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Abstract

In this thesis we present Particle-in-Cell (PIC) plasma simulations designed to model

large amplitude whistler waves. There are significant nonlinear effects that arise

due wave-wave and wave-particle interactions. There are two related sections to this

report: one investigating the evolution of the nonlinear dynamics of obliquely prop-

agating whistler waves, and the other investigating the wave-wave coupling between

whistler waves and electrostatic modes.

Recent satellite observations by Cattell et al. (2008) [20] have identified the pres-

ence of large amplitude whistler plasma waves in the Earth’s outer radiation belt

(3 ≤ L ≤ 15) that propagate obliquely with respect to the Earth’s magnetic field.

Cattell et al. (2008) suggest that these large amplitude whistlers are a mechanism

for the rapid acceleration of radiation belt electrons to relativistic energies. Previ-

ous efforts have been made in Yoon (2011) [19] to simulate these large amplitude

whistlers and the resulting particle acceleration using a cold electron fluid model

with test particles in the nonlinear wave fields. Additionally, nonlinear effects such

as particle trapping in Kellogg et al. (2010) [23] and wave steepening in Yoon (2011)

have been identified as being important to the wave dynamics. We present results

from a PIC simulation with self-consistent electromagnetic fields to account for the

feedback effects of particles on the large amplitude whistler wave. Using initial condi-

tions to launch a large amplitude plasma wave that is consistent with the dispersion

relation for oblique whistler waves we characterize the nonlinear effects in the wave

evolution. We show that the wave fields are capable of thermalizing a self-consistent

electron distribution from ∼ 1 eV to ∼ 100 eV, and can accelerate a non-interacting

seed population from ∼ 100 eV into the range of ∼ 20 − 30 keV. We highlight the

presence of compressional wave steepening effects as well as particle trapping and
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wave field distortion and damping that follow thereafter. Finally, we present wave

amplitude scaling relations for three important time scales: wave steepening time,

particle trapping time, and particle acceleration time.

The second set of simulations revolve around a satellite observation by Agapitov et

al. (2015) [28] of the parametric decay of a whistler wave into a backscattered whistler

and an electron acoustic wave. It is claimed that this process is the source of spiked

electrostatic fields in the outer radiation belt observed by Mozer et al. (2013) [26] that

have been shown by Artemyev et al. (2014) [27] to rapidly accelerate ∼ 10− 100 eV

electron populations into the ∼ 1 − 2 keV range. We present a set of Darwin PIC

simulations investigating the interactions of parallel electromagnetic whistler waves

with electrostatic plasma modes. By adding external wave fields consistent with the

whistler dispersion to the self consistent electromagnetic fields we launch a whistler

wave in different plasma conditions to isolate interactions with the Langmuir, ion

acoustic, and electron acoustic wave modes. We identify a nonlinear coupling to the

Langmuir mode that results in nonlinear electrostatic structures and modification to

the electron velocity distribution at the whistler phase velocity. With moving ions we

present multiple parametric decay channels of a whistler into a backscattered whistler

and ion acoustic mode that show remarkable agreement with predictions made using

a simple ponderomotive force as the coupling mechanism. However, a similar process

does not occur for the electron acoustic mode as the Langmuir coupling dominates in

this scenario. Drawing from the ion acoustic results and the conditions in Agapitov

et al. (2015) we suggest that it may be necessary to have a relative drift between

hot and cold electron populations to observe the parametric decay of a whistler wave

into an electron acoustic wave in space plasma conditions.
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CHAPTER 1.

Introduction

1.1 Background and Motivation

1.1.1 Whistler Waves

Whistler plasma waves are low frequency electromagnetic waves that have become

ubiquitous in the research fields of space and plasma physics alike. The “whistler”

name is attributed to the rising and falling whistling tones associated with their

discovery in World War I over radio communication systems [1, 2]. An example of

the time and frequency analysis of these signals when observed from the ground is

shown in Fig. 1.1. If converted to audio these produce a short, high frequency whistle.

Figure 1.1: (Top) Ground-based radio signal observations of whistler waves. (Bottom) A
frequency analysis of the time domain signal showing the characteristic falling
tones of whistler waves that have a fast whistling sound when played through
a speaker (Taken from Ref. [2]).
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CHAPTER 1. — Introduction

The first account linking the sounds heard over radio to an atmospheric phe-

nomenon is attributed to the German physicist Heinrich Barkhausen in his 1919 paper

in Physikalische Zeitschrift (Physical Journal) [3]. In the decade that followed, arti-

cles were published correlating the whistling tones to the occurrence of atmospheric

clicks or sferics as well as observed lighting stikes [4, 5]. By the mid 1930’s the first

frequency-time measurements of whistlers had been made that showed quantitatively

the dispersive nature of the sounds, and a dispersion law based on theories at the

time had been established [6, 7]. It was not until the 1950’s that the full nature of the

phenomenon had a clear picture when Storey (1953) [8] presented a comprehensive

experimental study. It was shown that successive whistling tones after an atmospheric

click in the northern hemisphere grew in time duration and followed time delay ratios

of 1:3:5... and 2:4:6... in the northern and southern hemispheres, respectively. Storey

proposed that the waves were propagating along the lines of force of the Earth’s

magnetic field and reflecting between the two hemispheres. Shortly following this

revelation, several independent experiments were able to confirm predictions made

by Storey about the observable characteristics of these waves located in near-Earth

space [9, 10, 11].

Today, it is understood that whistler waves are a branch of right-hand circularly

polarized electromagnetic waves that exist in magnetized plasmas. In Earth’s space

plasma environment these waves propagate along Earth’s geomagnetic dipole field

and reflect near the poles, extending the duration of the time domain signal with

each bounce; individual whistlers have been recorded to bounce or echo between

the poles greater than twenty times [12]. The characteristic rising and falling tones

are due to the phase velocity reaching a maximum near the middle of the whistler

frequency range; broadband excitation and long transit lengths around the globe

mean the frequencies arrive at different times at a measurement location, giving

2



CHAPTER 1. — Introduction

rise to the chirping tones when converted to sound. In the field of space physics,

whistler signals have been recorded from both ground and space throughout Earth’s

magnetosphere [1, 2], in the solar wind via satellites [13], and in the atmospheres of

Jupiter [14] and Saturn [15] by the Voyager 1 and Cassini spacecraft, respectively. In

laboratory plasmas, whistlers were first observed in the 1960’s and a number of early

diagnostic techniques using whistlers were developed [2]. Since then, a large number

of experiments have investigated whistlers in laboratory settings, detailing the three-

dimensional dispersion, thermal noise spectrum, and various methods of generation

from anisotropic distributions relevant to space [2].

In space physics, whistler wave modes are believed to play a key role in the

energization and loss of electrons in the magnetosphere and they have long since

been linked to the variability of trapped energetic particles in the Earth’s radiation

or Van Allen belts [16], two large toroidal regions of plasma surrounding Earth [17].

Readers interested in a more detailed description of the radiation belts and Earth’s

magnetosphere are referred to Basic Space Plasma Physics by W. Baumjohann and

R.A. Treumann [17], as it is an extensive topic and not directly related to the research

herein. Magnetospheric waves consistent with the whistler dispersion are broadly

divided into three types: chorus, hiss, and standard whistlers. Whistler chorus,

sometimes called the dawn chorus due to its almost exclusive presence on the dawn

side of Earth, is characterized by closely grouped discrete whistler tones [12]. One

mechanism of chorus excitation is the injection of energetic particles during magnetic

substorms [2]; an example of whistler chorus measured at the Palmer research station

in Antarctica is shown in the top panel of Fig. 1.2 [18]. Hiss, generally attributed

to energetic electron distributions, is broadband incoherent whistler noise that is

further subdivided into many groups by different characteristics [2, 12]; an example

of whistler hiss measured at the Palmer station is shown in the middle panel of

3



CHAPTER 1. — Introduction

Figure 1.2: (Top) Frequency-time spectrum of whistler chorus waves, the chorus is situated
in the range of 1 − 3kHz. (Middle) Frequency-time spectrum of whistler hiss,
the incoherent hiss noise is situated in the range of 0.5 − 4kHz. (Bottom)
Frequency-time spectrum of standard whistler waves with falling tones.(Taken
from Ref. [18]).

Fig. 1.2. Standard whistlers are the aforementioned coherent whistling tones shown

in the bottom panel of Fig. 1.2 and are commonly generated by sferics, broadband

electromagnetic impulses excited by lightning strikes that make their way into the

magnetosphere.

1.1.2 Large Amplitude Whistlers

Recent STEREO and WIND spacecraft observations in the radiation belts, bow

shock and magnetotail of the Earth have revealed that a significant portion of the

whistler mode population consists of unusually large amplitude waves. Cattell et al.

(2008) [20] and Kellogg et al. (2011) [21] report quasi-monochromatic whistler mode

chorus waves propagating obliquely to the background magnetic field in the lower

band frequency range of ∼ 0.2fce, where fce is the electron cyclotron frequency, with

4



CHAPTER 1. — Introduction

electric field amplitudes & 100 mV/m and magnetic field amplitudes δB ∼ 0.5−2 nT

that correspond to δB/B0 ∼ 0.01 − 0.1 when measured with respect to the back-

ground magnetic field B0. A statistical analysis of the many WIND events reported

by Kellogg et al. (2011) was conducted by Wilson et al. (2011) [22] that showed the

wave propagation angle θ with respect to the background magnetic field occurs over

a wide range 0o ≤ θ < 90o and showed the generation may be caused by anisotropic

electron distribution functions. For such large amplitude waves nonlinear effects of

wave particle interaction are significant.

One such nonlinear effect is particle trapping, which is a mechanism used by Kel-

logg et al. (2010) [23] to interpret the distortion of electric field waveforms measured

by the STEREO and Wind satellites. The physical effects of electrons trapped in the

potential of the electrostatic part of the oblique whistlers was analyzed and shown to

result in significant transport of trapped electrons leading to electrostatic potentials

of several kilovolts. This effect is demonstrated by the large amplitude whistler event

in Fig. 1.3, the black line is the distorted sinusoidal electrostatic potential of the large

amplitude wave, the electron density is shown in red, and the calculated density of

trapped electrons that account for the distortion is indicated by the green line.

Figure 1.3: A large amplitude oblique whistler event showing a distorted electrostatic po-
tential (black), the electron density (red) and the a calculated density profile of
trapped electrons that account for the distortion of the electrostatic potential
(Taken from Ref. [23]).

5
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Using the observed oblique whistler wave fields as a guide, Cattell et al. (2008)

performed test particle simulations and demonstrated rapid electron energy gain from

∼ 0.1 MeV up to ∼ 4 MeV in timescales on the order of tens of ms that could

account for STEREO observations of electron intensity enhancements. Bortnik et al.

(2008) [24] and Tao and Bortnik (2010) [25] performed test particle simulations and

demonstrated acceleration similar to Cattell et al. (2008) but using simpler wave

models.

Subsequently, Yoon (2011) [19] carried out relativistic test particle simulations

using wave fields obtained by solving the fully nonlinear cold electron fluid equations

for obliquely propagating large amplitude whistlers. This work pointed out the im-

portance of nonlinear wave steepening effects due to the presence of longitudinal field

components; Fig. 1.4 depicts the density profile from the simulations in Yoon (2011)

that show distortion of the initial sinusoidal waveform due to wave steepening. The

results showed that a population of initially ∼ 500 keV electrons could be accelerated

to ∼ 10MeV energies within a few seconds. A limitation of this work is that it did

not include thermal and collective dissipation effects and back-reaction of the trapped

and energetic particles on the nonlinear wave fields.

Figure 1.4: The evolution of the electron density from a numerical solution of an oblique
whistler wave propagating at an angle θ = 70o with respect to the background
magnetic field. Wave steepening effects cause the initially sinusoidal profile to
become extremely nonlinear (Taken from Ref. [19]).
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1.1.3 Time Domain Structures and Whistler Decay

Mozer et al. (2013) [26] report on large numbers of short spiked structures in the

electrostatic field observed in the outer radiation belt by the Van Allen Probes. These

rapid bursts, lasting on the order of seconds to several minutes, of millisecond time-

scale spikes have been dubbed Time Domain Structures (TDS) and have been iden-

tified as nonlinear electron acoustic wave (EAW) modes. Artemyev et al. (2014) [27]

highlighted the importance of these phenomena to the overall view of belt dynamics

by showing that a single TDS burst can rapidly accelerate ∼ 10 − 100 eV thermal

electron populations into the range of ∼ 1 − 2 keV. A significant event observed by

the Van Allen Probes spacecraft was reported in Agapitov et al. (2015) [28] which

showed a chorus whistler wave decaying into a backwards travelling whistler and an

electron acoustic wave. Such a process is known as a parametric decay and is a com-

mon type of instability observed in plasmas. This event is presented in Fig. 1.5; panel

Figure 1.5: (a) Transverse magnetic field component measuring whistler waves. (b) Elec-
trostatic field depicting TDS and the electron acoustic wave. (c) Fourier anal-
ysis of the signals (a) in black and (b) in red. The frequency matching of the
parametric decay is indicated. (Taken from Ref. [28]).
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(a) depicts the transverse magnetic fluctuations containing the whistler wave, panel

(b) the TDS and electron acoustic wave, and (c) the frequency analysis of the whistler

(black) and EAW (red) components. The frequency of the EAW being the difference

of two whistler frequencies depicted in (c) is indicative of a parametric decay process.

The authors propose the resulting EAW evolves though electron trapping into the

nonlinear TDS that are responsible for rapid particle acceleration. This event and its

possible large importance in understanding global radiation belt dynamics pushes for

a better understanding of the mechanisms and conditions that facilitate the coupling

of electromagnetic whistler wave modes to electrostatic modes.

1.2 Objectives

One objective of this work is to extend upon the work of Yoon (2011) and include the

thermal and feedback effects absent in the cold electron fluid description and quantify

their impact on the nonlinear dynamics of oblique whistler waves. Electromagnetic

particle-in-cell (PIC) simulations with relativistic particle dynamics are used to model

the evolution of an initial large amplitude oblique whistler wave perturbation. The

evolution of the wave is investigated to develop a more detailed understanding of the

wave steepening processes highlighted by Yoon (2011). Additionally, the nonlinear

effect of particle trapping is analysed using particle trajectories and electrostatic

potentials to be compared with work presented in Kellogg et al. (2010). And finally,

particle energization is studied to make comparisons with the energizations reported

in previous simulations.

The event observed by Agapitov et al. (2015) and subsequently interpreted as the

parametric decay of a whistler wave into a backscattered whistler and electron acous-

tic wave presents a unique opportunity for an investigation into nonlinear wave-wave

interactions involving whistler waves. We wished to model with an electromagnetic

8
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Darwin PIC code the coupling of a pumped whistler with different electrostatic wave

modes, namely, the typical Langmuir waves, ion acoustic waves (IAW), and afore-

mentioned electron acoustic waves. Agapitov et al. (2015) note that the EAW and

IAW parametric coupling with whistler waves are similar processes theoretically and

study of one could lead to insights about the other. The results of these isolated

simulations can be tied back to the space observations to make a statement about

the criteria for these physical processes to occur.

1.3 Thesis Outline

In the next chapter, Chapter 2, we present the background theory that is necessary

for understanding the physical phenomena being investigated. A more rigorous de-

scription of the electromagnetic modes present in a magnetized plasma is given with

special attention given to whistler waves at oblique angles. Next, a description of both

the ion acoustic and electron acoustic wave dispersion relations and characteristics are

summarized. Following this we present a derivation of the ponderomotive force, an

important nonlinear plasma phenomena that can facilitate coupling between electro-

magnetic and electrostatic wave modes. Finally, this chapter ends with a description

of parametric decay processes and the conditions necessary for them to occur.

In Chapter 3 the particle codes used to investigate the objectives outlined in

Section 1.2 are explained. We begin with a general description of plasma modelling

with PIC codes and move to a more detailed description of the inner workings of

two different codes and the simulation parameters used to model the whistler waves.

Chapter 4 contains the results of modeling the nonlinear dynamics of oblique whistler

waves outlined in the first objective. Chapter 5 presents results from modelling the

interactions of parallel whistler waves with electrostatic wave modes. Finally, this

thesis and possible extensions on the results herein are summarized in Chapter 6.
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CHAPTER 2.

