

A Modular Numerical Model for

Stirling Engines and Single-Phase Thermodynamic Machines

by

Steven Mark William Middleton

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

University of Alberta

© Steven Mark William Middleton, 2021

ii

ABSTRACT

A numerical model and software interface for the design and modelling of Stirling engines was

presented. This model was developed to suit low-temperature Stirling engines, those that run at

source temperature of less than 150 °C and run at speeds where temporarily developed losses

become significant. The work had three objectives. The first was to create a combined mechanical

and thermodynamic model to solve dynamic problems. The second objective was to provide

graphical feedback during creation of the geometry and reviewing of a solution. The third objective

was to test the model against experimental data taken from a low-temperature gamma-type engine

and compare the model against another numerical code.

The resulting model, called the modular single-phase model or MSPM, incorporated a uniform

pressure assumption which was used to solve the instantaneous flow rates in a one-dimensional

network of pipes. The flow network is generated automatically from arbitrary arrangements of

cylindrical or annular extrusions created by the user, within which the solid heat conduction is

solved in 2-dimensions. Angular position dependent deformations are driven by the mechanical

system, which responded to the forces generated by the gas system. This scheme transferred

impulses from the gas network after short increments, which then defined the dynamics next

increment. To capture flow losses pressure drops are approximated from gas velocities and the

modified pressures are used to calculate the mechanism response.

The software itself presents the user with graphical feedback like that found in CAD software.

This makes it possible to generate informative animations of the moving boundaries of an engine.

These animations carry forward into the output of the code, presenting temperature, pressure,

turbulence, heat flow, flow direction and pressure drop in spatially relevant positions on the virtual

engine cross-section. The user can also place sensors, reuse previous simulation data, and run batch

tests and optimize engine geometry using the software.

When the uncalibrated model was compared against experimental results featuring an in-lab

engine running at 0.56 to 2.26 Hz, this numerical code developed a maximum discrepancy of

43.1% with an average deviation from the experimental results of 30.6%. An exploratory

calibration of the effects of compression was conducted drawing on conclusions from the initial

iii

tests, resulting in an overall improvement of the accuracy to an average of 21.9%. The final

discrepancy is largely systematic, possibly correctable with reasonable adjustments to the

automatically generated convection and friction terms. A sensitivity study of the properties related

to heat transfer and friction was presented at two different speeds, the results indicated that the

most substantial and predictable effector of power was the convection coefficient. Flow friction

became a larger contributed at higher speeds. The code was then compared against SAGE, the

numerical code of choice, with 5 tests at 16.7 Hz and 50 bar and with source temperatures ranging

from 150 °C to 750 °C. Over these tests MSPM produced a maximum error of 59.1% and an

average deviation of 33.5%. When compared against a second patch of in-lab produced SAGE

results at slow speeds the two models diverged, it was concluded that the two models featured very

different flow loss characteristics at low speeds among a variety of other differences. In a final

experiment the optimal design of a beta type Stirling engine was obtained using the geometrical

optimization tool within MSPM the results and design process of the beta type engine was

presented.

iv

PREFACE

This thesis is an original work by Steven Middleton. Aspects of this research have been

published in the following conference publications:

Middleton, S. and Nobes, D.S. (2018) “Dynamic Modelling of Low Temperature Stirling

Engines”, 18th ISEC International Stirling Engine Conference, Tainan, Taiwan, Sept 19-21, 2018

Middleton, S. and Nobes, D.S. (2019) “Modular one-dimensional simulation tool for oscillating

flow and thermal networks in Stirling engines”, 4th Thermal and Fluids Engineering

Conference, Las Vegas, United States of America, April 14-17, 2019

Middleton, S. and Nobes, D.S. (2021) “Approximations for use in cycling thermodynamic

systems: Applications for Stirling engines”, Proceedings of the CSME International Congress,

Charlottetown, Canada, June 27-30, 2021

The author also contributed to the following publications that did not contribute directly to this

Thesis:

Stumpf, C.J.A, Middleton, S. and Nobes, D.S. (2017) "Heat Transfer in Oscillating Fluid Flow

Through Parallel Flat Plate Channel Heat Exchangers", Okanagan Fluid Dynamics Meeting,

Kelowna, British Columbia, Canada, Aug 22-23, 2017

Nicol-Seto, M., Michaud, J. P., Middleton, S. and Nobes, D.S., “Non-Traditional Drive Mechanism

Designs for the Improvement of Heat Transfer in Low Temperature Differential Stirling Engines,”

18th ISEC International Stirling Engine Conference, Tainan, Taiwan, Sept 19-21, 2018

v

ACKNOWLEDGMENTS

The author would like to acknowledge the assistance of his supervisor,

 Dr. David S. Nobes

Lab mates (Team Stirling),

 Connor Speer

 Calynn Stumpf

 Jason Michaud

 David Miller

 Michael Nicol-Seto

 Jackson Kutzner

 Linda Hasanovich

 Alex Hunt

 Gabriel Salata

 Matthias Lottmann

as well as co-op students and others that helped inspire this project through to success.

The author would like to thank his wife, Kaybrie, who endured the many hours of programming

and inevitable despair this project entailed.

The author would like to acknowledge the financial support for this project from:

 Natural Sciences and Engineering Research Council (NSERC) of Canada,

 Alberta Innovates Energy and Environmental Solutions

 Terrapin Geothermics, and

 Future Energy Systems (FES).

vi

TABLE OF CONTENTS

Abstract .. ii

Preface ... iv

Acknowledgments .. v

Table of Contents .. vi

List of Tables ... xiv

List of Figures ... xvi

List of Symbols ... xxi

 Introduction .. 1

1.1 Project Background .. 1

1.1.1 General Background .. 1

1.1.2 Research Activities in DTECL .. 2

1.1.3 Project Goals ... 3

1.2 Stirling Engines .. 4

1.2.1 History ... 4

1.2.2 Stirling Engine Principles.. 4

1.2.3 The Real Stirling Cycle ... 9

1.2.4 What is important for low-temperature engine? ... 14

1.2.5 Summary of Stirling Engines .. 21

1.3 Modeling Techniques ... 21

1.3.1 1st Order Models .. 22

1.3.2 2nd Order Models ... 27

1.3.3 3rd Order Models ... 28

1.3.4 Higher-Order Models .. 30

vii

1.4 Chapter Conclusions ... 31

1.5 Thesis Goals ... 31

1.6 Thesis Outline ... 32

 System Development and Architecture .. 33

2.1 Development ... 33

2.1.1 The Gas Medium ... 33

2.1.2 Uniform Pressure... 33

2.1.3 The Solid Medium ... 34

2.1.4 The Mechanical System .. 34

2.1.5 Gas and Mechanism Relationship ... 35

2.1.6 Axial Symmetry .. 36

2.1.7 First Elements .. 36

2.1.8 Further Abstraction ... 37

2.1.9 The Name .. 37

2.1.10 Final Structure ... 38

2.2 Finite Elements ... 39

2.2.1 Nodes ... 39

2.2.2 Faces .. 41

2.2.3 Node Contacts ... 45

2.2.4 Pressure Contacts .. 46

2.2.5 Shear Contacts ... 46

2.3 Interactable Elements ... 46

2.3.1 Groups ... 47

2.3.2 Bodies .. 47

viii

2.3.3 Matrixes ... 49

2.3.4 Connections ... 55

2.3.5 Bridges .. 56

2.3.6 Leaks ... 57

2.3.7 Non-Connection .. 57

2.3.8 Custom Minor Losses.. 57

2.3.9 Frames ... 58

2.3.10 Mechanism... 58

2.4 Conclusion .. 61

 Core Mathematical Processes ... 62

3.1 Terminology ... 62

3.2 General Heat Transfer .. 62

3.2.1 Thermal Conduction Within Solids... 62

3.2.2 Thermal Conduction Within Gases ... 63

3.2.3 Thermal Conduction Between Solids and Gases .. 64

3.2.4 Shearing Conduction Enhancement .. 65

3.3 Determining Flow Rates ... 66

3.3.1 Assumptions .. 66

3.3.2 Deriving the Systems of Equations ... 67

3.3.3 Verifying as a Polytropic Process ... 74

3.3.4 Considering Loops .. 75

3.3.5 Considering Flow Losses .. 78

3.3.6 Smooth Property Changes ... 79

3.4 Turbulence .. 81

ix

3.4.1 Open Channels Flows.. 81

3.4.2 Matrix Flows ... 82

3.4.3 Variable Volume Spaces ... 83

3.5 Chapter Conclusions ... 84

 Simulation .. 85

4.1 Discretization and Conditioning ... 85

4.1.1 Discretize all Components and Collect Discrete Elements 85

4.1.2 Decimate Nodes Based on Size ... 86

4.1.3 Assign Minor Loss Coefficients .. 87

4.1.4 Decimate Triads .. 87

4.1.5 Assign Indexes to all Elements ... 88

4.1.6 Vectorize Node and Face Properties ... 88

4.1.7 Determine Maximum Solid-Conduction Timestep ... 88

4.1.8 Determine the Conduction and Transportation Vectors 88

4.1.9 Establish Gas Regions ... 90

4.1.10 Find Loops within each Region ... 91

4.1.11 Define Pressure Loss Matrix ... 93

4.1.12 Vectorize Node Faces .. 95

4.2 Simulation Setup... 95

4.2.1 Apply Snapshot ... 95

4.2.2 Get Simulation Parameters from the User... 96

4.2.3 Pre-allocate Memory for Results .. 96

4.2.4 Run Warm-Up Phase ... 97

4.3 Gas Solver Loop ... 97

x

4.3.1 Calculate Dynamic Properties ... 97

4.3.2 Calculate Flow Independent Flux’s... 98

4.3.3 Calculate Explicit Mass Flux’s ... 98

4.3.4 Constrain Time Step Pre-Mass Flux ... 98

4.3.5 Calculate Implicit Mass Flux’s ... 98

4.3.6 Constrain Time Step Post-Mass Flux .. 102

4.3.7 Update Properties .. 102

4.3.8 Calculate Turbulence Flux’s ... 102

4.3.9 Record Statistics .. 102

4.4 Mechanical Solver Loop ... 103

4.4.1 Calculate Piston Forces ... 103

4.4.2 Calculate Driveshaft Forces .. 103

4.4.3 Calculate Acceleration .. 104

4.4.4 Calculate Next Velocity Target ... 104

4.5 Conclusion .. 104

 Advanced Features ... 106

5.1 Solid Temperature Distribution Acceleration ... 106

5.2 Progressive Refinement .. 109

5.3 Geometrical Optimization .. 111

5.4 Conclusions .. 111

 Model Usage .. 113

6.1 Constructing a Model ... 113

6.1.1 Display Window .. 114

6.1.2 Left Toolbar – Create, Destroy and Select .. 115

xi

6.1.3 Bottom Toolbar – View options .. 124

6.1.4 Top Toolbar – Save / Load options ... 125

6.1.5 Top Toolbar – Geometrical Optimizer, Relation Toggle & Dropdown mode .. 125

6.1.6 Right Toolbar – Property dropdown and Simulation options 126

6.1.7 Start the Simulation ... 128

6.2 Discretization .. 129

6.2.1 Spatial Discretization .. 130

6.2.2 Temporal Discretization .. 132

6.3 Simulation Tools... 133

6.3.1 Snapshot .. 133

6.3.2 Test Set Running ... 133

6.3.3 Geometrical Optimization ... 133

6.4 Model Outputs .. 134

6.4.1 Engine Assessment .. 134

6.5 Chapter Conclusions ... 141

 Validation ... 143

7.1 Theoretical Validations ... 143

7.1.1 Steady-State Solid Heat Conduction ... 143

7.1.2 Transient Solid Heat Conduction .. 144

7.1.3 Adiabatic Compression/Expansion of Gas .. 147

7.1.4 Isothermal Compression/Expansion of Gas .. 148

7.2 Comparison with Experiments ... 149

7.2.1 Constant Speed Steady-State Experiments ... 151

7.2.2 In Cycle Speed Variations ... 158

xii

7.2.3 Sensitivity Studies ... 161

7.3 Comparison with SAGE ... 162

7.3.1 In High-Temperature, High Speed Context .. 162

7.3.2 In Low-Temperature, Low-Speed Context ... 169

7.4 Optimization Studies .. 171

 Conclusions .. 175

8.1 Conclusions .. 175

8.1.1 Create a Combined Mechanical and Thermodynamic Model for Low-Temperature

Stirling Engines ... 175

8.1.2 Ensure the model is User-Friendly and Intuitive .. 175

8.1.3 Validate the Model against Experimental and a well Established Numerical Model

 176

8.2 Sources of Error .. 177

8.2.1 Decoupling of Flow Friction and Volumetric Flow Rate 177

8.2.2 Constant Properties ... 177

8.2.3 Ideal Gas Representation of the Fill Gas ... 177

8.2.4 Radiation Heat Transfer is Ignored ... 177

8.2.5 No Contact Resistance .. 178

8.2.6 Nusselt Number is Node Based, not Surface Based.. 178

8.2.7 Constant Friction Coefficients in Mechanism ... 178

8.2.8 One Dimensional Flow Assumption ... 178

8.2.9 Minor Loss Coefficients are Naively Applied .. 179

8.2.10 Fluid Inertia and Acoustics, are Ignored ... 179

8.2.11 Steady-State Convergence ... 180

8.2.12 Calculation Errors .. 180

xiii

8.3 Future Opportunities ... 180

8.3.1 Real Gases ... 180

8.3.2 Interface for Simulating Control System .. 181

8.3.3 Multi-Phase simulations .. 181

8.3.4 Source/Sink Simulation ... 181

8.3.5 Material Distortion .. 181

8.3.6 Improved modelling of Entrance Turbulence and Swirl in Open Volumes 182

8.3.7 String or Text File Based Test Set Run Files .. 182

8.3.8 Modelling of explicit faces .. 182

8.3.9 Improvements to Geometry Optimizer ... 182

8.3.10 Parallelization .. 183

8.3.11 Other Programming Languages ... 183

References…………………………………………………………………………………...184

xiv

LIST OF TABLES

Table 2.1: Discretization specific properties for common regenerator types. 54

Table 4.1: Simulation Parameters and Description .. 96

Table 7.1: Steady-state Heat Conduction Validation: Material Properties 144

Table 7.2: Experimental properties of Transient heat conduction test 145

Table 7.3: EP-1 test sets ... 152

Table 7.4: Velocity variation experiment. “B” is a reference to the “Box” / square wave. “0”

refers to the standard / sinusoidal trial (Elliptical factor of 0). ... 159

Table 7.5: Sensitivity Studies (results are colored based on absolute value, -50% uses

backwards difference, +50% uses forward difference, ±2% uses central difference for slope

calculation) .. 161

Table 7.6: Alpha engine geometrical properties for SAGE comparison [44] 163

Table 7.7: Alpha engine test and specific geometrical properties for SAGE comparison [44]

... 163

Table 7.8: Output power comparison between MSP and SAGE simulations at 16.7 Hz 164

Table 7.9: Unique properties for low-speed/low-temperature alpha engine SAGE comparisons

... 169

Table 7.10: Test results for low-speed/low-temperature alpha engine SAGE comparisons .. 169

Table 7.11 Test properties for Beta-Engine Optimization ... 172

Table 7.12 Geometrical properties for Beta-Engine Optimization, Optimized for Maximum

Power vs Gas Volume (1 Hz, filled with air) .. 173

Table 7.13 Test properties for Beta-Engine Optimization (listed component volumes are for

available gas volume only, heat exchangers have a surface are to volume ratio of about 1.52

m2/Litre, 1 Hz, 80% efficient mechanism, wire diameter of 0.1 mm in regenerator, HX volume is

for heater and cooler only, with air if not otherwise indicated) .. 174

xv

Table 8.1: User inputs and correlations for various properties based on regenerator type.

Correlations from (Gedeon, SAGE users manual [35]). ... 208

Table 8.2: User inputs and correlations for various properties based on heat exchanger type: Fin

Enhanced Surface, Fin Connected Channels. Correlations from [35] unless otherwise indicated.

... 211

Table 8.3: User inputs and correlations for various properties based on heat exchanger type:

Tube and Plate Heat Exchangers. ... 212

Table 8.4: User inputs and correlations for various properties based on heat exchanger type:

Individually Finned Tube Heat Exchangers. .. 213

Table 8.5: User inputs and correlations for various properties based on heat exchanger type:

Bare Tube Banks (internal). Correlations from [35] unless otherwise indicated. 214

xvi

LIST OF FIGURES

Figure 1.1: Fundamental components of Stirling engines: (top) alpha type engine, (bottom)

gamma/beta type engine ... 5

Figure 1.2: The 4 phases of the ideal Stirling engine cycle: arrows represent a motion that is

occurring during the phase. Components are defined in Figure 1.1. .. 6

Figure 1.3: Ideal Stirling engine cycle in a pressure-volume diagram form 6

Figure 1.4: Illustration of the isothermal idealization .. 8

Figure 1.5: Illustration of the adiabatic idealization .. 8

Figure 1.6: Pressure-volume diagram of an engine with a sinusoidal volume variation compared

against one with idealized motions ... 10

Figure 1.7: Effect of thermal losses on the pressure-volume (indicator) diagram. 11

Figure 1.8: Thermal energy pathways in a Stirling engine .. 11

Figure 1.9: Thermal energy pathway through a heat exchanger .. 12

Figure 1.10: Thermodynamic consequences for of low temperature (ratio) engines............... 14

Figure 2.1: Gas/solid system and mechanical system interaction loop 35

Figure 2.2: A body and member connections. In cylindrical elements, the inside vertical

connection may be reduced to a single line at the axis. .. 36

Figure 2.3: A flow chart of the system architecture ... 38

Figure 2.4: Geometrical cases and resulting friction length .. 42

Figure 2.5: Shear and velocity factor input variables... 45

Figure 2.6: Discretization modes for body ... 48

Figure 2.7: How elements are discretized in the fin enhanced surface type heat exchanger ... 54

Figure 2.8: How elements are discretized in the fin connected channels and finned tube type

heat exchanger .. 55

Figure 2.9: How elements are discretized in the tubes bank internal type heat exchanger 55

xvii

Figure 2.10: Permutations of the bridge component definition (1) two horizontal (disk) faces

are stacked along a central axis (2) two vertical (annular shell) faces are aligned at some offset

from the origin (3) two horizontal faces are stacked with axis offset by a specified amount (4) a

horizontal face is perpendicularly mated up against a vertical face with the axis at a prescribed

offset from the origin of the vertically aligned face. .. 56

Figure 3.1: Illustration of shear driven mixing .. 65

Figure 3.2: Examples of common loops found in Stirling engines. ... 75

Figure 3.3: Angular locations of 𝑽𝒐 through 𝑽𝟑 ... 80

Figure 4.1: Process structure of the simulation loop, elements inside of the box are repeated

until the simulation has timed out or converged. .. 85

Figure 4.2: Flow of information during discretization ... 86

Figure 4.3: Example of a triad elimination action: faces are selected based on their relative size,

the remaining 2 faces are then modified to compensate. .. 87

Figure 4.4: Loop finding algorithm illustration. (dashed) face that has an area of zero at any

point of the cycle. (red) eliminated face. (blue node) starting point for algorithm. (green)

discovered loop. .. 91

Figure 4.5: Loop data structure and graphical representation .. 92

Figure 4.6: Determining the independent faces (dashed) face that has an area of zero at any

point of the cycle. (red) eliminated face. (blue node) visited node. (green) set of independent

equations obtained at iteration step ... 94

Figure 5.1: Comparison of accelerated vs natural convergence of Stirling engine performance

of the EP-1 model (defined in Appendix C) ... 109

Figure 5.2: Computational Time vs Number of Gas Nodes, .. 110

Figure 6.1: The main MSPM graphical user interface. .. 113

Figure 6.2: The main model display window ... 114

Figure 6.3: Create, Destroy and Select Toolbar ... 115

Figure 6.4: Examples of Bodies Being Used to Construct Geometry 116

xviii

Figure 6.5: Example of an engine containing two groups, one for the main engine assembly and

a second for a power piston offset from the main axis. .. 117

Figure 6.6: Example of a usage of the bridge component .. 118

Figure 6.7: Example indicator diagram from PV Output sensor ... 121

Figure 6.8: View options .. 124

Figure 6.9: Save / Load options ... 125

Figure 6.10: Geometrical Optimizer, Relation Toggle & Dropdown mode 125

Figure 6.11: Property dropdown and Simulation options .. 126

Figure 6.12: Properties of Bodies including location of Change Matrix where Matrix

components are initialized .. 127

Figure 6.13: Run Interface ... 128

Figure 6.14: A plot and definition of the pressure-volume (PV) diagram 134

Figure 6.15: Generic Heat Engine Model .. 136

Figure 6.16: Sensor Usage Examples as shown in the GUI ... 137

Figure 6.17: Output of sensor (a) point sensor (b) line sensor, locations shown on Figure 6.16

... 138

Figure 6.18: An example temperature heatmap snapped during an animation of the modelled

Stirling engine ... 139

Figure 6.19: An example conduction heatmap snapped during an animation of the modelled

Stirling engine ... 140

Figure 6.20: 4 frames of an instantaneous flow velocity plot snapped during an animation of the

modelled Stirling engine (running at 1 Hz) .. 141

Figure 7.1: Steady-state temperature profile obtained via heat conduction through a layered

annular conductor compared against analytical predictions ... 144

Figure 7.2: Discretization scheme for transient heat conduction test 145

xix

Figure 7.3: Analytically obtained results vs simulated temperature with time measured at the

center of test block. ... 147

Figure 7.4: Analytically obtained results compared against simulation results in the case of

adiabatic compression/expansion.. 148

Figure 7.5: Analytically obtained results compared against simulation results in the case of

isothermal compression/expansion ... 149

Figure 7.6: EPM engine body geometry as shown in graphical user interface of software ... 151

Figure 7.7: Indicator diagram comparison between EPM-1 experiments and MSPM. (a) DP &

PP: Standard at 1.1055 Hz (b) DP: Square Wave Elliptical, PP: Standard at 0.8818 Hz (c) DP &

PP: Square Wave Elliptical at 1.1992 Hz ... 154

Figure 7.8: Non-dimensional power for each of the 12 matching experiments 155

Figure 7.9: MSPM vs experimental power piston indicated work ... 156

Figure 7.10: MSPM displacer piston indicated work, experimental version not collected ... 157

Figure 7.11: Indicator diagram comparison between EPM-1 experiments and simulations with

reduction in stroke by 15.7% and increase in dead volume equivalent to 7.8% of stroke. (test:

Standard-Standard at 1.1055 Hz shown) .. 158

Figure 7.12: Instantaneous angular velocity for one cycle for both the EPM-1 physical tests and

MSPM simulations.. 160

Figure 7.13: Velocity ratio results for experiment and simulation for 4 different velocities . 160

Figure 14: Annotated alpha engine for Phase 135°, Source 150 °C test as shown in MSPM 162

Figure 7.15: Pressure – volume diagram comparison between MSPM and SAGE, data extracted

from: [44] .. 168

Figure 7.16: Pressure – volume diagram comparison between MSPM and SAGE for low-speed,

low-temperature, low-pressure case.. 171

Figure 7.17: Depiction of beta-layout engine to be optimized. Large volume beneath engine

represents the crankcase, the additional bodies jutting out of the engine are added to prevent the

xx

optimizer from making certain features too small leading to instabilities in the solution. (these

bodies will overlap before the gas body becomes too small) ... 172

Figure 8.1. Slider-crank Mechanism: dimensions, masses, and gravity 191

Figure 8.2. Free Body Diagram of Crank Arm .. 192

Figure 8.3. Free Body Diagram of Connecting Rod .. 193

Figure 8.4. Free Body Diagram of Piston Head ... 194

Figure 8.5: Rhombic Drive Mechanism: dimensions, masses, and gravity 197

Figure 8.6. Free Body Diagram of Crank Arm .. 199

xxi

LIST OF SYMBOLS

Roman Alphabet Variables

Symbol Description Unit

𝐴 Area m2

𝐶 Conduction coefficient W / K

𝑐 Constant used in calculation Various

𝐶𝐷 Constant of turbulent dissipation. In tubes = 0.08. -

𝑐𝑝 Specific heat under constant pressure. J / kg / K

𝑐𝑇 Heat capacity of solid J / kg / K

𝑐𝑣 Specific heat under constant volume. J / kg / K

𝑑 Diameter m

𝑑ℎ
Hydraulic Diameter in the volume element =
4𝑉 𝑆𝑠𝑜𝑙𝑖𝑑⁄ , as a face element = 4𝐴𝑓𝑐/𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑓𝑐

M

𝐸̇𝑒𝑥𝑡

Power, entering a space, derived from a source that

is assumed to be not strongly connected to the

upcoming change in velocity, such as conduction

or compression.

W

𝐸̇𝑓𝑙𝑜𝑤

Power, entering a region from a different region.

Based on energy required to push gas into a space

of a given pressure.

W

𝐸̇𝑘𝑖𝑛, 𝐸̇𝑝𝑜𝑡, 𝐸̇𝑖𝑛𝑡 Kinetic, Potential, Internal changes in energy. W

𝐸̇𝑠ℎ𝑎𝑓𝑡
Power as measured at the output drive shaft of the

engine.
W

𝑓 Frequency Hz

𝑓(…) Function of … Various

𝐹𝑠ℎ𝑒𝑎𝑟 , 𝐹𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
Coefficient on angular speed producing

instantaneous linear velocity. For shearing rate and

linear velocity of face respectively.

m / rad

𝑔 Gravitational constant = 9.81 𝑚 𝑠2⁄ m / s

ℎ Convection coefficient. W / m2 / K

𝐼 Moment of Inertia kg m2

𝑘 Thermal conductivity. W / m / K

𝐾 Minor loss coefficient -

𝐿, 𝑙 Length, linear or characteristic. m

𝑚 Mass. kg

𝑚̇ Mass change or mass exchange. kg / s

𝑁𝑓 Darcy Friction factor -

𝑁𝐹𝑜 Fourier Number = 𝛼𝑡. 𝛿 Δ𝑥2⁄ -

𝑁𝑘 Streamwise thermal conductivity factor. -

𝑁𝑁𝑢 Nusselt number = 𝐷ℎ. ℎ 𝑘⁄ -

𝑁𝑃𝑒 Pechlet Number = 𝑁𝑅𝑒. 𝑁𝑃𝑟 -

xxii

𝑁𝑅𝑒 Reynolds number =𝑈. 𝐷ℎ. 𝜌 𝜇⁄ -

𝑁𝑅𝑒𝑙𝑎𝑚𝑖𝑛𝑎𝑟
Upper limit Reynold’s number for a flow to be

considered laminar. = 1,700
-

𝑁𝑉𝑎 Valensi number = 𝜌𝜔𝑑ℎ
2/𝜇 -`

𝑁𝑊𝑒𝑠𝑡
West Number =
(𝑊𝑠 𝑃. 𝑉𝑠𝑤𝑒𝑝𝑡𝑓⁄)(𝑇𝐻 − 𝑇𝐿 𝑇𝐻 − 𝑇𝐿⁄)

-

𝑃 Pressure Pa

𝑄̇
Heat Transfer by conduction and convection into

control volume.
W

𝑅 Thermal resistance K / W

𝑟 Radius m

𝑟𝑐 Compression ratio -

𝑅𝑠𝑝𝑒𝑐 Specific Gas Constant is equal to the = 𝑅𝑢𝑛𝑖𝑣 𝑀⁄ J / kg / K

𝑆 Perimeter of a face or area. m

𝑆̇ Entropy generation rate. -

𝑇 Temperature, Torque applied by engine load K, N m

𝑡 Time, measured from start. s

𝑢, 𝑈 Specific internal energy, total internal energy J / kg

𝑈 Velocity, considered the average over the face. m / s

𝑉 Volume m3

𝑉̇ Change in volume or flow rate. m3 / s

𝑣 Specific volume m3 / kg

𝑊 Work J

𝑤
Weight for interpolation with values between 0 and

1
-

𝑊̇𝑏
Instantaneous energy extracted from moving the

boundary of the control volume.
W

𝑥, 𝑦 Scalar position relative to an origin. m

𝑦

Sign of face, when used with respect to node 𝑖, and

face 𝑖 → 𝑗, the sign is negative because the natural

flow is out of node 𝑖.
-

𝑧 Vertical position m

xxiii

Greek Alphabet Variables

Symbol Description Unit

𝛼𝑡 Thermal diffusivity = 𝑘. 𝜌 𝑐𝑝⁄ m / s

Β Ratio of Areas -

𝛽 Porosity -

𝛿
Small increment in time, often associated with the

length of a timestep.
s

𝜃 Angular Position rad

𝜃𝑖𝑛𝑐
Angular Increment, over which cycle is divided.

Also represents mechanism acceleration lag.
rad

Κ Turbulent kinetic energy J

𝜅 Specific Turbulent kinetic energy J / kg

𝜇 Dynamic Viscosity Pa s

𝜌 Density kg / m3

т

Turbulence weighting factor, value of zero denotes

laminar flow, value of 1 denotes fully turbulent

flow.

-

𝜔 Angular Speed rad / s

xxiv

Subscripts

Symbol Description

0 Measured at start of local period of consideration.

𝑎𝑣𝑔 Arithmetically averaged over the entire cycle.

𝑐, 𝑘, 𝑟, ℎ, 𝑒
Referring to compression, cooler, regenerator, heat and

expansion spaces respectively.

𝑐𝑜𝑛𝑑 Associated with conduction or convection

𝑐𝑦𝑐𝑙𝑒 Accumulated over the entire cycle.

𝑑𝑒𝑎𝑑
Dead volume, Eulerian volume that doesn’t change its

temperature though matter may flow through it.

𝐷𝑃, 𝑃𝑃 Displacer Piston, Power Piston

𝑒𝑓𝑓

Not a true measurement but the composite value after

the initial is modified by an external, not fully modelled

effect.

𝑓𝑐
Associated with a face, an interface between two

spaces.

𝑔𝑒𝑛 Internally produced.

𝐻 High, often referring to source property.

𝑖, 𝑗, 𝑛𝑑 Indices referring to separate spaces or nodes.

𝑖 → 𝑓𝑐, 𝑓𝑐 → 𝑖, 𝑖 → 𝑗, …
Referring to a delta up to an interface from the center

point of a space.

𝑖𝑗 Arithmetic mean of space 𝑖 and space 𝑗 properties.

𝑖𝑛, 𝑜𝑢𝑡 Into system/space, out of system/space.

𝐿 Low, often referring to sink property.

𝑙𝑜𝑎𝑑 Refers to load on drive shaft

𝑙𝑜𝑜𝑝
A property characteristic of a fully connected loop of

cells

𝑛 Iteration subscript, indicating current and next value.

𝑜, 𝑖,𝑚𝑎𝑥,𝑚𝑖𝑛
Outside and Inside, or alternatively farther or closer to

the datum, often used for bounds of a shape.

𝑝𝑒𝑟𝑝, 𝑝𝑎𝑟𝑎, 𝑡ℎ, 𝑔, 𝑓, 𝑡𝑢𝑏𝑒, 𝑠, 𝑐, 𝑤, 𝑤𝑡ℎ

Perpendicular, parallel, fin thickness, gap between

features, fin or fin space, spacing or separation,

channel, feature width, wall thickness.

𝑟𝑒𝑔𝑖𝑜𝑛

Bulk property of a region, which is an interconnected

zone of gas such as a engine volume. Either the sum or

a uniform constant.

𝑠ℎ𝑎𝑓𝑡 Measured at the output shaft of the engine.

𝑠𝑤𝑒𝑝𝑡 Quantity forced to enter heat exchange components

𝑡, 𝑡 + 𝛿 Current time, next time after timestep 𝛿

𝑢𝑝
Quantity is taken from the space upwind of the current

feature.

1

 INTRODUCTION

The following chapter outlines background information and the motivation for investigating

Stirling engines in the low-temperature regime. Relevant literature on the topic of numerical

modeling of Stirling engines will also be discussed. This chapter concludes with a summary of

objectives and thesis structure.

1.1 Project Background

1.1.1 General Background

The research conducted at the University of Alberta’s Dynamic Thermal Energy Conversion

Laboratory (DTECL), is focused, as of the writing of this thesis, on investigating the operation of

Stirling engines with reservoirs at temperatures between 100 °C and ambient (5°C). Such engines

are informally classified as low-temperature difference Stirling engines (LTDSE).

Heat sources that produce such low-grade heat streams in high amounts include: industrial

waste heat and geothermal heat, with geothermal being a focus of DTECL. Waste heat, in a study

by Stricker et al [1], accounts for 70% of the energy used in Canadian industries. With regards to

geothermal energy: Banks and Harris [2] estimated that a total of 6,100 MW of thermal energy

potential in their studied region (an area of Alberta South of Grand Prairie, West of Edmonton and

North West of Calgary). In their study, the highest potential sources (those with source temperature

above 120 °C) provide a total up to 712 MW of electrical power which could be reliably gathered

over 30 years with existing technology [2]. In addition to these findings, the prolific oil and gas

activity throughout Alberta has generated around 170,000 orphaned wells, which represent 37%

of all wells in Alberta [3]. Given these numbers, there is a likelihood that many of these may have

favorable downhole temperatures. With the high upfront cost of geothermal development, this

offers an important jumpstart to both geothermal investigation and capacity installment. Despite

this, no active examples of geothermal power generation exist in Canada, with the first example to

come online in Saskatchewan at the end of 2021 [4].

2

There are relatively few competing technologies designed for such temperature conditions.

Among them is the organic Rankine cycle (ORC), Kalina cycle and thermoelectric technologies

[5]. The ORC, is a relative to the steam Rankine used for high-temperature applications. It has

been very successful globally with 250 MW in electrical generating capacity as of 2015, with

roughly 40% of that capacity generated from geothermal sources [6]. The Kalina cycle has the

potential for higher efficiency [7] than the ORC and improved cycle control. However, it is a

proprietary technology with increased complexity, scale, and corrosion than an ORC [5].

Thermoelectric technologies offer simplicity given their solid-state nature, but often have poor

efficiencies with state of the art thermoelectric technologies achieving only 12% [5] of the Carnot

limit and the vast majority achieving less than 10% of Carnot [8], in the low-temperature regime.

Stirling engines are closed cycle, externally heated, reciprocating engines that utilizes a

chemically inert working gas [9] such as hydrogen, helium or air and are made of common

structural materials such as steel, polymers and aluminium. Stirling engines offer the additional

benefit of being able to increase in power density through pressurization while containing no

valves, pumps or turbines. This attribute makes them relatively simpler on an individual basis than

competing fluid-based technologies. At larger scales, engines would be coupled together, and the

resulting modularity may improve the ability of a generator to provide more consistent power.

1.1.2 Research Activities in DTECL

Stirling engines are a relatively insignificant player in the global low-temperature energy

market. It is the objective of the DTECL group to investigate whether this is a valid oversight.

Research began with Speer [10] who modified an existing mathematical model, the SIMPLE

model by Urieli and Berchowitz [11] to include a host of additional losses. This was used to predict

experimental results from a modified 90-degree gamma engine converted from a high temperature

solar application to work with low temperatures. The conclusions determined that the error of the

SIMPLE model increased substantially at lower temperatures (on the order of 150%) and speeds

and established that low temperature engines required different geometry and additional

investment in loss prevention. Stumpf [12] optimized the operating parameters of a large diameter

low-temperature gamma type engine for maximum shaft power. In doing so established a means

of predicting the optimal compression ratio based on the temperature ratio. Stumpf [12] also found

3

that the West number for well designed low temperature engines rested around 0.21, lower than

the expected value for high temperature engines equal to 0.25, indicating that performance

expectations are different for low-temperature engines. Miller [13] investigated the effect of

flywheel size on transient and steady-state performance. Miller [13] also investigated improvement

avenues for the modified model from Speer [10] with regards to low temperature machines, the

studies conducted showed that the model was less accurate for low-temperature regimes. The

suggestions were to include leakage into the model parameters and include a more sophisticated

mechanical power loss calculation and gas spring losses. Michaud [14] performed an experimental

optimization study on a low temperature alpha type engine. Though the engine failed to run due to

poor heat conduction and higher mechanical losses optimal crank angle was determined by driving

the engine with a motor.

The reason’s why Michaud’s engine [14] failed to run had not been predicted by the SIMPLE

model even after modification by Speer [10], where it still predicted 5 Watts of power. This was a

consistent finding through all the projects that existing models at the time performed poorly when

estimating low-temperature scenarios. For Speer [10] the modelling error increased dramatically

at low-temperature due to ignored losses, losses which Miller [13] identified as gas spring

hysteresis leakage and mechanical losses. Additionally, feedback from colleges indicates that user

error in encoding the engine behaviour into a numerical model is one of the most challenging

aspects of engine modelling using such models.

1.1.3 Project Goals

Given the work that has been completed at the University of Alberta, a new numerical model

was required. The model, would satisfy the following constraints:

1. It will be designed in the low temperature context, including features that are important to

low temperature engines, these will be discussed in further sub-sections.

2. The new model will be validated against experimental data as well as an existing

commercially available numerical code known as SAGE.

3. It will assist in the design of new engines, by allowing the incorporation and assessment of

geometrical features in a physical realizable arrangement. This will be realized through a

4

solid modelling interface. Which, given its visual nature, will be simple and intuitive to

learn, a benefit, given the user-base is regularly changing.

1.2 Stirling Engines

1.2.1 History

The Stirling engine, often called a hot air engine, as stated in the 1816 patent [15] was invented

by Rev. Robert Stirling as an industrial prime mover in the early days of the steam engine. Though

its introduction was proceeded by other air engines by more than a century, the addition of the

economizer, made the Stirling engine a much more efficient invention for the time. This

economizer, now termed a regenerator [16], is an internal thermal mass built to store thermal

energy for a later point in the cycle. In addition to its efficiency, Stirling engines were noted as

safer and quieter but ultimately had poorer economic efficiency [17]. Eventually Steam engines

became more efficient and safer and Stirling engines became low-power domestic engines before

being overshadowed again by electric motors [17]. The Stirling engine remerged as a quiet

alternative to internal combustion for military radio sets by Philips [9], their research forms the

basis of what is known today, but ultimately Philips only made financial success with reverse

Stirling cycle cryo-coolers. Today, Stirling engines quietly power submarines [18], domestic

combined heat and power systems [19], and high efficiency concentrated solar power systems [20].

Further detail into the history of Stirling Engines is discussed by Lloyd [21].

1.2.2 Stirling Engine Principles

Stirling engines fall under the category of heat engines, a group of processes that generate

usable energy from the heat transfer from high to low temperatures. The principles of design and

operation of Stirling engines are described in detail by West [22], as well as through preceding

thesis: [12], [13], [10] and [14]. The principles are also summarized in brief below.

1.2.2.1 Fundamental Components

There are several fundamental components of a Stirling engine, which for the purpose of clarity

are displayed in Figure 1.1 for both an alpha (top) as well as a gamma type (bottom) engine.

5

(1) Expansion Space – The variable volume zone that

when expanding facilitates the bulk heating of the

gas.

(2) Heater – The group of surfaces that facilitate the

heating of the gas. These surfaces may be within the

expansion space or have their own separate zone.

(3) Regenerator – A set of surfaces and material

volume that store a thermal gradient between the

heater and cooler, which preheats and precools the

gas before entering the opposite exchanger.

(4) Cooler – The group of surfaces that facilitate the

cooling of the gas. These surfaces may be within the

compression space or have their own separate zone.

(5) Compression Space – The variable volume zone

that when expanding facilitates the bulk cooling of

the gas.

(6) Power Piston – A piston which separates the engine

and a volume outside of the engine. This piston

changes the volume of the engine and extracts work.

(7) Displacer Piston – A piston which divides the

expansion and compression space. The displacer’s

function is to facilitate the movement of gas

between the expansion and compression space.

Figure 1.1: Fundamental components of Stirling engines: (top) alpha type engine, (bottom)

gamma/beta type engine

1.2.2.2 Ideal Stirling Cycle

All the possible configurations of a Stirling engine are an attempt to mimic the ideal Stirling

cycle, while satisfying specific constrains and minimizing losses within their intended application.

These configurations are reviewed in greater detail by West [22] as well as Martini [23]. A

summary, in the form of a gamma type engine, is also provided here.

6

Figure 1.2: The 4 phases of the ideal Stirling engine cycle: arrows represent a motion

that is occurring during the phase. Components are defined in Figure 1.1.

Figure 1.2 schematically illustrates the 4 motions of the ideal Stirling cycle, which appear also

in Figure 1.3 as well as in following subsections. Figure 1.3 represents a different style of

representation, known in the literature as an indicator diagram. A typical indicator diagram plots

engine pressure against internal volume. The line color represents average engine internal

temperature, the horizontal dashed line represents the average pressure of the buffer space – the

space around the engine which imparts pressure on the backside of the power piston – and the

shaded region represents the total sum of work produced by the engine during a single cycle.

Figure 1.3: Ideal Stirling engine cycle in a pressure-volume diagram form

7

The 4 steps of the ideal Stirling cycle outlined in Figure 1.3 are (1-2) isochoric heat addition,

(2-3) isothermal expansion (3-4) isochoric heat removal and (4-1) isothermal compression. These

steps are described in detail in the following subsections.

1.2.2.2.1. (1-2) Isochoric Heat Addition

The gas is pushed, by the displacer piston, from a mostly cold state to a mostly hot state. During

this stage, heat is added through the heat exchange surfaces into the gas. This produces a net

increase in the pressure of the engine and occurs while the volume is smallest.

1.2.2.2.2. (2-3) Isothermal Expansion

Energy, in the form of boundary work, is extracted by the expansion of the engine volume via

the power piston. Simultaneously, the thermal sources add thermal energy to compensate for

expansion cooling, thus maintaining an isothermal environment.

1.2.2.2.3. (3-4) Isochoric Heat Removal

The gas is pushed, by the displacer piston, from a mostly hot state to a mostly cool state. During

this stage, heat is discharged through the heat exchange surfaces from the gas. This produces a net

decrease in the pressure of the engine and occurs while the volume is largest.

1.2.2.2.4. (4-1) Isothermal Compression

Energy, in the form of boundary work, is added through the compression of the engine volume

via the power piston. Simultaneously, the thermal sources remove energy to compensate for

compression heating, thus maintaining an isothermal environment.

1.2.2.3 Methods of Idealization

Every idealized heat engine follows Carnot’s principle [24], which postulates that a heat engine

is most efficient when all of its processes are reversible. A reversible process indicates that it

happens in a way that requires the same amount of energy to accomplish a task as it does to undo

it. Alternatively, the reversible process does not produce entropy, which is a representation of a

loss of potential. There are two idealized thermal models, isothermal [25] and adiabatic [11], which

enable the ideal Stirling cycle to achieve its maximal efficiency. These two models establish that

heat transfer occurs always over a temperature difference of exactly zero. This negligible

temperature difference is important for heat transfer to be reversible, as entropy generation is

8

proportional to the difference in the inverses of temperatures by the following formula, from

Clausius [26]:

𝑆̇ = 𝑄̇ (
1

𝑇1
−
1

𝑇2
) (1)

where: 𝑆̇: Entropy generation.

 𝑄̇: Thermal energy flux between temperature sources.

 𝑇1, 𝑇2: Temperatures, measured at two positions.

Notably, at higher temperatures a larger temperature difference can be utilized for the same entropy

generation rate due to the asymptotic nature of the inversed temperatures.

The analysis and derivation of these models are described in detail along side the SIMPLE

model [11]. The two models are quite similar; however, the adiabatic model allows the

temperatures to swing in the compression and expansion spaces according to compression heating

and cooling. Conversely, the isothermal model maintains a constant temperature in those spaces.

This is illustrated in Figure 1.4 and Figure 1.5 below.

Figure 1.4: Illustration of the isothermal

idealization

Figure 1.5: Illustration of the adiabatic

idealization

The isothermal idealization shown in Figure 1.4 is discussed by Urieli [11] and introduced by

Gustav Schmidt [25] in 1871. This analytical simplification describes an engine in which the

temperature in all spaces remain static. Thus, all temperature change occurs during the flow

9

through the regenerator and all other heat exchange occurs at a temperature difference of zero.

Notably, the compression and expansion spaces are kept consistently at the temperature of their

respective heat exchangers. Such an engine would exist only in a slowly cycling engine with heated

cylinder spaces and a perfectly effective regenerator.

The adiabatic idealization as shown in Figure 1.5 was introduced by Urieli [11] and serves as

an alternative to the ideal isothermal model. This model implies that heat transfer only occurs

within the boundaries of the heater, cooler and regenerator. The only variation between this and

the isothermal model is that the expansion and cooling spaces can oscillate according to

compression cooling and heating without heat transfer to the walls. The regenerator and heat

exchangers are perfectly effective, and thus all heat transfer pathways are kept at a temperature

difference of zero despite the discontinuities. Urieli argued that this modification was more

realistic for quickly rotating engines.

1.2.3 The Real Stirling Cycle

The following subsections discuss the idea of a realistic Stirling engine, an engine that diverges

from the impractical ideal cycle.

1.2.3.1 Continuous Volume Variations

Real systems use real mechanisms to move the boundaries of the engine. Kinematic engines

utilize slider cranks, yokes, rockers or wobble plates [9], which form motions derived from the

sum of several sinusoids, while the resonant free-piston engines use springs, forming near

sinusoidal motions. This is a divergence from the discontinuous motion prescribed by the ideal

cycle. The effect of these smoothed motions can be seen in Figure 1.6 below, the discontinuous

ideal indicator diagram is shown as the dashed outline.

10

Figure 1.6: Pressure-volume diagram of an engine with a sinusoidal volume variation

compared against one with idealized motions

Note that the area of the curve is smaller than the ideal case for the same volume and

temperature bounds, indicating that the simple act of changing the motion of pistons relative to

pressure extremes results in lower engine power. Commonly, mechanisms are selected to

maximize the lifetime of the engine, with more specialized mechanisms being avoided for reasons

of balancing, design risk or manufacturing complexity [9]. Thus, with Stirling engines there is a

drive to produce a mechanism that is both mechanically efficient, produces good motion to

maximize the indicated power and offers good control over the phasing of the engine pistons. Senft

[27] discusses the mechanical efficiency and design of Stirling engines to great length and

produced a series of efficient low-temperature engines. Hargreaves [9], documents the long history

of Phillip’s Stirling engine technology which includes a variety of tested and successful

mechanical configurations.

1.2.3.2 Imperfect Thermal Control

The ideal Stirling engine cycle is highly temperature-controlled, energy is assumed to transmit

only between the gas and the surfaces designed for heat transfer and it does so perfectly without

the solid surface changing temperature. In real systems, deviations from this ideal thermal

assumption always result in a loss of output energy. The following sub-sections outline how these

deviations come about. Losses in this area affect the indicator diagram by reducing the temperature

bounds, which has the effect of moving the isothermal/adiabatic lines closer together. This is

shown in Figure 1.7.

11

Figure 1.7: Effect of thermal losses on the pressure-volume (indicator) diagram.

1.2.3.2.1. Conduction Loss

Figure 1.8: Thermal energy pathways in a Stirling engine

Conduction losses emerge from the conduction of energy through the solid structures of the

engine, which has several primary forms as shown in Figure 1.8. All of these are facilitated by the

combination of conduction, convection, and radiation. As all conduction between two bodies

12

produces a loss in exergy it is important that conduction is minimized as much as possible, thus

heat transfers beyond the heat exchangers is a drain on the resulting power or efficiency.

1) Direct conduction between the hot and cold sources which simply results in that energy

bypassing the heat engine entirely. [9]

2) Conduction from the hot or cold exchanger through the walls to the surroundings, this

energy never engages in the cycle but is a loss component of engine systems.

3) Conduction from the interior of the engine to the exterior at ambient temperatures, which

represents energy entering the cycle, but exiting partway through the cycle.

4) Conduction supported by motion, often referred to as the shuttle loss [22], is where a moving

element, primarily a piston, carries with it a temperature gradient that is closely exposed to

a wall of a different or offset temperature gradient. Usually, this is reduced by introducing

a very long piston and/or modifying the gap between it and the wall. [22]

5) Heat transfer from the mixing of two gas streams of different temperatures. This happens

when gas from two separate spaces by-passes the heat exchangers, through a seal, or the

annular gap. This loss reduces the amount of heat transfer, due to a diminishing of total

flow-through, at the same time it reduces the maximum temperatures of both spaces by

mixing of hot with cold streams and vis-versa.

All these losses will result in a reduction of the temperature extremes and therefore pressure

extremes of the engine.

1.2.3.2.2. Non-Ideal Heat Exchanger

Figure 1.9: Thermal energy pathway through a heat exchanger

Heat exchange through a heat exchanger relies on 4 regimes, seen in Figure 1.9. For the

purposes of this discussion, let us refer to the exchanger as a source, as the same principles apply

13

to thermal sinks. First of which, is the ability of the source to provide the exchanger with heat.

This value 𝐸̇𝑚𝑎𝑥 could be limited by external factors such as rate of fuel injection, fluid flow rate

and heat capacity, solar irradiance, or any number of other factors. Exceeding or even approaching

this limiting rate may result in a drop in source temperatures. Secondly, there is a loss associated

with convection between the source fluid and the heat exchanger geometry. Thirdly, is the

conduction of the heat through the solid structure of the heat exchanger. Finally, the convection of

the heat from the solid surfaces into the gas. Increasing the resistance of any of these or lowering

the potential of the source result in lower gas temperature and thus lower power.

1.2.3.3 Gas Friction

Friction is experienced by the gas as it flows through the geometry of a Stirling engine. The

energy required to overcome this friction must be taken from the flywheel. These losses are

generated via two main sources. The primary source is flow along the main gas path, where flow

encounters the heat exchangers and regenerator and any fittings along the way. The second source

called pumping loss [16] is generated from the compression and expansion of gases which causes

the fluid to get pumped in and out of every crevasse of the engine, this is most noticeable in tight

components such as the annulus of the displacer. The effect of both of these flow losses is detected

by the mechanism as a shift in the pressure experienced at the piston faces. The net effect of this

disturbance always reduces the overall area of the pressure volume diagram by an amount equal

to the loss in energy.

1.2.3.4 Mechanical Friction

Friction, which exists in the sliding or rolling surfaces and seals of a mechanical devices, can

absorb a significant portion of the work produced by the engine. This topic is discussed in depth

by Senft [27] and often this loss can be as large as 5 to 15% of the output of engine [23]. These

losses are dependent on several factors, including engine speed, mechanism weight, balancing,

piston loading in both axial and perpendicular directions. Mechanical losses generally have a

strong relationship with machine lifetime as friction or imbalances in the engine cause surface

wear and fatigue, respectively. Mechanical losses are involved in the transport of energy to and

from the engine, the quantity of energy that re-enters the engine to assist in completing the

compression or expansion of the cycle can be directly calculated from the indicator diagram and

14

occurs anytime a piston goes against its pressure regime. The study of this phenomenon, called

forced work, was pioneered by Senft [27] and is discussed in detail in the preceding theses [10],

[12], [13], and [14].

1.2.3.5 Compressibility

At higher speeds, gases compress up against accelerating surfaces, slightly changing the

experienced pressures. This results in higher pressures when compressing and a higher vacuum

when expanding. The study of this particular effect was pioneered by Petrescu et al [28].

Additionally, the density variations caused by pressure losses can cause variations in the local

properties of heat transfer, and flow friction.

1.2.4 What is important for low-temperature engine?

There is no strict definition of what constitutes a low-temperature engine. In the context of this

lab it is taken as having a hot side temperature of less than 150 °C. The cold side is ambient, as

opposed to engines which use cryogenic sources. The essence of a low temperature, or low

temperature ratio engine can be effectively by the following flowchart.

Figure 1.10: Thermodynamic consequences for of low temperature (ratio) engines

The following are consistent with DTECL’s low-temperature laboratory engines.

1. Low-temperature engines run slower than high-temperature engines.

2. Low-temperature engines have lower power density than high-temperature engines.

15

A non-dimensional number that is often used to represent the power of an engine is the West

number (𝑁𝑊𝑒𝑠). In theory, this number allows for the direct comparison between engines of any

design with each other. This non-dimensional number, which is the ratio of actual output power to

a representation of ideal power, was introduced by West [22] and makes use of the fact that power

is proportional to charge pressure, the volume of gas that changes temperature and the engine

frequency. The West number is defined as:

𝑁𝑊𝑒𝑠𝑡 =
𝐸̇𝑠ℎ𝑎𝑓𝑡

𝑃𝑎𝑣𝑔. 𝑉𝑠𝑤𝑒𝑝𝑡. 𝑓𝑒𝑛𝑔𝑖𝑛𝑒

𝑇𝐻 + 𝑇𝐿
𝑇𝐻 − 𝑇𝐿

 (2)

where: 𝐸̇𝑠ℎ𝑎𝑓𝑡: Power as measured at the output shaft of the engine

 𝑃𝑎𝑣𝑔: Mean, internal pressure in the engine over the cycle.

 𝑉𝑠𝑤𝑒𝑝𝑡: Swept volume of the expansion space.

 𝑓𝑒𝑛𝑔𝑖𝑛𝑒: Running frequency of the engine, at which 𝐸̇𝑠ℎ𝑎𝑓𝑡 was

measured.

 𝑇𝐻: Source temperature

 𝑇𝐿: Sink temperature

1.2.4.1 Pressure Leakage

The energy loss between a sinusoidally varying pressure region and a constant pressure region

over one cycle is equal to the integration of the instantaneous energy loss over the cycle period

described by:

𝐸𝑙𝑒𝑎𝑘,𝑐𝑦𝑐𝑙𝑒 = ∮𝐸̇𝑙𝑒𝑎𝑘. 𝑑𝑡 = ∮𝐹(𝑃1 − 𝑃2). 𝑑𝑡

𝐸𝑙𝑒𝑎𝑘,𝑐𝑦𝑐𝑙𝑒 = 𝐶
1

𝑓𝑒𝑛𝑔𝑖𝑛𝑒

(3)

where: 𝐸𝑙𝑒𝑎𝑘,𝑐𝑦𝑐𝑙𝑒: Sum of energy lost to a leak over one complete cycle

 𝐸̇𝑙𝑒𝑎𝑘: Instantaneous energy lost to a leak.

16

 𝐹(…): The leak function, which prescribes the amount of energy lost to

the leak (proportional to the mass which crosses it) as a function of the

pressure difference. Importantly, this function is ideally independent of

time.

 𝐶: A constant with respect to time. This occurs because 𝐹(…) is

independent of time, therefore the integral is equal to the integral of

𝐹(…) over the range of 𝑃 values which are governed by angular position.

Therefore, time will simply serve as a scaling factor on the magnitude on

𝐸𝑙𝑒𝑎𝑘,𝑐𝑦𝑐𝑙𝑒, as angular speed simply defines the slope of angle vs time.

This results in an energy loss which is inversely proportional to cycle time. With regards to

engine speed, a slow engine will accrue more power loss per cycle than a fast cycle. With regards

to engine size, given that a leak may be in some way related to engine size, for the same power

output a low-temperature engine will have a larger power loss due to leakage.

1.2.4.2 Heat Exchange

As sink temperatures are normally ambient temperatures given its accessibility, low-

temperature engines are limited by the Carnot efficiency as: 𝜂 = 1 − 𝑇𝐿 𝑇𝐻⁄ . Low-temperature

engines are further disadvantaged by the proportional relationship between heat transfer and

temperature difference. Meaning that low-temperature engines require larger heat exchanger

surface areas to maintain an adequate temperature ratio, which ultimately balances friction losses

against power gains from better temperatures. Low-temperature engines are often limited by heat

exchange. Therefore, this requires a more detailed look into heat exchangers for such engines.

The construction of the West number [22] provides the greatest illustration of the effect of

temperature on Stirling engines. Specifically, the form of the derivative of shaft power with

response to rising source temperatures:

𝜕𝐸̇𝑠ℎ𝑎𝑓𝑡

𝜕𝑇𝐻
= 2𝑁𝑊𝑒𝑠𝑡. 𝑃𝑎𝑣𝑔. 𝑉𝑠𝑤𝑒𝑝𝑡. 𝑓𝑒𝑛𝑔𝑖𝑛𝑒

𝑇𝐶
(𝑇𝐻 + 𝑇𝐶)2

 (4)

The increase in power is approximately dependent on the inverse of source temperature squared,

such that at low-temperatures improvements in source temperature will lead to substantial

increases in power, while at higher temperatures, there is little incentive to improve gas

17

temperatures. This will incentivize low-temperature engines to invest more into heat exchange

than high temperature engines, even at the increase in flow losses or dead volume.

1.2.4.3 Conduction Losses

Thermal conduction is a temporally developing loss found in Stirling engines, this loss has two

attributes associated with it: gas spring hysteresis (GSH) and wall conduction, which are innately

tied together. GSH has been well studied by the Stirling engine community and in general, all

equations for its loss rate follow some variation of the following form [29]:

𝐸̇𝐺𝑆𝐻 ∝ 𝛾
𝑛. (𝛾 − 1)2−𝑛√𝜋. 𝑘. 𝑓𝑒𝑛𝑔𝑖𝑛𝑒. 𝑃𝑎𝑣𝑔. 𝑇𝑎𝑣𝑔 (

Δ𝑉

𝑉𝑎𝑣𝑔
)

2

𝐴 (5)

where: 𝛾: The ratio of specific heats = 𝑐𝑝/𝑐𝑣

 𝑛: Exponent, varies depending on approximation [29].

 𝑘: Thermal conductivity of gas

 𝑇𝑎𝑣𝑔: Average temperature of engine interior space

 ΔV: Difference between maximum engine volume to minimum engine

volume.

 𝐴: Surface area over which loss takes place.

If the properties of angular speed, surface area and temperature are isolated the following

equation is found.

𝐸̇𝐺𝑆𝐻 ∝ 𝐴√𝜔. 𝑇𝑎𝑣𝑔 (6)

As a note, area is approximately proportional to volume to the 2/3rd power. According to the

scaling rules of Organ [30] the equivalent speed of a larger engine scales with volume to the

negative 1/3rd power. Combining these into a single equation gives:

18

𝐸̇𝐺𝑆𝐻 ∝ 𝑉
2
3√

1

𝑉
1
3

. 𝑇𝑎𝑣𝑔 ∝ √𝑉. 𝑇𝑎𝑣𝑔 (7)

According to the West number, power is directly proportional to size, speed and exponentially

related to temperature. Thus, the GSH loss may be less of a burden at high speed and temperature

ratios. And larger engines will experience a lower GSH loss due to having a diminishing surface

area to volume ratio. A large low-temperature engine may have lower GSH than a small high-

temperature engine, but the resulting loss is likely to be a larger proportion of power in the low-

temperature Stirling engine due to the strong dependence of power on temperature difference.

The second attribute of thermal conduction losses is conduction through the solid containment

of the Stirling engine volume. This energy exchange pathway, governed by Fourier’s law, is

constant in time but linearly proportional to the difference in temperature extremes.

𝐸̇𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ∝
𝐴

𝐿
. Δ𝑇. 𝑑𝑡

Where:

𝐴 ∝ 𝑉
2
3, 𝐿 ∝ 𝑉

1
3, 𝑑𝑡 ∝ 𝑉−

1
3 [30]

Thus:

𝑉
2
3

𝑉
1
3

Δ𝑇

𝑉
1
3

∝ Δ𝑇

(8)

With regards to engine size this loss will be constant at equivalent speeds, as defined by Organ

[30]. The larger engine runs slower but will generate power proportional to 𝑉
2

3 with the same

conduction loss as the smaller engine. With regards to engine speed, a slower engine has longer

time to develop this loss, thus allowing it to consume a greater proportion of power. Because power

output increases faster with respect to temperature difference than this loss, a high proportion of

power will be taken up by conduction losses in low-temperature engines.

19

1.2.4.4 Viscous Friction

Viscous friction loss, or pressure loss, is a function of flow geometry, gas viscosity and gas

velocities. With regards to speed, the viscous friction loss is, in turbulent cases, dependent on

velocity squared according to the Darcy-Weisbeck equation [31] for pipe-flow. The viscosity of

the gas, which generally increases with temperature, will increase the pressure losses. This will be

seen to a much less extent than velocity as its effect is only seen in the friction factor (𝑓) calculation

via (in the pipe flow case) the Colebrook-White equation [32]. The dependence of friction on

viscosity varies from linear in the laminar regime to a negligible effect in the fully turbulent

regime, where turbulent dissipation overshadows molecular dissipation.

With regards to geometry, an engine that is scaled to be 2 times larger in all dimensions will

have flow paths that are 2 times longer with cross-sections that are 4 times higher, hydraulic

diameters are 2 times larger and volumetric flow rates that are 8 times larger. This results in 2

times larger flow velocities. Larger scales also effect the surface finish, in theory an equivalent

surface finish could be obtained, which would allow a large engine to approach that of a smooth

pipe. Inserting these modified dimensions into the Darcy-Weisbeck equation [31]:

∆𝑃 =
𝑓. 𝜌. 𝐿

2𝐷ℎ
(
𝑉̇

𝐴
)

2

=
𝑓. 𝜌

2

(2𝐿)

(2𝐷ℎ)
(
8𝑉̇

4𝐴
)

2

= 𝑓. 4 (
∆𝑃

𝑓
)
1𝑥

 (9)

where: ∆𝑃: Pressure drop over flow path

𝑓: Darcy friction factor: defined as the Colebrook-White equation [32]:

1

√𝑓
= −2 log (

𝜖

3.7𝐷ℎ
+

2.51

𝑁𝑅𝐸√𝑓
)

𝑁𝑅𝑒 =

𝜌.𝐷ℎ.𝑈

𝜇
=
𝜌

𝜇
(2𝐷ℎ)(2𝑈) = 4𝑁𝑅𝑒,1𝑥

𝜖

𝐷ℎ
=

𝜖

2𝐷ℎ
, thus roughness is halved.

𝜌: Fluid density

𝐿: Streamwise length of flow path

𝐷ℎ: Hydraulic diameter

𝑉̇: Volumetric flow rate

20

This results in a pressure drop that is roughly the same in the laminar case (as the 4’s cancels

out and roughness is neglected), and in the fully turbulent case is between 2 to 4 times larger for

the large engine, since roughness is – at best – linearly related to the friction factor. Based on the

West number, energy produced per cycle increases linearly with volume, so a large engine will

have 8 times as much power, but between 8 to 32 times as much flow losses when running at the

same speeds. Therefore, low-temperature engines must run at low-speeds to minimize these

increased flow losses, caused by their larger sizes. This is further enforced by the more constrictive

heat exchangers found in such devices. This is also confirmed by Organ [30], who’s scaling laws

declare that the speed of the engine will scale with volume to the 1/3rd, or in our case here should

be halved, corresponding exactly to a 1:1 increase in cycle energy with flow losses.

An alternative to running at lower speeds is to increase the cross-sectional area of the heat

exchangers vs its length. This, in theory offers nearly the same temperature change (if the flow is

laminar, and therefore having a constant Nusselt number) but can run into problems with

preferential flow the lower the pressure drop gets, additionally it may be geometrically challenging

to design a high cross-section heat exchanger that does not introduce significant amounts of dead

volume from distribution geometry.

1.2.4.5 Mechanical Losses

Kinematic mechanisms, driven by a rotating drive, which are discussed in detail in CHAPTER

2 result in forces on the drive shaft that follow the following structure:

𝐹 = 𝐴(𝜃). 𝛼 + 𝐵(𝜃).𝜔2 + 𝐺(𝜃) + 𝐸(𝜃). 𝐹𝑝 (10)

where: 𝐴(𝜃): Coefficient on angular acceleration (𝛼), represents the system

inertia as a function of angular position (𝜃)

 𝐵(𝜃): Coefficient on angular velocity squared (𝜔2), represents internal

inertia as a function of angular position (𝜃)

 𝐺(𝜃): Gravitation force, as a function of angular position (𝜃)

 𝐸(𝜃): Coefficient on piston force (𝐹𝑝), which represents how the piston

force, when translated through the mechanism produces a load on the

drive shaft.

21

With most engines the value of angular acceleration (𝛼) is small, the value of angular velocity

squared (𝜔2) increases internal and external loads as a function of engine speed squared. With a

larger and slower engine, loads from the piston (𝐸(𝜃). 𝐹𝑝) and static loads from gravity will

dominate. Friction is often taken as linearly proportional to the normal force [33] (as in Coulomb

friction), or rolling resistance such as in dry ball bearings, lubrication depends on both normal

force and speeds, and often the friction coefficient decreases with speed as lubrication films even

out. In addition, at high speeds lower viscosity lubricants are required [34] and many high-speed

Stirling engines utilize bearings that at high enough speeds utilize none contact gas bearings [21]

with very little friction or wear.

A high-speed engine will have larger internal loads due to the internal inertia term, which may

result in larger friction losses, however such an engine may reduce these loads with lower friction

components. Such an engine will require a lighter flywheel and suffer from lower static loadings

which would reduce friction further through leaner component design. Low-speed engines require

larger flywheels but suffer less from internal inertia forces, however they have to be designed for

larger static loads. Low-temperature engines could be the clear loser, with heavier components,

thicker lubricants and a power density that is exponentially less than their high-temperature

cousins.

1.2.5 Summary of Stirling Engines

In summary, while the ideal Stirling cycle provides the highest power per cycle, it is also

impossible to accomplish. Therefore, designers must be able to manage the losses that appear as

part of the practical modifications to the ideal cycle. The accurate modelling of these phenomena

is particularly important for low-temperature engines, which as shown in section 1.2.4 suffer to a

greater proportion in every loss category identified with the exception of inertia losses. Often the

first step in loss identification is numerical modelling of the engine, which is the topic of the

following section.

1.3 Modeling Techniques

There are many modeling tools developed specifically for Stirling engines or related machines.

The complexity, and variety of tasks that Stirling engines have been applied to has forced the

22

creation of many specific models. Many have significant simplifications for the sake of

computational efficiency which limit the scope of applicability of those models. Several advanced

models are commercially available [35]–[37], which are outlined below and many models are

described in the literature. Few are publicly available to the author’s knowledge, as a result, this

list is not all-encompassing, and many models and their implementation are only partially

described in the literature.

Stirling engine models are classified by their order, a classification scheme introduced by

Martini [23] in their “Stirling Engine Design Manual” of 1978. It is important to note that most

models have been designed for a high-temperature context and that although many models may

work under low-temperature conditions, the selection of correlations and factors common in lower-

order models becomes a challenge [10].

1.3.1 1st Order Models

The most basic requirement for a model to be 1st order is that it produces closed-form solutions.

What is meant by this is that the power can be determined explicitly through an equation, with

often little more than the source and sink temperatures. Generally, they are recommended only for

those who wish to begin investigating the possibility of a Stirling engine [23].

1.3.1.1 Efficiency Prediction

The most basic of 1st Order models described by Martini [23] is described by multiplying the

Carnot efficiency by a series of efficiencies that represent different major losses:

𝜂𝑒𝑓𝑓 = (1 −
𝑇𝐿
𝑇𝐻
) . 𝜂𝐶 . 𝜂𝐻 . 𝜂𝑀 . 𝜂𝐴 (11)

where: 𝑇𝐻, 𝑇𝐿: Hot (source) and Cold (sink) gas temperatures.

 𝜂𝐶: Carnot Efficiency, ratio of indicated efficiency to Carnot Efficiency,

includes all gas and thermal internal losses. Often = 0.65 → 0.75, but

can be as high as 0.80.

23

 𝜂𝐻: Heater Efficiency, a measure of how efficiency the heating element

deliverers heat to the engine. Often related to a burner, but can be related

to a heat delivery system. Often = 0.85 → 0.95

 𝜂𝑀: Mechanical Efficiency, related to the reduction of energy from
the indicated power to the shaft power. Often = 0.85 → 0.95

 𝜂𝐴: Represents the power loss due to the driving of auxiliary systems,

such as pumps, valves and instrumentation. Often = 0.95

This is multiplied by the input thermal power to form the expected power. Though useful, if

estimating the power output in a well understood design space, this sort of model offers little to

the designer for parametrization.

1.3.1.2 West Number

Introduced in the previous section, the West number [22] (𝑁𝑊𝑒𝑠𝑡) is a non-dimensional number

that represents the performance of a Stirling engine as is defined as:

𝐸̇𝑠ℎ𝑎𝑓𝑡 = 𝑁𝑊𝑒𝑠𝑡. 𝑃𝑎𝑣𝑔. 𝑉𝑠𝑤𝑒𝑝𝑡. 𝑓𝑒𝑛𝑔𝑖𝑛𝑒
𝑇𝐻 − 𝑇𝐿
𝑇𝐻 + 𝑇𝐿

 (12)

where: 𝐸̇𝑠ℎ𝑎𝑓𝑡: Power as measured at output shaft of engine, after all engine

specific losses.

 𝑃𝑎𝑣𝑔: Average internal pressure of engine, averaged over both space and

time.

 𝑉𝑠𝑤𝑒𝑝𝑡: Volume of gas pushed through (in one direction) the exchangers.

 𝑓𝑒𝑛𝑔𝑖𝑛𝑒: Engine (cycle per second) frequency at which 𝐸̇𝑠ℎ𝑎𝑓𝑡 is

measured.

 𝑇𝐻: Temperature of source, or average temperature in expansion space.

 𝑇𝐿: Temperature of sink, or average temperature of compression space.

The normal range of West numbers is around 0.25 [22]; a number that was obtained from a

variety of high temperature high-performance engines. The power can be predicted by

rearrangement. The West number establishes a baseline given that an engine is well designed it

24

should provide output power proportional to the macroscopic properties. However, it offers no key

information on what exactly an engine, well designed for its conditions, should look like.

1.3.1.3 Schmidt Model

The Schmidt model is a semi-ideal analytical model, created by Gustav Schmidt in 1871 [25],

that takes advantage of several assumptions about Stirling Engines. The Schmidt model offers

greater insight into parametrization, of importance is the influence of piston motions on the

indicated power. Due to its relative information density, it is the basis on which many 2nd and 3rd

order models are constructed. As such it will be outlined in detail in the following pages, as

outlined by Walker [38]. The isothermal simplification was classically used in this model that

includes the following assumptions:

1. Perfect Regenerator:

a. While within the regenerator the gas and regenerator material are the same

temperature.

b. The Regenerator temperature is constant in time.

c. The Regenerator temperature follows a linear trend from the hot to the cold side.

2. The pressure is the same throughout the engine.

3. The working gas is ideal and therefore follows the equation of state: 𝑃. 𝑉 = 𝑅𝑠𝑝𝑒𝑐 . 𝑇

4. There is no leakage internally or with the surroundings.

5. The piston motion and therefore the volume variations are perfectly sinusoidal in time.

6. Heat exchangers are uniform temperatures both spatially and temporally.

7. The cylinder wall and piston temperatures are constant.

8. There is perfect mixing in the expansion and compression volumes.

9. The temperature of the dead volume is constant.

10. The speed of the machine is constant.

11. Flow conditions are steady state.

12. The expansion and compression spaces are assumed to be isothermal.

Starting from assumption 4, the constant total mass is equal to the mass of all the gas spaces

within the engine for every point in the cycle. The total mass (𝑀) is the sum of masses (𝑚) in

individual components as:

25

𝑀 = 𝑚𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 +𝑚𝑐𝑜𝑜𝑙𝑒𝑟 +𝑚𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 +𝑚ℎ𝑒𝑎𝑡𝑒𝑟 +𝑚𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛

𝑀 = 𝑚𝑐 +𝑚𝑘 +𝑚𝑟 +𝑚ℎ +𝑚𝑒

(13)

where: 𝑀: Total mass

 𝑚: Mass of the contents of individual components

By substituting mass with its equivalents within the ideal gas law and applying assumptions 2 and

3:

𝑀. 𝑅𝑠𝑝𝑒𝑐 = 𝑃. (
𝑉𝑐 + 𝑉𝑘
𝑇𝐿

+
𝑉𝑟
𝑇𝑟
+
𝑉ℎ + 𝑉𝑒
𝑇𝐻

) (14)

where: 𝑅𝑠𝑝𝑒𝑐: Specific gas constant of the gas inside the engine.

 𝑃: Pressure inside of engine (considered uniform, cycle position

dependent)

 𝑉: Instantaneous volume of individual component

 𝑇: Average temperature of whole gas contents of individual component

By assumption 1, a linear temperature profile must exist in the regenerator:

𝑇(𝑥) =
(𝑇𝐻 − 𝑇𝐿). 𝑥

𝐿𝑟
+ 𝑇𝐿 (15)

where: 𝐿𝑟: Length, in flow direction, of regenerator.

 𝑥: Distance, in flow direction, from cold heat exchanger.

To calculate the mass of the regenerator, the temperature profile can be substituted in to give:

𝑚𝑟 = ∫ 𝜌(𝑥). 𝑑𝑉𝑟

𝑉𝑟

0

=
𝑉𝑟 . 𝑃

𝑅𝑠𝑝𝑒𝑐
∫

1

(𝑇𝐻 − 𝑇𝐿). 𝑥
𝐿𝑟

+ 𝑇𝐿

𝐿𝑟

0

𝑑𝑥 (16)

26

where: 𝜌: Local gas density, is a function of 𝑃, 𝑅𝑠𝑝𝑒𝑐 and 𝑇(𝑥)

This reduces to:

𝑚𝑟 =
𝑉𝑟 . 𝑃. ln (

𝑇𝐻
𝑇𝐿
)

𝑅𝑠𝑝𝑒𝑐 . (𝑇𝐻 − 𝑇𝐿)
 (17)

which gives the temperature for the regenerator as:

𝑇𝑟 =
(𝑇𝐻 − 𝑇𝐿)

ln (
𝑇𝐻
𝑇𝐿
)

 (18)

This can also give the pressure of the engine volume as:

𝑃 =
𝑀.𝑅𝑠𝑝𝑒𝑐

𝑉𝑐 + 𝑉𝑘
𝑇𝐿

+
𝑉𝑟. ln (

𝑇𝐻
𝑇𝐿
)

𝑇𝐻 − 𝑇𝐿
+
𝑉ℎ + 𝑉𝑒
𝑇𝐻

(19)

The work done by a single cycle (𝑊𝑐𝑦𝑐𝑙𝑒) is simply:

𝑊𝑐𝑦𝑐𝑙𝑒 = ∮𝑃. (
𝑑𝑉𝑐
𝑑𝜃

+
𝑑𝑉𝑒
𝑑𝜃
) . 𝑑𝜃 (20)

where: 𝜃: Cycle angular position, from which 𝑉𝑐 and 𝑉𝑒 are both derived.

The volume variations as a function of 𝜃 are different for each of the 3 classical engine

configurations but given a sinusoidal pattern the integral above may be solved simply by hand.

The final work may then be multiplied by the cycles per second to get the work at any running

speed. Using numerical integration, the above equations can be solved for non-sinusoidal motions

as well which allows the model to generally applicable. However, based on the discussions in

section 1.2.3, the isothermal idealization present in the Schmitt model make it a poor predictor of

actual engine performance.

27

1.3.2 2nd Order Models

Second-Order models are simulations that are based upon or are closed-form solutions.

According to Martini [23], 2nd Order models start with a 1st Order model, and then degrade the

resulting power output by losses that are decoupled from the engine cycle. 2nd Order models often

apply empirical correlations for these losses which can be subjected to calibration. However, they

generally do not considered loss dependencies and often require expert knowledge to apply the

correct correlations [23]. This makes accuracy susceptible to a case-by-case basis. Like 1st order

models, speed is an input to these models, making them incapable of determining speed as an

output or modelling dynamic speed scenarios. Due to their uncoupled nature, 2nd Order models are

only capable of converging towards a steady state solution and the user must consult the produced

engine curves when determining the engine speed for a given loaded condition. The following

details the main 2nd order models discussed in the literature.

1.3.2.1 Urieli & Berchowitz

The SIMPLE model – so called as it is a simplification of the actual non-steady flow heat

exchange – was derived by Urieli and Berchowitz in their 1984 publication [16]. The scheme was

originally written in Fortran, but updated to MATLAB [39] and hosted online by Urieli [11]. This

software used the ideal adiabatic model assumption and integrates into the solution the non-ideal

performance of the heat exchanger sections. The model assumes quasi-steady assumption of

friction and heat exchange through the heat exchangers. This model is decoupled from losses not

associated with non-ideal heat exchanger or regenerator performance. The base model by default

subtracts regenerator wall leakage and pumping losses from the power output. The model was

expanded by Speer [10] to include a host of recognized Stirling engine losses as decoupled

subtractors.

1.3.2.2 Babaelahi & Sayyaadi

The SIMPLE model [16] was expanded in 2014 by Babaelahi and Sayyaadi [40]. The authors

included heat absorbed and rejected by the displacer piston and mass leakage between the engine

and buffer spaces in addition to using different equation forms for representing pressure.

Additional decoupled losses included finite speed losses, mechanical friction, and the longitudinal

conduction along the regenerator wall. The study predicted the power and efficiency of the high-

28

temperature 3kW GPU-3 Stirling engine by General Motors with at least 5 times as much accuracy

compared to the original SIMPLE model and better than the state of the art of equivalent models

at the time.

Babaelahi and Sayyaadi [41] developed a new model in 2015, called the polytropic analysis of

Stirling engine with various losses or PSVL. The model takes into consideration that Stirling

engines are a continuously varying polytropic process. The author’s devised a method for

determining polytropic indexes for each working space as a function of crank angle. The method

also introduces 3 categories of loss considerations. The first of which was direct partial differential

equation representation for polytropic heat transfer, gas leakage and shuttle effect. The second,

including non-ideal heat transfer, pressure drops which applied their corrections to the

temperatures between each iteration. The third category involves losses that don’t affect the

temperature distribution and were therefore subtracted from the power afterward. The polytropic

index is derived from properties and used in heat conduction for each increment of the cycle, the

model is iterated until the index forms a continuous loop. The model proved to be more accurate

than the author’s previous models.

1.3.2.3 Commercial Codes

One of two commercially available 2nd order models: SNAP pro by Altman [37] is a model

implemented within the MS Excel environment for straight forward user modification. By default,

an engine parameter set can be optimized via a genetic algorithm. SNAP Pro is based on the work

of various researchers including Martini [23], Berchowitz’s linear analysis [42] for free-piston

analysis and includes losses due to forced work from Senft [27].

The second commercially available software, PROSA 2 by Thomas [36] is implemented in a

self-contained program with a detailed parametrization scheme with simplex optimization. The

author also developed a 3rd order model that allows for speed variations and non-sinusoidal piston

variations, but further documentation for either model could not be found.

1.3.3 3rd Order Models

According to Martini [23], third-order models divide the working volume into distinct volumes

and the basic equations are solved using numerical methods. This, as opposed to the 2nd order

29

assumption, allows interdependent processes to affect one another. The field was pioneered by

Finkelstein [43], who developed the first nodal analysis, who’s work is updated by the models

discussed below. These models are regarded as more accurate than 2nd order models in general, in

particular a 3rd order model will have greater accuracy when exploring a new design space, but

may be comparable to a 2nd order model in a well-defined space [23]. Due to their sensitivity to

such features and higher general accuracy, they are often used in the later stages of engine design

and as part of optimization studies.

In addition to greater generality, 3rd Order models offer outputs that cannot be measured

experimentally or by lower order models. Temperature is notoriously difficult to measure reliably

due to response times, whereas the 3rd Order model defines the instantaneous values. Depending

on the solution scheme, dynamic solutions may also be available which can detect phenomena

such as staling after a change in load and even allow initial design of engine control systems before

a physical prototype is even made.

1.3.3.1 SAGE

Possibly the most well known commercially available 3rd Order model for Stirling engines is

SAGE, developed by Gedeon [35]. This modular model, which is well documented, creates

discretized networks of nodes, that are solved using the harmonic assumption. The harmonic

assumption, which represents cyclic values as a Fourier series, is largely accurate for a wide variety

of Stirling engine designs and very computationally efficient because parameters are defined as a

series of phases and magnitudes as opposed to individual timestamped values. SAGE has been

used for both low-temperature [44] and high-temperature Stirling engine designs [45]. A detailed

discussion of this model can be found in Gedeon [35], as well as Hoegel [45]. SAGE features high

performance, but through communication with users within the University of Alberta, it is noted

to have a high learning curve and has difficulty converging in unique circumstances. In addition,

SAGE is unable to support dynamic scenarios [35] due to the nature of the harmonic solver.

Regardless, this model was studied extensively during the development of the current model

presented later in this thesis.

30

1.3.3.2 Nlog Thermodynamic Analysis Code

The Nlog thermodynamic analysis code is a 1D control volume code. The model was created

by researchers investigating neural-network-based performance prediction [46] and was even

modified to support dynamic scenarios [47]. Given a set of detailed parameters, Nlog solves the

equations of mass, momentum, and energy for each volume in the engine. The model ignores solid-

conduction effects and instead has two wall types: An isothermal wall type, i.e., temperature

remains constant and a regenerative wall type, i.e., net heat transfer to its control volume is zero

over the cycle. It is not well documented to the authors knowledge and may be difficult to configure

to engine types.

1.3.3.3 Anderson

Anderson et al [48], from the Technical University of Denmark, developed a modular model

for research usage using the MusSim framework, which the author also developed. The author

studied the effect of the regenerator’s thermal response within the cycle and found that handling it

dynamically introduced a relatively substantial change in calculated engine power. Anderson’s

model is constructed out of modular groups much like SAGE’s implementation but in the

incremental form, making it capable of deriving dynamic scenarios given that the mechanism

dynamics are provided. However, this model is not publicly available to the authors knowledge

and little information could be found on its implementation.

1.3.4 Higher-Order Models

Models that consider flow to be a one-dimensional phenomenon often have increased error

when the engine is not symmetric about its axis. Discretizing gas space in a 2nd dimension is

generally what changes a 3rd Order model into a higher-order model. Substantially more

computationally expensive, this form of engine modeling is generally very accurate, but the

approach is currently too slow for any but final engine design and optimization. Two groups have

made advances in this level of modeling, researchers at the University of Northumbria [49] and

researchers at NASA [50].

31

1.4 Chapter Conclusions

There is a great opportunity for alternative energy generation through recovery of low-

temperature energy source. These include: waste heat which accounts for up to 70% of all energy

used in Canadian industries [1] and geothermal energy. The energy recoverable from these

processes, which are limited by thermodynamics to between 2-4% in most cases still amounts to

significant energies. Geothermal energy has potential [2], but is completely untapped by existing

technologies in Canada. It is the goal of DTECL to investigate Stirling engines as potential

contributor to utilizing these energy sources.

Work is being conducted in this area, but a major weakness of the investigation is the models

that are being used, which are inaccurate [10], [13], [14], particularly at low-temperatures and are

difficult or inextensible in usage. A significant weakness in all the models presented is either being

too specific or opaque, as in 1st and 2nd Order models. Or being inaccessible to new users such as

with many 3rd Order models.

1.5 Thesis Goals

The goals of this thesis are as follows.

To develop a numerical model to

1. Simulate low-temperature engines. This entails a model that focuses on heat transfer, flow

friction, leakage and allows detailed definition of the mechanism with its internal friction.

To improve computational efficiency, loss modes such as radiation, fluid inertia and

acoustics will be ignored.

2. Produce results that are validated against an experimental laboratory engine, analytical

experiments and results from SAGE, an accessible and well validated numerical code.

In addition, the software will

1. Allow a user to construct a full working model of arbitrary geometry using a graphical user

interface.

2. Present the model geometry in an intuitive and visual manner.

3. Provide the user with tools to record data of interest and interpret results.

32

The goal of the remainder of this thesis is to devise an implementation of the above goals in

MATLAB [39] and test its ability to accurately model Stirling engines within the low-temperature

context.

1.6 Thesis Outline

CHAPTER 2 documents the development process for the structure of the software and the

problems that need to be solved using the model.

CHAPTER 3 documents the core mathematical and numerical processes.

CHAPTER 4 documents the implementation of the discretization and numerical solving.

CHAPTER 5 documents the algorithms used to enhance the convergence of the model.

CHAPTER 6 documents important information on how to use the software module, as well as

the importance of model outputs.

CHAPTER 7 documents the tests used to verify the performance of the model.

CHAPTER 8 concludes the thesis with an assessment of the project goals.

Further information for each of these chapters as well as the entire project code can be found in

the Appendices.

33

 SYSTEM DEVELOPMENT AND ARCHITECTURE

2.1 Development

The following sections outline the type of problem that this model targets. This begins with

defining the processes that go on within an engine and then abstracting those phenomenon and

features into components that can be added by the user. Based on the discussion in section 1.2, a

low-temperature engine’s power is limited to a great extent by its losses. These losses stem from

poor heat conduction within heat exchangers, problems with heat control in other volumes,

pressure leakage, flow friction and mechanical friction. These losses are all interconnected, poorer

heat transfer into the engine, also reduces the loss of that energy to the wall. Internal to external

leaks or even leaks between different areas of the engine effect heat transfer and flow friction

through changing gas flow rates. Flow friction effects the force on the piston and thus the

mechanism losses.

2.1.1 The Gas Medium

The best way to model these losses is to model the physical system that produces these losses.

The extreme of this is to build physical prototypes. Outside of that the most conservative approach

is to use CFD or 4th Order models which attempt to model all the physics with as little assumptions

as possible. A further compromise then exists by assuming that the flow is 1-dimensional, which

reduces the number of calculations but increases the complexity of each of them. This complexity

thankfully is very well studied as it reduces the Stirling engine into a dynamic pipe network

problem. Having modelled the gas inside the engine as a pipe network, albeit a cyclically changing

one, the viscous friction, leaks and the gas side of heat conduction can be relatively easily solved

using empirical correlations to match the encountered flow geometry and conditions.

2.1.2 Uniform Pressure

Stirling engines rely on the compressibility of their contents to function; therefore, the gas must

be modelled as compressible. This leads to a problem though, as the low-temperature Stirling

engines generally don’t operate at speeds that would require properly modelled acoustics, a

34

phenomenon which requires that the timestep is restricted by the speed of sound and not the speed

of the gas. Practitioners have come up with ways of modelling the acoustic component implicitly

[51], which avoids this restriction, but the assumption is made here is that acoustics has a negligible

impact on the operation of the low-temperature Stirling engine. One way of modelling this is to

assume, as in the Schmidt model, that the pressure is uniform throughout the engine. Friction losses

can still be approximated as required by using the flow rates, but without compressibility, the gas

speed – not the speed of sound – contributes to the timestep. This is thoroughly discussed in

CHAPTER 3.

2.1.3 The Solid Medium

The next problem exists when solving the solid medium, solid conduction problems are simple

compared to their gas counterparts, the equations are linear, and the conduction does not

appreciably change with temperature within reasonable bounds. Therefore, it is easy to model

thermal conduction in the solid body of the engine as a 2D or 3D network, provided that an engine

is reducible to such a form. This will allow the system to naturally arrive at conduction losses

without resorting to empirical formulas or surface idealizations.

2.1.4 The Mechanical System

The last component of development is the mechanical system. At this stage, for simplicity, only

kinematic mechanisms will be studied. Thus, the volume of the piston cylinder spaces is solely

dependent on the angular position. The gas spaces, in return, provide a force on the piston itself;

composed of many individual pressures and shears. This force is translated through the

mechanism, which uses the equation form introduced in section 1.2.4.5 to output a set of normal

forces and torques. The normal forces are used to generate losses on the drive shaft. The torque,

minus losses, feeds into the flywheel, generating an acceleration of the system.

The inclusion of a mechanism was important, as it was desired that the software could model

dynamic scenarios. This would differentiate it from previous works such as SAGE [35] most of

which are optimized for solving steady-state solutions. This restriction is often justified due to the

fact that the majority of operating conditions Stirling engines will be connected to a reliable supply

of thermal energy and therefore run at steady-state. However, permitting dynamic speed allows

35

MSPM to, in the future, support the design of control schemes for Stirling engine power systems.

It allows the designer to properly size flywheels, which are required to be large for slowly rotating

devices due to the inclusion of the 𝜔2 term in rotational kinetic energy. Additionally, it can

prediction of conditions required for successful start-up of Stirling engines and predict stalling

behavior from changes in load, which are hypothesized to occur due to the thermal distribution

changes for different operating speeds.

2.1.5 Gas and Mechanism Relationship

The gas and mechanical systems are intimately linked, the question is then how to solve these

two systems together. In normal Stirling engine operation, the mechanical system does not change

speed very much over a cycle. The solution then is to break up the cycle into periods of time where

the speeds are precomputed, this would allow the mechanical system to change speed and is due

to the fact that the actual acceleration lags the force generated by the gas. A depiction of this can

be seen in Figure 2.1. It is important to note that the lag can be reduced to be as small as desired

by increasing the number of increments per cycle.

Figure 2.1: Gas/solid system and mechanical system interaction loop

36

2.1.6 Axial Symmetry

The design of Stirling engines revolves around the shape of its pistons, which make up the bulk

of its internal space. Extra space in a Stirling engine not swept by the pistons, called dead volume,

reduces the pressure swing and therefore the power of the engine. As a result, areas that are not

pistons are compact and conform to the engine. Since pistons are round, based on manufacturing

techniques used in the manufacture of both the bore and the piston head, Stirling engines are very

commonly symmetric about a single axis or at the very least symmetric about multiple axis

connected by round pipes. Round pipes due to the minimization of perimeter per cross-section as

well as pressure resilience are also optimal. In addition, asymmetry in a Stirling engine leads to

preferential flow, which makes them less efficient. All these factors enforce that a well-designed

Stirling engine aught to be axially symmetric. Additionally, this restricts the solid modelling to

only 2 dimensions which improves the readability of the model construction and reduces the

computational complexity.

2.1.7 First Elements

The preceding discussion leads to a virtual engine that is composed of groups of cylindrical or

annular elements. These elements are called bodies. A graphical depiction of this can be found in

Figure 2.2.

Figure 2.2: A body and member connections. In cylindrical elements, the inside vertical

connection may be reduced to a single line at the axis.

37

These bodies have rectangular cross-sections when cut by a plane coincident with the center

axis. This restriction, while it limits the variation in geometry that can be modelled, drastically

reduces the complexity and handled cases from a programming perspective. A rectangle is

characterized by having 4 sides at right angles to each other, thus sides can only be cylindrical

shells or planes perpendicular to the center axis. As blocks of material in a Stirling engine are

packed together, it makes sense that these surfaces – called connections – rather than the blocks

themselves contain the dimension information, represented either a radius or distance along the

axis. This trait prevents blocks from overlapping, except for the case where the interface moves

enough to give an affected body a negative volume.

2.1.8 Further Abstraction

Often Stirling engines are not wholly axially symmetric. Gamma engines are classic examples

as characterized by power pistons that are not inline with their displacer pistons. This then requires

that to model these aspects, at least in a visually interpretable manner, that the ability to have

multiple sets of these elements; lying upon potentially different axis is required. These sets will be

called groups and allow the user to visually arrange the engine. With elements now separated in

this manner, the only way to connect them would be to artificially produce a connection between

a body in one group, to a body in another group, this component is called a bridge. Several

additional components such as the leak, custom minor loss coefficient and non-connection also

connect, modify, or disconnect two remote bodies in their own way. All these components will be

discussed in greater detail further into this chapter.

Some structures such as those found in regenerators or heat exchangers are too small or complex

to be modelled at the body level. Instead, it leads to an additional component called a matrix. This

matrix component will be added to a body, modifying it by introducing representations of the fine

geometry. These modifications will be such that interactions during simulation approximate the

macroscopic behaviour of the structure.

2.1.9 The Name

All models need a name. This software and the solving system that is contained within is

intended to solve the thermodynamics and losses of Stirling engines. As will be seen later in the

38

following sub-sections and CHAPTER 3 the model is a modular structure that is intended to solve

single phase problems that have cyclically varying motions. Thus, from now on, the model is called

MSPM or Modular Single-Phase Model, as it does not have to be restricted to just Stirling engines.

The term modular refers to the fact that the network that is solved is formed from blocks

representing components such as bodies of solid material, flow channels, heat exchangers or open

volumes which change shape. These modules can be arranged into arbitrary arrangements, which

the software converts into a network, and solves for pressure, temperature and mass.

2.1.10 Final Structure

Figure 2.3 represents the final hierarchical map of the different components of a definition file.

These components – bodies, connections, groups, and bridges – contain the bulk geometrical

information as well as the information and functionality needed to discretize themselves. These

linking lines do not represent the programming concept of inheritance, but rather which objects

contain references to other objects.

Figure 2.3: A flow chart of the system architecture

The core element, a class called model – so called as it is a representation of the physical model

of an engine – includes a single mechanical system which links to multiple linear to rotational

mechanisms (such as slider crank mechanisms). Each linear to rotational mechanism provides a

motion profile, here called a frame. The model can contain multiple groups, which are collections

of bodies which lie around the same rotational axis. Each of these bodies contains a reference to 4

connections. Those connections that are oriented perpendicular to the normal axis can also

reference a frame and in turn are able to move in accordance with that frame using their current

39

position as the datum. In gas bodies a representation of an internal structure, here called a matrix,

can be added.

The next sub-sections, for the purposes of terminology, will discuss the numerical elements

followed by a section on the macroscopic features.

2.2 Finite Elements

Finite elements represent small sections of the engine, within which the properties are assumed

to be constant. The smaller these elements are, the more the modelled system reflects the

continuum of the real world. Following subsections will define the finite elements that play

important roles in the creation of the mesh.

2.2.1 Nodes

A node represents a small element of matter. The shape of gas nodes may evolve in response to

the motion of engine components, solid nodes - though incompressible - may translate through

space, for example as a part of piston assemblies. There are 4 variants of nodes as outlined in the

following sub-sections:

2.2.1.1 Common Properties

Volume (𝑽) – The total volume of the node: 𝑉 = 𝜋(𝑟𝑜
2 − 𝑟𝑖

2) (𝑦𝑜 − 𝑦𝑖)⁄

Internal Energy (𝒖) – The specific internal energy of the node, this property is initially

determined as a function of the initial temperature, but later defines the temperature.

Temperature (𝑻) – The temperature of the node

2.2.1.2 Gas

Mass (𝒎) – The total amount of mass in the node, initial mass is derived from the set pressure,

temperature, and volume: 𝑚 = 𝑉𝑃 𝑅𝑠𝑝𝑒𝑐𝑇⁄

Pressure (𝑷) – The pressure of the gas node

40

Turbulence (т) – If the node is of constant volume, this value is the weighting factor between

laminar and fully turbulent. For variable volume nodes, it is a representation of the specific

turbulent kinetic energy, which is the amount of oscillatory kinetic energy for each unit mass.

Hydraulic Diameter (𝒅𝒉) – Geometry and orientation dependent

Radial Flow Annular Flow Cylindrical Flow

2(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) 2(𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛) 2𝑟𝑚𝑎𝑥

Nusselt Number Function (𝑭𝑵𝑵𝒖(𝑵𝑹𝒆) or 𝑭𝑵𝑵𝒖(𝑵𝑹𝒆, 𝑵𝑷𝒓)) – Geometry and orientation

dependent as:

Radial Flow Annular Flow Cylindrical Flow

Laminar

3.66
Inner: 4.4438. (

𝑟𝑜

𝑟𝑖
)
−0.43

Outer: 4.6961. (
𝑟𝑜

𝑟𝑖
)
0.0548

3.66

Turbulent

0.035. (𝑁𝑅𝑒)
0.75(𝑁𝑃𝑟)

0.33

The properties of the specific gas constant (𝑅𝑠𝑝𝑒𝑐), inverse heat capacity (𝐹𝑢2𝑇(𝑇)) correlation,

thermal conduction 𝐹𝑘(𝑇) correlation and viscosity 𝐹𝜇(𝑇) correlation are taken from the gas the

node inherits from its parent.

2.2.1.3 Solid

Mass (𝒎) – The total amount of mass in the node, the mass is constant and initial determined

as 𝑚 = 𝑉𝜌, whereas density is extracted from the material of its parent.

Heat capacity (𝐶𝑇) is taken from the material the node inherits from its parent.

41

2.2.1.4 Environment

Static convection coefficient (𝒉) – Corresponds to the ambient atmospheric conditions, a

stagnant environment would be associated with a low convection coefficient. A well-ventilated

space or windy space may correspond to a higher value.

The environment node represents the atmospheric surrounding of the engine, it serves as a

source of gas, a place of exhaust and a constant temperature source. It contains all the properties

of a gas node, but never change from initial calculation. Additionally, the properties of mass (𝑚)

and volume (𝑉) are equal to infinity for calculation purposes.

2.2.2 Faces

A face is a physical interface between nodes. A face can take many forms, whether gas-gas,

gas-solid or solid-solid or any nodes with the environment. In general, a face contains an area and

transmit energy between nodes based on transport, conduction and convection. Faces can have

evolving properties or vanish when their two interacting nodes are no longer overlapping during

periods of the cycle. There are 4 variants of faces as outlined in the following subsections

2.2.2.1 Gas-Solid

Surface area (𝑨) – The wetted area of the solid node concerning the gas node:

• Normal to the radial direction: 𝐴 = 2𝑟𝑓𝑐𝜋(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)

• Normal to the axial direction: 𝐴 = 𝜋(𝑟𝑚𝑎𝑥
2 − 𝑟𝑚𝑖𝑛

2)

Resistance (𝐑) – Calculated from the surface to the center of the solid node:

• Conduction in the radial direction:

𝑅 =
𝑟𝑓𝑐 ln(𝑟𝑟𝑎𝑡𝑖𝑜)

𝐴. 𝑘
 (21)

where: 𝑟𝑖𝑛𝑡 = radius of the nodal interface.

 𝑟𝑟𝑎𝑡𝑖𝑜 = The minimum of
𝑟𝑓𝑐

𝑟𝑖
 and

𝑟𝑖

𝑟𝑓𝑐
 (see Note)

42

Note: 𝑟𝑖 = √𝑟𝑚𝑖𝑛. 𝑟𝑚𝑎𝑥 as the position in the element where the conduction

coefficient towards the inside is equal to the conduction coefficient

towards the outside. In cases where 𝑥𝑚𝑖𝑛 is zero, 𝑟𝑖 =
2

3
𝑥𝑜 representing

the average radius of the body.

• Conduction in the axial direction:

𝑅𝑓𝑐→𝑖 =
𝐿𝑓𝑐→𝑖

𝐴𝑓𝑐. 𝑘𝑖
 (22)

where: 𝐿𝑓𝑐→𝑖 = Distance from the interface to the center of the solid node in the

direction parallel to the group axis.

2.2.2.2 Gas-Gas: & Gas-Environment

Area (𝑨) – Calculated the same as with Gas-Solid faces

Friction distance (𝒍𝒇) – Represents the length that the face calculates its friction over. A

graphical representation is found in Figure 2.4.

Figure 2.4: Geometrical cases and resulting friction length

In cases where the node leads into a transition where a minor loss coefficient is used, then this

friction length extends to cover up until the transition. This only occurs in scenarios where the

node does not branch, for example, where each node involved only has 2 gas faces.

Minor loss coefficient (𝑲𝟏𝟐, 𝑲𝟐𝟏) – replaces the Darcy friction factor pressure loss, minor loss

coefficients are calculated by first determining three areas: the initial area (𝐴1), the orifice area

(𝐴2) and the final area (𝐴3). The minor loss coefficient is then calculated by the following

equation.

43

𝐾 = {
(1 − 𝛣2)2 𝛣 > 0.76

0.42(1 − 𝛣2) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (23)

where: 𝛣 = ratio of cross-sectional areas, equal to the smaller area divided by

the larger area.

The vast quantity of potential permutations of this quantity as well as its evolution under laminar

regimes are ignored under this implementation, this coverage is merely included as an estimate

and is not the primary contributor to flow losses when compared to matrix passages found in

Stirling engines.

Hydraulic diameter (𝒅𝒉) – calculated the same as it is for gas nodes.

Conduction distance (𝒍𝒄) – represents the length between neighbor node centers for thermal

conduction, this is the average dimension of the interacting nodes normal to the orientation of the

face.

Stability distance (𝒍𝒔) – is the length used when solving for the local Courant number. This is

the minimum dimension of the interacting nodes normal to the orientation of the face. In most

situations it is equal to the minimum of the two aligned-node sizes. The Courant number is

typically defined as:

𝑁𝐶𝑜 =
𝛿. 𝑈

𝑙𝑠
 (24)

where: 𝛿: The length of a time-step during iteration.

 𝑈: Gas velocity normal to the direction of 𝑙𝑠.

Reynolds Number (𝑵𝑹𝒆)

The Reynold’s number is calculated at the start of each cycle and as required after that for

friction updates. The Reynold’s number is defined here as:

𝑁𝑅𝑒 =
𝜌. 𝑈. 𝑑ℎ
𝜇

 (25)

44

where: 𝜌: Density of fluid.

 𝑈: Velocity of fluid.

 𝜇: Dynamic viscosity of fluid.

 𝑑ℎ: Hydraulic diameter of channel in direction of 𝑈.

Friction function (𝑭𝑵𝒌(𝑵𝑹𝒆))

Calculates the Darcy friction factor (𝑁𝑓)

Radial Flow Annular Flow Cylindrical Flow

 Laminar

96 𝑁𝑅𝑒⁄ 96 𝑁𝑅𝑒⁄ 64 𝑁𝑅𝑒⁄

 Turbulent

0.11 (
𝑙𝑟

𝑑ℎ
+

68

𝑁𝑅𝑒
)
0.25

[35]

Mixing function (𝑭𝑵𝒌(𝑵𝑹𝑬))

Calculates the mixing enhancement factor (𝑁𝑘), for all geometries.

Laminar: 𝑁𝑘 = 1

Turbulent: 𝑁𝑘 = 0.022(𝑁𝑅𝑒)
0.75. 𝑁𝑃𝑟

Shear Factor (𝑪𝒔𝒉𝒆𝒂𝒓) & Velocity Factor (𝑪𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚)

Shear Factor is defined as the shearing rate of the gas node, in the axial direction, declared with

units of m/radians. Often combined with velocity factor. Velocity Factor is defined as the relative

motion of this gas face relative to the walls around it. Declared with units of m/radians.

45

𝐹𝑆 = |
𝑑𝑥

𝑑𝜃1
−
𝑑𝑥

𝑑𝜃2
| (26)

𝐹𝑉 = (
𝑑𝑥

𝑑𝜃𝑓𝑐
−
1

2
(
𝑑𝑥

𝑑𝜃1
+
𝑑𝑥

𝑑𝜃2
)) (27)

 Figure 2.5: Shear and velocity factor input

variables

2.2.2.3 Solid-Solid

Conductance (𝑪) – Calculated from the center of one node to the other, these are the inverses

of the resistances calculated under the gas-solid face (equations (21) and (22)), combined in series

to allow for material discontinuities.

𝐶 = (
1

𝐶𝑖→𝑓𝑐
+

1

𝐶𝑓𝑐→𝑗
)

−1

 (28)

2.2.2.4 Solid-Environment

Conductance (𝑪) – Calculated from the center of the solid node to the environment using the

constant convection coefficient combined in series based on the following formula.

𝐶 = (
1

𝐶𝑖→𝑓𝑐
+

1

ℎ𝑗𝐴𝑓𝑐
)

−1

 (29)

In practice the conductance of the engine with the environment will be a constant value, and

therefore it possesses the same symbol as the conductance used for solid-solid interactions.

2.2.3 Node Contacts

A node contact is a temporary element that is used to define the contact of a node against the

1D surface of a connection. This allows all bodies to be discretized and these temporary data

structures to be sent to the respective connection to be later combined into faces. For connections

in the form of a cylindrical shell, a node contact represents a thin ring shape composed of a lower

46

and upper bound in the direction of the local axis normal. For other connections of the horizontal

type, a node contact will be composed of an annular disk shape, with an inner and outer radius,

lying on the connection plane and centered concerning the axis. These boundaries also move with

the node, which facilitates the creation of faces with angularly dependent areas, existing only

during the crossing point of two nodes. The interaction with bridges necessitates the inclusion of

a local porosity, which represents how much of the total surface area is available, i.e. the hole

drilled to access the top of the engine body for the power piston would reduce the surface area of

the top plate.

2.2.4 Pressure Contacts

A pressure contact is a special surface used during simulation to connect a mechanism to

surfaces on which pressure acts. Pressure contacts are exclusive to faces that are both moving and

horizontally oriented. The properties of pressure contact include its area, direction and node index

from which the pressure can be recovered from the output array. This pressure is converted into a

force and sent to the mechanism during the mechanism loop.

2.2.5 Shear Contacts

Like a pressure contact, the shear contact approximates the proportion of shear drag from any

gas channels parallel to the moving surface. The properties of a shear contact include the acting

area, force direction and the face index from which shear is calculated. The force is calculated as

one half of the pressure drop across the face, which is attributed to the shear drag against the wall.

2.3 Interactable Elements

Interactable objects encompass the group of objects that the user modifies, moves about, and

interacts with. These objects can be thought of as a high-level perspective of the final numerical

model, which is produced when the model file is discretized. These elements all work within the

property inspection interface, can be created via the GUI, and contain the functionality to translate

their settings into numerical elements containing their own complex functionality.

47

2.3.1 Groups

Groups are collections of bodies that all lie around a common axis of symmetry. Groups contain

a set of physical properties, including orientation data for their axis and the bounding box that

surrounds its contents. The group component also includes the functionality to form connections

between the bodies it encapsulates and the environment. In brief, this function collects all the

segments of all the connection at which a body intercepts, it then removes all the segments that are

covered twice by any body (i.e. a body on either side). The remaining segments after this algorithm

are either part of an illegal open space internal to the engine or are exposed to the surroundings.

At the point of discretization this information is passed down to the respective connections a

temporary construct known as a node contact featuring the gas node that represents the

environment. After processing, this results in connections that facilitate energy and mass exchange

with the environment when the model is simulated.

2.3.2 Bodies

Bodies represent a cylindrical or annulus shaped element that is aligned with a group axis. A

body can be any material, solid or gaseous. Bodies contain references to 4 connections that serve

to define its dimensions in the axial and radial directions. The primary function of a body is to be

discretized into nodes and faces. Those nodes that lie on a boundary are passed as node contacts

to connections. A body containing gas can also contain an internal structure represented by a

Matrix component, which it provides its created nodes to be further modified. Bodies also contain

functionality for validation, depending on the material. For example: solid bodies cannot change

its dimensions but may translate. Meanwhile, a gaseous volume can both translate and stretch in

their axial direction. Neither material allows for bodies to overlap or invert, which prevents the

model from simulating an engine that couldn’t exist or function.

Bodies can be discretized by two modes, which are shown in Figure 2.6, these modes can be

optionally applied to one of or both axial and radial directions:

48

Figure 2.6: Discretization modes for body

Equal partitioning – The body is sliced into several equal layers in both the radial and axial

directions.

Smart partitioning – In solid bodies this discretization is dependent on whether a side is in

contact with a gas node or within a specific distance of a gas body. Only a small part of a side must

be in contact with a gas node to activate this function. But at those edges a specified number of

nodes will be placed within the oscillation penetration zone, a zone defined by the thermal

diffusivity and expected frequency of the engine test (discussed in section 6.2.1). Beyond that zone

the node size grows by a specified growth factor to a maximum node size. If neither side is in

contact with a gas node the body is discretized coarsely with equal partitioning such that the node

size is not greater than the maximum node size.

In Gas nodes this discretization works along the discretized direction and creates a series of thin

entrance nodes over the first and last 15% of the total length. Beyond these regions the nodes grow

using the prescribed growth factor. This style of discretization is inspired by the work of Anderson

[48] who applied this technique to regenerator and heat exchanger elements. These elements are

discussed in the next subsection as matrixes.

49

2.3.3 Matrixes

Matrixes are found nestled within gaseous bodies; these elements represent a variety of fine

channeled geometries such as regenerators and heat exchangers. These elements are closely in

contact with the gas network and each has a porosity and geometry that merits an override of the

default defined hydraulic diameter (𝐷ℎ), volume (𝑉), area (𝐴), Darcy friction factor (𝑁𝑓)

correlation, Nusselt number (𝑁𝑁𝑈) correlation, and Axial Mixing enhancement coefficient (𝑁𝑘).

When the matrix takes its parents nodes, it both modifies the provided nodes for the listed

properties and adds solid sources, surface nodes and faces which model the solid components of

the heat exchanger or regenerator as a nodal network. The following sub-sections discuss the

different types and their different properties.

2.3.3.1 Regenerators

The types of common Stirling engine regenerator structures and their discretization are outlined

here. For regenerators which are notably almost always laminar due to the domination of viscosity,

only the laminar correlation is provided. Property correlations, which for regenerators are taken

from Gedeon [35], are summarized in Appendix B of this thesis. The Darcy-Weisbach equation is

used here instead of Darcy’s law for flow through porose media both because it is used successfully

in SAGE [35] and as a consequence of maintaining consistency with the rest of the model.

2.3.3.1.1. Woven Screen

A woven screen regenerator is composed of a tight weave of filaments, often

arranged in layers perpendicular to the flow direction to minimize parallel

conduction losses. This is like the perforated screen type regenerator that is

not implemented here. The woven screen has 2 inputs: porosity (𝛽) and wire

diameter (𝑑𝑜).

2.3.3.1.2. Random Fiber

A random fiber regenerator is usually composed of felt or batting of

randomly oriented fibers. The random fibre matrix has 2 inputs: porosity (𝛽)

and wire diameter (𝑑𝑜).

50

2.3.3.1.3. Packed Sphere

A packed sphere regenerator is composed of many small packed spheres,

sometimes sintered together. The packed sphere matrix has 2 inputs: porosity

(𝛽) and sphere diameter (𝑑𝑜).

2.3.3.1.4. Stacked Foil

A stacked foil regenerator is composed of many thin parallel channels between

thin foil elements. As this model is the most like an open channel, it provides

a laminar and turbulent friction and Nusselt number definition. The stacked

foil matrix has 3 inputs: the gap width (𝑙𝑔), thickness (𝑙𝑡) and surface

roughness (𝑙𝑟).

2.3.3.2 Heat Exchangers

Heat exchangers come in a wide array of different types; a selection of implemented types is

described here. In each of the diagram’s heat flow is identified by coloration with red at the heat

source and blue as it gets farther from the heat source. Air either travels into the page through the

open spaces or as indicated by arrows. All the correlations and property calculations for heat

exchangers can be found in Appendix B.

2.3.3.2.1. Fin Enhanced Surfaces

This type of heat exchanger is the case where one of the walls is the heat

exchange surface, this surface is covered with long parallel fins that span

across the gas space. This type of heat exchanger is common in a scenario

where the engine body itself conducts heat to and from a source/sink of

heat. Cases, where there are no fins and only a bare wall are handled

natively by the conduction with the wall, without need for a matrix

component.

Functionally, this matrix component allows the user to select a

connection from which to grow the fins, the surface of this connection is

51

then integrated into the internal solid conduction network, which layers

nodes normal to the selected connection.

Fin enhanced surface exchangers have 4 inputs and assumes rectangular

fins: target connection, distance between fins (𝑙𝑔), fin thickness (𝑙𝑡ℎ) and

surface roughness (𝑙𝑟). Fin length is determined automatically by assuming

that the fins go right up to, but don’t touch the opposite side of the parent

body.

2.3.3.2.2. Fin Connected Channels

This type of heat exchanger encompasses the subclass of heat

exchangers known as plate and frame heat exchangers. The main

feature being that the cross-section is an alternating pattern of the two

fluids, which persists through the depth.

The following two sub-types refers to the structure of the interstitial

fins:

• Rectangular Gaps: The fins cross at 90° across the gas side

forming many rectangular paths for the gas to flow through.

• Triangular Gaps: The fins zig-zag across the gas side forming

many triangular paths for the gas to flow through.

This heat exchanger has several inputs including: fin type (rectangular

/ triangular), gas space between source channels (𝑙𝑐,𝑔), source channel

width (𝑙𝑐,𝑤), skin thickness (𝑙𝑐,𝑤𝑡ℎ), surface roughness (𝑙𝑟), base width /

fin separation (𝑙𝑓,𝑔) and fin thickness (𝑙𝑡ℎ).

52

2.3.3.2.3. Fin Connected Tubes

This type of heat exchanger encompasses the subclass of heat

exchangers known as compact heat exchangers or finned tube heat

exchangers. The main feature of these heat exchangers is that one

fluid (assumed to be the source/sink fluid) traverses through a series

of tubes that are covered in surface enhancing fins or plates. The

tubes are most often arranged perpendicular to the flow direction.

Fin Type

Continuous Plate: The fins of this subtype bridge across from

tube to tube forming continuous plates. These are automatically

produced when the user does not submit a fin length.

Individually Finned: The fins of this subtype are associated

with just one tube.

Tube Pattern

Staggered: Staggered tube means that each consecutive layer of

tubes is offset relative to the previous one by exactly half the

perpendicular tube spacing. This is seen in the figure to the left.

Aligned: Aligned tubes are aligned, such that each tube lies in

the wake of the previous one. Aligned is generally not used unless

a very low-pressure drop is the essential requirement [52]. Which is

why it is not implemented here.

This type of heat exchanger accepts several inputs from the user

including: spacing perpendicular to flow (𝑙𝑝𝑒𝑟𝑝), spacing parallel to

flow (𝑙𝑝𝑎𝑟𝑎), fin thickness (𝑙𝑡ℎ), fin separation (𝑙𝑔), tube outer

diameter (𝑑𝑜) and tube inner diameter (𝑑𝑖). In which fin thickness

and fin separation are identical to that identified for fin enhanced

surfaces.

53

2.3.3.2.4. Tube Bank Internal

This type of heat exchanger is relatively common in high

temperature engines, it involves the forcing of air through many parallel

tubes each submersed in a thermally charged environment. The design

attempts to minimize flow losses while providing maximum surface

area and pressure containment ability.

This type of heat exchanger accepts 3 inputs: number of tubes (𝑁),

outer tube outer diameter (𝑑𝑜) and tube inner diameter (𝑑𝑖).

2.3.3.3 Discretization

2.3.3.3.1. Regenerators

Regenerators typically contain extremely fine geometry, a well-designed regenerator, one that

behaves most like an ideal reversible device will maintain its temperature as close as possible with

the gas’s temperature. Thus, for a well-designed regenerator, the lumped mass assumption should

be able to be applied with little error. As a result, a typical regenerator only requires a single layer

of nodes. Discretization is straightforward then, simply construct a solid node for each gas node in

the body and form a mixed face between the two elements. The properties relevant to discretization

are as follows for each regenerator:

54

Table 2.1: Discretization specific properties for common regenerator types.

 Woven Screen & Random Fiber Packed Sphere Stacked Foil

Surface Area /

Total Volume

(𝐴 𝑉⁄)

4
1 − 𝛽

𝑑𝑜
 6

1 − 𝛽

𝑑𝑜

2

𝑙𝑡 + 𝑙𝑔

Resistance to

average radius

times Area (𝑅. 𝐴)

ln (
3
2)𝑑𝑜

2𝑘

𝑑𝑜
6𝑘

𝑙𝑡
4𝑘

2.3.3.3.2. Heat Exchangers

Heat exchangers are different compared to regenerators, as their purpose is to transport heat

from a physically separate space - the thermal reservoir - to the gas through their conducting

surfaces. A well-designed heat exchanger should have as little as possible resistance as this ensures

that the surfaces of the heat exchanger are as close as possible to the thermal source/sink, but often

they include extended geometry which may help the heat transfer but not be exactly at the desired

temperature. Therefore, heat exchangers are discretized along the path from the source to the gas.

The discretization scheme for the implemented types of heat exchangers is depicted in Figure 2.7,

through Figure 2.9 below.

Figure 2.7: How elements are discretized in the fin enhanced surface type heat exchanger

55

Figure 2.8: How elements are discretized in the fin connected channels and finned tube

type heat exchanger

Figure 2.9: How elements are discretized in the tubes bank internal type heat exchanger

2.3.4 Connections

A connection represents a surface either as a cylindrical shell or as an axially normal plane.

Connections have a position, an orientation and a reference to a frame. A connection can use the

frame’s motion profile to shift its position depending on the angular position, which can move the

associated bodies. This only works when the connection is aligned as an axially normal plane.

To be discretized, connections find overlaps of node contacts, which over the course of

discretization, have been received from the environment, bodies and bridges. In many cases the

56

properties of the faces that are generated from these overlaps will vary with respect to angular

position, thus these properties are stored as arrays, one value for each angular increment.

2.3.5 Bridges

A bridge is a geometric construct that facilitates the interface between two bodies, which may

or may not be part of the same group. These interfaces can occur between connections of

perpendicular and aligned orientations. The referenced bodies then connect, in disregard for any

existing external connections at that location.

There are four permutations of bridge definition. The first two are types which could have been

constructed as a combined structure from the start but convenience or perhaps requirements by the

program have made it more convenient to have separate. These versions are shown on Figure 2.10

below along with the third and fourth type. The third type of bridge is where the two selected

connections are both horizontal, much like type 1, but their axis are misaligned such that the node

interactions are only partial interactions. The fourth type is where there is a mix, where a horizontal

connection contacts the side of a vertical connection.

Figure 2.10: Permutations of the bridge component definition (1) two horizontal (disk)

faces are stacked along a central axis (2) two vertical (annular shell) faces are aligned at

some offset from the origin (3) two horizontal faces are stacked with axis offset by a

specified amount (4) a horizontal face is perpendicularly mated up against a vertical face

with the axis at a prescribed offset from the origin of the vertically aligned face.

Type 1 and 2 add their own node contacts to the register of the foundation connection, and trim

node contacts on that register that both overlap the new contacts and are not from either body.

Types 3 and 4, as their construction is much more involved, create a series of faces of size equal

57

to that which was produced by the overlap of 2 annular rings – in the case of type 3 – or an annular

ring and rectangle – in the case of type 4. The software then modifies the existing node contacts

by changing their porosity value, which will modify the area of faces created in subsequent

operations within the connection. It is important to note that because the software assumes that the

model is axially symmetric, any resulting faces are also axially symmetric, thus faces end up

stretched around the entire body rather than towards one side of the body.

2.3.6 Leaks

A leak component is a special feature that connects two separate bodies as if connected by a

small channel. When the leak is discretized, it forms a special face that stores the rate law

parameters for use by the solver. The rate law employed by default here is of the general form,

which has been applied as far back as 1881 [53].

𝑉̇ = 𝐶. (𝑃1 − 𝑃2)
𝑁1 (30)

where: 𝐶: Leakage number

 𝑁1: Leakage exponent

2.3.7 Non-Connection

A non-connection was added so that the designer could create idealized representations. If two

bodies were not supposed to interact via conduction, convection, or transport, then the non-

connection can turn off these interactions by filtering the produced faces.

2.3.8 Custom Minor Losses

The custom minor loss feature was added to override the default defined minor loss coefficient

created between any two bodies. This feature also allows the user to add facsimile of check valves

by having a small loss in one direction, but a large loss in the other. Given the discussion defined

in CHAPTER 3, this will only work as a check valve when the face is a part of a loop, due to the

uniform pressure assumption, thus an alternative path must be provided, or the fluid will flow

regardless.

58

2.3.9 Frames

A frame is a container for holding a position vector and mechanism reference. Connections that

contain a frame reference and are subject to pressure or shear force produce a Pressure or Shear

Contact object, which during simulation will pass these forces onto the mechanism itself.

2.3.10 Mechanism

Within the code, the mechanism is a container for a series of connected linear to rotational

mechanism. These sub mechanisms all share a common angular motion state. The mechanism

itself takes an accumulated driveshaft load as an input to its own internal friction, inertia, and load

calculations to return an acceleration. Generally, the flywheel and power outputs are defined within

this object. Currently the code does not support multiple mechanisms with multiple angular

positions, which would be one way to simulate free-piston engines or engines that have a free-

floating displacer piston.

The child linear to rotational mechanisms turn the rotation of the drive shaft into a translation,

that can be applied to a boundary. During each calculation step, occurring once per angular

increment, an average pressure force is calculated for all faces aligned normal to their motion.

These pressure forces form a combined piston load for each installed linear to rotational

mechanism – the forms of which can be found in the following sections. Each of these linear to

rotational mechanisms is derived to solve its internal friction and inertia and provide to the

driveshaft a pair of normal forces as well as a torque force.

Each mechanism contains stored coefficient vectors in the form of:

𝐹 = 𝐴(𝜃)𝛼 + 𝐵(𝜃)𝜔2 + 𝐺(𝜃) + 𝐸(𝜃)𝐹𝑝 same as

(8)

where: 𝐴(𝜃): Coefficient on angular acceleration (𝛼), represents the system

inertia as a function of angular position (𝜃)

 𝐵(𝜃): Coefficient on angular velocity squared (𝜔2), represents internal

inertia as a function of angular position (𝜃)

59

 𝐺(𝜃): Gravitation force, as a function of angular position (𝜃)

 𝐸(𝜃): Coefficient on piston force (𝐹𝑝), which represents how the piston

force, when translated through the mechanism produces a load on the

drive shaft.

In addition to the coefficients, all internal loads required to calculate the friction load (𝐹𝑓) are

also stored, which have their own equations of the same form. Friction is a relatively small

component of internal forces, thus its effect on itself and normal forces is ignored and simply

subtracted from the torque after its power consumption is calculated, via:

𝐸̇𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = −|𝜔𝑇𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛| = −|𝑣𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛| (31)

The following sub-sections are common mechanisms used by DTECL; additional mechanisms

can be added to the code by following the template laid out by these. If a motion is desired, more

than the mechanism behind it, then the custom profile mechanism attempts to predict some of the

physics for such an unknown mechanism.

2.3.10.1 Slider-crank Mechanism

The slider-crank is by far the most recognizable linear to rotational

mechanism. The slider-crank is used almost universally by internal combustion

engines, this commonality leads it to be a convenient mechanism when designing

Stirling engines. Constructed out of 3 components: the crank arm, the connecting

rod, and the piston. There are three loss mechanisms associated with slider-

cranks that are considered: friction between the crank and connecting rod,

friction between the connecting rod and the piston and friction of the piston seal,

all of which are subtracted from the final torque. The derivation of the parameters

can be found in Appendix A.1.

60

2.3.10.2 Rhombic Drive

The rhombic drive is a very common mechanism in beta-type Stirling engines,

utilized primarily for its compact design and reduced side loads. Also, the

rhombic drive can be constructed such that it drives both the displacer and power

piston on the same mechanism through the addition of a secondary set of

connecting rods and a nested shaft. In its essence, a rhombic drive is simply a

double slider-crank mechanism and thus its parameter derivation is built upon

the solution of the slider-crank with some specific modification, this derivation

can be found in Appendix A.2.

2.3.10.3 Scotch Yoke

The Scotch yoke mechanism is a relative of the slider-crank mechanism that,

instead of a connecting arm, depends on a slot linkage to drive the piston forward.

The Scotch yoke is often used because its side loads are more easily managed or

relatively low due to the roller system. Another notable property of the scotch

yoke is that it produces a truly sinusoidal motion profile. The derivation of the

parameters can be found in Appendix A.3.

2.3.10.4 Ideal Sinusoidal Mechanism

The ideal sinusoidal motion model is intended for use at the early stage of engine development.

The sinusoidal model is a frictionless scotch yoke and is only distinct as its definition interface is

based solely on the properties of the sine wave itself without introducing linkage dimensions. The

derivation of these parameters can be found in Appendix A.4.

2.3.10.5 Custom Motion Mechanism

The user can test different motion profiles for their effect on the thermodynamic cycle using a

custom motion mechanism. This mechanism results in a model that approximates the inertia of the

piston and driving mechanism through analysing the provided motion profile. The formulation is

discussed in Appendix A.5.

61

2.4 Conclusion

Through the discussions presented in this chapter, it was established that the gas would be

modelled as a one-dimensional pipe network of uniform pressure. All geometry would be

considered axially symmetric, under the reasoning that well-designed Stirling engines are built in

that fashion. Under that, the solid would be modelled as a two-dimensional network. The

mechanism, due to low accelerations, would lag the gas network by short angular increments, in

which the velocity was deterministic.

Those discussions lead to the establishing of a model definition composed of annular blocks of

material, that connect to each other via mobile surfaces, grouped around a common axis. Bridges

and a variety of surface modifiers were added to support specialized geometry. Fine structures are

represented by network generating matrix components. These constructs decompose into a

network of smaller allotments of material called nodes and the faces that link them together. The

following chapter will discuss the mathematics required to solve this network.

62

 CORE MATHEMATICAL PROCESSES

The following sections outline most of the mathematics used to solve the model during a

simulation. The mathematical complexities of specific components outlined in the subsections

within CHAPTER 2. This chapter in combination with CHAPTER 5 brings it all together into a

network solvable by a computer.

3.1 Terminology

The following terminology is defined here, other terms such as nodes, faces and the

environment are defined in CHAPTER 2.

Region: A region is a set of gas nodes, which are always connected during the entire cycle

through one path or another.

Loop: A loop occurs whenever there is more than one path between one part of a region to

another part of a region. A loop that often occurs in gamma type engines is the path past the

displacer and the path through the heat exchangers, which represent two different ways to get to

form the compression to expansion space.

3.2 General Heat Transfer

3.2.1 Thermal Conduction Within Solids

The solid conduction model is based upon Fourier’s Law, which calculate the thermal energy

transfer rate (𝐸̇𝑐𝑜𝑛𝑑).

𝐸̇𝑐𝑜𝑛𝑑 = 𝑘. 𝐴.
𝑑𝑇

𝑑𝑥
 (32)

where: 𝑘: Conduction coefficient of conducting material.

 𝐴: Cross-sectional area over which conduction occurs.

 𝑥: Position along the direction of heat flow.

63

This can be rearranged to suit the case of conduction between nodes.

𝐸̇𝑐𝑜𝑛𝑑,𝑓𝑐 =
𝐴𝑓𝑐

𝐿𝑖→𝑓𝑐
𝑘𝑖

+
𝐿𝑓𝑐→ 𝑗
𝑘𝑗

(𝑇𝑖 − 𝑇𝑗)
(33)

where: 𝐴𝑓𝑐, 𝐸̇𝑐𝑜𝑛𝑑,𝑓𝑐: Cross-sectional area and thermal energy transfer rate

of face, from node 𝑖 to 𝑗.

 𝐿𝑖→𝑓𝑐, 𝐿𝑓𝑐→𝑗: Absolute distance, normal to the face, from the center of

node 𝑖 or 𝑗 to the face’s surface.

 𝑘𝑖 , 𝑘𝑗 , 𝑇𝑖, 𝑇𝑗: Conduction coefficients and temperatures associated with

the nodes 𝑖 or 𝑗.

In its final form, as seen in the model:

𝐸̇𝑐𝑜𝑛𝑑,𝑓𝑐 = 𝐶𝑐𝑜𝑛𝑑. (𝑇𝑖 − 𝑇𝑗) (34)

where: 𝐶𝑐𝑜𝑛𝑑: Combined coefficient that converts a temperature difference into

an energy flux.

Within the model faces can vary with angular position, thus this conductance property is

condensed into a single interpolated property. For static faces only the result of the above

coefficient is stored. This property is assumed to be constant concerning temperature.

3.2.2 Thermal Conduction Within Gases

Conduction between gas nodes is much like conduction between two solid nodes. Here only

molecular conduction is solved. Radiation would also be solved here but is ignored in this model

due to the low temperatures assumption. Thermal energy that is carried with mass flows is solved

within the volumetric flow rate solving step, section 3.3.

𝐸̇𝑐𝑜𝑛𝑑 = 𝑘. 𝐴.
𝜕𝑇

𝜕𝑥
 (35)

64

This is arranged to suit the case of internodal conduction/convection. The factor 𝑁𝑘 is a

dimensionless conduction enhancement factor, which arises when turbulence or geometrical

pathing enhances the streamwise mixing action.

𝐸̇𝑐𝑜𝑛𝑑,𝑓𝑐 =
𝑁𝑘𝑓𝑐. 𝑘𝑖𝑗 . 𝐴𝑓𝑐

𝐿𝑖→𝑗
(𝑇𝑖 − 𝑇𝑗) = 𝐶𝑐𝑜𝑛𝑑. (𝑇𝑖 − 𝑇𝑗) (36)

where: 𝑁𝑘𝑓𝑐: Conduction enhancement factor.

 𝑘𝑖𝑗: Thermal conduction coefficient measured at the face, equal to the

average value of node 𝑖 and 𝑗’s conduction coefficient.

 𝐿𝑖→𝑗: Cumulative distance between the center of node 𝑖 to the center of

the face to the center of node 𝑗.

3.2.3 Thermal Conduction Between Solids and Gases

The conduction model between gases and solids is based upon the combination of conduction

and convection; radiation is ignored.

𝐸̇𝑐𝑜𝑛𝑑 =
𝐴𝑓𝑐

𝐿𝑖→𝑓𝑐
𝑘𝑖

+
1
ℎ𝑗

(𝑇𝑖 − 𝑇𝑗)
(37)

where: Node 𝑖 is the solid node and node 𝑗 is the gas node.

 ℎ𝑗: Is the convection coefficient produced by gas node 𝑗’s internal

geometry and flow conductions.

This is arranged to suit the case of internodal conduction/convection.

Due to the existence of variable area contacts, resistance is stored as the product of thermal

resistance and area. The following equation is modified to move area to the numerator, and use

𝑅𝐴 in the denominator. As resistance is equivalent to a constant over area, multiplying by area

gives a constant. In this way, only area must be interpolated as resistance is proportional to the

inverse of area.

65

𝐸̇𝑐𝑜𝑛𝑑,𝑓𝑐 =
𝐴𝑓𝑐

𝑅𝑖→𝑓𝑐. 𝐴𝑓𝑐 + (
𝑑ℎ

𝑁𝑁𝑈. 𝑘
)
𝑗

(𝑇𝑖 − 𝑇𝑗)

where: 𝑁𝑁𝑈: The Nusselt number equal to
ℎ.𝑑ℎ

𝑘

 𝑑ℎ: Hydraulic diameter with respect to the flow in node 𝑗

(38)

In a special case of constant convection coefficient, the system can be simplified to that of the

solid conduction. This is what is applied for connections to the environment.

3.2.4 Shearing Conduction Enhancement

In Stirling engines with a displacer piston, there is always a region of gas, called the annular

gap, that undergoes shearing. The act of shearing will affect the effective axial conduction

coefficient. This effect is approximated by assuming two things, which are also displayed

graphically in Figure 3.1:

1. Shearing conduction enhancement occurs

independently of transport via bulk convection.

2. A gas node is a uniform temperature with a

discontinuity at the face between.

3. The shear velocity profile is fully developed and

linear.

4. After crossing the boundary, flows mix completely.

Figure 3.1: Illustration of shear

driven mixing

This equation introduces a non-dimensional number called the shear velocity factor, shear

velocity is equal to the ratio of shear speed over rotational speed. The mass exchanged is equal to

the following:

𝑚̇𝑓𝑐 = (
𝐴𝑓𝑐

2
)

⏟
𝐶𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑜𝑣𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑖𝑡 𝑜𝑐𝑐𝑢𝑟𝑠

(
𝐹𝑠ℎ𝑒𝑎𝑟 . 𝜔

2
)

⏟
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝜌𝑓𝑐⏟
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝐹𝑎𝑐𝑒

=
1

4
𝐴𝑓𝑐. 𝐹𝑠ℎ𝑒𝑎𝑟 . 𝜔. 𝜌𝑓𝑐

(39)

66

where: 𝐹𝑠ℎ𝑒𝑎𝑟 = The face shearing rate expressed as velocity over angular

speed.

 𝜌𝑓𝑐: Density calculated at face. In the current implementation this value

is taken from the node directly upstream from the face.

 𝜔: Angular velocity of engine.

The rate of thermal energy conducted downstream by shear (𝐸̇𝑠ℎ𝑒𝑎𝑟) is equal to the following:

𝐸̇𝑠ℎ𝑒𝑎𝑟 = 𝑐𝑣. 𝑚̇𝑓𝑐 . (𝑇𝑖 − 𝑇𝑗) =
1

4
𝑐𝑣. 𝐹𝑠ℎ𝑒𝑎𝑟 . 𝜔. 𝜌𝑓𝑐. 𝐴𝑓𝑐 . (𝑇𝑖 − 𝑇𝑗) (40)

where: 𝑐𝑣: Thermal heat capacity with respect to constant volume.

This converts into a conduction coefficient for shear (𝐶𝑠ℎ𝑒𝑎𝑟) which is added to the existing

conduction coefficient:

𝐶𝑠ℎ𝑒𝑎𝑟 =
1

4
𝑐𝑣. 𝐹𝑠ℎ𝑒𝑎𝑟 . 𝜔. 𝜌𝑓𝑐. 𝐴𝑓𝑐 (41)

3.3 Determining Flow Rates

The following sections outline the determination, implicitly, of the flow rates between nodes of

the engine. This is derived starting from the foundation of equal pressures.

3.3.1 Assumptions

The following assertions lead to inertia independent scheme for solving for the approximate

internal thermodynamics of a Stirling Engine.

1. Pressure throughout connected regions is uniform in space but not time, in other words,

pressure change due to temperature and volume changes is much greater than pressure

changes from flow losses or acoustics.

2. The air within the engine behaves as an ideal gas, following the law: 𝑃 =
𝑚.𝑅𝑠𝑝𝑒𝑐.𝑇

𝑉

67

3. The engine rotational velocity changes are negligible within small angular increments of

the cycle. Within these increments velocity is assumed to be known, but velocity may still

evolve in a rate that lags by an increment.

4. Boundary work on a single node within a region is distributed among nodes of the region

as if all the nodes were grouped into one.

5. Potential energy and kinetic energy concerning the gas is ignored given the low densities of

gas molecules and small vertical displacements.

6. Energy transport via radiation is ignored it is dependent on temperature to the fourth power

which for low temperatures results in a much lower effect at low temperature compared to

other thermal energy transport modes.

3.3.2 Deriving the Systems of Equations

The values of volume flow rate, internal energy, nodal mass and temperature of the engine are

solved based on the equations derived in the following section.

In consideration of the inherent compressibility of the Stirling engine system and avoiding

methods that encourage the emergence of undesirable acoustic effects, the following assumption

was used as the basis on which to derive the set of equations. The engine was first divided into

distinct regions, within which a uniform pressure would be enforced:

𝑃𝑖 = 𝑃𝑗 (42)

where: 𝑖, 𝑗: refer to two different nodes that fall within the same gas
region, whereas a gas region is an area of the engine which
is always fully connected throughout the cycle.

This equation states that the pressure of each node constituting a connected volume within the

engine has equal pressure. Starting from here the following is true for all nodes within a region:

(
𝑚. 𝑅𝑠𝑝𝑒𝑐 . 𝑇

𝑉
)
𝑖,𝑡
= (

𝑚.𝑅𝑠𝑝𝑒𝑐 . 𝑇

𝑉
)
𝑗,𝑡

where: 𝑡: refers to the state at the current timestep.

68

Thus, after a time step, the same condition applies:

(
𝑚. 𝑅𝑠𝑝𝑒𝑐 . 𝑇

𝑉
)
𝑖,𝑡+𝛿

= (
𝑚.𝑅𝑠𝑝𝑒𝑐 . 𝑇

𝑉
)
𝑗,𝑡+𝛿

 (43)

where: 𝑡 + 𝛿: refers to the next state, after the timestep is traversed.

The specific gas constant: 𝑅𝑠𝑝𝑒𝑐 is assumed constant over a region, therefore it is removed in

further calculations. The first quantity, the volume at the new time (𝑉𝑖,𝑡+𝛿), is easily determined,

as the volume at any angular position is predetermined by assumption 3:

𝑉𝑖,𝑡+𝛿 = 𝑓𝑉𝑖(𝜃𝑡+𝛿) (44)

The second property, the mass of the gas node at the new time (𝑚𝑖,𝑡+𝛿), is as follows:

𝑚𝑖,𝑡+𝛿 = 𝑚𝑖,𝑡 +∑((𝑉̇. 𝑦. 𝛿. 𝜌)
𝑓𝑐
) (45)

where: 𝑦: Sign of face with regards the sign convention of volume flow rate.
If 𝑖 is listed second with regards to face 𝑓𝑐 then 𝑦 = 1. Otherwise,
𝑦 = −1.

The third property, nodal temperature at the new time (𝑇𝑖,𝑡+𝛿), must be determined via an energy

balance. The 1st law of thermodynamics is commonly represented as the following:

Δ𝐸𝑡𝑜𝑡 = Δ𝑄𝑡𝑜𝑡 − Δ𝑊𝑡𝑜𝑡 (46)

Whereas Δ𝑈𝑡𝑜𝑡 is the change in the total internal energy of the control volume. Δ𝑄𝑡𝑜𝑡 is the

transference of energy to the control volume through thermal energy. Δ𝑊𝑡𝑜𝑡 is the transference of

energy away from the control volume by a force acting over a distance? The internal energy can

be expanded into kinetic, potential, and internal energy.

Δ𝐸𝑡𝑜𝑡 = 𝛥𝐸𝑘𝑖𝑛 + Δ𝐸𝑝𝑜𝑡 + Δ𝑈 (47)

69

The term Δ𝑄𝑡𝑜𝑡 can be expanded to include energy that is conducted to the control volume and

energy that is transported to the control volume in the form of internal thermal energy.

𝛥𝑄𝑡𝑜𝑡 = Δ𝑡∑𝑉̇. 𝑦. 𝜌. 𝑢 + Δ𝑄 (48)

The term Δ𝑊𝑡𝑜𝑡 can be expanded to include the flow work, kinetic energy and potential energy

of a flow as well as the boundary work.

𝛥𝑊𝑡𝑜𝑡 = −Δ𝑡∑𝑉̇. 𝑦. 𝜌 (𝑃. 𝑣 +
𝑈2

2
+ 𝑔. 𝑧) + 𝑃𝛥𝑉 (49)

Combining the expanded terms and converting into a derivative form the following equation is

obtained:

𝐸̇𝑘𝑖𝑛⏟
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒
𝑜𝑓 𝐾𝑖𝑛𝑒𝑡𝑖𝑐
𝐸𝑛𝑒𝑟𝑔𝑦

+ 𝐸̇𝑝𝑜𝑡⏟
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒
𝑜𝑓 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝐸𝑛𝑒𝑟𝑔𝑦

+ 𝑈̇⏟
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒
𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝐸𝑛𝑒𝑟𝑔𝑦

=∑ 𝑉̇. 𝑦. 𝜌⏟
𝑀𝑎𝑠𝑠

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
𝑅𝑎𝑡𝑒 𝐴𝑐𝑟𝑜𝑠𝑠
𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (

𝑢⏟
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝐸𝑛𝑒𝑟𝑔𝑦

+ 𝑃. 𝑣⏟
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒−
𝑉𝑜𝑙𝑢𝑚𝑒
𝐸𝑛𝑒𝑟𝑔𝑦

+
𝑈2

2⏟
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝐾𝑖𝑛𝑒𝑡𝑖𝑐
𝐸𝑛𝑒𝑟𝑔𝑦

+ 𝑔. 𝑧⏟
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝐸𝑛𝑒𝑟𝑔𝑦)

+ 𝑄̇⏟
𝐻𝑒𝑎𝑡
𝑃𝑜𝑤𝑒𝑟
𝑖𝑛𝑡𝑜 𝑡ℎ𝑒
𝑆𝑦𝑠𝑡𝑒𝑚

− (𝑃𝑉̇)⏟
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑊𝑜𝑟𝑘
𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑜𝑛

𝑡ℎ𝑒 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑠

(50)

Several simplifications are applied to this equation:

1. Gravitational potential energy is ignored due to the short vertical distances found in

Stirling engines in combination with the low density of the working fluid.

2. 𝑄̇ and 𝑊̇𝑏 are combined into a single term 𝐸̇𝑒𝑥𝑡 which encompasses the thermal energy

conducted into the node and the boundary work or flow work acting externally on the

region, based on assumption 4.

70

3. Kinetic energy between nodes is ignored due to the low speeds and low densities of the

target engine environments.

4. Internal energy and flow work is combined into a single enthalpy term.

These simplifications result in:

𝐸̇𝑘𝑖𝑛⏟
3

+ 𝐸̇𝑝𝑜𝑡⏟
1

+ 𝑈̇ =∑𝑉̇. 𝑦. 𝜌. (𝑢 +
𝑃

𝜌
+
𝑈2

2⏟
3

+ 𝑔. 𝑧⏟
1

) + 𝑄̇ − 𝑃. 𝑉̇

Which results in the following:

𝐸̇𝑖𝑛𝑡 =∑(𝑉̇. 𝑦. 𝜌. (𝑢 +
𝑃

𝜌
))

𝑓𝑐

− 𝑃. 𝑉̇ + 𝐸̇𝑒𝑥𝑡 (51)

where: 𝑢𝑓𝑐: Specific enthalpy, measured at the face, in the current

implementation this value is calculated using the Van-Alibaba flux
limiter [54] between a 1st order unwinding and 4th order polynomial
to prevent numerical artifacts.

 𝑃𝑓𝑐: Pressure as measured at the face, is the same as the pressure

throughout the region.

 𝜌𝑓𝑐: Density, measured at a face. Calculated using average of upstream

and downstream values.

The composite term: (𝑉̇. 𝑦. 𝜌)
𝑓𝑐

 is collapsed into 𝑚̇𝑓𝑐 in the next section for clarity.

For ideal gases it is commonly known that the change in temperature is dependent on the

internal energy.

𝑑𝑇

𝑑𝑡
=
1

𝑐𝑣

𝑑𝑢

𝑑𝑡
 (52)

To calculate the next temperature:

71

𝑇𝑖,𝑡+𝛿 = 𝑇𝑖,𝑡 +
1

𝑐𝑣𝑖,𝑡

(

𝑚𝑖,𝑡. 𝑢𝑖,𝑡 + 𝛿∑ 𝑚̇𝑓𝑐,𝑖,𝑡.(𝑢𝑓𝑐 +

𝑃𝑓𝑐,𝑡
𝜌
𝑓𝑐,𝑡

) − 𝛿. 𝑃𝑖 . 𝑉̇𝑖 + 𝛿. 𝐸̇𝑒𝑥𝑡𝑖

𝑚𝑖,𝑡+𝛿

− 𝑢𝑖,𝑡

)

 (53)

The equation for 𝑇𝑖,𝑡+𝛿 can be inserted into equation (43).

(

𝑇𝑖,𝑡 +

1

𝑐𝑣𝑖,𝑡
(

𝑚𝑖,𝑡 . 𝑢𝑖,𝑡 + 𝛿∑ 𝑚̇𝑓𝑐,𝑖,𝑡 . (𝑢𝑓𝑐 +

𝑃𝑓𝑐,𝑡
𝜌𝑓𝑐,𝑡

) − 𝛿. 𝑃𝑖 . 𝑉̇𝑖 + 𝛿. 𝐸̇𝑒𝑥𝑡𝑖

𝑚𝑖,𝑡+𝛿

− 𝑢𝑖,𝑡

)

)

 𝑚𝑖,𝑡+𝛿

𝑉𝑖,𝑡+𝛿
=

𝑃𝑗

𝑅𝑠𝑝𝑒𝑐
 (54)

Multiplying 𝑚𝑖,𝑡+𝛿 into the bracketed expression yields the following equation:

(𝑇𝑖,𝑡 .𝑚𝑖,𝑡+𝛿 +
1

𝑐𝑣𝑖,𝑡
(𝑚𝑖,𝑡 . 𝑢𝑖,𝑡 + 𝛿∑𝑚̇𝑓𝑐,𝑖,𝑡 . (𝑢𝑓𝑐 +

𝑃𝑓𝑐,𝑡

𝜌𝑓𝑐,𝑡
) − 𝛿. 𝑃𝑖 . 𝑉̇𝑖 + 𝛿. 𝐸̇𝑒𝑥𝑡𝑖

− 𝑢𝑖,𝑡 .𝑚𝑖,𝑡+𝛿))
1

𝑉𝑖,𝑡+𝛿
=

𝑃𝑗

𝑅𝑠𝑝𝑒𝑐

(55)

Expanding the value of 𝑚𝑖,𝑡+𝛿 here:

(𝑇𝑖,𝑡 . 𝑚𝑖,𝑡 + 𝑇𝑖,𝑡 . 𝛿∑(𝑚̇𝑓𝑐. 𝑢𝑢𝑝)𝑖,𝑡

+
1

𝑐𝑣𝑖,𝑡
(𝑚𝑖,𝑡 . 𝑢𝑖,𝑡 + 𝛿∑𝑚̇𝑓𝑐,𝑖,𝑡 . (𝑢𝑓𝑐 +

𝑃𝑓𝑐,𝑡

𝜌𝑓𝑐,𝑡
) − 𝛿. 𝑃𝑖 . 𝑉̇𝑖 + 𝛿. 𝐸̇𝑒𝑥𝑡𝑖 − 𝑢𝑖,𝑡 . 𝑚𝑖,𝑡

− 𝑢𝑖,𝑡 . 𝛿∑𝑚̇𝑓𝑐,𝑖,𝑡))
1

𝑉𝑖,𝑡+𝛿
=

𝑃𝑗

𝑅𝑠𝑝𝑒𝑐

(56)

Collapsing the sums into a single sum, this is possible because they all reference the same series

of faces that access the node 𝑖.

72

1

𝑉𝑖,𝑡+𝛿
(𝑇𝑖,𝑡 .𝑚𝑖,𝑡 + 𝛿∑(𝑚̇𝑓𝑐,𝑖,𝑡 (𝑇𝑖,𝑡 +

1

𝑐𝑣𝑖,𝑡
(𝑢𝑓𝑐,𝑡 − 𝑢𝑖,𝑡 +

𝑃𝑓𝑐,𝑡

𝜌𝑓𝑐,𝑡
)))

+
𝑚𝑖,𝑡 . 𝑢𝑖,𝑡 − 𝛿. 𝑃𝑖 . 𝑉̇𝑖 + 𝛿. 𝐸̇𝑒𝑥𝑡𝑖 − 𝑢𝑖,𝑡 .𝑚𝑖,𝑡

𝑐𝑣𝑖,𝑡
) =

𝑃𝑗

𝑅𝑠𝑝𝑒𝑐

(57)

Canceling out duplicate terms and reordering yields the following equation, which includes

both 𝑇𝑖,𝑡+𝛿 and 𝑚𝑖,𝑡+𝛿 . When a set over the entire region, implicitly solves for the value of 𝑉̇𝑓𝑐

when subjected to matrix inversion. Here, 𝑚̇ is re-expanded to expose 𝑉̇.

1

𝑉𝑖,𝑡+𝛿
(𝑇𝑖,𝑡 . 𝑚𝑖,𝑡 +

𝛿. (𝐸̇𝑒𝑥𝑡𝑖 − 𝑃𝑖 . 𝑉̇𝑖)

𝑐𝑣𝑖,𝑡
)

+
1

𝑉𝑖,𝑡+𝛿
∑(𝑉̇. 𝑦. 𝜌. 𝛿)

𝑓𝑐,𝑖,𝑡
(𝑇𝑖,𝑡 +

1

𝑐𝑣𝑖,𝑡
(𝑢𝑓𝑐,𝑡 − 𝑢𝑖,𝑡 +

𝑃𝑓𝑐,𝑡

𝜌𝑓𝑐,𝑡
)) =

𝑃𝑗

𝑅𝑠𝑝𝑒𝑐

(58)

The exact same procedure can be conducted on the right-hand side to produce the following

equation.

1

𝑉𝑖,𝑡+𝛿
(𝑇𝑖,𝑡 . 𝑚𝑖,𝑡 +

𝛿. (𝐸̇𝑒𝑥𝑡𝑖 − 𝑃𝑖 . 𝑉̇𝑖)

𝑐𝑣𝑖,𝑡
)

+
1

𝑉𝑖,𝑡+𝛿
∑(𝑉̇. 𝑦. 𝜌. 𝛿)

𝑓𝑐,𝑖,𝑡
(𝑇𝑖,𝑡 +

1

𝑐𝑣𝑖,𝑡
(𝑢𝑓𝑐,𝑡 − 𝑢𝑖,𝑡 +

𝑃𝑓𝑐

𝜌𝑓𝑐
))

=
1

𝑉𝑗,𝑡+𝛿
(𝑇𝑗,𝑡 . 𝑚𝑗,𝑡 +

𝛿. (𝐸̇𝑒𝑥𝑡𝑗 − 𝑃𝑗 . 𝑉̇𝑗)

𝑐𝑣𝑗,𝑡
)

+
1

𝑉𝑗,𝑡+𝛿
∑(𝑉̇. 𝑦. 𝜌. 𝛿)

𝑓𝑐,𝑗,𝑡
(𝑇𝑗,𝑡 +

1

𝑐𝑣𝑗,𝑡
(𝑢𝑓𝑐,𝑡 − 𝑢𝑗,𝑡 +

𝑃𝑓𝑐

𝜌𝑓𝑐
))

(59)

The terms of the full equation in for form A𝑽̇ = 𝒃 are as follows:

Values of each element of column vector 𝒃. Here, each entry is for a face. Each face has two

nodes a node which a positive flow exits and a node which a positive flow enters, these are

presented as 𝑖𝑘 and 𝑗𝑘 respectively – where 𝑘 is the face index.

73

𝑏𝑘 = 𝐹(𝑖, 𝑗) =
1

𝛿𝑉𝑖,𝑡+𝛿
(𝑇𝑖,𝑡 . 𝑚𝑖,𝑡 +

𝛿. (𝐸̇𝑒𝑥𝑡𝑖 − 𝑃𝑖 . 𝑉̇𝑖)

𝑐𝑣𝑖,𝑡
) −

1

𝛿𝑉𝑗,𝑡+𝛿
(𝑇𝑗,𝑡 .𝑚𝑗,𝑡 +

𝛿. (𝐸̇𝑒𝑥𝑡𝑗 − 𝑃𝑗 . 𝑉̇𝑗)

𝑐𝑣𝑗,𝑡
)

𝒃 =

[

𝑏1
𝑏2
⋮

𝑏𝑁𝑓𝑐𝑠]

=

[

𝐹(𝑖1, 𝑗1)

𝐹(𝑖2, 𝑗2)
⋮

𝐹 (𝑖𝑁𝑓𝑐𝑠 , 𝑗𝑁𝑓𝑐𝑠)]

(60)

where: 𝑁𝑓𝑐𝑠: The number of faces being solved.

Values for each row of matrix 𝐴, whereas the column is defined by the face associated with the

value of 𝑉̇. Each row contains all the inflows and outflows for a pair of nodes 𝑖 and 𝑗.

𝑔(𝑖, 𝑓𝑐) = {

𝛿

𝑉𝑖,𝑡+𝛿
(𝑦. 𝜌)𝑓𝑐,𝑖,𝑡 (𝑇𝑖 +

1

𝑐𝑣𝑖
(𝑢𝑓𝑐 − 𝑢𝑖 +

𝑃𝑓𝑐

𝜌𝑓𝑐
))

𝑡

if node 𝑖 and face 𝑓𝑐 touch

0 otherwise

A =

[

𝑔(𝑗1, 1) − 𝑔(𝑖1, 1) 𝑔(𝑗1, 2) − 𝑔(𝑖1, 2) ⋯ 𝑔(𝑗1, 𝑁𝑓𝑐𝑠) − 𝑔(𝑖1, 𝑁𝑓𝑐𝑠)

𝑔(𝑗2, 1) − 𝑔(𝑖2, 1) 𝑔(𝑗2, 2) − 𝑔(𝑖2, 2) ⋯ 𝑔(𝑗2, 𝑁𝑓𝑐𝑠) − 𝑔(𝑖2, 𝑁𝑓𝑐𝑠)

⋮ ⋮ ⋱ ⋮

𝑔 (𝑗𝑁𝑓𝑐𝑠 , 1) − 𝑔(𝑖𝑁𝑓𝑐𝑠 , 1) ⋯ … 𝑔 (𝑗𝑁𝑓𝑐𝑠 , 𝑁𝑓𝑐𝑠) − 𝑔(𝑖𝑁𝑓𝑐𝑠 , 𝑁𝑓𝑐𝑠)]

(61)

There is a simplification to this when the region includes the environment, which is a node with

constant pressure.

(𝑇𝑖,𝑡 .𝑚𝑖,𝑡 +
𝛿. (𝐸̇𝑒𝑥𝑡𝑖 − 𝑃𝑖 . 𝑉̇𝑖)

𝑐𝑣𝑖,𝑡
) + 𝛿 ∑ 𝑉̇𝑓𝑐,𝑡 (𝑦𝑓𝑐,𝑖 . 𝜌𝑓𝑐 (𝑇𝑖 +

1

𝑐𝑣𝑖
(𝑢𝑓𝑐 − 𝑢𝑖 +

𝑃𝑓𝑐

𝜌𝑓𝑐
)))

𝑡
𝑓𝑎𝑐𝑒𝑠 𝑖𝑛 "𝑖"

=
𝑉𝑖,𝑡+𝛿 . 𝑃𝑒𝑛𝑣
𝑅𝑠𝑝𝑒𝑐

(62)

𝑏𝑘 = 𝐹(𝑖, 𝑗) =
1

𝛿
(
𝑉𝑖,𝑡+𝛿 . 𝑃𝑒𝑛𝑣
𝑅𝑠𝑝𝑒𝑐

− 𝑇𝑖,𝑡. 𝑚𝑖,𝑡 −
𝛿. (𝐸̇𝑒𝑥𝑡𝑖 − 𝑃𝑖. 𝑉̇𝑖)

𝑐𝑣𝑖,𝑡
) (63)

74

𝑔′(𝑖, 𝑓𝑐) =

{

𝑉̇𝑓𝑐,𝑡 (𝑦𝑓𝑐,𝑖. 𝜌𝑓𝑐 (𝑇𝑖 +

1

𝑐𝑣𝑖
(𝑢𝑓𝑐 − 𝑢𝑖)))

𝑡

if node 𝑖 and face 𝑓𝑐 touch

0 otherwise

𝐴 =

[

𝑔′(𝑖1, 1) 𝑔′(𝑖1, 2) ⋯ 𝑔′(𝑖1, 𝑁𝑓𝑐𝑠)

𝑔′(𝑖2, 1) 𝑔′(𝑖2, 2) ⋯ 𝑔′(𝑖2, 𝑁𝑓𝑐𝑠)

⋮ ⋮ ⋱ ⋮

𝑔′ (𝑖𝑁𝑓𝑐𝑠 , 1) 𝑔′ (𝑖𝑁𝑓𝑐𝑠 , 2) ⋯ 𝑔′ (𝑖𝑁𝑓𝑐𝑠 , 𝑁𝑓𝑐𝑠)]

(64)

The term 𝐸̇𝑒𝑥𝑡 represents the components of energy exchange to the node that can be

approximated using a previous value of the Reynolds number as between iterations the flow rate

changes are assumed to be small. This is defined:

𝐸̇𝑒𝑥𝑡𝑖 = ∑ (𝑦𝑖. 𝐶𝑐𝑜𝑛𝑑. ΔT)fc
𝐺𝑎𝑠−𝑆𝑜𝑙𝑖𝑑

+ ∑ (𝑦𝑖. 𝐶𝑐𝑜𝑛𝑑. ΔT)𝑓𝑐
𝐺𝑎𝑠−𝐺𝑎𝑠

 (65)

3.3.3 Verifying as a Polytropic Process

Stirling engines are a polytropic process, meaning that they exist anywhere along the spectrum

of processes. The polytropic index is a representation of the type of process that is going on.

