient way, the problem can be restated as one of finding polyno-

mials P_,(y) and Q..(y) satisfying the order condition

A(Y)Qmaly) = Paaly) = O(y™***1), (1.3)

where the symbol O(y™***') denotes an arbitrary power series beginning with the

power yu0u¢l’



The pair of polynomisls P.(y), Q.a(y) satisfying (1.3) ® often called a Padé
form and is known to always exists (Gragg (20]). A Padé fraction refers to the same
pnif of polynomials with the additional requirement that they are relatively prime;

they are unique, but may not exist.’ Scaled Padé fractions, which always exist and are

unique were .probosed by Cabsy and Choi [0]. The power series A(y) is said to be nor-

4
\

mal if for any pair (m,n) the order condition is exact. Padé fractions for normal power
series always exist.and can be conveniently expressed in a determinant form known as

resultants, Gragg [20].

In modern times, Padé approximant&( are a useful tool in many applications. They
are used fOI"‘ exemple, in quantum field theory (Bes;is [4]), in electrical engingering
(because 'of their close relationship to éontinped fractions), in electrical network prob-
ielllas (Sobhy [28]), in signarprocessing (Chisholm [11]), in digital ﬁlterin:(Chui et al.
[12]) and Brophy and Salazar [5]) and in pumerical analysis (Watson [29]), just to
pame a few. This popularity of Padé approximants in such a wide range of applica-

tions inspired attempts to generalize them to multivariate functions and, in particular,

to functions of two variables.

Unfortunately, a simple sta?.e}nent of the univariate problem does not have its
counterpart for multivariate p;wer series, because agreement "as far as possible” is
now ambiguous and the order condition (1.3) must be expressed in a much more ela-
borate way.

Borrowing with some simplifications the forinulation of Levin [26], the order con-
dition can be expressed in terms of finite index,sets /p, /g and Ig. Given a bivariate

power series '
3 .

5



A}(:,y) - i i ,8,8'y, . (llL_,/ :

10 ;=0
required are polynomials 5 . ' )
LC(‘:-.U)- T sy (1.8)
(s3)¢ip ’
and » '
Qz.y)= T ¢y, (1.8)
(a)tg
i
such that
1, =0 for (1,5) € /g, ' 7 ) (1.7)

where f:o T ey = Aly)Qey) - P
1=0 = .

Various definitions can be given depending on the explicit description of the index
sets. For any such deﬁﬁition, the order condition (1.7) gives rise to lipear equations in
thé coeficients of Q(z,y). Providing that /p is a subset of IE,'any solution for Q.(z.y)
upiquely determines the coeficients of P(z,y). It is said that tpproximants“‘P(:,y),
Q(z,y) are non-degenerate if solutions to this system are unmique. A power series is
normal (with respect to a particular definition of approximants) if all approximants are
non-degenerate. Levin [26] has shown that non-degenerate appr;ximanls can be

expressed as resultants (i.c., in the form of a detéerminant).

One of the first and best known definitions of a bivariate :pbroximnt is given by
Chisholm [10]. Much theory based on Chisholm's definition has been developed by a
‘group of researchers at the University of Kent, known as the Canterbury group ([1'4].

[21], [22] and [23]). Chisholm arrived at his definition by requesting that approximants
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bavé some convenient ﬁwpeﬂieo (e.g.” symmetry and juvariance .under eenzin
tnns[ornttionn! acd also that the sets of indices bave convenient g‘eometric struc-
tures. Chi;bol- approximants, slso known u.diuonl .pproxin’nu. since the
degrew of Pls.g) 3ad Qs,y) in both variables are set oqual Lo pome Tateger m, are
such that Ip = Ig = {(i.j): 0% i,jEm} and Ig = {(i.7): 0%i+ j&2m). In addition, in

order to arrive at the right number of equations, it is postulated that the terms

T2me1-s 380 24 41-,f, of the remainder power sries should add 00, for i=1,..,m.

Hughes Jones and Makinson (23] described a prong method requiring b(m‘)
operations in the field of coeflicients, of solving the block system of linear equations
generated by a Chisholm approximant. This method solves the system "block by
block” under the assumption that each block iy non-sing;ln (i.e., under the assump-
tion that the approximants are non-degenerate). In the same paper, they jave shown
that, in order for Chisholm approximants to be non-degenerate, it is necessary that the

{
univariate approximants te A(z,0) and A(0,y) be non-degenerate.

Graves-Morris, et al. [21] generalize Chisholm's definition to off-diagonal approxi-

mants, for which /p is not necessarily equal to /5.
\

Approximants  defined by the setsy Ip = {(5,7): masi+ S mn+m},
Ig = {(s,j): mnSi+ jSmn% n} and /g = {(v.5): mt$i+jsmn+m+n} are proposed
and studied by Cuyt ([15] and [18]). Cuyt's approximants are quite restrictiv.e,
because the pelynomials P(z,y) and Q(z,y) are not allowed to contain apy terms z'y’
for which i+ 5 <mn. She has reformulated the quotient-difference and the epsilon

algorithms for her type of approximants, and also has shown their relationship to the

theory of multivariate continued fractions (Cuyt (16}, [17]). These generalized QD and

N b
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€ algorithauligyg in univariate.case, are applicable only.to normal’power series.

Furtlﬂhre. beth algorithms introduce extraneous common factors in Pl2.y)

and Q(z,y) which, withcdet removal, grow expounesntially with m and n. The removal

-

of common factors st every step reducéd significantly (the complexity of the

resulting algorithms is O((m+ n)®) operations # D), hut sot to the extent that the

L /
algorithms become practical, except for small m god n. Thus, as iﬁ the univariate
' ) s ¢
case. these gemeralised QD and € algorithms are u imarily for ?ldiu approxi-

mants for the power series A(z,y) evaluated specifically at z=) and y=1 (i.e, for

‘accelerating the convergence of sequences).

In terms of the index sets, the modul;r Padé forms introducéd in this thesis
satisfy (1.5), (1.6) and (1.7) forfp Ip = ((-i,j): 0Sisk 0S5 m},
Iqg= {(4.)): 08¢k 0< <n} and /g = {(v.7) 0 ¢Sk, OSjSm'#o:). They are called

modular, because A(z.y), Plz.9) apd Q(z.y) 10 (1.4), (1:5) and (1.6) cap be viewed,

-

respectively, as being™a univariate power series A(y) and univaniate polynomials P{y)
\ .
and Q(y) in y with coefficients that are polynomials in 2. With Il defined above, the

order condition (1.7) for the bivariate problem becomes the order condition (1.3) for

the uniyariate problem modulo e

. \
Modular Padé forms lack symmetry (i.e., the indeterminate z cansot be

exchanged for y), a property which is often desirable in applications and which most

but not all of the previous definitions possess. However, in compensation (and pri-

m"ily because of our definition), we are able to achieve many results which are pot
L

'

available.dsing the other definitions.
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For modular Padé forms, the order conditiom (1.7) leads to a block triangular
Y

Hankel system of equations. Because the system is well-<tructured, in chapter 2, we

are able o give a full characterization of all solutions in terths of one or of k funda-

mental solutions. From these results, in chapter 3, we infer a full characterization of
modular Padé forms for a bivariate power series. §
For k=0, the characterization obtained is the same as the well-known characteri-

l
zation of Padé forms for univariate power series (see, Gragg [29], for example). Such

characterizations are' not available for other definitions of Padé approximants (typi-

cally, results are given for normal power series only).

I 4

Modular Padé forms can be computed directly by solving [o‘r Q(z,y) the relevant
‘block t;-'t;;gulz;r Hankel system of ‘equaﬁions/. _The methods of B;xlthe_ed [8], Hughes
Jones and Makinson [13] and Wax aixd Kailath [30], designed for solving a‘more gen-
eral block Hankel system, can each be adapted for solving block triangular Ha:nkel 3ys-
tems in O(k*n?) op;rations in D. The numerator P(z,y) can then be determingd by an .

4

"additional O(kzmn')' operations in D. Unfortunately, all methbds impose certain nor-

. A
mality conditions on A(z,y). s

In chapie_r 5, the univariate algorithm of Cabay and Choi [9] is generalized to
compute modular Padé forms. The a}gorithm is not restricted by any normality condi-
tion on A(z,y). When the power series A(0,y) is normal the cost of the algorithm is
O(k*(m+ n)n), assuﬁing classical arithmetic is used. When the power series A(0,y) is
abnormal, the cost may increase according to the nature of abnormélity, but it does
pot fail as do the other methods (for finding other bivariate Padé approximants). In

addition, should fast methods be applicable the algo}ithm can achieve a complexity of -

i



O(k(m + n)logk log?(m + n)).

To overcome abnormalities, the algorithm MPADEgiven in chapter 5, for com-
puting modular Padé forms relies on another algorithﬁ; JPADE, which is developed in4
\ . .

-~ I

chapter 4. The algorithm, JPADE, also a generalization of the algorithm of Cabay and
o o ) K

Choi, computes scaled Padé fractions for univariate power series over an arbitrary

integ;'al domain J, rather than a field. This',vis achieved by generalizing to power series

!

the notions of polynomial pseudo-divisionxand polynomial remainder sequences. As for

polynomial remainder séquences, it bl.eé;)mes Decessary Lo remove common factors from
the coefficients of power sel;;ies re'mainder‘sequences in order to avoid exponential
growth of coeﬂicients}. The factors to be\rﬂn;ove'd are determined by extebnding many
results of Collins [i3] an/d' Brown (7] from polynomial resultants and polynomial
rlemainder sequences to power series .res‘ultz‘v-ts and power series remainder sequen(;'es.

When the power series is not too abnormal, the algorithm JPADE is O(m + n) faster

than the algorithme of Geddes (19] based on fraction-free methods for computing Padé

~

. . .
fractions for power series over J.

o ’ f\



Chapter 3

Hankel Systems

In this chapter, the nature of the solutions to a certain class of block Hankel sys-
tems is described. Beéinning with the statement of the problem in section 2.1, in sec-
tion 2.2 and section 2.3 conditions for the existence of a family of "fun,amental solu-
tions" are given. This family ir used in section 2.4 and section 2.5 ”' a bases for the

characterization of solutions to block Hankel systems in general.
2.1 Prelimioaries

We begin with some preliminary definitions and the statement of the problem.

»

Fork,t=2 0,let .. - =

1@ ) B | ’
Vi= 1Q:Q=| . |, where ;@ =| . | for i=0,. .k (2.1)
0@ o

be a vector space of dimension (k+1)(t+1). It is assumed that the components

g o
t

i 1=0,...,k, y=0,...,¢ R elements from a field D.

Let ! be a non-negative integer. For any Q €V, define
"'Q.- [tQ""vOQvor"'voretOIVl (2.2)

and

zl.QA-'[‘_‘Q,. ..’oq,o' ...’ol’( ‘V,' (2_3)

where 0 is the tero vector of l;:ngth t+1. For any Q € ;V,, alsp define

v Q= [y Q -, v oQ € Nor (2.4)

«

8 .



where, for each i=0,.. .k,

v ,Q= .[.‘h' Tt 0g0. 0, 0] € gV
Similarly, for any Q € , V|, define i

FoQ = (74 T 7R €4V | (2.5)
vfhere, for;egch i:O,....k,

v.Q "“"[0. 00990 € o Vit

Associated with definitions (2.2), (2.3). (274) and (2.5) are the following mappings
_ defined in the obvious way:
Ve aVy

'V -V (2.8)
v o Vi= Vi

~ . 1 .
VeV = Ve

It is easy to see that each of the mappings in (2.6) is linear, and that 2 y! and §' are

-~ )

‘injective. For notational convenience, we also adopt the convention that z=1z!, z= 2!,
y=y' and g=y'. Latver‘, in Lémma 3.1, an isomorphism is established between th7/
mappings z' and y' 'Mnd m.ultiplication of polynomials by the polynomials 2z’ and/i;',
respectvivdy.

Let S be a subspace of ;V,. Then the image of S by the transformalion‘z'

18
denoted by
2§ = {z!.Q: Q €S}. (2.7)

Clearly, 2/-S is a subspace of ,,;V,. A notation similar to (2.’7) can be adopted for the

other transformations in (2.8), but such is not required in what follows.
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For i=0,....k, let N

. nhO T r'l’l
.,‘“ R . . ’ ’

Hoo= 1 - / (2.8)

iby o ibad) ) ,

Il

"bea gener.nlizcd Hankel matrix with components 4, € D, j=0,...,8+t. The objective

of chapter 2 is to cha;actgrize the solutions of the block Hankel system
{H, @ =0, . ~ . (2.9)
where l;Hv.t is of ;,hc triangular form
oH, .«
‘;H,‘,f'; P . . (2.10)
oH-‘,t Coe E}.I-,l |
Denote the rank of ;H, , by i7e and define _;r,, = 0.

The ultimate objective for purposes of chapter 3 is to characterize solutions of the

system

‘_‘H‘-l,‘.Q - 0. (2.11)

Consideration is given to the more general system (2.9) primarily to facilitate develop-

-

— ments of results for the case s = ¢—1.

-- r 1
/ e . :
g . .
2.2 Existence of Solution
Denote the space of solutions of (2.9) by
tsa,l‘ {Q :kHl,l.Q - 0} M (2.12)
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Clearly, S, , is a subspace'of ; V,. A sufficient but not a necessary condition for ,S,‘,‘.

A )

to be non-trivial ts given by

. .
0 : ’
. \ . ! .

Theorem 2.1. If o+ < t—1, then 8 non-trivial solution Q to\equation (2.9)valways

exists. -

£y

Proof: Since ;H, , has (k+1)(s+ 1) rows, then
(e S (k+1)(a+1).

Since there are (k+1)(t+1) unknowns in equation (2.9), then

dim (,S,,) = (k+l)(l+1)—,f>,. ' (2.13)
2 (k+1)(t—a) "
2 k+1.

x

The inequality (2.13)’provi>des that for t > (and in pérticula\r for a=1(— 1), equa-
tion (2.9) has at least k+1 linearly independent solutions. The next few results are
concerned with the nature of these solutions. Corresponding to (2.7), for y=0,1,... .k,

define ) | c SR

205y = {’;Q\;Q : ,_.‘s,.,}. ST (2.14)

. Lemma 2.2. For i=0,...,k, 2, _,S, , is a subspace of , S, .

Proof: Assume that Q' €z'-,_,S, . Then, by the definition of the set 25, 0
~ there existg
Q - [l-.Qv’T' : rOQ]. € k—:S',t“

such that



\\ e
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, [N
\
Q = 2'-Q. |
- . \ . N
Thus, "
Q’-[l-iQ"'v'on»oD"'vo]‘ i
|
and clearly | .
tHu'Q' = 0. :
Therefore, -
’ N
. 1"&“?:,: CeS,t <
The result pow follows since z'-4_, S, , is a subspace of , V,.

Definition 2,8. Q is a fundamental solution of (2.9) if @ € ,S,, and
RQf z4, S

2

Lemma 2.4. If

Q= [tQ- e vOQ]. eksl,l‘v ‘

v (]

then Q is a fundamental solution in ,; §, , if and only if ,Q#0.

Proof: Assume that Q is a fundamental sol.ut‘ion in ;S,,, and suppose that
0@ = 0. Let

Q' = [t?‘r QI

Then Q = z-Q’ and Q" €;_,S,,. Thus, Q € z-,_,S,,. This contradicts the assump-
tion that Q is a fundamental solytion in 2Sat

Conversely, assume that @ é-,S,', and that Q is ot a fundamental solution.

3
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Then, by Definition 2.3, Q € z-,_,S,,, and consequently, there exists vQ' €4-,5,such -

— »
that Q = z.Q'. Thus,

(9 1@oQ] = 1@ - - 0@, O],

from which it follows that 0@ = 0. Therefore, if ;Q#0, then Q must be a fundamen-

tal solution in S, ;.

-

Corollary 2.5. If - s
T= Q. - Q) € £Sen

then Q is a fundamental solution in , S, , iff

\
Q' - (l-on v 100].
is a fundamental solution inO,_,S,',.
3 .
Proof: Since Q € .S, ,, then Q satisfies equation (2.9). From (2.9), it also fallows

. ~
that Q" €,_,S,, Thus, by Lemma 2.4, ,Q # 0iff @ is a fundamental solutionin 5, ,

and Q' is a fundamental solution in,;_,S, . \ !