Theory

2.1 Whistler Waves

The importance of whistler waves to many space physics phenomena was discussed

previously in Section 1.1.1. In this section we present the dispersion relation that

defines the relationship between the frequency ω and wavenumber k for electromag-

netic modes that can exist in a magnetized plasma. To begin we use a cold uniform

magnetized plasma and ignore the interactions between the electrons and ions. Using

linear theory the particle equations of motion are solved consistent with Maxwell’s

Equations to obtain an expression for the dispersion relation which contains terms

dependent on the motions of both the electrons and ions. In the simulations presented

in Chapters 4 and 5 we will be dealing with fixed ions or else we are not concerned

with the modes introduced by moving ions and we can ignore the ion terms. Thus, the

general dispersion relation for electromagnetic waves in a cold uniform magnetized

plasma propagating at an oblique angle θ with respect to the magnetic field is [29],

c2k2

ω2
=
RL sin2 θ + PS(1 + cos2 θ)± [(RL− PS)2 sin4 θ + 4P 2D2 cos2 θ]

1
2

2(S sin2 θ + P cos2 θ)
(2.1)

and we define,

R = 1−
ω2
pe

ω(ω + ωce)

10
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L = 1−
ω2
pe

ω(ω − ωce)

P = 1−
ω2
pe

ω

S =
1

2
(R + L)

D =
1

2
(R− L)

where ωce = eB0

m
is the electron cyclotron frequency defined with respect to the mag-

nitude of the external magnetic field B0 and ωpe =
(
nee2

ε0me

) 1
2

is the electron plasma

frequency. Eq. (2.1) is often called the Appleton-Hartree equation who each de-

rived it separately [32, 33]; the form presented here is derived from Introduction to

Plasma Physics: With Space and Laboratory Applications by D.A. Gurnett and A.

Bhattacharjee and interested readers are directed there for a full derivation of the

solution [29]. Fig. 2.1a shows Eq. (2.1) for waves propagating parallel to the back-

ground magnetic field, i.e. θ = 0o; the unitless normalizations ω/ωpe and kc/ωpe will

be used throughout this report for most dispersion plots. The lower branch below

the electron cyclotron frequency is the whistler branch. Recall that the whistler wave

is right hand circularly polarized in the sense that it always rotates in the same di-

rection as electron cyclotron orbits. As the whistler branch approaches the electron

cyclotron frequency it reaches a resonance. Near the resonance the wavelength be-

comes very small and is on the order of the electron cyclotron radius. Additionally,

the phase velocity and group velocity of the whistler wave both approach zero, while

the wave momentum increases. The wave particle interactions are very strong in this

regime and the wave will most often give energy to electrons and experience what is

called cyclotron damping. As a result the whistler branch is heavily damped beyond

small wavenumbers. Inclusion of ion terms in Eq. (2.1) would reveal another low

frequency branch resembling the whistler branch except that it is left hand polarized
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and resonant at the ion cyclotron frequency; we are not concerned with this branch

in the present study and can safely ignore it in simulations with moving ions since

ωci � ωce and the waves will not interact. The upper branches of Fig. 2.1a are left
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Figure 2.1: Dispersion relations for electromagnetic waves in a cold magnetized plasma.
(a) Waves propagating parallel to the background magnetic field, the whistler
branch saturates at the electron cyclotron frequency ωce. (b) The solution
for waves propagating perpendicular to the background magnetic field has no
whistler wave branch.

and right hand circularly polarized modes that closely resemble light waves and ap-

proach the vacuum electromagnetic wave solution ω = kc at short wavelengths; these

high frequency modes do not exist below the left and right hand cuttoffs ωL and ωR,
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respectively. The solution for perpendicular propagation is shown in Fig. 2.1b and

the whistler branch no longer exists. Instead we see the presence of an electromag-

netic mode beginning at the left hand cutoff frequency that hits a resonance at the

upper hybrid frequency ωuh. This is the lower branch of the extraordinary mode or

X-wave, so named due to its longitudinal as well as transverse electric field compo-

nents. There are again two light wave branches, the ordinary or O-wave has a cutoff

at the plasma frequency and is linearly polarized with the electric field parallel to

the background magnetic field, and the upper X-wave which has a cutoff at ωR. The

electromagnetic modes are very distinct in the perpendicular vs. parallel regimes but

become more complex at oblique angles. Fig. 2.2a and Fig. 2.2b show Eq. (2.1) for

angles θ = 30o and θ = 70o, respectively. For oblique propagation we have a mix of

(R,L) and (O,X) modes and both the lower X-mode and whistler branch are present.

However, the whistler branch is modified in that it now also contains a longitudinal

electric field component in addition to the circularly polarized transverse components.

Another feature of the whistler branch is the decreasing resonance frequency from the

cyclotron frequency at parallel propagation. The angle at which a whistler frequency

can no longer propagate is called the whistler resonance angle θres defined by [17],

cos θres =
ω

ωce
(2.2)

The resonance frequency of the oblique whistler mode is at the frequency with a

resonance angle matching the propagation angle.
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Figure 2.2: Dispersion relations for obliquely propagating electromagnetic waves in a cold
magnetized plasma. For oblique propagation the whistler branch exists but
reaches a resonance at ω = ωce cos θ. (a) Waves propagating at an angle θ = 30o

with respect to the background magnetic field. (b) Waves propagating at an
angle θ = 70o with respect to the background magnetic field.

2.2 Ion Acoustic Waves

Ion acoustic modes are low frequency electrostatic waves that are analogous to colli-

sional sound waves in a gas, except the vibrations of ions are transmitted through the

electric field instead [17, 30]. Observations of ion acoustic waves have been made in

Earth’s auroral regions of the ionosphere and have been suggested to be important in

auroral energization processes [34, 35]. In the solar wind both whistler waves and ion
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acoustic waves have been observed and may be responsible for particle energization

in the solar wind upstream from Earth’s bow shock [36, 37]. In the radiation belt

regions of Earth’s magnetosphere parametric instabilities between whistler waves and

ion acoustic waves have been suggested to be possible and may play a role in belt

dynamics [38]. The derivation of the dispersion relation is a simple yet tedious one

best presented using a fluid description and we leave the rigours of the mathematics

to others, readers can refer to any introductory plasma physics text such as those

by Baumjohann and Treumann [17], Chen [30], and Nicholson [31]. The dispersion

relation for ion acoustic waves is dependent on both the temperature of the electrons

Te and ions Ti as well as the mass of the ions M and defines the ion acoustic velocity

via,

via =
ω

k
=

(
γeKTe
M

1

1 + k2λ2De
+
γiKTi
M

) 1
2

(2.3)

where K is the Boltzmann constant, λDe =
(
ε0KTe
nee2

) 1
2

is the electron debye length, and

γs is the heat capacity ratio with γi = 3 for ions moving in one dimension and γe = 1

for isothermal electrons [30]. Ion acoustic waves experience heavy Landau damping by

ions moving at velocities near the ion acoustic phase velocity, thus the waves become

significant only when Te � Ti and the contribution of the ion temperature term

becomes negligible [39, 40]. Inspection of Eq. (2.3) reveals that the ion acoustic wave

has a mostly linear dispersion until reaching large k, or short wavelengths. Fig. 2.3

shows the ion acoustic dispersion relation across a large range of k to depict both the

linear dispersion and constant frequency regions.

If we ignore the ion temperature contribution and take kλDe � 1 then Eq. (2.3)
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ωpi

k

ω

Figure 2.3: The ion acoustic dispersion relation defined by Eq. (2.3). The dispersion rela-
tion is linear at long wavelengths and resonates at the ion plasma frequency at
short wavelengths.

becomes [30],

ω2 = k2
nie

2

ε0Mk2
=
nie

2

ε0M
≡ ω2

pi (2.4)

where ωpi defines the ion plasma frequency and we have used the plasma approxima-

tion ni = ne = n0. Eq. (2.4) states that in the short wavelength limit the ion acoustic

wave frequency resonates at the ion plasma frequency. We note that the whistler

wave region of the lower right hand electromagnetic branch has relatively small k and

thus the ion acoustic branch essentially has a linear dispersion in this region.

2.3 Electron Acoustic Waves

The electrostatic dispersion relation for a homogeneous, unmagnetized plasma yields

three solutions and was first solved numerically in Fried and Gould (1961) [41]. Two

of the roots are lightly damped solutions and correspond to the familiar Langmuir or

electron plasma waves and ion acoustic waves. The third root is an electron acoustic-

like solution that is heavily damped under uniform plasma conditions. The third
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solution was largely ignored in plasma and space physics research at the time due

to its unlikely role in understanding physical phenomena. Watanabe and Taniuti

(1977) [42] showed that if the plasma is made up of two electron components, one

hot at Th and one cold at Tc relative to the other, then the third solution can become

only lightly damped for a finite range of wavenumbers. Furthermore, Yu and Shukla

(1983) [43] highlighted that the frequency of the electron acoustic mode had a strong

dependence on the desity ratio nh/nc of the hot and cold electron populations.

Around this time a number of observations were made of the growth of electron

acoustic modes in the Earth’s bow shock [44] and the auroral ionosphere [45, 46] and

this phenomena was dubbed the “electron acoustic instability”. Following this revival

of interest Gary and Tokar (1985) [47] presented the parameter regime for which the

electron acoustic mode is lightly damped. Fig. 2.4 is taken from Ref. [47] and maps

out the region where the electron acoustic mode is lightly damped as a function of

the density and temperature ratios. The approximate conditions are Th/Tc < 10

and 0 < nc < 0.8ne where ne = nh + nc. An interesting outcome is that a very

small population that is sufficiently cold compared to the hot population can produce

undamped electron acoustic modes.

Additionally, Gary (1987) [48] showed that the instability reported in the space

observations of Refs. [44, 45, 46] was due to counter streaming populations of hot

and cold ions that resulted in growth of the electron acoustic mode. The electron

acoustic wave has been reported to be produced in laboratory experiments using only

hot and cold populations [49] and also driven unstable using a relative drift between

the populations with an electron beam [50]. In some of the simulations presented in

Chapter 5 we will be using two electron populations to create a condition where the

electron acoustic mode is lightly damped but we do not drive it unstable with relative

drifts of the populations.
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Figure 2.4: The parameter space for which the electron acoustic mode is lightly damped
is shown as a function of the density and temperature ratios of hot and cold
electron populations. In addition to Langmuir oscillations, plasmas within the
undamped region will exhibit thermal electron oscillations consistent with the
electron acoustic dispersion relation (Taken from Ref. [47]).

The dispersion relation for the electron acoustic mode is not a simple expression,

but an approximation for the undamped range of wavenumbers is given by [47],

ω2 ≈ ω2
pc

1 + 3k2/k2c
1 + k2h/k

2
(2.5)

where ωps =
(
nse2

ε0me

) 1
2

and k2s =
(
me

KTs

)2
ω2
ps and the subscript s is replaced by h and c

for the hot and cold electron populations, respectively. Fig. 2.5 taken from Ref. [47]

displays the complex frequency dispersion relations for Langmuir and electron acous-

tic waves at varying density ratios and a constant temperature ratio of Th/Tc = 100.

The undamped range of the electron acoustic mode is generally around ωpc which in-

creases with the cold fraction of the total population, as does the minimum k for which

the electron acoustic wave is undamped. Thus for lower cold population fractions the

electron acoustic wave is more likely to be able to interact with the undamped region

of the whistler branch.
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Figure 2.5: The dispersion relations for Langmuir and electron acoustic waves for varying
density ratios of hot and cold populations at Th/Tc = 100. The normalizations
used are unitless where ωr follows from a different set of notation and is simply
the mode frequency ω, γ is the complex frequency component indicated by
black cirlces for Langmuir waves and empty circles for electron acoustic waves,
ωe is the plasma frequency of the combined populations; the solid lines of the
real frequency indicate where the mode is lightly damped and dashed lines
where it is heavily damped (Taken from Ref. [47]).

2.4 Ponderomotive Force

Before discussing parametric decay processes in the next section it is necessary to

present a derivation and interpretation of the ponderomotive force, an effect that

arises in plasmas due to spatial variations of the electric field from either electrostatic

or electromagnetic origins. The ponderomotive force is a nonlinear effect that has

been used to describe many plasma phenomena, such as the self-focusing of lasers

in a plasma [51], electromagnetic-electrostatic mode conversion in non-uniform plas-

mas [52], and density structures in the auroral ionosphere [53]. The interpretation

presented here draws from Francis F. Chen’s book Introduction to Plasma Physics

and Controlled Fusion [30] and Dwight R. Nicholson’s book Introduction to Plasma
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Theory [31]. The effect is best demonstrated by considering the motion of an electron

in electric and magnetic fields oscillating sinusoidally in time. The constant in time

components E0 and B0 may be neglected in this derivation; it is important to note

that this is done only to reduce the number of terms present as the ponderomotive

force is unaffected by the presence of background electric and magnetic fields. Addi-

tionally, we may consider the particle to initially be at rest in our frame of reference,

thus v0 = 0. The equation of motion of the electron is,

me
dv

dt
= −e (E + v ×B) (2.6)

and is evaluated for the following first order perturbations,

v = v1 (2.7)

B = B1 (2.8)

E = E1 = Es(x) cos(ωt) (2.9)

where Es(x) is the spatial variation of the amplitude of the electric fields and is not

necessarily sinusoidal. After neglecting second order terms and evaluating the electric

field at the initial position x0 the equations of motion of the electron take the form,

a1 =
dv1

dt
= − e

me

Es(x0) cos(ωt) (2.10)

v1 =
dx1

dt
= − e

meω
Es(x0) sin(ωt) (2.11)

x1 =
e

meω2
Es(x0) cos(ωt) (2.12)

where the v1 ×B1 term is neglected as it is second order in nature. It can be seen

that these first order perturbations result in oscillations of the electron about x0 at
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the same frequency as the time dependent electric field oscillations. The time average

over 2π/ω of the first order equation of motion is zero and there is no net force on

the particle. Since the ponderomotive force is a nonlinear force we must move to a

second order solution in order to reveal its presence. A second order solution requires

a first order Taylor expansion of Es about x0,

E = Es(x0) cos(ωt) + (x1 · ∇)Es|x0 cos(ωt) (2.13)

and the first order magnetic field perturbation is defined by Faraday’s Law,

∇× E = −dB
dt

B1 = − 1

ω
∇× Es|x0 sin(ωt) (2.14)

where the typical Taylor expansion property Es(x0)� (x1 · ∇)Es|x0 is used to discard

the second order contribution of the electric field. The equation of motion is thus,

me

(
dv1

dt
+
dv2

dt

)
= −e [(Es + (x1 · ∇)Es|x0) cos(ωt) + (v1 + v2)×B1] (2.15)

where we now wish to solve for the second order force term, which we will call the

ponderomotive force on a single particle, fp. Substituting Eqs. (2.10), (2.11), (2.12),

(2.13), and (2.14) into Eq. (2.15) and then taking the time average over the short

time scale 2π/ω results in,

fp = me

〈
dv2

dt

〉
= − e2

meω2

1

2
[(Es · ∇)Es + Es × (∇× Es)] (2.16)

where 〈...〉 indicates a time average over 2π/ω and the substitution 〈cos2(ωt)〉 =

〈sin2(ωt)〉 = 1/2 has been made. The above expression is quite general and at this
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point it is intuitive to discuss the simplification of Eq. (2.16) from both the elec-

trostatic and electromagnetic cases. In the case of electrostatic perturbations the

Es × (∇× Es) term on the right of Eq. (2.16) vanishes since the curl of E is zero,

this is identical to repeating the original derivation with B1 = 0. What is left can be

simplified using the product rule [54],

A× (∇×A) =
1

2
∇(A2)− (A · ∇)A (2.17)

where the left hand side will again be zero due to the zero curl of the electric field

leaving only 1
2
∇(E2

s ) = (Es · ∇)Es); the ponderomotive force becomes,

fp = −1

4

e2

meω2
∇E2

s (2.18)

For electromagnetic perturbations the Es × (∇× Es) term in Eq. (2.16) does not

vanish, substituting this term for the right side of the product rule in Eq. (2.17) will

remove the contribution of the (Es · ∇)Es term in Eq. (2.16) leaving only a 1
2
∇(E2

s )

term, and the ponderomotive force again simplifies to Eq. (2.18). The derivation

presented is only for a single electron, to extend it to the bulk plasma we may multiply

by the density ne to obtain the force per m3,

Fp = −
ω2
pe

ω2
∇〈ε0E

2〉
2

(2.19)

where the substitution E2
s = 2〈E2〉 has been made. In the electrostatic and elec-

tromagnetic cases the physical mechanisms behind the force are quite different even

though both cases return the same outcome.