𝑛 = (1 − 𝛾)
𝛿𝑞

𝛿𝑤
+ 𝛾 (66)

where: 𝑛 = 0: Isobaric Process 𝑛 = 𝛾: Isentropic Process

 𝑛 = 1: Isochoric Process 𝑛 = ∞: Isochoric Process

The work from a polytropic process is equal to the following:

𝑤 =
𝑅(𝑇2 − 𝑇1)

1 − 𝑛
 (67)

𝑤 (1 − (1 − 𝛾)
𝛿𝑞

𝛿𝑤
− 𝛾) = (1 − 𝛾)(𝑤 − 𝑞)

75

𝑅

1 − 𝛾
(𝑇2 − 𝑇1) =

𝑐𝑝 − 𝑐𝑣

1 −
𝑐𝑝
𝑐𝑣

(𝑇2 − 𝑇1) = −𝑐𝑣(𝑇2 − 𝑇1)

𝑞 − 𝑤 = 𝑐𝑣(𝑇2 − 𝑇1)

This now aligns with the mathematics developed in the previous section; thus, the math should

have no problem simulating the polytropic processes of a Stirling engine.

3.3.4 Considering Loops

Figure 3.2: Examples of common loops found in Stirling engines.

In systems that contain loops, as illustrated in Figure 3.2, it is observed that for each independent

loop added wherein the number of these loops is the same as in mesh analysis for solving circuits

[55], a new equation is required. A loop exists anywhere a gas particle can take more than one path

between any node an any other node. A common example, found in gamma type engines, is the

thin boundary around the displacer, which allows some gas to not pass through the heat exchangers

when traveling between compression and expansion spaces. This space is often minimized by close

running seals such that it could be modelled by a narrow gas path or even a leakage component.

Each loop is represented by a characteristic volumetric flow rate, called a loop flow rate. There

is one characteristic flow rate for each additional equation. The extra rows in the matrix will be

used to assign a value to the loop flow rates, producing, out the infinite set of solutions from the

indeterminant matrix, the solution that has those flow rates. This is done by having the row be all

zeros except for a 1 in the corresponding face’s column. The corresponding entry in 𝒃 will be the

76

value of this loop flow rate. The following discussion will outline how these loop flow rates are

determined.

Considering pressure to be akin to electric potential and a pressure drop to be akin to voltage in

an analogous circuit then over the entire loop the pressure drop should be zero:

∮Δ𝑃 = 0 (68)

Calculating pressure drop using the Darcy-Weisbach equation [31].

∆𝑃𝑓𝑐 = (𝑓(𝑁𝑅𝑒)
𝐿

𝑑ℎ

𝜌. |𝑈|. 𝑈

2
)
𝑓𝑐

 (69)

We can modify this term by considering the face’s movement relative to the geometry around

it. Hypothetically a translating face may have a gas flow rate that is zero across it but may still

develop a pressure drop because it is moving relative to the walls. The faces velocity is

precalculated in such a way that the product of the angle-dependent face velocity factor (𝐹𝑉) and

the instantaneous rotational speed equals the instantaneous face velocity.

𝑈′ = 𝑈 + 𝑈𝑓𝑐 = 𝑈 + 𝐹𝑉𝜔

∆𝑃𝑓𝑐 = (𝑓(𝑁𝑅𝑒)
𝐿

𝑑ℎ

𝜌. |𝑈′|. 𝑈′

2
)
𝑓𝑐

(70)

This results in the following equation for each loop.

∑(𝑦
𝑓(𝑁𝑅𝑒)

2

𝐿

𝑑ℎ
𝜌. |𝑈′|. 𝑈′)

𝑓𝑐

= 0 (71)

The equation introduces a non-linearity in the form of a squared velocity term as well as the

friction factor’s dependence on Reynold’s number, which is also dependent on velocity. This

equation is therefore solved by a root-finding scheme which sets the value of the set of

characteristic loop velocities until pressure drop across all loops is equal to zero.

77

The derivative of this function concerning the change in the volume flow of a characteristic

volumetric flow rate is equal to the following:

∑ (
𝜕𝑉̇𝑓𝑐

𝜕𝑉̇𝑙𝑜𝑜𝑝

𝜕

𝜕𝑉̇𝑓𝑐
(
𝑦. 𝐿. 𝜌

2𝑑ℎ. 𝐴2
)
𝑓𝑐

𝑓(𝑁𝑅𝑒,𝑓𝑐). |𝑉̇𝑓𝑐|. 𝑉̇𝑓𝑐)
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ
𝑓𝑎𝑐𝑒 𝑖𝑛

𝑙𝑜𝑜𝑝

=
𝜕

𝜕𝑉̇𝑙𝑜𝑜𝑝
 ∮ Δ𝑃

(72)

where: 𝑉̇𝑙𝑜𝑜𝑝: Characteristic flow rate for loop, selected to be independent of all

other loops.

Manipulation of the expression gives:

1

2
∑

𝜕𝑉̇𝑘

𝜕𝑉̇𝑙𝑜𝑜𝑝
(
𝑦. 𝜌. 𝐿. |𝑈|

𝑑ℎ . 𝐴
)
𝑘

(
𝑈

|𝑈|
𝑁𝑅𝑒

𝜕𝑓(𝑁𝑅𝑒)

𝜕𝑁𝑅𝑒
+ 2𝑓(𝑁𝑅𝑒))

𝑘𝐹𝑜𝑟 𝑒𝑎𝑐ℎ
𝑓𝑎𝑐𝑒 𝑘 𝑖𝑛
𝑙𝑜𝑜𝑝 𝑖

=
𝜕

𝜕𝑉̇𝑙𝑜𝑜𝑝
 ∮Δ𝑃

(73)

where: 𝜕𝑓(𝑁𝑅𝑒)

𝜕𝑁𝑅𝑒
: The change in the Darcy friction factor with respect to a change

in Reynold’s number.

The intent in finding the derivative of the loop pressure drop is to use it as part of the Newton-

Raphson gradient descent algorithm. This algorithm makes incremental updates to a set of

parameters – in this case a set of velocities called generally here as 𝑋 – seeking the set of velocities

at which the pressure crosses or equals zero. Each iteration step is as follows:

𝑋𝑛+1 = 𝑋𝑛 − 𝐽𝑛
−1. 𝐹𝑛 (74)

where: 𝑋𝑛 = The vector of independent variables at iteration n.

 𝐹𝑛 = The vector of dependent variables at iteration n.

 𝐽𝑛 = The Jacobian of 𝐹 concerning inputs 𝑋 at iteration n.

Here the independent variable is the loop volume flow rate, which is a single flow rate that lies

in and only in the loop of interest, to minimize correlation during solving. The dependent variable

is the loop pressure drop. The Jacobian is constructed from the derivatives of the loop pressure

drop; the Jacobian formula is given below:

78

While the selected velocities are defined by this algorithm, all other velocities are still

dependent on the matrix defined in section 3.3.2. Additionally, the derivative with respect the loop

flow rate for all other flow rates can be obtained through querying the corresponding column in

the inverted matrix by (which is precalculated as only 𝒃 is modified as part of the loop solving

scheme).

3.3.5 Considering Flow Losses

Due to the uniform pressure assumption all nodes have the same pressure. In the real system,

however, the flow loss would enact its effect by a rise or fall of the pressure acting on the piston

faces. This must be considered to some degree as the work of some pistons, namely the displacer,

is solely a function of this loss. This loss is solved by calculating the pressure in all nodes such

that the total pressure is equal to the 𝑃𝑟𝑒𝑔𝑖𝑜𝑛 defined in equation (77), and that the pressure drop

between adjacent nodes matches equation (70). This results in a modified set of pressures that is

an estimate of the pressure drop, this will be particularly effective when the difference in pressure

is all that is required, such as the pressure difference across a displacer.

For each face, using the Darcy-Weisbach equation [31]:

𝑃1 − 𝑃2 =
1

2
(𝐾 +

𝑁𝑓 . 𝐿

𝑑ℎ
) 𝜌. |𝑈𝑓𝑐|. 𝑈𝑓𝑐 (76)

For all nodes:

𝐽 =

[

𝜕𝐹1(𝑋𝑛)

𝜕𝑥1
⋯

𝜕𝐹1(𝑋𝑛)

𝜕𝑥𝑁
⋮ ⋱ ⋮

𝜕𝐹𝑀(𝑋𝑛)

𝜕𝑥1
⋯

𝜕𝐹𝑀(𝑋𝑛)

𝜕𝑥𝑁]

 (75)

where: 𝜕𝐹𝑖
𝜕𝑥𝑗

=
1

2
∑

𝜕𝑉̇𝑘

𝜕𝑉̇𝑙𝑜𝑜𝑝
(
𝑦. 𝜌. 𝐿. |𝑈|

𝐷ℎ. 𝐴
)
𝑘

(
𝑈

|𝑈|
𝑁𝑅𝑒

𝜕𝑓(𝑁𝑅𝑒)

𝜕𝑁𝑅𝑒
+ 2𝑓(𝑁𝑅𝑒))

𝑘𝐹𝑜𝑟 𝑒𝑎𝑐ℎ
𝑓𝑎𝑐𝑒 𝑘 𝑖𝑛
𝑙𝑜𝑜𝑝 𝑖

79

∑𝑃𝑛𝑑 . 𝑉𝑛𝑑 = 𝑃𝑟𝑒𝑔𝑖𝑜𝑛. 𝑉𝑟𝑒𝑔𝑖𝑜𝑛 (77)

The matrix in the style of Ax = b:

3.3.6 Smooth Property Changes

For many properties in the model, their value changes relative to the crank angle. These

properties called “𝑥” may be linearly interpolated between crank angle or, for better results, they

can be interpolated using a cubic spline. The cubic spline provides several benefits, it ensures

changes, particularly in the derivative are smooth which improves the convergence of sensitive

components such as the loop solving in section 3.3.3. The following discussion outlines the

interpolation procedure, which considers the gradual change in speed of the engine between

angular positions.

Taking the volume as an example, the instantaneous change in volume is interpolated via a

cubic spline of the 4 points around the current simulation region. This cubic spline is derived such

that the 2nd order central difference derivative at the start and endpoint of the section is the same,

this avoids discontinuities in rate when transitioning between angular increments. The locations of

the interpolation points are provided in Figure 3.3.

[
0 ⋯ ±1 ⋯ ∓1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑉1 𝑉2 ⋯ ⋯ ⋯ ⋯ 𝑉𝑁

] [

𝑃1
𝑃2
⋮
𝑃𝑁

] =

[

 (
1

2
(𝐾 +

𝑁𝑓 . 𝐿

𝑑ℎ
) 𝜌. |𝑈|. 𝑈)

1

(…)2
⋮

(…)𝑀
𝑃𝑟𝑒𝑔𝑖𝑜𝑛. 𝑉𝑟𝑒𝑔𝑖𝑜𝑛]

 (78)

80

Figure 3.3: Angular locations of 𝑽𝒐 through 𝑽𝟑

𝐴. 𝑡′
3
+ 𝐵. 𝑡′

2
+ 𝐶. 𝑡′ + 𝐷 = 𝑉(𝑡′)

3𝐴. 𝑡′
2
+ 2𝐵. 𝑡′ + 𝐶 =

𝑑𝑉

𝑑𝑡
(𝑡′)

where:

𝑡′ =
𝑡 − 𝑡𝑛
𝑡𝑛+1 − 𝑡𝑛

 ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛

(
𝑑𝑉

𝑑𝑡
)
1
=
(𝑉2 − 𝑉0)

2
𝜃𝑖𝑛𝑐
𝜔1

 (
𝑑𝑉

𝑑𝑡
)
2
=
(𝑉3 − 𝑉1)

2
𝜃𝑖𝑛𝑐
𝜔2

𝐴 = ∆𝑡 (
𝑑𝑉

𝑑𝑡
)
1
+ ∆𝑡 (

𝑑𝑉

𝑑𝑡
)
2
− 2(𝑉2 − 𝑉1)

𝐵 = −2∆𝑡 (
𝑑𝑉

𝑑𝑡
)
1
− ∆𝑡 (

𝑑𝑉

𝑑𝑡
)
2
+ 3(𝑉2 − 𝑉1)

𝐶 = ∆𝑡 (
𝑑𝑉

𝑑𝑡
)
1

𝐷 = 𝑉1

(79)

A similar procedure is applied for all dynamic properties. In addition to the cubic spline

interpolation, each interpolated value is clamped to be above zero depending on the physical

realism of a negative value occurring. Some properties, such as volume, which are featured on the

81

denominator of a calculation are clamped to be above some small tolerance value to avoid the

small time-steps or errors that occur with smaller or zero values.

3.4 Turbulence

3.4.1 Open Channels Flows

Turbulence here is adapted from the implementation found in SAGE by Gedeon [35]. This

implementation represents turbulence in open channel flows as a conserved property bounded

between 0 and 1. Gedeon, through development of SAGE, observed that for oscillating flows while

the flow was turbulent it exhibited properties like that of steady-state turbulent flows and while it

was observed to behave in a laminar manner, its properties mimicked steady-state laminar flows.

Thus, this factor, т, attempts to predict the altered transitions between laminar and turbulent. In

practice, this factor serves as a weight between the laminar and turbulent values of the Darcy

friction factor (𝑁𝑓) and the Nusselt Number (𝑁𝑁𝑢). The associated conservation equation is as

follows [35]:

𝜕(т. A)

𝜕𝑡
+
𝜕(т. 𝑈. 𝐴)

𝜕𝑥
= т𝑔𝑒𝑛 (80)

The weighting factor is carried with the flow and its generation follows a few rules.

Flows in the wake of large geometrical features such as those representing bends or area

changes always receive a fully turbulent flow corresponding to a value of т = 1.

Generation of turbulence within nodes occurs exclusively when the flow condition is above

𝑅𝑒𝑐𝑟𝑖𝑡 represented below [35]:

𝑁𝑅𝑒𝑐𝑟𝑖𝑡 = 200max(
√𝑁𝑉𝑎

0.075 + 0.112𝜔. (𝑡 − 𝑡0)
, 11.5) (81)

The Valensi number (𝑁𝑉𝑎) represents the ratio of oscillatory fluid inertia to viscosity and is defined

as:

82

𝑁𝑉𝑎 =
𝜌.𝜔. 𝐷ℎ

2

𝜇
 (82)

The value 𝑡0 represents the time at which the flow was at a velocity of zero. The function in the

denominator represents the growth of the momentum layer under sinusoidal oscillations, which is

close enough for this model.

The generation or decay term for turbulence weighting factor is represented as [35]:

𝜕т

𝜕𝑡
=
𝜔𝛿

𝑁𝑉𝑎
{
0.008𝑁𝑅𝐸 . (1 − т) 𝑁𝑅𝑒 > 𝑁𝑅𝑒𝑐𝑟𝑖𝑡

−0.25𝑁𝑅𝐸𝑙𝑎𝑚𝑖𝑛𝑎𝑟 . т
3 2⁄ 𝑁𝑅𝑒 ≤ 𝑁𝑅𝑒𝑐𝑟𝑖𝑡

 (83)

Outflows and inflows induce changes in turbulence weighting equal to the following:

𝜕т𝑖
𝜕𝑡

=
𝑚̇𝑓𝑐

𝑚𝑖
{

(тfc − тi) 𝑉̇𝑓𝑐 is entering node i through a pipe

(−тfc + тi) 𝑉̇𝑓𝑐 is leaving node i

(1 − тi) 𝑉̇𝑓𝑐 is entering node i through a minor loss

 (84)

3.4.2 Matrix Flows

Flow within the fine geometry of features such as regenerators or heat exchangers is considered

a Matrix flow. Such flows develop rapidly and under oscillatory conditions are very close to

steady-state due to the domination of the viscosity term. Therefore, the weighting factor between

a turbulent and laminar value is as follows [35]:

𝐹(𝑁𝑅𝑒
∗) = {

𝐹𝑙𝑎𝑚 𝑁𝑅𝑒
∗ ≤ 0

𝑤. 𝐹𝑙𝑎𝑚 + (1 − 𝑤). 𝐹𝑡𝑢𝑟𝑏 0 < 𝑁𝑅𝑒
∗ < 1

𝐹𝑡𝑢𝑟𝑏 1 ≤ 𝑁𝑅𝑒
∗

where:

𝑁𝑅𝑒
∗ =

𝑁𝑅𝑒 − 2,300

4,000 − 2,300
=
𝑁𝑅𝑒 − 2,300

1,700

and

𝑤 = 𝑁𝑅𝑒
∗ 2. (3 − 2𝑁𝑅𝑒

∗)

(85)

83

The incorporation of the smooth step function is an improvement over the discontinuous curve

applied in SAGE. This function applies to both the Darcy friction factor and the Nusselt number.

3.4.3 Variable Volume Spaces

Turbulence within variable volume spaces is generated by inflows and reduced by outflows and

remaining turbulence is decayed as a function of time. An important distinction is that turbulence

in variable volume spaces is not measured by the weighting factor т but is rather a specific

turbulent kinetic energy 𝜅.

The turbulence produced by an inflow is a function of the entrance velocity [35]:

𝜕𝜅𝑖
𝜕𝑡

=
𝑚̇𝑓𝑐

𝑚𝑖
{
(
1

2
(
𝑉̇𝑓𝑐

𝐴𝑓𝑐
)

2

− 𝜅𝑖) 𝑉̇𝑓𝑐 is entering node "𝑖"

0 𝑉̇𝑓𝑐 is leaving node "𝑖"

 (86)

where:

𝜅𝑖: The specific turbulent kinetic energy for node 𝑖

Flows that leave a variable volume space do not change the specific turbulent kinetic energy.

The entrance velocity turns its kinetic energy into the swirling motion observed in open chambers.

This swirling energy is decayed according to the following rule, derived by Gedeon [35], [56] and

presented by Cantelmi [57].

𝜕𝑚𝜅

𝜕𝑡 𝑑𝑒𝑐𝑎𝑦
= −

𝐶𝐷
0.021𝐷ℎ

𝑚. 𝜅
3
2 (87)

where: 𝐶𝐷: the turbulent energy dissipation constant for tube flow = 0.08

 0.021𝐷ℎ: the spatial averaged length scale for tube flow and

 𝜅: is the specific turbulent kinetic energy

Through manipulations:

84

𝜕𝜅𝑖
𝜕𝑡

= −
5.8𝜅

𝑖

3
2

𝐷ℎ
−
𝜅𝑖
𝑚𝑖

𝜕𝑚𝑖

𝜕𝑡

(88)

Turbulence in variable volume spaces affects the values of the effective conduction and

viscosity factors, also extracted from Gedeon [56]. These overwrite the default values of these

properties and result in higher wall conduction and higher friction losses in variable volume spaces.

𝑘𝑒𝑓𝑓 = 𝑘 + 0.021𝜌. 𝑑ℎ. 𝑐𝑝. √𝜅

𝜇𝑒𝑓𝑓 = 𝜇 + 0.021𝜌. 𝑑ℎ. √𝜅

(89)

3.5 Chapter Conclusions

Through this chapter the equations needed to solve for the energy exchange due to conduction

was presented for all possible node combinations. Following this, the mathematics needed to solve

for the volumetric flow rates of ideal gases with volume and energy changes was outlined. Then,

the expansions applied when the network contains loops were discussed, allowing the code to solve

arbitrary networks. The pressure correction due to flow friction was provided, allowing the

uniform pressure assumption to still support the effect of flow losses across pistons. The cubic

spline used for smooth property transitions and handling of angular accelerations was presented.

The chapter concluded with the presentation of the turbulence handling mathematics derived from

SAGE’s [35] implementation. These theoretical formulations, lead into the next chapter where

they are implemented into algorithms which decompose the interactable blocks into the network,

and finally into a solution.

85

 SIMULATION

During the solving phase MSPM follows the flow structure in Figure 4.1 below, each of the

actions are discussed in the following sections. All the project code can be found in Appendix G.

Figure 4.1: Process structure of the simulation loop, elements inside of the box are

repeated until the simulation has timed out or converged.

4.1 Discretization and Conditioning

Many steps are involved in creating and conditioning the network for solving, these are outlined

in the following sections.

4.1.1 Discretize all Components and Collect Discrete Elements

The model discretizes components in a particular order, which is shown in Figure 4.2. The

discretization of each element is discussed in 0.

86

Figure 4.2: Flow of information during discretization

Bodies are discretized first, which generates the node contacts that are used by connections.

Then the environment is discretized, and its singular node is distributed among the boundary

connections. Following this, bridges are discretized as they will provide their own node contacts

as well as modify the existing ones. Lastly the connections are discretized, which pair up the node

contacts to form faces.

4.1.2 Decimate Nodes Based on Size

After the mesh is produced, a post processing step eliminates particularly thin nodes from the

calculation. This step prevents the existence of nodes that would otherwise produce an

unreasonably small timestep, dragging the entire simulation down for negligible gains in accuracy.

Small nodes are merged into larger nodes if the timestep, as defined by the Fourier number, falls

below a certain threshold. This timestep is constructed as follows:

𝛿 = 𝑁𝐹𝑜

(
𝑑𝑈
𝑑𝑇
)
𝑛𝑑

(
𝑑𝑄̇
𝑑(Δ𝑇)

)
𝑓𝑐

= 𝑁𝐹𝑜
𝐻𝑒𝑎𝑡 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒
 (90)

where: 𝐹𝐹𝑜: The maximum allowable Fourier number.

 (
𝑑𝑈

𝑑𝑇
)
𝑛𝑑

: The derivative of total internal energy vs temperature of the

node. Equivalent to the heat capacity of the material found in the node.

 (
𝑑𝑄̇

𝑑(Δ𝑇)
)
𝑓𝑐

: The derivative of heat flow rate across a face of the node

verses the temperature difference across it. Equivalent to the

conductance of the face.

87

The larger node then takes on the unmodified faces and appends the properties of the smaller

node. This has a significant impact on the performance of the model at the loss of some small

elements.

4.1.3 Assign Minor Loss Coefficients

A minor flow loss coefficient (𝐾) applies to a face when the flow area changes between the first

and second nodes. Faces in which this applies have two such coefficients a forward (𝐾12) and a

backward (𝐾21) minor loss coefficient, corresponding to the two possible flow directions. These

can be applied using the default equation presented in section 2.2.2 or can be overridden by the

custom minor loss coefficient component.

4.1.4 Decimate Triads

The number of loops is a major factor in the run speed of the simulation. Oftentimes junctions

occur between 3 nodes, which form micro-loops, increasing the load on the solver. The decimate

triad’s function finds such triads of nodes and assesses them, looking at the relative size of the

faces. The node with the largest contact to the other two nodes becomes the base node and replaces

the connection that lies between the two other nodes. Figure 4.3 below illustrates this process. The

final area and loss coefficients of the non-eliminated faces are equal to the area weighted average

of the values.

Figure 4.3: Example of a triad elimination action: faces are selected based on their

relative size, the remaining 2 faces are then modified to compensate.

88

4.1.5 Assign Indexes to all Elements

Though it is convenient to work with discrete elements as objects (as in object-oriented

programming), it is much faster to access vectorized elements in MATLAB. Therefore, a unique

index is assigned to each node and face in preparation for vectorization. The indexes are assigned

such that when sorted in ascending order the gas nodes appear before the environment nodes,

which are followed by solid nodes. Similarly, gas faces lead mixed faces, which lead solid faces.

4.1.6 Vectorize Node and Face Properties

Using the previously defined index, nodes and faces insert their physical properties – which are

defined in 0 – into arrays that are more computationally efficient to access than their current object-

oriented format. Here also the dynamic properties are referenced and stored in a master array. Due

to previous sorting the resulting property arrays are as small as possible as the most memory

demanding elements are listed first.

Specialized elements such as leaks, shear and pressure contacts remain in their object-oriented

format as they are typically few in number.

4.1.7 Determine Maximum Solid-Conduction Timestep

A loop through all the Solid Nodes calculates the absolute minimum allowable time step per

angular increment based on the maximum Fourier number (𝑁𝐹𝑜) defined in equation (90). If the

conductance changes due to a sliding boundary the most conservative value (smallest timestep) is

retained, this is derived from the definition of the Fourier number.

4.1.8 Determine the Conduction and Transportation Vectors

With irregular grids, one of the challenges is efficiently calculating the change in the nodal

properties. This is a challenge because a node can have many faces and finding them for each node

is a tedious task. even if a list of face indexes were obtained this would constitute many short and

therefore inefficient vector operations. As MATLAB is very fast at large vector calculations, the

goal is to define as many large vector calculations as possible, because the conduction values can

change every frame it would be a challenging pursuit to do this efficiently by constructing a matrix.

89

The prework pseudo-code below produces sets of faces that can be added to the nodal values

without overlapping each other. The result of this operation is a vector of vectors which contains

parallel sets of 3 vectors, the first contains the sign of the operation, the second contains the vector

of nodes on which the operation is performed and the third indicates the face. In the case of a grid

mesh, this would produce at most 8 sets, no matter how large the grid was. (one for each face of a

node, one for each sign).

Inputs: List of all Nodes and Faces

 Step 1: Initialize Vectors

 CondNds = vector containing the indexes of all Nodes

 CondFcs = vector containing the indexes of all Faces

 Nds1 = vector containing only the first node listed by each Face

 Nds2 = vector containing only the second node listed by each Face

 Step 2: Make backups of Nds1 and Nds2

 CondNds1 = Nds1 --- Duplicate of Nds1

 CondNds2 = Nds2 --- Duplicate of Nds2

 Step 3: Exclude nodes that are constant values (surrounding, source, etc.)

 Nds1(indexes where the Node has static properties) = 0

 Nds2(indexes where the Node has static properties) = 0

 Step 4: Calculate how many sets of vector to produce, based on the maximum

 number of times any one node is referenced.

 if any(Nds1 are not equal to 0)

 x = mode of Nds1 excluding 0’s

 N1 = number of times x occurs in Nds1

 else N1 = 0

 if any(Nds2 are not equal to 0)

 x = mode of Nds2 excluding 0’s

 N2 = number of times x occurs in Nds2

 else N2 = 0

 Step 5: Create vectorized references

 i = 1

 CondVectors = vector of vectors of length = 3*(N1 + N2)

 if N1 is not 0

 for k = 1 to N1 by stepping 1

 N = count of unique values in Nds1 excluding 0’s

 CondVectors[i] = -1

 CondVectors[i+1] = vector of 0’s of length = N

 CondVectors[i+2] = vector of 0’s of length = N

 Counter = 1

 for x = 1 to length(Nds1) by stepping 1

 if Nds1[x] > 0

 if (Nds1[x] is not already in CondVectors[i+1])

 CondVectors[i+1][Counter] = Nds1[x]

 CondVectors[i+2][Counter] = x

 Nds1[x] = 0

 Counter = Counter + 1

 i = i + 3

90

 Step 6: Repeat Step 5 for N2 and Nds2

 return CondVectors, CondNds1, CondNds2, CondFcs, CondNds

-- Usage (as found in simulation.m)

Using CondFcs, update all conductances and calculate energy flows using

CondNds1 and CondNds2

for i = 1 to length(CondVectors) - 2 by stepping 3

 Qnode[CondVectors[i+1]] = Qnode[CondVectors[i+1]] +

 CondVectors[i]*Qface[CondVectors[i+2]]

The equivalent data structure for transportation is obtained by the same method above but for

solely the gas-gas faces and nodes. This is used to determine the nodal Reynold’s number, which

is simply the area weighted average of the Reynold’s number of its participating faces.

4.1.9 Establish Gas Regions

Given that the model can be defined arbitrarily, the interconnected gas spaces within the engine,

henceforth called regions, must be determined automatically. A region is distinct from another gas

space if at any point in the cycle it is completely cut off from that other space; thus, allowing a

build up in pressure. Such spaces are found via a recursive space filling algorithm starting at a root

node. The output is a vector with region indexes for each gas node including the environment node.

The pseudo-code below outlines the algorithm:

Inputs: List of all Nodes

 Outer Loop: Loop through all the nodes to find ones that are not grabbed

by the recursive function. Any new ones indicate an unreached region.

 n = 0

 region = vector of 0’s of length = number of Gas & Environment Nodes

 for each Nd in Nodes

 if the Nd is a Gas Node and it does not have an assigned region

 n = n + 1

 region = PropegateRegion(Nd, region, n)

 if all nodes have a region then exit for each Nd loop

 return region

 Inner Loop: Add the current node as a region member, look for unreached

neighbors, call the function using them as a starting point

Sub Function PropegateRegion(Nd, region, n)

 if region[Nd.index] is 0 ... Nd does not have a region

 region[Nd.index] = n

 for each face associated with Nd

 if the face is a gas face and never completely closes

 node = other node of face relative to Nd

 region = PropegateRegion(node, region, n)

 return region

91

Post-processing of the output vector provides a list of nodes for each region. Faces are assigned

to a region if both member nodes are within the same region. Also, the region that contains the

environment node is treated differently during simulation, so it is indicated with a Boolean value

if the current region is an environment region. It is treated differently because its pressure does not

change, resulting in a simplified solution.

4.1.10 Find Loops within each Region

Loop finding is another area where a specialized algorithm is required that is composed of

several steps. The first step eliminates dead-ends. Then faces that are within the region but are

closed for parts of the cycle are found. Followed by the actual loop finding algorithm. The final

output of this series of algorithms is two data structures. The first, RegionLoops, is a vector of

arrays with an array for each region that has 3 rows, the first for a node index, the second for a

face index and the third for a sign. The second, RegionLoopsInd, is a vector (corresponding to

each region) of arrays that contains pairs of numbers, in columns, indicating the start and end

column in RegionLoops for each distinct loop in the region. This data structure is shown in Figure

4.5. This algorithm is described in Figure 4.4 and also by the following code.

Figure 4.4: Loop finding algorithm illustration. (dashed) face that has an area of zero at

any point of the cycle. (red) eliminated face. (blue node) starting point for algorithm.

(green) discovered loop.

92

Figure 4.5: Loop data structure and graphical representation

-- Elimination of dead-ends

A node is a dead end if they have only one gas face, or they have two gas

face but one or both leads to a dead-end node. Mark these and all their

faces as closed in the closed_edge array.

open = empty

for i is 1 to the number of regions

 -- Region Enclosed Closing Edge Discovery

 Collect faces whose area goes to zero at some point but both nodes lie

 within the same region. Add these to the “holes” array and mark them

 closed.

 -- Loop Finding

 visited_edge = closed_edge

 lequ = 1

 lcount = 0

 N = number of faces in region i - number of nodes in region i + 1

 for k = 1 to N by stepping 1

 if k is less than or equal to the number of holes

 -- Find a loop that covers this hole, one must exist

 Start_Face = holes[k]

 else

 -- Find open edges and find a loop that covers it

 closed = []

 for each face in Faces

 if face is a gas face, close_edge[face.index] is false

 ... and it is with region i

 Start_Face = face

 exit for each face loop

 Closed_Edge[face.index] = true

 Vis_Edge[face.index] = true

 closed = LoopNode([], Start_Face, first node of Start_Face)

 target = first node of Start_Face

 open = LoopNode(closed, Start_Face, second node of Start_Face)

 edge_closed = Start_Face

93

 -- Use open as a starting point to the path to “target”

 done = false

 while open is not empty and not_done

 len = length of open

 for x = len to 1 by stepping -1

 -- Expand open[x]

 LpNd = open[x]

 Add LpNd to closed

 For each face associated with LpNd.Nd

 If the face is a gas face, is in region i

 ...and Vis_edge[face.index]

 visited_edge[face.index] = true

 newNd = other node of face relative to LpNd.Nd

 if newNd is the target

 done = false

 add LoopNode(LpNd,Fc,newNd) to closed

 else

 add LoopNode(LpNd,Fc,newNd) to open

 cut elements 1 to len from open

 if done

 -- Backtrace the loop

 current = last element of closed

 lcount = lcount + 1

 RegionLoopsInd[i][1,lcount] = lequ

 while not current is empty

 RegionLoops[i][1,lequ] = current.Nd.index

 RegionLoops[i][2,lequ] = current.parentFc.index

 if the first node of current.parentFc is current.Nd

 RegionLoops[i][3,lequ] = 1

 else

 RegionLoops[i][3,lequ] = -1

 lequ = lequ + 1

 current = current.parent

 RegionLoopsInd[i][2,lcount] = lequ - 1

 if the length of holes >= k

 RegionLoopsInd[i][3,lcount] = holes[k].index

 else

 RegionLoopsInd[i][3,lcount] = 0

 -- Close dead-ends from the nodes of edge_closed

 Not counting closed edges as faces, remove dead ends.

LoopNode(parent, parentFc, node)

4.1.11 Define Pressure Loss Matrix

Given the assumption that pressure does not change throughout a region, it does not allow

pressure drop to be naturally obtained by the solution. An approximation of the actual pressure is

94

obtained in solution by solving for the nodal pressure. Thus, there is a need to determine the faces

that represent all the independent equations. The algorithm that does this is graphically represented

in Figure 4.6 and in the following pseudo-code. During this phase a matrix was created which

includes the sign of all the faces, the algorithm that creates this is not shown here. This algorithm

is akin to finding the minimum spanning tree of the network with the modification of excluding

the closing faces.

Figure 4.6: Determining the independent faces (dashed) face that has an area of zero at

any point of the cycle. (red) eliminated face. (blue node) visited node. (green) set of

independent equations obtained at iteration step

isvisited = vector of false of length = number of gas nodes

ActiveRegionFaces = vector, length = number of regions, of vectors

for i = 1 to number of regions by stepping 1

 k = 0

 ActiveRegionFaces[i]

 node = node in region i

 [ActiveRegionFaces[i], isvisited] =

 PropegateActiveFaces(node, isvisited, ActiveRegionFaces[i])

Function [fcs, visited_node] = PropegateActiveFaces(node, isvisited, fcs)

 isvisited [node.index] = true

 for each face associated with node

 if the face is a gas face in the region and whose area is always > 0

 if any of the nodes of this face are not visited

 add face to fcs

 [fcs, isvisited] = PropegateActiveFaces(

 unvisited node of face, isvisited, fcs)

 return fcs, isvisited

95

4.1.12 Vectorize Node Faces

A different form than the transportation matrix, each node also requires, for the construction of

the volumetric flow rates solving matrix, a list representing its faces. This takes the form of a

vector of matrices. Each submatrix has 3 columns corresponding to the face index, the sign relative

to the node and a 0 or 1 which indicates whether the face is implicit or explicit respectively.

Faces that do not fall within a single region are defined explicitly using the pressure difference

across them. Explicit definition does bring instability but since it is between two regions, rather

than 2 nodes, the effective node size is much larger. Explicit calculation of those faces is done

because the two regions may be closed to each other during parts of the cycle. Over these parts

they can generate very different pressures. Within Stirling engines however, this sort of

phenomenon is relatively uncommon except for leaks and introduction of an explicit face will

likely drastically slow down or destabilize the simulation.

4.2 Simulation Setup

4.2.1 Apply Snapshot

If the user wishes they may apply a snapshot of a previous test, snapshots are always taken at

the same angular position (angular position of 0) which is the same angular position all simulations

start on. All bodies, when created, are assigned an integer, which serves as a unique identifier. The

same identifier is used to recast the data onto the body for the next simulation. A snapshot of nodal

temperatures and pressures is saved for each body based on nodal positions relative to the bodily

extremes (a value of 0 to 1). When recasting a snapshot, these non-dimensional positions are used

in the 2D interpolation of nodal properties. Otherwise, if a body is new relative to the snapshot or

has changed the phase of its material then the body maintains its default values. This flexible setup

allows a much greater useful lifetime for results, as a modified engine would have similar property

distributions to its original form.

96

4.2.2 Get Simulation Parameters from the User

The user is provided with a series of options that control the type of simulation that they are

running. The controls and their summary are outlined in the following table:

Table 4.1: Simulation Parameters and Description

Maximum Simulation Time Determines the absolute maximum amount of time the

simulation will run. The actual simulation time will depend

on other properties such as steady-state convergence or

stalling.

End Condition The user can type “SS” for a steady-state simulation

termination condition or nothing to allow the simulation to

run till time-out. The SS condition looks for convergence in

the cycle power output to be under some tolerance.

Motion Condition The user can type “C” for constant velocity simulation or

“V” for variable velocity simulation. For a constant velocity,

the simulation will run on the initial velocity for all

increments. For the variable velocity simulation, the

mechanism will be used to calculate changes in velocity

throughout the cycle.

Initial Velocity This is the initial velocity that the engine will be running at

the start of the simulation.

Maximum Time Step Generally, this not recommended as time-step is already

automatically constrained, but the user has the option to

prescribe an absolute maximum timestep when desired.

4.2.3 Pre-allocate Memory for Results

For simulations that are run using the constant velocity assumption the total number of data

points to record is known, therefore these output arrays can be allocated at the beginning. For

97

variable velocity simulations, the output arrays must periodically expand in chunks to allow for

further records. While MATLAB will automatically expand arrays when the provided index is

beyond the scope of the array, it is more efficient to expand the array in large chunks to minimize

the number of times the array must be copied.

4.2.4 Run Warm-Up Phase

The warmup-phase is inspired by laboratory experiments where engines with substantial

thermal inertia are warmed up for some time to allow them to start running, as a warmed engine

will generally run fast before slowing down to steady-state. With this simulation the same scenario

occurs, allowing the engine to approach steady-state from a faster speed (in a variable speed test).

This also will speed up convergence as components such as the piston, regenerator and walls will

already have a temperature gradient, which may take a great deal of time to develop.

The warm-up phase converts all nodes to solid, using the cycle average geometry and a Nusselt

number of 1 corresponding to pure conduction, region pressures are calculated to conserve mass,

but warm-up phase calculations do no simulate gas flow, a neglection that significantly speeds up

the calculation. When using thermal convergence acceleration (section 5.1) this step is not required

as the temperature profile can show up rapidly by using the quickly acclimated gas temperatures,

but this feature is retained as it can mimic a experimental process.

4.3 Gas Solver Loop

This is the actual simulation; the following sub-sections occur for each timestep.

4.3.1 Calculate Dynamic Properties

Properties that change according to angular position such as the hydraulic diameter, volume,

area, friction length, relative velocity factor or stability length (length that is used in Courant

number calculations) are interpolated according to the cubic spline formula. Also, within this

section, properties that rely on correlations are updated, these include conduction coefficient, heat

capacity, dynamic viscosity, nodal Reynold’s number and the Nusselt number are all recalculated.

If a function call is involved, then elements that use the same function are grouped together and

98

all functions are created such that they can handle vector inputs; this improves computational speed

significantly as function calls to dynamic or anonymous functions are remarkably slow.

4.3.2 Calculate Flow Independent Flux’s

Calculate any conduction fluxes. Some of these may be dependent on the flow conditions such

as the Reynold’s number, or Nusselt number but these properties are assumed to be slowly

evolving relative to the size of the timestep. This section utilizes the conduction network produced

in section 4.1.8 to apply calculated flux to their respective nodes.

4.3.3 Calculate Explicit Mass Flux’s

Explicit mass fluxes are determined via the pressure drop across a boundary. Generally, these

passages are small, given that during some part of the cycle their area is zero. However, they cannot

be part of a region because they represent a perfect seal during the closed-off period, allowing the

two regions to exhibit different pressures. The internal energy and mass transport are automatically

handled in the implicit mass flux stage. Open channels are iterated to converge on a volume flow

rate appropriate for the change in pressure, leaks determine flow rate via the pressure difference.

Explicit faces are excluded from the timestep calculation as they can introduce extremely high

velocities, the timestep will still dramatically fall as the gas is distrusted through the network.

4.3.4 Constrain Time Step Pre-Mass Flux

At this point the time step is restricted based on the Courant number for velocity and the

maximum Fourier number for mixed heat conduction. Solid conduction is already analyzed using

the precalculated angular timestep limitation, serving as the initial maximum timestep size.

4.3.5 Calculate Implicit Mass Flux’s

Produce matrix A and b such that the solution of 𝐴𝑥 = 𝑏 will give uniform pressure over all

region nodes. The first section of pseudo code occurs before the differentiation between regular

and environment region. The region with loops section occurs conditionally after both of those.

faces = ActiveRegionFcs of region i

99

nodes = nodes of region i

F2C = array that takes a face index and returns a column index associated

... with A

-- Structure of data:

... 1 column for each face

... The first row = face index

... The second row = sign of face relative to the node

... The third row = 1 if the face is explicit, 0 otherwise

A = matrix of square size = count all of region i's faces

b = column vector of size matching matrix A

1. Environment Region

Since the pressure of the environment is static, each node of a region that contains the

environment maintains this static pressure in a simplified set of equations which are outlined in

CHAPTER 3. The implementation of pseudo-code is as follows:

for row = 1 to the length of faces

 nd = nodes[row]

 b[row] = Vnew[nd]*Penv - T[nd]*m[nd] - dT_du[nd]*h*Qnode[ni]

 data = faces associated with nd

 for p = 1 to count of rows in data

 fc = data[p,1]

 X = h*data[p,2]*Fcrho[fc]*(T[nd] + dT_du[nd]*(Fcu[fc] - u[nd]))

 if data[p,3] is 1

 b[row] = b[row] - Fc_V[fc]*X

 else

 A[row,F2C[fc]) = A[row,F2C[fc]] + X

newV = A \ b

Fc_V[faces] = newV[F2C[faces]]

Update Fc_U, Fc_RE, Friction Factors, etc.

2. Standard Region

Each node is compared with one of its neighbors through equations outlined in section

CHAPTER 3. Through the restricting action of all the paired equations, all nodes advance to a

future point having a uniform pressure. The implementation of pseudo-code is as follows:

for row = 1 to the length of faces

 nd1 = first node for face[row]

 nd2 = second node for face[row]

 b[row] = (T[nd1]*m[nd1] + dT_du[nd1]*h*Qnode[nd1])/Vnew[nd1] -

 (T[nd2]*m[nd2] + dT_du[nd2]*h*Qnode[nd2])/Vnew[nd2]

 data = faces associated with nd1

 for p = 1 to count of rows in data

 fc = data[p,1]

 X = h*data[p,2]*Fcrho[fc]*(

100

 ... T[nd1] + dT_du[nd1]*(Fcu[fc] - u[nd1]))/Vnew[nd1]

 if data[p,3] is greater than 0 // It is a explicit face

 b[row] = b[row] + Fc_V[fc]*X

 else

 A[row,F2C[fc]) = A[row,F2C[fc]] - X

 data = faces associated with nd2

 for p = 1 to count of rows in data

 fc = data[p,1]

 X = h*data[p,2]*Fcrho[fc]*(

 ... T[nd2] + dT_du[nd2]*(Fcu[fc] - u[nd2]))/Vnew[nd2]

 if data[p,3] is greater than 0 // It is a explicit face

 b[row] = b[row] - Fc_V[fc]*X

 else

 A[row,F2C[fc]) = A[row,F2C[fc]] + X

newV = A \ b

Fc_V[faces] = newV[F2C[faces]]

Update Fc_U, Fc_RE, Friction Factors, etc.

3. Region with Loops

In regions that have excess faces, additional independent equations are provided in the form of

loops, which all such regions with excess faces are guaranteed to contain. The equations are

outlined in section 3.3.3. The method begins by estimating the root using the previous 2 answers.

A record of the solution values is kept so that values can be extrapolated through time to improve

the initial guess.

Function Inputs(this,region,F2C,startrow,A,b,Fcrho,Fcmu,time)

-- this = the simulation object, contains all nodal and face properties

-- region = index of current region, used to get recorded points and loops

-- F2C = F2C[face index] returns the column index that face is mapped to

-- startrow = row number in A where loop entries start

-- A = matrix as constructed by volume low rate solver prior to this

-- b = array as ...

-- Fcrho = array of face densities

-- Fcmu = array of face viscosities

-- time = current time, for extrapolation

-- Loop Definitions

Loop = RegionLoops array for region i

Ind = RegionLoopInd array for region i

Nloops = number of loops in region

-- UnCollapsed References (some faces are removed from the calculation as they

... do not affect the loop pressure drop.

Rows = vector of numbers from startrow to startrow + Nloops by stepping 1

-- Extrapolate values at this time-step

if 3 points are recorded

 for each loop velocity

 0 indicates the “t-3” recorded point

101

 1 indicates the “t-2” recorded point

 2 indicates the “t-1” recorded point

 prediction = y0*(((time-t1)*(time-t2))/((t0-t1)*(t0-t2))) +

 y1*(((time-t0)*(time-t2))/((t1-t0)*(t1-t2))) +

 y2*(((time-t0)*(time-t1))/((t2-t0)*(t2-t1)))

-- Define SkipLoop as a boolean indicator of whether or not the loop is considered

during this solution phase.

SkipLoop = vector of false booleans of length = number of loops

For p = 1 to Nloops by stepping 1

 If the loop is closed off during this increment

 A(rows(p), F2C(Ind(3, p))) = 1

 SkipLoop(p) = true

 Else

 A(rows(p), F2C(loop(2, Ind(2,p)))) = 1

 If predition was made

 b(rows(p)) = prediction(p)

 Else

 b(rows(p)) = volume flow rate of face index= loop(2, Ind(2, p)))

-- Calculate Inverse of “A” Matrix

Ainv = inv(A) // By LU Decomposition

-- Eliminate the rows of the solution that are not important

Indl = vector containing increments from 1 to the number of loops stepping 1

Remove skipped entries from both rows and Indl

-- Initialize Solving Loop

Iteration = 1

Max_Iterations = 300

Fn = vector of ones equal of length equal to number of active loops

Tol = 1e-8

If any loops need to be solved

 -- Newton-Raphson Method

 J = square array of zeros of length = the number of active loops

 While Iteration < Max_Iterations

 -- Define Jacobian

 For i = 1 to the length of Indl

 Elements = Ind[1, Indl[i]] to Ind[2, Indl[i]] stepping 1

 S = Loop[3, elements]

 Fcs = Loop[2, elements]

 For j = 1 to length of Indl

 DeltaV = column “rows[j]” of Ainv

 If i == j

 [dfi_dxj, fni] = getCost(this, x[F2C[Fcs]], S, Fcs, ...

 Fcmu[Fcs], Fcrho[Fcs], DeltaV[F2C[Fcs]])

 J[i,j] = dfi_dxj

 Fn[i] = fni

 Else

 [dfi_dxj] = getCost(this,x[F2C[Fcs]], S, Fcs, ...

 Fcmu[Fcs], Fcrho[Fcs], DeltaV[F2C[Fcs]])

 J[i,j] = dfi_dxj

 -- Test Convergence

102

 If the sum of Fn is less than Tol then exit While loop

 -- Calculate the shift in x

 dx = Ainv[:,rows]*(J\-Fn)

 x = x + dx

 Iteration = Iteration + 1

Record Calculated values and their associated timestamp

this.Fc_V[faces in region] = x[F2C[faces in region]]

-- getCost Function

Inputs(this, x, S, Fcs, Fcmu, Fcrho, DeltaV)

-- Calculates the loop pressure loss given loop volume flow rates “x”, also

calculates the derivative of the loop pressure loss.

4.3.6 Constrain Time Step Post-Mass Flux

After flow velocities are initially calculated the maximum timestep is updated. If the maximum

timestep is smaller than the timestep that was used, then the flow rate calculation is repeated until

this condition is satisfied.

4.3.7 Update Properties

Using the flow rates, the nodal internal energy, mass, and temperature (derived from internal

energy) are calculated, in preparation for the next iteration.

4.3.8 Calculate Turbulence Flux’s

Turbulent fluxes are calculated according to each element type. Turbulence values are

incremented at steps that are limited by a maximum change in turbulence weight. The turbulence

loop is repeated until the timestep is completely traversed by the limited steps.

4.3.9 Record Statistics

Having stored the indexes and sign of all faces that conduct to a source, to a sink or the

environment in a pre-processing step, the program adds the total of these over the increment to a

collection variable, that can be accessed by outside processing.

103

4.4 Mechanical Solver Loop

4.4.1 Calculate Piston Forces

The first step to calculating piston forces is to calculate the pressure drop. This value is defined

exclusively by the volumetric flow rate. The Reynolds number is calculated as:

𝑁𝑅𝑒 = |
(
𝑉̇
𝐴 + 𝐹𝑉 . 𝜔

) 𝜌. 𝑑ℎ

𝜇
|

𝑓𝑐

 (91)

The following matrix contains 1 row for each independent face’s pressure drop and a single

additional row which ensures that the partial pressures of each node add up to the pressure of the

region, multiplied by its volume. This region pressure is the pressure established through the

volume flux solving section. The first 𝑛 − 1 rows of this matrix are precalculated.

[

Δ𝑃1
Δ𝑃2
⋮
Δ𝑃𝑛

𝑃𝑟𝑒𝑔𝑖𝑜𝑛. 𝑉𝑇]

=

[

1 −1 0 … 0
0 1 −1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 1 −1
𝑉1 𝑉2 𝑉3 ⋯ 𝑉𝑛]

[

𝑃1
𝑃2
⋮

𝑃𝑛−1
𝑃𝑛]

 (92)

The final pressures are then used in conjunction with the pressure and shear contacts to calculate

forces which pass onto the linear to rotational conversion functions via the following equations:

𝐹𝑃 =∑𝑦.𝐴. 𝑃 (93)

𝐹𝑠 =∑
𝑦.𝐴

2
(𝑃𝑖 − 𝑃𝑗) (94)

where: 𝑦: The sign of the face relative to the orientation of the mechanism.

4.4.2 Calculate Driveshaft Forces

Each mechanism contributes a processing function that takes an input (including position,

angular velocity, angular acceleration, and index of sub mechanism) and outputs the driveshaft

forces including the two normal forces and torque. These are simply added up, as driveshafts can

104

take a wide variety of forms and the total force including the weight of the flywheel is calculated

is multiplied by the driveshaft friction coefficient.

4.4.3 Calculate Acceleration

Acceleration is determined by simply calculating the acceleration induced on the flywheel via

the sum of driveshaft torques.

𝛼 =
𝑇

𝐼
 (95)

where: 𝑇: The total torque generated by the mechanism acting on the flywheel.

This is produced via the translation of piston forces through the linear-

to-rotational mechanisms onto the drive shaft.

 𝐼: The moment of inertia of the flywheel.

 𝛼: The angular acceleration of the flywheel.

4.4.4 Calculate Next Velocity Target

The angular acceleration produced in the previous section is assumed to have happened over

the angular increment immediately preceding this calculation. Therefore, the acceleration is

multiplied by that timestep to produce the change in velocity. The boundary motions experienced

by the gas, over the next angular increment, will ramp up to that next velocity.

In closing this step, the solver has two potential strategies. It can re-enter the gas loop to solve

the next angular increment. Or it can exit having satisfied one of the following conditions: it has

reached steady state, it has run out of time or it has detected that the engine has stalled. Steady-

State is detected via the difference between the current and previously calculated power falling

below a tolerance. An engine stall is detected via the calculation of a negative angular velocity.

4.5 Conclusion

This chapter outlined the entire simulation process. The process started with discretization, then

filtered the nodes for unnecessary loops and poorly sized nodes. Then the nodes were converted

105

into arrays of properties, along side several other structures designed to facilitate the solving of the

solid and gas networks. Then the user was queried for details on the setup, the conditions to start

from and the conditions of termination.

The main solving loop was characterized by an initialization phase, where temperature or flow

dependent properties were recalculated given new conditions. Then flow independents were

calculated such as conduction and explicit faces. Then the gas network was solved, considering

changes in volume and energy introduced to each node. Then flow rate dependent properties such

as mass and energy were distributed. Following this turbulence was transported, generated, and

decayed.

At the end of each increment the mechanism took the cumulative pressure on its pistons as an

impulse. This impulse was transferred through the linear to rotational mechanism, onto the

driveshaft until finally causing the flywheel to either accelerate or decelerate for the next angular

increment. The cycle can continue like this for many steps. The next chapter presents a series of

advanced methods available in MSPM to reduce the number of steps, the time required for each

step or use MSPM to automatically improve the engine.

106

 ADVANCED FEATURES

The following sub-sections outlines some of the successful tools used to enhance the

convergence of the algorithm when a steady state is desired.

5.1 Solid Temperature Distribution Acceleration

One of the primary restrictions to reaching steady state is the rate at which heat diffuses into

the body of the engine. A technique used by some researchers in the massively parallel

computational fluids areas [58] is to decouple the gas and solid networks and on occasion calculate

the steady-state temperature regime of the solid component based upon the mean thermal fluxes

from the gas component. Often this is validated by the concept that temperatures in the solid evolve

on a much slower rate than the temperatures in the gas. The algorithm, in this case is as follows.

The algorithm builds off the following equation, which applies for every solid node for a given

instant in time:

𝑄𝑖𝑛,𝑖(𝑡) =

(

∑ 𝐶𝑖𝑗(𝑇𝑗 − 𝑇𝑖)
𝑜𝑡ℎ𝑒𝑟 𝑠𝑜𝑙𝑖𝑑
𝑛𝑜𝑑𝑒𝑠 (𝑗)

+ ∑ 𝐶𝑖𝑘(𝑇𝑘 − 𝑇𝑖)

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

𝑔𝑎𝑠 𝑛𝑜𝑑𝑒𝑠 (𝑘))

𝑡

 (96)

The solution that this algorithm is seeking will solve for all 𝑇𝑖 such that 𝑄𝑖𝑛,𝑖, the flux into each

solid node, is zero when integrated over the entire cycle. Since the conductance between solid

nodes is only dependent on angular position, and velocity change during the cycle is assumed to

be negligible in a well, then the cycle averaged conductance between solid nodes 𝐶𝑖𝑗,𝑒𝑓𝑓 is the

following:

𝐶𝑖𝑗,𝑒𝑓𝑓 = {

𝐶𝑖𝑗 𝐹𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑐 𝑓𝑎𝑐𝑒𝑠

1

2𝜋
∑𝐶𝑖𝑗(𝜃) 𝑑𝜃 𝐹𝑜𝑟 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑎𝑐𝑒𝑠

where: 𝐶𝑖𝑗 = Static value assigned to conductance between node 𝑖 and 𝑗

(97)

107

 𝐶𝑖𝑗(𝜃) = Angular dependent value of conductance between node 𝑖 and 𝑗

 𝑑𝜃 = Angular increment that separates unique values in the dynamic

values lookup table.

The conductance between the gas and a solid node depends on velocities and temperatures, and

therefore the effective conductance 𝐶𝑖𝑘,𝑒𝑓𝑓 for these nodes is equal to the following:

𝐶𝑖𝑘,𝑒𝑓𝑓 =
1

∑𝛿𝑡
∑(

𝛿

𝑅𝑖𝑘 +
1

𝐴𝑖𝑘ℎ𝑘

)

𝑡

=
1

∑𝛿
∑𝛿𝐶𝑖𝑘𝑡

where: 𝛿𝑡 = Instantaneous timestep between which each conductance samples

are gathered.

 𝐶𝑖𝑘𝑡 = Instantaneous conductance between the gas node and solid node.

 𝐴𝑖𝑘𝑡 = Instantaneous value of the surface area of the mixed face.

 𝑅𝑖𝑘 = Thermal resistance of the solid component of conduction.

 ℎ𝑘 = Convection coefficient, as derived from the Nusselt number,

associated with the gas node.

(98)

The effective value of 𝑇𝑖𝑘,𝑒𝑓𝑓 with respect to the faces that it interacts with is dependent on the

instantaneous value of conductance for each face. Thus:

𝑇𝑖𝑘,𝑒𝑓𝑓 =
∑(𝛿𝐶𝑖𝑘𝑇𝑘)𝑡
∑(𝛿𝐶𝑖𝑘)𝑡

 (99)

The cycle averaged version of equation (96) is as follows:

∮𝑄𝑖𝑛,𝑖 = ∑ 𝐶𝑖𝑗,𝑒𝑓𝑓(𝑇𝑗 − 𝑇𝑖)
𝑜𝑡ℎ𝑒𝑟 𝑠𝑜𝑙𝑖𝑑
𝑛𝑜𝑑𝑒𝑠

+ ∑ 𝐶𝑖𝑘,𝑒𝑓𝑓(𝑇𝑖𝑘,𝑒𝑓𝑓 − 𝑇𝑖)
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡
𝑔𝑎𝑠 𝑛𝑜𝑑𝑒𝑠

(100)

Since every solid flux should integrate to zero over the cycle, this forms a set of equations,

which can be arranged in matrix form (𝐴𝑻 = 𝒃):

108

[

 ∑𝐶1𝑗,𝑒𝑓𝑓
𝑗

+∑𝐶1𝑘,𝑒𝑓𝑓
𝑘

−𝐶12,𝑒𝑓𝑓 ⋯ −𝐶1𝑛,𝑒𝑓𝑓

−𝐶21,𝑒𝑓𝑓 ∑𝐶2𝑗,𝑒𝑓𝑓
𝑗

+∑𝐶2𝑘,𝑒𝑓𝑓
𝑘

⋯ −𝐶2𝑛,𝑒𝑓𝑓

⋮ ⋮ ⋱ ⋮

−𝐶𝑛1,𝑒𝑓𝑓 −𝐶𝑛2,𝑒𝑓𝑓 ⋯ ∑𝐶𝑛𝑗,𝑒𝑓𝑓
𝑗

+∑𝐶𝑛𝑘,𝑒𝑓𝑓
𝑘]

[

𝑇1
𝑇2
⋮
𝑇𝑛

] = [

𝑏1
𝑏2
⋮
𝑏𝑛

]

where:

𝑏𝑖 =∑𝐶𝑖𝑘,𝑒𝑓𝑓𝑇𝑖𝑘,𝑒𝑓𝑓
𝑘

=∑∑(𝛿𝐶𝑖𝑘𝑇𝑘)𝑡
𝑡𝑘

(101)

The resulting set of temperatures are adjusted to account for the current offset from the mean

cycle temperature, this equation appears as:

𝑇𝑖,𝑛𝑒𝑤 = 𝐴
−1𝑏 + 𝑇𝑖,0 − (𝑇𝑖,𝑎𝑣𝑔 +

1

2
(𝑇𝑖,0 − 𝑇𝑖,0 𝑝𝑟𝑒𝑣))

where: 𝑇𝑖,0 = Temperature of node at the end of this cycle (last measured

temperature)

 𝑇𝑖,0 𝑝𝑟𝑒𝑣 = Temperature of node at the end of previous cycle

 𝑇𝑖,𝑎𝑣𝑔 = Average temperature of node as measured over the previous

cycle.

(102)

The concluding formula attempts to recapture the oscillations that each node experiences over

the cycle. As used in the solver, the engine is cycled until reaching convergence with this method.

The last cycle is then conducted without this acceleration and with a tighter timestep. This final

step ensures that the results are relatively free of numerical artifacts.

The performance of this algorithm was compared against natural convergence on the EP-1 test

engine, an experimental engine compared against in CHAPTER 7, from a cold state. The log plot

in Figure 5.1, below, illustrates the convergence behaviour. The initial sharp climb in both models

is due to the rapid temperature changes of the gas volume experienced over the first few cycles.

The remaining period involves the gas exchanging heat with the solid elements of the body until

the amount of energy exchanged over the cycle is zero. The resulting algorithm converged to 2%

of the final value in 9 cycles, equivalent to approximately 9 seconds in simulated time, the

109

unaccelerated model would converge to this level of tolerance after 2057 cycles, approximately 34

minutes of simulated time. The two simulations converged on the same value within 0.01% of

each other. This indicates that acceleration did not significantly alter the result of the simulation,

but rather improved the rate at which this result is obtained.

Figure 5.1: Comparison of accelerated vs natural convergence of Stirling engine

performance of the EP-1 model (defined in Appendix C)

5.2 Progressive Refinement

Taking inspiration from multi-grid methods discussed in [59] which are effective convergence

enhancement tools for CFD solvers, the following section outlines progressive refinement as a tool

to accelerate an incremental simulation to a steady-state position. The strategy that would be

undertook by this is to run the engine on a coarse model to establish a quick overall picture of the

macroscopic behaviour of the engine. Then progressively run the engine on a series of finer grids,

before ultimately establishing the final temperature distribution with the desired grid size. The

Snapshot feature would assist with interpolating between different granularities.

The speed at which the gas system may run is theoretically proportional to the number of gas

nodes divided by the size of each node. Ideally, due to the reduction of the number of nodes by the

same amount, the simulation will run at speeds proportional to the inverse of the number of nodes

-0.5

0

0.5

1

1.5

2

2.5

1 10 100 1000 10000

E
n
er

g
y
 P

ro
d

u
ce

d
 P

er
 C

y
cl

e
(J

/C
y
cl

e)

Number of Cycles

Accelerated

Normal

110

squared. In the EP-1 simulation model, which is a comparison with a real-world engine found in

CHAPTER 7, the trend shown in Figure 5.2 is found.

Figure 5.2: Computational Time vs Number of Gas Nodes,

The trend follows closely the power curve: 0.0011𝑥2.5568 + 7.625, it varies from the

theoretical case of 𝐶𝑥2 for the following reasons.

• Node densities are not high nor uniform enough such that node growth could be

considered a uniform action.

• Loop calculation may be relatively independent of the number of nodes and have a

significant impact on the run speed.

• Larger memory requirements can slow down operations through higher computational

overhead, this is not included in the theoretical case.

During test sets this progressive refinement does not activate if following a similar experiment

such as the snapshot from a previous experiment as this is typically close to the steady state for the

following experiment. As a result, time investment into further development of this tool was not

considered. It does however allow the user to quickly estimate the result from a more advanced

model by reducing the number of nodes through modification of the de-refinement factor entry on

the GUI, as discussed in CHAPTER 6.

0

20

40

60

80

100

120

0 20 40 60 80 100

R
u
n
 T

im
e

P
er

 C
y
cl

e
(s

)

Number of Gas Nodes

111

5.3 Geometrical Optimization

Traditionally, engines have been designed by skilled experts, who start with defining the basic

parameters of a design using low-order models and then through use of higher models, make small

adjustments to improve the predicted performance of the engine. These adjustments can be made

by computers as well, and learning algorithms have been incorporated into a variety of 3rd and 2nd

order models in the past [35]–[37], [46]. The choice of learning algorithm depends on the runtime

of each test, which for this model can take between 10 minutes for a detailed model to several

seconds for a simple model. Other involved factors include the presence of local maximums, the

existence of saddle points and the non-linearity of results. Thankfully, the power response of a

Stirling engine given reasonable geometry will be continuous as discontinuities will only exist

when two parts of the engines are separated into two regions for part of the cycle, likely a sub-

optimal process. There is no guarantee of a single optimal geometry as Stirling engines can exhibit

two possible optimal configurations, isothermal and adiabatic.

To conduct this optimization a combination of standard gradient descent with a line searching

algorithm is applied. Wherein, after a step is made in the direction it is tested, if the step resulted

in greater power then it is the new point, if the step did not then the step is backtracked. If the first

step resulted in a reduction of power then the step length is backtracked then the step length is

reduced by half trying again at the intermediate position, this is conducted until an increase is

recorded, after which a new gradient is taken. If the first step was successful, then more steps are

taken in that direction until a reduction in power occurs. The inclusion of this improves the rate of

convergence of the optimization as a gradient calculation is very expensive.

The MSPM software can modify piston strokes, the position of surfaces (connections), the fill

pressure and rotational speed to seek the optimal power. These are governed by the optimization

scheme builder on the GUI.

5.4 Conclusions

This chapter contained a series of optional features which were designed to enhance the model.

Temperature convergence acceleration resulted in 2 orders of magnitude improvement in

convergence rate at a small computational cost while converging to the same state as natural

112

methods. The second section included a mesh refiner which allows the designer to choose between

accuracy and computational speed. The third section outlined a geometrical optimizer which can

be applied to optimize a given part of the engine, or the entire engine, allowing the designer to

automate this part of the design process.

113

 MODEL USAGE

6.1 Constructing a Model

A model of a Stirling engine is initialized by opening the GUI interface. By default, a single

group is created along with 2 orthogonal connections placed at the origin. From this point the user

can construct their design.

Figure 6.1 shows the entirety of the main interface, from which all of the main functionalities

can be accessed. In further sections each area of this GUI is broken down.

Figure 6.1: The main MSPM graphical user interface.

114

6.1.1 Display Window

Figure 6.2: The main model display window

The display window displays the model view. The user can modify the view with the box zoom

options. The default window contains all the geometry of the model, default views can be reset via

the re-center view option. Mode specific instructions will appear above the display window,

informing the user of the next step that they need to accomplish in the insertion of elements. When

producing both live and output animations, the current display window acts as the animation scope.

The model within this window is displayed in cross-section and each group is assumed to be

azimuthally symmetrical.

115

6.1.2 Left Toolbar – Create, Destroy and Select

Figure 6.3: Create, Destroy and Select Toolbar

Here, using the group of controls seen in Figure 6.3, the user has the control to add to or delete

elements from the virtual engine. The elements in order of appearance and their description is as

follows:

116

6.1.2.1 Insert: Body

Figure 6.4: Examples of Bodies Being Used to Construct Geometry

Bodies as shown in Figure 6.4, are foundational elements of an engine model and the only

means of representing a physical object. This is defined through the definition of 4 constraining

surfaces, referred to as connections. There are multiple ways of creating these. A left mouse click

will select the nearest properly oriented connection. On the 1st connection this can be any

connection, horizontal or vertical. The even numbered connections will be oriented the same as

their preceding connection with the 3rd connection being the opposite orientation as the first 2. On

a right click, the model will ask for either an offset from the previous connection or, in the case of

an odd numbered connection, an offset from the origin. If no connections have been created, then

this first right creates a connection that is parallel to the axis (the radial direction). Care should be

taken to always define mobile elements at their bottom position (bottom being the farthest in the

negative direction). If a new group is required, then this can be added using the insert group

functionality.

117

6.1.2.2 Insert: Group

Figure 6.5: Example of an engine containing two groups, one for the main engine

assembly and a second for a power piston offset from the main axis.

A group, as shown in Figure 6.5, is a container for a set of bodies which lie around a common

axis of rotation. For a wholly axially symmetric engine, only one group would be required. A

group can be inserted by using the left mouse button in the empty space of the display window.

The software will insert a new group there. In post model assessment the created groups can be

moved into a more compact or physically representative location by editing the position property

of the group using the property inspector.

6.1.2.3 Insert: Bridge

If the engine design incorporates multiple groups, there may be a need to include a bridge into

the design. Bridges connect one body to another via a connection interface. An example of the

usage of a bridge in a practical engine is found on Figure 6.6.

118

Figure 6.6: Example of a usage of the bridge component

Bridges can represent axially aligned connections, offset connections or even T-junction

connections. It is important to note that the simulation does not support the non-symmetries that

arise from any of the scenarios as there is no discretization in the direction of rotation. However,

the software still utilizes the same area and hydraulic diameters of the connection. The available

configurations to be used by a bridge are found on Figure 2.10.To produce a bridge the following

steps must be followed:

Select the first connection: Select a connection which touches one of the bodies, in particular

this body is called the foundation onto which the other body is added on. This connection may be

in the horizontal or vertical orientation and represents the surface that the two bodies will meet

against.

Select the first body: Select the body, that is touching the first connection. In the event of an

offset, this body is considered static.

Select the second connection: This is the face of the second body that will interface with the

first body. This may ask several times, as this connection may be in a different group than the first

body-connection set.

Select the second body: Select the second body.

119

Input the offset from the origin: If the two connections are horizontally aligned, provide an

offset from being coaxial. If one of the connections is vertically aligned, provide the offset of the

center of the horizontally aligned participant from the origin of the vertically aligned participant.

If both connections are vertical then the second body is offset from the first body (in addition to

the local coordinates of the second body within its group) by the set amount.

6.1.2.4 Insert: Leak Connection

The leak connection connects two separate bodies with a leak function that provides a leak flow

rate that is dependent on the pressure difference through the general formula:

𝑉̇ = 𝐶. (𝑃1 − 𝑃2)
𝑁1

where: 𝐶: Leakage number

 𝑁1: Leakage exponent

The exponent and number depend on the properties of the leak. These can be obtained by observing

the pressure drop of a physical engine of similar design or used as an aid in sensitivity studies. A

leak is created by selecting two bodies to link together and then by providing the coefficients.

6.1.2.5 Insert: Sensor

Sensors are intended to be used to measure a specific property at a specific location and show

the evolution of that property over the course of the experiment or over the course of a single cycle.

This has two forms: a single point, which generates a line plot (the parameter vs time) and a line

sensor, which generates a surface plot (the parameter at N points down the line vs time). The steps

to create a sensor are as follows:

Selecting the target body: Select a body, from within which you will record the data.

Selecting an orientation: There are several options for this, you can select the center of the

body, the center of the bottom, top, inside or outside face or an axial line through the middle either

going in the y-direction (y-axis) along the group axis, or in the x-direction (x-axis) which is the

radial direction.

120

Selecting the independent variable: The independent variable is the variable that changes in

time but is only dependent on the motion of the engine. Currently, the two independent variables

are time and angle. If angle is selected the variable will, in the end, have only recorded the last

cycle (as it over-writes the same angular positions). If time is selected it will record each value

uniquely with time until the simulation ends.

Selecting the dependent variable: Currently, this can be either temperature, pressure, or the

turbulence weighting factor.

6.1.2.6 Insert: PV Output Location

PV Output locations are specialized sensors that are designed to output an indicator (pressure

vs volume over a cycle) diagram. These features are created by selecting a gas body. Internally,

the code will then scan the selected region (all gas bodies touching the selected body). Each

variable volume space that it finds will be represented by an individual indicator diagram on the

final plot. For example, the plot displayed in Figure 6.7 below is the indicator diagram produced

by this sensor for a gamma type engine. A gamma engine has 3 variable volume spaces: the

expansion space, the compression space, and the power piston space. The sensor also colors plots

as blue if they produce positive power and red if they produce negative power and places a marker

where the cycle start position was.

121

Figure 6.7: Example indicator diagram from PV Output sensor

6.1.2.7 Insert: Two Body Non-Connection

This feature was added to fit a specific problem, which is outlined here for clarity. The EP-1,

the test engine that will be compared against, contains a flexible thin, rubber bellow. However, as

solid bodies currently cannot stretch, and an immobile rubber sleeve would fail to model the

thermal transport across the real system. Thus the Two-Body Non-Connection was added and

prevented the gas body under the power piston from interfacing with the environment.

Thus, this feature involves two steps as follows:

Selecting a Body: This body will not connect to the second body by any means.

Selecting a Second Body: This second body will not connect to the first body through any

means.

122

6.1.2.8 Insert: Custom Minor Loss Coefficient

This feature enables the user to create a custom minor loss at any boundary between bodies.

The minor loss can be non-symmetric, which allows the user to, to a degree, simulate check valves

in cases where a different flow direction is available. In cases where the check valves completely

close off two gas spaces they will not work as only the loop solver uses flow losses to determine

flow rates. In these cases, the user may have to create their own solution or create a piston that

blocks the two spaces when desired.

Selecting a Body: Defines body 1.

Selecting a Second Body: Defines body 2.

Providing a name, K12 and K21: This user-form appears after the user creates the feature, the

name is important for identification later, K12 is the minor loss for flow going from Body 1 to

Body 2, while K21 is the flow going in the opposite direction.

These features can be deleted by finding them in the Model and following the instructions to

delete the desired Custom Minor Losses.

6.1.2.9 Insert: Relation

This feature allows the selection of 2 connections to associate with each other. Doing so ensure

that when one connection is moved that any connections or mechanism strokes that are associated

with it will also move. A relation comes in several forms: (a) constant distance: when one

connection moves the second moves the same amount, (b) scaled: when one connection moves the

other moves an amount scaled by its distance from zero, (c) scaled based on lowest value: when

one connections moves the other connection moves based on distance from the minimum extreme

of this group of connections (or relative to the maximum if it is the minimum that moves), (d)

width: when 4 or 6 connections are grouped together by having this relation type, any modifications

are reflected. If the two extreme points move, the inner points shift by half that amount in the same

direction. This is of particular use in cases where the heat exchangers sandwich the regenerator,

lengthening one heat exchanger will length the other one and keep the regenerator centered

between. (e) Stroke: selecting 2 connections and a mechanism will allow the difference between

those connections to define the stroke. A unit change in that distance results in a unit change of

123

the stroke. (f) Piston: selecting 2 connections and mechanism will allow the difference between

those connections to define the length of a piston. This relationship is only of physical suitability

in the case of a displacer piston which moves within an encloser. A unit increase in the distance

will result in a unit decrease in the mechanism stroke. Relationships can be toggled on and off via

the Toggle relations button along the top of the GUI.

This feature was introduced to reduce the degrees of freedom used by the gradient descent

algorithm.

6.1.2.10 Select: Select Objects

While this is activated, clicking on the graphical window will give you a list of elements that

you may have wanted to select. Including, within a selection tolerance, a group, a connection and

a body. Selecting an object with this mode will remove any currently selected objects from the list.

6.1.2.11 Select: Select Multiple Objects

Similar to select objects. However, this option appends the new object to the selected object

list.

6.1.2.12 Dynamics: Create Motion

Using the create motion interface a frame can be connection. After creation, clicking on a body

or a connection exposes the drop-down menu, where a reference frame can be added. The animate

function can provide some feedback on the resulting motion. As a note, stretching solid bodies are

not supported realistically in the model, so ensure that every element in compound shapes such as

pistons are given the same movement.

Note that the motions that are define here can be found and edited through the property inspector

window, as they can are stored under the default expandable object found there.

6.1.2.13 Dynamics: Animate

Pressing this button will begin a 30 second animation of the model’s defined motion. Useful

for understanding the phasing or interference caused by a prescribed motion.

124

6.1.2.14 Delete Selected

This function deletes (without undo) the selected element. This will also delete any element that

relied on the deleted object.

6.1.3 Bottom Toolbar – View options

Figure 6.8: View options

The view options bar provides the user with the ability to modify what is shown in the display

window. Several of these are self-explanatory: Groups, Bodies and Connections are common

properties of any model. Bridges appear as lines that go from the center the side of one body, to

the center of the side of another. Leaks is a placeholder for future development but will appear like

bridges. Node-Connections connect the center of nodes together if those nodes share a connection

via a face. Node Outlines simply places a marker at the center of all the nodes. Environments does

not show the environment, but rather shows what the software has identified as the environment

exposed surfaces. Ghosts show the maximum positions of any solid body that translates (as the

minimum position is covered by the current placement). Sensors place a magenta marker or line

segment along the area that will be measured by the sensor during simulations. Showing Relations

update the colors on connections based on their existing geometrical relations with each other,

those with multiple associates are colored in the default color, however.

The view option Box Zoom allows the user to zoom in on a box, the code maintains the aspect

ratio, zooming in as much as it can. Recentre View resets the display window to its default all

encompassing mode. Clear Axis is useful for removing graphics are plotting incorrectly or may

represent deleted objects.

125

6.1.4 Top Toolbar – Save / Load options

Figure 6.9: Save / Load options

The save options, allow a user to save a model, save the model as a specific name and load

models. If there is an existing model that is called by the default name (which is the model’s name),

then the save model button asks for permission or a new name.

6.1.5 Top Toolbar – Geometrical Optimizer, Relation Toggle &

Dropdown mode

Figure 6.10: Geometrical Optimizer, Relation Toggle & Dropdown mode

6.1.5.1 Switch Current Study

The Switch Current Study button switches the optimization study that will run or be appended

through interfacing with the dropdown, via the dropdown mode being in the “optimizer” setting.

The text label to the right of it will cycle between the named studied or display “Create New

Study”, indicating that when this study is appended it will create a new optimization study. The

study displayed here will be the one ran by selecting “Run Study”.

6.1.5.2 Switch Dropdown Mode

This button toggles the text label to the right of it from blank to “optimizer”, when the text label

is blank the drop down will work normally. Otherwise, anything clicked on in the dropdown menu

will be added as a degree of freedom to the optimization study indicated by the Current Opt. text

label.

6.1.5.3 Run Study

This runs the indicated optimization study. It will also ask for a set of run conditions, which are

in the same format as the test set structures. If the run condition structure contains a field called

126

“PressureBounds” it will assume that pressure is a degree of freedom. If the run condition structure

includes “SpeedBounds” it will assume that speed is a degree of freedom.

6.1.5.4 Toggle Relations

Toggling this button from “On” to “Off” will make relations not work when a change is made,

allowing you to change the position of connections or length of strokes in isolation. Turning it

back to the “On” position will reactivate these relations.

6.1.6 Right Toolbar – Property dropdown and Simulation options

Figure 6.11: Property dropdown and Simulation options

The property drop-down shows by default the root object, represented by “Model (Model) [the

name of this file]”, which can be expanded to see a host of options or lists of other expandable

127

objects. Any selected objects will also appear at the bottom of this dropdown menu. Each object

has multiple properties and child objects, that can either be edited, expanded or in some cases

deleted from this menu. This is where motions are added to connections (or bodies), where

discretization schemes are assigned and where matrixes are added to a body using the “Change

Matrix” option as shown in Figure 6.12.

Figure 6.12: Properties of Bodies including location of Change Matrix where Matrix

components are initialized

The options on the lower half of this side of the GUI refer to the simulation and simulation

outputs. Checking these radio buttons will permit the software to record the referenced property

and optionally generate an animation for quick review. The animation frame time refers to the

amount of time that each frame of the animation covers. The output file is the path of a folder

where you want the files to be saved. The warm-up cycle is a simulation option that is added for

transient scenarios from start-up where the engine, is warming up for a period before turning over.

The de-refinement factor is a global modifier that decimates the mesh by a set, approximately

uniform, amount. A factor of greater than 1 will result in more nodes, while a factor of smaller

than 1 result in less nodes.

128

6.1.7 Start the Simulation

Figure 6.13: Run Interface

6.1.7.1 Run

Runs a single test, after querying the user for simulation parameters.

6.1.7.2 Run Test Set

Runs a single test by calling a test set function by name. Said function returns a structure that

contains simulation parameters for several tests in series, these functions are stored as files in the

Test_ Running folder. An exemplar test definition file is included below. This version is the default

test definition for a gradient ascent and shows all the properties available. A test set function can

output an array of structs to perform several tests in series.

function [RunConditions] = GA_Template()

 RunConditions = struct(...

 'Model','EP_1 0,09 DP e0 PP e0 - GA',...

 'title','',...

 'simTime',60,... [s]

 'SS',true,...

 'movement_option','C',...

 'rpm',60,... [rpm]

 'max_dt',0.1,... [s]

 'SourceTemp',90 + 273.15,... [K]

 'SinkTemp',5 + 273.15,... [K]

 'EnginePressure',101325,...

 'NodeFactor',1,...

 'Uniform_Scale',1,...

 'PressureBounds',[101325 3*101325],...

 'SpeedBounds',[60 1000] ,...

 'HX_Convection',1.0,...

 'Regen_Convection',1.0,...

 'Outside_Matrix_Convection',1.0,...

 'Friction',1.0,...

 'Solid_Conduction',1.0,...

 'Axial_Mixing_Coefficient',1.0,...

 'HX_C1',1.0,...

 'HX_C2',1.0,...

129

 'HX_C3',1.0,...

 'HX_C4',1.0,...

 'HX_SA_V',1.0,...

 'Regen_C1',1.0,...

 'Regen_C2',1.0,...

 'Regen_C3',1.0,...

 'Regen_C4',1.0,...

 'Regen_SA_V',1.0,...

 'Regen_Porosity',1.0);

end

Model refers to the file to load in, which is the same as the name property of the root object.

Title will be the name that the results are saved under. SimTime is the amount of in simulation time

allotted. SS is a flag indicated whether or not the simulation will stop at steady state. Movement

Option can have defined either constant speed (C) or variable speed (V) indicating if the results

should contain the velocity variations. Rpm indicates the initial or target speed in revolutions per

minute. Max dt indicates the maximum timestep to use, normally this only applies for exceedingly

slow scenarios. SourceTemp, SinkTemp indicates the temperature that will applied to constant

temperature elements flagged as source or sink respectively, which are automatically identified by

relative temperature. EnginePressure indicates the fill pressure of the engine, the internal volume

of the engine is identified by the placement of a PVoutput sensor. NodeFactor is the mesh

refinement factor applied to the test instance, which scales the number of nodes by this amount.

Uniform_Scale scales the geometry by the specified amount in all directions. PressureBounds

and SpeedBounds is used by gradient ascent to bound the search space for pressure and speed

respectively. The next 6 fields allow the user to apply factors on each of the described properties,

a factor of 1 uses the results of the default equations. The final set of equations modify custom

type heat exchangers with correlations 𝑁𝑁𝑢 = 𝐶1𝑁𝑅𝑒
𝐶2𝑁𝑃𝑟

0.33, 𝑁𝑓 = 𝐶3𝑁𝑅𝑒
𝐶4, surface area to gas

volume ratios (SA_V) and porosity.

6.2 Discretization

In simulations there are two types of discretization, spatial and temporal. The following sections

outline some recommendations and theory on discretization. These are controllable through

interfacing with each body via the property drop-down menu, where the number of nodes in each

direction can be controlled. Specialized functions that allow for better modelling of surface

130

gradients can be added by loading the wall smart discretize function as a discretization function.

This function uses the global mesher properties. Those properties can be found under Model-

>Mesher. Other meshing functions can be added if required.

6.2.1 Spatial Discretization

The spatial discretization is how much space is broken up; it is simplest to assign this at the

start of the simulation. If this is the case, certain assumptions have to be made by the designer to

ration nodes to areas that truly need it. With spatial discretization of the solids the main concern is

high gradients, as high gradients require greater node density to be properly modelled, particular

at their edges. Three phenomena utilize these high gradients, which will be discussed in the next

three paragraphs.

The first aspect is gas spring hysteresis which occurs between the gas and the very surface of

the solids surrounding it. If this is the case then these surface nodes will experience strong gradients

and curvature, which would vary depending on the expected frequency, and the thermal diffusion

of the material. These oscillations are experienced throughout the material, but at a specific depth

they become negligible. This depth, which is called the oscillation penetration depth was studied

by Wang [60], who presented the following. The formula here is modified such that at this distance

only 5% of the oscillation is present.

𝑥0.05 = 3√
2𝛼𝑡
𝜔

 (103)

where: 𝑥0.05: Represents the distance at which the temperature fluctuations
are at 5% of their original value.

 𝜔: Angular velocity

 𝛼𝑡: Thermal diffusivity (𝛼𝑡 =
𝑘

𝜌𝑐𝑇
)

Beyond this point, temperatures experience a slowly evolving or static temperature profile, which

is a phenomenon assumed by several Stirling engine modelers [35], [46]. The ratio of conduction,

density and heat capacity is equal to the thermal diffusivity, a representation of the thermal inertia

131

of the material. The angular velocity (𝜔) is established at the beginning of the simulation as an

estimate of the final angular velocity.

The second aspect is static conduction within the solids of the body. With first order

discretization schemes the error associated with discretization increases proportional to the local

element size, a length representing how far elements are from each other. This error also increases

based on the distribution of values among the nodes, if a high gradient or curvature is to be

represented then a fine grid is required. These areas namely exist in features that divide two areas

of very different temperatures, or at interfaces of materials of very different thermal properties.

The third aspect is dynamic conduction. As Stirling engines contain moving components, there

is an opportunity for momentarily high gradients to be generated when two components closely

cross paths. This leads to gradients which exist both into the material depth as well as along the

interface length.

For gases the same thing is true as for solid elements, however, the areas in which they occur

are different. As the one-dimensional assumption prevents the modelling of the temperature

gradients in large chambers, particularly off of walls, these areas are considered well mixed and

don’t require many nodes. To partially account for this and other factors gas nodes should include

turbulence, a representation of how disturbed the flow is. Therefore, there may exist areas of high

gradients in turbulence, such as areas directly following geometrical non-uniformities. These

gradients persist for about one diameter from the entrance according to Gedeon [35]. Temperature

gradients exist at the start and end of heat exchangers and regenerators, Anderson [48] studied this

extensively, the exact breadth of the inlet gradient will depend on the effectiveness of the heat

exchangers. In addition, Anderson identified that gradients can persist in the areas around heat

exchangers, in particular after reversal events, highly diffusive schemes require many nodes to

properly represent these moving gradients. Anderson utilized an advanced flux limiting scheme to

preserve these gradients.

132

6.2.2 Temporal Discretization

Temporal discretization is how much time progresses after each flux calculation. For solids this

is calculated based on the Fourier number, which sets a limit to the timestep based on the numerical

volatility of a numerical element. This non-dimensional number is identified here:

𝑁𝐹𝑜 =
𝛼𝑡. ∆𝑡

∆𝑥2
=

𝑘

𝜌. 𝑐𝑇

1

∆𝑥2
∆𝑡 = (

𝑘. 𝐴

∆𝑥
)

⏟
𝐶𝑓𝑐

(
1

𝜌. 𝑐𝑇 . ∆𝑥. 𝐴
)

⏟
1 𝐶𝑇⁄

∆𝑡 =
𝐶𝑓𝑐. ∆𝑡

𝐶𝑇
→ ∆𝑡 = 𝑁𝐹𝑜

𝐶𝑇
𝐶𝑓𝑐

(104)

where: 𝑁𝐹𝑜: Fourier number

 𝛼𝑡: Thermal Diffusivity

 ∆𝑡: Timestep

 𝐶𝑓𝑐: Thermal conductance of a face, used as ∆𝑄 = ∆𝑡𝐶𝑓𝑐(𝑇2 − 𝑇1),

where 𝑇2 and 𝑇1 are temperatures of two nodes connected by a face.

 𝐶𝑇: Specific heat capacity of node, used as ∆𝑄 = 𝐶𝑇(𝑇2 − 𝑇1), where 𝑇2

and 𝑇1 are temperatures of the same node from different times.

Recommendations from Hensen and Nakhi [61] indicate that the iteration is stable – errors do

not grow – for a Fourier numbers of 0.25 or less. Therefore, a Fourier number of 0.25 is selected

as the maximum of any node. In determining the timestep, the entire pool of nodes is queried for

the timestep limit.

For gases the maximum time step is established based on the Courant Friedrichs Lewy [62]

condition:

𝑁𝐶 =
𝑈. ∆𝑡

∆𝑥
=

𝑉̇

𝐴𝑓𝑐. Δ𝑥
∆𝑡 ≤ 𝑁𝐶,𝑚𝑎𝑥 (105)

where: 𝑁𝐶 = Courant number, less than 1 for theoretical stability.

 𝑈 = Speed at which information travels, the speed of the gas

 ∆𝑥 = Spatial difference between two measurement points. Between

which the information is travelling.

133

This condition ensures that a property is not transported any farther than is calculatable by the

underlying numerical system. The term Δ𝑡 represents the time step, Δ𝑥 represents the spatial

distance between adjacent nodes and 𝑈 represents the velocity.

Numerical algorithms that cover a longer distance, such as one that considers 2 neighbors on

either side may be stable with a maximum courant number of 3 due to the added information. In

practice however, these theoretical maximums are limited by lower node quality, the presence of

destabilizing features and numerical errors, often by an order of magnitude.

6.3 Simulation Tools

6.3.1 Snapshot

A snapshot is an image of the engine at the 0th angular position on the last cycle of the engine,

this obtains a snapshot of all the bodies of the engine and records to the granularity of the body

discretization. These are recorded in arrays of temperatures that are accompanied by X and Y values

scaled to the body as if it were of unit dimensions, such that interpolating onto a modified body is

a trivial manner. This option does not handle new bodies, instead leaving them with the default

temperature values.

6.3.2 Test Set Running

A series of tests may be run using test definitions. These run in series, each test starting from

the conclusion of the previous, the goal would be that an engine curve could be defined by setting

the engine to run at a set of constant speeds in sequence. Each run can be told to look for a snapshot

title which will by default be used as the starting point, otherwise it uses the last defined snapshot

as a starting point. The use of snapshots allows this approach to construct an engine curve more

quickly than starting from scratch each time.

6.3.3 Geometrical Optimization

The MSPM software includes a geometrical optimizer, which when given a series of

parameters, will tune the geometry until the engine gives optimal power output. These parameters

134

include connection positions, mechanism strokes, charge pressure and engine speed. The optimizer

makes use of gradient ascent to make small adjustments to the geometry in the direction of positive

slope until it reaches either the maximum number of iterations or reaches a point at which the RMS

of all gradients is below a set tolerance. Further details on this is found in 6.1.5 for interfacing with

it and 5.3 for details into the algorithm.

6.4 Model Outputs

6.4.1 Engine Assessment

6.4.1.1 PV Diagram & Thermodynamic Work

Pressure-volume (PV) or indicator diagrams, produced by the PV output sensor, are an excellent

descriptor of the engine’s thermodynamic cycle. Several quantitative measures can be quickly

extracted from the PV diagram. These are labeled on the sample indicator diagram below.

Figure 6.14: A plot and definition of the pressure-volume (PV) diagram

1. Minimum Volume – This quantity represents the minimal volume of the engine. This can

be used for two imported parameters. The dead volume and the compression ratio.

a. Dead Volume 𝑉𝑑𝑒𝑎𝑑 = 𝑉𝑚𝑖𝑛 − 𝑉𝐷𝑃,𝑠𝑤𝑒𝑝𝑡

135

This parameter represents the volume that does not change its temperature during the

cycle, in practice these are all the spaces not swept by the pistons. This dead volume

acts as a form of compliant boundary for the engine, which reduces the maximum

pressure that the engine reaches. In general, this quantity should be minimized as much

as possible.

b. Compression Ratio 𝑟𝑐 = 𝑉𝑚𝑎𝑥 𝑉𝑚𝑖𝑛⁄

This non-dimensional parameter represents the proportion that the volume changes

throughout the cycle. The optimum point of this value is a function of the temperature

ratio but is influenced by a variety of factors including the mechanism design. Review

and experimentation on low-temperature engines by Stumpf [12], indicates that an

approximate value of this optimal point can be obtained as the value: 0.624(𝑇𝐻 𝑇𝐿⁄) +

0.376.

2. Total Change in Volume – This quantity represents the 𝑑𝑉 in the basic equation for

pressure work 𝑊 = 𝑃𝑑𝑉. However, increasing this quantity does not increase the amount

of power produced linearly as various factors influence the power output of the engine.

3. Engine Pressure Swing – This dependent property of the cycle represents the 𝑃 in the basic

equation for pressure work 𝑊 = 𝑃𝑑𝑉. This property is indicative of the magnitude of the

temperature swing in combination with the volume change.

4. Area Enclosed by the Curve – This measure represents the amount of work, as defined by

𝑊 = 𝑃𝑑𝑉 that the gas volume being observed sent to the mechanism. An engine that

produces negative work would still maintain an area here, but the border would progress

through time in the counter clockwise direction. A discrepancy between this value and the

measured shaft power indicates the amount of energy lost to the mechanism.

5. Average Pressure – This quantity indicates the mean pressure that the engine operates at.

This property is directly proportional to the amount of produced power, according to the

West Number.

When used properly an indicator diagram captures most interactions between the gas and the

mechanism. Proper use of an indicator diagram would capture all spaces that are being compressed

or expanded. This is important as minute differences in pressure in these spaces can be

136

embodiments of flow friction effects. This results in an indicator diagram with multiple loops. The

indicator diagram does capture shear from flows pushing past the piston.

6.4.1.2 Energy Transfer Statistics

The series of information defined here as Energy Transfer Statistics include values that go to

and from major elements of the engine. These are defined in Figure 6.15 through the generic Heat

Engine Diagram.

Figure 6.15: Generic Heat Engine Model

These terms are automatically generated by analyzing the given model for constant temperature

elements and making note of all possible avenues of exit to such nodes, sources and sinks are

differentiated by assigned temperature. The actual efficiency and Carnot adjusted efficiency of the

engine are calculated as follows from these values.

𝜇 =
𝑊𝑠
𝑄𝑖𝑛

 (106)

𝜇′ =
𝜇

(1 −
𝑇𝐿
𝑇𝐻
)

(107)

The actual efficiency is a measure of how well an engine converts one form of energy into

another. However, all technologies that utilize heat to generate energy must be subjected to the

limitation of Carnot which artificially undervalues machines that have a lower maximum

137

efficiency. Therefore, the second efficiency adjusts for this and is considered a better measure of

the quality of an engine design, irrespective of the quality of its thermal sources.

6.4.1.3 Mechanical Work

Mechanical work is the integral of the equation 𝑊 = 𝑇𝑑𝜃 over the tested time frame. The

difference between the area of the sum of the PV diagrams and this measured quantity indicates

the efficiency of the mechanical system at converting linear into rotational force. In dynamic and

constant speed cases the instantaneous mechanical power is equal to the following.

𝑃𝑜𝑤𝑒𝑟 = 𝐼. 𝜔. 𝛼⏟
𝐸𝑥𝑐𝑒𝑠𝑠 𝑃𝑜𝑤𝑒𝑟

𝑔𝑖𝑣𝑒𝑛 𝑡𝑜 𝐹𝑙𝑦𝑤ℎ𝑒𝑒𝑙

+ 𝑇𝑙𝑜𝑎𝑑. 𝜔⏟
𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑏𝑦 𝐿𝑜𝑎𝑑

(108)

6.4.1.4 Sensors

Sensors define an explicit output from the model that will be automatically produced when the

simulation completes. Single point sensors will produce data suitable for a line graph, line sensor

output data that is suitable for a surface plot. The user can select from any of the properties in the

model and compare them against either time or angular position. An example of the plots produces

by this at the end of the simulation is found in Figure 6.17.

Figure 6.16: Sensor Usage Examples as shown in the GUI

138

(a) Temperature vs angle plot of expansion space of engine with a source temperature of 368

K, discontinuity between 4 and 5 matches up with when flow would reverse.

(b) Temperature vs time plot down length of a low effectiveness heat exchanger.

Figure 6.17: Output of sensor (a) point sensor (b) line sensor, locations shown on Figure

6.16

139

6.4.1.5 Heatmap Animations

Figure 6.18: An example temperature heatmap snapped during an animation of the

modelled Stirling engine

While not an integral part of the model, the software has the built-in capability to generate

graphical outputs of properties. Figure 6.18 presents one of these outputs, which displays the

temperature of different nodes through the engine. These types of animations may allow the

designer to visualize the flow of matter, energy and motion of the engine allowing conclusions to

be drawn more quickly. Pressure, turbulence, temperature, and conduction are plotted in this

fashion. This is a function that is not normally found by default in Stirling engines codes, even

commercial ones such as SAGE [35], but is relatively mainstream among generic CFD codes.

140

6.4.1.6 Conduction

Figure 6.19: An example conduction heatmap snapped during an animation of the

modelled Stirling engine

Volumetric conduction is a tool introduced in this thesis as a measure of the energy passing

through an element as a function of its volume at any given time. This is calculated via the formula:

𝐶𝑜𝑛𝑑 = ln (
∑ |𝑒𝑓𝑐|𝑎𝑙𝑙 𝑓𝑎𝑐𝑒𝑠 𝑖𝑛 𝑛𝑑

𝑉𝑛𝑑
) (109)

The application of the natural logarithm is simply for enhancing the contrast when the value is

plotted in the heatmap style. The purpose of this plot, though it lacks physical meaning, is to

provide designers with the locations in which heat flows, which is generally undesired, outside of

the heat exchangers. From the plot in Figure 6.19 it is observed that the central divider, that lies

between where the displacer piston moves and the heat exchangers, exchanges quite a lot of heat,

comparible to the heat exchangers themselves at that moment. The top and bottom caps of the

engines on the other hand loose very little heat to the surroundings.

141

6.4.1.7 Face Based Animations

Figure 6.20: 4 frames of an instantaneous flow velocity plot snapped during an animation

of the modelled Stirling engine (running at 1 Hz)

Velocity and pressure drop animations give insight into areas of the highest flow and pressure

loss, it may serve as an indication to the designer of areas where the flow is bypassing or features

that introduce most of the flow loss experienced by the system. An example of a face-based

animation is in Figure 6.20. This animation depicts relative gas speeds in the engine.

6.5 Chapter Conclusions

This chapter outlined the basic usage of the GUI, an interface that allows the user to construct

a complete model from blocks without any contact with the code. The software offers a variety of

simulation tools which aid in the running of groups of experiments while the user is away and use

142

the results from previous experiments to kickstart the progress of the next. Outputs from the model

use the GUI to generate indicator diagrams, acquire virtual sensor data and construct animations

that provide a visual perspective to the acquired results. These visual features are unheard of among

Stirling engine modelling programs beneath 4th order simulations.

143

 VALIDATION

7.1 Theoretical Validations

Each of the following tests are conducted within the same environment and aims to show the

flexibility of this software to provide results at varied levels of detail and geometry. These early

tests allow for a certain level of confidence with regards to the performance of the model, before

simulating full scale engines.

7.1.1 Steady-State Solid Heat Conduction

Steady-state solid heat conduction was validated using a composite annular ring, the inside was

heated to an elevated temperature of 100 C and the outside was cooled to a temperature of 0 °C.

The ring was composed of multiple materials, which exhibited different material properties. The

equations used for the analytical model are as follows:

𝑅𝑖 =
ln (

𝑟𝑚𝑎𝑥,𝑖
𝑟𝑚𝑖𝑛,𝑖

)

2𝜋. 𝑘𝑖 . 𝐿
 (110)

𝑇𝑠𝑡𝑎𝑟𝑡,𝑖 = 𝑇𝑒𝑛𝑑,𝑖−1 = 𝑇𝑠𝑡𝑎𝑟𝑡 +
𝑇𝑒𝑛𝑑 − 𝑇𝑠𝑡𝑎𝑟𝑡

∑𝑅𝑖
∑𝑅𝑖

𝑖−1

𝑖=1

 (111)

𝑇𝑖(𝑟) = 𝑇𝑠𝑡𝑎𝑟𝑡,𝑖 − (𝑇𝑠𝑡𝑎𝑟𝑡,𝑖 − 𝑇𝑒𝑛𝑑,𝑖)
ln (

𝑟
𝑟𝑚𝑖𝑛,𝑖

)

ln (
𝑟𝑚𝑎𝑥,𝑖
𝑟𝑚𝑖𝑛,𝑖

)
 (112)

where: 𝑅𝑖 = The overall resistance of material layer 𝑖

 𝑇𝑠𝑡𝑎𝑟𝑡,𝑖 = The temperature on the inside radius of material layer 𝑖

 𝑇𝑒𝑛𝑑,𝑖 = The temperature on the outside radius of material layer 𝑖

The discretization and material composition are displayed in Table 7.1. The resulting

temperature profile appears in Figure 7.1. The steady-state profile which emerges closely matches

the analytically derived profile.

144

Table 7.1: Steady-state Heat Conduction Validation: Material Properties

Radius

(m)
Material

Thermal Conductivity

(W/mK)

Number of Nodes

0.1 – 0.15 Copper 401 10

0.15 – 0.1999 Carbon Steel 43 10

0.1999 – 0.2 ABS Plastic 0.25 5

0.2 – 0.25 6061 Aluminum 176.5 10

Figure 7.1: Steady-state temperature profile obtained via heat conduction through a

layered annular conductor compared against analytical predictions

7.1.2 Transient Solid Heat Conduction

Transient solid heat conduction was validated through a comparison of the analytical solution

of a cylinder heated by uniform convection. The discretization scheme and material composition

are displayed in Figure 7.2 and Table 7.2 respectively. The cylinder of material is 15 cm in radius,

30 cm in length with a 3 cm thick outer layer of nodes of that are 1 cm square and an inner core of

nodes of square dimensions of 2 cm square.

0

20

40

60

80

100

120

0.1 0.125 0.15 0.175 0.2 0.225 0.25

T
em

p
er

at
u
re

 (
°C

)

Radial Position (m)

Analytical Simulated

145

Figure 7.2: Discretization scheme for transient heat conduction test

Table 7.2: Experimental properties of Transient heat conduction test

Property Value Unit

Density 8960 kg m3⁄

Thermal Conductivity 401 W mK⁄

Specific Heat Capacity 0.385 kJ kg⁄

Surface Temperature 100 °C

Initial Temperature 0 °C

Cylinder Length (𝐿) 0.3 (m

Cylinder Radius (𝑟𝑜) 0.15 (m)

Small Node Size 0.01 (m)

Large Node Size 0.02 (m)

146

The analytical profile is produced by the product solution between an infinite plate of thickness

𝐿 and an infinitely long cylinder of radius 𝑟𝑜. For the plate’s contribution the solution is derived

from 200 terms of the Fourier series [63] using:

𝜃𝑥
∗
2𝐿 𝑃𝑙𝑎𝑡𝑒

=∑
4

𝜋

∞

1

𝑒−(
𝑛.𝜋
2𝐿
)
2
𝛼𝑡 sin (

𝑛. 𝜋. 𝑥

2𝐿
)

(113)

where: 𝑛 = 1,3,5, …

The cylinder’s contribution is derived from the numerically derived solution of the following

equation, which is created from the heat equation in cylindrical coordinates. This is provided to

MATLAB’s ode45 solver in the subsequent set of equations.

𝜕𝑇

𝜕𝑡
= 𝛼 (

1

𝑟

𝜕𝑇

𝜕𝑟
+
𝜕2𝑇

𝜕𝑟2
)

(114)

𝑑𝑇1
𝑑𝑡

= 𝛼
𝑇2 − 2𝑇1 + 𝑇1

𝑑𝑟2
+ 0

𝑑𝑇𝑖
𝑑𝑡

= 𝛼 (
𝑇𝑖+1 − 2𝑇𝑖 + 𝑇𝑖−1

𝑑𝑟2
+
1

𝑟𝑖

𝑇𝑖+1 − 𝑇𝑖−1
2𝑑𝑟

)

Boundary Conditions

𝑇𝑁 = 100

Initial Conditions:

𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑁−1 = 0

(115)

Thus, the center temperature of the short cylinder, Figure 7.2, is mathematically determined. A

comparison between the analytical and simulated center temperature is shown in Figure 7.3. The

simulated transient center temperature matches up closely with the analytically obtained solution.

147

Figure 7.3: Analytically obtained results vs simulated temperature with time measured at

the center of test block.

7.1.3 Adiabatic Compression/Expansion of Gas

The compression of a volume of ideal gas within a perfectly insulated chamber results in a curve

in the Pressure vs. Volume space that follows the relationship defined by.

𝑃. 𝑉

𝑇
= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (116)

A perfectly insulated chamber was constructed within the program, a moving boundary applied

a compression, expansion cycle to the gas. The pressure of the gas was measured and plotted after

compressing from atmospheric conditions. The results are plotted in Figure 7.4, along with the

simulated curve. The simulated compression-expansion cycle matched up well with the expected

adiabatic trend.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
en

te
r

T
em

p
er

at
u
re

 (
°C

)

Time (s)

Analytical Solution Simulation

148

Figure 7.4: Analytically obtained results compared against simulation results in the case

of adiabatic compression/expansion

7.1.4 Isothermal Compression/Expansion of Gas

The compression of a volume of ideal gas within a perfectly conductive chamber under

compression over an infinitely long-time scale results in a curve in the Pressure vs. Volume space

that follows the relationship:

𝑃. 𝑉 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (117)

A Chamber was constructed out of constant temperature material at a temperature of 298 K, the

chamber was cycled at a frequency of 0.01 rpm to allow enough time for the gas to exchange

energy with the wall. The initial conditions are used to generate the isothermal curve. The results

are plotted in Figure 7.5, along with the simulated curve. The simulated compression-expansion

cycle matched up well with the expected isothermal trend.

0

5

10

15

20

25

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

P
re

ss
u
re

 (
B

ar
)

Volume (m3)

Simulation

Analytical Solution

149

Figure 7.5: Analytically obtained results compared against simulation results in the case

of isothermal compression/expansion

7.2 Comparison with Experiments

It was important to compare with experimental results within the low temperature regime in

order to get a correct reflection of the accuracy of MSPM’s predictions of the losses and effects

which were important to a low temperature engine. Experimental results with suitable detail on

the engine geometry could not be found in the literature, thankfully the works of DTECL had

produced several low temperature engines with the EP-1 being the latest.

The following validations are a comparison of the model output with values obtained through

physical experimentation on the EP-1 engine. These serve to assess the general performance of the

model. Unless otherwise noted, error is calculated based on the percent difference in non-

dimensional indicated power. This non-dimensional power is derived from non-dimensional

pressure and volume, which are defined below:

0

1

2

3

4

5

6

7

8

9

10

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

P
re

ss
u
re

 (
B

ar
)

Volume (m3)

Simulation

Analytical Solution

150

𝑃∗ =
𝑃

𝑃𝑎𝑣𝑔
 (118)

𝑉∗ =
𝑉 − 𝑉𝑚𝑖𝑛
𝑉𝑚𝑖𝑛 − 𝑉𝑚𝑎𝑥

 (119)

𝑃′ =
𝑃

𝑃𝑎𝑣𝑔
 (120)

The EP-1 as discussed by Stumpf [12] was modified to host a drive train composing of circular

or elliptical gears [64]. These studies were intended for the experimental analysis of the effect of

non-sinusoidal piston motion on engine performance by Nicol-Seto [64]. Because this model can

host mechanical components of arbitrary linear motions, this is an important comparison to see the

accuracy of the model under those conditions as this phenomenon is one of the most difficult

scenarios to model due being lesser studied oscillatory phenomena. The detailed geometry is found

in Appendix C. Within the user interface the engine appears as a 2D cut-away view of the

geometry, here the pistons are shown at their lowest point, the default position of the simulator.

151

Figure 7.6: EPM engine body geometry as shown in graphical user interface of software

7.2.1 Constant Speed Steady-State Experiments

The engine’s offset power piston is connected using a bridge component such that the geometry

may be maintained as closely as possible. The model was run for several combinations of elliptical

and circular gears, as outlined in the following table, the motion profiles for each of the following

are calculated in Appendix D. All tests are conducted with a charge pressure equal to atmospheric

(101,325 Pa) with a hot source temperature equal to 95°C and a cold sink temperature of 5ºC. All

tests covered a range of speeds from 0.2 – 2.6 Hz. All mechanisms for displacer have a crank to

connecting rod length ratio of 6, a value of 2 is applied for the power piston. All tests use a slider

crank mechanism, but between the drive shaft either have a set of circular gears (standard) or a set

of elliptical gears arranged in either a dwelling cycle (square wave), or to have a minimal velocity

cycle (saw wave). Only tests 1-3 were conducted on a physical test engine, 4-6 are expansions

upon the existing data set using untested but promising mechanisms. Test 1-3 were performed with

the engine driving itself, loaded by a friction brake. The pressure was measured using a pressure

diaphragm sensor. The volume of the experimental results is estimated with the bellow volume

being calibrated via a shadowgraph technique [64]. Additional tests were also conducted on speeds

from 0.2 Hz to 4.0 Hz, a scope beyond the 12 selected experimental tests.

152

Table 7.3: EP-1 test sets

Test Set Displacer Piston Power Piston

1 Standard Standard

2 1/5 Elliptical for square wave,

dwelling cycle

Standard

3 1/5 Elliptical for square wave,

dwelling cycle

1/5 Elliptical for square wave,

dwelling cycle

4 1/5 Elliptical for saw wave,

minimum velocity cycle

Standard

5 1/5 Elliptical for saw wave,

minimum pressure loss cycle

1/5 Elliptical for square wave,

dwelling cycle

6 1/5 Elliptical for saw wave,

minimum pressure loss cycle

1/5 Elliptical for saw wave,

minimum pressure loss cycle

The mesh density settings applied to both the experimental and SAGE comparisons has an

approximate mesh sensitivity related error of 0.8%, these results are shown in Appendix F and is

assumed to be representative of all speeds and configurations.

The PV diagrams and thermodynamic powers are compared in terms of non-dimensional

pressure and volume as the model was simulated at an average pressure of 101,325 Pascals, while

the test engine tended to rest somewhere above or below that value.

Figure 7.7 displays an indicator / pressure-volume diagram from both the experiment and

simulation for the same conditions, given the default uncalibrated model output using properties

taken from the solid model of the engine that was used for construction. Experimental results are

attributed to Nicol-Seto [64].

153

(a) Both in standard arrangement – 1.1055 Hz

(b) Displacer piston with dwelling cycle, power piston with standard slider crank – 0.8818 Hz

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*
)

Normalized Volume (V*)

MSPM Experiment

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM Experiment

154

(c) Both with dwelling cycle – 1.1992 Hz

Figure 7.7: Indicator diagram comparison between EPM-1 experiments and MSPM. (a) DP &

PP: Standard at 1.1055 Hz (b) DP: Square Wave Elliptical, PP: Standard at 0.8818 Hz (c) DP &

PP: Square Wave Elliptical at 1.1992 Hz

Over the 12 tests considered, MSPM had a maximum error of 43.1% and an average error of

30.6%. The shape of the indicator diagram is close, particularly at the ends where each of the

configurations has a distinctive shape. The non-dimensional cycle energy extracted from the 12

matching experiments is displayed in Figure 7.8 below:

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*
)

Normalized Volume (V*)

MSPM Experiment

155

Figure 7.8: Non-dimensional power for each of the 12 matching experiments

The main sources of error are likely resulting from 2 areas. Firstly, the EPM-1 features a power

piston which is facilitated by a rubber bellows. The bellows serves as a well sealed and low friction

alternative to a piston-cylinder design. It is known [12], [14], however, to affect the pressure

maximums by expanding and contracting in response to internal pressures. Secondly, the exact

heat transfer and friction characteristics of the inline set of finned tubes with directing geometry is

unknown. With the directing geometry, the exchangers resemble staggered tube banks, but with

the directing geometry being non-conductive the model was compensated by multiplying the total

surface area by half. It is likely that the friction characteristics are the most off as MSPM

disproportionately disadvantaged motions that included rapid flushing through the heat exchangers

with relation to the experiments. Determining the exact characteristics of these heat exchangers is

out of the scope of this thesis. This second group of effects is strongly correlated to the broadness

of the indicator diagram, which can be seen earlier in Figure 7.7. These combined errors are

systematic, amendable by correction to the source temperatures, convection and friction

correlations, though it is possible that they mask the errors produced via the modelling

assumptions, further study with a more well understood experimental engine is necessary to assess

the magnitude of those errors.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.5 1 1.5 2 2.5

N
o

n
-D

im
en

si
o

n
al

 E
n
er

g
y
 p

er
 C

y
cl

e

Rotational Speed (Hz)

PP Sine, DP Sqr: Experiment PP Sine, DP Sqr: MSPM

PP Sine, DP Sine: Experiment PP Sine, DP Sine: MSPM

PP Sqr, DP Sqr: Experiment PP Sqr, DP Sqr: MSPM

156

Along side the 12 matching tests, a total of 39 tests were conducted including the 3 mechanisms

not tested experimentally (DP: Saw PP:Sqr, DP:Saw PP:Sine & DP:Saw PP:Saw) , these are shown

following on Figure 7.9 and Figure 7.10.

Figure 7.9: MSPM vs experimental power piston indicated work

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

P
P

 P
o

w
er

 (
W

)

Angular Speed (Hz)

DP:Saw, PP:Sqr DP:Sine, PP:Sine DP:Saw, PP:Sine

DP:Sqr, PP:Sine DP:Sqr, PP:Sqr DP:Saw, PP:Saw

Exp: DP:Sqr, PP:Sine Exp: DP:Sine, PP:Sine Exp: DP:Sqr, PP:Sqr

157

Figure 7.10: MSPM displacer piston indicated work, experimental version not collected

The results show that the highest power output will come from configuration 4, with a saw wave

on the displacer and the power piston set to a sinusoidal motion, the lowest power is from the tests

that used the dwelled motion for the displacer. The fact that the dwelling motion is such a

disadvantage is found by inspecting the indicated work of the displacer piston. The configurations

become more distinct at higher speeds, seen by the 2nd order growth of the flow losses at higher

speeds.

The clearest change that could be made to improve the correlation of the simulation with the

experiment is to modify the bellows. By observing the indicator diagram, the pressure swing of

the simulation is proportional to the compression of the power piston. The effect of compression

is tested in a second set of tests in which the stroke is reduced to 84.3% of its original value. This

value was determined by assuming that pressure is inversely related to volume and given that the

pressure swing was 18.7 ± 1.4% among the 12 tests. Dead volume is also increased by 7.8% of

original stroke to account for bellow expansion and contraction at stroke extremes. A sample result

appears in Figure 7.11 below. Only the 12 comparison experiments were repeated.

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2 2.5 3

P
P

 P
o

w
er

 (
W

)

Angular Speed (Hz)

DP:Saw, PP:Sqr DP:Sine, PP:Sine DP:Saw, PP:Sine

DP:Sqr, PP:Sine DP:Sqr, PP:Sqr DP:Saw, PP:Saw

158

Figure 7.11: Indicator diagram comparison between EPM-1 experiments and simulations

with reduction in stroke by 15.7% and increase in dead volume equivalent to 7.8% of

stroke. (test: Standard-Standard at 1.1055 Hz shown)

The resulting error in non-dimensional pressure is decreased to an average discrepancy of

21.9% (from 30.6%) and maximum error of 35.2% (from 43.1%) over the 12 modified tests. The

discrepancy in pressure maximums appears to be completely corrected, indicating that the property

of indicator diagrams is strongly dependent on volume in the regime of interest. Remarkably the

broadness in the Sinusoidal cases is also very close with the 4 sinusoidal tests (test set 1) providing

an average error of 19.0% with a maximum of 28.5%. The error in the set with the sinusoidal

power piston and dwelling displacer provided an average of 24.0% and the set with both pistons

dwelling provided an average error of 31.5%. The error of MSPM increased with dwelling cycles,

it is possible that this is due to overestimating the flow losses in the heat exchangers. The overall

error appears systematic, indicating that it is likely a problem with an equation used to calculate

heat transfer, flow losses or even turbulence; as turbulence was originally designed for mostly

sinusoidal motions.

7.2.2 In Cycle Speed Variations

As a complement to the above studies the dynamic response portion of the code was evaluated

against actual in-cycle velocity variations for 4 tests. These represent the actual conditions of the

tests that were compared against previously, where the simulation was set to a constant speed.

These tests are outlined in Table 7.4:

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u
re

 (
P

*
)

Normalized Volume (V*)

MSPM Experiment

159

Table 7.4: Velocity variation experiment. “B” is a reference to the “Box” / square wave. “0”

refers to the standard / sinusoidal trial (Elliptical factor of 0).

Test Properties:

Fast_0, 0

PP: Standard DP: Standard

Average Speed: 1.918805 Hz

Fast_B, B

PP: 1/5 Elliptical for square wave

DP: 1/5 Elliptical for square wave

Average Speed: 1.346884 Hz

Slow_0, 0

PP: Standard DP: Standard

Average Speed: 1.130698 Hz

Slow_0, 0

PP: 1/5 Elliptical for square wave

DP: 1/5 Elliptical for square wave

Average Speed: 0.602163 Hz

Here a new non-dimensional number is introduced, the velocity ratio (𝑟𝑉 =
𝜔𝑚𝑖𝑛

𝜔𝑚𝑎𝑥
). This ratio is

equal to the minimum instantaneous speed (𝜔𝑚𝑖𝑛) divided by the maximum instantaneous speed

(𝜔𝑚𝑎𝑥). A comparison of the angular velocity curves between the EPM-1 tests and MSPM under

the above scenarios is found in Figure 7.12 below, it is also presented in an alternative form in

Figure 7.13:

160

Figure 7.12: Instantaneous angular velocity for one cycle for both the EPM-1 physical

tests and MSPM simulations.

Figure 7.13: Velocity ratio results for experiment and simulation for 4 different velocities

This result indicates that MSPM follows the same trend as the experimental simulations and is

within a close margin on the error, on the 3 tests which line up closely in speed, due to is asymptotic

nature the error is calculated based on the difference between the speed ratio and the ratio of 1:

(1 − 𝑟𝑉), the error in this value is largest at the highest speed with a value of 30.6%.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6

A
n
g
u
la

r
S

p
ee

d
 (

ra
d

/s
)

Angular Position (radian)

EPM-1 Fast_0, 0 EPM-1 Fast_B, B EPM-1 Slow_0, 0 EPM-1 Slow_B, B
MSPM Fast_0,0 MSPM Fast_B, B MSPM Slow_0, 0 MSPM Slow_B, B

0.5

0.6

0.7

0.8

0.9

1

0.5 0.75 1 1.25 1.5 1.75 2

V
el

o
ci

ty
 R

at
io

 (
r V

)

Angular Velocity (rad/s)

EPM-1 Experiments

MSPM Simulation

161

The differences in velocity variations may be caused by various factors, including the

differences when and how much power is entering the mechanism at any one time, which is

indicated in the differences between the experimental and modelled indicator diagrams. These

differences are caused by a variety of effects. Firstly, are flow losses, which would be different in

the true heat exchangers. Secondly, leaks and displacer by-passing which are assumed negligible

in the model and may be associated with lower power produced by the experimental engine.

Thirdly, as the mechanism frictions were not included in these experiments, their effect,

specifically, their intermittent and phase dependent effects are not captured. The actual experiment

used a set of 3D printed elliptical gears to define the motion of the pistons for both the sinusoidal

and dwelled tests which may have inconsistent loss characteristics. While the model maintains its

ability to model friction as an angularly varying loss, it was outside the scope of this thesis to

determine what these values were in the experimental engine.

7.2.3 Sensitivity Studies

A set of sensitivity studies were performed on the EP-1 model (filled at atmospheric pressure,

and using sinusoidal motions for both pistons) and the change in the pressure-volume diagram was

observed. These studies were performed on a test at 0.5 Hz and a test running at 2 Hz. A summary

of the changed properties can be found in Table 7.5 below.

Table 7.5: Sensitivity Studies (results are colored based on absolute value, -50% uses

backwards difference, +50% uses forward difference, ±2% uses central difference for slope

calculation)

 0.5 Hz Test, 7.824 J/cycle 2 Hz Test, 1.707 J/cycle

 Slope (J/cycle/%) Slope (J/cycle/%)

Change -50% ±2% +50% -50% ±2% +50%

Heat Exchanger Nusselt 8.10E-02 5.35E-02 3.84E-02 8.20E-02 7.10E-02 5.86E-02

Regenerator Nusselt 1.16E-02 8.00E-03 7.40E-03 8.20E-03 6.75E-03 6.40E-03

All Friction Factors -1.60E-03 -1.50E-03 -1.60E-03 -1.56E-02 -1.53E-02 -1.58E-02

All Solid Conduction -1.16E-02 -7.50E-03 -5.60E-03 -1.66E-02 -1.18E-02 -1.00E-02

Axial Mixing Coefficient -1.00E-03 -7.50E-04 -8.00E-04 -6.00E-03 -5.00E-04 -6.00E-03

The property that has the strongest response is the heat exchanger Nusselt number. In both the

slow and fast trials reducing the convection coefficient resulted in a drop of roughly 4 Joules per

cycle. Increasing it increased the power output by a smaller margin. The increase was more

significant on the faster trial, presumably as this trial existed farther down the arctan shaped

162

response curve for Nusselt number. The effect was similar when the regenerator including that the

up and down values were closer together in magnitude on the fast trial. Increasing/decreasing the

solid conductance and axially Nusselt number was more significant on the fast trials, possibly due

to the heat exchangers being less capable of compensating for any drops in temperature. The

increased effect of viscous friction is inline with the close to order of magnitude increase in friction

losses. A sensitivity study like this can help to guide the designer in identifying where

improvements may lie with respect to the running conditions of the engine.

7.3 Comparison with SAGE

7.3.1 In High-Temperature, High Speed Context

To assess the model performance against published literature the paper by Hoegel et al [44] was

selected. This work was selected because it provided geometry details and results for a set of

different engines and included several tests at with lower source temperatures. The premise of the

referenced work was to compare optimized designs between low and high-temperature alpha type

Stirling engine using the commercial software SAGE, the MSPM model of this engine is shown

below:

Figure 14: Annotated alpha engine for Phase 135°, Source 150 °C test as shown in

MSPM

For the purposes of comparison SAGE is correct, however this is not necessarily true as SAGE

is not perfect, and the given results do not provide an experimental validation. The model

parameters of the tested opposed piston alpha type engine are shown in Table 7.6.

163

Table 7.6: Alpha engine geometrical properties for SAGE comparison [44]

Component Value Unit

Material (heat conductors and regenerator) Steel

Bore 0.2 m

Stroke 0.1 m

Phase Angle Test Dependent degrees

Angular Speed 16.7 Hz

Heat Source Temperature Test Dependent °C

Heat Sink Temperature 40 °C

Mean Pressure 5,000,000 Pa

Working Fluid Helium

Heat Exchanger Type Tube Bundle

Tube Diameter 0.003 m

Tube Wall Thickness 0.0005 m

Tube Number Test Dependent

Heat Exchanger Length Test Dependent

Regenerator Cavity Diameter 0.2 m

Regenerator Wall Thickness 0.0075 m

Regenerator Matrix Random Fibre

Fibre Diameter 0.00005 m

Porosity Test Dependent

Length Test Dependent

Table 7.7: Alpha engine test and specific geometrical properties for SAGE comparison [44]

Test

All at 16.7 Hz

HX Tube

Number

HX Length

 (m)

Regen.

Porosity

Regen.

Length

Power

(W)

Phase 135°, Source 150 °C 1054 0.1604 0.9686 0.6709 3,630

Phase 165°, Source 150 °C 1042 0.1441 0.9067 0.01441 4,840

Phase 90°, Source 750 °C Cold: 277

Hot: 398

Cold: 0.2628

Hot: 0.2592

0.7846 0.03220 96,286

Phase 135°, Source 750 °C Cold: 233

Hot: 401

Cold: 0.2496

Hot: 0.1895

0.6902 0.009823 104,470

Phase 165°, Source 750 °C Cold: 330

Hot: 510

Cold: 0.1607

Hot: 0.1108

0.7301 0.009823 45,736

Some information, such as the thickness of the cylinder walls is missing. Therefore, a thickness

of 7.5 mm is also selected for those points. All components including pistons and walls are

assumed to be steel. The results from the 5 tests conducted are presented in the following table:

164

Table 7.8: Output power comparison between MSP and SAGE simulations at 16.7 Hz

Test MSPM Output

Power (W)

SAGE Output

Power (W)

Error (%)

Phase 135°, Source 150 °C 1,484 3,630 59.1%

Phase 165°, Source 150 °C 3,507 4,840 27.5%

Phase 90°, Source 750 °C 73,146 96,286 24.0%

Phase 135°, Source 750 °C 72,478 104,470 30.6%

Phase 165°, Source 750 °C 33,734 45,736 26.2%

The PV diagrams for each of the tests are compared in Figure 7.15. Note that pressures and

volumes are converted to their non-dimensional form.

165

Normalized Pressure:

𝑃/𝑃𝑚𝑒𝑎𝑛

Normalized Volume:

𝑉/𝑉𝑚𝑎𝑥

Phase 135°, Source 150 °C

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM comp MSPM exp SAGE comp SAGE exp

166

Phase 165°, Source 150 °C

Phase 90°, Source 750 °C

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*
)

Normalized Volume (V*)

MSPM comp MSPM exp SAGE comp SAGE exp

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM comp MSPM exp SAGE comp SAGE exp

167

Phase 135°, Source 750 °C

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM comp MSPM exp SAGE comp SAGE exp

168

Phase 165°, Source 750 °C

Figure 7.15: Pressure – volume diagram comparison between MSPM and SAGE, data

extracted from: [44]

There are several observations that are made about the above figures. Firstly, the pressure

maximums are reduced, which indicates that MSPM underpredicts – relative to SAGE – the

temperature performance of the engine given that both models should have the same motions. This

is likely due to a combination of two things: different Nusselt number correlation in the heat

exchangers and the neglection of tortuosity. MSPM uses the same turbulent correlations as SAGE

but could not adapt SAGE’s complex scheme for determining the laminar Nusselt number of its

tube bank heat exchangers which involved compression and advection driven flows [35] in

complex form. Also, it is not known what values SAGE uses for minor losses at component

transitions as these are not shared in the documentation. In addition, MSPM does not include

tortuosity in its analysis, which approximates the curviness of a fluid streamlines through a

medium, this alone would result in lower regenerator performance, as incorporating tortuosity

would result in a higher effective speed, yet similar residence time in the regenerator. Additionally,

SAGE uses a real gas representation [35], which under high pressures approximates the divergence

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*
)

Normalized Volume (V*)

MSPM comp MSPM exp SAGE comp SAGE exp

169

of real gases from ideal ones, in particular on the higher temperature and higher phase runs where

the limiting factor in the short regenerators may be the local Nusselt number.

7.3.2 In Low-Temperature, Low-Speed Context

The following tests expand upon the previous tests, which though useful are not running at

speeds or temperatures for laboratory engines produced by DTECL which MSPM was designed

for. These new experiments feature the following modified properties, properties not listed are the

same as those found in Table 7.6. It should be said that, though results are compared against SAGE,

it is not clear whether SAGE models correctly the low-temperature, low-speed regime. Results

from Table 7.10 indicate that MSPM and SAGE predict a similar trend but diverge at higher

speeds.

Table 7.9: Unique properties for low-speed/low-temperature alpha engine SAGE

comparisons

Component Value Unit

Phase Angle 160 degrees

Angular Speed 0.5-5 Hz

Heat Source Temperature 95 °C

Heat Sink Temperature 5 °C

Mean Pressure 101325 Pa

HX Tube Number 459.6

HX Length 0.2348 m

Regenerator Porosity 76.47 %

Regenerator Length 0.001350 m

Table 7.10: Test results for low-speed/low-temperature alpha engine SAGE comparisons

Test

(Hz)

Non-Dimensional Power (W) Error

(%) SAGE MSPM

0.5 0.015 0.006 59.9%

1.0 0.027 0.028 2.5%

1.5 0.053 0.054 3.0%

2.0 0.079 0.083 4.0%

2.5 0.101 0.107 6.3%

3.0 0.111 0.123 10.2%

3.5 0.107 0.125 16.4%

4.0 0.078 0.107 36.9%

4.5 0.016 0.066 301.5%

5.0 -0.077 -0.004 94.3%

170

Normalized Pressure:

𝑃/𝑃𝑚𝑒𝑎𝑛

Normalized Volume:

𝑉/𝑉𝑚𝑎𝑥

(a) 0.5 Hz

(b) 3 Hz

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

N
o

rm
al

iz
ed

 P
re

su
re

 (
P

*)

Normalized Volume (V*)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

171

(c) 5 Hz

Figure 7.16: Pressure – volume diagram comparison between MSPM and SAGE for low-

speed, low-temperature, low-pressure case.

The results indicate that MSPM, relative to SAGE, sometimes overestimates the temperature

ratio that the gas achieves – via the broadness of the indicator diagram. At the same time MSPM

underestimates, by a factor of roughly 2 the pressure loss through the components – via the

pressure difference between the peaks of expansion and compression curves. Here the differences

between SAGE’s representation of the laminar Nusselt and friction loss coefficient are seen to a

greater extent.

7.4 Optimization Studies

MSPM was tasked with optimizing a new engine to be created by the laboratory. The proposed

engine would be in a beta-style configuration, as shown on Figure 7.17, with the power piston

residing on the cold side of the engine. During optimizations only the stroke of the pistons and size

of the power piston was kept constant while the diameter of the displacer and heat exchangers was

modified. During these tests the target parameter was volumetric power density 𝒆̇ =

𝑬̇𝒔𝒉𝒂𝒇𝒕 𝑽𝒆𝒏𝒈𝒊𝒏𝒆⁄ which gave rise to reasonable engines. The properties of the running conditions

and heat exchangers for an engine without a regenerator are included in Table 7.11.

.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

172

Figure 7.17: Depiction of beta-layout engine to be optimized. Large volume beneath

engine represents the crankcase, the additional bodies jutting out of the engine are added

to prevent the optimizer from making certain features too small leading to instabilities in

the solution. (these bodies will overlap before the gas body becomes too small)

Table 7.11 Test properties for Beta-Engine Optimization

Running Properties Value

Running Speed 1 Hz

Phase 90°

PP & DP Stroke 0.254 m

PP Diameter 0.3048 m

Fill Pressure 1 → 6 atm

Mechanism Efficiency 0.8 → 0.9

Heat Exchanger Properties Bell AW450085060

Material Aluminium Alloy

Air Gap Between Water Channels 0.00635 m

Water Channel Width 0.003175 m

Wall Thickness 0.0008128 m

Surface Roughness 1e-6 m

Fin Period 0.0023314 m

Fin Thickness 0.00021195 m

173

Table 7.12 Geometrical properties for Beta-Engine Optimization, Optimized for Maximum

Power vs Gas Volume (1 Hz, filled with air)

Design

Variables
Post Optimal Values

Charge

Pressure (atm)

/ Mechanism

Efficiency

Heater /

Cooler

Volume

Swept / PP

Volume

HX /

Swept

Volume

Compression

Ratio

PV Power /

Shaft

Power

Flow Loss

/ PV Power

2 atm / 0.8 1.088 5.755 0.434 1.116 0.455 0.058

4 atm / 0.8 1.142 4.010 1.140 1.104 0.475 0.050

6 atm / 0.8 1.179 5.894 1.339 1.065 0.470 0.117

2 atm / 0.9 1.095 5.261 0.696 1.099 0.783 0.090

4 atm / 0.9 1.037 4.879 0.938 1.094 0.755 0.073

6 atm / 0.9 1.178 5.860 1.347 1.091 0.678 0.089

2 atm / 1.0 1.071 5.204 0.824 1.094 0.985 0.085

4 atm / 1.0 1.091 4.760 1.071 1.090 0.986 0.067

6 atm / 1.0 1.069 4.722 1.069 1.090 0.978 0.083

From Table 7.12, it can be observed several clear trends: Optimal Heater/Cooler volume is not

strongly related to either mechanism efficiency or fill pressure. Optimal swept volume over power

piston volume hovers around 4-6. Optimal heat exchanger volume vs swept volume ratio hovers

around 1 at low temperatures. Compression ratio is slightly greater that which is predicted by Kolin

[65] equal to 1.082 for temperatures of 95 and 5 Celsius. The ratio of PV power / shaft power is

strongly dependent on the mechanism efficiency falling on the line 2.5831𝜂𝑚𝑒𝑐ℎ − 1.5957 with

an R value of 0.999. The extra mechanism losses are due to energy transmitting back and forth to

the engine to compress or expand against the pressure regime or fight flow losses. With regards to

flow losses, it appears to be good practice to ensure that flow losses never amount to more than

10% of PV.

An improvement was proposed to optimize the engine for maximum efficiency as the above

tests featured an average efficiency on the order of 1% and would overload the available heating

supply within the test laboratory. As a reference the Carnot Efficiency is on the order of 24%. As

the expected range of fill pressures is between 1 to 10 atmospheres an engine will be designed to

be optimum at 5 atmospheres. It was determined that a mechanism effectiveness of 80% could be

used to conservatively model the mechanism currently in the design phase, though it is likely to

be in the range of 85%. The addition of a regenerator and insulation of the engine is known to

strongly effect the efficiency. Also, it is proposed that thin, large cross-section heat exchangers are

desirable for maintaining good heat exchange without much pressure drop. Thus, the new engine

174

features a HX stack which is detached from the engine such that the length can be optimized

independent of the displacer cylinder length, at the introduction of some additional dead volume.

Through previous investigations a regenerator porosity of 95% is expected to be close to the

optimum value, the stainless steel randomly oriented fibres are 0.1 mm in diameter, in line with

coarse steel wool. The results of these further optimizations are shown on Table 7.13.

Table 7.13 Test properties for Beta-Engine Optimization (listed component volumes are for

available gas volume only, heat exchangers have a surface are to volume ratio of about 1.52

m2/Litre, 1 Hz, 80% efficient mechanism, wire diameter of 0.1 mm in regenerator, HX

volume is for heater and cooler only, with air if not otherwise indicated)

Details

Power

(W)

Heater /

Cooler

Volume

HX /

Swept

Volume

Regen. /

Swept

Volume

Swept /

PP

Volume

Eff.

(%)

Power Density

90% porosity regen. 328.4 1.074 0.809 0.0363 6.372 2.18%

95% porosity regen. 336.3 1.054 0.706 0.0680 6.579 2.12%

Insulated, 95% porosity regen. 431.7 1.053 0.660 0.0653 6.673 3.70%

As above with 24” DP 416.0 0.958 0.554 0.0965 5 4.95%

Insulated, offset HX, 95% por. regen. 427.5 1.003 0.478 0.0882 5.462 4.72%

Efficiency

Insulated, offset HX, 95% por. regen. 407.5 0.9488 0.567 0.142 4.925 5.55%

As above with 24” DP 329.0 0.838 0.842 0.383 5 6.20%

Insulated, offset HX, 95% por. regen.

(Optimized with Helium)

486.15 0.930 0.5515 0.180 4.975 8.02%

Based on the results in Table 7.13 several observations can be made. Firstly, efficiency strongly

correlates with the size of the regenerator. Secondly, well insulating the engine body can improve

the efficiency by several percent and will reduce the requirements on HX size vs swept volume.

Relative size of both heat exchangers is consistent among trials. Peak power density and peak

efficiency occur at similar but notably different conditions. The final test, which featured an engine

filled with helium resulted in increased power with very similar geometry. The power increase is

largely attributed to an increase in efficiency from reduced flow losses; 33% lower than the optimal

point for air. This is created by reduced viscosity in similarly sized heat exchangers and

regenerators.

175

 CONCLUSIONS

8.1 Conclusions

The model presented here predicts the complex phenomenon present in Stirling engines. The

following subsections will discuss the model through the lens of the project goals.

8.1.1 Create a Combined Mechanical and Thermodynamic Model for

Low-Temperature Stirling Engines

This was accomplished through the alternating coupling of the gas and kinematic mechanical

system. The gas system was solved as a one-dimensional pipe network around the assumption of

equal gas pressures, which prevented the emergence of acoustic instabilities and allowed each step

to be solved using a larger timestep than the compressible simulation would allow. The mechanical

system using an alternating coupling allows the mechanical system to respond quickly to changes

in the gas system, while allowing the gas network to use deterministic positions and velocities.

8.1.2 Ensure the model is User-Friendly and Intuitive

While not an engineering issue, ease of use is an important component of the selection and

further development of any software tool, this model is no exception. To support the user, this

model features a graphical user interface (GUI) which allows the user to define engine-geometry

in a physically viable context. The model may include as much detail as required, and internally

develops the connectivity of the user defined blocks. Other features such as: a drop-down menu

for editing object properties, an animation tool for visualizing motions and mesh visualization are

included to support the user. Additionally the MSPM software package uses no external MATLAB

toolboxes and requires only the MATLAB editor to run.

MSPM natively creates animations of the view-screen after simulation, which are much easier

to inspect than data-structures, which it also produces. The user can also place generic point and

line sensors in addition to indicator diagram generating sensors. These output features may allow

the model to serve as a explanation or presentation tool.

176

8.1.3 Validate the Model against Experimental and a well Established

Numerical Model

The model is tested against a variety of classical experiments to check the correctness of

different aspects of the code in isolation. In these tests MSPM matched up well with analytical

results, these tests show that the fundamental aspects of the model are correct, and that the

numerical method used converges to the expected trend.

When compared against the EP-1 (in lab engine) under-steady-state conditions without

calibration, MSPM developed a maximum error of 43.1% with an average error of 30.6% over the

12 tests with speeds ranging from 0.56 to 2.26 Hz. The model was calibrated through modification

of the compression to match the observed variance in pressure ranges which reduced the maximum

and average error to 35.2% and 21.9% respectively. The remaining error was systematic and

consistent among all the speeds, this indicated that the actual error may be in the effectiveness of

the heat exchangers to expose the air to actual source temperatures. This fine perspective on the

heat exchangers is possible in MSPM but was not explored in detail here.

When compared against SAGE, a well established and accurate numerical code, 5 tests were

extracted from Hoegel [44], which modelled an opposed alpha type engine. Over the 5 tests, in

which error is calculated relative to SAGE’s output indicated power, MSPM developed a

maximum discrepancy of 59.1% with an average of 33.5%. The cycle speed for these tests was

16.7 Hz. It was concluded that the error was largely due to differences in convection and the

exclusion of tortuosity from MSPM as it stands currently. Each of these tests were tested with

different geometrical and phasing parameters.

A second batch of SAGE tests were included, which were modelled in-house but at the reduced

speeds and temperatures common to low-temperature Stirling engines. The two models followed

a similar trend in power however diverged at higher speeds.

Finally, MSPM was used to optimize a beta engine. The resulting engines displayed consistency

in the relative size of certain components and informed the design of a new engine project. The

information gained from the model included optimal geometrical sizes, expected power,

anticipated supply power and expected losses due to friction.

177

8.2 Sources of Error

The following sub-sections outline specific areas where for a variety of reasons errors are

introduced in the name of simplicity or computational efficiency. The possible sources of error

include:

8.2.1 Decoupling of Flow Friction and Volumetric Flow Rate

This will have the effect of incorrectly determining the phase lag and dampening of volumetric

flow rates as well as incorrectly determining of the density of the gas.

8.2.2 Constant Properties

Material properties such as solid conductivity, solid heat capacity as gas-constants is assumed

constant given that these properties did not vary significantly over the temperature range

considered. However, this introduces a bias error for any point that is not equal to the calibration

point.

8.2.3 Ideal Gas Representation of the Fill Gas

The ideal gas representation is valid only for low-pressures and high-temperatures. Of course,

these statements are relative, and error increases the moment the gas is no longer at the point for

which the gas constant was derived. At atmospheric pressure the ideal gas law for air is accurate

to within 2% from 100 K with an upper bound exceeding 1000 K, at a pressure of 20 bar, the lower

bound rises to 250 K and at a pressure of 100 bar, this range shrinks to within 300 to 350 K, outside

of which error increases rapidly [66].

8.2.4 Radiation Heat Transfer is Ignored

In the annular gap in particular radiation heat transfer plays an important role in the heat transfer

from 2 surfaces separated by a very small air gap. In MSPM this effect is ignored. This was

justified because of the low temperature assumption which states that because the magnitude of

radiation is based on temperature to the power of 4, that for tow-temperature Stirling engines the

178

magnitude would be very small. While very small, the radiation effect would still produce a loss

and thus results in a small bias error.

8.2.5 No Contact Resistance

Built into the conduction algorithm is an assumption that all interfaces have zero contact

resistance. This is particularly unlikely in cases where a cylinder and wall are closely mated but

run against each other, the model assumes that the two surfaces are bonded perfectly, when in

reality a thin layer of air and other fluids would offer a measurable resistance.

8.2.6 Nusselt Number is Node Based, not Surface Based

The Nusselt number is intended and derived for convection between a gas and a surface with a

particular geometry. This non-dimensional number was expanded to having a single value of

Nusselt number per node due to the computational complexity of solving a Nusselt number for

each face. This simplification was justified based on the concept that within a Stirling engine

surfaces affect each other. Thus, turbulence created by one surface would throw off the Nusselt

number calculation for another, therefore a single value from the most dominant surface would be

the best guess at a global Nusselt number without ugly area weighted anonymous functions.

8.2.7 Constant Friction Coefficients in Mechanism

Currently, the system takes only normal force in the calculation of friction coefficients. More

realistic models would incorporate temperature buildup effects, speed, lubricant film thickness and

could introduce drag from the air around the mechanism and flywheel.

8.2.8 One Dimensional Flow Assumption

The one-dimensional flow assumption has its drawbacks, including the inability to evaluate the

following:

- Recirculation regions [35] or complexities within open chambers

- Preferential flows [67] either due to offset designs or due to manufacturing inconsistencies

179

Not modelling these phenomena means that generic approximations are required. Recirculation

regions are approximated by a combination of minor loss coefficients and turbulence in variable

volume spaces, which are general at best, especially when combined with the mono-Nusselt

number assumption. Minor loss coefficients are used out of scope as no minor loss coefficients

could be found for annular interfaces. There is no generic approximation for preferential flows as

it is assumed that the designer avoids it as much as possible and that features are uniform all the

way around the engine, even in cases where a bridge is applied to an offset or side position, the

inflow and outflow is assumed to be distributed or smeared all the way around the engine. The

problem of preferential flows becomes particularly problematic with thin, HX’s, which are optimal

with regards to flow losses, but may result in inefficient use of HX volume or lower than expected

exit temperatures.

8.2.9 Minor Loss Coefficients are Naively Applied

The model does not incorporate support for laminar minor loss coefficients. Ideally these would

be calibrated through CFD or real-world experiments for a range of flow through rates, but likely

the designer will be restricted to generalized formulas such as the Hooper 2-K [68] or Darby 3-K

[69] which provide loss coefficients for fittings in the laminar regime.

Turbulent minor loss coefficients are calculated simply by determining the change in flow area

between one zone and the next. No modifications are made for turns, for the number or distribution

of openings or for the effect of annularity.

8.2.10 Fluid Inertia and Acoustics, are Ignored

Neglecting fluid inertia will prevent any inertia effects, such as the pressure increase/decrease

in response to the speed of a moving boundary, or acoustic resonance at higher speeds. Neglecting

acoustics will have the effect of improving the simulated performance of the engine due to reduced

friction losses. Acoustics were neglected here to improve computational efficiency using gas speed

instead of sound speed as the timestep limiter and reduce anomalies at low speeds.

180

8.2.11 Steady-State Convergence

Currently, the model uses the deviation from cycle to cycle as the assessment criterion for

convergence to steady state, for particularly large engines it may take a great deal of time to

converge. Thus, the model may recognize an engine as converged even if the slope is not

asymptotic but slow enough to fall within the tolerance bounds. In these cases, it is recommended

that tolerance be reduced until the model shows truly convergent behavior, thankfully any follow

up experiments can use the end of the previous experiment, the snapshot, as the starting point.

8.2.12 Calculation Errors

Computers work within a limited scope of possible values, therefore any operations conducted

using a computer has limitations. MATLAB natively uses double precision values (15 decimal

digits) in its calculations, which results in very little calculation error through basic operations.

Therefore, the only meaningful sources of error lie within areas where these values are magnified.

These areas are matrix inversion and large values. These areas are often combined, as was the case

with the flow rate solving. The error of matrix inversion is said to be on the order of the condition

number of the matrix. For a typical matrix in the flow rate solving loop of the EP-1 model the

condition number was on the order of 1 ∙ 104 which means that the matrix is somewhat ill-

conditioned, and a small error in any of the properties may be magnified by roughly this amount.

8.3 Future Opportunities

8.3.1 Real Gases

Due to the use of Stirling engines in cryogenic fields, under high pressure and with large

changes in pressure and temperature it would be beneficial to represent the gas as a non-ideal gas.

The Van der Waals or Redlich-Kwong model of gases would be sufficient for this and even would

allow prediction of the phase change behavior of the constituent gas.

181

8.3.2 Interface for Simulating Control System

An improvement would introduce smart valves, localized sensors and modifiable transmission

systems driven by a control system designed by the user. Ideally the system would control the

mechanism phasing, which would involve a modification of how the mechanism is interpolated,

fill pressure through an orifice and source temperatures.

8.3.3 Multi-Phase simulations

Simulating multiphase transport, condensation, evaporation, and mixed properties would allow

this to simulate more complex systems. This would involve a condensation / evaporation rate series

of equations based on presence of a liquid film and flow properties, thermodynamic properties of

mixtures, species transport as particulate, flow due to gravity and assisted liquid transport. Phase

change is a promising angle for Stirling engines, typically incorporating phase change reduces the

efficiency of a Stirling engine [70] but it is known to increase the power density substantially.

With controlled evaporation it may be possible to significantly improve the performance of Stirling

engines and with modification, MSPM could assist in that goal.

8.3.4 Source/Sink Simulation

Simulating the temperature regime within the thermal sources and sinks along the length of the

heat exchanger might be of interest in cases where significant amounts of heat are transferred. This

could involve defining the source fluid path through the heat exchanger and adding more detail to

the source’s convection behavior, which is currently not defined.

8.3.5 Material Distortion

Within the laboratory, there have been many observations of substantial flexing of members in

response to pressure, the two most notable are the 1” thick acrylic blind flange of the EP-1 flexing

close to 2 mm in either direction and the flexible bellow expanders which notably balloon outward

or collapse under negative pressure. In short, modeling of flexible interfaces could prove valuable

in cases where the pressure is contained by soft materials or when the engine body is to be analyzed

for structural stability. With material distortion the simulation of more abstract structures may be

182

possible, including diagrams which are often used as frictionless pistons where high efficiency is

required.

8.3.6 Improved modelling of Entrance Turbulence and Swirl in Open

Volumes

The current formulation of open space turbulence is extracted from SAGE. It would be of

interest to investigate this topic further to ensure that these values are true, as it is known that

interfaces between gases and solids support a laminar, near-wall, region which must be accounted

for. This is not accounted for in the current implementation.

8.3.7 String or Text File Based Test Set Run Files

To take this code out of the MATLAB environment it would be prudent to add an interface for

the construction of test sets or allow the user to submit them as a standard text file.

8.3.8 Modelling of explicit faces

When two regions become exposed to each other the resulting outflow is explosive. Such a flow

process would be modelled as a compressible process. After a short period though, if the two

regions remain connected this explicit face would continue to slow the simulation down as the

flow would oscillate. The solution would be to combine the two regions into one during this

connected period and handle the opening or closing event as a regulated transition between the

separated and combined states. As such connections where not required for simulation of

DTECL’s Stirling engines it was not within the scope of this project to implement the projected

complexity that this transition system would entail.

8.3.9 Improvements to Geometry Optimizer

The current geometry optimizer does not consider that an improvement might occur through

the modification of one or more properties simultaneously where independent modification of

those same properties may result in a loss. This would be very common in cases where increasing

the diameter of the displacer causes the heat exchangers to shrink simultaneously reducing their

effectiveness and inducing more friction losses, while increasing both the displacer and heat

183

exchangers might result in a gain. To avoid the added cost of gradient calculation, the edits could

be designed such that the cross-section of components that are downstream is maintained. This

would involve turning on and off relationships, which could be made part of the degree of freedom

definition.

In its current state it may be prudent then to optimize in stages, have one model broken up so

that features can be as independent as possible, then reassemble into a compact interconnected

engine and optimize all the features again.

8.3.10 Parallelization

The program produced as part of this thesis runs entirely on a single core. A parallel

implementation could, on a 4-core computer, be capable of operating at speeds close to 4 times as

fast. Alternatively, this could allow the code to run more than one simulation at a time.

Alternatively, the model for steady-state cases could be discretized in both the spatial and time

grid and a parallel non-linear solver would use to solve the resulting matrix. This would present a

much better alternative to solving each step individually as it is done in this model and the resulting

matrix updates would be calculated in parallel, preferably on the GPU as with modern CFD

simulations. In such simulation the multi-grid consideration would work both in the time and space

domain, the snapshot would serve as an initial guess and the steady-state solid temperatures

assumption used to increase the convergence rate would replace the nodes deep within the bodies.

8.3.11 Other Programming Languages

MATLAB is primarily a prototyping language and is very strong at vectorizable operations and

in matrix operations, in these areas the built-in technology is almost unmatched. However,

MATLAB is typically slow at conducted sequential operations, an area where C++ is more suited

for. Replacing sections of the code base with C files could offer dramatic improvements.

184

References

[1] S. Stricker, T. Strack, L. F. Monier, and R. Clayton, “Market report on waste heat and

requirements for cooling and refrigeration in Canadian industry.,” 2006.

[2] J. Banks and N. B. Harris, “Geothermal Potential of Foreland Basins: A Case Study from

the Western Canadian Sedimentary Basin,” Geothermics, vol. 76, no. May, pp. 74–98, 2018.

[3] Alberta Energy Regulator, “Why are Wells Abandoned.” https://www.aer.ca/abandonment-

and-reclamation/why-are-wells-abandoned (accessed Apr. 02, 2016).

[4] B. Zinchuk, “DEEP advances field work for first geothermal power to Saskatchewan grid,”

jwnenergy, 2019. https://www.jwnenergy.com/article/2019/11/deep-advances-field-work-

first-geothermal-power-saskatchewan-grid/ (accessed Mar. 15, 2020).

[5] R. A. Kishore and S. Priya, “A Review on Low-Grade Thermal Energy Harvesting :

Materials , Methods and Devices,” Materials (Basel)., vol. 11, no. 8, p. 1433, 2018, doi:

10.3390/ma11081433.

[6] T. Tartière and M. Astolfi, “A World Overview of the Organic Rankine Cycle Market The

Overview the Organic Rankine Assessing the feasibility of the heat,” Energy Procedia, vol.

129, pp. 2–9, 2017, doi: 10.1016/j.egypro.2017.09.159.

[7] T. Knudsen, L. Røngaard, F. Haglind, and A. Modi, “Energy and exergy analysis of the

Kalina cycle for use in concentrated solar power plants with direct steam generation,”

Energy Procedia, vol. 57, pp. 361–370, 2014, doi: 10.1016/j.egypro.2014.10.041.

[8] C. B. Vining, “An inconvenient truth about thermoelectrics TL - 8,” Nat. Mater., vol. 8, no.

2, pp. 83–85, 2009.

[9] C. M. Hargreaves, The Philips Stirling Engine, 1st ed. Michigan: Elsevier, 1991.

[10] C. P. Speer, “Modifications to Reduce the Minimum Thermal Source Temperature of the

ST05G-CNC Stirling Engine,” University of Alberta, 2018.

[11] I. Urieli, “Stirling Cycle Machine Analysis,” Russ College of Engineering and Technology

Mechanical Engineering Department, 2018. https://www.ohio.edu/mechanical/stirling/

185

(accessed May 09, 2018).

[12] C. J. A. Stumpf, “Parameter Optimization of a Low Temperature Difference Gamma-Type

Stirling Engine to Maximize Shaft Power,” University of Alberta, 2018.

[13] D. A. Miller, “Experimental Investigation of Stirling Engine Modelling Techniques at

Reduced Source Temperatures,” University of Alberta, 2019.

[14] J. P. Michaud, “Low Temperature Difference Alpha-Type Stirling Engine for the

Experimental Determination of Optimal Parameters to Maximize Shaft Power,” University

of Alberta, 2020.

[15] R. Stirling, “Stirling air engine and heat regenerator,” Patent no. 4081, 1816.

[16] I. Urieli and D. M. Berchowitz, Stirling cycle engine analysis. Bristol: A. Hilger, 1984.

[17] T. Finkelstein, A. J., and Organ, Air Engines. New York, 2001.

[18] SAAB Group, “The secret to the world’s most silent submarine,” 2015.

https://saabgroup.com/media/stories/stories-listing/2015-02/the-secret-to-the-worlds-most-

silent-submarine/ (accessed Jul. 29, 2020).

[19] Microgen engine corporation, “Free Piston Stirling Engine,” 2020. https://www.microgen-

engine.com/ (accessed Jul. 29, 2020).

[20] Office of Energy Efficiency & Renewable Energy, “Solar Dish Sets World-Record

Efficiency,” Solar Energy Technologies Office, 2008.

https://www.energy.gov/eere/solar/downloads/solar-dish-sets-world-record-efficiency

(accessed Jul. 29, 2020).

[21] C. C. Lloyd, “A low temperature differential Stirling engine for power generation,” p. 132,

2009.

[22] C. D. West, Principles and applications of Stirling Engines. New York: Van Nostrand

Reinhold, 1986.

[23] W. Martini, “Stirling Engine Design Manual Conservation and Renewable Energy,”

Methods, p. 412, 1983.

186

[24] Y. A. Çengel and M. A. Boles, Thermodynamics: An Engineering Approach., 7th ed. New

York: McGraw-Hill, 2011.

[25] G. Schmidt, “The Theory of Lehmann’s Calorimetric Machine,” Z. ver. Dtsch. Ing., vol. 15,

1871.

[26] R. Clausius, “On a Modified Form of the Second Fundamental Theorem in the Mechanical

Theory of Heat,” Phil. Mag., vol. 12, no. 77, pp. 81–98, 1856, doi:

10.1080/14786445608642141.

[27] J. R. Senft, Mechanical efficiency of heat engines. Cambridge: Cambridge University Press,

2007.

[28] S. Petrescu, M. Costea, C. Harman, and T. Florea, “Applications of the Direct Method to

irreversible Stirling cycles with finite speed,” Int. J. Energy Res., vol. 26, no. 7, pp. 589–

609, 2002, doi: 10.1002/er.806.

[29] C. G. Scheck, “Thermal Hysteresis Loss in Gas Springs,” Ohio University, 1988.

[30] A. J. Organ, Stirling Cycle Engines: Inner Workings and Design. Chichester: John Wiley

and Sons Ltd., 2014.

[31] J. Weisbach, Lehrbuch der Ingenieur- und Maschinen-Mechanik, 1st ed. Braunschweig:

Vieweg und Sohn, 1845.

[32] C. F. Colebrook, “Turbulent flow in pipes with particular reference to the transition region

between the smooth and rough pipe laws.,” J. Inst. Civ. Eng., vol. 11, pp. 133–156, 1939,

[Online]. Available: https://dx.doi.org/10.1680/ijoti.1939.13150.