_Theorem 2.8. If sst-1, then a fundamental solution in S, , of equation (2.9)
always exists.

Proof: We shall show that

dim (&S,‘() > dim (:"_ls"‘), / (2]5)

3

-

from which it then follows that there exists at least one @ € ,S,, such that

Q¢ 24,5, Since the mapping z in (2.6) is injective, then

l



a
dim (2- 4-,S, ) ™ dim(,_,S, ) .
= k(t4+1) = 4oires ‘ (2.16)
Thu;,
dim (S, ) = dim(z4_,S, ) = l()‘+l)(‘*1) = o) = k(1) = 4oyr,
=41 = (g, - b=1Tet) (2.17)

2 (-
In the last inequality, we have used the fact that

et — k1T S0t
/ Y

-~ ~

since ;H, , has s+1 more rows than,;_,H,,.

—— -

2.3 Quotient Spaces

v

Directly. from the definition of a fundamental soluﬂ"dgl,/"it follows that the space .
S, of solutions to Equation (2.9) is composed of (1) fundamental solutions in ,.‘5',',
and (2) solutions contained in the subspace z',_,S,',', The same observation can be
made about the solution spaces ,_,S,,, i=1,....k. Consequently, fundamental solutions
in eacﬁ =15, 1, 1=0,....k describe the entire solution space 5, (- Unfortunately, funda-

mental solutions are not a convenient concept to work with, because fundamental solu-

tions in S, , form a set and not a vector space.

As a remedy, we introduce the vector space of quotients ,F, , of ;S, , with respect
’ .

to the subspace z-;_,S5,;, namely,

Foo= 2SS0t/ 2415,
-AQ + ,"_ls'l‘ . Q E ‘Sl_l)l kzl. ¢ (2.18)



(2.19)

L ]
Clearly, I’unda." tal solutions in 1S, are representatives of nb-n-zcro cosets of ,F,
and conversel us, representatives of the cosets of any basis for ,F, , together with
a basis far z-, _}% cenhstitute a basis for ,S,,. Consequently, the problem of con-
str l gas 'S,., (i.e., of characterizing the ¥pace (;f solutians of (2.9)) is

2.
M )

reduced to the problem of constructing a basis for each of the quotient spaces

(-1 Fy1 1=0,...k. Since
dim (2:4_,5, ()™ dim (k-xsg,()- "(2.20)
then

dim (kFa‘l) = dim (lsa_l) =~ dim (l—lsv,t)
=] = (= ge1Te ). ‘ (2.21)

The next lemma is crucial in the following sections.

13

Lemma 2.7. For k21, then

dim (,F,,) s dim (,_,F, ). (2.22)
Proof: For
Q=@ ™ 0@l €4S,
define

T(Q)= [41-1Q. - @)

Clearly, T is a linear transformation
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By Corollary 2.5, T has the property that Q + z-4_,S,, is the zero coset in ,F,, iff

T . 's"‘ - .-ls"‘. '

T(Q) + 54,5, is the zero coset in ,_,l;:,. Therefore (c.{., Marcus [27]), the map-

ping T : jFy =, \F, induced by T is a monomorphism, that is,
T(Q + 7415, = T(Q) + 24,5,
As a'conseqﬁence:

dim (,F, )= aim(T(‘F,_,)) s dim (,,F,,).

Corollary 2.8. For k21
-

a0 = t-1Ta S petfot = Mot (2.23)

Proof: From Equation (2.21) and Lemma 2.7,

E+1 = (hoyTer = #Tey) S tH1 - (efet= k-1"010)

-

and (2.23) now follows.

From (2.22), it Yollows that the digsensions of the quotient spaces ,F,, cannot

I3

increase with k, that is,

dim (oF-,t) 2 dim (|Fa,t)z dim (2Fu) & -

-

Thus; if there are no fundamental solutions in S, , (i.e., if dim ((F, ) = 0), then there
{n no fundamental solutions in , S, ,, IS Sk \'
When fundamental solutions do exist, we wish to distinguish between two cases

by means of
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Definition 3.9. For any +, 0Sisk, the matrix H,, is l-maximal if

dim (F,,) = 1, and i-bonmaximalif dim (F, ) > 1.~ ®
—/_\Tﬁ\;s, from (2.21), ;H, , is i-maximal if and only if
ot = 1T = L (2.24_)_/\

Corollary 2.10. If 4, , is i-nonmaximal for some 1, 1S i<k, then it is

i
-

(¢+=1)-nonmaximal.

Proof: The result follows immediately from Lemma 2.7. ' [ ]

In section 2.4, the notion of k-maximality is used to provide a condition for the
uniqueness (in a certain sense) of solutions to equation (2.9). When ,H, , is
k-nonmaximal, in section 2.5, we show that solutions of equation (2.9) can be

4
" expressed in terms of "ubique” solutions of other systems for which the Hankel matrix

is k-maximal.

2.4 Uniqueness

L4

If (H, ; is k-maximal, then by Definition 2.9 there exists a cqpet
Q' = Q'+ 2,5, (2.25)

unique up to a multiplicative constant, which constitutes’ a basis for ,F,,. The
representative vector @* in (2.25) is a fundamental solution in ;S,,. In addition, if

Q € S, is any other solution of equation (2.9), then there exists a scalar a such that “

A

Q=aQ’+ Q'



vhere ‘ ]
Q' €1,.,5,,

The same observation applies inductively to the solution spaces ,_,S,,, i=1,. ...k,

by which a basis for the entire space , S, , can be built. A stronger result is given by

-

Theorem 3.11. If ,H,, is i-maximal for i=¥,. 4, then there exists Q* € ,5,,

[

such that
{Q*. 2Q°. o 24Q*) (2.26)
is a basis for 1 Set
Proof: Let the unique non-zero coset in +F,  be given by (2..25), ;vhere
V@t = Q% 0@
is a fundamental solution in ¢S, Then by Corollary“ 2.5,1,Q°% - - - Q%] is a funda-

mental solution in S, , i=0,....k. By induction, we now s'iow that a basis for ;S, , is

given by
{271(,Q%, - 0@}, J=0,...k (2.27)

The theorem shall then follow from (2.27), because
‘l-:.Q' - ,l-;.[,Qt' e on’].
Since ,Q* is a fundamental solution in 0S5, and
dim (,5,,) = dim (F, ) = 1,

then a basis for S, , is composed of the single vector ,Q*.

LY



Now assume that a basis for ,.S:,', is given b-y
{1, Q@% - 0Q°)}, j=0,..i g (2.28) .
Sinee }H, , is (i + 1) maximal{ie., dim (,o,F, ) = 1) aad 2
[01Q% 0@l SR ) (2.29)

.

is a fundamental solution in ,,, S, ,, then the unique non-zero coset in ., \F,, 13
loOlQ" o 'OQ.F + xllso,l'

"Therefore, a basis for ,, S, , is obtained by appending thie representative vector (2.29)
to a basis for £-,5, ,. However, using the inductive hypothesis (2.28), a basis for z-,5, .
is given by )

{z"""[,Q’."'.oQ'r). =0, .1 (2.30)

The vector (2.29), together with {2.30), yield the required basis for S, .

-~

Corollary 2.12. Let ;H,_,, be O-maximal. If Q is a solution of equation (2.11),

then there exist scalars a,, s=0,...k. such that

P

‘

&

Q=Y a,2Q°, (2.31)
1=0
\ .

where Q* is a fundamental solution in ;S,_, ;.
. . r
Proof: By Theorer 2.6, a fundamental solution in ;S,_, , always exjsts, and con-
sequently

dim (JF,, )2 1.

Furthermore, -/
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rd

dim ((Foy ) = 1,

_since (Hy_, 18 0-maximal. Thus, by Lemma 2.7

=

d"m (‘F"l,f) - l, '.-‘0,-..,k.

Equation (2.31) now follows from' Theorem 2.11.

o,

2.5 Characterizsation of Solutions
The construction of a basis for tF o is significangly more complex when H,  is
k-npnmaximal, since now dim (,F, ) >1. The objective of* this section.is to construct

:
a representative of a single coset in ,F, , (only under certain constraints on s and ¢)

’ " .
which generates a basis for F, ;. Then, the representatives of the k+1 generators of

. s i ’
the quotient spaces ,F,,, i=0,.. .k, yield a basis for the solution space £S5, of Equa-

" tion (2.9). We begin with a number of preliminary lemmas. .

-

! |
Lemma 2.13. If Q € S5, then y-Q, 7°Q € ,5, (4.

Proof: The result follows from the definition of y and y, and a very careful com-

parison of the matrices ;H,,, ,and ;H, 4.

Lemma 2.14. Let @ € ‘S,,L,. Then the following statements are equivalent:
(1) Q is a fundamental solution in S, ;-
(2) y-@Q is a fundamental dplution in S, (4.

(3) F-Q“is a fundamental solution in ; S, ;4

e

Proof: Since.‘Q.E tSiesalie then by Lemma 213, y @ €,S,,,,. But,

0@ = [o@ - 0] =0 if and only if y0@ = [oq, 1090, 0]" = 0. Thus, by -
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Lemma 2.4, (1)-and (2) are equivalent.

Statements (1) and (3) can be shown to be equivalent in a similar fashion.

"Lemma 2.157 Let Q € ;S,,, . Then the following statements are equivalent:

.
1 + z5_,5 is the zero coset in ,F :
E-1041t [L TS

(2) yQ@ + 24,5, 14, 18 the zero coset in ;/F, .y,

(3Y 7@ + 24,5, 1+, 13 the zero coset in,F, ().

Proof: The .t 1re adirect consequence of Lemma 2.14 and the definition of a

»

fundamental sol:

" Define the mappings
it
Y iF e = Foa (2.32)
' y: le.H,( - i:Fc,(+l o (2.33)
oas follows: For an arbitrary coset
) Q= Q@+ 24, S,410 € 4F 010 (2.34)

where Q € ;5,413 a representative, define

yQ=y@Q+ 1'&—15.,“1 € kF.,(H (2.35)

YQ=y @+ 2415, 41 € 4F, 14y » (2.36)

This definition is shown to be unambiguous in “

Lemma 2.18. The mappings y and y are monomorphisms of ,F, ., into ,F, ;.
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Proof: We give a proof for y only. The result for y follows in a similar fashion.

We first show that y is well defined (i.e., y does not depend on the choice of

represenmles for cosets in ,F,”.,).\Eupposc that Q, Q' GN,S,“', are such that P

~

Q+ 24 S0 ™ Q@ + 2415410 \ . (2.37)

Then, Q — @ € z-4,_,S5,+, and consequently @ — Q' + 2:4.1S,41 is the zero coset

in 4F,4; . Thus, by Corellary 2.15, y-@ - y-@ + 24,5, 4, is the zero coset in

+F, (41 Thatis,
ye+ 1'&-15.:101 - .'IQ' + 715,01
Thus, we hav.g shown that if (2.37) holds, then -
y(Q + t4ciSeer) = (@ + 245
i Next, we show that y is injec}ive. For the coset '

Q= Q+ 74.,5,41..¢ tFodie

. where Q € ,S,,, , suppose that y-Q is the zero coset in ,F, 4. That is, seppose that
3 .
y-Q+ 215,14, is the zero coset in ,F, ., Then, by Corollary 2.15,

Q= Q + z:4_,S,,is the zero coset in ,F ,, ;.
) — * \\\

. ~ 0
Finally, we show that y is linear. Let Q, Q' € ;,F,,,, Then, there exist

: t
Q. Q € ,S,4;,suchthat

Q=Q+ 745,41
and -

Q = Q + 245,411
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Then, for any scalars a and a’,

y(aQw a’'Q) = y(aQ + 24,5, + @' Q" + 74_,5,,,,)
=y(aQ+a'Q +2,,5.,)
= y(aQ+ o' Q')+ 24,5, 4,
=(ay Q@+ 24 S 0) + (a'y Q@ + 24,5,14))
=a(yQ+ 14 S )+ @y Q * 24, S00) -
= ay-Q + u'y:Q'. |

Denote the images of ,F,,, , under the tranformations y and y by y,F,,,, and

Y- +F .4, (. respectively. We:then have »

Lemma 2.17. .01 dim (,F,, ;) 2 1, then

..

‘ YiF, 10 # y—'t‘Fa+l,l' (2.38)
kY ) V
Proof: Define . .
A )
FS={Q :,Q # 0and Q € ;S,,, } . (2.39)

to be the set of fundamental solutions in ,S;,,‘,. Then, FS is not empty, because
- .
dim (,F,,, ) > 0. Clearly, by the definitions of y and y in (2.4) and (2.5), there exists

Q' € FS such that forpll @ € FS

™
"

yo@ #* ¥oQ T ’ - - (2.40)

We now show that the coset

L

V@ + 24,5, 141 f ’Y'kF;n,t- (2.41)

For suppose otherwise. Then, there exists Q" € ;S,,, , such that

vy +tzu 1S, ™ TR NN G S RN



Thus, -
y@ = yQ €245, 141 - . -
that is, y-Q' = y-Q’’' is not a fundamental solution in 15¢1+1- Consequently, by

Lemma 2.4, .
¥Q = 7@ = 0.
But, Q' # Ofbecausc Q' € FS. Thus, (@'’ # 0, which implies Q"' is a fundamental
solution in £S,411- We have therefore found Q'" € FS such that .
i = a0 =,

.
¢ -

which violates the definition of Q' in (2.40). Thus, (2.41) s true.
" On the other hand, by Lemma 2.14, y-Q' is a fundamental solution in S, /3,

Therefore,

‘V‘Q' + I'k—lsl_t-o-l € kF.,tH . A ‘ (2.42)

]

is a nonzero coset in ;F, 4.

Corollary 2.18. If dim (,F,,, ) 2 1, then

dim (;F, 4,) = dim (¢F a1 + 1. (2.43)

Proof: From (2.41) and (2.42), it follows that R
dim (Y4F ,41) < dim (,F, (o)) E ' (2.44)
But, from lemma (2.18), ¥ is asmonomorphism so that

.

dim (kFa+l,() = dim (F;}F.f],‘) ©{2.45)
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<Ti1e,resu|t (2.43) now follows from (2.44) abd (2.45) . . - =
i ' o
Corollary 2.19. If dim (,F,,,,) 2 1, then
CkTe el T k-1Tete1 S kTee1t T f—l'.ol,;- ’ (2.46)
Proof: From Equation >(2.2l~), _ \:
dim (tlpu,t‘bl) el R N T LT
and .
d""" (kFpar) = 01 = (kryare = k-1T0ard) .
Thus, by Lemma 2.19,
t+2 = (401 ~ 3—1'.,14;) Zt+1 = (kfhery " k-1Ter) H 1
and (2.46) now follows. {

Corollary 2.20. If dim (,F,,) 2 1, then
k"--,H-u - k-lr'—n,H'i = ETet = k-1 00 ‘-01"'v‘ (2'47)
Proof: We proceed by induction to show that (2.47) is true and in addition that

dim ((F,_, 1)) Z i+ 1,1=0,.8. v (2.48)

For i=0, (2.47) and (2.48) hold true trivially. Now suppose (2.47) and (2.48) are valid

for 120. Then from (2.47) and Corollary 2.19

KMo i—1a4141 = b=1Te—i- 14141 ZhTe=r a0 = k=1Ta- 14,

S 0 T k-1Tat

and (2.47) is true at s+ 1. Also, (2.48) is true at (s+1), because
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dim (LFa—.‘-un‘n) - t+i+d - (t'.-.’ﬁ,u.n - t-l'o-—.’-l,u.u)
' Z4+i42 = (47,0~ 1-1700)

Z+2

In the last inequality, we have used t.hc fact. that - -
kTt T l-—l'l\,l =t

.whicb again foilows from (2.21) because

1< dim ((F, )= t+1 - (4r,, — £-1700)-

~ .
It 4H,, is k-maximal, then dim (,F,,) = 1. The quotient space :F,., is then

fully charatterized by a single non-zero coset in ;F,,. Characterization of ;F,, when

H, (s l-(-nonmaximal is accomplished by means of '
Theorem 2.21. Let
. Y= 0= (e T k-1Ted) : e | "~ (2.49)
If | -

CkTyt = k-1%ee S min {o,t}, ‘ (2.50)
then there exists a fundamental solution Q) € £Seeyt-v, such that

Q) + 240, S =0, , (251)

forms a basis for ,F, ,.
Proof: From (2.21) and (2.50)
. ®
dim (kFa,t) = t+] - (t't,l = t-lrc,t) 21

Then, by Corollary 2.20 and equat.ion (2.49), for 1=0,...,e,

| A
y -
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BTa=itei = k=1Te-stes = 4750 = =10 = =V,

Rut, from (2.49) and (2.50), y
. l . -
0=< ‘-7‘ < .