During the motion of the electron oscillating in an electrostatic wave with non-

uniform spatial amplitude it will experience a larger force from spatial regions with
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larger electric field than in weaker and this effect will not average to zero over an

oscillation, resulting in a net drift of the particle over one oscillation. Particles will be

forced into regions of low field amplitude that cannot “push back” as much resulting

in a build of charge there [31].

The physical mechanism of the ponderomotive force is entirely different in the

electromagnetic case though the end result is the same; it arises from the second

order Lorentz force v1 ×B1 in the direction of the wave vector, k, since E×B is in

the direction of k and v1 is parallel to E. The phases of v1 and B1 are separated by

π/2 and the motion along the wave vector does not average to zero over an oscillation

resulting in a net drift for all particles. If there are spatial amplitude variations

the magnitude of the drift will not be the same for all particles and there will be a

bunching of particles in small amplitude regions [30].

In both cases, the spatial variations of the electric field result in a bunching of

particles and some force, the ponderomotive, has to be responsible for the build-up

of charges in high density regions. The derivation presented here was for electrons,

but one can see that the ponderomotive force is proportional to the spatial gradient

of the electric field as well as the density of the region and will therefore be felt by

all charged particles. However, because of the mass dependence the effect is smaller

for ions relative to the force on electrons by a factor of me/M . The ponderomotive

force on the ions can often be neglected; however, the reaction of the ions to charged

regions created by the ponderomotive force on electrons can be a large low-frequency

effect [30, 31].

2.5 Parametric Decay

The ponderomotive force provides a mechanism for coupling between different plasma

wave modes. A subset of non-linear wave-wave interactions are known as parametric
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decay instabilities, and the coupled waves involved must satisfy a set of matching

conditions [30]. A simple derivation of the matching conditions can be presented

using harmonic oscillators as with resonant frequencies ωs described by the equation

of motion,

d2as
dt2

+ ω2
sas = 0 (2.20)

2.5.1 Harmonic Oscillator Coupling

Consider a system of three harmonic oscillators: a high frequency oscillator aP that

will be pumped by an external source, another high frequency oscillator aH that is

coupled to the pump oscillator and also to a third low frequency oscillator aL. The

equations of motion for aL and aH including coupling terms to the other oscillators

are, respectively,

d2aL
dt2

+ ω2
LaL = cLaHaP (2.21)

d2aH
dt2

+ ω2
HaH = cHaLaP (2.22)

where cs is the coupling constant of an oscillator and the coupling term drives os-

cillations of the oscillator. If we let aL = AL cos(ω1t), aH = AH cos(ω2t) and aP =

AP cos(ωP t) where As is the oscillator amplitude, then substitution into Eq. (2.22)

results in,

−ω2
2AH cos(ω2t) + ω2

HAH cos(ω2t) = cHAPAL cos(ωP t) cos(ω1t)

(ω2
H − ω2

2)AH cos(ω2t) = cHAPAL
1

2
(cos([ωP + ω1]t) + cos([ωP − ω1]t))

(2.23)
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Thus the coupling terms are capable of driving oscillations of aH with frequency,

ω2 = ωP ± ω1 (2.24)

If restricting ourselves to linear interactions it is evident from the solution of Eq. (2.20)

that the oscillator aH can only oscillate at ω2 = ωH . However, if we extend to small

non-linear interactions the oscillator aH will have a small bandwidth over which it

can resonate so that ω2 needs only be approximately ωH [30]. Additionally, the

frequency ω2 can have an imaginary component related to damping or growth of

the oscillations. If ω1 is small and ωH is close to ωP then aH could conceivably

oscillate at both ω2 = ωP + ω1 and ω2 = ωP − ω1 or else one of these frequencies

will be too far outside of the bandwidth of a2 and a single frequency will be driven.

Similarly, aL is also restricted to a small bandwidth of resonant oscillations and ω1

must fall within this range. Given this result we can now let aL = AL cos(ω3t) and

aH = AH cos([ωP ± ω1]t) and substitute into Eq. (2.21) and simplify,

(ω2
L − ω2

3) = cLAPAH
1

2
(cos([2ωP ± ω1]t) + cos(ω1t)) (2.25)

The driven oscillations of aH can in turn excite the original oscillation ω1 of aL but

also oscillation frequencies of ω3 = 2ωP ± ω1 so long as these are within the resonant

bandwidth of aL. One can see that this feedback process will go on indefinitely and we

will instead restrict the resonant oscillations of aL to be low frequency with ωP > ωL

so that ω3 is non-resonant with aL. Here we note that we have not put restrictions on

aH and we may have ωH > or < ωP and ωH > or < ωL. Therefore, we have a set of

three oscillations that are coupled to aP (ωP ) by Eqs. (2.21) and (2.22): aL(ω1 ' ωL),
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aH(ω2 = ωP − ω1 ' ωH), and aH(ω2 = ωP + ω1 ' ωH),

(ω2
L − ω2

1)aL(ω1)− cLAP [aH(ωP − ω1) + xH(ωP + ω1)] = 0

([ω2
H − (ωP − ω1)

2]aH(ωP − ω1)− cHAPaL(ω1) = 0 (2.26)

([ω2
H − (ωP + ω1)

2]aH(ωP + ω1)− cHAPaL(ω1) = 0

which can be solved to yield a frequency matching condition,

ωP ≈ ω2 ± ω1 (2.27)

so long as the frequencies ω1 and ω2 are approximately equal to the resonant fre-

quencies of the oscillators aL(ωL) and aH(ωH), respectively. The coupled-oscillators

scenario may be repeated using plasma waves as(k · x − ωt) to yield a wavenumber

matching condition [30],

kP ≈ k2 ± k1 (2.28)

in addition to the frequency matching condition of Eq. (2.27).

2.5.2 Plasma Wave Coupling

In Chapter 5 we will present 1D simulations designed to observe parametric coupling

of a pumped parallel whistler wave with high and low frequency daughter waves that

exist in the plasma as thermal modes. In these cases, the ion or electron acoustic

wave will be the low frequency daughter wave and another whistler mode will be the

high frequency daughter wave. A parallel whistler mode is a purely electromagnetic

mode while ion and electron acoustic modes are electrostatic. The ponderomotive

force provides a mechanism for the coupling between these different wave modes. A
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pumped whistler wave will form spatial beats with the other high frequency thermal

whistler modes that are present and form spatial variations in the electric field setting

up a ponderomotive force equal to,

FP =
ω2
pe

ω2

ε0
2
∇〈(EP + EH)2〉

FP =
ω2
pe

ω2

ε0
2
∇〈E2

P + 2EP · EH + E2
H〉

FP =
ω2
pe

ω2

ε0
2
∇〈2EP · EH〉 (2.29)

where we assume a uniform pump wave with 〈E2
P 〉 = 0 and the gradient of the

〈E2
H〉 term will be extremely small and may be discarded leaving only the cross term.

The ponderomotive force will be an electrostatic force at frequency ω = ωP − ωH if

ωH < ωP or ω = ωH − ωP if ωH > ωP , that has spatial variations with wavenumber

k = kP ± kH . It is possible for the ponderomotive force to then couple to a thermal

electrostatic mode at (kL, ωL) so long as k ≈ kL and ω ≈ ωL and form a set of

three coupled waves. The oscillating ponderomotive force will drive the growth of the

resonant low frequency mode which will in return drive the resonant high frequency

whistler mode that supplied the original beat frequency.

This can only occur for a specific set of wave modes that obey Eqs. (2.27) and

(2.28). Fig. 2.6 displays the ponderomotive beat waves for a pumped whistler mode

beating with both forwards and backwards travelling whistler modes. The solid lines

are the dispersion branches for a whistler wave propagating at θ = 0o with respect

to the background magnetic field when ωce = ωpe/3, the black circle indicates the

pumped mode. The dashed lines indicate all of the electrostatic ponderomotive beat

modes that could couple to electrostatic wave modes. Had we not restricted ourselves

to ωL < ωP there would in theory be additional branches above ωP predicted by
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Figure 2.6: The low frequency parametric decay matching conditions for a pumped whistler
beating with the rest of the whistler modes. The solid black line indicates the
whistler dispersion relation for propagation parallel to a background magnetic
field, the pumped whistler is highlighted by the black circle along the forward
travelling whistler branch, and the ωL < ωP ponderomotive beating solutions
are indicated by the black dashed lines.

Eqs. (2.27) and (2.28) — in practice the ponderomotive force does not easily allow

for coupling to the electrostatic branch in this regime as the 〈E2
P 〉 term in Eq. (2.29)

would not be averaged over a full oscillation. An electrostatic mode intersecting the

dashed curves of Fig. 2.6 has the potential to form a three-wave coupling with the

pump whistler mode and the matching mode along the whistler branch.
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Simulation Models and Setup

3.1 Plasma Simulation

The results presented in Chapters 4 and 5 are generated using the KEMPO1 (Kyoto

University ElectroMagnetic Particle cOde) Particle-in-Cell (PIC) code developed by

Omura and Matsumoto (1993) [55], and a Darwin PIC code in the UCLA Particle-in-

Cell (UPIC) Framework developed by V.K. Decyk (2007) [56]. PIC codes solve the

particle equations of motion self-consistently with Maxwell’s Equations to account

for the feedback effects of the particles on the wave-fields. Both simulation codes

are one-dimensional in space (x), three-dimensional in velocity space v = (vx, vy, vz),

with three-dimensional electromagnetic fields E = (Ex, Ey, Ez) and B = (Bx, By, Bz);

it should be noted that for only a single dimension in space Bx must be a constant.

Furthermore, both codes may have an imposed background magnetic field B0 in the

x-y plane that can be at any oblique angle θ with respect to x. This simulation

structure is depicted in Fig. 3.1 with the external magnetic field depicted in red; the

wave vector k = kx = k must also be one-dimensional in a system with a single spatial

dimension.

In general, PIC codes are set up as grid systems with grid spacing ∆x and periodic

boundary conditions; particles are able to exist anywhere in the cells and physical

quantities are calculated on the grid points and then interpolated back to the particle

positions to determine the forces there. In a cyclical fashion, charge density and
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✓
x, k, vx, Ex, Bx

vy, Ey, By

vz, Ez, Bz

B0

Figure 3.1: Schematic of the dimensional structure of the simulations. The code has a
single spatial dimension, and is three dimensional in velocity-space and elec-
tromagnetic fields. There is the capability to align a background magnetic field
B0 at any angle θ with respect to x in the x-y plane.

current density are calculated using particle positions and velocites, these are used to

calculate the electromagnetic fields at grid points and advance them in time, these

updated fields are used to calculate the force at each particle location, the equation

of motion is used to advance the particles in time, and the process repeats itself with

the densities and fields being updated with the new particle data [57]. The charge

density ρ and current density J = (Jx, Jy, Jz) are calculated at grid points using the

particle positions and velocities [58],

ρ(x) =
∑
i

qiS(x− xi) (3.1)

J(x) =
∑
i

qiviS(x− xi) (3.2)

where qi, xi, and vi are the charge, position, and velocity of the i-th particle, re-
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spectively. The function S(x) is known as the the particle shape function, for point

particles this is a delta function but it is common to use a finite size in simulations;

the reason for this is to suppress numerical heating that arises from not being able

to resolve particle density fluctuations smaller than the grid spacing [59, 58]. From a

signals perspective, this is analogous to filtering out fluctuations above the Nyquist

frequency to prevent aliasing. Calculating the charge and current densities using

Eqs. (3.1) and (3.2) automatically satisfies the equation of continuity,

∇ · J = −∂ρ
∂t

(3.3)

Alternatively, one can use Eq. (3.1) to calculate the charge density and then use

Eq. (3.3) to calculate the current density; however, in a one-dimensional system this

can only be used to calculate the Jx component of the current density [59]. To solve for

the fields we begin by satisfying Poisson’s Equation, but again in a one-dimensional

system this only yields information about the Ex component of the electric field [55],

∇ · E =
ρ

ε0
∂Ex
∂x

=
ρ

ε0
(3.4)

where ε0 is the permittivity of free space; in some codes it is necessary to only explicitly

satisfy Eq. (3.4) initially, or it can be used to calculate Ex each iteration. A similar

equation holds for the magnetic field component Bx,

∇ ·B = 0

∂Bx

∂x
= 0 (3.5)
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and requires that Bx be constant in space. The electric fields E = (Ex, Ey, Ez) (if not

explicitly solving for Ex with Eq. (3.4)) and magnetic fields B = (By, Bz) are found

by solving,

∇×B = µ0J +
1

c2
∂E

∂t
(3.6)

∇× E = −∂B
∂t

(3.7)

where µ0 is the magnetic permeability of free space. Eq. (3.7) also shows us that Bx

must be constant in time in addition to constant across space in a one-dimensional

code. There are various numerical methods for solving the system of equations defined

by Eqs. (3.4)–(3.7) and advancing the fields in time; the different methods employed

by each of the codes used will be briefly discussed in the next sections. Once the fields

have been advanced in time the fields are interpolated back to each particle position so

the Lorentz force on each particle can be found. The interpolation method employed

by both the KEMPO1 and UPIC Darwin codes is a linear interpolation.

The electron equation of motion is given by Eq. (2.6) and is displayed again for

reference,

me
dv

dt
= −e (E + v ×B)

For relativistic dynamics m and v in the equation of motion are modified by the

Lorentz factor [59],

γ =
1√

1−
(
v2

c2

) (3.8)
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where m = γm0 and m0 is the mass of the particle at rest and u = γv defined by,

u =
c√

c2 − |v|2
v (3.9)

yields a solution for v,

v =
c√

c2 + |u|2
u (3.10)

where u = (ux, uy, uz) is the particle momentum per unit mass. The particles are

advanced in time according to the equation of motion using what is called a particle

pusher — an algorithm that advances the particles a discrete step ∆t while conserv-

ing energy and momentum to a small degree of error. Both the KEMPO1 and UPIC

Darwin codes use the most common algorithm known as the Boris Method; readers

interested in the details of the Boris particle pushing method should look in any in-

troductory plasma physics simulation textbook such as Plasma Physics via Computer

Simulation by C.K. Birdsall and A.B. Langdon [57]. The method amounts to initially

advancing particles half a time step ∆t/2 using only the electric field, followed by a

rotation in space about the magnetic field from the v ×B force, and finally advancing

another ∆t/2 using only the electric field [58]. The use of the Boris method strictly

conserves energy and momentum during cyclotron motion [59]. We next discuss some

of the inner workings of each code and the setup for the simulation results presented

in Chapters 4 and 5.
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3.2 KEMPO1

3.2.1 Code Structure

The KEMPO1 code is a fully relativistic electromagnetic particle code written in

MatLab that uses the Finite Difference Time Domain (FDTD) method for solving

Maxwell’s equations [55, 59]; the method was first presented by Yee (1966) [60]. The

FDTD method discretizes space to two grid systems, one on full-integer steps l∆x

and the other on half-integer steps (l + 1/2)∆x where (l = 1, 2, 3...Nx) and Nx is

the number of grid points. The KEMPO1 code defines Ey, By, Jy, and ρ on the

full-integer grid and Ex, Jx, Ez, Bz, and Jz on the half-integer grid. Derivatives in

Maxwell’s equations are instead performed as central difference approximations, for

example the initial Ex calculated using Eq. (3.4) becomes,

Ex(l + 1/2)− Ex(l + 1/2)

∆x
=
ρ(l)

ε0
(3.11)

where the spatial derivative of Ex(l) is approximated using a full-integer step centred

at location l and one never requires actually knowing Ex(l) when satisfying the condi-

tion. The quantities are also updated on full and half-integer temporal grids j∆t and

(j + 1/2)∆t where (j = 1, 2, 3...Nt) and Nt is the number of time steps. The same

quantities on the full-integer and half-integer spatial grids exist on the full-integer

and half-integer temporal grids, respectively. Again, as an example one component

of Eq. (3.6) becomes,

By(l + 1, j)− By(l, j)

∆x
= µ0Jz +

1

c2
Ez(l + 1/2, j + 1/2)− Ez(l + 1/2, j − 1/2)

∆t

(3.12)
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and we note that all derivatives are calculated at the location and time (l + 1/2, j)

but we need not know any quantity explicitly at that point except Jz which is easily

approximated there using,

Jz(l + 1/2, j) =
Jz(l + 1/2, j + 1/2) + Jz(l + 1/2, j − 1/2)

2
(3.13)

Using Eq. (3.12) an expression for Ez(l + 1/2, j + 1/2) can be found in terms of

quantities all known previously in time. Similarly, the whole set of centred difference

forms of Maxwell’s equations can be solved for solutions of some quantities advanced

on half integer grids and others on full integer grids, in both space and time; this gives

rise to the FDTD method being commonly referred to as the “leap-frog” method. In

practice, a code using the FDTD method does not explicitly contain half-integer grids,

the concept remains the same so long as the half-integer set is updated before the

full-integer set in the beginning and each time step thereafter. Approximating the

derivatives as centred differences with a finite resolution introduces a requirement on

the size of the space and time step lengths such that the fastest travelling information

must be resolved, which in the electromagnetic case is the speed of light,

∆x

∆t
> c (3.14)

this is known as the Courant condition or Courant-Freidrichs-Lewy (CFL) condition

after their 1928 paper outlining this restriction on finite difference solutions to hyper-

bolic partial differential equations [61]. In summary, the KEMPO1 code calculates

the charge and current densities through a weighting of the particle locations and

velocities using Eqs. (3.1) and (3.2), then uses the FDTD method to solve Maxwell’s

equations and advance the E and B fields in time, then the fields are interpolated
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back to the particle locations, and finally the particles are advanced in time using a

Boris mover.