[33] K. Peter, H. Janos, S. Krisztian, B. Attila, and T. Peter, “Models of Friction,” in Robot

Applications, BME MOGI, Ed. BME MOGI, 2014.

[34] K. Lewotsky, “Understanding Lubricants - Part I,” 2013.

https://www.motioncontrolonline.org/content-detail.cfm/Motion-Control-

News/Understanding-Lubricants-Part-I/content_id/316 (accessed Jun. 15, 2020).

[35] D. Gedeon, “Sage User ’s Guide. Sage v11 Edition,” 2016, [Online]. Available:

http://www.sageofathens.com/Documents/SageStlxHyperlinked.pdf.

187

[36] B. Thomas, “PROSA - software for evaluation of Stirling cycle machines,” in ISEC,

International Stirling Engine Conference - 10, 2001, pp. 67–74.

[37] A. Altman, “SNAPpro Stirling Numerical Analysis Program,” 2018.

https://sites.google.com/site/snapburner/snappro-1 (accessed Feb. 13, 2020).

[38] G. Walker, Stirling Engine. New York: Oxford University Press, 1980.

[39] “MATLAB.” The Mathworks, Inc., Natick, Massachusetts, 2020.

[40] M. Babaelahi and H. Sayyaadi, “Simple-II: A new numerical thermal model for predicting

thermal performance of Stirling engines,” Energy, vol. 69, pp. 873–890, 2014, doi:

10.1016/j.energy.2014.03.084.

[41] M. Babaelahi and H. Sayyaadi, “A new thermal model based on polytropic numerical

simulation of Stirling engines,” Appl. Energy, vol. 141, pp. 143–159, 2015, doi:

10.1016/j.apenergy.2014.12.033.

[42] D. M. Berchowitz, “Linear Dynamics of Free-Piston Stirling Engines,” in Proceedings

Institution of Mechanical Engineers, 1985, vol. 199.

[43] T. Finkelstein, “Computer Analysis of Stirling Engines,” in Intersociety Energy Conversion

Engineering Conference, 1975.

[44] B. Hoegel, D. Pons, M. Gschwendtner, A. Tucker, and M. Sellier, “Thermodynamic

peculiarities of alpha-type Stirling engines for low-temperature difference power

generation: Optimisation of operating parameters and heat exchangers using a third-order

model,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 228, no. 11, pp. 1936–1947,

2014, doi: 10.1177/0954406213512120.

[45] B. Hoegel, “Thermodynamics-Based Design of Stirling Engines for Low-Temperature Heat

Sources,” 2014.

[46] M. Hooshang, R. Askari Moghadam, S. Alizadeh Nia, and M. T. Masouleh, “Optimization

of Stirling engine design parameters using neural networks,” Renewable Energy, vol. 74.

pp. 855–866, 2015, doi: 10.1016/j.renene.2014.09.012.

[47] M. Hooshang, R. Askari Moghadam, and S. AlizadehNia, “Dynamic response simulation

188

and experiment for gamma-type Stirling engine,” Renew. Energy, vol. 86, pp. 192–205,

2016, doi: 10.1016/j.renene.2015.08.018.

[48] H. Carlsen and P. Grove, “Preliminary results from simulations of temperature oscillations

in Stirling engine regenerator matrices,” Energy, vol. 31, pp. 1371–1383, 2006, doi:

10.1016/j.energy.2005.05.008.

[49] K. Mahkamov, “An axisymmetric computational fluid dynamics approach to the analysis

of the working process of a solar Stirling engine,” J. Sol. Energy Eng., vol. 128, pp. 45–53,

2006.

[50] R. W. Dyson, S. D. Wilson, R. C. Tew, and R. Demko, “Tech. Report TM-2005-213960

Fast whole-engine Stirling Analysis,” 2005.

[51] N. Kwatra, J. Su, J. T. Grétarsson, and R. Fedkiw, “A method for avoiding the acoustic time

step restriction in compressible flow,” J. Comput. Phys., vol. 228, no. 11, pp. 4146–4161,

2009, doi: 10.1016/j.jcp.2009.02.027.

[52] R. K. Shah, “Extended Surface Heat Transfer,” Thermopedia, 2011. .

[53] A. Lambert, “What Do We Know About Pressure: Leakage Relationships in Distribution

Systems?,” IWA Conf. Syst. Approach to Leakage Control Water Distrib. Syst., pp. 1–8,

2000.

[54] G. D. van Albada, B. van Leer, and J. W. W. Roberts, “A Comparative Study of

Computational Methods in Cosmic Gas Dynamics,” J. Astron. Astrophys., vol. 108, pp. 76–

84, 1982.

[55] W. H. Hayt and J. E. Kemmerly, Engineering Circuit Analysis, 5th ed. New York: McGraw

Hill, 1993.

[56] D. Gedeon, “A Cylinder Heat Transfer Model.” NASA-Lewis, 1989.

[57] F. J. Cantelmi, “Measurement and Modelling of In-Cylinder Heat Transfer with Inflow-

Producted Turbulence,” Virginia Polytechnic Institute and State University, 1995.

[58] C. Koren et al., “An Acceleration Method for Numerical Studies of Conjugate Heat Transfer

With a Self-Adaptive Coupling Time Step Method : Application to a Wall-Impinging

189

Flame,” 2018.

[59] M. T. Heath, “Section 11.5.7 Multigrid Methods,” in Scientific Computing: An Introductory

Survey, McGraw-Hill, 2002, p. 478.

[60] Z. Wang, “Mechanistic Modeling of Nucleate Boiling,” Rensselaer Polytechnic Institute,

2019.

[61] J. Hensen and A. E. Nakhi, “Fourier and Biot numbers and the accuracy of conduction

modelling,” in Fourier and Biot numbers and the accuracy of conduction modelling, 1994,

no. January 1994.

[62] “Courant-Friedrichs-Lewy condition,” Encyclopedia Of Mathematics, 2014.

https://encyclopediaofmath.org/wiki/Courant-Friedrichs-Lewy_condition (accessed Aug.

18, 2020).

[63] R. Karwa, Heat and Mass Transfer, 1st ed. Singapore: Springer, 2017.

[64] M. Nicol-Seto, “Investigation of Drive Mechanism Modification to Increase

Thermodynamic Performance of a Low Temperature Difference Gamma Stirling Engine,”

University of Alberta, 2021.

[65] I. Kolin, Stirling Motor: History, Theory, Practice. Zagreb: Zagreb University, 1991.

[66] “Ideal Gas Law,” Engineering Toolbox, 2003. https://www.engineeringtoolbox.com/ideal-

gas-law-d_157.html (accessed Jul. 29, 2020).

[67] C. P. Speer, “Modifications to Reduce the Minimum Thermal Source Temperature of the

ST05G-CNC Stirling Engine,” University of Alberta, 2018.

[68] W. B. Hooper, “The two-K method predicts head losses in pipe fittings,” Chem. Eng., pp.

96–100, 1981.

[69] R. Darby, “Correlate Pressure Drops through Fittings,” Chem. Eng., vol. 106, pp. 101–104,

1999.

[70] G. Walker and J. R. Senft, “Free Piston Stirling Engines,” in Free Piston Stirling Engines:

Liquid Piston Stirling Engines, Berlin, Heidelberg: Springer, 1985, pp. 235–261.

190

[71] E. Fried and I. E. Idelchik, Flow Resistance: A Design Guide for Engineers. Philadelphia:

Taylor & Francis, 1989.

[72] R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts. Elsevier, 1978.

[73] F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and

Mass Transfer, 6th ed. Hoboken: Wiley, 2007.

[74] R. L. Webb, Principles of Enhanced Heat Transfer. New York: John Wiley and Sons Ltd.,

1994.

[75] A. Kays, WM; London, “Compact Heat Exchangers,” 1964, [Online]. Available:

http://www.amazon.com/Compact-Heat-Exchangers-W-Kays/dp/1575240602.

[76] H. C. Chai, “A Simple Pressure Drop Correlation Equation For Low Finned Tube Crossflow

Heat Exchangers,” Int. Commun. Heat Mass Transf., vol. 15, pp. 95–101, 1988.

[77] A. Ganguli and S. B. Yilmaz, New heat transfer and pressure drop correlations for

crossflow over low-finned tube banks. Pittsburgh: American Institute of Chemical

Engineers, 1987.

191

Appendices

Appendix A. Mechanisms

The mechanisms described below are only a subset of the myriad of linear to rotational

mechanisms proposed for Stirling Engines. Each of them assumes the following:

- A piston force is considered positive if it pushes the piston away from the driveshaft.

- Friction is excluded except for a modification on the output torque which takes the

rotational speed and formulates a moment such that the energy loss from each source of

friction is represented in the modified torque.

- To ensure that the bearing load on the driveshaft is properly oriented in space the

orientation of the mechanism, rotates the coordinate system of the output normal loads

before outputting.

- As a piston can be based either as coming from above the cylinder or below, each

mechanism has an orientation property, in addition to its rotation, which changes the sign

of the piston forces and inverts the returned position offsets.

A.1. Slider-crank Mechanism

Each component of the Slider-crank is solved using Newton’s law, resulting in 7 semi-explicit

equations.

Figure 8.1. Slider-crank Mechanism: dimensions, masses, and gravity

Crank Arm

192

Figure 8.2. Free Body Diagram of Crank Arm

𝜃𝑠𝑐 = 𝜃 + 𝜑

𝜃𝑔 = 𝜃 + 𝜑 + 𝜃𝑚1

𝐼𝑚1 = 𝑚1𝑟1
2

The moment generated around the driveshaft

∑𝑀 =𝐼𝑚1𝛼 = (𝐹12)𝑥𝑙1 sin(𝜃𝑠𝑐) − (𝐹12)𝑦𝑙1 cos(𝜃𝑠𝑐) + 𝑀01 − 𝑔𝑚1𝑟1cos (𝜃𝑔)

Forces in the local x-direction

∑𝐹𝑥 = 𝑚1(𝑎1)𝑥 = (𝐹01)𝑥 − (𝐹12)𝑥 − 𝑔𝑚1sin (𝛾)

Forces in the local y-direction

∑𝐹𝑦 = 𝑚1(𝑎1)𝑦 = (𝐹01)𝑦 − (𝐹12)𝑦 − 𝑔𝑚1cos (𝛾)

Linking acceleration to relevant parameters

(𝑎1)𝑥 = (−𝑟1 cos(𝜃𝑠𝑐 + 𝜃𝑚1))𝜔
2 + (−𝑟1 sin(𝜃𝑠𝑐 + 𝜃𝑚1))𝛼 = 𝐵𝑎1𝑥𝜔

2 + 𝐶𝑎1𝑥𝛼

(𝑎1)𝑦 = (−𝑟1 sin(𝜃𝑠𝑐 + 𝜃𝑚1))𝜔
2 + (𝑟1 cos(𝜃𝑠𝑐 + 𝜃𝑚1))𝛼 = 𝐵𝑎1𝑦𝜔

2 + 𝐶𝑎1𝑦𝛼

Loss associated with 𝑀𝑓12:

𝐿 = |𝑀𝑓12𝜔1(1 − 𝐶𝜔2)|

193

Connecting Rod

Figure 8.3. Free Body Diagram of Connecting Rod

𝛽𝑠𝑐 = 𝑠𝑖𝑛
−1 (

𝑙3 − 𝑙1𝑠𝑖𝑛(𝜃𝑠𝑐)

𝑙2
)

𝛽𝑔 = 𝛽𝑠𝑐 + 𝛾

𝐼𝑚2 = 𝑚2𝑟2
2

The moment generated around Crank Arm – Connecting Rod joint

∑𝑀 =𝐼𝑚2𝛼2 = (𝐹23)𝑥𝑙2 sin(𝛽𝑠𝑐) − (𝐹23)𝑦𝑙2 cos(𝛽𝑠𝑐) − 𝑔𝑚2𝑟2cos (𝛽𝑔)

Forces in the local x-direction

∑𝐹𝑥 = 𝑚2(𝑎2)𝑥 = (𝐹12)𝑥 − (𝐹23)𝑥 − 𝑔𝑚2 sin(𝛾)

Forces in the local y-direction

∑𝐹𝑦 = 𝑚2(𝑎2)𝑦 = (𝐹12)𝑦 − (𝐹23)𝑦 − 𝑔𝑚2 cos(𝛾)

Linking acceleration to relevant parameters

𝜔2 = (−
𝑙1 cos(𝜃𝑠𝑐)

𝑙2 cos(𝛽𝑠𝑐)
)𝜔1 = 𝐶𝜔2𝜔1

𝛼2 = (
𝑙1 sin(𝜃𝑠𝑐) + 𝑙2 sin(𝛽𝑠𝑐) 𝐶𝜔2

2

𝑙2 cos(𝛽𝑠𝑐)
)𝜔2 + (−

𝑙1 cos(𝜃𝑠𝑐)

𝑙2 cos(𝛽𝑠𝑐)
)𝛼 = 𝐵𝛼2𝜔

2 + 𝐶𝜔2𝛼

194

(𝑎2)𝑥 = (−𝑙1 cos(𝜃𝑠𝑐) − 𝑟2 cos(𝛽𝑠𝑐) 𝐶𝜔2
2 − 𝑟2 sin(𝛽𝑠𝑐)𝐵𝛼2)𝜔

2

+ (−𝑙1 sin(𝜃𝑠𝑐) − 𝑟2 sin(𝛽𝑠𝑐) 𝐶𝜔2)𝛼 = 𝐵𝑎2𝑥𝜔
2 + 𝐶𝑎2𝑥𝛼

(𝑎2)𝑦 = (−𝑙1 sin(𝜃𝑠𝑐) − 𝑟2 sin(𝛽𝑠𝑐) 𝐶𝜔2
2 + 𝑟2 cos(𝛽𝑠𝑐)𝐵𝛼2)𝜔

2

+ (𝑙1 cos(𝜃𝑠𝑐) + 𝑟2 cos(𝛽𝑠𝑐) 𝐶𝜔2)𝛼 = 𝐵𝑎2𝑦𝜔
2 + 𝐶𝑎2𝑦𝛼

Loss associated with 𝑀𝑓23:

𝐿 = |𝑀𝑓23𝜔1𝐶𝜔2|

Piston Head

Figure 8.4. Free Body Diagram of Piston Head

Forces in the local x-direction

∑𝐹𝑥 = 𝑚3(𝑎3)𝑥 = 𝐹𝑝 + (𝐹23)𝑥 − 𝑔𝑚3 sin(𝛾)

∑𝐹𝑦 = 0 = (𝐹23)𝑦 + 𝐹𝑠 − 𝑔𝑚3 cos(𝛾)

Linking acceleration to relevant parameters

(𝑎3)𝑥 = (−𝑙1 cos(𝜃𝑠𝑐) − 𝑙2 cos(𝛽𝑠𝑐) 𝐶𝜔2
2 − 𝑙2 sin(𝛽𝑠𝑐) 𝐵𝛼2)𝜔

2

+ (−𝑙1 sin(𝜃𝑠𝑐) − 𝑙2 sin(𝛽𝑠𝑐) 𝐶𝜔2)𝛼 = 𝐵𝑎3𝑥𝜔
2 + 𝐶𝑎3𝑥𝛼

Piston Motion and position

𝑥𝑝 = 𝑙1 cos(𝜃𝑠𝑐) + 𝑙2 cos(𝛽𝑠𝑐) − √(𝑙2 − 𝑙1)2 − 𝑙3
2

𝑣𝑝 = (−𝑙1 sin(𝜃𝑠𝑐) − 𝑙2 sin(𝛽𝑠𝑐) 𝐶𝜔2)𝜔

Loss associated with 𝐹𝑓3:

195

𝐿 = |𝐹𝑓3𝑣𝑝|

Deriving 𝑴𝟎𝟏, (𝑭𝟎𝟏)𝒙 and (𝑭𝟎𝟏)𝒚 as 𝑭 = 𝑨𝜶 +𝑩𝝎𝟐 + 𝑮 + 𝑬

(𝐹23)𝑥 = (𝑚3𝐶𝑎3𝑥)𝛼 + (𝑚3𝐵𝑎3𝑥)𝜔
2 + (𝑔𝑚3 sin(𝛾)) − 𝐹𝑝

= 𝐴1𝛼 + 𝐵1𝜔
2 + 𝐺1 + 𝐸1

(𝐹12)𝑥 = (𝑚2𝐶𝑎2𝑥 + 𝐴1)𝛼 + (𝑚2𝐵𝑎2𝑥 + 𝐵1)𝜔
2 + (𝑔𝑚2 sin(𝛾) + 𝐺1) + (𝐸1)

= 𝐴2𝛼 + 𝐵2𝜔
2 + 𝐺2 + 𝐸2

(𝐹23)𝑦 = (
−𝐼𝑚2

𝐶𝜔2
𝑙2 cos(𝛽𝑠𝑐)

+ tan(𝛽𝑠𝑐) 𝐴1) 𝛼 + (
−𝐼𝑚2𝐵𝛼2
𝑙2 cos(𝛽𝑠𝑐)

+ tan(𝛽𝑠𝑐) 𝐵1)𝜔
2

+ (
−𝑔𝑚2𝑟2 cos(𝛽𝑔)

𝑙2 cos(𝛽𝑠𝑐)
+ tan(𝛽𝑠𝑐)𝐺1) + (tan(𝛽𝑠𝑐) 𝐸1)

= 𝐴3𝛼 + 𝐵3𝜔
2 + 𝐺3 + 𝐸3

(𝐹12)𝑦 = (𝑚2𝐶𝑎2𝑦 + 𝐴3)𝛼 + (𝑚2𝐵𝑎2𝑦 + 𝐵3)𝜔
2 + (𝑔𝑚2 cos(𝛽𝑔) + 𝐺3) + (𝐸3)

= 𝐴4𝛼 + 𝐵4𝜔
2 + 𝐺4 + 𝐸4

(𝑭𝟎𝟏)𝒙 = (𝑚1𝐶𝑎1𝑥 + 𝐴2)𝛼 + (𝑚1𝐵𝑎1𝑥 + 𝐵2)𝜔
2 + (𝑔𝑚1 sin(𝛾) + 𝐺2) + (𝐸2)

= 𝐴5𝛼 + 𝐵5𝜔
2 + 𝐺5 + 𝐸5

(𝑭𝟎𝟏)𝒚 = (𝑚1𝐶𝑎1𝑦 + 𝐴4)𝛼 + (𝑚1𝐵𝑎1𝑦 + 𝐵4)𝜔
2 + (𝑔𝑚1 cos(𝛾) + 𝐺4) + (𝐸4)

= 𝐴6𝛼 + 𝐵6𝜔
2 + 𝐺6 + 𝐸6

Output Variables (converted to global coordinates)

Torque from the driveshaft to the slider-crank mechanism

∑𝑀 =𝐼𝑚1𝛼 = (𝐹12)𝑥𝑙1 sin(𝜃𝑠𝑐) − (𝐹12)𝑦𝑙1 cos(𝜃𝑠𝑐) + 𝑀01 − 𝑔𝑚1𝑟1cos (𝜃𝑔)

196

𝑀0 = (𝐼𝑚1 − 𝑙1 sin(𝜃𝑠𝑐) 𝐴2 + 𝑙1 cos(𝜃𝑠𝑐) 𝐴4)𝛼 + (−𝑙1 sin(𝜃𝑠𝑐) 𝐵2 + 𝑙1 cos(𝜃𝑠𝑐) 𝐵4)𝜔
2

+ (𝑔𝑚1𝑟1 cos(𝜃𝑔) − 𝑙1 sin(𝜃𝑠𝑐) 𝐺2 + 𝑙1 cos(𝜃𝑠𝑐) 𝐺4)

+ (𝐹𝑝𝑙1(cos(𝜃𝑠𝑐) tan(𝛽𝑠𝑐) − sin(𝜃𝑠𝑐))) = 𝐴𝑀𝛼 + 𝐵𝑀𝜔
2 + 𝐺𝑀 + 𝐸𝑀

Horizontal force as felt by the driveshaft.

𝐹𝑥 = (−cos(𝛾)𝐴5 + sin(𝛾)𝐴6)𝛼 + (− cos(𝛾)𝐵5 + sin(𝛾)𝐵6)𝜔
2 + (−cos(𝛾)𝐺5 + sin(𝛾)𝐺6)

+ (−cos(𝛾) 𝐸5 + sin(𝛾)𝐸6) = 𝐴𝑥𝛼 + 𝐵𝑥𝜔
2 + 𝐺𝑥 + 𝐸𝑥

Vertical force as felt by the driveshaft.

𝐹𝑦 = (−sin(𝛾)𝐴5 − cos(𝛾) 𝐴6)𝛼 + (− sin(𝛾)𝐵5 − cos(𝛾)𝐵6)𝜔
2 + (−sin(𝛾)𝐺5 − cos(𝛾)𝐺6)

+ (− sin(𝛾)𝐸5 − cos(𝛾)𝐸6) = 𝐴𝑦𝛼 + 𝐵𝑦𝜔
2 + 𝐺𝑦 + 𝐸𝑦

Losses:

𝑀𝐿𝑜𝑠𝑠 = |𝑀𝑓12(𝐹12𝑥, 𝐹12𝑦)𝜔1(1 − 𝐶𝜔2)| + |𝑀𝑓23(𝐹23𝑥, 𝐹23𝑦)𝜔1𝐶𝜔2| + |𝐹𝑓3(𝐹23𝑦)𝑣𝑝|

197

A.2. Rhombic Drive Mechanism

Half of the Rhombic Drive mechanism is very similar to the slider-crank mechanism except

that the friction for the piston is only a product of side-load free seal friction. Also, half of the

bearing load on the shaft is placed on an auxiliary shaft that can be entirely contained in the engine

body without a seal.

Figure 8.5: Rhombic Drive Mechanism: dimensions, masses, and gravity

Output Variables (converted to global coordinates)

Torque from the driveshaft to a slider-crank mechanism

𝑀0 = (𝐼𝑚1 − 𝑙1 sin(𝜃𝑠𝑐) 𝐴2 + 𝑙1 cos(𝜃𝑠𝑐) 𝐴4)𝛼 + (−𝑙1 sin(𝜃𝑠𝑐) 𝐵2 + 𝑙1 cos(𝜃𝑠𝑐) 𝐵4)𝜔
2

+ (𝑔𝑚1𝑟1 cos(𝜃𝑔) − 𝑙1 sin(𝜃𝑠𝑐) 𝐺2 + 𝑙1 cos(𝜃𝑠𝑐) 𝐺4)

+ (𝐹𝑝𝑙1(cos(𝜃𝑠𝑐) tan(𝛽𝑠𝑐) − sin(𝜃𝑠𝑐))) = 𝐴𝑀𝛼 + 𝐵𝑀𝜔
2 + 𝐺𝑀 + 𝐸𝑀

Horizontal force as felt by the driveshaft.

𝐹𝑥 = 0.5((−cos(𝛾)𝐴5 + sin(𝛾)𝐴6)𝛼 + (− cos(𝛾)𝐵5 + sin(𝛾)𝐵6)𝜔
2

+ (−cos(𝛾)𝐺5 + sin(𝛾)𝐺6) + (−cos(𝛾)𝐸5 + sin(𝛾)𝐸6))

= 𝐴𝑥𝛼 + 𝐵𝑥𝜔
2 + 𝐺𝑥 + 𝐸𝑥

198

Vertical force as felt by the driveshaft.

𝐹𝑦 = 0.5((−sin(𝛾)𝐴5 − cos(𝛾)𝐴6)𝛼 + (− sin(𝛾)𝐵5 − cos(𝛾)𝐵6)𝜔
2

+ (−sin(𝛾)𝐺5 − cos(𝛾)𝐺6) + (− sin(𝛾) 𝐸5 − cos(𝛾)𝐸6))

= 𝐴𝑦𝛼 + 𝐵𝑦𝜔
2 + 𝐺𝑦 + 𝐸𝑦

Losses:

𝑀𝐿𝑜𝑠𝑠 = |2𝑀𝑓12 (
𝐹12𝑥
2
,
𝐹12𝑦

2
)𝜔1(1 − 𝐶𝜔2)| + |2𝑀𝑓23 (

𝐹23𝑥
2
,
𝐹23𝑦

2
)𝜔1𝐶𝜔2| + |𝐹𝑓3(0)𝑣𝑝|

+ |𝐹𝑎𝑢𝑥(𝐹𝑥, 𝐹𝑦)𝜔1| + |𝐹𝑔𝑒𝑎𝑟 (𝜔1
𝑀0
2
)|

199

A.3. Scotch Yoke Mechanism

Crank Arm

Figure 8.6. Free Body Diagram of Crank Arm

𝜃𝑠𝑦 = 𝜃 + 𝜑

𝜃𝑔 = 𝜃 + 𝜑 + 𝜃𝑚1

The moment generated around the driveshaft

∑𝑀 =𝐼𝑚1𝛼 = (𝐹12)𝑥𝑙1 sin(𝜃𝑠𝑦) − (𝐹12)𝑦𝑙1 cos(𝜃𝑠𝑦) + 𝑀01 − 𝑔𝑚1𝑟1cos (𝜃𝑔)

Forces in the local x-direction

∑𝐹𝑥 = 𝑚1(𝑎1)𝑥 = (𝐹01)𝑥 − (𝐹12)𝑥 − 𝑔𝑚1sin (𝛾)

Forces in the local y-direction

∑𝐹𝑦 = 𝑚1(𝑎1)𝑦 = (𝐹01)𝑦 − 𝑔𝑚1cos (𝛾)

Linking acceleration to relevant parameters

(𝑎1)𝑥 = (−𝑟1 cos(𝜃𝑠𝑦 + 𝜃𝑚1))𝜔
2 + (−𝑟1 sin(𝜃𝑠𝑦 + 𝜃𝑚1))𝛼 = 𝐵𝑎1𝑥𝜔

2 + 𝐶𝑎1𝑥𝛼

(𝑎1)𝑦 = (−𝑟1 sin(𝜃𝑠𝑦 + 𝜃𝑚1))𝜔
2 + (𝑟1 cos(𝜃𝑠𝑦 + 𝜃𝑚1))𝛼 = 𝐵𝑎1𝑦𝜔

2 + 𝐶𝑎1𝑦𝛼

200

Loss associated with 𝑀𝑓12:

𝐿 = |𝑀𝑓12𝜔1(1 − 𝐶𝜔2)|

Piston Assembly

The piston for the scotch yoke mechanism is supported by a linear bearing assembly, which has

a moment dependent and constant component to friction loss. The forces in the local x-direction

are as follows:

∑𝐹𝑥 = 𝑚𝑝(𝑎𝑝)𝑥
= 𝐹𝑝 + (𝐹12)𝑥

∑𝐹𝑦 = (𝐹𝐵𝐴𝑠𝑚)𝑦 − 𝑔𝑚𝑝 cos(𝛾)

∑𝑀 = 0 = 𝑀𝐵𝐴𝑠𝑚 − (𝐹12)𝑥𝑙1 sin(𝜃𝑠𝑦) − 𝑔𝑚𝑝 sin(𝛾)

Where:

𝑥𝑝 = 𝐶𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑙1 cos(𝜃𝑠𝑦)

𝑣𝑝 = −𝑙1𝜔 sin(𝜃𝑠𝑦)

𝑎𝑝 = −𝑙1𝛼 sin(𝜃𝑠𝑦) − 𝑙1𝜔
2 cos(𝜃𝑠𝑦)

Thus:

(𝐹12)𝑥 = −𝑚𝑝𝑙1(𝛼 sin(𝜃𝑠𝑦) + 𝜔
2 cos(𝜃𝑠𝑦)) − 𝐹𝑝

(𝐹𝐵𝐴𝑠𝑚)𝑦 = 𝑔𝑚𝑝 cos(𝛾)

𝑀𝐵𝐴𝑠𝑚 = −(𝑚𝑝𝑙1
2 sin2(𝜃𝑠𝑦) 𝛼 +𝑚𝑝𝑙1

2 cos(𝜃𝑠𝑦) sin(𝜃𝑠𝑦)𝜔
2 + 𝑙1

2 sin2(𝜃𝑠𝑦) 𝐹𝑝) − 𝑔𝑚𝑝 sin(𝛾)

(𝐹01)𝑥 = 𝑚1(𝑎1)𝑥 + (𝐹12)𝑥 + 𝑔𝑚1sin (𝛾)

(𝐹01)𝑥 = 𝑚1(𝐵𝑎1𝑥𝜔
2 + 𝐶𝑎1𝑥𝛼) − 𝑚𝑝𝑙1(𝛼 sin(𝜃𝑠𝑦) + 𝜔

2 cos(𝜃𝑠𝑦)) − 𝐹𝑝 + 𝑔𝑚1 sin(𝛾)

= 𝐴1𝛼 + 𝐵1𝜔
2 + 𝐸1𝐹𝑝 + 𝐺1

(𝐹01)𝑦 = 𝑚1(𝑎1)𝑦 + 𝑔𝑚1 cos(𝛾)

201

(𝐹01)𝑦 = 𝑚1𝐵𝑎1𝑦𝜔
2 +𝑚1𝐶𝑎1𝑦𝛼 + 𝑔𝑚1 cos(𝛾) = 𝐴2𝛼 + 𝐵2𝜔

2 + 𝐺2

𝑀01 = 𝐼𝑚1𝛼 + (𝑚𝑝𝑙1
2 sin2(𝜃𝑠𝑦) 𝛼 + 𝑚𝑝𝑙1

2 cos(𝜃𝑠𝑦) sin(𝜃𝑠𝑦)𝜔
2 + 𝑙1

2 sin2(𝜃𝑠𝑦) 𝐹𝑝)

+ 𝑔𝑚1𝑟1 cos(𝜃𝑔) = −𝐴𝑀𝛼 − 𝐵𝑀𝜔
2 − 𝐸𝑀𝐹𝑝 − 𝐺𝑀

Torque from the driveshaft to a slider-crank mechanism

𝑀0 = 𝐴𝑀𝛼 + 𝐵𝑀𝜔
2 + 𝐺𝑀 + 𝐸𝑀

𝐴𝑀 = −𝐼𝑚1 −𝑚𝑝𝑙1
2 sin2(𝜃𝑠𝑦)

𝐵𝑀 = −𝑚𝑝𝑙1
2 cos(𝜃𝑠𝑦) sin(𝜃𝑠𝑦)

𝐺𝑀 = −𝑔𝑚1𝑟1 cos(𝜃𝑔)

𝐸𝑀 = −𝑙1
2 sin2(𝜃𝑠𝑦)

Horizontal force as felt by the driveshaft.

𝐹𝑥 = ((− cos(𝛾)𝐴1 + sin(𝛾)𝐴2)𝛼 + (− cos(𝛾)𝐵1 + sin(𝛾)𝐵2)𝜔
2

+ (−cos(𝛾) 𝐺1 + sin(𝛾)𝐺2) + (−cos(𝛾)𝐸1)) = 𝐴𝑥𝛼 + 𝐵𝑥𝜔
2 + 𝐺𝑥 + 𝐸𝑥

𝐴𝑥 = −cos(𝛾) (𝑚1𝐶𝑎1𝑥 −𝑚𝑝𝑙1 sin(𝜃𝑠𝑦)) + sin(𝛾) (𝑚1𝐶𝑎1𝑦)

𝐵𝑥 = −cos(𝛾) (𝑚1𝐵𝑎1𝑥 −𝑚𝑝𝑙1 cos(𝜃𝑠𝑦)) + sin(𝛾) (𝑚1𝐵𝑎1𝑦)

𝐺𝑥 = 0

𝐸𝑥 = cos(𝛾)

Vertical force as felt by the driveshaft.

𝐹𝑦 = ((−sin(𝛾) 𝐴1 − cos(𝛾)𝐴2)𝛼 + (− sin(𝛾)𝐵1 − cos(𝛾)𝐵2)𝜔
2

+ (−sin(𝛾) 𝐺1 − cos(𝛾) 𝐺2) + (−sin(𝛾)𝐸1)) = 𝐴𝑦𝛼 + 𝐵𝑦𝜔
2 + 𝐺𝑦 + 𝐸𝑦

𝐴𝑦 = −sin(𝛾) (𝑚1𝐶𝑎1𝑥 −𝑚𝑝𝑙1 sin(𝜃𝑠𝑦)) − cos(𝛾) (𝑚1𝐶𝑎1𝑦)

𝐵𝑦 = −sin(𝛾) (𝑚1𝐵𝑎1𝑥 −𝑚𝑝𝑙1 cos(𝜃𝑠𝑦)) − cos(𝛾) (𝑚1𝐵𝑎1𝑦)

𝐺𝑦 = 𝑔(𝑚1 +𝑚𝑝)

202

𝐸𝑦 = sin(𝛾)

203

A.4. Ideal Sinusoidal Mechanism

The ideal sinusoidal mechanism is simply a simplified Scotch Yoke mechanism

𝜃𝑠𝑐 = 𝜃 + 𝜑

The moment generated around the driveshaft

∑𝑀 =𝐼𝑚1𝛼 = (𝐹12)𝑥𝑙1 sin(𝜃𝑠𝑐) + 𝑀01

Forces in the local x-direction

∑𝐹𝑥 = 0 = (𝐹01)𝑥 − (𝐹12)𝑥 − 𝑔𝑚1sin (𝛾)

Forces in the local y-direction

∑𝐹𝑦 = 0 = (𝐹01)𝑦 − 𝑔𝑚1cos (𝛾)

Piston

∑𝐹𝑥 = 𝛼𝑝𝑚𝑝 = (𝐹12)𝑥 + 𝐹𝑝 − 𝑔𝑚𝑝 sin(𝛾)

∑𝐹𝑦 = 0 = (𝐹3)𝑦 − 𝑔𝑚𝑝 cos(𝛾)

𝑥𝑝 = 𝑙1 cos(𝜃𝑠𝑐) + 𝐶

𝑣𝑝 = −𝑙1 sin(𝜃𝑠𝑐)𝜔𝑠𝑐

𝑎𝑝 = −𝑙1 cos(𝜃𝑠𝑐)𝜔𝑠𝑐
2 − 𝑙1 sin(𝜃𝑠𝑐)𝛼𝑠𝑐

Separating the root forces 𝐹01 and 𝑀0

(𝐹12)𝑥 = −𝑚𝑝𝑙1 cos(𝜃𝑠𝑐)𝜔𝑠𝑐
2 −𝑚𝑝𝑙1 sin(𝜃𝑠𝑐) 𝛼𝑠𝑐 + 𝑔𝑚𝑝 sin(𝛾) − 𝐹𝑝

(𝐹01)𝑥 = −𝑚𝑝𝑙1 cos(𝜃𝑠𝑐)𝜔𝑠𝑐
2 −𝑚𝑝𝑙1 sin(𝜃𝑠𝑐) 𝛼𝑠𝑐 + 𝑔𝑚𝑝 sin(𝛾) + 𝑔𝑚1 sin(𝛾) − 𝐹𝑝

(𝐹01)𝑦 = 𝑔𝑚1 cos(𝛾)

204

𝑀01 = 𝐼𝑚1𝛼𝑠𝑐 +𝑚𝑝𝑙1
2 cos(𝜃𝑠𝑐) sin(𝜃𝑠𝑐)𝜔𝑠𝑐

2 +𝑚𝑝𝑙1
2 sin2(𝜃𝑠𝑐) 𝛼𝑠𝑐 + 𝐹𝑝𝑙1 sin(𝜃𝑠𝑐)

− 𝑔𝑚𝑝𝑙1 sin(𝛾) sin(𝜃𝑠𝑐)

𝐴𝑥 = −cos(𝛾) (−𝑚𝑝𝑙1 sin(𝜃𝑠𝑐))

𝐵𝑥 = −cos(𝛾) (−𝑚𝑝𝑙1 cos(𝜃𝑠𝑐))

𝐺𝑥 = 0

𝐸𝑥 = −cos(𝛾) (−𝐹𝑝)

𝐴𝑦 = −sin(𝛾) (−𝑚𝑝𝑙1 sin(𝜃𝑠𝑐))

𝐵𝑦 = −sin(𝛾) (−𝑚𝑝𝑙1 cos(𝜃𝑠𝑐))

𝐺𝑦 = 𝑔(𝑚1 +𝑚𝑝)

𝐸𝑦 = −sin(𝛾) (−𝐹𝑝)

𝐴𝑀 = (𝐼𝑚1 +𝑚𝑝𝑙1
2 sin2(𝜃𝑠𝑐))

𝐵𝑀 = 𝑚𝑝𝑙1
2 cos(𝜃𝑠𝑐) sin(𝜃𝑠𝑐)

𝐺𝑀 = −𝑔𝑚𝑝𝑙1 sin(𝛾) sin(𝜃𝑠𝑐)

𝐸𝑀 = 𝐹𝑝𝑙1 sin(𝜃𝑠𝑐)

205

A.5. Custom Profile Mechanism

The following mathematics determines a generic representation of a custom profile mechanism.

The custom motion mechanism is simply a modified Scotch Yoke mechanism

𝜃′ = 𝜃 + 𝜑

Forces in the local x-direction

∑𝐹𝑥 = 𝑚𝑝𝑎𝑝 cos(𝛾) = −𝐹𝑥,𝐷𝑆 − 𝑔(𝑚1 +𝑚𝑝) sin(𝛾) + 𝐹𝑝 cos(𝛾)

𝐹𝑥,𝐷𝑆 = −𝑔(𝑚1 +𝑚𝑝) sin(𝛾) + (𝐹𝑝 −𝑚𝑝𝑎𝑝) cos(𝛾)

Forces in the local y-direction

∑𝐹𝑦 = 𝑚𝑝𝑎𝑝 sin(𝛾) = −𝐹𝑦,𝐷𝑆 − 𝑔(𝑚1 +𝑚𝑝) cos(𝛾) + 𝐹𝑝 sin(𝛾)

𝐹𝑦,𝐷𝑆 = −𝑔(𝑚1 +𝑚𝑝) cos(𝛾) + (𝐹𝑝 −𝑚𝑝𝑎𝑝) sin(𝛾)

Inertia of piston

𝐾𝐸 =
1

2
𝑚𝑝𝑣𝑝

2,
𝑑𝐾𝐸

𝑑𝑡
= 𝑚𝑝𝑣𝑝𝑎𝑝 = 𝜔𝑇𝑝

𝑇𝑝 =
𝑣𝑝

𝜔
𝑚𝑝𝑎𝑝

This torque is positive concerning the driveshaft when the acceleration is opposite to the

current velocity, as in kinetic energy is leaving the piston and being transmitted to the driveshaft.

When the velocity and acceleration have the same sign, this should be negative. Thus:

𝑇𝑝,𝐷𝑆 = −
𝑣𝑝

𝜔
𝑚𝑝𝑎𝑝

Work against forces

𝑑𝐸

𝑑𝑡
= (𝐹𝑝 − 𝑔 sin(𝛾)𝑚𝑝)𝑣𝑝 = 𝜔𝑇𝑓

𝑇𝑓 =
𝑣𝑝

𝜔
(𝐹𝑝 − 𝑔 sin(𝛾)𝑚𝑝)

206

This torque is positive when the force is in the same direction as the velocity, thus:

𝑇𝑓,𝐷𝑆 = −
𝑣𝑝

𝜔
(𝐹𝑝 − 𝑔 sin(𝛾)𝑚𝑝)

Work into rotating inertia

𝑑𝐸

𝑑𝑡
= 𝐼𝑚1𝛼

When acceleration is positive will reduce the torque sent to the driveshaft.

𝑇𝑚,𝐷𝑆 = −𝐼𝑚1𝛼

Moment around driveshaft

𝑀𝐷𝑆 = −𝐼𝑚1𝛼 −
𝑣𝑝

𝜔
𝑚𝑝𝑎𝑝 +

𝑣𝑝

𝜔
(𝐹𝑝 − 𝑔 sin(𝛾)𝑚𝑝)

The Piston Motion

𝑥𝑝 = 𝑥(𝜃)

𝑣𝑝 = 𝜔
𝑑𝑥

𝑑𝜃

𝑎𝑝 = 𝛼
𝑑𝑥

𝑑𝜃
+ 𝜔2

𝑑2𝑥

𝑑𝜃2

Separating the root forces 𝐹01

𝐹𝑥,𝐷𝑆 = −𝑔(𝑚1 +𝑚𝑝) sin(𝛾) + (𝐹𝑝 −𝑚𝑝𝑎𝑝) cos(𝛾)

𝐹𝑥,𝐷𝑆 = −𝑚𝑝 (𝛼
𝑑𝑥

𝑑𝜃
+ 𝜔2

𝑑2𝑥

𝑑𝜃2
) cos(𝛾) − 𝑔(𝑚1 +𝑚𝑝) sin(𝛾) + 𝐹𝑝 cos(𝛾)

𝐹𝑦,𝐷𝑆 = −𝑔(𝑚1 +𝑚𝑝) cos(𝛾) + (𝐹𝑝 −𝑚𝑝𝑎𝑝) sin(𝛾)

𝐹𝑦,𝐷𝑆 = −𝑚𝑝 (𝛼
𝑑𝑥

𝑑𝜃
+ 𝜔2

𝑑2𝑥

𝑑𝜃2
) sin(𝛾) − 𝑔(𝑚1 +𝑚𝑝) cos(𝛾) + 𝐹𝑝 sin(𝛾)

𝑀𝐷𝑆 = −𝐼𝑚1
𝛼 +

𝑑𝑥

𝑑𝜃
(𝐹𝑝 − 𝑔 sin(𝛾)𝑚𝑝 −𝑚𝑝 (𝛼

𝑑𝑥

𝑑𝜃
+ 𝜔2

𝑑2𝑥

𝑑𝜃2
))

207

𝐴𝑥 = −cos(𝛾) (𝑚𝑝

𝑑𝑥

𝑑𝜃
) (121)

𝐵𝑥 = −cos(𝛾) (𝑚𝑝

𝑑2𝑥

𝑑𝜃2
) (122)

𝐺𝑥 = 0 (123)

𝐸𝑥 = cos(𝛾) (𝐹𝑝) (124)

𝐴𝑦 = −sin(𝛾) (𝑚𝑝

𝑑𝑥

𝑑𝜃
) (125)

𝐵𝑦 = −sin(𝛾) (𝑚𝑝

𝑑2𝑥

𝑑𝜃2
) (126)

𝐺𝑦 = 𝑔(𝑚1 +𝑚𝑝) (127)

𝐸𝑦 = sin(𝛾) (𝐹𝑝) (128)

𝐴𝑀 = −𝐼𝑚1 −𝑚𝑝 (
𝑑𝑥

𝑑𝜃
)
2

 (129)

𝐵𝑀 = −𝑚𝑝

𝑑𝑥

𝑑𝜃

𝑑2𝑥

𝑑𝜃2
 (130)

𝐺𝑀 = −𝑔 sin(𝛾)𝑚𝑝

𝑑𝑥

𝑑𝜃
 (131)

𝐸𝑀 = 𝐹𝑝
𝑑𝑥

𝑑𝜃
 (132)

208

Appendix B. Property Correlations, Surface Area &

Resistance of Matrix Elements

Table 8.1: User inputs and correlations for various properties based on regenerator type.

Correlations from (Gedeon, SAGE users manual [35]).

 Regenerator Type

 Woven Screen Random Fiber Packed Sphere Stacked Foil

Inputs Porosity (𝛽)

Wire Diameter (𝑑𝑜)

Porosity (𝛽)

Wire Diameter (𝑑𝑜)

Porosity (𝛽)

Sphere Diameter (𝑑𝑜)

Gap Width (𝑙𝑔)

Thickness (𝑙𝑡)

Roughness (𝑙𝑟)

Hydraulic

Diameter (𝑑ℎ)

𝑑𝑜
1 − 𝛽

𝑑𝑜
1 − 𝛽

𝑑𝑜 . 𝛽

6(1 − 𝛽)
 2𝑙𝑔

Laminar

Friction Factor

(𝑁𝑓)

129

𝑁𝑅𝑒
+
2.91

𝑁𝑅𝑒
0.103

25.7𝑐 + 79.8

𝑁𝑅𝑒

+
0.146𝑐 + 3.76

𝑁𝑅𝑒
0.00283𝑐+0.0748

(
157

𝑁𝑅𝑒

+
5.15

𝑁𝑅𝑒
0.137)(

𝛽

0.39
)
3.48

96

𝑁𝑅𝑒

Laminar

Nusselt Number

(𝑁𝑁𝑢)

(1

+ 0.99𝑁𝑃𝑒
0.66)𝛽1.79

1 + 0.186𝑐𝑁𝑃𝑒
0.55 1 + 0.48𝑁𝑃𝑒

0.65 8.23

Laminar

Conduction

Enhancement

Factor (𝑁𝑘)

1 +
𝑁𝑃𝑒

0.66

2𝛽2.91
 1 + 𝑁𝑃𝑒

0.55 1 + 3𝑁𝑃𝑒
0.65 1

Turbulent

Friction Factor

(𝑁𝑓)
--- --- ---

0.121 (
𝑙𝑟
𝑑ℎ

+
68

𝑁𝑅𝑒
)
0.25

Turbulent

Nusselt Number

(𝑁𝑁𝑢)

--- --- --- 0.025𝑁𝑅𝑒
0.79. 𝑁𝑃𝑟

0.33

Turbulent

Conduction
--- --- --- 0.022𝑁𝑅𝑒

0.75. 𝑁𝑃𝑟

209

Enhancement

Factor (𝑁𝑘)

Extra

Equations:
𝑁𝑃𝑒 = 𝑁𝑅𝑒 . 𝑁𝑃𝑟 𝑐 =

𝛽

1 − 𝛽
 𝛽 =

𝑙𝑔

𝑙𝑔 + 𝑙𝑡

WOVEN SCREEN & RANDOM FIBER REGENERATORS

For a long cylindrical element

Surface Area = 2𝜋𝑟𝐿

Volume = πr2𝐿

Average Radius = ∫ 2𝜋𝑟2𝑑𝑟
𝑟
0

𝜋𝑟2
=

2

3
𝜋𝑟3

𝜋𝑟2
=
2

3
𝑟

Resistance from Surface to Average Radius =
ln(

𝑟
2
3
𝑟
)

2𝜋𝐿𝑘
=
ln(

3

2
)

2𝜋𝐿𝑘

Surface Area per unit Volume = (1 − 𝛽)
2

𝑟
= 4

(1−𝛽)

𝑑𝑤

Resistance times Area =
ln(

3

2
)𝑟

𝑘
=
ln(

3

2
)𝑑𝑤

2𝑘

PACKED SPHERE REGENERATORS

For spherical elements

Surface Area = 4𝜋𝑟2

Volume =
4

3
𝜋𝑟3

Average Radius =
∫ 4𝜋𝑟3𝑑𝑟
𝑟
0

4

3
𝜋𝑟3

=
4

4
𝜋𝑟4

4

3
𝜋𝑟3

=
3

4
𝑟

210

Resistance from Surface to Average Radius =
𝑟(1−

3

4
)

4𝜋𝑘 (
3

4
)𝑟2
=

1

12𝜋𝑘𝑟

Surface Area per unit Volume = (1 − 𝛽)
4𝜋𝑟2

4

3
𝜋𝑟3

= 6
(1−𝛽)

𝑑𝑠

Resistance times Area =
4𝜋𝑟2

12𝜋𝑘𝑟
=

𝑑𝑠

6𝑘

STACKED FOIL REGENERATORS

For Planar Elements

Surface Area = 2𝑑𝑥𝑑𝑦

Volume = 𝑑𝑥𝑑𝑦(𝑙𝑡 + 𝑙𝑔)

Average Radius =
1

4
𝑙𝑡

Resistance from Surface to Average Radius =
1

4
𝑙𝑡

𝑘2𝑑𝑥𝑑𝑦
=

𝑙𝑡

8𝑘𝑑𝑥𝑑𝑦

Surface Area per unit Volume =
2

𝑙𝑡+𝑙𝑔

Resistance times Area =
𝑙𝑡2𝑑𝑥𝑑𝑦

8𝑘𝑑𝑥𝑑𝑦
=
𝑙𝑡
4𝑘

211

Table 8.2: User inputs and correlations for various properties based on heat exchanger

type: Fin Enhanced Surface, Fin Connected Channels. Correlations from [35] unless

otherwise indicated.
 Heat Exchanger Type

 Fin Enhanced Surface

Fin Connected

Channels

(Rectangular)

Fin Connected Channels (Triangular)

Inputs

Fin Separation (𝑙𝑔)

Fin Thickness (𝑙𝑡ℎ)

Roughness (𝑙𝑟)
Surface to build off of

Gas space between source channels (𝑙𝑐,𝑔)

Source channel width (𝑙𝑐,𝑤)

Source channel wall thickness (𝑙𝑐,𝑤𝑡ℎ)

Surface roughness (𝑙𝑟)
Base Width / Fin Separation (𝑙𝑓,𝑔)

Fin Thickness (𝑙𝑡ℎ)

Porosity (𝛽)
𝑙𝑔

𝑙𝑔 + 𝑙𝑡ℎ

𝑙𝑓

𝑙𝑓 + 𝑙𝑐,𝑤

𝑙𝑓,𝑔

𝑙𝑓,𝑔 + 𝑙𝑡ℎ

𝑙𝑐,𝑔

𝑙𝑐,𝑔 + 𝑙𝑐,𝑤

𝑙𝑓,𝑔

𝑙𝑓,𝑔 + 𝑙𝑒𝑓𝑓

Hydraulic

Diameter (𝑑ℎ)

2𝑙𝑔

1 +
𝑙𝑔
𝑙𝑓

2𝑙𝑓,𝑔

1 +
𝑙𝑓,𝑔
𝑙𝑓

0.5𝑙𝑓,𝑔

1+√1+
1

tan2Φ

*

Laminar

Friction Factor

(𝑁𝑓)

−43.94𝛼3+123.2𝛼2−118.31𝛼+96

𝑁𝑅𝑒
*

−6.1181Φ2+8.8371Φ+49.433

𝑁𝑅𝑒
*

Laminar Nusselt

Number (𝑁𝑁𝑢)
8.23

2.66𝜃Φ5 − 12.19Φ4 + 21.63Φ3 −
19.9Φ2 + 8.92Φ + 0.956**

Lam. Cond.

Enhancement

Factor (𝑁𝑘)

1

Turbulent

Friction Factor

(𝑁𝑓)

(−0.0086𝑐3 + 0.0223𝑐2 − 0.0247𝑐 +

0.121) (
𝑙𝑟

𝑑ℎ
+

68

𝑁𝑅𝑒
)
0.25

*

(−0.0184𝜃2 + 0.0414𝜃 + 0.0847) (
𝑙𝑟

𝑑ℎ
+

68

𝑁𝑅𝑒
)
0.25

*

Turbulent

Nusselt Number

(𝑁𝑁𝑢)
0.025𝑁𝑅𝑒

0.79. 𝑁𝑃𝑟
0.33

(
𝑁𝑓

8
)𝑁𝑅𝑒.𝑁𝑃𝑟

1.07+12.7(𝑁𝑃𝑟

2
3 −1)√

𝑁𝑓

8

Turbulent

Conduction

Enhancement

Factor (𝑁𝑘)

0.022𝑁𝑅𝑒
0.75𝑁𝑃𝑟

Extra

Equations:

Depending on the

orientation of the fin,

Fin Length (𝑙𝑓) is

{

𝑥𝑜 − 𝑥𝑖
𝑜𝑟

min(𝑦𝑜𝜃 − 𝑦𝑖𝜃)

𝑐 = min(
𝑙𝑓

𝑙𝑔
,
𝑙𝑔

𝑙𝑓
)

𝑙𝑓 = 𝑙𝑐,𝑔 − 𝑙𝑡ℎ

𝑐 = min(
𝑙𝑓,𝑔

𝑙𝑓
,
𝑙𝑓

𝑙𝑓,𝑔
)

𝑙𝑓 = 𝑙𝑐,𝑔 − 𝑙𝑡ℎ

Φ = tan−1 (
0.5𝑙𝑓,𝑔

𝑙𝑓
)

𝑙𝑒𝑓𝑓 =
𝑙𝑡ℎ

cos (Φ)

*Polynomial Fit to Table Data of weights [71] multiplied onto equation for circular pipe [35]

**Constant Wall Temperature inflow and peripheral directions [72]

***Gnielinski correlation [73]

212

Table 8.3: User inputs and correlations for various properties based on heat exchanger

type: Tube and Plate Heat Exchangers.

 Continuously Finned

 Staggered – always turbulent

Inputs

Spacing Perpendicular to Flow (𝑙𝑝𝑒𝑟𝑝)

Spacing Parallel to Flow (𝑙𝑝𝑎𝑟𝑎)

Fin Thickness (𝑙𝑡ℎ)

Fin Separation (𝑙𝑔)

Tube Outer Diameter (𝑑𝑜)

Tube Inner Diameter (𝑑𝑖)

Porosity (𝛽) (1 −

𝜋
4 𝑑𝑜

2

𝑙𝑝𝑒𝑟𝑝. 𝑙𝑝𝑎𝑟𝑎
)(

𝑙𝑔

𝑙𝑔 + 𝑙𝑡ℎ
)

Hydraulic

Diameter

(𝑑ℎ)

4𝛽. 𝑙𝑝𝑒𝑟𝑝. 𝑙𝑝𝑎𝑟𝑎. 𝑙𝑡ℎ. 𝑙𝑔

𝜋. 𝑑𝑜 . 𝑙𝑔 + 2(𝑙𝑝𝑒𝑟𝑝. 𝑙𝑝𝑎𝑟𝑎 − 𝜋. 𝑑𝑜)

Friction

Factor (𝑁𝑓)
𝑐4
′ . 𝑁𝑅𝑒

−0.521 + 𝑐5
′ (

𝑑𝑜

𝑑ℎ
. 𝑁𝑅𝑒)

−0.18

*

Nusselt

Number

(𝑁𝑁𝑢)

If 𝑁𝑟 ≥ 4

0.14 (
𝑙𝑝𝑎𝑟𝑎

𝑙𝑝𝑒𝑟𝑝
)
0.502

(
𝑙𝑔

𝑑𝑜
)
0.031

𝑁𝑅𝑒
0.672. 𝑁𝑃𝑟

0.333*

Else

𝑐2. 𝑁𝑅𝑒
𝑐3 . 𝑁𝑃𝑟

0.333*

Conduction

Enhancement

Factor (𝑁𝑘)

1

Extra

Equations:

𝑁𝑟

=
total streamwise distance

𝑙𝑝𝑎𝑟𝑎

𝑐1 = 0.14 (
𝑙𝑝𝑎𝑟𝑎

𝑙𝑝𝑒𝑟𝑝
)

0.502

(
𝑙𝑔

𝑑𝑜
)

0.031

𝑐2 = 𝑐10.991 (2.24 (
4

𝑁𝑟
)
0.031

)

(−0.607(4−𝑁𝑟))

𝑐3 = 1 + (−0.092 ∗ 0.607(4 − 𝑁𝑟) − 0.328

𝑐4 =
𝑆𝑓

𝑆𝑡𝑢𝑏𝑒 + 𝑆𝑓

𝑐5 = (1 − 𝑐4)(1 − 𝛽𝑓)

𝑐4
′ = 2.032𝑐4 (

𝑙𝑝𝑎𝑟𝑎

𝑑𝑜
)

1.318

𝑐5
′ =

4𝑐5 [(
𝑙𝑝𝑒𝑟𝑝

𝑙𝑝𝑎𝑟𝑎
)
2

𝑙𝑝𝑒𝑟𝑝

𝑙𝑝𝑎𝑟𝑎
1] [

−0.108 0.730 −0.213
0.314 −1.296 0.561
−0.234 1.034 −0.747

] . [(
𝑙𝑝𝑎𝑟𝑎

𝑑𝑜
)
2 𝑙𝑝𝑎𝑟𝑎

𝑑𝑜
1]**

* [74]

** Combined formula of [74], with component representing pressure drop of bare staggered tube

banks derived from data of [75].

213

Table 8.4: User inputs and correlations for various properties based on heat exchanger

type: Individually Finned Tube Heat Exchangers.

 Individually Finned

 Staggered

Inputs Fin Length (𝑙𝑓)

Porosity (𝛽)
1 − 𝜋

(
𝑑𝑜
2 + 𝑙𝑓)

2

− (
𝑙𝑔

𝑙𝑡ℎ + 𝑙𝑔
) ((

𝑑𝑜
2 + 𝑙𝑓)

2

− (
𝑑𝑜
2)

2

)

𝑙𝑝𝑒𝑟𝑝. 𝑙𝑝𝑎𝑟𝑎

Hydraulic Diameter

(𝑑ℎ)

4𝛽. 𝑙𝑝𝑒𝑟𝑝. 𝑙𝑝𝑎𝑟𝑎. 𝑙𝑡ℎ. 𝑙𝑔

𝜋. 𝑑𝑜 . 𝑙𝑔 + 2𝜋 ((
𝑑𝑜
2 + 𝑙𝑓)

2

− (
𝑑𝑜
2)

2

) + 𝜋. 𝑙𝑓(𝑑𝑜 + 𝑙𝑓)

Laminar Friction

Factor (𝑁𝑓)
Assumed to be always turbulent

Laminar Nusselt

Number (𝑁𝑁𝑢)
Assumed to be always turbulent

Laminar

Conduction

Enhancement Factor

(𝑁𝑘)

1 + 0.5(0.5113−2.91(𝑁𝑅𝑒𝑁𝑃𝑟)
0.66)

Turbulent Friction

Factor (𝑁𝑓)

If 𝑙𝑓 𝑑𝑜⁄ < 0.09 (Low Finned Tubes)

4(1.748(
𝑙𝑓.𝑑𝑜

𝑙𝑔.𝑙𝑝𝑎𝑟𝑎
)
0.1738

(
𝑑𝑜

𝑙𝑝𝑒𝑟𝑝
)
0.599

)

𝑁𝑅𝑒
0.233 *

Else (High Finned Tubes)

4(9.465 (
𝑑𝑜
𝑙𝑝𝑒𝑟𝑝

)
0.927

(
𝑙𝑝𝑒𝑟𝑝

√𝑙𝑝𝑒𝑟𝑝2 + 𝑙𝑝𝑎𝑟𝑎2
)

0.515

)

𝑁𝑅𝑒
0.316 ∗∗

Turbulent Nusselt

Number (𝑁𝑁𝑢)

If 𝑙𝑓 𝑑𝑜⁄ < 0.09 (Low Finned Tubes)

0.255 (
2𝑙𝑓+𝑑𝑜

𝑙𝑔
)𝑁𝑅𝑒

0.7. 𝑁𝑃𝑟
0.333***

Else (High Finned Tubes)

0.134 (
𝑙𝑔

𝑙𝑓
)
0.2

(
𝑙𝑔

𝑙𝑡ℎ
)
0.11

𝑁𝑅𝑒
0.681. 𝑁𝑃𝑟

0.333**

Turbulent

Conduction

Enhancement Factor

(𝑁𝑘)

1

* Chai [76]

** Webb [74]

*** Ganguli & Yilmaz [77]

214

Table 8.5: User inputs and correlations for various properties based on heat exchanger

type: Bare Tube Banks (internal). Correlations from [35] unless otherwise indicated.

 Bare Tube Banks (internal)

 Staggered

Inputs

Tube Spacing (𝑙𝑡𝑢𝑏𝑒,𝑠) (Circle Packed Arrangement)

Tube Outer Diameter (𝑑𝑜)

Tube Inner Diameter (𝑑𝑖)

Porosity (𝛽)
𝜋. 𝑑𝑖

2

√3𝑙𝑡𝑢𝑏𝑒,𝑠
2

Hydraulic

Diameter (𝑑ℎ)
𝑑𝑖

Laminar

Friction

Factor (𝑁𝑓)

64

𝑁𝑅𝑒

Laminar

Nusselt

Number (𝑁𝑁𝑢)

6.0

Laminar

Conduction

Enhancement

Factor (𝑁𝑘)

1

Turbulent

Friction

Factor (𝑁𝑓)
 0.11 (

𝜖

𝑑ℎ
+

68

𝑁𝑅𝑒
)
0.25

Turbulent

Nusselt

Number (𝑁𝑁𝑢)
0.036 (

𝐿

𝑑ℎ
)
−0.055

𝑁𝑅𝑒
0.8. 𝑁𝑃𝑟

0.33

Turbulent

Conduction

Enhancement

Factor (𝑁𝑘)

0.022𝑁𝑅𝑒
0.75. 𝑁𝑃𝑟

215

Appendix C. EP-1 Geometry

AA

 3
1.

75

 3
1.

75

 3
1.

75

 304.00

 2
3.

22

 486.00

 6.35

 50.00

 252.68

 1
14

.3
0

 5
.9

5

 1
4.

03

 68.00

 155.04

 3
5.

00

 4
7.

22

 101.60

 344.56

 5
10

.8
3

B

C

CARBON STEEL

ABS PLASTIC RIGID POLYURETHANE

CARBON STEEL

ACRYLIC

ABS PLASTIC

INSULATOR, ACTUAL GEOMETRY PENETRATES TOP CAP

CARBON STEEL

HEATER:

COOLER

 1
.5

9
 1

.0
0

 1.00

 1
2.

00

 5.36

 14.47

 1
1.

00

 1.33

 8.86

DETAIL B

SCALE 2 : 1

PE (HIGH DENSITY)PE (HIGH DENSITY)

CARBON STEEL

NEOPRENE RUBBER

 1.34

 1
4.

65

 1.59

 1.59

 1
.6

0

DETAIL C

SCALE 2 : 1

HEATER: STAGGERED TUBE BANK
MATERIAL: COPPER
PERPENDICULAR SPACING: 0.014575 m (BETWEEN ADJACENT NEIGHBOURS)
PARALLEL SPACING: 0.00826 m (FROM ROW TO ROW)
FIN THICKNESS: 0.000506 m
FIN SEPARATION: 0.001306 m
FIN LENGTH: 0.003175 m
TUBE OUTER DIAMETER: 0.0064 m
TUBE INNER DIAMETER: 0.005511 m
SURFACE AREA REDUCTION: 0.5 (GIVEN THAT THIS IS AN APPROXIMATION

OF A STAGGERED TUBE HEAT EXCHANGER)
LENGTH: 0.08255 m

COOLER: SEE HEATER

REGENERATOR:
MATERIAL: ABS PLASTIC
GAP: 0.0015 m
THICKNESS: 0.000902 m
ROUGHNESS: 0.0003 m
LENGTH: 0.01465 m

DISPLACER PISTON:
STROKE: 0.115 m
CROSS-SECTIONAL AREA: 0.0490874 m^2
CONNECTING ROD / CRANK ARM LENGTH RATIO: 6

POWER PISTON:
STROKE: 0.09 m
CROSS-SECTIONAL AREA: 0.018878 m^2
CONNECTING ROD / CRANK ARM LENGTH RATIO: 2

A A

B B

C C

D D

E E

F F

G G

H H

J J

K K

L L

M M

N N

P P

R R

T T

24

24

23

23

22

22

21

21

20

20

19

19

18

18

17

17

16

16

15

15

14

14

13

13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

217

Appendix D. Motion Profile Mathematics for EP-1 Studies

For all elliptical profiles the following equations convert the number of lobes (𝑛) and the

Elliptical Factor (𝑒) and lobe phase (𝜙𝑙𝑜𝑏𝑒) into the resulting series of angles for input into the

attached slider crank.

𝐶 =
√1 + (𝑛2 − 1)(1 − 𝑒2) + 𝑒

𝑛(1 − 𝑒)

𝜃′ = atan(𝐶. 𝑡𝑎𝑛(𝜃 + 𝜙𝑜𝑓𝑓)) + 𝜙𝑙𝑜𝑏𝑒

For all of the following profiles the conversion of the translated angle is as follows. This

converts it into the distorted harmonic motion produced by slider crank mechanisms.

𝜃2
′ = asin (−

𝑙𝑐𝑟 sin(𝜃
′)

𝑙𝑐𝑜𝑛
)

𝑥 = 𝑙𝑐𝑜𝑛(cos(𝜃2
′) − 1) + 𝑙𝑐𝑟(cos(𝜃

′) + 1)

The final profile is shifted numerically post calculation.

Motion Number of

Lobes (𝑛)

Elliptical

Factor (𝑒)

Phase

Shift (𝜙𝑜𝑓𝑓)

Lobe

Phase (𝜙𝑙𝑜𝑏𝑒)

Sinusoidal 1 0 0 0

1/5 Elliptical

for Square

Wave

2 0.2 𝜋

2

𝜋

2

1/5 Elliptical

for Saw Wave
2 0.2 𝜋 0

Extreme

Square Wave
2 0.8 𝜋

2

𝜋

2

Extreme Saw

Wave

Due to the extreme necking that occurs with a highly elliptical set of gears set

into the saw wave configuration, a synthesized version was created, which was

originally seeded as a pure saw wave, followed by several iterations of

smoothing filter.

The Extreme Saw Wave is defined by a smoothed and normalized saw wave to avoid the

extreme necking that occurs when a saw wave is constructed from a set of highly elliptical gears.

The non-phase-shifted profiles are displayed below.

218

Figure D.1: Different motion profiles tested – using a connecting arm to crank arm ratio

of 6.

When the mechanism orientation is stated as downwards the profile will appear inverted as

well.

0.00

0.25

0.50

0.75

1.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00

N
o

n
d

im
en

si
o

n
al

 P
o

si
ti

o
n

 (
x)

Angular Position (rad)

Sinusoidal 1/5 Square Extreme Square

Extreme Saw 1/5 Saw

219

Appendix E. EP-1 Studies PV Diagrams

Included in the power curves produced for each mechanical arrangement, a series of simulations

were taken to line up with experiments conducted by Nicol-Seto [61]. These test cases and the

simulation-experiment percent error are as follows. The percent error is calculated by comparing

the area under the curve associated with the power piston, that is, the pressure measured at the

power piston, plotted against the volume of the power piston.

Test

Gearing (DP, PP) Speed (Hz) Exp.

Normalized

Cycle

Energy

MSPM:

Normalized

Cycle

Energy

Power

Piston

PV error

(%)

1

Sinusoidal

Sinusoidal

1.1055 11.01 8.21 25.4%

2 1.5257 11.26 8.27 26.6%

3 1.8735 11.57 7.83 32.3%

4 2.2606 12.01 8.13 32.3%

5

1/5 Elliptical for Square

Wave

Sinusoidal

0.582 10.21 8.14 20.3%

6 0.8818 10.65 8.21 22.9%

7 1.2407 10.89 8.24 24.3%

8 1.6444 11.43 7.46 34.7%

9
1/5 Elliptical for Square

Wave

1/5 Elliptical for Square

Wave

0.5558 11.45 7.79 32.0%

10 0.9051 12.24 7.80 36.3%

11 1.1992 12.54 7.83 37.6%

12 1.5825 13.05 7.43 43.1%

The following plots include the simulated as well as experimental PV diagrams for the 12 tests.

220

Test 1:

Test 2:

Test 3:

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM

Experiment

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM

Experiment

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*
)

Normalized Volume (V*)

MSPM

Experiment

221

Test 4:

Test 5:

Test 6:

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM

Experiment

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM

Experiment

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*
)

Normalized Volume (V*)

MSPM

Experiment

222

Test 7:

Test 8:

Test 9:

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM

Experiment

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM

Experiment

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*
)

Normalized Volume (V*)

MSPM

Experiment

223

Test 10:

Test 11:

Test 12:

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM

Experiment

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*)

Normalized Volume (V*)

MSPM

Experiment

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 P
re

ss
u

re
 (

P
*
)

Normalized Volume (V*)

MSPM

Experiment

224

Appendix F. Mesh Sensitivity

G.1. EPM-1 Model

A correctly performed mesh independency test should capture a series of tests in which the

model decays on a predictable, mono-directional rate towards the exact value (given the

assumptions made to construct the model). Sensitivity of the results on the mesh are plotted on

Figure G.1.

Figure G.1: Sensitivity of indicated cycle energy on Test Set 1 at 1 Hz

The amount of error between the highest mesh size and the mesh which was used for the

experiments is equal to 0.8%. The final order of convergence, p, is equal to 3.84. This is calculated

via the following formula:

𝑝 =
ln (

𝑦𝑁 − 𝑦𝑁−1
𝑦𝑁−1 − 𝑦𝑁−2

)

ln (
𝑥𝑁−1
𝑥𝑁

)
= 3.84

A value in the range of 3 would be expected, given that MSPM uses a 3rd order polynomial for

interpolation.

225

Appendix G. MATLAB CODE

The MATLAB code can found in this appendix or hosted on GITHUB.

G.1. GUI

226

Simulation Interface V5

The following code is the main GUI of the software, this is paired with the actual controls which

are stored as a .fig file. There are several main sections of this code:

1. Required Header Components

2. Insert, Select, Delete and Animate buttons, which all use the “GUI_ButtonDownFcn” under

different modes to provide different functionality.

3. Green Highlighting of active buttons and initialization of the modes is handled by ButtonCore

4. Save, Load Functionality

5. Show Option set of functions

6. Box & Recenter Zooms

7. Recording & Animation Options

8. Other Simulation Options

9. Run Options (Run & Run Test Set)

function varargout = SimulationInterfaceV5(varargin)

% SIMULATIONINTERFACEV5 MATLAB code for SimulationInterfaceV5.fig

% SIMULATIONINTERFACEV5, by itself, creates a new SIMULATIONINTERFACEV5 or raises the

existing

% singleton*.

%

% H = SIMULATIONINTERFACEV5 returns the handle to a new SIMULATIONINTERFACEV5 or the handle

to

% the existing singleton*.

%

% SIMULATIONINTERFACEV5('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in SIMULATIONINTERFACEV5.M with the given input arguments.

%

% SIMULATIONINTERFACEV5('Property','Value',...) creates a new SIMULATIONINTERFACEV5 or

raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before SimulationInterfaceV5_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to SimulationInterfaceV5_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help SimulationInterfaceV5

% Last Modified by GUIDE v2.5 16-Oct-2020 09:07:43

% Begin initialization code - DO NOT EDIT

227

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @SimulationInterfaceV5_OpeningFcn, ...

 'gui_OutputFcn', @SimulationInterfaceV5_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before SimulationInterfaceV5 is made visible.

function SimulationInterfaceV5_OpeningFcn(hObject, ~, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to SimulationInterfaceV5 (see VARARGIN)

% UIWAIT makes SimulationInterfaceV5 wait for user response (see UIRESUME)

% uiwait(handles.figure1);

%% Choose default command line output for SimulationInterfaceV5

handles.output = hObject;

%% Generate space for mouse events

handles.MODE = '';

handles.SelectCon = Connection.empty;

handles.IndexC = 1;

handles.SelectBod = Body();

handles.IndexB = 1;

handles.SelectGroup = Group.empty;

handles.IndexG = 1;

%% Set Initial Values for Display Options

handles.InterGroupDistance = 0.05;

handles.ClickTolerance = 0.1;

%% Generate Default Model

handles.Model = Model();

handles.Model.AxisReference = handles.GUI;

handles.corner_points = [];

handles.SimulationParameters = cell(0);

DistributeGroup(handles);

show_Model(handles);

%% Object Properties

handles.SData = SelectionListData();

handles.SData.Code = '';

handles.SData.ListObjs = ListObj.empty;

handles.DropDownMode = '';

updateSelectionList(handles);

%% Optimization Stuff

handles.OptimizationStudyIndex = 0;

%% Show Options

set(handles.showGroups,'Value',handles.Model.showGroups);

set(handles.showBodies,'Value',handles.Model.showBodies);

set(handles.showConnections,'Value',handles.Model.showConnections);

set(handles.showLeaks,'Value',handles.Model.showLeaks);

set(handles.showBridges,'Value',handles.Model.showBridges);

set(handles.showInterConnections,'Value',handles.Model.showInterConnections);

set(handles.showEnvironmentConnections,'Value',handles.Model.showEnvironmentConnections);

228

set(handles.showNodes,'Value',handles.Model.showNodes);

set(handles.showSensors,'Value',handles.Model.showSensors);

set(handles.showRelations,'Value',handles.Model.showRelations);

set(handles.RelationMode,'String','On')

handles.Model.RelationOn = true;

%% Update handles structure

guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.

function varargout = SimulationInterfaceV5_OutputFcn(hObject, ~, handles) %#ok<INUSL>

% Get default command line output from handles structure

varargout{1} = handles.output;

%% General button codes

function GUI_ButtonDownFcn(hObject, ~, h)

C = get(hObject,'Currentpoint');

C = C(1,1:2);

if isempty(h.Model.ActiveGroup)

 % Select the group based on where the user clicked

 h.Model.FindGroup(C);

end

switch h.MODE

 case 'InsertBody'

 % Select 4 connections

 switch get(gcf,'SelectionType')

 case 'normal'

 L = true;

 case 'alt'

 L = false;

 case 'extend'

 L = false;

 otherwise

 L = true;

 end

 found = false;

 %% Get round specific information

 switch h.IndexC

 case 1

 DIR = enumOrient.Vertical;

 prompt = 'New Body Inner Radius 1: ';

 OFFSET = 0;

 case 2

 OFFSET = h.SelectCon(1).x;

 if h.SelectCon(1).Orient == enumOrient.Vertical

 DIR = enumOrient.Vertical;

 prompt = 'New Body Radial Thickness: ';

 else

 DIR = enumOrient.Horizontal;

 prompt = 'New Body Vertical Thickness: ';

 end

 case 3

 OFFSET = 0;

 if h.SelectCon(2).Orient == enumOrient.Vertical

 DIR = enumOrient.Horizontal;

 prompt = 'New Body Lower Vertical Position: ';

 else

 DIR = enumOrient.Vertical;

 prompt = 'New Body Inner Radius: ';

 end

 case 4

 OFFSET = h.SelectCon(3).x;

 if h.SelectCon(2).Orient == enumOrient.Vertical

 DIR = enumOrient.Horizontal;

 prompt = 'New Body Thickness: ';

 else

 DIR = enumOrient.Vertical;

 prompt = 'New Body Radial Thickness: ';

 end

 otherwise % We are done here

 found = true;

229

 end

 %% Find connection at click

 if L && found == false % Left Click

 if h.IndexC == 1

 h.SelectCon(h.IndexC) = ...

 h.Model.ActiveGroup.FindConnection(C);

 found = true;

 fprintf(['Selected Connection: ' ...

 h.SelectCon(h.IndexC).name '.\n']);

 else

 Con = h.Model.ActiveGroup.FindConnection(...

 C,DIR,h.SelectCon(h.IndexC-1));

 if ~isempty(Con)

 h.SelectCon(h.IndexC) = Con;

 fprintf(['Selected Connection: ' ...

 h.SelectCon(h.IndexC).name '.\n']);

 found = true;

 else

 found = false;

 end

 end

 end

 %% Get user Input

 if found == false

 % Get User Radius Submission

 DIM = '';

 while ~isnumeric(DIM)

 answer = inputdlg(prompt,'Specify Dimension Window');

 if ~isempty(answer)

 DIM = str2double(answer{1});

 else

 return;

 end

 end

 % If this does not match any Group Connection then CreateNew

 found = false;

 for iCon = h.Model.ActiveGroup.Connections

 if iCon.Orient == DIR && iCon.x == DIM+OFFSET

 h.SelectCon(h.IndexC) = iCon;

 found = true;

 end

 end

 if ~found

 h.SelectCon(h.IndexC) = Connection(DIM+OFFSET,DIR,h.Model.ActiveGroup);

 end

 end

 %% Iterate or finish up

 if h.IndexC == 4

 % Define the body

 matl = [];

 show_Model(h);

 while isempty(matl)

 [matl, tf] = listdlg(...

 'PromptString','Select a material type for this new body:',...

 'SelectionMode','single',...

 'ListString',Material.Source);

 end

 if tf

 newBody = Body(...

 h.Model.ActiveGroup,...

 h.SelectCon,...

 Material(Material.Source{matl}));

% if handles.Model.ActiveGroup.isOverlaping(newBody)

% fprintf('XXX New Body overlaps, creation cancelled XXX\n');

% handles.Model.clearHighLighting();

% else

 h.Model.ActiveGroup.addBody(newBody);

% end

230

 else

 fprintf('XXX You must select a material, creation cancelled XXX\n');

 h.Model.clearHighLighting();

 end

 h.IndexC = 1;

 else

 h.Model.HighLight(h.SelectCon(1:h.IndexC));

 h.IndexC = h.IndexC + 1;

 end

 case 'InsertGroup'

 % Will simply define a vertical Group at the next slot

 % Determine where the user clicked

 C = get(gca,'Currentpoint'); C = C(1,1:2);

 h.Model.addGroup(Group(h.Model,Position(C(1),0,pi/2),[]));

 h.Model.distributeGroup(h.InterGroupDistance);

 case 'InsertBridge'

 % Select 2 horizontal connections and 2 bodies

 if h.IndexC == 1

 if h.IndexB == 1

 % Picking the first Connection

 if isempty(h.Model.ActiveGroup)

 ChangeGroup_Callback(hObject, [], h);

 end

 Con = h.Model.ActiveGroup.FindConnection(C);

 if ~isempty(Con)

 h.SelectCon(h.IndexC) = Con;

 h.Model.HighLight(Con);

 h.IndexC = 2;

 set(h.message,'String','[click] Select the Foundation Body');

 end

 end

 elseif h.IndexC == 2

 if h.IndexB == 1

 % Picking the first Body

 Bod = h.SelectCon(1).findConnectedBody(C);

 if ~isempty(Bod)

 h.SelectBody(h.IndexB) = Bod;

 h.Model.HighLight(Bod);

 h.IndexB = 2;

 set(h.message,'String','[click] Select the Connection for the other body (the

Body that may shift)');

 end

 else

 % Picking the second Connection

 ChangeGroup_Callback(hObject, [], h);

 Con = h.Model.ActiveGroup.FindConnection(C);

 if ~isempty(Con)

 h.SelectCon(h.IndexC) = Con;

 h.Model.HighLight(Con);

 h.IndexC = 3;

 set(h.message,'String','[click] Select the associated body');

 end

 end

 else

 if h.IndexB == 2

 % Picking the second Body

 Bod = h.SelectCon(2).findConnectedBody(C);

 if ~isempty(Bod)

 % Finish and Create

 if h.SelectCon(1).Orient == h.SelectCon(2).Orient

 if h.SelectCon(1).Orient == enumOrient.Vertical

 prompt = 'Select the height adjustment for body 2 as it is placed

around body 1';

 [~,~,defaultval,~] = h.SelectBody(1).limits(enumOrient.Vertical);

 else

 prompt = 'Select the radial offset distance';

 defaultval = 0;

 end

 else

 prompt = 'Select the vertical center offset for the horizontal face to be

up the vertical face';

231

 if h.SelectCon(1).Orient == enumOrient.Vertical

 [~,~,defaultval,~] = h.SelectBody(1).limits(enumOrient.Vertical);

 else

 [~,~,defaultval,~] = h.SelectBody(2).limits(enumOrient.Vertical);

 end

 end

 x = inputdlg(prompt,'Specify Bridge Offset',[1 35],{num2str(defaultval)});

 % Define the Bridge

 if ~isempty(x)

 h.SelectBody(h.IndexB) = Bod;

 h.Model.HighLight(Bod);

 h.Model.addBridge(Bridge(...

 h.SelectBody(1),h.SelectBody(2),...

 h.SelectCon(1),h.SelectCon(2),str2double(x{1})));

 h.IndexC = 1;

 h.IndexB = 1;

 set(h.message,'String','---');

 end

 end

 end

 end

 case 'InsertLeakConnection'

 % Select 2 horizontal connections and 2 bodies/Environments

 case 'InsertSensor'

 % Select a group

 C = C(1,1:2);

 % Select a body

 [~, objects] = h.Model.findNearest(C,h.ClickTolerance);

 if ~isempty(objects)

 for obj = objects

 if isa(obj{1},'Body')

 h.Model.HighLight(obj{1});

 h.Model.addSensor(Sensor(h.Model,obj{1}));

 end

 end

 end

 case 'InsertPVoutput'

 % Find, within a radius of confidence, the nearest Body

 C = C(1,1:2);

 [~, objects] = h.Model.findNearest(C,h.ClickTolerance);

 if ~isempty(objects)

 for obj = objects

 if isa(obj{1},'Body')

 if obj{1}.matl.Phase == enumMaterial.Gas

 h.Model.addPVoutput(PVoutput(obj{1}));

 set(h.message,'String',['PVoutput added to Body: ' obj{1}.name]);

 else

 set(h.message,'String','Must select a Gas Body');

 end

 end

 end

 end

 case 'InsertNonConnection'

 % Select 2 horizontal connections and 2 bodies

 Bod = Body.empty;

 if h.IndexB == 1

 % Picking the first Body

 [~, objects] = h.Model.findNearest(C,h.ClickTolerance);

 for obj = objects; if isa(obj{1},'Body'); Bod = obj{1}; break; end; end

 if ~isempty(Bod)

 h.SelectBody(h.IndexB) = Bod;

 h.Model.HighLight(Bod);

 h.IndexB = 2;

 set(h.message,'String','[click] Select the second body, or click in open space to

select the environment');

 end

 elseif h.IndexB == 2

 % Picking the first Body

 [~, objects] = h.Model.findNearest(C,h.ClickTolerance);

 for obj = objects; if isa(obj{1},'Body'); Bod = obj{1}; break; end; end

 if Bod ~= h.SelectBody(1)

232

 if ~isempty(Bod)

 h.SelectBody(h.IndexB) = Bod;

 h.Model.HighLight(Bod);

 set(h.message,'String','---');

 h.Model.addNonConnection(...

 NonConnection(h.SelectBody(1),h.SelectBody(2)));

 end

 return;

 end

 % No object was selected, select the environment instead

 set(h.message,'String','---');

 h.Model.addNonConnection(...

 NonConnection(h.SelectBody(1),h.Model.Surroundings));

 end

 case 'InsertCustomMinorLoss'

 % Find, within a radius of confidence, the nearest body

 C = C(1,1:2);

 [~, objects] = h.Model.findNearest(C,h.ClickTolerance);

 if ~isempty(objects)

 for obj = objects

 if isa(obj,'Body')

 h.SelectBody(h.IndexB) = obj;

 if (h.IndexB == 2)

 % Finalize Custom Minor Loss

 h.IndexB = 1;

 h.Model.AddCustomMinorLoss(...

 CustomMinorLoss(...

 h.SelectBody(1),...

 h.SelectBody(2)));

 end

 h.IndexB = 2;

 end

 end

 end

 case 'Select'

 % Find, within a radius of confidence, the nearest...

 % Body, Group, Connection, Bridge and Leak Connection

 C = C(1,1:2);

 [names, objects] = h.Model.findNearest(C,h.ClickTolerance);

 if ~isempty(names)

 if length(names) > 1

 [index,tf] = listdlg(...

 'PromptString','Which Object did you select?',...

 'ListString',names,...

 'SelectionMode','single',...

 'ListSize',[400 100]);

 else

 index = 1;

 tf = true;

 end

 if tf

 h.Model.switchHighLighting(objects{index});

 end

 end

 case 'MultiSelect'

 % Find, within a radius of confidence, the nearest...

 % Body, Group, Connection, Bridge and Leak Connection

 C = C(1,1:2);

 [names, objects] = h.Model.findNearest(C,h.ClickTolerance);

 if ~isempty(names)

 if length(names) > 1

 [index,tf] = listdlg(...

 'PromptString','Which Object did you select?',...

 'ListString',names,...

 'SelectionMode','single',...

 'ListSize',[400 100]);

 else

 index = 1;

 tf = true;

 end

 if tf

233

 h.Model.HighLight(objects{index});

 end

 end

 case 'InsertRelation'

 % Find, within a radius of confidence, the nearest connection

 C = C(1,1:2);

 [~, objects] = h.Model.findNearest(C,h.ClickTolerance);

 if ~isempty(objects)

 for objcll = objects

 obj = objcll{1};

 if isa(obj,'Connection')

 if h.IndexC == 1 || ...

 (obj.Orient == h.SelectCon(1).Orient && ...

 obj.Group == h.SelectCon(1).Group)

 h.SelectCon(h.IndexC) = obj;

 if (h.IndexC == 2)

 % Finalize the new relation

 % Ask the user about the type

 names = {

 'Constant Offset', ...

 'Cross-Section Maintaining', ...

 'Zero x Based Scale', ...

 'Smallest x Based Scale', ...

 'Width Set'};

 if obj.Orient == enumOrient.Horizontal

 names{end+1} = 'Defines Stroke Length';

 names{end+1} = 'Defines Piston Length';

 end

 for RMan = obj.Group.RelationManagers

 if RMan.Orient == obj.Orient; break; end

 end

 if ~isempty(RMan)

 [Type, tf] = listdlg(...

 'PromptString','What type of relationship?',...

 'ListString',names,...

 'SelectionMode','single',...

 'ListSize',[400 100]);

 switch names{Type}

 case 'Constant Offset'

 EnumType = enumRelation.Constant;

 case 'Cross-Section Maintaining'

 EnumType = enumRelation.AreaConstant;

 case 'Zero x Based Scale'

 EnumType = enumRelation.Scaled;

 case 'Smallest x Based Scale'

 EnumType = enumRelation.LowestScaled;

 case 'Width Set'

 EnumType = enumRelation.Width;

 case 'Defines Stroke Length'

 EnumType = enumRelation.Stroke;

 case 'Defines Piston Length'

 EnumType = enumRelation.Piston;

 end

 if tf

 Label = RMan.getLabel(EnumType, ...

 h.SelectCon(1), h.SelectCon(2));

 if isempty(Label)

 Label = getProperName([names{Type} ' Relation']);

 end

 if isempty(Label); return; end

 if EnumType == enumRelation.Stroke || ...

 EnumType == enumRelation.Piston

 % Ask which mechanism?

 objs = h.Model.Converters;

 mecs = cell(0);

 for index = length(objs):-1:1

 mecs{index} = objs(index).name;

 end

 index = listdlg(...

 'ListString',mecs,...

 'SelectionMode','single');

234

 if isempty(index)

 break;

 else

 Mech = objs(index).Frames(1);

 end

 end

 switch EnumType

 case {enumRelation.Constant, ...

 enumRelation.AreaConstant, ...

 enumRelation.Scaled, ...

 enumRelation.LowestScaled, ...

 enumRelation.Width}

 success = RMan.addRelation(...

 Label, ...

 EnumType, ...

 h.SelectCon(1), ...

 h.SelectCon(2));

 case {enumRelation.Stroke, ...

 enumRelation.Piston}

 % Ask which mechanism?

 success = RMan.addRelation(...

 Label, ...

 EnumType, ...

 h.SelectCon(1), ...

 h.SelectCon(2), ...

 Mech);

 otherwise

 msgbox(['Selected relation type' ...

 ' is not implemented']);

 h.IndexC = 1;

 break;

 end

 if ~success

 msgbox(['Relationship was not ' ...

 'added successfully']);

 end

 h.IndexC = 1;

 end

 end

 h.IndexC = 1;

 end

 h.IndexC = 2;

 else

 msgbox(['The two connections must have the ' ...

 'same orientation.']);

 end

 end

 end

 end

 otherwise

end

show_Model(h);

hP = pan(h.output);

hP.ModeHandle.Blocking = false;

hP.Enable = 'off';

updateSelectionList(h);

guidata(hObject,h);

drawnow(); pause(0.05);

function objs = getButtonObjs(handles)

 objs = [...

 handles.InsertBody ...

 handles.InsertGroup ...

 handles.InsertBridge ...

 handles.InsertLeakConnection ...

 handles.InsertSensor ...

 handles.InsertPVoutput ...

 handles.NonConnection ...

 handles.CustomMinorLoss ...

 handles.InsertRelation ...

 handles.SelectObjects ...

235

 handles.MultiSelectObjects];

function ButtonCore(hObject,Mode,handles,message)

 inactivated = hObject.UserData(1) == 0;

 handles = clearButtons(handles);

 if inactivated

 handles.MODE = Mode;

 show_Model(handles);

 set(handles.message,'String',message);

 hObject.BackgroundColor = [0.33 0.67 0.33];

 hObject.UserData(1) = 1;

 else

 end

 show_Model(handles);

 updateSelectionList(handles);

 guidata(hObject, handles);

 drawnow(); pause(0.05);

function handles = clearButtons(handles)

 hObjects = getButtonObjs(handles);

 handles.Model.clearHighLighting();

 set(handles.message,'String','---');

 handles.MODE = '';

 for obj = hObjects

 if obj.UserData(1) == 1

 obj.UserData(1) = 0;

 obj.BackgroundColor = [0.94 0.94 0.94];

 break;

 end

 end

 handles.IndexC = 1;

 handles.IndexG = 1;

 handles.IndexB = 1;

 handles.SelectCon = Connection.empty;

 handles.SelectBody = Body.empty;

%% Individual button codes

function InsertBody_CreateFcn(hObject, ~, ~)

hObject.UserData(1) = 0;

function InsertBody_Callback(hObject, ~, handles)

ButtonCore(hObject,'InsertBody',handles,{'[left click] To select a connection.','[right click] to

prescribe a dimension.'});

function InsertGroup_CreateFcn(hObject, ~, ~)

hObject.UserData(1) = 0;

function InsertGroup_Callback(hObject, ~, handles)

ButtonCore(hObject,'InsertGroup',handles,'[click] To select a position to place a new group.');

function InsertBridge_CreateFcn(hObject, ~, ~)

hObject.UserData(1) = 0;

function InsertBridge_Callback(hObject, ~, handles)

ButtonCore(hObject,'InsertBridge',handles,'[click] To select the connection associated with the

foundation body');

function InsertLeakConnection_CreateFcn(hObject, ~, ~)

hObject.UserData(1) = 0;

function InsertLeakConnection_Callback(hObject, ~, handles)

ButtonCore(hObject,'InsertLeakConnection',handles,'[click] To select Connection 1');

function SelectObjects_CreateFcn(hObject, ~, ~)

hObject.UserData(1) = 0;

function SelectObjects_Callback(hObject, ~, handles)

ButtonCore(hObject,'Select',handles,'[click] To select a single object');

function MultiSelectObjects_CreateFcn(hObject, ~, ~)

hObject.UserData(1) = 0;

function MultiSelectObjects_Callback(hObject, ~, handles)

ButtonCore(hObject,'MultiSelect',handles,'[click] To add to select objects');

function InsertSensor_CreateFcn(hObject, ~, ~)

236

hObject.UserData(1) = 0;

function InsertSensor_Callback(hObject,~,handles)

ButtonCore(hObject,'InsertSensor',handles,'[click] To select a body');

function InsertPVoutput_CreateFcn(hObject, ~, ~)

hObject.UserData(1) = 0;

function InsertPVoutput_Callback(hObject, ~, handles)

ButtonCore(hObject,'InsertPVoutput',handles,'[click] To select a body');

function CustomMinorLoss_CreateFcn(hObject, ~, ~)

hObject.UserData(1) = 0;

function CustomMinorLoss_Callback(hObject, ~, handles)

ButtonCore(hObject,'InsertCustomMinorLoss',handles,'[click] To select a body');

function NonConnection_CreateFcn(hObject, ~, ~)

hObject.UserData(1) = 0;

function NonConnection_Callback(hObject, ~, handles)

ButtonCore(hObject,'InsertNonConnection',handles,'[click] To select a body');

function InsertRelation_CreateFcn(hObject, ~, ~)

hObject.UserData(1) = 0;

function InsertRelation_Callback(hObject, ~, handles)

ButtonCore(hObject,'InsertRelation',handles,'[click] To select a connection');

function ChangeGroup_Callback(hObject, ~, handles)

[x,y] = ginput(1);

Pnt = [x y];

backupMessage = get(handles.message,'String');

set(handles.message,'String','[click] Select A group');

handles.Model.switchHighLightedGroup(...

 handles.Model.findNearestGroup(Pnt,handles.ClickTolerance^2));

set(handles.message,'String',backupMessage);

guidata(hObject,handles);

drawnow(); pause(0.05);

%% Selection Properties

function updateSelectionList(h,index)

switch h.DropDownMode

 case ''

 if nargin == 2

 if index > length(h.SData.ListObjs) || index < 1

 fprintf('Index Exceeds Matrix Dimensions: This may be caused by severe lag');

 return;

 else

 if strcmp(h.SData.ListObjs(index).MODE,'Deleteobj')

 % Close all

 Code = '';

 else

 Code = MakeCode(h.SData.ListObjs,index);

 end

 end

 else

 Code = MakeCode(h.SData.ListObjs);

 Code = ResetCode(Code);

 end

 n = 1 + length(h.Model.Selection);

 SelectedObjs(n,1) = ListObj();

 for Obj = [h.Model.Selection {h.Model}]

 SelectedObjs(n) = ListObj('Expandobj',0,[],Obj{1});

 n = n - 1;

 end

 h.SData.ListObjs = ReadCode(Code, SelectedObjs);

 ListString = cell(length(h.SData.ListObjs),1);

 for i = 1:length(h.SData.ListObjs)

 ListString{i} = h.SData.ListObjs(i).getString();

 end

 if nargin < 2; index = get(h.SelectionProps,'Value'); end

 set(h.SelectionProps,'Value',max([1 min([index length(ListString)])]));

 set(h.SelectionProps,'String',ListString);

 case 'Optimizer'

 h.DropDownMode = '';

237

 if h.OptimizationStudyIndex == 0

 % Create a new study

 h.Model.OptimizationSchemes(end+1) = ...

 OptimizationScheme(h.Model);

 h.OptimizationStudyIndex = ...

 h.Model.OptimizationSchemes(end).ID;

 end

 % This appends the object and field to the optimization study

 if h.OptimizationStudyIndex > 0

 for scheme = h.Model.OptimizationSchemes

 if h.OptimizationStudyIndex == scheme.ID

 break;

 end

 end

 if scheme.ID == h.OptimizationStudyIndex

 if nargin > 1

 obj = h.SData.ListObjs(index).Parent;

 child = h.SData.ListObjs(index).Child;

 if isa(obj,'Connection')

 scheme.AddObj(obj,'x');

 elseif isa(child,'LinRotMechanism')

 scheme.AddObj(child,'Stroke');

 elseif isa(child,'Connection')

 scheme.AddObj(child,'x');

 end

 end

 end

 end

end

function SelectionProps_Callback(hObject, ~, h)

% The user has clicked on the SelectionProp's listbox

index = get(hObject,'Value');

if index <= length(h.SData.ListObjs)

 h.SData.ListObjs(index).on_click();

end

updateSelectionList(h,index);

function SelectionProps_CreateFcn(hObject, ~, ~)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

%% Optimization

function SwitchDropdownMode_Callback(hObject, ~, h)

% Interfaces with the drop down menu when selecting parameters

if strcmp(h.DropDownMode,'')

 h.DropDownMode = 'Optimizer';

 set(h.DropDownModeUI,'String',h.DropDownMode);

else

 h.DropDownMode = '';

 set(h.DropDownModeUI,'String',h.DropDownMode);

end

guidata(hObject,h);

% --- Executes on button press in SwitchOptimizationStudy.

function SwitchOptimizationStudy_Callback(hObject, ~, h)

% Find the optimization scheme after the current one

% Find the current one

if h.OptimizationStudyIndex == 0

 if ~isempty(h.Model.OptimizationSchemes)

 h.OptimizationStudyIndex = h.Model.OptimizationSchemes(1).ID;

 set(h.OptStudyName,'String',h.Model.OptimizationSchemes(1).name);

 else

 set(h.OptStudyName,'String','Create New Study');

 end

 guidata(hObject,h);

 return;

end

for i = 1:length(h.Model.OptimizationSchemes)

 if h.Model.OptimizationSchemes(i).ID == ...

238

 h.OptimizationStudyIndex

 set(h.OptStudyName,'String',h.Model.OptimizationSchemes(i).name);

 end

end

i = i + 1;

if i > length(h.Model.OptimizationSchemes)

 h.OptimizationStudyIndex = 0;

 set(h.OptStudyName,'String','Create New Study');

else

 h.OptimizationStudyIndex = h.Model.OptimizationSchemes(i).ID;

end

guidata(hObject,h);

function RunStudy_Callback(~,~,h)

if h.OptimizationStudyIndex ~= 0

 found = false;

 for i = 1:length(h.Model.OptimizationSchemes)

 if h.Model.OptimizationSchemes(i).ID == h.OptimizationStudyIndex

 found = true;

 break;

 end

 end

 if found

 History = GradientAscent(h.Model,h.OptimizationStudyIndex);

 if ~isempty(History)

 save([h.Model.OptimizationSchemes(i).name ' - History','History']);

 end

 end

end

%% Visual Appearance

function DistributeGroup(handles)

% Look at handles.Model.Bridges

% Simultaneously minimize the distance that things move, as well as the

% bridge horizontal distance

handles.Model.distributeGroup(handles.InterGroupDistance);

show_Model(handles);

function GUI_CreateFcn(hObject,~,handles) %#ok<INUSD>

%% Create a figure that has zoom & pan capabilities

set(hObject,'NextPlot','add');

% pan off;

% mouse_figure(gcf);

%% Dynamics

function CreateMechanism_Callback(hObject, eventdata, handles) %#ok<INUSL>

% Open up user form asking for

% ... Type from Source (mechanism type)

% Stroke (m) (double)

% Weight (kg) (double)

% Phases (rad) (double)

% TiltAngle (rad) (double)

% MaximumCrankArmAngle (rad) (double)

% CustomProfile Fcn

Data = Holder({});

[h] = CreateMechanismInterface(Data);

uiwait(h);

handles.Model.addConverter(LinRotMechanism(handles.Model,...

 Data.vars{1},Data.vars{2}));

% --- Executes on button press in Animate.

function Animate_Callback(hObject, ~, handles)

% Temporarily turn off connections, ghosts, groups... etc.

if handles.Model.isAnimating

 hObject.BackgroundColor = [0.94 0.94 0.94];

 handles.Model.isAnimating = false;

 if handles.ViewOptionBackup(1); showConnections_Callback(handles.showConnections, 0,

handles); end

 if handles.ViewOptionBackup(2); showBodyGhosts_Callback(handles.showBodyGhosts, 0, handles);

end

239

 show_Model(handles);

else

 hObject.BackgroundColor = [0.33 0.67 0.33];

 handles.ViewOptionBackup = false(2,1);

 handles.ViewOptionBackup(1) = handles.Model.showConnections;

 handles.ViewOptionBackup(2) = handles.Model.showBodyGhosts;

 if handles.ViewOptionBackup(1); showConnections_Callback(handles.showConnections, 0,

handles); end

 if handles.ViewOptionBackup(2); showBodyGhosts_Callback(handles.showBodyGhosts, 0, handles);

end

 handles.Model.isAnimating = true;

 guidata(hObject,handles);

 drawnow(); pause(0.05);

 handles.Model.Animate(); % ANIMATE IT!

 if handles.Model.isAnimating

 hObject.BackgroundColor = [0.94 0.94 0.94];

 handles.Model.isAnimating = false;

 if handles.ViewOptionBackup(1); showConnections_Callback(handles.showConnections, 0,

handles); end

 if handles.ViewOptionBackup(2); showBodyGhosts_Callback(handles.showBodyGhosts, 0,

handles); end

 show_Model(handles);

 end

end

% --- Executes on button press in Delete.

function Delete_Callback(~, ~, handles)

% Delete Selection

if length(handles.Model.Selection) == 1

 if handles.Model.ActiveGroup == handles.Model.Selection{1}

 handles.Model.ActiveGroup(:) = [];

 handles.Model.Selection{1}.deReference();

 handles.Model.Selection = cell(0);

 return;

 end

end

for obj = handles.Model.Selection

 if ~isa(obj{1},'Group')

 obj{1}.deReference();

 end

end

handles.Model.Selection = cell(0);

% For all the selected items

% --- Executes on button press in Revive.

function Revive_Callback(hObject, eventdata, handles) %#ok<INUSD>

% Open up the recycle bin, Full of Bodies and Special Components that

% have handles and dependencies

%% Save Functionality

function save_Callback(~, ~, handles)

saveModel(false,handles);

function saveas_Callback(~,~,handles)

saveModel(true,handles);

function saveModel(savenew,h)

% The Model name is by default used, if the model name is blank, then the

% userform asks for a name.

if isempty(h.Model.name) || savenew

 notdone = true;

 while notdone

 if ~isempty(h.Model.name)

 name = inputdlg('Save as...','Save Model',1,{h.Model.name});

 else

 name = inputdlg('Save as...','Save Model');

 end

 if isempty(name); return; else; name = name{1}; end

 if ~isempty(regexp(name,'[/*:?"<>|]','once'))

 fprintf(['XXX Invalid File name, a file name cannot contain ' ...

 'the characters [/*:?"<>|] XXX\n']);

 else

240

 if all(ismember(name(1),'0123456789'))

 fprintf(['XXX Invalid File name, a file name cannot start ' ...

 'with a number. XXX\n']);

 else

 notdone = false;

 end

 end

 end

 if length(name) > 4 && strcmp(name(end-3:end),'.mat')

 name = name(1:end-4);

 end

 ogname = name;

else

 name = h.Model.name;

 ogname = name;

end

% If the name is already an existing file, it asks to overwrite, if false,

% then asks for a new name, suggesting a variation.

SavedModels = dir('Saved Files');

start = 3;

dupfound = false;

notdone = true;

naming = true;

while naming

 while notdone

 for i = start:length(SavedModels)

 if strcmp(SavedModels(i).name,[name '.mat'])

 % Devise an alternative

 if strcmp(SavedModels(i).name(end-4),')')

 offset = 1;

 while ...

 all(ismember(SavedModels(i).name(end-4-offset),'0123456789')) ||...

 SavedModels(i).name(end-4-offset) == '.'

 offset = offset + 1;

 end

 offset = offset - 1;

 num = str2double(SavedModels(i).name(end-4-offset:end-5));

 num = num + 1;

 name = [SavedModels(i).name(1:end-5-offset) num2str(num) ')'];

 notdone = true;

 dupfound = true;

 break;

 else

 name = [SavedModels(i).name(1:end-4) ' (1)'];

 dupfound = true;

 end

 end

 end

 if notdone

 notdone = false;

 % Double check that there are no duplicates

 for i = 3:length(SavedModels)

 if strcmp(SavedModels(i).name,[name '.mat'])

 notdone = true;

 start = i;

 break;

 end

 end

 end

 end

 % We have the new unique name

 if dupfound

 switch questdlg(['Do you want to overwrite the existing file: ' ogname])

 case 'Yes'

 name = ogname;

 naming = false;

 case 'No'

 cellname = inputdlg('Name: ',['Rename: ' ogname],1,{name});

 if isempty(cellname); return; end

 newname = cellname{1};

 if strcmp(newname,name)

241

 naming = false;

 else

 ogname = newname;

 notdone = true;

 dupfound = false;

 end

 name = newname;

 case {'Cancel',''}

 return;

 end

 else

 naming = false;

 end

end

h.Model.name = name;

backupAxis = h.Model.AxisReference;

h.Model.AxisReference(:) = [];

newfile = ['Saved Files\' name '.mat'];

Model = h.Model; %#ok<NASGU>

Model.saveME();

h.Model.AxisReference = backupAxis;

fprintf('Model Saved\n');

%% Load Functionality

function h = load_sub(name, h)

newfile = [pwd '\Saved Files\' name];

File = load(newfile,'Model');

h.Model = File.Model;

h.Model.AxisReference = h.GUI;

h.Model.showInterConnections = false;

h.Model.showNodes = false;

h.Model.RelationOn = true; set(h.RelationMode,'String','On');

h.Model.showGroups = get(h.showGroups,'Value');

h.Model.showBodies = get(h.showBodies,'Value');

h.Model.showBodyGhosts = get(h.showBodyGhosts,'Value');

h.Model.showConnections = get(h.showConnections,'Value');

h.Model.showLeaks = get(h.showLeaks,'Value');

h.Model.showBridges = get(h.showBridges,'Value');

h.Model.showSensors = get(h.showSensors,'Value');

h.Model.showRelations = get(h.showRelations,'Value');

h.Model.showInterConnections = get(h.showInterConnections,'Value');

h.Model.showEnvironmentConnections = get(h.showEnvironmentConnections,'Value');

h.Model.showNodes = get(h.showNodes,'Value');

h.Model.showPressureAnimation = get(h.ShowPressureAnimation,'Value');

h.Model.recordPressure = get(h.RecordPressure,'Value');

h.Model.showTemperatureAnimation = get(h.ShowTemperatureAnimation,'Value');

h.Model.recordTemperature = get(h.RecordTemperature,'Value');

h.Model.showVelocityAnimation = get(h.ShowVelocityAnimation,'Value');

h.Model.recordVelocity = get(h.RecordVelocity,'Value');

h.Model.showTurbulenceAnimation = get(h.ShowTurbulenceAnimation,'Value');

h.Model.recordTurbulence = get(h.RecordTurbulence,'Value');

h.Model.recordOnlyLastCycle = get(h.RecordOnlyLastCycle,'Value');

h.Model.outputPath= get(h.OutputPath,'String');

h.Model.warmUpPhaseLength = str2double(get(h.WarmUpPhaseLength,'String'));

h.Model.animationFrameTime = str2double(get(h.AnimationFrameTime,'String'));

cla;

show_Model(h);

drawnow(); pause(0.05);

function load_Callback(hObject, ~, h)

% Asks the user if they want to save the current model

% if True. Call save_Callback.

switch questdlg('Do you want to save the current model?')

 case 'Yes'

 if ~isempty(h.Model.name)

 switch questdlg('Do you want to save as a new Model?')

 case 'Yes'

 saveModel(true,h);

242

 case 'No'

 saveModel(false,h);

 case {'Cancel',''}

 return;

 end

 else

 saveModel(true,h);

 end

 case 'No'

 % Do nothing

 case {'Cancel',''}

 return;

end

% Then provide the user with a list of saved models in the Saved Files

% folder.

SavedModels = dir('Saved Files');

names = {SavedModels.name};

i = 1;

while names{i}(1) == '.'

 i = i + 1;

end

[selection, tf] = listdlg('ListString',names(i:end),...

 'SelectionMode','single');

if tf

 name = names{selection+i-1};

else

 return;

end

% if the user selects one, then replace current model with the loaded one

% and reset the userform.

[h] = load_sub(name, h);

guidata(h.load,h);

%% Show Options

function showGroups_Callback(hObject, ~, h) %#ok<*DEFNU>

value = get(hObject,'Value');

if (value ~= h.Model.showGroups)

 h.Model.showGroups = value;

 show_Model(h);

end

function showBodies_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~=h.Model.showBodies)

 h.Model.showBodies = value;

 show_Model(h);

end

function showConnections_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showConnections)

 h.Model.showConnections = value;

 show_Model(h);

end

function showLeaks_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showLeaks)

 h.Model.showLeaks = value;

 show_Model(h);

end

function showBridges_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showBridges)

 h.Model.showBridges = value;

 show_Model(h);

end

function showInterConnections_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showInterConnections)

 h.Model.showInterConnections = value;

 show_Model(h);

243

end

function showEnvironmentConnections_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showEnvironmentConnections)

 h.Model.showEnvironmentConnections = value;

 show_Model(h);

end

function showBodyGhosts_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showBodyGhosts)

 h.Model.showBodyGhosts = value;

 show_Model(h);

end

function showNodes_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showNodes)

 h.Model.showNodes = value;

 show_Model(h);

end

function showSensors_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showSensors)

 h.Model.showSensors = value;

 show_Model(h);

end

function showRelations_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showRelations)

 h.Model.showRelations = value;

 show_Model(h);

end

function BoxZoom_Callback(hObject, eventdata, h) %#ok<INUSL>

%handles.corner_points = ginput(2);

show_Model(h,ginput(2));

function show_Model(h,cornerpoints)

h.Model.show();

if nargin == 2

 % Preserve aspect ratio

 axes = gca;

 width = abs(cornerpoints(1,1) - cornerpoints(2,1));

 height = abs(cornerpoints(1,2) - cornerpoints(2,2));

 r_new = width/height;

 % Get current aspect ratio

 r_old = axes.PlotBoxAspectRatio(1)/axes.PlotBoxAspectRatio(2);

 if r_old > r_new

 width = width*r_old/r_new;

 else

 height = height*r_new/r_old;

 end

 % Determine the center

 c_x = 0.5*(cornerpoints(1,1) + cornerpoints(2,1));

 c_y = 0.5*(cornerpoints(1,2) + cornerpoints(2,2));

 % Adjust the axes

 axes.XLim = [c_x-width/2 c_x+width/2];

 axes.YLim = [c_y-height/2 c_y+height/2];

end

drawnow(); pause(0.05);

function RecenterView_Callback(~, ~, h)

axes = gca;

xlim = h.Model.getXLim();

ylim = h.Model.getYLim();

ar = abs(ylim(1)-ylim(2))/abs(xlim(1)-xlim(2));

cur_xlim = axes.XLim;

cur_ylim = axes.YLim;

cur_ar = abs(cur_ylim(1)-cur_ylim(2))/abs(cur_xlim(1)-cur_xlim(2));

244

if ar > cur_ar

 % ylim is the base

 cx = mean(xlim);

 dx = 0.5*abs(ylim(1)-ylim(2))/cur_ar;

 xlim = [cx - dx, cx + dx];

else

 % xlim is the base

 cy = mean(ylim);

 dy = 0.5*cur_ar*abs(xlim(1)-xlim(2));

 ylim = [cy - dy, cy + dy];

end

if any(isnan(xlim)) || any(isinf(xlim)); return; end

if any(isnan(ylim)) || any(isinf(ylim)); return; end

axes.XLim = xlim;

axes.YLim = ylim;

show_Model(h);

%% RunTime Show Options

function showLivePV_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showLivePV)

 h.Model.showLivePV = value;

end

function stopSimulation_Callback(~, ~, h)

h.Model.stopSimulation();

function Run_Callback(~, ~, h)

h.Model.Run();

function CreateMechanism_CreateFcn(~, ~, ~)

function Animate_CreateFcn(~, ~, ~)

%% Simulation Options

function Reset_Discretization_Callback(~, ~, h)

h.Model.resetDiscretization();

show_Model(h);

function DispNumbers_Callback(~, ~, h)

h.Model.dispNodeIndexes();

function clearAxes_Callback(~, ~, ~)

cla;

function ShowPressureAnimation_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showPressureAnimation)

 h.Model.showPressureAnimation = value;

end

if value

 set(h.RecordPressure,'Value',value);

 RecordPressure_Callback(h.RecordPressure,[],h);

end

function RecordPressure_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.recordPressure)

 h.Model.recordPressure = value;

end

if ~value

 set(h.ShowPressureAnimation,'Value',value);

 ShowPressureAnimation_Callback(h.ShowPressureAnimation,[],h);

end

function ShowTemperatureAnimation_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showTemperatureAnimation)

 h.Model.showTemperatureAnimation = value;

end

if value

 set(h.RecordTemperature,'Value',value);

 RecordTemperature_Callback(h.RecordTemperature,[],h);

end

function RecordTemperature_Callback(hObject, ~, h)

value = get(hObject,'Value');

245

if (value ~= h.Model.recordTemperature)

 h.Model.recordTemperature = value;

end

if ~value

 set(h.ShowTemperatureAnimation,'Value',value);

 ShowTemperatureAnimation_Callback(h.ShowTemperatureAnimation,[],h);

end

function ShowVelocityAnimation_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showVelocityAnimation)

 h.Model.showVelocityAnimation = value;

end

if value

 set(h.RecordVelocity,'Value',value);

 RecordVelocity_Callback(h.RecordVelocity,[],h);

end

function RecordVelocity_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.recordVelocity)

 h.Model.recordVelocity = value;

end

if ~value

 set(h.ShowVelocityAnimation,'Value',value);

 ShowVelocityAnimation_Callback(h.ShowVelocityAnimation,[],h);

end

function ShowTurbulenceAnimation_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showTurbulenceAnimation)

 h.Model.showTurbulenceAnimation = value;

end

if value

 set(h.RecordTurbulence,'Value',value);

 RecordTurbulence_Callback(h.RecordTurbulence,[],h);

end

function RecordTurbulence_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.recordTurbulence)

 h.Model.recordTurbulence = value;

end

if ~value

 set(h.ShowTurbulenceAnimation,'Value',value);

 ShowTurbulenceAnimation_Callback(h.ShowVelocityAnimation,[],h);

end

function ShowConductionAnimation_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.showConductionAnimation)

 h.Model.showTurbulenceAnimation = value;

end

if value

 set(h.RecordConductionFlux,'Value',value);

 RecordConductionFlux_Callback(h.RecordConductionFlux,[],h);

end

function RecordConductionFlux_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.recordConductionFlux)

 h.Model.recordTurbulence = value;

end

if ~value

 set(h.ShowConductionAnimation,'Value',value);

 ShowConductionAnimation_Callback(h.ShowConductionAnimation,[],h);

end

function PressureDropAnimation_Callback(hObject,~,h)

value = get(hObject,'Value');

if (value ~= h.Model.showPressureDropAnimation)

 h.Model.showPressureDropAnimation = value;

end

if value

246

 set(h.recordPressureDrop,'Value',value);

 recordPressureDrop_Callback(h.recordPressureDrop,[],h);

end

function recordPressureDrop_Callback(hObject,~,h)

value = get(hObject,'Value');

if (value ~= h.Model.recordPressureDrop)

 h.Model.recordPressureDrop = value;

end

if ~value

 set(h.PressureDropAnimation,'Value',value);

 PressureDropAnimation_Callback(h.PressureDropAnimation,[],h);

end

function RecordOnlyLastCycle_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.recordOnlyLastCycle)

 h.Model.recordOnlyLastCycle = value;

end

function RecordStatistics_Callback(hObject, ~, h)

value = get(hObject,'Value');

if (value ~= h.Model.recordStatistics)

 h.Model.recordStatistics = value;

end

function OutputPath_CreateFcn(~, ~, ~)

function OutputPath_ButtonDownFcn(hObject, ~, h)

value = uigetdir;

set(hObject,'String',value);

h.Model.outputPath = value;

function WarmUpPhaseLength_Callback(hObject, ~, h)

value = get(hObject,'String');

if isempty(value); value = '0'; end

if all(ismember(value,'.0123456789'))

 set(hObject,'UserData',value);

 h.Model.warmUpPhaseLength = str2double(value);

else

 msgbox('The length must be a number, the units are already defined as seconds');

 set(hObject,'String',get(hObject,'UserData'));

end

function WarmUpPhaseLength_CreateFcn(hObject, ~, ~)

set(hObject,'UserData','0');

set(hObject,'String','0');

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function AnimationFrameTime_Callback(hObject, ~, h)

value = get(hObject,'String');

if isempty(value); value = '0.05'; end

if all(ismember(value,'.0123456789'))

 set(hObject,'UserData',value);

 h.Model.animationFrameTime = str2double(value);

else

 msgbox('The length must be a number, the units are already defined as seconds');

 set(hObject,'String',get(hObject,'UserData'));

end

function AnimationFrameTime_CreateFcn(hObject, ~, ~)

set(hObject,'UserData','0.05');

set(hObject,'String','0.05');

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function RecordSnapShot_Callback(~, ~, handles)

if ~isempty(handles.Model.Result)

 name = getProperName('SnapShot');

 handles.Model.Result.getSnapShot(this,handles.Model,name)

247

end

function RunTestSet_Callback(~, ~, h)

% Find the Folder "Test_Running"

files = dir('Test_Running');

names = {files.name};

names(1:2) = [];

if ~iscell(names)

 names = {names};

end

for index = size(names,1):-1:1

 names{index} = names{index}(1:end-2);

end

index = listdlg('ListString',names,...

 'SelectionMode','single',...

 'InitialValue',index);

if ~isempty(index)

 if strfind(names{index},'.m')

 func = str2func(names{index}(1:end-2));

 else

 func = str2func(names{index});

 end

 Test_Set = func();

 % Chunk the test set into groups that have the same model

 group_start = 1;

 group_end = 1;

 while group_end <= length(Test_Set)

 Model = Test_Set(group_start).Model;

 while group_end <= length(Test_Set) && ...

 strcmp(Model,Test_Set(group_end).Model)

 group_end = group_end + 1;

 end

 group_end = group_end - 1;

 h = load_sub(Model, h);

 h.Model.Run(Test_Set(group_start:group_end));

 group_start = group_end + 1;

 group_end = group_start;

 % The Model name is the default name used, it overwrites automatically

 % name = h.Model.name;

 % newfile = ['Saved Files\' name '.mat'];

 % Model = h.Model;

 % save(newfile,'Model');

 % fprintf('Model Saved.\n');

 end

end

function DerefinementFactor_Callback(hObject, ~, handles)

value = str2double(get(hObject,'String'));

if isnan(value)

 set(hObject,'String','1');

 return;

end

if value >= 0.01 && value <= 100

 handles.Model.deRefinementFactorInput = value;

else

 if value < 0.01

 set(hObject,'String','0.01');

 handles.Model.deRefinementFactorInput = 0.01;

 else

 set(hObject,'String','100');

 handles.Model.deRefinementFactorInput = 100;

 end

end

handles.Model.resetDiscretization();

guidata(hObject,handles);

function DerefinementFactor_CreateFcn(hObject, ~, ~)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

248

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in SwitchRelationMode.

function SwitchRelationMode_Callback(~, ~, handles)

if strcmp(get(handles.RelationMode,'String'),'On')

 set(handles.RelationMode,'String','Off');

 handles.Model.RelationOn = false;

else

 set(handles.RelationMode,'String','On');

 handles.Model.RelationOn = true;

end

249

Create Mechanism Interface

This module pops up when the user creates a new linear to rotational mechanism. The interface

includes a type selection drop-down. This dropdown then switches what is displayed in the

property editor, in the form of an editable table. The table contains a column for each property and

multiple rows in the case where multiple mechanisms attached to the same point, such as a 90

degree gamma or beta type engine.

function varargout = CreateMechanismInterface(varargin)

% CREATEMECHANISMINTERFACE MATLAB code for CreateMechanismInterface.fig

% CREATEMECHANISMINTERFACE, by itself, creates a new CREATEMECHANISMINTERFACE or raises the

existing

% singleton*.

%

% H = CREATEMECHANISMINTERFACE returns the handle to a new CREATEMECHANISMINTERFACE or the

handle to

% the existing singleton*.

%

% CREATEMECHANISMINTERFACE('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in CREATEMECHANISMINTERFACE.M with the given input arguments.

%

% CREATEMECHANISMINTERFACE('Property','Value',...) creates a new CREATEMECHANISMINTERFACE or

raises

% the existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before CreateMechanismInterface_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to CreateMechanismInterface_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help CreateMechanismInterface

% Last Modified by GUIDE v2.5 13-Dec-2018 14:29:58

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @CreateMechanismInterface_OpeningFcn, ...

 'gui_OutputFcn', @CreateMechanismInterface_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before CreateMechanismInterface is made visible.

function CreateMechanismInterface_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

250

% varargin command line arguments to CreateMechanismInterface (see VARARGIN)

% Choose default command line output for CreateMechanismInterface

handles.output = hObject;

switch length(varargin{1}.vars)

 case 0 % Create New

 handles.iType = [];

 handles.iData = [];

 case 2 % Modify Existing

 % assume it is a "Holder"

 handles.iType = varargin{1}.vars{1};

 handles.iData = varargin{1}.vars{2};

 case 1 % ???

 handles.iType = varargin{1}.vars{1};

 handles.iData = [];

end

handles.outData = varargin{1};

handles.DataEstablished = false;

% Setup MechType

if ~isempty(handles.iType)

 % Find the index

 i = FindStringInCell(LinRotMechanism.Source,handles.iType);

 if i ~= 0

 set(handles.MechType,'Value',i);

 else

 % Type not found, erase handles.iData & handles.iType

 fprintf(['XXX Type not found in registry, make sure to include ' ...

 'support for "' handles.iType '" if you want to use it. XXX\n']);

 handles.iType = [];

 handles.iData = [];

 end

end

% Setup Data

if ~isempty(handles.iData)

 % Make sure iType is valid

 i = FindStringInCell(LinRotMechanism.Source,handles.iType);

 if i ~= 0

 set(handles.PropertiesTable,'Data',handles.iData);

 else

 % Type not found, erase handles.iData & handles.iType

 fprintf(['XXX Type not found in registry, make sure to include ' ...

 'support for "' handles.iType '" if you want to use it. XXX\n']);

 handles.iType = [];

 handles.iData = [];

 end

 handles.DataEstablished = true;

else

 set(handles.PropertiesTable,'Visible','off');

 handles.DataEstablished = false;

end

% Other things

handles.MODE = '';

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes CreateMechanismInterface wait for user response (see UIRESUME)

% uiwait(handles.TheWindow);

% --- Outputs from this function are returned to the command line.

function varargout = CreateMechanismInterface_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

251

% contents = cellstr(get(handles.MechType,'String'));

% varargout{1} = contents{get(handles.MechType,'Value')};

% varargout{2} = get(handles.PropertiesTable,'Data');

% --- Executes on selection change in MechType.

function MechType_Callback(hObject, eventdata, handles)

contents = cellstr(get(hObject,'String'));

Type = contents{get(hObject,'Value')};

if ~handles.DataEstablished

 [Data, Instructions] = ...

 LinRotMechanism.GetPropertyTableSource(Type);

 handles.DataEstablished = true;

else

 [Data, Instructions] = ...

 LinRotMechanism.GetPropertyTableSource(...

 Type,...

 get(handles.PropertiesTable,'Data'));

end

set(handles.PropertiesTable,'Visible','on');

set(handles.PropertiesTable,'Data',Data);

handles.PropertiesTable.ColumnEditable = true(1,size(Data,2));

handles.PropertiesTable.ColumnFormat = cell(1,size(Data,2));

set(handles.Instructions,'String',Instructions);

EstablishWidths(handles);

guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.

function MechType_CreateFcn(hObject, eventdata, handles)

set(hObject,'String',LinRotMechanism.Source);

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes during object creation, after setting all properties.

function PropertiesTable_CreateFcn(hObject, eventdata, handles)

% --- Executes when entered data in editable cell(s) in PropertiesTable.

function PropertiesTable_CellEditCallback(hObject, eventdata, handles)

% hObject handle to PropertiesTable (see GCBO)

% eventdata structure with the following fields (see MATLAB.UI.CONTROL.TABLE)

% Indices: row and column indices of the cell(s) edited

% PreviousData: previous data for the cell(s) edited

% EditData: string(s) entered by the user

% NewData: EditData or its converted form set on the Data property. Empty if Data was not

changed

% Error: error string when failed to convert EditData to appropriate value for Data

% handles structure with handles and user data (see GUIDATA)

if eventdata.Indices(1) == 1

 Data = get(hObject,'Data');

 Data{eventdata.Indices(1),eventdata.Indices(1)} = eventdata.PreviousData;

 set(hObject,'Data',Data);

 fprintf('XXX You cannot edit column headers, no matter how hard you try. XXX\n');

end

function EstablishWidths(handles)

Source = get(handles.PropertiesTable,'Data');

for col = size(Source,2):-1:1

 Widths{col} = length(Source{1,col})*6;

end

set(handles.PropertiesTable,'ColumnWidth',Widths);

% Sum of widths

totalWidth = 0;

for i = 1:length(Widths)

 totalWidth = totalWidth + Widths{i};

end

PosInst = get(handles.Instructions,'Position');

PosTable = get(handles.PropertiesTable,'Position');

PosFrame = get(handles.PropertiesFrame,'Position');

PosWin = get(handles.TheWindow,'Position');

252

% Table Size

PosTable(3) = totalWidth+32;

set(handles.PropertiesTable,'Position',PosTable);

% Instructions Size

PosInst(3) = min([400 PosTable(3)]);

set(handles.Instructions,'Position',PosInst);

% Frame Size

PosFrame(3) = PosTable(3) + 2*PosTable(1);

set(handles.PropertiesFrame,'Position',PosFrame);

% Window Size

PosWin(3) = PosTable(3) + 4*PosTable(1);

set(handles.TheWindow,'Position',PosWin);

guidata(handles.TheWindow, handles);

function Ok_Callback(~, ~, handles)

Types = get(handles.MechType,'String');

Type = Types{get(handles.MechType,'Value')};

Source = get(handles.PropertiesTable,'Data');

handles.outData.vars = {Type, Source};

close(handles.TheWindow);

% Close it.

% --- Executes when selected cell(s) is changed in PropertiesTable.

function PropertiesTable_CellSelectionCallback(hObject, eventdata, handles)

if ~isempty(eventdata.Indices)

 row = eventdata.Indices(1);

 if row ~= 1

 switch handles.MODE

 case 'delete'

 Data = get(handles.PropertiesTable,'Data');

 NewData = cell(size(Data)-[1 0]);

 k = 0;

 for i = 1:size(Data,1)

 if i ~= row

 for j = 1:size(Data,2)

 NewData{i-k,j} = Data{i,j};

 end

 else

 k = 1;

 end

 end

 set(handles.PropertiesTable,'Data',NewData);

 case 'copy'

 Data = get(handles.PropertiesTable,'Data');

 NewData = cell(size(Data)+[1 0]);

 for i = 1:size(Data,1)

 for j = 1:size(Data,2)

 NewData{i,j} = Data{i,j};

 end

 end

 for i = 1:size(Data,2)

 NewData{size(Data,1)+1,i} = Data{row,i};

 end

 set(handles.PropertiesTable,'Data',NewData);

 otherwise

 end

 end

end

% --- Executes on button press in DeleteOnClick.

function DeleteOnClick_Callback(hObject, eventdata, handles)

if strcmp(handles.MODE,'delete')

 handles.MODE = '';

 set(hObject,'BackgroundColor',[0.94 0.94 0.94]);

else

 handles.MODE = 'delete';

 set(hObject,'BackgroundColor',[0 1 0]);

253

 set(handles.CopyOnClick,'BackgroundColor',[0.94 0.94 0.94]);

end

guidata(hObject, handles);

% --- Executes on button press in CopyOnClick.

function CopyOnClick_Callback(hObject, eventdata, handles)

if strcmp(handles.MODE,'copy')

 handles.MODE = '';

 set(hObject,'BackgroundColor',[0.94 0.94 0.94]);

else

 handles.MODE = 'copy';

 set(hObject,'BackgroundColor',[0 1 0]);

 set(handles.DeleteOnClick,'BackgroundColor',[0.94 0.94 0.94]);

end

guidata(hObject, handles);

% --- Executes on button press in AddBlankRow.

function AddBlankRow_Callback(hObject, eventdata, handles)

handles.MODE = '';

set(handles.CopyOnClick,'BackgroundColor',[0.94 0.94 0.94]);

set(handles.DeleteOnClick,'BackgroundColor',[0.94 0.94 0.94]);

Data = get(handles.PropertiesTable,'Data');

Data = AddRow(Data,1);

set(handles.PropertiesTable,'Data',Data);

guidata(hObject, handles);

254

G.2. Major Elements

255

Body

The body is a class that includes:

A creation function

Functions used to append internal lists of other classes.

Function which is called when it is destroyed: to properly disable its dependents.

A get/set interface, used by the property drop-down on the main GUI.

A set of utility functions which calculate the body orientation, sort connections, detect overlaps

and update the bodies derived properties. Including its bounds, its validity, its name, translation

reference, moving mode, discretization status, default temperatures, default pressures.

A function to discretize it.

A set of functions that get its color from the material, remove it from the figure and add it to

the figure.

classdef Body < handle

 % body Summary of this class goes here

 % Detailed explanation goes here

 properties (Constant)

 MaterialUndefinedColor = [1 0.5569 1];

 ActiveColor = [0 1 0];

 NormalColor = [0 0 0];

 InvalidColor = [1 0 0];

 end

 properties (Hidden)

 GUIObjects;

 isStateValid logical = false;

 isStateDiscretized logical = false;

 StateMovingStatus enumMove;

 s_lb_Vert double;

 s_ub_Vert double;

 s_lb_Hor double;

 d_lb_Hor double;

 s_ub_Hor double;

 d_ub_Hor double;

 customTemperature = [];

 customPressure = [];

 end

 properties (Dependent)

 name;

 isValid;

 MovingStatus;

 RefFrame;

 Temperature;

 Pressure;

 isDiscretized;

256

 end

 properties

 customname = '';

 ID;

 nodeIndex int32;

 Group Group;

 Connections Connection;

 PVoutputs PVoutput;

 Sensors Sensor;

 matl Material;

 divides = [1 1]; % [Nx, Ny]

 NuFunc function_handle;

 fFunc function_handle;

 Matrix Matrix;

 Mesher Mesher;

 DiscretizationFunctionRadial;

 DiscretizationFunctionAxial;

 % Boolean Values

 isActive logical = false;

 isChanged logical = true;

 % Discretization

 Nodes Node;

 Faces Face;

 end

 methods

 %% Constructor

 function this = Body(Group,Connections,matl)

 if nargin == 3

 % Get name from

 this.Group = Group;

 this.Connections = Connections;

 for iCon = this.Connections; iCon.addBody(this); end

 this.isChanged = true;

 this.matl = matl;

 fprintf(['Body created in Group ' Group.name '.\n']);

 end

 end

 function addPVoutput(this,PVoutputToAdd)

 this.PVoutputs = PVoutputToAdd;

 end

 function addSensor(this,SensorToAdd)

 for iS = SensorToAdd

 found = false;

 for i = 1:length(this.Sensors)

 if this.Sensors(i) == iS

 found = true;

 break;

 end

 end

 if ~found

 this.Sensors(end+1) = iS;

 this.Group.Model.addSensor(iS);

 end

 end

 end

 function deReference(this)

 % Remove Reference from connections

 for iCon = this.Connections

 for i = length(iCon.Bodies):-1:1

 if iCon.Bodies(i) == this

 iCon.Bodies(i) = [];

 iCon.change();

 break;

 end

 end

 end

 for i = length(this.Connections):-1:1

257

 if isempty(this.Connections(i).Bodies)

 this.Connections(i).deReference();

 end

 end

 % Remove Reference from Group

 iGroup = this.Group;

 for i = length(iGroup.Bodies):-1:1

 if iGroup.Bodies(i) == this

 iGroup.Bodies(i) = [];

 iGroup.isChanged = true;

 break;

 end

 end

 % Remove Reference from any Bridges

 iModel = iGroup.Model;

 for i = length(iModel.Bridges):-1:1

 if iModel.Bridges(i).Body1 == this || iModel.Bridges(i).Body2 == this

 iModel.Bridges(i).deReference();

 end

 end

 % Remove Reference from any Leaks

 for i = length(iModel.LeakConnections):-1:1

 if (isa(iModel.LeakConnections(i).obj1,'Body') ...

 && iModel.LeakConnections(i).obj1 == this) ...

 || (isa(iModel.LeakConnections(i).obj2,'Body') ...

 && iModel.LeakConnections(i).obj2 == this)

 iModel.LeakConnections(i).deReference();

 end

 end

 % Remove Reference from any Custom Minor Losses

 for i = length(iModel.CustomMinorLosses):-1:1

 if iModel.CustomMinorLosses(i).Body1 == this || ...

 iModel.CustomMinorLosses(i).Body2 == this

 iModel.CustomMinorLosses(i) = [];

 end

 end

 % Remove Reference from any NonConnections

 for i = length(iModel.NonConnections):-1:1

 if iModel.NonConnections(i).Body1 == this || ...

 iModel.NonConnections(i).Body2 == this

 iModel.NonConnections(i) = [];

 end

 end

 % Remove Reference from any PVoutputs

 for i = length(iModel.PVoutputs):-1:1

 if iModel.PVoutputs(i) == this.PVoutputs

 iModel.PVoutputs(i).deReference();

 end

 end

 % Remove Reference from any Sensors

 for i = length(iModel.Sensors):-1:1

 for j = 1:length(this.Sensors)

 if iModel.Sensors(i) == this.Sensors(j)

 iModel.Sensors(i).deReference();

 break;

 end

 end

 end

 this.Nodes(:) = [];

 this.Faces(:) = [];

 % Remove any visual remenant

 this.removeFromFigure(gca);

 this.delete();

 end

 %% get/set

 function Item = get(this,PropertyName)

 switch PropertyName

 case 'Name'

 Item = this.name;

 case 'Bottom Connection'

258

 miny = inf;

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Horizontal && iCon.x < miny

 miny = iCon.x;

 Item = iCon;

 end

 end

 case 'Top Connection'

 maxy = -inf;

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Horizontal && iCon.x > maxy

 maxy = iCon.x;

 Item = iCon;

 end

 end

 case 'Inner Connection'

 minx = inf;

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Vertical && iCon.x < minx

 minx = iCon.x;

 Item = iCon;

 end

 end

 case 'Outer Connection'

 maxx = -inf;

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Vertical && iCon.x > maxx

 maxx = iCon.x;

 Item = iCon;

 end

 end

 case 'Material'

 Item = this.matl;

 case 'Temperature'

 Item = this.Temperature;

 case 'Pressure'

 Item = this.Pressure;

 case 'Radial Divides'

 Item = this.divides(1);

 case 'Axial Divides'

 Item = this.divides(2);

 case 'RefFrame'

 Item = Frame.empty;

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Horizontal && ~isempty(iCon.RefFrame)

 if isempty(Item)

 Item = iCon.RefFrame;

 else

 if Item ~= iCon.RefFrame

 Item = Frame.empty;

 break;

 end

 end

 end

 end

 case 'Change Matrix'

 if isempty(this.Matrix)

 Item = Matrix(this); %#ok<PROPLC>

 this.Matrix = Item;

 else

 Item = this.Matrix;

 end

 case 'Expand Matrix'

 Item = this.Matrix;

 case 'Radial Discretization Function'

 Item = this.DiscretizationFunctionRadial;

 case 'Axial Discretization Function'

 Item = this.DiscretizationFunctionAxial;

 otherwise

 fprintf(['XXX Body GET Inteface for ' PropertyName ' is not found XXX\n']);

 end

259

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'Name'

 this.customname = Item;

 case 'Radial Divides'

 this.divides(1) = Item;

 case 'Axial Divides'

 this.divides(2) = Item;

 case 'Temperature'

 if Item ~= this.Group.Model.engineTemperature

 this.customTemperature = Item;

 else

 this.customTemperature = [];

 end

 case 'Pressure'

 if Item ~= this.Group.Model.enginePressure

 this.customPressure = Item;

 else

 this.customPressure = [];

 end

 case 'Change Matrix'

 this.Matrix = Item;

 this.Matrix.Body = this;

 case 'Radial Discretization Function'

 this.DiscretizationFunctionRadial = Item;

 case 'Axial Discretization Function'

 this.DiscretizationFunctionAxial = Item;

 case 'RefFrame'

 if isempty(Item)

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Horizontal

 iCon.set('RefFrame',Item);

 end

 end

 else

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Horizontal

 if isempty(iCon.RefFrame) || iCon.RefFrame ~= Item

 iCon.set('RefFrame',Item);

 end

 end

 end

 end

 otherwise

 fprintf(['XXX Body SET Inteface for ' PropertyName ' is not found XXX\n']);

 return;

 end

 this.change();

 end

 %% Utility

 function sortConnections(this)

 % Sort the connections in an order that is xmin,xmax,ymin,ymax

 for i = 1:length(this.Connections)-1

 for j = i+1:length(this.Connections)

 if this.Connections(i).Orient == this.Connections(j).Orient

 if this.Connections(i).x > this.Connections(j).x

 % swap the two

 tempCon = this.Connections(i);

 this.Connections(i) = this.Connections(j);

 this.Connections(j) = tempCon;

 end

 elseif this.Connections(i).Orient == enumOrient.Horizontal

 % swap the two

 tempCon = this.Connections(i);

 this.Connections(i) = this.Connections(j);

 this.Connections(j) = tempCon;

 end

 end

 end

260

 end

 function dir = getBodyDirection(this)

 if this.divides(1) > this.divides(2)

 dir = 1;

 elseif this.divides(2) > this.divides(1)

 dir = 2;

 else

 cons = zeros(1,2);

 for iCon = this.Connections

 switch iCon.Orient

 case enumOrient.Vertical

 [b1,b2,~,~] = this.limits(enumOrient.Horizontal);

 for iBody = iCon.Bodies

 [y1,y2,~,~] = iBody.limits(enumOrient.Horizontal);

 if ~(all(y1 > b2) || all(y2 < b1))

 cons(1) = cons(1) + 1;

 end

 end

 case enumOrient.Horizontal

 [b1,b2,~,~] = this.limits(enumOrient.Vertical);

 for iBody = iCon.Bodies

 [x1,x2,~,~] = this.limits(enumOrient.Vertical);

 if ~(all(x1 > b2) || all(x2 < b1))

 cons(2) = cons(2) + 1;

 end

 end

 end

 end

 if cons(1) == 0

 if cons(2) == 0

 dir = 2;

 else

 dir = 2;

 end

 else

 if cons(2) == 0

 dir = 1;

 else

 if cons(1) > cons(2)

 dir = 1;

 else

 dir = 2;

 end

 end

 end

 end

 end

 %% Creation Tests

 function isit = overlaps(thisBody,otherBody)

 isit = false;

 if thisBody ~= otherBody

 % Test x-coords

 [~, ~, xmin1, xmax1] = thisBody.limits(enumOrient.Vertical);

 [~, ~, xmin2, xmax2] = otherBody.limits(enumOrient.Vertical);

 if xmin1 >= xmax2 || xmin2 >= xmax1

 isit = false;

 return;

 end

 [ymin1, ymax1, ~, ~] = thisBody.limits(enumOrient.Horizontal);

 [ymin2, ymax2, ~, ~] = otherBody.limits(enumOrient.Horizontal);

 N = max([1 length(ymin1) length(ymax1)]);

 if N ~= 1

 if (~isscalar(ymin2) && N ~= length(ymin2)) || ...

 (~isscalar(ymax2) && N ~= length(ymax2))

 otherBody.update();

 [ymin2, ymax2, ~, ~] = otherBody.limits(enumOrient.Horizontal);

 end

 end

 if all(ymin1 >= ymax2) || all(ymin2 >= ymax1)

 isit = false;

261

 return;

 end

 isit = true;

 end

 end

 function [doesit, orient, xmin, xmax, y] = touches(thisBody,otherBody)

 if thisBody.Connections(1) == otherBody.Connections(2) || ...

 thisBody.Connections(2) == otherBody.Connections(1)

 % Vertical Connections

 orient = thisBody.Connections(1).Orient;

 [~, ~, xmin1, xmax1] = thisBody.limits(enumOrient.Vertical);

 [~, ~, xmin2, xmax2] = otherBody.limits(enumOrient.Vertical);

 xmin = xmin1; xmin(xmin<xmin2) = xmin2(xmin<xmin2);

 xmax = xmax1; xmax(xmax>xmax2) = xmax2(xmax>xmax2);

 if thisBody.Connections(1) == otherBody.Connections(2)

 y = thisBody.Connections(1).x;

 else

 y = thisBody.Connections(2).x;

 end

 doesit = any(xmin<xmax);

 elseif thisBody.Connections(3) == otherBody.Connections(4) || ...

 thisBody.Connections(4) == otherBody.Connections(3)

 % Horizontal Connections

 orient = thisBody.Connections(3).Orient;

 [ymin1, ymax1, ~, ~] = thisBody.limits(enumOrient.Horizontal);

 [ymin2, ymax2, ~, ~] = otherBody.limits(enumOrient.Horizontal);

 xmin = ymin1;

 if isscalar(ymin2)

 xmin(xmin<ymin2) = ymin2;

 else

 if isscalar(ymin1)

 xmin = ymin1*ones(size(ymin2));

 end

 xmin(xmin<ymin2) = ymin2(xmin<ymin2);

 end

 xmax = ymax1;

 if isscalar(ymax2)

 xmax(xmax>ymax2) = ymax2;

 else

 if isscalar(ymin1)

 xmax = ymax1*ones(size(ymax2));

 end

 xmax(xmax>ymax2) = ymax2(xmax>ymax2);

 end

 if thisBody.Connections(3) == otherBody.Connections(4)

 y = thisBody.Connections(3);

 else

 y = thisBody.Connections(4);

 end

 doesit = any(xmin<xmax);

 else

 doesit = false;

 orient = enumOrient.Vertical;

 xmin = inf;

 xmax = inf;

 y = inf;

 end

 end

 %% Update on Demand

 function update(this)

 if isempty(this.ID); this.ID = this.Group.Model.getBodyID(); end

 if isempty(this.Connections)

 this.isChanged = false;

 return;

 end

 if any(~isvalid(this.Sensors))

 this.Sensors = this.Sensors(isvalid(this.Sensors));

 end

 if any(~isvalid(this.PVoutputs))

 this.PVoutputs = this.PVoutputs(isvalid(this.PVoutputs));

262

 end

 if ~isempty(this.Matrix)

 if isempty(this.Matrix.matl) || isempty(this.Matrix.Dh)

 delete(this.Matrix);

 this.Matrix(:) = [];

 elseif ~(this.Matrix.Body == this)

 this.Matrix.Body = this;

 end

 end

 this.isChanged = false;

 % Update Connections

 for iCon = this.Connections

 found = false;

 iCon.CleanUpBodies;

 for iBody = iCon.Bodies

 if iBody == this; found = true; end

 end

 if ~found; iCon.addBody(this); end

 end

 this.sortConnections();

 %% Update Limits

 % Find vertical connections

 nv = 2; nh = 2;

 arrConV(2) = Connection();

 arrConH(2) = Connection();

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Vertical

 arrConV(nv) = iCon; nv = 1;

 else

 arrConH(nh) = iCon; nh = 1;

 end

 end

 if arrConV(1).x > arrConV(2).x

 this.s_lb_Vert = arrConV(2).x;

 this.s_ub_Vert = arrConV(1).x;

 else

 this.s_lb_Vert = arrConV(1).x;

 this.s_ub_Vert = arrConV(2).x;

 end

 if arrConH(1).x > arrConH(2).x

 this.s_lb_Hor = arrConH(2).x;

 if arrConH(2).get('isStationary')

 this.d_lb_Hor = this.s_lb_Hor;

 else

 this.d_lb_Hor = this.s_lb_Hor + arrConH(2).RefFrame.Positions;

 end

 this.s_ub_Hor = arrConH(1).x;

 if arrConH(1).get('isStationary')

 this.d_ub_Hor = this.s_ub_Hor;

 else

 this.d_ub_Hor = this.s_ub_Hor + arrConH(1).RefFrame.Positions;

 end

 else

 this.s_lb_Hor = arrConH(1).x;

 if arrConH(1).isStationary

 this.d_lb_Hor = this.s_lb_Hor;

 else

 this.d_lb_Hor = this.s_lb_Hor + arrConH(1).RefFrame.Positions;

 end

 this.s_ub_Hor = arrConH(2).x;

 if arrConH(2).isStationary

 this.d_ub_Hor = this.s_ub_Hor;

 else

 this.d_ub_Hor = this.s_ub_Hor + arrConH(2).RefFrame.Positions;

 end

 end

263

 %% Update MovingStatus

 found = false;

 frame = [];

 varenum = enumMove.Stretching;

 for i = 1:length(this.Connections)

 if ~this.Connections(i).get('isStationary')

 frame = this.Connections(i).RefFrame;

 found = true;

 break;

 end

 end

 if ~found

 varenum = enumMove.Static;

 else

 found = false;

 for j = i+1:length(this.Connections)

 if ~this.Connections(j).get('isStationary') ...

 && this.Connections(i).RefFrame == frame

 varenum = enumMove.Moving;

 found = true;

 end

 end

 if ~found

 varenum = enumMove.Stretching;

 end

 end

 this.StateMovingStatus = varenum;

 %% Update isValid

 varb = true;

 isSolid = (this.matl.Phase == enumMaterial.Solid);

 % Gas bodies do not support multiple dimensions

 if isSolid

 % SOLIDS MUST HAVE FINITE VOLUME

 [~,~,dim1, dim2] = limits(this,enumOrient.Vertical);

 if dim1 == dim2

 fprintf(...

 ['Solid volumes must have finite volumes, please ' ...

 'define a x-dimension for ' ...

 this.name '.\n']);

 varb = false;

 end

 [~,~,dim1, dim2] = limits(this,enumOrient.Horizontal);

 if dim1 == dim2

 fprintf(...

 ['Solid volumes must have finite volumes, please ' ...

 'define a y-dimension for ' ...

 this.name '.\n']);

 varb = false;

 end

 % SOLIDS CANNOT STRETCH

 if this.MovingStatus == enumMove.Stretching

 fprintf(...

 ['Solid volumes cannot be stretched, please define ' ...

 'the same frame to both lateral surfaces of ' ...

 this.name '.\n']);

 varb = false;

 end

 else

 % GASES CANNOT HAVE MULTIPLE DIMENSIONS

 if min(this.divides) ~= 1

 fprintf(...

 ['Gas volumes are restricted to single dimensional discretization,' ...

 'please review ' this.name '"s definition.\n']);

 varb = false;

 end

 end

 % Check with interference from other bodies

 if this.Group.isOverlaping(this)

264

 varb = false;

 end

 %fprintf(['Update Body: ' this.name '\n']);

 this.isStateValid = varb;

 end

 function resetDiscretization(this)

 for iCon = this.Connections

 iCon.resetDiscretization();

 end

 this.Nodes(:) = [];

 this.Faces(:) = [];

 this.isStateDiscretized = false;

 end

 function change(this)

 this.isChanged = true;

 this.resetDiscretization();

 this.Group.change();

 end

 function name = get.name(this)

 if isempty(this.customname)

 [~,~,x1,x2] = this.limits(enumOrient.Vertical);

 [~,~,y1,y2] = this.limits(enumOrient.Horizontal);

 name = [this.matl.name ' Body ' ...

 '(' num2str(x1) ', ' num2str(x2) ')' ...

 '(' num2str(y1) ', ' num2str(y2) ') vol:' ...

 num2str(pi*(x2^2-x1^2)*(y2(1)-y1(1)))];

 else

 name = this.customname;

 end

 end

 function [d_lb, d_ub, s_lb, s_ub] = limits(this, Orient)

 if this.isChanged; this.update(); end

 switch Orient

 case enumOrient.Vertical

 d_lb = 0;

 d_ub = 0;

 s_lb = this.s_lb_Vert;

 s_ub = this.s_ub_Vert;

 case enumOrient.Horizontal

 d_lb = this.d_lb_Hor;

 d_ub = this.d_ub_Hor;

 s_lb = this.s_lb_Hor;

 s_ub = this.s_ub_Hor;

 end

 end

 function isValid = get.isValid(this)

 this.update();

% if this.isChanged; this.update(); end

 isValid = this.isStateValid;

 end

 function frame = get.RefFrame(this)

 if this.isChanged; this.update(); end

 frame = [];

 if this.MovingStatus == enumMove.Moving

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Horizontal && ~iCon.get('isStationary')

 frame = iCon.RefFrame;

 end

 end

 end

 end

 function MovingStatus = get.MovingStatus(this)

 if this.isChanged; this.update(); end

 MovingStatus = this.StateMovingStatus;

 end

 function Discretized = get.isDiscretized(this)

 if this.isChanged; this.update(); end

 if isempty(this.Nodes)

 this.isStateDiscretized = false;

 end

 Discretized = this.isStateDiscretized;

265

 end

 %% Property Parameters

 function Temp = get.Temperature(this)

 if isempty(this.customTemperature)

 Temp = this.Group.Model.engineTemperature;

 else

 Temp = this.customTemperature;

 end

 end

 function Press = get.Pressure(this)

 if isempty(this.customPressure)

 Press = this.Group.Model.enginePressure;

 else

 Press = this.customPressure;

 end

 end

 %% Node Generation

 function discretize(this)

 this.update();

 if this.isDiscretized % || ~this.isValid

 return;

 end

 isSolid = (this.matl.Phase == enumMaterial.Solid);

 if isSolid; FType = enumFType.Solid; else; FType = enumFType.Gas; end

 if this.isChanged

 this.update();

 end

 %% DETERMINE THE NODE TYPE

 if isSolid

 NType = enumNType.SN; % SN - Solid Node

 else

 % SVGN - Static Volume Gas Node

 % VVGN - Variable Volume Gas Node

 % SAGS - Shearing Annular Gas Node

 switch this.MovingStatus

 case enumMove.Static

 % Decide, is it shearing or just moving?

 % Looking at the two vertical connections

 for iCon = this.Connections

 NType = enumNType.SVGN;

 if iCon.Orient == enumOrient.Vertical

 % Find a body that shares that

 % connection and scope of x

 for iBody = this.Group.Bodies

 if iBody ~= this

 if ~isempty(iBody.RefFrame)

 %%%

 %NType = enumNType.SAGN;

 %frame = iBody.RefFrame;

 break;

 end

 end

 end

 end

 end

 case enumMove.Moving

 % Decide, is it shearing or just moving?

 % Looking at the two vertical connections

 for iCon = this.Connections

 NType = enumNType.SVGN;

 if iCon.Orient == enumOrient.Vertical

 % Find a body that shares that

 % connection and scope of x

 for iBody = this.Group.Bodies

 if iBody ~= this

 if isempty(iBody.RefFrame)

 NType = enumNType.SAGN;

 frame = this.RefFrame;

 break;

266

 end

 end

 end

 end

 end

 case enumMove.Stretching

 NType = enumNType.VVGN;

 end

 end

 %% Y LIMITS

 [ymin,ymax,~,~] = this.limits(enumOrient.Horizontal);

 if ~prod(ymax>=ymin) % Will give false if this is not true everywhere

 changed_registered = false;

 for iCon = this.Group.Connections

 if iCon.Orient == this.Connections(3).Orient && ...

 iCon.x == this.Connections(3).x

 if length(iCon.RefFrame) ~= length(this.Connections(3).RefFrame)

 this.Connections(3) = iCon.x;

 this.update();

 changed_registered = true;

 end

 elseif iCon.Orient == this.Connections(4).Orient && ...

 iCon.x == this.Connections(4).x

 if length(iCon.RefFrame) > length(this.Connections(4).RefFrame)

 this.Connections(4).RefFrame = iCon.RefFrame;

 this.update();

 changed_registered = true;

 end

 end

 end

 if changed_registered

 fprintf(...

 ['XXX A memory error occured for Body ' this.name ...

 ' in which a connection reference was duplicated,' ...

 ' this has been mitigated but will require a restart of' ...

 ' the discretization. XXX\n']);

 return;

 else

 fprintf(...

 ['XXX Calculated maximum and minimum positions ' this.name ...

 ' for will result in a case of negative area, consider' ...

 ' readjusting gas volume or start positions to mitigate' ...

 ' this overlap. XXX\n']);

 return;

 end

 end

 %% X LIMITS

 [~,~,xmin,xmax] = this.limits(enumOrient.Vertical);

 if isempty(this.DiscretizationFunctionRadial)

 x = transpose(linspace(xmin,xmax,this.divides(1)+1));

 else

 if isSolid

 [x] =

this.DiscretizationFunctionRadial(this,this.Group.Model.Mesher,enumOrient.Vertical);

 if isempty(x); return; end

 deltas = diff(x);

 if ~(all(sign(deltas) > 0) || all(sign(deltas) < 0))

 fprintf('XXX x generation issue in Body\m');

 [x] =

this.DiscretizationFunctionRadial(this,this.Group.Model.Mesher,enumOrient.Vertical);

 end

 if x(end,1) < x(1,1); x = flip(x,1); end

 else

 if isempty(this.Matrix)

 fprintf(...

 ['XXX Smart Discretization functions currently cannot' ...

 ' be used for matrixless gas nodes. Problem found in radial direction

of Body:' ...

 this.name '. XXX\n']);

 return;

267

 else

 if this.divides(1) > 1

 [x] =

this.DiscretizationFunctionRadial(this,this.Group.Model.Mesh,enumOrient.Vertical);

 if isempty(x); return; end

 deltas = diff(x);

 if ~(all(sign(deltas) > 0) || all(sign(deltas) < 0))

 fprintf('XXX x generation issue in Body\m');

 [x] =

this.DiscretizationFunctionRadial(this,this.Group.Model.Mesher,enumOrient.Vertical);

 end

 if x(end,1) < x(1,1); x = flip(x,1); end

 else

 x = [xmin; xmax];

 end

 end

 end

 end

 %% Y LIMITS

 LEN = this.divides(2)+1;

 if isempty(this.DiscretizationFunctionAxial)

 if isscalar(ymin)

 if isscalar(ymax)

 % SCALAR-SCALAR CASE

 y = transpose(linspace(ymin,ymax,LEN));

 else % only ymin is scalar - stretching

 y = zeros(LEN,Frame.NTheta);

 for i = 1:length(ymax)

 y(:,i) = transpose(linspace(ymin,ymax(i),LEN));

 end

 end

 elseif isscalar(ymax) % only ymax is scalar - stretching

 y = zeros(this.divides(2)+1,Frame.NTheta);

 for i = 1:length(ymin)

 y(:,i) = transpose(linspace(ymin(i),ymax,LEN));

 end

 else % both are stretching or moving

 y = zeros(this.divides(2)+1,Frame.NTheta);

 for i = 1:length(ymin)

 y(:,i) = transpose(linspace(ymin(i),ymax(i),LEN));

 end

 end

 else

 if isSolid

 [y] =

this.DiscretizationFunctionAxial(this,this.Group.Model.Mesher,enumOrient.Horizontal);

 if isempty(y); return; end

 deltas = diff(y);

 try

 if ~(all(all(sign(deltas) > 0)) || all(all(sign(deltas) < 0)))

 fprintf('XXX y generation issue in Body\m');

this.DiscretizationFunctionAxial(this,this.Group.Model.Mesher,enumOrient.Horizontal);

 end

 catch

 fprintf('err');

 end

 if y(end,1) < y(1,1); y = flip(y,1); end

 else

 if isempty(this.Matrix)

 fprintf(...

 ['XXX Smart Discretization functions currently cannot' ...