Therefore, in.particular, for ¢+ = s~ t+ v, , inequality (2.52) becomes
b'l—yk,ci-v,_—'&—l'l-y,,ad-y‘ = (=
Now consider .

4 e
kHrOyrt—yk - (lHl—yrrfyk)

Clearly,

-~

kr141k,l-7t - t—l'-#yk,l-yt - t'l—yk,n¢1l - k-lrl-yk_o*'”

Sy
© /

using (2.53). Thus, ~

dim (‘F'+7kv"’7t)’ ‘—7k+1 - (krntn,t—yl - k—l'a#yk,l—vk)

Corollary 2.20 can therefore be applied once again to yield

Loy ™ 4Ted ~ k1",
s krl*yk,l-yk -

From (2.54), (2.55) and Coroli.. . follows that

-~

]

hus, from (2.21) and (2.56),

k'l#l,l‘t T k=1Tet st -

for all s such™that t—s~v, S £ S v,.’

/

dim (\F,y, =) = t—=i+1 - (t-v,)

- ‘yk-'+lr

2 1.

-

27

(2.524

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
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i such that -2~ vy, S 1Sy, o
In particular, observe that

dim (‘F"’I..“'lg) -], ’ (258)
~ Therefore, in 4F 4., (-y,. there exists a unique non-zero coset
QY = Q)+ 2., S

(A F¥ Aah FY

where Q(}) is a fundamental solution in ;S _. . We now show that Q%) generates
by : vy, 4=y, g

J

a basis for ;F,, ,_,. for y=vy, .0, t—=s=v, Thatis, we ‘show that a basis for
\3 )
tFoertms /™Yy, - .., L= 877, is given by
T Ty QW) jm0,. Ly, | (2.59)

We proceed by induction for decreasing values of . For the initial step in the

induction, ™=y, we have trivially that {Q*)} is a basis for ‘F'*n-"n' Assume now
- that (2.59) provides a basis for \F,., -y, - tF,4.1-,- It is required that we show

(2.59) provides a basis for ‘F,,,'_“_,”. Since

{y_v‘—'_"y1~Q(‘)}v J-ov"y‘- ..'
»

is a basis for ,F,,,,_,, by Lemma 2.16, a basis for each of y ,F,, ,_, and ¥y, F,,, (-,

are given by ‘
7 Tyt QY w0y~ (2.60)

and

77T Q) =0,y (2.61)
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respectively, since y a3d y commute. The union of (2.60) and (2.61)

{y"—'-'”-y’-Q“‘)}. =0, .y~ i+l (2.62)
are all linearly independent in ;F,,,_, (- ,,,. according to Lemma 2.17. By (2.57),
dim (\F,0,—y-1a1) = Yi— 142,

and since there are y,—i+2 cosets in (262), then (2.62) forms a basis for

\ . . .
¢F,4,-11-,+1. The induction is therefore complete.

The theorem now follows by setting 1= 0 1n (2.59)

For a given matrix ;H, , let

L
kTt “k-1Tat < min !J,l},

™~

Then, by Corollary 2.8, it follows that

fot = =17y S min {a.t} +=0,.. k.
-

Thus, Theorem 2.21 is valid for ea¢h submatrix H,,, =0, .. .k. We then obt;;in
Corollary 2.22. Let (H, ; be such that

AL min {s.1}.
For 1=0,... .k, define

Yy, =t - (far = =1701) ‘ (2.63)
and let Q(') be a fundamental solution in Seey, 1oy, If Q €,S,,, then there exists

scalars a, | such that

P, }
Q=3 I a, gyl (2.64)

=0 y=0 ~



\

Proof: From Theorem 2.21, a basis for ,S, , is composed of the union of
L]

77y QW), =0,y

i

and an z-shift of a basis for ,_,S,,. A basis for ,_,S,, (and iterativelyfor the sub-

\
spaces 4_,S,;, - " 9S,) is obtained in a similar fashion by means of Them\'é/m 2.21,
<
and (2.61) now follows.
Theorem 2.23. Let s=t—1, and define
S P VARSIt A ¢ .« - (2.65)

”

. . . .
‘If v:20, then there exists a fundamental solution QWM € LSe4 51—+, Such that

(7 7y QW+ 24 ,5,,h 5=0.y, | (2.66)
forms a basis for ,F, ,.
Proof:If 42 ¢, then (2.65) and v,=0 imply that
CTet T h-1Te ™ =Y S t = min {4t}
and the theorem foliows from Theorem 2.21. |
If sm¢-1, then ;H,, bas t moresows than | H, ,, and consequently
et " k1T S L \ (2.87)
If, in addition,
B0 = -1fe S U1 ' <

in (2.67), then again condition (2.50) is satisfied and the theorem follows from

Theorem 2.21. Finally, if s=t¢t—1 and

o
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ot = 4-aTe = ¢,

then ;H, , is k-maximal. Thercfore, y,=0 1n(2.65) and (2.66) and QM is »eepresenta-
) .

tive of the unique pon-zero coset in ,F, ,.

Corollary 2.24. Let a2t -1, and define

Vo= = (e = it im0,k (2.08)
i

If vy 20, then.for any @ € S, there exists scalars a,, such that

'SR ~
Q=3 3 a,y iyt (2.69)

1=0 y=0

where, for i=0,... .k, Q(‘) is a fundamental solution in ,§

[ 101.]-?

-

Proof: By Corollary 2.8,

et = a-1Tat s—!rl,( T t-1Te 1=0,...k

.....

given by (2.66) with k replaced by . Then, Corollary 2.24 follows by arguments simi-

lar to those in the proof of Corollary 2.22.

B



~3

- - Chapter 8

Mbdular Padé Porms
. A

In this chapter bivariate power series and bivariste polynomials with coeficients
from a field D are considered. A definition of a modular Padé form for a bivariate
power series is given in terms of an order condgtion (I‘l is usual, in such a case). A
modular Padé }om is a bivariate rational expreuion,vh: coeflicients are determined
by solutions of triangular block Hankel systems of the type defined in chapter 2.

Results from chapter 2 are applied by means of an isomorphism between vector spaces

1V, and vector apaces',BP, of bivariate polynomials. We begin with the introduction

of a suitable notation. v ,

L

A bivariate power series A(s,y) is a formal power series in two variables z and y,
i.c. a formal expression of the form

D i.“,‘fﬂ’) '(i}.l)

1=0 y=0

where the coeflicients ;e, are from a field D.
Q

For s20 and 20, an expression O(z'y’) denotes an arbitrary biva:"nte power

]
series R(z,y) such that there exists "a bivariate power series R'(z,y) and
R(z,y) = 'y’ R’'(z,y). In this case it is said that R(z,y) is of the order 2'y’. Thus,

for ¢y, Jo, - - - »90,J3 T O, the expression

A(s,y) = O(s"y") + o 0(s"y™)

" indicates that there exist power series R((z,y), - - - ,R(Xz,y) such that

Als,y) = s RN z,y) + - + sy RO ay).

32
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Bivariate power series with a finite number of non-tzero coeflicients are bivariate poly-

nomials. If P(z,y)“- 2 z,p,z'y’ is a polynomial, then a minimal k20 and a
. =0 ,.o . ,

minimal m&0 such t!nt

R m
P(zy)= T X .p;2'y’
10 y=0

] , '
are called, respectively, the degr.ee of P(z,y) in 2 and the degree of P(z,y) in y (in
symbols, 8,P(z,y) = k and 3 P(z,y) = m). A pair (k,m) is called simply the degree of

P(z,y) (in symbols, 3P(z,y) = (k,m)). Also, the expression GI‘) < (k.m) is used

to indicate that 3, Ptz,y) < k and 3, P(z,y) £ m.

A vector space of all bivariate polynomnals Q(z,y) with aQ(z,y) < (kt) i
® :
denoted by ;BP,. It is an easy observation that the vector space ; V', from chapter 2

and vector space ,BP, are isomorphic in a natural way, ie, if Q € ,V, where

Q= [,Q. 0@ and ,Q = [,¢. - ..qo| . 1=0. ..k, then there exists a correspond-

ing polynomial Q(z,y) € ,BP,, namel)\r
ot '

Qzy)= T T.q1'y. | (3.2)

* @0 y=0

This isomorphism is denoted by Pol; , and its inverse isomorphism by Vec, ,. Thus,

-

\

Poly,: ,V, = BP, T

, Vee,, : yBPy = ,Vy,

and with Q and Q(z,y) above, Q(z,y) = Pol, ,(Q) and Q@ = Vec, ,(Q(z.y)). Mare-
over, the shift transformations z, z, y and y from chapter 2 can be easily translated

into operations on polynomials, iyh}ch are given by the following
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Lemma 3.1: Let Qb € ;V,. Then »
. 1 -4
1. Pol“,., (II'QY\- .:’"P"lk,t (Q)
° .
2. Pol“(z,"Q) = (z'-Pol“ (@))mod 2k* ! N
- : '
3. Poly 1o ily'-Q) = y'-Poly, (Q), and
4. Po’t,ul(F'Q) - Pol“ (@) ‘ o

Proof:

J
Only case 2 is not trivial, and the proof is given for this case only. Let @ € ,V,.

w

Then
Poly , (Q) = 2 E.q,l y.
1=0 3=0
Thus,
7
Z-Poly ((Q) = Eo 20 g z**y
1=0 y=

and

©

(z'- Polu(Q))modz“‘ - 2 Z g2ty

1=0 j=0
»

On the other hand, by the definition of the tranformation Z,

\
z-l'Q - [k—lQ: s ;OQrol st ,0]. - [kQIJ B rOQ,].v

where ,Q" = [,_1q,, ¢ cvy=19:) for s=1 ..k, and , Q" =0 for i-O,...‘,l— 1. Thus,

Polu(z Q)-Z 2. :qzy"E E.q, +ly

1=l =0 K 1=0 y=0 a

Let the bivariate power series A(z,y) and non-negative integers k, m and n be

given. ] : ,‘

4 y

-
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* "Plefinition 3.2. A bivariate rational expression P(z,y¥/Q(z,y) is called a modu-

<

lar Padé (k,m,n)-fo‘rm for A{z,y} M aP(z,y) < (km), 3Q(z,y) S (k.n), @(2.y)#0 and

the following order condition is satisfied
A(z,9)-Q(z,y) + P(z,y) = O(y™*"*') + O(z**1). (3.3)

By equating appropriate powers of z and.y. it is easy to see that-the polynomials

ok m k n
Plzy)= % ¥ ,p,2'y’ and Qlzy)= T X q,2'y

1=0 =0 . 1=0)=0

~

- satisfy the order condition (3.3) if and only if its cocflicients satisfy the following sys-

tems of linear equations:

3 n - :

Y X 8l,,q =0, Osssk m+1sts m+n, (3.4)
1=0 ;=0 . ' .

s
and )

k n hd
T Y. 0o, +,p =0 0sssk0stsm, (3.5)
1=0 y=0 .

where ,a,=0if 1 <0 or ; <0.

*

k:l‘he systems of equations (3.4) and (3.5) can be expressed in matrix form as fol- ‘
lows: Let \H, __ be the triangular block Hankel matrix defined in (2.8), with com-
k*in-1n .
t . ' .
ponents ,h, determined by the coefficients of the power series A(z,y),namely, for

i=0,,..kand j=0,..2n-1,

m—n+l4; 'f m-n+1+120v

h, = - ‘ s (3.6)
0, otherwsse. Co- :

Let ;G,, , be a triangular block Toeplitz matrix, such that
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[0G b
%G — =
G
4k '0
where .
18m—n 1 Om t
G o= : : (3.7)
i8-n |d0
for i=O0,....k, where ;a, = 0 if § <0. Then, the system (3.4) is equivalent to
’an—l,n'Q =0, ‘ (3.8)
and the system (3.5) is equivalent to
ka,n'Q+P = 0, (3.9)

¢

where Q€,V, and P e,,v;,.

- Clearly, t.he‘polynomials P(z,y)€,BP, and Q(z,y)€,BP, satisly the order condi-
tion (3.3) if and only if the (:orjrequnding vectors P=Vec, n(P(z,y)) and
Q= Vec, o(Q(2,y)) satisfy equations (3.8) Iand (3.9). Thus, there is a one to one
correspondence between modular Padé forms and solutions t.o block Hankel systems

#

which can be stated as -,

Lemma 3.3. P(z,’y)/Q(z,y) is 2 modular Padé (k,m,n)-form for A(z,y) if and
only if the corresponding vectors P and Q are solutions of systems (3.8) and (3.9).

Solutions of (3.8) and (3.9) are uniquely determined by solutions of the system
(3.8) alone (i.e. any solution of (3.8) can be substit(u&ed in (3.9) to calculate the vector

P -
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P). This observation together with Lemma 3.2., gives a:procedure for the characteri-

zation of all modular Padé (k,m,n)-forms for A(z,y). First, the family of solutions @

to the system (3.8) is determined, and then the family of solutions P is given by solv-

ot

¢

ing system (3.9) for P. T.hen P(z,y)/Q(z.y), sucb that P(z,y) = Pol,‘.”(P) a?

L% 2

Q(z,y) = Pol; , (Q), are .isll modular Padé (k,m ,n)-forms for A(z,y). i

General results from chapter 2 are applied to obtain the solution of equation
(3.8), which as it was shown Cbrollary 2.24 can be expressed as a linear combination
of shifts of solutions of a smaller system. Ip will be s_hown that the ﬂol"\;ion P
corresponding to equation (3.9) can be exbresscd as the same linear combination of the

same shifts of solutions P corresponding to solutions of these smaller systems.

¢

It should be clear, from the definition of matrices G, ., that if Q € ,_;V,,

0s:s k.' - ,

(Gmal(2Q)= 2 (4G, , Q). - ' (3.10)

and also, that if @ € ,V,, then
\
iGm,.(2-Q)=2"(,G, . Q) (3.11)
Solutions involving shifts y* and §° are more complex, and are addressed in

Lemma 3.4. If Q € ‘.V"'“" for some y, 0SysSn, is such that @ € ,S,_ 4, .-,

then

——

Gma ¥ Q=7 Y G ay @, (3.12)

for 0sisy.

+
'

.‘l y



Prtzof:‘Let

¢
Q - [ﬁQv e 'OQ]' IQ - [lqu—77 T

e
and define

P = ka-j,n-y'Qv

where
1

P-[kP"."OP]' lP-(l,pm—y".'

If we set

o

Pr: '.T—l'yl‘P'

where

Pll -,l‘P”. . ,0P”], .PII - ['prrm, .

'lqol' '.-0""lkl

,'pol, f-O,...,k.

then the r.b.s. of equality (3.12) is equal to P*".

Similarly, define
—
Q' =yyQ

where

2

Then the l.h.s. of equality (3.12) become
p' - an,u'Q,v

where

p' = [ﬁP" e 'OP,]' |P, - [np'mv e 'anO]v "gov---»k-

Q, - [iQ" T YOQ]' iQ - [lq"lY o

Wq ol 1=0,.. k.

WP ol v=0,...
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It will be shown that P’ = P, by proving that -'op”lo’ for 0< i <k and
L3

’
'op Jo

\

0sj,Sm. For0si;sk 0<j,<;j—y

kA n—vy ;
iop,o - 2 2 io-uaj.-jiq;'
=0 y=0
Thus, for 0s s <k, 0S 5,<m .

_pu_ -
1of" Jo
0, otherwsse.
Then, for 0s ;< k,
2‘ u-i!'l
=0 g=t o gt ISjosm=y+l,
'Opl',o-

0, 0=, <, or m—y+l+1<),<sm.