3.2.2 Simulation Setup

The KEMPO1 code is used to investigate the properties of oblique whistler waves

and these results are contained in Chapter 4. To begin these investigations we use

a set of initial perturbations to generate a whistler wave propagating obliquely with

respect to a background magnetic field that is consistent with Eq. 2.1. At this point

we adopt the following normalizations,

t→ ωpet,

n→ n

no
,

ω → ω

ωpe
,

ωce →
ωce
ωpe

,

x→ ωpe
c
x

k → ck

ωpe

(3.15)

The initial conditions of the pertubation are similar to those used in Yoon (2011) [19]

but have been adapted to fit the set of normalizations presented above. Perturbations

are applied to the density ne, each of the particle velocity components (vx, vy, vz), all

three electric field components (Ex, Ey, Ez), and the transverse components of the

magnetic field (By, Bz) and are given by,

ne = 1 +
k

cω
vx (3.16)

vx =
cω2ω2

ceη tan θ

(ω2 − 1)

(
cos θ − ωη

ωce(χ−N2)

)
∆M sin (kx) (3.17)

vy = ωcη

(
ω2 − ω2

ce sin θ − 1

cos θ(ω2 − 1)
+

ωceη

ω(χ−N2)

)
∆M sin (kx) (3.18)

vz =
ωωcecη

cos θ

(
cos θ +

ωη

ωce(χ−N2)

)
∆M cos (kx) (3.19)

Ex =
sin θ

c(ω2 − 1)
∆Mvz (3.20)

Ey = ∆M cos (kx) (3.21)
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Ez = − η

χ−N2
∆M sin (kx) (3.22)

By = −k
ω
Ez (3.23)

Bz =
k

ω
Ey (3.24)

N2 = χ+
ω2
ce(1− χ) sin2 θ

2(ω2 − 1)

(
1 +

√
1 +

4 cos2 θ

sin4 θ

(ω2 − 1)2

ω2ω2
ce

)
(3.25)

χ = 1− (ω2 − 1)

ω2(ω2 − ω2
ce)− (ω2 − ωce cos2 θ)

(3.26)

η =
ωce
ω

cos θ(1− χ) (3.27)

where θ is again the angle of propagation with respect to the background magnetic

field and ∆M is used to scale the magnitude of the perturbation. In the current study

we choose to investigate whistler waves that are propagating at oblique angles θ = 30o

and θ = 70o. These angles are consistent with the range of angles for observed oblique

whistlers. Fig. 3.2 shows the dispersion relation curves for θ = 30o and θ = 70o with

the perturbed modes highlighted by a black dot.

Two mobile electron species are loaded into the simulator, a self-consistent species

and a non-interacting species. Charge neutrality is conserved using a fixed positive

background plasma. The self-consistent species interacts with the wave fields and

contains the feedback effects of the particles on the wave; it is initially perturbed

according to Eqs. (3.16)–(3.19). The non-interacting species responds to the electro-

magnetic fields but does not contain feedback effects on the wave. It has the same

initial perturbation conditions as the self-consistent species. The number of particles

used for each electron species is Np = 4096.

The normalized parameters of the system are chosen to be ωce/ωpe = 1/3 and

c/ωpe = 10. The number of grid points was chosen to be Nx = 256 with spacing

∆x = 1 and a time step of ∆t = 0.04 to satisfy the Courant condition of Eq. (3.14).
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Figure 3.2: The modes of the oblique whistler branch perturbed using the initial conditions
of Eqs. (3.16)–(3.27) (a) Waves propagating at an angle θ = 30o with respect
to the background magnetic field. (b) Waves propagating at an angle θ = 70o

with respect to the background magnetic field.

The KEMPO1 particle code is adapted to incorporate the initial conditions expressed

earlier in Eqs. (3.16)–(3.27). The electromagnetic fields and particle velocities are

assigned using Eqs. (3.17)–(3.27). Application of the initial condition for the density

profile defined by Eq. (3.16) requires a non-uniform particle loading. The initial

particle positions are loaded according to the prescribed density profile ne(x) from
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the inversion [57],

i

Np

=

∫ xi

xmin

ne(x) dx∫ xmax

xmin

ne(x) dx

(3.28)

where again i is the particle index, Np is the number of particles, xi is the position

of particle i, and ne(x) is the density profile given by Eq. (3.16). ne(x) is put in the

following useful form,

ne(x) = 1 + γ sin (kx), γ =
k

cω

cω2ω2
ceη tan θ

(ω2 − 1)

(
cos θ − ωη

ωce(χ−N2)

)
∆M

Carrying out the integration in Eq. (3.28) yields,

i

Np

=
(xi − xmin) + γ(cos (kxmin)− cos (kxi))

(xmax − xmin) + γ(cos (kxmin)− cos (kxmax))
(3.29)

The position xi of each particle is solved numerically and used to load each particle

such that the initial density matches the density profile in Eq. (3.16).

We now discuss the selection of the wave number and frequency for the initial

conditions. It is necessary to perturb the system at an integer mode number n be-

cause of the selection of periodic boundary conditions. The wave number is defined

to be, k = 2π
λ

= 2πn
Nx

= 0.09817 where we choose n = 4. This gives a normalized

wave number kc
ωpe

= k 10
1

= 0.9817. The frequency of the perturbation is determined

by the Appleton-Hartree equation, Eq. (2.1), for the chosen wave number. The cor-

responding frequencies for θ = 30o and θ = 70o are ω ≈ 0.14ωpe and ω ≈ 0.055ωpe,

respectively. We refer again to Fig. 3.2 where these perturbed modes are highlighted

on the whistler branch. The value of n = 4 was chosen to make the normalized wave

number ≈ 1. At this wave number the whistler branch is relatively steep and this
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makes the wave perturbation easier to generate from initial conditions.

3.3 UPIC Darwin Code

3.3.1 Code Structure

The second code is constructed using the UPIC Framework and is known as a Darwin

code, as it uses the Darwin subset of Maxwell’s equations. The Darwin subset is

identical to the standard set of Maxwell’s equations except for a modification to

Ampere’s Law, Eq. (3.6) instead becomes,

∇×B = µ0J +
1

c2
∂EL

∂t
(3.30)

where EL indicates the longitudinal component of the electric field with respect to the

direction of propagation of electromagnetic waves, i.e. Ex. The modification of the

displacement current only coming from the longitudinal component of the electric

field has the result that the high frequency (ω > ωpe) electromagnetic light wave

(R, L) branches are eliminated. For the present study, we are not concerned with

these branches of the electromagnetic dispersion relation and can safely exclude them.

Additionally, the Darwin subset are elliptical partial differential equations and have

the benefit of not being restricted by the Courant condition in Eq. (3.14) and the

time step needs only resolve the highest frequency, often plasma oscillations. Thus

the Darwin code can use time steps that are an order of magnitude larger than what

would otherwise be necessary in a full electromagnetic code (such as KEMPO1) —

significantly cutting down on computation time. The Darwin code may be used to

simulate very large numbers of both electron and ion species in a relatively short time

compared to the KEMPO1 code.

The UPIC framework uses a spectral method for solving the Darwin subset, mean-
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ing Fast Fourier Transforms (FFT) are employed to solve the system of equations

defining the electromagnetic fields in a spatial gridless fashion in Fourier space and

are only discretized in real space when assigned to a grid prior to using a Boris mover

on the particles [58]. Advancing the fields in time requires an iterative solution as the

transverse electric fields in the Darwin subset depend on the force on each particle,

but the force on each particle depends on the fields so the FDTD method cannot be

used. The iterative solution to this large set of coupled equations converges in only

a few iterations so long as density perturbations do not become too extreme [58]. In

summary, the UPIC Darwin code calculates the charge and current densities and then

transforms them from real space to Fourier space using the FFT, the Darwin subset

of Maxwell’s equations are solved and advanced in time using an iterative method

in Fourier space and then assigned to a grid in real space before the particles are

advanced using a Boris mover.

3.3.2 Simulation Setup

The UPIC Darwin code is used to investigate wave-wave coupling of parallel whistler

wave modes through the ponderomotive force; these results are presented in Chap-

ter (5). The idea is to pump a parallel whistler mode at a single wave number and

frequency (kP , ωP ) in the presence of electrostatic modes to see if a parametric decay

process is easily mediated by the ponderomotive force created by beating whistler

modes as depicted in Fig. 2.6. In discussing the setup and results we adopt a set of

dimensionless normalizations,

t→ ωpet,

ω → ω

ωpe
,

n→ n

no
,

m→ m

me

,

x→ x

∆x

v → v

ωpe∆x

(3.31)
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where the grid spacing is related to the dimensionless thermal velocity by vte →

vte/ωpe∆x. The plasma parameters are selected to be ωce = ωpe/3 with B0 along Bx

and c/ωpe = 10. The main modification to the original code written by V.K. Decyk

was to enable the external pumping of transverse electric fields. Wave pumping

or driving is accomplished by adding sinusoidal wave fields each iteration to the

pre-existing fields; the amplitude is slowly increased as the system responds to the

external pump and if done correctly the wave will continue to propagate once the

pump is turned off. The code supported a longitudinal external wave driver already

and it was a simple modification to add sinusoidal fields to the transverse components

instead. In order to launch a whistler wave the external pump needs to be right-hand

circularly polarized and the external wave fields added to the self-consistent fields are,

EPz = EP (t) cos(kPx− ωP t) (3.32)

EPy = EP (t) sin(kPx− ωP t) (3.33)

in all simulations EP (t) increases linearly until ωpet = 100 when it is then turned

off. It is not necessary to perturb the transverse magnetic fields and velocities as

the system will respond each iteration to the pumped electric fields and set up the

necessary conditions for the wave to continue propagating. Additionally, since a

parallel whistler mode has no longitudinal component the particles may be loaded

uniformly. Three different cases were investigated with this wave pumping setup: a

single electron species with no moving ions, a single electron species with a moving

ion species, and two electron species at different temperatures and densities with

no moving ions. The purpose of these cases is to investigate the result of whistlers

beating with the pump wave when no electrostatic modes intersect the ponderomotive

beating branches, when ion acoustic waves intersect, and when both electron acoustic
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modes intersect. A parametric wave-wave coupling can be expected to occur wherever

an electrostatic branch intersects the ponderomotive branches.

The time step in all simulations is ∆t = 0.2ωpet and vary from Nt = 5000− 10000

steps. A system of length Nx = 512 and is used for the single electron and single

ion species runs with Npi = Npe = 1.8432 × 105 particles where Npe and Npi are the

total number of electrons and ions, respectively. To ensure the ion acoustic wave

is undamped we use a ratio of the electron temperature to the ion temperature of

Te/Ti = 100 with a mass ratio M/me = 16. The other two cases use Npi = Npe =

3.6864× 106 particles and a system length of Nx = 2048. In runs using two electron

species at different temperatures we have Npc = 0.1Npe and Nph = 0.9Npe giving

Npc + Nph = Npe where Nph and Npc refer to the hot and cold electron populations,

respectively. This increase in particles and system length is necessary to create a

condition where the electron acoustic mode is undamped with sufficient resolution.

Similar to the KEMPO1 code, we wish to generate a whistler wave with a wave number

corresponding to an integer mode number of the system. We choose to generate the

same mode at kc/ωpe ≈ 1; this corresponds to n = 8 and n = 32 for Nx = 512 and

Nx = 2048, respectively, and a frequency of ω ≈ 0.16ωpe according to Eq. (2.1).
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Oblique Whistler Wave Dynamics

4.1 Wave Evolution

In this chapter we present results from modelling oblique whistler waves using the

KEMPO1 PIC code. To begin we confirm that the initial conditions correctly excite

the whistler branch of the dispersion relation shown in Fig. 3.2. To better illustrate

some of the nonlinear characteristics of the wave the amplitudes of the perturbations

are made arbitrarily large in the following figures. Fig. 4.1 shows the time evolution

of the By component of the magnetic field in position space when subject to the initial

perturbations at both θ = 30◦ and θ = 70◦ in Fig. 4.1a and Fig. 4.1b, respectively.

The wave paths through space and time are consistent with the phase velocity given

by the values of ω and k used in the initial conditions. This is also the case for

Bz, Ey, Ez, vy, and vz.

Along the x component we see the initial conditions perturb a second wave along

with the longitudinal component of the oblique whistler wave. Fig. 4.2 is the space-

time evolution the Ex component of the electric field at θ = 30o and θ = 70o. Clearly

depicted is a wave travelling at the whistler wave phase velocity along with another

longitudinal mode moving in and out of phase with the whistler. Analysis of the phase

velocity of the second longitudinal wave yields that it is consistent with a Langmuir

wave. It is somewhat unsurprising that an initial sinusoidal perturbation to the

density would have this outcome. In Fig. 4.2b at θ = 70◦ the Langmuir and whistler
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Figure 4.1: Space-time diagrams of the y component of the magnetic field for (a) θ = 30o

and (b) θ = 70o. The phase velocity of the waveforms is consistent with the
ratio of ω/k on the whistler branch of the dispersion relation at kc/ωpe ≈ 1 as
expected.

wave are at nearly the same amplitude, evident by the field amplitude being close

to zero during the periods of anti-phase propagation. For less oblique propagation

at θ = 30◦ the Langmuir wave dominates over the longitudinal component of the

whistler wave as seen in Fig. 4.2a.

Fig. 4.3 illustrates the time evolution of the Ex component of the electric field

in k-space when subject to the perturbations at angles θ = 30◦ and θ = 70◦. At

kc/ωpe = 0.9817 the field is relatively strong at all times as expected. As time

progresses the field grows in strength at exact integer multiples of the wave number

used in the perturbation. These harmonics seen in k-space are a consequence of the

wave steepening. It should be noted that more harmonics are present at angle θ = 70◦
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Figure 4.2: Space-time diagrams of the x-component of the electric field for (a) θ = 30o

and (b) θ = 70o. The initial conditions perturb the longitudinal component of
the whistler wave along with Langmuir waves of the same mode number. The
phase velocity of each mode is consistent with what is expected at kc/ωpe ≈ 1.
At θ = 30o the Langmuir oscillations have a larger amplitude than the whistler
component while at θ = 70o the two waves have nearly identical amplitude as
seen by the superposition when the waves are in anti-phase.

in Fig. 4.3b than at angle θ = 30◦ in Fig. 4.3a. Fig. 4.4 displays different time stages

of the density profile for the self-consistent particles when the large perturbation is

applied at oblique angles θ = 30◦ and θ = 70◦. It is important to note that the

steepening seen here is more pronounced and occurs over a shorter time than the

steepening seen at a perturbation amplitude that generates waves with amplitudes

more consistent with observations. The wave steepens faster and is more nonlinear in

Fig. 4.4b than in Fig. 4.4a. This outcome is consistent with the harmonic generation

differences of 4.3. The wave steepening is more pronounced at more oblique angles

and thus more harmonics are generated as a consequence.
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Figure 4.3: Fourier analysis in space at each time step displays the generation of wave num-
ber harmonics in the x component of the electric field due to wave steepening.
(a) At θ = 30◦ the second and third harmonics have a significant amplitude
before a single Langmuir oscillation (ωpet = 2π) has occurred. (b) At θ = 70◦

harmonics up to and including the fifth harmonic have a significant amplitude
above the background.