 ' be used for matrixless gas nodes. Problem found in axial direction

of Body:' ...

 this.name '. XXX\n']);

 return;

 else

 if this.divides(2) > 1

268

 [y] =

this.DiscretizationFunctionAxial(this,this.Group.Model.Mesher,enumOrient.Horizontal);

 if isempty(y); return; end

 deltas = diff(y);

 try

 if ~(all(all(sign(deltas) > 0)) || all(all(sign(deltas) < 0)))

 fprintf('XXX y generation issue in Body\m');

this.DiscretizationFunctionAxial(this,this.Group.Model.Mesher,enumOrient.Horizontal);

 end

 catch

 fprintf('err');

 end

 if y(end,1) < y(1,1); y = flip(y,1); end

 else

 if isscalar(ymin)

 if isscalar(ymax)

 % SCALAR-SCALAR CASE

 y = transpose(linspace(ymin,ymax,LEN));

 else % only ymin is scalar - stretching

 y = zeros(LEN,Frame.NTheta);

 for i = 1:length(ymax)

 y(:,i) = transpose(linspace(ymin,ymax(i),LEN));

 end

 end

 elseif isscalar(ymax) % only ymax is scalar - stretching

 y = zeros(LEN,Frame.NTheta);

 for i = 1:length(ymin)

 y(:,i) = transpose(linspace(ymin(i),ymax,LEN));

 end

 else % both are stretching or moving

 y = zeros(LEN,Frame.NTheta);

 for i = 1:length(ymin)

 y(:,i) = transpose(linspace(ymin(i),ymax(i),LEN));

 end

 end

 end

 end

 end

 end

 if strcmp(this.matl.name ,'Perfect Insulator') || ...

 strcmp(this.matl.name ,'Constant Temperature')

 x = [x(1,:); x(end,:)];

 y = [y(1,:); y(end,:)];

 end

 divx = size(x,1) - 1;

 divy = size(y,1) - 1;

 this.Nodes = Node.empty;

 this.Faces = Face.empty;

 %% INITIALIZE

 sendtoConnections{4} = NodeContact.empty;

 ncount = divx*divy;

 fcount = (divx-1)*divy + divx*(divy-1);

 %fcount = prod([divx divy]-[1 0])+prod(this.divides-[0 1]);

 %% FOR EACH DISTINCT NODE WITHIN BODY

 for iy = size(y,1) - 1:-1:1

 % loop initialization

 starty = y(iy,:);

 endy = y(iy+1,:);

 starty = CollapseVector(starty);

 endy = CollapseVector(endy);

 for ix = size(x,1) - 1:-1:1

 %% Define this.Nodes

 CurrentNode =

Node(NType,x(ix),x(ix+1),starty,endy,Face.empty,Node.empty,this,0);

 this.Nodes(ncount) = CurrentNode;

269

 ncount = ncount - 1;

 end

 end

 for i = 1:length(this.Nodes)

 nd = this.Nodes(i);

 if nd.xmin == xmin

 sendtoConnections{1}(end+1) = ...

 NodeContact(nd,nd.ymin,nd.ymax,FType,this.Connections(1));

 end

 if nd.xmax == xmax

 sendtoConnections{2}(end+1) = ...

 NodeContact(nd,nd.ymin,nd.ymax,FType,this.Connections(2));

 else

 % Make Vertical connection

 this.Faces(fcount) = ...

 Face([this.Nodes(i+1) nd],FType,enumOrient.Vertical);

 fcount = fcount - 1;

 end

 if nd.ymin(1) == ymin(1)

 sendtoConnections{3}(end+1) = ...

 NodeContact(nd,nd.xmin,nd.xmax,FType,this.Connections(3));

 end

 if nd.ymax(1) == ymax(1)

 sendtoConnections{4}(end+1) = ...

 NodeContact(nd,nd.xmin,nd.xmax,FType,this.Connections(4));

 else

 % Make Horizontal connection

 this.Faces(fcount) = ...

 Face([this.Nodes(i+divx) nd],FType,enumOrient.Horizontal);

 fcount = fcount - 1;

 end

 end

 %% SEND THE COMPILED LIST TO CONNECTIONS FOR PROCESSING

 for i = 1:length(this.Connections)

 this.Connections(i).addNodeContacts(sendtoConnections{i});

 end

 if ~isempty(this.Matrix) && ~isempty(this.Matrix.Geometry)

 % Pass Nodes to Matrix for generation

 [nodes, faces] = this.Matrix.discretize(this.Nodes);

 this.Nodes = [this.Nodes nodes];

 this.Faces = [this.Faces faces];

 end

 this.isStateDiscretized = true;

 % fprintf(['Body ' this.name ' is discretized, but this.Nodes still need to reference

their this.Faces.\n']);

 end

 %% GRAPHICS FUNCTIONS

 function color = getColor(this)

 if this.isActive

 color = Body.ActiveColor;

 else

 color = Body.NormalColor;

 end

 end

 function updateColor(this)

 if ~isempty(this.GUIObjects)

 for iGraphicsObject = this.GUIObjects

 set(iGraphicsObject,'FaceColor',this.getColor());

 end

 end

 end

 function removeFromFigure(this,AxisReference)

 if ~isempty(this.GUIObjects)

 children = get(AxisReference,'Children');

 for obj = this.GUIObjects

270

 if isgraphics(obj)

 for i = length(children):-1:1

 if isgraphics(children(i)) && children(i) == obj

 children(i).delete;

 break;

 end

 end

 end

 end

 this.GUIObjects = [];

 end

 end

 function show(this,AxisReference,Inc)

 if this.isChanged; this.update(); end

 % fprintf(['Plotted Body ' this.name '.\n']);

 % Remove object from plot

 % this.removeFromFigure(AxisReference);

 if this.isValid

 if ~isempty(this.matl) && ~isempty(this.matl.Color)

 fillcolor = this.matl.Color;

 else

 fillcolor = Body.MaterialUndefinedColor;

 end

 else

 fillcolor = Body.InvalidColor;

 end

 edgecolor = this.getColor();

 % Find the extents of the body and position the rectangle(s)

 % accordingly

 %% Case 1: If it has 6 connections it is a cuboid

 if length(this.Connections) == 6

 % Render as cuboid

 return;

 end

 %% Case 2: It is a cylinder

 % If one connection is vertical and x = 0

 for iConnection = this.Connections

 if iConnection.Orient == enumOrient.Vertical && iConnection.x == 0

 % Treat it as a cylinder

 [~, ~,~,maxx] = this.limits(enumOrient.Vertical);

 if nargin > 2 % Inc Exists

 [miny, maxy,~,~] = this.limits(enumOrient.Horizontal);

 if length(miny) > 1; miny = miny(Inc); end

 if length(maxy) > 1; maxy = maxy(Inc); end

 else

 % plot a motion ghost

 if this.Group.Model.showBodyGhosts && this.MovingStatus ==

enumMove.Moving

 [y1,y2,miny,maxy] = this.limits(enumOrient.Horizontal);

 gminy = max(y1);

 gmaxy = max(y2);

 OffsetRot = this.Group.Position.Rot;

 R = RotMatrix(OffsetRot);

 RootPosition = [this.Group.Position.x; this.Group.Position.y];

 p = [R*[gminy;maxx]+RootPosition ...

 R*[gmaxy;maxx]+RootPosition ...

 R*[gmaxy;-maxx]+RootPosition ...

 R*[gminy;-maxx]+RootPosition];

 this.Group.Model.GhostGUIObjects(end+1) = fill(p(1,:),p(2,:),...

 fillcolor,...

 'EdgeColor',edgecolor,...

 'LineWidth',1,...

 'HitTest','off',...

 'FaceAlpha',0.25,...

 'EdgeAlpha',0.75);

 else

271

 [~,~,miny,maxy] = this.limits(enumOrient.Horizontal);

 end

 end

 OffsetRot = this.Group.Position.Rot;

 R = RotMatrix(OffsetRot);

 RootPosition = [this.Group.Position.x; this.Group.Position.y];

 p = [R*[miny;maxx]+RootPosition ...

 R*[maxy;maxx]+RootPosition ...

 R*[maxy;-maxx]+RootPosition ...

 R*[miny;-maxx]+RootPosition];

 this.removeFromFigure(AxisReference)

 this.GUIObjects = fill(p(1,:),p(2,:),...

 fillcolor,...'FaceColor',fillcolor,...

 'EdgeColor',edgecolor,...

 'LineWidth',1,...

 'HitTest','off');

 return;

 end

 end

 %% Case 3: It is an annulus

 % Get extents of body

 [~,~,minx, maxx] = this.limits(enumOrient.Vertical);

 if nargin > 2 % Inc exists

 [miny, maxy,~,~] = this.limits(enumOrient.Horizontal);

 if length(miny) > 1; miny = miny(Inc); end

 if length(maxy) > 1; maxy = maxy(Inc); end

 else

 % plot a motion ghost

 if this.Group.Model.showBodyGhosts && this.MovingStatus == enumMove.Moving

 [y1,y2,miny,maxy] = this.limits(enumOrient.Horizontal);

 gminy = max(y1);

 gmaxy = max(y2);

 OffsetRot = this.Group.Position.Rot;

 R = RotMatrix(OffsetRot);

 RootPosition = [this.Group.Position.x; this.Group.Position.y];

 p = [R*[gminy;maxx]+RootPosition ...

 R*[gmaxy;maxx]+RootPosition ...

 R*[gmaxy;minx]+RootPosition ...

 R*[gminy;minx]+RootPosition];

 this.Group.Model.GhostGUIObjects(end+1) = fill(p(1,:),p(2,:),...

 fillcolor,...

 'EdgeColor',edgecolor,...

 'LineWidth',1,...

 'HitTest','off',...

 'FaceAlpha',0.25,...

 'EdgeAlpha',0.75);

 p = [R*[gminy;-minx]+RootPosition ...

 R*[gminy;-maxx]+RootPosition ...

 R*[gmaxy;-maxx]+RootPosition ...

 R*[gmaxy;-minx]+RootPosition];

 this.Group.Model.GhostGUIObjects(end+1) = fill(p(1,:),p(2,:),...

 fillcolor,...'FaceColor',fillcolor,...

 'EdgeColor',edgecolor,...

 'LineWidth',1,...

 'HitTest','off',...

 'FaceAlpha',0.25,...

 'EdgeAlpha',0.75);

 else

 [~,~,miny,maxy] = this.limits(enumOrient.Horizontal);

 end

 end

 OffsetRot = this.Group.Position.Rot;

 R = RotMatrix(OffsetRot);

 RootPosition = [this.Group.Position.x; this.Group.Position.y];

272

 p1 = [R*[miny;maxx]+RootPosition ...

 R*[maxy;maxx]+RootPosition ...

 R*[maxy;minx]+RootPosition ...

 R*[miny;minx]+RootPosition];

 p2 = [R*[miny;-minx]+RootPosition ...

 R*[miny;-maxx]+RootPosition ...

 R*[maxy;-maxx]+RootPosition ...

 R*[maxy;-minx]+RootPosition];

 if length(this.GUIObjects) == 2 && ...

 isgraphics(this.GUIObjects(1)) && ...

 isgraphics(this.GUIObjects(2))

 set(this.GUIObjects(1),'XData',p1(1,:));

 set(this.GUIObjects(1),'YData',p1(2,:));

 set(this.GUIObjects(1),'FaceColor',fillcolor);

 set(this.GUIObjects(1),'EdgeColor',edgecolor);

 set(this.GUIObjects(2),'XData',p2(1,:));

 set(this.GUIObjects(2),'YData',p2(2,:));

 set(this.GUIObjects(2),'FaceColor',fillcolor);

 set(this.GUIObjects(2),'EdgeColor',edgecolor);

 else

 this.removeFromFigure(AxisReference)

 this.GUIObjects(2) = fill(p2(1,:),p2(2,:),...

 fillcolor,...

 'EdgeColor',edgecolor,...

 'LineWidth',1,...

 'HitTest','off');

 this.GUIObjects(1) = fill(p1(1,:),p1(2,:),...

 fillcolor,...

 'EdgeColor',edgecolor,...

 'LineWidth',1,...

 'HitTest','off');

 end

 end

 end

end

273

Bridge

The bridge is a class that includes:

A creation function.

A function that is called when the bridge is deleted, to clean up the references.

A get/set interface used by the property editor on the main GUI.

A set of functions for updating, the name, validity and discretization status.

The discretization function which may return faces depending on the mode.

A set of functions for displaying or not displaying the bridge on the GUI.

classdef Bridge < handle

 %UNTITLED Summary of this class goes here

 % Detailed explanation goes here

 properties

 Body1 Body;

 Body2 Body;

 Connection1 Connection;

 Connection2 Connection;

 x double;

 GUIObjects;

 isActive logical = false;

 isChanged logical = true;

 isDiscretized logical = false;

 Faces Face;

 end

 properties (Dependent)

 isValid;

 name;

 end

 methods

 %% Constructor

 function this = Bridge(Body1,Body2,C1,C2,x)

 if nargin > 3

 this.Body1 = Body1;

 this.Body2 = Body2;

 this.Connection1 = C1;

 this.Connection2 = C2;

 if nargin > 4

 this.x = x;

 else

 this.x = 0;

 end

 fprintf('Bridge Created Successfully.\n');

 end

 end

 function deReference(this)

 if isvalid(this.Body1)

 iModel = this.Body1.Group.Model;

274

 elseif isvalid(this.Body2)

 iModel = this.Body2.Group.Model;

 end

 for i = length(iModel.Bridges):-1:1

 if iModel.Bridges(i) == this

 iModel.Bridges(i) = [];

 break;

 end

 end

 for iBody = [this.Body1 this.Body2]

 if isvalid(iBody); iBody.change(); end

 end

 for iCon = [this.Connection1 this.Connection2]

 if isvalid(iCon); iCon.change(); end

 end

 this.Faces(:) = [];

 if isvalid(gca)

 this.removeFromFigure(gca);

 end

 this.delete();

 end

 %% Get/Set Interface

 function Item = get(this,PropertyName)

 switch PropertyName

 case 'Connection 1'

 Item = this.Connection1;

 case 'Connection 2'

 Item = this.Connection2;

 case 'Body 1'

 Item = this.Body1;

 case 'Body 2'

 Item = this.Body2;

 otherwise

 fprintf(['XXX Bridge GET Inteface for ' PropertyName ' is not found XXX\n']);

 end

 end

 function set(~,PropertyName,~)

 switch PropertyName

 otherwise

 fprintf(['XXX Bridge SET Inteface for ' PropertyName ' is not found XXX\n']);

 return;

 end

 this.change();

 end

 %% (Update on Demand)

 function change(this)

 this.isChanged = true;

 this.isDiscretized = false;

 if this.isDiscretized

 this.Connection1.change();

 this.Connection2.change();

 end

 end

 function name = get.name(this)

 if this.Connection1.Orient == enumOrient.Vertical

 [~,~,x1,~] = this.Body1(1).limits(enumOrient.Vertical);

 if this.Connection1.x == x1; descriptor1 = 'Inside';

 else; descriptor1 = 'Outside'; end

 else

 [~,~,y1,~] = this.Body1(1).limits(enumOrient.Horizontal);

 if this.Connection1.x == y1; descriptor1 = 'Bottom';

 else; descriptor1 = 'Top'; end

 end

 if this.Connection2.Orient == enumOrient.Vertical

 [~,~,x1,~] = this.Body2(1).limits(enumOrient.Vertical);

 if this.Connection2.x == x1; descriptor2 = 'Inside';

 else; descriptor2 = 'Outside'; end

 else

 [~,~,y1,~] = this.Body2(1).limits(enumOrient.Horizontal);

275

 if this.Connection2.x == y1; descriptor2 = 'Bottom';

 else; descriptor2 = 'Top'; end

 end

 name1 = [];

 for iBody = this.Body1

 for i = 1:length(iBody.Group.Bodies)

 if iBody.Group.Bodies(i) == iBody

 break;

 end

 end

 name1 = [name1 num2str(i) ' '];

 end

 name1 = ['Bodies ' name1 ' of Group' this.Body1(1).Group.name];

 name2 = [];

 for iBody = this.Body2

 for i = 1:length(iBody.Group.Bodies)

 if iBody.Group.Bodies(i) == iBody

 break;

 end

 end

 name2 = [name2 num2str(i) ' '];

 end

 name1 = ['Bodies ' name1 ' of Group' this.Body1(1).Group.name];

 name = ['Bridge btwn. ' descriptor1 ' of ' name1 ' and ' ...

 descriptor2 ' of ' name2];

 end

 function Valid = get.isValid(this)

 Valid = true;

 if isempty(this.Body1) ...

 || isempty(this.Body2) ...

 || isempty(this.Connection1) ...

 || isempty(this.Connection2)

 Valid = false;

 fprintf('XXX Bridge is created but not fully defined XXX');

 return;

 end

 for iBody = this.Body1

 if ~any(iBody.Connections == this.Connection1)

 Valid = false;

 fprintf(['XXX Bridge ' this.name ...

 'has invalid, body and connection pairs']);

 return;

 end

 end

 for iBody = this.Body2

 if ~any(iBody.Connections == this.Connection2)

 Valid = false;

 fprintf(['XXX Bridge ' this.name ...

 'has invalid, body and connection pairs']);

 return;

 end

 end

 end

 %% Face Generation

 function resetDiscretization(this)

 this.Faces(:) = [];

 this.isDiscretized = false;

 this.isChanged = true;

 end

 function discretize(this)

 this.isDiscretized = false;

 Con1 = this.Connection1;

 Con2 = this.Connection2;

 for iBody = [Con1.Bodies Con2.Bodies]

 if ~iBody.isDiscretized

 iBody.discretize();

 if ~iBody.isDiscretized

 fprintf(['XXX Exited Discretization at Body: ' iBody.name '.XXX\n']);

 return;

 end

276

 end

 end

 if Con1.Orient == Con2.Orient && this.x == 0

 %% Standard, same Orientation

 % Validity Check

 if Con1.Orient == enumOrient.Vertical

 if Con1.x ~= Con2.x

 fprintf(['XXX Bridge: ' this.name ...

 ' Failed to discretize due to incompatible radii']);

 this.isDiscretized = false;

 return;

 end

 end

 % Occlude non-B1 Con1 with B2 Con2

 i = 1;

 keep = true(size(Con1.NodeContacts));

 for Others = Con1.NodeContacts

 if Others.Node.Body ~= this.Body1

 for B2 = Con2.NodeContacts

 if B2.Node.Body == this.Body2

 keep(i) = B2.AlignedMask(Others,-inf,inf);

 end

 if ~keep(i); break; end

 end

 end

 i = i + 1;

 end

 Con1.NodeContacts = Con1.NodeContacts(keep);

 % Add B2 Con2 copies to Con1

 % ... Copy B2 Con2

 B2C2 = NodeContact.empty;

 for NC = Con2.NodeContacts

 if NC.Node.Body == this.Body2

 B2C2(end+1) = CopyClass(NC);

 end

 end

 % Occlude B2 Con2 with B1 Con1

 i = 1;

 keep = true(size(Con2.NodeContacts));

 for B2 = Con2.NodeContacts

 if B2.Node.Body == this.Body2

 for B1 = Con1.NodeContacts

 if B1.Node.Body == this.Body1

 keep(i) = B1.AlignedMask(B2,-inf,inf);

 end

 if ~keep(i); break; end

 end

 end

 i = i + 1;

 end

 Con2.NodeContacts = Con2.NodeContacts(keep);

 % ... Add to Con1

 Con1.addNodeContacts(B2C2);

 elseif Con1.Orient == enumOrient.Vertical && Con1.Orient == Con2.Orient

 %% Both Vertical, Offset

 % Validity Check

 if Con1.x ~= Con2.x

 fprintf(['XXX Bridge: ' this.name ...

 ' Failed to discretize due to incompatible radii']);

 this.isDiscretized = true;

 return;

 end

 %% Both Vertical

277

 % Get node contacts from Con2 and shift them

 for NC = Con2.NodeContacts

 NC.Start = NC.Start + this.x;

 NC.End = NC.End + this.x;

 end

 % Con1 mask other of Con2 within bounds of B2

 keep = true(size(Con2.NodeContacts));

 switch Con1.Orient

 case enumOrient.Vertical

 [b1,b2,~,~] = this.Body2.limits(enumOrient.Horizontal);

 case enumOrient.Horizontal

 [b1,b2,~,~] = this.Body2.limits(enumOrient.Vertical);

 end

 for mask = Con1.NodeContacts

 if mask.Node.Body == this.Body1

 for i = 1:length(Con2.NodeContacts)

 if keep(i)

 target = Con2.NodeContacts(i);

 if target.Node.Body ~= this.Body2

 keep(i) = mask.AlignedMask(target,b1,b2);

 end

 end

 end

 end

 end

 Con2.NodeContacts = Con2.NodeContacts(keep);

 % Con2 mask other of Con1 within bounds of B1

 keep = true(size(Con1.NodeContacts));

 switch Con1.Orient

 case enumOrient.Vertical

 [b1,b2,~,~] = this.Body1.limits(enumOrient.Horizontal);

 case enumOrient.Horizontal

 [b1,b2,~,~] = this.Body1.limits(enumOrient.Vertical);

 end

 for mask = Con2.NodeContacts

 if mask.Node.Body == this.Body2

 for i = 1:length(Con1.NodeContacts)

 if keep(i)

 target = Con1.NodeContacts(i);

 if target.Node.Body ~= this.Body1

 keep(i) = mask.AlignedMask(target,b1,b2);

 end

 end

 end

 end

 end

 Con1.NodeContacts = Con1.NodeContacts(keep);

 % Copy NContacts of B1 from C1 onto C2

 MoveContacts = NodeContact.empty;

 for NC = Con1.NodeContacts

 if NC.Node.Body == this.Body1

 MoveContacts(end+1) = NodeContact(...

 NC.Node,NC.Start,NC.End,NC.Type,NC.Connection);

 end

 end

 Con2.addNodeContacts(MoveContacts);

 % Unshift Node Contacts in Con2

 for NC = Con2.NodeContacts

 NC.Start = NC.Start - this.x;

 NC.End = NC.End - this.x;

 end

 elseif Con1.Orient == enumOrient.Horizontal && ...

 Con2.Orient == enumOrient.Horizontal

 %% Both Horizontal, Offset

 % Determine which one to take from, it would be the smaller of the

278

 % two

 r1 = 0;

 r2 = 0;

 for NContact = this.Connection1.NodeContacts

 if any(NContact.Node.Body == this.Body1)

 if r1 < NContact.End

 r1 = NContact.End;

 end

 end

 end

 for NContact = this.Connection2.NodeContacts

 if any(NContact.Node.Body == this.Body2)

 if r2 < NContact.End; r2 = NContact.End; end

 end

 end

 if r1 > r2

 Source = this.Connection2;

 Destination = this.Connection1;

 DestinationBody = this.Body1;

 SourceBody = this.Body2;

 max_r = r2;

 else

 Source = this.Connection1;

 Destination = this.Connection2;

 DestinationBody = this.Body2;

 SourceBody = this.Body1;

 max_r = r1;

 end

 min_r = 10000;

 for NContact = Source.NodeContacts

 if NContact.Node.Body == SourceBody

 if min_r > NContact.Start

 min_r = NContact.Start;

 if min_r == 0; break; end

 end

 end

 end

 % Gather Node Contacts from Source for comparison with Destination

 SContacts(length(Source.NodeContacts)) = NodeContact; n = 1;

 keep = true(size(Source.NodeContacts));

 for i = 1:length(Source.NodeContacts)

 NContact = Source.NodeContacts(i);

 if NContact.Node.Body == SourceBody

 SContacts(n) = NContact; n = n + 1;

 keep(i) = false;

 end

 end

 Source.NodeContacts = Source.NodeContacts(keep);

 SContacts = SContacts(1:n-1);

 Ss = zeros(size(SContacts));

 Es = zeros(size(SContacts));

 i = 1;

 for NContact = SContacts

 Es(i) = NContact.End;

 Ss(i) = NContact.Start;

 i = i + 1;

 end

 keep = true(size(Destination.NodeContacts));

 keep2 = true(size(SContacts));

 for i = 1:length(Destination.NodeContacts)

 if Destination.NodeContacts(i).Node.Body == DestinationBody

 DCont = Destination.NodeContacts(i);

 s = DCont.Start;

 e = DCont.End;

 for j = 1:length(SContacts)

 if keep2(j)

 % Calculate Percentange that the segment covers

 P = ...

279

 GetAreaPercentHorizontal(this.x,s,e,2*Es(j)) - ...

 GetAreaPercentHorizontal(this.x,s,e,2*Ss(j));

 if P == 0; continue; end

 if isempty(DCont.data)

 DCont.data = struct('Perc',1);

 end

 if isfield(DCont.data,'Perc')

 DCont.data.Perc = DCont.data.Perc - P;

 else; DCont.data.Perc = 1 - P;

 end

 % Calculate the Percentage of the source that the segment

 % ... covers

 P2 = ...

 GetAreaPercentHorizontal(this.x,Ss(j),Es(j),2*e) - ...

 GetAreaPercentHorizontal(this.x,Ss(j),Es(j),2*s);

 if isempty(SContacts(j).data)

 SContacts(j).data = struct('Perc',1);

 end

 if isfield(SContacts(j).data,'Perc')

 SContacts(j).data.Perc = SContacts(j).data.Perc - P2;

 else; SContacts(j).data.Perc = 1 - P2;

 end

 % Make Faces

 P1 = DCont.data.Perc;

 DCont.data.Perc = 1;

 NewFace = Face(...

 NodeContact(SContacts(j).Node,...

 SContacts(j).Start + this.x,SContacts(j).End + this.x,...

 SContacts(j).Type,SContacts(j).Connection),DCont,true);

 DCont.data.Perc = P1;

 % Modify Properties

 if isfield(NewFace.data,'Area')

 NewFace.data.Area = NewFace.data.Area*P;

 if isfield(NewFace.data,'R')

 NewFace.data.R = NewFace.data.R/P;

 elseif isfield(NewFace.data,'Dh')

 NewFace.data.Dh = 2*(max_r - min_r);

 end

 elseif isfield(NewFace.data,'U')

 NewFace.data.U = NewFace.data.U*P;

 end

 this.Faces = [this.Faces NewFace];

 if ~keep(i); break; end

 end

 end

 end

 end

 for i = 1:length(Destination.NodeContacts)

 if isfield(Destination.NodeContacts(i).data,'Perc')

 if Destination.NodeContacts(i).data.Perc <= 1e-6

 keep(i) = false;

 end

 end

 end

 Destination.NodeContacts = Destination.NodeContacts(keep);

 for i = 1:length(SContacts)

 if isfield(SContacts(i).data,'Perc')

 if SContacts(i).data.Perc <= 1e-6

 keep2(i) = false;

 end

 end

 end

 Source.addNodeContacts(SContacts(keep2));

 else

 fprintf(['XXX The Bridge Discretization method has not been ' ...

 'updated to improved standards. It may not work as expected XXX\n']);

280

 %% Mix, Offset

 % Move Node Contacts from Connection2 that are associated with

 % Body 2 and add them to Connection1 in range of Body1

 if this.Connection1.Orient == enumOrient.Horizontal

 Source = this.Connection1;

 SourceBody = this.Body1;

 Destination = this.Connection2;

 DestinationBody = this.Body2;

 else

 Source = this.Connection2;

 SourceBody = this.Body2;

 Destination = this.Connection1;

 DestinationBody = this.Body1;

 end

 max_r = 0;

 min_r = 10000;

 for NContact = Source.NodeContacts

 if max_r < NContact.End

 max_r = NContact.End;

 end

 if min_r > NContact.Start

 min_r = NContact.Start;

 end

 end

 Dh = 2*max_r - 2*min_r;

 DontKeep = false(size(Source.NodeContacts));

 for i = 1:length(Source.NodeContacts)

 if Source.NodeContacts(i).Node.Body == SourceBody

 SContacts = Source.NodeContacts(i);

 DontKeep(i) = true;

 end

 end

 Source.NodeContacts(DontKeep) = [];

 for i = 1:length(Destination.NodeContacts)

 if Destination.NodeContacts(i).Node.Body == DestinationBody

 r = Destination.x;

 DCont = Destination.NodeContacts(i);

 s = DCont.Start;

 e = DCont.End;

 for j = 1:length(SContacts)

 SCont = SContacts(j);

 % Calculate Percentange that the segment covers

 if isscalar(s)

 if isscalar(e)

 % Both scalars

 P = GetAreaPercentMix(r,this.x,s,e,SCont.End) - ...

 GetAreaPercentMix(r,this.x,s,e,SCont.Start);

 else

 % just "s" is a scalar

 for k = 1:length(e)

 P(k) = GetAreaPercentMix(r,this.x,s,e(k),SCont.End) - ...

 GetAreaPercentMix(r,this.x,s,e(k),SCont.Start);

 end

 end

 else

 if isscalar(e)

 % just "e" is a scalar

 for k = 1:length(s)

 P(k) = GetAreaPercentMix(r,this.x,s(k),e,SCont.End) - ...

 GetAreaPercentMix(r,this.x,s(k),e,SCont.Start);

 end

 else

 % Both vectors

 for k = 1:length(s)

 P(k) = GetAreaPercentMix(r,this.x,s(k),e(k),SCont.End) - ...

 GetAreaPercentMix(r,this.x,s(k),e(k),SCont.Start);

 end

 end

 end

 if ~isempty(DCont.data) && isfield(DCont.data,'Perc')

 DCont.data.Perc = DCont.data.Perc - P;

281

 else

 DCont.data.Perc = 1 - P;

 end

 if any(P > 0)

 % Make Faces

 % Precondition

 SCont.Start = this.x - max_r;

 SCont.End = this.x + max_r;

 P1 = DCont.data.Perc;

 DCont.data.Perc = 1;

 NewFace = Face(SCont,DCont);

 % Recondition

 DCont.data.Perc = P1;

 if isfield(NewFace.data,'Area')

 NewFace.data.Area = NewFace.data.Area.*P;

 if isfield(NewFace.data,'Dh')

 NewFace.data.Dh = Dh;

 elseif isfield(NewFace.data,'R')

 NewFace.data.R = NewFace.data.R./P;

 end

 elseif isfield(NewFace.data,'U')

 NewFace.data.U = NewFace.data.U.*P;

 end

 this.Faces = [this.Faces NewFace];

 end

 if DontKeep(i)

 break;

 end

 end

 end

 end

 Destination.NodeContacts(DontKeep) = [];

 end

 this.isDiscretized = true;

 end

 %% Graphics

 function removeFromFigure(this,AxisReference)

 if ~isempty(this.GUIObjects)

 children = get(AxisReference,'Children');

 for obj = this.GUIObjects

 if isgraphics(obj)

 for i = length(children):-1:1

 if isgraphics(children(i)) && children(i) == obj

 children(i).delete;

 break;

 end

 end

 end

 end

 this.GUIObjects = [];

 end

 end

 function show(this,AxisReference)

 this.removeFromFigure(AxisReference);

 % Plot a dotted line between the middle of the Connection1's Overlap

 % with Body1 to the middle of Connection2's Overlap with Body2

 % Find P1;

 Ax = this.Connection1.Group;

 R = RotMatrix(Ax.Position.Rot - pi/2);

 d = this.Connection1.x;

 switch this.Connection1.Orient

 case enumOrient.Vertical

 [~,~,y1,y2] = this.Body1.limits(enumOrient.Horizontal);

 A = [Ax.Position.x; Ax.Position.y] + R*[d; (y1+y2)/2];

 B = [Ax.Position.x; Ax.Position.y] + R*[-d; (y1+y2)/2];

 case enumOrient.Horizontal

 [~,~,x1,x2] = this.Body1.limits(enumOrient.Vertical);

 A = [Ax.Position.x; Ax.Position.y] + R*[(x1+x2)/2; d];

282

 B = [Ax.Position.x; Ax.Position.y] + R*[-(x1+x2)/2; d];

 end

 % Find P2;

 Ax = this.Connection2.Group;

 R = RotMatrix(Ax.Position.Rot - pi/2);

 d = this.Connection2.x;

 switch this.Connection1.Orient

 case enumOrient.Vertical

 [~,~,y1,y2] = this.Body2.limits(enumOrient.Horizontal);

 C = [Ax.Position.x; Ax.Position.y] + R*[d; (y1+y2)/2];

 D = [Ax.Position.x; Ax.Position.y] + R*[-d; (y1+y2)/2];

 case enumOrient.Horizontal

 [~,~,x1,x2] = this.Body2.limits(enumOrient.Vertical);

 C = [Ax.Position.x; Ax.Position.y] + R*[(x1+x2)/2; d];

 D = [Ax.Position.x; Ax.Position.y] + R*[-(x1+x2)/2; d];

 end

 % Find minimum pair

 % pair = zeros(2,2);

 dAC = Dist4Compare(A,C);

 dAD = Dist4Compare(A,D);

 dmin = Dist4Compare(B,D);

 if dAC < dmin; pair = [A C]; dmin = dAC;

 else; pair = [B D];

 end

 if dAD < dmin; pair = [A D]; dmin = dAD; end

 if Dist4Compare(B,C) < dmin; pair = [B C]; end

 % Find the closest blank space in the model and drag the label there

 %[d, y, h] = this.Body1.Group.Model.findInterSpace(pair);

 %newpair = [pair(:,1) [d; y+h/2] [d; y-h/2] pair(:,2)];

 % Two points in pair are minimum distance

 this.GUIObjects = line(...

 pair(1,:),pair(2,:),...

 'Color',[0.5 0.5 0.5]);

 end

 end

end

283

Connection

The connection is a class that includes the following functions:

A constructor / creation function.

A function that is called before it is deleted to clean up the external references.

A get/set interface used by the property dropdown editor on the main GUI.

A set of functions to append the internal lists of other classes.

A series of functions to update the name, list of node contacts

The discretization function.

A series of functions used to display or not display the connection on the main GUI.

classdef Connection < handle

 %UNTITLED Summary of this class goes here

 % Detailed explanation goes here

 properties (Constant)

 Extension = 1.1;

 MinimumDisplayLength = 0.4;

 ActiveColor = [0 1 0];

 NormalColor = [0.2 0.2 0.2];

 end

 properties (Access = public)

 ID;

 Group Group;

 Bodies Body;

 isActive = false;

 x double = 0;

 Orient enumOrient = enumOrient.Horizontal;

 RefFrame Frame;

 GUIObjects;

 NodeContacts NodeContact;

 Faces Face;

 isDiscretized logical = false;

 isChanged logical = true;

 BodiesToNotJoin Body;

 end

 properties (Dependent)

 name;

 index;

 id;

 end

 methods

 %% Constructor

 function this = Connection(x,Orient,Group)

 switch nargin

 % case 0

 % obj.x = 0;

284

 % obj.Orient = enumOrient.Horizontal;

 case 1

 this.x = x;

 % this.Orient = enumOrient.Horizontal;

 case 2

 this.x = x;

 this.Orient = Orient;

 case 3

 this.x = x;

 this.Orient = Orient;

 this.Group = Group;

 this.ID = Group.Model.getConID();

 end

 end

 function deReference(this)

 % Remove Reference from Group

 iGroup = this.Group;

 for i = length(iGroup.Connections):-1:1

 if iGroup.Connections(i) == this

 iGroup.Connections(i) = [];

 iGroup.isChanged = true;

 end

 end

 % Remove relations from the relationship managers

 for RMan = iGroup.RelationManagers

 if RMan.Orient == this.Orient

 RMan.isChanged = true;

 for i = length(RMan.Relations):-1:1

 if RMan.Relations(i).con1 == this || ...

 RMan.Relations(i).con2 == this

 RMan.Relations(i).deReference();

 end

 end

 RMan.update();

 end

 end

 if ~isempty(this.Bodies) % i.e. Body/deReference has not been called already

 % Remove Reference from any Bodies

 for iBody = this.Bodies

 iBody.deReference();

 iBody.delete();

 end

 % Remove Reference from any Bridges

 iModel = iGroup.Model;

 for i = length(iModel.Bridges):-1:1

 if iModel.Bridges(i).Connection1 == this || iModel.Bridges(i).Connection2 == this

 iModel.Bridges(i).deReference();

 iModel.Bridge(i).delete();

 iModel.Bridges(i) = [];

 end

 end

 % Remove Reference from any Leaks

 for i = length(iModel.LeakConnections):-1:1

 if iModel.LeakConnections(i).Connection1 == this ...

 || iModel.LeakConnections(i).Connection2 == this

 iModel.LeakConnections(i).deReference();

 iModel.LeakConnections(i).delete();

 iModel.LeakConnections(i) = [];

 end

 end

 % Remove any visual remenant

 this.removeFromFigure(gca);

 end

 this.delete();

 end

 function change(this)

 this.isChanged = true;

 this.Faces(:) = [];

285

 this.NodeContacts(:) = [];

 for iBody = this.Bodies; iBody.change(); end

 this.isDiscretized = false;

 end

 function CleanUpBodies(this)

 for i = length(this.Bodies):-1:1

 if ~isvalid(this.Bodies(i))

 this.Bodies(i) = [];

 end

 end

 end

 function update(this)

 if isempty(this.ID)

 this.ID = this.Group.Model.getConID();

 end

 if any(~isvalid(this.Bodies))

 this.Bodies = this.Bodies(isvalid(this.Bodies));

 end

 if ~isvalid(this.RefFrame)

 this.RefFrame = [];

 end

 this.isChanged = false;

 end

 function [yesno] = IsFixedTo(this, other)

 yesno = false;

 for iRM = this.Group.RelationManagers

 if iRM.Orient == this.Orient && iRM.Orient == other.Orient

 iRM.update();

 for row = 1:size(iRM.Grid,1)

 if iRM.Grid(row,this.index) && ...

 iRM.Grid_modes{row} == enumRelation.Constant

 if iRM.Grid(row,other.index)

 yesno = true;

 return;

 end

 end

 end

 end

 end

 end

 %% Get/Set Interface

 function Item = get(this,PropertyName)

 if this.isChanged; this.update(); end

 switch PropertyName

 case 'x'

 Item = this.x;

 case 'RefFrame'

 Item = this.RefFrame;

 case 'Bodies'

 Item = this.Bodies;

 case 'Isolated Bodies'

 Item = this.BodiesToNotJoin;

 case 'isStationary'

 if isempty(this.RefFrame)

 Item = true;

 else

 Item = false;

 end

 otherwise

 fprintf(['XXX Connection GET Inteface for ' PropertyName ' is not found XXX\n']);

 end

 end

 %% (Update on Demand) Triggers

 function name = get.name(this)

 switch this.Orient

 case enumOrient.Vertical

 name = ['Vertical Connection at x = ' num2str(this.x,3)];

 case enumOrient.Horizontal

 name = ['Horizontal Connection at y = ' num2str(this.x,3)];

286

 end

 end

 function index = get.index(this)

 i = 1;

 for iCon = this.Group.Connections

 if iCon == this

 index = i;

 return;

 end

 i = i + 1;

 end

 index = 0;

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'x'

 % Check all Relationships

 for iCon = this.Group.Connections

 if iCon.x == Item && ...

 iCon.Orient == this.Orient

 % This kind of shift can't result in a merge.

 return;

 end

 end

 for RMan = this.Group.RelationManagers

 if RMan.Orient == this.Orient

 RMan.Edit(this,Item-this.x);

 break;

 end

 end

 case 'RefFrame'

 if isempty(Item); this.RefFrame = Frame.empty;

 else; this.RefFrame = Item;

 end

 otherwise

 fprintf(['XXX Connection SET Inteface for ' ...

 PropertyName ' is not found XXX\n']);

 return;

 end

 this.change();

 end

 function set.isActive(this,value)

 if islogical(value)

 if isvalid(this)

 this.isActive = value;

 end

 else

 fprintf('Input to isActive must be a boolean value.\n');

 end

 end

 function functions(this,FunctionName)

 switch FunctionName

 case 'Add Bodies To Not Join'

 [cx,cy] = ginput(1);

 TheBody = findConnectedBody(this,[cx cy]);

 this.addBodyToNotJoin(TheBody);

 case 'Remove Bodies To Not Join'

 if ~isempty(this.BodiesToNotJoin)

 objects = cell(1,length(this.BodiesToNotJoin));

 names = objects;

 i = 1;

 for iBody = this.BodiesToNotJoin

 objects{i} = iBody;

 names{i} = iBody.name;

 i = i + 1;

 end

 [indx,tf] = listdlg(...

287

 'PromptString','Which one are you going to remove?',...

 'SelectionMode','single',...

 'ListString',names);

 if tf; this.BodiesToNotJoin(indx) = []; end

 end

 otherwise

 end

 end

 %% Operators

 function isequal = isFunctionallyEqualTo(this,otherConnection)

 if this.x == otherConnection.x && ...

 this.Orient == otherConnection.Orient && ...

 ((isempty(this.RefFrame) && isempty(otherConnection.RefFrame)) || ...

 (isempty(this.RefFrame) == isempty(otherConnection.RefFrame) && ...

 this.RefFrame == otherConnection.RefFrame))

 isequal = true;

 else

 isequal = false;

 end

 end

 %% Interating

 function addBody(this,BodiesToAdd)

 try

 count = length(this.Bodies);

 if isrow(BodiesToAdd)

 this.Bodies = [this.Bodies BodiesToAdd];

 else

 this.Bodies = [this.Bodies BodiesToAdd'];

 end

 this.Bodies = unique(this.Bodies);

 if count ~= length(this.Bodies)

 this.removeFaces();

 end

 return;

 catch

 fprintf('XXX Error in Connection/AddBody XXX\n');

 end

 end

 function addBodyToNotJoin(this,BodiesToNotJoin)

 len = length(this.BodiesToNotJoin);

 this.BodiesToNotJoin(len+length(BodiesToNotJoin)) = Body();

 this.BodiesToNotJoin(length(len+1:end)) = BodiesToNotJoin;

 this.BodiesToNotJoin = unique(this.BodiesToNotJoin);

 end

 function TheBody = findConnectedBody(this,Pnt)

 if this.isChanged; this.update(); end

 % Find a body in this Group that is selected and closest

 Pntmod = (RotMatrix(pi/2-this.Group.Position.Rot)*Pnt')...

 - [this.Group.Position.x; this.Group.Position.y];

 mindist = inf;

 for iBody = this.Bodies

 % Establish Rectangle of iBody

 [~,~,x1,x2] = iBody.limits(enumOrient.Vertical);

 [~,~,y1,y2] = iBody.limits(enumOrient.Horizontal);

 R.Width = x2-x1;

 R.Height = y2-y1;

 R.Cx = (x1+x2)/2;

 R.Cy = (y1+y2)/2;

 dist = Dist2Rect(Pntmod(1),Pntmod(2),R.Cx,R.Cy,R.Width,R.Height);

 if dist < mindist

 mindist = dist;

 TheBody = iBody;

 else

 R.Cx = -R.Cx;

 dist = Dist2Rect(Pntmod(1),Pntmod(2),R.Cx,R.Cy,R.Width,R.Height);

 if dist < mindist

 if dist == 0

288

 TheBody = iBody;

 return;

 end

 mindist = dist;

 TheBody = iBody;

 end

 end

 end

 end

 %% Working with nodes

 function deleteNodeContactsFromObj(this,Obj)

 for iBridge = this.Group.Model.Bridges

 if iBridge.Connection1 == this

 iBridge.change();

 elseif iBridge.Connection2 == this

 iBridge.change();

 end

 end

 this.cleanUpNodeContacts();

 LEN = length(this.NodeContacts);

 if LEN == 0; return; end

 if this.isDiscretized; this.removeFaces(); end

 i = 1;

 while (i < LEN+1 && this.NodeContacts(i).Node.Body ~= Obj); i = i + 1; end

 START = i - 1;

 while (i < LEN+1 && this.NodeContacts(i).Node.Body == Obj); i = i + 1; end

 END = i;

 if START ~= 0

 if END ~= LEN+1

 this.NodeContacts = [this.NodeContacts(1:START) this.NodeContacts(END:LEN)];

 else

 this.NodeContacts = this.NodeContacts(1:START);

 end

 else

 if END ~= LEN+1

 this.NodeContacts = this.NodeContacts(END:LEN);

 else

 this.NodeContacts = NodeContact.empty;

 end

 end

 end

 function addNodeContacts(this,newContacts)

 this.NodeContacts = [this.NodeContacts newContacts];

 if this.isDiscretized

 this.removeFaces();

 end

 end

 function removeFaces(this)

 this.Faces = Face.empty;

 this.isDiscretized = false;

 end

 function cleanUpNodeContacts(this)

 dontkeep = true(size(this.NodeContacts));

 for i = 1:length(this.NodeContacts)

 if isvalid(this.NodeContacts(i)) && ...

 isvalid(this.NodeContacts(i).Node) && ...

 isvalid(this.NodeContacts(i).Node.Body)

 dontkeep(i) = false;

 end

 end

 if any(dontkeep)

 this.NodeContacts = this.NodeContacts(~dontkeep);

 end

 end

 function resetDiscretization(this)

 if isvalid(this)

 this.NodeContacts(:) = [];

 this.Faces(:) = [];

 this.isDiscretized = false;

 this.isChanged = true;

289

 end

 end

 function discretize(this)

 if this.isChanged; this.update(); end

 this.Faces = Face.empty;

 if isempty(this.Bodies) || ...

 (this.Orient == enumOrient.Vertical && this.x == 0)

 this.isDiscretized = true;

 this.Faces = Face.empty;

 return;

 end

 % Remove Bodies that should not conduct

 keep = true(1,length(this.NodeContacts));

 for iBody = this.BodiesToNotJoin

 for i = 1:length(this.NodeContacts)

 if this.NodeContacts(i).Node.Body == iBody

 keep(i) = false;

 end

 end

 end

 this.NodeContacts = this.NodeContacts(keep);

 if ~this.isDiscretized

 for iBody = this.Bodies

 if ~iBody.isDiscretized

 iBody.discretize();

 if ~iBody.isDiscretized

 return;

 end

 end

 end

 if this.Group.isChanged

 this.Group.isEnvironmentCasted = true;

 this.Group.update();

 elseif ~this.Group.isEnvironmentCasted

 this.Group.isEnvironmentCasted = true;

 this.Group.updateBorder(true);

 end

 %% INITIALIZE

 this.Faces(2*length(this.NodeContacts)) = Face();

 n = 1;

 % Clean Up

 keep = true(size(this.NodeContacts));

 for i = 1:length(this.NodeContacts)

 if ~isvalid(this.NodeContacts(i)) || ...

 ~isvalid(this.NodeContacts(i).Node) || ...

 ~isvalid(this.NodeContacts(i).Node.Body)

 keep(i) = false;

 end

 end

 if any(~keep); this.NodeContacts = this.NodeContacts(keep); end

 % Sort the environmental connections to the end

 members = false(size(this.NodeContacts)); i = 1;

 for nc = this.NodeContacts

 members(i) = this.NodeContacts(i).Node.Type == enumNType.EN;

 i = i + 1;

 end

 envNC = this.NodeContacts(members);

 this.NodeContacts(members) = [];

 this.addNodeContacts(envNC);

 %% GO THROUGH EACH NODE COMBINATION

 keep = true(length(this.NodeContacts),1);

% len = length(keep);

 for i = 1:length(this.NodeContacts)

 if length(keep) >= i && keep(i)

 for j = i+1:length(this.NodeContacts)

 if length(keep) >= j && keep(j)

 if this.NodeContacts(i).Node.Body ~= this.NodeContacts(j).Node.Body

290

 activeTimes = this.NodeContacts(i).activeTimes(this.NodeContacts(j));

 if ~isempty(activeTimes)

 this.Faces(n) = Face(this.NodeContacts(i),this.NodeContacts(j),activeTimes);

 if ~isempty(this.Faces(n).ActiveTimes)

 fc = this.Faces(n);

 switch fc.Type

 case enumFType.Solid

 if isempty(this.RefFrame) || ...

 fc.Nodes(1).Type == enumNType.SN && ...

 fc.Nodes(2).Type == enumNType.SN

 if ~any(fc.data.U > 0)

 n = n - 1;

 end

 end

 case enumFType.Mix

 if ~any(fc.data.Area > 0)

 n = n - 1;

 end

 case enumFType.Environment

 if isempty(this.RefFrame) && ~any(fc.data.U > 0)

 n = n - 1;

 end

 case enumFType.Gas

 if ~any(fc.data.Area > 0)

 n = n - 1;

 end

 end

 n = n + 1;

 end

 end

 end

 end

 end

 end

 end

 this.Faces = this.Faces(1:n-1);

 this.isDiscretized = true;

 end

 end

 %% Display this Connection on the screen

 function removeFromFigure(this,AxisReference)

 if ~isempty(this.GUIObjects)

 children = get(AxisReference,'Children');

 for obj = this.GUIObjects

 if isgraphics(obj)

 for i = length(children):-1:1

 if isgraphics(children(i)) && children(i) == obj

 children(i).delete;

 break;

 end

 end

 end

 end

 end

 this.GUIObjects = [];

 end

 function color = getColor(this)

 color = [0.5 0.5 0.5];

 if isempty(this.Group)

 if isempty(this.Bodies)

 fprinf(['XXX Connection '

 this.name ' does not know what its group is XXX\n']);

 return;

 else

 found = false;

 for i = 1:length(this.Bodies)

 if ~isempty(this.Bodies(i).Group)

 this.Group = this.Bodies(i).Group;

 found = true;

 break;

291

 end

 end

 if ~found

 fprinf(['XXX Connection '

 this.name ' does not know what its group is XXX\n']);

 return;

 end

 end

 end

 if this.Group.Model.showRelations

 for RMan = this.Group.RelationManagers

 if RMan.Orient == this.Orient

 ind = this.index;

 if isempty(RMan.Grid) || ind > size(RMan.Grid,2)

 RMan.update();

 end

 rows = find(RMan.Grid(:,ind) == true);

 if ~isempty(rows)

 max_count = 0;

 max_index = 0;

 for i = rows

 count = sum(RMan.Grid(i,:));

 if count > max_count

 max_index = i;

 max_count = count;

 end

 end

 color = RMan.getColor(max_index);

 break;

 end

 if this.isActive

 color = Connection.ActiveColor;

 else

 color = Connection.NormalColor;

 end

 break;

 end

 end

 else

 if this.isActive

 color = Connection.ActiveColor;

 else

 color = Connection.NormalColor;

 end

 end

 end

 function updateColor(this)

 if ~isempty(this.GUIObjects)

 for iGraphicsObject = this.GUIObjects

 set(iGraphicsObject,'Color',this.getColor());

 end

 end

 end

 function show(this, AxisReference)

 if this.isChanged; this.update(); end

 color = this.getColor();

 switch this.Orient

 case enumOrient.Vertical

 % Plot two lines on equal sides of the Group

 % Find vertical extent of the Group

 VectorLength = Connection.Extension*max(this.Group.Height,0.1);

 OffsetRot = this.Group.Position.Rot;

 Offset = (VectorLength-this.Group.Height)/2;

 % Make a template vector

 R = RotMatrix(OffsetRot);

 templateVector = R * [VectorLength; 0];

 Trans = [this.Group.Position.x; this.Group.Position.y];

 LeftStart = R * [-Offset; this.x] + Trans;

 RightStart = R * [-Offset; -this.x] + Trans;

 % Plot line

292

 if this.x == 0

% if length(this.GUIObjects) == 1 && isgraphics(this.GUIObjects(1))

% % Plot line

% try

% set(this.GUIObjects,'Color',color);

% set(this.GUIObjects,'XData',...

% [LeftStart(1) LeftStart(1)+templateVector(1)]);

% set(this.GUIObjects,'YData',...

% [LeftStart(2) LeftStart(2)+templateVector(2)]);

% catch

% this.removeFromFigure(AxisReference);

% this.GUIObjects(1) = line(...

% [LeftStart(1) LeftStart(1)+templateVector(1)],...

% [LeftStart(2) LeftStart(2)+templateVector(2)],...

% 'Userdata',this,'Color',color,'LineStyle','--',...

% 'HitTest','off');

% end

% else

 this.removeFromFigure(AxisReference);

 this.GUIObjects(1) = line(...

 [LeftStart(1) LeftStart(1)+templateVector(1)],...

 [LeftStart(2) LeftStart(2)+templateVector(2)],...

 'Userdata',this,'Color',color,'LineStyle','--',...

 'HitTest','off');

% end

 else

% if length(this.GUIObjects) == 2 && ...

% isgraphics(this.GUIObjects(1)) && isgraphics(this.GUIObjects(2))

% set(this.GUIObjects(1),'Color',color);

% set(this.GUIObjects(1),'XData',...

% [LeftStart(1) LeftStart(1)+templateVector(1)]);

% set(this.GUIObjects(1),'YData',...

% [LeftStart(2) LeftStart(2)+templateVector(2)]);

% set(this.GUIObjects(2),'Color',color);

% set(this.GUIObjects(2),'XData',...

% [RightStart(1) RightStart(1)+templateVector(1)]);

% set(this.GUIObjects(2),'YData',...

% [RightStart(2) RightStart(2)+templateVector(2)]);

% else

 this.removeFromFigure(AxisReference);

 this.GUIObjects(2) = line(...

 [RightStart(1) RightStart(1)+templateVector(1)],...

 [RightStart(2) RightStart(2)+templateVector(2)],...

 'Userdata',this,'Color',color,'LineStyle','--',...

 'HitTest','off');

 this.GUIObjects(1) = line(...

 [LeftStart(1) LeftStart(1)+templateVector(1)],...

 [LeftStart(2) LeftStart(2)+templateVector(2)],...

 'Userdata',this,'Color',color,'LineStyle','--',...

 'HitTest','off');

% end

 end

 case enumOrient.Horizontal

 % Plot a single line

 % Find horizontal extent of the Group

 VectorLength = Connection.Extension*this.Group.Width/2;

 OffsetRot = this.Group.Position.Rot;

 % Make a template vector

 R = RotMatrix(OffsetRot);

 Trans = [this.Group.Position.x ;

 this.Group.Position.y];

 LeftPoint = R * [this.x; 0.5*VectorLength] + Trans;

 RightPoint = R * [this.x; -0.5*VectorLength] + Trans;

 % Plot line

 if length(this.GUIObjects) == 1 && isgraphics(this.GUIObjects)

 set(this.GUIObjects,'Color',color);

 set(this.GUIObjects,'XData',[LeftPoint(1) RightPoint(1)]);

 set(this.GUIObjects,'YData',[LeftPoint(2) RightPoint(2)]);

 else

 this.GUIObjects = line(...

293

 [LeftPoint(1) RightPoint(1)],[LeftPoint(2) RightPoint(2)],...

 'Userdata',this,'Color',color,'LineStyle','--',...

 'HitTest','off');

 end

 end

 % fprintf(['Plotted Connection ' this.name '.\n']);

 end

 end

end

% Helper functions - UNUSED

function face = appendDynamicFaceVert(face,k,T1,s,e,Area)

% Face.

% .isDynamic - DONE

% .Node1 - DONE

% .Node2 - DONE

% .A - Mix/Gas Append

% .dh - Static

% .Type - DONE

% .value - Solid/Mix/Gas Append

% .K - Gas Append

% .ActiveTimes - Always Append

if s < e

 switch face.Type

 case enumFType.Solid

 % Combine resistances and store as a conductance

 face.value = [face.value Area(n,s,e)/(n1.value+n2.value)];

 case enumFType.Mix

 % Store only the resistance as a conductance

 if T1 == enumFType.Solid

 face.A = [face.A Area(n,s,e)];

 face.value = [face.value (face.A(end)/(n1.value))];

 else

 face.A = [face.A Area(n,s,e)];

 face.value = [face.value (face.A(end)/(n2.value))];

 end

 case enumFType.Gas

 % Record the combined distance stored in Ri

 face.A = [face.A Area(n,s,e)];

 face.value = [face.value n1.value + n2.value];

 end

 face.ActiveTimes = [face.ActiveTimes k];

end

end

function face = genStaticFace(n1,n2,Area)

face.Node1 = n1.node;

face.Node2 = n2.node;

face.isDynamic = false;

face.K = 0;

face.ActiveTimes = [];

face.Type = getFaceType(n1.Type,n2.Type);

switch face.Type

 case enumFType.Solid

 % Combine resistances and store as a conductance

 face.value = ...

 (Area(n,max([n1.Start n2.Start]),min([n1.End n2.End]))...

 /(n1.value + n2.value));

 case enumFType.Mix

 % Store only the resistance as a conductance

 if n1.Type == enumFType.Solid

 face.dh = n2.dh;

 face.A = Area(n,max([n1.Start n2.Start]),min([n1.End n2.End]));

 face.value = (face.A/(n1.value));

 else

 face.dh = n1.dh;

 face.A = Area(n,max([n1.Start n2.Start]),min([n1.End n2.End]));

 face.value = (face.A/(n2.value));

 end

 case enumFType.Gas

 % Record the combined distance stored in value

 face.value = n1.value + n2.value;

294

end

end

295

Environment

The environment is a class that contains the following functions:

A constructor / creation function.

A get / set interface used by the property drop-down editor on the main GUI.

A short discretize function.

A function to remove its graphical representation from the figure, show functionality is within

group.

classdef Environment < handle

 %ENVIRONMENT Summary of this class goes here

 % Detailed explanation goes here

 properties (Constant)

 StdPressure = 101325; % Pa

 StdTemperature = 298; % K

 Stdh = 20; % W/m*K

 StdGas = 'AIR';

 end

 properties

 Pressure double;

 Temperature double;

 h double;

 matl Material;

 nodeIndex double;

 name char;

 GUIObjects = [];

 isDiscretized logical = false;

 Node Node;

 end

 properties (Dependent)

 Group

 end

 methods

 %% Constructor

 function this = Environment(Pressure,Temperature,h,MaterialRef)

 switch nargin

 case 0

 this.Pressure = Environment.StdPressure;

 this.Temperature = Environment.StdTemperature;

 this.h = Environment.Stdh;

 this.matl = Material(Environment.StdGas);

 this.name = 'Standard AIR Environment';

 case 1

 this.Pressure = Pressure;

 this.Temperature = Environment.StdTemperature;

 this.h = Environment.Stdh;

 this.matl = Material(Environment.StdGas);

 this.name = 'Untitled Environment';

 case 2

 this.Pressure = Pressure;

 this.Temperature = Temperature;

296

 this.h = Environment.Stdh;

 this.matl = Material(Environment.StdGas);

 this.name = 'Untitled Environment';

 case 3

 this.Pressure = Pressure;

 this.Temperature = Temperature;

 this.h = h;

 this.matl = Material(Environment.StdGas);

 this.name = 'Untitled Environment';

 case 4

 this.Pressure = Pressure;

 this.Temperature = Temperature;

 this.h = h;

 this.matl = MaterialRef;

 this.name = 'Untitled Environment';

 end

 end

 %% Get/Set Interface

 function Item = get(this,PropertyName)

 switch PropertyName

 case 'Pressure'

 Item = this.Pressure;

 case 'Temperature'

 Item = this.Temperature;

 case 'h'

 Item = this.h;

 case 'Gas'

 Item = this.matl;

 case 'Name'

 Item = this.name;

 otherwise

 fprintf(['XXX Environment GET Inteface for ' PropertyName ' is not found XXX\n']);

 end

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'Pressure'

 this.Pressure = Item;

 if this.isDiscretized

 this.Node.data.Pressure = Item;

 end

 case 'Temperature'

 this.Temperature = Item;

 if this.isDiscretized

 this.Node.data.Temperature = Item;

 end

 case 'h'

 this.h = Item;

 if this.isDiscretized

 this.Node.data.h = Item;

 end

 case 'Name'

 this.customname = Item;

 otherwise

 fprintf(['XXX Environment SET Inteface for ' PropertyName ' is not found XXX\n']);

 end

 end

 %% Node Management

 function resetDiscretization(this)

 this.Node(:) = [];

 this.isDiscretized = false;

 end

 function discretize(this)

 this.Node = Node.empty;

 this.Node = Node(enumNType.EN,0,0,0,0,Face.empty,Node.empty,this,0);

 this.isDiscretized = true;

 this.Node.data.Dh = 1e8;

% if ~this.isDiscretized

% delete(this.Node);

297

% this.Node = Node(enumNType.EN,0,0,0,0,Face.empty,Node.empty,this,0); %#ok<PROP>

% this.isDiscretized = true;

% end

 end

 %% Graphics

 function removeFromFigure(this,AxisReference)

 if ~isempty(this.GUIObjects)

 children = get(AxisReference,'Children');

 for obj = this.GUIObjects

 if isgraphics(obj)

 for i = length(children):-1:1

 if isgraphics(children(i)) && children(i) == obj

 children(i).delete;

 break;

 end

 end

 end

 end

 this.GUIObjects = [];

 end

 end

 function igroup = get.Group(this)

 igroup = Group([],Position(0,0,pi/2),Body.empty);

 end

 end

end

298

Frame

The frame is a class that contains an array of positions, a reference to a mechanism and a method

used to create a name.

classdef Frame < handle

 %FRAME Summary of this class goes here

 % Detailed explanation goes here

 properties (Constant)

 NTheta = 200;

 DecimateFactor = 10;

 end

 properties

 % Kinematic frames can be precalculated

 isKinematic = true;

 % = false; is for free piston designs

 % In these cases the position array simply defines a

 % uniformly spaced position array between the motion

 % extents

 Positions double = []; % no negative positions, pistons should be sketched at minimum, not

center.

 Mechanism LinRotMechanism; % as MechanicalSystem; % Defines a reference to the mechanism

output that defines the motion of this frame

 MechanismIndex int8 = 1; % By Default

 CustomName char = [];

 end

 properties (Dependent)

 CurrentPosition;

 name;

 end

 methods

 function name = get.name(this)

 if isvalid(this)

 if isempty(this.CustomName)

 ii = this.MechanismIndex;

 name = [this.Mechanism.Type ...

 ' L= ' num2str(this.Mechanism.Stroke(ii)) ...

 ' m , P= ' num2str(this.Mechanism.Phase(ii)) ' rad.\n'];

 end

 else

 name = '...';

 end

 end

 end

end

299

Group

The group is a class that contains the following functions:

A constructor.

A function called prior to its deletion, to clean up other objects.

A get / set interface used by the property drop-down editor on the main GUI.

A series of functions for managing the internal lists of other classes.

A series of functions of managing the derived properties of this class.

A function used to calculate the exposed surface of the child bodies.

A function for finding the nearest connection to a point.

A function for rotating the local coordinate to the world coordinates.

A series of functions for displaying the group on the GUI.

classdef Group < handle

 %Group Summary of this class goes here

 % Detailed explanation goes here

 properties (Constant)

 ConnectionTolerance = 1e-6; % 0.001 mm plenty small enough for films

 Extension = 1.33;

 MinimumDisplayLength = 0.1;

 MinimumDisplayWidth = 0.1;

 HighlightedColor = [0 1 0];

 NormalColor = [0 0 0];

 end

 properties (Dependent)

 isValid;

 Width;

 Height;

 ValidBorder;

 InvalidBorder;

 isDiscretized;

 end

 properties (Hidden)

 isStateValid logical = false;

 WidthState double;

 HeightState double;

 ValidBorderState Line2DChain;

 InvalidBorderState Line2DChain;

 isStateDiscretized logical = false;

 isEnvironmentCasted logical = false;

 end

 properties

 isChanged logical = true;

 Bodies Body;

300

 Connections Connection;

 RelationManagers RelationManager;

 GUIObjects;

 isActive = true;

 name = 'Default Group';

 Model Model;

 Position Position;

 Nodes Node;

 Faces Face;

 end

 methods

 %% Constructor Function

 function this = Group(inputModel,inputPosition,inputBodies)

 if nargin == 0; return; end

 this.RelationManagers(2) = ...

 RelationManager(this, enumOrient.Horizontal);

 this.RelationManagers(1) = ...

 RelationManager(this, enumOrient.Vertical);

 switch nargin

 case 1

 % Only Model Provided

 this.Model = inputModel;

 case 2

 % A Model and positon is provided

 this.Model = inputModel;

 this.Position = inputPosition;

 case 3

 % A Model, position and a bunch of bodies are provided

 this.Model = inputModel;

 this.Position = inputPosition;

 this.addBody(inputBodies);

 for iBody = inputBodies

 this.addConnection(iBody.Connections);

 end

 end

 this.Connections = [Connection(0,enumOrient.Vertical,this) ...

 Connection(0,enumOrient.Horizontal,this)];

 if ~isempty(this.Model)

 this.isActive = true;

 this.Model.switchHighLighting(this);

 end

 this.isChanged = true;

 fprintf('Created Group.\n');

 end

 function deReference(this)

 iModel = this.Model;

 iModel.isStateDiscretized = false;

 for i = length(iModel.Groups):-1:1

 if iModel.Groups(i) == this

 iModel.Groups(i) = [];

 end

 end

 for iBody = this.Bodies

 iBody.deReference();

 end

 this.Bodies = [];

 for iCon = this.Connections

 iCon.deReference();

 end

 this.Connections = [];

 % Remove any visual remenant

 this.removeFromFigure(gca);

 end

 %% Get/Set Interface

 function Item = get(this,PropertyName)

 switch PropertyName

301

 case 'Name'

 Item = this.name;

 case 'Position'

 Item = this.Position;

 case 'Bodies'

 Item = this.Bodies;

 case 'Connections'

 Item = this.Connections;

 case 'Leak Connections'

 Item = this.LeakConnections;

 case 'Relation Managers'

 Item = this.RelationManagers;

 otherwise

 fprintf(['XXX Group GET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'Name'

 this.name = Item;

 otherwise

 fprintf(['XXX Group SET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 %% Add Objects

 function addBody(this,inputBodies)

 if isrow(inputBodies)

 this.Bodies = [this.Bodies inputBodies];

 else

 this.Bodies = [this.Bodies inputBodies'];

 end

 for iBody = inputBodies

 if isempty(iBody.ID)

 iBody.ID = this.Model.getBodyID();

 end

 this.addConnection(iBody.Connections);

 fprintf(['Added ' iBody.name ' to ' this.name '.\n']);

 end

 this.Bodies = unique(this.Bodies,'rows');

 this.isChanged = true;

 this.fixDatum();

 end

 function addConnection(this,inputobj)

 for RMan = this.RelationManagers

 RMan.isChanged = true;

 end

 if isrow(inputobj)

 this.Connections = [this.Connections inputobj];

 else

 this.Connections = [this.Connections inputobj'];

 end

 for iCon = inputobj

 if isempty(iCon.ID)

 iCon.ID = this.Model.getConID();

 end

 end

 this.Connections = unique(this.Connections,'rows');

 end

 %% Clean up and Organization

 function cleanUpConnections(this)

 % Ensure Group.Connections Reflects the bodies within it

 keep = false(size(this.Connections));

 keep(1:2) = true;

 for iBody = this.Bodies

 for iCon = iBody.Connections

 found = false;

 for i = 1:length(this.Connections)

302

 if iCon == this.Connections(i)

 found = true;

 keep(i) = true;

 break;

 end

 end

 if ~found

 this.addConnection(iCon);

 keep(length(this.Connections)) = true;

 end

 end

 end

 if any(~keep); this.Connections = this.Connections(keep);

 end

 keep = true(size(this.Connections));

 for i = 1:length(this.Connections)

 if ~keep(i)

 iCon = this.Connections(i);

 if isempty(iCon.Bodies); keep(i) = false; end

 for j = i+1:length(this.Connections)

 if ~keep(j)

 jCon = this.Connections(j);

 if iCOn.isFunctionallyEqualTo(jCon)

 for jBody = jCon.Bodies

 % Replace all references of j with i

 for k = 1:length(jBody.Connections)

 if jBody.Connections(k) == jCon

 jBody.Connections(k) = iCon;

 end

 end

 iCon.addBody(jBody);

 end

 for iBridge = this.Model.Bridges

 if iBridge.Connection1 == jCon

 iBridge.Connection1 = iCon;

 elseif iBridge.Connection2 == jCon

 iBridge.Connection2 = iCon;

 end

 end

 for iLeak = this.Model.LeakConnections

 if iLeak.Connection1 == jCon

 iLeak.Connection1 = iCon;

 elseif iLeak.Connection2 == jCon

 iLeak.Connection2 = iCon;

 end

 end

 jCon.removeFromFigure(gca);

 end

 end

 end

 end

 end

 if any(~keep)

 for i = 1:length(this.Connections)

 if ~keep(i)

 this.Connections(i).delete();

 end

 end

 this.Connections = this.Connections(keep);

 end

 for iCon = this.Connections

 keep = true(size(iCon.Bodies));

 for i = 1:length(iCon.Bodies)

 if ~any(this.Bodies == iCon.Bodies(i))

 keep(i) = false;

303

 end

 end

 if any(~keep)

 iCon.Bodies = iCon.Bodies(keep);

 end

 end

 count1 = false;

 count2 = false;

 for iCon = this.Connections

 if iCon.x == 0

 if iCon.Orient == enumOrient.Vertical; count1 = true;

 elseif iCon.Orient == enumOrient.Horizontal; count2 = true;

 end

 end

 end

 if ~count1; this.addConnection(Connection(0,enumOrient.Vertical,this)); end

 if ~count2; this.addConnection(Connection(0,enumOrient.Horizontal,this)); end

 fprintf(['Cleaned up Connections in Group ' this.name '.\n']);

 end

 function fixDatum(this)

 offset = 0;

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Horizontal && iCon.x < offset

 offset = iCon.x;

 end

 end

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Horizontal

 iCon.x = iCon.x - offset;

 end

 end

 end

 function isit = isOverlaping(this,TheBody)

 % Determine if TheBody is interfering with any other body

 % Determine if its in the same column

 isit = false;

 for iBody = this.Bodies

 if TheBody.overlaps(iBody)

 isit = true;

 return;

 end

 end

 end

 %% Update on Demand

 function change(this)

 this.isChanged = true;

 this.Model.change();

 end

 function update(this)

 if isempty(this.RelationManagers)

 this.RelationManagers(2) = ...

 RelationManager(this, enumOrient.Horizontal);

 this.RelationManagers(1) = ...

 RelationManager(this, enumOrient.Vertical);

 end

 if length(this.Connections) > 2

 this.cleanUpConnections();

 end

 %% Update isValid

 varb = true;

 % Test to see if any bodies overlap

 for iBody = this.Bodies

 for jBody = this.Bodies

 if iBody ~= jBody

 [Ax1,Ax2,~,~] = iBody.limits(enumOrient.Vertical);

 [Bx1,Bx2,~,~] = jBody.limits(enumOrient.Vertical);

 if (Ax1 < Bx2 || Ax2 > Bx1) % overlap x's

 [Ay1,Ay2,~,~] = iBody.limits(enumOrient.Horizontal);

 [By1,By2,~,~] = jBody.limits(enumOrient.Horizontal);

304

 if (any(Ay1 < By2) || any(Ay2 > By1)) % overlap y's

 varb = false;

 fprintf(['XXX Overlap detected in Group ' ...

 this.name ' between Bodies ' ...

 iBody.name ' and ' jBody.name '. Please make sure ' ...

 'that connections are properly defined XXX \n']);

 break;

 end

 end

 end

 end

 end

 % Test to see if there are any islands within the border

 this.updateBorder(this.isEnvironmentCasted);

 if ~isempty(this.InvalidBorderState)

 varb = false;

 fprintf(['XXX Unfilled hollow space found in Group ' ...

 this.name '. Please make sure to fill such spaces with a ' ...

 'Gas or other material, or review how bodies are connected ' ...

 'XXX \n']);

 end

 this.isStateValid = varb;

 %% Update Width

 % From each body get the maximum radius of the cylindrical connections

 vard = this.MinimumDisplayLength;

 for iConnection = this.Connections

 if iConnection.Orient == enumOrient.Vertical ...

 && iConnection.x > vard

 vard = iConnection.x;

 end

 end

 this.WidthState = vard*2;

 %% Update Height

 % From each body get the maximum radius of the cylindrical connections

 vard = this.MinimumDisplayWidth;

 for iConnection = this.Connections

 if iConnection.Orient == enumOrient.Horizontal ...

 && iConnection.x > vard

 vard = iConnection.x;

 end

 end

 this.HeightState = vard;

 %% Update isDiscretized

 varb = true;

 for iBody = this.Bodies

 if ~iBody.isDiscretized

 varb = false;

 break;

 end

 end

 if varb

 for iConnection = this.Connections

 if ~iConnection.isDiscretized

 varb = false;

 break;

 end

 end

 end

 this.isStateDiscretized = varb;

 this.isChanged = false;

 end

 function updateBorder(this,castToConnections)

 delete(this.ValidBorderState);

 delete(this.InvalidBorderState);

 if ~isempty(this.Bodies)

 %% Each connection must have a minimum of 2 bodies over all of its length

 if this.isChanged || (nargin > 1 && castToConnections)

305

 Lines = Line2DChain.empty;

 for iBody = this.Bodies

 [~, ~, x1, x2] = iBody.limits(enumOrient.Vertical);

 [~, ~, y1, y2] = iBody.limits(enumOrient.Horizontal);

 if x1 > 0

 Lines(end+4) = Line2DChain(x1, y1, x1, y2);

 Lines(end-1) = Line2DChain(x1, y2, x2, y2);

 Lines(end-2) = Line2DChain(x2, y1, x2, y2);

 Lines(end-3) = Line2DChain(x1, y1, x2, y1);

 else

 Lines(end+3) = Line2DChain(x1, y2, x2, y2);

 Lines(end-1) = Line2DChain(x2, y1, x2, y2);

 Lines(end-2) = Line2DChain(x1, y1, x2, y1);

 end

 end

 j = 0;

 i = 0;

 while (i < length(Lines))

 i = i + 1;

 while (j < length(Lines))

 j = j + 1;

 if i ~= j

 [Lines,i,j] = intersects(i,j, Lines);

 end

 end

 j = i + 1;

 end

 %% Decimate duplicate points and merge

 Finished = Line2DChain.empty;

 old_n = inf;

 while ~isempty(Lines)

 % Combine Step

 n = length(Lines);

 Eliminated = zeros(1,n);

 for i = length(Lines):-1:2

 for j = i-1:-1:1

 if ~Eliminated(j)

 Eliminated(j) = Lines(i).attemptToMerge(Lines(j));

 end

 end

 end

 % Decimate Lines that have been added to others

 for i = length(Lines):-1:1

 if Eliminated(i)

 Lines(i) = [];

 end

 end

 % Pick out finished Lines

 isDone = false(1,length(Lines));

 for i = 1:length(Lines)

 isDone(i) = Lines(i).isFinished;

 end

 Finished = [Finished Lines(isDone)];

 Lines(isDone) = [];

 if old_n == n

 fprintf('XXX Infinite Loop detected, exiting XXX\n');

 Finished = [Finished Lines];

 Lines = [];

 end

 old_n = n;

 end

 if length(Finished) > 1

 % There can only be one valid border

 % Pick the one with the largest value of x

 maxx = 0;

 for i = 1:length(Finished)

 ix = max(Finished(i).XData);

306

 if ix > maxx

 index = i;

 maxx = ix;

 end

 end

 this.ValidBorderState = Finished(index);

 this.InvalidBorderState = Finished(Finished~=Finished(index));

 if castToConnections

 this.isEnvironmentCasted = false;

 fprintf(['XXX Environmental Shell generation failed, ' ...

 'there are internal volumes XXX\n']);

 end

 else

 this.ValidBorderState = Finished;

 this.InvalidBorderState = Line2DChain.empty;

 if castToConnections

 this.castEnvironmentToConnections();

 end

 end

 %% fprintf(['Group ' this.name ' has been scanned for contact with

surroundings.\n']);

 end

 end

 end

 function Valid = get.isValid(this)

 if ischanged

 this.update();

 end

 Valid = this.isStateValid;

 end

 function Width = get.Width(this)

 if this.isChanged; this.update(); end

 Width = this.WidthState;

 end

 function Height = get.Height(this)

 if this.isChanged

 this.update();

 end

 Height = this.HeightState;

 end

 function ValidBorder = get.ValidBorder(this)

 if this.isChanged

 this.update();

 end

 ValidBorder = this.ValidBorderState;

 end

 function InvalidBorder = get.InvalidBorder(this)

 if this.isChanged

 this.update();

 end

 InvalidBorder = this.InvalidBorderState;

 end

 function castEnvironmentToConnections(this)

 if ~this.Model.surroundings.isDiscretized

 this.Model.surroundings.discretize();

 end

 for iCon = this.Connections

 % Remove exising environment connections

 k = 1; keep = true(size(iCon.NodeContacts));

 for iNC = iCon.NodeContacts

 if ~isvalid(iNC.Node) || ...

 ~isvalid(iNC.Node.Body) || ...

 isa(iNC.Node.Body,'Environment')

 keep(k) = false;

 end

 k = k + 1;

 end

 iCon.NodeContacts = iCon.NodeContacts(keep);

 end

307

 % For each segment of pnts

 for i = 1:length(this.ValidBorderState.Pnts)-1

 Start = this.ValidBorderState.Pnts(i);

 End = this.ValidBorderState.Pnts(i+1);

 if Start.x ~= End.x % Horizontal

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Horizontal && iCon.x == Start.y

 iCon.addNodeContacts(NodeContact(...

 this.Model.surroundings.Node, ...

 min([Start.x End.x]), ...

 max([End.x Start.x]), ...

 enumFType.Environment,iCon));

 end

 end

 else

 for iCon = this.Connections

 if iCon.Orient == enumOrient.Vertical && iCon.x == Start.x

 iCon.addNodeContacts(NodeContact(...

 this.Model.surroundings.Node, ...

 min([Start.y End.y]), ...

 max([End.y Start.y]), ...

 enumFType.Environment,iCon));

 end

 end

 end

 end

 end

 function Discretized = get.isDiscretized(this)

 if this.isChanged

 this.update();

 end

 Discretized = this.isStateDiscretized;

 end

 %% Discretizing

 function resetDiscretization(this)

 for iBody = this.Bodies

 iBody.resetDiscretization();

 end

 for iCon = this.Connections

 iCon.resetDiscretization();

 end

 this.Nodes(:) = [];

 this.Faces(:) = [];

 this.isChanged = true;

 this.isStateDiscretized = false;

 end

 function discretize(this, derefinement_factor)

 this.isStateDiscretized = false;

 this.Nodes(:) = [];

 this.Faces(:) = [];

 nn = 0;

 nf = 0;

 if isempty(this.Bodies)

 this.isStateDiscretized = true;

 return;

 end

 for iBody = this.Bodies

 if ~iBody.isDiscretized

 if nargin == 2

 backup_divisions = iBody.divides;

 if iBody.matl.Phase == enumMaterial.Solid

 iBody.divides = ceil(iBody.divides*derefinement_factor);

 else

 if any(iBody.divides ~= 1)

 if iBody.divides(1) == 1

 iBody.divides(2) = ...

 max(2,ceil(iBody.divides(2)*derefinement_factor));

 elseif iBody.divides(2) == 1

 iBody.divides(1) = ...

 max(2,ceil(iBody.divides(2)*derefinement_factor));

308

 end

 end

 end

 end

 iBody.discretize();

 if ~iBody.isDiscretized

 fprintf(['XXX Exited Discretization at Body: ' iBody.name '.XXX\n']);

 if nargin == 2; iBody.divides = backup_divisions; end

 return;

 end

 keep = true(size(iBody.Nodes));

 for i = length(iBody.Nodes):-1:1

 if ~isvalid(iBody.Nodes(i)) || ...

 iBody.Nodes(i).xmin == iBody.Nodes(i).xmax

 keep(i) = false;

 end

 end

 if any(~keep); iBody.Nodes = iBody.Nodes(keep); end

 keep = true(size(iBody.Faces));

 for i = length(iBody.Faces):-1:1

 if ~isvalid(iBody.Faces(i)) || isempty(iBody.Faces(i).Nodes)

 keep(i) = false;

 end

 end

 if any(~keep); iBody.Faces = iBody.Faces(keep); end

 if nargin == 2; iBody.divides = backup_divisions; end

 end

 nn = nn + length(iBody.Nodes);

 nf = nf + length(iBody.Faces);

 end

 % Discretize the surroundings

 this.updateBorder(true);

 for iCon = this.Connections

 if ~iCon.isDiscretized

 iCon.discretize();

 if ~iCon.isDiscretized

 fprintf(['XXX Exited Discretization at Connection: ' ...

 iCon.name '.XXX\n']);

 return;

 end

 end

 keep = true(size(iCon.Faces));

 for i = length(iCon.Faces):-1:1

 if ~isvalid(iCon.Faces(i))

 keep(i) = false;

 else

 if isempty(iCon.Faces(i).Nodes)

 keep(i) = false;

 end

 end

 end

 if any(~keep)

 iCon.Faces = iCon.Faces(keep);

 end

 nf = nf + length(iCon.Faces);

 end

 if nn == 0

 return;

 end

 for i = nn:-1:1; this.Nodes(i) = Node(); end

 for i = nf:-1:1; this.Faces(i) = Face(); end

 if nf == 0

 nn = 1;

 for iBody = this.Bodies

 this.Nodes(nn:nn-1+length(iBody.Nodes)) = iBody.Nodes;

 nn = nn + length(iBody.Nodes);

 end

 else

 nn = 1; nf = 1;

 for iBody = this.Bodies

309

 this.Nodes(nn:nn-1+length(iBody.Nodes)) = iBody.Nodes;

 this.Faces(nf:nf-1+length(iBody.Faces)) = iBody.Faces;

 nn = nn + length(iBody.Nodes);

 nf = nf + length(iBody.Faces);

 end

 for iCon = this.Connections

 this.Faces(nf:nf-1+length(iCon.Faces)) = iCon.Faces;

 nf = nf + length(iCon.Faces);

 end

 end

 this.isStateDiscretized = true;

 end

 %% Finding things

 function Con = FindConnection(this,Pos,Orient,notCon)

 Pos = Pos(1,1:2);

 Pos(1) = Pos(1) - this.Position.x;

 Pos(2) = Pos(2) - this.Position.y;

 Con = [];

 distance = inf;

 if nargin == 4

 if Orient == enumOrient.Vertical

 C = RotMatrix(pi/2 - this.Position.Rot)*Pos';

 for iCon = this.Connections

 if iCon ~= notCon && iCon.Orient == Orient

 if abs(C(1,1)-iCon.x) < distance

 distance = abs(C(1,1)-iCon.x);

 Con = iCon;

 end

 if abs(C(1,1)+iCon.x) < distance

 distance = abs(C(1,1)+iCon.x);

 Con = iCon;

 end

 end

 end

 else % Horizontal

 C = RotMatrix(-this.Position.Rot)*Pos';

 for iCon = this.Connections

 if iCon ~= notCon && iCon.Orient == Orient

 if abs(C(1,1)-iCon.x) < distance

 distance = abs(C(1,1)-iCon.x);

 Con = iCon;

 end

 end

 end

 end

 end

 if nargin == 2

 CV = RotMatrix(pi/2 - this.Position.Rot)*Pos';

 CH = RotMatrix(-this.Position.Rot)*Pos';

 for iCon = this.Connections

 switch iCon.Orient

 case enumOrient.Vertical

 if abs(CV(1,1)-iCon.x) < distance

 distance = abs(CV(1,1)-iCon.x);

 Con = iCon;

 end

 if abs(CV(1,1)+iCon.x) < distance

 distance = abs(CV(1,1)+iCon.x);

 Con = iCon;

 end

 case enumOrient.Horizontal

 if abs(CH(1,1)-iCon.x) < distance

 distance = abs(CH(1,1)-iCon.x);

 Con = iCon;

 end

 end

 end

 end

 end

 function Pnt = TranslatePnt2D(this,center)

310

 Rot = RotMatrix(this.Position.Rot-pi/2);

 x = center.x*Rot(1,1) + center.y*Rot(1,2) + this.Position.x;

 y = center.x*Rot(2,1) + center.y*Rot(2,2) + this.Position.y;

 Pnt = Pnt2D(x,y);

 end

 %% Graphics

 function color = getColor(this)

 if this.isActive; color = Group.HighlightedColor;

 else; color = Group.NormalColor;

 end

 end

 function removeFromFigure(this,AxisReference)

 if ~isempty(this.GUIObjects)

 children = get(AxisReference,'Children');

 for obj = this.GUIObjects

 if isgraphics(obj)

 for i = length(children):-1:1

 if isgraphics(children(i)) && children(i) == obj

 children(i).delete;

 break;

 end

 end

 end

 end

 this.GUIObjects = [];

 end

 end

 function show(this,CODE,AxisReference,Inc,showOptions)

 switch CODE

 case 'all'

 % Show everything in base state

 this.removeFromFigure(AxisReference); % Group and Environmental

 if showOptions(1) % Show Groups

 color = this.getColor();

 % Plot a single line

 % Find horizontal extent of the Group

 VectorLength = this.Width;

 TotalVectorLength = 1.2*max(VectorLength,0.1);

 OffsetRot = this.Position.Rot;

 % Make a template vector

 R = RotMatrix(OffsetRot);

 VStart = [this.Position.x ; this.Position.y] - ...

 R * [(TotalVectorLength-VectorLength)/2; 0];

 VEnd = R * [TotalVectorLength; 0] + VStart;

 % Plot line

 this.GUIObjects = line(...

 [VStart(1) VEnd(1)],...

 [VStart(2) VEnd(2)],...

 'Userdata',this,...

 'Color',color,...

 'LineWidth',3,...

 'LineStyle','--',...

 'HitTest','off');

 end

 if showOptions(2) % Show Bodies

 for iBody = this.Bodies

 iBody.show(AxisReference);

 end

 else

 for iBody = this.Bodies

 iBody.removeFromFigure(AxisReference);

 end

 end

 if showOptions(3) % Show Connections

 for iCon = this.Connections

 iCon.show(AxisReference);

 end

 else

311

 for iCon = this.Connections

 iCon.removeFromFigure(AxisReference);

 end

 end

 if showOptions(7) % Show Environment Connections

 shift = [this.Position.x; this.Position.y];

 rotate = RotMatrix(this.Position.Rot - pi/2);

 % Show the validBorder

 if ~isempty(this.ValidBorder)

 if ~isvalid(this.ValidBorder)

 this.update();

 end

 [XData, YData] = ...

 DistortPositionVectors(...

 this.ValidBorder.XData, this.ValidBorder.YData, ...

 shift, rotate);

 this.GUIObjects(end+1) = line(...

 'XData',XData,...

 'YData',YData,...

 'LineWidth',2,...

 'Color',[0 0 1]);

 end

 % Show the invalidBorder

 if ~isempty(this.InvalidBorder)

 for LineChain = this.InvalidBorder

 [XData, YData] = ...

 DistortPositionVectors(...

 LineChain.XData, LineChain.YData, ...

 shift, rotate);

 this.GUIObjects(end+1) = line(...

 'XData',XData,...

 'YData',YData,...

 'LineWidth',2,...

 'LineStyle','--',...

 'Color',[1 0 0]);

 end

 end

 end

 case 'Dynamic'

 if showOptions(2) % Show Bodies

 for iBody = this.Bodies

 if iBody.MovingStatus ~= enumMove.Static

 iBody.show(AxisReference,Inc);

 end

 end

 end

 case 'Static'

 if showOptions(1) % Show Groups

 color = this.getColor();

 % Plot a single line

 % Find horizontal extent of the Group

 VectorLength = max(...

 [Group.MinimumDisplayLength this.Width]);

 TotalVectorLength = VectorLength*Group.Extension;

 OffsetRot = this.Position.Rot;

 % Make a template vector

 R = RotMatrix(OffsetRot);

 VStart = [this.Position.x ;

 this.Position.y] - ...

 R * [(TotalVectorLength-VectorLength)/2; 0];

 VEnd = R * [TotalVectorLength; 0] + VStart;

 % Plot line

 this.GUIObjects = line(...

 [VStart(1) VEnd(1)],...

 [VStart(2) VEnd(2)],...

 'Userdata',this,...

 'Color',color,...

 'LineWidth',3,...

312

 'LineStyle','--',...

 'HitTest','off');

 end

 if showOptions(2) % Show Bodies

 for iBody = this.Bodies

 if iBody.MovingStatus == enumMove.Static

 iBody.show(AxisReference);

 end

 end

 end

 end

 end

 end

end

function [Lines,i,j] = intersects(i,j,Lines)

if i < 1 || j < 1 || i > length(Lines) || j > length(Lines)

 return;

end

kill_i = false;

kill_j = false;

istart = Lines(i).Pnts(1);

iend = Lines(i).Pnts(end);

jstart = Lines(j).Pnts(1);

jend = Lines(j).Pnts(end);

if all(Lines(i).XData == Lines(j).XData) && ~(istart.y == iend.y)

 % Both Vertical and may overlap

 if iend.y < jstart.y || istart.y > jend.y

 return;

 end

 x = istart.x;

 if istart.y <= jstart.y

 % i starts before j

 if iend.y <= jend.y

 % i is staggered with j

 temp = iend.y;

 if (istart == jstart)

 kill_i = true;

 else

 Lines(i).Pnts(end).y = jstart.y;

 end

 if (jend.y == temp)

 kill_j = true;

 else

 Lines(j).Pnts(1).y = temp;

 end

 else

 % j is within i

 if (iend ~= jend)

 Lines(end+1) = Line2DChain(x,jend.y,x,iend.y);

 end

 if (istart == jstart)

 kill_i = true;

 else

 Lines(i).Pnts(end).y = jstart.y;

 end

 kill_j = true;

 end

 else

 % j starts before i

 if jend.y <= iend.y

 % j is staggered with i

 temp = jend.y;

 if (istart == jstart)

 kill_j = true;

 else

 Lines(j).Pnts(end).y = istart.y;

 end

 if (iend.y == temp)

 kill_i = true;

 else

313

 Lines(i).Pnts(1).y = temp;

 end

 else

 % i is within j

 if (iend ~= jend)

 Lines(end+1) = Line2DChain(x,iend.y,x,jend.y);

 end

 if (istart == jstart)

 kill_j = true;

 else

 Lines(j).Pnts(end).y = istart.y;

 end

 kill_i = true;

 end

 end

elseif all(Lines(i).YData == Lines(j).YData) && ~(istart.x == iend.x)

 % Both Horizontal and may overlap

 if iend.x < jstart.x || istart.x > jend.x

 return;

 end

 if istart.x == jstart.x && iend.x == jend.x

 kill_i = true;

 kill_j = true;

 else

 y = istart.y;

 if istart.x <= jstart.x

 % i starts before j

 if iend.x <= jend.x

 % i is staggered with j

 % i --|-|

 % j |-|--

 temp = iend.x;

 if (istart.x == jstart.x)

 kill_i = true;

 else

 Lines(i).Pnts(end).x = jstart.x;

 end

 if (temp == jend.x)

 kill_j = true;

 else

 Lines(j).Pnts(1).x = temp;

 end

 else

 % j is within i

 % i -|--|-

 % j |--|

 kill_j = true;

 if (iend.x ~= jend.x)

 Lines(end+1) = Line2DChain(jend.x,y,iend.x,y);

 end

 if (istart.x == jstart.x)

 kill_i = true;

 end

 Lines(i).Pnts(end).x = jstart.x;

 end

 else

 % j starts before i

 if jend.x <= iend.x

 % j is staggered with i

 % i |-|--

 % j --|-|

 temp = jend.x;

 if (istart == jstart)

 kill_j = true;

 else

 Lines(j).Pnts(end).x = istart.x;

 end

 if (iend.x == temp)

 kill_i = true;

 else

 Lines(i).Pnts(1).x = temp;

314

 end

 else

 % i is within j

 % i |--|

 % j -|--|-

 kill_i = true;

 if (iend ~= jend)

 Lines(end+1) = Line2DChain(iend.x,y,jend.x,y);

 end

 if (istart == jstart)

 kill_j = true;

 else

 Lines(j).Pnts(end).x = istart.x;

 end

 end

 end

 end

end

if kill_i

 Lines(i) = [];

 if kill_j

 if (i > j)

 Lines(j) = [];

 else

 Lines(j-1) = [];

 end

 end

 j = i;

 i = i - 1;

else

 if kill_j

 Lines(j) = [];

 j = j - 1;

 end

end

end

315

LeakConnection

The leak connection includes the following functions:

 A constructor.

A destructor.

A get / set interface used by the property editor in the main GUI.

A discretize function.

A unused show function derived from the bridge component.

classdef LeakConnection < handle

 %UNTITLED Summary of this class goes here

 % Detailed explanation goes here

 properties

 isChanged logical = true;

 isDiscretized logical = false;

 LeakFunc function_handle;

 obj1 = []; % Body or Environment

 obj2 = []; % Body or Environment

 Connection1 Connection;

 Connection2 Connection;

 Model Model;

 end

 properties (Hidden)

 customname;

 end

 properties (Dependent)

 name;

 isValid;

 end

 methods

 %% Constructor

 function this = LeakConnection(LeakFunc,obj1,obj2,Connection1,Connection2)

 if ~isa(LeakFunc,'function_handle')

 fprintf('You must define LeakFunc as a function handle, 0 assigned');

 this.LeakFunc = @(P1,P2) 0;

 else

 this.LeakFunc = LeakFunc;

 end

 if isa(obj1,'Body')

 this.obj1 = obj1;

 this.Connection1 = Connection1;

 this.Model = this.obj1.Group.Model;

 else; this.obj1 = obj1;

 end

 if isa(obj2,'Body')

 this.obj2 = obj2;

 this.Connection2 = Connection2;

 this.Model = this.obj2.Group.Model;

 else; this.obj2 = obj2;

 end

 end

316

 function deReference(this)

 iModel = Body.Group.Model;

 for i = length(iModel.LeakConnections):-1:1

 if iModel.LeakConnections(i) == this

 iModel.LeakConnections(i) = LeakConnection.empty;

 break;

 end

 end

 if isa(this.obj1,'Body')

 this.obj1.change();

 end

 if isa(this.obj2,'Body')

 this.obj2.change();

 end

 this.Connection1.deleteNodeContactsFromObj(this.obj1);

 this.Connection1.deleteNodeContactsFromObj(this.obj2);

 this.Connection2.deleteNodeContactsFromObj(this.obj1);

 this.Connection2.deleteNodeContactsFromObj(this.obj2);

 this.Connection1.change();

 this.Connection2.change();

 this.removeFromFigure(gca);

 this.delete();

 end

 %% Get/Set Interface

 function Item = get(this,PropertyName)

 switch PropertyName

 case 'Name'

 Item = this.name;

 case 'Connection 1'

 Item = this.Connection1;

 case 'Connection 2'

 Item = this.Connection2;

 case 'Object 1'

 Item = this.obj1;

 case 'Object 2'

 Item = this.obj2;

 case 'LeakFunc'

 Item = this.LeakFunc;

 otherwise

 fprintf(['XXX LeakConnection GET Inteface for ' PropertyName ' is not found XXX\n']);

 end

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'Name'

 if Item ~= this.name

 this.customname = Item;

 this.change();

 end

 case 'LeakFunc'

 this.LeakFunc = Item;

 this.change();

 otherwise

 fprintf(['XXX LeakConnection SET Inteface for ' PropertyName ' is not found XXX\n']);

 end

 end

 function change(this)

 this.isChanged = true;

 this.isDiscretized = false;

 fprintf('XXX Update Function for LeakConnection is Not written. XXX\n');

 end

 %% Generate Nodes

 function leakfaces = getleakface(this)

 if this.isValid

 switch class(this.obj1)

 case 'Body'

 if this.obj1.isDiscretized

 if this.Connection1 == false

317

 n1 = this.obj1.nodeIndex(end);

 else

 n1 = this.obj1.nodeIndex(1);

 end

 else

 leakfaces = [];

 return;

 end

 case 'Environment'

 if this.obj1.isValid

 n1 = this.obj1.nodeIndex;

 end

 end

 switch class(this.obj2)

 case 'Body'

 if this.obj2.isDiscretized

 if this.Connection1 == false

 n2 = this.obj2.nodeIndex(end);

 else

 n2 = this.obj2.nodeIndex(1);

 end

 else

 leakfaces = [];

 return;

 end

 case 'Environment'

 if this.obj2.isValid

 n2 = this.obj2.nodeIndex;

 end

 end

 leakfaces = struct(...

 'Node1',n1,...

 'Node2',n2,...

 'LeakFunc',this.LeakFunc);

 this.isDiscretized = true;

 end

 end

 function [Faces] = discretize(this)

 fprintf('XXX Discretize function for LeakConnection is Not written. XXX\n');

 this.isDiscretized = true;

 end

 %% Testing

 function Valid = get.isValid(this)

 Valid = true;

 if isempty(this.obj1)

 Valid = false;

 fprintf(['Missing reference for Leak Connection: ' ...

 this.name '.\n']);

 end

 if isempty(this.obj2)

 Valid = false;

 fprintf(['Missing reference for Leak Connection: ' ...

 this.name '.\n']);

 end

 if (class(this.obj1) == 'Body' && isempty(this.Connection1))

 Valid = false;

 fprintf(['Missing end descriptor for connection 1 of Leak ' ...

 'Connection: ' this.name '.\n']);

 end

 if (class(this.obj2) == 'Body' && isempty(this.Connection2))

 Valid = false;

 fprintf(['Missing end descriptor for connection 2 of Leak ' ...

 'Connection: ' this.name '.\n']);

 end

 end

 %% Graphics

 function removeFromFigure(this,AxisReference)

 if ~isempty(this.GUIObjects)

318

 children = get(AxisReference,'Children');

 for obj = this.GUIObjects

 if isgraphics(obj)

 for i = length(children):-1:1

 if isgraphics(children(i)) && children(i) == obj

 children(i).delete;

 break;

 end

 end

 end

 end

 this.GUIObjects = [];

 end

 end

 function show(this,AxisReference)

 this.removeFromFigure(AxisReference);

 % Plot a dotted line between the middle of the Connection1's Overlap

 % with Body1 to the middle of Connection2's Overlap with Body2

 % Find P1;

 if isa(this.obj1,'Body')

 Ax = this.Connection1.Group;

 R = RotMatrix(Ax.Position.Rot);

 x = this.Connection1.x;

 switch this.Connection1.Orient

 case enumOrient.Vertical

 [~,~,y1,y2] = this.obj1.limits(enumOrient.Horizontal);

 A = [Ax.Position.x; Ax.Position.y] + ...

 R*[(y1+y2)/2; x];

 B = [Ax.Position.x; Ax.Position.y] + ...

 R*[(y1+y2)/2; -x];

 case enumOrient.Horizontal

 [~,~,y1,y2] = this.obj1.limits(enumOrient.Horizontal);

 A = [Ax.Position.x; Ax.Position.y] + ...

 R*[x; (y1+y2)/2];

 B = [Ax.Position.x; Ax.Position.y] + ...

 R*[x; -(y1+y2)/2];

 end

 elseif isa(this.obj1,'Environment')

 [x,y] = this.Model.EnvironmentPosition(this.obj1);

 A = [x; y];

 B = [x; y];

 else

 return;

 end

 % Find P2;

 if isa(this.obj2,'Body')

 Ax = this.Connection2.Group;

 R = RotMatrix(Ax.Position.Rot);

 x = this.Connection2.x;

 switch this.Connection1.Orient

 case enumOrient.Vertical

 [~,~,y1,y2] = this.obj2.limits(enumOrient.Vertical);

 C = [Ax.Position.x; Ax.Position.y] + ...

 R*[(y1+y2)/2; x];

 D = [Ax.Position.x; Ax.Position.y] + ...

 R*[(y1+y2)/2; -x];

 case enumOrient.Horizontal

 [~,~,y1,y2] = this.obj2.limits(enumOrient.Horizontal);

 C = [Ax.Position.x; Ax.Position.y] + ...

 R*[x; (y1+y2)/2];

 D = [Ax.Position.x; Ax.Position.y] + ...

 R*[x; -(y1+y2)/2];

 end

 elseif isa(this.obj2,'Environment')

 [x,y] = this.Model.EnvironmentPosition(this.obj2);

 C = [x; y];

 D = [x, y];

 else

 return;

319

 end

 % Find minimum pair

 % pair = zeros(2,2);

 if Dist4Compare(A,C) < Dist4Compare(B,D)

 pair = [A C];

 dmin = Dist4Compare(A,C);

 else

 pair = [B D];

 dmin = Dist4Compare(B,D);

 end

 if Dist4Compare(A,D) < dmin

 pair = [A D];

 dmin = Dist4Compar(A,D);

 end

 if Dist4Compare(B,C) < dmin

 pair = [B C];

 end

 % Find the closest blank space in the model and drag the label there

 [x, y, h] = this.Model.findInterSpace(pair);

 newpair = [pair(:,1) [x; y+h/2] [x; y-h/2] pair(:,2)];

 % Two points in pair are minimum distance

 this.GUIObjects = line(...

 newpair(1,:),newpair(2,:),...

 'Color',[0.5 0.5 0.5]);

 end

 end

end

320

Matrix

The matrix component is a class that includes the following functionality:

A constructor, destructor.

A get / set interface.

A modify function that walks the user through a series of uniforms specific to a particular matrix

type.

A discretize function.

classdef Matrix < handle

 %MATRIX Summary of this class goes here

 % Detailed explanation goes here

 properties (Constant)

 GeometrySource = {...

 'Woven Screen';

 'Random Fibre';

 'Packed Sphere';

 'Stacked Foil';

 'Custom Regen';

 'Heat Exchanger'};

 end

 properties

 GeometryEnum enumMatrix;

 matl Material;

 Geometry enumMatrix;

 fFunc_t function_handle;

 fFunc_l function_handle;

 NuFunc_t function_handle;

 NuFunc_l function_handle;

 NkFunc_l function_handle;

 NkFunc_t function_handle;

 Volumetric_HeatCapacity;

 Dh;

 Volumetric_SurfaceArea;

 data struct;

 isFullyLaminar logical = false;

 HasSource logical = false;

 Body Body;

 Nodes Node;

 Faces Face;

 end

 properties (Dependent)

 name;

 end

 methods

 function this = Matrix(Body)

 if nargin == 0

 return;

 end

321

 if nargin == 1

 this.Body = Body;

 end

 if isempty(this.GeometryEnum); this.assignGeometryEnum(); end

 end

 function deReference(this)

 if ~isempty(this)

 if ~isempty(this.Body)

 this.Body.Matrix = Matrix.empty;

 this.Body.change();

 end

 delete(this.Nodes);

 delete(this.Faces);

 if isfield(this.data,'Connection')

 this.data.Connection.change();

 end

 this.delete();

 end

 end

 function assignGeometryEnum(this)

 this.GeometryEnum(1) = enumMatrix.WovenScreen;

 this.GeometryEnum(2) = enumMatrix.RandomFiber;

 this.GeometryEnum(3) = enumMatrix.PackedSphere;

 this.GeometryEnum(4) = enumMatrix.StackedFoil;

 this.GeometryEnum(5) = enumMatrix.CustomRegen;

 this.GeometryEnum(6) = enumMatrix.HeatExchanger;

 end

 function item = get(this,PropertyName)

 switch PropertyName

 case 'Material'

 if isempty(this.matl)

 item = Material();

 else

 item = this.matl;

 end

 case 'Laminar Friction Function'

 item = this.fFunc_l;

 case 'Turbulent Friction Function'

 item = this.fFunc_t;

 case 'Laminar Nusselt Function'

 item = this.NuFunc_l;

 case 'Turbulent Nusselt Function'

 item = this.NuFunc_t;

 case 'Laminar Streamwise Cond. Enhancement'

 item = this.NkFunc_l;

 case 'Turbulent Streamwise Cond. Enhancement'

 item = this.NkFunc_t;

 case 'Source Temperature'

 if isfield(this.data,'SourceTemperature')

 item = this.data.SourceTemperature;

 else

 item = 0;

 end

 end

 end

 function set(this,PropertyName,item)

 switch PropertyName

 case 'Material'

 this.matl = item;

 case 'Laminar Friction Function'

 this.fFunc_l = item;

 case 'Turbulent Friction Function'

 this.fFunc_t = item;

 case 'Laminar Nusselt Function'

 this.NuFunc_l = item;

 case 'Turbulent Nusselt Function'

 this.NuFunc_t = item;

 case 'Laminar Streamwise Mixing Enhancement'

 this.NkFunc_l = item;

 case 'Turbulent Streamwise Mixing Enhancement'

 this.NkFunc_t = item;

322

 case 'Source Temperature'

 if isfield(this.data,'SourceTemperature')

 this.data.SourceTemperature = item;

 end

 end

 end

 function Modify(this)

 % define Material

 if isempty(this.matl); this.matl = Material(); end

 this.matl.Modify();

 % define Geometry

 if ~isempty(this.Geometry)

 for index = 1:length(this.GeometryEnum)

 if this.GeometryEnum(index) == this.Geometry; break; end

 end

 else; index = 1;

 end

 index = listdlg('ListString',this.GeometrySource,...

 'SelectionMode','single',...

 'InitialValue',index);

 if isempty(this.GeometryEnum); this.assignGeometryEnum(); end

 this.Geometry = this.GeometryEnum(index);

 % calculate Properties

 %% Regenerators

 if isempty(this.data); this.data = struct('hasSource',false);

 else; this.data.hasSource = false; end

 switch this.Geometry

 case enumMatrix.WovenScreen

 this.isFullyLaminar = true;

 this.HasSource = false;

 % Assign Default User Inputs, from history or hardcoded values

 op = {'90','0.001'}; % Default Values

 if isfield(this.data,'Porosity'); op{1} = num2str(this.data.Porosity*100); end

 if isfield(this.data,'dw'); op{2} = num2str(this.data.dw); end

 % Get User Inputs

 firstround = true;

 while firstround || ~isStrNumeric(op{1}) || ~isStrNumeric(op{2})

 if firstround; firstround = false;

 else; msgbox('Numeric Values only'); end

 op = inputdlg(...

 {'Porosity (%)','Wire Diameter (m)'},...

 'Generate a Woven Screen Matrix',[1 35],op);

 end

 this.data.Porosity = str2double(op{1})/100;

 %this.Volumetric_HeatCapacity = (1 -

this.data.Porosity)*this.matl.HeatCapacity*this.matl.Density;

 this.data.dw = str2double(op{2});

 this.Dh = this.data.dw/(1-this.data.Porosity);

 % Friction Factor

 this.fFunc_l = @(Re) 129./Re+2.91*(Re.^(-0.103));

 this.fFunc_t = this.fFunc_l;

 % Nusselt Number

 this.NuFunc_l = @(Re,Pr) (1+0.99*(this.data.Porosity^1.79)*(Re.*Pr).^0.66);

 this.NuFunc_t = this.NuFunc_l;

 % Streamwise mixing enhancement

 this.NkFunc_l = @(Re,Pr) 1+0.5*(this.data.Porosity^(-2.91))*((Re.*Pr).^0.66);

 this.NkFunc_t = this.NkFunc_l;

 case enumMatrix.RandomFiber

 this.isFullyLaminar = true;

 this.HasSource = false;

 % Assign Default User Inputs, from history or hardcoded values

 op = {'90','0.001'}; % Default Values

323

 if isfield(this.data,'Porosity'); op{1} = num2str(this.data.Porosity*100); end

 if isfield(this.data,'dw'); op{2} = num2str(this.data.dw); end

 % Get User Inputs

 firstround = true;

 while firstround || ~isStrNumeric(op{1}) || ~isStrNumeric(op{2})

 if firstround; firstround = false;

 else; msgbox('Numeric Values only'); end

 op = inputdlg(...

 {'Porosity (%)','Wire Diameter (m)'},...

 'Generate a Random Fibre Matrix',[1 35],op);

 end

 this.data.Porosity = str2double(op{1})/100;

 %this.Volumetric_HeatCapacity = (1-

this.data.Porosity)*this.matl.HeatCapacity*this.matl.Density;

 this.data.dw = str2double(op{2});

 this.Dh = this.data.dw/(1-this.data.Porosity);

 alpha = this.data.Porosity/(1-this.data.Porosity);

 % Friction Factor

 this.fFunc_l = @(Re) (25.7*alpha+79.8)./Re+...

 (0.146*alpha+3.76)*(Re.^(-0.00283*alpha-0.0748));

 this.fFunc_t = this.fFunc_l;

 % Nusselt Number

 this.NuFunc_l = @(Re,Pr) 1+0.186*alpha*(Re.*Pr).^0.55;

 this.NuFunc_t = this.NuFunc_l;

 % Streamwise Mixing Enhancement

 this.NkFunc_l = @(Re,Pr) (1+(Re.*Pr).^0.55);

 this.NkFunc_t = this.NkFunc_l;

 case enumMatrix.PackedSphere

 this.isFullyLaminar = true;

 this.HasSource = false;

 % Assign Default User Inputs, from history or hardcoded values

 op = {'90','0.001'}; % Default Values

 if isfield(this.data,'Porosity'); op{1} = num2str(this.data.Porosity*100); end

 if isfield(this.data,'Dp'); op{2} = num2str(this.data.dw); end

 % Get User Inputs

 firstround = true;Run

 while firstround || ~isStrNumeric(op{1}) || ~isStrNumeric(op{2})

 if firstround; firstround = false;

 else; msgbox('Numeric Values only'); end

 op = inputdlg(...

 {'Porosity (%)','Particle Diameter (m)'},...

 'Generate a Stacked Particle Matrix',[1 35],op);

 end

 this.data.Porosity = str2double(op{1});

 %this.Volumetric_HeatCapacity = (1-

this.data.Porosity)*this.matl.HeatCapacity*this.matl.Density;

 this.data.Dp = str2double(op{2});

 this.Dh = this.data.Dp*this.data.Porosity/(6*(1-this.data.Porosity));

 % Friction Factor

 this.fFunc_l = @(Re) (157./Re+(5.15*(this.data.Porosity/0.39)^(3.48))*(Re.^-0.137));

 this.fFunc_t = @(Re,Pr) (157./Re+(5.15*(this.data.Porosity/0.39)^(3.48))*(Re.^-0.137));

 % Nusselt Number

 this.NuFunc_l = @(Re,Pr) (1+0.48*(Re.*Pr).^0.65);

 this.NuFunc_t = this.NuFunc_l;

 % Streamwise Mixing Enhancement

 this.NkFunc_l = @(Re,Pr) 1+3*(Re.*Pr).^0.65;

 this.NkFunc_t = this.NkFunc_l;

 case enumMatrix.StackedFoil

 this.isFullyLaminar = false;

 this.HasSource = true;

 % Assign Default User Inputs, from history or hardcoded values

324

 op = {'0.00025','0.0001','0.0001'}; % Default Values

 if isfield(this.data,'gap'); op{1} = num2str(this.data.gap); end

 if isfield(this.data,'dw'); op{2} = num2str(this.data.dw); end

 if isfield(this.data,'e'); op{3} = num2str(this.data.e); end

 % Get User Inputs

 firstround = true;

 while firstround || ~isStrNumeric(op{1}) || ...

 ~isStrNumeric(op{2}) || ~isStrNumeric(op{3})

 if firstround; firstround = false;

 else; msgbox('Numeric Values only'); end

 op = inputdlg(...

 {'Gap Width (m)','Sheet Thickness (m)','Sheet Roughness (m)'},...

 'Generate a Stacked Foil Matrix',[1 35],op);

 end

 this.data.gap = str2double(op{1});

 this.data.dw = str2double(op{2});

 this.data.e = str2double(op{3});

 this.Dh = 2*this.data.gap;

 this.data.Porosity = this.data.gap/(this.data.gap+this.data.dw);

 %this.Volumetric_HeatCapacity = (1-

this.data.Porosity)*this.matl.HeatCapacity*this.matl.Density;

 % Friction Factors

 % E. Fried, I.E. Idelchik, Flow Resistance: A Design Guide for Engineers,

 % Hemisphere, (1989)

 this.fFunc_l = @(Re) 96./Re;

 this.fFunc_t = @(Re) 0.121*(this.data.e/this.Dh+68./Re).^0.25;

 % Nusselt Number

 this.NuFunc_l = @(Re) 8.23;

 this.NuFunc_t = @(Re,Pr) 0.025*(Re.^0.79).*(Pr.^0.33);

 % Streamwise Mixing Enhancement

 this.NkFunc_l = @(Re) 1;

 this.NkFunc_t = @(Re,Pr) 0.022*(Re.^0.75).*(Pr);

 case enumMatrix.CustomRegen

 this.isFullyLaminar = false;

 this.HasSource = true;

 op = {'0.025','0.80','0.121','-0.25','1000','0.95'}; % Default Values

 if isfield(this.data,'C1'); op{1} = num2str(this.data.C1); end

 if isfield(this.data,'C2'); op{2} = num2str(this.data.C2); end

 if isfield(this.data,'C3'); op{3} = num2str(this.data.C3); end

 if isfield(this.data,'C4'); op{4} = num2str(this.data.C4); end

 if isfield(this.data,'SA_V'); op{5} = num2str(this.data.SA_V); end

 if isfield(this.data,'Porosity'); op{6} = num2str(this.data.Porosity); end

 % Get User Inputs

 firstround = true;

 while firstround || ~isStrNumeric(op{1}) || ...

 ~isStrNumeric(op{2}) || ~isStrNumeric(op{3}) || ...

 ~isStrNumeric(op{4}) || ~isStrNumeric(op{5}) || ...

 ~isStrNumeric(op{6})

 if firstround; firstround = false;

 else; msgbox('Numeric Values only'); end

 op = inputdlg(...

 {'C1','C2','C3','C4','Surface area to volume ratio [m^2/m^3]','Porosity'},...

 'Provide Parameters Nu = C1*Re^C2, F = C3*Re^C4 and other properties',[1 35],op);

 end

 this.data.C1 = str2double(op{1});

 this.data.C2 = str2double(op{2});

 this.data.C3 = str2double(op{3});

 this.data.C4 = str2double(op{4});

 this.data.SA_V = str2double(op{5});

 this.data.Porosity = str2double(op{6});

 this.Dh = 4/this.data.SA_V;

 % Friction Factors

 this.fFunc_l = @(Re) this.data.C3.*Re.^this.data.C4;

 this.fFunc_t = this.fFunc_l;

325

 % Nusselt Number

 this.NuFunc_l = @(Re,Pr) this.data.C1.*Re.^this.data.C2.*Pr.^0.33333;

 this.NuFunc_t = this.NuFunc_l;

 % Streamwise Mixing Enhancement

 this.NkFunc_l = @(Re) 1;

 this.NkFunc_t = @(Re,Pr) 0.022*(Re.^0.75).*(Pr);

 end

 %% Heat Exchangers

 switch this.Geometry

 % Friction Factors

 % G.W. Swift, Thermoacoustics: A Unifying Perspective for some Engines

 % and Refrigerators, Fourth draft, LA-UR-99-895, 1999

 % this.fFunc_l = @(Va)

 % this.fFunc_t = @(Re) 0.11*(this.data.e/this.Dh+68/Re)^0.25;

 % Nusselt Numbers

 % this.NuFunc_l = @(Re)

 % this.NuFunc_t = @(Re,Pr) 0.036*(Re^0.8)*(

 case enumMatrix.HeatExchanger

 %% Determine what Classification

 % Fined Surface Type

 % Channel Type

 % Normal to Tube Type

 ChoosingClassification = true;

 while (ChoosingClassification)

 % Select Heat Exchanger Type from List

 Source = {'Fin Enhanced Surface','Fin Connected Channels','Staggered Fin Connected

Tubes','Tube Bank Internal','Custom HX'};

 found = false;

 if isfield(this.data,'Classification')

 for index = 1:length(Source)

 if strcmp(this.data.Classification,Source{index})

 found = true;

 break;

 end

 end

 end

 if ~found; index = 1; end

 index = listdlg('ListString',Source,'SelectionMode','single','InitialValue',index);

 if isempty(this.data); this.data = struct('Classification',Source{index});

 else; this.data.Classification = Source{index}; end

 % If the User Made a selection

 if index > 0

 ChoosingClassification = false;

 switch index

 case 1 % 'Fin Enhanced Surface'

 %% Assume straight Flat fins aligned with flow direction

 % Assign Values

 Source = {'Fin Separation','Fin Thickness','Surface Roughness'};

 op = {'0.00318', '0.00318', '0.000001'};

 if isfield(this.data,'FinSeparation'); op{1} =

num2str(this.data.FinSeparation); end

 if isfield(this.data,'FinThickness'); op{2} = num2str(this.data.FinThickness);

end

 if isfield(this.data,'Roughness'); op{3} = num2str(this.data.Roughness); end

 DeterminingFinProperties = true;

 while (DeterminingFinProperties)

 op = inputdlg(Source,'Determine Fin Properties',[1 35],op);

 if isempty(op); ChoosingClassification = true; break; end

 % If the User inputed the appropriate data

 if isStrNumeric(op{1}) && isStrNumeric(op{2}) && isStrNumeric(op{3})

 DeterminingFinProperties = false;

 this.data.FinSeparation = str2double(op{1});

 this.data.FinThickness = str2double(op{2});

 this.data.Roughness = str2double(op{3});

 lg = this.data.FinSeparation;

326

 lth = this.data.FinThickness;

 e = this.data.Roughness;

 % Get the user to select a surface that will be

 % ... enhanced

 Source = cell(1,4);

 i = 1;

 for iCon = this.Body.Connections

 Source{i} = iCon.name; i = i + 1;

 end

 index =

listdlg('ListString',Source,'SelectionMode','single','InitialValue',1);

 % If the User made a selection

 if index > 0

 this.data.Connection = this.Body.Connections(index);

 this.data.Porosity = lg/(lg+lth);

 %% Hydraulic Diameter

 if this.data.Connection.Orient == enumOrient.Vertical

 % Along the wall

 [~,~,xmin,xmax] = this.Body.limits(enumOrient.Vertical);

 this.data.FinLength = xmax - xmin;

 else

 % Along the top or bottom surface

 [ymin,ymax,~,~] = this.Body.limits(enumOrient.Horizontal);

 this.data.FinLength = min(ymax-ymin);

 end

 this.Dh = (4*lg*lth)/(2*lg + 2*lth);

 % Friction Factor

 % ... E. Fried, I.E. Idelchik, Flow Resistance: A Design Guide for

Engineers,

 % ... Hemisphere, (1989)

 x = min(lg/lf,lf/lg);

 C1 = -59.33*x^3+145.6*x^2-125.37*x+96;

 this.fFunc_l = @(Re) C1./Re;

 this.fFunc_t = @(Re) 0.121*(e/this.Dh+68./Re).^0.25;

 % Nusselt Number

 this.NuFunc_l = @(Re) 8.23;

 this.NuFunc_t = @(Re,Pr) 0.025*(Re.^0.79).*(Pr.^0.33);

 % Stramwise Mixing Enhancement

 this.NkFunc_l = @(Re) 1;

 this.NkFunc_t = @(Re,Pr) 0.022*(Re.^0.75).*(Pr);

 else

 DeterminingFinProperties = true;

 end

 end

 end

 this.data.hasSource = false;

 case 2 % 'Fin Connected Channels'

 % Assume the source runs in planes concident with flow

 % ... direction with fins weaving their way between these

 % ... channels

 % Assign Values

 Source = {'Gap Between Source Channels',...

 'Source Channel Total Width',...

 'Source Channel Wall Thickness',...

 'Surface Roughness'};

 op = {'0.01','0.002','0.0005','0.000001'};

 if isfield(this.data,'gap'); op{1} = num2str(this.data.gap); end

 if isfield(this.data,'ChannelThickness'); op{2} =

num2str(this.data.ChannelThickness); end

 if isfield(this.data,'WallThickness'); op{3} =

num2str(this.data.WallThickness); end

 if isfield(this.data,'Roughness'); op{4} = num2str(this.data.Roughness); end

 DeterminingGeneralChannelGeometry = true;

327

 while (DeterminingGeneralChannelGeometry)

 op = inputdlg(Source,'Define General Heat Exchanger Geometry',...

 [1 35],op);

 if isempty(op); ChoosingClassification = true; break; end

 if isStrNumeric(op{1}) && isStrNumeric(op{2}) && ...

 isStrNumeric(op{3}) && isStrNumeric(op{4})

 DeterminingGeneralChannelGeometry = false;

 this.data.gap = str2double(op{1});

 this.data.ChannelThickness = str2double(op{2});

 this.data.WallThickness = str2double(op{3});

 this.data.Roughness = str2double(op{4});

 lf = this.data.gap;

 lcth = this.data.ChannelThickness;

 e = this.data.Roughness;

 DeterminingGeometry = true;

 % Pick the fin pattern, straight across or zig-zag

 Source = {'Rectangular','Triangular'};

 index = 1;

 while (DeterminingGeometry)

 index =

listdlg('ListString',Source,'SelectionMode','single','InitialValue',index);

 % If the User made a selection

 if index > 0

 DeterminingGeometry = false;

 this.data.Geometry = Source{index};

 DetermingGeometryProperties = true;

 % Assign Defaults

 Source = {'Base Width','Fin Thickness'};

 op = {'0.002','0.0002'};

 if isfield(this.data,'BaseWidth'); op{1} =

num2str(this.data.BaseWidth); end

 if isfield(this.data,'FinThickness'); op{2} =

num2str(this.data.FinThickness); end

 while (DetermingGeometryProperties)

 op = inputdlg(Source,'Define In Channel Geometry',...

 [1 35],op);

 if isempty(op); DeterminingGeometry = true; break; end

 this.data.BaseWidth = str2double(op{1});

 this.data.FinThickness = str2double(op{2});

 lb = this.data.BaseWidth;

 lth = this.data.FinThickness;

 switch index

 case 1 % 'Rectangular'

 this.data.FinLength = lf;

 % Porosity

 this.data.Porosity = ...

 ((lf - lth)/(lf - lth + lcth))*...

 (lb/(lb + lth));

 % Hydraulic Diameter

 this.Dh = 4*lf*lb/(2*lf + 2*lb);

 % Friction Factor

 % E. Fried, I.E. Idelchik, Flow Resistance: A Design Guide for

Engineers,

 % Hemisphere, (1989)

 x = min(lf/lb,lb/lf);

 C1 = -59.33*x^3+145.6*x^2-125.37*x+96;

 if C1 > 96; C1 = 96; elseif C1 < 56.92; C1 = 56.92; end

 this.fFunc_l = @(Re) C1./Re;

 this.fFunc_t = @(Re) 0.25*(e/this.Dh+68./Re).^0.25;

 % Nusselt Number

 this.NuFunc_l = @(Re) 8.23;

 this.NuFunc_t = @(Re,Pr) 0.025*(Re.^0.79).*(Pr.^0.33);

328

 % Streamwise Mixing Enhancement

 this.NkFunc_l = @(Re) 1;

 this.NkFunc_t = @(Re,Pr) 0.022*(Re.^0.75).*(Pr);

 case 2 % 'Triangular'

 A = atan(lb/(2*(this.data.gap-lth)));

 this.data.FinLength = this.data.gap/cos(A);

 lf = this.data.FinLength;

 % Porosity

 lth2 = lth/cos(A);

 this.data.Porosity = ...

 (this.data.gap/(this.data.gap + lcth))*...

 (lb/(lb + lth2));

 % Hydraulic Diameter

 this.Dh = (lb/2)/(1+sqrt(1/(tan(A)^2) + 1));

 % Friction Factor

 Cl = 2.263*A^3 - 7.208*A^2 + 5.738*A + 12;

 this.fFunc_l = @(Re) Cl./Re;

 C2 = -0.0184*A^2 + 0.0414*A + 0.0847;

 this.fFunc_t = @(Re) C2*(e/this.Dh+68./Re).^0.25;

 % Nusselt Number

 NuT = 2.66*A^5 - 12.19*A^4 + 21.63*A^3 - 19.9*A^2 + 8.92*A +

0.956;

 this.NuFunc_l = @(Re) NuT;

 TempFunc = @(f,Re,Pr) (f./8).*Re.*Pr./(1.07+12.7*(Pr.^(2/3)-

1).*(f./8).^0.5);

 this.NuFunc_t = @(Re,Pr) TempFunc(this.fFunc_t(Re),Re,Pr);

 % Mixing

 this.NkFunc_l = @(Re) 1;

 this.NkFunc_t = @(Re,Pr) 0.022*(Re.^0.75).*(Pr); % its similiar

to rectangular flows

 end

 DetermingGeometryProperties = false;

 end

 else

 DeterminingGeneralChannelGeometry = true;

 break;

 end

 end

 end

 end

 this.data.hasSource = true;

 case 3 % 'Staggered Fin Connected Tubes'

 Source = {'Spacing Perpendicular to Flow',...

 'Spacing Parallel to Flow',...

 'Fin: Thickness',...

 'Fin: Separation',...

 'Fin: Fin Radial Length (C: Continuous Plate)',...

 'Tube Outer Diameter',...

 'Tube Inner Diameter',...

 'Surface Area Factor',...

 'Heat Transfer Factor'};

 op = {'0.02',...

 '0.02',...

 '0.0002',...

 '0.002',...

 'C',...

 '0.00635',...

 '0.00508',...

 '1',...

 '1'};

 if isfield(this.data,'PerpSpacing'); op{1} = num2str(this.data.PerpSpacing);

end

 if isfield(this.data,'ParaSpacing'); op{2} = num2str(this.data.ParaSpacing);

end

 if isfield(this.data,'FinThickness'); op{3} = num2str(this.data.FinThickness);

end

329

 if isfield(this.data,'FinSeparation'); op{4} =

num2str(this.data.FinSeparation); end

 if isfield(this.data,'FinLength'); op{5} = num2str(this.data.FinLength); end

 if isfield(this.data,'do'); op{6} = num2str(this.data.do); end

 if isfield(this.data,'di'); op{7} = num2str(this.data.di); end

 if isfield(this.data,'SurfaceAreaFactor'); op{8} =

num2str(this.data.SurfaceAreaFactor); end

 if isfield(this.data,'HeatTransferFactor'); op{9} =

num2str(this.data.HeatTransferFactor); end

 DeterminingNormalToTubeType = true;

 while (DeterminingNormalToTubeType)

 op = inputdlg(Source,'Define Finned Tube HX Geometry',...

 [1 35],op);

 if isempty(op); ChoosingClassification = true; break;

 end

 if isStrNumeric(op{1}) && isStrNumeric(op{2}) && ...

 isStrNumeric(op{3}) && isStrNumeric(op{4}) && ...

 (strcmp(op{5},'C') || isStrNumeric(op{5})) && ...

 isStrNumeric(op{6}) && isStrNumeric(op{7}) && ...

 isStrNumeric(op{8})

 % Assign Base Properties

 DeterminingNormalToTubeType = false;

 this.data.PerpSpacing = str2double(op{1});

 this.data.ParaSpacing = str2double(op{2});

 this.data.FinThickness = str2double(op{3});

 this.data.FinSeparation = str2double(op{4});

 if ~strcmp(op{5},'C')

 this.data.FinLength = str2double(op{5});

 lf = this.data.FinLength;

 end

 this.data.do = str2double(op{6});

 this.data.di = str2double(op{7});

 this.data.SurfaceAreaFactor = str2double(op{8});

 this.data.HeatTransferFactor = str2double(op{9});

 lperp = this.data.PerpSpacing;

 lpara = this.data.ParaSpacing;

 lth = this.data.FinThickness;

 lg = this.data.FinSeparation;

 do = this.data.do;

 Ao = lperp*lpara;

 Vo = Ao*(lth + lg);

 % Porosity

 this.data.PercentageTube = (pi/4*do^2)/Ao;

 if isfield(this.data,'FinLength')

 ro = do/2 + lf;

 this.data.Porosity = ...

 (lg + lth)*(Ao - pi*ro^2)/Vo + ... Empty space

 lg*pi*(ro^2 - 0.25*do^2)/Vo; % Finned Areas

 else

 this.data.Porosity = ...

 lg*(Ao - pi/4*do^2)/Vo; % Finned Areas

 end

 this.Dh = do;

 % Nusselt Number

 % Aligned with theta; may be axial, may be radial

 [~,~,xmin,xmax] = this.Body.limits(enumOrient.Vertical);

 [~,~,ymin,ymax] = this.Body.limits(enumOrient.Horizontal);

 if this.Body.divides(1) > 1

 dist = abs(xmax-xmin);

 elseif this.Body.divides(2) > 1

 dist = abs(ymax-ymin);

 else

 if abs(xmax-xmin) > abs(ymax-ymin)

 dist = abs(xmax-xmin);

 else

 dist = abs(ymax-ymin);

330

 end

 end

 Nr = dist/this.data.ParaSpacing;

 if isfield(this.data,'FinLength')

 % Individual Finned Tubes - Staggered

 lf_do = this.data.FinLength/this.data.do;

 if lf_do < 0.09

 % Low finned tubes

 % if Re -> (895, 713,000)

 C1 = 0.255*(2*ro/lg);

 this.NuFunc_t = @(Re,Pr) ...

 this.data.HeatTransferFactor*...

 C1*(Re.^0.7).*Pr.^(0.333);

 do_Xt = do/lperp;

 if do_Xt < 0.25

 fprintf('XXX LaterialSpacing/OuterDiameter is out friction

correlation range XXX\n');

 end

 if round(Nr) < 4

 fprintf('XXX Calcualted # of tube rows is out friction correlation

range XXX\n');

 end

 C2 = 4*1.748*(lf/lg)^0.552*do_Xt^0.599*(do/lpara)^0.1738;

 this.fFunc_t = @(Re) C2*Re.^(-0.233);

 % Laminar Cases - assume always turbulent

 this.NuFunc_l = this.NuFunc_t;

 this.fFunc_l = this.fFunc_t;

 else % High finned tubes

 % if Re -> (1100, 18,000)

 s_lf = lg/lf;

 s_df = lg/lth;

 lf_do = lf/do;

 df_do = lth/do;

 Xt_do = lperp/do;

 if s_lf < 0.13 || s_lf > 0.63

 fprintf('XXX FinSeparation/FinLength is out of Nusselt correlation

range XXX\n');

 end

 if s_df < 1.01 || s_df > 6.62

 fprintf('XXX FinSeparation/FinThickness is out of Nusselt correlation

range XXX\n');

 end

 if lf_do > 0.69 || lf_do < 0.09

 fprintf('XXX FinLength/OuterDiameter is out of Nusselt correlation

range XXX\n');

 end

 if df_do < 0.011 || df_do > 0.15

 fprintf('XXX FinThickness/OuterDiameter is out Nusselt correlation

range XXX\n');

 end

 if Xt_do < 1.54 || Xt_do > 8.23

 fprintf('XXX LaterialSpacing/OuterDiameter is out Nusselt correlation

range XXX\n');

 end

 if this.data.do < 0.0111 || this.data.do > 0.0409

 fprintf('XXX OuterDiameter is out Nusselt correlation range XXX\n');

 end

 C1 = 0.134*(s_lf^0.2)*(s_df^0.11);

 this.NuFunc_t = @(Re,Pr) ...

 this.data.HeatTransferFactor*...

 C1*(Re.^(0.681)).*(Pr.^(0.333));

 C2 = (2*this.Dh/dist)*4*9.465*(Xt_do^-0.927)*(lperp/...

 sqrt(lperp^2 + lpara^2))^0.515;

 this.fFunc_t = @(Re) C2*Re.^(-0.316);

 % Laminar Cases - assume always turbulent

 this.NuFunc_l = this.NuFunc_t;

 this.fFunc_l = this.fFunc_t;

331

 end

 else

 fprintf('XXX Sorry, the Flat Plan Fins on Staggered Tube Bank is

currently under development\n');

 fprintf('The Best Source is here:

http://thermopedia.com/content/750/\n');

 %{

 % Flat Plain Fins on a Staggered Tube Bank

 C1 = 0.14*...

 (lperp/lpara)^-0.502*...

 (lg/do)^0.031;

 if Nr >= 4

 this.NuFunc_t = @(Re,Pr) C1*Re^0.672*Pr^0.333;

 else

 C2 = C1*0.991*(2.24*(Nr/4)^-0.031)^(-0.607*(4-Nr));

 C3 = 1+(-0.092*0.607*(4-Nr))-0.328;

 this.NuFunc_t = @(Re,Pr) C2*Re^C3*Pr^0.333;

 end

 % Re -> (500, 24,700)

 Xt_do = lperp/do;

 Xl_do = lpara/do;

 s_do = lg/do;

 C4 = SFin/(STube+SFin);

 C5 = (1-C4)*FinVoid;

 if Xt_do < 1.97 || Xt_do > 2.55

 fprintf('XXX LaterialSpacing/OuterDiameter is out of Friction

correlation range XXX\n');

 end

 if Xl_do < 1.7 || Xl_do > 2.58

 fprintf('XXX LongitudinalSpacing/OuterDimeter is out of Friction

correlation range XXX\n');

 end

 if s_do < 0.08 || s_do > 0.64

 fprintf('XXX FinSeparation/OuterDimeter is out of Friction correlation

range XXX\n');

 end

 C4a = 4*C4*0.508*(Xt_do)^1.318;

 % Staggered Tube Grid Friction Factor

 % Re -> (300, 15,000)

 C5a = 4*C5*TubeBankFriction(lperp,lpara,do);

 this.fFunc_t = @(Re) C4a*Re^(-0.521) + C5a*((do/this.Dh)*Re)^(-0.18);

 % Laminar Cases - assume always turbulent due to

 % being tripped

 this.NuFunc_l = this.NuFunc_t;

 this.fFunc_l = this.fFunc_t;

 %}

 end

 %% Mixing

 % Axial Conduction Enhancement

 % Taken From woven regenerators

 this.NkFunc_l = @(Re,Pr) 1+0.5*(this.data.Porosity^(-

2.91))*((Re.*Pr).^0.66);

 this.NkFunc_t = @(Re,Pr) 0.022*(Re.^0.75).*(Pr);

 end

 end

 this.data.hasSource = true;

 case 4 % Tube Bank Internal

 Source = {'Number of Tubes',...

 'Tube Outer Diameter',...

 'Tube Inner Diameter'};

 op = {'100',...

 '0.01',...

 '0.008'};

 if isfield(this.data,'Number'); op{1} = num2str(this.data.Number); end

 if isfield(this.data,'do'); op{2} = num2str(this.data.do); end

 if isfield(this.data,'di'); op{3} = num2str(this.data.di); end

 DeterminingNormalToTubeType = true;

332

 while (DeterminingNormalToTubeType)

 op = inputdlg(Source,'Define Tube Bank Internal HX Geometry',...

 [1 35],op);

 if isempty(op); ChoosingClassification = true; break;

 end

 if isStrNumeric(op{1}) && isStrNumeric(op{2}) && ...

 isStrNumeric(op{3})

 DeterminingNormalToTubeType = false;

 this.data.Number = str2double(op{1});

 this.data.do = str2double(op{2});

 this.data.di = str2double(op{3});

 di = this.data.di;

 % Nusselt Number

 % Aligned with theta; may be axial, may be radial

 [~,~,xmin,xmax] = this.Body.limits(enumOrient.Vertical);

 [~,~,ymin,ymax] = this.Body.limits(enumOrient.Horizontal);

 if this.Body.divides(1) > 1

 dist = abs(xmax-xmin);

 A = 2*pi*abs(ymax-ymin)*xmin;

 elseif this.Body.divides(2) > 1

 dist = abs(ymax-ymin);

 A = pi*(xmax^2-xmin^2);

 else

 if abs(xmax-xmin) > abs(ymax-ymin)

 dist = abs(xmax-xmin);

 A = 2*pi*(ymax-ymin)*xmin;

 else

 dist = abs(ymax-ymin);

 A = pi*(xmax^2-xmin^2);

 end

 end

 this.data.Ao = A/this.data.Number;

 this.data.Spacing = sqrt(4*this.data.Ao/sqrt(3));

 this.data.Porosity = ((pi/4)*di^2)/this.data.Ao;

 this.Dh = di;

 Cturb = 0.036*(dist/di)^(-0.055);

 this.NuFunc_t = @(Re,Pr) Cturb*(Re.^0.8).*(Pr.^0.33);

 this.fFunc_t = @(Re) 0.11*(this.Body.Group.Model.roughness/di

+68./Re).^0.25;

 % Laminar Cases - assume always turbulent

 this.NuFunc_l = @(Re) 6;

 this.fFunc_l = @(Re) 64./Re;

 %% Mixing

 % Axial Conduction Enhancement

 % Taken From woven regenerators

 this.NkFunc_l = @(Re) 1;

 this.NkFunc_t = @(Re,Pr) 0.022*(Re.^0.75).*Pr;

 end

 end

 this.data.hasSource = true;

 case 5 % Custon HX

 Source = {'C1','C2','C3','C4','Surface are to gas volume ratio

[m^2/m^3]','Porosity'};

 op = {'0.020', '0.8', '0.11', '-0.25', '1.5', '0.5'};

 if isfield(this.data,'C1'); op{1} = num2str(this.data.C1); end

 if isfield(this.data,'C2'); op{2} = num2str(this.data.C2); end

 if isfield(this.data,'C3'); op{3} = num2str(this.data.C3); end

 if isfield(this.data,'C4'); op{4} = num2str(this.data.C4); end

 if isfield(this.data,'SA_V'); op{5} = num2str(this.data.SA_V); end

 if isfield(this.data,'Porosity'); op{6} = num2str(this.data.Porosity); end

 DeterminingParameterSet = true;

 while (DeterminingParameterSet)

 op = inputdlg(Source,'Pick Nu = C1*Re^C2*Pr^0.33, F = C3*Re^C4, HX Surface to

Volume Ratio and porosity',...

 [1 35],op);

 if isempty(op); ChoosingClassification = true; break;

333

 end

 if isStrNumeric(op{1}) && isStrNumeric(op{2}) && ...

 isStrNumeric(op{3}) && isStrNumeric(op{4}) && ...

 isStrNumeric(op{5}) && isStrNumeric(op{6})

 DeterminingParameterSet = false;

 this.data.C1 = str2double(op{1});

 this.data.C2 = str2double(op{2});

 this.data.C3 = str2double(op{3});

 this.data.C4 = str2double(op{4});

 this.data.SA_V = str2double(op{5});

 this.data.Porosity = str2double(op{6});

 this.Dh = 4/this.data.SA_V;

 % Nusselt Number

 % Aligned with theta; may be axial, may be radial

 this.NuFunc_t = @(Re,Pr) this.data.C1.*(Re.^this.data.C2).*(Pr.^0.33);

 this.fFunc_t = @(Re) this.data.C3.*Re.^this.data.C4;

 % Laminar Cases - assume always turbulent

 this.NuFunc_l = @(Re) 3.66;

 this.fFunc_l = @(Re) 64./Re;

 %% Mixing

 % Axial Conduction Enhancement

 % Taken From woven regenerators

 this.NkFunc_l = @(Re) 1;

 this.NkFunc_t = @(Re,Pr) 0.022*(Re.^0.75).*Pr;

 end

 end

 this.data.hasSource = true;

 end

 else

 fprintf('XXX Matrix not finished XXX\n');

 return;

 end

 end

 end

 if this.data.hasSource

 op = cell(1);

 if isfield(this.data,'SourceTemperature')

 op{1} = num2str(this.data.SourceTemperature);

 else

 op{1} = '';

 end

 op = inputdlg('What will be the source Temperature?','Define Source Temperature',1,op);

 if ~isnan(str2double(op{1}))

 this.data.SourceTemperature = str2double(op{1});

 else

 this.data.SourceTemperature = this.Body.Temperature();

 end

 end

 end

 function [nodes, faces] = discretize(this,pnd)

 Np = length(pnd);

 this.Nodes = Node.empty;

 this.Faces = Face.empty;

 k = this.matl.ThermalConductivity;

 % Create Nodes to depth based on biot number

 switch this.Geometry

 case {enumMatrix.WovenScreen, ...

 enumMatrix.RandomFiber, ...

 enumMatrix.PackedSphere, ...

 enumMatrix.StackedFoil, ...

 enumMatrix.CustomRegen}

 this.data.ignore_canister = true;

 ncount = Np + 1;

 fcount = Np + 1;

 switch this.Geometry

 case {enumMatrix.WovenScreen, enumMatrix.RandomFiber}

 % Coefficient = Length of wire per volume * pi * diameter

334

 % ... Total_Area/Volume = pi*dw*L / (0.25*pi*dw*dw*L)

 % ... Total_Area/Volume = 1 / (0.25*dw)

 A_V = 4*(1-this.data.Porosity)/this.data.dw;

 % ... Resistance * Total_Area = log(2)/(2*pi*L*k) * pi*dw*L

 % ... = log(2)/(2) * dw/k

 RxA = 0.3466*this.data.dw/k; % ds/(2*k/ln(2));

 case enumMatrix.PackedSphere

 % Coefficient = Number of spheres per volume*pi*dw^2

 % ... A/V = (pi*dw^2)/(4*pi*dw^3/(8*3)) = 6/dw

 A_V = 6*(1-this.data.Porosity)/this.data.dw;

 % Resistance * Total_Area = 0.5*dw/(4*pi*k*dw*dw*0.5) *

 % ... pi*dw^2

 % ... = pi*dw^2/(4*pi*k*dw) = dw/(4*k)

 RxA = this.data.dw/(4*k);

 case enumMatrix.StackedFoil

 % Coefficient = Area/Volume = 2/(gap + dw)

 A_V = 2/(this.data.gap + this.data.dw);

 % Resistance = L/(k*A) = (dw/2) / (k*2)

 % Total_Area = 2

 RxA = this.data.dw/(2*k);

 case enumMatrix.CustomRegen

 A_V = this.data.SA_V;

 dw = 4*(1-this.data.Porosity)/this.data.SA_V;

 RxA = 0.3466*dw/k;

 end

 this.Nodes(1,Np) = Node();

 % Define Nodes

 i = 1;

 for nd = pnd

 newnd = this.Nodes(i); %

 newnd.Type = enumNType.SN;

 newnd.data = struct('matl',this.matl,...

 'T',nd.data.T,'dT_dU',this.matl.dT_du);

 newnd.xmin = nd.xmin; %

 newnd.xmax = nd.xmax; %

 newnd.ymin = nd.ymin; %

 newnd.ymax = (nd.ymax-nd.ymin).*(1-this.data.Porosity) + nd.ymin; %

 i = i + 1;

 end

 % Define Faces

 this.Faces(1,Np) = Face();

 i = 1;

 for nd = pnd

 % Create a mixed Face

 newfc = this.Faces(i);

 newfc.Type = enumFType.Mix;

 newfc.Orient = enumOrient.Vertical;

 newfc.isEdge = false;

 newfc.ActiveTimes = true;

 newfc.Nodes = [nd this.Nodes(i)];

 newfc.data = struct('Area',nd.total_vol()*A_V,'R',RxA);

 i = i + 1;

 end

 case enumMatrix.HeatExchanger

 % Treat the heat exchanger material as a lumped model.

 % Heat Comes from the source, using convection, heat leaves the

 % heat exchanger by convection

 switch this.data.Classification

 case 'Fin Enhanced Surface' % Channel Fins -

 this.data.ignore_canister = false;

 % Source is a connection

 % FinSeparation, FinThickness, Roughness, Porosity, Dh

 N = this.Body.Group.Model.Mesher.HeatExchangerFinDivisions;

 for i = Np*N:-1:1; this.Nodes(i) = Node(); end

 for i = (Np + 1)*N*Np:-1:1; this.Faces(i) = Face(); end

 ncount = 1; fcount = 1;

 Con = this.data.Connection;

 % Find xs and ys from parent nodes

335

 if length(pnd)>1 || pnd(1).xmin ~= pnd(2).xmin

 % Discretized in X

 if Con.Orient == enumOrient.Vertical

 % Discretized Across the gas path

 xs = zeros(Np+1,1); i = 1;

 for nd = pnd; xs(i) = nd.xmin; i=i+1; end

 xs(end) = pnd(end).xmax;

 ys = linspace(pnd(1).ymin(1),pnd(1).ymax(1),N+1);

 else

 % Discretized with the gas path

 xs = zeros(Np*N+1,1); i = 1; k = 1;

 for nd = pnd

 xs(i:i+N-1) = linspace(pnd(k).xmin,pnd(k).xmax,N);

 i = i + N;

 k = k + 1;

 end

 xs(end) = pnd(end).xmax;

 ys = [pnd(1).ymin(1) pnd(2).ymax(1)];

 end

 else

 % Discretized in Y

 if Con.Orient == enumOrient.Horizontal

 % Discretized Across the gas path

 ys = zeros(Np+1,1); i = 1;

 for nd = pnd; ys(i) = nd.ymin(1); i=i+1; end

 ys(end) = pnd(end).ymax(1);

 xs = linspace(pnd(1).xmin,pnd(1).xmax,N+1);

 else

 % Discretized with the gas path

 ys = zeros(Np*N+1,1); i = 1; k = 1;

 for nd = pnd

 ys(i:i+N-1) = linspace(pnd(k).ymin(1),pnd(k).ymax(1),N);

 i = i + N;

 k = k + 1;

 end

 ys(end) = pnd(end).ymax(1);

 xs = [pnd(1).xmin pnd(2).xmax];

 end

 end

 % Declare Nodes

 ncount = Np*N;

 for j = length(ys)-1:-1:1

 for i = length(xs)-1:-1:1

 this.Nodes(ncount).xmin = xs(i);

 this.Nodes(ncount).xmax = xs(i+1);

 this.Nodes(ncount).ymin = ys(i,:);

 this.Nodes(ncount).ymax = ys(i+1,:);

 this.Nodes(ncount).Type = enumNType.SN;

 index = findmatching(pnd, this.Nodes(ncount));

 this.Nodes(ncount).data = struct(...

 'T',this.Body.Temperature(),...

 'dT_dU',this.matl.dT_du,...

 'matl',this.matl,...

 'ParentNode',index);

 ncount = ncount - 1;

 end

 end

 % Declare Mixed Faces

 % Area / Total Volume

 A_V = 2/(this.data.FinThickness + this.data.FinSeparation);

 RxA = this.data.FinThickness/(2*k);

 for i = 1:length(this.Nodes)

 this.Faces(fcount).Type = enumFType.Mix;

 this.Faces(fcount).Nodes = ...

 [pnd(this.Nodes(i).data.ParentNode) this.Nodes(i)];

 this.Faces(fcount).data = struct(...

 'Area',A_V*this.Nodes(i).total_vol(),...

 'R',RxA,...

 'NuFunc_l',this.NuFunc_l,...

336

 'NuFunc_t',this.NuFunc_t);

 this.Faces(fcount).isDynamic = false;

 fcount = fcount + 1;

 end

 % Declare Internal Faces

 NY = length(ys)-1;

 for i = 1:length(this.Nodes)

 nd = this.Nodes(i);

 if i > 1 && this.Nodes(i-1).xmax == nd.xmin

 this.Faces(fcount) = Face([this.Nodes(i-1) nd], ...

 enumFType.Solid,enumOrient.Vertical);

 this.Faces(fcount).data.U = ...

 this.Faces(fcount).data.U*(1-this.data.Porosity);

 fcount = fcount + 1;

 end

 if i > NY

 this.Faces(fcount) = Face([this.Nodes(i-NY) nd], ...

 enumFType.Solid, enumOrient.Horizontal);

 this.Faces(fcount).data.U = ...

 this.Faces(fcount).data.U*(1-this.data.Porosity);

 fcount = fcount + 1;

 end

 end

 % Modify Gas Node Connections to Selected Connection

 for NdCon = Con.NodeContacts

 if NdCon.Node.Body == this.Body

 if isfield(this.data,'Perc')

 this.data.Perc = this.data.Perc * this.data.Porosity;

 else

 this.data.Perc = this.data.Porosity;

 end

 end

 end

 % Declare Connections to Selected Connection

 x = Con.x;

 if Con.Orient == enumOrient.Vertical

 for i = 1:length(this.Nodes)

 if this.Nodes(i).xmin == x || this.Nodes(i).xmax == x

 Con.addNodeContacts(...

 NodeContact(this.Nodes(i),...

 this.Nodes(i).ymin,this.Nodes(i).ymax,...

 enumFType.Solid,Con));

 Con.NodeContacts(end).data.Perc = (1-this.data.Porosity);

 end

 end

 else

 x = x(1);

 for i = 1:length(this.Nodes)

 if this.Nodes(i).ymin(1) == x || ...

 this.Nodes(i).ymax(1) == x

 Con.addNodeContacts(...

 NodeContact(this.Nodes(i),...

 this.Nodes(i).xmin,this.Nodes(i).xmax,...

 enumFType.Solid,Con));

 Con.NodeContacts(end).data.Perc = (1-this.data.Porosity);

 end

 end

 end

 % Modify Gas and Solid Node volume

 for i = 1:4

 if Con == this.Body.Connections(i)

 break;

 end

 end

 switch i

 case {1, 2}

 for fc = this.Faces

337

 if fc.Type == enumFType.Mix

 % Get parent node

 if fc.Nodes(1).Type == enumNType.SN

 p = fc.Nodes(2); s = fc.Nodes(1);

 else

 p = fc.Nodes(1); s = fc.Nodes(2);

 end

 anchor = p.ymax;

 s.ymin = anchor + ...

 (s.ymin - anchor)*(1-this.data.Porosity);

 s.ymax = anchor + ...

 (s.ymax - anchor)*(1-this.data.Porosity);

 anchor = p.ymin;

 p.ymax = anchor + ...

 (p.ymax - anchor)*this.data.Porosity;

 end

 end

 case {3, 4}

 for fc = this.Faces

 if fc.Type == enumFType.Mix

 % Get parent node

 if fc.Nodes(1).Type == enumNType.SN

 p = fc.Nodes(2); s = fc.Nodes(1);

 else

 p = fc.Nodes(1); s = fc.Nodes(2);

 end

 anchor = p.xmax;

 s.xmin = anchor + ...

 (s.xmin - anchor)*(1-this.data.Porosity);

 s.xmax = anchor + ...

 (s.xmax - anchor)*(1-this.data.Porosity);

 anchor = p.xmin;

 p.xmax = anchor + ...

 (p.xmax - anchor)*this.data.Porosity;

 end

 end

 end

 case 'Fin Connected Channels'

 this.data.ignore_canister = true;

 % Properties:

 % gap, ChannelThickness, WallThickness, Roughness, BaseWidth,

 % ... FinThickness, FinLength, sourceConvection

 % Make the source node

 N = double(this.Body.Group.Model.Mesher.HeatExchangerFinDivisions);

 for i = (Np + 1)*N + 1:-1:1; this.Nodes(i) = Node(); end

 for i = (Np + 1)*N*Np:-1:1; this.Faces(i) = Face(); end

 ncount = 1; fcount = 1;

 lcth = this.data.ChannelThickness;

 lwth = this.data.WallThickness;

 lg = this.data.gap;

 lth = this.data.FinThickness;

 lb = this.data.BaseWidth;

 % Volume of source / total volume

 SourceV_V = (lcth - lwth)/(lg + lcth);

 % Surface area of source / total volume

 SourceA_V = 2/(lg + lcth);

 % As a multiple of Remaining Volume

 switch this.data.Geometry

 case 'Rectangular'

 % Volume of fin / total volume

 FinV_V = lth*lg/((lg+lcth)*lb);

 FinA_FinV = 2/lth;

 % Linear Distance between fin nodes

 Li = lg/N;

 case 'Triangular'

 lf = this.data.FinLength;

 % Volume of fin / total volume

 FinV_V = lth*lf/((lg+lcth)*lb);

 FinA_FinV = 2/lth;

338

 % Linear Distance between fin nodes

 Li = lf/N;

 end

 % Exposed surface of source skin / total volume

 SkinA_V = SourceA_V*(lb/(lth+lb));

 % Proportion of channel wall / total volume

 SkinV_V = lwth/(lg + lcth);

 % Define Source Node

 SourceNd = this.Nodes(ncount);

 SourceNd.Type = enumNType.SN;

 SourceNd.data = struct(...

 'matl',Material('Constant Temperature'),...

 'T',this.data.SourceTemperature,...

 'dT_dU',-1);

 [~,~,x1,x2] = this.Body.limits(enumOrient.Vertical);

 [~,~,y1,y2] = this.Body.limits(enumOrient.Horizontal);

 isHorizontal = this.Body.divides(1) > this.Body.divides(2);

 SourceNd.xmin = x1;

 SourceNd.ymin = y1;

 if isHorizontal

 % Discretized along the x direction

 SourceNd.xmax = x2;

 y1 = offsety(SourceV_V,Node(enumNType.SN,x1,x2,y1,y2),y1);

 SourceNd.ymax = y1;

 else

 % Discretized along the y direction

 x1 = offsetx(SourceV_V,Node(enumNType.SN,x1,x2,y1,y2),x1);

 SourceNd.xmax = x1;

 SourceNd.ymax = y2;

 end

 ncount = ncount + 1;

 j = 0;

 backup = x1;

 backup_y1 = y1;

 for nd = pnd

 j = j + 1;

 Vp = nd.total_vol();

 % Define Skin Node

 this.Nodes(ncount) = Node();

 SkinNd = this.Nodes(ncount);

 SkinNd.Type = enumNType.SN;

 SkinNd.data = struct(...

 'matl',this.matl,...

 'T',this.data.SourceTemperature,...

 'dT_dU',this.matl.dT_du);

 if isHorizontal

 SkinNd.xmin = nd.xmin;

 SkinNd.xmax = nd.xmax;

 SkinNd.ymin = backup_y1;

 front = offsety(SkinV_V,nd,backup_y1);

 SkinNd.ymax = front;

 else

 SkinNd.xmin = backup;

 front = offsetx(SkinV_V,nd,backup);

 SkinNd.xmax = front;

 SkinNd.ymin = nd.ymin(1);

 SkinNd.ymax = nd.ymax(1);

 end

 ncount = ncount + 1;

 % Define Conduction between Skin Node and Source

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Solid;

 newfc.Nodes = [SkinNd SourceNd];

 USkin2Source = SourceA_V*Vp*k*2/lwth;

 newfc.data = struct('U',USkin2Source);

 newfc.isDynamic = false;

 fcount = fcount + 1;

339

 % Define Mixed Face to Skin Node

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Mix;

 newfc.Nodes = [SkinNd nd];

 RxA = this.data.WallThickness/(k*2);

 newfc.data = struct(...

 'R',RxA,...

 'Area',SkinA_V*Vp,...

 'NuFunc_l',this.NuFunc_l,...

 'NuFunc_t',this.NuFunc_t);

 fcount = fcount + 1;

 % Define Fin Nodes

 Vi = FinV_V*Vp/N;

 % Li - Defined Earlier

 for i = 1:N

 this.Nodes(ncount) = Node();

 newnd = this.Nodes(ncount);

 newnd.Type = enumNType.SN;

 newnd.data = struct(...

 'matl',this.matl,...

 'T',this.data.SourceTemperature,...