Y

N

On the other hand, for 0S i,S k, 0Sjo<m,

k n
nop ;o- z 2 |0—|a;°~;'nq;'
1=0. y=0

where .
.

- IsjSn-vy+,

q, =
0, otherwsse.

Therefore, for 0si,<k, 05 ,<m,

’
Eom—yel
.z-:o yot 0= Yoot IS s m,
P 1o ™
0, 0=j,<l.
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It remains to show that for 0S &k, m~y+l+1s5,Sm

2‘ .-i‘l
-8, _ q_,-O.
oV oYY

o B2 )

r

From the assumption that Q@ € ;S,_ 4y 4.y it follows that for 0= sk,
m=-y+1Sj,Sm+n,

E n—vy

z 2 |o—|ajo-)nq; = 0,

1 =0

which is equivalent to

E n-y+l
E i 00-:'“)0——;-%#[- 0,
1=0 =

for0i;sk and m-y+1+IsjSm+a+l.

Definition 3.5 The power series A(z,y) is (¢,m,n)-maximal if the matrix H,_, ,

18 --maximal. °

By definition, the matrix ;H,_,, for a (0,m,n)-maximal power series, is 0-
maximal. Thus, by Corollary 2.12, there exists a single fundamental solution @*. Let
P* = - G, @ be the correspanding solution to the system (3.9), and let

- . a

P*(z.yVQ*(z,y) be the é‘orresponding modular Padé (k,m,n)-form.

The pext theorem shows that if A(z,y) is (0,m,n)-maximal, then all modular
Padé (k,m,n)-forms can bé characterized in terms of a single modular Padé (k,m,n)-

form.

Theorem 3.8. All modular Padé (k,m,n)-forms for a (0,m,n)-maximal power
°

series A(z,y) are of the form P(z,y), Q(i,y), where

..‘

T



P(z,y) = (U(2)P*(2,y))mod 2**! .
. Q(z.9) =(U(2)Q*(2.y))mod 2*+1,

and U/(z)is an arbitrary polynomial in z.

Proof: Let P(z,y) = Pol; , (P) and Q(z,y) = Pol; , (Q) where P and Q are

solutions to (3.8) and (3.9). By Corollary 2.12

Q= E‘ az'- Q°, %

1=0

_for some a;, - - - .a; € D. Thus

9

k
p = -ka,n' Q= 2 as(kG‘m,nL" Q.z)

1=0

But, from (3.11),

N {Gma{2Q*) = 2(,Gp . Q)

\
and therefore,
:
P=Y az' P*
=0

-

“ ‘ }
Let U(z) = ¥ a,z'. From Lemma 3.1, it follows that
q =0

Poly , (P) = (U(z) P*(z,y)) mod z**' and
Poly (@) = (U(z) @*(2.y)) mod 2**!.

The above theorem characterizes modular Padé (k,m,n)-formsmse,

when A(z,y) is (0,m,n)-maximal. Full characterization is given below for the general

WJA .

case.
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Given A(z,y), k, m and v;, let Q*), i=0,... .k, be the fundamental solutions as
b

given in Corollary 2.24. Thus, the Q(")'s are solutions to a system

e

IHO-107;"—1" Q=0
@

Therefore, they are also solutions to a su{yaller system of the form (3.8), i.e.,
lHn-l—:yl,n—y.. Q=0 , \\ )

For s=0,....k, let P{) be defined as the corresponding solution of the form (3.9), i.e.,
Pl = = Gy aoy @

For ¢=0,....k, let

Piz,y) = Pol, o_, (PY)

and

QU(z.y) = Pol, -, (Q). |

-

Thus, by Lemma 3.3, PU)(z,y¥/Q!"(z,y) are modular Padé (i,m—y,‘".ix-y,)-forms for
A(z,y) where s=0,....k. .

The following theorem shows that any modular Padé (k,m.n)-fon’an be

-

expressed as a function of modular Padé (¢,m=y, .n—v,)-forms, 1=0,.. .k

Theorem 3.7. All modular Padé (k,m n)forms for A(z,y) are of the form

P(z,yVQ(z,y), where

.7 P
Pzy)= 3% 3 a,, 27w Pzy) Qzy) =3 T a2y Qzy)

1=0 j=0 1=0 g=0

and @, ,, 1™ 0,...k, j=0,...,y, are arbitrary sc3lars.
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Proof: Let P(z,y) = Pol, ,(P) and Q(z,y) = Pol; ,(Q), where P and Q are arbi-

trary solutions to (3.8) and (3.9). By Corollary 2.24,

( ’
LAY —3,~ .
Q - E 2 a.'lz‘_l'.y ' y,Q(l)
=0 =0
‘Thus,
RS ' —y, -
P = - 2 E G.J‘Gn'"‘(lk-"y' y,Q('))

1=0 g=0

From (3.10), it follows that

'EGm,n'(zk-"F"-!'y"Q")) - lk—"|Gm,n'(y—’l—]'y,',Q('))'

Since Q) € 1Sa-14y,n-y, 1™0,...k by Lemma 3.4, it follows that

e

) ' =,7 '
le,ny 'y"Q()- y .y)'ncm-ylu—vl Q( ).

But, \Gp_y 4oy Q) = '~ pP(Y) and consequently,

t - *
R
~ =0 j=0 '

. . *
An application of Lemma 3.1 to the vectors P and Q gives -

-
>

[}
’ [ ¥,
Poly .(P) = Yy ¥ a,.,zk"y’Pol,‘M_,(P('))
1=0 ;=0 '
and
3 Y,
Pol ((Q)= . X a,,zt'y'Pol,,_,(QV).
1=0 ;=0 !
Thus,

k ’I
Plz,y)= ¥ 2 a,, zt7 'y Pz y)

=0 3=0



and

£
Qry)=% X a, 2ty QUNzy).
1=0 ;=0
o~

44
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Chapter ¢ |

Padé Fractions over an Integral Domalin

In this chapter, we turn owr attention to the construction of Padé fractions for
univariate power series with coeflicients over an arbitrary integral domain. The algo-

-

rithm developed for this construction is used in Chapter 5 to obtain modular Padé
4

forms for a bivariate power series.

4.1 Preliminnrie;

Let Jﬂy]].denoie the set of all pow?r series in y with coefficients lying in an
integral domain J. We are interested primarily in the case J=D|(z]], the ;ct of all
power series in z with coefficients in the field D. The set J[[y]] itself comprises an
integral domain. Denote the integral domain of all polynomials in J[[y]] by J|y], and

the quotient field of J[y] b'y J(y) (rational functions in y over J). Some of thg

45
/

dévelopment in this chapter requires an embedding of J[|y]] in a larger domain F,[|y]],

where F, is the quotient field of J. We then introduce also the domains F,[y] and

FAy) , ;

Proceeding 'as in Geddes [19], and borrowingtfrom Cabay and Choi [9], we intro-

duce

Definition 4.1. Given two power series &
Aly) = Z oy € Jllyl] ; (4.1)
1= ;

and
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. . .

B(y) = io b,y € Jlyl] ‘ ()
,- N

—

the n}ionnl function Ug(yVVl(y) € J(y), where V (y)#0, is the scaled Padé fraction
/ . . .
of type (m.n) for the pair {A(y),B(y)}if

(1) win{m=3lUa(y), n=aV,(y)} = 0 (4.3)

. -

(2) GCD (Ug(y), Valy)) = hy*, for some integer A20, and h€J, and (4.4)

- (3) A(y) Vu(y) + Bly)Ualy) = 0(y™*"*") (4.5)

\
Theorem 4.2. Scaled Padé fractions exist and are unique up to a multiplicative

Y

comstant in J.

.. Proof: Cabay and Chol"show existence and uniqueness of scaled Padé fractions_.

when J is 3 field. By embedding J([y]] in F,[[y]]. it follows that there exists uniquely. -

up to a multiplicative constant from F,. a scaled Padé fraction U',,(y)'/l"y(y) € Fyy).

For appropriate f,g €J,

Cy) = fU(y) € J]y] -

Vi(y) = gVi(y) € Jly] A

aL"'(y). V"' (y) still satisfy (4.3), (4.5) and (4.4) for some A € J.

-~

Since there are numerous go<;d algorithms for computing Padé fractions when the
domain-of coeflicients is a field, these algorithms can be applied also to power series in

J|ly]] by first embedding them in F,[{y]]. The results obtained in F)(y) can then be

- ™ R

converted to results in J(y) in a manner indicated in the proof of Theorem 4.2

¢

+ @



. ‘ ‘ ‘~

| o~ Y
Unfortun$tely, operations in F, result in costly algorithms since large intermedi- i 1

” : ~
. . &» .
ate growth of coeflicients prevail, unless common factors are removed at each step, l‘f ’
(V2 .

costly process.: Geddes provides a method for finding Padé fractions whgig all q‘&'w, ;\ ¥ f'v?"!
. ’ . ot .

* !
'

tions are in J. In this chapter, the algorithm of Cabay and Choi for computMo!a'b'f‘ . E;"
» . o
Q .
scaled Padé fractions is united with the slgorithms of Collins [13] and Brown 7] for’
¢

computing greatest common divisors qf polynomials in J{y]. The algorithm developed

performs all operations in J and is superior to the fraction-free algorithm described by

Geddes, The new algorithm is used in a fundamental way in Chapter 5 to demign a fast

- e
4 .
method for computing modular Pade forms for bivariate power series . -
* 3 ‘ 1] >
4.2 Power Series Pseudo-Division
: [ ¢
: : : : . &
" Let J be an integral domain and consider the power ser ‘
.. .’-—*!\‘ W " ‘i*‘ i ‘
Ay = T ey 0#0, 0, €. » (4'8)
o ~ =0 . ]
and o
B(y)= X b;y’, by #0, b € J / (47)
=0

We are interested primae#ly in J ¢ D|[z]]. the domain of univariate power series in z

with coefficients in the field D, and in J = D{z], the domain of polynomials in z with
coefficients also in D. *

For a given integer 420, consider the system of equations

by w, 89 . -
o -—prt ] (4.8)
bo L 6, w, a., .

d—
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Because the right-band-side of (4.8) includes the term b3*!, Cramer’s rule can be used
to show the existence of a unique solution [w,, . . -,@,]", wl;cr'e w, €J,5=0,.. .,
R ,
Let. . ey

ay) =3 o,y

1=0 -
Vﬁ 4
“where [w,, . . - ,w,]" is the unique solution of (4.8), and let
R'(y) = b§*'A(y) + Q(y)-Bly). - ‘ (4.9)

b

Then, from (4.8), it follows that either R’(y) = 0, or there exists an integer {, { >3,

such that

R'(y) = y'R(y) = y‘Ee Yy, " (4.10)
"~ R

where r;#0. Adopting the convention that t=% in (4.10) whén R"(y)=0, we have
v A e T

shown

v

+ _ ,
Lemma 4.3. Let A(y) and B(y) be given by (4.8) and (4:7), respectively. For

&

any integer s 20, there erts a uniqué poiynomial

N - oo ' ','
0(y) ‘ﬁow,v’ R ,. ST in
such that
‘!“";. ] .
BtAGy) + O)Bly) = v'Ry, ¥ (112)

~ B S o
where t >» and? B

Riy)= X r,y/, rg#0. o (4.13)
1=0 . ’
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Deéfinition 4.4: {}(y) is called the power series pseudo-quotient and R(y) the

power series pseudo-remainder on "d'qv_iﬁqn" of A(y) by B(y) relative tos. A pro-
cedure for constructing {)(y) satisfying (4.8) and R(y) satisfying (4.12) is called power

series pseudo-division.

When A(y) and B(y) are polynomials in y, power series pseudo-division corresponds
exactly to polynomial pseudo-division (sece, for example, Knuth [25]). To see this, it is

only necessary to set

s = dA4(y) — 9B(y)

g
in (4.12), and take reciprocals with respect to y®4(¥). "

-

,‘ .

Note that (4.12) is not the only; way to define power series pseudo division. It

<

may be possible to obtain a unique solution w, € J, y=0....,s of (4.8) if we muluply

-

" lag, : - .,a,]” on the rh.s of (4.8) by — b, Iss, rather than by —b%*!. If { is chosen
" .

to be minimal, the resulting power series pseudo-division has a direct anology to the

polynomial pseudo-division defined by Collins [13]. We .choose to define power series

pseudo-division in the form (4.12) because it allows us to extend directly many of the
@
results of Brown and Traub [8] and of Brown [7] on polynomial remainder sequences,

¢

‘results which are adequate for our purposes. .

4.3 Power Series Remainder Seqyences ' 9

% ¢ c e

‘Let A(y) and B(y) be po’}ér serjes ndeﬁn,efirby (4.6) and (4.7),’ and let m and n be

x
nonnegative integers such that m=n. Yater, m and n shall corresplnd\to the degrees

s L.,
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of the scaled Padé fraction U, (yV Va(y) invDeﬁnition 4.1. Initially set

s_, =1 R_\(y)= Aly)

- (4.14)
o= n=m  Ryy)= Bly).
We then bave , ' )
Definition 4.6. A power series remainder sequence (PSRS) is the sequence
{a,,R(y)},=-10 (4.15)
sﬁch that
a.uRl.-l(y) + 0,,4(y)R(y) = y;'*""B.*,R.¢1(y), i=0,... , (4.18)
To ensure that a PSRS is well defined, the following addition G Nnis ;re

imposed. Let
(. - rlvo . . )."", :r : gt (4]-")
be«the leadihxg coefficient of

Ryily) = 20 .,y : (4.18)
. -

in (4.16). Assume inductively that ¢,,,#0, and let

fay, = (4.19)
Then, from Lemma 4.3, there exists a unique {1,,,(y) such that
?l#lRu‘-}ty) + 0,,(y)R(y) = !l"“'”R(!I)- ’ (4.20)

wheré¥y,21. If R(y)=0 in (4.20), then 2,,,== and the PSRS (4.15) terminates. If

3



R(y)#0, let R,, ,(y) be defined by

R(* Be1Raily) = B.n:o fe1, ¥ 741070, (4.21)
~ l.
where B,,, € J is some factor which can be removed from R(y). In this case )
'
Dy ™ ".'i‘nlﬂ - '..iol?oﬂ # 0.

and the term {s,,,, R,,.(y)}in the sequence (4.15) can again be computed by (4.186).

When a method for choosing 8,,, is given, and a termination condition is

specified, equation (4.16) constitutes an algorithm for constructing a PSRS.

>y
w

©

Initially set

n.,=n-m-1, m_, = -1, - (4.22)
and define
Ny = n + 2, A mu-’). =m, + 3, p=—], - (4.23)

3

Thus,

] - 1)
N ™ IE 3, M, ™ 'E 8, 1=0, - -. . (4.24)
-1 -0

We terminate the iteration (4.18) at 1=¢ (i.e., after computing a,,, and Q,,,(y)),

. . . 7 »>
whenever it is determined that

s/
Neor + 2,4 > 1, (4.25)
or equivalently, because s, = m—n, whenever ' .
My + 8,4, > m . / (4.26) .

)

Note that the termination condition is also valid in the case that R, ,,(y) = 0 in
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. )
(4.16), since nOw 8,4, ™ N4, ™ m,,, = ©. Thus, the slgorithm terminates with the

.

finite PSRS
(‘.‘»R.‘}.'--.n,o, e

where ¢ is the smallest integer for which ,

edl . ) -

Neyo ™ 2 al>n' '
le]

" Initially also set

4
U_(y)=0, V_j(y)=y""""" ‘
- {4.27) -
“Uly) =1, Voly) =0,
Corresponding to the P%Sﬂ.lS), define the sequences
{Lll(y)}l-—l,o. ' {Vu(y)}.-—l,o, ] ' . (4.28)
' i
such:that
R ‘a
-T’f" - n.*:l;?‘. l \\
Barlisily) =y “--nu.-)(!l! + 0,,,(y)U(y) (4.29) \
and
BiarVieily) = V"h'-'“nﬂlvu—l(!l) + 0,,(y)Vily), ) (4.30)

where a,,,, B,,, and 0, ,(y) are determined by (4.18). Strictly speaking, the initiali-
tation (4.27) is not justified because of the negative powers of y. However, the initiali-
| zation is acceptable algorithmically, since by using (4.27), U(¥y) and V,(y) for i=1,2

can be computed directly from (4.29) and (4.30).
-

As for the PSRS, wl\tfrminate the iterations (4.29) and (4.30) at 1=¢, that is,

after havi’ng computed the sequénces
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{‘U-(V)}.--l,o, el (Vi(V)}d-—I,O, el

Note that U, ,,(y) and V,,,(y) can be computed by means of “.29) and (4.30) without

explicit knowledge of R,,,(y), because a,,, and Q,,,(y) in (4.18) depend only on

R,_\(y), R.y) and s,. and also, in Theorem 4.11, B,,, is chosen independently of s, ,

and R, (y).

