Evolution of the Practice of Software Testing in
Java Projects

Anisha Islam*, Nipuni Tharushika Hewage!, Abdul Ali Bangash?, and Abram Hindle$
Department of Computing Science, University of Alberta
Edmonton, AB, Canada
Email: *aislam4 @ualberta.ca, Thewage@ualberta.ca, ibangash@ualber‘ta.ca, $hindle1 @ualberta.ca

Abstract—Software testing helps developers minimize bugs and
errors in their code, improving the overall software quality.
In 2013, Kochhar et al. analyzed 20,817 software projects in
order to study how prevalent the practice of software testing
is in open-source projects. They found that projects with more
lines of code (LOC) and projects with more developers tend to
have more test cases. Additionally, they found a weak positive
correlation between the number of test cases and the number of
bugs. Since the conclusions of a study might become irrelevant
over time because of the latest practices in the relevant fields,
in this paper, we investigate if these conclusions remain valid
if we re-evaluate Kochhar ef al.’s findings on the Java projects
that were developed from 2012 to 2021. For evaluation, we use
a random sample of 20,000 open-source Java projects each year.
Our results show that Kochhar et al.’s conclusions regarding
the projects with test cases having more LOC, the weak positive
correlation between the number of test cases and authors, and the
weak positive correlation between the number of test cases and
bugs remain stable until 2021. Our study corroborates Kochhar
et al.’s conclusions and helps developers refocus in light of the
latest findings regarding the practice of software testing.

Index Terms—Software Testing, Replication Study, WoC, Java
Projects

I. INTRODUCTION

Software testing is essential because it helps ensure the
functionality [1], reliability [2], and security of a software
system [3], leading to higher quality and user satisfaction.
Lack of software testing can leave unhandled bugs in the
system that could lead to severe financial issues and wasted
resources [4]. Since software testing is a resource-consuming
task [5], [6], researchers are continuously looking for ways to
help developers test their code effectively. Besides, developers
also need the latest information on software testing trends to
recognize potential sources of vulnerability in the system and
concentrate on relevant details while developing tools.

To understand the practice of software testing in open-
source projects, in one of the previous studies, Kochhar et
al. [4] investigated how software testing is adopted on GitHub
projects using software project data from 2012 [4]. The goal
of their study was to determine the popularity of software
testing in open-source projects and to examine various aspects
of software development related to testing [4]. Among the
findings, Kochhar er al. showed that the project size, the count
of authors, and the bug count positively correlate with the
number of test cases [4].

However, over the years, the software community has
undergone changes, for which the results of a study might

become irrelevant as per the new practices. To ensure that the
findings of different studies remain consistent, they should be
re-evaluated over time to uncover any changes in conclusions
due to the changing environment since the original studies
were conducted [7], [8]. By validating the stability of the
conclusions of a study, developers can determine which areas
require further improvement and whether their focus should
shift in accordance with the updated results.

In this study, we aim to reproduce some of the research
questions of Kochhar et al. by using open-source Java projects
on GitHub from 2012 to 2021. To observe the trend in software
testing practices and how they have evolved in the past decade,
we validate the stability of Kochhar et al.’s findings over time.
We investigate the recent relationship between different project
entities and test cases. Our study can help developers re-
adjust their understanding of how Java projects on open-source
platforms adopt software testing. We will refer to Kochhar et
al. [4] as KOCHHARSTUDY [4] from here onwards.

We re-investigate three research questions in this paper:

RQ1: “How many projects have test cases?”’

RQ2: “Does the number of developers affect the number of
test cases present in a project?”

RQ3: “Does the presence of test cases correlate with the
number of bugs?”

— Quoted from KOCHHARSTUDY [4].

To find out if the conclusions of the first three research
questions of KOCHHARSTUDY [4] have been stable over the
years, we used the World of Code (WoC) [9] infrastructure
provided by the MSR 2023 [10] organizers to extract the
names of the Java projects on GitHub from 2012 to 2021.
Then we used Git [11] commands to clone the repositories
and to extract relevant project information required for the
research questions mentioned above. We took a random sample
of 20,000 Java projects per year, discarded projects with no
lines of code, and only considered projects hosted on GitHub.