 'dT_dU',this.matl.dT_du);

 if isHorizontal

 newnd.xmin = nd.xmin;

 newnd.xmax = nd.xmax;

 newnd.ymin = front;

 front = offsety(FinV_V/double(N),nd,front);

 newnd.ymax = front;

 else

 newnd.xmin = front;

 front = offsetx(FinV_V/double(N),nd,front);

 newnd.xmax = front;

 newnd.ymin = nd.ymin(1);

 newnd.ymax = nd.ymax(1);

 end

 ncount = ncount + 1;

 end

 % Define Conduction between 1st Fin Node and Skin

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Solid;

 newfc.Nodes = [this.Nodes(ncount-N) this.Nodes(ncount-N-1)];

 newfc.data = struct(...

 'U',FinV_V*SourceA_V*Vp*k*2/(Li+lwth));

 newfc.isDynamic = false;

 fcount = fcount + 1;

 for i = 1:N-1

 % Define Conduction between Fin Nodes (1-N)

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Solid;

 newfc.Nodes = [this.Nodes(ncount-N-1+i) this.Nodes(ncount-N+i)];

 newfc.data = struct('U',FinV_V*SourceA_V*Vp*k/Li);

 newfc.isDynamic = false;

 fcount = fcount + 1;

 end

 for i = 1:N

 % Define Mixed Faces to Fin Nodes

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Mix;

 newfc.Nodes = [this.Nodes(ncount-N-1+i) nd];

 newfc.data = struct(...

 'Area',Vi*FinA_FinV,...

 'R',lth/(4*k),...

340

 'NuFunc_l',this.NuFunc_l,...

 'NuFunc_t',this.NuFunc_t);

 newfc.isDynamic = false;

 fcount = fcount + 1;

 end

 if j > 1

 % Define Downstream Conduction

 for i = 1:N

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Solid;

 newfc.Nodes = [this.Nodes(ncount-(N+1)+i) this.Nodes(ncount-2*(N+1)+i)];

 if isHorizontal

 newfc.data = struct('U',FinV_V*2*k*...

 (2*pi*nd.xmin*(nd.ymax(1)-nd.ymin(1)))/...

 (nd.xmax-oldnd.xmin));

 else

 newfc.data = struct('U',FinV_V*2*k*...

 (pi*(nd.xmax^2-nd.xmin^2))/...

 (nd.ymax(1)-oldnd.ymin(1)));

 end

 newfc.isDynamic = false;

 fcount = fcount + 1;

 end

 end

 oldnd = nd;

 end

 case 'Staggered Fin Connected Tubes'

 this.data.ignore_canister = true;

 % Source is a reservoir with h

 % TubeOrient, PerpSpacing, ParaSpacing, Alignment

 % FinThickness, FinSeparation, FinLength, do, di

 % PercentageTube, PercentageFin

 ncount = 1;

 fcount = 1;

 N = this.Body.Group.Model.Mesher.HeatExchangerFinDivisions;

 if isfield(this.data,'FinLength')

 this.Faces = Face.empty;

 for i = (2*N+2)*Np - 1:-1:1; this.Faces(i) = Face(); end

 else

 this.Faces = Face.empty;

 for i = (2*N+2)*Np - 1:-1:1; this.Faces(i) = Face(); end

 this.Faces((2*N+2)*Np - 1) = Face();

 end

 this.Nodes = Node.empty;

 for i = Np*(N+1) + 1:-1:1; this.Nodes(i) = Node(); end

 % Make the source node

 [~,~,x1,x2] = this.Body.limits(enumOrient.Vertical);

 [~,~,y1,y2] = this.Body.limits(enumOrient.Horizontal);

 lth = this.data.FinThickness;

 lg = this.data.FinSeparation;

 di = this.data.di;

 do = this.data.do;

 VTube_V = this.data.PercentageTube;

 VFin_VFinned = lth/(lth + lg);

 % Percentage of the volume that is the temperature source

 SourceV_V = VTube_V*(di/do)^2;

 SkinV_V = VTube_V - SourceV_V;

 % Surface Area of the tubular source elements

 SourceA_V = 4*SourceV_V/di;

 SkinA_V = (1-VFin_VFinned)*do/di*SourceA_V;

 isHorizontal = this.Body.divides(1) > this.Body.divides(2);

 % Create the Source Node

 SourceNd = this.Nodes(ncount);

 SourceNd.Type = enumNType.SN;

 SourceNd.xmin = x1;

341

 SourceNd.ymin = y1;

 if isHorizontal

 SourceNd.xmax = x2;

 front =

offsety(this.data.SurfaceAreaFactor*SourceV_V,Node(enumNType.SN,x1,x2,y1,y2),y1);

 SourceNd.ymax = front;

 else

 front =

offsetx(this.data.SurfaceAreaFactor*SourceV_V,Node(enumNType.SN,x1,x2,y1,y2),x1);

 SourceNd.xmax = front;

 SourceNd.ymax = y2;

 end

 SourceNd.data = struct(...

 'matl',Material('Constant Temperature'),...

 'T',this.data.SourceTemperature,...

 'dT_du',-1);

 ncount = ncount + 1;

 % Define Volume, Radii and Surface Area Values

 % FinRadii(i) - N + 1 length

 % FinVolume(i) - N length

 % FinArea(i) - N length

 Ao = this.data.PerpSpacing*this.data.ParaSpacing;

 if isfield(this.data,'FinLength')

 % FinRadii

 ri = linspace(do,do+this.data.FinLength,N+1);

 % FinVolume

 FinV_V = VFin_VFinned*pi*(ri(2:end).^2 - ri(1:end-1).^2)/Ao;

 % FinArea

 FinA_V = FinV_V*2/lth;

 FinA_V(N) = (FinA_V(N) + 2*pi*ri(N+1)*VFin_VFinned/Ao);

 else

 % FinRadii

 Rmax = sqrt(Ao/pi);

 ri = linspace(do,Rmax,N+1);

 % FinVolume

 FinV_V = VFin_VFinned*pi*(ri(2:end)^2 - ri(1:end-1)^2)/Ao;

 % FinArea

 FinA_V = FinV_V*2/lth;

 end

 RxA_Fin = lth/(4*k);

 backup = front;

 for nd = pnd

 front = backup;

 Vp = nd.total_vol();

 Vp = Vp(1);

 Lpipe = SourceV_V*Vp/(pi/4*(di^2));

 % Generate Skin Node

 SkinNd = this.Nodes(ncount);

 SkinNd.Type = enumNType.SN;

 if isHorizontal

 SkinNd.xmin = nd.xmin;

 SkinNd.xmax = nd.xmax;

 SkinNd.ymin = front;

 front = offsety(this.data.SurfaceAreaFactor*SkinV_V,...

 nd,front);

 SkinNd.ymax = front;

 else

 SkinNd.xmin = front;

 front = offsetx(this.data.SurfaceAreaFactor*SkinV_V,...

 nd,front);

 SkinNd.xmax = front;

 SkinNd.ymin = nd.ymin;

 SkinNd.ymax = nd.ymax;

 end

 SkinNd.data = struct(...

 'matl',this.matl,...

342

 'T',this.data.SourceTemperature,...

 'dT_du',this.matl.dT_du);

 ncount = ncount + 1;

 % Generate Conduction Face Between Source and Skin

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Solid;

 newfc.Nodes = [SkinNd SourceNd];

 ro = sqrt(di*do/4);

 newfc.data = struct('U',...

 this.data.SurfaceAreaFactor*...

 2*pi*Lpipe*k/log(ro/(di/2)));

 newfc.isDynamic = false;

 fcount = fcount + 1;

 % Generate Mixed Face Between Skin and Gas

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Mix;

 newfc.Nodes = [SkinNd nd];

 RxA = log(2*do/(di + do))*(do/2)/k;

 newfc.data = struct(...

 'Area',this.data.SurfaceAreaFactor*Vp*SkinA_V,...

 'R',RxA,...

 'NuFunc_l',this.NuFunc_l,...

 'NuFunc_t',this.NuFunc_t);

 newfc.isDynamic = false;

 fcount = fcount + 1;

 for i = 1:N

 % Define Node

 newnd = this.Nodes(ncount);

 newnd.Type = enumNType.SN;

 if isHorizontal

 newnd.xmin = nd.xmin;

 newnd.xmax = nd.xmax;

 newnd.ymin = front;

 front = offsety(this.data.SurfaceAreaFactor*FinV_V(i),nd,front);

 newnd.ymax = front;

 else

 newnd.xmin = front;

 front = offsetx(this.data.SurfaceAreaFactor*FinV_V(i),nd,front);

 newnd.xmax = front;

 newnd.ymin = nd.ymin;

 newnd.ymax = nd.ymax;

 end

 newnd.data = struct(...

 'matl',this.matl,...

 'T',this.Body.Temperature,...

 'dT_du',this.matl.dT_du);

 ncount = ncount + 1;

 % Define Mixed Face

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Mix;

 newfc.Nodes = [this.Nodes(ncount-1) nd];

 newfc.data = struct(...

 'Area',this.data.SurfaceAreaFactor*Vp*FinA_V(i),...

 'R',RxA_Fin,...

 'NuFunc_l',this.NuFunc_l,'NuFunc_t',this.NuFunc_t);

 newfc.isDynamic = false;

 fcount = fcount + 1;

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Solid;

 newfc.Nodes = [this.Nodes(ncount-1) this.Nodes(1)];

 outside = sqrt(ri(i)*ri(i+1));

343

 if i > 1

 % Define Internal Conduction

 inside = sqrt(ri(i)*ri(i-1));

 newfc.data = struct(...

 'U',this.data.SurfaceAreaFactor*VFin_VFinned*...

 2*pi*Lpipe*k/log(outside/inside));

 else

 % Define Skin-Fin Conduction

 inside = sqrt(sqrt(di*do/4)*ri(i));

 newfc.data = struct(...

 'U',this.data.SurfaceAreaFactor*VFin_VFinned*...

 2*pi*Lpipe*k/log(outside/inside));

 end

 newfc.isDynamic = false;

 fcount = fcount + 1;

 end

 end

 %% Testing Outputs

% AreaSum = 0;

% CondSum = 0;

% for i = 1:length(this.Faces)

% fc = this.Faces(i);

% if ~isempty(fc.data)

% if isfield(fc.data,'Area')

% AreaSum = AreaSum + fc.data.Area;

% end

% if isfield(fc.data,'U')

% CondSum = CondSum + fc.data.U;

% end

% end

% end

% VolumeSum = 0;

% for i = 1:length(this.Nodes)

% nd = this.Nodes(i);

% VolumeSum = VolumeSum + nd.vol();

% end

% fprintf([...

% 'Area Sum: ' num2str(AreaSum) ...

% ' - Cond Sum: ' num2str(CondSum) ...

% ' - Vol Sum: ' num2str(VolumeSum) '.\n']);

 case 'Tube Bank Internal'

 this.data.ignore_canister = true;

 % Properties:

 % gap, ChannelThickness, WallThickness, Roughness, BaseWidth,

 % ... FinThickness, FinLength, sourceConvection

 % Make the source node

 for i = Np + 1:-1:1; this.Nodes(i) = Node(); end

 for i = 3*Np - 1:-1:1; this.Faces(i) = Face(); end

 ncount = 1; fcount = 1;

 % Volume of source / total volume

 SourceV_V = ...

 (this.data.Ao - pi/4*this.data.do^2)/this.data.Ao;

 % Surface area of source / total volume

 SourceA_V = pi*this.data.do/this.data.Ao;

 % Surface area of skin / total volume

 SkinA_V = pi*this.data.di/this.data.Ao;

 % Volume of skin / total volume

 SkinV_V = pi/4*...

 (this.data.do^2 - this.data.di^2)/this.data.Ao;

 % Define Source Node

 SourceNd = this.Nodes(ncount);

 SourceNd.Type = enumNType.SN;

 SourceNd.data = struct(...

 'matl',Material('Constant Temperature'),...

 'T',this.data.SourceTemperature,...

 'dT_dU',-1);

 [~,~,x1,x2] = this.Body.limits(enumOrient.Vertical);

 [~,~,y1,y2] = this.Body.limits(enumOrient.Horizontal);

 isHorizontal = this.Body.divides(1) > this.Body.divides(2);

344

 SourceNd.xmin = x1;

 SourceNd.ymin = y1;

 if isHorizontal

 % Discretized along the x direction

 SourceNd.xmax = x2;

 front = offsety(SourceV_V,Node(enumNType.SN,x1,x2,y1,y2),y1);

 SourceNd.ymax = front;

 else

 % Discretized along the y direction

 front = offsetx(SourceV_V,Node(enumNType.SN,x1,x2,y1,y2),x1);

 SourceNd.xmax = front;

 SourceNd.ymax = y2;

 end

 %{

 % Remove Gas Contacts from overlaping solid neighbours

 for iCon = this.Body.Connections

 i = 0;

 keep = true(size(iCon.NodeContacts));

 NodeContactsBackup = cell(length(iCon.NodeContacts),2);

 for iNC = iCon.NodeContacts

 i = i + 1;

 NodeContactsBackup{i,1} = iNC.Start;

 NodeContactsBackup{i,2} = iNC.End;

 if iNC.Node.Body == this.Body

 for iBody = iCon.Bodies

 if iBody ~= this.Body

 if iBody.matl.Phase == enumMaterial.Solid

 % Get the connections

 switch iCon.Orient

 case enumOrient.Vertical

 S = iBody.get('Bottom Connection');

 E = iBody.get('Top Connection');

 Sx = S.x;

 Ex = E.x;

 case enumOrient.Horizontal

 S = iBody.get('Inner Connection');

 E = iBody.get('Outer Connection');

 if ~isempty(S.RefFrame)

 Sx = S.x + S.RefFrame.Positions;

 else

 Sx = S.x;

 end

 if ~isempty(E.RefFrame)

 Ex = E.x + E.RefFrame.Positions;

 else

 Ex = E.x;

 end

 end

 Mask = NodeContact(Node.empty,Sx,Ex,...

 enumFType.Gas,this.Body.Connections);

 keep(i) = Mask.AlignedMask(iNC,-inf,inf);

 if ~keep(i); break; end

 end

 end

 end

 end

 if ~keep(i); break; end

 end

 end

 % Replace them with References to the Source

 newNCs = NodeContact.empty;

 for i = 1:length(iCon.NodeContacts)

 oNC_Start = NodeContactsBackup{i,1};

 oNC_End = NodeContactsBackup{i,2};

 nNC = iCon.NodeContacts(i);

 if ~keep(i)

 nNC.Start = oNC_Start;

 nNC.End = oNC_End;

 nNC.Node = SourceNd;

 nNC.Type = enumFType.Solid;

345

 else

 d1 = nNC.Start - oNC_Start;

 d2 = oNC_End - nNC.End;

 if any(d1 > 0)

 newNCs(end+1) = NodeContact(SourceNd, ...

 oNC_Start,oNC_Start + d1, enumFType.Solid, ...

 this.Body.Connections);

 end

 if any(d2 > 0)

 newNCs(end+1) = NodeContact(SourceNd, ...

 oNC_End - d2,oNC_End, enumFType.Solid, ...

 this.Body.Connections);

 end

 end

 iCon.addNodeContacts(newNCs);

 end

 %}

 ncount = ncount + 1;

 j = 0;

 backup = front;

 for nd = pnd

 front = backup;

 if isHorizontal

 % Discretized along the x direction

 Lcond = (nd.xmax - nd.xmin);

 else

 % Discretized along the y direction

 Lcond = (nd.ymax - nd.ymin);

 end

 j = j + 1;

 Vp = nd.total_vol();

 % Define Skin Node

 SkinNd = this.Nodes(ncount);

 SkinNd.Type = enumNType.SN;

 SkinNd.data = struct(...

 'matl',this.matl,...

 'T',this.data.SourceTemperature,...

 'dT_dU',this.matl.dT_du);

 if isHorizontal

 SkinNd.xmin = nd.xmin;

 SkinNd.xmax = nd.xmax;

 SkinNd.ymin = front;

 front = offsety(SkinV_V,nd,front);

 SkinNd.ymax = front;

 else

 SkinNd.xmin = front;

 front = offsetx(SkinV_V,nd,front);

 SkinNd.xmax = front;

 SkinNd.ymin = nd.ymin(1);

 SkinNd.ymax = nd.ymax(1);

 end

 ncount = ncount + 1;

 % Define Conduction between Skin Node and Source

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Solid;

 newfc.Nodes = [SkinNd SourceNd];

 USkin2Source = ...

 (SourceA_V*Vp)*k*4/abs(this.data.do-this.data.di);

 newfc.data = struct('U',USkin2Source);

 newfc.isDynamic = false;

 fcount = fcount + 1;

 % Define Mixed Face to Skin Node

 th = (this.data.do - this.data.di)/2;

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Mix;

 newfc.Nodes = [SkinNd nd];

346

 RxA = th/(k*2);

 newfc.data = struct('R',RxA,'Area',SkinA_V*Vp);

 fcount = fcount + 1;

 if j > 1

 % Define Downstream Conduction

 if fcount > length(this.Faces); this.Faces(fcount) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Solid;

 newfc.Nodes = [SkinNd oldnd];

 newfc.data = struct('U',k*this.data.Number*pi/4*...

 (this.data.do^2 - this.data.di^2)/Lcond);

 newfc.isDynamic = false;

 fcount = fcount + 1;

 end

 oldnd = SkinNd;

 end

 case 'Custom HX'

 this.data.ignore_canister = true;

 % Make the source node

 this.Nodes(1) = Node();

 for i = Np:-1:1; this.Faces(i) = Face(); end

 ncount = 1; fcount = 1;

 % Volume of source / total volume

 SourceV_V = 1-this.data.Porosity;

 % Surface area of source / total volume

 SourceA_V = this.data.SA_V/(1-this.data.Porosity);

 % Define Source Node

 SourceNd = this.Nodes(ncount);

 SourceNd.Type = enumNType.SN;

 SourceNd.data = struct(...

 'matl',Material('Constant Temperature'),...

 'T',this.data.SourceTemperature,...

 'dT_dU',-1);

 [~,~,x1,x2] = this.Body.limits(enumOrient.Vertical);

 [~,~,y1,y2] = this.Body.limits(enumOrient.Horizontal);

 isHorizontal = this.Body.divides(1) > this.Body.divides(2);

 SourceNd.xmin = x1;

 SourceNd.ymin = y1;

 if isHorizontal

 % Discretized along the x direction

 SourceNd.xmax = x2;

 front = offsety(SourceV_V,Node(enumNType.SN,x1,x2,y1,y2),y1);

 SourceNd.ymax = front;

 else

 % Discretized along the y direction

 front = offsetx(SourceV_V,Node(enumNType.SN,x1,x2,y1,y2),x1);

 SourceNd.xmax = front;

 SourceNd.ymax = y2;

 end

 ncount = ncount + 1;

 for nd = pnd

 Vp = nd.total_vol();

 % Define Mixed Face to Source Node

 if fcount > length(this.Faces); this.Faces(end+1) = Face(); end

 newfc = this.Faces(fcount);

 newfc.Type = enumFType.Mix;

 newfc.Nodes = [SourceNd nd];

 RxA = 0;

 newfc.data = struct('R',RxA,'Area',SourceA_V*Vp);

 fcount = fcount + 1;

 end

 end

 end

 % Remove extra elements

 if ncount <= length(this.Nodes); this.Nodes(ncount:end) = []; end

 if fcount <= length(this.Faces); this.Faces(fcount:end) = []; end

 for i = 1:length(this.Nodes)

347

 this.Nodes(i).Body = this.Body;

 end

 nodes = this.Nodes;

 faces = this.Faces;

 for nd = nodes

 nd.Body = this.Body;

 nd.data.Porosity = this.data.Porosity;

 end

 % WSNG = this.WSNG;

 end

 % get Properties

 function name = get.name(this)

 if ~isempty(this.Geometry)

 for index = 1:length(this.GeometryEnum)

 if this.GeometryEnum(index) == this.Geometry

 break;

 end

 end

 else

 name = 'Undefined Matrix';

 return;

 end

 name = [this.GeometrySource{index} 'Matrix with ' ...

 num2str(round(this.data.Porosity*100,1)) ...

 '% Porosity and Hydraulic Diameter: ' num2str(this.Dh)];

 end

 end

end

function newy = offsety(V_V, parent, y)

 newy = ...

 y + V_V*parent.total_vol()/(pi*(parent.xmax^2 - parent.xmin^2));

end

function newx = offsetx(V_V, parent, x)

 newx = ...

 sqrt(V_V*parent.total_vol()/(pi*(parent.ymax(1)-parent.ymin(1))) + x^2);

end

%{

function [xvals,j] = xvals_by_alpha_omega(alpha_omega,dw)

scale = 0.112167*Sqrt(alpha_omega);

% Element size = scale*e^(sqrt(omega/(2*alpha))*x)

% Elements are sized such that there are 10 elements within the

% oscillation penetration depth. With a growth rate cap at

% 1.5 times

% e^sqrt(omega/2*alpha)

expAlphaOmega = exp(sqrt(1/(2*alpha_omega)));

x = 0;

j = 1;

xvals = zeros(1,10);

dx = scale;

while x < dw/2

 % Move Inward

 dx = min([dx*1.5 scale*(expAlphaOmega^x)]);

 x = x + dx;

 j = j + 1;

 xvals(j) = x;

end

xvals(j) = min([xvals(j) dw/2]);

if xvals(j) - xvals(j-1) < 0.1 * (xvals(j-1) - xvals(j-2))

 j = j - 1;

 xvals(j) = dw/2;

 xvals(j+1:end) = [];

elseif j < 10

 xvals(j+1:end) = [];

end

xvals = dw/2 - xvals;

end

%}

348

function [U,x1,x2,y1,y2] = InternalNodesVertical(xmin,xmax,ymin,ymax,N,Perc,k,Dir)

x = xmin:(xmax-xmin)/N:xmax;

L = ymax-ymin;

U = zeros(1,N-1);

x1 = zeros(1,N); x2 = x1;

for i = 1:N-1

 U(i) = Perc*k*2*pi*L/log((x(i+2)+x(i+1))/(x(i)+x(i+1)));

end

Vi = Perc*pi*(xmax^2-xmin^2)*L/N;

switch Dir

 case 'In'; xstart = xmin;

 case 'Out'; xstart = sqrt(Vi*N/(pi*L)-xmax^2);

end

for i = 1:N

 xend = sqrt(Vi/(pi*L)+xstart^2);

 x1(i) = xstart;

 x2(i) = xend;

 xstart = xend;

end

y1 = ymin(ones(1,N));

y2 = ymax(ones(1,N));

end

function [U,x1,x2,y1,y2] = InternalNodesHorizontal(xmin,xmax,ymin,ymax,N,Perc,k,Dir)

y = ymin:(ymax-ymin)/N:ymax;

U = zeros(1,N-1);

y1 = zeros(1,N); y2 = y1;

for i = 1:N-1

 U(i) = Perc*k*pi*(xmax^2-xmin^2)*N/(ymax-ymin);

end

d = Perc*(ymax-ymin)/N;

switch Dir

 case 'Down'; ystart = ymin;

 case 'Up'; ystart = ymax - N*d;

end

for i = 1:N

 yend = ymin + d;

 y1(i) = ystart;

 y2(i) = yend;

 ystart = yend;

end

x1 = xmin(ones(1,N));

x2 = xmax(ones(1,N));

y1 = y(1:end-1);

y2 = y(2:end);

end

function GenNodeContact(Connection,Perc,NodeToReference,NodeToFind)

 found = false;

 for ncontact = Connection.NodeContacts

 if ncontact.Node == NodeToReference

 if ~isempty(ncontact.data) && isfield(ncontact.data,'Perc')

 ncontact.data.Perc = ncontact.data.Perc.*(1-Perc);

 else

 ncontact.data.Perc = this.data.Porostiy;

 end

 found = true;

 break;

 end

 end

 if found

 NewNodeContact = NodeContact(NodeToFind,ncontact.Start,...

 ncontact.End,enumFType.Solid,Connection);

 NewNodeContact.data.Perc = Perc;

 Connection.addNodeContacts(NewNodeContact);

 end

end

function i = findmatching(pnd, nd)

 i = 1;

 for p = pnd

349

 if p.xmin <= nd.xmin && p.xmax >= nd.xmax

 if p.ymin(1) <= nd.ymin && p.ymax(1) >= nd.ymax

 return;

 end

 end

 i = i + 1;

 end

end

350

Mesher

The mesher is a class that contains the following functionality:

A get / set interface.

A function for determining if a body is exposed to an air body on a particular side.

classdef Mesher < handle

 %UNTITLED2 Summary of this class goes here

 % Detailed explanation goes here

 properties

 % Solid Related

 oscillation_depth_N int16 = 6;

 maximum_thickness double = 0.02;

 maximum_growth double = 1.5;

 HeatExchangerFinDivisions int16 = 3;

 MinSolidTimeStep = 1e-4;

 % Gas Related

 Gas_Entrance_Exit_N int16 = 8;

 Gas_Maximum_Size double = 0.02;

 Gas_Minimum_Size double = 0.003;

 name = 'Universal Mesher';

 end

 methods

 function item = get(this,Property)

 switch Property

 case 'name'

 item = this.name;

 case 'Nodes through Oscillation Depth'

 item = this.oscillation_depth_N;

 case 'Maximum Node Thickness'

 item = this.maximum_thickness;

 case 'Maximum Growth Rate'

 item = this.maximum_growth;

 case 'Heat Exchanger Fin Divisions'

 item = this.HeatExchangerFinDivisions;

 case 'Minimum Solid Time Step'

 item = this.MinSolidTimeStep;

 case 'Gas Entrance Exit N'

 item = this.Gas_Entrance_Exit_N;

 case 'Gas Maximum Size'

 item = this.Gas_Maximum_Size;

 case 'Gas Minimum Size'

 item = this.Gas_Minimum_Size;

 otherwise

 fprintf(['XXX Mesher GET Inteface for ' Property ' is not found XXX\n']);

 end

 end

 function set(this,Property,item)

 switch Property

 case 'name'

 this.name = item;

 case 'Nodes through Oscillation Depth'

 this.oscillation_depth_N = item;

 case 'Maximum Node Thickness'

 this.maximum_thickness = item;

 case 'Maximum Growth Rate'

 this.maximum_growth = item;

 case 'Heat Exchanger Fin Divisions'

 this.HeatExchangerFinDivisions = item;

 case 'Minimum Solid Time Step'

351

 this.MinSolidTimeStep = item;

 case 'Gas Entrance Exit N'

 this.Gas_Entrance_Exit_N = item;

 case 'Gas Maximum Size'

 this.Gas_Maximum_Size = item;

 case 'Gas Minimum Size'

 this.Gas_Minimum_Size = item;

 otherwise

 fprintf(['XXX Mesher SET Inteface for ' Property ' is not found XXX\n']);

 end

 end

 function doesit = isInsideRadiiExposed(~,Body)

 [~,~,xmin,~] = Body.limits(enumOrient.Vertical);

 [ymin,ymax,~,~] = Body.limits(enumOrient.Horizontal);

 xdepth = 3*sqrt(2*Body.matl.thermaldiffusivity/...

 Body.Group.Model.engineSpeed) * 1.5;

 for iBody = Body.Group.Bodies

 if iBody ~= Body && iBody.matl.Phase == enumMaterial.Gas

 % Get x limits and see if they could touch

 [~,~,~,xmaxi] = iBody.limits(enumOrient.Vertical);

 if abs(xmin - xmaxi) < xdepth

 % Get y limits and see if they infact overlap at any time

 [ymini,ymaxi,~,~] = iBody.limits(enumOrient.Horizontal);

 if any(~((ymin >= ymaxi) + (ymini >= ymax)))

 doesit = true;

 return;

 end

 end

 end

 end

 doesit = false;

 end

 function doesit = isOutsideRadiiExposed(~,Body)

 [~,~,~,xmax] = Body.limits(enumOrient.Vertical);

 [ymin,ymax,~,~] = Body.limits(enumOrient.Horizontal);

 xdepth = 3*sqrt(2*Body.matl.thermaldiffusivity/...

 Body.Group.Model.engineSpeed) * 1.5;

 for iBody = Body.Group.Bodies

 if iBody ~= Body && iBody.matl.Phase == enumMaterial.Gas

 % Get x limits and see if they could touch

 [~,~,xmini,~] = iBody.limits(enumOrient.Vertical);

 if abs(xmax - xmini) < xdepth

 % Get y limits and see if they infact overlap at any time

 [ymini,ymaxi,~,~] = iBody.limits(enumOrient.Horizontal);

 if any(~((ymin >= ymaxi) + (ymini >= ymax)))

 doesit = true;

 return;

 end

 end

 end

 end

 doesit = false;

 end

 function doesit = isBottomExposed(~,Body)

 [~,~,xmin,xmax] = Body.limits(enumOrient.Vertical);

 xdepth = 3*sqrt(2*Body.matl.thermaldiffusivity/...

 Body.Group.Model.engineSpeed) * 1.5;

 for iBody = Body.Group.Bodies

 if iBody ~= Body && iBody.matl.Phase == enumMaterial.Gas

 % Get x limits and see if they could touch

 [~,~,xmini,xmaxi] = iBody.limits(enumOrient.Vertical);

 if ~(xmax <= xmini) && ~(xmin >= xmaxi)

 % See if they get close to each other

 [ymin,~,~,~] = Body.limits(enumOrient.Horizontal);

 [~,ymaxi,~,~] = iBody.limits(enumOrient.Horizontal);

 if min(abs(ymin-ymaxi)) < xdepth

 doesit = true;

 return;

 end

 end

 end

352

 end

 doesit = false;

 end

 function doesit = isTopExposed(~,Body)

 [~,~,xmin,xmax] = Body.limits(enumOrient.Vertical);

 xdepth = 3*sqrt(2*Body.matl.thermaldiffusivity/...

 Body.Group.Model.engineSpeed) * 1.5;

 for iBody = Body.Group.Bodies

 if iBody ~= Body && iBody.matl.Phase == enumMaterial.Gas

 % Get x limits and see if they could touch

 [~,~,xmini,xmaxi] = iBody.limits(enumOrient.Vertical);

 if ~(xmax <= xmini) && ~(xmin >= xmaxi)

 % See if they get close to each other

 [~,ymax,~,~] = Body.limits(enumOrient.Horizontal);

 [ymini,~,~,~] = iBody.limits(enumOrient.Horizontal);

 if min(abs(ymax-ymini)) < xdepth

 doesit = true;

 return;

 end

 end

 end

 end

 doesit = false;

 end

 end

end

353

Model

The model is a class that contains the following functionality:

A constructor and destructor.

A get / set interface.

A set of internal list managers.

A set of functions for triggering updates and checking things in the object.

A discretize function.

A run function with various modes.

A function for assigning snapshots to nodes.

A set of functions which support the interface: the nearest group, nearest body, set of nearest

objects, find reference frames, determining if something is in the display window, formatting the

display options, getting the active group, model extents in the GUI.

A set of functions managing selection.

A set of functions for showing the model and animating it.

classdef Model < handle

 %MODEL Summary of this class goes here

 % Detailed explanation goes here

 properties (Constant)

 ProportionTolerance = 0.02; % 2% error is pretty reasonable

 dt = 0.01; % Seconds ???

 NTheta = 400; % Number of divisions 400 intervals

 dOmega2 = pi^2/2; % (Radians/second)^2 32 intervals between 0->2 Hz

 dAppliedForce = 1; % Newtons ???

 AnimationLength_s = 30;

 AnimationSpeed_rads = pi;

 MaxFourierNumber = 0.25;

 end

 properties (Dependent)

 ActiveGroup;

 isDefaultModel;

 isDiscretized;

 end

 properties

 isChanged logical = true;

 Selection = cell(0); % Various Objects

 name = '';

 Groups Group; % A container of Group

 Mesher Mesher; % A container for meshing options

 Bridges Bridge;

354

 LeakConnections LeakConnection;

 RefFrames Frame;

 Sensors Sensor;

 PVoutputs PVoutput;

 SnapShots cell;

 NonConnections NonConnection;

 CustomMinorLosses CustomMinorLoss;

 OptimizationSchemes OptimizationScheme;

 CurrentSim Simulation; % Simulations are stored in a named file folder

 Converters LinRotMechanism;

 AxisReference;

 setConditions Environment;

 MechanicalSystem MechanicalSystem;

 initConditions Environment;

 surroundings Environment;

 roughness double = 0.000045; % 0.045 mm - Commercial or welded steel

 Faces Face;

 Nodes Node;

 Simulations Simulation;

 PressureContacts PressureContact;

 ShearContacts ShearContact;

 Results Result;

 engineTemperature double = 298;

 enginePressure double = 101325;

 engineSpeed double = 1;

 RelationOn = true;

 end

 properties (Hidden)

 StaticGUIObjects = [];

 DynamicGUIObjects = [];

 GhostGUIObjects = [];

 BodyIDIndex = 1;

 ConIDIndex = 1;

 OptIDIndex = 1;

 LRMIDIndex = 1;

 % GUI Options

 showGroups = true;

 showBodies = true;

 showBodyGhosts = true;

 showConnections = true;

 showLeaks = true;

 showBridges = true;

 showSensors = true;

 showInterConnections = false;

 showEnvironmentConnections = false;

 showNodes = false;

 showRelations = false;

 % Simulation Options

 showLivePV = true;

 showPressureAnimation = true;

 recordPressure = true;

 showTemperatureAnimation = true;

 recordTemperature = true;

 showVelocityAnimation = true;

 recordVelocity = true;

 showTurbulenceAnimation = true;

 recordTurbulence = true;

 showConductionAnimation = true;

 recordConductionFlux = true;

 showPressureDropAnimation = true;

 recordPressureDrop = true;

 recordOnlyLastCycle = true;

 recordStatistics = true;

 outputPath = '';

355

 warmUpPhaseLength = 0;

 animationFrameTime = 0.05;

 deRefinementFactorInput = 1;

 MaxCourantFinal = 0.025;

 MaxFourierFinal = 0.025;

 MaxCourantConverging = 0.025;

 MaxFourierConverging = 0.025;

 % RunTime Options

 stopSimulation = false;

 isStateDiscretized logical;

 isAnimating logical;

 end

 methods

 %% Creating, Reseting, Debugging

 function this = Model(AxisReference)

 this.initConditions = Environment();

 this.surroundings = Environment();

 this.Mesher = Mesher();

 this.MechanicalSystem =

MechanicalSystem(this,LinRotMechanism.empty,[],1,function_handle.empty);

 switch nargin

 case 0

 this.Groups = Group(this,Position(0,0,pi/2)); % The first Group

 case 1

 this.Groups = Group(this,Position(0,0,pi/2)); % The first Group

 this.AxisReference = AxisReference;

 end

 this.isChanged = true;

 end

 function ID = getBodyID(this)

 % Creates a unique id when called

 this.BodyIDIndex = this.BodyIDIndex + 1;

 ID = this.BodyIDIndex;

 end

 function ID = getConID(this)

 % Creates a unique id when called

 this.ConIDIndex = this.ConIDIndex + 1;

 ID = this.ConIDIndex;

 end

 function ID = getOptimizationStudyID(this)

 % Creates a unique id when called

 this.OptIDIndex = this.OptIDIndex + 1;

 ID = this.OptIDIndex;

 end

 function ID = getLRMID(this)

 % Creates a unique id when called

 this.LRMIDIndex = this.LRMIDIndex + 1;

 ID = this.LRMIDIndex;

 end

 function Bodies = BodyList(this)

 % Makes a list of all bodies in the Model, spanning multiple groups

 n = 0;

 for iGroup = this.Groups

 n = n + length(iGroup.Bodies);

 end

 Bodies(n) = Body();

 n = 0;

 for iGroup = this.Groups

 Bodies(n+1:n+length(iGroup.Bodies)) = iGroup.Bodies;

 n = n + length(iGroup.Bodies);

 end

 end

 function resetDiscretization(this)

 % Reset the discretization of the entire model, removing all faces

 % ... and nodes

 for iLRM = this.Converters

 iLRM.Model = this;

356

 if isempty(iLRM.ID)

 iLRM.ID = this.getLRMID();

 end

 end

 for iGroup = this.Groups

 iGroup.resetDiscretization();

 end

 for iBridge = this.Bridges

 iBridge.resetDiscretization();

 end

 for iLeak = this.LeakConnections

 iLeak.resetDiscretization();

 end

 this.Nodes(:) = [];

 this.Faces(:) = [];

 this.PressureContacts(:) = [];

 this.ShearContacts(:) = [];

 this.CurrentSim(:) = [];

 this.surroundings.resetDiscretization();

 this.change();

 end

 function dispNodeIndexes(this)

 % Prints to screen the index associated with a node its display

 % ... position

 for iNd = this.Nodes

 pnt = iNd.minCenterCoords;

 text(pnt.x,pnt.y,num2str(iNd.index));

 end

 end

 %% GET/SET Interface

 function Item = get(this,PropertyName)

 switch PropertyName

 case 'Name'

 Item = this.name;

 case 'Groups'

 Item = this.Groups;

 case 'Bridges'

 Item = this.Bridges;

 case 'Leaks'

 Item = this.LeakConnections;

 case 'Sensors'

 Item = this.Sensors;

 case 'PVoutputs'

 Item = this.PVoutputs;

 case 'Lin. to Rot. Mechanisms'

 Item = this.Converters;

 case 'Optimization Studies'

 Item = this.OptimizationSchemes;

 case 'Initial Internal Conditions'

 Item = this.initConditions;

 case 'External Conditions'

 Item = this.surroundings;

 case 'Engine Temperature'

 Item = this.engineTemperature;

 case 'Engine Pressure'

 Item = this.enginePressure;

 case 'Minimum Speed'

 Item = this.engineSpeed;

 case 'SnapShots'

 Item = cell(length(this.SnapShots),1);

 for i = 1:length(this.SnapShots)

 Item{i} = this.SnapShots{i}.Name;

 end

 case 'NonConnections'

 Item = cell(length(this.NonConnections),1);

 for i = 1:length(this.NonConnections)

 Item{i} = this.NonConnections(i).name;

 end

 case 'Custom Minor Losses'

 Item = cell(length(this.CustomMinorLosses),1);

357

 for i = 1:length(this.CustomMinorLosses)

 Item{i} = this.CustomMinorLosses(i).name;

 end

 case 'Mesher'

 Item = this.Mesher;

 case 'Mechanical System'

 if isempty(this.MechanicalSystem)

 this.MechanicalSystem = MechanicalSystem(this,...

 LinRotMechanism.empty,[],1,function_handle.empty);

 end

 Item = this.MechanicalSystem;

 case 'Max Courant Final'

 Item = this.MaxCourantFinal;

 case 'Max Fourier Final'

 Item = this.MaxFourierFinal;

 case 'Max Courant Converging'

 Item = this.MaxCourantConverging;

 case 'Max Fourier Converging'

 Item = this.MaxFourierConverging;

 otherwise

 fprintf(['XXX Model GET Inteface for ' PropertyName ' is not found XXX\n']);

 return;

 end

 this.change();

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'Name'

 this.name = Item;

 case 'Engine Temperature'

 this.engineTemperature = Item;

 case 'Engine Pressure'

 this.enginePressure = Item;

 case 'Minimum Speed'

 this.engineSpeed = Item;

 case 'SnapShots'

 for i = length(Item):-1:1

 if Item(i); this.SnapShots(i) = []; end

 end

 case 'NonConnections'

 for i = length(Item):-1:1

 if Item(i); this.NonConnections(i) = []; end

 end

 case 'Custom Minor Losses'

 for i = length(Item):-1:1

 if Item(i); this.CustomMinorLosses(i) = []; end

 end

 case 'Max Courant Final'

 this.MaxCourantFinal = Item;

 case 'Max Fourier Final'

 this.MaxFourierFinal = Item;

 case 'Max Courant Converging'

 this.MaxCourantConverging = Item;

 case 'Max Fourier Converging'

 this.MaxFourierConverging = Item;

 otherwise

 fprintf(['XXX Model SET Inteface for ' PropertyName ' is not found XXX\n']);

 end

 end

 %% Adding Elements

 function addGroup(this,GroupToAdd)

 if isrow(GroupToAdd)

 this.Groups = [this.Groups GroupToAdd];

 else

 this.Groups = [this.Groups GroupToAdd'];

 end

 end

 function addBridge(this,BridgeToAdd)

 if isrow(BridgeToAdd)

 this.Bridges = [this.Bridges BridgeToAdd];

358

 else

 this.Bridges = [this.Bridges BridgeToAdd'];

 end

 end

 function addLeakConnection(this,LeakToAdd)

 if isrow(LeakToAdd)

 this.LeakConnections = [this.LeakConnections LeakToAdd];

 else

 this.LeakConnections = [this.LeakConnections LeakToAdd'];

 end

 end

 function addConverter(this,ConverterToAdd)

 LEN = length(this.Converters);

 for i = length(ConverterToAdd):-1:1

 this.Converters(LEN+i) = ConverterToAdd(i);

 this.addFrame(ConverterToAdd(i).Frames);

 end

 end

 function addFrame(this,FrameToAdd)

 LEN = length(this.RefFrames);

 for i = length(FrameToAdd):-1:1

 this.RefFrames(LEN+i) = FrameToAdd(i);

 end

 end

 function addSensor(this,SensorToAdd)

 LEN = length(this.Sensors);

 for i = length(SensorToAdd):-1:1

 this.Sensors(LEN+i) = SensorToAdd(i);

 if this.isDiscretized

 this.Sensors(LEN+1).update();

 end

 end

 this.Sensors = unique(this.Sensors);

 end

 function addPVoutput(this,PVoutputToAdd)

 LEN = length(this.PVoutputs);

 for i = length(PVoutputToAdd):-1:1

 this.PVoutputs(LEN+i) = PVoutputToAdd(i);

 end

 this.PVoutputs = unique(this.PVoutputs);

 end

 function addSnapShot(this,SnapShotToAdd)

 this.SnapShots{end+1} = SnapShotToAdd;

 end

 function addNonConnection(this,NonConnectionToAdd)

 LEN = length(this.NonConnections);

 for i = length(NonConnectionToAdd):-1:1

 this.NonConnections(LEN+i) = NonConnectionToAdd(i);

 this.resetDiscretization();

 end

 this.NonConnections = unique(this.NonConnections);

 end

 function addCustomMinorLoss(this,CustomMinorLossToAdd)

 LEN = length(this.CustomMinorLosses);

 for i = length(CustomMinorLossToAdd):-1:1

 this.CustomMinorLosses(LEN+i) = CustomMinorLossToAdd(i);

 this.resetDiscretization();

 end

 this.CustomMinorLosses = unique(this.CustomMinorLosses);

 end

 %% Update on Demand

 function update(this)

 this.isStateDiscretized = true;

 if any(~isvalid(this.Bridges))

 this.Bridges = this.Bridges(isvalid(this.Bridges));

 end

 keep = true(size(this.Bridges));

 for i = 1:length(this.Bridges)

 for j = i+1:length(this.Bridges)

 if (this.Bridges(i).Body1 == this.Bridges(j).Body1 && ...

359

 this.Bridges(i).Body2 == this.Bridges(j).Body2) ...

 || (this.Bridges(i).Body2 == this.Bridges(j).Body1 && ...

 this.Bridges(i).Body1 == this.Bridges(j).Body2)

 keep(j) = false;

 end

 end

 end

 for i = length(keep):-1:1

 if ~keep(i)

 this.Bridges(i).deReference();

 end

 end

 if any(~isvalid(this.Groups))

 this.Groups = this.Groups(isvalid(this.Groups));

 end

 if any(~isvalid(this.LeakConnections))

 this.LeakConnections = this.LeakConnections(isvalid(this.LeakConnections));

 end

 if any(~isvalid(this.Converters))

 this.Converters = this.Converters(isvalid(this.Converters));

 end

 for iConverter = this.Converters

 if isempty(iConverter.Model); iConverter.Model = this; end

 end

 if any(~isvalid(this.RefFrames))

 this.RefFrames = this.RefFrames(isvalid(this.RefFrames));

 end

 if any(~isvalid(this.Sensors))

 this.Sensors = this.Sensors(isvalid(this.Sensors));

 end

 if any(~isvalid(this.PVoutputs))

 this.PVoutputs = this.PVoutputs(isvalid(this.PVoutputs));

 end

 for i = length(this.Selection):-1:1

 if ~isvalid(this.Selection{i})

 this.Selection(i) = [];

 end

 end

 for iGroup = this.Groups

 if ~iGroup.isDiscretized

 this.isStateDiscretized = false;

 break;

 end

 end

 this.isChanged = false;

 end

 function change(this)

 % Records that the model is changed and should be updated when

 % ... required

 this.isChanged = true;

 this.Faces(:) = [];

 this.Nodes(:) = [];

 this.CurrentSim(:) = [];

 this.isStateDiscretized = false;

 end

 %% Process nodes and faces

 function isit = get.isDiscretized(this)

 if this.isChanged; this.update(); end

 isit = this.isStateDiscretized;

 end

 function discretize(this, run)

 this.resetDiscretization();

 for iLinRot = this.Converters

 iLinRot.Populate(iLinRot.Type,iLinRot.originalInput);

 end

 if this.isChanged; this.update(); end

 %% Initializing Meshing

 progressbar('Calculating Surroundings');

360

 % Test if everything is discretized

 this.surroundings.discretize();

 if nargin > 1 && isfield('rpm',run)

 this.engineSpeed = run.rpm;

 end

 if nargin > 1 && isfield('NodeFactor',run) && run.NodeFactor ~= 1

 backup_ODN = this.Mesher.oscillation_depth_N;

 backup_MXT = this.Mesher.maximum_thickness;

 backup_HEFD = this.Mesher.HeatExchangerFinDivisions;

 backup_gas_entrance = this.Mesher.Gas_Entrance_Exit_N;

 backup_gas_maximum_size = this.Mesher.Gas_Maximum_Size;

 backup_gas_minimum_size = this.Mesher.Gas_Minimum_Size;

% this.Mesher.oscillation_depth_N = ...

% ceil(sqrt(double(derefinement_factor))*double(backup_ODN));

% this.Mesher.maximum_thickness = ...

% backup_MXT/sqrt(double(derefinement_factor));

 this.Mesher.Gas_Entrance_Exit_N = ...

 double(run.NodeFactor)*double(backup_gas_entrance);

 this.Mesher.Gas_Maximum_Size = ...

 double(backup_gas_maximum_size)/double(run.NodeFactor);

 this.Mesher.Gas_Minimum_Size = ...

 double(backup_gas_minimum_size)/double(run.NodeFactor);

 end

 progressbar('Discretizing Bridges');

 % Test and Discretize Bridges

 for iBridge = this.Bridges

 if ~iBridge.isDiscretized

 iBridge.discretize();

 if ~iBridge.isDiscretized

 fprintf(['XXX Exited Discretization at Bridge Connection: ' ...

 iBridge.name '. XXX\n']);

 if nargin > 1 && isfield('NodeFactor',run) && run.NodeFactor ~= 1

 this.Mesher.oscillation_depth_N = backup_ODN;

 this.Mesher.maximum_thickness = backup_MXT;

 this.Mesher.HeatExchangerFinDivisions = backup_HEFD;

 this.Mesher.maximum_growth = backup_growth;

 this.Mesher.Gas_Entrance_Exit_N = backup_gas_entrance;

 this.Mesher.Gas_Maximum_Size = backup_gas_maximum_size;

 this.Mesher.Gas_Minimum_Size = backup_gas_minimum_size;

 clear backup_ODN;

 clear backup_MXT;

 clear backup_HEFD;

 clear backup_growth;

 end

 return;

 end

 end

 end

 progressbar('Discretizing Groups');

 % Test and Discretize Groups

 for iGroup = this.Groups

 if ~iGroup.isDiscretized

 if nargin > 1

 iGroup.discretize(run.NodeFactor);

 end

 if ~iGroup.isDiscretized

 fprintf(['XXX Exited Discretization at Group: ' iGroup.name '. XXX\n']);

 if nargin > 1 && isfield('NodeFactor',run) && run.NodeFactor ~= 1

 this.Mesher.oscillation_depth_N = backup_ODN;

 this.Mesher.maximum_thickness = backup_MXT;

 this.Mesher.HeatExchangerFinDivisions = backup_HEFD;

 this.Mesher.Gas_Entrance_Exit_N = backup_gas_entrance;

 this.Mesher.Gas_Maximum_Size = backup_gas_maximum_size;

 this.Mesher.Gas_Minimum_Size = backup_gas_minimum_size;

 clear backup_ODN;

 clear backup_MXT;

 clear backup_HEFD;

 clear backup_growth;

 end

361

 return;

 end

 end

 end

 progressbar('Discretizing Leaks');

 % Test and Discretize LeakConnections

 for iLeak = this.LeakConnections

 if ~iLeak.isDiscretized

 iLeak.getFaces();

 if ~iLeak.isDiscretized

 fprintf(['XXX Exited Discretization at Leak Connection: ' ...

 iLeak.name '. XXX\n']);

 if nargin > 1 && isfield('NodeFactor',run) && run.NodeFactor ~= 1

 this.Mesher.oscillation_depth_N = backup_ODN;

 this.Mesher.maximum_thickness = backup_MXT;

 this.Mesher.HeatExchangerFinDivisions = backup_HEFD;

 this.Mesher.Gas_Entrance_Exit_N = backup_gas_entrance;

 this.Mesher.Gas_Maximum_Size = backup_gas_maximum_size;

 this.Mesher.Gas_Minimum_Size = backup_gas_minimum_size;

 clear backup_ODN;

 clear backup_MXT;

 clear backup_HEFD;

 clear backup_growth;

 end

 return;

 end

 end

 end

 if nargin > 1 && isfield('NodeFactor',run) && run.NodeFactor ~= 1

 this.Mesher.oscillation_depth_N = backup_ODN;

 this.Mesher.maximum_thickness = backup_MXT;

 this.Mesher.HeatExchangerFinDivisions = backup_HEFD;

 this.Mesher.Gas_Entrance_Exit_N = backup_gas_entrance;

 this.Mesher.Gas_Maximum_Size = backup_gas_maximum_size;

 this.Mesher.Gas_Minimum_Size = backup_gas_minimum_size;

 clear backup_ODN;

 clear backup_MXT;

 clear backup_HEFD;

 clear backup_growth;

 end

 progressbar('Counting Elements');

 % Count the Nodes and Faces

 ndequ = 1; % <-- Environment Node

 fcequ = 0;

 for iLeak = this.LeakConnections

 fcequ = fcequ + length(iLeak.Faces);

 end

 for iBridge = this.Bridges

 fcequ = fcequ + length(iBridge.Faces);

 end

 for iGroup = this.Groups

 fcequ = fcequ + length(iGroup.Faces);

 ndequ = ndequ + length(iGroup.Nodes);

 end

 % Start Simulation Definition

 this.CurrentSim = Simulation();

 Sim = this.CurrentSim;

 Sim.Model = this;

 %% Acquiring Nodes and Faces

 progressbar('Acquiring Nodes and Faces');

 % Collect Nodes and Faces

 % Environment

 this.Nodes(ndequ) = this.surroundings.Node;

 ndequ = ndequ - 1;

 % LeakConnections

 for iLeak = this.LeakConnections

 len = length(iLeak.Faces);

362

 this.Faces(fcequ - len + 1:fcequ) = iLeak.Faces;

 fcequ = fcequ - len;

 end

 % Bridges

 for iBridge = this.Bridges

 len = length(iBridge.Faces);

 this.Faces(fcequ - len + 1:fcequ) = iBridge.Faces;

 fcequ = fcequ - len;

 end

 % Groups

 for iGroup = this.Groups

 this.Faces(fcequ - length(iGroup.Faces) + 1:fcequ) = iGroup.Faces;

 fcequ = fcequ - length(iGroup.Faces);

 this.Nodes(ndequ - length(iGroup.Nodes) + 1:ndequ) = iGroup.Nodes;

 ndequ = ndequ - length(iGroup.Nodes);

 end

 % Exclude invalid nodes

 keep = true(size(this.Nodes));

 for i = 1:length(this.Nodes)

 if ~isvalid(this.Nodes(i))

 keep(i) = false;

 end

 end

 this.Nodes = this.Nodes(keep);

 % Exclude Faces with invalid nodes

 keep = true(size(this.Faces));

 for i = 1:length(this.Faces)

 Fc = this.Faces(i);

 if ~isvalid(Fc) || ...

 ~isvalid(Fc.Nodes(1)) || ...

 ~isvalid(Fc.Nodes(2))

 keep(i) = false;

 end

 end

 this.Faces = this.Faces(keep);

 % Assign Faces/Node Connections to Nodes

 for Nd = this.Nodes

 Nd.Faces = Face.empty;

 Nd.Nodes = Node.empty;

 end

 for Fc = this.Faces

 % Add to each Node

 Fc.Nodes(1).addFace(Fc);

 Fc.Nodes(2).addFace(Fc);

 end

 % Remove faces that are not allowed

 keep2 = true(size(this.NonConnections));

 i = 1;

 for nonCon = this.NonConnections

 iBody = nonCon.Body1;

 if ~isvalid(iBody)

 keep2(i) = false;

 else

 if isa(nonCon.Body2,'Environment')

 for nd = iBody.Nodes

 keep = true(size(nd.Faces));

 i = 1;

 for fc = nd.Faces

 if (fc.Nodes(1).Body == iBody && ...

 (isa(fc.Nodes(2).Body,'Environment') && ...

 fc.Nodes(2).Body == nonCon.Body2)) || ...

 ((isa(fc.Nodes(1).Body,'Environment') && ...

 fc.Nodes(1).Body == nonCon.Body2) && ...

 fc.Nodes(2).Body == iBody)

 keep(i) = false;

 end

 i = i + 1;

363

 end

 if any(~keep)

 for i = 1:length(keep)

 if ~keep(i)

 this.Faces(this.Faces==nd.Faces(i)) = [];

 end

 end

 nd.Faces = nd.Faces(keep);

 end

 end

 else

 for nd = iBody.Nodes

 keep = true(size(nd.Faces));

 i = 1;

 for fc = nd.Faces

 if (fc.Nodes(1).Body == iBody && ...

 fc.Nodes(2).Body == nonCon.Body2) || ...

 (fc.Nodes(1).Body == nonCon.Body2 && ...

 fc.Nodes(2).Body == iBody)

 keep(i) = false;

 end

 i = i + 1;

 end

 if any(~keep)

 for i = 1:length(keep)

 if ~keep(i)

 this.Faces(this.Faces==nd.Faces(i)) = [];

 end

 end

 nd.Faces = nd.Faces(keep);

 end

 end

 end

 end

 i = i + 1;

 end

 if any(~keep2)

 this.NonConnections = this.NonConnections(keep2);

 end

 %% Cleaning up solid connections that are too small

 progressbar('Cleaning up solid connections that are too small');

 % Clean up small nodes near bigger nodes

 keep = true(size(this.Faces));

 nds2del = Node.empty;

 count = 0;

 if nargin > 1 && isfield('NodeFactor',run) && run.NodeFactor ~= 1

 for i = 1:length(this.Faces)

 fc = this.Faces(i);

 [should_remove, nd2del, ~] = fc.Nodes(1).combineSolid(fc.Nodes(2),run.NodeFactor);

 if should_remove

 count = count + 1;

 keep(i) = false;

 nds2del(end+1) = nd2del;

 end

 end

 else

 for i = 1:length(this.Faces)

 fc = this.Faces(i);

 [should_remove, nd2del, ~] = fc.Nodes(1).combineSolid(fc.Nodes(2),1);

 if should_remove

 count = count + 1;

 keep(i) = false;

 nds2del(end+1) = nd2del;

 end

 end

 end

 fprintf([num2str(count) ' Node pairs collapsed\n']);

364

 this.Faces = this.Faces(keep);

 % Remove these nodes from were they came

 for nd = nds2del

 if ~isempty(nd.Body) && isa(nd.Body,'Body')

 keep2 = true(size(nd.Body.Nodes));

 for i = 1:length(nd.Body.Nodes)

 if nd.Body.Nodes(i) == nd

 keep2(i) = false;

 end

 end

 nd.Body.Nodes = nd.Body.Nodes(keep2);

 end

 end

 % Remove the nodes from the bulk list

 keep = true(size(this.Nodes));

 for nd = nds2del

 keep(this.Nodes==nd) = false;

 end

 this.Nodes = this.Nodes(keep);

 clear nds2del;

 %% Assigning Node and Face Indexes

 progressbar('Assigning Node and Face Indexes');

 % Assign Face/Node indexs to Faces and Nodes

 % Determine the amount of Solid, Wall, Environment and Gas Nodes

 S_count = 0;

 E_count = 0;

 for Nd = this.Nodes

 if Nd.Type == enumNType.SN

 S_count = S_count + 1;

 elseif Nd.Type == enumNType.EN

 E_count = E_count + 1;

 end

 end

 % Arrange, GN, EN, SN

 G_count = length(this.Nodes) - E_count - S_count;

 fprintf(['Found: ' num2str(G_count) ' Gas Nodes, ' ...

 num2str(E_count) ' Environment Nodes, ' ...

 num2str(S_count) ' Solid Nodes\n']);

 E_count = G_count + E_count;

 S_count = length(this.Nodes);

 S_count_backup = S_count;

 E_count_backup = E_count;

 G_count_backup = G_count;

 for Nd = this.Nodes

 if Nd.Type == enumNType.SN

 Nd.index = S_count;

 S_count = S_count - 1;

 elseif Nd.Type == enumNType.EN

 Nd.index = E_count;

 E_count = E_count - 1;

 else

 Nd.index = G_count;

 G_count = G_count - 1;

 end

 end

 % Exclude faces with nodes with no index

 keep = true(size(this.Faces));

 for i = 1:length(this.Faces)

 Fc = this.Faces(i);

 if isempty(Fc.Nodes(1).index) || isempty(Fc.Nodes(2).index) || ...

 Fc.Nodes(1).index < 1 || Fc.Nodes(2).index < 1

 keep(i) = false;

 end

 end

365

 this.Faces = this.Faces(keep);

 %% Assessing Connections

 progressbar('Assessing Connections');

 % Orient them such that the node closer to 0,0 is

 % ... listed first

 for Fc = this.Faces

 if Fc.Type == enumFType.Gas || Fc.Type == enumFType.MatrixTransition

 if isempty(Fc.Connection)

 O = Fc.Orient;

 else

 O = Fc.Connection.Orient;

 end

 switch O

 case enumOrient.Vertical

 if Fc.Nodes(1).xmin(1) > Fc.Nodes(2).xmin(1)

 % Swap Nodes

 TempNode = Fc.Nodes(1);

 Fc.Nodes(1) = Fc.Nodes(2);

 Fc.Nodes(2) = TempNode;

 end

 case enumOrient.Horizontal

 if Fc.Nodes(1).ymin(1) > Fc.Nodes(2).ymin(1)

 % Swap Nodes

 TempNode = Fc.Nodes(1);

 Fc.Nodes(1) = Fc.Nodes(2);

 Fc.Nodes(2) = TempNode;

 end

 end

 end

 end

 % For Gas-Gas Faces that have a connection (from node contacts), determine K

 % Determine if applicable

 isSubject = false(length(this.Faces),1);

 for fcequ = 1:length(this.Faces)

 % Gather all Gas-Gas faces that are on possible discontinuities

 isSubject(fcequ) = ...

 ((this.Faces(fcequ).Type == enumFType.Gas || ...

 this.Faces(fcequ).Type == enumFType.MatrixTransition) && ...

 ~isempty(this.Faces(fcequ).Connection)) && ...

 ~isfield(this.Faces(fcequ).data,'K12');

 end

 % Group based on common connection & body

 subSet = this.Faces(isSubject);

 isExcluded = false(length(subSet),1);

 n = 1;

 for i = 1:length(subSet)

 if ~isExcluded(i)

 isSubject = false(length(subSet),1);

 isSubject(i) = true;

 for j = 1:length(subSet)

 if ~isExcluded(j) && ...

 subSet(i).Connection == subSet(j).Connection

 % The two Faces are very likely somehow adjacent

 isSubject(j) = true;

 end

 end

 % should have acquired a subSet with a common connection

 % Mark off Exclusion

 isExcluded(isSubject) = true;

 subsubSet = subSet(isSubject);

 % So we have grabbed a subset of the select nodes that share a

 % ... connection with element i

 index = zeros(length(subsubSet),1);

 % Determine if they are part of some adjacent chain by going

366

 % ... through each combination and passing a index between

 % ... connected elements.

 for k = 1:length(subsubSet)

 for x = k+1:length(subsubSet)

 % Test if they link to the same nodes or the linked nodes are

 % touching, for both sides of the face.

 if ((subsubSet(k).Nodes(1) == subsubSet(x).Nodes(1) || ...

 subsubSet(k).Nodes(1).isTouching(subsubSet(x).Nodes(1))) && ...

 (subsubSet(k).Nodes(2) == subsubSet(x).Nodes(2) || ...

 subsubSet(k).Nodes(2).isTouching(subsubSet(x).Nodes(2))))

 if index(k) == 0

 if index(x) == 0

 index(k) = n;

 index(x) = n;

 else

 index(k) = index(x);

 end

 else

 if index(x) == 0

 index(x) = index(k);

 else

 index(index==index(x)) = index(k);

 end

 end

 else

 if index(k) == 0

 index(k) = n;

 n = n + 1;

 end

 end

 end

 end

 % Pick out groups that have the same index (i.e. part of the same

 % ... chain)

 issubExcluded = false(length(subsubSet),1);

 for k = 1:length(subsubSet)

 if ~issubExcluded(k)

 issubExcluded(index==index(k)) = true;

 neighbourhood = subsubSet(index==index(k));

 isDynamic = false;

 for Fc = neighbourhood

 if Fc.isDynamic

 isDynamic = true;

 break;

 end

 end

 if isDynamic

 % For each moment in time, get the total area as a vector

 Area1 = zeros(1,Frame.NTheta);

 Area2 = zeros(1,Frame.NTheta);

 for x = 1:length(neighbourhood)

 for ind = 0:Frame.NTheta-1

 Area1(ind+1) = Area1(ind+1) + ...

 neighbourhood(x).Nodes(1).getArea(ind,neighbourhood(x).Connection);

 Area2(ind+1) = Area2(ind+1) + ...

 neighbourhood(x).Nodes(2).getArea(ind,neighbourhood(x).Connection);

 end

 end

 Area1 = CollapseVector(Area1);

 Area2 = CollapseVector(Area2);

 ratio = Area1./Area2;

 if ~all(ratio == 1)

 ratio(ratio>1)=1./ratio(ratio>1);

 firstformula = ratio>0.76;

 K12 = zeros(size(firstformula));

 K12(firstformula) = (1-ratio(firstformula).^2).^2;

 K12(~firstformula) = 0.42*(1-ratio(~firstformula).^2);

 K12 = CollapseVector(K12);

 K21 = K12;

 Entrance = Area1 > Area2;

367

 if length(Entrance) > 1

 for b = 1:length(Entrance)

 x12 = min(b,length(K12));

 x21 = min(b,length(K21));

 if Entrance(b)

 if K12(x12) > 0.5; K12(x12) = 0.5; end

 else

 if K21(x21) > 0.5; K21(x21) = 0.5; end

 end

 end

 elseif Entrance

 K12(K12>0.5) = 0.5;

 elseif ~Entrance

 K21(K21>0.5) = 0.5;

 end

 else

 K12 = 0;

 K21 = 0;

 end

 else

 % Get the area as a static scalar

 Area1 = 0; Area2 = 0;

 for x = 1:length(neighbourhood)

 Area1 = Area1 +

neighbourhood(x).Nodes(1).getArea(0,neighbourhood(x).Connection);

 Area2 = Area2 +

neighbourhood(x).Nodes(2).getArea(0,neighbourhood(x).Connection);

 end

 ratio = Area1/Area2;

 if ratio ~= 1

 if ratio > 1; ratio = 1/ratio; end

 if ratio > 0.76; K12 = (1-ratio.^2).^2;

 else; K12 = 0.42*(1-ratio.^2);

 end

 K21 = K12;

 if Area1 > Area2

 if K12 > 0.5

 K12 = 0.5;

 end

 else

 if K21 > 0.5

 K21 = 0.5;

 end

 end

 else

 K12 = 0;

 K21 = 0;

 end

 end

 if all(K12 == 0)

 % It is straight, this is simply a pipe

 for Fc = neighbourhood

 if Fc.Orient == enumOrient.Vertical

 if Fc.Nodes(1).xmin == 0

 % Cylindrical

 C = 64;

 else

 % Annuluar

 C = 96;

 end

 else % Horizontal

 C = 96;

 end

 Fc.data.fFunc_l = @(Re) C./Re;

 Fc.data.fFunc_t = @(Re) 0.11*(this.roughness/Fc.data.Dh+68./Re).^0.25;

 % Streamwise conduction enhancement

 Fc.data.NkFunc_l = @(Re) 1;

 Fc.data.NkFunc_t = @(Re,Pr) 0.022*(Re.^0.75).*(Pr);

 end

 else

368

 for Fc = neighbourhood

 Fc.data.K12 = K12;

 Fc.data.K21 = K21;

 end

 end

 end

 end

 end

 end

 % Overwrite K of Custom Minor Losses

 for CustomK = this.CustomMinorLosses

 if this.CustomMinorLosses.isValid()

 for Fc = this.Faces

 if isa(Fc.Nodes(1).Body,'Body') && ...

 isa(Fc.Nodes(2).Body,'Body')

 if (Fc.Nodes(1).Body == CustomK.Body1 && ...

 Fc.Nodes(2).Body == Custom.Body2)

 Fc.data.K12 = CustomK.K12;

 Fc.data.K21 = CustomK.K21;

 elseif (Fc.Nodes(2).Body == CustomK.Body1 && ...

 Fc.Nodes(1).Body == Custom.Body2)

 Fc.data.K12 = CustomK.K21;

 Fc.data.K21 = CustomK.K12;

 end

 end

 end

 end

 end

 %% Decimating Loops

 progressbar('Decimating Extra Loops');

 % debug_loopPlot(this,false);

 % Decimate extra loops

 Triads = cell(0,0);

 for Nd = this.Nodes

 if Nd.Type ~= enumNType.SN && Nd.Type ~= enumNType.EN

 visited = GetTriad(Nd);

 for set = visited

 fcs = set{1};

 % Prevent duplicate loops from showing up

 found = false;

 for i = 1:length(Triads)

 if any(Triads{i}(1) == fcs) && any(Triads{i}(2) == fcs) && ...

 any(Triads{i}(3) == fcs)

 found = true; break;

 end

 end

 if ~found; Triads{end+1} = fcs; end

 end

 end

 end

 % Look at Triads

 Scores = cell(size(Triads));

 Tri_Nodes = Scores;

 for i = 1:length(Scores)

 Scores{i} = zeros(1,3);

 Tri_Nodes{i} = Node.empty;

 end

 % Score All the Triads

 for k = 1:length(Triads)

 Tri = Triads{k};

 Tri_Node_i = 3;

 backup = [0 0];

 % Get nodes for the Tri

 for fc = Tri

 for nd = fc.Nodes

 if isempty(Tri_Nodes{k}) || ...

 all(Tri_Nodes{k} ~= nd)

 Tri_Nodes{k}(Tri_Node_i) = nd; Tri_Node_i = Tri_Node_i - 1;

369

 end

 end

 end

 % Assign a score based on the area that enters than node

 for fc = Tri

 score = mean(fc.data.Area);

 for nd = fc.Nodes

 index = find(Tri_Nodes{k}==nd);

 Scores{k}(index) = Scores{k}(index) + score;

 end

 end

 % Normalize the Scores According to the other Options

 backup(1) = Scores{k}(1); backup(2) = Scores{k}(2);

 Scores{k}(1) = backup(1) / (backup(2) + Scores{k}(3));

 Scores{k}(2) = backup(2) / (backup(1) + Scores{k}(3));

 Scores{k}(3) = Scores{k}(3) / (backup(1) + backup(2));

 Scores{k}(isnan(Scores{k})) = 0;

 % Ensure that faces that can't be closed will not be looked at

 % ... As the number of faces that can't will only increase

 Backup_Tri = Tri;

 for i = 1:3

 for j = 1:length(Backup_Tri)

 fc = Backup_Tri(j);

 if ~any(fc.Nodes == Tri_Nodes{k}(i))

 Tri(i) = fc;

 if ~canClose(fc)

 Scores{k}(i) = 0;

 end

 break;

 end

 end

 end

 % Rearrange the Tri so that the faces correspond to the correct

 % ... score

 end

 while ~isempty(Triads)

 Best_Tri = 0;

 Open_Triads = true(length(Triads),1);

 Best_Score = 0;

 Best_Index = 0;

 % Find Best Possible Face to close

 finding_best = true;

 while finding_best

 for k = 1:length(Triads)

 % Get the best

 finding_best = true;

 for i = 1:3

 if Scores{k}(i) > Best_Score

 Best_Score = Scores{k}(i);

 Best_Index = i;

 Best_Tri = k;

 end

 end

 end

 if Best_Score == 0; break; end

 closing_face = Triads{Best_Tri}(Best_Index);

 if canClose(closing_face)

 finding_best = false;

 else

 Scores{Best_Tri}(Best_Index) = 0;

 Best_Score = 0;

 end

 end

 % Collapse the face, closing the triad

 if Best_Score > 0

 % Adjust the area and minor loss coefficients of the other two faces

370

 for fc = Triads{Best_Tri}

 if fc ~= closing_face

 if isfield(fc.data,'K12')

 if isfield(closing_face.data,'K12')

 fc.data.K12 = (fc.data.K12.*fc.data.Area + ...

 closing_face.data.K12.*closing_face.data.Area)./ ...

 (fc.data.Area + closing_face.data.Area);

 fc.data.K21 = (fc.data.K21.*fc.data.Area + ...

 closing_face.data.K21.*closing_face.data.Area)./ ...

 (fc.data.Area + closing_face.data.Area);

 end

 end

 fc.data.Area = fc.data.Area + closing_face.data.Area;

 end

 end

 % Delete the face from the list

 closing_face.data.Area = 0;

 for nd = closing_face.Nodes

 nd.Faces(nd.Faces == closing_face) = [];

 end

 this.Faces(this.Faces == closing_face) = [];

 for k = 1:length(Triads)

 if any(Triads{k} == closing_face)

 Open_Triads(k) = false;

 end

 end

 Open_Triads(Best_Tri) = false;

 Triads = Triads(Open_Triads);

 Scores = Scores(Open_Triads);

 fprintf(['Decimated a Triad with ' num2str(length(Open_Triads) - sum(Open_Triads) - 1)

' others.\n']);

 else

 Triads = cell(0);

 end

 end

 %{

 for Tri = Triads

 Tri_Nodes = Node.empty;

 Scores = {0,0,0};

 for fc = Tri{1}

 for nd = fc.Nodes

 if isempty(Tri_Nodes) || all(Tri_Nodes ~= nd)

 Tri_Nodes = [Tri_Nodes nd];

 index = length(Tri_Nodes);

 else

 index = find(Tri_Nodes==nd);

 end

 Scores{index} = Scores{index} + fc.data.Area;

 end

 end

 %}

 % Starting at the node with maximum area, test if the opposite face

 % can be closed

 %{

 bestrecord = 0;

 bestindex = 0;

 for i = 1:3

 if mean(Scores{i}) > bestrecord

 for fc = Tri{1}

 if ~any(fc.Nodes == Tri_Nodes(i))

 if canClose(fc)

 bestindex = i;

 bestrecord = mean(Scores{i});

 end

 break;

 end

 end

 end

371

 end

 % Collapse the triad

 if bestindex > 0 && bestrecord > 0

 fprintf('Decimated a Triad\n');

 % Find closing face

 for fc = Tri{1}

 if ~any(fc.Nodes == Tri_Nodes(i))

 closing_face = fc;

 break;

 end

 end

 % Adjust the area and minor loss coefficients of the other two faces

 for fc = Tri{1}

 if fc ~= closing_face

 if isfield(fc.data,'K12')

 if isfield(closing_face.data,'K12')

 fc.data.K12 = (fc.data.K12.*fc.data.Area + ...

 closing_face.data.K12.*closing_face.data.Area)./ ...

 (fc.data.Area + closing_face.data.Area);

 fc.data.K21 = (fc.data.K21.*fc.data.Area + ...

 closing_face.data.K21.*closing_face.data.Area)./ ...

 (fc.data.Area + closing_face.data.Area);

 end

 end

 fc.data.Area = fc.data.Area + closing_face.data.Area;

 end

 end

 % Delete the face from the list

 closing_face.data.Area = 0;

 for nd = closing_face.Nodes

 nd.Faces(nd.Faces == closing_face) = [];

 end

 this.Faces(this.Faces == closing_face) = [];

 end

 %}

 % Faces

 % Determine the amount of Solid, Environment, Mix and Gas Faces

 S_count = 0;

 E_count = 0;

 M_count = 0;

 for Fc = this.Faces

 switch Fc.Type

 case enumFType.Solid

 S_count = S_count + 1;

 case enumFType.Mix

 M_count = M_count + 1;

 case enumFType.Environment

 E_count = E_count + 1;

 end

 end

 G_count = length(this.Faces) - S_count - E_count - M_count;

 fprintf(['Found: ' num2str(G_count) ' Gas Faces, ' ...

 num2str(E_count) ' Environment Faces, ' ...

 num2str(M_count) ' Mixed Faces, ' ...

 num2str(S_count) ' Solid Faces\n']);

 M_count = G_count + M_count;

 E_count = M_count + E_count;

 S_count = length(this.Faces);

 G_count_backup_faces = G_count;

 E_count_backup_faces = E_count;

 M_count_backup_faces = M_count;

 for Fc = this.Faces

 switch Fc.Type

 case enumFType.Solid

 Fc.index = S_count;

 S_count = S_count - 1;

 case enumFType.Mix

372

 Fc.index = M_count;

 M_count = M_count - 1;

 case enumFType.Environment

 Fc.index = E_count;

 E_count = E_count - 1;

 case enumFType.Leak

 otherwise % Gas

 Fc.index = G_count;

 G_count = G_count - 1;

 end

 end

 % Remove Nodal Faces that have been deleted

 for iNd = this.Nodes

 keep = true(size(iNd.Faces));

 j = 1;

 for Fc = iNd.Faces

 if isempty(Fc.index) || Fc.index < 1

 keep(j) = false;

 end

 j = j + 1;

 end

 iNd.Faces = iNd.Faces(keep);

 end

 % Deal with input options

 % 1. NodeFactor -> Already handled in initial discretization

 % 2. HX Convection ->

 if isfield(run,'HX_Convection') && run.HX_Convection ~= 1

 % Find all bodies which are gases, but contain source nodes

 for iGroup = this.Groups

 for iBody = iGroup.Bodies

 if iBody.matl.Phase == enumMaterial.Gas

 if ~isempty(iBody.Matrix) && ...

 isfield(iBody.Matrix.data,'SourceTemperature')

 for nd = iBody.Nodes

 if nd.Type ~= enumNType.SN

 if isfield(nd.data,'NuFunc_l')

 func = nd.data.NuFunc_l;

 if nargin(func) == 2

 nd.data.NuFunc_l = @(Re,Pr) run.HX_Convection.*func(Re,Pr);

 else

 nd.data.NuFunc_l = @(Re) run.HX_Convection.*func(Re);

 end

 end

 if isfield(nd.data,'NuFunc_t')

 func = nd.data.NuFunc_t;

 if nargin(func) == 2

 nd.data.NuFunc_t = @(Re,Pr) run.HX_Convection.*func(Re,Pr);

 else

 nd.data.NuFunc_t = @(Re) run.HX_Convection.*func(Re);

 end

 end

 end

 end

 end

 end

 end

 end

 end

 % 3. Regen_Convection ->

 if isfield(run,'Regen_Convection') && run.Regen_Convection ~= 1

 % Find all bodies which are gases but contain solids nodes without

 % ... source nodes

 for iGroup = this.Groups

 for iBody = iGroup.Bodies

 if iBody.matl.Phase == enumMaterial.Gas

 if ~isempty(iBody.Matrix) && ...

 ~isfield(iBody.Matrix.data,'SourceTemperature')

 for nd = iBody.Nodes

373

 if nd.Type ~= enumNType.SN

 if isfield(nd.data,'NuFunc_l')

 func = nd.data.NuFunc_l;

 if nargin(func) == 2

 nd.data.NuFunc_l = @(Re,Pr) run.Regen_Convection.*func(Re,Pr);

 else

 nd.data.NuFunc_l = @(Re) run.Regen_Convection.*func(Re);

 end

 end

 if isfield(nd.data,'NuFunc_t')

 func = nd.data.NuFunc_t;

 if nargin(func) == 2

 nd.data.NuFunc_t = @(Re,Pr) run.Regen_Convection.*func(Re,Pr);

 else

 nd.data.NuFunc_t = @(Re) run.Regen_Convection.*func(Re);

 end

 end

 end

 end

 end

 end

 end

 end

 end

 % 4. Outside Matrix Convection ->

 if isfield(run,'Outside_Matrix_Convection') && run.Outside_Matrix_Convection ~= 1

 % Find all bodies which contain only gas nodes

 for iGroup = this.Groups

 for iBody = iGroup.Bodies

 if iBody.matl.Phase == enumMaterial.Gas

 if isempty(iBody.Matrix)

 for nd = iBody.Nodes

 if nd.Type ~= enumNType.SN

 if isfield(nd.data,'NuoFunc_l')

 func = nd.data.NuoFunc_l;

 if nargin(func) == 2

 nd.data.NuoFunc_l = @(Re,Pr) run.HX_Convection.*func(Re,Pr);

 else

 nd.data.NuoFunc_l = @(Re) run.HX_Convection.*func(Re);

 end

 end

 if isfield(nd.data,'NuFunc_l')

 func = nd.data.NuFunc_l;

 if nargin(nd.data.NuFunc_l) == 2

 nd.data.NuFunc_l = @(Re,Pr) run.HX_Convection.*func(Re,Pr);

 else

 nd.data.NuFunc_l = @(Re) run.HX_Convection.*func(Re);

 end

 end

 if isfield(nd.data,'NuFunc_t')

 func = nd.data.NuFunc_t;

 if nargin(func) == 2

 nd.data.NuFunc_t = @(Re,Pr) run.HX_Convection.*func(Re,Pr);

 else

 nd.data.NuFunc_t = @(Re) run.HX_Convection.*func(Re);

 end

 end

 end

 end

 end

 end

 end

 end

 end

 % 5. Friction ->

 if isfield(run,'Friction') && run.Friction ~= 1

 % Find all gas faces

 for Fc = this.Faces

 if Fc.Type == enumFType.Gas || Fc.Type == enumFType.MatrixTransition

 if isfield(Fc.data,'fFunc_l')

 func = Fc.data.fFunc_l;

374

 Fc.data.fFunc_l = @(Re) run.Friction*func(Re);

 end

 if isfield(Fc.data,'fFunc_t')

 func = Fc.data.fFunc_t;

 Fc.data.fFunc_t = @(Re) run.Friction*func(Re);

 end

 end

 end

 end

 % 6. Solid_Conduction ->

 if isfield(run,'Solid_Conduction') && run.Solid_Conduction ~= 1

 % Find all solid and mixed faces

 for Fc = this.Faces

 if Fc.Type == enumFType.Solid

 if isfield(Fc.data,'U')

 Fc.data.U = Fc.data.U.*run.Solid_Conduction;

 end

 elseif Fc.Type == enumFType.Mix

 if isfield(Fc.data,'R')

 if run.Solid_Conduction == 0

 Fc.data.R = 1e8;

 else

 Fc.data.R = Fc.data.R./run.Solid_Conduction;

 end

 end

 end

 end

 end

 % 7. Axial_Mixing_Coefficient ->

 if isfield(run,'Axial_Mixing_Coefficient') && run.Axial_Mixing_Coefficient ~= 1

 % Find all gas faces

 for Fc = this.Faces

 if Fc.Type == enumFType.Gas || Fc.Type == enumFType.MatrixTransition

 if isfield(Fc.data,'NkFunc_l')

 func = Fc.data.NkFunc_l;

 if nargin(Fc.data.NkFunc_l) == 2

 Fc.data.NkFunc_l = @(Re,Pr) run.Axial_Mixing_Coefficient.*func(Re,Pr);

 else

 Fc.data.NkFunc_l = @(Re) run.Axial_Mixing_Coefficient.*func(Re);

 end

 end

 if isfield(Fc.data,'NkFunc_t')

 func = Fc.data.NkFunc_t;

 if nargin(Fc.data.NkFunc_t) == 2

 Fc.data.NkFunc_t = @(Re,Pr) run.Axial_Mixing_Coefficient.*func(Re,Pr);

 else

 Fc.data.NkFunc_t = @(Re) run.Axial_Mixing_Coefficient.*func(Re);

 end

 end

 end

 end

 end

 for iGroup = this.Groups

 for iBody = iGroup.Bodies

 if ~isempty(iBody.Matrix) && ...

 iBody.Matrix.Geometry == enumMatrix.HeatExchanger && ...

 strcmp(iBody.Matrix.data.Classification,'Custom HX')

 if isfield(run,'HX_C1')

 iBody.Matrix.data.C1 = run.HX_C1;

 end

 if isfield(run,'HX_C2')

 iBody.Matrix.data.C2 = run.HX_C2;

 end

 if isfield(run,'HX_C3')

 iBody.Matrix.data.C3 = run.HX_C3;

 end

 if isfield(run,'HX_C4')

 iBody.Matrix.data.C4 = run.HX_C4;

 end

 if isfield(run,'HX_SA_V')

 iBody.Matrix.data.SA_V = run.HX_SA_V;

375

 end

 end

 if ~isempty(iBody.Matrix) && ...

 iBody.Matrix.Geometry == enumMatrix.CustomRegen

 if isfield(run,'Regen_C1')

 iBody.Matrix.data.C1 = run.Regen_C1;

 end

 if isfield(run,'Regen_C2')

 iBody.Matrix.data.C2 = run.Regen_C2;

 end

 if isfield(run,'Regen_C3')

 iBody.Matrix.data.C3 = run.Regen_C3;

 end

 if isfield(run,'Regen_C4')

 iBody.Matrix.data.C4 = run.Regen_C4;

 end

 if isfield(run,'Regen_Porosity')

 iBody.Matrix.data.Porosity = run.Regen_Porosity;

 end

 if isfield(run,'Regen_SA_V')

 iBody.Matrix.data.SA_V = run.Regen_SA_V;

 end

 end

 end

 end

 %% Vectorizing Nodes

 progressbar('Vectorizing Nodes');

 % Generic Properties

 Sim.dT_dU = zeros(S_count_backup,1);

 Sim.u = Sim.dT_dU;

 Sim.T = Sim.dT_dU;

 Sim.CondFlux = Sim.dT_dU;

 % Environment Additional Properties

 Sim.P = zeros(E_count_backup,1);

 Sim.dP = Sim.P;

 Sim.dh_dT = Sim.P;

 Sim.rho = Sim.P;

 Sim.m = Sim.dT_dU;

 Sim.vol = Sim.T;

 Sim.dV_dt = Sim.P;

 % Gas Node Additional Properties

 Sim.k = Sim.P;

 Sim.mu = Sim.P;

 Sim.Dh = zeros(G_count_backup,1);

 Sim.Nu = Sim.Dh;

 Sim.NuFunc_l = cell(G_count_backup,1);

 Sim.NuFunc_t = Sim.NuFunc_l;

 Sim.isDynVol = Sim.P;

 Sim.DynVol = zeros(6,0);

 % Interpolated from Faces

 Sim.RE = Sim.Dh;

 Sim.U = Sim.Dh;

 Sim.f = Sim.Dh;

 % Turbulence

 Sim.useTurbulenceNd = false(length(Sim.P)-1,1);

 Sim.turb = Sim.P;

 Sim.dturb = Sim.P;

 Sim.Area = zeros(2,length(Sim.Dh));

 Sim.Va = Sim.Dh;

 Sim.to = Sim.Dh;

 % Gas Regions

 % Growth algorithm propegating through gas faces that are always open

 region = zeros(length(Sim.P),1);

 region_count = 0;

 for Nd = this.Nodes

 if Nd.index <= length(region) && region(Nd.index) == 0

 region_count = region_count + 1;

376

 region = PropegateRegion(Nd,region,region_count);

 if all(region > 0); break; end

 end

 end

 % Define Functions

 DynVol_n = 1;

 DynDh_n = 1;

 Rs = Sim.P;

 for Nd = this.Nodes

 if isfield(Nd.data,'matl')

 if Nd.data.matl.Phase ~= enumMaterial.Solid

 matl = Material(Nd.data.matl.name);

 else

 matl = Nd.data.matl;

 end

 else

 if Nd.Body.matl.Phase ~= enumMaterial.Solid

 matl = Material(Nd.Body.matl.name);

 else

 matl = Nd.Body.matl;

 end

 end

 switch Nd.Type

 case enumNType.SN

 % Sim.dU(Nd.index) = 0; - Needs to be zeroed

 Sim.m(Nd.index) = Nd.vol()*matl.Density;

 if matl.dT_du <= 0

 Sim.dT_dU(Nd.index) = 0;

 else

 Sim.dT_dU(Nd.index) = matl.dT_du;

 end

 Sim.T(Nd.index) = Nd.data.T;

 Sim.u(Nd.index) = matl.initialInternalEnergy(Nd.data.T);

 Sim.vol(Nd.index) = Nd.vol();

 % Static Volume Gas Node %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 case {enumNType.SVGN, enumNType.VVGN, enumNType.SAGN}

 V = Nd.vol();

 Nd.recalc_Dh();

 if isempty(Nd.Body.Matrix)

 if ~isscalar(V)

 Sim.useTurbulenceNd(Nd.index) = true;

 else

 Sim.useTurbulenceNd(Nd.index) = false;

 end

 else

 Sim.useTurbulenceNd(Nd.index) = true;

 end

 if isscalar(V)

 Sim.vol(Nd.index) = V;

 else

 Sim.vol(Nd.index) = V(1);

 Sim.isDynVol(Nd.index) = DynVol_n;

 Sim.DynVol(1,DynVol_n) = Nd.index;

 Sim.DynVol(2,DynVol_n) = Sim.Dyn;

 DynVol_n = DynVol_n + 1;

 Sim.Dynamic(Sim.Dyn,:) = V;

 Sim.Dyn = Sim.Dyn + 1;

 end

 if isscalar(Nd.data.Dh)

 Sim.Dh(Nd.index) = Nd.data.Dh;

 else

 Sim.DynDh(1,DynDh_n) = Nd.index;

 Sim.DynDh(2,DynDh_n) = Sim.Dyn;

 DynDh_n = DynDh_n + 1;

 Sim.Dynamic(Sim.Dyn,:) = Nd.data.Dh;

 Sim.Dyn = Sim.Dyn + 1;

 end

 Sim.dT_dU(Nd.index) = 1;

377

 Sim.dT_duFunc{region(Nd.index)} = matl.dT_duFunc;

 try

 Sim.dh_dTFunc{region(Nd.index)} = matl.dh_dTFunc; % Additions

 catch

 matl.Configure(matl.name);

 Sim.dh_dTFunc{region(Nd.index)} = matl.dh_dTFunc; % Additions

 end

 Sim.u2T{region(Nd.index)} = matl.u2T;

 Sim.T(Nd.index) = Nd.data.T;

 Sim.P(Nd.index) = Nd.data.P;

 Sim.rho(Nd.index) = Nd.data.P/(matl.R*Nd.data.T);

 Sim.u(Nd.index) = matl.initialInternalEnergy(Nd.data.T);% +

Nd.data.P/Sim.rho(Nd.index);

 Sim.m(Nd.index) = Sim.rho(Nd.index)*Sim.vol(Nd.index);

 Sim.kFunc{region(Nd.index)} = matl.kFunc;

 Sim.muFunc{region(Nd.index)} = matl.muFunc;

 Rs(Nd.index) = matl.R;

 if isfield(Nd.data,'NuoFunc_l')

 Sim.NuFunc_l{Nd.index} = Nd.data.NuoFunc_l;

 else

 Sim.NuFunc_l{Nd.index} = Nd.data.NuFunc_l;

 end

 Sim.NuFunc_t{Nd.index} = Nd.data.NuFunc_t;

 % Environment Node (Static Properties Node) %%%%%%%%%%%%%%%%%%%

 case enumNType.EN

 Sim.dT_dU(Nd.index) = 0;

 Sim.T(Nd.index) = Nd.Body.Temperature;

 Sim.u2T{region(Nd.index)} = matl.u2T;

 Sim.kFunc{region(Nd.index)} = matl.kFunc;

 Sim.muFunc{region(Nd.index)} = matl.muFunc;

 Sim.dT_duFunc{region(Nd.index)} = matl.dT_duFunc;

 try

 Sim.dh_dTFunc{region(Nd.index)} = matl.dh_dTFunc; % Additions

 catch

 matl.Configure(matl.name);

 Sim.dh_dTFunc{region(Nd.index)} = matl.dh_dTFunc; % Additions

 end

 Rs(Nd.index) = matl.R;

 Sim.k(Nd.index) = matl.kFunc(Nd.data.T);

 Sim.mu(Nd.index) = matl.muFunc(Nd.data.T);

 Sim.u(Nd.index) = matl.initialInternalEnergy(Nd.data.T);% + Nd.data.P/Nd.data.rho;

 Sim.P(Nd.index) = Nd.data.P;

 Sim.rho(Nd.index) = Nd.data.rho;

 Sim.vol(Nd.index) = Inf;

 Sim.m(Nd.index) = Inf;

 Sim.turb(Nd.index) = 0;

 end

 end

 %% Vectorizing Faces

 progressbar('Vectorizing Faces');

 Sim.Fc_Nd = zeros(length(this.Faces),2);

 Sim.Fc_U = zeros(G_count_backup_faces,1);

 Sim.Fc_PR = Sim.Fc_U;

 Sim.Fc_dx = Sim.Fc_U;

 Sim.Fc_RE = Sim.Fc_U;

 Sim.Fc_f = Sim.Fc_U;

 Sim.Fc_R = zeros(1,M_count_backup_faces);

 Sim.Fc_fFunc_l = cell(G_count_backup_faces,1);

 Sim.Fc_fFunc_t = Sim.Fc_fFunc_l;

 Sim.Fc_NkFunc_l = Sim.Fc_fFunc_l;

 Sim.Fc_NkFunc_t = Sim.Fc_fFunc_l;

 Sim.Fc_Dist = Sim.Fc_U;

 Sim.Fc_Cond_Dist = Sim.Fc_U;

 Sim.Fc_K12 = Sim.Fc_U;

 Sim.Fc_K21 = Sim.Fc_U;

 Sim.Fc_u = Sim.Fc_U;

378

% Sim.dL_dt = Sim.Fc_U;

% Sim.dD_dt = Sim.Fc_U;

 Sim.KpU_2A = Sim.Fc_U;

 Sim.Fc_V = Sim.Fc_U;

 Sim.Fc_dP = Sim.Fc_U;

 Sim.Fc_V_backup = Sim.Fc_U;

 Sim.Fc_W = Sim.Fc_U;

 % For gas-gas, mix and environment faces

 Sim.Fc_Area = zeros(E_count_backup_faces,1);

 Sim.Fc_Dh = Sim.Fc_U;

 Sim.Fc_Cond = Sim.Fc_Area;

 Sim.Fc_T = Sim.Fc_U;

 Sim.Fc_k = Sim.Fc_U;

 Sim.Fc_mu = Sim.Fc_U;

 Sim.Fc_rho = Sim.Fc_U;

 Sim.Fc_Vel_Factor = Sim.Fc_U;

 Sim.Fc_Shear_Factor = Sim.Fc_U;

 % Turbulence

 Sim.Fc_turb = Sim.Fc_U;

 Sim.Fc_to = Sim.Fc_U;

 Sim.useTurbulenceFc = true(G_count_backup_faces,1);

 % Flux Limiters

 Sim.Fc_Nd03 = Sim.Fc_Nd;

 Sim.Fc_A = Sim.Fc_U;

 Sim.Fc_B = Sim.Fc_U;

 Sim.Fc_C = Sim.Fc_U;

 Sim.Fc_D = Sim.Fc_U;

 % Find V and S for the faces

 for Fc = this.Faces

 [V, S, SContact] = FaceMotion(Fc);

 if ~isempty(V); Fc.data.V = V; end

 if ~isempty(S)

 Fc.data.S = S;

 if ~isempty(SContact)

 this.ShearContacts = [this.ShearContacts SContact];

 end

 end

 end

 %% Creating Shear/Pressure Contacts

 progressbar('Creating Shear/Pressure Contacts');

 % For all Faces, attempt to make a PressureContact

 for Fc = this.Faces

 if Fc.Type == enumFType.Mix

 PContact = Fc.getPressureContact();

 if ~isempty(PContact)

 this.PressureContacts = [this.PressureContacts PContact];

 end

 elseif (Fc.Nodes(1).Type == enumNType.SN && ...

 Fc.Nodes(2).Type == enumNType.EN) || ...

 (Fc.Nodes(1).Type == enumNType.EN && ...

 Fc.Nodes(2).Type == enumNType.SN)

 PContact = Fc.getPressureContact();

 if ~isempty(PContact)

 this.PressureContacts = [this.PressureContacts PContact];

 end

 end

 end

 % For all Faces, distribute the friction length to neighbours if

 % ... K enabled.

 for Fc = this.Faces

 if isfield(Fc.data,'Dist')

 Fc.data.Cond_Dist = Fc.data.Dist;

 if isfield(Fc.data,'dx') && isfield(Fc.data, 'K12')

 if any(Fc.data.K12 > 0) || any(Fc.data.K21 > 0)

379

 % Will only run this code if:

 % ... It is a gas face

 % ... It has a minor loss coefficient

 % This face will not utilize the value of Dist

 Fc.data.Dist = 0;

 % Get the location of the center of this face

 x = getCenterOfOverlapRegion(...

 Fc.Nodes(1).xmin, Fc.Nodes(2).xmin,...

 Fc.Nodes(1).xmax, Fc.Nodes(2).xmax);

 y = getCenterOfOverlapRegion(...

 Fc.Nodes(1).ymin, Fc.Nodes(2).ymin,...

 Fc.Nodes(1).ymax, Fc.Nodes(2).ymax);

 % Find all neighbours

 for nd = Fc.Nodes

 ndx = (nd.xmin + nd.xmax)/2;

 ndy = (nd.ymin + nd.ymax)/2;

 count = 0;

 for fci = nd.Faces

 if fci ~= Fc

 if isfield(fci.data,'Dist') && (...

 (isfield(Fc.data, 'K12') && all(Fc.data.K12 == 0)) || ...

 ~isfield(Fc.data, 'K12'))

 count = count + 1;

 end

 end

 end

 if count < 2

 % Will only run if this node has only one other gas face

 for fci = nd.Faces

 if fci ~= Fc

 if isfield(fci.data,'Dist') && (...

 (isfield(Fc.data, 'K12') && all(Fc.data.K12 == 0)) || ...

 ~isfield(Fc.data, 'K12'))

 % Will only run if this face can use it

 % Determine orientation of fci

 if fci.Nodes(1).xmin == fci.Nodes(2).xmax

 dDist = abs(ndx - x);

 % If the connection is actually closer than

 % ... assumed then the distance is negative

 if abs(fci.Nodes(1).xmin - x) < ...

 abs(fci.Nodes(1).xmin - ndx)

 dDist = -dDist;

 end

 elseif fci.Nodes(1).xmax == fci.Nodes(2).xmin

 dDist = abs(ndx - x);

 % If the connection is actually closer than

 % ... assumed then the distance is negative

 if abs(fci.Nodes(2).xmin - x) < ...

 abs(fci.Nodes(2).xmin - ndx)

 dDist = -dDist;

 end

 elseif all(fci.Nodes(1).ymin == fci.Nodes(2).ymax)

 dDist = abs(ndy - y);

 % If the connection is actually closer than

 % ... assumed then the distance is negative

 if abs(fci.Nodes(1).ymin - y) < ...

 abs(fci.Nodes(1).ymin - ndy)

 dDist = -dDist;

 end

 else

 dDist = abs(ndy - y);

 % If the connection is actually closer than

 % ... assumed then the distance is negative

 if abs(fci.Nodes(2).ymin - y) < ...

 abs(fci.Nodes(2).ymin - ndy)

 dDist = -dDist;

 end

 end

380

 fci.data.Dist = CollapseVector(fci.data.Dist + dDist);

 if any(fci.data.Dist <= 0)

 fprintf('XXX Negative Distance Detected. \n');

 end

 end

 end

 end

 end

 end

 end

 end

 end

 end

 % Vectorize all Faces

 MF_n = 1;

 Fc_DynCond_n = 1;

 Fc_DynArea_n = 1;

 Fc_DynDist_n = 1;

 Fc_DynCond_Dist_n = 1;

 Fc_Dyndx_n = 1;

 Fc_DynDh_n = 1;

 Fc_DynK12_n = 1;

 Fc_DynK21_n = 1;

 Fc_DynVel_Factor_n = 1;

 Fc_DynShear_Factor_n = 1;

 Fc_DynA_n = 1; Fc_DynB_n = 1; Fc_DynC_n = 1; Fc_DynD_n = 1;

 IsApprox = false(length(this.Faces),1);

 ApproxCount = 1;

 for Fc = this.Faces

 N1 = Fc.Nodes(1);

 N2 = Fc.Nodes(2);

 Sim.Fc_Nd(Fc.index,1) = N1.index;

 Sim.Fc_Nd(Fc.index,2) = N2.index;

 % Solid Faces

 switch Fc.Type

 case enumFType.Solid % Solid and Solid-Environment Faces

 % Conductance

 if isscalar(Fc.data.U)

 Sim.Fc_Cond(Fc.index) = Fc.data.U;

 else

 Sim.Dynamic(Sim.Dyn,:) = Fc.data.U;

 Sim.Fc_DynCond(1,Fc_DynCond_n) = Fc.index;

 Sim.Fc_DynCond(2,Fc_DynCond_n) = Sim.Dyn;

 Fc_DynCond_n = Fc_DynCond_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 case enumFType.Mix % Gas-Solid Faces

 Sim.Mix_Fc(MF_n) = Fc.index; % A list of Fc_indexes

 if N2.Type ~= enumNType.SN

 % Switch direction, Gas First, Solid Second

 Sim.Fc_Nd(Fc.index,1) = N2.index;

 Sim.Fc_Nd(Fc.index,2) = N1.index;

 temp = N1;

 N1 = N2;

 N2 = temp;

 end

 if isscalar(Fc.data.Area) && isscalar(Fc.data.R)

 % Solid Resistance

 Sim.Fc_R(Fc.index) = Fc.data.R;

 % Surface Area

 Sim.Fc_Area(Fc.index) = Fc.data.Area;

 elseif ~isscalar(Fc.data.Area)

 % Solid Resistance

 temp = Fc.data.R;

 temp = temp(~isnan(temp));

 Sim.Fc_R(Fc.index) = temp(1);

 % Surface Area

 Sim.Dynamic(Sim.Dyn,:) = Fc.data.Area;

 Sim.Fc_DynArea(1,Fc_DynArea_n) = Fc.index;

381

 Sim.Fc_DynArea(2,Fc_DynArea_n) = Sim.Dyn;

 Fc_DynArea_n = Fc_DynArea_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 else

 Fc.data.R = Fc.data.R(~isnan(Fc.data.R));

 Fc.data.R = Fc.data.R(1);

 Sim.Fc_R(Fc.index) = Fc.data.R;

 Sim.Fc_Area(Fc.index) = Fc.data.Area;

 end

 % Look at the mixed face and determine if it can be

 % ... approximated

 %{

 if isfield(N2.data,'matl')

 if N2.data.matl.Phase ~= enumMaterial.Solid

 matl = Material(N2.data.matl.name);

 else

 matl = N2.data.matl;

 end

 else

 if N2.Body.matl.Phase ~= enumMaterial.Solid

 matl = Material(N2.Body.matl.name);

 else

 matl = N2.Body.matl;

 end

 end

 if matl.dT_du < 0; matl.dT_du = 1e-8; end

 if length(N2.Faces) == 1

 % True for most regenerators and heat exchangers

 if any((Fc.data.Area./Fc.data.R)./(N2.vol().*matl.Density./matl.dT_du)*1.e-4 >

0.25)

 IsApprox(Fc.index) = true;

 Sim.FcApprox(ApproxCount) = Fc.index;

 ApproxCount = ApproxCount + 1;

 end

 else

 CU = 0;

 Cother = 0;

 for fc = N2.Faces

 if fc == Fc

 CU = fc.data.Area./fc.data.R;

 if double(sum(CU < Cother))/...

 double(max(length(CU),length(Cother))) > 0.5

 CU = 0;

 break;

 end

 else

 if fc.Type == enumFType.Mix

 Cother = Cother + fc.data.Area./fc.data.R;

 if any(CU ~= 0) && ...

 double(sum(CU < Cother))/...

 double(max(length(CU),length(Cother))) > 0.5

 CU = 0;

 break;

 end

 end

 end

 end

 if CU ~= 0

 if any((Fc.data.Area./Fc.data.R)./(N2.vol().*matl.Density./matl.dT_du)*1.e-4 >

0.25)

 IsApprox(Fc.index) = true;

 Sim.FcApprox(ApproxCount) = Fc.index;

 ApproxCount = ApproxCount + 1;

 end

 end

 end

 %}

 MF_n = MF_n + 1;

 case {enumFType.Gas, enumFType.MatrixTransition} % Gas-Gas, Gas-Environment Faces

 Fc.recalc_Area_Dh();

382

 % Create Fc_Fcs array

 [A,B,C,D] = populate_Fc_ABCD(Sim, Fc);

 % Create Fc_A array

 if isscalar(A)

 Sim.Fc_A(Fc.index) = A;

 else

 Sim.Dynamic(Sim.Dyn,:) = A;

 Sim.Fc_DynA(1,Fc_DynA_n) = Fc.index;

 Sim.Fc_DynA(2,Fc_DynA_n) = Sim.Dyn;

 Fc_DynA_n = Fc_DynA_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 % Create Fc_B array

 if isscalar(B)

 Sim.Fc_B(Fc.index) = B;

 else

 Sim.Dynamic(Sim.Dyn,:) = B;

 Sim.Fc_DynB(1,Fc_DynB_n) = Fc.index;

 Sim.Fc_DynB(2,Fc_DynB_n) = Sim.Dyn;

 Fc_DynB_n = Fc_DynB_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 % Create Fc_C array

 if isscalar(C)

 Sim.Fc_C(Fc.index) = C;

 else

 Sim.Dynamic(Sim.Dyn,:) = C;

 Sim.Fc_DynC(1,Fc_DynC_n) = Fc.index;

 Sim.Fc_DynC(2,Fc_DynC_n) = Sim.Dyn;

 Fc_DynC_n = Fc_DynC_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 % Create Fc_B array

 if isscalar(D)

 Sim.Fc_D(Fc.index) = D;

 else

 Sim.Dynamic(Sim.Dyn,:) = D;

 Sim.Fc_DynD(1,Fc_DynD_n) = Fc.index;

 Sim.Fc_DynD(2,Fc_DynD_n) = Sim.Dyn;

 Fc_DynD_n = Fc_DynD_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 % Area

 if isscalar(Fc.data.Area)

 Sim.Fc_Area(Fc.index) = Fc.data.Area;

 else

 Sim.Dynamic(Sim.Dyn,:) = Fc.data.Area;

 Sim.Fc_DynArea(1,Fc_DynArea_n) = Fc.index;

 Sim.Fc_DynArea(2,Fc_DynArea_n) = Sim.Dyn;

 Fc_DynArea_n = Fc_DynArea_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 % Length / Friction Length

 if isscalar(Fc.data.Dist)

 Sim.Fc_Dist(Fc.index) = Fc.data.Dist;

 else

 Sim.Dynamic(Sim.Dyn,:) = Fc.data.Dist;

 Sim.Fc_DynDist(1,Fc_DynDist_n) = Fc.index;

 Sim.Fc_DynDist(2,Fc_DynDist_n) = Sim.Dyn;

 Fc_DynDist_n = Fc_DynDist_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 if isscalar(Fc.data.Cond_Dist)

 Sim.Fc_Cond_Dist(Fc.index) = Fc.data.Cond_Dist;

 else

 Sim.Dynamic(Sim.Dyn,:) = Fc.data.Cond_Dist;

 Sim.Fc_DynCond_Dist(1,Fc_DynCond_Dist_n) = Fc.index;

 Sim.Fc_DynCond_Dist(2,Fc_DynCond_Dist_n) = Sim.Dyn;

 Fc_DynCond_Dist_n = Fc_DynCond_Dist_n + 1;

383

 Sim.Dyn = Sim.Dyn + 1;

 end

 if isscalar(Fc.data.dx)

 Sim.Fc_dx(Fc.index) = Fc.data.dx;

 else

 Sim.Dynamic(Sim.Dyn,:) = Fc.data.dx;

 Sim.Fc_Dyndx(1,Fc_Dyndx_n) = Fc.index;

 Sim.Fc_Dyndx(2,Fc_Dyndx_n) = Sim.Dyn;

 Fc_Dyndx_n = Fc_Dyndx_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 % Hydraulic Diameter

 if isscalar(Fc.data.Dh)

 Sim.Fc_Dh(Fc.index) = Fc.data.Dh;

 else

 Sim.Dynamic(Sim.Dyn,:) = Fc.data.Dh;

 Sim.Fc_DynDh(1,Fc_DynDh_n) = Fc.index;

 Sim.Fc_DynDh(2,Fc_DynDh_n) = Sim.Dyn;

 Fc_DynDh_n = Fc_DynDh_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 % Friction Function

 if isfield(Fc.data,'K12') && any(Fc.data.K12 > 0) && any(Fc.data.K21 > 0)

 if isscalar(Fc.data.K12)

 Sim.Fc_K12(Fc.index) = Fc.data.K12;

 else

 Sim.Dynamic(Sim.Dyn,:) = Fc.data.K12;

 Sim.Fc_DynK12(1,Fc_DynK12_n) = Fc.index;

 Sim.Fc_DynK12(2,Fc_DynK12_n) = Sim.Dyn;

 Fc_DynK12_n = Fc_DynK12_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 if isscalar(Fc.data.K21)

 Sim.Fc_K21(Fc.index) = Fc.data.K21;

 else

 Sim.Dynamic(Sim.Dyn,:) = Fc.data.K21;

 Sim.Fc_DynK21(1,Fc_DynK21_n) = Fc.index;

 Sim.Fc_DynK21(2,Fc_DynK21_n) = Sim.Dyn;

 Fc_DynK21_n = Fc_DynK21_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 else

 Sim.Fc_fFunc_l{Fc.index} = Fc.data.fFunc_l;

 Sim.Fc_fFunc_t{Fc.index} = Fc.data.fFunc_t;

 end

 % Mixing Function

 Sim.Fc_NkFunc_l{Fc.index} = Fc.data.NkFunc_l;

 Sim.Fc_NkFunc_t{Fc.index} = Fc.data.NkFunc_t;

 % Shear Speed Factor

 if isfield(Fc.data,'S')

 Sim.Dynamic(Sim.Dyn,:) = Fc.data.S;

 Sim.Fc_DynShear_Factor(1,Fc_DynShear_Factor_n) = Fc.index;

 Sim.Fc_DynShear_Factor(2,Fc_DynShear_Factor_n) = Sim.Dyn;

 Fc_DynShear_Factor_n = Fc_DynShear_Factor_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 % Face Speed Factor

 if isfield(Fc.data,'V')

 Sim.Dynamic(Sim.Dyn,:) = Fc.data.V;

 Sim.Fc_DynVel_Factor(1,Fc_DynVel_Factor_n) = Fc.index;

 Sim.Fc_DynVel_Factor(2,Fc_DynVel_Factor_n) = Sim.Dyn;

 Fc_DynVel_Factor_n = Fc_DynVel_Factor_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 case enumFType.Leak % Gas-Gas Leaks

 % Do nothing, this is handled elsewhere

 end

 end

 Sim.Dynamic = Sim.Dynamic';

384

 %% Creating Face - Use Turbulence

 progressbar('Creating Face - Use Turbulence');

 L = G_count_backup_faces + 1;

 for Fc = this.Faces

 if Fc.index < L

 % Don't use turbulence if

 % Matrix exist in either connected node

 % Either Node is variable volume

 for Nd = Fc.Nodes

 if ~Sim.Fc_K12(Fc.index)

 if Sim.isDynVol(Nd.index)

 Sim.useTurbulenceFc(Fc.index) = false;

 break;

 end

 if isa(Nd.Body,'Body')

 if ~isempty(Nd.Body.Matrix)

 Sim.useTurbulenceFc(Fc.index) = false;

 break;

 end

 else

 Sim.useTurbulenceFc(Fc.index) = false;

 break;

 end

 end

 end

 end

 end

 %% Defining Max Time Step

 progressbar('Defining Max Time Step');

 BoundaryNodes = [];

 NGas = length(Sim.P);

 NGas = NGas - 1;

 NSolid = length(Sim.T) - NGas;

 MixFcs = cell(NSolid,1);

 ACond = zeros(NSolid,NSolid);

 bCond = zeros(NSolid,1);

 for nd = this.Nodes

 if nd.Type == enumNType.SN

 if (isfield(nd.data,'matl') && nd.data.matl.dT_du < 0) || ...

 nd.Body.matl.dT_du < 0

 % Do not give these any sort of special privileges as they are

 % ... no different than an environment node.

 continue;

 end

 added = false;

 for fc = nd.Faces

 if fc.Type == enumFType.Mix

 if ~added

 added = true;

 BoundaryNodes(length(BoundaryNodes)+1,1) = nd.index - NGas;

 end

 MixFcs{nd.index - NGas} = [MixFcs{nd.index - NGas} fc.index];

 end

 end

 end

 end

 fprintf(['Number of Solid Nodes + 1 Env node: ' num2str(NSolid) '\n']);

 for nd = this.Nodes

 if nd.index > NGas

 row = nd.index-NGas;

 if nd.Type == enumNType.SN

 if (isfield(nd.data,'matl') && nd.data.matl.dT_du < 0) || ...

 nd.Body.matl.dT_du < 0

 ACond(row,row) = 1;

 bCond(row) = nd.data.T;

385

 else

 for fc = nd.Faces

 if fc.Type ~= enumFType.Mix

 avgCond = mean(fc.data.U);

 if fc.Nodes(1) == nd

 col = fc.Nodes(2).index - NGas;

 else

 col = fc.Nodes(1).index - NGas;

 end

 ACond(row, row) = ACond(row, row) + avgCond;

 ACond(row, col) = ACond(row, col) - avgCond;

 end

 end

 end

 else

 if nd.Type == enumNType.EN

 ACond(row,row) = 1;

 bCond(row) = nd.Body.Temperature;

 else

 fprintf(['XXX Undefined node type during ACond and bCond ' ...

 'pre-calculation XXX/n']);

 end

 end

 end

 end

 Sim.ACond = ACond;

 Sim.bCond = bCond;

 Sim.CondEff = zeros(M_count_backup_faces,1);

 Sim.CondTempEff = zeros(M_count_backup_faces,1);

 Sim.BoundaryNodes = BoundaryNodes';

 Sim.MixFcs = MixFcs;

 Sim.CycleTime = 0;

 a = 1000;

 Sim.Solid_dt_max = a(ones(1,Frame.NTheta));

 Sim.Nd_Solid_dt = a(ones(size(Sim.T)));

 for fc = this.Faces

 if ~IsApprox(fc.index)

 if fc.Type == enumFType.Solid

 for nd = fc.Nodes

 if isfield(nd.data,'matl'); matl = nd.data.matl;

 else; matl = nd.Body.matl;

 end

 if isa(nd.Body,'Body')

 if matl.dT_du > 0

 timesteps = (this.MaxFourierNumber*nd.vol()*matl.Density/...

 matl.dT_du)./fc.data.U;

 if length(timesteps) == 1

 Sim.Solid_dt_max(Sim.Solid_dt_max > timesteps) = timesteps;

 else

 if iscolumn(timesteps)

 timesteps = timesteps';

 end

 Sim.Solid_dt_max = min([Sim.Solid_dt_max; timesteps]);

 end

 Sim.Nd_Solid_dt(nd.index) = min(Sim.Nd_Solid_dt(nd.index), min(timesteps));

 end

 end

 end

 end

 end

 end

 %% Defining Conduction/Transport Network

 progressbar('Defining Conduction/Transport Network');

 % SolidNds

 % Sim.Cond_Nds = all nodes except the environment, which is

 % ... automatically excluded

 Sim.Cond_Nds = [1:G_count_backup E_count_backup+1:S_count_backup];

386

 %Sim.Cond_Fcs = Sim.Solid_Fc;

 Sim.Cond_Fcs = 1:length(this.Faces);

 Sim.Cond_Fcs(IsApprox) = []; % Remove faces that are approximated by a different method.

 Nds1 = Sim.Fc_Nd(Sim.Cond_Fcs,1);

 Nds2 = Sim.Fc_Nd(Sim.Cond_Fcs,2);

 Sim.Cond_Nds1 = Nds1;

 Sim.Cond_Nds2 = Nds2;

 Nds1(Sim.dT_dU(Nds1)<0) = 0;

 Nds2(Sim.dT_dU(Nds2)<0) = 0;

 % Determine set of element sets with sign

 i = 1;

 % Node 1's

 if any(Nds1~=0); N1 = mode(Nds1(Nds1~=0)); N1 = sum(Nds1(:)==N1);

 else; N1 = 0; end

 if any(Nds2~=0); N2 = mode(Nds2(Nds2~=0)); N2 = sum(Nds2(:)==N2);

 else; N2 = 0; end

 Temp = cell(1,3*(N1+N2));

 if N1 ~= 0

 % First element = sign

 % Second element = nodes

 % Third element = faces

 for k = 1:N1

 % Q is flow into Node 1

 N = length(unique(Nds1(Nds1>0)));

 Temp{i} = -1;

 Temp{i+1} = zeros(1,N);

 Temp{i+2} = zeros(1,N);

 el = 1;

 for x = 1:length(Nds1)

 if Nds1(x) > 0

 if ~any(Temp{i+1}(1:el-1) == Nds1(x))

 Temp{i+1}(el) = Nds1(x);

 Temp{i+2}(el) = x; % index with respect to Fc_Cond

 Nds1(x) = 0;

 el = el + 1;

 end

 end

 end

 i = i + 3;

 end

 end

 % Node 2's

 if N2 ~= 0

 % First element = sign

 % Second element = nodes

 % Third element = faces

 for k = 1:N2

 % Q is flow into Node 1

 N = length(unique(Nds2(Nds2>0)));

 Temp{i} = 1;

 Temp{i+1} = zeros(1,N);

 Temp{i+2} = zeros(1,N);

 el = 1;

 for x = 1:length(Nds2)

 if Nds2(x) > 0

 if ~any(Temp{i+1}(1:el-1) == Nds2(x))

 Temp{i+1}(el) = Nds2(x);

 Temp{i+2}(el) = x; % index with respect to Fc_Cond

 Nds2(x) = 0;

 el = el + 1;

 end

 end

 end

 i = i + 3;

 end

 end

 Sim.CondNet = Temp;

 % GasNds

 Sim.Trans_Fcs = 1:length(Sim.Fc_U);

 Nds1 = Sim.Fc_Nd(Sim.Trans_Fcs,1);

387

 Nds2 = Sim.Fc_Nd(Sim.Trans_Fcs,2);

 Nds1(Sim.dT_dU(Nds1)==0) = 0;

 Nds2(Sim.dT_dU(Nds2)==0) = 0;

 % Determine the set of element sets with sign

 i = 1;

 % Node 1's

 if any(Nds1~=0); N1 = mode(Nds1(Nds1~=0)); N1 = sum(Nds1(:)==N1);

 else; N1 = 0; end

 if any(Nds2~=0); N2 = mode(Nds2(Nds2~=0)); N2 = sum(Nds2(:)==N2);

 else; N2 = 0; end

 Temp = cell(1,3*(N1+N2));

 if N1 ~= 0

 Excluded = false(1,length(Nds1)); Excluded(Nds1==0) = true;

 % First element = sign

 % Second element = nodes

 % Third element = faces

 for k = 1:N1

 % Q is flow into Node 1

 N = length(unique(Nds1(~Excluded)));

 Temp{i} = -1;

 Temp{i+1} = zeros(1,N);

 Temp{i+2} = zeros(1,N);

 el = 1;

 for x = 1:length(Nds1)

 if ~Excluded(x) && ~any(Temp{i+1}(1:el-1) == Nds1(x))

 Temp{i+1}(el) = Nds1(x); % Target Node

 Temp{i+2}(el) = x; % index with respect to Fc_Cond

 Excluded(x) = true;

 el = el + 1;

 end

 end

 i = i + 3;

 end

 end

 % Node 2's

 if N2 ~= 0

 Excluded = false(1,length(Nds2)); Excluded(Nds2==0) = true;

 % First element = sign

 % Second element = nodes

 % Third element = faces

 for k = 1:N2

 % Q is flow into Node 1

 N = length(unique(Nds2(~Excluded)));

 Temp{i} = 1;

 Temp{i+1} = zeros(1,N);

 Temp{i+2} = zeros(1,N);

 el = 1;

 for x = 1:length(Nds2)

 if ~Excluded(x) && ~any(Temp{i+1}(1:el-1) == Nds2(x))

 Temp{i+1}(el) = Nds2(x);

 Temp{i+2}(el) = x; % index with respect to Fc_Cond

 Excluded(x) = true;

 el = el + 1;

 end

 end

 i = i + 3;

 end

 end

 Sim.TransNet = Temp;

 %% Creating Lookup Tables, Regions and Loops For Solver

 progressbar('Creating Regions and Loops For Solver');

 %% Group functions

 % Laminar Nusselt

 novel = true(size(Sim.P));

 novel(end) = [];

 nodes = zeros(size(Sim.P));

 Sim.NuFunc_l_el = cell(0);

 x = 1;

 for i = 1:length(Sim.P)-2

388

 if novel(i)

 func = Sim.NuFunc_l{i}; k = 1; nodes(k) = i;

 for j = i+1:length(Sim.P)-1

 if novel(j)

 if nargin(func) == nargin(Sim.NuFunc_l{j})

 if nargin(func) == 1

 x1 = rand(1);

 if func(x1) == Sim.NuFunc_l{j}(x1)

 k = k + 1; nodes(k) = j; novel(j) = false;

 end

 else

 x1 = rand(1); x2 = rand(1);

 if func(x1,x2) == Sim.NuFunc_l{j}(x1,x2)

 k = k + 1; nodes(k) = j; novel(j) = false;

 end

 end

 end

 end

 end

 Sim.NuFunc_l_el{x} = nodes(1:k);

 x = x + 1;

 end

 end

 if novel(end); Sim.NuFunc_l_el{x} = length(novel); end

 Sim.NuFunc_l(~novel) = [];

 % Turbulent Nusselt

 novel(:) = true;

 nodes = zeros(size(Sim.P));

 Sim.NuFunc_t_el = cell(0);

 x = 1;

 for i = 1:length(Sim.P)-2

 if novel(i)

 func = Sim.NuFunc_t{i}; k = 1; nodes(k) = i;

 for j = i+1:length(Sim.P)-1

 if novel(j)

 if nargin(func) == nargin(Sim.NuFunc_t{j})

 if nargin(func) == 1

 x1 = rand(1);

 if func(x1) == Sim.NuFunc_t{j}(x1)

 k = k + 1; nodes(k) = j; novel(j) = false;

 end

 else

 x1 = rand(1); x2 = rand(1);

 if func(x1,x2) == Sim.NuFunc_t{j}(x1,x2)

 k = k + 1; nodes(k) = j; novel(j) = false;

 end

 end

 end

 end

 end

 Sim.NuFunc_t_el{x} = nodes(1:k);

 x = x + 1;

 end

 end

 if novel(end); Sim.NuFunc_t_el{x} = length(novel); end

 Sim.NuFunc_t(~novel) = [];

 % Laminar Conduction

 novel = true(size(Sim.Fc_U));

 nodes = zeros(size(Sim.Fc_U));

 Sim.Fc_NkFunc_l_el = cell(0);

 x = 1;

 if ~isempty(novel)

 for i = 1:length(Sim.Fc_U)-1

 if novel(i)

 func = Sim.Fc_NkFunc_l{i}; k = 1; nodes(k) = i;

 for j = i+1:length(Sim.Fc_U)

 if novel(j)

 if nargin(func) == nargin(Sim.Fc_NkFunc_l{j})

 if nargin(func) == 1

389

 x1 = rand(1);

 if func(x1) == Sim.Fc_NkFunc_l{j}(x1)

 k = k + 1; nodes(k) = j; novel(j) = false;

 end

 else

 x1 = rand(1); x2 = rand(1);

 if func(x1,x2) == Sim.Fc_NkFunc_l{j}(x1,x2)

 k = k + 1; nodes(k) = j; novel(j) = false;

 end

 end

 end

 end

 end

 Sim.Fc_NkFunc_l_el{x} = nodes(1:k);

 x = x + 1;

 end

 end

 if novel(end); Sim.Fc_NkFunc_l_el{x} = length(novel); end

 Sim.Fc_NkFunc_l(~novel) = [];

 end

 % Turbulent Conduction

 novel(:) = true;

 nodes = zeros(size(Sim.Fc_U));

 Sim.Fc_NkFunc_t_el = cell(0);

 x = 1;

 if ~isempty(novel)

 for i = 1:length(Sim.Fc_U)-1

 if novel(i)

 func = Sim.Fc_NkFunc_t{i}; k = 1; nodes(k) = i;

 for j = i+1:length(Sim.Fc_U)

 if novel(j)

 if nargin(func) == nargin(Sim.Fc_NkFunc_t{j})

 if nargin(func) == 1

 x1 = rand(1);

 if func(x1) == Sim.Fc_NkFunc_t{j}(x1)

 k = k + 1; nodes(k) = j; novel(j) = false;

 end

 else

 x1 = rand(1); x2 = rand(1);

 if func(x1,x2) == Sim.Fc_NkFunc_t{j}(x1,x2)

 k = k + 1; nodes(k) = j; novel(j) = false;

 end

 end

 end

 end

 end

 Sim.Fc_NkFunc_t_el{x} = nodes(1:k);

 x = x + 1;

 end

 end

 if novel(end); Sim.Fc_NkFunc_t_el{x} = length(novel); end

 Sim.Fc_NkFunc_t(~novel) = [];

 end

 % region now represents how the engine is divided up

 regions = cell(region_count,1);

 isEnvironmentRegion = false(region_count,1);

 isEnvironmentRegion(region(end)) = true;

 loop_ind_cell = cell(region_count,1);

 loops_cell = cell(region_count,1);

 regionFcCount = zeros(region_count,1);

 regionFcs = cell(region_count,1);

 Sim.ActiveRegionFcs = cell(region_count,1);

 Sim.A_Press = cell(region_count,1);

 for i = 1:region_count

 % loop_ind = [start end condition]

 % [... ... ind or 0]

 loop_ind_cell{i} = zeros(3,0);

 % loops = [nd1, fc12, sign]

390

 loops_cell{i} = zeros(3,0);

 end

 % Make a list of nodes that are under this region

 for i = 1:region_count

 c = 1;

 regions{i} = zeros(length(region),1);

 for k = 1:length(region)-1

 if region(k) == i; regions{i}(c) = k; c = c + 1; end

 end

 if isEnvironmentRegion(i)

 regions{i}(c) = length(region);

 c = c + 1;

 end

 if c <= length(region); regions{i}(c:end) = []; end

 end

 % Take a count of faces that are under this region

 % ... This will tell us how many loops we need to define

 % ... May not be necassary

 % extfc = cell(n,2);

 for Fc = this.Faces

 if isfield(Fc.data,'dx')

 if region(Fc.Nodes(1).index) == region(Fc.Nodes(2).index)

 r = region(Fc.Nodes(1).index);

 regionFcCount(r) = regionFcCount(r) + 1;

 regionFcs{r}(end+1) = Fc.index;

 end

 end

 end

 % Sim.extfc = extfc;

 % Find Loops in each region

 LEN = length(Sim.Fc_U);

 % Make visited/closed any string who goes to a dead end

 Closed_Edge = TrimFaces(this,region,false(LEN,1));

 % What is left is all the nodes that could possibly be a part of a

 % ... loop.

 % Create Loops using the available faces and nodes

 open = LoopNode.empty;

 for i = 1:region_count

 lequ = 1;

 lcount = 0;

 % TimesVisited = zeros(length(Sim.Fc_dx),1);

 % Find the edges that close during the cycle. These are classified

 % ... as holes.

 holes = Face.empty;

 for Fc = this.Faces

 if Fc.index <= LEN && ...

 region(Fc.Nodes(1).index) == i && ...

 region(Fc.Nodes(2).index) == i && ...

 any(Fc.data.Area == 0)

 % This is a node that is transient, used to trim loops

 holes(end+1) = Fc;

 Closed_Edge(Fc.index) = true;

 end

 end

 % We have defined all the "holes", the first n loops will be

 % ... dedicated to covering those holes.

 % NIndependent_Equations = # of Nodes - 1

 % N loops = Unknowns - NIndependent_Equations - Environment_Node

 % Nloops = (regionFcCount(i)-length(regions{i})+1-isEnvironmentRegion(i));

 for k = 1:(regionFcCount(i)-length(regions{i})+1)

 Vis_Edge = Closed_Edge;

 % Get a starting Point

 if k <= length(holes)

 % Find loops that cover these holes

 Fc = holes(k);

 else

391

 % Find open edges, and find loops that cover them

 found = false;

 for Fc = this.Faces

 if Fc.index <= LEN && ~Closed_Edge(Fc.index) && ...

 region(Fc.Nodes(1).index) == i && ...

 region(Fc.Nodes(2).index) == i

 found = true; break;

 end

 end

 if ~found

 fprintf('XXX No valid Loop Starting Point! XXX\n'); return;

 end

 Closed_Edge(Fc.index) = true; Vis_Edge(Fc.index) = true;

 end

 closed = LoopNode(LoopNode.empty, Face.empty, Fc.Nodes(1));

 target = Fc.Nodes(1);

 open = LoopNode(closed(1), Fc, Fc.Nodes(2));

 % EdgeClosed = Fc;

 % Use open as a starting point and path to the closed

 % ... "target" is the end node

 % ... Do not path though Closed_Edge's

 done = false;

 while ~(isempty(open) || done)

 len = length(open);

 for x = len:-1:1

 % Expand it

 LpNd = open(x);

 for Fc = LpNd.Nd.Faces

 if Fc.index <= length(Vis_Edge) && ...

 region(Fc.Nodes(1).index) == i && ...

 region(Fc.Nodes(2).index) == i && ...

 ~Vis_Edge(Fc.index)

 Vis_Edge(Fc.index) = true;

 % Add it to the open list

 if Fc.Nodes(1) == LpNd.Nd; newNd = Fc.Nodes(2);

 else; newNd = Fc.Nodes(1); end

 if newNd == target

 done = true;

 closed(end+1) = LoopNode(LpNd,Fc,newNd);

 break;

 else

 open(end+1) = LoopNode(LpNd,Fc,newNd);

 end

 end

 end

 if done; break; end

 end

 if ~done; open = open(len+1:end); end

 end

 % The loop should of reached its target.

 if done

 % Backtrace the loop

 current = closed(end);

 lcount = lcount + 1;

 loop_ind_cell{i}(1,lcount) = lequ;

 while ~isempty(current.parent)

 loops_cell{i}(1,lequ) = current.Nd.index;

 loops_cell{i}(2,lequ) = current.parentFc.index;

 if current.parentFc.Nodes(1) == current.Nd

 loops_cell{i}(3,lequ) = 1;

 else

 loops_cell{i}(3,lequ) = -1;

 end

 lequ = lequ + 1;

 current = current.parent;

 end

 loop_ind_cell{i}(2,lcount) = lequ - 1;

 % closed(end) is the start node

 % Determine if the loop has a condition

392

 if k <= length(holes)

 % This one is connected to the area state of holes(k)

 loop_ind_cell{i}(3,lcount) = holes(k).index;

 else

 % This one is unnconnected to a hole

 loop_ind_cell{i}(3,lcount) = 0;

 end

 % Close all edges that run into the "EdgeClosed"

 if k >= length(holes)

 Closed_Edge = TrimFaces(this, region, Closed_Edge);

 end

 else

 fprintf(['XXX Failed to complete a loop. Loop: ' num2str(k) ' XXX\n']);

 end

 end

 end

 % Find ActiveFaces

 Vis_Node = false(length(region),1);

 for i = 1:region_count

 k = 0;

 Temp = zeros(regionFcCount(i),1);

 for Nd = this.Nodes

 if Nd.index <= length(region) && ...

 ~Vis_Node(Nd.index) && ...

 region(Nd.index) == i

 [k,Temp,Vis_Node] = PropegateActiveFaces(Nd,Vis_Node,k,Temp);

 break;

 end

 end

 Temp(k+1:end) = [];

 Sim.ActiveRegionFcs{i} = Temp;

 end

 % Find A-PressureLoss

 for i = 1:region_count

 Sim.A_Press{i} = zeros(length(regions{i}));

 for x = 1:length(Sim.ActiveRegionFcs{i})

 Fc = Sim.ActiveRegionFcs{i}(x);

 % n1 = +ve;

 % n2 = -ve;

 temp = Sim.Fc_Nd(Fc,1);

 for k = 1:length(regions{i})

 if temp == regions{i}(k)

 Sim.A_Press{i}(x,k) = 1;

 break;

 end

 end

 temp = Sim.Fc_Nd(Fc,2);

 for k = 1:length(regions{i})

 if temp == regions{i}(k)

 Sim.A_Press{i}(x,k) = -1;

 break;

 end

 end

 end

 end

 % Calculate what the gas constant would be

 % We have Rs

 for i = 1:region_count

 if isEnvironmentRegion(i)

 Sim.R(i) = Rs(end);

 else

 % Pick the most common

 Sim.R(i) = mode(Rs(regions{i}));

 end

 for j = regions{i}

393

 if Rs(j) ~= Sim.R(i)

 fprintf(['XXX Node in region ' num2str(i) ...

 ' found that had a different gas than the bulk. XXX\n']);

 fprintf(['XXX ... Region is of size: ' ...

 num2str(length(regions{i})) '. XXX\n']);

 end

 end

 end

 Sim.Rs = Rs;

 % loops_cell

 % loop_ind_cell

 % regions (cell array containing all nodes separated by a region)

 Sim.Regions = regions;

 Sim.isEnvironmentRegion = isEnvironmentRegion;

 Sim.RegionFcs = regionFcs;

 for i = 1:length(regionFcs)

 Sim.Fc2Col(regionFcs{i}(:)) = 1:length(regionFcs{i});

 end

 Sim.RegionFcCount = regionFcCount;

 Sim.RegionLoops = loops_cell;

 Sim.RegionLoops_Ind = loop_ind_cell;

 for list = loop_ind_cell

 count = count + size(list{1},2);

 end

 fprintf(['Found ' num2str(count) ' loops. \n']);

 % Collapse F2C for the limited set

% Sim.isLoopRegionFcs = cell(size(Sim.RegionFcs));

% Sim.Fc2Col_loop = zeros(size(Sim.Fc_V));

% for i = 1:region_count

% if ~isempty(Sim.RegionLoops{i})

% Sim.isLoopRegionFcs{i} = false(size(Sim.RegionFcs{i}));

% for x = 1:size(Sim.RegionLoops{i},2)

% Sim.isLoopRegionFcs{i}(Sim.RegionLoops{i}(2,x)) = true;

% end

% end

% end

 Sim.Faces = cell(length(Sim.Dh),1);

 % Define "Sim.Faces"

 for Nd = this.Nodes

 if Nd.index <= length(Sim.Dh)

 Fcs = Face.empty;

 % It is a gas node

 % ... Get list of gas faces for this node

 for Fc = Nd.Faces

 if isfield(Fc.data,'dx')

 Fcs(end+1) = Fc;

 end

 end

 if ~isempty(Fcs)

 % This node has many gas faces

 Sim.Faces{Nd.index} = zeros(length(Fcs),3);

 for i = 1:length(Fcs)

 if Fcs(i).Nodes(1) == Nd

 dir = -1;

 else

 dir = 1;

 end

 Sim.Faces{Nd.index}(i,:) = [Fcs(i).index dir...

 region(Fcs(i).Nodes(1).index) ~= region(Fcs(i).Nodes(2).index)];

 end

 else

 Sim.Faces{Nd.index} = zeros(0,3);

 end

 end

 end

394

 % So we have faces, which has an entry for each node

 % ... List of Face Indexes

 % ... List of BValues

 % ... List of signs (-1 for outlet, 1 for inlet)

 % ... List of 0 = implicit, 1 = explicit

 % Need to make a list of implicit velocities that need to be

 % ... calculated, use region pressure

 Sim.ExplicitLeak = zeros(0,5);

 Sim.ExplicitNorm = zeros(0,3);

 for Fc = this.Faces

 if isfield(Fc.data,'dx')

 if region(Fc.Nodes(1).index) ~= region(Fc.Nodes(2).index)

 % Add to list

 if Fc.Type == enumFType.Leak

 % FAVAD equation

 % ... V = C * (dP) ^ N

 Sim.ExplicitLeak = [Sim.ExplicitLeak; [Fc.index Fc.data.C Fc.data.N

region(Fc.Nodes(1).index) region(Fc.Nodes(2).index)]];

 else

 Sim.ExplicitNorm = [Sim.ExplicitNorm; [Fc.index region(Fc.Nodes(1).index)

region(Fc.Nodes(2).index)]];

 end

 end

 end

 end

 % Flow Network

 % NEED EXTERNAL FACES TO BE LABELLED

 % ... explicit faces

 % Between regions, sources, sinks, leaks.. etc

 % Used on region scale for mass change

 % Used on local scale

 % ... implicit faces

 % Internal to region,

 % NEED FACES AND NODES ORGANIZED BY REGION

 %% Pressure/Shear Contacts, Sensors, PVoutputs

 progressbar('Pressure/Shear Contacts, Sensors, PVoutputs');

 % Pressure Contacts

 PC_n = 1;

 for PC = this.PressureContacts

 addto = true;

 for i = 1:PC_n-1

 if PC.GasNode == Sim.Press_Contact(3,i) && ...

 PC.Area == Sim.Press_Contact(2,i) && ...

 PC.MechanismIndex == Sim.Press_Contact(1,i)

 addto = false;

 end

 end

 if addto

 Sim.Press_Contact(1,PC_n) = PC.ConverterIndex;

 Sim.Press_Contact(2,PC_n) = PC.MechanismIndex;

 Sim.Press_Contact(3,PC_n) = PC.Area;

 Sim.Press_Contact(4,PC_n) = PC.GasNode.index;

 PC_n = PC_n + 1;

 end

 end

 this.PressureContacts = PressureContact.empty;

 % Shear Contacts

 SC_n = 1;

 SC_Active_n = 1;

 for SC = this.ShearContacts

 addto = true;

 for i = 1:SC_n-1

 if SC.UpperNode.index == Sim.Shear_Contact(4,i) && ...

 SC.LowerNode.index == Sim.Shear_Contact(3,i) && ...

 SC.Area == Sim.Shear_Contact(2,i) && ...

 SC.MechanismIndex == Sim.Shear_Contact(1,i)

395

 addto = false;

 end

 end

 if addto

 if any(SC.ActiveTimes)

 Sim.Shear_Contact(1,SC_n) = SC.ConverterIndex;

 Sim.Shear_Contact(2,SC_n) = SC.MechanismIndex;

 Sim.Shear_Contact(3,SC_n) = SC.Area;

 Sim.Shear_Contact(4,SC_n) = SC.LowerNode.index;

 Sim.Shear_Contact(5,SC_n) = SC.UpperNode.index;

 Sim.Shear_Contact(6,SC_n) = 1;

 if ~all(SC.ActiveTimes)

 if size(SC.ActiveTimes,2) ~= 1

 SC.ActiveTimes = SC.ActiveTimes';

 end

 Sim.Dynamic(:,Sim.Dyn) = SC.ActiveTimes;

 Sim.SC_Active(1,SC_Active_n) = SC_n;

 Sim.SC_Active(2,SC_Active_n) = Sim.Dyn;

 SC_Active_n = SC_Active_n + 1;

 Sim.Dyn = Sim.Dyn + 1;

 end

 SC_n = SC_n + 1;

 end

 end

 end

 this.ShearContacts = ShearContact.empty;

 % Sensors

 for i = length(this.Sensors):-1:1

 if ~isValid(this.Sensors(i))

 len = length(this.Sensors);

 this.Sensors(i).deReference()

 if len == length(this.Sensors)

 this.Sensors(i) = [];

 end

 end

 end

 if ~isempty(this.Sensors)

 for iSense = this.Sensors

 iSense.update();

 end

 end

 if ~isempty(this.PVoutputs)

 for iPVoutput = this.PVoutputs; iPVoutput.update(region); end

 end

 Sim.PRegion = zeros(length(Sim.Regions),1);

 Sim.PRegionTime = 0;

 progressbar(12/13);

 progressbar('Defining Area for Turbulence');

 % Node Faces For Turbulent Decay and Generation

 Len = 1 + size(Sim.Area,2);

 for Nd = this.Nodes

 if Nd.index < Len

 if Nd.Body.divides(1) > Nd.Body.divides(2)

 % It is divides along by cylindrical shells

 % Look for two dynamic Dh faces that have the same motion

 % ... Pattern

 % 1 and 2 dynamic face pairs within body

 if (~isscalar(Nd.ymax) || ~isscalar(Nd.ymin)) && ...

 ~all(Nd.ymax-Nd.ymin == Nd.ymax(1)-Nd.ymin(1))

 startindex = 1;

 count = 0;

 while startindex ~= 0 && startindex <= length(Nd.Faces)

 Pattern = 0;

 oldstartindex = startindex;

 startindex = 1;

 i = 0;

 for Fc = Nd.Faces(startindex:end)

396

 i = i + 1;

 if Fc.Type ~= enumFType.Mix

 if ~isscalar(Fc.data.Dh) && isempty(Fc.Connection)

 count = count + 1;

 if ~any(Pattern)

 Pattern = Fc.data.Dh;

 startindex = i;

 else

 temp = Pattern./Fc.data.Dh;

 if all(temp == temp(1))

 % Simply take the average of the faces

 Sim.Area(1,Nd.index) = Fc.index;

 Sim.Area(2,Nd.index) = (temp(1)+1)/2;

 startindex = 0;

 break;

 end

 end

 end

 end

 end

 if oldstartindex == startindex

 startindex = 0;

 elseif startindex ~= 0

 startindex = startindex + 1;

 end

 end

 if count == 1

 % There is only one non-Connection Face

 for Fc = Nd.Faces

 if Fc.Type ~= enumFType.Mix && ~isscalar(Fc.data.Dh) && isempty(Fc.Connection)

 if all(temp == temp(1))

 % Simply take the average of the faces

 Sim.Area(1,Nd.index) = Fc.index;

 Sim.Area(2,Nd.index) = 1;

 break;

 end

 end

 end

 end

 end

 % 1 and 2 static face pairs within body

 if ~Sim.Area(2,Nd.index)

 % No two faces were found

 % Find a face that is static and not a connection

 count = 0;

 for Fc = Nd.Faces

 if Fc.Type ~= enumFType.Mix

 if isscalar(Fc.data.Dh) && isempty(Fc.Connection)

 count = count + 1;

 end

 end

 end

 if count == 2

 for Fc = Nd.Faces

 if Fc.Type ~= enumFType.Mix

 if isscalar(Fc.data.Area) && isempty(Fc.Connection)

 Sim.Area(2,Nd.index) = Sim.Area(2,Nd.index) + 0.5*Fc.data.Area;

 end

 end

 end

 end

 if count == 1

 for Fc = Nd.Faces

 if Fc.Type ~= enumFType.Mix

 if isscalar(Fc.data.Area) && isempty(Fc.Connection)

 Sim.Area(2,Nd.index) = Sim.Area(2,Nd.index) + Fc.data.Area;

 end

 end

 end

 end

397

 end

 %

 if ~Sim.Area(2,Nd.index)

 fprintf('XXX Deficiency in Node Face Calculation in Model XXX');

 end

 else

 % It is divided by horizontal planes or not divided,

 % ... simply take the radius of the shape

 Sim.Area(1,Nd.index) = 0;

 Sim.Area(2,Nd.index) = pi*Nd.xmax^2;

 end

 end

 end

 if isempty(this.MechanicalSystem)

 Sim.MechanicalSystem = ...

 MechanicalSystem(this,this.Converters,[],...

 1,function_handle.empty);

 else

 Sim.MechanicalSystem = ...

 MechanicalSystem(this,this.Converters,[],...

 this.MechanicalSystem.Inertia,this.MechanicalSystem.LoadFunction);

 end

 %% Defining Energy Statistics Handlers

 progressbar('Defining Energy Statistics Handlers');

 % Statistics

 % Find all Solid Faces that go to the Environment

 Sim.ToEnvironmentSolid = zeros(2,length(this.surroundings.Node.Faces));

 Sim.ToEnvironmentGas = zeros(2,length(this.surroundings.Node.Faces));

 nS = 1; nG = 1;

 for Fc = this.surroundings.Node.Faces

 if Fc.Nodes(1).Type == enumNType.SN

 % It is a solid-envionment face

 Sim.ToEnvironmentSolid(1,nS) = Fc.index;

 Sim.ToEnvironmentSolid(2,nS) = -1;

 nS = nS + 1;

 elseif Fc.Nodes(2).Type == enumNType.SN

 % It is a solid-envionment face

 Sim.ToEnvironmentSolid(1,nS) = Fc.index;

 Sim.ToEnvironmentSolid(2,nS) = 1;

 nS = nS + 1;

 elseif Fc.Nodes(1).Type == enumNType.EN

 % It is a gas-envionment face

 Sim.ToEnvironmentGas(1,nG) = Fc.index;

 Sim.ToEnvironmentGas(2,nG) = 1;

 nG = nG + 1;

 else

 % It is a gas-envionment face

 Sim.ToEnvironmentGas(1,nG) = Fc.index;

 Sim.ToEnvironmentGas(2,nG) = -1;

 nG = nG + 1;

 end

 end

 Sim.ToEnvironmentSolid = Sim.ToEnvironmentSolid(:,1:nS-1);

 Sim.ToEnvironmentGas = Sim.ToEnvironmentGas(:,1:nG-1);

 % Find all Faces that go to a Source

 isToSourceOrSink = false(1, length(this.Faces));

 isSourceOrSink = false(1, length(this.Nodes));

 for Nd = this.Nodes

 if Nd.Type == enumNType.SN && ...

 (strcmp(Nd.Body.matl.name, 'Constant Temperature') || (...

 isfield(Nd.data,'matl') && ...

 strcmp(Nd.data.matl.name, 'Constant Temperature')) ...

)

 isSourceOrSink(Nd.index) = true;

 for Fc = Nd.Faces

 isToSourceOrSink(Fc.index) = ~isToSourceOrSink(Fc.index);

398

 end

 end

 end

 temp = 1:length(this.Faces);

 Subject_Faces = temp(isToSourceOrSink);

 temp = 1:length(this.Nodes);

 Subject_Nodes = temp(isSourceOrSink);

 % Get Average Temperatures

 T = mean(Sim.T(isSourceOrSink));

 Sim.ToSource = zeros(2,length(this.Faces));

 nSr = 1;

 Sim.ToSink = zeros(2,length(this.Faces));

 nSi = 1;

 IsSource = false(1, length(this.Nodes));

 if T > this.surroundings.Temperature

 IsSource(Subject_Nodes) = Sim.T(Subject_Nodes) >= T;

 else

 IsSource(Subject_Nodes) = Sim.T(Subject_Nodes) > T;

 end

 for findex = Subject_Faces

 if isSourceOrSink(Sim.Fc_Nd(findex,1))

 if IsSource(Sim.Fc_Nd(findex,1))

 Sim.ToSource(1,nSr) = findex;

 Sim.ToSource(2,nSr) = -1;

 nSr = nSr + 1;

 else

 Sim.ToSink(1,nSi) = findex;

 Sim.ToSink(2,nSi) = -1;

 nSi = nSi + 1;

 end

 else

 if IsSource(Sim.Fc_Nd(findex,2))

 Sim.ToSource(1,nSr) = findex;

 Sim.ToSource(2,nSr) = 1;

 nSr = nSr + 1;

 else

 Sim.ToSink(1,nSi) = findex;

 Sim.ToSink(2,nSi) = 1;

 nSi = nSi + 1;

 end

 end

 end

 Sim.ToSource = Sim.ToSource(:,1:nSr-1);

 Sim.ToSink = Sim.ToSink(:,1:nSi-1);

 Sim.Sources = temp(IsSource);

 Sim.Sinks = temp(and(isSourceOrSink, ~IsSource));

 % identify shearing faces

 % All Mixed Faces, All Solid Faces

 if ~isempty(Sim.Fc_DynArea)

 ShuttleFaces = Sim.Fc_DynArea(1,:);%[Sim.Fc_DynArea(1,:) Sim.Fc_DynCond(1,:)];

 else

 ShuttleFaces = zeros(1,0);

 end

 if ~isempty(Sim.Fc_DynCond)

 ShuttleFaces = [ShuttleFaces Sim.Fc_DynCond(1,:)];

 end

 % Exclude Gas Faces

 Sim.ShuttleFaces = ShuttleFaces(ShuttleFaces>length(Sim.Fc_U));

 % idenfity static faces

 % All Mixed Faces, All Solid Faces

 % Exclude Gas Faces

 Sim.StaticFaces = 1:length(Sim.Fc_Cond);

 Sim.StaticFaces(Sim.ShuttleFaces) = [];

 Sim.ExergyLossShuttle = 0;

 Sim.ExergyLossStatic = 0;

399

 this.Simulations = Sim;

 this.isStateDiscretized = true;

 Sim.Fc_K12(isnan(Sim.Fc_K12)) = 1;

 Sim.Fc_K21(isnan(Sim.Fc_K21)) = 1;

 Sim.Dynamic(isnan(Sim.Dynamic)) = 0;

 progressbar(1);

 end

 function [success] = Run(ME, runs)

 success = false;

 backup_path = ME.outputPath;

 if nargin > 1

 tests = length(runs);

 ME.showLivePV = true;

 ME.showPressureAnimation = true;

 ME.recordPressure = true;

 ME.showTemperatureAnimation = true;

 ME.recordTemperature = true;

 ME.showVelocityAnimation = true;

 ME.recordVelocity = true;

 ME.showTurbulenceAnimation = true;

 ME.recordTurbulence = true;

 ME.showConductionAnimation = true;

 ME.recordConductionFlux = true;

 ME.showPressureDropAnimation = true;

 ME.recordPressureDrop = true;

 ME.recordOnlyLastCycle = true;

 ME.recordStatistics = true;

 for i = 1:length(runs)

 runs(i).isManual = false;

 end

 else

 tests = 1;

 crun = struct(...

 'isManual',true,...

 'Model',ME.name,...

 'title',[ME.name ' Test- ' date], ...

 'NodeFactor',ME.deRefinementFactorInput);

 end

 for Nt = 1:tests

 if nargin > 1

 crun = runs(Nt);

 end

 % If it has a steady state end condition and only the last cycle is

 % ... important then use the Multi-Grid Formulation.

 useTrials = nargin > 1 && crun.SS == true && ME.recordOnlyLastCycle;

 ntrials = 1;

 [status] = mkdir('../Runs',crun.title);

 if status

 ME.outputPath = ['../Runs/' crun.title];

 else

 msgbox(['Please create file: ../Runs/' crun.title])

 end

 for trial = 1:ntrials

 % Only do warmup when starting from scratch

 do_warmup = (Nt == 1 && trial == 1);

 ME.resetDiscretization();

 %% Apply Geometry Modifications

 % Uniform Scale Modification

 if nargin > 1

 if isfield(crun,'Uniform_Scale')

 % Scale the connections

 for iGroup = ME.Groups

 for iCon = iGroup.Connections

 iCon.x = iCon.x*crun.Uniform_Scale;

400

 end

 % Scale the positions

 iGroup.Position.x = iGroup.Position.x*crun.Uniform_Scale;

 iGroup.Position.y = iGroup.Position.y*crun.Uniform_Scale;

 end

 % Scale the bridge offsets

 for iBridge = ME.Bridges

 iBridge.x = iBridge.x*crun.Uniform_Scale;

 end

 % Scale the mechanisms

 for iLRM = ME.Converters

 iLRM.Uniform_Scale(crun.Uniform_Scale);

 end

 % Scale the view window

 XL = get(ME.AxisReference, 'XLim');

 YL = get(ME.AxisReference, 'YLim');

 set(ME.AxisReference,'XLim', XL*crun.Uniform_Scale);

 set(ME.AxisReference,'YLim', YL*crun.Uniform_Scale);

 end

 end

 %% Run

 ME.update();

 % Discretize according to the Multigrid Optimization

 if useTrials

 if isfield(crun,'NodeFactor') && crun.NodeFactor ~= 1

 islast = true;

 ss_tolerance = 0.01;

 else

 if trial == ntrials % 3/3 or 2/2 or 1/1

 islast = true;

 ss_tolerance = 0.01;

 else

 islast = false;

 if ntrials - trial == 1 % 2/3 or 1/2

 crun.NodeFactor = crun.NodeFactor*0.1;

 ss_tolerance = 0.01;

 else % 1/3

 crun.NodeFactor = crun.NodeFactor*0.001;

 ss_tolerance = 0.025;

 end

 end

 end

 else

 islast = true;

 ss_tolerance = 0.01;

 end

 ME.discretize(crun);

 % If discretization was successful

 if ME.isStateDiscretized

 % Apply Snapshot

 % ... Which Snapshot would the user like to use?

 if ~isempty(ME.SnapShots)

 names = cell(length(ME.SnapShots)+1,1);

 if nargin < 2

 % Have the user pick a starting Snap-Shot

 for i = 1:length(ME.SnapShots)

 names{i} = ME.SnapShots{i}.Name;

 end

 names{end} = '... From Scratch';

 [answer, selectionMade] = listdlg(...

 'PromptString','Select a SnapShot',...

 'ListString',names,...

 'SelectionMode','single');

 else

401

 % Try to find a snapshot with matching name

 selectionMade = true;

 found = false;

 for i = 1:length(ME.SnapShots)

 if strcmp(ME.SnapShots{i}.Name, crun.title)

 found = true;

 answer = i;

 break;

 end

 end

 % If it did not find a match then take the last one listed

 if ~found

 answer = length(ME.SnapShots);

 end

 end

 % Apply the snapshot if it is selected

 if selectionMade && answer ~= length(names)

 SS = ME.SnapShots{answer};

 ME.assignSnapShot(SS);

 end

 end

 if nargin > 1 && ...

 crun.movement_option == 'V' && ...

 crun.SS && ...

 ME.recordStatistics && ...

 ME.recordOnlyLastCycle

 dynamic = true;

 record_P_backup = ME.recordPressure;

 record_T_backup = ME.recordTemperature;

 record_t_backup = ME.recordTurbulence;

 ME.recordPressure = true;

 ME.recordTemperature = true;

 ME.recordTurbulence = true;

 crun.movement_option = 'C';

 ss_tolerance = 0.01;

 else

 dynamic = false;

 end

 tic;

 [ME.Results, success] = ME.Simulations(1).Run(...

 islast, do_warmup, ss_tolerance, crun);

 if isempty(ME.Results)

 ME.CurrentSim(:) = [];

 ME.Results(:) = [];

 ME.resetDiscretization();

 return;

 end

 if dynamic

 % Reset Settings

 crun.movement_option = 'V';

 crun.set_Load = mean(ME.Results.Data.Power)/mean(ME.Results.Data.dA);

 % Save and Reload Snapshot

 ME.Results.getSnapShot(ME,'Temp');

 ME.assignSnapShot(ME.SnapShots{end});

 ME.SnapShots(end) = [];

 ME.recordPressure = record_P_backup;

 ME.recordTemperature = record_T_backup;

 ME.recordTurbulence = record_t_backup;

 % Run

 [ME.Results, success] = ME.Simulations(1).Run(...

 islast, do_warmup, ss_tolerance, crun);

 end

 toc;

 if ~success || isempty(ME.Results); return; end

402

 % If it is a recording set then ready the display matricies and

 % record everything

 if islast

 % Calculate Node Locations

 if ME.showPressureAnimation || ...

 ME.showTemperatureAnimation || ...

 ME.showTurbulenceAnimation || ...

 ME.showConductionAnimation || ...

 ME.showPressureDropAnimation

 cpnts = cell(1,length(ME.Nodes));

 nodesleft = 0;

 for Nd = ME.Nodes

 if nodesleft == 0

 if isa(Nd.Body,'Body')

 iGroup = Nd.Body.Group;

 Rot = RotMatrix(iGroup.Position.Rot - pi/2);

 Trans = [iGroup.Position.x; iGroup.Position.y];

 AxisAligned = (iGroup.Position.Rot == pi/2);

 nodesleft = length(iGroup.Nodes)-1;

 else

 Rot = [1 0; 0 1];

 Trans = [0; 0];

 AxisAligned = true;

 % nodesleft = 0;

 end

 else

 nodesleft = nodesleft - 1;

 end

 % Corner points

 % Type 1 (static) ,4 (dynamic): Translation Only

 % ... [Type d1x d2x d3x cx ...]

 % ... [-- d1y d2y d3y cy ...]

 % ... c is the center of the node

 % ... d1 is the diagonal between the center and top right corner

 % ... d2 is the diagonal between the center and the bottom right corner

 % ... d3 is the vector between centers of the ring, (0,0) if node is centered

 % Type 2: Stretching in One Direction

 % ... [Type cx d1x d2x d3x ...]

 % ... [-- cy d1y d2y d3y ...]

 % ... c is the bottom left corner

 % ... d1 is the vector to the bottom right corner from c

 % ... d2 is the vector to the bottom right corner of the other side

 % (0,0) if the node is centered

 % ... d3 is the vector to the top left corner

 % Type 3: Movement of both ybounds

 % ... [Type d1x cx ...]