The fractions U,(y)/V,(y), s21, are shown to be scaled Padé fractions in

- 5
-

Theorem 4.8. The sequences (4.18), (4.29) and (1.30) satisly

Aly) V,(y)+ Bly)Uly) = y""*"’“'R,(y). =1, ..., (4.31)
where

min{m, — 3U,(y), n, = 3V,(y)} = 0. ’ (4.32)

\!

In addition, GCD (U,(y). V,(y)} = h,for some h€J. ®

Proof: The validity of the theorem for 1=1,2 can be shc‘>wn in the obvious

manner. Inductively, assume the theorem is true for [=1,...,s. Then

Aly)-Vioi(y) + Bly) U,_(y) = y™ " "R (y), (4.33)

where aU,_,(y) S m,_,, 9V,_,(y) < n,_, and the leading coefficient r,_, , of R,_,(y)

A]

is nonzero (otherwise, the iteration would terminate here). Also, we have

Aly) Viy) + Bly)Ufy) = ™" """ Ry), (4.34)
where 3U,(y) < m,, 8V, (y) = n, and where again r, ;#0. .

We now show that.(4.31) and (4.32) are valid at u'.+1. First, using (4.29) and

(4.30), and next the inductive hypotheses (4.33) and (4.34), and finally (4.16), we

-~



Y

N

v . .
-

B.s1lA(y) Vier(y) + Bly)-Usai(y)] |

| - g g, AV Vii(y) + Bl Uyw)]
0,..(y)[Aly) Vily) + B(y)-Uly)] | (4.35)
= y™ T i Resi(w) + Do) R

- y."'""""”B..]R.”(y)

obtain Q

+

The relationship (4.31) now follows after dividing (4.35) by B,4,.

To show dU,4,(y) S m,,,. from (4.29), it follows that

4 °

v
21U, (y) ggmar U (yF+ o, + 8. 30,4,(y) + 3U(y)}
< max{m,_, + s,_, + o, ,8 + m}

= my,.
In a similar fashion, it can be shown that 3V, , (y) = n, 4.
Let

d - min{mo#l - aU|+1(y)v nl#] -9 V.n(y)}

and
G(y) = GCD(y*U,4\(¥) ¥* V. uily)).
We will show that 8G(y) = 0. It will then follow that
min{m,,, = 3U,s,(y), sy — aV,a(y) =0,
and that <

GCD(U,4\(y), Vies(y)) = b,

for some b € J.
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Let A = 3aG(y) and suppose A >0. Define
¢

Uerly) = y9*271U, 4 (yVGly)

and
Viaily) = g2V, (Y Gly).

It is easy to show that L—/,‘H(y)h_’,“(y) is a scaled Padé fraction of type

(m,’,,—l,n,,,-l) for the pair (A(y),B(y)). But, by the induction hypothesis,

(y ! Uly). _1,1"_l V,(y)) is also a scaled Padé fraction of type (m,,, -1 Mo = 1) for the
~pair (A(y).B(y)). From Theorem 4.12, by the uniqueness of scaled Padé fractions, ut

follows that

U, olyV V50 (y) = UfyVV(y).

-

or equivalently, that

Uisily)Vily) = Uly) Ve ly) = 0.

Replacing U, ,(y) and V,,,(y) by their definitions given in (4.29) and (4.30), respec-
£

tively, we obtain from the two equations above that

P

U(9) Vo) = Uy(g)Vi(y) = 0,

which violates the inductive hypothesis that U, _,(y)V/V,_,(y) and U (yVV (y) are dis-

4

tinct scaled Padé fractions. Thus, A=0.

Q.

Each scaled Padé fraction U,(y)VV,(y), 121, in the sequence (4.28) lies along the

ofi-diagonal‘path

m,~ n ='m-n,
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according to (4.14) and (4.24). Let (m,n), where

v

me= m+)

ne=n+)

for some j, 0<j <3, be a point along this ofl-diagonal path between the points (m,,n,)
7

and (m.,,,n,,,). Then, the scaled Padé fraction U-{y)/V:{y) of type (m,n) for the
pair(A(y),B(y))is given by ,7

Usly) = v’ Un(y)

Vidy) = ¢’ Valy).
In particular, to obtain the scaled Padé fraction U, (y)/Va(y) of type (m.n) for the
pair (A(y),B(y)), set i=e+1and j=n—n,,,. Then,

m=m+ty=m,+tn-n, =m

n=n+)=n,
and

Unly) = Us(y) = ' Un(y) =y~ " Up ()

V(y) = Vi) = g Vo(y) = " "0V, ().

L4

Then, using (2.26), it follows that

A(y)Valy) + Bly)Ualy)
=" TAWVY,, (0) + B(y)Ua,, (9)]
=y TRt e R ()]
= 0(y™***"). ’
When J is a field, w; may set a,,; = 1 and B,,, = 1 in (4.16), (4.29) and (4.30).

The computational steps that result correspond exactly to those of Algorithm 3 in
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' \
Cabay and Choi [9). That is, Theorem 4.6 provides that the fraction U,(yVV,(y) is a

scaled Padé fraction of type (m,,n,) for the quotient power series A(yVB(y).

Whep J is a unique integral domain, we have yet to specily B,,, in (4.16), which
in addition must divide the right-hand-sides of (4.29) and (4.30). For algorithm
eﬂqftiveness, the choice of B,,, is extremely critical. The obvious choice B,=1,

[=1,. .. typically leads to exponential growth of coefficients in the power series R (y)

¢ N '
and in the polynomials U,(y) and V (y). Borrowing Brown's [7] example, let
»

R_(y)=1+y"~ 3y* - 3y° + Ry" + 2y7 — 5y +
Roly) =3 + 5y" — 4y' =~ 9y° + 21y° +

where J is the domain of integers. Setting s,=2 and B;=1, /=1, in(4.16) yields

Riy)= =15+ 3y? - 9y* + - - (4.36)
Rg(y) = 15795 + 30375y — 59535y° +
R,(y) = 1254542875143750 - 1854608338437500y +

When J is the domain of polynomials in z, exponential growth is encountered in terms

of degrees; whereas, if J is the domain of power series in z, exponential growth is

encountered in terms of the order of the power series.

-

Fortunately, large factors can be easily removed from the remainder sequence
R,(y) and from the polynomial sequences U/ (y) and V,(y), v=1..... Following Brown

[7]. in section 4.4, we prescribe a choice of B,, ¥=1,... which keeps the growth linear.

4.4 Subresultants

For the power series A(y) and B(y) given by (4.6) and (4.7) with b,#0, and for

integers 5,820, define the resultants (determinants)



U ,AB)=

and

R,(A.B) =

. . A
We have the following well-known relationship on resultants.

800 - - -

an

a9

84, - - -

.y’A B

Theorem 4.7.

MY R & B

8y

: a;#l b’.’}#l o

8,

a,#o b’l;#: o

A(y)V, ,(A.B) + Bly)-U, (AB)
=R, ,(A.B)

b)

. y**B
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(4.37)

(4.38)

(4.39)
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-y 3y
i=]
u?]‘.
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a,Ole

d

Proof: See Gragg [20], for example.

v

[N

62,00

bi‘;#o#l C

b

bl

b,‘l

o

)
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(4.40)

The primary goal of this section 1s to show that the resultants U (4. 8),

l"”(A,B) and IV, 4,B), y20, are either all identically tero, or for a correct choice of

B, in (4.16), {4.29) ami (4.30) correspo

some i. To p;h the main results give

number of lemmas.

pectively, to U(y), V,(y) and R (y), for

heorem 4.11 and Theorem 4.12, we use a

Proceeding as in Brown and Traub [6], the first lemma considers a single step in

the PSRS (4.18). To simplify notation, in (4.16) we make the substitutions

a,, R (y)= A(y) = 120 ay'. ay,#0,

R(y) = B(y) = IE biy', by#0.
-0

0,.(y)=0y) = :Eo wy,

B.o1Rsily) = G(y) = :Eo gy’ 9020

Lemma 4.8, If

A(y)+ O(y)-Bly) = y**'Gly),

/

\_

(4.41)

(4.42)



where (21, thga
g 3 e °
(-l)"'y“‘bﬁ"(}(y), 1=0,
’ ,,'(A, ) (_l)(lOl)lycoﬂ-lbsOlga-l G(’)- j-l—l_ .
(—l)(”'x""')y"‘b&"R,-“(B,_G), jz‘.
\
Proof: Equating coefficients in powers of y in (4.42), we obtain ,
[ 8, b 3
. g-4-1
l .
b, w, .
) - g-1 '
L4
. ) o
0,8 byes b, w, : .
'
where g, = 0,1f [ <0. ';blt!.
L
iy e
alg)&
N (4.44)

where O is !ijjgl‘am‘veqtor of tength /, and where the last row follows directly from

I fe . .
(4.42). Fifnl;f, f{r all I, 0 (<, in (4.39), replace column [+1 by the r.h.s. of (4.44).

k3

ponds to adding multiples of certain columns in the matrix given in

(4.39) to‘cof 0< s 5, the determinant does not change. Copsequently, (4.39) can



6l

‘@ “
g-e-t . 60 4
. . 9-0-t : . QO
R, (A.B)= : | : | (4.45)
§2,-¢ -+ - G-t S
ylolG o y""'G B o y;OoB
bO . g-9-1
. a .
v b, 9,-1¢ 9-4-1
- (_l)()él)()Oool) ‘
. ~ t
. 'i N . .
JB ber b 70 IR R L
B ... y*.G “'GJ‘ y""’G"

’
. - L
[ 4 N \

v, Setting ;=0 in (4.45), we obtairf -

4
. b : \

ke

R‘,Y,(A.B)-(—l)"' ’ . S~
) b' . e n bo .
B y‘B y‘”G
- (‘l)'”b(',“y"‘c(y)‘ ‘ .
/ :
For0<j<t—1/let I = t-3-12 0. Then(4.45) becomes ’
4



wo
R, (A.B) = (~1)u+1test)

’ B

* For j=t—1,(4.45) becomes
s e

bO
I }
' B,,(A 'B)'- (- l)(.#])‘
bt+'2l-—’2
B

[_J . - (_])(u#l)lyuﬂ’l—lba-&lg
N

~

Finally for y2t, minor expansions about the first s+ ¢ rows in (4.45) yielg=

\ ' ) b2j_#'n .

5.

Jo

b 9t-2

. yutl-'lB yn+lG ’

67'Gly).

by
o by
R.,.,(A,B) = (_1)(1'”)(”'”"’6“ ‘
V _ ~— b2)-‘ . 6,’
- . ya+lB o _y’*'B
» } g
"‘5 ’ - “
§ - ("1)(’HX”'“)V'“%"R,-,_,(B,G),

Corollary 4.9. Let

-

{o,, Ry} =<i0.
o 2

N/ ] 0
y)+a+lG

-~

) 0
LY

90

Jo

goj-¢ - - - G-

yo+tG L yj4~'+tG

62
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5 .
be a power series remainder sequence de.termined by (4.16). Then, for i=0, ...,
% - | .
' . : +1 . !
4+lR0,lI(R|'.—l'R|) - (—l)'l‘ly"l‘.”l(:' Bnl»lR.:o-l(y)v' (440)
o R‘,."(R".A,,R.)- 0., 0<j<‘|¢l-l' ' . (447)
'3 ' >
a':ﬁllRl‘”-l,l.(Rl—l'Rl)
LI - 26_"|*|'0 o174 1
= (—p)titn Tyt T B T B R, (), (4.48)
) (;7 s
a!:llR),l‘(Rl—l'Rl) C
= (__1)(;H)(H-,H)ynﬁv,‘1(.:.+-.~xB.,:llR‘J_ .~1".<1(R"'R'”)' J128,4,. (1.49)
Proof: The corollary follows by substituting (4.41) back into {4.43) and using the
identity g o d
R, (aA.bB) = a'*1b2***'R (A .B).
Lemma 4.10. For ¢=0, .. ..
- ] n -n +1 °
1+]
R,,M.,?(A.B)’I}l a, ) |
m'*l*"l‘l*'l*l LRS! 1_.1‘]'*1 '-l" 'I‘]-"’l
v - y ' ! (—l) R'¢1(y)c' rI CJ)-] ]B, ! ' (450)
=1
>
. ) - . ” ’
R,I,O(A.B) =0, n, <3 <n,.—1 : A’ (4.5l)
. 141 n -n ? R J »
Rnl‘z—l,no(AvB)n ayl’z ! i
=1
ml‘?‘"l"’_l '|-0—l .l*l_l"l '—l*. -|¢2-”
=y “ ('—l) R.#l(y)cl¢l n C;l-l )B] }' (452)
=1
1 ' .. ~
, mhege
4 ,
¢ ' ’ i+l
& AT S b 2 (n., n,+ 1) tmy —m_, +1) }
- =1



& '

. i+l
Tier ™ E (nie2 = ",) (m, 4y = m,-,).

=1

Proof: For | 2 n,,,, an application of (4.49) s times yields

-

. - S l-m 4l
Ria Ry R)TT @, %7 41
1=t

.- (‘-l)"v"""',’"lj

+ l-n 41, -
l[c,’f_-,n B, ) Ry AR - LR,
J

where ) o

‘.

%, - 2 (l—n,+l)(l+ao—lmj_',+l).
Al
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(4.53)

\
4

The identity (4.50) is obtained by setting I=n,,, in [4.53) and applying (4.48) to

the result. T‘e identity (4.51) is an immediate consequence of (4.47) agd (4.53),

s
whereas, (4.52) is obtained by setting [= n;+2— 1 imr(4.53) and using (4.48).
Theorem 4.11. Let

5t

Bl - (—l)

N b 4
@ el :
i Bio1 ™ (—l)" C:—lh:-l-lv 121,
, ' /—\ o
where ' i
)
hO'- (':)0,. hd
h, = c:‘h,l:,.', 121, . .

~

«

A S

Then, h,, B,4, € J, for y=0, ..., and

R, ,(A,B)= g™t mathapg [(y),

LR P

\

Bi.(A,B) =0, n, <I<n,,-1,
¢

¢

(4.54)

(4.55)

(4.56) .

(4.57)



(W)

I#IR (AyB)- y.|02"|02-lh‘+]R.‘l(v)'

L] ,..-l o

Proof: By induction, we first show that

* . 141
b= (=1)" e 1T (a8,)
.

Initially,

hy = ("']).(’,’.l“o-l (a)/B,) = C;°~

Assume that (4.59) is true for I=0,....s. Then, ﬁsing (4.55}),

h|+l-(_l)'“l |§l h ((l /B)
-]

1+1
“14-1

™~ = (=D e (@0 o/Beo)e, [.' I (a8,
« =1

IEIRT S BN
- (—l)" ! rn#ll cl/BN-’.? hc

l‘ll‘,

N [
1] .
= c,s1'h, )

-

and, from (4.55), the induction is complete. Observe also that by using (4.50) and

L8

(4.55)
b D (Bra) = et R (8 T B,/,)
} 1=1 : the
. T - (=" | hae,oy ﬁ (B,/a,)}.
v . =1

., .