It is confirmed that the initial conditions correctly excite the whistler branch of the

dispersion relation shown in Fig. 3.2. In addition to the whistler branch the oblique

propagation results in a coupling with the Langmuir branch of the dispersion relation,

exciting a wave with a frequency very close to the plasma frequency and wave number

identical to the whistler. The large amplitude compressional component causes the

waves to steepen over time; this is more pronounced as the propagation angle becomes

more oblique. Here we make note of the small edge instabilities in Fig. 4.2 and Fig. 4.4

that appear at all angles and perturbation amplitudes. These are considered to have

a negligible effect on the simulation. An effort was made to remove these instabilities,
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with no success, and they arise from a small discontinuity in the initialization of the

density profile at the boundary.
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Figure 4.4: Illustration of wave steepening in the density profile for oblique whistler waves
at an arbitrarily large wave amplitude. (a) Density profile at θ = 30◦ for the
initial waveform and after steepening at ωpet = 20.0. (b) Density profile at
θ = 70◦ for the initial waveform and after steepening at ωpet = 5.5.

4.2 Nonlinear Wave-Particle Interactions

4.2.1 Wave Breaking

A consequence of wave steepening is that the wave can eventually reach a point where

it breaks, a nonlinear phenomena analogous to the white caps seen when ocean waves

break. A wave breaking event is shown in Fig. 4.5 for the x component of the electric

field and particle velocity. The electric field in Fig. 4.5a has a sharp decrease in

magnitude at the same position as a vortical structures in the phase space plot of

Fig. 4.5b. Wave breaking events were observed at a propagation angle of θ = 70o

down to θ = 45o but at less oblique angles the wave steepening effects were not large

enough to cause breaking even at very large perturbation amplitudes.

The steepening time until the first breaking event, ωpets, decreases as the initial

48



CHAPTER 4. — Oblique Whistler Wave Dynamics

(a)
E

x

ωpet = 13.3 θ = 70o

-5

0

5

0 50 100 150 200 250

(b)

X

V
x

-10

-5

0

5

10

0 50 100 150 200 250

Figure 4.5: Wave breaking event for an arbitrarily large amplitude wave at θ = 70◦. (a) The
x component of the electric field. (b) The x component of the self consistent
particle velocities, a breaking structure occurs at the same position as the
steepest part of the electric field.

amplitude of the wave increases. This steepening time follows an inverse power law

with the strength of the magnetic perturbation, and is depicted in Fig. 4.6. The

amplitudes measured in Fig. 4.6 range from δB/B0 ∼ 0.3 − 1.0 and are outside

the range of observed whistler wave amplitudes in the Earth’s radiation belts; at

more realistic amplitudes of δB/B0 ∼ 0.01 − 0.1 the wave breaking time is very

long and it is not practical to track these events in the simulation. However, we can

use the relationship between the steepening time and wave amplitude to estimate

the steepening time for amplitudes consistent with observed whistler waves; this is

discussed in Section 4.3.
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Figure 4.6: Wave breaking time, ωpetBr, as a function of the initial amplitude of the y-
component of the magnetic field for θ = 70◦.

4.2.2 Particle Trapping and Wave Damping

At all amplitudes the system eventually begins to exhibit particle trapping by the wave

when the angle of propagation is θ = 70o. Fig. 4.7 displays the trajectories of two

particles trapped in a wave propagating at an oblique angle of θ = 70◦. The trajectory

for the first particle is in Fig. 4.7a and it’s corresponding phase space evolution is

displayed in Fig. 4.7b. Similarly, the trajectory and phase space evolution of the

second particle are shown in Fig. 4.7c and Fig. 4.7d, respectively.
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Figure 4.7: Trapped particle trajectories, the light grey circles mark the initial position
of the particle and black cirlces the final position. (a) Phase space and posi-
tion evolution of a trapped particle. (b) Time and position evolution of the
same particle displayed in (a). (c) Phase space and position evolution of a sec-
ond trapped particle. (d) Time and position evolution of the second particle
displayed in (c)

The gray circles indicate the initial position of the particles and the black circles
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the position at the end of the trajectory. Both particles exhibit velocity oscillations

around a nearly constant position before becoming trapped in the wave and being

accelerated to velocities that are nearly doubled. We note that the particles enter

trapped orbits at vx ≈ 0.5, which is consistent with the phase velocity of the whistler

wave at this angle. This is direct evidence that the particles are being trapped and

energized by the wave. When the angle of propagation is θ = 30o there is no evidence

of particle trapping, staying consistent with the theme of less pronounced nonlinear

dynamics at the shallower angle.
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Figure 4.8: (a) The y-component of the electric field at θ = 70◦ for ωpet = 0 (dashed
line) and near the onset of particle trapping at ωpet = 80 (solid line). (b) The
corresponding electric potential, φy, at both the initial time (dashed line) and
later time (solid line).

To further demonstrate the wave trapping the y component of the electric field and

electric potential are shown in Fig. 4.8a and Fig 4.8b, respectively. The dashed lines
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Figure 4.9: (a) The evolution of the electric field energy for propagation at θ = 30o (blue)
and θ = 70o (red). Trapping at θ = 70o occurs at ωpet ≈ 70 and coincides
with a damping of the field energy. (b) Fourier analysis of the field energy at
θ = 70o before (red) and after (blue) the damping event shows a decrease in
power of the whistler wave frequency and increase in Langmuir wave power
after damping and trapping occur.

indicate the values at ωpet = 0 while the solid lines indicate the values at ωpet = 80.

The development of deep potential wells in Fig 4.8b during the onset of the trapped

particle trajectories seen in Fig. 4.7 supports the notion that the wave is responsible

for this non-linear particle response.

Another important aspect of the particle trapping is the energy stored in the

electric field. At the onset of particle trapping the energy of the electric field is

significantly damped and exhibits a change in oscillation frequency. Fig. 4.9a shows
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the electric field energy as a function of time for an arbitrarily large amplitude at both

θ = 70o and θ = 30o, shown in red and blue, respectively. First we note that there

is no damping evident at θ = 30◦. At θ = 70o there is evidence of the wave energy

going through a damping phase from ωpet ≈ 65 to ωpet ≈ 100. At this amplitude

the particle trapping begins around ωpet = 70. This gives evidence that the energy

stored in the field is being transferred to the trapped particles. Before and after the

damping occurs there is a modulation of the high frequency oscillations in the field

energy at θ = 70o. Fig. 4.9b shows the Fourier analysis of the oscillations prior to

damping (red) and after damping (blue); the time range over which the transform is

taken is indicated by braces in Fig 4.9a. The Fourier analysis reveals the dominant

modulation prior to damping matches the frequency of the whistler wave, while a

smaller modulation at the frequency of the Langmuir wave is also present. Following

damping the modulation at the whistler frequency is decreased while the Langmuir

frequency modulation increases and dominates.

4.2.3 Particle Energization

We now present a study of the energy distributions f(E) of the self-consistent particle

species to determine what role the waves play in the energization of particles. Fig. 4.10

displays the energy distributions of the self consistent particles for both θ = 30o and

θ = 70o; the initial distributions are shown by the dashed blue lines and a later time

by the solid blue lines. The initial distribution function is cold and peaks at ∼ 1 eV;

the final energy distributions have been averaged over a single plasma oscillation.

The perturbation amplitude corresponds to realistic waves observed in the radiation

belts with δB/B0 = 0.01. In Fig. 4.10a we see that for propagation at θ = 30o

the particles have undergone uniform thermalization by ωpet ≈ 475 peaked at an

energy of ∼ 100 eV. Similarly, in Fig. 4.10b at θ = 70o the particles have also been
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energized to be peaked around ∼ 100 eV but in a longer time scale of ωpet ≈ 750.

It is an interesting outcome that at the more oblique propagation angle the wave

takes longer to thermalize the particle distribution given the more nonlinear nature

reported previously.
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Figure 4.10: Thermalization of the particle energy distribution f(E) of the self-consistent
particle species during propagation of a wave with δB/B0 = 0.01. The initial
distribution is indicated by the dashed blue line and after thermalization by
the soldi blue line. (a) The distribution for propagation of a wave at θ = 30o.
(b) At θ = 70o the final distribution is similar but takes longer to thermalize.

The results for the self-consistent particle species demonstrate that a large am-

plitude whistler wave is capable of uniformly thermalizing the energy distribution

function. However, there is no direct evidence that large numbers of particles are

being accelerated by the wave beyond the thermal distribution. To expand on this

outcome, we initially load the non-interacting particles with a thermal distribution

that is peaked around 100 eV to mimic the self-consistent particles after being ther-

malized; the self-consistent particles are kept cold. Fig. 4.11 displays the distribution
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functions of the non-interacting particles when subjected to the same wave fields as

the cold self-consistent particles. The initial distributions are indicated by the red

dashed lines and the distributions at a later time by the solid red lines. We see that at

θ = 70o in Fig. 4.11b that the thermal distribution has become distorted and a pop-

ulation of electrons has been accelerated up to a maximum energy of ∼ 20− 30 keV.

Similarly, in Fig. 4.11a at θ = 30o there is evidence of electron acceleration up to a

maximum of ∼ 8− 9 keV. The method employed here suggests that given an initial

seed population of warmer electrons, an oblique whistler wave dominated by cold

particle dynamics can further accelerate the warm population but not up to the MeV

energies seen in previous studies.
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Figure 4.11: Acceleration of the particle energy distribution f(E) of the non-interacting
particle species during propagation of a wave with δB/B0 = 0.01. The initial
distribution is indicated by the dashed red line and after acceleration by the
solid blue line. (a) The distribution for propagation of a wave at θ = 30o. (b)
At θ = 70o the final distribution is similar but takes longer to thermalize.
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4.3 Discussion

In this section we make a comparison of the important time scales associated with

the various physical processes which include wave steepening, particle trapping, ther-

malization and acceleration. This is followed by application of the simulation results

to realistic plasma conditions in the Earth’s radiation belts using the scaling relations

between the different time scales of the physical process and initial wave amplitude.

It should be noted that the scaling relations allow for more general application of the

results to more realistic plasma conditions in terms of wave amplitude.

Large amplitude waves steepen because of the wave propagation speed dependence

on the local wave intensity. Yoon (2011) has pointed out that large amplitude oblique

whistler waves can steepen due to the presence of a longitudinal component. As

shown in Yoon (2011) using fluid simulations and from particle simulations in this

work illustrated in Fig. 4.4, the density perturbation steepens leading to a distorted

non-sinusoidal waveform over long time scales. A steepening time scale (ts) can be

established from analysis of the waveforms at different times and associating ts with

(∂Ex/∂x)max like the event in Fig. 4.5. From a series of simulation runs using different

initial wave amplitudes and fixed angle (θ = 70o), shown in Fig. 4.6, the steepening

time scale follows a near inverse amplitude dependence, given by

ωpets ∼ 53.5

(
δB

B0

)−0.9

(4.1)

This scaling is also consistent with the fluid simulations of Yoon (2011). Furthermore,

Yoon (2014) [63] points out the significance of the propagation angle on the level of

wave steepening; that paper concludes that regardless of the wave amplitude, only

when sufficiently near the resonance cone will the oblique whistler wave see significant
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steepening leading to wave breaking. For the wave at θ = 30o the frequency is

ω/ωpe = 0.14 and Eq. (2.2) gives a resonance cone angle of θres ' 65o; similarly, for the

wave propagating at θ = 70o the resonance cone angle is θres ' 80o. The result that

at θ = 30o the steepening does not lead to wave breaking even at large amplitudes,

while at any amplitude the wave at θ = 70o eventually undergoes steepening and

wave breaking is consistent with the findings of Yoon (2014).

In the small amplitude wave limit Landau damping competes with the steepen-

ing process, however, in the large amplitude regime particle trapping and nonlinear

damping become important. Particle trapping, as observed in the phase space plots

of Fig. 4.7b and Fig. 4.7d, is mainly associated with the longitudinal electric field

component of the oblique whistler wave. The trapping time scale in the electrostatic

part of the wave field is approximated to be ttr = 2π
√
me/(ekEy sin θ cos θ), where

the term with the square root is the inverse bounce frequency of the particle trapped

in the wave potential, k is the wave number of the large amplitude wave and Ey is

the longitudinal electric field component [62]. Using the same normalization as the

particle simulation model leads to the trapping time scale

ωpettr = 2π

√
1

kEy sin θ cos θ
(4.2)

From the simulations with θ = 70o, δB/Bo = 0.3, k ' 0.098, and Ey ' 0.15 in the

formula above gives a trapping time ωpettr ' 92. For this wave amplitude, Eq. (4.1)

gives a steepening time ωpets ' 158, which is about 1.7 times longer than the particle

trapping time scale. Note that the particle trajectories of Fig. 4.7a and Fig. 4.7c are

consistent with this trapping time scale estimate.

Once the particles become trapped in the large amplitude oblique wave a reso-

nance damping begins to set in, this is clearly seen in Fig. 4.9a. After the trapping
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begins a wave damping occurs over a time scale of tdamp ∼ 20 − 30ω−1
pe , for the pa-

rameters stated in the previous paragraph. This so-called O’Neil damping is due to

phase mixing of particles trapped in the wave potential and the general treatment for

an obliquely propagating wave is found in Palmadesso (1972) [62]. This resonance

damping vanishes after ωpet ∼ 120 and leaves an undamped oblique whistler wave for

longer times. Fig. 4.9b illustrates the electric field wave power in the pre-damping

phase which exhibits a lower frequency peak around ω ' 0.05ωpe, and is consistent

with the initial whistler wave perturbation frequency. After the wave damping the

power spectrum reveals a decrease in the whistler wave power along with a corre-

sponding increase in power at the plasma frequency (ωpe). This increase in wave

power at the plasma frequency is attributed to the distortion of the electron distri-

bution function arising from particle acceleration in the nonlinear wave fields as we

demonstrated in Section 4.2.3.

Furthermore, the distorted wave fields in Fig. 4.8a are consistent with space obser-

vations detailed in Kellogg et al. (2010) [23] who attribute this distortion to trapped

particles. Kellogg et al. (2010) highlight that the distortion is minimal at less oblique

angles, the distorting component is linearly polarized compared to the circularly po-

larized whistler component, and the trapped particle density is peaked in the potential

wells of the trapping potential. Our simulation results agree that little distortion of

the trapping fields is seen when the angle of propagation is θ = 30o, reinforcing the

proposal that the distortion is due to particle trapping as this is also not evident at

θ = 30o. Confirmation of the linearly polarized distortion field and extracting the

trapped particle density profile we leave for future work.

Lastly, we discuss the time scale associated with particle heating and acceleration

in the nonlinear wave fields, as seen in Fig. 4.10 and Fig. 4.11. For the case of θ = 70o,

a scaling study of the acceleration time scale versus initial wave amplitude was made,
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similar to the wave steepening time. The result obtained in normalized form is,

ωpetac ∼
(
δB

B0

)−2/3

(4.3)

For a comparison of this acceleration time to particle trapping and wave steepening

temporal scales we consider an initial wave amplitude of δB/Bo = 0.3. This gives

an acceleration time of ωpetac ∼ 42.7 which is comparable to the trapping time scale

of ωpettr ∼ 44 and less than the steepening time ωpets ∼ 158. For the more realistic

amplitudes in the Earth’s radiation belt, δB/Bo ∼ 0.01, the time scales are more

separated with: ωpetac ∼ 415.7, ωpettr ∼ 819.5 and ωpets ∼ 3375.6. Here we note that

the steepening time is considerably longer than the other characteristic time scales;

it is possible that the wave damping from particle trapping occurring well before the

steepening would increase this steepening time beyond the predicted time. The fluid

simulation results in Yoon (2011) [19] report non-interacting particle acceleration up

to a maximum energy on the order of 10 MeV when using an initial distribution peaked

around 500 keV. Repeating our simulations with an initial thermal distribution of

the non-interacting particles similar to that used by Yoon (2011) [19] results in very

little acceleration. However, it is not clear that the acceleration of the lower energy

seed population should scale to higher energies. A limitation of this work is that we

use an isotropic energy distribution; it may be that non-interacting particles moving

near the phase velocity of the wave experience very large accelerations while the bulk

of the distribution remains unchanged. An extension of this work would be to use

a non-interacting population that is mostly resonant with the wave to see if if all or

most of the distribution is accelerated.
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CHAPTER 5.