 % ... [-- d1y cy ...]

 % ... [-- d2x d3x ...]

 % ... [-- d2y d3y ...]

 % ... c is the bottom left corner

 % ... d1 is the vector to the bottom right corner from c

 % ... d2 is the vector to the bottom right corner of the other side

 % (0,0) if the node is centered

 % ... d3 is the vector to the top left corner

 if isscalar(Nd.ymin)

 if isscalar(Nd.ymax)

 Type = 1;

 if Nd.xmin == 0

 pnts = [Type Nd.xmax Nd.xmax 0 0

; ...

 0 (Nd.ymax-Nd.ymin)/2 -(Nd.ymax-Nd.ymin)/2 0 (Nd.ymax+Nd.ymin)/2];

 else

 pnts = [Type (Nd.xmax-Nd.xmin)/2 (Nd.xmax-Nd.xmin)/2 -(Nd.xmin+Nd.xmax)

(Nd.xmax+Nd.xmin)/2; ...

 0 (Nd.ymax-Nd.ymin)/2 -(Nd.ymax-Nd.ymin)/2 0

(Nd.ymax+Nd.ymin)/2];

403

 end

 % Rotate

 if ~AxisAligned; pnts(:,2:5) = Rot*pnts(:,2:5); end

 pnts(:,5) = pnts(:,5) + Trans;

 else

 Type = 2;

 pnts = zeros(2,4+length(Nd.ymax));

 % Nd.ymax is dynamic

 if Nd.xmin == 0

 pnts(:,1:4) = [Type -Nd.xmax 2*Nd.xmax 0; ...

 0 Nd.ymin 0 0];

 else

 pnts(:,1:4) = [Type Nd.xmin Nd.xmax-Nd.xmin -Nd.xmax-Nd.xmin; ...

 0 Nd.ymin 0 0];

 end

 pnts(1,5:end) = 0;

 pnts(2,5:end) = Nd.ymax - pnts(2,2);

 % Rotate

 if ~AxisAligned; pnts(:,2:end) = Rot*pnts(:,2:end); end

 pnts(:,2) = pnts(:,2) + Trans;

 end

 else

 if isscalar(Nd.ymax)

 Type = 2;

 pnts = zeros(2,4+length(Nd.ymin));

 % Nd.ymin is dynamic

 if Nd.xmin == 0

 pnts(:,1:4) = [Type -Nd.xmax 2*Nd.xmax 0; ...

 0 Nd.ymax 0 0];

 else

 pnts(:,1:4) = [Type Nd.xmin Nd.xmax-Nd.xmin -Nd.xmax-Nd.xmin; ...

 0 Nd.ymax 0 0];

 end

 pnts(1,5:end) = 0;

 pnts(2,5:end) = Nd.ymin - pnts(2,2);

 % Rotate

 if ~AxisAligned; pnts(:,2:end) = Rot*pnts(:,2:end); end

 pnts(:,2) = pnts(:,2) + Trans;

 else

 if isfield(Nd.data,'matl'); matl = Nd.data.matl;

 else; matl = Nd.Body.matl;

 end

 if matl.Phase == enumMaterial.Solid

 % ... [Type d1x d2x d3x cx ...]

 % ... [-- d1y d2y d3y cy ...]

 Type = 4; % Stretching is impossible

 pnts = zeros(2,4+length(Nd.ymax));

 if Nd.xmin == 0

 pnts(:,1:4) = [Type Nd.xmax Nd.xmax

0; ...

 0 (Nd.ymax(1)-Nd.ymin(1))/2 -(Nd.ymax(1)-Nd.ymin(1))/2 0];

 x = 0;

 else

 pnts(:,1:4) = [Type (Nd.xmax-Nd.xmin)/2 (Nd.xmax-Nd.xmin)/2

-(Nd.xmin+Nd.xmax); ... (Nd.xmax+Nd.xmin)/2 ; ...

 0 (Nd.ymax(1)-Nd.ymin(1))/2 -(Nd.ymax(1)-Nd.ymin(1))/2 0

];% (Nd.ymax+Nd.ymin)/2];

 x = (Nd.xmax+Nd.xmin)/2;

 end

 pnts(1,5:end) = x;

 pnts(2,5:end) = (Nd.ymax+Nd.ymin)/2;

 % Rotate

 if ~AxisAligned; pnts(:,2:end) = Rot*pnts(:,2:end); end

 pnts(:,5:end) = pnts(:,5:end) + Trans;

 else

 Type = 3; % Stretching is very probable

 pnts = zeros(4,2+length(Nd.ymax));

 if Nd.xmin == 0

 pnts(:,1:2) = [Type 2*Nd.xmax; ...

 0 0 ; ...

 0 0 ; ...

404

 0 0];

 x = -Nd.xmax;

 else

 pnts(:,1:2) = [Type Nd.xmax-Nd.xmin ; ...

 0 0 ; ...

 0 -(Nd.xmax+Nd.xmin); ...

 0 0];

 x = Nd.xmin;

 end

 pnts(1,3:end) = x;

 pnts(2,3:end) = Nd.ymin;

 pnts(3,3:end) = 0;

 pnts(4,3:end) = (Nd.ymax-Nd.ymin);

 % Rotate

 if ~AxisAligned

 pnts(1:2,2:end) = Rot*pnts(1:2,2:end);

 pnts(3:4,2:end) = Rot*pnts(3:4,2:end);

 end

 % Translate

 pnts(1:2,3:end) = pnts(1:2,3:end) + Trans;

 end

 end

 end

 cpnts{Nd.index} = pnts;

 end

 end

 % Calculate Face Locations and directions

 if isfield(ME.Results.Data,'U') && ME.showPressureDropAnimation

 if isfield(ME.Results.Data,'U')

 fpnts = cell(1,size(ME.Results.Data.U,1));

 end

 % Define X,Y,Nx,Ny

 maxIndex = length(ME.Simulations.Fc_U);

 if ~isempty(ME.Faces)

 if isa(ME.Faces(1).Nodes(1).Body,'Body')

 iGroup = ME.Faces(1).Nodes(1).Body.Group;

 else

 iGroup = ME.Faces(1).Nodes(2).Body.Group;

 end

 Rot = RotMatrix(iGroup.Position.Rot - pi/2);

 Trans = [iGroup.Position.x; iGroup.Position.y];

 for Fc = ME.Faces

 if Fc.index <= maxIndex

 if isa(Fc.Nodes(1).Body,'Environment')

 Rot = RotMatrix(0);

 Trans = [0; 0];

 else

 if iGroup ~= Fc.Nodes(1).Body.Group

 iGroup = Fc.Nodes(1).Body.Group;

 Rot = RotMatrix(iGroup.Position.Rot - pi/2);

 Trans = [iGroup.Position.x; iGroup.Position.y];

 end

 end

 i = Fc.index;

 if Fc.Nodes(1).Body == Fc.Nodes(2).Body

 if Fc.Nodes(1).xmax == Fc.Nodes(2).xmin

 % Aligned horizontally

 x = Fc.Nodes(1).xmax;

 y = (Fc.Nodes(1).ymin + Fc.Nodes(1).ymax)/2;

 Nx = 1;

 Ny = 0;

 elseif Fc.Nodes(1).xmin == Fc.Nodes(2).xmax

 % Aligned horizontally

 x = Fc.Nodes(1).xmin;

 y = (Fc.Nodes(1).ymin + Fc.Nodes(1).ymax)/2;

 Nx = -1;

 Ny = 0;

 elseif abs(Fc.Nodes(1).ymax(1) - Fc.Nodes(2).ymin(1)) < ...

 abs(Fc.Nodes(1).ymin(1) - Fc.Nodes(2).ymax(1))

 % Aligned Vertically

405

 x = (Fc.Nodes(1).xmin + Fc.Nodes(1).xmax)/2;

 y = Fc.Nodes.ymax;

 Nx = 0;

 Ny = 1;

 else

 % Aligned Vertically

 x = (Fc.Nodes(1).xmin + Fc.Nodes(1).xmax)/2;

 y = Fc.Nodes.ymin;

 Nx = 0;

 Ny = -1;

 end

 else

 if Fc.Nodes(1).xmax == Fc.Nodes(2).xmin

 % Aligned horizontally

 x = Fc.Nodes(1).xmax; % Done

 y = getCenterOfOverlapRegion(...

 Fc.Nodes(1).ymin,...

 Fc.Nodes(2).ymin,...

 Fc.Nodes(1).ymax,...

 Fc.Nodes(2).ymax);

 Nx = 1; % Done

 Ny = 0; % Done

 elseif Fc.Nodes(1).xmin == Fc.Nodes(2).xmax

 % Aligned horizontally

 x = Fc.Nodes(1).xmin; % Done

 y = getCenterOfOverlapRegion(...

 Fc.Nodes(1).ymin,...

 Fc.Nodes(2).ymin,...

 Fc.Nodes(1).ymax,...

 Fc.Nodes(2).ymax);

 Nx = -1; % Done

 Ny = 0; % Done

 elseif abs(Fc.Nodes(1).ymax(1) - Fc.Nodes(2).ymin(1)) < ...

 abs(Fc.Nodes(1).ymin(1) - Fc.Nodes(2).ymax(1))

 % Aligned Vertically

 x = getCenterOfOverlapRegion(...

 Fc.Nodes(1).xmin,...

 Fc.Nodes(2).xmin,...

 Fc.Nodes(1).xmax,...

 Fc.Nodes(2).xmax);

 y = Fc.Nodes(1).ymax; % Done

 Nx = 0; % Done

 Ny = 1; % Done

 else

 % Aligned Vertically

 x = getCenterOfOverlapRegion(...

 Fc.Nodes(1).xmin,...

 Fc.Nodes(2).xmin,...

 Fc.Nodes(1).xmax,...

 Fc.Nodes(2).xmax);

 y = Fc.Nodes(1).ymin; % Done

 Nx = 0; % Done

 Ny = -1; % Done

 end

 end

 if isscalar(y)

 fpnts{i} = Rot*[Nx x; Ny y] + [[0;0] Trans];

 else

 fpnts{i} = [Rot*[Nx; Ny] Rot*[x(ones(1,length(y))); y]+Trans];

 end

 end

 end

 end

 end

 % Calculate Solid Body Boundaries

 n = 0;

 for iGroup = ME.Groups

 for iBody = iGroup.Bodies

 if iBody.matl.Phase == enumMaterial.Solid

 n = n + 1;

406

 end

 end

 end

 bpnts = cell(1,n);

 n = 1;

 for iGroup = ME.Groups

 Rot = RotMatrix(iGroup.Position.Rot - pi/2);

 Trans = [iGroup.Position.x; iGroup.Position.y];

 for iBody = iGroup.Bodies

 if iBody.matl.Phase == enumMaterial.Solid

 [~,~,x1,x2] = iBody.limits(enumOrient.Vertical);

 [y1,y2,~,~] = iBody.limits(enumOrient.Horizontal);

 if isscalar(y1) %&& isscalar(y2)

 if x1 == 0

 bpnts{n} = Rot*[-x2 x2 x2 -x2; y1 y1 y2 y2] + Trans;

 else

 bpnts{n} = Rot*[x1 x2 x2 x1; y1 y1 y2 y2] + Trans;

 n = n + 1;

 bpnts{n} = Rot*[-x1 -x2 -x2 -x1; y1 y1 y2 y2] + Trans;

 end

 else

 bpnts{n} = zeros(2,4,length(y1));

 if x1 == 0

 for i = 1:length(y1)

 bpnts{n}(:,:,i) = ...

 Rot*[-x2 x2 x2 -x2; y1(i) y1(i) y2(i) y2(i)] + Trans;

 end

 else

 for i = 1:length(y1)

 bpnts{n}(:,:,i) = ...

 Rot*[x1 x2 x2 x1; y1(i) y1(i) y2(i) y2(i)] + Trans;

 end

 n = n + 1;

 bpnts{n} = zeros(2,4,length(y1));

 for i = 1:length(y1)

 bpnts{n}(:,:,i) = ...

 Rot*[-x1 -x2 -x2 -x1; y1(i) y1(i) y2(i) y2(i)] + Trans;

 end

 end

 end

 n = n + 1;

 end

 end

 end

 % Animate

 frate = ME.animationFrameTime;

 if isfield(ME.Results.Data,'P') && ME.showPressureAnimation

 ME.Results.animateNode('P',cpnts,bpnts,frate,[],[],crun.title);

 end

 if isfield(ME.Results.Data,'T') && ME.showTemperatureAnimation

 ME.Results.animateNode('T',cpnts,bpnts,frate,[],[],crun.title);

 end

 if isfield(ME.Results.Data,'U') && ME.showVelocityAnimation

 ME.Results.animateFace('U',fpnts,bpnts,frate,[],[],crun.title);

 end

 if isfield(ME.Results.Data,'turb') && ME.showTurbulenceAnimation

 ME.Results.animateNode('turb',cpnts,bpnts,frate,[],[],crun.title);

 end

 if isfield(ME.Results.Data,'cond') && ME.showConductionAnimation

 ME.Results.animateNode('cond',cpnts,bpnts,frate,[],[],crun.title);

 end

 if isfield(ME.Results.Data,'dP') && ME.showPressureDropAnimation

 ME.Results.animateNode('dP',cpnts,bpnts,frate,[],[],crun.title);

 end

 end

 % Ask if the user would like to save a snapshot

 if nargin > 1

 if ~ME.Simulations(1).stop

 % Remove the snapshot as it will be replaced now

407

 for i = 1:length(ME.SnapShots)

 if strcmp(ME.SnapShots{i}.Name, crun.title)

 ME.SnapShots(i) = [];

 break;

 end

 end

 ME.Results.getSnapShot(ME,crun.title);

 saveME(ME);

 end

 else

 response = questdlg('Would you like to save a SnapShot?', ...

 'Save SnapShot','Yes','No','Yes');

 if strcmp(response,'Yes')

 ME.Results.getSnapShot(ME,getProperName('SnapShot'));

 end

 end

 end

 %% Undo Geometry Modifications

 % Uniform Scale Modification

 if nargin > 1

 if isfield(crun,'Uniform_Scale')

 % Scale the connections

 for iGroup = ME.Groups

 for iCon = iGroup.Connections

 iCon.x = iCon.x/crun.Uniform_Scale;

 end

 % Scale the positions

 iGroup.Position.x = iGroup.Position.x/crun.Uniform_Scale;

 iGroup.Position.y = iGroup.Position.y/crun.Uniform_Scale;

 end

 % Scale the bridge offsets

 for iBridge = ME.Bridges

 iBridge.x = iBridge.x/crun.Uniform_Scale;

 end

 % Scale the mechanisms

 for iLRM = ME.Converters

 iLRM.Uniform_Scale(1/crun.Uniform_Scale);

 end

 % Scale the view window

 set(ME.AxisReference, ...

 'XLim',get(ME.AxisReference, 'XLim')/crun.Uniform_Scale);

 set(ME.AxisReference, ...

 'YLim',get(ME.AxisReference, 'YLim')/crun.Uniform_Scale);

 end

 % To save the modified geometry

 saveME(ME);

 end

 end

 end

 ME.outputPath = backup_path;

 ME.CurrentSim(:) = [];

 ME.Results(:) = [];

 ME.resetDiscretization();

 end

 function assignSnapShot(ME, SS)

 Sim = ME.Simulations;

 for iGroup = ME.Groups

 for iBody = iGroup.Bodies

 for BData = SS.Data

 if iBody.ID == BData.ID

 if applyBody(BData,iBody)

 if iBody.matl.Phase == enumMaterial.Solid

 for Nd = iBody.Nodes

 i = Nd.index;

 if isnan(Nd.data.T)

408

 fprintf('err detected');

 else

 Sim.T(i) = Nd.data.T;

 end

 end

 else

 for Nd = iBody.Nodes

 i = Nd.index;

 if isfield(Nd.data,'matl')

 matl = Material(Nd.data.matl.name);

 else

 matl = Material(Nd.Body.matl.name);

 end

 if i <= length(Sim.P)

 if isfield(Nd.data,'P') && ~isnan(Nd.data.P)

 P = Nd.data.P;

 else

 P = ME.enginePressure;

 for j = 1:length(Sim.Regions)

 if any(Sim.Regions{j} == i)

 if Sim.isEnvironmentRegion(j)

 P = Sim.P(end);

 end

 break;

 end

 end

 end

 if isfield(Nd.data,'T')

 if isnan(Nd.data.T)

 fprintf('err detected');

 else

 Sim.T(i) = Nd.data.T;

 end

 end

 if isfield(Nd.data,'Turb')

 if isnan(Nd.data.Turb)

 fprintf('err detected');

 else

 Sim.turb(i) = Nd.data.Turb;

 end

 end

 if ~isnan(P)

 vol = Nd.vol();

 % Need to figure out what gas constant to

 % ... use

 Rgas = matl.R;

 Sim.m(i) = P*vol(1)/(Rgas*Sim.T(i));

 end

 else

 if isnan(Nd.data.T)

 fprintf('err detected');

 else

 Sim.T(i) = Nd.data.T;

 end

 end

 if matl.Phase == enumMaterial.Gas

 Sim.u(i) = matl.initialInternalEnergy(Sim.T(i));

 end

 end

 end

 end

 break;

 end

 end

 end

 end

 end

 function saveME(Model)

 Model.Faces(:) = [];

 Model.Nodes(:) = [];

409

 Model.Simulations(:) = [];

 Model.CurrentSim(:) = [];

 Model.Results(:) = [];

 Model.PressureContacts(:) = [];

 Model.ShearContacts(:) = [];

 for iPV = Model.PVoutputs

 iPV.reset();

 end

 for iSense = Model.Sensors

 if ~isempty(iSense)

 iSense.reset();

 iSense.GUIObjects(:) = [];

 end

 end

 backupAxis = Model.AxisReference;

 Model.AxisReference(:) = [];

 for iGroup = Model.Groups

 for iBody = iGroup.Bodies

 iBody.GUIObjects(:) = [];

 iBody.Nodes(:) = [];

 iBody.Faces(:) = [];

 if ~isempty(iBody.Matrix)

 iBody.Matrix.Nodes(:) = [];

 iBody.Matrix.Faces(:) = [];

 end

 end

 for iCon = iGroup.Connections

 iCon.GUIObjects(:) = [];

 iCon.Faces(:) = [];

 iCon.NodeContacts(:) = [];

 end

 iGroup.GUIObjects(:) = [];

 end

 for iBridge = Model.Bridges

 iBridge.GUIObjects(:) = [];

 iBridge.Faces(:) = [];

 end

 save(['Saved Files\' Model.name '.mat'],'Model');

 Model.AxisReference = backupAxis;

 fprintf('Model Saved.\n');

 end

 %% Interface / Find stuff

 function FindGroup(this,Pos)

 TheGroup = this.findNearestGroup(Pos,inf);

 this.HighLight(TheGroup);

 end

 function distributeGroup(this, GroupSpacing)

 % Take existing horizontal order and distribute

 for i = 1:length(this.Groups)

 for j = i+1:length(this.Groups)

 if this.Groups(j).Position.x < this.Groups(i).Position.x

 tempGroup = this.Groups(i);

 this.Groups(i) = this.Groups(j);

 this.Groups(j) = tempGroup;

 end

 end

 end

 x = 0;

 for iGroup = this.Groups

 iGroup.Position.x = x;

 dim1 = RotMatrix(iGroup.Position.Rot-pi/2)*[iGroup.Width*2; iGroup.Height];

 dim2 = RotMatrix(iGroup.Position.Rot-pi/2)*[iGroup.Width*2; -iGroup.Height];

 x = x + max([dim1(1) dim2(1)])+GroupSpacing;

 end

 end

 function [names, objects] = findNearest(this,Pnt,Tolerance)

 objects = cell(0);

 names = cell(0);

 % Find, within a radius of confidence, the nearest...

 % Body, Group, Connection, Bridge and Leak Connection

410

 Tolerance = Tolerance^2;

 index = 1;

 %% Group

 if isempty(this.ActiveGroup)

 obj = this.findNearestGroup(Pnt,Tolerance);

 if ~isempty(obj)

 objects{index} = obj;

 names{index} = obj.name;

 index = index + 1;

 end

 TheGroup = obj;

 else

 TheGroup = this.ActiveGroup;

 objects{index} = TheGroup;

 names{index} = TheGroup.name;

 index = index + 1;

 end

 %% Body

 mindist = Tolerance;

 Pntmod = (RotMatrix(pi/2 - TheGroup.Position.Rot)*Pnt') - ...

 [TheGroup.Position.x; TheGroup.Position.y];

 for iBody = TheGroup.Bodies

 % Establish Rectangle of iBody

 [~,~,x1,x2] = iBody.limits(enumOrient.Vertical);

 [~,~,y1,y2] = iBody.limits(enumOrient.Horizontal);

 R.Width = x2-x1;

 R.Height = y2-y1;

 R.Cx = (x1+x2)/2;

 R.Cy = (y1+y2)/2;

 dist = Dist2Rect(Pntmod(1),Pntmod(2),R.Cx,R.Cy,R.Width,R.Height);

 if dist < mindist

 mindist = dist;

 TheBody = iBody;

 else

 R.Cx = -R.Cx;

 dist = Dist2Rect(...

 Pntmod(1),Pntmod(2),R.Cx,R.Cy,R.Width,R.Height);

 if dist < mindist

 mindist = dist;

 TheBody = iBody;

 end

 end

 end

 if mindist < Tolerance

 objects{index} = TheBody;

 names{index} = TheBody.name;

 index = index + 1;

 end

 %% Connection

 mindist = Tolerance;

 Pntmod = (RotMatrix(pi/2 - TheGroup.Position.Rot)*Pnt') - ...

 [TheGroup.Position.x; TheGroup.Position.y];

 for iConnection = TheGroup.Connections

 % Find nearest Connection

 switch iConnection.Orient

 case enumOrient.Vertical

 % Two lines to test

 if abs(Pntmod(1) - iConnection.x) < mindist

 mindist = abs(Pntmod(1) - iConnection.x);

 TheConnection = iConnection;

 end

 if abs(Pntmod(1) + iConnection.x) < mindist

 mindist = abs(Pntmod(1) + iConnection.x);

 TheConnection = iConnection;

 end

 case enumOrient.Horizontal

 % One line to test

 if abs(Pntmod(2) - iConnection.x) < mindist

411

 mindist = abs(Pntmod(2)-iConnection.x);

 TheConnection = iConnection;

 end

 end

 end

 if mindist < Tolerance

 objects{index} = TheConnection;

 names{index} = TheConnection.name;

 index = index + 1;

 end

 %% Bridge

 mindist = Tolerance;

 for iBridge = this.Bridges

 end

 %% Leak Connection

 mindist = Tolerance;

 for iLeakCon = this.LeakConnections

 end

 end

 function [TheGroup] = findNearestGroup(this,Pos,Tolerance)

 try Pnt = Pos(1,1:2);

 catch

 try Pnt = Pos(1:2,1)';

 catch; msgbox('Group Not Found due to improper input coordinates');

 end

 end

 [iBody, mindist] = this.findNearestBody(Pnt,Tolerance);

 for iGroup = this.Groups

 if isempty(iGroup.Bodies)

 if mindist > Dist2Rect(Pnt(1),Pnt(2),iGroup.Position.x,iGroup.Position.y,0,0)

 TheGroup = iGroup;

 return;

 end

 end

 end

 if ~isempty(iBody)

 TheGroup = iBody.Group;

 else

 TheGroup = this.Groups(1);

 end

 end

 function [TheBody, mindist] = findNearestBody(this,Pnt,Tolerance)

 mindist = Tolerance;

 TheBody = Body.empty;

 for iGroup = this.Groups

 Pntmod = (RotMatrix(pi/2 - iGroup.Position.Rot)*Pnt') - ...

 [iGroup.Position.x; iGroup.Position.y];

 for iBody = iGroup.Bodies

 % Establish Rectangle of iBody

 [~,~,x1,x2] = iBody.limits(enumOrient.Vertical);

 [~,~,y1,y2] = iBody.limits(enumOrient.Horizontal);

 R.Width = x2-x1;

 R.Height = y2-y1;

 R.Cx = (x1+x2)/2;

 R.Cy = (y1+y2)/2;

 dist = Dist2Rect(Pntmod(1),Pntmod(2),R.Cx,R.Cy,R.Width,R.Height);

 if dist < mindist

 mindist = dist;

 TheBody = iBody;

 else

 R.Cx = -R.Cx;

 dist = Dist2Rect(...

 Pntmod(1),Pntmod(2),R.Cx,R.Cy,R.Width,R.Height);

 if dist < mindist

 mindist = dist;

 TheBody = iBody;

412

 end

 end

 end

 end

 end

 function [names, objects] = findFrames(this)

 for i = length(this.RefFrames):-1:1

 names{i} = this.RefFrames(i).name;

 objects{i} = this.RefFrames(i);

 end

 end

 %% Graphics

 % Tests

 function isInWindow = inWindow(this,pnt1,pnt2)

 if nargin == 2

 if isempty(this.AxisReference)

 this.AxisReference = gca;

 axes = this.AxisReference;

 else

 axes = this.AxisReference;

 end

 xlim = axes.XLim;

 ylim = axes.YLim;

 isInWindow = pnt1.x < xlim(2) && pnt1.x > xlim(1) && ...

 pnt1.y < ylim(2) && pnt1.y > ylim(1);

 elseif nargin == 3

 xlim = this.AxisReference.XLim;

 ylim = this.AxisReference.YLim;

 isInWindow = pnt1.x < xlim(2) && pnt1.x > xlim(1) && ...

 pnt1.y < ylim(2) && pnt1.y > ylim(1) && ...

 pnt2.x < xlim(2) && pnt2.x > xlim(1) && ...

 pnt2.y < ylim(2) && pnt2.y > ylim(1);

 end

 end

 function showOptions = produceShowOptions(this,showOptions)

 if nargin > 1 && length(showOptions) == 9

 this.showGroups = showOptions(1); % Groups

 if ~showOptions(2) && showOptions(2) ~= this.showBodies

 for iGroup = this.Groups

 for iBody = iGroup.Bodies

 iBody.removeFromFigure(this.AxisReference);

 end

 end

 end

 this.showBodies = showOptions(2); % Bodies

 if ~showOptions(3) && showOptions(3) ~= this.showConnections

 for iGroup = this.Groups

 for iCon = iGroup.Connections

 iCon.removeFromFigure(this.AxisReference);

 end

 end

 end

 this.showConnections = showOptions(3); % Connections

 if ~showOptions(4) && showOptions(4) ~= this.showLeaks

 for iLeak = this.LeakConnections

 iLeak.removeFromFigure(this.AxisReference);

 end

 end

 this.showLeaks = showOptions(4); % Leaks

 if ~showOptions(5) && showOptions(5) ~= this.showBridges

 for iBridge = this.Bridges

 iBridge.removeFromFigure(this.AxisReference);

 end

 end

 this.showBridges = showOptions(5); % Bridges

 % Already deleted

 this.showInterConnections = showOptions(6); % Node Connections

 % Already deleted

 this.showEnvironmentConnections = showOptions(7); % Environment Surround

 % Already deleted

413

 this.showBodyGhosts = showOptions(8); % Motion Ghosts

 % ?????

 this.showNodes = showOptions(9); % Node Outlines

 elseif nargin > 1 && ~isempty(showOptions)

 fprintf('XXX showOptions in "Model.show" should be a vector of length 9 containing

logical show conditions XXX\n');

 return;

 else

 % Define showOptions;

 showOptions = zeros(8,1);

 showOptions(1) = this.showGroups;

 showOptions(2) = this.showBodies;

 showOptions(3) = this.showConnections;

 showOptions(4) = this.showLeaks;

 showOptions(5) = this.showBridges;

 showOptions(6) = this.showInterConnections;

 showOptions(7) = this.showEnvironmentConnections;

 showOptions(8) = this.showBodyGhosts;

 showOptions(9) = this.showNodes;

 end

 end

 % Highlighting and Selecting

 function ActiveGroup = get.ActiveGroup(this)

 ActiveGroup = [];

 for obj = this.Selection

 if isa(obj{1},'Group')

 ActiveGroup = obj{1};

 return;

 end

 end

 end

 function switchHighLightedGroup(this,otherGroup)

 update(this);

 if ~isempty(otherGroup) && isvalid(otherGroup)

 for i = 1:length(this.Selection)

 if isa(this.Selection{i},'Group')

 this.Selection{i}.isActive = false;

 this.Selection{i} = otherGroup;

 otherGroup.isActive = true;

 end

 end

 end

 end

 function switchHighLighting(this,NewHighlightedObjects)

 update(this);

 this.clearHighLighting();

 for iObj = NewHighlightedObjects

 iObj.isActive = true;

 this.Selection{end+1} = iObj;

 end

 end

 function HighLight(this,HighlightedObjects)

 update(this);

 for iObj = HighlightedObjects

 iObj.isActive = true;

 this.Selection{end+1} = iObj;

 end

 end

 function clearHighLighting(this)

 update(this);

 i = 1; j = 0;

 for iObj = this.Selection

 if ~isa(iObj,'Group')

 iObj{1}.isActive = false; %#ok<FXSET>

 else; j = i;

 end

 i = i + 1;

 end

 if j > 0; this.Selection = {this.Selection{j}};

 else; this.Selection = cell(0);

414

 end

 end

 % Bulk Display

 function XLim = getXLim(this)

 XLim = [inf -inf];

 for iGroup = this.Groups

 w = iGroup.Width;

 h = iGroup.Height;

 dx = w/2*sin(iGroup.Position.Rot);

 dy = h*cos(iGroup.Position.Rot);

 lim = iGroup.Position.x + [dx dx+dy -dx -dx+dy];

 limmx = max(lim);

 limmn = min(lim);

 if limmx > XLim(2); XLim(2) = limmx; end

 if limmn < XLim(1); XLim(1) = limmn; end

 end

 end

 function YLim = getYLim(this)

 YLim = [inf -inf];

 for iGroup = this.Groups

 w = iGroup.Width;

 h = iGroup.Height;

 dx = w/2*cos(iGroup.Position.Rot);

 dy = h*sin(iGroup.Position.Rot);

 lim = iGroup.Position.y + [dx dx+dy -dx -dx+dy];

 limmx = max(lim);

 limmn = min(lim);

 if limmx > YLim(2); YLim(2) = limmx; end

 if limmn < YLim(1); YLim(1) = limmn; end

 end

 end

 function removeStaticFromFigure(this)

 if ~isempty(this.StaticGUIObjects)

 children = get(this.AxisReference,'Children');

 for j = 1:length(this.StaticGUIObjects)

 if isgraphics(this.StaticGUIObjects(j))

 for i = length(children):-1:1

 if isgraphics(children(i)) && children(i) == this.StaticGUIObjects(j)

 children(i).delete;

 break;

 end

 end

 end

 end

 this.StaticGUIObjects = [];

 end

 end

 function removeDynamicFromFigure(this)

 if ~isempty(this.DynamicGUIObjects)

 children = get(this.AxisReference,'Children');

 for j = 1:length(this.DynamicGUIObjects)

 if isgraphics(this.DynamicGUIObjects(j))

 for i = length(children):-1:1

 if isgraphics(children(i)) && children(i) == this.DynamicGUIObjects(j)

 children(i).delete;

 break;

 end

 end

 end

 end

 this.DynamicGUIObjects = [];

 end

 end

 function removeGhostFromFigure(this)

 if ~isempty(this.GhostGUIObjects)

 children = get(this.AxisReference,'Children');

 for obj = this.GhostGUIObjects

 if isgraphics(obj)

 for i = length(children):-1:1

 if isgraphics(children(i)) && children(i) == obj

415

 children(i).delete;

 break;

 end

 end

 end

 end

 this.DynamicGUIObjects = [];

 end

 end

 function bringGhostToFront(this)

 if ~isempty(this.GhostGUIObjects)

 children = get(this.AxisReference,'Children');

 END = length(children);

 for obj = this.GhostGUIObjects

 if isgraphics(obj)

 for i = END:-1:1

 if isgraphics(children(i)) && children(i) == obj

 uistack(obj,'top');

 break;

 end

 end

 end

 end

 end

 end

 function show(this,showOptions)

 if this.isChanged; this.update(); end

 this.removeStaticFromFigure();

 this.removeGhostFromFigure();

 if nargin > 1

 showOptions = this.produceShowOptions(showOptions);

 else

 showOptions = this.produceShowOptions();

 end

 %showOptions =

[inputshowGroup,inputshowBodies,inputshowConnections,ishowLeaks,ishowBridges,ishowIntCon,ishowEnv

irCon)]

 % Fig = get(this.AxisReference,'parent');

 % hP = pan(Fig);

 % Go down through the hierarchy

 for iGroup = this.Groups

 %

show(this,CODE,AxisReference,Inc,showGroups,showBodies,showConnections,showLeaks,showInterConnect

ions,showEnvironmentConnections)

 iGroup.show('all',this.AxisReference,0,showOptions);

 % showGroups showBodies showConnections showLeaks showBridges showInterConnections

showEnvironmentConnections]

 end

 if this.showInterConnections || this.showNodes

 if ~this.isDiscretized()

 crun = struct('Model',this.name,...

 'title',[this.name ' test: ' date],...

 'rpm',this.engineSpeed,...

 'NodeFactor',this.deRefinementFactorInput);

 this.discretize(crun);

 if ~this.isDiscretized()

 fprintf('XXX No Nodes generated. XXX\n');

 end

 end

 n = length(this.Nodes);

 if n ~= 0

 nodeCenter(n) = Pnt2D(0,0);

 for iNode = this.Nodes

 nodeCenter(iNode.index) = iNode.minCenterCoords;

 isVis(iNode.index) = this.inWindow(nodeCenter(iNode.index));

 end

 end

 end

 if this.showInterConnections % Show Inter-Node Connections

 if this.isDiscretized()

416

 % Make array of Node Centers

 % Count nodes, stored in Groups

 n = length(this.Nodes);

 if n ~= 0

 % Make array of face coords

 % Count faces, stored in Model

 n = length(this.Faces);

 faceCoord = zeros(4,n);

 n = 1;

 % Take each face, assess whether it is active, then record

 for iFace = this.Faces

 if ~(iFace.Nodes(1).Type == enumNType.EN || ...

 iFace.Nodes(2).Type == enumNType.EN)

 if iFace.Nodes(2).index < 1

 fprintf('XXX error XXX');

 end

 if isVis(iFace.Nodes(1).index) && ...

 isVis(iFace.Nodes(2).index)

 c1 = nodeCenter(iFace.Nodes(1).index);

 c2 = nodeCenter(iFace.Nodes(2).index);

 faceCoord(:,n) = [c1.x,c2.x,c1.y,c2.y];

 n = n + 1;

 end

 end

 end

 n = n - 1;

 % Plot

 nT = 3*n;

 xData = NaN(nT,1);

 yData = NaN(nT,1);

 ind = 1;

 for i = 1:3:nT-2

 xData(i:i+1) = faceCoord(1:2,ind);

 yData(i:i+1) = faceCoord(3:4,ind);

 ind = ind + 1;

 end

 if isempty(this.StaticGUIObjects)

 this.StaticGUIObjects = line(xData,yData,'Color',[0 1 0]);

 else

 this.StaticGUIObjects(end+1:end+length(this.Faces)) = line(xData,yData,'Color',[0 1

0]);

 end

 end

 end

 end

 if this.showNodes

 if this.isDiscretized()

 % Make array of Node Centers

 % Count nodes, stored in Groups

 n = length(this.Nodes);

 if n ~= 0

 % Plot

 xData = NaN(n,1);

 yData = NaN(n,1);

 j = 1;

 for nd = this.Nodes

 if isVis(nd.index)

 c1 = nodeCenter(nd.index);

 xData(j) = c1.x;

 yData(j) = c1.y;

 j = j + 1;

 end

 end

 if isempty(this.StaticGUIObjects)

 this.StaticGUIObjects = plot(xData,yData,'o',...

 'MarkerSize',2,...

 'MarkerEdgeColor',[0 0 1]);

 else

 this.StaticGUIObjects(end+1) = ...

 plot(xData,yData,'o',...

417

 'MarkerSize',2,...

 'MarkerEdgeColor',[0 0 1]);

 end

 end

 end

 end

 if this.showBridges

 for iBridge = this.Bridges

 iBridge.show(this.AxisReference);

 end

 else

 for iBridge = this.Bridges

 iBridge.removeFromFigure(this.AxisReference);

 end

 end

 if this.showLeaks

 for iLeak = this.LeakConnections

 iLeak.show(this.AxisReference);

 end

 else

 for iLeak = this.LeakConnections

 iLeak.removeFromFigure(this.AxisReference);

 end

 end

 if this.showSensors

 if ~isempty(this.Sensors)

 for iSensor = this.Sensors

 iSensor.show(this.AxisReference);

 end

 end

 else

 if ~isempty(this.Sensors)

 for iSensor = this.Sensors

 iSensor.removeFromFigure(this.AxisReference);

 end

 end

 end

 if this.showBodyGhosts

 this.bringGhostToFront();

 end

 end

 function Animate(this,showOptions)

 if this.isChanged; this.update(); end

 this.removeStaticFromFigure();

 this.removeGhostFromFigure();

 %showOptions =

[inputshowGroup,inputshowBodies,inputshowConnections,ishowLeaks,ishowBridges,ishowIntCon,ishowEnv

irCon)]

 if nargin > 1

 showOptions = this.produceShowOptions(showOptions);

 else

 showOptions = this.produceShowOptions();

 end

 % Don't show connections in annimation

 showOptions(3) = false;

 cla;

 % Set Screen to be constant dimensions

 ReferenceAxis = gca;

 mode = get(ReferenceAxis,'XLimMode');

 set(ReferenceAxis,'XLimMode','manual');

 set(ReferenceAxis,'YLimMode','manual');

 set(ReferenceAxis,'ZLimMode','manual');

 % Initialize

 t = cputime;

 FrameTime = ((2*pi)/(this.AnimationSpeed_rads*Frame.NTheta));

 figure(gcf);

 axes(this.AxisReference);

 Inc = 1;

418

 % Make all static Bodies visible

 for iGroup = this.Groups

 iGroup.show('Static',this.AxisReference,0,showOptions);

 end

 k = 1;

 while this.isAnimating && cputime-t < this.AnimationLength_s

 nexttime = cputime + FrameTime;

 % Go down through the hierarchy

 for iGroup = this.Groups

 iGroup.show('Dynamic',this.AxisReference,Inc,showOptions);

 end

 if showOptions(4) % Leak Connections

 for iLeak = this.LeakConnections

 if iLeak.isDynamic

 iLeak.show(this.AxisReference);

 end

 end

 end

 if showOptions(5) % Bridge Connections

 for iBridge = this.Bridges

 iBridge.show(this.AxisReference);

 end

 end

 if showOptions(6) % Inter Node Connections, dynamic

 if this.isDiscretized()

 this.removeDynamicFromFigure();

 % Make array of Node Centers

 % Count nodes, stored in Groups

 n = length(this.Nodes);

 if n ~= 0

 % Calculate the node center, at bottom dead center for all

 for iNode = this.Nodes

 nodeCenter(iNode.index) = iNode.CenterCoords(Inc);

 end

 % Make array of face coords

 % Count faces, stored in Model

 n = 1;

 xData = NaN(3*length(this.Faces),1);

 yData = NaN(3*length(this.Faces),1);

 % Take each face, assess whether it is active, then record

 for iFace = this.Faces

 %if iFace.isDynamic && ...

 if ~(iFace.Nodes(1).Type == enumNType.EN || ...

 iFace.Nodes(2).Type == enumNType.EN) && ...

 iFace.isActive(Inc)

 c1 = nodeCenter(iFace.Nodes(1).index);

 c2 = nodeCenter(iFace.Nodes(2).index);

 if this.inWindow(c1,c2)

 xData(n) = c1.x;

 xData(n+1) = c2.x;

 yData(n) = c1.y;

 yData(n+1) = c2.y;

 n = n + 3;

 end

 end

 end

 n = n-1;

 xData = xData(1:n);

 yData = yData(1:n);

 if isempty(this.StaticGUIObjects)

 this.DynamicGUIObjects = line(xData,yData,'Color',[0 1 0]);

 else

 this.DynamicGUIObjects(end+1) = line(xData,yData,'Color',[0 1 0]);

 end

 end

419

 end

 end

 % Iterate the counter

 Inc = Inc + 1;

 if Inc > Frame.NTheta

 Inc = 1;

 end

 % Wait

 pause(10*max([0 nexttime-cputime]));

 end

 % Reset Screen to previous settings

 set(ReferenceAxis,'XLimMode',mode);

 set(ReferenceAxis,'YLimMode',mode);

 set(ReferenceAxis,'ZLimMode',mode);

 end

 end

end

function [Closed_Edge] = TrimFaces(this, region, Closed_Edge)

LEN = length(Closed_Edge);

for Nd = this.Nodes

 if Nd.index <= length(region)

 from = Nd;

 c = 1;

 while c == 1

 c = 0;

 % Determine the number of access points for the node

 for Fc = from.Faces

 if Fc.index <= LEN && ~Closed_Edge(Fc.index) && ...

 region(Fc.Nodes(1).index) == region(Fc.Nodes(2).index)

 c = c + 1; if c > 1; break; end; edge = Fc;

 end

 end

 if c == 1

 % This Node has only one access point (withing a region),

 % ... therefore it cannot be a part of a loop.

 % Any nodes that are chain to this node with only two total

 % ... access points must also not be part of a loop.

 Closed_Edge(edge.index) = true;

 if from == edge.Nodes(1)

 from = edge.Nodes(2);

 else

 from = edge.Nodes(1);

 end

 end

 end

 end

end

end

function [A,B,C,D] = populate_Fc_ABCD(Sim, Fc)

 fcb = Face.empty;

 fcf = Face.empty;

 count = 0;

 for fc = Fc.Nodes(1).Faces

 if fc.Type == enumFType.Gas && fc ~= Fc

 if count == 0

 fcb = fc;

 count = 1;

 else

 % pick the larger face

 if mean(fcb.data.Area) < mean(fc.data.Area)

 fcb = fc;

 end

 end

 end

 end

 if count == 1

420

 % Reference that backwards face

 if fcb.Nodes(2) == Fc.Nodes(1)

 Sim.Fc_Nd03(Fc.index,1) = fcb.Nodes(1).index;

 else

 Sim.Fc_Nd03(Fc.index,1) = fcb.Nodes(2).index;

 end

 else

 % Reference itself

 Sim.Fc_Nd03(Fc.index,1) = Fc.Nodes(1).index;

 fcb = Fc;

 end

 count = 0;

 for fc = Fc.Nodes(2).Faces

 if fc.Type == enumFType.Gas && ...

 fc ~= Fc

 if count == 0

 fcf = fc;

 count = 1;

 else

 % pick the larger face

 if mean(fcf.data.Area) < mean(fc.data.Area)

 fcf = fc;

 end

 end

 end

 end

 if count == 1

 % Reference that backwards face

 if fcb.Nodes(1) == Fc.Nodes(2)

 Sim.Fc_Nd03(Fc.index,2) = fcb.Nodes(2).index;

 else

 Sim.Fc_Nd03(Fc.index,2) = fcb.Nodes(1).index;

 end

 else

 % Reference itself

 Sim.Fc_Nd03(Fc.index,2) = Fc.Nodes(2).index;

 fcf = Fc;

 end

 x1 = -0.5*Fc.data.Dist;

 x0 = x1 - fcb.data.Dist;

 x2 = -x1;

 x3 = x2 + fcf.data.Dist;

 if fcb ~= Fc && all(fcb.data.Area > 0) % Fc i - 1 exists

 if fcf ~= Fc && all(fcf.data.Area > 0) % Fc i + 1 exists

 % can fill xi, xi-1, xi+1 and xi+2, as well as A, B, C and D

 A = -((x1.*x2.*x3)./(x0-x1)./(x0-x2)./(x0-x3));

 B = -((x0.*x2.*x3)./(x1-x0)./(x1-x2)./(x1-x3));

 C = -((x0.*x1.*x3)./(x2-x0)./(x2-x1)./(x2-x3));

 D = -((x0.*x1.*x2)./(x3-x0)./(x3-x1)./(x3-x2));

 else

 A = -((x1.*x2)./(x0-x1)./(x0-x2));

 B = -((x0.*x2)./(x1-x0)./(x1-x2));

 C = -((x0.*x1)./(x2-x0)./(x2-x1));

 D = 0;

 end

 else

 if fcf ~= Fc && all(fcf.data.Area > 0) % Fc i + 1 exists

 A = 0;

 B = -((x2.*x3)./(x1-x2)./(x1-x3));

 C = -((x1.*x3)./(x2-x1)./(x2-x3));

 D = -((x1.*x2)./(x3-x1)./(x3-x2));

 else

 A = 0.0;

 B = 0.5;

 C = 0.5;

 D = 0.0;

 end

 end

 sum = A+B+C+D;

 for i = 1:length(sum)

421

 roundsum = round(sum);

 if roundsum == 1

 % No change

 elseif roundsum == -1

 A(min(i,length(A))) = -A(min(i,length(A)));

 B(min(i,length(B))) = -B(min(i,length(B)));

 C(min(i,length(C))) = -C(min(i,length(C)));

 D(min(i,length(D))) = -D(min(i,length(D)));

 else

 A(min(i,length(A))) = 0;

 B(min(i,length(B))) = 0.5;

 C(min(i,length(C))) = 0.5;

 D(min(i,length(D))) = 0;

 end

 end

 A = CollapseVector(A);

 B = CollapseVector(B);

 C = CollapseVector(C);

 D = CollapseVector(D);

end

422

G.3. Minor Elements

423

Custom Minor Loss

The minor loss is a class that includes the following functionality:

A constructor.

A validity test.

classdef CustomMinorLoss < handle

 %UNTITLED Summary of this class goes here

 % Detailed explanation goes here

 properties

 name string;

 Body1 Body;

 Body2 Body;

 K12 double;

 K21 double;

 end

 methods

 function this = CustomMinorLoss(B1,B2)

 answers = {'untitled', '1','1'};

 firstround = true;

 while firstround || ~isStrNumeric(answers{2}) || ~isStrNumeric(answers{3})

 if firstround; firstround = false;

 else; msgbox('Numeric Values only'); end

 answers = inputdlg(...

 {'Descriptive Name', ...

 'Loss Coefficient 1 - 2', ...

 'Loss Coefficient 2 - 1'}, ...

 ['Define a minor loss from: ' B1.name ...

 ' to ' B2.name '.'],[1 35], ...

 answers);

 if isempty(answers)

 this.K12 = 0;

 this.K21 = 0;

 return;

 end

 end

 this.Body1 = B1;

 this.Body2 = B2;

 this.name = answers{1};

 this.K12 = str2double(answers{2});

 this.K21 = str2double(answers{3});

 end

 function isit = isValid(this)

 isit = ~isempty(this.Body1) && ...

 ~isempty(this.Body2) && ...

 isa(this.Body1,'Body') && ...

 isa(this.Body2,'Body') && (this.K12 > 0 || this.K21 > 0);

 end

 end

end

424

Face

The face is a class that includes the following functionality:

A constructor that assigns a variety of properties based on the nodes involved.

A name calculator.

An function for defining generic properties for faces defined inside of bodies.

A function for checking if the face is a pressure contact.

A function for checking which of the nodes is the largest, in the event this face is decimated

and the remaining faces moved onto the larger.

Functions for calculating the total area, and setting the area of the face. Used in area weighted

functions or for determining the minor loss coefficient.

classdef CustomMinorLoss < handle

 %UNTITLED Summary of this class goes here

 % Detailed explanation goes here

 properties

 name string;

 Body1 Body;

 Body2 Body;

 K12 double;

 K21 double;

 end

 methods

 function this = CustomMinorLoss(B1,B2)

 answers = {'untitled', '1','1'};

 firstround = true;

 while firstround || ~isStrNumeric(answers{2}) || ~isStrNumeric(answers{3})

 if firstround; firstround = false;

 else; msgbox('Numeric Values only'); end

 answers = inputdlg(...

 {'Descriptive Name', ...

 'Loss Coefficient 1 - 2', ...

 'Loss Coefficient 2 - 1'}, ...

 ['Define a minor loss from: ' B1.name ...

 ' to ' B2.name '.'],[1 35], ...

 answers);

 if isempty(answers)

 this.K12 = 0;

 this.K21 = 0;

 return;

 end

 end

 this.Body1 = B1;

 this.Body2 = B2;

 this.name = answers{1};

 this.K12 = str2double(answers{2});

 this.K21 = str2double(answers{3});

 end

 function isit = isValid(this)

425

 isit = ~isempty(this.Body1) && ...

 ~isempty(this.Body2) && ...

 isa(this.Body1,'Body') && ...

 isa(this.Body2,'Body') && (this.K12 > 0 || this.K21 > 0);

 end

 end

end

426

Material

The material is a class containing hardcoded properties of various materials. It contains the

following functions:

A creation functions that takes a material name and calls configure.

A modify function that opens a user form and calls configure.

Functions for calculating the thermal diffusivity and internal energy from the temperature.

classdef Material < handle

 %MATERIAL Summary of this class goes here

 % Detailed explanation goes here

 properties (Constant)

 Source = {...

 'Carbon Steel';

 'Forged Carbon Steel (Medium Carbon Steel)';

 '304 Stainless Steel';

 '6061 Aluminum';

 'Pure Copper';

 'Plastic, ABS';

 'Plastic, Acrylic';

 'Plastic, Polycarbonate (High Viscosity)';

 'Plastic, Poly-Ethylene (High Density)';

 'Rubber, Polychloroprene (Neoprene)';

 'Rubber, Acrylonitrile-Butadiene (Nitrile)';

 'Rubber, Silicone';

 'Foam, Expanded Polystyrene';

 'Foam, Extruded Polystyrene';

 'Foam, Rigid Polyurethane';

 'AIR';

 'N2 Gas';

 'H2 Gas';

 'Helium Gas';

 'Perfect Insulator';

 'Constant Temperature'};

 end

 properties

 % General Properties

 name;

 Color double;

 Phase enumMaterial;

 ThermalConductivity double;

 dT_du double;

 dh_dT double;

 u2T function_handle;

 Density double;

 % Gas Properties

 R double;

 dT_duFunc function_handle;

 dh_dTFunc function_handle;

 kFunc function_handle;

 muFunc function_handle;

 gammaFunc function_handle;

 end

 methods

 function this = Material(MaterialName)

427

 if nargin == 0

 return;

 end

 this.Configure(MaterialName)

 end

 function Modify(this)

 for index = 1:length(this.Source)

 if strcmp(this.Source{index},this.name)

 break;

 end

 end

 index = listdlg('ListString',this.Source,...

 'SelectionMode','single',...

 'InitialValue',index);

 this.Configure(this.Source{index});

 end

 function Configure(this,MaterialName)

 this.name = MaterialName;

 % Thermal Conductivity

 % https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html

 switch MaterialName

 case 'Carbon Steel' % Carbon Steel

 this.Color = [0.400 0.384 0.384];% [102 98 98];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 43; % W/(m*K)

 this.dT_du = 1/502.416; % J/(kg*K)

 this.Density = 7850; % kg/(m^3)

 case 'Forged Carbon Steel (Medium Carbon Steel)'

 % See Medium Carbon Steel - MatWeb.pdf

 this.Color = [0.380 0.365 0.365];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 47.7; % W/(m*K)

 this.dT_du = 1/477; % J/(kg*K)

 this.Density = 7850; % kg/(m^3)

 case '304 Stainless Steel' % 304 Stainless Steel

 this.Color = [0.510 0.526 0.537];% [130 134 137];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 14.4; % W/(m*K)

 this.dT_du = 1/500; % J/(kg*K)

 this.Density = 8000; % kg/(m^3)

 case '6061 Aluminum' % 6061 Aluminum

 this.Color = [0.628 0.628 0.628];% [160 160 160];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 176.5; % 151-202 W/(m*K)

 this.dT_du = 1/897; % J/(kg*K)

 this.Density = 2700; % kg/(m^3)

 case 'Pure Copper' % Pure Copper

 this.Color = [0.628 0.416 0.259];% [160 106 66];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 401; % W/(m*K) % At 0 C

 this.dT_du = 1/385; % kg*K/J

 this.Density = 8960; % kg/(m^3)

 case 'Plastic, ABS' % Acrylonitrile Butadiene Styrene

 % http://www.substech.com/dokuwiki/doku.php?id=thermoplastic_acrylonitrile-butadiene-

styrene_abs

 % https://www.sciencedirect.com/topics/materials-science/acrylonitrile-butadiene-

styrene

 this.Color = [0.1 0.1 0.8]; % Blue

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 0.25; % W/(m*K)

 this.dT_du = 1/1690; % Specific heat capacity 1,390 – 1,920 J/kg·K

 this.Density = 1050;

 case 'Plastic, Acrylic'

 % http://www.matweb.com/search/datasheet.aspx?bassnum=O1303&ckck=1

 this.Color = [0.909 0.941 1]; %

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 0.198; % W/(m*K)

 this.dT_du = 1/1810; % Specific heat capacity 1,460 – 2,160 J/kg·K

 this.Density = 1185; % kg/(m^3)

 case 'Plastic, Polycarbonate (High Viscosity)'

 % MatWeb

428

 this.Color = [0.909 0.941 1]; %

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 0.198; % W/(m*K)

 this.dT_du = 1/1810; % Specific heat capacity 1,460 – 2,160 J/kg·K

 this.Density = 1200; % kg/(m^3)

 case 'Plastic, Poly-Ethylene (High Density)'

 % MatWeb

 this.Color = [0.909 0.941 1]; %

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 0.196; % W/(m*K)

 this.dT_du = 1/1540; % Specific heat capacity 1,460 – 2,160 J/kg·K

 this.Density = 946; % kg/(m^3)

 case 'Rubber, Polychloroprene (Neoprene)'

 % https://thermtest.com/materials-database#NEOPRENE

 this.Color = [0.1 0.1 0.1];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 0.192; % W/(m*K)

 this.dT_du = 1/1029; % Specific heat capacity 1,460 – 2,160 J/kg·K

 this.Density = 1250; % kg/(m^3)

 case 'Rubber, Acrylonitrile-Butadiene (Nitrile)'

 % https://thermtest.com/materials-database#NITRILE

 this.Color = [33/255 16/255 0];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 0.243; % W/(m*K)

 this.dT_du = 1/1966; % Specific heat capacity 1,460 – 2,160 J/kg·K

 this.Density = 1000; % kg/(m^3)

 case 'Rubber, Silicone'

 % https://thermtest.com/materials-database#SILICONE-RUBBER-(MEDIU

 this.Color = [22/255 25/255 37/255];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 0.335; % W/(m*K)

 this.dT_du = 1/1255; % Specific heat capacity 1,460 – 2,160 J/kg·K

 this.Density = 1300; % kg/(m^3)

 case 'Foam, Expanded Polystyrene'

 % http://www.eyoungindustry.com/uploadfile/file/20160612/20160612155656_94768.pdf

 % Implement subtype interface

 index = 0;

 while index == 0

 index = 1;

 index = listdlg('ListString',{...

 'L - 11 kg/m3','SL - 13.5 kg/m3',...

 'S - 16 kg/m3','M - 19 kg/m3',...

 'H - 24 kg/m3','VH - 28 kg/m3',...

 'Custom Density'},...

 'SelectionMode','single',...

 'InitialValue',index);

 end

 if index < 7

 Temp = [11 13.5 16 19 24 28];

 this.Density = Temp(index);

 else

 this.Density = str2double(inputdlg('Enter EPS density',...

 'Custom Expanded Polystyrene',[1 35],{'16'}));

 end

 this.Color = [1 0.83 0.83];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 0.1142*(this.Density)^(-0.371); % W/(m*K)

 % https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html

 this.dT_du = 1/(1400); % Specific heat capacity 1,300 – 1,500 J/kg·K

 case 'Foam, Extruded Polystyrene'

 % http://www.eyoungindustry.com/uploadfile/file/20160612/20160612155656_94768.pdf

 % Implement subtype interface

 index = 0;

 while index == 0

 index = 1;

 index = listdlg('ListString',{...

 'Custom Density'},...

 'SelectionMode','single',...

 'InitialValue',index);

 end

 if index < 1

429

 Temp = [];

 this.Density = Temp(index);

 else

 this.Density = str2double(inputdlg('Enter XPS density',...

 'Custom Expanded Polystyrene',[1 35],{'30'}));

 end

 this.Color = [1 0.83 0.83];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 0.036; % W/(m*K)

 % https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html

 this.dT_du = 1/(1400); % Specific heat capacity 1,300 – 1,500 J/kg·K

 case 'Foam, Rigid Polyurethane'

 % http://www.react-ite.eu/uploads/tx_mddownloadbox/PP02_Thermal_insulation_materials_-

_PP02_20130715.pdf

 % Implement subtype interface

 index = 0;

 while index == 0

 index = 1;

 index = listdlg('ListString',{...

 '30 kg/m3',...

 '40 kg/m3',...

 '80 kg/m3',...

 'Custom Density'},...

 'SelectionMode','single',...

 'InitialValue',index);

 end

 if index < 4

 Temp = [30 40 80];

 this.Density = Temp(index);

 else

 this.Density = str2double(inputdlg('Enter PUR density',...

 'Custom Rigid Polyurethane',[1 35],{'16'}));

 end

 this.Color = [0.957 0.937 0.745];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 0.0371*(this.Density)^(-0.098); % W/(m*K)

 this.dT_du = 1/1500; % Specific heat capacity 1,300 – 1,500 J/kg·K

 case 'AIR' % Standard Air

 this.Color = [0.906 0.906 0.906];% [231 231 231];

 this.Phase = enumMaterial.Gas;

 this.ThermalConductivity = 0.0262; % W/(m*K)

 this.R = 287;

 this.dT_duFunc = @(u) (-2.88367e-10)*u + (1.42462651e-3); % Verified

 this.dT_du = this.dT_duFunc(298);

 this.dh_dTFunc = @(T) 1013.5 - 0.15709*T + 0.00049079*T.^2 - 0.00000020552*T.^3;

 this.dh_dT = this.dh_dTFunc(298);

 this.u2T = @(u) (-1.44183718e-10)*u.^2 + (1.42462651e-3)*u; % Verified

 this.kFunc = @(T) (-1.3974e-11)*T.^3 + (-4.5769e-8)*T.^2 + ...

 (9.8961e-5)*T + 3.4920e-4; % Verified / Updated

 this.muFunc = @(T) (1.6834E-14)*T.^3 - (4.7591E-11)*T.^2 + ...

 7.1598E-08*T + 7.5908E-07; % Verified / Updated

 case 'N2 Gas' % Nitrogen

 fprintf('XXX Need cv and u2T for nitrogen XXX\n');

 this.Color = [0.906 0.906 0.906];

 this.Phase = enumMaterial.Gas;

 this.R = 296.8;

 this.dT_duFunc = @(u) -3.7744e-10*u + 1.447e-3; % Verified

 this.dT_du = this.dT_duFunc(298);

 % http://www.colby.edu/chemistry/PChem/notes/Ch7Tables.pdf

 this.dh_dTFunc = @(T) (28.882 - 0.00157*T + 0.00000808*T.^2 -

0.000000002871*T.^3)/0.0280134;

 this.dh_dT = this.dh_dTFunc(298);

 this.u2T = @(u) -1.8872e-10*(u.^2) + 1.447e-3*u - 1.2188e1; % Verified

 this.kFunc = @(T) 3.3552E-11*(T.^3) - 7.3741E-08*(T.^2) + 1.0792E-04*T - 6.5862E-04; %

Verified / Update

 this.muFunc = @(T) 1.9072E-14*(T.^3) - 4.9344E-11*(T.^2) + 7.1568E-08*T + 3.4160E-07; %

Verified / Updated

 case 'H2 Gas' % Hydrogen

 this.Color = [0.906 0.906 0.906];% [231 231 231];

 this.Phase = enumMaterial.Gas;

 this.R = 4124.2;

430

 this.dT_duFunc = @(u) -8.0404e-13*(T) + 1.0068E-04; % Verified

 this.dT_du = this.dT_duFunc(298);

 % http://www.colby.edu/chemistry/PChem/notes/Ch7Tables.pdf

 this.dh_dTFunc = @(T) (29.088 - 0.00192*T + 0.00000400*T.^2 -

0.000000000870*T.^3)/0.002016;

 this.dh_dT = this.dh_dTFunc(298);

 this.u2T = @(u) - 4.0202E-13*(T.^2) + 1.0068E-04*T + 1.8779E+00; % Verified

 this.kFunc = @(T) 9.0864E-10*(T.^3) - 1.0269E-06*(T.^2) + 8.7129E-04*T - 7.4747E-03; %

Verified

 this.muFunc = @(T) 8.4578E-13*(T.^3) - 1.8183E-09*(T.^2) + 2.8432E-06*T+ 1.8282E-04; %

Verified

 case 'Helium Gas' % Helium

 this.Color = [0.906 0.906 0.906];% [231 231 231];

 this.Phase = enumMaterial.Gas;

 this.R = 2077.1;

 this.dT_duFunc = @(u) 0.00032096; % Verified

 this.dT_du = this.dT_duFunc(298);

 this.dh_dTFunc = @(T) 20.786/0.004002602;

 this.dh_dT = this.dh_dTFunc(298);

 this.u2T = @(u) 0.00032096*u; % Verified

 this.kFunc = @(T) 1.7109E-10*(T.^3) - 3.3300E-07*(T.^2) + 4.5124E-04*(T) + 3.9533E-02;

% Verified

 this.muFunc = @(T) 2.8183E-14*(T.^3) - 5.6714E-11*(T.^2) + 7.0661E-08*(T) + 3.4685E-06;

% Verified

 case 'Perfect Insulator'

 this.Color = [0.15 0.15 0.15];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 0; % W/(m*K)

 this.dT_du = -1; % J/(kg*K)

 this.Density = 0.01; % kg/(m^3)

 case 'Constant Temperature'

 this.Color = [1 1 1];

 this.Phase = enumMaterial.Solid;

 this.ThermalConductivity = 1e30; %W/(m*K)

 this.dT_du = -1; % J/(kg*K)

 this.Density = 0.01;

 otherwise

 fprintf(['XXX MISSING PROPERTIES FOR MATERIAL: ' ...

 MaterialName '.\n']);

 end

 end

 function a = thermaldiffusivity(this)

 a = this.ThermalConductivity*this.dT_du/(this.Density);

 end

 function u = initialInternalEnergy(this,T)

 switch this.Phase

 case enumMaterial.Gas

 % Use u2T function

 uold = 298;

 r = this.u2T(uold) - T;

 while true

 uguess = uold - r/this.dT_duFunc(uold);

 r = this.u2T(uguess) - T;

 if abs(r) < 1e-8; break; end

 uold = uguess;

 end

 u = uguess;

 case enumMaterial.Solid

 if this.dT_du ~= 0

 u = T/this.dT_du;

 else

 u = 0;

 end

 end

 end

 end

end

431

Node

A node is a class that includes the following functionality:

A constructor.

A function use to merge two nodes into one.

A group of functions designed to calculate specific properties.

classdef Node < handle

 %NODE Summary of this class goes here

 % Detailed explanation goes here

 properties

 isDynamic logical;

 Type enumNType;

 data;

 iPressure double;

 iTemperature double;

 xmin double;

 xmax double;

 ymin double;

 ymax double;

 Faces Face;

 Nodes Node;

 Body;

 isEnd logical; % Allows for the required distance calculation

 index int32; % For translation to array for solving

 end

 properties (Hidden)

 stateLocation Pnt2D;

 isminCenterCoordsCalcd logical = false;

 stateminCenterCoords Pnt2D;

 useStoredVolume logical;

 StoredVolume double;

 end

 properties (Dependent)

 minCenterCoords Pnt2D;

 end

 methods

 function this = Node(Type,xmin,xmax,ymin,ymax,Faces,Nodes,theBody,index)

 if nargin == 0; return; end

 % Node(Type, data, iPressure, iTemperature, xmin, xmax, ymin, ymax, Faces, Nodes, matl)

 this.Type = Type;

 this.xmin = xmin;

 this.xmax = xmax;

 this.ymin = ymin;

 this.ymax = ymax;

 if nargin == 5; return; end

 this.Faces = Faces;

 this.Nodes = Nodes;

 if this.vol() < 0

 fprintf('err');

 end

 this.index = index;

432

 this.Body = theBody;

 if isempty(this.data); this.calcData(); end

 this.updateisDynamic();

 end

 function [success, nd2del, fc2del] = combineSolid(this,other,refinementfactor)

 % Set outputs to default values

 nd2del = Node.empty;

 fc2del = Face.empty;

 success = false;

 % It must be a Face between two solid nodes

 if this.Type == enumNType.SN && other.Type == enumNType.SN

 % Find the face between the two nodes

 for fc = this.Faces

 if (fc.Nodes(1) == this && fc.Nodes(2) == other) || (...

 fc.Nodes(2) == this && fc.Nodes(1) == other)

 % Get the two materials

 if isfield(this.data,'matl'); matl1 = this.data.matl;

 else; matl1 = this.Body.matl;

 end

 if isfield(other.data,'matl'); matl2 = other.data.matl;

 else; matl2 = other.Body.matl;

 end

 % Calculate the timestep based on a Fourier Number of 0.25

 if matl1.dT_du == -1

 dT_du1 = 1e-30; else; dT_du1 = matl1.dT_du; end

 if matl2.dT_du == -1

 dT_du2 = 1e-30; else; dT_du2 = matl2.dT_du; end

 timestep1 = (0.25*matl1.Density/dT_du1)*this.vol()./fc.data.U;

 timestep2 = (0.25*matl2.Density/dT_du2)*other.vol()./fc.data.U;

 % If the timestep for this interaction would be too small

 if all(timestep1 < 1e-3) || all(timestep2 < 1e-3)

 %

 if sum(timestep1 < timestep2) > length(timestep1)/2

 collector = other;

 nd2del = this;

 else

 collector = this;

 nd2del = other;

 end

 fc2del = fc;

 success = true;

 break;

 end

 % Exit because only one face will be between these nodes

 break;

 end

 end

 if success

 % Calculate the updated properties

 collector.StoredVolume = this.vol() + other.vol();

 vol1 = this.vol();

 vol2 = other.vol();

 collector.useStoredVolume = true;

 if matl1.dT_du == -1

 collector.data.matl = matl1;

 elseif matl2.dT_du == -1

 collector.data.matl = matl2;

 elseif matl1 ~= matl2

 if isfield(collector.data,'matl'); matl = collector.data.matl;

 else; matl = collector.Body.matl;

 end

 mass = vol1*matl1.Density + vol2*matl2.Density;

433

 collector.data.matl = Material();

 collector.data.matl.Color = matl1.Color;

 collector.data.matl.Phase = enumMaterial.Solid;

 collector.data.matl.ThermalConductivity = ...

 (vol1*matl1.Density*matl1.ThermalConductivity + ...

 vol2*matl2.Density*matl2.ThermalConductivity)/...

 (vol1*matl1.Density + vol2*matl2.Density);

 collector.data.matl.Density = (vol1*matl1.Density + ...

 vol2*matl.Density)/collector.StoredVolume;

 collector.data.matl.dT_du = (vol1*matl1.Density*dT_du1 + ...

 vol2*matl2.Density*dT_du2)/mass;

 end

 % Modify the faces in the weaker node so that they reference the

 % ... collector instead.

 keep = true(size(nd2del.Faces));

 i = 1;

 for fc = nd2del.Faces

 if fc ~= fc2del

 if fc.Nodes(1) == nd2del

 fc.Nodes(1) = collector;

 elseif fc.Nodes(2) == nd2del

 fc.Nodes(2) = collector;

 end

 else

 keep(i) = false;

 end

 i = i + 1;

 end

 nd2del.Faces = nd2del.Faces(keep);

 % Remove the face that goes between the two nodes

 keep = true(size(collector.Faces));

 for i = 1:length(collector.Faces)

 if collector.Faces(i) == fc2del

 keep(i) = false;

 end

 end

 collector.Faces = collector.Faces(keep);

 collector.Faces(end+1:end+length(nd2del.Faces)) = nd2del.Faces;

 end

 end

 end

 function calcData(this)

 if this.Type ~= enumNType.EN

 matl = this.Body.matl;

 switch matl.Phase

 case enumMaterial.Solid

 %% Solids

 this.data.T = this.Body.Temperature();

 this.data.dT_dU = matl.dT_du;

 case {enumMaterial.Gas, enumMaterial.Liquid}

 %% Fluids

 this.data.P = this.Body.Pressure();

 this.data.T = this.Body.Temperature();

 if ~isempty(this.Body.Matrix) && ~isempty(this.Body.Matrix.Dh)

 %% Not an empty Volume

 % Scale the volume

 this.data.vol = this.vol()*this.Body.Matrix.data.Porosity;

 this.data.Dh = this.Body.Matrix.Dh;

 % Assign the Nusselt number function (Re,Pr)

 this.data.NuFunc_l = this.Body.Matrix.NuFunc_l;

 if ~this.Body.Matrix.isFullyLaminar

 this.data.NuFunc_t = this.Body.Matrix.NuFunc_t;

 else

 this.data.NuFunc_t = this.data.NuFunc_l;

 end

 dir = getBodyDirection(this.Body);

 if dir == 1

434

 % Horizontal

 this.data.Area = (this.ymax-this.ymin)*pi*(this.xmax + this.xmin)*...

 this.Body.Matrix.data.Porosity;

 else

 % Vertical

 this.data.Area = pi*(this.xmax^2 - this.xmin^2)*...

 this.Body.Matrix.data.Porosity;

 end

 else

 %% An empty channel

 this.data.vol = this.vol();

 dir = getBodyDirection(this.Body);

 if dir == 1

 % Horizontal

 this.data.Orient = enumOrient.Horizontal;

 this.data.Dh = 2.*(this.ymax-this.ymin);

 this.data.Area = (this.ymax-this.ymin)*pi*(this.xmax + this.xmin);

 % Assign default Nusselt Number Correlation

 this.data.NuFunc_l = @(Re) 3.66; % Fully Developed, Uniform Surface Temperature

 else

 this.data.Orient = enumOrient.Vertical;

 this.data.Dh = 2.*(this.xmax-this.xmin);

 this.data.Area = pi*(this.xmax^2 - this.xmin^2);

 % Assign default Nusselt Number Correlation

 ri_ro = this.xmin/this.xmax;

 if ri_ro == 0

 Nuo = 3.66;

 Nui = 0;

 else

 Nuo = 4.6961*(ri_ro)^(0.0548);

 Nui = 4.4438*(ri_ro)^(-0.43);

 end

 this.data.NuiFunc_l = @(Re) Nui;

 this.data.NuoFunc_l = @(Re) Nuo;

 end

 this.data.NuFunc_t = @(Re,Pr) 0.035*(Re.^0.75).*(Pr.^0.33);

 end

 if ~isscalar(this.data.Dh); this.data.Dh = CollapseVector(this.data.Dh); end

 if ~isscalar(this.data.Area); this.data.Area = CollapseVector(this.data.Area); end

 end

 else

 % Body is actually an environment

 this.data.T = this.Body.Temperature;

 this.data.P = this.Body.Pressure;

 this.data.h = this.Body.h;

 if isempty(this.Body.matl)

 this.Body.matl = Material('AIR');

 end

 this.data.rho = this.data.P/(this.data.T*this.Body.matl.R);

 end

 end

 function addFace(this,Face)

 this.Faces(end+length(Face):-1:end+1) = Face;

 end

 function updateisDynamic(this)

 if length(this.xmin) > 1 || length(this.xmax) > 1 || length(this.ymin) > 1 ||

length(this.ymax) > 1 % this.Type ~= enumNType.SN

 this.isDynamic = true;

 else

 for Face = this.Faces

 if Face.isDynamic

 this.isDynamic = true;

 return;

 end

 end

 this.isDynamic = false;

 end

 end

 function var = total_vol(this)

 var = (pi*(this.xmax^2 - this.xmin^2)).*(this.ymax - this.ymin);

 end

435

 function var = vol(this)

 if this.Type == enumNType.SN

 if this.useStoredVolume

 var = this.StoredVolume;

 else

 var = pi.*(this.xmax.^2-this.xmin.^2)*...

 (this.ymax(1)-this.ymin(1));

 end

 else

 if ~isa(this.Body,'Body')

 P = 1;

 elseif isempty(this.Body.Matrix)

 P = 1;

 else

 if isfield(this.Body.Matrix.data,'Porosity')

 P = this.Body.Matrix.data.Porosity;

 else

 P = 1;

 end

 end

 var = P*pi.*(this.xmax.^2-this.xmin.^2)*...

 (this.ymax-this.ymin);

 var = CollapseVector(var);

 end

 end

 function recalc_Dh(this)

 if this.Type ~= enumNType.SN && this.Type ~= enumNType.EN

 % Dh = 4 * Volume / Surface Area

 V = this.vol();

% for fc = this.Faces

% if fc.Type == enumFType.Mix

% S_total = S_total + fc.data.Area;

% end

% end

% S_total = 2*pi*(this.xmax^2 - this.xmin^2) + ... Top & Bottom

% 2*pi*(this.xmax + this.xmin)*(this.ymax - this.ymin); % Sides

 S_total = 2*pi*(this.xmin + this.xmax)*(this.ymax-this.ymin) + ...

 2*pi*(this.xmax^2-this.xmin^2);

 if isempty(this.Body.Matrix) || ...

 strcmp(this.Body.Matrix.name,'Undefined Matrix') == 1

 for fc = this.Faces

 if fc.Type == enumFType.Gas

 S_total = S_total - fc.data.Area;

 end

 end

 else

 if isfield(this.Body.Matrix.data,'ignore_canister') && ...

 this.Body.Matrix.data.ignore_canister

 S_total = 0;

 includeGas = false;

 else

 includeGas = true;

 end

 for fc = this.Faces

 if fc.Type == enumFType.Mix

 % Include only matrix faces when it is a matrix, as the heat

 % ... exchange equations assume that it is just the heat

 % ... exchanger geometry.

 if fc.Nodes(1).Body == fc.Nodes(2).Body

 S_total = S_total + fc.data.Area;

 end

 end

 if includeGas

 if fc.Type == enumFType.Gas

 S_total = S_total - fc.data.Area;

 end

 end

 end

 end

436

 Dh = 4*V./S_total; % 4*A*L/(P*L)

 this.data.Dh = CollapseVector(Dh);

 end

 end

 function center = get.minCenterCoords(this)

 if ~this.isminCenterCoordsCalcd || isempty(this.stateminCenterCoords)

 if this.isDynamic

 this.stateminCenterCoords = ...

 Pnt2D(0.5*(this.xmin+this.xmax),...

 0.5*(min(this.ymin)+min(this.ymax)));

 else

 this.stateminCenterCoords = ...

 Pnt2D(0.5*(this.xmin+this.xmax),...

 0.5*(this.ymin+this.ymax));

 end

 end

 if isa(this.Body,'Body')

 center = this.Body.Group.TranslatePnt2D(this.stateminCenterCoords);

 else

 center = this.stateminCenterCoords;

 end

 end

 function center = CenterCoords(this,Inc)

 if this.isDynamic

 if isscalar(this.ymin)

 if isscalar(this.ymax)

 center = this.minCenterCoords;

 else

 center = ...

 Pnt2D(0.5*(this.xmin+this.xmax), ...

 0.5*(this.ymin+this.ymax(Inc)));

 end

 else

 if isscalar(this.ymax)

 center = ...

 Pnt2D(0.5*(this.xmin+this.xmax), ...

 0.5*(this.ymin(Inc)+this.ymax));

 else

 center = ...

 Pnt2D(0.5*(this.xmin+this.xmax), ...

 0.5*(this.ymin(Inc)+this.ymax(Inc)));

 end

 end

 else

 center = this.stateminCenterCoords;

 end

 if isa(this.Body,'Body')

 center = this.Body.Group.TranslatePnt2D(center);

 else

 center = this.stateminCenterCoords;

 end

 end

 function Struct = getGrouping(this,Struct,n,sourceFace)

 % if this node is a transition, stop this recursion

 if nargin == 4

 for Fc = this.Faces

 if isfield(Fc.data,'K12') || ...

 (isfield(Fc.data,'dx') && ...

 abs(Fc.data.dx - sourceFace.data.dx)/sourceFace.data.dx > 0.1)

 return;

 end

 end

 this.data.Group = n;

 Struct.Nds = [Struct.Nds this];

 elseif nargin == 3

 val = 0;

 for Fc = this.Faces

 if isfield(Fc.data,'dx')

 if isscalar(val)

 if isscalar(Fc.data.dx)

437

 if Fc.data.dx > val

 val = Fc.data.dx;

 end

 else

 val = max([val(ones(size(Fc.data.dx))); Fc.data.dx]);

 end

 else

 if isscalar(Fc.data.dx)

 val(val<Fc.data.dx) = Fc.data.dx;

 else

 val = max([val; Fc.data.dx]);

 end

 end

 end

 end

 if isscalar(val) && val == 0

 return;

 end

 for Fc = this.Faces

 if isfield(Fc.data,'K12') || ...

 (isfield(Fc.data,'dx') && ...

 any(abs(Fc.data.dx - val)./val > 0.1))

 return;

 end

 end

 end

 for Fc = this.Faces

 if ~isfield(Fc.data,'Group') && isfield(Fc.data,'dx')

 Struct.Fcs = [Struct.Fcs Fc];

 end

 end

 for i = 1:length(this.Nodes)

 if isfield(this.Nodes(i).data,'P') && isfield(this.Faces(i).data,'dx')

 Struct = getGrouping(this.Nodes(i),Struct,n,this.Faces(i));

 end

 end

 end

 function value = getArea(this,ind,Connection)

 if ~isa(this.Body,'Body')

 value = 1e8;

 return;

 end

 if this.Body.divides(1) ~= this.Body.divides(2) || nargin < 3

 if isfield(this.data,'Area')

 if isscalar(this.data.Area)

 value = this.data.Area;

 else

 if ind == 0

 value = this.data.Area(end);

 else

 value = this.data.Area(ind);

 end

 end

 else

 value = 0;

 end

 else

 switch Connection.Orient

 case enumOrient.Vertical

 if ind == 0

 imin = 1;

 imax = 1;

 else

 imin = min(length(this.ymin),ind);

 imax = min(length(this.ymax),ind);

 end

 value = 2*pi*Connection.x*(this.ymax(imax)-this.ymin(imin));

 case enumOrient.Horizontal

 value = pi*(this.xmax^2-this.xmin^2);

 end

438

 end

 end

 function istouching = isTouching(this,other)

 istouching = ~(this.xmin > other.xmax || this.xmax < other.xmin) && ...

 ~(this.ymin(1) > other.ymax(1) || this.ymax(1) < other.ymin(1));

 end

 function totalGasSurfaceArea = getTotalGasSurfaceArea(this,Orientation)

 if isempty(this.data.WSNG) || length(this.data.WSNG.members) ~= 1

 for fc = this.Faces

 if fc.Type == enumFType.Mix && fc.Orient == Orientation

 totalGasSurfaceArea = totalGasSurfaceArea + fc.data.Area;

 end

 end

 else

 % Consider the total area, because this is a corner

 for fc = this.Faces

 if fc.Type == enumFType.Mix

 totalGasSurfaceArea = totalGasSurfaceArea + fc.data.Area;

 end

 end

 end

 end

 end

end

439

Node Contact

The node contact is a class that includes the following functionality:

A constructor.

A function used for calculating the periods of time where the two included nodes are touching.

A set of functions of calculating the face properties.

A set of functions that allow for masking or subtracting of two node contacts.

classdef NodeContact < handle

 %NODECONTACT Summary of this class goes here

 % Detailed explanation goes here

 properties

 Node Node;

 Start double = 0;

 End double = 0;

 Type enumFType;

 Connection Connection;

 data struct;

 end

 methods

 function this = NodeContact(Node,Start,End,Type,Connection)

 if nargin == 0; return; end

 %NODECONTACT Construct an instance of this class

 % Detailed explanation goes here

 this.Node = Node;

 this.Start = Start;

 this.End = End;

 this.Type = Type;

 this.Connection = Connection;

 end

 function ActiveTimes = activeTimes(NC1,NC2)

 ActiveTimes = ~((NC1.Start >= NC2.End) + (NC2.Start >= NC1.End));

 if ~any(ActiveTimes)

 ActiveTimes = logical([]);

 return;

 end

 if all(ActiveTimes)

 ActiveTimes = true;

 return;

 end

 end

 function [Area] = getArea(NC1,NC2,ActiveTimes)

 if nargin < 3

 ActiveTimes = NC1.activeTimes(NC2);

 end

 ActiveTimes = logical(ActiveTimes);

 if isscalar(ActiveTimes)

 % scalar: s1,e1,s2,e2

 if NC1.Connection.Orient == enumOrient.Vertical

 if isscalar(NC1.Start)

 if isscalar(NC2.Start)

 TheStart = max([NC1.Start NC2.Start]);

 else

 TheStart = NC2.Start;

 TheStart(TheStart<NC1.Start) = NC1.Start;

 end

 else

440

 if isscalar(NC2.Start)

 TheStart = NC1.Start;

 TheStart(TheStart<NC2.Start) = NC2.Start;

 else

 TheStart = max([NC1.Start; NC2.Start]);

 end

 end

 if isscalar(NC1.End)

 if isscalar(NC2.End)

 TheEnd = min([NC1.End NC2.End]);

 else

 TheEnd = NC2.End;

 TheEnd(TheEnd>NC1.End) = NC1.End;

 end

 else

 if isscalar(NC2.End)

 TheEnd = NC1.End;

 TheEnd(TheEnd>NC2.End) = NC2.End;

 else

 TheEnd = min([NC1.End; NC2.End]);

 end

 end

 Area = 2*pi*NC1.Connection.x*(TheEnd-TheStart);

 else

 Area = pi*(min([NC1.End NC2.End])^2-max([NC1.Start NC2.Start])^2);

 end

 else % This case will only include Vertical because Horizontal never changes activation

 % Vertical

 if isscalar(NC1.Start)

 if isscalar(NC2.Start)

 TheStart = max([NC1.Start NC2.Start]);

 else

 TheStart = NC2.Start;

 TheStart(TheStart<NC1.Start) = NC1.Start;

 end

 else

 if isscalar(NC2.Start)

 TheStart = NC1.Start;

 TheStart(TheStart<NC2.Start) = NC2.Start;

 else

 TheStart = max([NC1.Start; NC2.Start]);

 end

 end

 if isscalar(NC1.End)

 if isscalar(NC2.End)

 TheEnd = min([NC1.End NC2.End]);

 else

 TheEnd = NC2.End;

 TheEnd(TheEnd>NC1.End) = NC1.End;

 end

 else

 if isscalar(NC2.End)

 TheEnd = NC1.End;

 TheEnd(TheEnd>NC2.End) = NC2.End;

 else

 TheEnd = min([NC1.End; NC2.End]);

 end

 end

 Area = 2*pi*NC1.Connection.x*(TheEnd-TheStart);

 Area(~ActiveTimes) = 0;

 end

 if NC1.Node.Type ~= enumNType.SN && NC2.Node.Type ~= enumNType.SN

 P = 1;

 for NC = [NC1 NC2]

 if isa(NC.Node.Body,'Body')

 if ~isempty(NC.Node.Body.Matrix)

 Mat = NC.Node.Body.Matrix;

 if ~strcmp(Mat.name,'Undefined Matrix') && ...

 isfield(Mat.data,'Porosity')

 P = min(P,Mat.data.Porosity);

 end

441

 end

 end

 end

 if P ~= 1

 Area = Area*P;

 end

 end

 end

 function [U] = getConductance(NC1,NC2,ActiveTimes)

 U = 0;

 ActiveTimes = logical(ActiveTimes);

 if isfield(NC1.Node.data,'matl'); matl1 = NC1.Node.data.matl;

 else; matl1 = NC1.Node.Body.matl;

 end

 if isfield(NC2.Node.data,'matl'); matl2 = NC2.Node.data.matl;

 else; matl2 = NC2.Node.Body.matl;

 end

 if isscalar(ActiveTimes)

 % Static

 % scalar: s1,e1,s2,e2

 L = abs(min([NC1.End NC2.End])-max([NC1.Start NC2.Start]));

 if NC1.Connection.Orient == enumOrient.Vertical

 if NC1.Node.Type == enumNType.SN % Solid Node

 U = AnnularConduction(...

 NC1.Node, NC1.Connection.x,...

 L, matl1);

 if U == 0

 return;

 end

 elseif NC1.Node.Type == enumNType.EN

 U = 2*pi*NC1.Connection.x*L*NC1.Node.Body.h;

 end

 if NC2.Node.Type == enumNType.SN % Solid Node

 if U ~= 0

 U = 1/(1/U + 1/...

 AnnularConduction(...

 NC2.Node, NC2.Connection.x,...

 L, matl2));

 else

 U = AnnularConduction(...

 NC2.Node, NC2.Connection.x,...

 L, matl2);

 end

 elseif NC2.Node.Type == enumNType.EN

 if U ~= 0

 U = 1/(1/U + 1/(2*pi*NC2.Connection.x*L*NC2.Node.Body.h));

 else

 U = 2*pi*NC2.Connection.x*L*NC2.Node.Body.h;

 end

 end

 else

 r1 = max([NC1.Start NC2.Start]);

 r2 = r1 + L;

 if NC1.Node.Type == enumNType.SN % Solid Node

 U = LinearConduction(NC1.Node, r1, r2, matl1);

 if U == 0; return; end

 elseif NC1.Node.Type == enumNType.EN

 U = 2*pi*(r2^2-r1^2)*NC1.Node.Body.h;

 end

 if NC2.Node.Type == enumNType.SN % Solid Node

 if U ~= 0

 U = 1/(1/U + 1/LinearConduction(NC2.Node, r1, r2, matl2));

 else

 U = LinearConduction(NC2.Node, r1, r2, matl2);

 end

 elseif NC2.Node.Type == enumNType.EN

 if U ~= 0

 U = 1/(1/U + 1/(2*pi*(r2^2-r1^2)*NC2.Node.Body.h));

 else

 U = 2*pi*(r2^2-r1^2)*NC2.Node.Body.h;

 end

442

 end

 end

 return;

 else

 % Dynamic - Vertical Only

 TheStart = zeros(1,Frame.NTheta);

 TheEnd = zeros(1,Frame.NTheta);

 if isscalar(NC1.Start)

 if isscalar(NC2.Start)

 TheStart = max([NC1.Start NC2.Start]);

 else

 TheStart = NC2.Start;

 TheStart(ActiveTimes & TheStart<NC1.Start) = NC1.Start;

 end

 else

 if isscalar(NC2.Start)

 TheStart = NC1.Start;

 TheStart(ActiveTimes & TheStart<NC2.Start) = NC2.Start;

 else

 TheStart(ActiveTimes) = max([NC1.Start(ActiveTimes); NC2.Start(ActiveTimes)]);

 end

 end

 if isscalar(NC1.End)

 if isscalar(NC2.End)

 TheEnd = min([NC1.End NC2.End]);

 else

 TheEnd = NC2.End;

 TheEnd(ActiveTimes & TheEnd>NC1.End) = NC1.End;

 end

 else

 if isscalar(NC2.End)

 TheEnd = NC1.End;

 TheEnd(ActiveTimes & TheEnd>NC2.End) = NC2.End;

 else

 TheEnd(ActiveTimes) = min([NC1.End(ActiveTimes); NC2.End(ActiveTimes)]);

 end

 end

 U = 2*pi*NC1.Connection.x*(TheEnd-TheStart);

 U(~ActiveTimes) = 0;

 % Actual Conduction Modifier

 r = NC1.Connection.x;

 L = U./(2*pi*r);

 if NC1.Node.Type == enumNType.SN

 if NC2.Node.Type == enumNType.SN

 % Both are solid

 U = 1./(1./AnnularConduction(NC1.Node,r,L,matl1) + ...

 1./AnnularConduction(NC2.Node,r,L,matl2));

 else

 % NC1 is the solid

 U = AnnularConduction(NC1.Node,r,L,matl1);

 end

 else

 % NC2 must be solid

 U = AnnularConduction(NC2.Node,r,L,matl2);

 end

 end

 end

 function [Dist] = getDistance(NC1,NC2,ActiveTimes)

% Get distance to center of face

 c = getCenterOfOverlapRegion(NC1.Start,NC2.Start,NC1.End,NC2.End);

 switch NC1.Connection.Orient

 case enumOrient.Vertical

 Dist = 0;

 for NC = [NC1 NC2]

 if NC.Node.Type ~= enumNType.EN

 cx = (NC.Node.xmin + NC.Node.xmax)./2;

 cy = (NC.Node.ymin + NC.Node.ymax)./2;

 Dist = Dist + sqrt(...

 (cx - NC.Connection.x).^2 + ...

 (cy - c).^2);

 end

443

 end

 case enumOrient.Horizontal

 Dist = 0.0;

 for NC = [NC1 NC2]

 if NC.Node.Type ~= enumNType.EN

 cx = (NC.Node.xmin + NC.Node.xmax)./2;

 cy = (NC.Node.ymin + NC.Node.ymax)./2;

 if ~isempty(NC.Connection.RefFrame)

 Dist = Dist + sqrt(...

 (cx - c).^2 + ...

 (cy - NC.Connection.x - ...

 NC.Connection.RefFrame.Positions).^2);

 else

 Dist = Dist + sqrt(...

 (cx - c).^2 + ...

 (cy - NC.Connection.x).^2);

 end

 end

 end

 end

 Dist(~ActiveTimes) = 1e8;

 Dist = CollapseVector(Dist);

 end

 function [Dist] = getStabilityDistance(NC1,NC2,ActiveTimes)

 Dist = getDistance(NC1,NC2,ActiveTimes);

 end

 function [Dh] = getDh(NC1,NC2,ActiveTimes)

 % Determine if it is a transition or not (if not, define Dh)

 if NC1.Connection.Orient == NC2.Connection.Orient

 if isscalar(ActiveTimes)

 switch NC1.Connection.Orient

 case enumOrient.Vertical

 if all(NC1.Node.ymin == NC2.Node.ymin) && ...

 all(NC1.Node.ymax == NC2.Node.ymax)

 Dh = 2*(NC1.End - NC1.Start);

 else

 if isscalar(NC1.End)

 if isscalar(NC2.End)

 D2 = min([NC1.End NC2.End]);

 else

 D2 = NC2.End;

 D2(D2 > NC1.End) = NC1.End;

 end

 else

 if isscalar(NC2.End)

 D2 = NC1.End;

 D2(D2 > NC2.End) = NC2.End;

 else

 D2 = min([NC1.End; NC2.End]);

 end

 end

 if isscalar(NC1.Start)

 if isscalar(NC2.Start)

 D1 = max([NC1.Start NC2.Start]);

 else

 D1 = NC2.Start;

 D1(D1 < NC1.Start) = NC1.Start;

 end

 else

 if isscalar(NC2.Start)

 D1 = NC1.Start;

 D1(D1 < NC2.Start) = NC2.Start;

 else

 D1 = max([NC1.Start; NC2.Start]);

 end

 end

 Dh = 2*(D2 - D1);

 end

 case enumOrient.Horizontal

 if all(NC1.Node.xmin == NC2.Node.xmin) && ...

 all(NC1.Node.xmax == NC2.Node.xmax)

444

 Dh = 2*(NC1.End - NC2.Start);

 else

 if isscalar(NC1.End)

 if isscalar(NC2.End)

 D2 = min([NC1.End NC2.End]);

 else

 D2 = NC2.End;

 D2(D2 > NC1.End) = NC1.End;

 end

 else

 if isscalar(NC2.End)

 D2 = NC1.End;

 D2(D2 > NC2.End) = NC2.End;

 else

 D2 = min([NC1.End; NC2.End]);

 end

 end

 if isscalar(NC1.Start)

 if isscalar(NC2.Start)

 D1 = max([NC1.Start NC2.Start]);

 else

 D1 = NC2.Start;

 D1(D1 < NC1.Start) = NC1.Start;

 end

 else

 if isscalar(NC2.Start)

 D1 = NC1.Start;

 D1(D1 < NC2.Start) = NC2.Start;

 else

 D1 = max([NC1.Start; NC2.Start]);

 end

 end

 Dh = 2*(D2 - D1);

 end

 end

 else

 switch NC1.Connection.Orient

 case enumOrient.Vertical

 if isscalar(NC1.End)

 if isscalar(NC2.End)

 D2 = min([NC1.End NC2.End]);

 else

 D2 = NC2.End;

 D2(D2 > NC1.End) = NC1.End;

 end

 else

 if isscalar(NC2.End)

 D2 = NC1.End;

 D2(D2 > NC2.End) = NC2.End;

 else

 D2 = min([NC1.End; NC2.End]);

 end

 end

 if isscalar(NC1.Start)

 if isscalar(NC2.Start)

 D1 = max([NC1.Start NC2.Start]);

 else

 D1 = NC2.Start;

 D1(D1 < NC1.Start) = NC1.Start;

 end

 else

 if isscalar(NC2.Start)

 D1 = NC1.Start;

 D1(D1 < NC2.Start) = NC2.Start;

 else

 D1 = max([NC1.Start; NC2.Start]);

 end

 end

 Dh = 2*(D2 - D1);

 Dh(Dh<0) = 0;

 case enumOrient.Horizontal

445

 if isscalar(NC1.End)

 if isscalar(NC2.End)

 D2 = min([NC1.End NC2.End]);

 else

 D2 = NC2.End;

 D2(D2 > NC1.End) = NC1.End;

 end

 else

 if isscalar(NC2.End)

 D2 = NC1.End;

 D2(D2 > NC2.End) = NC2.End;

 else

 D2 = min([NC1.End; NC2.End]);

 end

 end

 if isscalar(NC1.Start)

 if isscalar(NC2.Start)

 D1 = max([NC1.Start NC2.Start]);

 else

 D1 = NC2.Start;

 D1(D1 < NC1.Start) = NC1.Start;

 end

 else

 if isscalar(NC2.Start)

 D1 = NC1.Start;

 D1(D1 < NC2.Start) = NC2.Start;

 else

 D1 = max([NC1.Start; NC2.Start]);

 end

 end

 Dh = 2*(D2 - D1);

 Dh(Dh<0) = 0;

 end

 end

 else

 % This should never happen

 fprintf('XXX Perpendicular NodeContacts in Hydraulic Diameter Calc XXX\n');

 end

 end

 function [keep] = AlignedMask(M,T,b1,b2)

 Ms = M.Start;

 Me = M.End;

 N = max([length(Ms) length(Me) length(b1) length(b2)]);

 if nargin > 2

 % Test lower bounds of Mask

 for i = 1:N

 msi = min(length(Ms),i);

 mei = min(length(Me),i);

 b1i = min(length(b1),i);

 b2i = min(length(b2),i);

 if Ms(msi) >= b2(b2i)

 Ms(msi) = inf;

 Me(mei) = inf;

 else

 if Ms(msi) < b1(b1i)

 Ms(msi) = b1(b1i);

 end

 end

 end

 % Test upper bounds of Mask

 for i = 1:N

 msi = min(length(Ms),i);

 mei = min(length(Me),i);

 b1i = min(length(b1),i);

 b2i = min(length(b2),i);

 if Me(mei) ~= inf

 if Me(mei) <= b1(b1i)

 Me(mei) = -inf;

 Ms(msi) = -inf;

 else

 if Me(mei) > b2(b2i)

446

 Me(mei) = b2(b2i);

 end

 end

 end

 end

 end

 keep = true;

 ActiveTimes = ~((Ms >= T.End) + (T.Start >= Me));

 if any(ActiveTimes)

 if isscalar(ActiveTimes)

 if Ms <= T.Start

 T.Start = Me;

 elseif Me >= T.End

 T.End = Ms;

 else

 temp = T.End;

 T.End = Ms;

 NewNC = NodeContact(...

 T.Node, Me, temp, T.Type, T.Connection);

 if NewNC.Start < NewNC.End

 T.Connection.addNodeContacts(NewNC);

 end

 end

 if T.Start >= T.End

 keep = false;

 return;

 end

 else

 for i = 1:length(ActiveTimes)

 ms = min(length(Ms),i);

 me = min(length(Me),i);

 ts = min(length(T.Start),i);

 te = min(length(T.End),i);

 if Ms(ms) <= T.Start(ts)

 T.Start(ts) = Me(me);

 elseif Me(me) >= T.End(te)

 T.End(te) = Ms(ms);

 else

 temp = T.End(te);

 T.End(te) = Ms(ms);

 NewNC = NodeContact(...

 T.Node, Me(me), temp, T.Type, T.Connection);

 if NewNC.Start < NewNC.End

 T.Connection.addNodeContacts(NewNC);

 end

 end

 if T.Start(ts) >= T.End(te)

 T.Start(ts) = T.End(te);

 end

 end

 if all(T.Start == T.End)

 keep = false;

 return;

 end

 end

 end

 end

 function [keep1, keep2] = MutualMask(M1,M2)

 Mask1 = CopyClass(M1);

 Mask2 = CopyClass(M2);

 keep1 = Mask1.AlignedMask(M2,-inf,inf);

 keep2 = Mask2.AlignedMask(M1,-inf,inf);

 end

 end

end

447

NonConnection

The non-connection is a class that includes a constructor and a name generation function.

classdef NonConnection

 %NONCONNECTION Summary of this class goes here

 % Detailed explanation goes here

 properties

 Body1;

 Body2;

 end

 properties (Dependent)

 name;

 end

 methods

 function this = NonConnection(B1,B2)

 if nargin == 0

 return;

 end

 this.Body1 = B1;

 this.Body2 = B2;

 end

 function name = get.name(this)

 name = [this.Body1.name ' XXX ' this.Body2.name];

 end

 end

end

448

Position

The position is class that contains a constructor, plus operator and get/set interface.

classdef Position < handle

 %POSITION Summary of this class goes here

 % Detailed explanation goes here

 properties

 x double = 0;

 y double = 0;

 Rot double = pi/2;

 end

 properties (Dependent)

 name;

 end

 methods

 function this = Position(x,y,Rot)

 switch nargin

 case 1

 this.x = x;

 case 2

 this.x = x;

 this.y = y;

 case 3

 this.x = x;

 this.y = y;

 this.Rot = Rot;

 end

 end

 function newPosition = plus(base,offset)

 newPosition.x = base.x + offset.x;

 newPosition.y = base.y + offset.y;

 newPosition.Rot = base.Rot;

 newPosition.Model = base.Model;

 end

 function name = get.name(this)

 name = sprintf('x: %f.0 y: %f.0 Rot: %f.00',this.x,this.y,this.Rot);

 end

 function Item = get(this,PropertyName)

 switch PropertyName

 case 'x'

 Item = this.x;

 case 'y'

 Item = this.y;

 case 'Theta'

 Item = this.Rot;

 otherwise

 fprintf(['XXX Position GET Inteface for ' PropertyName ' is not found XXX\n']);

 end

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'x'

 this.x = Item;

 case 'y'

 this.y = Item;

 case 'Theta'

 this.Rot = Item;

 otherwise

 fprintf(['XXX Position SET Inteface for ' PropertyName ' is not found XXX\n']);

 end

 end

 end

449

end

450

Pressure Contact

The pressure contact is a class that contains a constructor and a equals operator.

classdef PressureContact

 %FORCECONTACT Summary of this class goes here

 % Detailed explanation goes here

 properties

 ConverterIndex;

 MechanismIndex;

 Area;

 GasNode;

 end

 methods

 function this = PressureContact(ConverterIndex,MechanismIndex,Area,Node)

 %FORCECONTACT Construct an instance of this class

 % Detailed explanation goes here

 this.ConverterIndex = ConverterIndex;

 this.MechanismIndex = MechanismIndex;

 this.Area = Area;

 this.GasNode = Node;

 end

 function iseq = equal(this,other)

 if this.MechanismIndex == other.MechanismIndex && ...

 this.Area == other.Area && this.GasNode == other.GasNode

 iseq = true;

 else

 iseq = false;

 end

 end

 end

end

451

PVoutput

The PVoutput is a class that contains the following functionality:

A constructor.

A get / set interface.

A set of property update functions called during discretization.

A function called during destruction.

A set of functions for getting data during recording.

A plotting function for output.

classdef PVoutput < handle

 %UNTITLED Summary of this class goes here

 % Detailed explanation goes here

 properties

 Body Body;

 name;

 % A series of node indexes over

 % ... which the pressure and volume is calculated

 Nodes cell;

 RegionNodes;

 Region;

 Model Model;

 P double;

 V double;

 Power double;

 Fig = [];

 end

 methods

 function this = PVoutput(Body)

 if nargin == 1

 Body.addPVoutput(this);

 this.Body = Body;

 this.Model = Body.Group.Model;

 this.Nodes = [];

 this.P = zeros(1,Frame.NTheta-1);

 this.V = this.P;

 % Define the name

 this.name = getProperName('PV output');

 end

 end

 function Item = get(this,PropertyName)

 switch PropertyName

 case 'name'

 Item = this.name;

 case 'Source Body/Region'

 Item = this.Body;

 otherwise

 fprintf(['XXX PVoutput GET Inteface for ' PropertyName ' is not found XXX\n']);

 end

 end

 function set(this,PropertyName,Item)

452

 switch PropertyName

 case 'name'

 this.name = Item;

 case 'Source Body/Nodes'

 if ~isempty(Item)

 this.Body = Item;

 this.Body.change();

 end

 otherwise

 fprintf(['XXX Connection SET Inteface for ' PropertyName ' is not found XXX\n']);

 return;

 end

 end

 function update(this,Region)

 % Grab a node from the body

 this.RegionNodes = [];

 this.Nodes = cell(0);

 if this.Body.isDiscretized()

 i = 1;

 this.Region = Region(this.Body.Nodes(1).index);

 consideredbodies = Body.empty;

 for iGroup = this.Model.Groups

 for iBody = iGroup.Bodies

 if ~any(consideredbodies == iBody) && ...

 iBody.matl.Phase == enumMaterial.Gas && ...

 iBody.isDiscretized() && ...

 Region(iBody.Nodes(1).index) == this.Region

 % get this.Nodes{i}(j)

 j = 1;

 otherbodies = iBody;

 k = 1;

 while k <= length(otherbodies)

 for nd = otherbodies(k).Nodes % Search this body & any other bodies

 if nd.Type ~= enumNType.SN && ~isscalar(nd.vol())

 this.Nodes{i}(j) = nd.index; j = j + 1;

 for fc = nd.Faces

 if fc.Type == enumFType.Gas && ...

 fc.Nodes(1).Body ~= fc.Nodes(2).Body

 if fc.Nodes(1) == nd

 if ~isscalar(fc.Nodes(2).vol()) && ...

 ~any(otherbodies == fc.Nodes(2).Body)

 otherbodies(end+1) = fc.Nodes(2).Body;

 end

 else

 if ~isscalar(fc.Nodes(1).vol()) && ...

 ~any(otherbodies == fc.Nodes(1).Body)

 otherbodies(end+1) = fc.Nodes(1).Body;

 end

 end

 end

 end

 end

 end

 k = k + 1;

 end

 consideredbodies(end+1:end+length(otherbodies)) = otherbodies(:);

 % get this.RegionNodes(this.Nodes{i}(:));

 if j > 1

 i = i + 1;

 end

 end

 end

 end

 indexes = 1:length(Region);

 this.RegionNodes = indexes(Region(end) ~= this.Region);

 else

 this.Nodes = cell(0);

 return;

 end

453

 end

 function reset(this)

 this.P = [];

 this.V = [];

 end

 function deReference(this)

 iModel = this.Model;

 for i = length(iModel.PVoutputs):-1:1

 if iModel.PVoutputs(i) == this

 iModel.PVoutputs(i) = [];

 break;

 end

 end

 if ~isempty(this.Body) && isvalid(this.Body)

 for i = length(this.Body.PVoutputs):-1:1

 if this.Body.PVoutputs(i) == this

 this.Body.PVoutputs(i) = [];

 break;

 end

 end

 this.Body.change();

 end

 this.delete();

 end

 function isequal = equal(this,other)

 isequal = (this.Body == other.Body);

 end

 function getData(this,Sim)

 if isempty(this.P)

 this.P = zeros(Frame.NTheta-1,length(this.Nodes));

 end

 index = Sim.Inc;

 for i = 1:length(this.Nodes)

 indV = (Sim.vol(this.Nodes{i})' + Sim.old_vol(this.Nodes{i})')/2;

 sumV = sum(sum(indV));

 this.P(index,i) = sum(indV.*Sim.P(this.Nodes{i})')/sumV;

 this.V(index,i) = sumV;

 end

 end

 function updatePlot(this)

 if isempty(this.Fig) || ~isvalid(this.Fig) || this.Fig < 1

 this.Fig = figure();

 end

 figure(this.Fig);

 title('Pressure vs Volume Diagram');

 xlabel('Volume (m^3)');

 ylabel('Pressure (Pa)');

 set(gcf,'color','w');

 a = this.Fig.CurrentAxes;

 WTotal = 0;

 Text = '';

 for i = 1:length(this.Nodes)

 pV = zeros(size(this.V,1)+1,1); pP = pV;

 pV(1:end-1) = this.V(:,i); pV(end) = this.V(1,i);

 pP(1:end-1) = this.P(:,i); pP(end) = this.P(1,i);

 W = PowerFromPV(pP,pV);

 WTotal = WTotal + W;

 if W > 0; Color = 'b'; % Color is Blue

 else; Color = 'r'; % Color is Red

 end

 plot(pV,pP,'Color',Color,'LineStyle','-');

 hold on;

 plot(pV(1),pP(1),'Color','k','Marker','o');

 end

 this.Power = WTotal;

 Text = [Text 'Total = ' num2str(WTotal,4) 'Joules/Cycle'];

454

 %fprintf([num2str(WTotal) '\n']);

 text(a.XLim(1)+0.01*(a.XLim(2)-a.XLim(1)),...

 a.YLim(2)-0.05*(a.YLim(2)-a.YLim(1)), Text);

 drawnow;

 hold off;

 end

 function plotData(this,is_saved,ModelName)

 if ~(isempty(this.Fig) || ~isvalid(this.Fig) || this.Fig < 1)

 close(this.Fig);

 end

 oldfigure = gcf;

 oldaxes = gca;

 a = gca;

 updatePlot(this);

 h = gcf;

 xlabel('Volume (m^3)');

 ylabel('Pressure (Pa)');

 if is_saved

 frame = getframe(h);

 im = frame2im(frame);

 [imind,cm] = rgb2ind(im,256);

 data = struct(...

 'Name',this.name,...

 'IndependentVariable',this.V,...

 'DependentVariable',this.P);

 if isempty(this.Body.Group.Model.outputPath)

 str = [this.name '_' ModelName];

 else

 str = [this.Body.Group.Model.outputPath '\' ...

 this.name '_' ModelName];

 end

 str = replace(str,':',' -');

 save([str '.mat'],'data');

 imwrite(imind,cm,[str '.jpg']);

 end

 close(h);

 figure(oldfigure);

 axes(oldaxes);

 end

 end

end

455

Sensor

A sensor is a class that contains the following functionality:

A constructor.

A dereference function (called prior to deletion).

A get / set interface.

An update function called during discretization.

A set of functions for getting data during recording.

A plotting function for output.

A display function for displaying on the GUI.

classdef Sensor < handle

 %UNTITLED Summary of this class goes here

 % Detailed explanation goes here

 properties

 name;

 Body;

 Model;

 LocationStyle;

 averaging; % 1 for phase based, 2 for time based

 IndependentVariable; % May be time or angle

 DataType; % Cell Array

 Data; % Cell Array

 dimensions; % 1 for point, 2 for line

 PntCount; % Number of elements along a line

 Nodes; % Vector

 Interp; % Matrix

 % Derived Components

 PlotCoordinates; % Vector 1xN

 LocalCoordinates;

 index = 0; % adding to the data set

 GUIObjects;

 end

 methods

 function this = Sensor(Modelobj,Body)

 if nargin == 2

 this.Body = Body;

 this.Model = Modelobj;

 this.index = 0;

 % Define the name

 this.name = getProperName('Sensor');

 % Define the location

 notdone = true;

 source = {...

 'Body Center','Body xmax',...

 'Body xmin','Body ymax',...

456

 'Body ymin','Body xaxis',...

 'Body yaxis'};

 while notdone

 index = listdlg('PromptString','What is the position of this Senso?',...

 'SelectionMode','single',...

 'ListString',source);

 if index ~= 0

 notdone = false;

 end

 end

 this.LocationStyle = source{index};

 % Define the independent variable

 notdone = true;

 source = {'Phase','Time'};

 while notdone

 index = listdlg('PromptString','What is the independent variable?',...

 'SelectionMode','single',...

 'ListString',source);

 if index ~= 0

 notdone = false;

 end

 end

 this.averaging = index;

 % Define the dependent variable

 notdone = true;

 source = {'T','P','turb'};

 while notdone

 index = listdlg('PromptString','What is the dependent variable?',...

 'SelectionMode','single',...

 'ListString',source);

 if index ~= 0

 notdone = false;

 end

 end

 this.DataType = source{index};

 % Define the point count

 switch this.LocationStyle

 case {'Body xaxis','Body yaxis'}

 notdone = true;

 while notdone

 answer = inputdlg('How many sample points along the line?',...

 'Integer only',[1 50]);

 test = str2double(answer);

 if ~isnan(test)

 if floor(test) == test

 this.PntCount = test-1;

 notdone = false;

 end

 end

 end

 end

 Body.addSensor(this);

 this.update();

 end

 end

 function deReference(this)

 if ~isempty(this.Model) && isvalid(this.Model)

 for i = length(this.Model.Sensors):-1:1

 if this.Model.Sensors(i) == this

 this.Model.Sensors(i) = [];

 break;

 end

 end

 end

 if ~isempty(this.Body) && isvalid(this.Body)

 for i = length(this.Body.Sensors):-1:1

 if this.Body.Sensors(i) == this

 this.Body.Sensors(i) = [];

457

 break;

 end

 end

 this.Body.change();

 end

 this.removeFromFigure(gca);

 this.delete();

 end

 function isit = isValid(this)

 isit = isvalid(this) && ~isempty(this.Body) && ...

 ~isempty(this.Model) && isvalid(this.Body) && isvalid(this.Model);

 end

 function item = get(this,PropertyName)

 switch PropertyName

 case 'Name'

 item = this.name;

 case 'Samples'

 item = this.PntCount + 1;

 otherwise

 fprintf(['XXX Sensor GET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'Name'

 this.name = Item;

 case 'Samples'

 this.PntCount = Item - 1;

 this.update();

 otherwise

 fprintf(['XXX Sensor SET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 function update(this)

 if ~this.Body.isDiscretized()

 this.Body.discretize();

 if ~this.Body.isDiscretized()

 fprintf(['XXX Sensor: ' this.name ...

 ' Update failed XXX\n'])

 return;

 end

 end

 switch this.LocationStyle

 case 'Body Center'

 % place the point right in the middle of the body volume and use

 % the nodes as the interpolation points

 this.dimensions = 1; % Point

 [~,~,xmin,xmax] = this.Body.limits(enumOrient.Vertical);

 [~,~,ymin,ymax] = this.Body.limits(enumOrient.Horizontal);

 x = (xmin+xmax)/2; y = (ymin+ymax)/2;

 this.LocalCoordinates = [x; y];

 case 'Body xmax'

 % place the point right at the middle of the xmax edge.

 this.dimensions = 1; % Point

 [~,~,~,xmax] = this.Body.limits(enumOrient.Vertical);

 [~,~,ymin,ymax] = this.Body.limits(enumOrient.Horizontal);

 x = xmax; y = (ymin+ymax)/2;

 this.LocalCoordinates = [x; y];

 case 'Body xmin'

 % place the point right at the middle of the xmin edge.

 this.dimensions = 1; % Point

 [~,~,xmin,~] = this.Body.limits(enumOrient.Vertical);

 [~,~,ymin,ymax] = this.Body.limits(enumOrient.Horizontal);

 x = xmin; y = (ymin+ymax)/2;

 this.LocalCoordinates = [x; y];

 case 'Body ymax'

 % place the point right at the middle of the ymax edge.

 this.dimensions = 1; % Point

 [~,~,xmin,xmax] = this.Body.limits(enumOrient.Vertical);

458

 [~,~,~,ymax] = this.Body.limits(enumOrient.Horizontal);

 x = (xmin+xmax)/2; y = ymax;

 this.LocalCoordinates = [x; y];

 case 'Body ymin'

 % place the point right at the middle of the ymin edge.

 this.dimensions = 1; % Point

 [~,~,xmin,xmax] = this.Body.limits(enumOrient.Vertical);

 [~,~,ymin,~] = this.Body.limits(enumOrient.Horizontal);

 x = (xmin+xmax)/2; y = ymin;

 this.LocalCoordinates = [x; y];

 case 'Body yaxis'

 % Place the point along the xaxis align volume center

 this.dimensions = 2; % Line

 [~,~,xmin,xmax] = this.Body.limits(enumOrient.Vertical);

 [~,~,ymin,ymax] = this.Body.limits(enumOrient.Horizontal);

 x1 = (xmin+xmax)/2; y1 = ymin;

 x2 = (xmin+xmax)/2; y2 = ymax;

 this.PlotCoordinates = linspace(y1,y2,this.PntCount+1);

 this.LocalCoordinates = [x1 y1; x2 y2];

 case 'Body xaxis'

 % Place the point along the yaxis align volume center

 this.dimensions = 2; % Line

 [~,~,xmin,xmax] = this.Body.limits(enumOrient.Vertical);

 [~,~,ymin,ymax] = this.Body.limits(enumOrient.Horizontal);

 x1 = xmin; y1 = (ymin+ymax)/2;

 x2 = xmax; y2 = (ymin+ymax)/2;

 this.PlotCoordinates = linspace(x1,x2,this.PntCount+1);

 this.LocalCoordinates = [x1 y1; x2 y2];

 end

 if this.dimensions == 1

 % Point

 loc = Pnt2D(x,y);

 [nds,intrp] = findClosest4(loc,this.Body);

 this.Nodes = nds;

 this.Interp = intrp;

 else

 % Line

 this.Nodes = zeros(this.PntCount+1,4);

 this.Interp = zeros(this.PntCount+1,4);

 loc(this.PntCount+1) = Pnt2D();

 for i = 1:this.PntCount+1

 loc(i) = Pnt2D(...

 x1*(this.PntCount-i+1)/(this.PntCount) + x2*(i-1)/this.PntCount,...

 y1*(this.PntCount-i+1)/(this.PntCount) + y2*(i-1)/this.PntCount);

 [nds, intrp] = findClosest4(loc(i),this.Body);

 this.Nodes(i,1:length(nds)) = nds;

 this.Interp(i,1:length(intrp)) = intrp;

 end

 % Simplify

 % Form the nodes array

 tempNodes = zeros(numel(this.Nodes),1);

 start = 1;

 len = 3;

 for i = 1:this.PntCount+1

 tempNodes(start:start+len) = this.Nodes(i,:)';

 start = start + len + 1;

 end

 tempNodes = unique(tempNodes(tempNodes>0));

 tempNodes = sort(tempNodes);

 tempInterp = zeros(length(tempNodes),this.PntCount+1);

 for i = 1:this.PntCount+1

 for j = 1:length(tempNodes)

 where = find(this.Nodes(i,:) == tempNodes(j));

 if isempty(where)

 tempInterp(j,i) = 0;

 else

 tempInterp(j,i) = this.Interp(i,where(1));

 end

 end

 end

 this.Interp = tempInterp;

459

 this.Nodes = tempNodes;

 end

 if this.Model.showSensors

 this.show(gca);

 end

 end

 function reset(this)

 this.IndependentVariable = [];

 this.index = 0;

 this.Data = [];

 end

 function getData(this,Simulation)

 property = this.DataType;

 switch property

 case 'T'

 SourceData = Simulation.T(this.Nodes);

 case 'P'

 SourceData = Simulation.P(this.Nodes);

 case 'Turb'

 SourceData = Simulation.turb(this.Nodes);

 otherwise

 fprintf(['XXX Property: ' property ...

 ' not supported in the Sensor Class XXX\n']);

 return;

 end

 % Get the data by interpolating the cells

 switch this.averaging

 case 1 % Angular Recording with overwrite

 this.index = Simulation.Inc;

 if isempty(this.IndependentVariable)

 LEN = Frame.NTheta-1;

 AInc = 2*pi/(Frame.NTheta-1);

 this.IndependentVariable = linspace(0,AInc*LEN,LEN);

 end

 case 2 % Temporal Recording

 this.index = this.index + 1;

 this.IndependentVariable(this.index) = Simulation.curTime;

 end

 switch this.dimensions

 case 1

 % Grab a single point

 this.Data(this.index) = sum(this.Interp(:).*SourceData(:));

 case 2

 % Grab a vector of points

 if isempty(this.Data)

 this.Data(this.PntCount+1,1) = 0;

 end

 for j = 1:this.PntCount+1

 this.Data(j,this.index) = sum(this.Interp(:,j).*SourceData(:));

 end

 end

 end

 function plotData(this,is_saving,ModelName)

 oldfigure = gcf;

 oldaxes = gca;

 h = figure();

 set(h,'color','w');

 a = gca;

 switch this.DataType

 case 'T'

 titleStr = [this.name ': Temperature vs '];

 label2 = 'Temperature (K)';

 switch this.dimensions

 case 1

 a.YAxis.TickLabelFormat = '%.1f';

 case 2

 a.YAxis.TickLabelFormat = '%.2f';

 end

 case 'P'

460

 titleStr = [this.name ': Pressure vs '];

 label2 = 'Pressure (Pa)';

 switch this.dimensions

 case 1

 a.YAxis.TickLabelFormat = '%.0f';

 case 2

 a.YAxis.TickLabelFormat = '%.2f';

 end

 case 'turb'

 titleStr = [this.name ': Turbulent Weight vs '];

 label2 = 'Turbulence Weight (0-1)';

 switch this.dimensions

 case 1

 a.YAxis.TickLabelFormat = '%.2f';

 case 2

 a.YAxis.TickLabelFormat = '%.2f';

 end

 end

 switch this.dimensions

 case 1

 % Make a line plot

 if length(this.Data) == length(this.IndependentVariable)

 plot(this.IndependentVariable,this.Data);

 else

 plot(this.Data);

 fprintf('XXX Sensor could not plot due to unequal lengthed vectors. XXX\n');

 end

 switch this.averaging

 case 1

 % Make a plot in relation to angle

 titleStr = [titleStr 'angle'];

 title(titleStr);

 xlabel('angle (rad)');

 ylabel(label2);

 a.XAxis.TickLabelFormat = '%.2f';

 case 2

 % Make a plot in relation to time

 titleStr = [titleStr 'time'];

 title(titleStr);

 xlabel('time (s)');

 ylabel(label2);

 a.XAxis.TickLabelFormat = '%.0f';

 end

 case 2

 % Make a surface plot

 [X,Y] = meshgrid(this.IndependentVariable,this.PlotCoordinates);

 Z = this.Data;

 s = surf(X,Y,Z);

 s.EdgeColor = 'none';

 view(0,90);

 xlim([0, max(this.IndependentVariable)]);

 ylim([min(this.PlotCoordinates), max(this.PlotCoordinates)]);

 colormap jet;

 hcb = colorbar;

 switch this.DataType

 case 'T'

 yt=get(hcb,'Ticks');

 set(hcb,'XTickLabel',strtrim(cellstr(num2str(yt','%.1f'))));

 case 'P'

 yt=get(hcb,'Ticks');

 set(hcb,'XTickLabel',strtrim(cellstr(num2str(yt','%.2e'))));

 case 'turb'

 yt=get(hcb,'Ticks');

 set(hcb,'XTickLabel',strtrim(cellstr(num2str(yt','%.2f'))));

 end

 switch this.averaging

 case 1

 % Make a plot in relation to angle

 titleStr = [titleStr 'angle'];

% t = title(titleStr);

 xlabel('angle (rad)');

461

 ylabel('position (m)');

 zlabel(label2);

 case 2

 % Make a plot in relation to time

 titleStr = [titleStr 'time'];

% t = title(titleStr);

 xlabel('time (s)');

 ylabel('position (m)');

 zlabel(label2);

 end

 ylabel(hcb, titleStr);

 end

 if is_saving

 frame = getframe(h);

 im = frame2im(frame);

 [imind,cm] = rgb2ind(im,256);

 data = struct(...

 'Name',this.name,...

 'IndependentVariable',this.IndependentVariable,...

 'DependentVariable',this.Data);

 if isempty(this.Body.Group.Model.outputPath)

 str = [ModelName '_' titleStr];

 else

 str = [this.Body.Group.Model.outputPath '\' ...

 ModelName '_' titleStr];

 end

 str = replace(str,':',' -');

 save([str '.mat'],'data');

 imwrite(imind,cm,[str '.jpg']);

 end

 close(h);

 figure(oldfigure);

 axes(oldaxes);

 end

 function removeFromFigure(this,AxisReference)

 if ~isempty(this.GUIObjects)

 children = get(AxisReference,'Children');

 for obj = this.GUIObjects

 if isgraphics(obj)

 for i = length(children):-1:1

 if isgraphics(children(i)) && children(i) == obj

 children(i).delete;

 break;

 end

 end

 end

 end

 this.GUIObjects = [];

 end

 end

 function show(this,AxisReference)

 this.removeFromFigure(AxisReference);

 color = [1 0 1]; % magenta

 % Plot a yellow symbol where the sensor is

 if size(this.LocalCoordinates,2) == 2

 % It is a line

 pos1 = RotMatrix(this.Body.Group.Position.Rot-pi/2)*this.LocalCoordinates(1,:)';

 pos2 = RotMatrix(this.Body.Group.Position.Rot-pi/2)*this.LocalCoordinates(2,:)';

 this.GUIObjects = line([pos1(1) pos2(1)],[pos1(2) pos2(2)],...

 'Color',color,'Marker','o','MarkerSize',8);

 else

 % It is a point

 pos = RotMatrix(this.Body.Group.Position.Rot-pi/2)*this.LocalCoordinates(:);

 this.GUIObjects = line(pos(1),pos(2),...

 'Color',color,'Marker','o','MarkerSize',8);

 end

 end

 end

462

end

463

Shear Contact

A shear contact is a class that includes a constructor and an equals operator.

classdef ShearContact

 %FORCECONTACT Summary of this class goes here

 % Detailed explanation goes here

 properties

 ConverterIndex;

 MechanismIndex;

 Area;

 LowerNode;

 UpperNode;

 ActiveTimes;

 end

 methods

 function this = ShearContact(...

 ConverterIndex,MechanismIndex,Area,Node1,Node2,ActiveTimes)

 if nargin == 6

 %FORCECONTACT Construct an instance of this class

 % Detailed explanation goes here

 this.ConverterIndex = ConverterIndex;

 this.MechanismIndex = MechanismIndex;

 this.Area = Area;

 this.LowerNode = Node1;

 this.UpperNode = Node2;

 this.ActiveTimes = ActiveTimes;

 end

 end

 function iseq = equal(this,other)

 if this.ConverterIndex == other.ConverterIndex && ...

 this.MechanismIndex == other.MechanismIndex && ...

 this.LowerNode == other.LowerNode && ...

 this.UpperNode == other.UpperNode

 iseq = true;

 else

 iseq = false;

 end

 end

 end

end

464

G.4. Mechanical

465

Linear to Rotational Mechanism

The linear to rotational mechanism is a class that includes the following functionality:

A static function that assembles the property table.

A constructor and destruction function.

A function that takes the user inputted properties and turns them into coefficients for load

calculations.

A function that opens up the mechanism interface.

A set of functions that may be referenced in the form of anonymous functions during simulation.

As they apply to different mechanism types.

classdef LinRotMechanism < handle

 %MECHANISM Summary of this class goes here

 % Detailed explanation goes here

 properties (Constant)

 g = 9.81;

 Source = {...

 'Ideal Sinusoid';

 'Custom Profile Mechanism';

 'Slider Crank'};

 % 'Scotch Yoke';

 % 'Ross Yoke';

 % 'Rhombic Drive'};

 StrokeText = 'Stroke (m)';

 PhaseText = 'Phase (rad)';

 PistonMassText = 'Piston Mass (kg)';

 TiltAngleText = 'Tilt from Hor. (rad)';

 OrientationText = 'Orientation: "u" aligned with positive y, "d" opposite';

 EfficiencyText = 'Mechanical Efficiency (0.##)';

 % isPropertyEditable ...

 % = {'Stroke (m)', 'Phase (rad)', 'Weight (kg)', 'Tilt from Hor. (rad)', 'Aspect

Ratio', 'Custom Profile Fcn';

 % true , true , true , true , false

, true ;

 % true , true , true , true , true

, false ;

 % true , true , true , true , false

, false };

 end

 properties

 ID;

 Model Model;

 isValid logical = true;

 Type char;

 Stroke double = [];

 Phase double = [];

 Frames Frame;

 STilt double;

 CTilt double;

466

 % lengths double = [];

 % masses double = [];

 % descriptions char = [];

 originalInput = [];

 outputFcn function_handle;

 Data;

 dont_propegate logical = false;

 end

 properties (Dependent)

 name;

 end

 methods (Static)

 function [Source, Instructions, Widths] = GetPropertyTableSource(Type,originalSource)

 switch Type

 case 'Ideal Sinusoid'

 Source = {...

 LinRotMechanism.StrokeText, ...

 LinRotMechanism.PhaseText, ...

 LinRotMechanism.PistonMassText, ...

 'Other Mass (kg)', ...

 LinRotMechanism.TiltAngleText, ...

 LinRotMechanism.OrientationText, ...

 LinRotMechanism.EfficiencyText};

 Source = AddRow(Source,1);

 Instructions = [...

 'The ideal Sinusoid produces N frictionless osscilating ' ...

 'mass mechanism that follows a perfect sinusoidal motion. ' ...

 'This is best used when the mechanism is unknown or seal ' ...

 'and pumping losses are much greater than mechanism friction.'];

 case 'Custom Profile Mechanism'

 Source = {...

 LinRotMechanism.StrokeText, ...

 LinRotMechanism.PhaseText, ...

 LinRotMechanism.PistonMassText, ...

 'Other Mass (kg)', ...

 'Mech. Mom. Inert. (kg m^2)', ...

 LinRotMechanism.TiltAngleText, ...

 'Custom Profile Fcn', ...

 LinRotMechanism.OrientationText, ...

 LinRotMechanism.EfficiencyText};

 Source = AddRow(Source,1);

 Instructions = [...

 'The Custom Profile Mechanism produces N simulated osscilating ' ...

 'mass mechanism that follow a custom motion profile. ' ...

 'Piston Mass includes the mass of any attached components. ' ...

 'The user has the option to simulate the mass effects of ' ...

 'non-circular gear pairs or cam drives.'];

 case 'Slider Crank'

 Source = {...

 LinRotMechanism.StrokeText, ...

 LinRotMechanism.PhaseText, ...

 'Crank Mass (kg)', ...

 'Crank C.O.M Radius (m)', ...

 'Crank C.O.M Angle (rad)', ...

 'Crank Rot. Inertia (kgn^2)',...

 'Crank-Con Fric. Fcn', ...

 'Con Length (m)' , ...

 'Con. Mass (kg)', ...

 'Con. C.O.M Radius from CR-CN pin (m)', ...

 'Con. Rot. Inertia (kgn^2)',...

 'Con-Piston Fric. Fcn', ...

 LinRotMechanism.PistonMassText, ...

 'Piston Fric. Fcn', ...

 LinRotMechanism.TiltAngleText, ...

467

 'Slider-Offset (m)', ...

 LinRotMechanism.OrientationText};

 Source = AddRow(Source,1);

 Instructions = [...

 'The slider crank produces N psuedo sinusoidal motions. ' ...

 'It auto-defines mechanism lengths based on ' ...

 'Stroke and Aspect Ratio. Piston, Crank and Connecting Arm ' ...

 'Masses are by default placed in the center of their bars; ' ...

 'the user can modify this location or choose the ' ...

 'AutoBalance option. Friction Fcns take an input of a normal '...

 'force and provide back a opposing force.'];

 % case 'Scotch Yoke'

 % Source = {...

 % LinRotMechanism.StrokeText, ...

 % LinRotMechanism.PhaseText, ...

 % LinRotMechanism.PistonMassText, ...

 % 'Crank Mass (kg)', ...

 % 'Crank Length (m)', ...

 % 'Crank C.O.M Radius (m)', ...

 % 'Crank C.O.M Angle (rad)', ...

 % 'Roller Fric. Fcn', ...

 % 'Linear Bearing Fric. Fcn', ...

 % 'Mech. Mom. Inter. (kg m^2)', ...

 % LinRotMechanism.TiltAngleText

 % LinRotMechanism.OrientationText};

 % Source = AddRow(Source,1);

 % Instructions = [...

 % 'The scotch yoke produces N perfect sinusoidal motions. ' ...

 % 'It auto-defines mechanism lengths based on ' ...

 % 'Stroke. Crank structural masses are placed in the center ' ...

 % 'of its bar, the user can modify this location or choose ' ...

 % 'the AutoBalance option. Piston Mass includes the mass of ' ...

 % 'attached components. Friction Fcns take an input of a ' ...

 % 'normal force and provide back an opposing force.'];

 % case 'Rhombic Drive'

 % Source = {...

 % LinRotMechanism.StrokeText, ...

 % LinRotMechanism.PhaseText, ...

 % 'Crank Mass (kg)', ...

 % 'Crank C.O.M Radius (m)', ...

 % 'Crank C.O.M Angle (rad)', ...

 % 'Crank Rot. Inertia (kgn^2)',...

 % 'Crank-Con Fric. Fcn', ...

 % 'Con Length (m)' , ...

 % 'Con. Mass (kg)', ...

 % 'Con. C.O.M Radius from CR-CN pin (m)', ...

 % 'Con. Rot. Inertia (kgn^2)',...

 % 'Con-Piston Fric. Fcn', ...

 % LinRotMechanism.PistonMassText, ...

 % 'Piston Fric. Fcn', ...

 % LinRotMechanism.TiltAngleText, ...

 % 'Slider-Offset (m)', ...

 % LinRotMechanism.OrientationText};

 % Source = AddRow(Source,1);

 % Instructions = [...

 % 'The rhombic drive is a type of slider crank mechanism ' ...

 % 'that uses 2 sets of cranks that are mirrored in such a ' ...

 % 'way that they have 0 side loads. The Type of Rhombic ' ...

 % 'drive used in Beta Type Stirling engines contains two ' ...

 % 'sets one of which is phased at 180 degrees relative and ' ...

 % 'of opposite orientation.'];

 end

 if nargin > 1

 % Then try to prefill it as best as you can

 Source = MergeTables(Source,originalSource);

 end

 for col = size(Source,2):-1:1

 Widths{col} = length(Source{1,col})*6;

 end

 end

 end

468

 methods

 function this = LinRotMechanism(Model,Type,PropertyTable)

 if nargin > 1

 this.Model = Model;

 this.ID = Model.getLRMID();

 this.Populate(Type,PropertyTable);

 end

 end

 function deReference(this)

 % Get index of this LinRotMechanism

 ind = 1;

 for iLinRotMech = this.Model.Converters

 if iLinRotMech == this; break;

 else; ind = ind + 1;

 end

 end

 for iGroup = this.Model.Groups

 for iCon = this.Model.Connections

 if ~isempty(iCon.RefFrame)

 if iCon.RefFrame.Mechanism == ind

 iCon.RefFrame = [];

 iCon.change();

 end

 end

 end

 end

 for i = length(this.Model.RefFrames):-1:1

 if this.Model.RefFrames(i).Mechanism == ind

 this.Model.RefFrames(i) = [];

 elseif this.Model.RefFrames(i).Mechanism > ind

 this.Model.RefFrames(i).Mechanism = ...

 this.Model.RefFrames(i).Mechanism - 1;

 end

 end

 this.Model.Converters(ind) = [];

 this.Model.change();

 this.delete();

 end

 function Populate(this,Type,PropertyTable)

 if isempty(this.ID)

 this.ID = this.Model.getLRMID();

 end

 this.Data = struct.empty;

 this.Type = Type;

 this.originalInput = PropertyTable;

 LEN = size(PropertyTable,1)-1;

 if isempty(this.Frames)

 this.Frames(LEN) = Frame();

 elseif length(this.Frames) < LEN

 % Chop off

 for i = length(this.Frames):-1:LEN+1

 this.Frames(i).deReference();

 this.Frames(i) = [];

 end

 elseif length(this.Frames) > LEN

 % Top up

 this.Frames(LEN) = Frame();

 end

 this.populateTilt();

 for i = 1:LEN

 newValue = str2double(FindInTable(this,this.StrokeText,i+1));

 if length(this.Stroke) >= i

 shift = newValue - this.Stroke(i);

 if shift ~= 0

 % Stroke

 if ~this.dont_propegate && this.Model.RelationOn

 for iGroup = this.Model.Groups

469

 for RMan = iGroup.RelationManagers

 if RMan.Orient == enumOrient.Horizontal

 maxconPiston = Connection.empty;

 maxconStroke = Connection.empty;

 maxxPiston = -inf;

 maxxStroke = -inf;

 for rel = RMan.Relations

 if ~isempty(rel.frame) && ...

 rel.frame == this.Frames(i)

 switch rel.mode

 case enumRelation.Piston

 if rel.con1.x > maxxPiston

 maxxPiston = rel.con1.x;

 maxconPiston = rel.con1;

 end

 if rel.con2.x > maxxPiston

 maxxPiston = rel.con2.x;

 maxconPiston = rel.con2;

 end

 case enumRelation.Stroke

 if rel.con1.x > maxxStroke

 maxxStroke = rel.con1.x;

 maxconStroke = rel.con1;

 end

 if rel.con2.x > maxxStroke

 maxxStroke = rel.con2.x;

 maxconStroke = rel.con2;

 end

 end

 end

 end

 success = true;

 if ~isempty(maxconStroke)

 [success, ~] = ...

 RMan.Edit(maxconStroke, shift);

 end

 if success && ...

 isempty(maxconStroke) && ~isempty(maxconPiston)

 [success, ~] = ...

 RMan.Edit(maxconPiston, -shift);

 end

 if ~success

 fprintf(['XXX Could not edit mechanism ' ...

 'due to geometric conflict XXX\n']);

 end

 end

 end

 end

 end

 end

 end

 this.Stroke(i) = newValue;

 end

 this.dont_propegate = false;

 switch Type

 case {'Ideal Sinusoid', 'Custom Profile Mechanism'}

 for i = 1:LEN

 Im1 = 0;

 % Find Properties

 % Phase

 this.Phase(i) = str2double(FindInTable(this,this.PhaseText,i+1));

 % Piston Mass

 mp = str2double(FindInTable(this,this.PistonMassText,i+1));

 % Other Mass

 m1 = str2double(FindInTable(this,'Other Mass (kg)',i+1));

 % Tilt is already covered

 % Orientation

 orientation = FindInTable(this,LinRotMechanism.OrientationText,i+1);

 switch orientation

 case 'u'; orient = 1;

 case 'd'; orient = -1;

470

 otherwise; orient = nan();

 end

 % Mechanical Efficiency

 eff = str2double(FindInTable(this,LinRotMechanism.EfficiencyText,i+1));

 if strcmp(Type,'Custom Profile Mechanism')

 CustomFcn = str2func(FindInTable(this,'Custom Profile Fcn',i+1));

 fh = functions(CustomFcn);

 isFcnValid = ~isempty(fh.file);

 else

 isFcnValid = true;

 end

 if isnan(this.Stroke(i)) || isnan(this.Phase(i)) || ...

 isnan(mp) || isnan(m1) || isnan(orient) ||...

 isnan(eff) || ~isFcnValid

 fprintf(...

 ['XXX ' Type ' is invalid, Frames not created. Trouble Components below.

XXX\n']);

 if isnan(this.Stroke(i))

 fprintf(...

 ['Stroke = ' FindInTable(this,this.StrokeText,i+1) '\n']);

 end

 if isnan(this.Phase(i))

 fprintf(...

 ['Phase = ' FindInTable(this,this.PhaseText,i+1) '\n']);

 end

 if isnan(mp)

 fprintf(...

 ['mp = ' FindInTable(this,this.PistonMassText,i+1) '\n']);

 end

 if isnan(m1)

 fprintf(...

 ['m1 = ' FindInTable(this,'Other Mass (kg)',i+1) '\n']);

 end

 if isnan(orient)

 fprintf(...

 ['Orient = ' orientation '\n']);

 end

 if isnan(eff)

 fprintf(...

 ['Eff. = ' FindInTable(this,this.EfficiencyText,i+1) '\n']);

 end

 if isFcnValid

 fprintf(...

 ['Fcn. = ' FindInTable(this,'Custom Profile Fcn',i+1) '\n']);

 end

 this.isValid = false;

 return;

 end

 %% Define motion of Frames

 if strcmp(Type,'Custom Profile Mechanism')

 CustomProfile = CustomFcn(Frame.NTheta,this.Phase(i));

 else

 Ang = (0:Frame.NTheta-1)/(Frame.NTheta-1)*2*pi + this.Phase(i);

 CustomProfile = this.Stroke(i)/2 + this.Stroke(i)*cos(Ang)/2;

 end

 if orient == 1

 xmin = min(CustomProfile);

 xmax = max(CustomProfile);

 else

 xmin = max(CustomProfile);

 xmax = min(CustomProfile);

 end

 this.Frames(i).Positions = (CustomProfile-xmin).*...

 (this.Stroke/(xmax-xmin));

 this.Frames(i).MechanismIndex = i;

 this.Frames(i).Mechanism = this;

 defineDataFromMotionProfile(Im1,mp,m1,eff,orient,this,i); % (Im1,mp,m1,eff,this,ind)

 end

 case 'Slider Crank'

 Ang = zeros(LEN,Frame.NTheta);

471

 for i = 1:LEN

 % Phase

 this.Phase(i) = str2double(FindInTable(this,this.PhaseText,i+1));

 Ang(i,:) = (0:Frame.NTheta-1)/(Frame.NTheta-1)*2*pi + this.Phase(i);

 end

 for i = 1:LEN

 d1 = this.Stroke(i);

 % Crank Mass (kg)

 m1 = str2double(FindInTable(this,'Crank Mass (kg)',i+1));

 % Crank C.O.M Radius (m)

 r1 = str2double(FindInTable(this,'Crank C.O.M Radius (m)',i+1));

 % Crank C.O.M Angle (rad)

 Ang_g1 = str2double(FindInTable(this,'Crank C.O.M Angle (rad)',i+1));

 % Crank Rot. Inertia (kgn^2)

 Im1 = str2double(FindInTable(this,'Crank Rot. Inertia (kgn^2)',i+1));

 % Crank-Con Fric. Fcn

 this.Data.F12{i} = str2func(FindInTable(this,'Crank-Con Fric. Fcn',i+1));

 fh = functions(this.Data.F12{i});

 isF12Valid = ~isempty(fh.file);

 % Con Length (m)

 d2 = str2double(FindInTable(this,'Con Length (m)',i+1));

 % Con. Mass (kg)

 m2 = str2double(FindInTable(this,'Con. Mass (kg)',i+1));

 % Con. C.O.M Radius from CR-CN pin (m)

 r2 = str2double(FindInTable(this,'Con. C.O.M Radius from CR-CN pin (m)',i+1));

 % Con. Rot. Inertia (kgn^2)

 Im2 = str2double(FindInTable(this,'Con. Rot. Inertia (kgn^2)',i+1));

 % Con-Piston Fric. Fcn

 this.Data.F23{i} = str2func(FindInTable(this,'Con-Piston Fric. Fcn',i+1));

 fh = functions(this.Data.F23{i});

 isF23Valid = ~isempty(fh.file);

 % Piston Mass (kg)

 m3 = str2double(FindInTable(this,'Piston Mass (kg)',i+1));

 % Piston Fric. Fcn

 this.Data.F3{i} = str2func(FindInTable(this,'Piston Fric. Fcn',i+1));

 fh = functions(this.Data.F3{i});

 isF3Valid = ~isempty(fh.file);

 % Tilt Angle

 Tilt = str2double(FindInTable(this,LinRotMechanism.TiltAngleText,i+1));

 % Slider-Offset (m)

 d3 = str2double(FindInTable(this,'Slider-Offset (m)',i+1));

 % Orientation: "u" aligned with positive y, "d" opposite

 orientation = str2double(FindInTable(this,'Orientation: "u" aligned with positive y,

"d" opposite',i+1));

 switch orientation

 case 'u'; orient = 1;

 case 'd'; orient = -1;

 otherwise; orient = nan();

 end

 if isnan(d1) || isnan(this.Phase(i)) || isnan(m1) || ...

 isnan(r1) || isnan(Ang_g1) || isnan(Im1) || ...

 ~isF12Valid || isnan(d2) || isnan(m2) || ...

 isnan(r2) || isnan(Im2) || ~isF23Valid || ...

 isnan(m3) || ~isF3Valid || isnan(Tilt) || ...

 isnan(d3) || isnan(orient)

 fprintf(...

 ['XXX ' Type ' is invalid, Frames not created. Trouble Components below.

XXX\n']);

 if isnan(d1)

 fprintf(...

 ['Stroke = ' FindInTable(this,this.StrokeText,i+1) '\n']);

 end

 if isnan(this.Phase(i))

 fprintf(...

 ['Phase = ' FindInTable(this,this.PhaseText,i+1) '\n']);

 end

 if isnan(m1)

 fprintf(...

 ['Crank Mass (kg) = ' FindInTable(this,'Crank Mass (kg)',i+1) '\n']);

 end

472

 if isnan(r1)

 fprintf(...

 ['Crank C.O.M Radius (m) = ' FindInTable(this,'Crank C.O.M Radius (m)',i+1)

'\n']);

 end

 if isnan(Ang_g1)

 fprintf(...

 ['Crank C.O.M Angle (rad) = ' FindInTable(this,'Crank C.O.M Angle

(rad)',i+1)]);

 end

 if isnan(Im1)

 fprintf(...

 ['Crank Rot. Inertia (kgn^2) = ' FindInTable(this,'Crank Rot. Inertia

(kgn^2)',i+1) '\n']);

 end

 if isF12Valid

 fprintf(...

 ['Crank-Con Fric. Fcn = ' FindInTable(this,'Crank-Con Fric. Fcn',i+1) '\n']);

 end

 if isnan(d2)

 fprintf(...

 ['Con Length (m) = ' FindInTable(this,'Con Length (m)',i+1) '\n']);

 end

 if isnan(m2)

 fprintf(...

 ['Con. Mass (kg) = ' FindInTable(this,'Con. Mass (kg)',i+1) '\n']);

 end

 if isnan(r2)

 fprintf(...

 ['Con. C.O.M Radius from CR-CN pin (m) = ' FindInTable(this,'Con. C.O.M Radius

from CR-CN pin (m)',i+1) '\n']);

 end

 if isnan(Im2)

 fprintf(...

 ['Con. Rot. Inertia (kgn^2) = ' FindInTable(this,'Con. Rot. Inertia

(kgn^2)',i+1) '\n']);

 end

 if isF23Valid

 fprintf(...

 ['Con-Piston Fric. Fcn = ' FindInTable(this,'Con-Piston Fric. Fcn',i+1) '\n']);

 end

 if isnan(m3)

 fprintf(...

 ['Piston Mass (kg) = ' FindInTable(this,'Piston Mass (kg)',i+1) '\n']);

 end

 if isF3Valid

 fprintf(...

 ['Piston Fric. Fcn = ' FindInTable(this,'Piston Fric. Fcn',i+1) '\n']);

 end

 if isnan(Tilt)

 fprintf(...

 [LinRotMechanism.TiltAngleText ' = '

FindInTable(this,LinRotMechanism.TiltAngleText,i+1) '\n']);

 end

 if isnan(d3)

 fprintf(...

 ['Slider-Offset (m) = ' FindInTable(this,'Slider-Offset (m)',i+1) '\n']);

 end

 if isnan(orient)

 fprintf(...

 ['Orientation: "u" aligned with positive y, "d" opposite = ' orientation

'\n']);

 end

 this.isValid = false;

 return;

 end

 % Theta_SC is defined as Ang(i,:)

 Ang_sc = Ang(i,:)';

 C1 = cos(Ang_sc);

 S1 = sin(Ang_sc);

473

 C2 = cos(Beta_sc);

 S2 = sin(Beta_sc);

 Beta_sc = asin((d3 - d1*S1)/d2);

 Beta_g = Beta_sc + Tilt;

 Ang_g = Ang_sc + Tilt + Ang_g1;

 this.Data.T2(:,i) = tan(Beta_sc);

 % Coefficients on Alpha_2

 C_Omega2 = (-d1/d2).*(C1./C2);

 this.Data.Omega2(:,i) = C_Omega2;

 B_Alpha2 = ((d1*S1+d2*S2.*C_Omega2.^2)./(d2*C2));

 % Coefficients on Acceleration 1 x

 B_a1x = -r1*cos(Ang_sc + Ang_g1);

 C_a1x = -r1*sin(Ang_sc + Ang_g1);

 % Coefficients on Acceleration 1 y

 B_a1y = -r1*sin(Ang_sc + Ang_g1);

 C_a1y = r1*cos(Ang_sc + Ang_g1);

 % Coefficients on Acceleration 2 x

 B_a2x = (-d1*C1 - r2*C2.*C_Omega2.^2 - r2*S2.*B_Alpha2);

 C_a2x = (-d1*S1 - r2*S2.*C_Omega2);

 % Coefficients on Acceleration 2 y

 B_a2y = (-d1*S1 - r2*S2.*C_Omega2.^2 + r2*C2.*B_Alpha2);

 C_a2y = (d1*C1 + r2*C2.*C_Omega2);

 % Coefficients on Acceleration 3 x

 B_a3x = (-d1*C1 - d2*C2.*C_Omega2.^2 - d2*S2.*B_Alpha2);

 C_a3x = (-d1*S1 - d2*S2.*C_Omega2);

 % Piston Position & Velocity Coefficient on Omega

 this.Data.x_p(:,i) = d1*C1 + d2*C2 - sqrt((d2-d1)^2 - d3^2);

 this.Data.v_p(:,i) = -d1*S1 - d2*S2*C_Omega2;

 this.Data.A1(:,i) = m3*C_a3x;

 this.Data.A2(:,i) = m2*C_a2x + this.Data.A1(:,i);

 this.Data.A3(:,i) = (-Im2*C_Omega2./(d2*C2) + this.Data.T2(:,i).*this.Data.A1(:,i));

 this.Data.A4(:,i) = m2*C_a2y + this.Data.A3(:,i);

 this.Data.A5(:,i) = m1*C_a1x + this.Data.A2(:,i);

 this.Data.A6(:,i) = m1*C_a1y + this.Data.A4(:,i);

 this.Data.B1(:,i) = m3*B_a3x;

 this.Data.B2(:,i) = m2*B_a2x + this.Data.B1(:,i);

 this.Data.B3(:,i) = (-Im2*B_Alpha2./(d2*C2) + this.Data.T2(:,i).*this.Data.B1(:,i));

 this.Data.B4(:,i) = m2*B_a2y + this.Data.B3(:,i);

 this.Data.B5(:,i) = m1*B_a1x + this.Data.B2(:,i);

 this.Data.B6(:,i) = m1*B_a1y + this.Data.B4(:,i);

 this.Data.G1(:,i) = this.g*m3*this.STilt(i);

 this.Data.G2(:,i) = this.g*m2*this.STilt(i) + this.Data.G1(:,i);

 this.Data.G3(:,i) = (-this.g*r2*cos(Beta_g)./(d2*C2) +

this.Data.T2(:,i).*this.Data.G1(:,i));

 this.Data.G4(:,i) = this.g*m2*cos(Beta_g) + this.Data.G3(:,i);

 this.Data.G5(:,i) = this.g_m1*this.STilt(i) + this.Data.G2(:,i);

 this.Data.G6(:,i) = this.g*m1*this.CTilt(i) + this.Data.G4(:,i);

 temp_5 = -this.CTilt(i)*this.Data.A5(:,i) + this.STilt(i)*this.Data.A6(:,i);

 this.Data.A6(:,i) = -this.STilt(i)*this.Data.A5(:,i) -

this.CTilt(i)*this.Data.A6(:,i);

 this.Data.A5(:,i) = temp_5;

 temp_5 = -this.CTilt(i)*this.Data.B5(:,i) + this.STilt(i)*this.Data.B6(:,i);

 this.Data.B6(:,i) = -this.STilt(i)*this.Data.B5(:,i) -

this.CTilt(i)*this.Data.B6(:,i);

 this.Data.B5(:,i) = temp_5;

 temp_5 = -this.CTilt(i)*this.Data.G5(:,i) + this.STilt(i)*this.Data.G6(:,i);

 this.Data.G6(:,i) = -this.STilt(i)*this.Data.G5(:,i) -

this.CTilt(i)*this.Data.G6(:,i);

474

 this.Data.G5(:,i) = temp_5;

 this.Data.E5(:,i) = orient*(-this.CTilt(i) + this.STilt(i)*this.Data.T2(Inc,i));

 this.Data.E6(:,i) = orient*(-this.STilt(i) - this.CTilt(i)*this.Data.T2(Inc,i));

 this.Data.AM(:,i) = -(Im1 - d1*S1.*this.Data.A2(:,i) + d1*C1.*this.Data.A4(:,i));

 this.Data.BM(:,i) = -(-d1*S1.*this.Data.B2(:,i) + d1*C1.*this.Data.B4(:,i));

 this.Data.GM(:,i) = -(this.g*m1*r1*cos(Ang_g) - ...

 d1*S1.*this.Data.A2(:,i) + d1*C1.*this.Data.A4(:,i));

 this.Data.EM(:,i) = orient*-1*(-d1*S1 + d1*C1*this.Data.T2(:,i));

 this.outputFcn = @this.SliderCrank;

 if strcmp(Type,'Custom Profile Mechanism')

 CustomProfile = CustomFcn(Frame.NTheta,this.Phase(i));

 else

 Ang = (0:Frame.NTheta-1)/(Frame.NTheta-1)*2*pi + this.Phase(i);

 CustomProfile = this.Stroke(i)/2 + this.Stroke(i)*cos(Ang)/2;

 end

 if orient == 1

 xmin = min(CustomProfile);

 xmax = max(CustomProfile);

 else

 xmin = max(CustomProfile);

 xmax = min(CustomProfile);

 end

 this.Frames(i).Positions = (CustomProfile-xmin).*...

 (this.Stroke/(xmax-xmin));

 this.Frames(i).MechanismIndex = i;

 this.Frames(i).Mechanism = this;

 end

 % case 'Scotch Yoke'

 % Ang = zeros(LEN,Frame.NTheta);

 % for i = 1:LEN

 % Ang(i,:) = (0:Frame.NTheta-1)/(Frame.NTheta-1)*2*pi + this.Phase(i);

 % end

 % for i = 1:LEN

 %

 % end

 % case 'Rhombic Drive'

 %

 end

 end

 function Modify(this)

 persistentData = Holder({this.Type,this.originalInput});

 h = CreateMechanismInterface(persistentData);

 uiwait(h);

 if isempty(persistentData.vars)

 this.deReference();

 else

 this.Populate(persistentData.vars{1},persistentData.vars{2});

 end

 % Find all Connections that have frames that reference this index

 for iGroup = this.Model.Groups

 for iCon = iGroup.Connections

 if ~isempty(iCon.RefFrame)

 if iCon.RefFrame.Mechanism == this

 iCon.change();

 end

 end

 end

 end

 end

 %% Get/Set Interface

 function Item = get(this,PropertyName)

 switch PropertyName

 case 'Name'

 Item = this.name;

 case 'Stroke'

 if size(this.originalInput,1)-1 == 1

475

 for c = 1:size(this.originalInput,2)

 if contains(this.originalInput{1,c},'Stroke')

 if isStrNumeric(this.originalInput{2,c})

 Item = str2double(this.originalInput{2,c});

 return;

 end

 end

 end

 else

 fprintf(['XXX Gradient Descent does ' ...

 'not support mechanisms with ' ...

 'multiple strokes XXX\n']);

 return;

 end

 otherwise

 fprintf(['XXX Lin Rot Mechanism GET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'Stroke'

 if size(this.originalInput,1)-1 == 1

 for c = 1:size(this.originalInput,2)

 if contains(this.originalInput{1,c},'Stroke')

 if isStrNumeric(this.originalInput{2,c})

 this.originalInput{2,c} = num2str(Item);

 return;

 end

 end

 end

 this.Populate(this.Type,this.originalInput);

 else

 fprintf(['XXX Gradient Descent does ' ...

 'not support mechanisms with ' ...

 'multiple strokes XXX\n']);

 return;

 end

 otherwise

 fprintf(['XXX Lin Rot Mechanism SET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 function Uniform_Scale(this, Uniform_Scale)

 for c = 1:size(this.originalInput,2)

 if contains(this.originalInput{1,c},'(m)')

 factor = Uniform_Scale;

 elseif contains(this.originalInput{1,c},'(kg)')

 factor = Uniform_Scale ^ 3;

 elseif contains(this.originalInput{1,c},'(kg m^2)')

 factor = Uniform_Scale ^ 5;

 else

 continue;

 end

 for r = 2:size(this.originalInput,1)

 if isStrNumeric(this.originalInput{r,c})

 this.originalInput{r,c} = ...

 num2str(...

 factor * str2double(this.originalInput{r,c}));

 end

 end

 end

 this.dont_propegate = true;

 this.Populate(this.Type,this.originalInput);

 end

 %% Dependent

 function var = get.name(this)

 var = this.Type;

 for i = 1:length(this.Stroke)

476

 var = [var ' ' num2str(i) ':(L=' num2str(this.Stroke(i)) ', P=' num2str(this.Phase(i))

')'];

 end

 end

 %% Internal Helpers

 function populateTilt(this)

 for i = 2:size(this.originalInput,1)

 Tilt = str2double(FindInTable(this,this.TiltAngleText,i));

 if isnan(Tilt)

 fprintf('XXX Invalid value for Tilt from Horizontal, perfectly horizontal assumed.