+ © Repeating the above process inductively, we obtain

1-1 -
hl‘-‘“lct-l n ((B}/a;)- H (_l)'J l
)=1 1=0

g ¥ - ("l)m'h

L4
*

(4.60)
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Now, let |
6,,, - (=1)7*1, T fl: ety 'Itlll fB,/u,)”-*"'l*‘, (4.81)
= 1=
' so that the ident?ty (-}1.50) becomes
R (AB) = T 0 R () - | (4.62)

Using the definition of B, 4, given in (4.54), we will show that 8,,, « 1, s=0,.. Trivi-

ally Mor ¢=0, : -
9, 'I_l)olf(;oﬂﬂllal V ‘ T
- (_1)"1"0*1
’
= |

L4

Sy

Suppose that 8, = 1, j=1,...,i. We now show by induction that 8,,,=1. From
(4.50), (4.60) and (4.61),

Rl
o

t

x .- ' . . - Nk
0,0/0, = (=1)"" " el By Hl (BJ/QJ)]
’-
o ,,—0 +s¢+l . e "
- (-l) " b bl—lcl—l nl (Bllaf)
}—
l‘l_cl’.l(ml+'*l)."1(

= (=1

= ].

Therefore, 8,,, = 1, and using (4.62), we have proved (4.56).

“To prove (4.58), let B N

o 071 bt + - .
$,0 = (1) I Y (B/a,) Y, (4.63)
=1 ,

. »



"

so that (4.52) becomes -
' -~
) : ;,,, ‘,‘
R”.QQ-I-.O(A'B) - ymxoz’.g‘Q 1¢.‘l R"'(y)- : . :':"’ (404)
Then, since 0,,, = 1, and using (4.59), (4.61) and (4.63), - 3 ) . . } ]
Ce1®isr ™ Ciardi01/0,,, s
* 1+2

= (=) 27, ] (a,/B,)
1=1

= hiar '(4.65)

Thus, (4.58) follows from (4.64) and (4.65).
>

Observe also that h,,; is the leading coefficient of the r.h.s. of (4.64). , Therefore,

h,, is also the first nonzefo coefficient of R, ;1_,.,0(/4,8)‘, and consequently from

(4.39), hiyy € J, y=—=1,0,- - -. In addition, from (4.54), we then get that B,,, € J,

A

{-—‘]'O’ e,

To complete the proof of the thegrem. if remains to show (4.57), which follows

trivially from (4.51).

Theorem 4.12. Let the polynomial sequences

{U.(U)}i--l,o, ’ {Vl(y)}n-—l,o.

o

be given by (4.27), (4.29) and (4.30), and let B,,, and A, be defined according to (4.54)

and (4.55). Then, for sy=1,2, - - -,Iihe resultants (4.37) and (4.38) satisfy
Ll]'l*l"O(A'B) - U,+](y), )

Vo L (A.B)= V.i(y), o N

LIRS

kA, B) = 0, ne <I<ng,,,
‘B) - 0’ Nt <l<n|§2'
% .

1



of‘operations in JRADE.
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cl’lUl',z'l,lo(A’B) = his 1 Uinsly)
Cie1 Vn,.,—l,ao(A B) = hyViedy)

Proof: The proof is similar to the proéf of the Theorem 4.9.

4.6 Algorithm JPADE

The algorithm :IPADE given l'gﬁw is a generalization of Algorithm 3 given by

-
Cabay and Choi |9]. The generalization consists of replacing division in their algo-

rithm by pseudo-division (Step 6 of JPADE) -and removing the common factor B,.,

identified in Theorem 4.11 from the coefficients of the Padé fraction U,,/V 4, (Step 8

rd
L)

of JPADE). Given non-negative integers m and n #nd two power series A(y) and
B(y), the'algorithm computes all the Padé fractions Uy} Vi(y) of type (m,,n,)‘ior the
pair (A(y) and B(y)) along the ofl-diagonal path m,—n, = m—n, i=1,---. Prior to

exit, in Step 4 of JPADE, the two most recent Padé fractions are scaled by an

appropriate power of y. Thus, in particular, the mog"t" recent Padé fraction becomes

the unigue (up te a multiplicati&e factor in J, scaled Padé fraction of type (m,n) for
the pair (A(y). B(y)).

When A(y:) z.md B(y) are polynomials of degrees m and n, respectively, it can be
shown (as ip C:'lbay and Choi [9]) that JPADE yiélds exactly the cs\‘ame intermediate
and final results as does Brown's extended Euclidean glgoritbm'[7] for computing the

greatest common divisors of the reciprocals of A(y) and B(y). This correspondence is

“ Ao N )
) prerations-in Steps 2.and 5 in JPADE are

A

dropped‘,varopping"tthe -gf" ’ ‘c’;wever,‘signiﬁ‘c'amly incredses the cost

v »o - ol
. - - L
L h
' < oo e .~

PR
'« )
A [

4
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The initial conc;itions (Step 1) of JPADE, which involve negative powers of y, are
chosen to correspond exactly.v after taking reciprocals, to thf usual initial conditions
given for the extended .Euclidean algorithm. However, after two iterations of the algo-
rithm all powers of y become nonnegative, and instead these could have been used as

initial conditions.

Rt .

lnput: A, B, m, n, where

\

(1) m and n are nonnegative integers, and R .

i

(2) the truncated power series

" min }
A= a,y’, a;#0,
1=0 ! ¢ * ‘
and -+
’ meéen
B= 2 b,y’, by# 0

1=0

\Tiﬂrcoeﬁicients a,.b € J, an integral domain.

U, U,-, m m,—1
Output: , , , where
V"»V.‘_l n n,- 1

(vy UsV, W(y)‘is the scaled Padé fraction of type (m,n) for the pair (A(y),B(y))

and o~ , ,

e
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(2) U,_,/V,_, € J(y) is the scaled Padé fraction of type (m,~1,n,~1) for tl:' pair

(A(y).B(y)),

Step 1: #Initialization#

C__l “‘l
"‘l -l
h-l ’l
1 -0

If m2n, then

Uy, U, 1 0
“0 ‘/—l 0 yn—m-\
my m_, 0 -1
ng n_, n-mn-m-11[
]
else
.
('0 U_] 0 ym-n-l
Ve Vo, 1 0

Step 2: #Compute the residual for U/V . #

Find o, and R,, 3R, =3, such that
V < '

(A V‘ +’;ﬁ)€"odym.+n‘+2al+l - y"""“'R,,

: 7

M .
) where s, <% —n, and R,(0)#0, otherwise set s, = n—n,+1.

®
Set ¢,~R,(0).

Step 3: #Calculation of degrees of pext Padé fraction #

x>



mu#l - m|+‘|

B = n|+‘o .

Step 4: # Termination#
If n,,,>n then #Scale the Pade fractions#

L’ U, (/ U,., ”—x
vV, V,._ 4oyt
m m—1

U, U,
Return

n n-1
amhexit.
Ste‘p 5: #Compute residual for U,_,/V, _ #

ute R,_,. 3R,_ <3, such that

(AV,_, +fl",-‘)mody"'"“’"-—l*'.—x*'-” -
where R(,_,(O)# 0.
Step 6: #Pseudo-division#

Compute the pseudo-quotient {2,,,. 40, , < ,,

s 41

(Ctl Rl—] + ﬂ"lR')mody."’ - Oé/
Step 7: #Compute a common factor#

h, - ¢, 'hl—

o +1

B.+1 - (_1) l—lh:Ll

Step 8: #Advance the computation#

sSuc

1+,

that

+_
] lR'_l'



72

Compute the Padé fraction U,,,/V,,, of type (m 4 ,n,,,) by means of

Uc#l Uv Ul"l no#l

- / B.
Vl*l Vi Vo-l cf.’ly'--l"' H
'

Set =i+ 1 and go to 2.

To illustrate the effect of the removal of the factors 8,,, from the power series

remainder sequence, we apply the algorithm JPADE to the salne example (4.368) to

obtain R,(y), Rily). Ryy) and R,(y). where

R(y)= 15— 3y + 9y* +

R.(y)= 85 + 125y — 245y> + - -~ (4.68)
Ry(y) = 9326 — 12300y + :

R(y)= 263703 +

Removed factors B, are

B,= -1

B, = —243 -

B, = —9375 o (4.67)
B, = 1856465.

In assessing the costs of JPADE it is assumed that classical aigorithms are used

for the multiplication in the integral domain J. Thus, it is assumed that for a,b€J
cost(a-b) = size{a)-size(d), (4-68)

where the function size measures the total storage space that is required for its argu-

ment.

To determine the cost of JPADE, we begin with estimates of sizes of all variables
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1

in the algorithm at the i-th pass. Assume that the size of all coeflicients of the input
power»series Al(y) and B(y¥1s bounded b3: some integer k >0. Using theio‘ren: 4.12, l\‘)x;-‘\
size of coeflicients of the 'polynomial U,(y) 1s equal to the size of the coeficients of t\he
resultant. U"',O(A,B), which is bounded by l;-(m,+ n,+1). In a similar hshiop, with ,
the exception of the polynomial 1,,,, the sizes of all the other variables in JPADE can
be determined. To assess the size of coefficients of 1, ,. notice that it can be obtaine/l

by solving a system of equations, similar to the one given in (4.8), by meangd of

Cramer's rule. In this case, the determinants of the matrix in (4.8) will cancel with the

multipﬁ‘ﬂ c:'”, and the size of the coefficients in Q,,ll is bounded by the size of/the

.

suitable determinant. Bounds for the sizes of the coeflicients of the fariables in

JPADE are summarized in Table 4.1 below.

Variable | Bound on size of coeflicients
Uly) k(m,+n,+1).
Vily) | k(m,+n,+1)
R(y) k(m,+n,+1)

¢, k(m,+n,+1)
h, km+n+1l), __ @ .
Bior | kim,+n+1)s,+1)* .

0,,(y) | kim,+n+1)s,+R%

Table 4.1
Bounds on Variable Size

A count of the number of operations required for each step at i-thrass through
: ..t .
the %lgorithm JPADE is now obtained. Since the number of\addmons afl each step is

never greater than the number of multiplications, only multiplications are counted.

Step 2 requires the computation of 2s, terms of the power series AV, + BU,,



T R IR R o ow .
( 4 h\ ) }1‘ s t \"” ¢ “'\‘*

s Y A4 '\*o [y
~ . ‘g \ ‘ .
. ) P , T
‘\‘ﬂ\. - e Z""w ‘
namcly. the coeﬁclentq of y', where.} vy myd n,+ 2s;. The cost of com-
puting one term of A V, is b

*

cost( i 8-,v,,) = (3V,+1)size{A) tize V,)
1=0 ,

< (n,+1)k%(m,+n+1).
Q

we ®

Stmildrly, the cost of computing one term of BU, is bounded by (m,+ l)kg(m +n,+ l)

Thus, the total cost of Step 2 is not larger than

.

O 20,(m,+n,+2)k(m,+n +1)

A detailed cdst analysis of the other steps in JPADE can be conducted in a similar

fashion, and the results are summarized in Table 4.2 below.

{"

Step # of Multiplicatiops Bound N

2. | 25,(m,4n+2)(m,+n+1)k 2s,(m,+ n,+2)%k° .

5. | (s, 41)m,_,+n,_,+2{m _ +n_ + 1)k | (s, +1)(m +n 27k .

8. | (s,+3)%m,+n,+1)%? (8,43)%m,+n+20k | /.

7. | 4e}(m,+n,+1)%k 492(m,+ n,+2)%k* ‘

8. | 2(a,41)}m,+ n,+2)%k2 2(s,+ 1)(m,+ n, 4 2)3*

Table 4.2
Bounds on Number of Multiplications
L/ .

Thus, the total number of multiplications in Steps 2, 5, 6 and 7 is bounded by

(83 + 1322 + 30s, + 28)(m,+ n,+2)%?2, (4.69)

< (s,+5)%m,+ n,+2)%k?

and number of multiplications in Step 8 is bounded by

Aa,+1)7(m,+n, +2)%2. (4.70)
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To estimate the total cost of JPADE, two cases are taken into consideration. In the

case when the step size is bounded %y some constant ¢ (which is the case of normal
»

r g
power series, with c-l-\gg); vic number of passes through the algorithm is bounded

by m. Then, the total cost is ﬂiunded by

S l(c+ 51 (m,+ 0,3 2% + 2c+1P(m,+ n,+ 20k (471)

1=0 -

S (c+5)(m+1)(m+n+2)k + 2(c+‘l)9(m+l)(m+u+a’k?

r

Thus, in this case, the algorithm has a cost complexity of O(k*(m+ n)*).

In the case when the step size i1s not bounded, the costs of the algorithm are

estimated by using the inequality

<
i
2(m Patsmrte, , (4.72)
1=0
] » . :
where p,g >0 and [ is such that X, s, = m;,, = m. Since )
=0 ¢
b
2m|012m101 + "l*l - m0+nl'+20laml+nl+2‘
, .

the bounds (4.69) and (4.70), respectively, can be rewritten as

(a3 + 1347 + 30s, + 28)(2m,, )°k? : ‘ (4.73)

= 4(s3 + 1357 + 305, + 28)(m,, )k |
and . , e

8(e,+ 1)2(m,,,)2k2; ‘ ‘ (4.74)

Then, by applying inequality (4.72), a bound for the Btal cost of JPADE is given by -

( _ . ’

Y (4(s2 + 1387 + 30a, + 28)m2 k> + 8(s24 25,4+ 1)m3 K} = N 4gS)
1=0 '\'\.v\”'f)
S(4m® + 60m' + 136m® + 120m?)k%. | '
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Thas, in this, the worst case, JPADE has a cost complexity of O(k*m®). .

~

These cost estimates concur with the estimates obtained by Brown [7] of the cost

'.o&is Euclidean algorithm for finding geatest ¢otmon divisors of two polynomials
. . ‘ ‘

with coefficients in J. These costs compare favorably with the costs of the fraction

free mélhod ‘proposed by Geddes (18] which according to an analyses done by Bareiss
(3] (albeit, o™ more gefersl problem) has a cost cbmplexity of?(k?(m*r n)?), even if
1 a .

the power serms is normal. . .
. . - )

L2



" Partition enh Hankel submatnx H._ Lo s-Q, k. in (3 8), according to

-9

Chapter & T

Algorithms for Modular Padé Forms o "y

| »
\ .

°

In this ehapter, some methods for constrﬁcting modular Padé forms for the

bivariate power series.

A(z,y) '..?o ,,%gi'j""_’-#i {.;D' _‘ , ’

o ‘
are considered, and a newlgonthm is developed

¢ - -

The direct approach of constructing modular Padé forms is to solve the block

»

Hankel systems ’(3.8) and (3.9)." A solution of (3,8) yields a vector @ = [, Q.. - Q]
- > ‘ . ‘ '
where ;@ = [iq., - ,;%]", and then the vector P = [P, - ,oP|", where

P = [,pm, " 1iPo] s can be obtained from (3.9). By Lemma 3.3, the bivariate rational

J v ' -

. expression P(2,y)/Q(z,y), where

1 ”-:' . i ' w _l Y

=0 jm0

€

and

»y)- 2 2 42 y’ R A ’

1=0 jy=0

A

\- ‘ - ) o o 4 . b
isa modulai P&\Qm’;n)-form for A(z,y). a

‘\\ ’ .t
I gHyy gy 8 ‘nonsmgular, a met.hod ofmlvnng (I?j) can be desctribed as follo:‘

N\

N o ! B . R
N . o B K 3 . o -
# Ty L] T e
o . . . o . . b:\‘ - I . % :

- . 'y
P(z.y) = 2 3 2y , . ﬁ

\
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iCm-ne+l, ..., 1Om iOm+1 .
lHl'l,l - = [o"Hu-l,n—llta—]l &
L\ iOm 1w8men—1 : iavn#u‘
. “ where ,@ = [,6peyi, " 1 Gmen) - By setting oqo = —1 and ;¢ = 0, s=1,...k, the sys-
tem (3.8) becomes N
OHn—l.u-l Oﬂ ’
' =] | . (5.1)
.0”-.—1.»—1’ NEYY L. ] ltb-
x:ﬁ | | | ‘
where',Q is a subvector of ;@ according to g ) .- » /\
L ! “
vQ? [lqm e ’iQI|iq0] - [tQ h 0]'
The system (5.1) can then be written itera;tively as ' / .
- -1 . ’ R
16- OHu-—ll,u—l[iF-‘ 20 i—an—l,n-l', 6-]-; ’.-‘0,.--k. ) (52)
,- ' .