Nonlinear Wave Interactions

The following chapter presents results of modelling parallel whistler wave propagation

using the UPIC Darwin code in three different scenarios: single electron species with

electrostatic Langmuir waves, a single electron and single ion species with electrostatic

Langmuir and ion acoustic modes, and two electron species at different temperatures

to produce electrostatic Langmuir and electron acoustic modes. As stated previously

in Chapter 3, the whistler wave is generated by adding sinusoidal external fields to

the self-consistent transverse electric fields for the first ωpet = 100 units of time after

which the external fields are turned off and the pumped wave continues to propagate.

The results of each of the three scenarios are presented in the following three sections.

Here we make a note that the color scale dimension in many of the figures in the

following results is purely qualitative and has been normalized to the maximum value

occurring in the frame; all plots involving a Fourier analysis are the natural logarithm

of the transform values and then normalized.

5.1 Langmuir Wave Coupling

We begin by presenting results simulations with a single moving electron species.

The only electrostatic mode is the familiar Langmuir or electron plasma wave. The

normalized electron thermal velocity is vte = 1.00 corresponding to cell size ∆x = λDe,

the number of particles is Npe = 3.6864 × 106, the system length is Nx = 2048 cells,

the electron cyclotron frequency is ωce = ωpe/3, and the pumped whistler is mode

(kc/ωpe = 0.98, ω = 0.1613ωpe) corresponding to n = 32 where k = 2πn/Nx and

61



CHAPTER 5. — Nonlinear Wave Interactions

(a) (b)

Figure 5.1: Result of a whistler pumped at (n = 32, ω = 0.163ωpe) in the presence of a
single electron species and fixed ions. (a) The space-time plot of the Ey field
shows whistler decays into other forward travelling whistler waves. (b) The
corresponding (n, ω) plot depicting the modes present in the transverse fields.

c/ωpe = 1. With a cyclotron frequency below the plasma frequency the Langmuir

modes will never intersect the electrostatic ponderomotive modes produced by the

pump whistler beating with the rest of the whistler branch. Given this setup, there

should not be ponderomotive coupling between the whistler and Langmuir branches.

The result of pumping a whistler in this scenario is depicted by the Ey transverse

electric field component in Fig. 5.1. The space time evolution of Fig. 5.1a shows

the pumped whistler wave being slowly ramped up until ωpet = 100, at this time
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(a) (b)

Figure 5.2: For the case depicted in Fig. 5.1 the decay of the whistler waves produces
forward traveling beam-like structures in the electron density and Ex field. (a)
The Ex space-time plot showing the beam-like structures that develop along
x direction. (b) The corresponding (n, ω) plot shows the dispersion of these
structures is mostly linear with some broadening at high mode numbers; the
beam velocity is roughly equivalent to phase velocity of the whistler wave.

the amplitude is δB/B0 = 0.087 and the external fields are turned off. The wave

continues to propagate until ≈ ωpet = 400 when it begins to break up into a number of

lower frequency and mode number whistler modes. Fig.5.1b shows the frequency and

wavenumber map and reveals a broad spectrum of forward traveling whistler modes

are excited. Simultaneously, in the space-time diagram of the Ex component of the

electric field in Fig. 5.2a we see the generation of propagating nonlinear electrostatic
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(a) (b)

Figure 5.3: Repeating the simulation of Fig. 5.2 and Fig. 5.1 with cold electron population
(vte = 0.316) reveals a coupling between the Langmuir and Whistler branches.
(a) The Ey component shows that the n = 32 whistler does not decay to other
whistler modes. (b) The whistler mode at n = 32 couples into the longitudinal
field and couples with the Langmuir branch at n = −31 and n = 1.

structures. Fourier analysis in Fig. 5.2b shows that the structures cover a broad range

of frequencies and mode numbers with a nearly linear dispersion that spreads out at

higher mode numbers. Additionally, the electron density also shows these structures

but is not shown as it has more thermal noise in the Fourier analysis. The velocity

of the structures covers the range of phase velocities of the pump whistler and the

lower frequency daughter whistler waves, suggesting these modes are generating the

structures.
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(a) (b)

Figure 5.4: Velocity distribution functions for a single electron species when a whistler
with amplitude δB/B0 = 0.087. The phase velocity of the whistler mode that
couples into the Ex field is indicated by a dashed white line. (a) Distribution
when vte = 1.000, the phase velocity of the wave is located inside the distri-
bution and cools the tail distribution while producing a beam population near
the phase velocity. (b) Distribution when vte = 0.316, the phase velocity of the
wave is well outside the distribution and causes small tail fluctuations.

To gain a better understanding of this process the electron population was cooled

down to a thermal velocity of vte = 0.316. The resulting Ey and Ex frequency and

mode number analyses are shown in Fig. 5.3a and Fig. 5.3b, respectively. In the

transverse field we see that the whistler wave no longer undergoes a decay into the

broad range of daughter modes, while in the longitudinal field we see three modes

have significant power above the thermal modes. The lower frequency electrostatic

mode corresponds to the whistler mode, indicating the whistler is somehow coupling

into the electrostatic field. The higher modes are Langmuir waves corresponding to

modes n = −31 and n = 1, at slightly lower power are the opposite modes at n = 31

and n = −1. The Langmuir modes form a mode number matching with the n = 32

mode. With the cooler electron population no beam structures are formed.
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An analysis of the evolution of the vx electron velocity distribution function f(vx)

for both the hot and cold electron scenarios is shown in Fig. 5.4. The phase velocity

of the pumped whistler mode is indicated by a dashed white line. The whistler

phase velocity lies outside of the cold distribution and along the slope of the hot

distribution. The hot distribution in Fig. 5.4a is modified at ωpet ≈ 75; the positive

tail of the distribution decreases and is balanced by an increase at the whistler phase

velocity. The thermal distribution profile recovers from ωpet ≈ 400 − 600, around

the same time that the whistler mode begins to decay into other whistler modes

and the density structures form. The cold distribution in Fig. 5.4b remains mostly

undisturbed except for small tail oscillations of the distribution at the pump whistler

frequency.

All of this would suggest that the whistler mode is coupling into the longitudinal

electric field through some mechanism with the Langmuir mode involving spatial

beats, indicated by Fig. 5.3b. This beating is causing a modification of the parallel

electron velocity distribution at the whistler phase velocity, which leads to the decay

of the whistler mode and generation of beam like structures in the density when the

phase velocity is situated inside the velocity distribution. At this time it is not clear

what this nonlinear coupling mechanism is, though it is possible it is a higher order

J × B effect. A qualitative analysis of the dependence on the whistler amplitude

shows that this coupling occurs down to amplitudes of δB/B0 = 0.018 where the

coupling into the electrostatic branch still occurs but the resulting whistler decay and

density structure growth are minimal.

5.2 Ion Acoustic Wave Coupling

A final result of the single electron species case demonstrates the ponderomotive

beating of the pump whistler wave with the whistler branch. Using the cold electron
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Figure 5.5: A comparison is made between the ponderomotive beating branches predicted
by linear theory and the branches present in the simulation. (a) The branches
predicted by linear theory that correspond to those seen in the simulation,
the missing branches were shown earlier in Fig. 2.6. (b) A (k, ω) map of the
Ex electric field reveals where the ponderomotive force has coupled into the
electrostatic mode; the branches that are present show remarkable agreement
with the beating predicted by linear theory.

distribution and a low amplitude whistler wave the Langmuir coupling effect just

described is suppressed and the resulting Ex dispersion is displayed in Fig. 5.5b.

The electrostatic modes generated from the ponderomotive force are revealed; these

show remarkable agreement with the theoretical curves depicted in Fig. 5.5a. The

theoretical branches assume the pump whistler is beating with the whole whistler

dispersion but in reality the higher frequency whistler modes are going to experience
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significant cyclotron damping by the electrons, meaning these modes are not going to

beat very strongly with the pump. In Fig. 5.5a the two ponderomotive branches that

saturate near ωce/2 at high k are due to beating with the high frequency whistlers

explaining why these are more damped in the simulation. However, in Fig 5.5a we only

show the theoretical pondermotive branches that appear in the simulation; Fig. 2.6

shows more branches than are seen in the simulation, exact mirrors in direction of

the modes present in the simulation. It is not clear why these modes are not coupled

into the electrostatic field, it could simply be due to the initial conditions or a more

fundamental aspect of the parametric coupling. In summary, Fig. 5.5 shows that we

do have coupling into the electrostatic field that matches with the ponderomotive

branches predicted by the parametric coupling conditions of Eqs. (2.27) and (2.28).

For simulations involving both ions and electrons the parameters used to simulate

a plasma with an undamped ion acoustic mode are a electron thermal velocity of

vte = 1.00, a temperature ratio of Te/Ti = 100 and a mass ratio of M/me = 16. The

system length is Nx = 512, the number of particles of each species is Npi = Npe =

1.8432× 105, and the cyclotron frequency is again ωce = ωpe/3. The dashed red line

in Fig. 5.6a shows the theoretical dispersion of the ion acoustic mode. To analyse

the ion acoustic mode in the simulations we use the the ion density fluctuations δni,

which is simply the subtraction of the average density from the density and removes

the large DC component from a Fourier analysis. The dispersion analysis of δni for a

simulation with no pump whistler in Fig. 5.6b shows there is indeed an undamped ion

acoustic mode that agrees well with the theoretical dispersion indicated by the dashed

white line. However, the simulation dispersion shows a broader region of undamped

modes than theory predicts and it is not clear at this time why this broadening occurs.

Fig. 5.6a also indicates the whistler (solid black) and ponderomotive branches (dashed

black); at the intersections of the ion acoustic and ponderomotive branches a three-
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Figure 5.6: (a) Theoretical coupling potential for a pumped whistler and IAW; the whistler
branch is indicated by the black line, the ponderomotive beating branches by
the black dashed line, and the IAW by the dashed red line. (b) The ion density
Fourier analysis shows the ion acoustic dispersion from the thermal motions of
the ions, the theoretical dispersion of Eq. (2.3) is overplotted as a white dotted
line to show the agreement between theory and simulation.

wave parametric coupling can occur.

5.2.1 Single, Double, and Triple Decay

Next we present results from simulations with a pumped a whistler at (nP = 8, ωP =

0.1613ωpe) with an amplitude of δB/B0 = 0.036. Fig. 5.7a and Fig. 5.7b show the

space-time plots of the Ey electric field and ion density fluctuations, respectively.

In Fig. 5.7a the whistler mode is successfully launched and at ωpet ≈ 350 a second
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(a) (b)

Figure 5.7: The parametric decay of a pumped whistler wave is observed. (a) The Ey
component of the electric field space-time diagram, the pumped whistler begins
to decay at ωpet ≈ 400 into a backwards travelling whistler wave. (b) The ion
density evolution shows the generation of a forwards propagating ion acoustic
mode

backwards travelling daughter whistler mode develops. At around the same time in

Fig. 5.7b we see the development of a coherent ion acoustic mode. Fig. 5.8a is a spatial

Fourier analysis showing the evolution of the modes present in the transverse electric

fields. The whistler mode at n = 8 is accompanied by the growth of the n = −6

mode. Fig. 5.8b shows that the frequency of the daughter whistler is ω ≈ 0.119ωpe.

Similar mode evolution and dispersion maps of the ion density fluctuations are shown

in Fig. 5.9a and Fig. 5.9b, respectively. While the ion acoustic mode shows several
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(a) (b)

Figure 5.8: (a) The Ey component of the electric field (n, t) diagram, the pump and daugh-
ter whistler wave are present. These modes correspond to integer mode num-
bers nP = 8 and nH1 = −6. (b) The Ey component of the electric field (n, ω)
diagram, the daughter mode has frequency ωH1 ≈ 0.119ωpe.

undamped modes the n = 14, ω ≈ 0.43ωpe mode shows significant growth over the

rest of the modes at the same time as the n = −6 whistler mode.

The sum of the daughter mode numbers,

nH1 + nL1 = −6 + 14 = 8 = nP

where the subscripts H1 and L1 refer to the high frequency daughter whistler and

low frequency daughter IAW, exactly satisfy the spatial parametric coupling condition
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(a) (b)

Figure 5.9: (a) The mode number evolution of the ion density, the daughter ion acoustic
mode number corresponds to nL1 = 14. (b) The (n, ω) map of the ion density,
the mode in (a) has frequency ωL1 ≈ 0.043ωpe.

Eq. (2.28). Similarly, the frequency sum is,

ωH1 + ωL1 = 0.119ωpe + 0.043ωpe = 0.162ωpe ≈ ωP = 0.1613ωpe

and Eq. (2.27) is approximately satisfied, partly due to the finite frequency resolu-

tion. Fig. 5.10 illustrates the theoretical wavenumber and frequency matching that

has occurred in Fig. 5.7. The modes satisfying the exact coupling conditions are in-

dicated next to the black dots highlighting the three-wave coupling. In theory, the

72



CHAPTER 5. — Nonlinear Wave Interactions

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

(8, 0.1613)

(14.1122, 0.0433)

(-6.1122, 0.1180)

ωce

Mode Number, n

ω
/ω

p
e

Whistler Branch

Ponderomotive Beating

Ion Acoustic Branch

Coupled Modes

Figure 5.10: The parametric coupling for the decay of the nP = 8 pump whistler mode
into a backscattered daughter whistler wave and forward travelling daughter
ion acoustic mode seen in Fig. 5.7. The whistler branch is indicated by the
solid black line, the ponderomotive beating of the pump whistler branch with
the backwards travelling whistler branch is indicated by the black dashed line,
the ion acoustic mode is indicated by the red dashed line, and the coupled
modes are indicated by large black dots with dotted connecting lines. The
mode number and normalized frequency of the coupled modes are indicated
next to the dots.

mode numbers do not correspond to exact integers like the simulation, which is re-

stricted to integer modes by periodic boundary conditions. Fig. 5.6a indicates that

in addition to the forward travelling ion acoustic coupling there is the potential for a

separate three-wave coupling involving a backward travelling ion acoustic mode; it is
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(a) (b)

Figure 5.11: The double parametric decay of a pumped whistler wave is observed. (a) The
Ey component of the electric field space-time diagram, the pumped whistler
begins the first decay at ωpet ≈ 350. (b) The ion density evolution, generation
of new ion acoustic modes coincides with the growth of whistler wave modes
in (a).

likely the former process dominates due to the daughter whistler experiencing lighter

cyclotron damping than the higher frequency daughter whistler that matches in the

latter and thus the ponderomotive beating is stronger. To summarize, it is clear that

the daughter whistler and ion acoustic modes seen in Figs. 5.8 and 5.9 correspond to

a single, three-wave parametric decay facilitated by the ponderomotive force.

Next we present a similar simulation with the only change being the amplitude

of the pump whistler increased to δB/B0 = 0.057. Fig. 5.11 displays the Ey and
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(a) (b)

Figure 5.12: (a) The Ey component of the electric field (n, t) diagram, the pump and two
daughter whistler mode numbers present. These modes correspond to integer
mode numbers nP = 8, nH1 = −6, and nH2 = 5. (b) The Ey component of
the electric field (n, ω) diagram, the daughter modes in (a) are highlighted
along the whistler branch with corresponding frequencies ωH1 ≈ 0.119ωpe,
and ωH2 ≈ 0.094ωpe.

δni space-time plots. The transverse field in Fig. 5.11a again shows the decay of the

pump whistler into a backwards travelling whistler but also a second daughter whistler

mode travelling in the forward direction. The ion density evolution in Fig. 5.11b also

indicates a second ion acoustic mode travelling backward in addition to the forward

travelling mode seen in the single parametric decay. Fig. 5.12 and Fig. 5.13 show

the same Fourier analysis of Ey and δni used to analyse the single decay. The new
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(a) (b)

Figure 5.13: (a) The mode number evolution of the ion density, the two daughter IAW
numbers show the largest power. These modes correspond to integer mode
numbers nL1 = 14, and nL2 = −11. (b) The (n, ω) map of the ion density, the
modes in (a) are along the ion acoustic branch with frequencies ωL1 ≈ 0.043ωpe
and ωL2 ≈ 0.026ωpe.

whistler mode corresponds to the (nH2 = 5, ωH2 = 0.094ωpe) and the ion acoustic

mode to (nL2 = −11, ωL2 = 0.026ωpe), where the subscripts H2 and L2 refer to these

being the second high and low frequency daughter modes.