XXX\n');

 ReplaceInTable(this,'0',this.TiltAngleText,i)

 this.STilt(i-1) = 0;

 this.CTilt(i-1) = 1;

 else

 this.STilt(i-1) = sin(Tilt);

 this.CTilt(i-1) = cos(Tilt);

 end

 end

 end

 % Ideal Motions

 function defineDataFromMotionProfile(Im1,mp,m1,eff,~,this,ind)

 %% Define Loads

 dx_dtheta = getFirstDer(this.Frames(ind).Positions);

 d2x_dtheta2 = getSecondDer(this.Frames(ind).Positions);

 Ax = -this.CTilt(ind)*mp*dx_dtheta;

 Bx = -this.CTilt(ind)*mp*d2x_dtheta2;

 Gx = -this.g*(mp + m1)*this.STilt(ind);

 Ex = this.CTilt(ind); % * Fp

 Ay = -this.STilt(ind)*mp*dx_dtheta;

 By = -this.STilt(ind)*mp*d2x_dtheta2;

 Gy = -this.g*(mp + m1)*this.CTilt(ind);

 Ey = this.STilt(ind); % * Fp

 Am = -Im1 - mp*(dx_dtheta).^2;

 Bm = -mp*dx_dtheta.*d2x_dtheta2;

 Gm = -this.g*this.STilt(ind)*mp*dx_dtheta;

 Em = dx_dtheta; % * Fp

 if isfield(this.Data,'Ax')

 appendData(this,'Ax',Ax,ind);

 appendData(this,'Bx',Bx,ind);

 appendData(this,'Gx',Gx,ind);

 appendData(this,'Ex',Ex,ind);

 appendData(this,'Ay',Ay,ind);

 appendData(this,'By',By,ind);

 appendData(this,'Gy',Gy,ind);

 appendData(this,'Ey',Ey,ind);

 appendData(this,'Am',Am,ind);

 appendData(this,'Bm',Bm,ind);

 appendData(this,'Gm',Gm,ind);

 appendData(this,'Em',Em,ind);

 this.Data.Eff(ind) = eff;

 else

 this.Data = struct(...

 'Ax',Ax,'Bx',Bx,'Gx',Bx,'Ex',Ex,...

 'Ay',Ay,'By',By,'Gy',Gy,'Ey',Ey,...

 'Am',Am,'Bm',Bm,'Gm',Gm,'Em',Em,...

 'Eff',eff);

 end

 this.outputFcn = @this.MotionWithEfficiency;

 end

 function output = MotionWithEfficiency(this,input)

477

 % input = [dA, ddA, Fp, Inc, mechindex]

 % output = [Fx, Fy, M]

 output = zeros(3,1);

 inc = input(4);

 i = input(5);

 if inc > 1

 incp = inc - 1;

 else

 incp = size(this.Data.Ax,1) - 1;

 end

 % Horizontal Load, as felt by the drive shaft

 if size(this.Data.Gx,1) == 1

 output(1) = (this.Data.Ax(incp,i) + this.Data.Ax(inc,i))*input(2) + ...

 (this.Data.Bx(incp,i) + this.Data.Bx(inc,i))*input(1)^2 + ...

 2*this.Data.Gx(1,i) + ...

 2*this.Data.Ex(i)*input(3);

 else

 output(1) = (this.Data.Ax(incp,i) + this.Data.Ax(inc,i))*input(2) + ...

 (this.Data.Bx(incp,i) + this.Data.Bx(inc,i))*input(1)^2 + ...

 (this.Data.Gx(incp,i) + this.Data.Gx(inc,i)) + ...

 2*this.Data.Ex(i)*input(3);

 end

 % Vertical Load, as felt by the drive shaft\

 if size(this.Data.Gy,1) == 1

 output(2) = (this.Data.Ay(incp,i) + this.Data.Ay(inc,i))*input(2) + ...

 (this.Data.By(incp,i) + this.Data.By(inc,i))*input(1)^2 + ...

 2*this.Data.Gy(i) + ...

 2*this.Data.Ey(i)*input(3);

 else

 output(2) = (this.Data.Ay(incp,i) + this.Data.Ay(inc,i))*input(2) + ...

 (this.Data.By(incp,i) + this.Data.By(inc,i))*input(1)^2 + ...

 (this.Data.Gy(incp,i) + this.Data.Gy(inc,i)) + ...

 2*this.Data.Ey(i)*input(3);

 end

 % Moment as felt by shaft

 if (this.Data.Em(incp,i) + this.Data.Em(inc,i))*input(3) < 0

 % Power is leaving the flywheel

 output(3) =(this.Data.Am(incp,i) + this.Data.Am(inc,i))*input(2) + ...

 (this.Data.Bm(incp,i) + this.Data.Bm(inc,i))*input(1)^2 + ...

 (this.Data.Gm(incp,i) + this.Data.Gm(inc,i)) + ...

 (this.Data.Em(incp,i) + this.Data.Em(inc,i))*input(3)/double(this.Data.Eff(i));

 else

 % Power is entering the flywheel

 output(3) =(this.Data.Am(incp,i) + this.Data.Am(inc,i))*input(2) + ...

 (this.Data.Bm(incp,i) + this.Data.Bm(inc,i))*input(1)^2 + ...

 (this.Data.Gm(incp,i) + this.Data.Gm(inc,i)) + ...

 (this.Data.Em(incp,i) + this.Data.Em(inc,i))*input(3)*double(this.Data.Eff(i));

 end

 output = output / 2;

 end

 %{

 % Simplified Arbitrary Motions

function defineDataForComplexCustomProfile(L,Mp,Ip,Mr,Iconst,Eff,this,ind)

 dx_dtheta = getFirstDer(this.Frames(ind).Positions);

 d2x_dtheta2 = getSecondDer(this.Frames(ind).Positions);

 if Ip ~= 0

 % Gears

 A2 = asin_omni(this.Frames(ind).Positions/L - 1);

 dA2_dtheta = getFirstDer(A2);

 d2A2_dtheta2 = getSecondDer(A2);

 % Coefficient on omega1^2

 BddA2 = Ip.*d2A2_dtheta2;

 % Coefficient on alpha1

 AddA2 = -Ip.*dA2_dtheta;

 else

 % Cam Drive

 BddA2 = 0; % no pulsing rotational elements

478

 AddA2 = 0; % " " "

 end

 % C1 - Coeff on ddA for Fx as felt by drive shaft

 this.Data(1,:,ind) = -dx_dtheta;

 % C2 - Coeff on dA^2 for Fx as felt by drive shaft

 this.Data(2,:,ind) = -d2x_dtheta2;

 % C3 - Gravity contribution for Fx as felt by drive shaft

 this.Data(3,:,ind) = -this.STilt*this.g*(Mp + Mr);

 % C4 - Coeff on ddA for Fy

 this.Data(4,:,ind) = -this.CTilt*this.g*(Mr);

 % Maybe consider a pressure angle, but center distance also

 % required

 % C - Coeff on Fp for M

 this.Data(5,:,ind) = -dx_dtheta;

 % C - Coeff on ddA for M

 this.Data(6,:,ind) = (Mp.*(dx_dtheta.^2) - AddA2)*Eff;

 % C - Coeff on dA^2 for M

 this.Data(7,:,ind) = ...

 (-Mp.*(dx_dtheta).*(d2x_dtheta2) - BddA2)*Eff - Iconst;

 this.outputFcn = @this.CustomProfileMechanism;

 end

function output = CustomProfileMechanism(this,input)

 % input = [dA, ddA, Fp, Inc, mechindex]

 % output = [Fx, Fy, M]

 output = zeros(3,1);

 output(1) ...

 = input(3)... = Fp

 + this.Data(1,input(4))*input(2)... + C1*ddA

 + this.Data(2,input(4))*input(1)^2 ... + C2*dA^2

 + this.Data(3,input(4)); % + C3

 output(2) ... Vertical Load, as felt by the drive shaft

 = this.STilt*output(1);

 output(1) ... Horizontal Load, as felt by the drive shaft

 = this.CTilt*output(1);

 % M =

 output(3) ... Moment as felt by shaft

 = this.Data(4,input(4))*input(3)... % C4*Fp

 + this.Data(5,input(4))*input(2)... % C5*ddA

 + this.Data(6,input(4))*input(1)^2; % C6*dA^2

 end

 %}

 % Slider Crank

 function output = SliderCrank(this,input)

 % input = [dA, ddA, Fp, Inc, mechindex]

 % output = [Fx, Fy, M]

 dA = input(1);

 ddA = input(2);

 Fp = input(3);

 Inc = input(4);

 i = input(5);

 F12 = this.Data.F12{i}(sqrt((...

 this.Data.A2(Inc,i)*ddA + ...

 this.Data.B2(Inc,i)*dA^2 + ...

 this.Data.G2(Inc,i) + Fp)^2 + ...

 (this.Data.A4(Inc,i)*ddA + ...

 this.Data.B4(Inc,i)*dA^2 + ...

 this.Data.G4(Inc,i) - ...

 this.Data.T2(Inc,i)*Fp)^2));

 F3y = abs(this.Data.A3(Inc,i)*ddA + ...

 this.Data.B3(Inc,i)*dA^2 + ...

 this.Data.G3(Inc,i) - ...

 this.Data.T2(Inc,i)*Fp);

 F23 = this.Data.F23{i}(...

 sqrt((this.Data.A1(Inc,i)*ddA + ...

 this.Data.B1(Inc,i)*dA^2 + ...

 this.Data.G1(Inc,i) + Fp)^2 + (F3y)^2));

 F3y = this.Data.F3{i}(F3y);

479

 LostTorque = -dA*(...

 abs(F12*(this.Data.Omega2(Inc,i)-1)) + ...

 abs(F23*this.Data.Omega2(Inc,i)) + ...

 abs(F3y*this.Data.v_p(Inc,i)));

 output = zeros(3,1);

 output(1) = ... % Horizontal Load

 this.Data.A5(Inc,i)*ddA + this.Data.B5(Inc,i)*dA^2 + ...

 this.Data.G5(Inc,i) + ...

 this.Data.E5(Inc,i)*Fp;

 output(2) = ... % Vertical Load

 this.Data.A6(Inc,i)*ddA + this.Data.B6(Inc,i)*dA^2 + ...

 this.Data.G6(Inc,i) + ...

 this.Data.E6(Inc,i)*Fp;

 output(3) = ... % Moment as felt by shaft

 this.Data.AM(Inc,i)*ddA + this.Data.BM(Inc,i)*dA^2 + ...

 this.Data.GM(Inc,i) + this.Data.EM(Inc,i)*Fp + ...

 LostTorque;

 end

 function output = ScotchYoke(this,input)

 % input = [dA, ddA, Fp, Inc, mechindex]

 % output = [Fx, Fy, M]

 end

 function output = RhombicDrive(this,input)

 % input = [dA, ddA, Fp, Inc, mechindex]

 % output = [Fx, Fy, M]

 dA = input(1);

 ddA = input(2);

 Fp = input(3);

 Inc = input(4);

 i = input(5);

 F12 = this.Data.F12{i}(sqrt((...

 this.Data.A2(Inc,i)*ddA + ...

 this.Data.B2(Inc,i)*dA^2 + ...

 this.Data.G2(Inc,i) + Fp)^2 + ...

 (this.Data.A4(Inc,i)*ddA + ...

 this.Data.B4(Inc,i)*dA^2 + ...

 this.Data.G4(Inc,i) - ...

 this.Data.T2(Inc,i)*Fp)^2));

 F3y = abs(this.Data.A3(Inc,i)*ddA + ...

 this.Data.B3(Inc,i)*dA^2 + ...

 this.Data.G3(Inc,i) - ...

 this.Data.T2(Inc,i)*Fp);

 F23 = this.Data.F23{i}(...

 sqrt((this.Data.A1(Inc,i)*ddA + ...

 this.Data.B1(Inc,i)*dA^2 + ...

 this.Data.G1(Inc,i) + Fp)^2 + (F3y)^2));

 F3y = this.Data.F3{i}(F3y);

 % TANalpha_2L4 = tan(pressure angle)/(2*l4)

 output = zeros(3,1);

 output(3) = ... % Moment as felt by shaft

 this.Data.AM(Inc,i)*ddA + this.Data.BM(Inc,i)*dA^2 + ...

 this.Data.GM(Inc,i) + this.Data.EM(Inc,i)*Fp;

 output(1) = 0.5*(... % Horizontal Load

 this.Data.A5(Inc,i)*ddA + this.Data.B5(Inc,i)*dA^2 + ...

 this.Data.G5(Inc,i) + ...

 this.Data.E5(Inc,i)*Fp + ...

 output(3)*this.Data.TANalpha_2L4(i)*this.STilt(i));

 output(2) = 0.5*(... % Vertical Load

 this.Data.A6(Inc,i)*ddA + this.Data.B6(Inc,i)*dA^2 + ...

 this.Data.G6(Inc,i) + ...

 this.Data.E6(Inc,i)*Fp - ...

 output(3)*this.Data.TANalpha_2L4(i)*this.CTilt(i));

 LostTorque = -dA*(...

 abs(F12*(this.Data.Omega2(Inc,i)-1)) + ...

480

 abs(F23*this.Data.Omega2(Inc,i)) + ...

 abs(F3y*this.Data.v_p(Inc,i)) + ...

 abs(this.Data.Faux{i}(sqrt(output(1)^2+output(2)^2))));

 output(3) = output(3) + LostTorque;

 end

 end

end

function PropertyValue = FindInTable(LinRotMech,Item,row)

for col = 1:size(LinRotMech.originalInput,2)

 if strcmp(LinRotMech.originalInput{1,col},Item)

 PropertyValue = LinRotMech.originalInput{row,col};

 return;

 end

end

fprintf(['XXX no property called "' Item '" for LinRotMechanism/Type = "' ...

 LinRotMech.Type '". Value of "" applied. XXX\n']);

PropertyValue = '';

end

function ReplaceInTable(LinRotMech,PropertyValue,Item,row)

for col = 1:size(LinRotMech.originalInput,2)

 if strcmp(LinRotMech.originalInput{1,col},Item)

 LinRotMech.originalInput{row,rol} = PropertyValue;

 return;

 end

end

fprintf(['XXX no property called "' Item '" for LinRotMechanism/Type = "' ...

 LinRotMech.Type '". Value of "" applied. XXX\n']);

end

function Template = MergeTables(Template,Data)

for Dcol = 1:size(Data,2)

 % For each column of Data

 % Find the representative column in Template

 for Tcol = 1:size(Template,2)

 if strcmp(Data{1,Dcol},Template{1,Tcol})

 for row = 2:size(Data,1)

 Template{row,Tcol} = Data{row,Dcol};

 end

 break;

 end

 end

end

end

function appendData(ME,field,Data,ind)

if isfield(ME.Data,field)

 if size(ME.Data.(field),1) == size(Data,1)

 ME.Data.(field)(:,ind) = Data;

 elseif size(ME.Data.(field),1) == 1

 temp = repmat(ME.Data.(field),size(Data,1),1);

 ME.Data.(field) = temp;

 ME.Data.(field)(:,ind) = Data;

 elseif size(Data,1) == 1

 ME.Data.(field)(:,ind) = Data;

 else

 fprintf('XXX Frame divisions have changed, please implement a fix XXX\n');

 end

else

 ME.Data.(field)(:,ind) = Data;

end

end

481

Mechanical System

The mechanical system is a class that includes the following functionality:

A constructor.

A get / set interface.

Solve: Takes the motion state and piston force and translates it through the linear to rotational

mechanisms to produce an acceleration.

A set of unused functions that were investigating approximating arbitrary mechanisms with N-

dimensional interpolation.

classdef MechanicalSystem < handle

 %UNTITLED2 Summary of this class goes here

 % Detailed explanation goes here

 properties (Constant)

 SteadyStateRMS = 0.1;

 NDimModelCalcRadius = [10 10 3];

 end

 properties (Dependent)

 isConverged;

 end

 properties

 Model Model; %

 Converters LinRotMechanism; % Array Containing Linear-Rotational Converters

 Inertia double = 1; % Real Flywheel Inertia

 DriveTrainWeight double = 1;

 DriveTrainFricCoef double = 0;

 LoadFunction function_handle; % Function that takes current motion and provides a counter

load

 InertiaMod double = 1; % Modifier Used to allow the engine to get up to speed faster, or

stabilize it during slow times.

 KE double = 0; % Kinetic Energy

 Alpha double = 0; % The rotational acceleration

 Omega double = 0; % The rotational speed

 Theta double = 0; % The physical Angle

 LastCycle double; % (Theta, Omega)

 ThisCycle double; % Continously recorded and checked for convergence

 % Set in SetInitialConditions

 Points double; % Array indicating the points at which the model is calculated for each

variable

 Inc double; % Vector indicating the increment that is used to discretize each variable

 end

 properties (Dependent)

 name;

 end

 methods

 %% Constructor

482

 function this = MechanicalSystem(Model,Converters,~,Inertia,LoadFunction)

 this.Model = Model;

 % Define other parameters

 this.Converters = Converters;

 this.Inertia = Inertia;

 this.LoadFunction = LoadFunction;

 end

 function iname = get.name(~)

 iname = 'Mechanical System';

 end

 function Item = get(this, PropertyName)

 switch PropertyName

 case 'name'

 Item = this.name();

 case 'Flywheel Inertia'

 Item = this.Inertia;

 case 'Drive Train Weight'

 Item = this.DriveTrainWeight;

 case 'Drive Train Normal Friction Coefficient'

 Item = this.DriveTrainFricCoef;

 case 'Load Function'

 Item = this.LoadFunction;

 otherwise

 fprintf(['XXX MechanicalSystem GET Inteface for ' PropertyName ' is not found

XXX\n']);

 return;

 end

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'name'

 % Do nothing

 case 'Flywheel Inertia'

 this.Inertia = Item;

 case 'Drive Train Weight'

 this.DriveTrainWeight = Item;

 case 'Drive Train Normal Friction Coefficient'

 this.DriveTrainFricCoef = Item;

 case 'Load Function'

 this.LoadFunction = Item;

 otherwise

 fprintf(['XXX MechanicalSystem SET Inteface for ' PropertyName ' is not found

XXX\n']);

 return;

 end

 end

 function Power = Solve(this,Inc,dA,ddA,Forces)

 M = 0;

 fric = abs(this.DriveTrainWeight*this.DriveTrainFricCoef);

 for i = 1:length(this.Converters)

 for j = 1:length(Forces{i})

 F = this.Converters(i).outputFcn([dA ddA Forces{i}(j) Inc j]);

 M = M + F(3);

 fric = fric + sqrt(F(1)^2 + F(2)^2)*this.DriveTrainFricCoef;

 end

% if i == length(this.Converters)

% fprintf([', ' num2str(M*dA) '\n']);

% elseif i == 1

% fprintf(num2str(M*dA));

% else

% fprintf([', ' num2str(M*dA)]);

% end

 end

 Power = (M - fric)*dA;

 end

 function SetInitialConditions(this,iTheta,iOmega)

 this.Theta = iTheta;

 this.Omega = iOmega;

 this.Alpha = 0;

483

 end

 %% Analysis Function

 function RMS = compareCycles(this)

 % Calculate the RMS error between cycles

 Match = interp1(this.LastCycle(:).Theta,...

 this.LastCycle(:).Omega,...

 this.ThisCycle(:).Theta);

 RMS = rssq(Match - this.ThisCycle.Omega)/sqrt(length(Match));

 end

 function Converged = get.isConverged(this)

 Converged = this.compareCycles() < this.SteadyStateRMS;

 end

 %% Simulation Function

 function move(this,InputForces)

 %% Do something with the Input Forces

 % http://matlab.izmiran.ru/help/techdoc/matlab_prog/ch_dat41.html

 % If you use the colon to index multiple cells in conjunction

 % with the curly brace notation, MATLAB treats the contents of

 % each cell as a separate variable. For example, assume you have

 % a cell array T where each cell contains a separate vector. The

 % expression T{1:5} is equivalent to a comma-separated list of

 % the vectors in the first five cells of T.

 if this.isKinematic

 % Collect the input parameters

 Parameters = cell(length(InputForces)+2,1);

 Parameters{1} = mod(this.Theta,2*pi);

 Parameters{2} = this.Omega*this.Omega;

 for r = 3:length(Parameters)

 Parameters{r} = InputForces(r-2);

 end

 % Interpolate the Mechanical System Results

 this.Alpha = interpn(Parameters{:},this.NDimModel,...

 this.Points{:},'linear',NaN);

 % ThetaInc, this.sqOmegaInc, this.ForceInc{:},...

 if isnan(this.Alpha)

 % Assess if the extrapolation array needs to be expanded to

 % the next parameter

 % Find the parameter that goes out

 % Points

 C = zeros(length(this.Points),1);

 for i = 1:length(this.Points)

 if Parameters(i) > this.Points{i}(end)

 C(i) = ceil((Parameters(i)-this.Points{i}(end))/this.Inc(i));

 elseif Parameters(i) < this.Points{i}(1)

 C(i) = -ceil(abs(Parameters(i)-this.Points{i}(end))/this.Inc(i));

 end

 end

 this.UpdateMechanicalModel(C);

 this.Alpha = interpn(Parameters{:},this.NDimModel,...

 this.Points{:},'linear',NaN);

 end

 % Move Position ahead

 ChThetaeInVelocity = this.Model.dt*this.Alpha;

 this.Theta = this.Theta + this.Model.dt*(this.Omega+ChThetaeInVelocity/2);

 this.Omega = this.Omega + ChThetaeInVelocity;

 for iFrame = this.Model.RefFrames

 if iFrame.Mechanism == this

 iFrame.Position = getPosition(this.Theta);

 end

 end

 end

 end

 end

484

end

485

G.5. Motion

486

Motions

Idealized Square Wave Motion

function [pos] = box_wave(Nang, Phase)

 if nargin == 0

 Nang = 200;

 Phase = 0;

 end

 Phase = Phase + pi/2;

 e = 0.8;

 n = 2;

 con_cr_ratio = 2;

 TransferPhase = pi/2;

 pos = Ellipsoidal(Nang,Phase,e,n,con_cr_ratio,TransferPhase);

end

Idealized Saw Wave Motion

function [pos] = v_wave(Nang, Phase)

Phase = Phase + pi;

%r = 5;

%L = sqrt((1-2*r)^2+(Nang-1)^2);

%theta = r*sin(asin((Nang-1)/L)-asin(2*r/L));

%d = r*sin(theta);

%offset = r*cos(theta);

pos = zeros(1,Nang);

for i = 1:Nang

 x = mod(i-1 + (-Phase)/(2*pi)*(Nang-1),Nang-1);

 if x < 0.5*(Nang-1)

 % Within First Top Circle

 pos(i) = 1 - 2*x/(Nang-1);

 else

 pos(i) = 2*(x-(Nang-1))/(Nang-1) + 1;

 end

end

ends = zeros(1,4);

for i = 1:100

 ends(1:2) = pos(1:2);

 ends(3:4) = pos(end-1:end);

 pos(2:end-1) = (pos(1:end-2) + pos(3:end))/2;

 pos(1) = (ends(2) + ends(4))/2;

 pos(end) = (ends(1) + ends(3))/2;

end

pos = pos - min(pos);

pos = pos / max(pos);

end

Slider Crank Motion with connecting rod 2 times larger than crank rod

function [pos] = e0_n2_r2(Nang, Phase)

 Phase = Phase + pi;

 e = 0;

 n = 2;

 con_cr_ratio = 2;

 TransferPhase = 0;

 pos = Ellipsoidal(Nang,Phase,e,n,con_cr_ratio,TransferPhase);

end

487

Slider Crank Motion with connecting rod 6 times larger than crank rod

function [pos] = e0_n2_r6(Nang, Phase)

 Phase = Phase + pi;

 e = 0;

 n = 2;

 con_cr_ratio = 6;

 TransferPhase = 0;

 pos = Ellipsoidal(Nang,Phase,e,n,con_cr_ratio,TransferPhase);

end

Slider Crank Motion driven by 1/5 ellipical gears with connecting rod 2 tiems larger than crank

rod, arranged to produce dwelling motion.

function [pos] = e15_n2_r2_Box(Nang, Phase)

 if nargin == 0

 Nang = 200;

 Phase = 0;

 end

 Phase = Phase + pi/2;

 e = 1/4;

 n = 2;

 con_cr_ratio = 2;

 TransferPhase = pi/2;

 pos = Ellipsoidal(Nang,Phase,e,n,con_cr_ratio,TransferPhase);

end

Slider Crank Motion driven by 1/5 ellipical gears with connecting rod 2 tiems larger than crank

rod, arranged to produce saw wave motion.

function [pos] = e15_n2_r2_Sharp(Nang, Phase)

 Phase = Phase + pi;

 e = 1/5;

 n = 2;

 con_cr_ratio = 2;

 TransferPhase = 0;

 pos = Ellipsoidal(Nang,Phase,e,n,con_cr_ratio,TransferPhase);

end

Slider Crank Motion driven by 1/5 ellipical gears with connecting rod 6 tiems larger than crank

rod, arranged to produce dwelling motion.

function [pos] = e15_n2_r6_Box(Nang, Phase)

 if nargin == 0

 Nang = 200;

 Phase = 0;

 end

 Phase = Phase + pi/2;

 e = 1/5;

 n = 2;

 con_cr_ratio = 6;

 TransferPhase = pi/2;

 pos = Ellipsoidal(Nang,Phase,e,n,con_cr_ratio,TransferPhase);

488

end

Slider Crank Motion driven by 1/5 ellipical gears with connecting rod 6 tiems larger than crank

rod, arranged to produce saw wave motion.

function [pos] = e15_n2_r6_Sharp(Nang, Phase)

 Phase = Phase + pi;

 e = 1/5;

 n = 2;

 con_cr_ratio = 6;

 TransferPhase = 0;

 pos = Ellipsoidal(Nang,Phase,e,n,con_cr_ratio,TransferPhase);

end

Basic Elliptical motion

function [pos] = Ellipsoidal(Nang,Phase,e,n,con_cr_ratio,TransferPhase)

 ang = mod(linspace(0,2*pi,Nang),2*pi);

 C = (sqrt(1+(n^2-1)*(1-e^2)) + e)/(n*(1-e));

 % Pass ang through the transfer function

 ang = atanSmooth(C*tan(ang)) + TransferPhase;

 l_cr = 0.5;

 l_con = l_cr*con_cr_ratio;

 ang2 = asin((-l_cr*sin(ang))/l_con);

 pos = l_con*(cos(ang2) - 1) + l_cr*(cos(ang) + 1);

 pos(1:end-1) = shiftVector(pos(1:end-1),Phase);

 pos(end) = pos(1);

end

489

G.6. Simulation

490

Simulation

Simulation is a class that performs all conduction and gas relations operations. It includes the

following functionality:

A run function that sets up the simulation, performs warmup and during simulation it calls the

time integration function (running over increments) and calls the mechanism solve function

(between increments). This function also tracks steady-state, adjusts pressure, solves for steady-

state temperatures and performs recording operations.

The time integration function.

The loop solving sub-function.

A function that calculates the cost, in relation to the Newton-Raphson algorithm.

A function that calculates the average of the dynamic properties.

A function that interpolates properties given an increment value.

A function that updates the engine pressure.

A set of functions for calculating turbulence weighting, flow loss coefficients and temperature

related properties.

classdef Simulation < handle

 % Simulation objects contain all the arrays of each particular node, and

 % each particular interface type along with all supporting information

 % tables

 properties (Constant)

 U_Tolerance = 1e-6;

 turb_Tolerance = 0.05;

 RE_Tolerance = 1;

 InertiaMod = 0.1;

 end

 properties

 MaxCourant = 0.25;

 MaxFourier = 0.25;

 Model Model;

 %% Face Properties

 % Face Types

 Mix_Fc;

 % Dynamic Data

 Dynamic;

 Dyn = 1;

 % Node Property Pointers to Dynamic Data

491

 isDynVol double;%

 DynVol int16;

 DynDh int16;

 Fc_DynArea int16;

 Fc_DynDh int16;

 Fc_DynK12 int16;

 Fc_DynK21 int16;

 Fc_DynVel_Factor int16;

 Fc_DynShear_Factor int16;

 Fc_DynDist int16;

 Fc_DynCond_Dist int16;

 Fc_DynCond int16;

 Fc_Dyndx int16;

 Fc_DynWCond int16;

 SC_Active int16;

 %dL_dt double;

 %dD_dt double;

 %% Solid Conduction

 Cond_Nds1;

 Cond_Nds2;

 Cond_Nds;

 Cond_Fcs;

 CondNet;

 % Energy Transport

 Trans_Fcs;

 TransNet;

 % Faces to Nodes

 %% MEchanical System

 Press_Contact;

 Shear_Contact;

 MechanicalSystem MechanicalSystem;

 dA = 0;

 dA_old = 0;

 %% Max Courant

 dt_max double;

 %% General Gas

 dT_duFunc cell;

 dh_dTFunc cell; % Additions

 kFunc cell;

 muFunc cell;

 R double; % Defined by Region

 Rs; % All Nodes

 NuFunc_l_el cell;

 NuFunc_t_el cell;

 Fc_NkFunc_l_el cell;

 Fc_NkFunc_t_el cell;

 %% Node Properties

 CondFlux double;%

 NuFunc_l cell;%

 NuFunc_t cell;%

 dT_dU double;%

 dh_dT double;% Gas nodes only, Additions

 dV_dt double;%

 u double;%

 T double;%

 P double;%

 dP double;%

 rho double;%

 m double;%

 vol double;%

 old_vol double;%

 k double;%

 mu double;%

 Dh double;%

 Nu double;%

492

 RE double;%

 f double;%

 P_backup double;%

 U double;%

 dU double;

 % Turbulence

 turb double;

 Area double;

 Va double;

 to double;

 %% Face Properties

 Fc_Nd int16;%

 Fc_Dist double;%

 Fc_Cond_Dist double;%

 Fc_dx double;%

 Fc_K12 double;%

 Fc_K21 double;%

 Fc_U double;%

 Fc_RE double;%

 Fc_f double;%

 Fc_R double;%

 Fc_fFunc_l cell;%

 Fc_fFunc_t cell;%

 Fc_NkFunc_l cell;%

 Fc_NkFunc_t cell;%

 Fc_Area double;%

 Fc_Dh double;%

 Fc_Cond double;%

 Fc_T double;

 Fc_u double;

 Fc_k double;

 Fc_mu double;

 Fc_rho double;

 Fc_Vel_Factor double;

 Fc_Shear_Factor double;

 Fc_W double;

 % Prandtl Number

 PR double;%

 Fc_PR;

 %% Parameter inspection made it here:

 % Turbulence

 Fc_turb double;

 Fc_to double;

 useTurbulenceFc logical;

 useTurbulenceNd logical;

 dturb double;

 REcrit double;

 stop logical;

 curTime double;

 Solid_t double;

 MAXdt double;

 A_Inc;

 Inc;

 MoveCondition int16;

 % Solver

 Regions cell;

 isEnvironmentRegion logical;

 RegionFcs cell;

 ActiveRegionFcs cell;

 RegionFcCount int16;

 RegionLoops cell;

 RegionLoops_Ind cell;

 Faces cell;

 Fc2Col double;

493

 ExplicitLeak double;

 ExplicitNorm double;

 KpU_2A double;

 Fc_V double;

 Fc_V_averager double;

 Fc_turb_averager double;

 Fc_dP double;

 Fc_V_backup double;

 A_Press cell;

 u2T cell;

% extfc cell;

 Solid_dt_max;

 isLoopRegionFcs;

 Fc2Col_loop;

 Nd_Solid_dt;

 doScale;

 Acceleration_Coef = 1;

 SteadyState_Factor = 1;

 Acceleration_Factor = 1;

 % Statistics Collection

 ToEnvironmentSolid;

 ToEnvironmentGas;

 ToSource;

 ToSink;

 E_ToEnvironment;

 E_ToSource;

 E_ToSink;

 E_Flow_Loss;

 Sources;

 Sinks;

 VolMin;

 VolMax;

 ShuttleFaces;

 StaticFaces;

 ExergyLossShuttle;

 ExergyLossStatic;

 countFailed = 0.0;

 countSuccess = 0.0;

 ACond;

 bCond;

 BoundaryNodes;

 MixFcs;

 CondEff;

 CondTempEff;

 CycleTime;

 ss_condition;

 continuetoSS;

% Fric_l_current;

% Fric_t_current;

% Fric_l_index;

% Fric_t_index;

% Fric_tbl;

% Fric_tbt;

 % Engine Pressure Assignment

 PRegion = [];

 PRegionTime = [];

 CycledE = 0;

 Fc_Nd03 int16;

 Fc_A double;

 Fc_DynA;

 Fc_B double;

 Fc_DynB;

 Fc_C double;

494

 Fc_DynC;

 Fc_D double;

 Fc_DynD;

 EffRE double;

 FcApprox;

 end

 methods

 function [Results, success] = Run(ME, islast, do_warmup, ss_tolerance, options)

 success = true;

 ME.stop = false;

 if nargin > 4 && options.isManual == false

 simTime = options.simTime; % Maximum Simulation Time

 ME.ss_condition = options.SS; % True or False for steady state detection

 ME.continuetoSS = false;

 switch options.movement_option % C - Continuous, V - Variable

 case 'C'; ME.MoveCondition = 1;

 case 'V'; ME.MoveCondition = 2;

 end

 ME.dA = options.rpm*2*pi/60;

 ME.dA_old = ME.dA;

 ME.MAXdt = options.max_dt;

 ME.T(ME.Sources) = options.SourceTemp;

 ME.T(ME.Sinks) = options.SinkTemp;

 engine_Pressure = options.EnginePressure;

 else

 %% Get user input

 while isempty(ME.Model.name) && ~isempty(ME.Model.Sensors)

 answer = inputdlg(...

 ['Please name the model so that ' ...

 'the data can be saved properly'],'Name Model',[1 50],{''});

 if ~isempty(answer{1})

 ME.Model.name = answer{1};

 end

 end

 % inputdlg(prompt , dlg_title , num_lines , defAns);

 invalid = true;

 output = {'10','SS','C','60','0.1'};

 while invalid

 output = inputdlg({...

 'Maximum Simulation Time (seconds)',...

 'End Condition (SS - Steady State)',...

 'Motion Condition (C - Constant Velocity, V - Variable Velocity)',...

 'Initial Velocity (rpm)',...

 'maximum time step (s)'},...

 'Enter Simulation Parameters',...

 [1 20],...

 output);

 invalid = false;

 if isempty(output)

 Results = [];

 return;

 end

 if ~all(ismember(output{1}, '0123456789+-.eE')); invalid = true;

 elseif ~strcmp(output{2},'SS') && ~isempty(output{2}); invalid = true;

 elseif ~strcmp(output{3},'C') && ~strcmp(output{3},'V'); invalid = true;

 elseif ~all(ismember(output{4}, '0123456789+-.eE')); invalid = true;

 elseif ~all(ismember(output{5}, '0123456789+-.eE')); invalid = true;

 end

 end

 simTime = str2double(output{1});

 switch output{2}

 case 'SS'; ME.ss_condition = true;

 otherwise; ME.ss_condition = false;

 end

495

 ME.continuetoSS = false;

 switch output{3}

 case 'C'; ME.MoveCondition = 1;

 case 'V'; ME.MoveCondition = 2;

 end

 ME.dA = str2double(output{4})*2*pi/60;

 ME.dA_old = ME.dA;

 ME.MAXdt = str2double(output{5});

 engine_Pressure = ME.Model.enginePressure;

 end

 Load_Function_is_Not_Given = false;

 if ME.Model.recordOnlyLastCycle

 ME.MaxCourant = ME.Model.MaxCourantConverging;

 ME.MaxFourier = ME.Model.MaxFourierConverging;

 else

 ME.MaxCourant = ME.Model.MaxCourantFinal;

 ME.MaxFourier = ME.Model.MaxFourierFinal;

 end

 %% Early Initialize

 ME.A_Inc = 2*pi/(Frame.NTheta-1);

 ME.Inc = 1;

 ME.curTime = 0;

 Results = Result();

 Results.Model = ME.Model;

 Results.Data = struct();

 Results.Data.QEnv = 0;

 Results.Data.QSource = 0;

 Results.Data.QSink = 0;

 Results.Data.Flow_Loss = 0;

 Results.Data.Power = 0;

 Results.Data.CR = 0;

 indf = 1:length(ME.Fc_V);

 record_data = islast || ME.ss_condition == false;

 %% Set up data acquisition

 grab_Pressure = ME.Model.recordPressure;

 grab_Temperature = ME.Model.recordTemperature;

 grab_Velocity = ME.Model.recordVelocity;

 grab_PressureDrop = ME.Model.recordPressureDrop;

 grab_Turbulence = ME.Model.recordTurbulence;

 grab_ConductionFlux = ME.Model.recordConductionFlux;

 if ME.MoveCondition == 1 || ME.Model.recordOnlyLastCycle

 dt = ME.A_Inc/ME.dA;

 if ME.Model.recordOnlyLastCycle; LEN = Frame.NTheta-1;

 else; LEN = ceil((simTime*ME.dA/ME.A_Inc));

 end

 Results.Data.A = linspace(0,ME.A_Inc*LEN,LEN);

 Results.Data.dA = ME.dA(ones(1, LEN+2));

 Results.Data.t = linspace(0,LEN*dt,LEN+2);

 if grab_Pressure

 Results.Data.P = zeros(length(ME.P),LEN);

 Results.Data.P(:,1) = ME.P;

 end

 if grab_Temperature

 Results.Data.T = zeros(length(ME.T),LEN);

 Results.Data.T(:,1) = ME.T;

 end

 if grab_Velocity

 Results.Data.U = zeros(length(ME.Fc_dx),LEN);

 Results.Data.U(:,1) = ME.Fc_V./ME.Fc_Area(indf);

 end

 if grab_PressureDrop

 Results.Data.dP = zeros(length(ME.P),LEN);

 Results.Data.dP(:,1) = ME.dP;

 end

 if grab_Turbulence

 Results.Data.turb = zeros(length(ME.P),LEN);

496

 Results.Data.turb(:,1) = ME.turb;

 end

 if grab_ConductionFlux

 Results.Data.cond = zeros(length(ME.T),LEN);

 Results.Data.cond(:,1) = ME.CondFlux;

 end

 else

 % Grab Pressure

 if grab_Pressure; Results.Data.P = ME.P; end

 % Grab Temperature

 if grab_Temperature; Results.Data.T = ME.T; end

 % Grab Velocity

 if grab_Velocity

 Results.Data.U = ME.Fc_V./ME.Fc_Area(indf);

 end

 if grab_PressureDrop

 Results.Data.dP = ME.dP;

 end

 % Grab Turbulence

 if grab_Turbulence; Results.Data.turb = ME.turb; end

 if grab_ConductionFlux; Results.Data.cond = ME.CondFlux; end

 Results.Data.A = 0;

 Results.Data.dA = ME.dA;

 Results.Data.t = 0;

 end

 if ~isempty(ME.Model.Sensors)

 for iSensor = ME.Model.Sensors; iSensor.reset(); end

 end

 if ~isempty(ME.Model.PVoutputs)

 for iPVoutput = ME.Model.PVoutputs; iPVoutput.reset(); end

 end

 n = 2;

 AdjustTime = 0;

 previousTime = 0;

 ME.dt_max = 2*ME.A_Inc/(ME.dA_old + ME.dA);

 %% Initialize All the sub functions

 clear assignDynamic;

 clear implicitSolve;

 % clear dUFunc;

 clear KValue;

 clear solve_loops;

 % dUFunc(ME);

 % KValue(ME);

 assignDynamic(ME, ME.Inc, false);

 implicitSolve(ME, true);

 sindn = length(ME.P)+1:length(ME.T);

 ME.old_vol = ME.vol;

 %% Warm Up Phase

 if do_warmup

 progressbar('Warmup Phase');

 hmax = mean(ME.Solid_dt_max);

 t = 0;

 progressbar_update = 1;

 if ME.Model.warmUpPhaseLength > 0; assignAvgDynamic(ME); end

 % Record a backup of the gas properties, just so that we don't have

 % ... to bother.

 indn = 1:length(ME.P); indf = 1:length(ME.Fc_U); indmf = ME.Mix_Fc;

 Cfcs = ME.Cond_Fcs; Cnd1 = ME.Cond_Nds1; Cnd2 = ME.Cond_Nds2;

 Gm = ME.m(indn); Gu = ME.u(indn); GT = ME.T(indn);

 Sm = ME.m(sindn); ST = ME.T(sindn);

 Q = zeros(length(ME.T),1);

 ME.Fc_Cond(indmf) = ME.Fc_Area(indmf)./(ME.Fc_R(indmf)' + 15);

 ME.Fc_Cond(indf) = 0.5*ME.Fc_Area(indf)./ME.Fc_Cond_Dist(indf);

 while (t < ME.Model.warmUpPhaseLength)

 h = min(hmax, ME.Model.warmUpPhaseLength - t);

497

 Ti = [GT; ME.T(sindn)];

 Q(:) = 0;

 Qfc = ME.Fc_Cond(Cfcs).*(Ti(Cnd1) - Ti(Cnd2));

 for i = 1:3:length(ME.CondNet)-2

 Q(ME.CondNet{i+1}) = Q(ME.CondNet{i+1}) + ...

 ME.CondNet{i}.*Qfc(ME.CondNet{i+2});

 end

 % Internal Energy Change - Gas

 Gu = Gu + h*Q(indn)./Gm;

 % Temperature - Gas

 GT = ME.u2T(Gu);

 % Temperature - Solid

 ST = ME.dT_dU(sindn).*Q(sindn)./Sm;

 t = t + h;

 if progressbar_update > 1/h

 progressbar(t/ME.Model.warmUpPhaseLength);

 progressbar_update = 1;

 else

 progressbar_update = progressbar_update + 1;

 end

 end

 ME.T(sindn) = ST;

 end

 sindn = length(ME.P):length(ME.T);

 progressbar('Main Dynamic Loop');

 %% Set up Steady State Detection Code

 if ME.ss_condition

 ss_cycles = 5;

 Precord = zeros(1,ss_cycles);

 Load_Function_is_Not_Given = isempty(ME.MechanicalSystem.LoadFunction);

 if Load_Function_is_Not_Given && ME.MoveCondition == 2

 ME.MaxCourant = ME.Model.MaxCourantFinal;

 ME.MaxFourier = ME.Model.MaxFourierFinal;

 % Turn off pressure, temperature adjustments.

 % Set timestep to final value.

 ME.continuetoSS = true;

 if nargin > 4 && ...

 isfield(options,'set_Load') && options.set_Load ~= 0

 temp = options.set_Load;

 else

 temp = 0;

 end

 LoadRecord = temp;

 SetSpeed = ME.dA;

 else

 ME.continuetoSS = false;

 end

 end

 %% Main Loop

 ME.curTime = 0;

 ME.CycledE = 0;

 cycle_count = 0;

 MechCycleEnergy = 0;

 Plot_Powers = zeros(1000,1);

 Plot_Learning_Rate = zeros(1000,1);

 since_inflection = 0;

 Plot_Number = 0;

 power_factor = 1;

 %Convergence_Plot = figure();

 %Factor_Plot = figure();

 if ME.ss_condition

498

 Tavg = zeros(size(ME.T));

 Tavg_count = 0;

 end

 while (ME.curTime < simTime)

 %% Main Solve

 ME.dt_max = 2*ME.A_Inc/(ME.dA_old + ME.dA);

 Forces = ME.Iteration_Solve();

 for i = length(Forces)

 for j = length(Forces{i})

 if isnan(Forces{i}(j)) || ~isreal(Forces{i}(j))

 ME.stop = true;

 success = false;

 end

 end

 end

 if ME.stop

% fprintf('Simulation Finished Prematurely. (in Run)\n');

 clear assignDynamic;

 clear implicitSolve;

 % clear dUFunc;

 clear KValue;

 clear solve_loops;

 return;

 end

 ME.curTime = ME.curTime + ME.dt_max;

 progressbar(ME.curTime/simTime);

 Power = ME.MechanicalSystem.Solve(ME.Inc,(ME.dA_old + ME.dA)/2,0,Forces);

 MechCycleEnergy = MechCycleEnergy + Power*ME.dt_max;

 if ~isempty(ME.MechanicalSystem.LoadFunction)

 Power = Power - ME.MechanicalSystem.LoadFunction((ME.dA_old + ME.dA)/2)*(ME.dA_old +

ME.dA)/2;

 end

 switch ME.MoveCondition

 case 1 % For Constant Motion Systems

 % Do nothing

 case 2 % For variable systems

 ME.dA_old = ME.dA;

 % fprintf([num2str(Power*ME.dt_max) '\n']);

 new_ke = Power*ME.dt_max + 0.5*ME.MechanicalSystem.Inertia*ME.dA^2;

 if new_ke < 0 && ME.ss_condition && ...

 ME.Model.recordOnlyLastCycle && ...

 Load_Function_is_Not_Given

 ME.dA = 0.1*2*pi; % Minimum speed of 0.1 Hz

 else

 if new_ke < 0

 ME.stop = true;

 else

 ME.dA = sqrt(2*new_ke/ME.MechanicalSystem.Inertia);

 end

 end

 if ME.ss_condition && ...

 ME.Model.recordOnlyLastCycle && ...

 Load_Function_is_Not_Given

 if ME.dA < 0.1*2*pi

 ME.dA = 0.1*2*pi;

 end

 end

 % fprintf([num2str(ME.dA) '\n']);

 end

 if ME.stop

 fprintf('Simulation Finished Prematurely. (in Run)\n');

 clear assignDynamic;

 clear implicitSolve;

 % clear dUFunc;

 clear KValue;

 clear solve_loops;

 return;

 end

 %% Obtain Results

499

 if ME.Model.recordOnlyLastCycle

 Results.Data.dA(ME.Inc) = ME.dA;

 Results.Data.t(ME.Inc) = ME.curTime - AdjustTime;

 if grab_Pressure; Results.Data.P(:,ME.Inc) = ME.P; end

 if grab_Temperature; Results.Data.T(:,ME.Inc) = ME.T; end

 if grab_Velocity

 Results.Data.U(:,ME.Inc) = ME.Fc_V./ME.Fc_Area(indf);

 end

 if grab_PressureDrop

 Results.Data.dP(:,ME.Inc) = ME.dP;

 end

 if grab_Turbulence; Results.Data.turb(:,ME.Inc) = ME.turb; end

 if grab_ConductionFlux; Results.Data.cond(:,ME.Inc) = ME.CondFlux; end

 if ME.Model.recordStatistics

 Results.Data.QEnv(ME.Inc) = ME.E_ToEnvironment;

 Results.Data.QSource(ME.Inc) = ME.E_ToSource;

 Results.Data.QSink(ME.Inc) = ME.E_ToSink;

 Results.Data.Flow_Loss(ME.Inc) = ME.E_Flow_Loss;

 Results.Data.Power(ME.Inc) = Power;

 Results.Data.CR = ME.VolMax(:)./ME.VolMin(:);

 % Reset them

 ME.E_ToEnvironment = 0;

 ME.E_ToSource = 0;

 ME.E_ToSink = 0;

 ME.E_Flow_Loss = 0;

 end

 else

 if ME.MoveCondition == 2

 Results.Data.A(n) = Results.Data.A(n-1) + ME.A_Inc;

 Results.Data.dA(n) = ME.dA;

 Results.Data.t(n) = ME.curTime;

 if length(Results.Data.t) == n

 LEN = abs(min([100 ceil(((simTime-ME.curTime)*ME.dA/ME.A_Inc))]));

 Results.Data.A(n:n+LEN) = linspace(Results.Data.A(n-1),Results.Data.A(n-1)+...

 LEN*ME.A_Inc,LEN+1);

 Results.Data.dA(n+LEN) = 0;

 Results.Data.t(n+LEN) = 0;

 if grab_Pressure; Results.Data.P(length(ME.P),n+LEN) = 0; end

 if grab_Temperature; Results.Data.T(length(ME.P),n+LEN) = 0; end

 if grab_Velocity

 Results.Data.U(length(ME.Fc_dx),n+LEN) = 0;

 end

 if grab_PressureDrop

 Results.Data.dP(length(ME.P),n+LEN) = 0;

 end

 if grab_Turbulence; Results.Data.turb(length(ME.turb),n+LEN) = 0; end

 if grab_ConductionFlux; Results.Data.cond(length(ME.CondFlux),n+LEN) = 0; end

 if ME.Model.recordStatistics

 Results.Data.QEnv(n+LEN) = 0;

 Results.Data.QSource(n+LEN) = 0;

 Results.Data.QSink(n+LEN) = 0;

 Results.Data.Power(n+LEN) = 0;

 end

 end

 end

 if grab_Pressure; Results.Data.P(:,n) = ME.P; end

 if grab_Temperature; Results.Data.T(:,n) = ME.T; end

 if grab_Velocity

 Results.Data.U(:,n) = ME.Fc_V./ME.Fc_Area(indf);

 end

 if grab_PressureDrop

 Results.Data.dP(:,n) = ME.dP;

 end

 if grab_Turbulence; Results.Data.turb(:,n) = ME.turb; end

 if grab_ConductionFlux; Results.Data.cond(:,n) = ME.CondFlux; end

 if ME.Model.recordStatistics

 Results.Data.QEnv(n) = ME.E_ToEnvironment;

 Results.Data.QSource(n) = ME.E_ToSource;

 Results.Data.QSink(n) = ME.E_ToSink;

 Results.Data.Flow_Loss(n) = ME.E_Flow_Loss;

 Results.Data.Power(n) = Power;

500

 Results.Data.CR = ME.VolMax(:)./ME.VolMin(:);

 % Reset them

 ME.E_ToEnvironment = 0;

 ME.E_ToSource = 0;

 ME.E_ToSink = 0;

 ME.E_Flow_Loss = 0;

 end

 end

 if ~isempty(ME.Model.Sensors)

 for iSensor = ME.Model.Sensors; iSensor.getData(ME); end

 end

 if ~isempty(ME.Model.PVoutputs)

 for iPVoutput = ME.Model.PVoutputs; iPVoutput.getData(ME); end

 end

 if ME.curTime > previousTime + ME.Model.animationFrameTime

 previousTime = ME.curTime;

 end

 ME.old_vol = ME.vol;

 n = n + 1;

 %% Test Conditions (Reverse, Steady State, etc...)

 if ME.ss_condition && ME.Model.recordOnlyLastCycle

 if ME.MoveCondition == 2

 if Load_Function_is_Not_Given

 if ME.dA < 0

 ME.dA = 0.1*2*pi; % Minimum speed of 0.1 Hz

 end

 end

 end

 end

 if ME.dA < 0

 fprintf('XXX Engine Reversed Directions, solving exited XXX\n');

 return;

 else

 if ME.ss_condition && ~ME.continuetoSS

 Tavg = Tavg + ME.T;

 Tavg_count = Tavg_count + 1;

 if Tavg_count == 1

 T_previous = Tavg;

 end

 end

 ME.Inc = ME.Inc + 1;

 if ME.Inc == Frame.NTheta

 cycle_count = cycle_count + 1;

 Plot_Number = Plot_Number + 1;

 Plot_Powers(Plot_Number) = MechCycleEnergy/(ME.curTime - AdjustTime);

 fprintf(['Speed: (rpm) ' num2str(60*ME.dA/(2*pi)) ...

 'Power: (W) ' num2str(Plot_Powers(Plot_Number)) '\n']);

 Results.Data.SnapShot_P = ME.Rs.*ME.T(1:length(ME.P)).*...

 ME.m(1:length(ME.P))./ME.vol(1:length(ME.P));

 if ME.Model.showLivePV

 for iPVoutput = ME.Model.PVoutputs; iPVoutput.updatePlot(); end

 end

 % Acquire an understanding of the solution plateauing

 Plot_Number = Plot_Number + 1;

 Plot_Powers(Plot_Number) = MechCycleEnergy/(ME.curTime - AdjustTime);

 MechCycleEnergy = 0;

 Plot_Learning_Rate(Plot_Number) = power_factor;

% if isempty(Convergence_Plot) || ...

% ~isvalid(Convergence_Plot) || ...

% Convergence_Plot < 1

% Convergence_Plot = figure();

% end

% figure(Convergence_Plot);

% plot(1:Plot_Number,Plot_Powers(1:Plot_Number));

 %cycle_count = cycle_count + 1;

 ME.Inc = 1;

501

% if isempty(Factor_Plot) || ...

% ~isvalid(Factor_Plot) || ...

% Factor_Plot < 1

% Factor_Plot = figure();

% end

 %figure(Factor_Plot);

 %plot(1:Plot_Number,Plot_Learning_Rate(1:Plot_Number));

 % Get Local curvature

 if Plot_Number > 2

 Power_curv_backup = power_curv;

 power_curv = (Plot_Powers(Plot_Number) - ...

 2*Plot_Powers(Plot_Number - 1) + ...

 Plot_Powers(Plot_Number - 2));

 if Plot_Number > 3

 % Detect if crossed inflection point

 if sign(power_curv) ~= sign(Power_curv_backup) && since_inflection > 3

 power_factor = 0;

 since_inflection = 0;

 else

 power_factor = ...

 min(1,max(0,...

 power_factor + 0.25/(1 + 2*abs(power_factor - 0.5))));

 end

 end

 else

 power_curv = 1;

 power_factor = ...

 min(1,max(0,...

 power_factor + 0.25/(1 + 2*abs(power_factor - 0.5))));

 end

 since_inflection = since_inflection + 1;

 % Detect if it is steady state

 if ME.ss_condition

 if ~ME.continuetoSS

% fprintf(['Mixed Face Conduction: ' ...

% num2str(sum(ME.CondEff / ME.CycleTime)) '.\n']);

% fprintf(['Volume Averaged Reynolds Number: ' ...

% num2str(sum(ME.EffRE / ME.CycleTime)) '.\n']);

% ME.EffRE(:) = 0;

 % Calculate Average Temperatures and current shift

 Tavg = Tavg/Tavg_count;

 % Modify T_delta to prevent a constant change in

 % ... temperature being regarded as an oscillation.

 T_constant = ME.T - T_previous;

 Tavg = Tavg + T_constant/2;

 T_delta = ME.T - Tavg;

 A = ME.ACond;

 b = ME.bCond;

 ME.CondEff = ME.CondEff / ME.CycleTime;

 ME.CondTempEff = ME.CondTempEff / ME.CycleTime;

 for i = ME.BoundaryNodes

 % Modify the diagonal from default values to include the

 % ... average conductance to other nodes (gas nodes)

 A(i,i) = A(i,i) + sum(ME.CondEff(ME.MixFcs{i}));

 % Calculate the b values so that they are:

 % ... bi = sum of others(sum of other(delta * Cond * To))

 % ... (/ sum of delta

 b(i) = b(i) + sum(ME.CondTempEff(ME.MixFcs{i}));

 end

 if cycle_count == 1

 for i = 1:size(A,1)

 if all(A(i,:) == 0)

 ME.ACond(i,i) = 1;

 ME.bCond(i) = 298;

 A(i,i) = 1;

502

 b(i) = 298;

 end

 end

 end

 ME.CondEff(:) = 0;

 ME.CondTempEff(:) = 0;

 ME.CycleTime = 0;

 A = sparse(A);

 var = A\b;

 % Calculate shifted values based on current transient

 ME.T(sindn) = var + T_delta(sindn);

 % Reset Tavg for the next cycle

 Tavg(:) = 0;

 Tavg_count = 0;

 end

 % Detect if it is steady state

 % Compare the average over 10 cycles to see if it appears to

 % be converged

 Precord(1:ss_cycles-1) = Precord(2:ss_cycles);

 Precord(ss_cycles) = Plot_Powers(Plot_Number);

 temp = ss_tolerance*max(Precord(end),1);

 % ContinuetoSS is the a flag for the last cycle which is run

 % ... at a finer timestep that the converging cycles.

 if ME.continuetoSS; break; end

 if CustomRSSQ(diff(Precord)) < temp

 ME.continuetoSS = true;

 ME.MaxCourant = ME.Model.MaxCourantFinal;

 ME.MaxFourier = ME.Model.MaxFourierFinal;

 end

 end

 % Modify Gas Mass so that the engine is at the engine pressure.

 if ME.Model.recordOnlyLastCycle

 %i = 1;

 for i = 1:length(ME.Regions)

 if ~ME.isEnvironmentRegion(i)

 nodes = ME.Regions{i};

 Pregion = ME.PRegion(i)/ME.PRegionTime;

 ME.m(nodes) = ...

 (power_factor*engine_Pressure/Pregion + ...

 (1-power_factor))*ME.m(nodes);

 end

 end

 ME.PRegion(:) = 0; ME.PRegionTime(:) = 0;

% for iPVoutput = ME.Model.PVoutputs

% Pregion = ME.PRegion(i)/ME.PRegionTime(i);

% ME.PRegion(i) = 0; ME.PRegionTime(i) = 0;

% ME.m(iPVoutput.RegionNodes) = ...

% (power_factor*engine_Pressure/Pregion + ...

% (1-power_factor))*ME.m(iPVoutput.RegionNodes);

% i = i + 1;

% end

 end

 % Assess cycle time and modify mechanism load accordingly

 if ME.ss_condition && ME.Model.recordOnlyLastCycle

 if ME.MoveCondition == 2

 if Load_Function_is_Not_Given

 % Modify Load to approach initial speed

 % Calculate Speed

 speed = 2*pi/(ME.curTime - AdjustTime);

 dspeed = min(0.01/(max(log(Plot_Number),1)), ...

 0.5*abs((SetSpeed - speed)/SetSpeed));

 if speed < SetSpeed

503

 LoadRecord = LoadRecord - power_factor*dspeed;

 else

 LoadRecord = LoadRecord + power_factor*dspeed;

 end

 ME.MechanicalSystem.LoadFunction = @(Speed) LoadRecord;

 end

 end

 end

 AdjustTime = ME.curTime;

 end

 assignDynamic(ME,ME.Inc,false); % Initialize the dynamic function

 end

 end

 progressbar(1);

 if ~ME.Model.recordOnlyLastCycle

 Results.Data.dA = Results.Data.dA(1:n-1);

 Results.Data.t = Results.Data.t(1:n-1);

 if grab_Pressure; Results.Data.P = Results.Data.P(:,1:n-1); end

 if grab_Temperature; Results.Data.T = Results.Data.T(:,1:n-1); end

 if grab_Velocity; Results.Data.U = Results.Data.U(:,1:n-1); end

 if grab_PressureDrop; Results.Data.dP = Results.Data.dP(:,1:n-1); end

 if grab_Turbulence; Results.Data.turb = Results.Data.turb(:,1:n-1); end

 if grab_ConductionFlux; Results.Data.cond = Results.Data.cond(:,1:n-1); end

 if ME.Model.recordStatistics

 Results.Data.QEnv = Results.Data.QEnv(:,1:n-1);

 Results.Data.QSource = Results.Data.QSource(:,1:n-1);

 Results.Data.QSink = Results.Data.QSink(:,1:n-1);

 Results.Data.Flow_Loss = Results.Data.Flow_Loss(:,1:n-1);

 Results.Data.Power = Results.Data.Power(:,1:n-1);

 Results.Data.CR(:) = ME.VolMax(:)./ME.VolMin(:);

 end

 end

 %% Save Data

 if record_data

 if ME.Model.recordStatistics

 statistics = struct(...

 'Time',Results.Data.t,...

 'Angle',Results.Data.A,...

 'Omega',Results.Data.dA,...

 'To_Environment',Results.Data.QEnv,...

 'To_Source',Results.Data.QSource,...

 'To_Sink',Results.Data.QSink,...

 'Flow_Loss',Results.Data.Flow_Loss,...

 'Power',Results.Data.Power,...

 'TotalPower',Plot_Powers,...

 'Gas_Nodes',length(ME.P)-1,...

 'Solid_Nodes',length(ME.T)-length(ME.P)+1,...

 'Gas_Faces',length(ME.Fc_V),...

 'Mixed_Faces',length(ME.Fc_R)-length(ME.Fc_V),...

 'Solid_Faces',length(ME.Fc_Cond)-length(ME.Fc_R),...

 'CR',Results.Data.CR,...

 'VMin',sum(ME.VolMin(:)),...

 'VMax',sum(ME.VolMax(:)));

 end

 if ME.Model.recordStatistics

 if nargin > 4

 if isempty(ME.Model.outputPath)

 save([options.title '_Statistics'],'statistics');

 else

 save([ME.Model.outputPath '\' options.title '_Statistics'],'statistics');

 end

 else

 if isempty(ME.Model.outputPath)

 save([ME.Model.name '_Statistics'],'statistics');

 else

 save([ME.Model.outputPath '\' ME.Model.name '_Statistics'],'statistics');

 end

 end

504

 end

 if nargin > 4

 if ~isempty(ME.Model.Sensors)

 for iSensor = ME.Model.Sensors; iSensor.plotData(true,options.title); end

 end

 if ~isempty(ME.Model.PVoutputs)

 for iPVoutput = ME.Model.PVoutputs; iPVoutput.plotData(true,options.title); end

 end

 else

 if ~isempty(ME.Model.Sensors)

 for iSensor = ME.Model.Sensors; iSensor.plotData(true,ME.Model.name); end

 end

 if ~isempty(ME.Model.PVoutputs)

 for iPVoutput = ME.Model.PVoutputs; iPVoutput.plotData(true,ME.Model.name); end

 end

 end

 end

 if Load_Function_is_Not_Given

 ME.MechanicalSystem.LoadFunction = function_handle.empty;

 end

 %% Clean up

 clear assignDynamic;

 clear implicitSolve;

 % clear dUFunc;

 clear KValue;

 clear solve_loops;

 end

 function implicitSolve(ME,initialize) %#ok<INUSD>

 persistent indf;

 persistent indS;

 persistent indmf;

 persistent indn;

 persistent sindn;

 persistent indnminus;

 persistent indmfminus;

 persistent totalNodes;

 persistent isDynVol;

 persistent dvind;

 persistent lenf;

 persistent lenn;

 persistent nd0;

 persistent nd1;

 persistent nd2;

 persistent nd3;

 persistent nd1mf;

 persistent nd2mf;

 persistent Cfcs;

 persistent Cnd1;

 persistent Cnd2;

 persistent Pi;

 persistent Ti;

 persistent rhoEnv;

 persistent PEnv;

 persistent uEnv;

 persistent TEnv;

 persistent Fcrho;

 persistent Fcu;

 persistent Fcmu;

 persistent FcT;

 persistent FcP;

 persistent theta_FL;

 persistent Q;

 persistent Qtd;

 persistent ReCritComparitor;

 persistent F2C;

 persistent ExFc;

 persistent ExR1;

 persistent ExR2;

 persistent ExLFc;

 persistent ExLC;

505

 persistent ExLN;

 persistent FlowTimeStep;

 persistent RecordStatistics;

 persistent facesES;

 persistent sgnES;

 persistent facesEG;

 persistent sgnEG;

 persistent facesSr;

 persistent sgnSr;

 persistent facesSi;

 persistent sgnSi;

 persistent Ci;

 persistent Cs;

 persistent Qi;

 persistent Qs;

 persistent C1;

 persistent C2;

 persistent C3;

 persistent C4;

 persistent CT;

 persistent nlambda;

 % persistent dP_dt;

 if nargin == 2

 % dP_dt = zeros(length(ME.Regions),1);

 ME.Fc_V_averager = zeros(size(ME.Fc_V));

 ME.Fc_turb_averager = ME.Fc_V_averager;

 ME.assignDynamic(ME.Inc);

 indf = (1:length(ME.Fc_U))';

 if ~isempty(ME.Fc_DynShear_Factor)

 indS = ME.Fc_DynShear_Factor(1,:);

 else

 indS = [];

 end

 Cs = ME.m(ME.Fc_Nd(ME.FcApprox,2))./ME.dT_dU(ME.Fc_Nd(ME.FcApprox,2));

 Cs(isinf(Cs)) = 1e6;

 indmf = ME.Mix_Fc;

 indn = (1:length(ME.P))';

 totalNodes = length(ME.T);

 lenf = length(indf);

 lenn = length(indn);

 sindn = (lenn+1:totalNodes);

 indnminus = (1:lenn-1)';

 nd0 = ME.Fc_Nd03(indf,1);

 nd1 = ME.Fc_Nd(indf,1);

 nd2 = ME.Fc_Nd(indf,2);

 nd3 = ME.Fc_Nd03(indf,2);

 nd1mf = ME.Fc_Nd(indmf,1);

 nd2mf = ME.Fc_Nd(indmf,2);

 isDynVol = logical(ME.isDynVol(indn));

 dvind = indn(isDynVol);

 elements = ME.dT_dU(nd2mf)>0;

 indmfminus = indmf(elements);

 nd2mf = nd2mf(elements);

 Ti = zeros(size(ME.T));

 Pi = zeros(size(ME.P));

 rhoEnv = ME.rho(lenn);

 PEnv = ME.P(end);

 uEnv = ME.u(lenn);

 TEnv = ME.T(lenn);

 Q = zeros(totalNodes,1);

 Qtd = Q;

 Cfcs = ME.Cond_Fcs;

 Cnd1 = ME.Cond_Nds1;

 Cnd2 = ME.Cond_Nds2;

 ReCritComparitor = [zeros(1,lenn-1); ...

 11.5*ones(1,lenn-1)];

 ExR1 = ME.ExplicitNorm(:,2);

 ExR2 = ME.ExplicitNorm(:,3);

 F2C = ME.Fc2Col;

 ExFc = ME.ExplicitNorm(:,1);

 ExLFc = ME.ExplicitLeak(:,1);

506

 ExLC = ME.ExplicitLeak(:,2);

 ExLN = ME.ExplicitLeak(:,3);

 ME.Fc_V = zeros(lenf,1);

 Fcu = zeros(lenf,1);

 Fcrho = Fcu;

 Fcmu = Fcu;

 FcT = Fcu;

 FcP = Fcu;

 theta_FL = Fcu;

 FlowTimeStep = 1;

 RecordStatistics = ME.Model.recordStatistics;

 if RecordStatistics

 facesES = ME.ToEnvironmentSolid(1,:);

 sgnES = ME.ToEnvironmentSolid(2,:)';

 facesEG = ME.ToEnvironmentGas(1,:);

 sgnEG = ME.ToEnvironmentGas(2,:)';

 facesSr = ME.ToSource(1,:); sgnSr = ME.ToSource(2,:)';

 facesSi = ME.ToSink(1,:); sgnSi = ME.ToSink(2,:)';

 ME.E_ToEnvironment = 0;

 ME.E_ToSource = 0;

 ME.E_ToSink = 0;

 ME.E_Flow_Loss = 0;

 end

 return

 end

 t = 0; done = false;

 ME.Fc_V_averager(:) = 0;

 ME.Fc_turb_averager(:) = 0;

 while ~done

 hmax = min(ME.dt_max-t, ME.Solid_dt_max(ME.Inc));

 %% Assign Properties

 mi = ME.m(indn);

 ui = [ME.u; ME.T(sindn)./ME.dT_dU(sindn)];

 signU = sign(ME.Fc_U);

 Tnew = zeros(size(ME.vol(indn)));

 dm_dt = Tnew;

 unew = Tnew;

 mnew = Tnew;

 inc = ME.Inc + t/ME.dt_max;

% if inc == 1

% fprintf('start');

% end

 time = ME.curTime + t;

 ME.assignDynamic(inc);

 ME.vol(ME.vol<=0) = 1e-8;

 Areai = ME.Fc_Area(indf);

 % Density - Upwinding

 rhoi = mi./ME.vol(indn);

 rhoi(end) = rhoEnv;

 % Pressure

 n = length(ME.Regions);

 for i = 1:n

 nodes = ME.Regions{i};

 uTemp = ui(nodes);

 TTemp = ME.u2T{i}(uTemp);

 ME.k(nodes) = ME.kFunc{i}(TTemp);

 ME.mu(nodes) = ME.muFunc{i}(TTemp);

 ME.dT_dU(nodes) = ME.dT_duFunc{i}(uTemp);

 ME.dh_dT(nodes) = ME.dh_dTFunc{i}(TTemp);

 Ti(nodes) = TTemp;

 end

 Ti(sindn) = ME.T(sindn);

 ME.Fc_turb = 0.5*(ME.turb(nd1) + ME.turb(nd2));

 Pi = Ti(indn).*rhoi.*ME.Rs;

% fprintf([num2str(std(Pi(1:end-1))) '\n']);

 Pi(end) = PEnv;

507

 FcP = 0.5*(Pi(nd1) + Pi(nd2));

 % Thermal Conductivity

 ME.k(dvind) = ME.k(dvind) + ...

 0.021*rhoi(dvind).*ME.Dh(dvind).*...

 (ME.Rs(dvind) + 1./ME.dT_dU(dvind)).*sqrt(ME.turb(dvind));

% ME.Fc_k = (ME.k(nd1) + ME.k(nd2))/2;

% ME.k(ME.k>100) = 100;

 % Viscosity

 ME.mu(dvind) = ME.mu(dvind) + ...

 0.021*rhoi(dvind).*ME.Dh(dvind).*sqrt(ME.turb(dvind));

% Fcmu = (ME.mu(nd1) + ME.mu(nd2))/2;

 % Do flux limiting on the int energy, then calculate T from u2T

 forward = (ME.Fc_V > 0);

 Fcu(forward) = ui(nd1(forward));

 Fcu(~forward) = ui(nd2(~forward));

 theta_FL(forward) = (ui(nd1(forward))-ui(nd0(forward)))./...

 (ui(nd2(forward))-ui(nd1(forward)));

 theta_FL(~forward) = (ui(nd2(~forward))-ui(nd3(~forward)))./...

 (ui(nd1(~forward))-ui(nd2(~forward)));

 theta_FL(isnan(theta_FL)) = 1;

 theta_FL(theta_FL > 1) = 1;

 theta_FL(theta_FL < -1) = -1;

 Fcu = Fcu + ((theta_FL.^2 + theta_FL)./(theta_FL.^2 + 1)).*...

 (ME.Fc_A.*ui(nd0) + ME.Fc_B.*ui(nd1) + ...

 ME.Fc_C.*ui(nd2) + ME.Fc_D.*ui(nd3) - Fcu);

 n = length(ME.Regions);

 for i = 1:n

 faces = ME.RegionFcs{i};

 FcT(faces) = ME.u2T{i}(Fcu(faces));

 ME.Fc_k(faces) = ME.kFunc{i}(FcT(faces));

 Fcmu(faces) = ME.muFunc{i}(FcT(faces));

 end

 Fcrho(indf) = 2.*FcP(indf)./((ME.Rs(nd1(indf)) + ME.Rs(nd2(indf))).*FcT(indf));

 ME.PR = abs((1./ME.dT_dU(indn) + ME.Rs).*ME.mu./ME.k);

 ME.Fc_PR = 0.5*(ME.PR(nd1)+ME.PR(nd2));

 % Parameters used by outside calculation

 ME.Fc_RE = abs(ME.Fc_U.*Fcrho.*ME.Fc_Dh./Fcmu);

 ME.Fc_RE(ME.Fc_RE==0) = 1e-8;

 ME.getWeight();

 % Assign Node Reynold's Number

 area = zeros(lenn-1,1);

 ME.RE = area;

 for i = 1:3:length(ME.TransNet)-2

 ME.RE(ME.TransNet{i+1}) = ME.RE(ME.TransNet{i+1}) + ...

 ME.Fc_RE(ME.TransNet{i+2}).*Areai(ME.TransNet{i+2});

 area(ME.TransNet{i+1}) = area(ME.TransNet{i+1}) + ...

 Areai(ME.TransNet{i+2});

 end

 ME.RE = ME.RE./(area);

 ME.RE(isnan(ME.RE)) = 1e-8;

 %% Calculate Flow Independent Energy Flux to Nodes

 invConv = ME.Dh(indnminus)./(ME.k(indnminus).*ME.Nusselt());

 ME.Fc_Cond(indmf) = ME.Fc_Area(indmf)./(ME.Fc_R(indmf)' + invConv(nd1mf));

 ME.Fc_Cond(indf) = ME.NkFunc().*ME.Fc_k(indf).*Areai./ME.Fc_Cond_Dist(indf);

 ME.Fc_Cond(indS) = ME.Fc_Cond(indS) + abs(...

 (ME.dA/4)*(1./ME.dT_dU(indS)).*...

 ME.Fc_Shear_Factor(indS).*Fcrho(indS).*Areai(indS));

 Q(:) = 0;

 Qfc = ME.Fc_Cond(Cfcs).*(Ti(Cnd1) - Ti(Cnd2));

 for i = 1:3:length(ME.CondNet)-2

 Q(ME.CondNet{i+1}) = ...

 Q(ME.CondNet{i+1}) + ME.CondNet{i}.*Qfc(ME.CondNet{i+2});

 end

 fcs = ME.FcApprox;

 Ci = mi(ME.Fc_Nd(fcs,1))./ME.dT_dU(ME.Fc_Nd(fcs,1));

 C1 = Ci + Cs;

508

 CT = (Ti(ME.Fc_Nd(fcs,1)).*Ci + Ti(ME.Fc_Nd(fcs,2)).*Cs)./C1 - Ti(ME.Fc_Nd(fcs,1));

 nlambda = -ME.Fc_Cond(fcs).*(1./Cs + 1./Ci);

 Qs = Q(ME.Fc_Nd(fcs,2));

% ME.MaxFourier = 0.025;

% ME.MaxCourant = 0.025;

 % Assign TimeStep

 if ~isempty(ME.Fc_dx)

 if ~isempty(ME.Fc_Cond)

 hmax = min([hmax FlowTimeStep ...

 ME.MaxFourier*...

 min(min(mi(nd1)./(ME.dT_dU(nd1).*ME.Fc_Cond(indf))), ...

 min(mi(nd2)./(ME.dT_dU(nd2).*ME.Fc_Cond(indf)))) ...

 ME.MaxFourier*min(mi(nd1mf)./(ME.dT_dU(nd1mf).*ME.Fc_Cond(indmf))) ...

 ME.MaxFourier*min(ME.m(nd2mf)./(ME.dT_dU(nd2mf).*ME.Fc_Cond(indmfminus)))]);

 else

 hmax = min([hmax FlowTimeStep ...

 ME.MaxFourier*min(mi(nd1mf)./(ME.dT_dU(nd1mf).*ME.Fc_Cond(indmf))) ...

 ME.MaxFourier*min(ME.m(nd2mf)./(ME.dT_dU(nd2mf).*ME.Fc_Cond(indmfminus)))]);

 end

 else

 if ~isempty(ME.Fc_Cond)

 hmax = min([hmax ...

 ME.MaxFourier*...

 min(min(mi(nd1)./(ME.dT_dU(nd1).*ME.Fc_Cond(indf))), ...

 min(mi(nd2)./(ME.dT_dU(nd2).*ME.Fc_Cond(indf))))]);

 end

 end

 % hmax = 1e-4;

 RegionPressure = zeros(n,1);

% dm_region = RegionPressure;

% m_region = RegionPressure;

% V_region = RegionPressure;

% dV_region = RegionPressure;

 E_region = RegionPressure;

 %% Calculate Explicit Volume Flow - Normal

 if ~isempty(ME.ExplicitNorm)

 ME.Fc_dP(ExFc) = Pi(nd1(ExFc)) - Pi(nd2(ExFc));

 x = sign(ME.Fc_dP(ExFc)).*...

 sqrt(2*(Areai(ExFc).^2).*abs(ME.Fc_dP(ExFc))./Fcrho(ExFc));

 V = ME.Fc_V(ExFc);

 V_max = 350*Areai(ExFc);

 V(V > V_max) = V_max(V > V_max);

 iteration = 1;

 while iteration < 100

 oldV = V;

 K = ME.KValue(ExFc);

 V = x./sqrt(K);

 V(V > V_max) = V_max(V > V_max);

 V(isnan(V)) = 1;

 if CustomRSSQ(oldV-V) < 1e-8; break; end

 end

 ME.Fc_V(ExFc) = V;

 for i = 1:length(ExR1)

 E = ME.Fc_V(ExFc(i)).*FcP(ExFc(i));

 E_region(ExR1(i)) = E_region(ExR1(i)) - E;

 E_region(ExR2(i)) = E_region(ExR2(i)) + E;

 end

 end

 %% Calculate Explicit Volume Flow - Leak

 if ~isempty(ME.ExplicitLeak)

 dP = Pi(nd1(ExLFc)) - Pi(nd2(ExLFc));

 ME.Fc_V(ExLFc) = sign(dP).*ExLC.*(abs(dP)).^ExLN;

 for i = 1:length(ExLR1)

 if ME.Fc_V(ExLFc(i)) > 0; x = Pi(nd2(ExLFc(i)));

 else; x = Pi(nd1(ExLFc(i)));

 end

509

 E = ME.Fc_V(ExLFc(i)).*x;

 E_region(ExLR1(i)) = E_region(ExLR1(i)) - E;

 E_region(ExLR2(i)) = E_region(ExLR2(i)) + E;

 end

 end

 % Assume that flow can't change that much

 if ~isempty(ME.Fc_dx); h = min(hmax, 0.8*FlowTimeStep);

 else; h = hmax;

 end

 % Boundary Work

 P0 = zeros(length(ME.Regions),1);

 for i = 1:length(ME.Regions)

 if ME.isEnvironmentRegion(i)

 P0(i) = PEnv;

 else

% nodes = ME.Regions{i};

% ni = nodes(1);

% P0(i) = Ti(ni)*ME.R(i)*mi(ni)/ME.vol(ni);

% dV_dt_region = sum(ME.dV_dt(nodes));

% M_region = sum(mi(nodes));

% E_region(i) = E_region(i) - P0(i)*dV_dt_region;

% Q(nodes) = (mi(nodes)/M_region).*E_region(i);

% nodes = ME.Regions{i}(isDynVol(ME.Regions{i}));

 nodes = ME.Regions{i}(:);

 P0(i) = sum(Ti(nodes).*ME.R(i).*mi(nodes))/sum(ME.vol(nodes));

% for ni = nodes

% Q(ni) = Q(ni) - ME.dV_dt(ni)*P0(i);

% end

 end

 end

 %% Setup Variables for Volume Flux Solving

 not_done = true;

 while not_done

 i = 1;

 Qi = Q(ME.Fc_Nd(fcs,1));

 for nd = ME.Fc_Nd(fcs,1)'

 data = ME.Faces{nd,1};

 mdot = ME.Fc_V(data(:,1)).*double(data(:,2)).*Fcrho(data(:,1));

 dm_dt(nd) = sum(mdot);

 Qi(i) = Qi(i) + ...

 sum(mdot.*(Fcu(data(:,1)) + P0(i)./Fcrho(data(:,1)))) - ...

 P0(i).*ME.dV_dt(nd);

% Qi(i) = Qi(i) + ...

% sum(mdot.*(Fcu(data(:,1)) + (P0(i) + dP_dt(i,ME.Inc))./Fcrho(data(:,1)))) - ...

% P0(i).*ME.dV_dt(nd) - h*(ME.vol(nd) + 0.5*ME.dV_dt(nd)).*dP_dt(i,ME.Inc);

 i = i + 1;

 end

 C2 =(Qi + Qs)./C1;

 C3 = (Ci.*Qs - Cs.*Qi)./(ME.Fc_Cond(fcs).*C1.^2);

 C3(isnan(C3)) = 0;

 C3(isinf(C3)) = 0;

 C4 = (Ti(ME.Fc_Nd(fcs,1)) - Ti(ME.Fc_Nd(fcs,2)))./(C3.*C1);

 C4(isnan(C4)) = 0;

 C4(isinf(C4)) = 0;

 Qtd(:) = 0;

 Qtemp = -(Ci.*(CT - Cs.*C3.*(1 - (1 + C4)).*exp(nlambda*h))...

 + (Ci.*C2 - Qi)*h);

 for i = 1:length(ME.FcApprox)

 fc = ME.FcApprox(i);

 % 1st is gas, it can have multiple connections

 Qtd(ME.Fc_Nd(fc,1)) = Qtd(ME.Fc_Nd(fc,1)) - Qtemp(i);

 % 2nd is solid, it can only have 1 connection

 Qtd(ME.Fc_Nd(fc,2)) = Qtemp(i);

 end

 not_done = false;

 Vnew = ME.vol(indn) + h*ME.dV_dt(indn);

510

 for ind = find(Vnew<=0); Vnew(ind) = 1e-8; end

 %% Enter Volume Flux Solving Loop

 for i = 1:length(ME.Regions)

 if ~isempty(ME.RegionFcs{i})

 faces = ME.ActiveRegionFcs{i};

 nodes = ME.Regions{i};

 A = zeros(ME.RegionFcCount(i));

 b = zeros(ME.RegionFcCount(i),1);

 if ME.isEnvironmentRegion(i)

 % Vdot Rows

 for row = 1:length(faces)

 ni = nodes(row);

 b(row) = Vnew(ni)*PEnv/ME.R(i) - ...

 Ti(ni)*mi(ni) + ME.dT_dU(ni)*(h*Q(ni) + Qtd(ni) ...

 - PEnv.*(Vnew(ni)-ME.vol(ni)));

 data = ME.Faces{ni,1};

 for p = 1:size(data,1)

 fc = data(p,1);

 X = h*double(data(p,2))*Fcrho(fc)*(...

 Ti(ni) + ME.dT_dU(ni)*...

 (Fcu(fc) - ui(ni) + PEnv/Fcrho(fc)));

 if data(p,3); b(row) = b(row) - ME.Fc_V(fc)*X;

 else; A(row,F2C(fc)) = A(row,F2C(fc)) + X;

 end

 end

 end

 if isempty(ME.RegionLoops{i})

 As = sparse(A);

 V = As\b;

 ME.Fc_V(faces) = V(F2C(faces));

 ME.Fc_U(faces) = ME.Fc_V(faces)./ME.Fc_Area(faces) +

ME.Fc_Vel_Factor(faces)*ME.dA;

 else

 solve_loops(ME,i,F2C,length(faces)+1,A,b,Fcrho,Fcmu,time);

 end

 else

 % Solve for Vdot

 for row = 1:length(faces)

 ni = nd1(faces(row));

 nj = nd2(faces(row));

 b(row) = ...

 (Ti(ni)*mi(ni) + ME.dT_dU(ni)*(h*Q(ni) + Qtd(ni) ...

 - h*P0(i).*ME.dV_dt(ni)))/Vnew(ni) - ...

 (Ti(nj)*mi(nj) + ME.dT_dU(nj)*(h*Q(nj) + Qtd(nj)...

 - h*P0(i).*ME.dV_dt(nj)))/Vnew(nj);

% b(row) = ...

% (Ti(ni)*mi(ni) + ME.dT_dU(ni)*(h*Q(ni) + Qtd(ni) ...

% - (P0(i) + 0.5*h*dP_dt(i,ME.Inc)).*(Vnew(ni)-ME.vol(ni)) ...

% - h*(ME.vol(ni)).*dP_dt(i)))/Vnew(ni) - ...

% (Ti(nj)*mi(nj) + ME.dT_dU(nj)*(h*Q(nj) + Qtd(nj)...

% - (P0(i) + 0.5*h*dP_dt(i,ME.Inc)).*(Vnew(nj)-ME.vol(nj)) ...

% - h*(ME.vol(nj)).*dP_dt(i)))/Vnew(nj);

 data = ME.Faces{ni,1};

 for p = 1:size(data,1)

 fc = data(p,1);

 X = h*double(data(p,2))*Fcrho(fc)*(...

 Ti(ni) + ME.dT_dU(ni)*(Fcu(fc) - ui(ni)...

 + P0(i)/Fcrho(fc)))/Vnew(ni);

% X = h*double(data(p,2))*Fcrho(fc)*(...

% Ti(ni) + ME.dT_dU(ni)*(Fcu(fc) - ui(ni)...

% + (P0(i) + 0.5*h*dP_dt(i,ME.Inc))/Fcrho(fc)))/Vnew(ni);

 if data(p,3); b(row) = b(row) + ME.Fc_V(fc)*X;

 else; A(row,F2C(fc)) = A(row,F2C(fc)) - X;

 end

 end

 data = ME.Faces{nj,1};

 for p = 1:size(data,1)

 fc = data(p,1);

 X = h*double(data(p,2))*Fcrho(fc)*(...

511

 Ti(nj) + ME.dT_dU(nj)*(Fcu(fc) - ui(nj)...

 + P0(i)/Fcrho(fc)))/Vnew(nj);

% X = h*double(data(p,2))*Fcrho(fc)*(...

% Ti(nj) + ME.dT_dU(nj)*(Fcu(fc) - ui(nj)...

% + (P0(i) + 0.5*h*dP_dt(i,ME.Inc))/Fcrho(fc)))/Vnew(nj);

 if data(p,3); b(row) = b(row) - ME.Fc_V(fc)*X;

 else; A(row,F2C(fc)) = A(row,F2C(fc)) + X;

 end

 end

 end

 if isempty(ME.RegionLoops{i})

 As = sparse(A);

 %fprintf([num2str(condest(A)) '\n']);

 V = As\b;

 if any(isnan(V)) || any(any(isnan(A))) || any(isnan(b))

 ME.stop = true;

 end

 ME.Fc_V(faces) = V(F2C(faces));

 ME.Fc_U(faces) = ME.Fc_V(faces)./ME.Fc_Area(faces) +

ME.Fc_Vel_Factor(faces)*ME.dA;

 else

 solve_loops(ME,i,F2C,length(faces)+1,A,b,Fcrho,Fcmu,time);

 end

 % Calculate dP

 %{

 ni = ME.Regions{i}(1);

 data = ME.Faces{ni,1};

 mdot = ME.Fc_V(data(:,1)).*double(data(:,2)).*Fcrho(data(:,1));

 mnewi = ME.m(ni) + h*sum(mdot);

 unewi = ui(ni) + (... u +

 h*Q(ni) + Qtd(ni) ...

 - (P0(i) + 0.5*h.*dP_dt(i,ME.Inc)).*(Vnew(ni) - ME.vol(ni)) ...

 - 0.5*h*(Vnew(ni) + ME.vol(ni)).*dP_dt(i,ME.Inc) ... (dU

 - ui(ni).*dm_dt(ni).*h)./mnew(ni); % - u dm)/mnew;

 newValue = (mnewi*ME.u2T{i}(unewi)*ME.R(i)/Vnew(ni) - Pi(ni))/h;

 if newValue ~= 0

 if abs(dP_dt(i,ME.Inc)-newValue) > 1e-4 && abs((dP_dt(i,ME.Inc)-

newValue)/dP_dt(i,ME.Inc)) > 0.01

 not_done = true;

 dP_dt(i,ME.Inc) = newValue;

 else

 if ME.Inc < Frame.NTheta

 if dP_dt(i,ME.Inc+1) == 0

 dP_dt(i,ME.Inc+1) = dP_dt(i,ME.Inc);

 end

 end

 end

 end

 %}

 end

 end

 end

 if ~isempty(ME.Fc_dx)

 FlowTimeStep = max(1e-4,

min(ME.MaxCourant*ME.Fc_dx./(abs(ME.Fc_V./(ME.Fc_Area(1:lenf)+1e-8)))));

 if FlowTimeStep < h

 not_done = true;

 h = FlowTimeStep;

 end

 end

 if isnan(FlowTimeStep)

 ME.stop = true;

 break;

 end

 end

 % Vnew = ME.vol(indn) + h*ME.dV_dt(indn);

 % Update Parameters

 for i = 1:n

 nodes = ME.Regions{i};

% Pregion_avg(i) = Pi(nodes(1)) + 0.5*h*dP_dt(i,ME.Inc);

512

 if ME.isEnvironmentRegion(i); nodes = nodes(nodes~=lenn); end

 for nd = nodes'

 data = ME.Faces{nd,1};

 mdot = ME.Fc_V(data(:,1)).*double(data(:,2)).*Fcrho(data(:,1));

 dm_dt(nd) = sum(mdot);

 Q(nd) = Q(nd) + sum(mdot.*(Fcu(data(:,1)) + P0(i)./Fcrho(data(:,1))));

 end

 mnew(nodes) = ME.m(nodes) + h*dm_dt(nodes);

 unew(nodes) = (mi(nodes).*ui(nodes) + Qtd(nodes) + h*(Q(nodes)...

 - P0(i).*ME.dV_dt(nodes)))./mnew(nodes);

 Tnew(nodes) = ME.u2T{i}(unew(nodes));

 ME.P(nodes) = ME.R(i).*mnew(nodes).*Tnew(nodes)./Vnew(nodes);

 % Fix The parameters to ensure that the pressure is constant

 if ME.isEnvironmentRegion(i)

 Pavg = PEnv; % dP_dt(i) = 0;

 else

 Pavg = sum(ME.P(nodes).*ME.vol(nodes))/sum(ME.vol(nodes));

% if ME.Inc == 1 && t == 0

% dP_dt(i) = dP_dt(i);

% else

% dP_dt(i) = (Pavg - P0(i))/h;

% end

 end

 Tnew(nodes) = Pavg./ME.P(nodes).*Tnew(nodes);

 end

 ME.P(lenn) = PEnv;

 %% TURBULENCE ITEMS

 if lenf ~= 0

 change = indf(sign(ME.Fc_U(indf))~=signU);

 ME.Fc_to(change) = ME.curTime + t;

 changed_nodes = false(lenn,1);

 changed_nodes(nd1(change)) = true;

 changed_nodes(nd2(change)) = true;

 changed_nodes(isDynVol) = false;

 ME.to(changed_nodes) = ME.curTime + t;

 ME.turb(changed_nodes) = 0;

 % Define (for those that care) the critcal reynolds number

 ME.Va(indnminus) = ME.dA*rhoi(indnminus).*(ME.Dh(indnminus).^2)./ME.mu(indnminus);

 ReCritComparitor(1,:) = (sqrt(ME.Va(indnminus))./...

 (0.075+0.112.*(ME.curTime + t - ME.to(1:lenn-1))))';

 ME.REcrit(indnminus) = 200*max(ReCritComparitor);

 TurbTime = 0;

 steps = ME.Fc_K12 > 0;

 while TurbTime < h

 ME.Fc_turb = 0.5*(ME.turb(nd1) + ME.turb(nd2));

 h_turb = h - TurbTime;

 dturb_dt = zeros(lenn,1);

 % Turbulence Transport

 for i = indf(steps)'

 n1 = nd1(i);

 n2 = nd2(i);

 % dturb_dt = turb*(dKE_dt / KE - dm_dt / m)

 if ME.Fc_V(i) > 0

 % Leaving n1

 % Leaving a variable volume space ... No change to kappa

 if ~isDynVol(n1)

 dturb_dt(n1) = dturb_dt(n1) + (- ME.Fc_turb(i) + ME.turb(n1));

 end

 % Entering n2

 if isDynVol(n2)

 dKE_dm = 0.5*(ME.Fc_V(i)/Areai(i))^2;

 dturb_dt(n2) = dturb_dt(n2) + (dKE_dm - ME.turb(n2));

 else

 dturb_dt(n2) = dturb_dt(n2) + (1 - ME.turb(n2));

 end

 else

 % Entering n1

 if isDynVol(n1)

 dKE_dm = 0.5*(ME.Fc_V(i)/Areai(i))^2;

 dturb_dt(n1) = dturb_dt(n1) + (dKE_dm - ME.turb(n1));

513

 else

 dturb_dt(n1) = dturb_dt(n1) + (1 - ME.turb(n1));

 end

 % Leaving n2

 % Leaving a variable volume space ... No change to kappa

 if ~isDynVol(n2)

 dturb_dt(n2) = dturb_dt(n2) + (- ME.Fc_turb(i) + ME.turb(n2));

 end

 end

 end

 for i = indf(~steps)'

 % dturb_dt = turb*(dKE_dt / KE - dm_dt / m)

 % dturb_dt = turb * (dKE_dm / ke - 1) * dm_dt / m

 % dturb_dt = * (dKE_dm / ke - 1) * / ..

 dKE_dm = ME.Fc_turb(i);

 dturb_dt(nd1(i)) = dturb_dt(nd1(i)) - ...

 (dKE_dm - ME.turb(nd1(i))) * sign(ME.Fc_V(i));

 dturb_dt(nd2(i)) = dturb_dt(nd2(i)) + ...

 (dKE_dm - ME.turb(nd2(i))) * sign(ME.Fc_V(i));

 end

 dturb_dt = dturb_dt .* (dm_dt ./ mi);

 %% Turbulence Decay/Generation Within Nodes

 for i = 1:lenn-1

 if isDynVol(i)

 % Variable Volume

 % F. J. Cantelmi, Measurement and Modeling of In-Cylinder Heat Transfer

 % with Inflow-Produced Turbulence, MS Thesis, Virginia Polytechnic Institute

 % and State University, June (1995)

 dturb_dt(i) = dturb_dt(i) - ...

 5.8*(abs(ME.turb(i) + dturb_dt(i)*h)^(3/2))/ME.Dh(i) - ...

 ME.turb(i)/mi(i)*dm_dt(i);

 else

 if ME.RE(i) > ME.REcrit(i)

 % Generate

 dturb_dt(i) = dturb_dt(i) + ...

 (0.008*ME.dA*ME.RE(i)/ME.Va(i))*(1-ME.turb(i));

 else

 % Decay

 dturb_dt(i) = dturb_dt(i) - ...

 (0.25*ME.dA*2300/ME.Va(i))*abs(ME.turb(i))^(3/2);

 end

 end

 end

 % Test - To limit timestep

 d_turb = zeros(size(ME.turb(indn)));

 for i = indn'

 if isDynVol(i)

 d_turb(i) = h_turb*dturb_dt(i);

 else

 d_turb(i) = max(0,min(1,ME.turb(i) + ...

 h_turb*dturb_dt(i))) - ME.turb(i);

 end

 end

 max_d_turb = max(abs(d_turb(~isDynVol(indn))));

 if max_d_turb > 0.1; h_turb = h_turb*0.1/max_d_turb; end

 % Assign Values

 ME.turb = ME.turb + h_turb*dturb_dt;

 ME.turb(ME.turb<0) = 0;

 for i = indn'

 if ME.turb(i) > 1 && ~isDynVol(i)

 ME.turb(i) = 1;

 end

 end

 ME.turb(lenn) = 0;

 TurbTime = TurbTime + h_turb;

 end

 end

 if ME.Model.recordOnlyLastCycle

 for i = 1:length(ME.Regions)

514

 if ~ME.isEnvironmentRegion(i)

 nodes = ME.Regions{i};

 ME.PRegion(i) = ME.PRegion(i) + ME.P(nodes(1))*h;

 end

 end

 ME.PRegionTime = ME.PRegionTime + h;

% i = 1;

% for iPVoutput = ME.Model.PVoutputs

% ME.PRegion(i) = ME.PRegion(i) + ME.P(iPVoutput.RegionNodes(1))*h;

% ME.PRegionTime(i) = ME.PRegionTime(i) + h;

% i = i + 1;

% end

 end

 % Mass Change

 ME.m(indn) = mnew(indn);

 % Internal Energy Change

 ME.u(indn) = unew(indn);

 % Temperature

 ME.T(indn) = Tnew(indn);

 ME.T(sindn) = ME.T(sindn) + ...

 ME.dT_dU(sindn).*(h*Q(sindn) + Qtd(sindn))./ME.m(sindn);

 % Environment

 ME.m(lenn) = inf;

 ME.u(lenn) = uEnv;

 ME.T(lenn) = TEnv;

 % Basic Boundary Work

 ME.CycledE = ME.CycledE + h*(0.5*sum(ME.dV_dt.*(Pi + ME.P)));

 % Parameters used by functions that are called after each

 % ... angular increment.

 if lenf ~= 0

 ME.Fc_V_averager = ME.Fc_V_averager + h*ME.Fc_V;

 ME.Fc_turb_averager = ME.Fc_turb_averager + h*ME.Fc_turb;

 end

 t = t + h;

 if t >= ME.dt_max

 done = true;

 % Setup for Flow Loss Calculation

 ME.Fc_V = ME.Fc_V_averager / ME.dt_max;

 ME.Fc_turb = ME.Fc_turb_averager / ME.dt_max;

 for i = 1:length(ME.Regions)

 if isempty(ME.RegionLoops{i})

 faces = ME.ActiveRegionFcs{i};

 ME.Fc_RE(faces) = abs(ME.Fc_U(faces).*Fcrho(faces).*ME.Fc_Dh(faces)./Fcmu(faces));

 ME.Fc_RE(ME.Fc_RE==0) = 1e-7;

 ME.getWeight(faces);

 ME.KpU_2A(faces) = ME.KValue(faces).*Fcrho(faces).*ME.Fc_U(faces)./Areai(faces);

 end

 end

 if ME.ss_condition || ~ME.continuetoSS

 % Get cycle time for averaging the effective conductance and

 % ... conductance temperatures

 ME.CycleTime = ME.CycleTime + ME.dt_max;

 % Calculate Effective Conduction for mixed faces

 ME.CondEff(indmf) = ME.CondEff(indmf) + ...

 ME.dt_max * ME.Fc_Cond(indmf);

 % Calculate the Effective Conduction * Temperature of mixed faces

 ME.CondTempEff(indmf) = ME.CondTempEff(indmf) + ...

 ME.dt_max * ME.Fc_Cond(indmf).* ME.T(nd1mf);

 % Test The reynold's number

% if isempty(ME.EffRE); ME.EffRE = zeros(size(indn)); end

% ME.EffRE = ME.EffRE + ...

515

% (ME.dt_max/sum(ME.vol(indnminus))) * sum(ME.Dh(indnminus).*ME.vol(indnminus));

 end

 % Record statistics

 if ME.Model.recordConductionFlux

 ME.CondFlux(:) = 0;

 for i = 1:3:length(ME.CondNet)-2

 ME.CondFlux(ME.CondNet{i+1}) = ...

 ME.CondFlux(ME.CondNet{i+1}) + ...

 abs(ME.CondNet{i}.*Qfc(ME.CondNet{i+2}));

 end

 if any(~isreal(Qtd(:)))

 fprintf('err');

 end

 ME.CondFlux = (ME.CondFlux + real(Qtd(:)))./ME.vol;

 end

 if RecordStatistics

 ME.E_ToEnvironment = ME.E_ToEnvironment + ...

 ME.dt_max*(sum(Qfc(facesES).*sgnES) + ...

 sum(sgnEG.*(Qfc(facesEG) + ...

 ME.Fc_V(facesEG).*rhoi(facesEG).*ui(facesEG))));

 ME.E_ToSource = ME.E_ToSource + ...

 ME.dt_max*sum(Qfc(facesSr).*sgnSr);

 ME.E_ToSink = ME.E_ToSink + ...

 ME.dt_max*sum(Qfc(facesSi).*sgnSi);

 if length(ME.VolMin) < length(ME.Regions)

 ME.VolMin = 100000*ones(size(ME.Regions));

 ME.VolMax = zeros(size(ME.Regions));

 end

 for i = 1:length(ME.Regions)

 if ~ME.isEnvironmentRegion(i)

 nodes = ME.Regions{i};

 Vol = sum(ME.vol(nodes));

 ME.VolMin(i) = min(ME.VolMin(i),Vol);

 ME.VolMax(i) = max(ME.VolMax(i),Vol);

 else

 ME.VolMin(i) = 0;

 ME.VolMax(i) = 0;

 end

 end

 % Qfc = ME.Fc_Cond(Cfcs).*(Ti(Cnd1) - Ti(Cnd2));

 TRatio = Ti(Cnd1)./Ti(Cnd2);

 TRatio(TRatio>1) = 1./TRatio(TRatio>1);

 ME.ExergyLossStatic = ME.ExergyLossStatic + ...

 ME.dt_max*sum(abs(Qfc(ME.StaticFaces).*(1-TRatio(ME.StaticFaces))));

 ME.ExergyLossShuttle = ME.ExergyLossShuttle + ...

 ME.dt_max*sum(abs(Qfc(ME.ShuttleFaces).*(1-TRatio(ME.ShuttleFaces))));

 end

 end

 end

 end

 function solve_loops(ME,region,F2C,startrow,A,b,Fcrho,Fcmu,time)

 persistent recordValues;

 persistent recordTimes;

 if isempty(recordValues)

 recordValues = cell(length(ME.Regions),1);

 recordTimes = recordValues;

 for indl = 1:length(ME.Regions)

 recordValues{indl} = [];

 recordTimes{indl} = [];

 end

 end

 % Loop Definitions

 loop = ME.RegionLoops{region};

 Ind = ME.RegionLoops_Ind{region};

 Nloops = size(Ind, 2);

 % UnCollapsed References

 rows = startrow:startrow + Nloops-1;

516

 % Predict Values at this time-step

 if size(recordValues{region},2) == 3

 % Quadratically Extrapolate

 y0 = recordValues{region}(:,1);

 y1 = recordValues{region}(:,2);

 y2 = recordValues{region}(:,3);

 x0 = recordTimes{region}(1);

 x1 = recordTimes{region}(2);

 x2 = recordTimes{region}(3);

 prediction = ...

 y0*(((time-x1)*(time-x2)) / ((x0-x1)*(x0-x2))) + ...

 y1*(((time-x0)*(time-x2)) / ((x1-x0)*(x1-x2))) + ...

 y2*(((time-x0)*(time-x1)) / ((x2-x0)*(x2-x1)));

 end

 skipLoop = false(Nloops,1);

 % Define loops that participate

 for p = 1:Nloops

 if Ind(3, p) && ME.Fc_Area(Ind(3, p)) == 0

 % The Area has gone to 0, therefore the volume flow rate is 0

 A(rows(p), F2C(Ind(3, p))) = 1;

 skipLoop(p) = true;

 else

 % The entry in "A" will be a 1, to set the volume flow rate to the

 % ... value defined in "b". The Last entry of the loop is the

 % ... only one that cannot be a part of another loop.

 A(rows(p), F2C(loop(2,Ind(2,p)))) = 1;

 if size(recordValues,2) == 3

 b(rows(p)) = prediction(p);

 else

 b(rows(p)) = ME.Fc_V(loop(2, Ind(2, p)));

 end

 end

 end

 % Calculate inverse of matrix

 Ainv = inv(A);

 % Eliminate the rows that are not useful outputs

 indl = 1:length(skipLoop);

 rows(skipLoop) = [];

 indl(skipLoop) = [];

 x = Ainv*b;

 % Initialize Solving Loop

 iteration = 1;

 max_iterations = 300;

 fn = ones(length(indl),1);

 tol = 1e-8;

 if ~isempty(indl)

 % Newton's Method

 J = zeros(length(indl));

 while iteration < max_iterations

 for i = 1:length(indl)

 Sgni = loop(3,Ind(1,indl(i)):Ind(2,indl(i)))';

 Fcsi = loop(2,Ind(1,indl(i)):Ind(2,indl(i)));

 for j = 1:length(indl)

 DeltaV = Ainv(:,rows(j));

 if i == j

 [dfi_dxj, fni] = getCost(...

 ME,x(F2C(Fcsi)), Sgni, Fcsi, Fcmu(Fcsi), ...

 Fcrho(Fcsi), DeltaV(F2C(Fcsi)));

 J(i,j) = dfi_dxj;

 fn(i) = fni;

 else

 [dfi_dxj] = getCost(...

517

 ME,x(F2C(Fcsi)), Sgni, Fcsi, Fcmu(Fcsi), ...

 Fcrho(Fcsi), DeltaV(F2C(Fcsi)));

 J(i,j) = dfi_dxj;

 end

 end

 end

 % Test Convergence

 if sum(abs(fn)) < tol; break; end

 % x = x + J\(-f); - Calculate the shift in x

 x = x + Ainv(:,rows)*(J\(-fn));

 iteration = iteration + 1;

 end

 end

 if iteration == max_iterations

 fprintf('XXX Failed to Converge 300 iterations. XXX\n');

% else

% fprintf(['Converged in ' num2str(iteration) ' iterations. \n']);

 end

 % Record for extrapolation

 if size(recordValues{region},2) == 3

 recordValues{region}(:,1:2) = recordValues{region}(:,2:3);

 recordTimes{region}(1:2) = recordTimes{region}(2:3);

 recordValues{region}(:,end) = x(rows(:));

 recordTimes{region}(end) = time;

 else

 recordValues{region}(:,end+1) = x(rows(:));

 recordTimes{region}(end+1) = time;

 end

 ME.Fc_V(ME.RegionFcs{region}) = x(F2C(ME.RegionFcs{region}));

 end

 %{

 function dP = p_drop(ME,fc)

 nd1 = ME.Fc_Nd(fc,1);

 nd2 = ME.Fc_Nd(fc,2);

 rho1 = ME.m(nd1)/ME.vol(nd1);

 rho2 = ME.m(nd2)/ME.vol(nd2);

 rho = (rho1 + rho2)/2;

 mu1 = ME.muFunc(ME.T(nd1));

 mu2 = ME.muFunc(ME.T(nd2));

 mu = (mu1 + mu2)/2;

 U = ME.Fc_V(fc)./ME.Fc_Area(fc) + ME.Fc_Vel_Factor(fc)*ME.dA;

 RE = abs(rho*U*ME.Fc_Dh(fc)./mu) + 1e-7;

 ME.getWeight(fc);

 [K,~] = ME.KValue(fc);

 dP = K*rho*abs(U)*U;

 end

 %}

 function [derivative, cost] = getCost(ME, Vnew, Sgn, Fcs, Fcmu, Fcrho, DeltaV)

 ME.Fc_U(Fcs) = Vnew./ME.Fc_Area(Fcs) + ME.Fc_Vel_Factor(Fcs)*ME.dA;

 ME.Fc_RE(Fcs) = abs(ME.Fc_U(Fcs).*Fcrho.*ME.Fc_Dh(Fcs)./Fcmu) + 1e-7;

 ME.getWeight(Fcs);

 if nargout == 2

 [K, derv] = ME.KValue(Fcs);

 cost = sum(Sgn.*K.*Fcrho.*abs(ME.Fc_U(Fcs)).*ME.Fc_U(Fcs));

 derivative = sum(...

 (DeltaV.*Sgn.*Fcrho.*abs(ME.Fc_U(Fcs))./ME.Fc_Area(Fcs)).*(...

 sign(ME.Fc_U(Fcs)).*ME.Fc_RE(Fcs).*derv + 2*K));

 else

 [K, derv] = ME.KValue(Fcs);

 derivative = sum(...

 (DeltaV.*Sgn.*Fcrho.*abs(ME.Fc_U(Fcs))./ME.Fc_Area(Fcs)).*(...

 sign(ME.Fc_U(Fcs)).*ME.Fc_RE(Fcs).*derv + 2*K));

 return;

518

 end

 end

 function Forces = Iteration_Solve(ME)

 % Inc = next position, iterate up to this position, where dynamics

 % ... are calculated

 %% Step 2: Start Recursive Algorithm

 ME.implicitSolve();

 if ME.stop

 fprintf('Simulation Finished Prematurely. (In Iteration_Solve)\n');

 end

 %% Step 5: Collect Information for Dynamics, in the form of "Forces"

 % Pressure Boundaries

 Forces = ME.CalcForces();

 end

 function assignAvgDynamic(ME)

 if ~isempty(ME.Dynamic)

 p = mean(ME.Dynamic);

 if ~isempty(ME.DynDh)

 ME.Dh(ME.DynDh(1,:)) = p(ME.DynDh(2,:));

 end

 % Dynamic Volume

 if ~isempty(ME.DynVol)

 ME.vol(ME.DynVol(1,:)) = p(ME.DynVol(2,:));

 end

 % Dynamic Area

 if ~isempty(ME.Fc_DynArea)

 ME.Fc_Area(ME.Fc_DynArea(1,:)) = p(ME.Fc_DynArea(2,:));

 end

 % Dynamic Conductance

 if ~isempty(ME.Fc_DynCond)

 ME.Fc_Cond(ME.Fc_DynCond(1,:)) = p(ME.Fc_DynCond(2,:));

 end

 % Dynamic Distance

 if ~isempty(ME.Fc_DynDist)

 ME.Fc_Dist(ME.Fc_DynDist(1,:)) = p(ME.Fc_DynDist(2,:));

 end

 if ~isempty(ME.Fc_DynCond_Dist)

 ME.Fc_Cond_Dist(ME.Fc_DynCond_Dist(1,:)) = ...

 p(ME.Fc_DynCond_Dist(2,:));

 end

 % Dynamic dx for Courant Calculation

 if ~isempty(ME.Fc_Dyndx)

 ME.Fc_dx(ME.Fc_Dyndx(1,:)) = p(ME.Fc_Dyndx(2,:));

 end

 end

 end

 function Assign_Engine_Pressure(ME, P)

 for i = 1:length(ME.Regions)

 if ~ME.isEnvironmentRegion(i)

 Nds = ME.Regions{i};

 ME.m(Nds) = P*(ME.vol(Nds)./ME.T(Nds))./ME.R(i);

 else

 Nds = ME.Regions{i};

 ME.m(Nds) = ME.P(end)*(ME.vol(Nds)./ME.T(Nds))./ME.R(i);

 end

 end

 end

 function assignDynamic(ME,Inc,initialize)

 persistent A;

 persistent B;

 persistent C;

 persistent D;

 persistent DynLength;

 persistent IncBase;

 if nargin == 3

519

 if initialize == false

 if ~isempty(ME.Dynamic)

 % Define A,B,C,D for all variables

 DynLength = size(ME.Dynamic,1);

 IncBase = floor(Inc);

 if IncBase >= 2

 V0 = ME.Dynamic(IncBase - 1,:);

 V1 = ME.Dynamic(IncBase,:);

 if IncBase < DynLength - 1

 V2 = ME.Dynamic(IncBase+1,:);

 V3 = ME.Dynamic(IncBase+2,:);

 elseif IncBase < DynLength

 V2 = ME.Dynamic(IncBase+1,:);

 V3 = ME.Dynamic(2,:);

 else

 V2 = ME.Dynamic(2,:);

 V3 = ME.Dynamic(3,:);

 end

 else

 V2 = ME.Dynamic(IncBase+1,:);

 V3 = ME.Dynamic(IncBase+2,:);

 if IncBase >= 1

 V0 = ME.Dynamic(DynLength-1,:);

 V1 = ME.Dynamic(1,:);

 else

 V0 = ME.Dynamic(DynLength-2,:);

 V1 = ME.Dynamic(DynLength-1,:);

 end

 end

 dV1 = (V2 - V0) / (2 * ME.A_Inc / ME.dA_old);

 dV2 = (V3 - V1) / (2 * ME.A_Inc / ME.dA);

 A = ME.dt_max * (dV1 + dV2) - 2 * (V2 - V1);

 B = ME.dt_max * (-2*dV1 - dV2) + 3 * (V2 - V1);

 C = ME.dt_max * dV1;

 D = V1;

 end

 end

 return;

 end

 if ~isempty(ME.Dynamic)

 Inc_p = Inc-IncBase;

 if Inc_p > 1; frac = 1; else; frac = Inc_p; end

 point = A*frac^3 + B*frac^2 + C*frac + D;

 % Dynamic Velocity Factor

 if ~isempty(ME.Fc_DynVel_Factor)

 ME.Fc_Vel_Factor(ME.Fc_DynVel_Factor(1,:)) = ...

 point(ME.Fc_DynVel_Factor(2,:));

 end

 if ~isempty(ME.Fc_DynShear_Factor)

 ME.Fc_Shear_Factor(ME.Fc_DynShear_Factor(1,:)) = ...

 point(ME.Fc_DynShear_Factor(2,:));

 end

 point(point<0) = 0;

 % Dynamic Area

 if ~isempty(ME.Fc_DynArea)

 ME.Fc_Area(ME.Fc_DynArea(1,:)) = point(ME.Fc_DynArea(2,:));

 end

 % Dynamic Conductance

 if ~isempty(ME.Fc_DynCond)

 ME.Fc_Cond(ME.Fc_DynCond(1,:)) = point(ME.Fc_DynCond(2,:));

 end

 % Dynamic Fc_A

 if ~isempty(ME.Fc_DynA)

 ME.Fc_A(ME.Fc_DynA(1,:)) = point(ME.Fc_DynA(2,:));

 end

 % Dynamic Fc_B

 if ~isempty(ME.Fc_DynB)

 ME.Fc_B(ME.Fc_DynB(1,:)) = point(ME.Fc_DynB(2,:));

520

 end

 % Dynamic Fc_C

 if ~isempty(ME.Fc_DynC)

 ME.Fc_C(ME.Fc_DynC(1,:)) = point(ME.Fc_DynC(2,:));

 end

 % Dynamic Fc_D

 if ~isempty(ME.Fc_DynD)

 ME.Fc_D(ME.Fc_DynD(1,:)) = point(ME.Fc_DynD(2,:));

 end

 if any(isnan(ME.Fc_A)) || any(isnan(ME.Fc_B)) || ...

 any(isnan(ME.Fc_C)) || any(isnan(ME.Fc_D))

 fprintf('err');

 end

 point(point<1e-8) = 1e-8;

 % Dynamic Volume

 if ~isempty(ME.DynVol)

 ME.vol(ME.DynVol(1,:)) = point(ME.DynVol(2,:));

 ME.dV_dt(ME.DynVol(1,:)) = (1/ME.dt_max)*(...

 3*A(ME.DynVol(2,:))*frac^2 + ...

 2*B(ME.DynVol(2,:))*frac + ...

 C(ME.DynVol(2,:)));

 end

 % Dynamic Active Times for ShearContacts

 if ~isempty(ME.SC_Active)

 ME.Shear_Contact(6,ME.SC_Active(1,:)) = ...

 round(point(ME.SC_Active(2,:)));

 end

 % Dynamic K12

 if ~isempty(ME.Fc_DynK12)

 ME.Fc_K12(ME.Fc_DynK12(1,:)) = point(ME.Fc_DynK12(2,:));

 end

 if ~isempty(ME.Fc_DynK21)

 ME.Fc_K21(ME.Fc_DynK21(1,:)) = point(ME.Fc_DynK21(2,:));

 end

 point(point<1e-4) = 1e-4;

 % Dynamic Dh (node)

 if ~isempty(ME.DynDh)

 ME.Dh(ME.DynDh(1,:)) = point(ME.DynDh(2,:));

 end

 % Dynamic Dh (face)

 if ~isempty(ME.Fc_DynDh)

 ME.Fc_Dh(ME.Fc_DynDh(1,:)) = point(ME.Fc_DynDh(2,:));

 end

 % Dynamic Distance

 if ~isempty(ME.Fc_DynDist)

 ME.Fc_Dist(ME.Fc_DynDist(1,:)) = point(ME.Fc_DynDist(2,:));

 end

 if ~isempty(ME.Fc_DynCond_Dist)

 ME.Fc_Cond_Dist(ME.Fc_DynCond_Dist(1,:)) = ...

 point(ME.Fc_DynCond_Dist(2,:));

 if any(ME.Fc_Cond_Dist==0)

 ME.Fc_Cond_Dist(ME.Fc_Cond_Dist==0) = 0.0001;

 end

 end

 % Dynamic dx for Courant Calculation

 if ~isempty(ME.Fc_Dyndx)

 ME.Fc_dx(ME.Fc_Dyndx(1,:)) = point(ME.Fc_Dyndx(2,:));

 end

 end

 end

 function Forces = CalcForces(ME)

 % Distribute pressure losses

 fcs = 1:length(ME.Fc_U);

 nds = 1:length(ME.P);

 nd1 = ME.Fc_Nd(fcs,1);

 nd2 = ME.Fc_Nd(fcs,2);

 rhoi = ME.m(nds)./ME.vol(nds);

521

 rhoi(end) = ME.rho(end);

 Fcrho = 0.5*(rhoi(nd1) + rhoi(nd2));

 for i = 1:length(ME.Regions)

 nodes = ME.Regions{i};

 if ~isempty(ME.ActiveRegionFcs{i})

 faces = ME.ActiveRegionFcs{i};

 % Calculate KpU_2A

 ME.Fc_U(faces) = ME.Fc_V(faces)./ME.Fc_Area(faces) - ...

 ME.Fc_Vel_Factor(faces)*ME.dA;

 ME.Fc_RE(faces) = ...

 abs(2*ME.Fc_U(faces).*Fcrho(faces).*ME.Fc_Dh(faces)./...

 (ME.mu(nd1(faces)) + ME.mu(nd2(faces))));

 ME.Fc_RE(ME.Fc_RE==0) = 1e-7;

 ME.getWeight();

 len = length(faces) + 1;

 A = ME.A_Press{i};

 b = zeros(len,1);

 A(len,:) = ME.vol(nodes);

 if ME.isEnvironmentRegion(i)

 b(len) = ME.P(end);

 A(len,len) = 1e8; % Some large value that is not infinity

 else

 b(len) = ME.R(i)*sum(ME.vol(nodes))*...

 ME.T(nodes(1)).*ME.m(nodes(1))./ME.vol(nodes(1));

 end

 ME.Fc_dP(faces) = ME.KValue(faces).*Fcrho(faces).*...

 abs(ME.Fc_U(faces)).*ME.Fc_U(faces);

 b(1:len-1) = ME.Fc_dP(faces);

 A = sparse(A);

 ME.P(nodes) = A\b;

 ME.dP(nodes) = ME.P(nodes) - ME.R(i)*ME.T(nodes(1))*ME.m(nodes(1))/ME.vol(nodes(1));

 else

 if ~ME.isEnvironmentRegion(i)

 ME.P(nodes) = ...

 ME.R(i)*ME.T(nodes(1)).*ME.m(nodes(1))./ME.vol(nodes(1));

 end

 ME.dP(nodes) = 0;

 end

 end

 ME.E_Flow_Loss = ME.E_Flow_Loss + ...

 ME.dt_max * sum(abs(ME.Fc_V(fcs).*(ME.P(nd1)-ME.P(nd2))));

 % Make forces

 if ~isempty(ME.MechanicalSystem)

 Forces = cell(1,length(ME.MechanicalSystem.Converters));

 else

 Forces = cell(0);

 end

 if ~isempty(Forces)

 for i = 1:length(Forces)

 Forces{i} = zeros(1,length(ME.MechanicalSystem.Converters(i).Stroke));

 end

 for i = 1:size(ME.Press_Contact,2)

 conv = ME.Press_Contact(1,i);

 subconv = ME.Press_Contact(2,i);

 area = ME.Press_Contact(3,i);

 index = ME.Press_Contact(4,i);

 Forces{conv}(subconv) = Forces{conv}(subconv) + area.*ME.P(index);

 end

 for i = 1:size(ME.Shear_Contact,2)

 if ME.Shear_Contact(6,i)

 conv = ME.Shear_Contact(1,i);

 subconv = ME.Shear_Contact(2,i);

 area = ME.Shear_Contact(3,i);

 ind1 = ME.Shear_Contact(4,i);

 ind2 = ME.Shear_Contact(5,i);

 Forces{conv}(subconv) = Forces{conv}(subconv) + ...

 area*(ME.P(ind1)-ME.P(ind2));

 end

 end

522

 end

 end

 function getWeight(ME,faces)

 if nargin == 1; faces = 1:length(ME.Fc_U); end

 W = zeros(length(faces),1);

 % Ignore turbulence transport

 ind = ~ME.useTurbulenceFc(faces);

 W(ind) = (ME.Fc_RE(faces(ind))-2300)/1700;

 W(W>1) = 1;

 W(W<0) = 0;

 W = W.*W.*(3 - 2*W);

 % Use turubulence transport

 ind = ~ind;

 W(ind) = ME.Fc_turb(faces(ind));

 W(W>1) = 1;

 W(W<0) = 0;

 ME.Fc_W(faces) = W;

 end

 function [K, derv] = KValue(ME,faces)

 K = zeros(length(faces),1);

 if nargout == 2

 derv = K;

 end

 for i = 1:length(faces)

 fc = faces(i);

 if ME.Fc_K12(fc) > 0

 if ME.Fc_V(fc) > 0

 K(i) = ME.Fc_K12(fc)/2;

 else

 K(i) = ME.Fc_K21(fc)/2;

 end

 else

 if ME.Fc_W(fc) == 0

 if nargout == 2

 K(i) = ME.Fc_fFunc_l{fc}(ME.Fc_RE(fc))*ME.Fc_Dist(fc)/(ME.Fc_Dh(fc)*2);

 derv(i) = (ME.Fc_fFunc_l{fc}(ME.Fc_RE(fc) + 1e-8)*ME.Fc_Dist(fc)/(ME.Fc_Dh(fc)*2)

- ...

 K(i))/1e-8;

 else

 K(i) = ME.Fc_fFunc_l{fc}(ME.Fc_RE(fc))*ME.Fc_Dist(fc)/(ME.Fc_Dh(fc)*2);

 end

 elseif ME.Fc_W(fc) == 1

 K(i) = ME.Fc_fFunc_t{fc}(ME.Fc_RE(fc))*ME.Fc_Dist(fc)/(ME.Fc_Dh(fc)*2);

 derv(i) = (ME.Fc_fFunc_t{fc}(ME.Fc_RE(fc) + 1e-8)*ME.Fc_Dist(fc)/(ME.Fc_Dh(fc)*2) -

...

 K(i))/1e-8;

 else

 K(i) = ((1-ME.Fc_W(fc))*ME.Fc_fFunc_l{fc}(ME.Fc_RE(fc)) + ...

 ME.Fc_W(fc)*ME.Fc_fFunc_t{fc}(ME.Fc_RE(fc)))*ME.Fc_Dist(fc)/(ME.Fc_Dh(fc)*2);

 derv(i) = (((1-ME.Fc_W(fc))*ME.Fc_fFunc_l{fc}(ME.Fc_RE(fc) + 1e-8) + ...

 ME.Fc_W(fc)*ME.Fc_fFunc_t{fc}(ME.Fc_RE(fc) + 1e-8))*ME.Fc_Dist(fc)/(ME.Fc_Dh(fc)*2)

- ...

 K(i))/1e-8;

 end

 end

 end

 end

 function Nk = NkFunc(ME)

 Nk = zeros(size(ME.Fc_U));

 Nkt = Nk;

 % Laminar Functions

 for i = 1:length(ME.Fc_NkFunc_l)

 fcs = ME.Fc_NkFunc_l_el{i};

 if nargin(ME.Fc_NkFunc_l{i}) == 1

 Nk(fcs) = (1-ME.Fc_W(fcs)).*ME.Fc_NkFunc_l{i}(ME.Fc_RE(fcs));

 else

523

 Nk(fcs) = (1-ME.Fc_W(fcs)).*...

 ME.Fc_NkFunc_l{i}(ME.Fc_RE(fcs),ME.Fc_PR(fcs));

 end

 end

 % Turbulent Functions

 for i = 1:length(ME.Fc_NkFunc_t)

 fcs = ME.Fc_NkFunc_t_el{i};

 if nargin(ME.Fc_NkFunc_t{i}) == 1

 Nkt(fcs) = ME.Fc_W(fcs).*ME.Fc_NkFunc_t{i}(ME.Fc_RE(fcs));

 else

 Nkt(fcs) = ME.Fc_W(fcs).*...

 ME.Fc_NkFunc_t{i}(ME.Fc_RE(fcs),ME.Fc_PR(fcs));

 end

 end

 Nk = Nk + Nkt;

 Nk(Nk<1) = 1; % Nothing can be worse than pure conduction

 end

 function Nu = Nusselt(ME)

 Nu = zeros(length(ME.P)-1,1);

 Nut = Nu;

 ME.RE = abs(ME.RE);

 W = (ME.RE-2300)/1700;

 W(W<0) = 0; W(W>1) = 1;

 W = W.*(W.*(3 - 2*W) - 1);

 W(ME.useTurbulenceNd) = ME.turb(ME.useTurbulenceNd);

 W(W<0) = 0; W(W>1) = 1;

 % Laminar Functions

 for i = 1:length(ME.NuFunc_l)

 nds = ME.NuFunc_l_el{i};

 if nargin(ME.NuFunc_l{i}) == 1

 Nu(nds) = (1-W(nds)).*ME.NuFunc_l{i}(ME.RE(nds));

 else

 Nu(nds) = (1-W(nds)).*ME.NuFunc_l{i}(ME.RE(nds),ME.PR(nds));

 end

 end

 % Turbulent Function

 for i = 1:length(ME.NuFunc_t)

 nds = ME.NuFunc_t_el{i};

 if nargin(ME.NuFunc_t{i}) == 1

 Nut(nds) = W(nds).*ME.NuFunc_t{i}(ME.RE(nds));

 else

 Nut(nds) = W(nds).*ME.NuFunc_t{i}(ME.RE(nds),ME.PR(nds));

 end

 end

 Nu = Nu + Nut;

 % Nu(Nu<1) = 1;% Pure Conduction Nusselt Number

 end

 end

end

524

Result

The result is a class that includes the following functionality:

A function for animating colored node plots. Input properties are produced in the model.run

function.

A function for animating velocity or pressure drop plots, centered on faces.

A function for capturing a snapshot.

classdef Result < handle

 %UNTITLED Summary of this class goes here

 % Detailed explanation goes here

 properties

 % For Display

 Model Model;

 XDATA

 YDATA

 Cmap

 Data

 % Data.t

 % Data.T

 % Data.P

 % Data.rho

 % Data.U

 OriginalAxes;

 Fig;

 Axes;

 GraphicsObjects;

 end

 methods

 function this = Result()

 end

 % Plot

 function animateNode(this,propertyname,cornerpnts,bodypnts,frequency,~,~,input_title)

 %% Currently this is restricted to constructs lying on the vertical axis

 if isfield(this.Data,propertyname)

 data = this.Data.(propertyname);

 start = 1;

 % With Each column in data

 % Get coordinates

 h = figure();

 try

 set(h,'color','w');

 a = gca;

 axis tight manual;

 a.XLim = oldaxes.XLim;

 a.YLim = oldaxes.YLim;

 a.XAxis.TickLabelFormat = '%.2f';

 a.YAxis.TickLabelFormat = '%.2f';

 switch propertyname

 case 'T'; colorLabel = 'Temperature (K)';

 case 'P'; colorLabel = 'Pressure (Pa)';

 case 'dP'; colorLabel = 'Pressure Buildup (Pa)';

525

 case 'turb'; colorLabel = 'Proportion of Fully Turbulence (0-1)';

 case 'cond'

 colorLabel = 'Natural Logarithm of Sum of absolute Power Exchange per unit Volume

(ln(W/m^3))';

 data = log(data+1);

 end

 xlabel('X (m)');

 ylabel('Y (m)');

 timepnts = this.Data.t;

 if nargin > 7

 if ~isempty(this.Model.outputPath)

 filename = [this.Model.outputPath '\' input_title '_Animated ' propertyname

'.gif'];

 else

 filename = [input_title '_Animated ' propertyname '.gif'];

 end

 else

 if ~isempty(this.Model.outputPath)

 filename = [this.Model.outputPath '\' this.Model.name '_Animated ' propertyname

'.gif'];

 else

 filename = [this.Model.name '_Animated ' propertyname '.gif'];

 end

 end

 cmap = jet(100);

 colormap(cmap);

 data(data==0) = NaN();

 vals = linspace(min(min(data(start:end,:))),max(max(data(start:end,:))),7);

 mapper =

linspace(min(min(data(start:end,:))),max(max(data(start:end,:))),size(cmap,1));

 if vals(1) == vals(end)

 fprintf('ERR: minimum == maximum (in result.animateNode) \n');

 fprintf(['... Error occured with property: ' propertyname '\n']);

 try

 close(h);

 catch

 end

 return;

 end

 if isnan(vals(1)) || isnan(vals(end))

 try

 close(h);

 catch

 end

 return;

 end

 caxis([vals(1) vals(end)]);

 if mapper(1) ~= mapper(2)

 data(isnan(data)) = 0;

 N_XData = zeros(4,size(data,1));

 N_YData = N_XData;

 B_XData = zeros(4,length(bodypnts));

 B_YData = B_XData;

 TextHandle = text(a.XLim(1)+0.01*(a.XLim(2)-a.XLim(1)),...

 a.YLim(2)-0.05*(a.YLim(2)-a.YLim(1)),'');

 hcb = colorbar('Ticks',vals,'Limits',[vals(1) vals(end)]);

 ylabel(hcb, colorLabel);

 yt=get(hcb,'Ticks');

 switch propertyname

 case 'T'

 set(hcb,'XTickLabel',strtrim(cellstr(num2str(yt','%.1f'))));

 case 'P'

 set(hcb,'XTickLabel',strtrim(cellstr(num2str(yt','%.2e'))));

 case 'turb'

 set(hcb,'XTickLabel',strtrim(cellstr(num2str(yt','%.2f'))));

 case 'cond'

 set(hcb,'XTickLabel',strtrim(cellstr(num2str(yt','%.2f'))));

 case 'dP'

 set(hcb,'XTickLabel',strtrim(cellstr(num2str(yt','%.1e'))));

526

 end

 C = zeros(size(data,1),1);

 %C = zeros(size(data,1),1,3);

 for i = 1:size(data,2)-1

 angindex = 1+mod(i,Frame.NTheta-1);

 if i == 1

 proceed = true;

 FirstTime = true;

 else

 FirstTime = false;

 t = t + timepnts(i) - timepnts(i-1);

 if t > frequency

 proceed = true;

 else

 proceed = false;

 end

 end

 if proceed

 if true || ~any(data(:,i)==0) || strcmp(propertyname,'turb')

 t = 0;

 n = 1;

 if FirstTime

 for item = start:size(data,1)

 %C(n,1,:) = interp1(mapper,cmap,data(item,i));

 C(n) = data(item,i);

 switch cornerpnts{item}(1,1)

 case 1 % Static Position

 % Cut off the first column

 p = cornerpnts{item}(:,2:5);

 N_XData(:,n) = [p(1,4) - p(1,1); p(1,4) + p(1,2); ...

 p(1,4) + p(1,1); p(1,4) - p(1,2)];

 N_YData(:,n) = [p(2,4) - p(2,1); p(2,4) + p(2,2); ...

 p(2,4) + p(2,1); p(2,4) - p(2,2)];

 if all(p(:,3) == 0)

 % Origin Centered

 n = n + 1;

 else

 % Ring Shaped

 N_XData(:,n+1) = N_XData(:,n) + p(1,3);

 N_YData(:,n+1) = N_YData(:,n) + p(2,3);

 C(n+1) = C(n);

 n = n + 2;

 end

 case 2 % One Dimension Stretch

 % Cut off the first column

 temp = 4+angindex;

 p = [cornerpnts{item}(:,2:4) ...

 cornerpnts{item}(:,temp)];

 N_XData(:,n) = [p(1,1); ...

 p(1,1) + p(1,2); ...

 p(1,1) + p(1,2) + p(1,4); ...

 p(1,1) + p(1,4)];

 N_YData(:,n) = [p(2,1); p(2,1) + p(2,2); ...

 p(2,1) + p(2,2) + p(2,4); ...

 p(2,1) + p(2,4)];

 if all(p(:,3) == 0)

 % Origin Centered

 n = n + 1;

 else

 % Ring Shaped

 N_XData(:,n+1) = N_XData(:,n) + p(1,3);

 N_YData(:,n+1) = N_YData(:,n) + p(2,3);

 C(n+1) = C(n);

 n = n + 2;

 end

 case 3 % Two Dimension Stretch

 temp = 2+angindex;

 p = [cornerpnts{item}(1:2,temp) ...

 cornerpnts{item}(1:2,2) ...

 cornerpnts{item}(3:4,2) ...

 cornerpnts{item}(3:4,temp)];

527

 N_XData(:,n) = [p(1,1); p(1,1) + p(1,2); ...

 p(1,1) + p(1,2) + p(1,4); ...

 p(1,1) + p(1,4)];

 N_YData(:,n) = [p(2,1); p(2,1) + p(2,2); ...

 p(2,1) + p(2,2) + p(2,4); ...

 p(2,1) + p(2,4)];

 if all(p(:,3) == 0)

 % Origin Centered

 n = n + 1;

 else

 % Ring Shaped

 N_XData(:,n+1) = N_XData(:,n) + p(1,3);

 N_YData(:,n+1) = N_YData(:,n) + p(2,3);

 C(n+1) = C(n);

 n = n + 2;

 end

 case 4 % Translation

 temp = 4+angindex;

 p = [cornerpnts{item}(:,2:4) ...

 cornerpnts{item}(:,temp)];

 N_XData(:,n) = [p(1,4) - p(1,1); p(1,4) + p(1,2); ...

 p(1,4) + p(1,1); p(1,4) - p(1,2)];

 N_YData(:,n) = [p(2,4) - p(2,1); p(2,4) + p(2,2); ...

 p(2,4) + p(2,1); p(2,4) - p(2,2)];

 if all(p(:,3) == 0)

 % Origin Centered

 n = n + 1;

 else

 % Ring Shaped

 N_XData(:,n+1) = N_XData(:,n) + p(1,3);

 N_YData(:,n+1) = N_YData(:,n) + p(2,3);

 C(n+1) = C(n);

 n = n + 2;

 end

 end

 end

 for b = 1:length(bodypnts)

 if ndims(bodypnts{b}) == 2 %#ok<ISMAT>

 B_XData(:,b) = bodypnts{b}(1,:);

 B_YData(:,b) = bodypnts{b}(2,:);

 else

 B_XData(:,b) = bodypnts{b}(1,:,angindex);

 B_YData(:,b) = bodypnts{b}(2,:,angindex);

 end

 end

 C(n+1:end) = [];

 %C(n+1:end,1,:) = zeros(0,1,3);

 N_XData(:,n+1:end) = zeros(4,0);

 N_YData(:,n+1:end) = zeros(4,0);

 PatchHandle = patch(N_XData,N_YData,real(C),'LineStyle','none');

 PatchHandleBodies =

patch(B_XData,B_YData,zeros(length(bodypnts),1),'EdgeColor','k',...

 'FaceColor','none','LineWidth',1);

 else

 for item = start:size(data,1)

 C(n) = data(item,i);

 switch cornerpnts{item}(1,1)

 case 1 % Static Position

 if all(cornerpnts{item}(:,4) == 0)

 % Origin Centered

 n = n + 1;

 else

 % Ring Shaped

 C(n+1) = C(n);

 n = n + 2;

 end

 case 2 % One Dimension Stretch

 % Cut off the first column

 temp = 5+mod(i,Frame.NTheta-1);

 p = [cornerpnts{item}(:,2:4) ...

 cornerpnts{item}(:,temp)];

528

 N_XData(3:4,n) = [p(1,1) + p(1,2) + p(1,4); ...

 p(1,1) + p(1,4)];

 N_YData(3:4,n) = [p(2,1) + p(2,2) + p(2,4); ...

 p(2,1) + p(2,4)];

 if all(p(:,3) == 0)

 % Origin Centered

 n = n + 1;

 else

 % Ring Shaped

 N_XData(:,n+1) = N_XData(:,n) + p(1,3);

 N_YData(:,n+1) = N_YData(:,n) + p(2,3);

 C(n+1) = C(n);

 n = n + 2;

 end

 case 3 % Two Dimension Stretch

 temp = 3+mod(i,Frame.NTheta-1);

 p = [cornerpnts{item}(1:2,temp) ...

 cornerpnts{item}(1:2,2) ...

 cornerpnts{item}(3:4,2) ...

 cornerpnts{item}(3:4,temp)];

 N_XData(:,n) = [p(1,1); p(1,1) + p(1,2); ...

 p(1,1) + p(1,2) + p(1,4); ...

 p(1,1) + p(1,4)];

 N_YData(:,n) = [p(2,1); p(2,1) + p(2,2); ...

 p(2,1) + p(2,2) + p(2,4); ...

 p(2,1) + p(2,4)];

 if all(p(:,3) == 0)

 % Origin Centered

 n = n + 1;

 else

 % Ring Shaped

 N_XData(:,n+1) = N_XData(:,n) + p(1,3);

 N_YData(:,n+1) = N_YData(:,n) + p(2,3);

 C(n+1) = C(n);

 n = n + 2;

 end

 case 4 % Translation

 temp = 5+mod(i,Frame.NTheta-1);

 p = [cornerpnts{item}(:,2:4) ...

 cornerpnts{item}(:,temp)];

 N_XData(:,n) = [p(1,4) - p(1,1); p(1,4) + p(1,2); ...

 p(1,4) + p(1,1); p(1,4) - p(1,2)];

 N_YData(:,n) = [p(2,4) - p(2,1); p(2,4) + p(2,2); ...

 p(2,4) + p(2,1); p(2,4) - p(2,2)];

 if all(p(:,3) == 0)

 % Origin Centered

 n = n + 1;

 else

 % Ring Shaped

 N_XData(:,n+1) = N_XData(:,n) + p(1,3);

 N_YData(:,n+1) = N_YData(:,n) + p(2,3);

 C(n+1) = C(n);

 n = n + 2;

 end

 end

 end

 for b = 1:length(bodypnts)

 if ndims(bodypnts{b}) == 2 %#ok<ISMAT>

 %B_XData(:,b) = bodypnts{b}(1,:);

 %B_YData(:,b) = bodypnts{b}(2,:);

 else

 temp = 1 + mod(i,Frame.NTheta-1);

 B_XData(:,b) = bodypnts{b}(1,:,temp);

 B_YData(:,b) = bodypnts{b}(2,:,temp);

 end

 end

 end

 set(PatchHandle,'XData',N_XData);

 set(PatchHandle,'YData',N_YData);

 set(PatchHandleBodies,'XData',B_XData);

 set(PatchHandleBodies,'YData',B_YData);

529

 set(PatchHandle,'CData',real(C));

 set(TextHandle,'String',[num2str(round(timepnts(i),2)) ' seconds']);

 drawnow;

 % Capture the plot as an image

 % try

 frame = getframe(h);

 % catch

 % return;

 % end

 im = frame2im(frame);

 [imind,cm] = rgb2ind(im,256);

 % Write to the GIF File

 try

 if i == 1

 imwrite(imind,cm,filename,'gif','Loopcount',inf,'DelayTime',0);

 else

 imwrite(imind,cm,filename,'gif','WriteMode','append','DelayTime',0);

 end

 catch

 fprintf('XXX GIF write error XXX\n');

 fprintf(['... propertyname = ' propertyname 'XXX\n']);

 end

 else

 fprintf('XXX: Not ~any(data(:,i)==0) || strcmp(propertyname,"turb") in

Result.AnimateNode\n');

 fprintf('... Error occured in the animation generation, where it is expected

that ... \n');

 fprintf('... properties, other than Turbulence should not have a value of 0.

\n');

 fprintf(['... propertyname = ' propertyname 'XXX\n']);

 break;

 end

 end

 end

 end

 catch

 end

 try

 close(h);

 catch

 end

 end

 end

 function animateFace(this,propertyname,cornerpnts,bodypnts,frequency,~,~,input_title)

 %% Currently this is restricted to constructs lying on the vertical axis

 if isfield(this.Data,propertyname)

 data = this.Data.(propertyname);

 start = 1;

 % With Each column in data

 % Get coordinates

 h = figure();

 try

 set(h,'color','w');

 a = gca;

 axis tight manual;

 a.XLim = oldaxes.XLim;

 a.YLim = oldaxes.YLim;

 xlabel('X (m)');

 ylabel('Y (m)');

 timepnts = this.Data.t;

 if nargin > 7

 if ~isempty(this.Model.outputPath)

 filename = [this.Model.outputPath '\' input_title '_Animated ' propertyname

'.gif'];

 else

 filename = [input_title '_Animated ' propertyname '.gif'];

530

 end

 else

 if ~isempty(this.Model.outputPath)

 filename = [this.Model.outputPath '\' this.Model.name '_Animated ' propertyname

'.gif'];

 else

 filename = [this.Model.name '_Animated ' propertyname '.gif'];

 end

 end

 minimum = 0;

 var = abs(data(start:end,:));

 maximum = prctile(var(:),100);

 %vals = linspace(min(min(data(start:end,:))),max(max(data(start:end,:))),7);

 %mapper =

linspace(min(min(data(start:end,:))),max(max(data(start:end,:))),size(cmap,1));

 if minimum == maximum

 fprintf('ERR: minimum == maximum (in result.animateFace) \n');

 fprintf(['... Error occured with property: ' propertyname '\n']);

 try

 close(h);

 catch

 end

 return;

 end

 data(isnan(data)) = 0;

 F_XData = zeros(1,size(data,1));

 F_YData = F_XData;

 F_UxData = F_XData;

 F_UyData = F_XData;

 B_XData = zeros(4,length(bodypnts));

 B_YData = B_XData;

 TextHandle = text(a.XLim(1)+0.01*(a.XLim(2)-a.XLim(1)),...

 a.YLim(2)-0.05*(a.YLim(2)-a.YLim(1)),'');

 hold on;

 switch propertyname

 case 'U'

 base_size = 0.1;

 case 'dP'

 base_size = 20;

 end

 for i = 1:size(data,2)-1

 angindex = 1+mod(i,Frame.NTheta-1);

 if i == 1; proceed = true; FirstTime = true;

 else

 FirstTime = false;

 t = t + timepnts(i) - timepnts(i-1);

 if t > frequency; proceed = true;

 else; proceed = false;

 end

 end

 if proceed

 t = 0;

 if FirstTime

 for item = start:size(data,1)

 value = data(item,i)*base_size/maximum;

 p = cornerpnts{item};

 if size(p,2) < 3

 % It is a static face

 F_UxData(item) = p(1,1)*value;

 F_UyData(item) = p(2,1)*value;

 F_XData(item) = p(1,2);

 F_YData(item) = p(2,2);

 else

 % It is a dynamic face

 F_UxData(item) = p(1,1)*value;

 F_UyData(item) = p(2,1)*value;

 F_XData(item) = p(1,1+angindex);

 F_YData(item) = p(2,1+angindex);

 end

 end

531

 for b = 1:length(bodypnts)

 if ndims(bodypnts{b}) == 2 %#ok<ISMAT>

 B_XData(:,b) = bodypnts{b}(1,:);

 B_YData(:,b) = bodypnts{b}(2,:);

 else

 B_XData(:,b) = bodypnts{b}(1,:,angindex);

 B_YData(:,b) = bodypnts{b}(2,:,angindex);

 end

 end

 switch propertyname

 case 'U'

 QuiverHandle = quiver(...

 F_XData,F_YData,...

 F_UxData,F_UyData,...

 'Color','k');

 case 'dP'

 if exist('QuiverHandle','var')

 end

 for x = 1:length(F_XData)

 QuiverHandle(x) = plot(...

 F_XData(x),...

 F_YData(x),...

 'Marker','o',...

 'MarkerEdgeColor','b',...

 'MarkerFaceColor','b',...

 'MarkerSize',sqrt(F_UxData(x)^2 + F_UyData(x)^2)+1e-8,...

 'LineStyle','none');

 end

 end

 PatchHandleBodies = patch(...

 B_XData,B_YData,zeros(length(bodypnts),1),...

 'EdgeColor','k',...

 'FaceColor','none',...

 'LineWidth',1);

 else

 for item = start:size(data,1)

 value = data(item,i)*base_size/maximum;

 p = cornerpnts{item};

 if size(p,2) < 3

 % It is a static face

 F_UxData(item) = p(1,1)*value;

 F_UyData(item) = p(2,1)*value;

 else

 % It is a dynamic face

 F_UxData(item) = p(1,1)*value;

 F_UyData(item) = p(2,1)*value;

 F_XData(item) = p(1,1+angindex);

 F_YData(item) = p(2,1+angindex);

 end

 end

 for b = 1:length(bodypnts)

 if ndims(bodypnts{b}) == 2 %#ok<ISMAT>

 %B_XData(:,b) = bodypnts{b}(1,:);

 %B_YData(:,b) = bodypnts{b}(2,:);

 else

 temp = 1 + mod(i,Frame.NTheta-1);

 B_XData(:,b) = bodypnts{b}(1,:,temp);

 B_YData(:,b) = bodypnts{b}(2,:,temp);

 end

 end

 end

 switch propertyname

 case 'U'

 set(QuiverHandle,'XData',F_XData);

 set(QuiverHandle,'YData',F_YData);

 set(QuiverHandle,'UData',F_UxData);

 set(QuiverHandle,'VData',F_UyData);

 case 'dP'

 for x = 1:length(F_XData)

 set(QuiverHandle(x),'XData',F_XData(x));

532

 set(QuiverHandle(x),'YData',F_YData(x));

 set(QuiverHandle(x),'MarkerSize',...

 sqrt(F_UxData(x)^2 + F_UyData(x)^2)+1e-8);

 end

 end

 set(PatchHandleBodies,'XData',B_XData);

 set(PatchHandleBodies,'YData',B_YData);

 set(TextHandle,'String',[num2str(round(timepnts(i),2)) ' seconds']);

 drawnow;

 % Capture the plot as an image

 try

 frame = getframe(h);

 catch

 fprintf('ERR: Failed to Get Frame in Result.AnimateFace \n')

 fprintf(['... Error occured with property: ' ...

 propertyname '\n']);

 try

 close(h);

 catch

 end

 return;

 end

 im = frame2im(frame);

 [imind,cm] = rgb2ind(im,256);

 % Write to the GIF File

 try

 if i == 1

 imwrite(imind,cm,filename,'gif','Loopcount',inf,'DelayTime',0);

 else

 imwrite(imind,cm,filename,'gif','WriteMode','append','DelayTime',0);

 end

 catch

 fprintf('XXX GIF write error XXX\n');

 fprintf(['... propertyname = ' propertyname 'XXX\n']);

 end

 end

 end

 catch

 end

 try

 close(h);

 catch

 end

 end

 end

 function Start2DPlot(this,property,t)

 if isempty(this.Axes)

 this.OriginalAxes = gca;

 else

 this.Close2DPlot();

 end

 this.Fig = figure();

 this.Axes = gca;

 this.GraphicsObjects(length(XData,1)) = patch();

 this.Cmap = colormap();

 differences = abs(this.Data.t - t);

 [value1, index1] = min(differences);

 [value2, index2] = min(differences ~= value1);

 if index1 < index2

 index2 = index2 + 1;

 end

 scalar = abs(value1/(value1-value2))*this.Data.(property)(index2,:) + abs(value2/(value1-

value2))*this.Data.(property)(index1,:);

 ulimit = max(scalar);

 llimit = min(scalar);

 mapper = linspace(llimit,ulimit,size(cmap,1));

 %% LOOP

533

 for i = 1:length(this.XDATA,1)

 rgb = interp1(mapper,cmap,scalar(i));

 this.GraphicsObjects(i) = fill(this.XDATA(i,:),this.YDATA(i,:),rgb);

 end

 end

 function Close2DPlot(this)

 % Delete the current figure

 close(this.Fig);

 delete(this.Fig);

 delete(this.Axes);

 end

 function getSnapShot(this,Model,name)

 if isempty(name); return; end

 if ~isfield(this.Data,'T'); return; end

 % Find Snapshot position

 N = Frame.NTheta-1;

 LEN = size(this.Data.T,2);

 if LEN == N

 ind = LEN;

 else

 if mod(LEN,N) == 0

 ind = LEN;

 else

 ind = LEN - mod(LEN,N) + 1;

 end

 end

 while all(this.Data.T(:,ind) == 0)

 ind = ind - 1;

 if ind == 0

 return;

 end

 end

 % Define number of cells

 n = 0;

 for iGroup = Model.Groups

 n = n + length(iGroup.Bodies);

 end

 BData(n) = BodyData();

 SnapShot = struct('Name',name,'Data',BData);

 index = 1;

 for iGroup = Model.Groups

 for iBody = iGroup.Bodies

 % Get a new ID for bodies without one

 if iBody.ID == 0; iBody.ID = Model.getBodyID(); end

 %% Create XData and YData vectors

 XData = zeros(length(iBody.Nodes),1);

 YData = XData;

 AltXData = XData;

 AltYData = YData;

 %% Get X & Y Data

 i = 1;

 Alti = 1;

 for k = 1:length(iBody.Nodes)

 Nd = iBody.Nodes(k);

 if isfield(Nd.data,'matl') && ...

 Nd.data.matl.Phase ~= iBody.matl.Phase

 AltXData(Alti) = (Nd.xmin + Nd.xmax)/2;

 Alti = Alti + 1;

 else

 XData(i) = (Nd.xmin + Nd.xmax)/2;

 i = i + 1;

 end

 end

 XData = unique(XData(1:i-1));

 AltXData = unique(AltXData(1:Alti-1));

534

 i = 1;

 Alti = 1;

 for k = 1:length(iBody.Nodes)

 Nd = iBody.Nodes(k);

 if isfield(Nd.data,'matl') && ...

 Nd.data.matl.Phase ~= iBody.matl.Phase

 AltYData(Alti) = (Nd.ymin(1) + Nd.ymax(1))/2;

 Alti = Alti + 1;

 else

 YData(i) = (Nd.ymin(1) + Nd.ymax(1))/2;

 i = i + 1;

 end

 end

 YData = unique(YData(1:i-1));

 AltYData = unique(AltYData(1:Alti-1));

 %% Assign T array

 TData = zeros(length(YData),length(XData));

 AltTData = zeros(length(AltYData),length(AltXData));

 if iBody.matl.Phase == enumMaterial.Gas

 TurbData = TData;

 else

 TurbData = zeros(0,0);

 end

 PData = 0;

 for k = 1:length(iBody.Nodes)

 Nd = iBody.Nodes(k);

 if isfield(Nd.data,'matl') && ...

 Nd.data.matl.Phase ~= iBody.matl.Phase

 i = find(AltYData == (Nd.ymin(1) + Nd.ymax(1))/2);

 j = find(AltXData == (Nd.xmin + Nd.xmax)/2);

 AltTData(i, j) = this.Data.T(Nd.index,ind);

 else

 i = find(YData == (Nd.ymin(1) + Nd.ymax(1))/2);

 j = find(XData == (Nd.xmin + Nd.xmax)/2);

 TData(i, j) = this.Data.T(Nd.index,ind);

 if ~isempty(TurbData) && isfield(this.Data,'turb')

 TurbData(i,j) = this.Data.turb(Nd.index,ind);

 end

 if iBody.matl.Phase == enumMaterial.Gas

 if isfield(this.Data,'SnapShot_P')

 PData = this.Data.SnapShot_P(Nd.index);

 end

 end

 end

 end

 if length(XData) > 1 && XData(1) > XData(2)

 XData = flip(XData); TData = flip(TData,2);

 TurbData = flip(TurbData,2);

 end

 if length(YData) > 1 && YData(1) > YData(2)

 YData = flip(YData); TData = flip(TData,1);

 TurbData = flip(TurbData,1);

 end

 if length(AltXData) > 1 && AltXData(1) > AltXData(2)

 AltXData = flip(AltXData); AltTData = flip(AltTData,2);

 end

 if length(AltYData) > 1 && AltYData(1) > AltYData(2)

 AltYData = flip(AltYData); AltTData = flip(AltTData,1);

 end

 %% Normalize positions

 [~,~,x1,x2] = iBody.limits(enumOrient.Vertical);

 [y1,y2,~,~] = iBody.limits(enumOrient.Horizontal);

 XData = (XData - x1)/(x2-x1);

 YData = (YData - y1(1))/(y2(1)-y1(1));

 AltXData = (AltXData - x1)/(x2-x1);

 AltYData = (AltYData - y1(1))/(y2(1)-y1(1));

 % Assign the Body

535

 SnapShot.Data(index) =

BodyData(iBody.ID,XData,YData,TData,PData,AltXData,AltYData,AltTData,TurbData);

 % End

 index = index + 1;

 end

 end

 this.Model.addSnapShot(SnapShot);

 end

 end

end

536

BodyData

Bodydata is a class that represents a single body inside of a snapshot. This class contains the

following functionality:

A constructor.

A function for applying the data to the nodes of a body.

classdef BodyData < handle

 properties

 ID;

 XData;

 YData;

 TData;

 PData;

 AltXData;

 AltYData;

 AltTData;

 TurbData;

 end

 methods

 function this = BodyData(...

 iID,iXData,iYData,...

 iTData,iPData,...

 iAltXData,iAltYData,...

 iAltTData,iTurbData)

 if nargin > 0; this.ID = iID; end

 if nargin > 1; this.XData = iXData; end

 if nargin > 2; this.YData = iYData; end

 if nargin > 3; this.TData = iTData; end

 if nargin > 4; this.PData = iPData; end

 if nargin > 5; this.AltXData = iAltXData; end

 if nargin > 6; this.AltYData = iAltYData; end

 if nargin > 7; this.AltTData = iAltTData; end

 if nargin > 8; this.TurbData = iTurbData; end

 end

 function [success] = applyBody(this,iBody)

 success = false;

 if isempty(this.TData) && isempty(this.AltTData)

 return;

 else

 if iBody.ID == this.ID

 % It is a valid pair, Gas-Gas

 % ... Over all the nodes of the body

 if iBody.isDiscretized()

 % Process the stored data into a grid

 Xs = zeros(length(this.YData)+2,length(this.XData)+2);

 Ys = Xs;

 for r = 1:length(this.YData)+2; Xs(r,:) = [0; this.XData; 1]'; end

 for c = 1:length(this.XData)+2; Ys(:,c) = [0; this.YData; 1]; end

 PaddedT = CustExpandArray(this.TData);

 FT = griddedInterpolant(Xs',Ys',PaddedT','linear','linear');

 if ~isempty(this.TurbData)

 PaddedTurb = CustExpandArray(this.TurbData);

 FTurb = griddedInterpolant(...

 Xs',Ys',PaddedTurb','linear','linear');

 end

 if ~isempty(this.AltXData)

 AltXs = zeros(...

 length(this.AltYData)+2,length(this.AltXData)+2);

537

 AltYs = AltXs;

 for r = 1:length(this.AltYData)+2

 AltXs(r,:) = [0; this.AltXData; 1]';

 end

 for c = 1:length(this.AltXData)+2

 AltYs(:,c) = [0; this.AltYData; 1];

 end

 PaddedAltT = CustExpandArray(this.AltTData);

 FAltT = griddedInterpolant(...