Although KOCHHARSTUDY [4] considered projects from
multiple programming languages, our study is limited to the
Java projects on GitHub only as Java is one of the most
popular and frequently used programming languages [12].
Furthermore, Java offers a wide range of popular testing
libraries such as JUnit, TestNG, PowerMock, Mockito, and
Hamcrest. Therefore, we decided to observe the latest trends
in Java’s software testing practices.

Our results indicate that all of the conclusions of the study
conducted by KOCHHARSTUDY [4] regarding the research
questions under consideration remain stable and unchanged
from 2012 to 2021.

II. METHODOLOGY

WoC allows users to explore relationships between various
software project entities such as author, blob, file, commit, and
project through mappings. Using these mappings, we can get
information about one software repository entity by using the
other. For example, the c2P mapping of WoC provides users
with the project names (after fork normalization) associated
with a particular commit id [13].

For evaluation, we collected the names of the Java projects
with at least one commit in a year for all the years starting
from 2012 to 2021 using the c2P mapping of WoC. For
example, for collecting the project names in 2015, we selected
projects with at least one commit in the year 2015. If a project
had commits in multiple years, then the project was considered
separately for all those years. In this way, we created different
samples of projects from 2012 to 2021. Finally, we randomly
selected 20,000 projects per year from the set of projects.
Then, we used the following approach to extract relevant
information to address our research questions.

a) Calculating Lines of Code: To address the first re-
search question of KOCHHARSTUDY [4], we extracted the
lines of code (LOC) information for the projects using a
different approach than KOCHHARSTUDY [4]. We used git
commands to clone the repositories from GitHub, checked out
to the last commit of a project in a particular year, and ex-
tracted the LOC of that project by using git ls-files |
xargs wc —1. This command gives us the LOC of all files
without spaces in their names. Since KOCHHARSTUDY [4]
considered the LOC of the entire project, we also considered
the LOC of the entire Java project rather than counting only
the LOC of Java files. Then, we discarded projects with no
lines of code and only considered projects hosted on GitHub.

Table I shows the number of projects each year in
our sample after discarding unnecessary projects. Although
KOCHHARSTUDY [4] considered projects with more than 500
LOC, our study did not consider this lower bound because
projects of smaller sizes might contain test cases as well.

b) Identifying Test Files and Test Cases: In accordance
with KOCHHARSTUDY [4], we identified the test files by
searching for the word “test” in their names, disregarding the
case [4]. Although KOCHHARSTUDY [4] did not differentiate
test files and test cases, in our study, we consider them
different. We define the term "test cases" as different methods
in a Java test file with testing logic. Most of the Java testing
frameworks, such as JUnit and TestNG, use the "@Test"
keyword to identify the methods in test files as test cases [14],
[15]. We followed this convention and extracted the test cases
using the "@Test" annotation.

c) Calculating the Number of Authors: To reproduce
the second research question of KOCHHARSTUDY [4], we

extracted the author information for projects using the git
log —-pretty="%an %ae" command.

d) Calculating the Number of Bugs:
KOCHHARSTUDY [4] used the GitHub issue tracker to
get information about the issues and bugs [4]. However, the
WoC does not have an issue tracker, so we decided to use
a proxy: the count of those commit messages of a project
which refer to possible bugs as the bug count like Borle et
al. [16]. We modified the regular expression used in Borle et
al. [16] to find the commit messages that reference bugs.
We used the following regular expression case-insensitively:
(error|bug|issue|solv| fiz). This expression covers a vast
arena of words related to issues and bugs in a software
system, such as error, errors, bug, bugs, debug, debugs,
debugged, debugging, issue, issues, resolve, resolves,
resolved, resolving, solve, solves, solving, solved, fix, fixing,
fixed, and fixes. We followed Borle et al. [16]’s assumption
that any commit with these base words of the regex in the
commit message could be equivalent to a bug report [16].

While we largely followed KOCHHARSTUDY [4]’s method-
ology, we made some changes in ours, which are listed in
Table II.