. N . ’ ‘ .
The solution (5.2) so obtained provides a nontrivial solution @ (since 4¢,#0) of (3.8).

|

It is an easy matterto show that the cost of the iteration (5¢2) is O(k?n?) opera-
tions in D, using classical -:‘srithme‘tic. Given @, the vector P ¢an be obtained from
(3.9) in W} additional operatiops in D?Thus, the complexity of this method of

constructing one nontrivial modular Padé (k,mn)-form for A(z,y) is O(k*(m+nkn)
operations in E, using classical 'arithmé;,ic:.’ 4 " \a
Each of the methods of/?hl&beel (8], Hughes Jones and Makipson [22] and Wax

, and Kailath [30] for sol;i‘%g(\ggncgal"block Hankel systems, when reduéed to the block
. q‘“}g .
¥
, \'5‘@

LY

’ ¢ s

‘ . %
\
' -
» 3
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N

triangular sj;tem (3.8), also‘require O(k%n?) operatic.ins in D. Unfortunately, their
methods, and the iteration (5.2) as well, require at least that ¢H,_, ,_, be nonsingular,

-
r

a restrictive condition that is not necessary for the existance of solutions.

It is an easy observatiou that modular Padé forms, to a given bivariate power -

series A(z,y), can be computed also by a straightforward application of the algorithm

JPADE. Such an application has no ‘restrictive reqiitements on the power sgries

- a

i . ' B
A(z,y), but, according to the analysis of Section 4.6 is much more costly than the itera-

tion (5.2). As the input power series A(y) to JPADE, we use the' ower series- A(z,y)
, . po P v

B R: . .
truncated modulo zt*! (regarded @f? univariate power series in y, with polynomial
’ ’ ]

coefficients in J=D|z]), and as the input power series B(y), we use B(y)=1. The

Pl -

scaled Padé fraction U(y)yV,(y) obtained from this input is subsequently processed

by removing the largest common factor z/ from U,{y) and V(y), and then truncating

\

S
each modulo z**!, to obtain 8 modular Padé form.

-

. . U .
The above procedure is the basis for the algorithm MPADE, given later in this
. 'R

chapter. Unfor'thpnate‘ly, this prokedure, without any modiﬁcatibns, has the‘samc\com-
puﬂationaj co‘mplex‘it_y as JPADE. To reduce the complexity', we will show that at
Kt 7 - -
appropriate steps intermediate results can be truncated modulo zt*!, 'Tuhe stcps at
\which such a truncation can take place arl identified u“sing the notion of rln'oq-

i

sihgularity of a univariate power series. . ' %
A}
Definition 6.1: For nonnegative integers m and n, the univariate power series
. o . _

A(y)- zo anyi - . . T i
is (m,n)-nonsingular if and only if the fol@ Hankel méh&ils coeflicients A

L

A\.
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®
pu-n#l,..., O
&
an r s laﬂﬁ "’l‘ o ¢
V4 " -
where.a, = 0 for j <0, is ponsingular. , s
»
.be power series A(y) is (m,n)-nonsingd¥r for all m,n20, then we say that A(y) is
normal. ' .o
Q
. v ;
Definition 5.1 is extended to bivariate power series by means of ) »
| P -
| . ' ‘ ‘
Dgfinition 5.2. A bivariate power series < , ‘
iﬁ * h 9 ) : ' v e * f"\ s
. ~ kY
Se . - o ) ‘ . N 2 . ] . 'y %
- QA(Z.V)‘ 2 ,-a,-z'y" - ‘he - . ;
’ i . }-0 » .
i - o
) v " a ) ¥ )
is (O.m,n)-uonsfngulz‘tr if and only if the dnivariate’ power series A(0,y) is (m,n)-
S ‘ l v
nonsingular. ‘ ’ 2 ‘ .

[
.

S N
A direct consequence of Definition 5.2 is LI 'ollowing
Lemma 6.3: If a power series’ A(z,y) is (Okm,n}nonsipgula‘, then it is (O,m,n'f}b'—' el

+
-

maximal. . Cel g
| > _—
Proof: If A(z,i;) is (0,m,n)-nonsingular, from Deﬁnitionsy.l‘ and 5.2, it follows
that.tBe matrix N v . : ,



N R
08m nel, . ,OamOl1
OHn-Sn -
- 4
| 0%m ’ £100men

is maximal. Thus, the dimension of (S,_, ,, the space of solutions of (2.11), is equal to

,‘4“ - .a},(

120 3=0. - ' f

A(zy)-Ezuy’ ’ ~ )
1=0 ;=0 . , . * )
. and ~ ¢
. | | v' . -~
B(z,y) = 2 E 1'!/’ . *

xdl N
) } ¥ » . .. . . . . *
g‘bivariate power series with coefficients in D. Also, let'.y) and B(y). redpectively,

T

‘ . be the corresponding univariate power series with coefficients in D{[z]]. That is,
4(1/) - 2 a)ij a = z |a;z" ‘ \
} =0 =0 -

.// and ' ) ,
B(y),= Eo by, b, = 20 bzt _ "

~

Lemma. 5.4: Let b,#0; and suppos& m2wn. Then, t.he‘ quotient power series

E(zsy) - A(z,y)/B(z y) is (0,m n)-nonsmgular iff the comstant td‘l@the multant

-, [

'V,. - ,,(A B)is nonzero R
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Proof: Let . ®
? A,
‘E(29V) - 20 C,'y’, . . '
‘ T - 3
h , .
where . :§ i .. @ iz
: R -
¢. 'goi‘;z . - 3 ' S L
. - : o 0,)3"‘ "\@
Then, E(z.y) = A(#,yVB(z,y) implies that 2 T
’ . ) - » ‘4
< Do
o, = 2 eb_y =0, (5.3)
: =0 °
)
@ ,
For i=0,...,n'and j=0,..,m+n, define
[ 4 » ’ “ .
m=—) K 3
S, = p) ebi -y (5.4).
K 180 14
. .
. L  J
o« Then, using (5.4), )
-\ .
T [ ' ' ) .
J} =-a-, - , cl—)bi—l + 2 cl—jbl-l _ ] . (35)
- ¥ T ‘ ' ?
. . lam+l - . .
Now, using (5.4), the resultant (4.38) with j=n and s= m-n beco%es
ao ’0 : o
‘_‘ ' ’ 3
',\ i e Go . . bo
SV d(A,B) = b | (58)
) - Cmén - Opm buﬂ-u . b.a
k4 1 . y" 0 0 N
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N 0~ b .
\;Qn!
. > 'y ‘
- . . . 3l
o . ofmer - afmer bmer - b
> o!n*u o nln¢n 6n+n o bu !
1 . . 0
4 w TP¥ 2’30 B |
Expandmg’%ﬁe second *tcrmmant o (5 6) about the last m+1 r%umns uglhen
. A “wan e - G aw

adding appropriate mult.lples of rows t,o other rows in ordcr to remove all those terms

ap

in ,f, (expressed by (5.5)) not mchidr’ng the factor b,, we obtain

4. . -

N of . ® .
;{em,,bo o emonembo] AN

(m+1fns1)pme+1 | - « ¥ -f
Vam-al4, B)-(—l)"‘ ket b ;o L sar A,
! ! i » “

Emanbo embo "
f { l . y'l ¢

N | Emer, Cm-ne1
S " .
¢ T .
- A - (—])(mﬂ)(nﬂ)banuﬂ
) - . . "?‘"
\) . Cmen Cm
: , 1 . y" N
’ - 3 Q b
The iemma now follows by expandmg the second” determmant in (5 7) about the first
& .o .
column an'd last row and evaluating it at z=0. . .

Given A(z,y), B(z,y) and two nonnegative integers m and n, let the power series

v . . .

remainder sequence
{s, . RY2,9)h- <10 - (5.8)

]
f . N
. > ' -
and the Tofactor sequences ' ‘
s \ ' '

' .



(U.'(’o‘l»..-l,o_ ] {V.(Z-V)}.'--l,o, ' y ' (59)
\ ‘ N
be determined by the algorithm JPADE. That is, ,‘2 n, set

R-l.(’»b) - A(':li')“_.wﬁq('l‘,{y) -;,b(z.y) and sy = m—n:

S
and, if m <ngset .. \

JR_\(z,y) = B(z,y), R‘.’y) - "’y) and s, ._’ ﬁ,_\

As a coised;;h;_e of Lemma 5.4, we have " .o

... Theorem 6.5. Let 4by#0. Then A(z,y)/B(z,‘y) is (0,m,,n,)-nonsingular iff l',(0.0)# 0.

. S . L
In addition, if A(z,yVB(z;y) is (O,m,.n,%nohsingu‘lﬁc then the leading coeflicient

¢,-4(2) of R,_,(2,y) divides U,_(z.y). v;‘;,(mand R,_(£,y).

Proof: We consider the case m2n only. The proof for the case m <n can be

shown in a similar fashion, using instead of Lemma 5.4, the result that

A :
E(z,y) = A(z,yVB(z,y) is (0,m,n)-nonsingular iff the constant term of the resultant
. . ‘

Um.,,_ ~{A,B) is nonzero. \’ : . '

Suppose that m2n. That V,(0,0)#0 iff A(z,yVB(z,9) is {0,m,,n,)-nonsingular is

¢

. a direct ®onsequence of Theorem-4.12 and Lemma 5.4. To show thas ¢,-{(z) divides

R,_,(z,y),-from (4.40ynd (4.58) with j=n,~1 and sy = m—n = m',— n,, we obtain

- 4

TRy~

- cn—l(z)R‘u,-l,no(ArB) L)

' .



*n 4l
- ym. " cl"l(z)

15

But, from (5.6) and Theorem 4.12,

Vl(z'y) - Vn',ml-nl(A vB)r

)mﬁn.#lb

-(—l

Since V,(0,0)#0 and ob,#0, the determinant on the r.h.s. of (5.11) does not vanish at
z=(0. Thus, th_e determi ‘n

consequently h,_,(0)#0. Now, from (5.16)

“
m4n -

\

0 .

lR,_,(z,y! = c_,(z

L1
a5
Opmon-1- - Om
\
ay
..
»
‘O .
am"“l_.l . . - a
A

%

.~

bo
bo +O(y)ﬂ".'§'_‘
bm,#ul‘-l L}
- .
bo
\ .
-\ b
“\./\o + O(y)
bm]* nlm co bu. ."

)hnzll‘( z )R‘n'- 1

]

WA B,

-

t
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(5.10)

t on the r.h.s. of (5.10) also does not vanish at z=0, and

L

‘P

|

. T . - -
and it is clear that ¢,_,(z) divides R;-&z,y), because h,'.‘,(z)R,’:,,,o(A,B) € Dl|z,y]). \

. v iy
From Theorem 4.12, it follows also that ¢,_,(z) divides U (z,y) and V,_ (z,y).

The algorithm MPADE below performs basically the same computations as does
tbe algorithm JPADE. It differs, primarily in that MPADE -takes advantage of

Theorem 5.5 as follows. At any (0,m,,n,)-nonsingularity, MEADE redu(‘cs‘tl;c sizes{in

.

. ’
terms of the degree in the variable z) of she intermediate results U(z,y), V,(z,y),

4
r
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.

L]

U,-,(z,y) snd V,_,(z,y) to polynomials of degree k in tZy variablg z. After such a
reduction, algorithm MPADE continues computations exactly as would JPADE (i.e.,

MPADE calls JPADE) until either, another nonsingularity is encountered and reduc-

tion is once again performed, or it terminates normally having arrived at the ultimate

- .

destination n,,,=n. lo order tw it recognize a (0,m,,n,)-nonsingularity, it is neces-

-

sary to modify JPADE by replacing Step 4 with

Step 4. # Termination with nonsingularity#

If (V,(0,0)#0 and ¢ >0) or n,,, > n, then : .
>
) Ua-‘l m, m._, " . .
: , - "and exit.
Vo-"l "n n|-l ! c ’
1 l L s

The algori'thm MPADE below asssmes dhat.this mba:ﬁcation to JPADE has been

made.

-

wesereof [ (]

Input: A, B, m, n, and &, whére : ) A

¢ . -
X .
(1) m, n, and k are nonnegative integers and,# .

L

(2) A and B are truncated power series, )

“

e Amen ’ f ] ) |
T A - E a,-(z)y’, 00(0)* 0, v, ” <
=0

~

and -

B= -gb,(z)y’. bo(2)#0. ' Ny ‘

=0



N> 4

with coeflicients

§
a,(1) = Y 91 ”3‘ ¢
=0 - /
and , . .
k
b’(l) - zo .b,z'. obo*O
|-
in D[l] ’ i
l,l l't-l m, m,._, 2 = . ! A
Output: N I - where T .
Vl Vl-l “qn N '
B bv ’ L
. ) , ) ‘ ’ L4

U/V, is a modular Padé (k,m,n)-form for A/B aﬁ} U,-."i[‘!g",, is a modular Padé

(k,m,_y.n,_,)}-lorm for A/B. o ! ,
[ - » '.:
Step 1. #lnitialization# .
Ro | A] . L
R_, B T )
r e - ) ‘

.

N
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Step 3. #Convert to modular

»

B N
.

Determine the ‘eat l; and §_, such that 2" and ;“ respectlvely/tr!’c%;

factors of U and V and of U ,and V

Set'
U, U,y U U_ [z o ’
T = — “1l- = . moedst*!
e W Via YV, V=1 0 ;7hn . —
.t e . [
)
Step 4. #Calculation of degreesé# .
l#) l*"-l m‘?m*" "-‘_; '-'-'-}'l l
+
Niey=i n, n,_, [ .
Step 5. #Combine results# . .
F-.
Ul*l Ul;l‘l Ul y l"'U V, v;-l
B _ modzt*! }
Via; Viey . V-‘ ’- 1“ V--x U; U~y .
Step 6. #Compute new residuals# \
.4". Fiﬁ!’ ‘_‘w,- Rl’,'-‘hd Roﬁj'—l ’“‘?h ‘,‘bat' B N ) . ,& - .
"'”""”""R,’H - (A l‘/.” + BUM;)WIO‘zt”mody"";” P

where (R,,,(y-O)%*d and 4., ,Sn7n, ) otherwise set o,,, = n—n, +1; and

- y-u)-x#!.ﬂ-l"l.‘}-lR - (A V'O;—l + BUN,_l)modzl-tlm.odym‘n#l

-1

J \

T A ady



A

Qtep 7. #locrement i#

13t

L ¥

Step 8. # Termination#

If ﬁ,~+ o.-{n

then #Scale results and exit#

Set
Ul Ul-l Ul Ul-l
Vl Vi’ H Vn V|~ t
and
U U_ | Im m-1
Return ' ,
} ' Vl‘l n

else #Continue processing#
Go to Step 2.

Theorem 5.6 The algonthm MPADE terminates. Or complcuon U/V is a

&9

‘modular Padé (k m n)~fq;m and L, AL 18 a nvdular (k,m, l n,- l)-fbrm for A/B.

é

L]

[ 3

’

Proof: We proceced by induetion with respect to the number—of passes through the

'

aigorithm. We'show that the following c'onditions are’ satisfied just prior to the execu-

]

tion of Step 7: J
L 2

some s, _

and R, .

[3
1

.(;‘(

f

8

I

Tow

¢+
!

"</ s
e for

Condition 1. U,_,/V,_, is a modular Padé (k',m,._,,n,_,)-.form for A/B, wl‘er

&

.

]



"1-]"":-1"

AV,_,+ BU_ =y "’R,_}\mod:“'mody""."” : {5.12)

&

. Condition 2. {'/V,is a modular Padé (k,m,,n,)-form for A/B, where for some R, and

for s,21

t
I

el

v AV, + BU = g™ "R modzt* imody™* nt! ' : (5.13)
Condition 3. R,_,(0,0)#0 and V,_,(0.y)#0 (5.14)
Condition 4. ¥(0.0)#0 n . M (5.15)
Condition 5. a,;, =m-m_,=n-n_,21 . (5.16)

&' -
Condition 8. ml—'n, =m_ pRo, = mTn ' (6.17)

With these assumptions on U',_/V,_, and U/V, we show that Uiay-/ Ve, -, and

U,s,/V,s,. when computed by means of Step 2 though Step 6, exist 1n two distinet

states.