The mode and frequency sums,

nH2 + nL2 = 5 + (−11) = −6 = nH1

ωH2 + ωL2 = 0.094ωpe + .026ωpe = 0.12ωpe ≈ ωH1 = 0.119ωpe
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Figure 5.14: The theoretical parametric decay coupling for the observed double decay in
Fig. 5.11. The whistler branch is indicated by the solid black line, the pon-
deromotive beating of the nH1 = −6 daughter whistler mode with the for-
wards travelling whistler branch is indicated by the black dashed line, the ion
acoustic mode is indicated by the red dashed line, and the coupled modes
are indicated by large black dots with dotted connecting lines. The mode
number and normalized frequency of the coupled modes are indicated next to
the black dots. The single decay that preceded this second decay is indicated
by the blue dots and dotted connecting line.

again approximately satisfy the parametric decay conditions of Eqs. (2.27) and (2.28)

where the daughter whistler wave of the previous single decay takes the place of the

pump wave in the three-wave coupling. Fig. 5.14 shows the theoretical decay of the

nH1 = −6 whistler mode acting as a pump wave into a forwards travelling whistler
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and backwards travelling ion acoustic mode; we see that the same ponderomotive

branch as the single decay is the dominant decay path. The original pump whistler

is of large enough amplitude that it decays once into a daughter whistler and ion

acoustic mode, and a second time through the single decay channel of the daughter

whistler mode. It is interesting to note that Fig. 5.12a shows that the growth rate of

the the H2 whistler is larger than the H1, while Fig. 5.13a shows the L1 ion mode

grows faster than the L2 ion mode. This seems to indicate that both decays happen

nearly simultaneously and there are more complex dynamics determining the growth

rates of each mode. The simulation daughter modes H2 and L2 are less of a match

for the theoretical daughter modes than the first decay, this can be attributed to the

exact solution having non-integer mode numbers further from integer modes. The

frequency discrepancy between n = 4.71 and n = 5 is large enough that the ion

acoustic mode deviates significantly from the theoretical dispersion but is still able

to form the coupling due to the width of the undamped ion acoustic mode mentioned

previously when discussing Fig. 5.6b.

Finally, we present a third simulation with the pump amplitude increased further

to δB/B0 = 0.11. Fig. 5.15 displays the Ey and δni space-time diagrams. The

Ey evolution in Fig. 5.15a again shows the decay of the pump wave into multiple

whistler waves and multiple ion acoustic modes are also present in Fig. 5.15b. The

now familiar Ey and δni Fourier analyses are presented in Fig. 5.16 and Fig. 5.17,

respectively. In Fig. 5.16a we see the sequential growth of three daughter whistler

modes at nH1 = −6, nH2 = 5, nH3 = −4. Fig. 5.16b reveals these are again all

whistler modes but also that there is some power in the (n = 4, ω = 0.075ωpe) mode;

we will define this as the H̃2 mode and return to it shortly. In the ion mode evolution

shown in Fig. 5.17a we see the familiar nL1 = 14 and nL2 = −11 daughter modes as

well as a third nL3 = 9 mode. The full dispersion plot in Fig. 5.17b shows there is

78



CHAPTER 5. — Nonlinear Wave Interactions

(a) (b)

Figure 5.15: The triple parametric decay of a pumped whistler wave is observed. (a) The
Ey component of the electric field space-time diagram, the pumped whistler
begins the first decay at ωpet ≈ 200. (b) The ion density evolution, generation
of new ion acoustic modes coincides with the growth of whistler wave modes
in (a).

also a fourth ion acoustic mode at (n = −10, ω = 0.044ωpe), which we will call the

L̃2 mode.

The H̃2 and L̃2 modes are easily understood from the parametric matching con-

ditions,

nH̃2 + nL̃2 = 4 + (−10) = −6 = nH1

ωH̃2 + ωL̃2 = 0.075ωpe + .044ωpe = 0.119ωpe = ωH1
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(a) (b)

Figure 5.16: (a) The Ey component of the electric field (n, t) diagram, the pump and three
daughter whistler mode numbers are clearly visible. These modes correspond
to integer mode numbers nP = 8, nH1 = −6, nH2 = 5, and nH3 = −4. (b) The
Ey component of the electric field (n, ω) diagram, the daughter modes in (a)
are clearly identified along the whistler branch with corresponding frequencies
ωH1 ≈ 0.119ωpe, ωL2 ≈ 0.094ωpe, and ωL1 ≈ 0.075ωpe. Additionally, there
is some power in the (n

H̃2
= 4, ω

H̃2
= 0.075ωpe) mode though significantly

reduced in power that it is not clearly visible in (a).

that show this is also a three-wave coupling with the H1 mode acting as the pump.

As previously mentioned, the exact conditions for the coupling of the H1 mode to

the whistler and ion acoustic branches lie far from integer mode numbers and this

second coupling with H̃2 and L̃2 is also possible because of the periodic boundary

conditions.
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(a) (b)

Figure 5.17: (a) The mode number evolution of the ion density, the three daughter ion
acoustic mode numbers are clearly visible. These modes correspond to integer
mode numbers nL1 = 14, nL2 = −11, and nL3 = 9. (b) The (n, ω) map of
the ion density, the modes in (a) are clearly identified along the ion acoustic
branch with frequencies ωL1 ≈ 0.044ωpe, ωL2 ≈ 0.026ωpe, and ωL3 ≈ 0.028ωpe.
There is a fourth mode at (n

L̃2
= −10, ω

L̃2
= 0.044ωpe).

The H3 and L3 modes correspond to a triple parametric decay where the H2

mode has acted like the pump wave, namely,

nH3 + nL3 = −4 + (9) = 5 = nH2

ωH3 + ωL3 = 0.075ωpe + .028ωpe = 0.103ωpe ≈ ωH2 = 0.094ωpe
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Figure 5.18: The predicted parametric decay coupling for the decay depicted in Fig. 5.15
that produces three whistler and three ion acoustic daughter waves. The
whistler branch is indicated by the solid black line, the ponderomotive beating
of the backwards travelling whistler branch with the nH2 = 5 whistler mode
is indicated by the black dashed line, the ion acoustic mode is indicated by
the red dashed line, and the coupled modes are indicated by large black dots
with dotted connecting lines. The mode number and normalized frequency
of the coupled modes are indicated next to the black dots. The single and
double decay couplings leading up to this decay are also indicated by blue
and green dots and dotted connecting lines, respectively.

where the parametric decay conditions are again approximately met within the reso-

lution of the simulation frequency domain. This theoretical triple decay process where

the nH2 = 5 mode acts as the pump in the final decay is depicted in Fig. 5.18 with the
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final decay modes indicated. The same ponderomotive branch as the previous two

decays acts as the coupling mechanism between the electromagnetic and electrostatic

modes. In Fig. 5.16a and Fig.5.17a we show the simulation with a temporal scale

up to ωpet = 2000.0 to clearly demonstrate that no further decay of the H3 whistler

mode occurs at δB/B0 = 0.11. Increasing the amplitude beyond δB/B0 = 0.11

causes a computational error in the Darwin code, believed to be caused by the itera-

tive method of advancing the fields not converging due to large perturbations in the

ion density from the growth of the acoustic modes.

5.2.2 Growth Rates and Energy Transfer

Using the spatial Fourier analysis (n, t) plots we can isolate the temporal evolution of

the individual modes to measure the growth rates. Fig. 5.19a shows the normalized

growth rates Γ/ωpe of the three daughter whistler waves as a function of the pump

wave amplitude. It is obvious that the H1 mode (black) does not have a well defined

relationship with the pump wave amplitude. As the H2 mode (red) begins to have

a non-zero growth rate the H1 growth rate drops significantly and the H2 growth

dominates, this is consistent with the result in Fig. 5.12a. A similar feature does

not occur with the H3 mode (blue) becoming dominant, as it appears to reach a low

growth saturation point rather quickly. At larger amplitudes the H1 mode recovers

as the dominant mode with a growth rate more than double the H2 mode and nearly

an order of magnitude larger than the H3 mode. Fig. 5.19b shows the temporal

evolution of the three daughter whistler waves for the largest amplitude pump wave

indicated by the vertical, black, dashed line in Fig. 5.19a; also shown is the growth

and subsequent decay of the pump whistler (green). We see that the growth of all

three daughter waves begins at ωpet ≈ 200 with the decay of the pump wave beginning

shortly after. This demonstrates that the triple decay channels are all beating and
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growing simultaneously, with the original pump wave providing the energy for the

growth. This, along with the dominance of the H2 mode over the H1 at moderate

amplitudes, shows that it is not necessary for the intermediate waves to have grown

to significant amplitude for the next decay process to occur. Later in time we see that

the three daughter waves reach nearly identical signal power while the pump wave

has decayed to a power level consistent with the thermal noise power of the daughter

waves at the beginning of the simulation.
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Figure 5.19: (a) The growth rates for the three daughter whistler waves as a function of the
wave amplitude. (b) The whistler wave growth for the triple decay indicated
by the vertical dashed line in (a), also indicated in green is the launch and
decay of the pump whistler.

Fig. 5.20 is a qualitative analysis of the transfer of energy during the triple de-

cay process depicted in Fig. 5.19b. Fig. 5.20a shows the ion (blue) and electron

(red) kinetic energy evolution, both are normalized to the maximum energy reached

individually. In Fig. 5.20b the transverse and longitudinal electric field are each nor-

malized to the maximum energy of the transverse field. The transverse field energy is

ramped up during the addition of the external fields, at the same time the electrons
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Figure 5.20: The qualitative view of the energy dynamics during the triple decay of a
whistler wave. (a) The ion (blue) and electron (red) kinetic energy evolu-
tion, each is normalized to the maximum energy reached during the decay.
(b) The transverse (red) and longitudinal (blue) electric field energy, each is
normalized to the maximum energy of the transverse field.

gain energy from the transverse fields during cyclotron motion; some of this is also

then transferred to the ions. After the external field is turned off (ωpet = 100.0)

the ion kinetic energy develops a modulation in the range ion acoustic modes. At

ωpet ≈ 200, the same time the daughter whistler modes begin to grow in Fig. 5.19b,

the ion, electron, and longitudinal field energy begin to grow while the transverse

field energy decreases. The growth of the longitudinal field energy is consistent with

the growth of the IAW, which transfers energy to the ions and electrons.
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5.3 Electron Acoustic Coupling

For the final scenario we present simulations with an undamped EAW, achieved with

hot and cold electron species. The parameters used to achieve this are the thermal

velocities vth = 3.16 and vtc = 0.316, and population densities nh = 0.9ne and

nc = 0.1ne where the subscripts h and c again refer to the hot and cold populations,

respectively. The system length is Nx = 2048 cells, the total number of electron

particles is Npe = 3.6864× 106, and the cyclotron frequency is again ωce = ωpe/3. We

first present simulation results with these parameters when no whistler is pumped

in the system; Fig. 5.21b shows the longitudinal electric field dispersion analysis.

The Langmuir branch is located at the plasma frequency at low k and gradually

rises at larger k due to thermal effects. At lower frequencies we see the electron

acoustic mode is now undamped, the white dashed line is the theoretical dispersion

defined by Eq. (2.5). Fig. 5.21a shows the electron acoustic dispersion (dashed red)

along with whistler (solid black) and ponderomotive beating branches (dashed black).

We see that the current setup is similar to the ion acoustic scenario just presented

and we should expect to see a similar decay to a EAW with a mode number near the

pump and very low mode number whistler. The ponderomotive beating is particularly

strong here since the whistler that the pump is beating with experiences very minimal

cyclotron damping, as seen in Fig. 5.5b.

Next we introduce a pump whistler with amplitude δB/B0 to the system; Fig. 5.22

shows the resulting dispersion analysis. The transverse Ey field in Fig. 5.22a shows

that the pump whistler is excited, along with a broad range of the whistler branch

in the region around the pump mode. In the Ex field we see a beam-like dispersion

with a phase velocity equivalent to the pump wave that bears a striking similarity to

the single electron species result. Additionally, we can see that no region of the elec-
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Figure 5.21: (a) The possible parametric decay channels for a pumped whistler into an
electron acoustic mode. The whistler branch is indicated by the solid black
line, the pump whistler by a black dot, the ponderomotive branches present in
the simulation are indicated by the dashed black line, and the electron acoustic
dispersion defined by Eq. (2.5) is indicated by the red dashed line. (b) The
undamped electron acoustic dispersion from the Ex field in the simulation
for a temperature ratio of Th/Tc = 100 and cold density nc = 0.1ne; the
dispersion shows a good match with the theoretical dispersion indicated by
the dashed white line.

tron acoustic branch is significantly excited, even though the ponderomotive beating

branch is visibly intersecting the right travelling branch. We can conclude that the

same Langmuir wave coupling seen previously has resulted, with the cold population

stabilizing the decay of the pump whistler mode and thus keeping the beam mode

to a sharper range of phase velocities than that seen in Fig. 5.2b. This is supported
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by the stable whistler mode seen in the single cold electron simulations depicted in

Fig. 5.3, The conditions are such that the parametric decay of a whistler into an EAW

and another whistler should occur, but this is not seen. It is likely that the Langmuir

coupling is dominating over the electron acoustic coupling, and not that the EAW

coupling cannot occur. In the ion acoustic coupling the ponderomotive force directly

couples to the electrons which is then transmitted to the ions, so there is no physical

reason the ponderomotive force cannot not drive an electron acoustic mode.

(a) (b)

Figure 5.22: A whistler with δB/B0 is launched in the presence of an undamped ion acous-
tic dispersion. (a) The transverse Ey electric field (n, ω) map shows the
pumped whistler develops low power side bands. (b) The Ex field (n, ω) map
shows there is no parametric decay to the EAW branch, the same Langmuir
coupling seen in Fig. 5.2b occurs.
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5.4 Discussion

Here we will discuss the relevance of the simulation results to physical observations.

Agapitov et al. (2015) [28] state that the parametric decay of a whistler wave into

both an IAW and EAW are very similar processes. However, it is clear from our

simulation results that coupling to the EAW mode is not as easily achieved as in

the IAW case. Our results from the IAW coupling show remarkable agreement with

theory, with the largest discrepancies coming from the periodic boundary restrictions

on the spatial mode numbers. Though we do not present the results here, simulations

were conducted with Te/Ti = 1 when the IAW is severely Landau damped. In these

simulations the whistler and IAW coupling does not occur, and we again see the

Langmuir wave coupling phenomena. In Fig. 5.6b we see that the IAW mode has

significant power above the background, while in Fig. 5.21b it is necessary to reduce

the color scale by 2 orders of magnitude to reveal the presence of the EAW due to the

power in the Langmuir modes. Additionally, even in the parametric coupling to the

IAW branch we see other acoustic modes with comparable power to the acoustic mode

involved in the coupling. This would suggest that it may be necessary to reduce the

damping of the EAW even further to achieve dominance over the Langmuir coupling.

The event interpreted as the parametric decay of a whistler into an EAW in Agapitov

et al. (2015) has conditions where the hot population has a drift relative to the cold.

As mentioned in Chapter 2, a relative drift between hot and cold populations can

result in the electron acoustic instability, where EAW modes will actually grow. It is

possible that these conditions would more closely resemble the IAW conditions and

coupling of the whistler to the EAW would be more easily facilitated.