III. RESULTS

To reproduce results of our research questions, we followed
the same null hypotheses that KOCHHARSTUDY [4] assumed
to address their research questions and used the same signifi-
cance level, o = 0.05. We used two different statistical mea-
surements: the Mann-Whitney-Wilcoxon (MWW) test [18]
and Spearman’s rho (p) [19] that KOCHHARSTUDY [4] used
for statistical analysis to determine the difference and corre-
lation between datasets. For the calculation of the rho-values,
we have only considered projects with test cases in our study.
All the scripts and datasets used to generate these results are
publicly available in our replication package [20].

A. Prevalence of Test Cases (RQI)

To reproduce the research question: “How many projects
have test cases?” [4], we calculated the percentage of projects
having test files and test cases. We present the values in
Table III and find that the percentage of test files and test
cases generally showed an upward trend throughout the years,
which implies an increase in the adoption of testing in Java
projects on GitHub from 2012 to 2021.

Moreover, KOCHHARSTUDY [4] showed that “Projects
with test cases are bigger in size than projects without
test cases.” [4]. Therefore, to validate this finding, we in-
spected the relationship between a project’s number of test
cases and size, which we represented by LOC following
KOCHHARSTUDY [4]. Figure 1 illustrates the size of projects
with and without test cases in our study. For all the years,
we observe that the median LOC value for projects without
test cases is lower than the median LOC value of projects that
have test cases. This difference in LOC values, for the latest
dataset until 2021, re-confirms that “projects with test cases
are bigger in size than projects without test cases” [4].

TABLE I: Number of projects in our sample after applying the exclusion criteria

Year ‘ 2012 2013 2014 2015

2016

2017 2018 2019 2020 2021

Projects | 14,665 14,353 14,922 15,317

16,208

15,785 14,964 15476 16,924 17,862

TABLE II: Differences in methodology between KOCHHARSTUDY [4] and our study

| Our study

KOCHHARSTUDY [4]

2012 to 2021
20,000 per year
Used WoC

Git commands

Time range

Number of projects
Project collection
Calculating LOC
Counting bugs
Definition of test case

Programming language | Java

Used bug referencing commits
Calculated test cases using @Test annotation

2012

20,817

Used GitHub API

SLOCCount [17] utility

Used GitHub issue tracking system
Considered test files same as test cases
Multiple programming languages

TABLE III: The trend (in %) of projects having test cases and test files over the past decade (2012-2021)

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
% of projects containing test files 48.37 4599 4465 5538 57.87 5997 62.87 61.17 6043 58.64
% of projects containing test cases 29.06 27.58 2481 2824 42.65 47.60 5092 50.70 5031 48.96

O Projects with Test Cases
O Projects without Test Cases|

Number of lines of code in projects over the time

Number of developers in projects over the time

O Projects with Test Cases
O Projects without Test Cases|
e o o o

I

A

Number of lines of code

e e e e

Number of developers

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

T T T T T
2017 2018 2019 2020 2021

Years

20‘13 20‘14 20‘15 20‘16
Fig. 1: Comparison of Lines of Code between Java Projects

with and without Test Cases from 2012-2021

Additionally, KOCHHARSTUDY [4] used the MWW test to
validate their conclusion and showed p-value < 2.2 e~ 16 [4].
In our study, for the MWW test, we observed p-values
2.2 €716 for all the years except 2016, when the p-value
was 5.587 e~ 14, This observation demonstrates a statistically
significant difference between the LOC in projects with test
cases and those without, which confirms the stability of
KOCHHARSTUDY [4]’s conclusion from 2012 to 2021.

Furthermore, to find out how the project size and the number
of test cases correlate, KOCHHARSTUDY [4] used Spearman’s
rho and reported p = 0.427 in their study [4]. In our case, the p
values were between 0.26 and 0.37 (p-value = 2.2 e~ '6) for all
the years, which is similar to their reported value. Therefore,
it is clear that their statement “there is a positive correlation
between the number of test cases and the number of LOC” [4]
is stable for all the years in our study.

KOCHHARSTUDY [4] further investigated the relationship
between project size and the number of test cases per line of
code. They observed a negative correlation in this scenario and
reported Spearman’s p = —0.451. We also observed negative
rho values in the range of —0.60 to —0.68 with p-value = 2.2

T T T T T T T T T T T T T T
2017 2018 2019 2020 2021

Years

2612 2&13 2&14 20‘15 ‘ 20‘16
Fig. 2: Comparison of Number of Authors between Java

Projects, with and without Test Cases, from 2012-2021

e~ 16 (< a=0.05) in our study, which validates their finding that
“the number of test cases per LOC decreases with increasing
LOC” [4] for all years from 2012 to 2021.