Case It If l_')(0,0)%O, we then show that l'.:”l_l/l’.,,_l-and Use,/ V.4, satisfy all the
Conditions 1 through 8 above (with ¢ replaced by i+ ;). Thus, if the algorithm does
7

not terminate at Step 8, the same conditions 1 through 8 will continue to be satisfied

LY

at the next pass of MPADE.

L4
Case II: Otherwise, we show that algorithm terminates immediately during the execu-

tion of Step 8, and returns U,_,/V,_, and U/V, satisfying all the conditions of the

theorem.

4



First consider Case }..
-

To show that’ Conditions 1 through 6 (wi.tb i replaced by .u'+j.) continue to be
satisfied, we trace Step 2 through 6 of MPADE, all of which contribute to the con- -
struction of Uy, /V,y,-yand U V.

"In Step 2 of MPADE, from the results of Chapter 4, it follows that the fraction:

(7,/1., and (_-/,_,/t_',_1 computed by JPADE satisfy

72 T moen T . ' ’ . o
RV, + R_,U =y™" """ "R, ‘ (5.18)

for some fTJ and 5,21, and )
RV, + R U= ymo Pt iR (5.19)

s,y = m - m_,=n - n._,. ,(5.20)1_
In addition, - : )
n,—m, = "1—1”"‘,-1"..\ . , (5.21) N

&

* Also because R,_,(0,0)#0 (by the inductive hypothesis given by Condition 3), and

from the assumption that V,(0,0)# 0, (i.e.. R/R,_, is (O,nT(,gT;)-nonsingular), it follows
from Theorem 5.5 that the leading coefficient ¢, _,(z) of I?-,_,(z,y) divides E';_,(z,y),
' ‘_',_,(z,y) and E-,(z,y). Let l,_,'be the largest integer such that 271 divides c_,_,(z):

Then z"-' divides - (—/;_l(z,y), V,v_,(z,'y) and ﬁ,_l(z,y), and in , addition

:_1"‘;?—,_1(1,3/)#0 for z=y=0. Consequently, the execution of Step 3 of MPADE

U0, u o, o, - BN
- = - 1_ _ modzt*!, 4
v, Vo /Y | S —~
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. .
w{th l,=0, yields L_/,/V, and U,_,/l—’,_, which sagjsfy‘(5.20) and (5.21), as‘well as .
- a3 me+n +s ‘ } ‘ . ) '
R:‘) + Rl,"l(/] =y R; . N (&-22)
- ) o ' y - T T
{ér some R, and s 2 a—,, and .
. Rl‘—,J"l + R,_-,E’,_l = yﬁ’-r*i'v-l*z-lk:-l - - (5.23)
for R.,.", such that R}-AO.Q)# 0. b - | >

3 ' 4

* ~

.

: ¢
Then, after Steps 5 and 6, using (5.12), (5.13), (5.15) and (5.22). it follows that |
modn‘o ymrrt U Ve, and Uy /Y satisfy

AV|§ .I-l*,

) + Bll’a#; - ‘4(Vl-‘—; +' y va—ll_lt) ’ ! (524)

ey

+ B(U'?-, + q"_l U'_"U,) + O(Z"l)
- . .

+BU,_) + O(z**)

= V,'(A Vi+BU) + ¢t Ty,
m|+~n‘+a

=y (V,R,+ T R,_,) + O(zt*)

m,+n‘¢4:|¢ﬁ,+i,#f’é} + ()(2*“) . ~

. -

= yml”*""Y*'lvyR'*{mOdlb‘ly'"*"‘l . ) Y 4

\ _ .
‘4for .some' 8,4,2824521 rand R, (20)#0 i n, +e, <n. Furthermore,

Ys v

V,e,(00) = V.(O,O)V,(O.O)ﬁb‘E 0. That lil U,s,/ V.4, satisfy Conditions 2 and 4.

To prove that ('.; /V,4,-, satisfy, Conditions 1 and 3, in a fashion similar to

31

(5.24), it can be shown that, modulo y™*"*! ’

R R Ny ‘
AV,...,_] + BU-#,—l - ym 1=1 " IR R IR, + 0(2‘”).

Thus, 2,,,-,=32,-, and

m—m.‘]On—nl,;_lél—aj_ . -

Ry, .1 = fT,modz“';nody

SN\
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It then follows thas R,,,_,(0,0)#0, and consequently that V., _,(0,y)#0 (because

. B(0,0)#0). Finally using (5.16)k, 15'.17), (5.20), (5.21) and the results that o,”_,-'a_)
and o,;,za—,«, it is trivial to show that t
8,4)-1 = M, "My - "n-&;-nu#;—lzl “"

)

and -

-

'm|0;_”|01- "'-9;—1"".0;—1" m=n,
: .
L

/ .
where m, . n,,.m,, _, and n,, _, are computed in Step 4 of MPADE. Thus, Con-

‘

ditions 5 and 6 are also satisfied.

Observe again that if n,4,t8,,,<n, then the termination condition in Step 8
i :

4

fails. ‘But then ivn equation (5.24), R,”('z,O)at 0, and with ¢ r;jplaced by 1+ (Step 7)
“all the Conditions 1 thro{igh 6 are satisfied during the next pass through MPADE.

That is, we have resolved Case I. )

Next, we consider Case Il T‘ha‘t 1s, assume that Conditions 1 through 6 are
satisﬁt:d for U/V, and U,-:/V,_,, and also that, in ’S'tep 2 JPADE returns 'LT,/V; and
'L7,_>,/P_’,_,‘whic;h still satisfyl equations ‘(5.18)‘and (5.19). l;owever instea;i of .theﬁcon-

. . s
dition Y,(O.‘O)# Ovbei‘i‘:n;;;‘tisﬁed as‘ityx Case |, now U,/V, satisﬁ'es the conditio'n t_haf

- EATEn-n. (5.25)
+ .

We shall show that, prior to the execution of Step 7, U,,,/V,,, and U,y ;- 1/V 4 -, are

modular Padé (k,m,,,,n,,,)}-form and modular Padé (k,m,,,_,n,4,-,)-form, respec-

tively, for A/B. In addition, we shall show that in Step 8 the termination condition is

satisfied.
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First we discuss 'U,‘,-/V,,,-. From (5.18), after Step 3, it follows that L-/,/V’
satisfy either (—’,(O,y)ato or V,(O,y)# 0, or both. Furthermore, V’;(O,y)# 0, since other-

wise (5.22) and the condition that R,_,(0,0)#0 would imply that U(0,y)=0, also.
Similarly, using (5.23), it follows that l—',_ {0,y P 0.

In a fashion similar to (5.24), Steps 5 and 6 yield U,,/H,,, 8., and R, such

that

.

"'.‘,*".o +g

7ThR,, modatt!

AV, + BU,, =y mody™*"* 1.

in Step 4, it follows that Step 6 must yield

But, from (5.25) and the definition of A,

8,4, =3, because

ne., t+3,

. . . \ . (S
Thus, the atgorithm MPADE must terminate at Step 8. .

i
- n,+@+h—, = n.

It is still required to show that U,, /V,, is nontrivial. In fact, we shall \:how that

J

Py
U,4,(0,y)#0, or V,,,(0,y)#0. For suppose that both U, (0,y)=0 and l',,}(O,y‘)(-O‘

Then, from the definition of U,,, and V., in S.iep 5, we get

V(0,9)V,(0,y) = —y" """V, ,(0,9)T,(0,y) (5.26)
and .
" _ L | |
U0,9)V,(0,y) = =" " "U,1(0,9)U,(0,y). P (5.27)
b
Since V,(O,y)# 0, equations (5.26) and (.5.27ﬁmply that
U.(O,y\)\‘.-l(O,y).T U-{0.y)Vi(0,y) = O (5.28)

~

But, U,(0,y)V,(0,y) is a Padé fraction of type (m,,n,) for the univariate power series
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\/ " A4Q,yVB(0,y) which is (m,,n,)-nonsingylar, and U,_,(0,yVV,_,(0,y) is its i-ueduecessor.

,Thu,"p,-om results on univgriatc'Padé theory (see, f(_)r)xample. Gragg [2()T,*or Cabay

..Ceh\ot [9]), we have * 4 e °
. Ul(o'y, - U.--,(O,y) ' ’ '
V- Vio,y)  Vio(0) - - o _
. . Ty

which contrad'icts_(5.28).

Thus, U,4,/V,,, is 3 modular Padg(k,m,.n,)-form for A/B. In™a similar fashion

J

9 —_ .
(but, now we use the fact that R,_,(0,y)#0 to show that U,y _,/V,,,_, is nontrivial), - P

it follows that U,,,_/V,,,_ is a modular Padél (ksm,y, -0, )form fo{ A/B.

[ i

To complete‘ the proof of Case II, it is only mecessary to observe that the scaling

of U/V, by y" and U,_,/V,_, by y"".l in Step 8, just pMr to exit, yield the modulat

Padé forms required in the statement of the theorem.

, o
Finally it is an easy exercise to show that just prior to Step 7 on the first pass
‘ L §
through MPADE, with 1=0, U,,,/V',,'and Ugy-1/Vye,-y fall either under Case | or
. . N . ) ¢

- ]

Case Il | ‘
3 J -
The presenta’tion of the algorithm MPADE above iS(gearéd towards the proof of

its correctness. Before we consider the costs of using MPADE some modifications on

» improving its performance are givem

At each pass through the algorithm (in its present form), Step 8 computes the—

residuals R,,, and R,-,',_, modulo y™*"*!, Subseque“t‘j‘tly in Step 2, JPADE only

requires m, + i, + 2, terms of the residuals. The modulo y™***! operations are there-
T, : opF

fore wasteful, but they are required because m,, n, and s, are not known apriori.
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In most implementation environments, by declaring the variables A.B.U, V', U, _,. ’

4

and V,_, to beAgloBal variables, the com'putal.ions‘ of the terms of residuals can be per-
. 7 . . ‘

formed.in JPADE, rather timn in MPADE, only as rcquired._

" To obtain a cursory cost analysis of MPADE, with the modiﬁéatiou indi'cal,ed as

: , . N .
above, we first consider the case when the input poYr series E'= A/B is (0,m,.n,)

nonsingulaf for all ¢+ such that n,<n (that is, £(0,y) is\‘normal). ‘In this case JPADE

N ’

. ' e ’
.always terminates after just one step with a step_size of 1. Thus, MPADE performs
exactly the same computations as does Algorithm 3 of Cabay and Choi (9] for univari-

ate power series with coefficients over a field:D,-except that now MP DE performs
’ ° . ’ « i : \
eoperations on polynomials in z of degree not larger tfu k, rathef than dp elements of

. L o b
D. The algorithm given by Cabay and Cboi has been shown to

ve a cost complexity
A ’ .

- of O((m +n)n) operations i_u D. Consequently, for E(z,y), - A :,r)/B(z,y) for which

E(0,y) is normal MPADE has a cost complexity of.()(k'-’(wn-#n) operations in D f

classicab arithmetic is used.¢#On the othcr hand if fast methods (pequiring O(klogk)

operations in D for the multiplications and divisions of polynomigals of dcgrce.k) were

o~

used, the complexity of MPADE reduces (again when E(Oly) is normal) t
O(klogk(m+ n)n) operations in D.

If E£(0,y) is not normal, tbe)complexlty of MPADE increases according \to.the
nature of abnormality. If thedistances between nonsingularities are bounded by some,
o | -
constant, then the complexity results again hold. Otherwise, the complexity "of
MPADE can become as large as the complexity of JPADE.

- [} )



".Chapt

b .
/.
7 Suggestions for Furtber Buearch / / ',{\
N | N
The focal point of the research presented in this thesis is a generalization of

A

tions. As has been pointed out in Chapter,

N nni}a

such a generalizatior is not str. 1 there is no widely ucepted}niform

pfoximnts ’The modular Padé forms defined in

7

Chlpter 3 are superior her definitions in the ‘sense that, even though they are

definition' of bivariate Padé

never unique, thc family all modular é orms at a given point (k,m,n) can be
characterized in simple terms for any power series. There are no similar results for
other defititions, i.e., characterizations are not; provided when approximants are not
unique (which’i; always the‘case when power ;eries is abnormal)‘. lncieed, it is a trivial

" observation that for any definition of a Padé-like approximant, which gives the set /g
(.f., Chapter 1) ex;tic.itly, uniqueness df approximants under general conditions, can-

, bt be ensured. . | N
One way of d:aling with this problem is to require solutions ine super set of I,

' u; Iy, which in cert:ina sense would be maximal. If the power series is normal (which
is an underlying assumption for most of the result.s'in this area), the\m"oﬁ}r\fgﬂ‘g,,/
forms can ®asily be psde unique and irreducible. It is sufficient in this case to expand
the set /g to include {(¢,5): k+1=i<2k and j=0}. Thi's is equivalent to the order con-
dition \

A(2,5)Q(2,9) + P(s,y) = O(y=*"*') + O(z7'*!) + O(z**y).

A rational form satisfying such an extended order condition can be obtained first by

obtaining s modular Padé (k;m,u)-form for A(z,y), and then by i:ormslizing it so that

07
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'along y=0, it becomes a univariate Padé fraction of type (k,k) to A(2,0). How to

obtain similar results for abnormal power series remains to be investigated.

v

The results of Chapter 4, even though they are significant on their own, have
been obtained primarily. in o;der to facilitate the development of the algorithm
MPADE. The specific choices of a,,, and B,,, have been made in ord‘er to establish a
correspondence between PSRS's and subresultants. Because of this correspondence we‘

were able to prove Theorem 5.5 and consequently justify the correctness of the algo-

rithm MPADE.
Two ways of improving JPADE require further investigation.

‘(1) The choices of a,,, and B,,, are not optimal ones. The factor a,,, in the
pseudodivision (4.8), Step 8 of JPADE, may be made smaller. Also, B,,, (Theorem
4.11) is not the largest constant in J that can be removed from the cofactors and the

. A
residual.

(2) The development of>a recursive algorithm JPADE in the spirit of Algorithm 2

of Cabay and Choi [9] poses an interesting research problem.

Given the pclmer series E(z,y) = \A(z,y VB(z,y) and the integers k, m and n, the
algorithm~ MPADE always produces a modular Padé (k,m,n}form. If E(z,y) is
(k,m,n)«maximél then the result produced (according to Chapter 3) is uﬁiquc up to a
polynomial in z. Thus, in this ca;se, we obtain all the modular Padé (k,m n)-forms. If
E(z,y) 1s not (‘k,m,ny)-maximal however, tks mogular Padé (k,m,n)-form computed by
MPADE does not allow us to obtain ull other modular Padé (k,m,n}-forms, as given in

éheorem 3.7 of Chapter 3. This important problem is left for further investigation.
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-

The eficiency of the algorithm MPADE depends on how oftén intermediate
results can be truncated modulo z¢*!. It cap be sho:n, by a countcr-ex:mp!e,lthat if
truncation is\perfotno'd at each step, the algorithm :ny sot always au'cceed,‘i.e:, the
cofactors U,,,. Vie, in Step 5 of MPADE may vaPish. We were able to prer that at

N ¥

nonsingularities of the power series E(0,y) truncations of the intermediate results

modulo z4*!is justified. It remains an interesting problem to determine:

(1) if less restrictive conditions (that is, conditions other than (0,m.n)-
nonsingularities) for truncation modulo z¢*"can be found, and

(2) if truncations modulo 2¢**! can be performed at every step, where ¢ is some

minimal integer determined at each step of the algorithm. -
]

Knowing apriori that E(0.y) ishor\'mal, Algorithm 2 of Cabay and Choi [9] can be
extended in the obvious way by replacing operations in D with operations ~in Dlz]..
This is possible because in this case all the romputed coeflicients become lunits'in
D|[z]]. and truncations modulo z'*! can be performed at each step. Since the com-
plexity of their Algorithm 2 is O((m + n)log’(m + n)) operations in D, the extended
almgorit'hm, \;sing fast polynomial a;'ithmetic c;n polynomials i; D|[z] of degree at most &
would have a complexity -of O(k(m + n)logklog?(m+ n)) operations in D. It remains a

subject for future research to develop an extended algorithm that does not fail at

abnormalities of E(0,y).
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