Further complicating the issue is the location of the cyclotron frequency with

respect to the undamped region of the EAW branch in space plasmas. The electron
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populations in Agapitov et al. (2015) are in the range of nh ∼ 1 − 3cm−3 and

nc ∼ 5 − 6cm−3, giving at minimum a cold population of nc = 0.7ne. Gary and

Tokar (1985) [47] highlight that without a relative drift of the populations the lowest

undamped frequency of the electron acoustic wave will be ∼ ωpc, this is supported

by Fig. 5.21b where ωpc ∼ 0.1ωce. For the parameters in Agapitov et al. (2015) this

will result in ωpc > ωce; thus, the EAW branch will be above the whistler branch and

will not intersect the ponderomotive branches that couple into the electrostatic modes

via the ponderomotive force. When a relative drift is present Gary (1987) [48] show

that the entire EAW branch is undamped, allowing for ponderomotive coupling even

when ωpc > ωce. This suggests that for typical space plasma conditions the electron

acoustic instability driven by a relative drift of the hot and cold populations becomes

necessary to observe whistler wave coupling to the EAW mode. Futhermore, even

in plasma conditions where ωpc < ωce but there is no relative drift our simulations

show that whistler wave coupling to the EAW is difficult to achieve as other processes

may dominate.
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Summary and Future Work

In this chapter we make a summary of this thesis and outline possible future work

that stems from our results and the outstanding questions surrounding them. In

Chapter 1 two motivational topics for this research were presented. The discovery of

large amplitude oblique whistler waves in the Earth’s outer radiation belt by STEREO

spacecraft and reported by Cattell et al., 2008 [20] suggests a new mechanism for the

energization of radiation belt electrons. Subsequent efforts were made to model and

understand the space dynamics of these waves; the data interpretation by Kellogg

et al. (2010) and fluid modelling by Yoon (2011) highlighted the importance of

nonlinear processes associated with these waves, namely those of particle trapping

and wave steepening, respectively. These results call for a better understanding of

the basic nonlinear dynamics of oblique whistler waves.

Separately, Mozer et al. (2013) reported on Van Allen Probe satellite observations

of large numbers of spiked signals in the electric field dubbed Time Domain Struc-

tures. It was shown in Artemyev et al. (2014) that these structures were capable of

rapidly accelerating radiation belt electrons, emphasizing their importance to global

belt dynamics. Agapitov et al (2015) presented detailed satellite measurements that

were interpreted as the parametric decay of a whistler wave into an oppositely travel-

ling whistler wave and an electron acoustic wave. They conclude that this parametric

decay process into electron acoustic waves is the source of the fine scale structures re-

ported in Mozer et al. (2013). This observed whistler wave-wave interaction provides

91



CHAPTER 6. — Summary and Future Work

the motivation for investigation into the basic processes of whistler wave coupling

with electrostatic wave modes.

Sufficient background knowledge on the wave modes and plasma physics concepts

relevant to this work was presented in Chapter 2, namely the whistler, ion acoustic,

and electron acoustic wave modes and the ponderomotive force which provides a

coupling mechanism for parametric decay processes. The results of this thesis are all

simulation based and the basics of plasma modelling using Particle-in-Cell codes was

outlined in Chapter 3; the KEMPO1 and UPIC Darwin codes and the simulation

setups used to study whistler waves with each were explained in detail.

Chapter 4 presented results of one-dimensional relativistic particle simulations

with self-consistent electromagnetic fields modelling the dynamics of large amplitude

oblique whistlers. A perturbation was applied to the initial conditions of a cold

plasma to launch a large amplitude wave consistent with the oblique whistler disper-

sion relation. Our results highlighted three major time scales of the wave evolution

associated with nonlinear processes: wave steepening, particle trapping, and particle

acceleration. The wave amplitude scaling law determined for the wave steepening

time is consistent with steepening modelled in Yoon (2011), and is in agreement with

Yoon (2014) that the angle of propagation with respect to the whistler resonance cone

plays a large role in the development of wave steepening. Our results demonstrated

that the occurrence of particle trapping orbits in phase space coincides with the

formation of large electrostatic wave potentials and wave distortion, supporting the

conclusions of Kellogg et al. (2010) and calling attention to the subsequent whistler

wave damping. Large amplitude oblique whistlers were observed to thermalize a cold

Maxwellian distribution of self-consistent particles from ∼ 1 eV to ∼ 100 eV, while

inserting a warm seed population of non-interacting particles at ∼ 100 eV results in

acceleration of particles up to ∼ 20−30 keV. This work could be extended to include
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a more detailed analysis of the trapped particle density profile and polarization of the

field distortion to compare with those predicted by Kellogg et al., 2010. Addition-

ally, performing simulations with the non-interacting test particles distributed such

that most of the particles are nearly resonant with the phase velocity of the wave

may demonstrate that acceleration to MeV energies is possible, but for only a small

portion of an isotropic distribution.

One-dimensional simulations modelling wave-wave interactions of parallel propa-

gating whistlers with electrostatic modes were presented in Chapter 5. A wave consis-

tent with the parallel whistler dispersion was launched by pumping the self-consistent

transverse electric fields with external source terms. We presented results of simu-

lations of the pump wave in three scenarios involving different electrostatic modes:

Langmuir waves, ion acoustic waves, and electron acoustic waves. The whistler wave

was not expected to interact with the Langmuir waves through the ponderomotive

force. However, simulations with a single warm electron species showed the decay

of the pump whistler into a broadband whistler spectrum and the generation of a

beam-like electrostatic mode. Identical wave parameters with a cold electron dis-

tribution revealed the whistler mode couples into the electrostatic field and forms a

spatial beating pattern with the Langmuir branch; the mechanism permitting this

nonlinear coupling to the electrostatic field is not well understood but may be due

to higher order J × B forces. Simulations involving a moving ion species in addi-

tion to electrons provided a path for ponderomotive coupling to the low frequency

undamped ion acoustic mode. We presented simulation results detailing the single,

double, and triple parametric decay of a whistler wave into a backscattered whistler

and ion acoustic wave. The decay paths showed remarkable agreement with a simple

model of parametric decay facilitated by the ponderomotive force. A similar decay

process was expected for simulations involving two electron species at different tem-
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peratures, creating a condition where the electron acoustic mode is lightly damped.

However, simulation results showed a similar coupling to the Langmuir mode instead

of the electron acoustic branch. It is concluded that this dominance of the Langmuir

wave coupling is likely due to the electron acoustic wave still experiencing relatively

large damping compared to the ion acoustic wave in the previous scenario, which

has incoherent thermal modes with wave power comparable to the coherent modes

involved in the parametric decay. We make note that the damping of the electron

acoustic mode may be reduced further by using a relative drift between the hot and

cold populations [48]. Such are the conditions in Agapitov et al. (2015), and given

typical space parameters we suggest that this relative drift may indeed be necessary

to facilitate the coupling of the whistler wave to the electron acoustic branch in the

parametric decay process reported. This leads to the obvious extension to repeat the

simulations designed to observe the parametric decay of a whistler into an electron

acoustic wave but using a relative drift between the hot and cold electron populations;

a parametric decay process in this scenario would possibly model the observation by

Agapitov et al (2015).

94



References

[1] R.A. Helliwell and M.G. Morgan, Proceedings of the IRE 47, 200 (1959).

[2] R.L. Stenzel, J. Geophys. Res. 104, 14379 (1999).

[3] H. Barkhausen, Physikalische Zeitschrift 20, 401 (1919).

[4] T.L. Eckersley, Nature 122, 768, (1928).

[5] T.L. Eckersley, Marconi Rev. 5, 5, (1931).

[6] E.T. Burton adn E.M. Boardman, Proceedings of the IRE 21, 1476 (1933).

[7] T.L. Eckersley, Nature 135, 104, (1935).

[8] L.R.O. Storey, Phil. Trans. Roy. Soc. A 246, 113 (1953).

[9] J.R. Koster and L.R.0. Storey, Nature 175, 36 (1955).

[10] M.G. Morgan and G.M. Allcock, Nature 177, 30 (1956).

[11] J.H. Crary, R.A. Helliwell, and R. F. Chase, J. Geophys. Res. 61, 35 (1956).

[12] D.I. Golden, M. Spasojevic, and U.S. Inan, J. Geophys. Res. 114, A05212 (2009).

[13] Y. Narita, R. Nakamura, W. Baumjohann, K.-H. Glassmeier, U. Motschmann,

B. Giles, W. Magnes, D. Fischer, R.B. Torbert, C.T. Russell, R.J. Strangeway,

J.L. Burch, Y. Nariyuki, S. Saito, and S.P. Gary, Astrophys. J. Lett. 827, L8

(2016).

[14] W.S. Kurth, B.D. Strayer, D.A. Gurnett, and F.L. Scarf, ICARUS 61, 497

(1985).

95



REFERENCES

[15] D.A. Gurnett, T.F. Averkamp, P. Schippers, A.M. Persoon, G.B. Hospodarsky,

J.S. Leisner, W.S. Kurth, G.H. Jones, A.J. Coates, F.J. Crary, Geophys. Res.

Lett. 38, L06102 (2011).

[16] C.F. Kennel and H.E. Petschek, J. Geophys. Res. 71, 1 (1966)

[17] W. Baumjohann, and Rudolf A. Treumann, Basic Space Plasma Physics (Impe-

rial College Press, London, 2012), p. 243-285, Rev. Ed.

[18] Stanford VLF Group, Whistler-mode Wave Studies at Palmer Station, Antarc-

tica, http://vlf.stanford.edu/research/whistler-mode-wave-studies-

palmer-station-antarctica, Accessed: 08/04/2017.

[19] P.H. Yoon, Geophys. Res. Lett. 38, L12105 (2011)

[20] C.A. Cattell, J.R. Wygant, K. Goetz, K. Kersten, P.J. Kellogg, T. von

Rosenvinge, S.D. Bale, I. Roth, M. Temerin, M.K. Hudson, R.A. Mewaldt, M.

Wiedenbeck, M. Maksimovic, R. Ergun, M. Acuna, and C.T. Russell, Geophys.

Res. Lett. 35, L01105 (2008).

[21] P.J. Kellogg, C.A. Cattell, K. Goetz, S.J. Monson, and L.B. Wilson III, J. Geo-

phys. Res. 116, A09224 (2011).

[22] L.B. Wilson III, C.A. Cattell, P.J. Kellogg, J.R. Wygant, K. Goetz, A. Breneman,

and K. Kersten, Geophys. Res. Lett. 38, L17107 (2011).

[23] P.J. Kellogg, C.A. Cattell, K. Goetz, S.J. Monson, and L.B. Wilson III, Geophys.

Res. Lett. 37, L20106 (2010).

[24] J. Bortnik, R.M. Thorne, and U.S. Inan, Geophys. Res. Lett. 35, L21102 (2008).

[25] X. Tao, J. Bortnik, Nonlin. Processes Geophys. 17, 599 (2010).

96

http://vlf.stanford.edu/research/whistler-mode-wave-studies-palmer-station-antarctica
http://vlf.stanford.edu/research/whistler-mode-wave-studies-palmer-station-antarctica


REFERENCES

[26] F.S. Mozer, S.D. Bale, J.W. Bonnell, C.C. Chaston, I. Roth, and J. Wygant,

Phys. Rev. Lett. 111, 235002 (2013).

[27] A.V. Artemyev, O.V. Agapitov, F. Mozer, and V. Krasnoselskikh, Geophys. Res.

Lett. 41, 5734 (2014).

[28] O.V. Agapitov, V. Krasnoselskikh, F.S. Mozer, A.V. Artemyev, and A.S. Volok-

itin, Geophys. Res. Lett. 42, 3715 (2015).

[29] D.A. Gurnett, and A. Bhattacharjee, Introduction to Plasma Physics: With

Space and Laboratory Applications (Cambridge University Press, 2005), p. 84-90.

[30] F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd Ed.

(Plenum Press, New York, 1984), p. 79-147, 305-317, 2nd Ed.

[31] D.R. Nicholson, Introduction to Plasma Theory (John Wiley and Sons, New

York, 1983), p. 31-33.

[32] E.V. Appleton, U.R.S.I. Wash. Radio Conf. (1927).

[33] D.R. Hartree, Math. Proc. Camb. Phil. Soc. 27, 143 (1931).

[34] M.T. Rietveld, P.N. Collis, and J.P. St. Maurice, J. Geophys. Res. 96, A11

(1991).

[35] J.E. Wahlund, P. Louarn, T. Chust, H. de Feraudy, and A. Roux, Geophys. Res.

Lett. 21, 17 (1994).

[36] W.S. Kurth, D.A. Gurnett, and F.L. Scarf, J. Geophys. Res. 84, A7 (1979).

[37] R.R. Anderson, G.K. Parks, T.E. Eastman, D.A. Gurnett, and L.A. Frank, J.

Geophys. Res. 86, A6 (1981).

97



REFERENCES

[38] T. Neubert, Physica Scripta 26, 239 (1982)

[39] T.H. Stix, The Theory of Plasma Waves (McGraw-Hill Book Co., New York,

1962), p. 132.

[40] A.Y. Wong, R.W. Motley, and N. D’Angelo, Phys. Rev. 133, A436 (1964).

[41] B.D. Fried and R.W. Gould, Phys. Fluids 4, 139 (1961).

[42] K. Watanabe and T. Taniuti, J. Phys. Soc. Japan 43, 1819 (1977).

[43] M.Y. Yu and P.K. Shukla, J. Plasma Phys. 29, 409 (1983)

[44] M.F. Thomsen, H.C. Barr, S.P. Gary, W.C. Feldman, and T.E. Cole, J. Geophys.

Res. 88, 3035 (1983).

[45] R.L. Tokar and S.P. Gary, Geophys. Res. Lett. 11, 1180 (1984).

[46] C.S. Lin, J.L. Burch, S.D. Shawhan, and D.A. Gurnett, J. Geophys. Res. 89,

925 (1984).

[47] S.P. Gary and R.L. Tokar, Phys. Fluids 28 2439 (1985).

[48] S.P. Gary, Phys. Fluids 30, 2745 (1987).

[49] M.A. Hellberg, R.L. Mace, R.J. Armstrong, and G. Karlstad, J. Plasma Phys.

64, 433 (2000).

[50] M. Berthomier, R. Pottelette, M. Malingre, Y. Khotyaintsev, Phys. Plasmas 7,

2987 (2000).

[51] C.E. Max, Phys. Fluids 19, 74 (1976).

[52] G.J. Morales, Y.C. Lee, Phys. Rev. Lett. 33, 1016 (1974).

98



REFERENCES

[53] P.M. Bellan, K. Stasiewicz, Phys. Rev. Lett. 80, 3523 (1998).

[54] D.J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, New Jersey, 1999),

Inside Cover Vector Identities, 3rd. Ed.

[55] Y. Omura and H. Matsumoto, KEMPO1: Technical Guide to One-Dimensional

Electromagnetic Particle Code, Computer Space Plasma Physics: Simulation

Techniques and Software (Terra Scientific Pub. Co., Tokyo, 1993), p. 21-65.

[56] V.K. Decyk, Computer Phys. Comm. 177, 95 (2007).

[57] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation

(McGraw-Hill Book Co., New York, 1985), p. 61-63.

[58] V.K. Decyk, Description of Spectral Particle-in-Cell Codes from the UPIC

Framework, https://picksc.idre.ucla.edu/wp-content/uploads/2015/05/

UPICModels.pdf, Accessed: 08/04/2017.

[59] Y. Omura, Proc. ISSS-7, March 26-31, 2005.

[60] K.S. Yee, IEEE Transactions on Antennas and Propagation 14, 302 (1966).

[61] [Original German Version] R. Courant, K. Friedrichs, H. Lewy, Mathematische

Annalen 100, 32 (1928), [English Translation] R. Courant, K. Friedrichs, H.

Lewy, IBM J. Res. Develop. 11, 215 (1967).

[62] P.J. Palmadesso, Phys. Fluids 15, 2006 (1972).

[63] P.H. Yoon, V.S. Pandey, and D.-H. Lee, J. Geophys. Res. Space Phys. 119, 1851

(2014).

99

https://picksc.idre.ucla.edu/wp-content/uploads/2015/05/UPICModels.pdf
https://picksc.idre.ucla.edu/wp-content/uploads/2015/05/UPICModels.pdf

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Background and Motivation
	Whistler Waves
	Large Amplitude Whistlers
	Time Domain Structures and Whistler Decay

	Objectives
	Thesis Outline

	Theory
	Whistler Waves
	Ion Acoustic Waves
	Electron Acoustic Waves
	Ponderomotive Force
	Parametric Decay
	Harmonic Oscillator Coupling
	Plasma Wave Coupling


	Simulation Models and Setup
	Plasma Simulation
	KEMPO1
	Code Structure
	Simulation Setup

	UPIC Darwin Code
	Code Structure
	Simulation Setup


	Oblique Whistler Wave Dynamics
	Wave Evolution
	Nonlinear Wave-Particle Interactions
	Wave Breaking
	Particle Trapping and Wave Damping
	Particle Energization

	Discussion

	Nonlinear Wave Interactions
	Langmuir Wave Coupling
	Ion Acoustic Wave Coupling
	Single, Double, and Triple Decay
	Growth Rates and Energy Transfer

	Electron Acoustic Coupling
	Discussion

	Summary and Future Work
	References