For the Java projects on GitHub from 2012 to 2021, the
conclusions from KOCHHARSTUDY [4] that “Projects
with test cases are bigger in size than projects without
test cases.”” [4] and “the number of test cases per
LOC decreases with increasing LOC” [4], remain stable
through 2012-2021.

B. Correlation between Number of Developers and Test Cases

(RQ2)

In their second research question, KOCHHARSTUDY [4] in-
vestigated, “Does the number of developers affect the number
of test cases present in a project?” [4]. To re-investigate this,
we counted the number of authors for each project in our
sample for all the years. Figure 2 illustrates the number of
authors in the Java projects.

We also manually investigated our data and identified some
projects with zero developers. This could have been a technical
issue, so we discarded such data points to ensure a valid
number of authors for every project in our sample.

To confirm the relationship between the number of authors
in projects that contain test cases and projects that do not,
KOCHHARSTUDY [4] conducted the MWW test and observed
p-value < 2.2 e~ 16 [4]. In our study, the p-values were between
2.2 e~ 16 and 0.01 for all the years except for 2017, when
the p-value was 0.065 (> «). As a result, we can say that
the conclusion of KOCHHARSTUDY [4] for this particular
scenario, “The results signify that the difference between these
two sets is statistically significant” [4], is stable for all years
from 2012 to 2021 with an exception in 2017.

KOCHHARSTUDY [4] also used Spearman’s rho to measure
the correlation between the number of authors and the number
of test cases, giving p = 0.207. In our study, we observed the
values between 0.216 and 0.338 (p-value = 2.2 e~ 16) for all
years, including 2017. Our result validates the finding that
“there is a weak positive correlation between the number of
developers and test cases” [4].

Furthermore, KOCHHARSTUDY [4] examined the correla-
tion between the number of test cases per developer and the
number of developers and observed a negative correlation (p
= —0.444) [4]. Similarly, we observed Spearman’s rho values
between —0.11 and —0.269 with p-values = 2.2 e~ !¢ for all
years except 2015, when the p-value = 9.473 e~ 4, denoting
a negative correlation. So, we can say that in our study,
the observation of KOCHHARSTUDY [4] that “the number of
test cases per developer decreases for the projects with more
developers” [4], remains stable from 2012 to 2021.

The MWW test value is not valid for the Java projects in the
year 2017. Possible reasons for this difference in results could
be the differences in our experimental settings, methodology,
and data sample. KOCHHARSTUDY [4] considered projects
of various programming languages, whereas we only consider
Java projects for our study. Also, our definition of test cases
differs from KOCHHARSTUDY [4]. These reasons could have
contributed to the differences in our observed results.

For the Java projects on GitHub from 2012 to 2021,
the conclusions from KOCHHARSTUDY [4] that “there
is a weak positive correlation between the number of
developers and test cases” [4] and “the number of test
cases per developer decreases for the projects with more
developers” [4], remain stable through 2012-2021.

C. Bug Count Correlation with Test Cases (RQ3)

In their third research question, KOCHHARSTUDY [4] in-
vestigated, “Does the presence of test cases correlate with the
number of bugs?” [4]. To reproduce this research question, we
calculated the number of bugs in a project using the procedure
mentioned in Section II. Figure 3 shows the bug count in
projects that contain test cases and those that do not.

KOCHHARSTUDY [4] initially assumed “with increase in
the number of test cases, bug count increases” [4]. To confirm

Number of bugs in projects over the years

25 30
L L

Number of bugs

o] D = DDEDEE&QD&&&&&&
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Years

Fig. 3: Comparison of Number of Bugs between Java Projects,
with and without Test Cases, from 2012-2021

this assumption, they calculated Spearman’s rho, which signi-
fied a weak positive correlation with a value of 0.181, [4]. In
our study, We found the p values for all years to be between
0.25 and 0.417 (p-values < 2.2 e~16). For this reason, we can
say that the finding of KOCHHARSTUDY [4], “Projects having
higher numbers of test cases observe an increase in the number
of bugs, although the correlation is weak between them.” [4],
remains stable for all the years from 2012-2021.

We also manually investigated some cases where the bug
count is high but the test cases count is low and vice versa.
Three of the projects we explored had 6,040, 9,841, and
12,390 bugs respectively, but our calculation did not show
any test cases for these projects. We found that the tests of
these projects were written in JavaScript, LiveCode, and Lua
programming languages. As we only considered test cases of
Java test files, our script ignored these test cases.

On the other hand, another project had 14,500 test cases
and one bug because most of the commit messages were in the
format apply <alphanumeric digits>. The alphanumeric digits
could mean a bug fix id or issue id internal to the project. As
this pattern did not match our regex pattern for counting bugs
from commit messages, our script could not identify these
commits as references to bugs. This finding shows that the
outlier data that defies the positive correlation between bugs
and test cases could be caused by how we calculated bugs and
test cases, which is different from KOCHHARSTUDY [4].

For the Java projects on GitHub from 2012 to 2021,
the conclusion from KOCHHARSTUDY [4] that “Projects
having higher numbers of test cases observe an increase
in the number of bugs, although the correlation is weak
between them.” [4] remains stable through 2012-2021.

IV. RELATED WORK

Previous studies have focused on the types of available
software testing practices and tried to find a relationship
between testing and various entities of a software project. In
2013, KOCHHARSTUDY [4] examined the correlation between
the number of test cases and different project entities like
size, number of authors, number of bugs, bug reporters, and
programming languages in GitHub projects. Additionally, due
to the significance of software testing in the software develop-
ment lifecycle, Jangra et al. [5] explored different existing soft-

ware testing strategies and illustrated the connection between
these strategies using a diagram. Bangash et al. [21] explored
how stable the conclusions of defect prediction models are
and found out that the defect prediction models performance
remains inconclusive over time. Shepperd et al. [7] examined
how likely it is for the replication studies to confirm with the
original studies and found that replication studies with at least
one common author from the original study are more likely
to confirm the original findings. Our study is motivated by
KOCHHARSTUDY [4]. We replicated a part of their work to
re-investigate if their conclusions are still valid on the Java
projects that were developed between 2012 and 2021.

V. THREATS TO VALIDITY

KOCHHARSTUDY [4] mentioned some limitations of their
study, which are also valid in our case. For example, con-
sidering only a sample of the GitHub projects, which may
not reflect the general behavior of all real-world projects,
and using the "test" keyword to identify the test files, which
may not identify all test files. Moreover, we used the @Test
annotation to identify the test cases. However, there might be
some testing frameworks that do not use the same annotation.
In those cases, we might not have identified some test cases.

We also calculated the number of bugs from the commit
messages using a regex pattern to map the commits to bugs.
Nevertheless, not all commits use the regex pattern we used to
reference bugs. For this reason, we might have missed some
commits that mention bugs or issues differently. Finally, as
collecting information about thousands of projects using git
was a long-running query, some technical issues might have
evaded our inspection.

VI. CONCLUSION

Software testing is paramount to the success and maintain-
ability of software systems. KOCHHARSTUDY [4] explored the
correlation of software testing with various software develop-
ment entities like project size, number of authors, and number
of bugs in an effort to understand the importance of software
testing from a broader perspective. However, results or con-
clusions drawn in a study can become obsolete as a system or
development culture changes over time, requiring that previous
studies be re-evaluated to ensure that their conclusions remain
accurate. For this reason, in this paper, we have reproduced
the results of KOCHHARSTUDY [4]’s three research questions
to validate if their conclusions still hold on the latest Java
projects that were developed from 2012 to 2021. Our study
confirms the validity of KOCHHARSTUDY [4]’s conclusions
that there are more lines of code in projects with test cases,
and a weak positive correlation exists between i) the number
of test cases and the author count and ii) the number of test
cases and the bug count in Java projects on GitHub till 2021.
Additionally, our study allows developers to identify the latest
trends in software testing and to re-adjust their knowledge
accordingly to address issues that require more attention. In
the future, researchers may improve their understanding of
software testing across different programming languages and

version control systems by leveraging the vast amount of
software repository information and the advanced mappings
available in the World of Code.

VII. ACKNOWLEDGEMENTS

This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) through
their Discovery Grant. We are grateful for NSERC’s commit-
ment to supporting scientific innovation in Canada.

REFERENCES

[1] V. R. Basili and R. W. Selby, “Comparing the effectiveness of software
testing strategies,” IEEE transactions on software engineering, no. 12,
pp. 1278-1296, 1987.

[2] R. H. Rosero, O. S. Gémez, and G. Rodriguez, “15 years of software re-
gression testing techniques—a survey,” International Journal of Software
Engineering and Knowledge Engineering, vol. 26, no. 05, pp. 675-689,
2016.

[3] B. Potter and G. McGraw, “Software security testing,” IEEE Security &
Privacy, vol. 2, no. 5, pp. 81-85, 2004.

[4] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “An empirical
study of adoption of software testing in open source projects,” in 2013
13th International Conference on Quality Software, pp. 103-112, IEEE,
2013.

[5] A. Jangra, G. Singh, J. Singh, and R. Verma, “Exploring testing strate-
gies,” International Journal of Information Technology and Knowledge
Management, vol. 4, pp. 297-299, 2011.

[6] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, “Software
testing techniques: A literature review,” in 2016 6th international con-
ference on information and communication technology for the Muslim
world (ICT4M), pp. 177-182, IEEE, 2016.

[71 M. Shepperd, N. Ajienka, and S. Counsell, “The role and value of
replication in empirical software engineering results,” Information and
Software Technology, vol. 99, pp. 120-132, 2018.

[8] M. Cruz, B. Bernardez, A. Duran, J. A. Galindo, and A. Ruiz-Cortés,
“Replication of studies in empirical software engineering: A systematic
mapping study, from 2013 to 2018,” IEEE Access, vol. 8, pp. 26773—
26791, 2019.

[9]1 Y. Ma, T. Dey, C. Bogart, S. Amreen, M. Valiev, A. Tutko, D. Kennard,

R. Zaretzki, and A. Mockus, “World of code: enabling a research

workflow for mining and analyzing the universe of open source VCS

data,” Empirical Software Engineering, vol. 26, pp. 1-42, 2021.

A. Mockus, A. Nolte, and J. Herbsleb, “MSR Mining Challenge: World

of Code,” 2023.

S. Chacon, “Git SCM.” https://git-scm.com. Accessed: 2023-01-26.

D. Qiu, B. Li, E. T. Barr, and Z. Su, “Understanding the syntactic rule

usage in java,” Journal of Systems and Software, vol. 123, pp. 160-172,

2017.

A. Mockus, “README.md.” https://bitbucket.org/swsc/lookup/src/

master/README.md. Accessed: 2023-03-12.

JUnit, “Annotation Type Test.” https://junit.org/junitd/javadoc/4.12/org/

junit/Test.html. Accessed: 2023-01-26.

C. Beust, “TestNG.” https:/testng.org/doc/documentation-main.html.

Accessed: 2023-01-26.

N. C. Borle, M. Feghhi, E. Stroulia, R. Greiner, and A. Hindle, “Analyz-

ing the effects of test driven development in Github,” in Proceedings of

the 40th International Conference on Software Engineering, pp. 1062—

1062, 2018.

D. A. Wheeler, “SLOCCount.” http://dwheeler.com/sloccount/. Ac-

cessed: 2023-03-11.

H. B. Mann and D. R. Whitney, “On a test of whether one of two

random variables is stochastically larger than the other,” The annals of

mathematical statistics, pp. 50-60, 1947.

J. H. Zar, “Spearman rank correlation,” Encyclopedia of biostatistics,

vol. 7, 2005.

“Data for Evolution of the Practice of Software Testing in Java Projects.”

https://doi.org/10.6084/m9.figshare.22258444.vl. Accessed: 2023-03-

11.

A. A. Bangash, H. Sahar, A. Hindle, and K. Ali, “On the time-based

conclusion stability of cross-project defect prediction models,” Empirical

Software Engineering, vol. 25, no. 6, pp. 5047-5083, 2020.

(10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