 AltXs',AltYs',PaddedAltT','linear','linear');

 end

 success = true;

 [~,~,x1,x2] = iBody.limits(enumOrient.Vertical);

 [y1,y2,~,~] = iBody.limits(enumOrient.Horizontal);

 y1 = y1(1);

 y2 = y2(1);

 for Nd = iBody.Nodes

 % Consider what type of node it is

 assignAltTemp = false;

 assignTemp = false;

 assignTurb = false;

 if isfield(Nd.data,'matl')

 if strcmp(Nd.data.matl.name,'Constant Temperature') || ...

 strcmp(Nd.data.matl.name,'Perfect Insulator')

 assignTemp = false;

 elseif Nd.data.matl.Phase == iBody.matl.Phase

 assignTemp = true;

 if iBody.matl.Phase == enumMaterial.Gas

 if ~isempty(this.PData) && this.PData ~= 0

 Nd.data.P = this.PData;

 end

 assignTurb = ~isempty(this.TurbData);

 end

 else

 if isempty(this.AltTData)

 assignTemp = true;

 else

 assignAltTemp = true;

 end

 end

 else

 assignTemp = true;

 if iBody.matl.Phase == enumMaterial.Gas

 if ~isempty(this.PData) && this.PData ~= 0

 Nd.data.P = this.PData;

 end

 assignTurb = ~isempty(this.TurbData);

 end

 end

 cx = ((Nd.xmax + Nd.xmin)/2 - x1)/(x2-x1);

 cy = ((Nd.ymin(1) + Nd.ymax(1))/2 - y1)/(y2-y1);

 T = Nd.data.T;

 Turb = 0;

 if assignTemp && ~isempty(this.TData)

 T = FT(cx,cy);

 if assignTurb; Turb = FTurb(cx,cy); end

 %{

 if length(this.XData) == 1

 if length(this.YData) == 1

 % No interpolation

 T = this.TData(1,1);

 if assignTurb

 Turb = this.TurbData(1,1);

 end

 else

 % Linear Interpolation

 try

 T = interp1(this.YData,this.TData,cy,'pchip','extrap');

 if assignTurb

 Turb = interp1(this.YData,this.TurbData,cy,'pchip','extrap');

538

 end

 catch

 this.TData = [];

 this.TurbData = [];

 success = false;

 return;

 end

 end

 else

 if length(this.YData) == 1

 % Linear Interpolation

 try

 T = interp1(this.XData,this.TData,cx,'pchip','extrap');

 if assignTurb

 Turb = interp1(this.XData,this.TurbData,cx,'pchip','extrap');

 end

 catch

 this.TData = [];

 this.TurbData = [];

 success = false;

 return;

 end

 else

 % Double Linear Interpolation

 try

 T2 = interp1(this.YData,this.TData,cy,'pchip','extrap');

 T = interp1(this.XData,T2',cx,'pchip','extrap');

 if assignTurb

 Turb2 = interp1(this.YData,this.TurbData,cy,'pchip','extrap');

 Turb = interp1(this.XData,Turb2',cx,'pchip','extrap');

 end

 catch

 this.TData = [];

 this.TurbData = [];

 success = false;

 return;

 end

 end

 end

 %}

 elseif assignAltTemp && ~isempty(this.AltTData)

 T = FAltT(cx,cy);

 %{

 if length(this.AltXData) == 1

 if length(this.AltYData) == 1

 % No interpolation

 T = this.AltTData(1,1);

 else

 % Linear Interpolation

 try

 T = interp1(this.AltYData,this.AltTData,cy,'pchip','extrap');

 catch

 this.AltTData = [];

 success = false;

 return;

 end

 end

 else

 if length(this.AltYData) == 1

 % Linear Interpolation

 try

 T = interp1(this.AltXData,this.AltTData,cx,'pchip','extrap');

 catch

 this.AltTData = [];

 success = false;

 return;

 end

 else

 % Double Linear Interpolation

 try

 T2 = interp1(this.AltYData,this.AltTData,cy,'pchip','extrap');

539

 T = interp1(this.AltXData,T2',cx,'pchip','extrap');

 catch

 this.AltTData = [];

 success = false;

 return;

 end

 end

 end

 %}

 end

 if ~isnan(T)

 Nd.data.T = T;

 if assignTurb

 Nd.data.Turb = Turb;

 end

 else

 fprintf('err');

 end

 end

 end

 end

 end

 end

 end

end

function [C] = Cubehelix(N)

%CUBEHELIX Returns the colormap corresponding to the cubehelix colormap by

% Dave Green

% Described in:

% ... Green, D. A., 2011, `A colour scheme for the display of astronomical

% ... intensity images', Bulletin of the Astronomical Society of India, 39,

% ... 289. (2011BASI...39..289G at ADS.)

% Chosen because it is readeable in both color and gray-scale. The

% following is a fit to the colormap for simplicity

C = zeros(N,3);

inc = linspace(0,1,N);

for i = 1:N

 C(i,1) = inc(i) + inc(i)*(1-inc(i))*(-0.89364167360231)*...

 sin(-9.42709701246915*inc(i)-2.17665661962626);

 C(i,2) = inc(i) + inc(i)*(1-inc(i))*0.476808544884337*...

 sin(9.41893653572546*inc(i)+4.92713139814227);

 C(i,3) = inc(i) + inc(i)*(1-inc(i))*0.986358536351536*...

 sin(-9.43408675851738*inc(i)+2.62243462096891);

end

C(C>1) = 1;

C(C<0) = 0;

end

540

G.7. ListObjs

541

List Object

ListObj represents objects in the property drop down. It is a class with the following

functionality:

A constructor.

A function which is called when the entry in the listbox is clicked.

A function that gets the objects children, given its type.

A function that gets the string that is displayed in the listbox editor.

classdef ListObj < handle

 %LISTOBJ Summary of this class goes here

 % Detailed explanation goes here

 properties

 MODE = '';

 lvl int8;

 isExpanded logical = false;

 Parent;

 Child; % Various

 Info; % Various

 Subs ListObj;

 end

 methods

 function this = ListObj(MODE,lvl,Parent,Child,info)

 if nargin > 0

 this.MODE = MODE;

 this.lvl = lvl;

 this.Parent = Parent;

 this.Child = Child;

 if nargin > 4

 this.Info = info;

 end

 end

 end

 function on_click(this)

 switch this.MODE

 case 'Editstr'

 % Bring up user form inputdlg

 newvalue = get(this.Parent,this.Child);

 if isempty(newvalue); newvalue = ''; end

 newvalue = inputdlg(['Property: ' this.Child ': '],...

 'Edit Properties',1,{newvalue});

 if ~isempty(newvalue) && isa(newvalue{1},'char')

 set(this.Parent,this.Child,newvalue{1});

 end

 case 'Editnum'

 % Bring up user form inputdlg

 newvalue = inputdlg(['Edit the value of ' this.Child ' in ' this.Info],...

 'Edit Properties',1,...

 {num2str(get(this.Parent,this.Child))});

 number = SymbolicMath(newvalue{1});

 if isnan(number)

 msgbox('Invalid formula: Ensure that your formula is complete and avoids

scientific notation.');

 else

542

 set(this.Parent,this.Child,number);

 end

 case 'Editnumconvert'

 % Bring up user form inputdlg

 newvalue = (inputdlg(['Edit the value of ' this.Child ' in '

this.Info{2}],...

 'Edit Properties',1,...

 {num2str(round(get(this.Parent,this.Child)*this.Info{1}))}));

 number = SymbolicMath(newvalue{1});

 if isnan(number)

 msgbox('Invalid formula: Ensure that your formula is complete and avoids

scientific notation.');

 else

 set(this.Parent,this.Child,number/this.Info{1});

 end

 case {'Expandobj', 'Expandlist'}

 this.isExpanded = ~this.isExpanded;

 case 'Configureobj'

 % the Parent has a child that has a parameter labeled 'Source'

 % this source is used as an input into the child's constructor

 % Bring up a user form

 if ischar(this.Child)

 Item = get(this.Parent,this.Child);

 Item.Modify();

 else

 this.Child.Modify();

 end

 case 'Pickobj'

 % Info is a objarray

 Item = get(this.Parent,this.Child);

 objs = this.Info;

 names = {'...'};

 for index = length(objs):-1:1

 names{index+1} = objs(index).name;

 end

 if ~isempty(Item)

 for index = 1:length(objs)

 if Item == objs(index)

 break;

 end

 end

 end

 index = listdlg('ListString',names,...

 'SelectionMode','single',...

 'InitialValue',index); % ADD WIDTH, HEIGHT CONSTRAINTS

 if index == 1

 set(this.Parent,this.Child,[]);

 else

 set(this.Parent,this.Child,objs(index-1));

 end

 case 'Pickfunction'

 % Info is a folder name

 % Bring up a user form listdlg from folder: Item

 % Get index of current value

 temp = get(this.Parent,this.Child);

 if isempty(temp)

 Item = '';

 else

 Item = func2str(temp);

 end

 files = dir(this.Info);

 names = {files.name};

 names = names{3:end}; % Remove the first couple

 if ~iscell(names)

 names = {names};

 end

 for index = size(names,1):-1:1

 names{index} = names{index}(1:end-2);

 end

 for index = 1:length(names)

 if strcmp(names{index},Item); break; end

543

 end

 index = listdlg('ListString',names,...

 'SelectionMode','single',...

 'InitialValue',index);

 if isempty(index)

 set(this.Parent,this.Child,function_handle.empty);

 else

 set(this.Parent,this.Child,str2func(names{index}));

 end

 case 'Function'

 functions(this.Parent,this.Child);

 case 'Deleteobj'

 this.Parent.deReference();

 case 'NamedList'

 names = get(this.Parent,this.Child);

 if ~isempty(names)

 [indx, tf] = listdlg(...

 'PromptString',['Select ' this.Child ' to Remove'],...

 'ListString',names);

 if tf

 answers = false(length(names),1);

 answers(indx) = true;

 set(this.Parent,this.Child,answers);

 end

 end

 end

 end

 function [objects] = getObjs(this,expanded)

 if ischar(this.Child)

 if ~strcmp(this.Child,'Deleteobj')

 Item = get(this.Parent,this.Child);

 end

 Text = this.Child;

 else

 Item = this.Child;

 Text = class(this.Child);

 end

 slvl = this.lvl+1;

 if nargin == 2

 switch this.MODE

 case 'Expandobj'

 if isempty(Item)

 objects = this;

 else

 switch class(Item)

 case 'Model'

 objects = [this; ...

 ListObj('Editstr',slvl,Item,'Name'); ...

 ListObj('Expandlist',slvl,Item,'Groups'); ...

 ListObj('Expandlist',slvl,Item,'Bridges'); ...

 ListObj('Expandlist',slvl,Item,'Leaks'); ...

 ListObj('Expandlist',slvl,Item,'Sensors'); ...

 ListObj('Expandlist',slvl,Item,'PVoutputs'); ...

 ListObj('NamedList',slvl,Item,'SnapShots'); ...

 ListObj('NamedList',slvl,Item,'NonConnections'); ...

 ListObj('NamedList',slvl,Item,'Custom Minor Losses'); ...

 ListObj('Expandlist',slvl,Item,'Lin. to Rot.

Mechanisms'); ...

 ListObj('Expandlist',slvl,Item,'Optimization Studies');

...

 ListObj('Expandobj',slvl,Item,'Initial Internal

Conditions'); ...

 ListObj('Expandobj',slvl,Item,'External Conditions'); ...

 ListObj('Editnum',slvl,Item,'Engine Temperature','K');

...

 ListObj('Editnum',slvl,Item,'Engine Pressure','Pa'); ...

 ListObj('Editnum',slvl,Item,'Minimum Speed','Hz'); ...

 ListObj('Expandobj',slvl,Item,'Mechanical System'); ...

 ListObj('Expandobj',slvl,Item,'Mesher'); ...

 ListObj('Editnum',slvl,Item,'Max Courant Final'); ...

544

 ListObj('Editnum',slvl,Item,'Max Fourier Final'); ...

 ListObj('Editnum',slvl,Item,'Max Courant Converging');

...

 ListObj('Editnum',slvl,Item,'Max Fourier Converging')];

 case 'Group'

 objects = [this; ...

 ListObj('Editstr',slvl,Item,'Name'); ...

 ListObj('Expandobj',slvl,Item,get(Item,'Position')); ...

 ListObj('Expandlist',slvl,Item,'Bodies'); ...

 ListObj('Expandlist',slvl,Item,'Connections'); ...

 ListObj('Expandlist',slvl,Item,'Relation Managers'); ...

 ListObj('Deleteobj',slvl,Item,'[X] Delete')];

 case 'Body'

 objects = [this; ...

 ListObj('Editstr',slvl,Item,'Name'); ...

 ListObj('Expandobj',slvl,Item,'Bottom Connection'); ...

 ListObj('Expandobj',slvl,Item,'Top Connection'); ...

 ListObj('Expandobj',slvl,Item,'Inner Connection'); ...

 ListObj('Expandobj',slvl,Item,'Outer Connection'); ...

 ListObj('Configureobj',slvl,Item,'Material'); ...

 ListObj('Editnum',slvl,Item,'Temperature'); ...

 ListObj('Editnum',slvl,Item,'Pressure'); ...

 ListObj('Editnum',slvl,Item,'Radial

Divides','divisions'); ...

 ListObj('Editnum',slvl,Item,'Axial Divides','divisions');

...

ListObj('Pickobj',slvl,Item,'RefFrame',Item.Group.Model.RefFrames); ...

 ListObj('Configureobj',slvl,Item,'Change Matrix');...

 ListObj('Expandobj',slvl,Item,'Expand Matrix');...

 ListObj('Pickfunction',slvl,Item,'Radial Discretization

Function','Function - Discretization'); ...

 ListObj('Pickfunction',slvl,Item,'Axial Discretization

Function','Function - Discretization'); ...

 ListObj('Deleteobj',slvl,Item,'[X] Delete')];

 case 'Connection'

 objects = [this; ...

 ListObj('Editnum',slvl,Item,'x','m'); ...

ListObj('Pickobj',slvl,Item,'RefFrame',Item.Group.Model.RefFrames); ...

 ListObj('Expandlist',slvl,Item,'Bodies'); ...

 ListObj('Deleteobj',slvl,Item,'[X] Delete'); ...

 ListObj('Expandlist',slvl,Item,'Isolated Bodies'); ...

 ListObj('Function',slvl,Item,'Add Bodies To Not Join');

...

 ListObj('Function',slvl,Item,'Remove Bodies To Not

Join')];

 case 'Bridge'

 objects = [this; ...

 ListObj('Expandobj',slvl,Item,'Connection 1'); ...

 ListObj('Expandobj',slvl,Item,'Connection 2'); ...

 ListObj('Expandobj',slvl,Item,'Body 1'); ...

 ListObj('Expandobj',slvl,Item,'Body 2'); ...

 ListObj('Deleteobj',slvl,Item,'[X] Delete')];

 case 'LeakConnection'

 objects = [this; ...

 ListObj('Expandobj',slvl,Item,'Connection 1'); ...

 ListObj('Expandobj',slvl,Item,'Connection 2'); ...

 ListObj('Expandobj',slvl,Item,'Object 1'); ...

 ListObj('Expandobj',slvl,Item,'Object 2'); ...

 ListObj('Pickfunction',slvl,Item,'LeakFunc','Function -

Leakage'); ...

 ListObj('Deleteobj',slvl,Item,'[X] Delete')];

 case 'Environment'

 objects = [this; ...

 ListObj('Editstr',slvl,Item,'Name'); ...

 ListObj('Editnum',slvl,Item,'Pressure','Pa'); ...

 ListObj('Editnum',slvl,Item,'Temperature','K'); ...

 ListObj('Editnum',slvl,Item,'h','W/mK'); ...

 ListObj('Configureobj',slvl,Item,'Gas')];

 case 'Position'

545

 objects = [this; ...

 ListObj('Editnum',slvl,Item,'x','m'); ...

 ListObj('Editnum',slvl,Item,'y','m'); ...

 ListObj('Editnumconvert',slvl,Item,'Theta',{180/pi;

'degrees'})];

 case 'Matrix'

 objects = [this; ...

 ListObj('Configureobj',slvl,Item,'Material'); ...

 ListObj('Pickfunction',slvl,Item,'Laminar Friction

Function','Function - Laminar Friction'); ...

 ListObj('Pickfunction',slvl,Item,'Turbulent Friction

Function','Function - Turb Friction'); ...

 ListObj('Pickfunction',slvl,Item,'Laminar Nusselt

Function','Function - Laminar Nusselt'); ...

 ListObj('Pickfunction',slvl,Item,'Turbulent Nusselt

Function','Function - Turb Nusselt'); ...

 ListObj('Pickfunction',slvl,Item,'Laminar Streamwise

Cond. Enhancement','Function - Laminar Cond Enhancement'); ...

 ListObj('Pickfunction',slvl,Item,'Turbulent Streamwise

Cond. Enhancement','Function - Turb Cond Enhancement'); ...

 ListObj('Editnum',slvl,Item,'Source Temperature','K');

...

 ListObj('Deleteobj',slvl,Item,'[X] Delete')];

 case 'Mesher'

 objects = [this; ...

 ListObj('Editnum',slvl,Item,'Nodes through Oscillation

Depth'); ...

 ListObj('Editnum',slvl,Item,'Maximum Node Thickness');

...

 ListObj('Editnum',slvl,Item,'Maximum Growth Rate'); ...

 ListObj('Editnum',slvl,Item,'Heat Exchanger Fin

Divisions'); ...

 ListObj('Editnum',slvl,Item,'Minimum Solid Time Step');

...

 ListObj('Editnum',slvl,Item,'Gas Entrance Exit N'); ...

 ListObj('Editnum',slvl,Item,'Gas Maximum Size'); ...

 ListObj('Editnum',slvl,Item,'Gas Minimum Size')];

 case 'Sensor'

 objects = [this; ...

 ListObj('Editstr',slvl,Item,'Name'); ...

 ListObj('Editnum',slvl,Item,'Samples'); ...

 ListObj('Deleteobj',slvl,Item,'[X] Delete')];

 case 'PVoutput'

 objects = [this; ...

 ListObj('Editstr',slvl,Item,'name'); ...

 ListObj('Pickobj',slvl,Item,'Source

Body/Region',Item.Model.BodyList); ...

 ListObj('Deleteobj',slvl,Item,'[X] Delete')];

 case 'MechanicalSystem'

 objects = [this; ...

 ListObj('Editnum',slvl,Item,'Flywheel Inertia'); ...

 ListObj('Editnum',slvl,Item,'Drive Train Weight'); ...

 ListObj('Editnum',slvl,Item,'Drive Train Normal Friction

Coefficient'); ...

 ListObj('Pickfunction',slvl,Item,'Load

Function','Function - Load Function')];

 case 'RelationManager'

 objects = [this; ...

 ListObj('Editstr',slvl,Item,'Name'); ...

 ListObj('Expandlist',slvl,Item,'Relations')];

 case 'Relation'

 objects = [this; ...

 ListObj('Editstr',slvl,Item,'Name'); ...

 ListObj('Expandobj',slvl,Item,'Connection1'); ...

 ListObj('Expandobj',slvl,Item,'Connection2'); ...

ListObj('Pickobj',slvl,Item,'Frame',Item.manager.Group.Model.RefFrames); ...

 ListObj('Deleteobj',slvl,Item,'[X] Delete')];

 case 'OptimizationScheme'

 objects = [this; ...

 ListObj('Editstr',slvl,Item,'Name'); ...

546

 ListObj('NamedList',slvl,Item,'DOFs')];

 end

 end

 case 'Expandlist'

 objs = get(this.Parent,Text);

 LEN = length(objs);

 objects(LEN+1,1) = ListObj();

 switch class(objs)

 case {'LinRotMechanism', 'Material'}

 % Modify rather than expand

 for i = LEN:-1:1

 objects(i+1) = ListObj('Configureobj',slvl,Item,objs(i));

 end

 otherwise

 for i = LEN:-1:1

 objects(i+1) = ListObj('Expandobj',slvl,Item,objs(i));

 end

 end

 objects(1) = this;

 otherwise

 objects = this;

 end

 else % do not expand

 objects = this;

 end

 end

 function [output] = getString(this)

 starter = repmat('. . . ',1,this.lvl);

 if ischar(this.Child)

 if ~strcmp(this.Child,'[X] Delete') && ~strcmp(this.MODE,'Function')

 Item = get(this.Parent,this.Child);

 end

 Text = this.Child;

 else

 Item = this.Child;

 Text = class(this.Child);

 end

 switch this.MODE

 case 'Editstr'

 output = [starter Text ': [' Item ']'];

 case 'Editnum'

 output = [starter Text ': [' num2str(Item) ' ' this.Info ']'];

 case 'Editnumconvert'

 output = [starter Text ': [' num2str(Item*this.Info{1}) ' (' this.Info{2}

')]'];

 case 'Expandobj'

 if isvalid(Item)

 output = [starter Text ' (' class(Item) '): [' Item.name ']'];

 else

 output = [starter Text ' (' class(Item) '): [X Deleted Object]'];

 end

 case 'Expandlist'

 objs = get(this.Parent,Text);

 if ~isempty(objs)

 objs = objs(isvalid(objs));

 end

 if length(objs) < 1; output = [starter Text '[empty]'];

 else; output = [starter Text '[...]'];

 end

 case 'Configureobj'

 output = [starter Text ': [' Item.name ']'];

 case 'Pickobj'

 % info is the list of frames

 output = [starter class(Item) ': ' Item.name];

 case 'Pickfunction'

 if isempty(Item)

 output = [starter Text ': [...]'];

 else

 output = [starter Text ': [@' func2str(Item) ']'];

 end

547

 case 'Function'

 output = [starter Text];

 case 'Deleteobj'

 output = [starter Text];

 case 'NamedList'

 if isempty(Item); output = [starter Text '[empty]'];

 else; output = [starter Text '[...]'];

 end

 end

 end

 function [indicator] = isExpandable(this)

 switch this.MODE

 case {'Expandobj', 'Expandlist'}

 indicator = true;

 otherwise

 indicator = false;

 end

 end

 end

end

548

Make Code

This function makes a string code that stores the state of what is displayed on the property

listbox. This was introduced so that the structure could be recreated after edits.

function [Code] = MakeCode(ListObjs, ClickedIndex)

Code = '';

lvl = 0;

n = ones(1,16); % Current Index on Level

i = 1;

while i <= length(ListObjs)

 % Handle Step downs and step ups

 if ListObjs(i).lvl > lvl

 % Step Down

 % ... Parent n(lvl+1)

 % Child n(lvl+2) = 1

 if isempty(Code); Code = [num2str(int8(n(lvl+1)-1)) '['];

 elseif Code(end) == '['; Code = [Code num2str(int8(n(lvl+1)-1)) '['];

 else; Code = [Code ',' num2str(int8(n(lvl+1)-1)) '['];

 end

 lvl = lvl + 1;

 % Iterate the "Child" node

 n(lvl+1) = 2;

 elseif ListObjs(i).lvl < lvl

 % Step Up

 % Child n(lvl)

 % ... Next-Parent n(lvl+1)

 while lvl > ListObjs(i).lvl

 Code = [Code ']'];

 n(lvl+1) = 1;

 lvl = lvl - 1;

 end

 % Iterate the "Next-Parent" node

 n(lvl+1) = n(lvl+1) + 1;

 else

 % Iterate the node

 n(lvl+1) = n(lvl+1) + 1;

 end

 % Handle the click

 if nargin == 2 && ClickedIndex == i

 if ListObjs(i).isExpandable()

 if i < length(ListObjs)

 if ListObjs(i+1).lvl > ListObjs(i).lvl

 % This one is already expanded, collapse

 i = i + 1;

 while i <= length(ListObjs) && ListObjs(i).lvl > lvl

 i = i + 1;

 end

 % Iterate the level forward, we are skipping to another node

 n(lvl+1) = n(lvl+1) + 1;

 else

 % This one should be expanded

 if isempty(Code); Code = num2str(int8(n(lvl+1)-1));

 elseif Code(end) == '['; Code = [Code num2str(int8(n(lvl+1)-1))];

 else; Code = [Code ',' num2str(int8(n(lvl+1)-1))];

 end

 end

 else

 % This one should be expanded

 if isempty(Code); Code = num2str(int8(n(lvl+1)-1));

 elseif Code(end) == '['; Code = [Code num2str(int8(n(lvl+1)-1))];

 else; Code = [Code ',' num2str(int8(n(lvl+1)-1))];

 end

 end

 end

549

 end

 i = i + 1;

end

while lvl > 0

 Code = [Code ']'];

 lvl = lvl - 1;

end

Code = strrep(Code,'[]','');

if ~isempty(Code) && Code(end) == '['

 Code(end) = '';

end

end

550

Read Code

This reads the code an produces the active list that is displayed on the property lisbox.

function [newListObjs] = ReadCode(Code, ListObjs)

i = 1;

num = 0;

newListObjs = ListObj.empty;

close = false;

while i <= length(Code)

 k = i+1;

 while k <= length(Code) ...

 && Code(k) ~= '[' ...

 && Code(k) ~= ']' ...

 && Code(k) ~= ','

 k = k + 1;

 end

 onum = num;

 num = int16(str2double(Code(i:k-1)));

 if num ~= onum + 1

 if length(ListObjs) >= num-1

 newListObjs = [newListObjs; ListObjs(onum+1:num-1)];

 else

 return;

 end

 end

 if num > length(ListObjs) || num < 1

 return;

 end

 Internals = ListObjs(num).getObjs(true);

 newListObjs = [newListObjs; Internals(1)];

 if length(Internals) > 1

 if k <= length(Code)

 switch Code(k)

 case '['

 % Enter Recursion on Contents with contents of element "num"

 i = k + 1;

 lvlcount = -1;

 while i <= length(Code) && lvlcount < 0

 switch Code(i)

 case '['; lvlcount = lvlcount - 1;

 case ']'; lvlcount = lvlcount + 1;

 end

 i = i + 1;

 end

 if i < length(Code)

 if Code(i) == ','

 i = i + 1;

 newCode = Code(k+1:i-3);

 else

 newCode = Code(k+1:i-2);

 end

 else

 newCode = Code(k+1:i-2);

 end

 newListObjs = [newListObjs; ReadCode(newCode,Internals(2:end))];

 case ']'

 % End of Recursion Layer

 newListObjs = [newListObjs; Internals(2:end)];

 return;

 case ','

 % New expansion, add elements between expanded elements

 newListObjs = [newListObjs; Internals(2:end)];

 end

 else

 newListObjs = [newListObjs; Internals(2:end)];

 end

551

 end

 i = max(i,k);

end

if num < length(ListObjs)

 newListObjs = [newListObjs; ListObjs(num+1:end)];

end

end

552

Reset Code

This resets the code to be just the default entry (model).

function [Code] = ResetCode(Code)

if ~isempty(Code)

 if Code(1) == '1'

 % Model may maintain its expansion

 if length(Code) > 1

 if Code(2) == '['

 i = 3; lvlcount = -1;

 while i < length(Code) && lvlcount < 0

 switch Code(i)

 case '['; lvlcount = lvlcount - 1;

 case ']'; lvlcount = lvlcount + 1;

 end

 i = i + 1;

 end

 if length(Code) > i; Code(i+1:end) = ''; end

 end

 end

 else

 % Everything else is presumed to have changed

 Code = '';

 end

end

end

553

Selection List Data

Simple class that stores the list-objects and state code of the property list-box.

classdef SelectionListData < handle

 properties

 ListObjs;

 Code;

 end

end

554

G.8. Geometry

555

Line 1D

Line 1D is a class whose purpose is to represent a group of 1D line segments. This line segment

can lie upon any axis, provided that a distance along the axis can be measured. Line 1D contains

the following functionality:

A constructor.

A function (DestroyInterscept) that finds and destroys the intercept between two line 1D

objects (which is acted upon in both participating objects). This may split one of the objects

resulting in the addition of an other row to the bounds matrix.

A second function (Subtract) that removes the area covered by the second input line1D from

the current object.

A third function (MergeAndAppend) adds the another line1D object to the current object.

The last function (CreateLine2Ds) creates a series of line2D given an orientation and extra

position. (assuming axial or radial directions)

classdef Line1D < handle
 %Line1D Summary of this class goes here
 % Detailed explanation goes here

 properties
 bounds;
 end

 methods
 function this = Line1D(lb,ub)
 if nargin == 2
 this.bounds(1,1) = lb;
 this.bounds(1,2) = ub;
 end
 end

 function DestroyInterscept(this,other)
 n1 = 1; n2 = 1;
 s1 = 1; s2 = 1;
 notdone = true;
 while notdone

 notdone = false;

 for thisrow = s1:size(this.bounds,1)
 lb1 = this.bounds(thisrow,1);
 ub1 = this.bounds(thisrow,2);
 for otherrow = s2:size(other.bounds,1)
 lb2 = other.bounds(otherrow,1);
 ub2 = other.bounds(otherrow,2);
 if lb1 < lb2

556

 if ub1 > ub2% && lb1 < lb2
 % Split this, delete other
 other.bounds(otherrow,1:2) = inf;
 extra1(n1,1) = ub2;
 extra1(n1,2) = this.bounds(thisrow,2);
 this.bounds(thisrow,2) = lb2;
 n1 = n1 + 1;
 elseif ub1 < ub2% && lb1 < lb2
 % this ------ -> ----xx
 % other ------ -> xx----
 % Chop
 this.bounds(thisrow,2) = lb2;
 other.bounds(otherrow,1) = ub1;
 else % ub1 == ub2 && lb1 < lb2
 % chop this, delete other
 other.bounds(otherrow,1:2) = inf;
 this.bounds(thisrow,2) = lb2;
 end
 elseif lb1 > lb2
 if ub1 > ub2% && lb1 > lb2
 % this ------ -> xx----
 % other------ -> ----xx
 % Chop
 this.bounds(thisrow,1) = ub2;
 other.bounds(otherrow,2) = lb1;
 elseif ub1 < ub2% && lb1 > lb2
 % Split other, delete this
 this.bounds(thisrow,1:2) = inf;
 extra2(n2,1) = ub1;
 extra2(n2,2) = other.bounds(otherrow,2);
 other.bounds(otherrow,2) = lb1;
 n2 = n2 + 1;
 else % ub1 == ub2 && lb1 > lb2
 % chop other, delete this
 this.bounds(thisrow,1:2) = inf;
 other.bounds(otherrow,2) = lb1;
 end
 else % lb1 == lb2
 if ub1 > ub2 % && lb1 == lb2
 % Chop this, delete other
 this.bounds(thisrow,1) = ub2;
 other.bounds(otherrow,1:2) = inf;
 elseif ub1 < ub2 % && lb1 == lb2
 % Chop other, delete this
 this.bounds(thisrow,1:2) = inf;
 other.bounds(otherrow,1) = ub1;
 else % ub1 == ub2 && lb1 == lb2
 % delete other, delete this
 this.bounds(thisrow,1:2) = inf;
 other.bounds(otherrow,1:2) = inf;
 end
 end
 end
 end

 % Clean up both
 r = 1:size(this.bounds,1);
 this.bounds(isinf(this.bounds(r,1)),:) = [];
 r = 1:size(other.bounds,1);
 other.bounds(isinf(other.bounds(r,1)),:) = [];

 if ~(size(this.bounds,1) == 0 || size(other.bounds,1) == 0)
 if n1 > 1
 s1 = size(this.bounds,1)+1;
 s2 = 1;
 this.bounds = [this.bounds; extra1];
 notdone = true;
 end

557

 if ~notdone && n2 > 1
 s1 = 1;
 s2 = size(other.bounds,1)+1;
 other.bounds = [other.bounds; extra2];
 notdone = true;
 end
 end

 end

 end

 function Subtract(this,other)
 n1 = 1;
 s1 = 1;
 notdone = true;
 while notdone

 notdone = false;

 for thisrow = s1:size(this.bounds,1)
 lb1 = this.bounds(thisrow,1);
 ub1 = this.bounds(thisrow,2);
 for otherrow = 1:size(other.bounds,1)
 lb2 = other.bounds(otherrow,1);
 ub2 = other.bounds(otherrow,2);
 if ~(lb1 > ub2 || lb2 > ub1)
 if lb1 < lb2
 if ub1 > ub2% && lb1 < lb2
 % Split this, delete other
 extra1(n1,1) = ub2;
 extra1(n1,2) = this.bounds(thisrow,2);
 this.bounds(thisrow,2) = lb2;
 n1 = n1 + 1;
 elseif ub1 < ub2% && lb1 < lb2
 % this ------ -> ----xx
 % other ------ -> xx----
 % Chop
 this.bounds(thisrow,2) = lb2;
 else % ub1 == ub2 && lb1 < lb2
 % chop this, delete other
 this.bounds(thisrow,2) = lb2;
 end
 elseif lb1 > lb2
 if ub1 > ub2% && lb1 > lb2
 % this ------ -> xx----
 % other------ -> ----xx
 % Chop
 this.bounds(thisrow,1) = ub2;
 elseif ub1 < ub2% && lb1 > lb2
 % Split other, delete this
 this.bounds(thisrow,1:2) = inf;
 else % ub1 == ub2 && lb1 > lb2
 % chop other, delete this
 this.bounds(thisrow,1:2) = inf;
 end
 else % lb1 == lb2
 if ub1 > ub2 % && lb1 == lb2
 % Chop this, delete other
 this.bounds(thisrow,1) = ub2;
 elseif ub1 < ub2 % && lb1 == lb2
 % Chop other, delete this
 this.bounds(thisrow,1:2) = inf;
 else % ub1 == ub2 && lb1 == lb2
 % delete other, delete this
 this.bounds(thisrow,1:2) = inf;
 end
 end

558

 end
 end
 end

 % Clean up both
 r = 1:size(this.bounds,1);
 this.bounds(isinf(this.bounds(r,1)),:) = [];

 if ~(size(this.bounds,1) == 0)
 if n1 > 1
 this.bounds = [this.bounds; extra1];
 end
 end

 end
 end

 function MergeAndAppend(this,other)
 removeThis = false(1,length(this.bounds,1));
 removeOther = false(1,length(other.bounds,1));
 % See if the endpoints match up, then merge, it is assumed that the
 % lines have been subjected to DestroyInterscepts already
 % ... Add the merged lines to "this"
 for i = 1:length(this.bounds,1)
 for j = 1:length(other.bounds,1)
 if ~removeOther(j)
 if this.bounds(i,1) == other.bounds(j,2)
 this.bounds(i,1) = other.bounds(j,1);
 removeOther(j) = true;
 i = i - 1; %#ok<FXSET>
 elseif this.bounds(i,2) == other.bounds(j,1)
 this.bounds(i,2) = other.bounds(j,2);
 removeOther(j) = true;
 i = i - 1; %#ok<FXSET>
 end
 end
 end
 end
 % See if the modified entries of "this" can be merged
 for i = 1:length(this.bounds,1)-1
 if ~removeThis(i)
 for j = i+1:length(this.bounds,1)
 if ~removeThis(j)
 if this.bounds(i,1) == this.bounds(j,2)
 this.bounds(i,1) = this.bounds(j,1);
 removeThis(j) = true;
 i = i - 1; %#ok<FXSET>
 elseif this.bounds(i,2) == this.bounds(j,1)
 this.bounds(i,2) = this.bounds(j,2);
 removeThis(j) = true;
 i = i - 1; %#ok<FXSET>
 end
 end
 end
 end
 end
 % Remove entries
 this.bounds(removeOther,:) = [];
 this.bounds = [this.bounds; other.bounds];
 end

 function Line2DOutput = CreateLine2Ds(this,Orient,x)
 Line2DOutput(1,length(this.bounds,1)) = Line2DChain();
 if Orient == enumOrient.Vertical
 for i = 1:length(this.bounds,1)
 Line2DOutput(i) = ...
 Line2DChain(x,this.bounds(i,1),x,this.bounds(i,2));
 end

559

 else
 for i = 1:length(this.bounds,1)
 Line2DOutput(i) = ...
 Line2DChain(this.bounds(i,1),x,this.bounds(i,2),x);
 end
 end
 end
 end

end

560

Line 2D Chain

Line 2D chain is a class that represents a set of connected points in 2D space. It contains the

following functionality:

A constructor.

A function (attemptToMerge), which tries to link up the beginning and end points of two line

2D chains, returning if the merging was successful. This is used by the solid-environment

boundary detection algorithm.

A function (get.isFinished) which checks if both the start and end points are on the middle axis,

or if they are equal to each other. If so then nothing can be added to the loop.

A series of functions that retrieve particular defining points from the arrays. (such as the ends

or an extracted series of x or y data from the point lists).

classdef Line2DChain < handle

 %LINECHAIN Summary of this class goes here

 % Detailed explanation goes here

 properties

 Pnts Pnt2D = Pnt2D.empty;

 end

 properties (Dependent)

 XData double;

 YData double;

 Start Pnt2D;

 End Pnt2D;

 isFinished logical;

 end

 methods

 function this = Line2DChain(x1,y1,x2,y2)

 if nargin > 0

 this.Pnts = [Pnt2D(x1,y1) Pnt2D(x2,y2)];

 end

 end

 function successful = attemptToMerge(this,other)

 successful = false;

 if this.Pnts(end) == other.Pnts(1)

 this.Pnts = [this.Pnts other.Pnts(2:end)]; successful = true;

 elseif this.Pnts(end) == other.Pnts(end)

 this.Pnts = [this.Pnts other.Pnts(end-1:-1:1)]; successful = true;

 elseif this.Pnts(1) == other.Pnts(end)

 this.Pnts = [other.Pnts this.Pnts(2:end)]; successful = true;

 elseif this.Pnts(1) == other.Pnts(1)

 this.Pnts = [other.Pnts(end:-1:2) this.Pnts]; successful = true;

 end

 end

 function isFinished = get.isFinished(this)

 isFinished = (this.Pnts(1).x == 0 && this.Pnts(end).x == 0) || ...

 (this.Pnts(1) == this.Pnts(end));

 end

 function Start = get.Start(this)

561

 Start = this.Pnts(1);

 end

 function End = get.End(this)

 End = this.Pnts(end);

 end

 function XData = get.XData(this)

 XData = zeros(1,length(this.Pnts));

 for i = 1:length(this.Pnts)

 XData(i) = this.Pnts(i).x;

 end

 end

 function YData = get.YData(this)

 YData = zeros(1,length(this.Pnts));

 for i = 1:length(this.Pnts)

 YData(i) = this.Pnts(i).y;

 end

 end

 end

end

562

Loop Node

Loop Node is a class that serves to facilitate the finding of loops in the gas network. It contains

the following functionality:

A constructor.

A recursive function (get.lvl) used to determine the length of a chain of loopNodes.

classdef LoopNode
 %LOOPNODE Summary of this class goes here
 % Detailed explanation goes here

 properties
 parent LoopNode;
 parentFc Face;
 Nd Node;
 end

 properties (Dependent)
 lvl int8;
 end

 methods
 function this = LoopNode(iparent, iparentFc, iNd)
 if nargin == 1
 this.Nd = iparent;
 elseif nargin == 3
 this.parent = iparent;
 this.parentFc = iparentFc;
 this.Nd = iNd;
 end
 end

 function lvl = get.lvl(this)
 if ~isempty(this.parent)
 lvl = this.parent.lvl + 1;
 else
 lvl = 1;
 end
 end
 end

end

563

Pnt 2D

Pnt2D is a class that is the basic x, y data structure of most of the geometry functions. It contains

additional functionality:

Constructor.

A rotate function which takes a rotation matrix and updates its positions.

A shift function that adds a length 2 position vector to the x, y position.

classdef Pnt2D < handle
 %PNT2D Summary of this class goes here
 % Detailed explanation goes here

 properties
 x double;
 y double;
 end

 methods
 function this = Pnt2D(x,y)
 if nargin == 0
 return;
 end
 this.x = x;
 this.y = y;
 end

 function isequal = eq(Pnt1,Pnt2)
 isequal = (Pnt1.x == Pnt2.x && Pnt1.y == Pnt2.y);
 end

 function rotate(this, RotationMatrix)
 newx = RotationMatrix(1,1)*this.x + RotationMatrix(1,2)*this.y;
 this.y = RotationMatrix(2,1)*this.x + RotationMatrix(2,2)*this.y;
 this.x = newx;
 end

 function shift(this, PositionVector)
 this.x = PositionVector(1) + this.x;
 this.y = PositionVector(2) + this.y;
 end
 end
end

564

G.1. Enum

Enumeration of Face Types

classdef enumFType

 enumeration

 Mix,...

 Gas,...

 Leak,...

 Solid,...

 Environment,...

 MatrixTransition

 end

end

Enumeration of Types of Materials (Phase)

classdef enumMaterial

 enumeration

 Gas, Solid, Liquid

 end

end

Enumeration of Types of Matrix

classdef enumMatrix

 enumeration

 WovenScreen,

 RandomFiber,

 PackedSphere,

 StackedFoil,

 HeatExchanger

 end

end

Enumeration of Movement States

classdef enumMove

 enumeration

 Moving, Static, Stretching

 end

end

Enumeration of Node Types

classdef enumNType

565

 enumeration

 SVGN,... Static Volume Gas Node

 VVGN,...Variable Volume Gas Node

 SAGN,...Shearing Annular Gas Node

 SN,...Solid Node

 EN % Environment Node

 end

end

Enumeration of Orientations

classdef enumOrient

 enumeration

 Vertical, Horizontal

 end

end

Enumeration of Shapes

classdef enumShape

 enumeration

 Cylinder, Annulus, Cuboid

 end

end

566

G.2. Startup

This function automatically runs whenever this project is opened in MATLAB, due to being

named “startup”.

function startup()
 addpath(...
 'enum',...
 'Helper Function',...
 'Saved Files',...
 'Geometry',...
 'MinorElements',...
 'MajorElements',...
 'Mechanical',...
 'Mechanical/Mechanical Helper',...
 'Function - Turb Nusselt',...
 'Function - Turb Friction',...
 'Function - Turb Cond Enhancement',...
 'Function - Leakage',...
 'Function - Laminar Nusselt',...
 'Function - Laminar Friction',...
 'Function - Laminar Cond Enhancement',...
 'Function - Discretization',...
 'Function - Load Function',...
 'GUI',...
 'Simulation',...
 'ListObjs',...
 'Motion',...
 'Test_Running',...
 'Relations',...
 'Optimization',...
 'Output Helpers'...
);

 % mex anyEq.c -largeArrayDims;
end

567

G.1. Helper Function

Add Row:

adds a number (N) rows to a 2D cell matrix

function Output = AddRow(Input,N)

 Output = Input;

 for i = size(Output,1)+1:N+size(Output,1)

 for j = 1:size(Output,2)

 Output{i,j} = '';

 end

 end

end

Annular Conduction:

Determines the conductance from the center of a node to a radius “r” given the node is made

up of a material “matl” and the interaction is over a length of “L”.

function [U] = AnnularConduction(Node,r,L,matl)

 if Node.xmin ~= 0

 mid_r = sqrt(Node.xmin*Node.xmax);

 if mid_r < r

 U = (2*pi*matl.ThermalConductivity/log(r/mid_r)).*L;

 else

 U = ((2*pi*matl.ThermalConductivity)/log(mid_r/r)).*L;

 end

 else

 % The Constant comes from 1/log(1/0.570524), which is the center

 % ... Non-dimensional radius of: Resistance*Area of a cylinder.

 U = 2*pi*matl.ThermalConductivity*1.781896.*L;

 end

end

Arcsin:

Modifies the regular discontinuous ouput of the asin function to be continues over a given array

of sequential values.

function [output] = asin_omni(input)

intermittent = zeros(size(input));

for i = 1:length(input)

 intermittent(i) = asin(input(i));

end

count = 0;

output = zeros(size(input));

i = 2;

output(1) = intermittent(1);

d = diff(intermittent);

while i < length(input)+1 && count < 100

 while i < length(input)+1 && d(i-1) >= 0

 output(i) = intermittent(i) + count*pi;

 i = i + 1;

568

 end

 count = count + 1;

 while i < length(input)+1 && d(i-1) <= 0

 output(i) = count*pi - intermittent(i);

 i = i + 1;

 end

 count = count + 1;

end

end

Assess Triad:

Assess whether or not any of the faces of a triad can be permanently closed, and what the gain

or closing each face would be. The use of this is that each triad can be scored, then the faces can

be closed via a greedy algorithm. Each triad is reassessed after any faces are closed, as they may

interact significantly.

function [scores] = assessTriad(Triad, derefinement_factor)

a = Triad(1);

b = Triad(2);

c = Triad(3);

modification = sqrt(derefinement_factor);

threshold = 0.1/modification;

scores = [0, 0, 0];

canCloseA = canClose(a);

canCloseB = canClose(b);

canCloseC = canClose(c);

if canCloseA

 for i = 1:Frame.NTheta-1

 Aa = getArea(a,i);

 if Aa == 0; continue; end

 Ab = getArea(b,i);

 if Ab == 0; continue; end

 Ac = getArea(c,i);

 if Ac == 0; continue; end

 r_a = Aa/min(Ab,Ac);

 if r_a < threshold; scores(1) = scores(1) + 1; end

 end

end

if canCloseB

 for i = 1:Frame.NTheta-1

 Aa = getArea(a,i);

 if Aa == 0; continue; end

 Ab = getArea(b,i);

 if Ab == 0; continue; end

 Ac = getArea(c,i);

 if Ac == 0; continue; end

 r_b = Ab/min(Aa,Ac);

 if r_b < threshold; scores(2) = scores(2) + 1; end

 end

end

if canCloseC

 for i = 1:Frame.NTheta-1

 Aa = getArea(a,i);

 if Aa == 0; continue; end

 Ab = getArea(b,i);

 if Ab == 0; continue; end

569

 Ac = getArea(c,i);

 if Ac == 0; continue; end

 r_c = Ac/min(Aa,Ab);

 if r_c < threshold; scores(3) = scores(3) + 1; end

 end

end

end

Atan:

Modified to provide a continuous output over a set of sequential input values.

function [input] = atanSmooth(input)

input = atan(input);

for i = 2:length(input)

 if abs(input(i-1) - input(i)) > 3

 input(i:end) = input(i:end) + sign(input(i-1)-input(i))*pi;

 end

end

end

Can Close:

determines if a face can be closed without dividing the region

function [itcan] = canClose(fc)

 if isfield(fc.data,'Area')

 if all(fc.data.Area > 0)

 % Path from one side to the other

 [itcan] = canPathTo(fc, fc.Nodes(1), fc.Nodes(2));

 else; itcan = true;

 end

 else

 itcan = false;

 end

end

function [canPath, visited] = canPathTo(visited, target, start)

 canPath = false;

 for fc = start.Faces

 if (fc.Type == enumFType.Gas || ...

 fc.Type == enumFType.MatrixTransition) && ...

 ~any(fc == visited)

 % Make sure the face is traversible

 if all(fc.data.Area > 0)

 if fc.Nodes(1) == start; i = 2; else; i = 1; end

 % Test for completion

 if fc.Nodes(i) == target

 canPath = true; return;

 else

 % Continue Searching

 for fci = fc.Nodes(i).Faces

 [canPath, visited] = ...

 canPathTo([visited fc], target, fc.Nodes(i));

 if canPath; return; end

 end

 end

 end

 end

 end

end

570

Collapse vector:

collapses vector that are repetitive to save effort later.

function [Input] = CollapseVector(Input)

 if all(Input(1) - 1e-8 < Input) && all(Input(1) + 1e-8 > Input)

 Input = Input(1);

 end

end

Combine Conduction in Series:

combines a pair of conductance’s as if they were attached in series.

function [U] = combine_Conduction_Series(U1, U2)

if U1 == 0

 U = U2;

else

 if U2 == 0

 U = 0;

 else

 U = 1/(1/U1+1/U2);

 end

end

Copy Class:

Copies a handle object, property for property. Children objects are not copied, by default.

function newObj = CopyClass(existingObj)

 newObj = feval(class(existingObj));

 props = properties(existingObj);

 for i = 1:length(props)

 newObj.(props{i}) = existingObj.(props{i});

 end

end

Custom Expand Array

Expands array by padding it in all directions

function [newarray] = CustExpandArray(array)
 newarray = zeros(size(array) + [2 2]);
 % Identical core of the array
 newarray(2:(1+size(array,1)),2:(1+size(array,2))) = array(:,:);
 % Four Edges
 newarray(1,2:(1+size(array,2))) = array(1,:);
 newarray(end,2:(1+size(array,2))) = array(end,:);
 newarray(2:(1+size(array,1)),1) = array(:,1);
 newarray(2:(1+size(array,1)),end) = array(:,end);
 % Four Corners
 newarray(1,1) = newarray(1,2);
 newarray(1,end) = newarray(1,end-1);
 newarray(end,1) = newarray(end,2);
 newarray(end,end) = newarray(end,end-1);
end

571

Custom RSSQ

Calculates the root sum of squares of a vector. This function exists but is the only function that

comes from an add-on library to MATLAB.

function [out] = CustomRSSQ(in)

 out = sqrt(sum(in.*in));

end

Debug_loop plot:

Plots all loops on the GUI window

function [] = debug_loopPlot(Model, Closed)

h = figure();

if nargin > 1

 if length(Closed) == 1

 if ~Closed

 for fc = Model.Faces

 if fc.Type == enumFType.Gas || fc.Type == enumFType.MatrixTransition

 c1 = fc.Nodes(1).minCenterCoords();

 c2 = fc.Nodes(2).minCenterCoords();

 line([c1.x; c2.x], [c1.y; c2.y]);

 end

 end

 end

 else

 for fc = Model.Faces

 if fc.Type == enumFType.Gas || fc.Type == enumFType.MatrixTransition

 if ~Closed(fc.index)

 c1 = fc.Nodes(1).minCenterCoords();

 c2 = fc.Nodes(2).minCenterCoords();

 line([c1.x; c2.x], [c1.y; c2.y]);

 end

 end

 end

 end

else

 for fc = Model.Faces

 if fc.Type == enumFType.Gas || fc.Type == enumFType.MatrixTransition

 if all(fc.data.Area > 0)

 c1 = fc.Nodes(1).minCenterCoords();

 c2 = fc.Nodes(2).minCenterCoords();

 line([c1.x; c2.x], [c1.y; c2.y]);

 end

 end

 end

end

close(h);

end

Distance to Rectangle

Returns the distance that a point “P” composed of Px and Py is from a rectangle with center

“Cx, Cy”, width and height.

572

function [d] = Dist2Rect(Px,Py,Cx,Cy,width,height)

 % 9 cases

 w = width/2;

 h = height/2;

 if Px < Cx+w

 if Px > Cx-w

 if Py < Cy+h

 if Py > Cy-h % Bounded, Bounded (Inside)

 d = 0;

 else % Under, Bounded

 d = ((Cy-h)-Py)^2;

 end

 else % Above, Bounded

 d = (Py-(Cy+h))^2;

 end

 else

 if Py < Cy+h % Under Top Surface, Left

 if Py > Cy-h % Bounded, Left

 d = (Cx-w-Px)^2;

 else % Under, Left

 d = ((Cx-w)-Px)^2+((Cy-h)-Py)^2;

 end

 else % Above, Left

 d = ((Cx-w)-Px)^2+(Py-(Cy+h))^2;

 end

 end

 else

 if Py < Cy+h

 if Py > Cy-h % Bounded, Right

 d = (Px-(Cx+w))^2;

 else % Under, Right

 d = ((Cy-h)-Py)^2+(Px-(Cx+w))^2;

 end

 else % Above, Right

 d = (Py-(Cy+h))^2+(Px-(Cx+w))^2;

 end

 end

end

Distance for comparison

Calculates the square distance, avoiding the square root.

function [d] = Dist4Compare(A,B)

d = (A(1)-B(1))^2+(A(2)-B(2))^2;

end

Distort Position Vector

Distorts a set of x and y vectors, representing a set of points by a rotation and then a shift in 2D

space.

function [oXData,oYData] = DistortPositionVectors(iXData,iYData,shift,rotate)

 if nargin > 3 && all(size(rotate) == [2 2])

 oXData = rotate(1,1)*iXData + rotate(1,2)*iYData;

 oYData = rotate(2,1)*iXData + rotate(2,2)*iYData;

 if length(shift) == 2

 oXData = shift(1) + oXData;

 oYData = shift(2) + oYData;

573

 end

 return;

 end

 if nargin > 2 && length(shift) == 2

 oXData = shift(1) + iXData;

 oYData = shift(2) + iYData;

 end

end

Face Motion

Given a face calculates (if any) the shear and velocity factors and if possible returns these values

in addition to a new shear contact in the event of a shear. If may return more than 1 shear contact.

function [V, S, SContact] = FaceMotion(Fc)

V = [];

S = [];

SContact = ShearContact.empty;

% Only if the face is horizontal and is gas

if Fc.Orient ~= enumOrient.Horizontal; return; end

n1 = Fc.Nodes(1);

n2 = Fc.Nodes(2);

if n1.Type == enumNType.SN || n2.Type == enumNType.SN; return; end

% factor = omega/N [rad/step]

h = 2*pi/(Frame.NTheta-1);

%% Self Motion

% Produce V_middle - of units [m/rad]

if all(n1.ymin == n2.ymax)

 % Oriented towards the negative

 sgn = 1;

 V_middle = zeros(1,Frame.NTheta);

 y = n1.ymin;

 if ~isscalar(y)

 V_middle(1) = (y(2)-y(end-1))/(2*h);

 V_middle(2:end) = (y(3:end)-y(1:end-2))/(2*h);

 end

elseif all(n1.ymax == n2.ymin)

 % Oriented towards the positive

 sgn = -1;

 V_middle = zeros(1,Frame.NTheta);

 y = n2.ymin;

 if ~isscalar(y)

 V_middle(1) = (y(2)-y(end-1))/(2*h);

 V_middle(2:end-1) = (y(3:end)-y(1:end-2))/(2*h);

 V_middle(end) = V_middle(1);

 end

else

 % They are connected, but through a bridge.

 return;

end

%% Adjacent Motion

% Find the adjacent surfaces motion

% For each frame of motion detect whether or not the face is adjacent to a

% ... solid surface.

Bodies_1_inside = Body.empty;

Area_1_inside = cell_of_zeros(length(n1.Faces));

Bodies_1_outside = Body.empty;

Area_1_outside = cell_of_zeros(length(n1.Faces));

Bodies_2_inside = Body.empty;

Area_2_inside = cell_of_zeros(length(n2.Faces));

Bodies_2_outside = Body.empty;

Area_2_outside = cell_of_zeros(length(n2.Faces));

574

% Test the connections of node 1

for fc = n1.Faces

 if fc.Orient == enumOrient.Vertical

 % Only if it is a mixed face will it populate "nd"

 nd = [];

 if fc.Nodes(1).Type == enumNType.SN; nd = fc.Nodes(1);

 elseif fc.Nodes(2).Type == enumNType.SN; nd = fc.Nodes(2);

 end

 if ~isempty(nd)

 found = false;

 if nd.xmin < n1.xmin % It is closer to the axis than the original node

 for i = 1:length(Bodies_1_inside)

 if Bodies_1_inside(i) == nd.Body

 Area_1_inside{i} = Area_1_inside{i} + fc.data.Area;

 found = true;

 end

 end

 if ~found

 Bodies_1_inside(end+1) = nd.Body;

 Area_1_inside{length(Bodies_1_inside)} = ...

 Area_1_inside{length(Bodies_1_inside)} + fc.data.Area;

 end

 else % It is farther from the axis than the original node

 for i = 1:length(Bodies_1_outside)

 if Bodies_1_outside(i) == nd.Body

 Area_1_outside{i} = Area_1_outside{i} + fc.data.Area;

 found = true;

 end

 end

 if ~found

 Bodies_1_outside(end+1) = nd.Body;

 Area_1_outside{length(Bodies_1_outside)} = ...

 Area_1_outside{length(Bodies_1_outside)} + fc.data.Area;

 end

 end

 end

 end

end

% Test the connections of node 2

for fc = n2.Faces

 if fc.Orient == enumOrient.Vertical

 % Only if it is a mixed face will it populate "nd"

 nd = [];

 if fc.Nodes(1).Type == enumNType.SN

 nd = fc.Nodes(1);

 elseif fc.Nodes(2).Type == enumNType.SN

 nd = fc.Nodes(2);

 end

 if ~isempty(nd)

 found = false;

 if nd.xmin < n2.xmin % It is closer to the axis than the original node

 for i = 1:length(Bodies_2_inside)

 if Bodies_2_inside(i) == nd.Body

 Area_2_inside{i} = Area_2_inside{i} + fc.data.Area;

 found = true;

 end

 end

 if ~found

 Bodies_2_inside(end+1) = nd.Body;

 Area_2_inside{length(Bodies_2_inside)} = ...

 Area_2_inside{length(Bodies_2_inside)} + fc.data.Area;

 end

 else % It is farther from the axis than the original node

 for i = 1:length(Bodies_2_outside)

 if Bodies_2_outside(i) == nd.Body

 Area_2_outside{i} = Area_2_outside{i} + fc.data.Area;

 found = true;

 end

575

 end

 if ~found

 Bodies_2_outside(end+1) = nd.Body;

 Area_2_outside{length(Bodies_2_outside)} = ...

 Area_2_outside{length(Bodies_2_outside)} + fc.data.Area;

 end

 end

 end

 end

end

% Determine inner absolute speeds

% ... If no bodies are shared, then speed is equal to the face velocity to

% ... represent a low shear condition.

V_inner = V_middle; i = 1;

shared_inner = false(size(Bodies_1_inside));

for iBody = Bodies_1_inside

 j = 1;

 for oBody = Bodies_2_inside

 if iBody == oBody

 shared_inner(i) = true;

 overlap = and(Area_1_inside{i} > 0, Area_2_inside{j} > 0);

 motion = get_motion(iBody);

 if length(overlap) == 1 && overlap

 V_inner = motion;

 break;

 else

 V_inner(overlap) = motion(overlap);

 end

 end

 j = j + 1;

 end

 i = i + 1;

end

% Determine outer absolute speeds

% ... If no bodies are shared, then speed is equal to the face velocity to

% ... represent a low shear condition.

shared_outer = false(size(Bodies_1_outside));

V_outer = V_middle; i = 1;

for iBody = Bodies_1_outside

 j = 1;

 for oBody = Bodies_2_outside

 if iBody == oBody

 shared_outer(i) = true;

 overlap = and(Area_1_outside{i} > 0, Area_2_outside{j} > 0);

 motion = get_motion(iBody);

 if length(overlap) == 1 && overlap

 V_outer = motion;

 break;

 else

 V_outer(overlap) = motion(overlap);

 end

 end

 j = j + 1;

 end

 i = i + 1;

end

% Assign V and S vectors

if n1.xmin == 0 && n2. xmin == 0

 V = (V_middle - V_outer);

 S = [];

else

 V = V_middle - (V_inner + V_outer)/2;

 S = abs(V_inner - V_outer);

end

Frames = Frame.empty;

N = length(Bodies_1_inside(shared_inner)) + ...

576

 length(Bodies_1_outside(shared_outer));

ActiveTimes = cell(N, 1);

for i = 1:N; ActiveTimes{i} = 0; end

for i = 1:length(Bodies_1_inside)

 if shared_inner(i)

 Frm = Bodies_1_inside(i).get('RefFrame');

 if ~isempty(Frm)

 found = false;

 for j = 1:length(Frames)

 if Frames(j) == Frm

 found = true;

 % Add active Points to array

 ActiveTimes{j} = or(ActiveTimes{j}, ...

 and(Area_1_inside{i} > 0, Area_2_inside{i} > 0));

 break;

 end

 end

 if ~found

 Frames(end+1) = Frm;

 ActiveTimes{length(ActiveTimes),1} = ...

 and(Area_1_inside{i} > 0, Area_2_inside{i} > 0);

 end

 end

 end

end

for i = 1:length(Bodies_1_outside)

 if shared_outer(i)

 Frm = Bodies_1_outside(i).get('RefFrame');

 if ~isempty(Frm)

 found = false;

 for j = 1:length(Frames)

 if Frames(j) == Frm

 found = true;

 % Add active Points to array

 ActiveTimes{j} = or(ActiveTimes{j}, ...

 and(Area_1_outside{i} > 0, Area_2_outside{i} > 0));

 break;

 end

 end

 if ~found

 Frames(end+1) = Frm;

 ActiveTimes{length(ActiveTimes),1} = ...

 and(Area_1_outside{i} > 0, Area_2_outside{i} > 0);

 end

 end

 end

end

% So we now have the reference frames that move past the face, as well as

% ... the times that they are active for.

if isempty(Frames)

 SContact = ShearContact.empty;

else

 SContact(length(Frames)) = ShearContact(0);

 Converters = n1.Body.Group.Model.Converters;

 i = 1;

 for Frm = Frames

 for Converter_id = 1:length(Converters)

 if Frm.Mechanism == Converters(Converter_id)

 break;

 end

 end

 if n1.ymin(1) < n2.ymin(1)

 SContact(i) = ShearContact(...

 Converter_id, Frm.MechanismIndex, Fc.data.Area/2, n1, n2, ActiveTimes{i});

 else

 SContact(i) = ShearContact(...

 Converter_id, Frm.MechanismIndex, Fc.data.Area/2, n2, n1, ActiveTimes{i});

 end

 i = i + 1;

 end

577

end

% Currently the gas velocity is oriented towards the negative direction

% ... Correct

if all(V < 1e-4) && all(V > -1e-4)

 V = [];

else

 V = sgn*V;

end

if all(S < 1e-4)

 S = [];

end

end

function [a] = cell_of_zeros(len)

 a = cell(len,1);

 for i = 1:len; a{i} = 0; end

end

function [motion] = get_motion(iBody)

 [y, ~, ~, ~] = iBody.limits(enumOrient.Horizontal);

 % factor = omega/N [rad/step]

 h = 2*pi/(Frame.NTheta-1);

 motion = zeros(1,Frame.NTheta);

 if ~isscalar(y)

 motion(1) = (y(2)-y(end-1))/(2*h);

 motion(2:end-1) = (y(3:end)-y(1:end-2))/(2*h);

 motion(end) = motion(1);

 end

end

Find Closest 2 Nodes

Determines, from a set of nodes the set of 2 nodes that are closest to a position.

function [iNodes] = findClosest2(loc, iNodes)

selection = zeros(1,2);

d = zeros(1,4);

for i = 1:length(iNodes)

 pnts = iNodes.minCenterCoords;

 d(i) = (pnts.x - loc.x)^2 + (pnts.y - loc.y)^2;

end

n = 1;

while true

 dmin = d(1);

 k = 1;

 for i = 2:length(d)

 if dmin > d(i)

 dmin = d(i);

 k = i;

 end

 end

 if dmin == inf

 iNodes = iNodes(selection(1:n));

 return;

 end

 d(k) = inf;

 selection(n) = k;

 n = n + 1;

 if n == 3

 iNodes = iNodes(selection);

 return;

 end

end

578

end

Find Closest 4 Nodes

Determines, from a set of nodes the set of 4 nodes that are the closest.

function [oNodes,Interp] = findClosest4(loc,Body)

 % Find distance to all nodes

 % Find the members of the body who's material matches the phase of the

 % body material.

 iNodes = Body.Nodes;

 Phase = Body.matl.Phase;

 include = true(size(iNodes));

 for i = 1:length(iNodes)

 if ~isvalid(iNodes(i))

 include(i) = false;

 continue;

 end

 if isfield(iNodes(i).data,'matl') && iNodes(i).data.matl.Phase ~= Phase

 include(i) = false;

 continue;

 end

 end

 iNodes = iNodes(include);

 if isempty(iNodes)

 oNodes = [];

 Interp = [];

 return;

 end

 dist2 = zeros(length(iNodes),1);

 i = 1;

 for Nd = iNodes

 NodeCenter = Nd.minCenterCoords;

 dist2(i) = (NodeCenter.x-loc.x)^2+(NodeCenter.y-loc.y)^2;

 if dist2(i) == 0

 oNodes = Nd.index;

 Interp = 1;

 return;

 end

 i = i + 1;

 end

 % Sort the dist and node array

 tNodes = Node.empty;

 if length(iNodes) > 3

 limit = 4;

 else

 limit = 2;

 end

 if ~isempty(iNodes)

 notdone = true;

 while notdone

 d1 = min(dist2);

 if d1 == Inf || length(tNodes) == limit

 [Interp, tNodes] = interpCoefficients(loc,tNodes);

 oNodes = zeros(1,length(tNodes));

 for i = 1:length(tNodes)

 oNodes(i) = tNodes(i).index;

 end

 return;

 end

 MinNodes = iNodes(dist2==d1);

 maxlen = min(length(MinNodes),limit - length(tNodes));

 tNodes(end+1:end+maxlen) = MinNodes(1:maxlen);

 dist2(dist2==d1) = Inf;

 end

 end

579

 Interp = [];

end

Find String In Cell

Finds, in a cell vector, a particular string and returns the index.

function [index] = FindStringInCell(iCell,iString)

index = 0;

for i = 1:length(iCell)

 if strcmp(iCell{i},iString)

 index = i;

 break;

 end

end

end

Func 2 Lookup

Unused: in favor of vectorized anonymous functions. This function takes a function, a range of

values and a tolerance and computes an adaptive lookup table that covers the prescribed range of

inputs.

function [x,v] = Func2Lookup(Func,xmin,xmax,vTol)

tic;

N = 200; n = 3;

xs = zeros(N,1); vs = xs; edges = xs; active = xs;

xs(1) = xmin; vs(1) = Func(xmin); edges(1) = 2; active(1) = true;

xs(2) = xmax; vs(2) = Func(xmax); edges(2) = 0; %active(2) = false;

while(any(active))

 for i = 1:n-1

 if active(i)

 % Test 5 points

 dx = (xs(edges(i))-xs(i))/6;

 m = (vs(edges(i))-vs(i))/(xs(edges(i))-xs(i));

 xs(n) = xs(i) + 3*dx;

 vs(n) = Func(xs(n));

 if abs(vs(n) - ((xs(n) - xs(i))*m + vs(i))) > vTol

 edges(n) = edges(i);

 edges(i) = n;

 active(n) = true;

 n = n + 1;

 break;

 else

 xs(n) = xs(i) + 2*dx;

 vs(n) = Func(xs(n));

 if abs(vs(n) - ((xs(n) - xs(i))*m + vs(i))) > vTol

 edges(n) = edges(i);

 edges(i) = n;

 active(n) = true;

 n = n + 1;

 break;

 else

 xs(n) = xs(i) + 4*dx;

 vs(n) = Func(xs(n));

 if abs(vs(n) - ((xs(n) - xs(i))*m + vs(i))) > vTol

 edges(n) = edges(i);

 edges(i) = n;

 active(n) = true;

580

 n = n + 1;

 break;

 else

 xs(n) = xs(i) + dx;

 vs(n) = Func(xs(n));

 if abs(vs(n) - ((xs(n) - xs(i))*m + vs(i))) > vTol

 edges(n) = edges(i);

 edges(i) = n;

 active(n) = true;

 n = n + 1;

 break;

 else

 xs(n) = xs(i) + 5*dx;

 vs(n) = Func(xs(n));

 if abs(vs(n) - ((xs(n) - xs(i))*m + vs(i))) > vTol

 edges(n) = edges(i);

 edges(i) = n;

 active(n) = true;

 n = n + 1;

 break;

 else

 active(i) = false;

 end

 end

 end

 end

 end

 end

 if n > N

 break;

 end

 end

 if n > N

 break;

 end

end

x = zeros(n-1,1);

v = zeros(n-1,1);

x(1) = xs(1);

v(1) = vs(1);

next = edges(1);

for i = 2:n-1

 x(i) = xs(next);

 v(i) = vs(next);

 next = edges(next);

end

plot(x,v,'o',xmin:0.01:xmax,Func(xmin:0.01:xmax));

toc;

end

Function Table

Unused: in favor of vectorized anonymous functions. Determines the set of unique functions

and calculates a set length lookup table.

function [Indexes, Lookups] = Function_Table(...

 Tol, min_x, max_x, Functions, N)

LEN = length(Functions);

Lookups = zeros(LEN,N,2);

Indexes = zeros(LEN,1);

isUnique = false(size(Indexes));

n = 1;

for i = 1:LEN

 if ~isempty(Functions{i}) && Indexes(i) == 0

 isUnique(i) = true;

581

 Indexes(i) = n;

 for j = i+1:LEN

 if ~isempty(Functions{j}) && Indexes(j) == 0

 if Indexes(j) == 0 && Functions{i}(0.5) == Functions{j}(0.5) && Functions{i}(1) ==

Functions{j}(1)

 Indexes(j) = n;

 end

 end

 end

 n = n + 1;

 end

end

for i = 1:LEN

 f = Functions{i};

 if ~isempty(f)

 if isUnique(i)

 n = Indexes(i);

 entry = 2;

 delta = 1;

 Lookups(n,1,1) = min_x;

 Lookups(n,1,2) = f(min_x);

 x2 = 1e-8;

 y2 = Lookups(n,1,2);

 while x2 < max_x && entry <= N

 % Use the Tolerance to construct a lookup table from the function

 x1 = x2;

 y1 = y2;

 max_delta = inf;

 min_delta = 1e-8;

 delta = delta * 1.1;

 locating = true;

 Tries = 1;

 while locating && Tries < 10

 x2 = Lookups(n,entry-1,1) + delta;

 y2 = f(x2);

 if delta == min_delta || delta == max_delta

 locating = false;

 else

 ymid = f((x1 + x2)/2);

 err = ((y1 + y2) - 2*ymid)/ymid;

 if abs(err) > Tol

 factor = 0.99*sqrt(Tol/abs(err));

 max_delta = delta*(1 + factor)/2;

 delta = max(min_delta,delta*factor);

 elseif abs(err) < Tol*0.9

 factor = sqrt(Tol/abs(err));

 min_delta = delta*(1 + factor)/2;

 delta = min(max_delta,delta*factor);

 else

 locating = false;

 end

 Tries = Tries + 1;

 end

 end

 if Tries == 10

 x2 = (min_delta + max_delta)/2;

 y2 = f(x2);

 end

 Lookups(n,entry,1) = x2;

 Lookups(n,entry,2) = y2;

 entry = entry + 1;

 end

 end

 end

end

if n < LEN

 Lookups = Lookups(1:n,:,:);

end

end

582

Get Any Fc Loop of Size

Used in debugging, found loops of size 2 which were subsequently fixed.

function [success, visited] = getAnyFcLoopOfSize(visited, target, start, max_length)

 success = false;

 for fc = start.Faces

 if visited(end) ~= fc && (fc.Type == enumFType.Gas || ...

 fc.Type == enumFType.MatrixTransition)

 % Make sure the face is traversible

 if fc.Nodes(1) == start; i = 2; else; i = 1; end

 % Test for completion

 if fc.Nodes(i) == target

 success = true; visited = [visited fc]; return;

 else

 % Length Check

 if length(visited) + 1 == max_length

 success = false; return;

 else

 % Continue Searching

 for fci = fc.Nodes(i).Faces

 [success, new_visited] = getAnyFcLoopOfSize(...

 [visited fc], target, fc.Nodes(i), max_length);

 if success

 visited = new_visited;

 return;

 end

 end

 end

 end

 end

 end

end

Get Area Percent Horizontal

Calculates the percentage that an offset circle of offset “x” and diameter “d” covers a centered

ring of inner radius “r1” and outer radius “r2”.

function [area_perc] = GetAreaPercentHorizontal(x, r1, r2, d)

%GETAREAPERCENTHORIZONTAL Summary of this function goes here

% Calculates the percentage that an offset circle covers a ring between

% r1 and r2

x = abs(x);

if d == 0 || x - d/2 > r2 || x + d/2 < r1; area_perc = 0; return; end

if x-d/2 < -r2 && x+d/2 > r2; area_perc = 1; return; end

c_r1 = max([x-d/2 r1]);

c_r2 = min([x+d/2 r2]);

N = 100;

r = linspace(c_r1,c_r2,N);

r = (r(1:end-1)+r(2:end))/2; % Center the radius's

dr = (c_r2-c_r1)/(N-1);

area = 0;

if x > d/2

 for ri = r

 % Center is outside of circle, angle can never be larger than pi/2

 area = area + 2*dr*ri*acos((ri^2+x^2-(d/2)^2)/(2*ri*x));

583

 end

else

 for ri = r

 if d/2 >= ri + x

 % Full Circle

 area = area + 2*dr*ri*pi;

 else

 % Center is insie of circle

 area = area + 2*dr*ri*acos((ri^2+x^2-(d/2)^2)/(2*ri*x));

 end

 end

end

area_perc = area/(pi*(r2^2-r1^2));

end

Get Area Percent Mix

Calculates the percentage that a circle of vertical offset “x” and diameter “d” covers the side of

a thin annular shell of radius “r” and extents “y1” and “y2”.

function [PercArea] = GetAreaPercentMix(r, x, y1, y2, d)

%GETAREAPERCENTMIX Summary of this function goes here

% Calculates the percentage that an circle at x of diameter d covers a

% strip between y1 and y2

Total_Area = 2*pi*r*(y2-y1);

c_y1 = max([x-d/2 y1]);

c_y2 = min([x+d/2 y2]);

if c_y1 >= c_y2; PercArea = 0; return; end

N = max([2 floor(100*(c_y2-c_y1)/d)]);

y = linspace(c_y1,c_y2,N);

y = (y(1:end-1)+y(2:end))/2;

dy = (c_y2-c_y1)/(N-1);

area = 0;

for yi = y

 area = area + 2*dy*min([r sqrt((d/2)^2-(x-yi)^2)]);

end

PercArea = area/Total_Area;

end

Get Center of Overlap Region

From 2 overlaps find and return the center of overlapping segment.

function [c] = getCenterOfOverlapRegion(min1,min2,max1,max2)

if isscalar(min1)

 if isscalar(min2)

 temp1 = max(min1,min2);

 else

 temp1 = max([min1(ones(size(min2))); min2]);

 end

else

 if isscalar(min2)

 temp1 = max([min2(ones(size(min1))); min1]);

 else

 temp1 = max([min1; min2]);

 end

end

if isscalar(max1)

 if isscalar(max2)

 temp2 = min(max1,max2);

 else

584

 temp2 = min([max1(ones(size(max2))); max2]);

 end

else

 if isscalar(max2)

 temp2 = min([max2(ones(size(max1))); max1]);

 else

 temp2 = min([max1; max2]);

 end

end

c = (temp1 + temp2)/2;

end

Get Face Type

From two nodes of types “Type1” and “Type2”, get the face type that would be produced.

function NType = getFaceType(Type1,Type2)

 if Type1 ~= Type2

 NType = enumFType.Mix;

 else

 NType = Type1;

 end

end

Get First Derivative

Get first derivative with respect to angle, given a vector that is assumed to cover the entire set

of angles.

function [Var] = getFirstDer(Pos)

 Var(length(Pos)) = (Pos(2)-Pos(end-1));

 Var(2:end-1) = (Pos(3:end)-Pos(1:end-2));

 Var(1) = Var(end);

 denominator = (4*pi/(Frame.NTheta-1));

 Var = (Var/denominator)';

end

Get Proper Name

Opens up a generic userform that requires a name, and validates this name.

function [answer] = getProperName(ObjectName)

answer{1} = '/';

trial = 0;

while regexp(answer{1},'[/*:?"<>|]', 'once')

 if trial > 0

 msgbox(['You cannot have any of the following ' ...

 'characters [/*:?"<>|] in a file name']);

 end

 trial = trial + 1;

 answer = inputdlg(['Enter a descriptive name for the ' ObjectName],...

 'Name(filename,title,etc...):',[1 50]);

 if isempty(answer{1})

 answer = '';

 return;

 end

585

end

answer = answer{1};

end

Get Second Derivative

Get second derivative with respect to angle, given a vector that is assumed to cover the entire

set of angles.

function [Var] = getSecondDer(Pos)

 Var(length(Pos)) = (Pos(2)-2*Pos(end)+Pos(end-1));

 Var(2:end-1) = (Pos(3:end)-2*Pos(2:end-1)+Pos(1:end-2));

 Var(1) = Var(end);

 denominator = ((2*pi)/(Frame.NTheta-1))^2;

 Var = (Var/denominator)';

end

Get Triad

Get the triad associated with node n1.

function [Triad] = GetTriad(n1)

%GETTRIAD Summary of this function goes here

% Detailed explanation goes here

Triad = cell(0);

count = 1;

for f1 = n1.Faces

 if isGasFace(f1)

 if f1.Nodes(1) == n1; n2 = f1.Nodes(2); else; n2 = f1.Nodes(1); end

 for f2 = n2.Faces

 if isGasFace(f2) && f2 ~= f1

 if f2.Nodes(1) == n2; n3 = f2.Nodes(2); else; n3 = f2.Nodes(1); end

 if n1 == n3; continue; end

 for f3 = n3.Faces

 if isGasFace(f3) && f3 ~= f2 && f2 ~= f1

 if f3.Nodes(1) == n1 || f3.Nodes(2) == n1

 Triad{count} = [f1 f2 f3];

 count = count + 1;

 break;

 end

 end

 end

 end

 end

 end

end

end

function isit = isGasFace(fc)

 isit = fc.Type == enumFType.Gas || fc.Type == enumFType.MatrixTransition;

end

Holder (shell class)

Unused class that holds a value type object such that it can be referenced via just the pointer

without copying.

586

classdef Holder < handle

 %HOLDER Summary of this class goes here

 % Detailed explanation goes here

 properties

 vars cell;

 end

 methods

 function obj = Holder(ivars)

 obj.vars = ivars;

 end

 end

end

iif

Inline if condition.

function out = iif(cond,a,b)

%IIF implements a ternary operator

% pre-assign out

out = repmat(b,size(cond));

out(cond) = a;

end

Interp Coefficients

Provides the interpolation coefficients given a set of (at most) 4 nodes to calculate the value of

a property at a location. This can pair down the set to 1 or 2 nodes as well.

function [Interp, iNodes] = interpCoefficients(loc, iNodes)

%INTERPCOEFFICIENTS Summary of this function goes here

% Detailed explanation goes here

% Given 4 or less nodes

notdone = true;

while notdone

 switch length(iNodes)

 case 0

 fprintf('ERR: No nodes provided for interpolation into interpCoefficients.m');

 Interp = [];

 iNodes = Node.empty;

 notdone = false;

 case 3

 fprintf('ERR: Invalid number of nodes provided for interpolation into

interpCoefficients.m');

 Interp = [];

 iNodes = Node.empty;

 notdone = false;

 case 1

 Interp = 1;

 notdone = false;

 case 2

 % Ratio of distances

 NC1 = iNodes(1).minCenterCoords;

 NC2 = iNodes(2).minCenterCoords;

 if iNodes(1).xmin == 0; NC1.x = 0; end

 if iNodes(2).xmin == 0; NC2.x = 0; end

 vec = Pnt2D(NC2.x-NC1.x,NC2.y-NC1.y);

587

 mag = sqrt(vec.x^2+vec.y^2);

 vec.x = vec.x/mag;

 vec.y = vec.y/mag;

 pnt = Pnt2D(loc.x-NC1.x,loc.y-NC1.y);

 dot = pnt.x*vec.x + pnt.y*vec.y;

 d1 = dot; % Distance to NC1

 d2 = mag - dot; % Distance to NC2

 Interp(2) = d1/(d1+d2);

 Interp(1) = d2/(d1+d2);

 notdone = false;

 case 4

 % Bilinear Interpolation

 % Determine if it is between any two points and pick the pair with the

 % lowest collective distance

 pairs = zeros(3,6);

 P(4) = iNodes(4).minCenterCoords;

 P(1) = iNodes(1).minCenterCoords;

 P(2) = iNodes(2).minCenterCoords;

 P(3) = iNodes(3).minCenterCoords;

 if iNodes(1).xmin == 0; P(1).x = 0; end

 if iNodes(2).xmin == 0; P(2).x = 0; end

 if iNodes(3).xmin == 0; P(3).x = 0; end

 if iNodes(4).xmin == 0; P(4).x = 0; end

 isvertical = true;

 x = P(1).x;

 for i = 2:4

 if P(i).x ~= x

 isvertical = false;

 break;

 end

 end

 % If they are all vertical then pick one on either side

 if isvertical

 % They are all vertically aligned, pick 2

 % Find the closest that is greater than

 greaterthan = 0;

 d = inf;

 for i = 1:4

 if loc.y <= P(i).y

 if P(i).y - loc.y < d

 d = P(i).y - loc.y;

 greaterthan = i;

 end

 end

 end

 % Find the closest that is less than

 lessthan = 0;

 d = inf;

 for i = 1:4

 if loc.y >= P(i).y

 if loc.y - P(i).y < d

 d = loc.y - P(i).y;

 lessthan = i;

 end

 end

 end

 % Fill in the gaps with a next closest

 if lessthan ~= 0 && greaterthan ~= 0

 [Interp, iNodes] = interpCoefficients(loc, iNodes([lessthan; greaterthan]));

 else

 if lessthan == 0

 greaterthan2 = 0;

 d = inf;

 for i = 1:4

 if i ~= greaterthan

 if loc.y <= P(i).y

 if P(i).y - loc.y < d

588

 d = P(i).y - loc.y;

 greaterthan2 = i;

 end

 end

 end

 end

 [Interp, iNodes] = interpCoefficients(loc, iNodes([greaterthan2;

greaterthan]));

 else

 lessthan2 = 0;

 d = inf;

 for i = 1:4

 if i ~= lessthan

 if loc.y >= P(i).y

 if loc.y - P(i).y < d

 d = loc.y - P(i).y;

 lessthan2 = i;

 end

 end

 end

 end

 [Interp, iNodes] = interpCoefficients(loc, iNodes([lessthan2; lessthan]));

 end

 end

 else

 ishorizontal = true;

 y = P(1).y;

 for i = 2:4

 if P(i).y ~= y

 ishorizontal = false;

 break;

 end

 end

 if ishorizontal

 % They are all horizontally aligned, pick 2

 % They are all vertically aligned, pick 2

 % Find the closest that is greater than

 greaterthan = 0;

 d = inf;

 for i = 1:4

 if loc.x <= P(i).x

 if P(i).x - loc.x < d

 d = P(i).x - loc.x;

 greaterthan = i;

 end

 end

 end

 % Find the closest that is less than

 lessthan = 0;

 d = inf;

 for i = 1:4

 if loc.x >= P(i).x

 if loc.x - P(i).x < d

 d = loc.x - P(i).x;

 lessthan = i;

 end

 end

 end

 % Fill in the gaps with a next closest

 if lessthan ~= 0 && greaterthan ~= 0

 [Interp, iNodes] = interpCoefficients(loc, iNodes([lessthan; greaterthan]));

 else

 if lessthan == 0

 greaterthan2 = 0;

 d = inf;

 for i = 1:4

 if i ~= greaterthan

589

 if loc.x <= P(i).x

 if P(i).x - loc.x < d

 d = P(i).x - loc.x;

 greaterthan2 = i;

 end

 end

 end

 end

 [Interp, iNodes] = interpCoefficients(loc, iNodes([greaterthan2;

greaterthan]));

 else

 lessthan2 = 0;

 d = inf;

 for i = 1:4

 if i ~= lessthan

 if loc.x >= P(i).x

 if loc.x - P(i).x < d

 d = loc.x - P(i).x;

 lessthan2 = i;

 end

 end

 end

 end

 [Interp, iNodes] = interpCoefficients(loc, iNodes([lessthan2;

lessthan]));

 end

 end

 else

 % Linear Interpolate/extrapolate between all 4

 Interp = zeros(1,4);

 %

https://en.wikipedia.org/wiki/Bilinear_interpolation#:~:text=In%20mathematics%2C%20bilinear%20int

erpolation%20is,again%20in%20the%20other%20direction.

 x1 = min([P(1).x P(2).x P(3).x P(4).x]);

 x2 = max([P(1).x P(2).x P(3).x P(4).x]);

 y1 = min([P(1).y P(2).y P(3).y P(4).y]);

 y2 = max([P(1).y P(2).y P(3).y P(4).y]);

 Qs = 1:4;

 for i = 1:4

 if P(i).x == x1 && P(i).y == y1; Qs = take(1, i, Qs); break; end

 end

 for i = 1:4

 if P(i).x == x1 && P(i).y == y2; Qs = take(2, i, Qs); break; end

 end

 for i = 1:4

 if P(i).x == x2 && P(i).y == y1; Qs = take(3, i, Qs); break; end

 end

 factor = (1/((x2-x1)*(y2-y1)));

 Interp(Qs(1)) = factor * (x2 - loc.x) * (y2 - loc.y);

 Interp(Qs(2)) = factor * (x2 - loc.x) * (loc.y - y1);

 Interp(Qs(3)) = factor * (loc.x - x1) * (y2 - loc.y);

 Interp(Qs(4)) = factor * (loc.x - x1) * (loc.y - y1);

 end

 end

 notdone = false;

 end

end

end

function [input] = swap(index1, index2, input)

 temp = input(index1);

 input(index1) = input(index2);

 input(index2) = temp;

end

function [input] = take(value, index, input)

 for i = 1:length(input)

 if input(i) == value

 input = swap(i, index, input);

 return;

590

 end

 end

end

Is String Numeric

Test whether the provided string is numerical, applied for all user forms that require a numerical

input.

function [isit] = isStrNumeric(str)

%ISSTRNUMERIC Summary of this function goes here

% Detailed explanation goes here

isit = all(ismember(str, '0123456789+-.eEdD'));

end

Linear Conduction

Calculates the conductance in the axial direction, through a node.

function [U] = LinearConduction(Node,r1,r2,matl)

 %ANNULARCONDUCTION(Length,inner_Radius,outer_Radius,Material_Ref)

 L = Node.ymax(1) - Node.ymin(1);

 U = (2*pi*(r2*r2-r1*r1)*matl.ThermalConductivity)/L;

end

Power From PV

Calculate the power using the pressure and volume data for a single cycle.

function [Work] = PowerFromPV(P,V)

Pavg = (P(1:end-1)+P(2:end));

dVol = (V(2:end)-V(1:end-1));

Work = 0.5*sum(Pavg.*dVol);

end

Process Triad

Take a triad and based on a threshold close the prescribed face.

function [] = processTriad(Triad, derefinement_factor, index_to_close)

target = Triad(index_to_close);

others = Triad(Triad ~= target);

modification = sqrt(derefinement_factor);

threshold = 0.1/modification;

count = Frame.NTheta-1;

canCloseTarget = canClose(target);

if ~canCloseTarget; return; end

for i = 1:Frame.NTheta-1

 At = getArea(target,i);

 if At == 0; count = count - 1; continue; end

 A1 = getArea(others(1),i);

 if A1 == 0; count = count - 1; continue; end

 A2 = getArea(others(2),i);

591

 if A2 == 0; count = count - 1; continue; end

 r = At/min(A1,A2);

 if r < threshold

 setArea(target,i,0);

 else

 count = count - 1;

 end

end

fprintf(['Edited ' num2str(count) ' Increments\n']);

end

Propegate Active Faces

Recursive function designed to find all the independent faces of a region.

function [k,Array,Visited] = PropegateActiveFaces(Nd,Visited,k,Array)

Visited(Nd.index) = true;

if k == length(Array)

 return;

end

for Fc = Nd.Faces

 if Fc.Nodes(1).index <= length(Visited) && ...

 Fc.Nodes(2).index <= length(Visited) && ...

 isfield(Fc.data,'dx') && all(Fc.data.Area > 0)

 if ~Visited(Fc.Nodes(1).index)

 k = k + 1;

 Array(k) = Fc.index;

 [k,Array,Visited] = PropegateActiveFaces(Fc.Nodes(1),Visited,k,Array);

 elseif ~Visited(Fc.Nodes(2).index)

 k = k + 1;

 Array(k) = Fc.index;

 [k,Array,Visited] = PropegateActiveFaces(Fc.Nodes(2),Visited,k,Array);

 end

 end

end

end

Propegate Region

Recursive function designed to find all the nodes in a region.

function [region] = PropegateRegion(Nd,region,n)

 if region(Nd.index) == 0

 region(Nd.index) = n;

 for Fc = Nd.Faces

 % Test if it is a gas face that does not close off

 if isfield(Fc.data,'dx') && all(Fc.data.Area > 0)

 if Fc.Nodes(1) == Nd

 Nd2 = Fc.Nodes(2);

 else

 Nd2 = Fc.Nodes(1);

 end

 if Nd2.index <= length(region)

 region = PropegateRegion(Nd2,region,n);

 end

 end

 end

 end

end

592

Rotation Matrix

Calculates the rotation matrix in 2D.

function [R] = RotMatrix(THETA)

%ROTMATRIX Defines the rotation matrix for a vector by the angle THETA

R = [cos(THETA) -sin(THETA); sin(THETA) cos(THETA)];

end

Shift Vector

Shift a vector, which is assumed to cover all the angular increments, by a phase. The vector can

be shifted by any fractional amount by linear interpolation of the resulting vector.

function [vector] = shiftVector(vector, Phase)

N = length(vector);

temp = N*(Phase/(2*pi));

n1 = floor(temp);

frac = temp-n1;

n2 = ceil(temp);

v1 = circshift(vector,-n1);

v2 = circshift(vector,-n2);

vector = (1-frac)*v1 + frac*v2;

end

Progress Bar

Created by Steve Hoelzer. Included here for completeness. Simple popup interface that allows

for simple updates on the progress.

function progressbar(varargin)

% Description:

% progressbar() provides an indication of the progress of some task using

% graphics and text. Calling progressbar repeatedly will update the figure and

% automatically estimate the amount of time remaining.

% This implementation of progressbar is intended to be extremely simple to use

% while providing a high quality user experience.

%

% Features:

% - Can add progressbar to existing m-files with a single line of code.

% - Supports multiple bars in one figure to show progress of nested loops.

% - Optional labels on bars.

% - Figure closes automatically when task is complete.

% - Only one figure can exist so old figures don't clutter the desktop.

% - Remaining time estimate is accurate even if the figure gets closed.

% - Minimal execution time. Won't slow down code.

% - Randomized color. When a programmer gets bored...

%

% Example Function Calls For Single Bar Usage:

% progressbar % Initialize/reset

% progressbar(0) % Initialize/reset

% progressbar('Label') % Initialize/reset and label the bar

% progressbar(0.5) % Update

% progressbar(1) % Close

%

% Example Function Calls For Multi Bar Usage:

% progressbar(0, 0) % Initialize/reset two bars

% progressbar('A', '') % Initialize/reset two bars with one label

% progressbar('', 'B') % Initialize/reset two bars with one label

593

% progressbar('A', 'B') % Initialize/reset two bars with two labels

% progressbar(0.3) % Update 1st bar

% progressbar(0.3, []) % Update 1st bar

% progressbar([], 0.3) % Update 2nd bar

% progressbar(0.7, 0.9) % Update both bars

% progressbar(1) % Close

% progressbar(1, []) % Close

% progressbar(1, 0.4) % Close

%

% Notes:

% For best results, call progressbar with all zero (or all string) inputs

% before any processing. This sets the proper starting time reference to

% calculate time remaining.

% Bar color is choosen randomly when the figure is created or reset. Clicking

% the bar will cause a random color change.

%

% Demos:

% % Single bar

% m = 500;

% progressbar % Init single bar

% for i = 1:m

% pause(0.01) % Do something important

% progressbar(i/m) % Update progress bar

% end

%

% % Simple multi bar (update one bar at a time)

% m = 4;

% n = 3;

% p = 100;

% progressbar(0,0,0) % Init 3 bars

% for i = 1:m

% progressbar([],0) % Reset 2nd bar

% for j = 1:n

% progressbar([],[],0) % Reset 3rd bar

% for k = 1:p

% pause(0.01) % Do something important

% progressbar([],[],k/p) % Update 3rd bar

% end

% progressbar([],j/n) % Update 2nd bar

% end

% progressbar(i/m) % Update 1st bar

% end

%

% % Fancy multi bar (use labels and update all bars at once)

% m = 4;

% n = 3;

% p = 100;

% progressbar('Monte Carlo Trials','Simulation','Component') % Init 3 bars

% for i = 1:m

% for j = 1:n

% for k = 1:p

% pause(0.01) % Do something important

% % Update all bars

% frac3 = k/p;

% frac2 = ((j-1) + frac3) / n;

% frac1 = ((i-1) + frac2) / m;

% progressbar(frac1, frac2, frac3)

% end

% end

% end

%

% Author:

% Steve Hoelzer

%

% Revisions:

% 2002-Feb-27 Created function

% 2002-Mar-19 Updated title text order

% 2002-Apr-11 Use floor instead of round for percentdone

% 2002-Jun-06 Updated for speed using patch (Thanks to waitbar.m)

% 2002-Jun-19 Choose random patch color when a new figure is created

% 2002-Jun-24 Click on bar or axes to choose new random color

594

% 2002-Jun-27 Calc time left, reset progress bar when fractiondone == 0

% 2002-Jun-28 Remove extraText var, add position var

% 2002-Jul-18 fractiondone input is optional

% 2002-Jul-19 Allow position to specify screen coordinates

% 2002-Jul-22 Clear vars used in color change callback routine

% 2002-Jul-29 Position input is always specified in pixels

% 2002-Sep-09 Change order of title bar text

% 2003-Jun-13 Change 'min' to 'm' because of built in function 'min'

% 2003-Sep-08 Use callback for changing color instead of string

% 2003-Sep-10 Use persistent vars for speed, modify titlebarstr

% 2003-Sep-25 Correct titlebarstr for 0% case

% 2003-Nov-25 Clear all persistent vars when percentdone = 100

% 2004-Jan-22 Cleaner reset process, don't create figure if percentdone = 100

% 2004-Jan-27 Handle incorrect position input

% 2004-Feb-16 Minimum time interval between updates

% 2004-Apr-01 Cleaner process of enforcing minimum time interval

% 2004-Oct-08 Seperate function for timeleftstr, expand to include days

% 2004-Oct-20 Efficient if-else structure for sec2timestr

% 2006-Sep-11 Width is a multiple of height (don't stretch on widescreens)

% 2010-Sep-21 Major overhaul to support multiple bars and add labels

%

persistent progfig progdata lastupdate

% Get inputs

if nargin > 0

 input = varargin;

 ninput = nargin;

else

 % If no inputs, init with a single bar

 input = {0};

 ninput = 1;

end

% If task completed, close figure and clear vars, then exit

if input{1} == 1

 if ishandle(progfig)

 delete(progfig) % Close progress bar

 end

 clear progfig progdata lastupdate % Clear persistent vars

 drawnow

 return

end

% Init reset flag

resetflag = false;

% Set reset flag if first input is a string

if ischar(input{1})

 resetflag = true;

end

% Set reset flag if all inputs are zero

if input{1} == 0

 % If the quick check above passes, need to check all inputs

 if all([input{:}] == 0) && (length([input{:}]) == ninput)

 resetflag = true;

 end

end

% Set reset flag if more inputs than bars

if ninput > length(progdata)

 resetflag = true;

end

% If reset needed, close figure and forget old data

if resetflag

 if ishandle(progfig)

 delete(progfig) % Close progress bar

 end

 progfig = [];

 progdata = []; % Forget obsolete data

end

% Create new progress bar if needed

if ishandle(progfig)

else % This strange if-else works when progfig is empty (~ishandle() does not)

 % Define figure size and axes padding for the single bar case

 height = 0.03;

595

 width = height * 8;

 hpad = 0.02;

 vpad = 0.25;

 % Figure out how many bars to draw

 nbars = max(ninput, length(progdata));

 % Adjust figure size and axes padding for number of bars

 heightfactor = (1 - vpad) * nbars + vpad;

 height = height * heightfactor;

 vpad = vpad / heightfactor;

 % Initialize progress bar figure

 left = (1 - width) / 2;

 bottom = (1 - height) / 2;

 progfig = figure(...

 'Units', 'normalized',...

 'Position', [left bottom width height],...

 'NumberTitle', 'off',...

 'Resize', 'off',...

 'MenuBar', 'none');

 % Initialize axes, patch, and text for each bar

 left = hpad;

 width = 1 - 2*hpad;

 vpadtotal = vpad * (nbars + 1);

 height = (1 - vpadtotal) / nbars;

 for ndx = 1:nbars

 % Create axes, patch, and text

 bottom = vpad + (vpad + height) * (nbars - ndx);

 progdata(ndx).progaxes = axes(...

 'Position', [left bottom width height], ...

 'XLim', [0 1], ...

 'YLim', [0 1], ...

 'Box', 'on', ...

 'ytick', [], ...

 'xtick', []);

 progdata(ndx).progpatch = patch(...

 'XData', [0 0 0 0], ...

 'YData', [0 0 1 1]);

 progdata(ndx).progtext = text(0.99, 0.5, '', ...

 'HorizontalAlignment', 'Right', ...

 'FontUnits', 'Normalized', ...

 'FontSize', 0.7);

 progdata(ndx).proglabel = text(0.01, 0.5, '', ...

 'HorizontalAlignment', 'Left', ...

 'FontUnits', 'Normalized', ...

 'FontSize', 0.7);

 if ischar(input{ndx})

 set(progdata(ndx).proglabel, 'String', input{ndx})

 input{ndx} = 0;

 end

 % Set callbacks to change color on mouse click

 set(progdata(ndx).progaxes, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})

 set(progdata(ndx).progpatch, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})

 set(progdata(ndx).progtext, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})

 set(progdata(ndx).proglabel, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})

 % Pick a random color for this patch

 changecolor([], [], progdata(ndx).progpatch)

 % Set starting time reference

 if ~isfield(progdata(ndx), 'starttime') || isempty(progdata(ndx).starttime)

 progdata(ndx).starttime = clock;

 end

 end

 % Set time of last update to ensure a redraw

 lastupdate = clock - 1;

596

end

% Process inputs and update state of progdata

for ndx = 1:ninput

 if ~isempty(input{ndx})

 progdata(ndx).fractiondone = input{ndx};

 progdata(ndx).clock = clock;

 end

end

% Enforce a minimum time interval between graphics updates

myclock = clock;

if abs(myclock(6) - lastupdate(6)) < 0.01 % Could use etime() but this is faster

 return

end

% Update progress patch

for ndx = 1:length(progdata)

 set(progdata(ndx).progpatch, 'XData', ...

 [0, progdata(ndx).fractiondone, progdata(ndx).fractiondone, 0])

end

% Update progress text if there is more than one bar

if length(progdata) > 1

 for ndx = 1:length(progdata)

 set(progdata(ndx).progtext, 'String', ...

 sprintf('%1d%%', floor(100*progdata(ndx).fractiondone)))

 end

end

% Update progress figure title bar

if progdata(1).fractiondone > 0

 runtime = etime(progdata(1).clock, progdata(1).starttime);

 timeleft = runtime / progdata(1).fractiondone - runtime;

 timeleftstr = sec2timestr(timeleft);

 titlebarstr = sprintf('%2d%% %s remaining', ...

 floor(100*progdata(1).fractiondone), timeleftstr);

else

 titlebarstr = ' 0%';

end

set(progfig, 'Name', titlebarstr)

% Force redraw to show changes

drawnow

% Record time of this update

lastupdate = clock;

% --

function changecolor(h, e, progpatch) %#ok<INUSL>

% Change the color of the progress bar patch

% Prevent color from being too dark or too light

colormin = 1.5;

colormax = 2.8;

thiscolor = rand(1, 3);

while (sum(thiscolor) < colormin) || (sum(thiscolor) > colormax)

 thiscolor = rand(1, 3);

end

set(progpatch, 'FaceColor', thiscolor)

% --

function timestr = sec2timestr(sec)

% Convert a time measurement from seconds into a human readable string.

% Convert seconds to other units

w = floor(sec/604800); % Weeks

sec = sec - w*604800;

d = floor(sec/86400); % Days

sec = sec - d*86400;

h = floor(sec/3600); % Hours

sec = sec - h*3600;

m = floor(sec/60); % Minutes

sec = sec - m*60;

s = floor(sec); % Seconds

% Create time string

if w > 0

 if w > 9

 timestr = sprintf('%d week', w);

 else

 timestr = sprintf('%d week, %d day', w, d);

 end

597

elseif d > 0

 if d > 9

 timestr = sprintf('%d day', d);

 else

 timestr = sprintf('%d day, %d hr', d, h);

 end

elseif h > 0

 if h > 9

 timestr = sprintf('%d hr', h);

 else

 timestr = sprintf('%d hr, %d min', h, m);

 end

elseif m > 0

 if m > 9

 timestr = sprintf('%d min', m);

 else

 timestr = sprintf('%d min, %d sec', m, s);

 end

else

 timestr = sprintf('%d sec', s);

end

Symbolic Math

Takes a string of mathematical algebra and returns the calculated answer, used in enhancing

input boxes with math functionality.

function [NumberOutput] = SymbolicMath(StringInput)
% Initialize
StringInput(StringInput==' ') = [];
Intermediates = zeros(3,1);
collapsed = false(size(StringInput));
count = 1;

% Brackets & Basic Numbers
level = 0; basic_number_start = 0;
for i = 1:length(StringInput)
 if strcmp(StringInput(i),'(')
 if level == 0
 start = i;
 end
 level = level + 1;
 elseif strcmp(StringInput(i),')')
 level = level - 1;
 if level == 0
 Intermediates(1,count) = start;
 Intermediates(2,count) = i;
 Intermediates(3,count) = SymbolicMath(StringInput((start+1):(i-1)));
 collapsed(start:i) = true;
 count = count + 1;
 end
 end
 if level == 0 && ismember(StringInput(i), '0123456789.eE')
 if basic_number_start == 0
 basic_number_start = i;
 end
 if i == length(StringInput)
 Intermediates(1,count) = basic_number_start;
 Intermediates(2,count) = i;
 Intermediates(3,count) = ...
 str2double(StringInput(basic_number_start:i));
 collapsed(basic_number_start:i) = true;
 basic_number_start = 0;
 count = count + 1;
 end

598

 else
 if basic_number_start ~= 0
 Intermediates(1,count) = basic_number_start;
 Intermediates(2,count) = i - 1;
 Intermediates(3,count) = ...
 str2double(StringInput(basic_number_start:(i-1)));
 collapsed(basic_number_start:(i-1)) = true;
 basic_number_start = 0;
 count = count + 1;
 end
 end
end
if level ~= 0
 NumberOutput = NaN;
 return;
end

% Exponents
if strcmp(StringInput(1),'^') || strcmp(StringInput(end),'^')
 NumberOutput = NaN;
 return;
end
for i = 2:(length(StringInput)-1)
 if ~collapsed(i)
 if strcmp(StringInput(i),'^')
 % Find the intermediate before and after and merge them
 before = 0;
 after = 0;
 for ind = 1:(count-1)
 if Intermediates(2,ind) == i-1
 before = ind;
 elseif Intermediates(1,ind) == i+1
 after = ind;
 end
 end
 if before > 0 && after > 0
 Intermediates(3,before) = Intermediates(3,before) ^ ...
 Intermediates(3,after);
 Intermediates(2,before) = Intermediates(2,after);
 Intermediates(1,after) = -1;
 Intermediates(2,after) = -1;
 else
 NumberOutput = NaN;
 return;
 end
 collapsed(i) = true;
 end
 end
end

% Division
if strcmp(StringInput(1),'/') || strcmp(StringInput(end),'/')
 NumberOutput = NaN;
 return;
end
for i = 2:(length(StringInput)-1)
 if ~collapsed(i)
 if strcmp(StringInput(i),'/')
 % Find the intermediate before and after and merge them
 before = 0;
 after = 0;
 for ind = 1:(count-1)
 if Intermediates(2,ind) == i-1
 before = ind;
 elseif Intermediates(1,ind) == i+1
 after = ind;
 end
 end
 if before > 0 && after > 0
 Intermediates(3,before) = Intermediates(3,before) / ...

599

 Intermediates(3,after);
 Intermediates(2,before) = Intermediates(2,after);
 Intermediates(1,after) = -1;
 Intermediates(2,after) = -1;
 else
 NumberOutput = NaN;
 return;
 end
 collapsed(i) = true;
 end
 end
end

% Multiplication
if strcmp(StringInput(1),'*') || strcmp(StringInput(end),'*')
 NumberOutput = NaN;
 return;
end
for i = 2:(length(StringInput)-1)
 if ~collapsed(i)
 if strcmp(StringInput(i),'*')
 % Find the intermediate before and after and merge them
 before = 0;
 after = 0;
 for ind = 1:(count-1)
 if Intermediates(2,ind) == i-1
 before = ind;
 elseif Intermediates(1,ind) == i+1
 after = ind;
 end
 end
 if before > 0 && after > 0
 Intermediates(3,before) = Intermediates(3,before) * ...
 Intermediates(3,after);
 Intermediates(2,before) = Intermediates(2,after);
 Intermediates(1,after) = -1;
 Intermediates(2,after) = -1;
 else
 NumberOutput = NaN;
 return;
 end
 collapsed(i) = true;
 end
 end
end

% Addition
if strcmp(StringInput(end),'+')
 NumberOutput = NaN;
 return;
end
for i = 1:(length(StringInput)-1)
 if ~collapsed(i)
 if strcmp(StringInput(i),'+')
 % Find the intermediate before and after and merge them
 before = 0;
 after = 0;
 for ind = 1:(count-1)
 if Intermediates(2,ind) == i-1
 before = ind;
 elseif Intermediates(1,ind) == i+1
 after = ind;
 end
 end
 if after > 0
 if before > 0
 Intermediates(3,before) = Intermediates(3,before) + ...
 Intermediates(3,after);
 Intermediates(2,before) = Intermediates(2,after);
 Intermediates(1,after) = -1;

600

 Intermediates(2,after) = -1;
 else
 % Intermediates(3,after) = Intermediates(3,after);
 Intermediates(1,after) = i;
 end
 else
 NumberOutput = NaN;
 return;
 end
 collapsed(i) = true;
 end
 end
end

% Subtraction
if strcmp(StringInput(end),'-')
 NumberOutput = NaN;
 return;
end
for i = 1:(length(StringInput)-1)
 if ~collapsed(i)
 if strcmp(StringInput(i),'-')
 % Find the intermediate before and after and merge them
 before = 0;
 after = 0;
 for ind = 1:(count-1)
 if Intermediates(2,ind) == i-1
 before = ind;
 elseif Intermediates(1,ind) == i+1
 after = ind;
 end
 end
 if after > 0
 if before > 0
 Intermediates(3,before) = Intermediates(3,before) - Intermediates(3,after);
 Intermediates(2,before) = Intermediates(2,after);
 Intermediates(1,after) = -1;
 Intermediates(2,after) = -1;
 else
 Intermediates(3,after) = - Intermediates(3,after);
 Intermediates(1,after) = i;
 end
 else
 NumberOutput = NaN;
 return;
 end
 collapsed(i) = true;
 end
 end
end

% Assess conclusion
if ~all(collapsed)
 NumberOutput = NaN;
 return;
end
for i = 1:count-1
 if Intermediates(1,i) ~= -1
 NumberOutput = Intermediates(3,i);
 return;
 end
end
end

Is Function

601

Determines if a particular object of unknown type is a function. Usually this is for

differentiating between an error and a correctly assigned function.

function [TF, ID] = isfunction(FUN)

% ISFUNCTION - true for valid matlab functions

%

% TF = ISFUNCTION(FUN) returns 1 if FUN is a valid matlab function, and 0

% otherwise. Matlab functions can be strings or function handles.

%

% [TF, ID] = ISFUNCTION(FUN) also returns an identier ID. ID can take the

% following values:

% 1 : FUN is a function string

% 2 : FUN is a function handle

% 0 : FUN is not a function, but no further specification

% -1 : FUN is not a function but a script

% -2 : FUN is not a valid function m-file (e.g., a matfile)

% -3 : FUN does not exist (as a function)

% -4 : FUN is not a function but something else (a variable)

%

% FUN can be a cell array, TF and ID will then be arrays, the same size

% as FUN

%

% Examples:

% tf = isfunction('lookfor')

% % tf = 1

% [tf, id] = isfunction({@isfunction, 'sin','qrqtwrxxy',1:4, @clown.jpg})

% % -> tf = [1 1 0 0 0]

% % id = [2 1 -2 -4 -3]

%

% See also FUNCTION, SCRIPT, EXIST,

% ISA, WHICH, NARGIN, FUNCTION_HANDLE

% version 3.2 (apr 2018)

% (c) Jos van der Geest

% Matlab File Exchange Author ID: 10584

% email: samelinoa@gmail.com

%

% History:

% 1.0 (dec 2011) created for strings only

% 2.0 (apr 2013) accepts cell arrays

% 3.0 (feb 2014) implemented identier based on catched error

% 3.1 (feb 2014) added lots of help and documentation, inspired to post on

% FEX by a recent Question/Answer thread

% 3.2 (apr 2018) spell check and contact info

if ~iscell(FUN)

 % we use cellfun, so convert to cells

 FUN = {FUN} ;

end

ID = cellfun(@local_isfunction,FUN) ; % get the identifier for each "function"

TF = ID > 0 ; % valid matlab functions have a positive identifier

% =

function ID = local_isfunction(FUNNAME)

try

 nargin(FUNNAME) ; % nargin errors when FUNNAME is not a function

 ID = 1 + isa(FUNNAME, 'function_handle') ; % 1 for m-file, 2 for handle

catch ME

 % catch the error of nargin

 switch (ME.identifier)

 case 'MATLAB:nargin:isScript'

 ID = -1 ; % script

 case 'MATLAB:narginout:notValidMfile'

 ID = -2 ; % probably another type of file, or it does not exist

 case 'MATLAB:narginout:functionDoesnotExist'

 ID = -3 ; % probably a handle, but not to a function

 case 'MATLAB:narginout:BadInput'

602

 ID = -4 ; % probably a variable or an array

 otherwise

 ID = 0 ; % unknown cause for error

 end

end

603

G.2. Other Functions

Wall Smart Discretize

Takes a body, a mesher (set of discretize options) and an orientation over which the

discretization is taking place and returns the set of boundary positions which will divide the body.

This function looks at whether or not each surface of the body is exposed to a gas body, in which

case it will generate the surface nodes. The rest of the body is either the maximum thickness or

growing from the surface nodes.

function [x] = Wall_Smart_Discretize(Body,Mesher,Orient)

 %UNTITLED2 Summary of this function goes here

 % Detailed explanation goes here

 material = Body.matl;

 if Body.matl.Phase == enumMaterial.Gas

 % Gas Body

 N_entrance = Mesher.Gas_Entrance_Exit_N;

 maximum_growth = Mesher.maximum_growth;

 maximum_thickness = Mesher.Gas_Maximum_Size;

 minimum_thickness = Mesher.Gas_Minimum_Size;

 % Derived Values

 shifti = [];

 switch Orient

 case enumOrient.Vertical

 [~,~,inside_dim, outside_dim] = Body.limits(Orient);

 case enumOrient.Horizontal

 [inside_dim,outside_dim,~,~] = Body.limits(Orient);

 if ~isscalar(inside_dim)

 shifti = inside_dim - inside_dim(1);

 inside_dim = inside_dim(1);

 end

 if ~isscalar(outside_dim)

 %shifto = outside_dim - outside_dim(1);

 outside_dim = outside_dim(1);

 end

 end

 Distance = outside_dim - inside_dim;

 Transition_Distance = Distance * 0.15;

 x = inside_dim;

 thickness = Transition_Distance / double(N_entrance);

 if thickness > maximum_thickness

 N = ceil(Distance/maximum_thickness);

 x = linspace(inside_dim,outside_dim,N+1);

 else

 while thickness < minimum_thickness && N_entrance > 1

 N_entrance = N_entrance - 1;

 thickness = Transition_Distance / double(N_entrance);

 end

 if N_entrance == 1

 thickness = min(minimum_thickness, Distance/2);

 if Distance/2 - thickness < thickness

 x = [inside_dim (inside_dim + outside_dim)/2 outside_dim];

 else

 x = [inside_dim inside_dim + thickness];

 marker = 2;

 while (x(end) < Distance/2 + inside_dim)

 thickness = min(maximum_thickness, maximum_growth * thickness);

 x(end+1) = x(end) + thickness;

 end

 % Adjust it at the end

 Current_Distance = x(end) - x(marker);

 Expected_Distance = Distance/2 + inside_dim - x(marker);

604

 x((marker+1):end) = (x((marker+1):end) - x(marker))*...

 (Expected_Distance/Current_Distance) + x(marker);

 % Flip it

 x = [x outside_dim-(flip(x(1:end-1))-inside_dim)];

 end

 else

 for i = 1:N_entrance

 x(end+1) = x(end) + thickness;

 end

 marker = length(x);

 while (x(end) < Distance/2 + inside_dim)

 thickness = min(maximum_thickness, maximum_growth * thickness);

 x(end+1) = x(end) + thickness;

 end

 % Adjust it at the end

 Current_Distance = x(end) - x(marker);

 Expected_Distance = Distance/2 + inside_dim - x(marker);

 x((marker+1):end) = (x((marker+1):end) - x(marker))*...

 (Expected_Distance/Current_Distance) + x(marker);

 % Flip it

 x = [x outside_dim-(flip(x(1:end-1))-inside_dim)];

 end

 end

 else

 % Solid Body

 min_ang_frequency = Body.Group.Model.engineSpeed;

 oscillation_depth_N = Mesher.oscillation_depth_N;

 maximum_thickness = Mesher.maximum_thickness;

 maximum_growth = Mesher.maximum_growth;

 shifti = [];

 switch Orient

 case enumOrient.Vertical

 [~,~,inside_dim, outside_dim] = Body.limits(Orient);

 inside_exp = Mesher.isInsideRadiiExposed(Body);

 outside_exp = Mesher.isOutsideRadiiExposed(Body);

 case enumOrient.Horizontal

 [inside_dim,outside_dim,~,~] = Body.limits(Orient);

 inside_exp = Mesher.isBottomExposed(Body);

 outside_exp = Mesher.isTopExposed(Body);

 if ~isscalar(inside_dim)

 shifti = inside_dim - inside_dim(1);

 inside_dim = inside_dim(1);

 end

 if ~isscalar(outside_dim)

 %shifto = outside_dim - outside_dim(1);

 outside_dim = outside_dim(1);

 end

 end

 if Body.matl.dT_du == -1

 alpha = 1000000;

 else

 % output requirements, x must have the min and maximum point

 alpha = material.thermaldiffusivity;

 end

 % Using the 5% amplitude condition

 xdepth = 3*sqrt(2*alpha/min_ang_frequency);

 xtotal = outside_dim - inside_dim;

 if inside_exp

 if outside_exp

 if xtotal < 2*xdepth

 % Discretize the entire depth to the near wall standards

 N = ceil(xtotal/(xdepth/double(oscillation_depth_N)));

 x = linspace(inside_dim,outside_dim,N+1);

 else

 % Grow from both ends (calc with half then mirror)

 N_max = ceil(0.5*xtotal/(xdepth/double(oscillation_depth_N)));

 x = [linspace(inside_dim,inside_dim + xdepth,oscillation_depth_N+1) ...

 zeros(1,N_max-oscillation_depth_N)];

 i = oscillation_depth_N+1;

 while x(i) < inside_dim + xtotal/2

605

 i = i + 1;

 x(i) = x(i-1) + min([maximum_growth*(x(i-1)-x(i-2)) ...

 maximum_thickness]);

 end

 x(i) = inside_dim + xtotal/2;

 x(i+1:2*i-1) = outside_dim - (flip(x(1:i-1))-inside_dim);

 if length(x) > 2*i - 1

 x(2*i:end) = [];

 end

 end

 else

 if xtotal < xdepth

 % Discretize the entire depth to the near wall standards

 N = ceil(xtotal/(xdepth/double(oscillation_depth_N)));

 x = linspace(inside_dim,outside_dim,N+1);

 else

 % Grow from inside end

 N_max = ceil(xtotal/(xdepth/double(oscillation_depth_N)));

 x = [linspace(inside_dim,inside_dim + xdepth,oscillation_depth_N+1) ...

 zeros(1,N_max-oscillation_depth_N)];

 i = oscillation_depth_N+1;

 while x(i) < outside_dim

 i = i + 1;

 x(i) = x(i-1) + min([maximum_growth*(x(i-1)-x(i-2)) ...

 maximum_thickness]);

 end

 x(i) = outside_dim;

 if length(x) > i

 x(i+1:end) = [];

 end

 end

 end

 else

 if outside_exp

 if xtotal < xdepth

 % Discretize the entire depth to the near wall standards

 N = ceil(xtotal/(xdepth/double(oscillation_depth_N)));

 x = linspace(inside_dim,outside_dim,N+1);

 else

 % Grow from outside end, use mathematics from the other

 % direction, then flip afterwards

 N_max = ceil(xtotal/(xdepth/double(oscillation_depth_N)));

 x = [linspace(inside_dim,inside_dim + xdepth,oscillation_depth_N+1) ...

 zeros(1,N_max-oscillation_depth_N)];

 i = oscillation_depth_N+1;

 while x(i) < outside_dim

 i = i + 1;

 x(i) = x(i-1) + min([maximum_growth*(x(i-1)-x(i-2)) ...

 maximum_thickness]);

 end

 x(i) = outside_dim;

 if length(x) > i

 x(i+1:end) = [];

 end

 % Flip

 x = inside_dim + (outside_dim - x);

 end

 else

 % Discretize the entire depth to the minimum stardards

 N = ceil(xtotal/maximum_thickness);

 x = linspace(inside_dim,outside_dim,N+1);

 end

 end

 end

 if isempty(shifti)

 x = transpose(x);

 else

 temp = transpose(x);

 x = zeros(length(x),length(shifti));

 for r = 1:length(temp)

 x(r,:) = shifti(:);

606

 end

 for c = 1:length(shifti)

 x(:,c) = x(:,c) + temp;

 end

 end

end

607

Tube Bank Friction

Determining the constant coefficient for friction across a staggered tube bank.

function [Cf] = TubeBankFriction(Xt,Xl,do)

%TUBEBANKFRICTION 300 -> Re -> 15,000

% f = Cf*Re^-0.18

Xt_Xl = Xt/Xl;

Xl_do = Xl/do;

a = -0.108*Xt_Xl^2+0.3137*Xt_Xl-0.2335;

b = 0.7298*Xt_Xl^2-1.296*Xt_Xl+1.0343;

c = -0.2129*Xt_Xl^2+0.5613*Xt_Xl-0.7471;

Cf = a*Xl_do^2+b*Xl_do+c;

end

Aligned Tube Bank Conduction

Unused, defines the constant and exponent of a function for calculating convection for flow

over a set of bare, aligned tubes.

function [Const, Exponent] = AlignedTubeBankConduction(Xt,Xl,do)

%ALIGNEDTUBEBANKCONDUCTION Const * Re ^ Exponent = Nst*Npr^(2/3)

Xt_Xl = Xt/Xl;

Xt_do = Xt/do;

Xl_do = Xl/do;

Const = (0.118*Xt_Xl+0.252);

Exponent = (-0.0125*Xt_Xl-0.433*Xl+0.0765*Xt-0.0892);

end

Tube Bank Convection Constant

Defines the constant and exponent of a function for calculating convection for flow over a set

of bare, staggered tubes.

function [Ch] = TubeBankConvectiveConstant(Xt,Xl,do,Nr)

%TUBEBANKNUSSELT Nst*NPr^0.667 = [Ch]*NRe^-0.4

Xt_Xl = Xt/Xl;

Xt_do = Xt/do;

a = -0.1548*Xt_Xl+0.0591;

b = 0.5437*Xt_Xl-0.0373;

c = -1.9244*Xt_Xl^3+0.68562*Xt_Xl^2-7.9841*Xt_Xl+2.772;

Ch = a*Xt_do^2 + b*Xt_do + c;

if nargin > 3

 Ch = Ch*(1-1/(Nr^1.112+0.918353));

end

end

G.3. Relationships

Enum Relation

classdef enumRelation
 enumeration
 Constant,...
 StackedShift,... % Unused
 Fixed,... % Unuseable

608

 AreaConstant,...
 Scaled,...
 LowestScaled,...
 Stroke,...
 Piston,...
 Width
 end
end

Relation

classdef Relation < handle

 % Relation - Class

 % ... -> name - String

 % ... -> mode - enumRelation

 % ... -> con1 - Connection

 % ... -> con2 - Connection

 % ... -> frame - Frame, associated with a mechanism with stroke

 properties

 name;

 mode enumRelation;

 con1 Connection;

 con2 Connection;

 frame Frame;

 manager RelationManager;

 end

 methods

 function this = Relation(manager,name,mode,con1,con2,frame)

 this.manager = manager;

 this.name = name;

 this.mode = mode;

 this.con1 = con1;

 this.con2 = con2;

 if nargin > 5

 this.frame = frame;

 end

 end

 function deReference(this)

 for i = length(this.manager.Relations):-1:1

 if this.manager.Relations(i).con1 == this.con1 && ...

 this.manager.Relations(i).con2 == this.con2

 this.manager.Relations(i) = [];

 end

 end

 this.manager.isChanged = true;

 end

 function Item = get(this,PropertyName)

 switch PropertyName

 case 'Name'

 Item = this.name;

 case 'Connection1'

 Item = this.con1;

 case 'Connection2'

 Item = this.con2;

 case 'Frame'

 Item = this.frame;

 otherwise

 fprintf(['XXX Relation GET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'Name'

 this.name = Item;

 otherwise

609

 fprintf(['XXX Relation SET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 end

end

RelationManager

Manages Geometric Relationships

classdef RelationManager < handle

 properties

 Group Group; % Group that this relation grid refers to

 Orient enumOrient;

 Relations Relation;

 Grid logical = [];

 Grid_modes cell;

 isChanged logical = false;

 end

 properties (Dependent)

 name;

 end

 methods

 %% Relation - Class

 % ... -> name - String

 % ... -> mode - enumRelation

 % ... -> con1 - Connection

 % ... -> con2 - Connection

 % ... -> frame - Frame, associated with a mechanism with stroke

 %% Grid Construction

 function this = RelationManager(Group, Orient)

 if nargin > 1

 this.Group = Group;

 this.Orient = Orient;

 end

 end

 function Item = get(this,PropertyName)

 switch PropertyName

 case 'Name'

 Item = this.name;

 case 'Relations'

 Item = this.Relations;

 otherwise

 fprintf(['XXX Group GET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 function set(this,PropertyName,Item) %#ok<INUSD,INUSL>

 switch PropertyName

 otherwise

 fprintf(['XXX Group SET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 function name = get.name(this)

 switch this.Orient

 case enumOrient.Horizontal

 name = 'Rel. Man. handling horizontal connections';

 case enumOrient.Vertical

 name = 'Rel. Man. handling vertical connections';

610

 end

 end

 function update(this)

 this.isChanged = false;

 % In essence, recreate the grid from the number of connections

 % ... in group, then append each relation one by one into the

 % ... grid

 this.Grid = false(1,length(this.Group.Connections));

 this.Grid_modes = cell(0);

 keep = true(size(this.Relations));

 for i = 1:length(this.Relations)

 if keep(i)

 for j = i+1:length(this.Relations)

 if keep(j)

 if this.Relations(i).con1 == ...

 this.Relations(j).con1 && ...

 this.Relations(i).con2 == ...

 this.Relations(j).con2

 keep(j) = false;

 end

 end

 end

 end

 end

 this.Relations(~keep) = [];

 for relation = this.Relations

 this.appendGrid(relation);

 end

 end

 function appendGrid(this, new_relation)

 % this.Relations(end+1) = new_relation;

 % So to make it here, there are no invalidities.

 ind1 = new_relation.con1.index;

 ind2 = new_relation.con2.index;

 % Adding to each other's groups

 group1 = find(this.Grid(:,ind1)==true);

 group2 = find(this.Grid(:,ind2)==true);

 allready = false;

 previous = 0;

 for i = 1:length(group2)

 group1(end+1) = group2(i);

 end

 if ~isempty(group1)

 for i = group1

 if this.Grid_modes{i} == new_relation.mode

 if allready

 this.merge_rows(i,previous);

 return;

 end

 % Simply append ind2 to this group

 this.Grid(i,ind1) = true;

 this.Grid(i,ind2) = true;

 allready = true;

 previous = i;

 end

 end

 if allready; return; end

 end

 % Forming new groups

 % To make it here, both entities are not part of a group that

 % ... has the same mode, thus, it forms a new group

 row = this.get_new_group_row();

 this.Grid(row,ind1) = true;

 this.Grid(row,ind2) = true;

 this.Grid_modes{row} = new_relation.mode;

 end

611

 function merge_rows(this,row1,row2)

 for i = 1:size(this.Grid,2)

 this.Grid(row1,i) = this.Grid(row1,i) || ...

 this.Grid(row2,i);

 end

 this.Grid(row2,:) = false;

 this.Grid_modes{row2} = enumRelation.empty;

 end

 function index = get_new_group_row(this)

 % See if there is an empty row

 for i = 1:size(this.Grid,1)

 if all(this.Grid(i,:)==false)

 index = i;

 return;

 end

 end

 % else make a new row

 index = size(this.Grid,1) + 1;

 end

 %% Relationship Adding

 function yesno = isNewRelationValid(this, ind1, ind2)

 yesno = true;

 % Make sure that grid is actually large enough

 if ~(size(this.Grid,2) >= ind1 && size(this.Grid,2) >= ind2)

 this.update();

 end

 % If one of the connections does not have any existing

 % ... relations then it is an automatic pass

 if ~any(this.Grid(:,ind1)); yesno = true; return; end

 if ~any(this.Grid(:,ind2)); yesno = true; return; end

 % If we got to this point then we have to find if the two

 % ... indexes are connected in some way

 groups1 = find(this.Grid(:,ind1)==true);

 groups2 = find(this.Grid(:,ind2)==true);

 for i = groups1

 for j = groups2

 % Test to see if "i" is patheable to "j"

 target = j;

 start = i;

 [found, ~] = are_rows_connected(...

 this.Grid,target,start,false(size(this.Grid,1),1));

 if found

 yesno = false; return;

 end

 end

 end

 end

 function success = addRelation(this, name, mode, con1, con2, frame)

 success = false;

 if this.isChanged; this.update(); end

 if this.Orient ~= con1.Orient; return; end

 if con1.Orient ~= con2.Orient; return; end

 % There cannot be an existing thing between con1 and con2

 if ~this.isNewRelationValid(con1.index, con2.index)

 return;

 end

 if nargin > 5

 newRelation = Relation(this,name,mode,con1,con2,frame);

 else

 newRelation = Relation(this,name,mode,con1,con2);

 end

 this.Relations(end+1) = newRelation;

 this.update();

 success = true;

 end

 %% Relationship Editing

 function [success, visitedgroups, shifts, data] = Edit(...

612

 this, con, shift, visitedgroups, shifts, data)

 if this.isChanged; this.update(); end

 %% Get all the shifts that happened due to this edit

 if isa(con,'Connection')

 ind = con.index;

 else

 ind = con;

 end

 if isempty(this.Grid)

 this.update();

 end

 if nargin < 4

 visitedgroups = false(size(this.Grid,1),1);

 shifts = zeros(size(this.Group.Connections));

 shifts(ind) = shift;

 data = struct();

 end

 groups = find(this.Grid(:,ind)==true);

 for i = groups'

 if ~visitedgroups(i)

 cons = find(this.Grid(i,:)==true);

 [var, data] = this.getShifts(cons, i, ind, shift, data);

 if isempty(var); success = false; return; end

 shifts(cons) = var;

 visitedgroups(i) = true;

 for j = cons

 if shifts(j) ~= 0

 [success, visitedgroups, shifts, data] = ...

 this.Edit(j,shifts(j),visitedgroups,...

 shifts, data);

 if ~success; return; end

 end

 end

 end

 end

 success = true;

 %% Apply all those shifts and test each body

 if nargin < 4

 for i = 1:length(this.Group.Connections)

 this.Group.Connections(i).x = ...

 this.Group.Connections(i).x + shifts(i);

 end

 if isfield(data,'frames') && isfield(data,'frameshift')

 for i = 1:length(data.frames)

 for iLRM = this.Group.Model.Converters

 for RefFrame = iLRM.Frames

 if RefFrame == data.frames(i)

 Mech = RefFrame.Mechanism;

 Mech.dont_propegate = true;

 Mech.set('Stroke',...

 Mech.get('Stroke')+data.frameshift(i));

 end

 end

 end

 end

 end

 for iBody = this.Group.Bodies; iBody.update(); end

 for iBody = this.Group.Bodies

 if ~iBody.isValid

 for i = 1:length(this.Group.Connections)

 this.Group.Connections(i).x = ...

 this.Group.Connections(i).x - shifts(i);

 end

 if isfield(data,'frames') && isfield(data,'frameshift')

 for i = 1:length(data.frames)

 for iLRM = this.Group.Model.Converters

 for RefFrame = iLRM.Frames

 if RefFrame == data.frames(i)

 Mech = RefFrame.Mechanism;

 Mech.dont_propegate = true;

613

 Mech.set('Stroke',Mech.get('Stroke')-data.frameshift(i));

 end

 end

 end

 end

 end

 for iBody2 = this.Group.Bodies

 iBody2.update();

 end

 fprintf(['XXX Connection shift failed because ' ...

 'it caused overlaping bodies XXX\n']);

 success = false;

 return;

 end

 end

 end

 end

 function [shifts, data] = getShifts(this, cons, group, root, shift, data)

 shifts = zeros(size(cons));

 if isnan(shift); return; end

 shifts(cons==root) = shift;

 if shift == 0; return; end

 if this.Group.Model.RelationOn

 switch this.Grid_modes{group}

 case enumRelation.Constant

 % Since we are not comming from the mechanism, these

 % ... behave as if they were constant

 shifts = shift * ones(size(cons));

 case enumRelation.StackedShift

 for i = length(cons):-1:1

 if this.Group.Connections(cons(i)).x > ...

 this.Group.Connections(root).x

 shifts(i) = shift;

 else

 shifts(i) = 0;

 end

 end

 case enumRelation.Fixed

 shifts = [];

 case enumRelation.AreaConstant

 if this.Orient == enumOrient.Vertical

 for i = length(cons):-1:1

 C1o = this.Group.Connections(root).x;

 C2o = this.Group.Connections(cons(i)).x;

 shifts(i) = ...

 sqrt(C2o^2 + ...

 shift * (2*C1o + shift)) - C2o;

 end

 else

 % Behaves as if it were constant

 shifts = shift * ones(size(cons));

 end

 case enumRelation.Scaled

 if this.Group.Connections(root).x == 0

 C1o = this.Group.Connections(root).x + shift/2;

 for i = length(cons):-1:1

 C2o = this.Group.Connections(cons(i)).x;

 shifts(i) = shift * C2o / C1o;

 end

 else

 C1o = this.Group.Connections(root).x;

 for i = length(cons):-1:1

 C2o = this.Group.Connections(cons(i)).x;

 shifts(i) = shift * C2o / C1o;

 end

 end

 case enumRelation.LowestScaled, ...

 enumRelation.Stroke, ...

 enumRelation.Piston

 curmin = inf;

614

 baseind = root;

 for i = length(cons):-1:1

 if this.Group.Connections(cons(i)).x < curmin

 curmin = this.Group.Connections(cons(i)).x;

 baseind = i;

 end

 end

 if baseind == root

 % Compacts to the other side

 curmax = -inf;

 for i = length(cons):-1:1

 if this.Group.Connections(cons(i)).x > curmax

 curmax = this.Group.Connections(cons(i)).x;

 end

 end

 for i = length(cons):-1:1

 C1o = this.Group.Connections(root).x;

 C2o = this.Group.Connections(cons(i)).x;

 shifts(i) = shift * ...

 (curmax - C2o)/(curmax - C1o);

 end

 else

 % Scale everything relative to the base

 for i = length(cons):-1:1

 C1o = this.Group.Connections(root).x;

 C2o = this.Group.Connections(cons(i)).x;

 shifts(i) = shift * ...

 (C2o - curmin) / (C1o - curmin);

 end

 end

 switch this.Grid_modes{group}

 case enumRelation.LowestScaled

 return;

 case enumRelation.Stroke

 % Get largest shift and edit the value of the

 % ... stroke in the same direction

 sgn = 1;

 case enumRelation.Piston

 % Get largest shift and edit the value of the

 % ... stroke in the opposite direction

 sgn = -1;

 end

 curmax = max(shifts);

 for rel = this.Relations

 if rel.mode == enumRelation.Stroke || ...

 any(cons == rel.con1.index) || ...

 any(cons == rel.con2.index)

 if isfield(data,'frame')

 data.frame(end+1) = rel.frame;

 data.frameshift(end+1) = sgn * curmax;

 else

 data.frame = rel.frame;

 data.frameshift = sgn * curmax;

 end

 end

 end

 case enumRelation.Width

 switch length(cons)

 case 4

 xvals = zeros(4,1);

 for i = 1:4

 xvals(i) = ...

 this.Group.Connections(cons(i)).x;

 end

 % Determine order translation

 % location of first connection

 try

 indexes = zeros(4,1);

 temp = min(xvals);

 indexes(1) = find(xvals==temp);

 temp = min(xvals(xvals>temp));

615

 indexes(2) = find(xvals==temp);

 temp = min(xvals(xvals>temp));

 indexes(3) = find(xvals==temp);

 temp = max(xvals);

 indexes(4) = find(xvals==temp);

 if root == cons(indexes(1))

 % Middle should remain the same but shift up or

 % ... down

 shifts(indexes(1)) = shift;

 shifts(indexes(2)) = shift/2;

 shifts(indexes(3)) = shift/2;

 shifts(indexes(4)) = 0;

 elseif root == cons(indexes(2))

 % Boundaries should remain the same, but the

 % center should stretch

 shifts(indexes(1)) = 0;

 shifts(indexes(2)) = shift;

 shifts(indexes(3)) = -shift;

 shifts(indexes(4)) = 0;

 elseif root == cons(indexes(3))

 % Boundaries should remain the same, but the

 % center should stretch

 shifts(indexes(1)) = 0;

 shifts(indexes(2)) = -shift;

 shifts(indexes(3)) = shift;

 shifts(indexes(4)) = 0;

 else

 % Middle should remain the same but shift up or

 % ... down

 shifts(indexes(1)) = 0;

 shifts(indexes(2)) = shift/2;

 shifts(indexes(3)) = shift/2;

 shifts(indexes(4)) = shift;

 end

 catch

 fprintf('err');

 end

 case 6

 xvals = zeros(6,1);

 for i = 1:6

 xvals(i) = ...

 this.Group.Connections(cons(i)).x;

 end

 % Determine order translation

 % location of first connection

 indexes = zeros(6,1);

 temp = min(xvals);

 indexes(1) = find(xvals==temp);

 temp = min(xvals(xvals>temp));

 indexes(2) = find(xvals==temp);

 temp = min(xvals(xvals>temp));

 indexes(3) = find(xvals==temp);

 temp = min(xvals(xvals>temp));

 indexes(4) = find(xvals==temp);

 temp = min(xvals(xvals>temp));

 indexes(5) = find(xvals==temp);

 temp = max(xvals);

 indexes(6) = find(xvals==temp);

 if root == cons(indexes(1))

 shifts(indexes(1)) = shift;

 shifts(indexes(2)) = shift/2;

 shifts(indexes(3)) = shift/2;

 shifts(indexes(4)) = shift/2;

 shifts(indexes(5)) = shift/2;

 shifts(indexes(6)) = 0;

 elseif root == cons(indexes(2))

 shifts(indexes(1)) = 0;

 shifts(indexes(2)) = shift;

 shifts(indexes(3)) = 0;

 shifts(indexes(4)) = 0;

 shifts(indexes(5)) = -shift;

616

 shifts(indexes(6)) = 0;

 elseif root == cons(indexes(3))

 shifts(indexes(1)) = 0;

 shifts(indexes(2)) = 0;

 shifts(indexes(3)) = shift;

 shifts(indexes(4)) = -shift;

 shifts(indexes(5)) = 0;

 shifts(indexes(6)) = 0;

 elseif root == cons(indexes(4))

 shifts(indexes(1)) = 0;

 shifts(indexes(2)) = 0;

 shifts(indexes(3)) = -shift;

 shifts(indexes(4)) = shift;

 shifts(indexes(5)) = 0;

 shifts(indexes(6)) = 0;

 elseif root == cons(indexes(5))

 shifts(indexes(1)) = 0;

 shifts(indexes(2)) = -shift;

 shifts(indexes(3)) = 0;

 shifts(indexes(4)) = 0;

 shifts(indexes(5)) = shift;

 shifts(indexes(6)) = 0;

 elseif root == cons(indexes(6))

 shifts(indexes(1)) = 0;

 shifts(indexes(2)) = shift/2;

 shifts(indexes(3)) = shift/2;

 shifts(indexes(4)) = shift/2;

 shifts(indexes(5)) = shift/2;

 shifts(indexes(6)) = shift;

 end

 otherwise

 fprintf(['XXX A width mate is not working ' ...

 'because it does not contain 4' ...

 'elements XXX\n']);

 end

 end

 end

 if any(isnan(shifts))

 fprintf('err');

 end

 end

 function color = getColor(this, index)

 if this.Group.isChanged; this.Group.update(); end

 count = 1;

 colors = ...

 [0.67, 0, 0; ...

 1, 0.33, 0.33; ...

 1, 0.67, 0; ...

 1, 1, 0.33; ...

 0, 0.67, 0; ...

 0.33, 1, 0.33; ...

 0.33, 1, 1; ...

 0, 0.67, 0.67; ...

 0, 0.67, 0; ...

 0.33, 0.33, 1; ...

 1, 0.33, 1; ...

 0.67, 0, 0.67; ...

 0.67, 0.67, 0.67; ...

 0.33, 0.33, 0.33];

 color = [0, 0, 0];

 for iGroup = this.Group.Model.Groups

 for RMan = iGroup.RelationManagers

 if RMan.isChanged; RMan.update(); end

 if RMan ~= this

 for i = 1:size(RMan.Grid,1)

 if any(RMan.Grid(i,:) == true)

 count = count + 1;

 end

 end

 else

617

 for i = 1:size(RMan.Grid,1)

 if i == index

 while (count > 14)

 count = count - 14;

 end

 color = colors(count,:);

 return;

 end

 if any(RMan.Grid(i,:) == true)

 count = count + 1;

 end

 end

 end

 end

 end

 end

 function Label = getLabel(this, mode, con1, con2)

 Label = '';

 for i = 1:length(this.Grid_modes)

 if this.Grid_modes{i} == mode

 % Find a relation that matches

 for Rel = this.Relations

 if Rel.mode == mode && (con1 == Rel.con1 || con1 == Rel.con2 || ...

 con2 == Rel.con1 || con2 == Rel.con2)

 Label = Rel.name;

 return;

 end

 end

 end

 end

 end

 end

end

function [yesno, checked] = are_rows_connected(grid,target,start,checked)

if target == start; yesno = true; return; end

yesno = false;

cols = find(grid(start,:)==true);

for i = cols

 rows = find(grid(:,i)==true);

 rows(checked(rows)) = [];

 for j = rows

 if j ~= start

 checked(j) = true;

 [yesno, checked] = are_rows_connected(grid,target,j,checked);

 if yesno; return; end

 end

 end

end

end

function [el] = custmink(array,k)

el = -inf;

for i = 1:k

 el = min(array(array>el));

end

end

function [el] = custmaxk(array,k)

el = +inf;

for i = 1:k

 el = max(array(array<el));

end

end

618

G.4. Optimization

Load Model

function Model = load_Model(name)

 newfile = [pwd '\Saved Files\' name];

 File = load(newfile,'Model');

 Model = File.Model;

 Model.AxisReference = gca;

 Model.showPressureAnimation = false;

 Model.recordPressure = false;

 Model.showTemperatureAnimation = false;

 Model.recordTemperature = false;

 Model.showVelocityAnimation = false;

 Model.recordVelocity = false;

 Model.showTurbulenceAnimation = false;

 Model.recordTurbulence = false;

 Model.recordOnlyLastCycle = true;

 Model.recordStatistics = true;

 Model.outputPath= '';

 Model.warmUpPhaseLength = 0;

 Model.animationFrameTime = 0.05;

end

Gradient Ascent

function [History] = GradientAscent(...

 Model, ...

 OptimizationSchemeID)

 History = [];

% Find the Folder "Test_Running" and allow the user to select a test set

% ... which generates the appropriate structure.

files = dir('Test_Running');

names = {files.name};

names(1:2) = [];

if ~iscell(names); names = {names}; end

for index = size(names,1):-1:1; names{index} = names{index}(1:end-2); end

index = listdlg('PromptString','Pick the test running conditions',...

 'ListString',names,...

 'SelectionMode','single',...

 'InitialValue',index);

if ~isempty(index)

 if strfind(names{index},'.m')

 func = str2func(names{index}(1:end-2));

 else

 func = str2func(names{index});

 end

 RunConditions = func();

else

 msgbox('A run condition struct is required to run the model.');

 return;

end

% Pick Optimizing Variable -> output: options

options = struct('OptimizedProperty','');

names = {

 'Max Power';

 'Max Thermo Power Per Unit Engine Volume';

 'Max Efficiency';

 'Max West Number'};

index = listdlg('ListString',names,...

 'SelectionMode','single',...

 'InitialValue',1);

619

if ~isempty(index)

 options.OptimizedProperty = names{index};

else

 msgbox('You must select a parameter to be optimized');

 return;

end

% RunConditions = struct that lays out the test conditions in the style of

% ... test set running.

if isfield(RunConditions,'PressureBounds')

 mod_pressure = ~isempty(RunConditions.PressureBounds);

 if length(RunConditions.PressureBounds) == 1

 options.MinPressure = 101325;

 options.MaxPressure = RunConditions.PressureBounds(2);

 elseif mod_pressure

 options.MinPressure = RunConditions.PressureBounds(1);

 options.MaxPressure = RunConditions.PressureBounds(2);

 end

else

 mod_pressure = false;

end

if isfield(RunConditions,'SpeedBounds')

 mod_speed = ~isempty(RunConditions.SpeedBounds);

 if length(RunConditions.SpeedBounds) == 1

 options.MinSpeed = 0.2;

 options.MaxSpeed = RunConditions.SpeedBounds(2);

 elseif mod_speed

 options.MinSpeed = RunConditions.SpeedBounds(1);

 options.MaxSpeed = RunConditions.SpeedBounds(2);

 end

else

 mod_speed = false;

end

originalname = replace(Model.name,' - Optimized','');

sets = RunConditions;

for optrial = 1:length(sets)

 RunConditions = sets(optrial);

 % Load the specificied model

 if isempty(RunConditions.title)

 Model.name = originalname;

 NewModel = [Model.name ' - Optimized'];

 else

 Model.name = RunConditions.title;

 NewModel = RunConditions.title;

 end

 RunConditions.title = NewModel;

 RunConditions.Model = NewModel;

 addpath('..\runs\');

 addpath(cd);

 found = false;

 for i = 1:length(Model.OptimizationSchemes)

 if Model.OptimizationSchemes(i).ID == OptimizationSchemeID

 Study = Model.OptimizationSchemes(i);

 Names = cell(1,length(Model.OptimizationSchemes(i).IDs));

 Objects = cell(1,length(Model.OptimizationSchemes(i).IDs));

 found = true;

 for k = 1:length(Model.OptimizationSchemes(i).IDs)

 Names{k} = Model.OptimizationSchemes(i).Names{k};

 switch Model.OptimizationSchemes(i).Classes{k}

 case 'Connection'

 for iGroup = Model.Groups

 for iCon = iGroup.Connections

 if iCon.ID == Model.OptimizationSchemes(i).IDs{k}

 Objects{k} = iCon;

 break;

 end

 end

 if Objects{k} == iCon; break; end

 end

620

 case 'LinRotMechanism'

 for iLRM = Model.Converters

 if iLRM.ID == Model.OptimizationSchemes(i).IDs{k}

 Objects{k} = iLRM;

 break;

 end

 end

 end

 end

 Fields = Model.OptimizationSchemes(i).Fields;

 break;

 end

 end

 if mod_pressure

 pressure_ind = length(Objects) + 1;

 end

 if mod_speed

 speed_ind = length(Objects) + mod_pressure + 1;

 end

 if ~found

 fprintf('XXX Model or Optimization Scheme is not found. XXX\b');

 return;

 end

 % Process the model

 Model.name = NewModel;

 % Open up memory, keeping only the last SnapShot

 Model.SnapShots(1:end-1) = [];

 % Recording Options

 Model.showLivePV = false;

 Model.showPressureAnimation = false;

 Model.recordPressure = true;

 Model.showTemperatureAnimation = false;

 Model.recordTemperature = true;

 Model.showVelocityAnimation = false;

 Model.recordVelocity = false;

 Model.showTurbulenceAnimation = false;

 Model.recordTurbulence = true;

 Model.showConductionAnimation = false;

 Model.recordConductionFlux = false;

 Model.showPressureDropAnimation = false;

 Model.recordPressureDrop = false;

 Model.recordOnlyLastCycle = true;

 Model.recordStatistics = true;

 Model.warmUpPhaseLength = 0;

 Model.deRefinementFactorInput = 1;

 Model.RelationOn = true;

 save(Model.name,'Model');

 % Initialize Recording

 % ... Struct that provides the class-field names and value, as well as goal

 h1 = figure();

 h2 = figure();

 % Adadelta parameters

 extra = mod_pressure + mod_speed;

 shifts = zeros(length(Objects) + extra,1);

 take_a_break = false(length(shifts),1);

 gradient = shifts;

 % gamma = 0.6;

 tol = 1e-6;

 optimizing = true;

 maxiterations = 30;

 iteration = 1;

 L = 0.001;

 Scale = 1;

 local_scale = 1;

 %EPara2 = ones(size(shifts))*0.01;

 %EGrad2 = ones(size(shifts));

621

 % Define History

 History = struct();

 [History.Score, success, ~, ~] = RunSubFunction(Model,RunConditions,options);

 if ~success

 fprintf('XXX Failed to run the first test, corrupted snapshot or unsolveable geometry

XXX\n');

 return;

 end

 History.Names = cell(size(Objects));

 History.IDs = zeros(size(Objects));

 for i = 1:length(Objects)

 History.Names{i} = Names{i};

 History.IDs(i) = Objects{i}.ID;

 end

 if mod_pressure

 History.Names{pressure_ind} = 'Pressure (Atm)';

 end

 if mod_speed

 History.Names{speed_ind} = 'Speed (Hz)';

 end

 History.data = zeros(length(Objects) + mod_pressure + mod_speed,0);

 if ~isempty(Study.History)

 iteration = iteration + 1;

 maxiterations = maxiterations + 1;

 for i = 1:length(History.Names)

 for j = 1:length(Study.History.Names)

 if strcmp(History.Names{i},Study.History.Names{j})

 % EPara2(i) = Study.History.EPara2(j);

 % EGrad2(i) = Study.History.EGrad2(j);

 % gradient(i) = Study.History.gradient(j);

 break;

 end

 end

 end

 Scale = Study.History.Scale;

 end

 count = 1;

 for i = 1:length(Objects)

 History.data(i,count) = Objects{i}.get(Fields{i});

 end

 if mod_pressure

 History.data(pressure_ind,count) = RunConditions.EnginePressure/101325;

 end

 if mod_speed

 History.data(speed_ind,count) = RunConditions.rpm/60;

 end

 while optimizing && iteration < maxiterations

 iteration = iteration + 1;

 % Calculate local gradient - output shifts - using Adadelta

 for i = 1:length(Objects)

 if ~take_a_break(i)

 [gradient(i), History] = ...

 getShiftObject(gradient(i),Objects{i},Fields{i},History,...

 Model,RunConditions,options);

 end

 end

 if mod_pressure

 ind = pressure_ind;

 if ~take_a_break(ind)

 [gradient(ind), History, RunConditions] = getShiftRunCon(...

 gradient(ind),History,Model,RunConditions,...

 'EnginePressure',options.MinPressure,options.MaxPressure,options);

 end

 end

 if mod_speed

 ind = speed_ind;

 if ~take_a_break(ind)

 [gradient(ind), History, RunConditions] = getShiftRunCon(...

622

 gradient(ind),History,Model,RunConditions,...

 'rpm',options.MinSpeed,options.MaxSpeed,options);

 end

 end

 if max(abs(gradient)) < tol

 optimizing = false;

 end

 % Adadelta algorithm - Shifts

 for i = 1:length(Objects)

 % shifts(i) = sqrt((EPara2(i) + 1e-8) / ...

 % (EGrad2(i) + 1e-8)) * gradient(i);

 shifts(i) = L*gradient(i);%/sqrt(EGrad2(i) + 1e-8);

 end

 if mod_pressure

 % shifts(i) = sqrt((EPara2(pressure_ind) + 1e-8) / ...

 % (EGrad2(pressure_ind) + 1e-8)) * gradient(pressure_ind);

 shifts(pressure_ind) = gradient(pressure_ind);%/sqrt(EGrad2(pressure_ind) + 1e-8);

 end

 if mod_speed

 % shifts(speed_ind) = sqrt((EPara2(speed_ind) + 1e-8) / ...

 % (EGrad2(speed_ind) + 1e-8)) * gradient(speed_ind);

 shifts(speed_ind) = gradient(speed_ind);%/sqrt(EGrad2(speed_ind) + 1e-8);

 end

 if max(abs(shifts)) > Scale*0.005

 shifts = Scale*shifts*0.005/max(abs(shifts));

 elseif max(abs(shifts)) < Scale*0.002

 shifts = Scale*shifts*0.002/max(abs(shifts));

 end

 for i = 1:length(shifts)

 fprintf([num2str(shifts(i)) ' ']);

 if i == length(shifts)

 fprintf('\n');

 end

 end

 power_backup = History.Score(end);

 increasing = true;

 stepcount = 1;

 trial = 1;

 fprintf('Starting Uphill Climb \n');

 while increasing

 % Make a step

 backup = zeros(1,length(Objects)+mod_pressure+mod_speed);

 for i = 1:length(Objects)

 fprintf(['Shifting Object: ' num2str(i) '\n']);

 backup(i) = Objects{i}.get(Fields{i});

 if ~take_a_break(i)

 newValue = Objects{i}.get(Fields{i}) + shifts(i);

 if isa(Objects{i},'Connection')

 for iBody = Objects{i}.Bodies

 for iCon = iBody.Connections

 if iCon.Orient == Objects{i}.Orient && iCon ~= Objects{i}

 if sign(iCon.x - Objects{i}.x) == sign(shifts(i))

 if ~iCon.IsFixedTo(Objects{i})

 shifts(i) = sign(shifts(i)).*min(abs(shifts(i)), ...

 abs(0.33*(iCon.x - Objects{i}.x)));

 end

 end

 end

 end

 end

 end

 try_ = 0;

 while Objects{i}.get(Fields{i}) ~= newValue

 Objects{i}.set(Fields{i},newValue);

 if Objects{i}.get(Fields{i}) ~= newValue

 shifts(i) = shifts(i) / 2;

 newValue = Objects{i}.get(Fields{i}) + local_scale * shifts(i);

623

 try_ = try_ + 1;

 if try_ > 3; shifts(i) = 0; break; end

 else; break;

 end

 end

 take_a_break(i) = (~take_a_break(i) && abs(local_scale * shifts(i)) < tol);

 end

 end

 if mod_pressure

 fprintf(['Shifting Pressure: ' num2str(i) '\n']);

 backup(pressure_ind) = RunConditions.EnginePressure;

 RunConditions.EnginePressure = min(options.MaxPressure,...

 max(options.MinPressure,RunConditions.EnginePressure + local_scale *

shifts(pressure_ind)));

 end

 if mod_speed

 fprintf(['Shifting Speed: ' num2str(i) '\n']);

 backup(speed_ind) = RunConditions.rpm;

 RunConditions.rpm = min(options.MaxSpeed,...

 max(options.MinSpeed,RunConditions.rpm + local_scale * shifts(speed_ind)));

 end

 % Discretize & Run using a single run

 [Power, success, ShaftPower, statistics] = RunSubFunction(Model,RunConditions,options);

 if ~success || isnan(Power)

 fprintf('Simulation Failed\n');

 for i = 1:length(Objects); Objects{i}.set(Fields{i},backup(i)); end

 if mod_pressure; RunConditions.EnginePressure = backup(pressure_ind); end

 if mod_speed; RunConditions.rpm = backup(speed_ind); end

 Power = power_backup;

 break;

 end

 if all(take_a_break(i))

 fprintf('Simulation Stalled\n');

 break;

 end

 % Test the step

 fprintf('Testing the Next Step \n');

 increasing = Power > power_backup*1.002;

 if increasing

 if local_scale == 1

 % Continue stepping

 power_backup = Power;

 stepcount = stepcount + 1;

 else

 increasing = false;

 local_scale = 1;

 end

 else

 % Undo the shift

 for i = 1:length(Objects); Objects{i}.set(Fields{i},backup(i)); end

 if mod_pressure; RunConditions.EnginePressure = backup(pressure_ind); end

 if mod_speed; RunConditions.rpm = backup(speed_ind); end

 Power = power_backup;

 save(Model.name,'Model');

 if stepcount == 1 && trial < 3

 % We overstepped this point, but the gradient is still valid

 % shifts = shifts;

 trial = trial + 1;

 increasing = true;

 local_scale = local_scale / 2;

 else

 local_scale = 1;

 stepcount = 1;

 increasing = false;

 end

 end

 end

624

 if ~isfield(History,'Score'); History.Score = []; end

 count = length(History.Score) + 1;

 History.Score(count) = Power;

 figure(h1);

 plot(History.Score);

 xlabel('Trial');

 switch options.OptimizedProperty

 case 'Max Power'

 ylabel('Power [W]');

 title('Trend in Power during gradient ascent');

 case 'Max Thermo Power Per Unit Engine Volume'

 ylabel('Thermo Power [W] per m^3');

 title('Trend in Power Density during gradient ascent');

 case 'Max Efficiency'

 ylabel('Efficiency [%]');

 title('Trend in Efficiency during gradient ascent');

 case 'Max West Number'

 ylabel('West Number');

 title('Trend in West Number during gradient ascent');

 end

 for i = 1:length(Objects)

 History.data(i,count) = Objects{i}.get(Fields{i});

 end

 if mod_pressure

 History.data(pressure_ind,count) = RunConditions.EnginePressure/101325;

 end

 if mod_speed

 History.data(speed_ind,count) = RunConditions.rpm/60;

 end

 figure(h2);

 xlabel('Trial');

 ylabel('Position (m)');

 for i = 1:size(History.data,1)

 plot(History.data(i,:));

 hold on;

 end

 legend(History.Names,'Location','northwest')

 hold off;

 if count > 1

 if History.Score(count) - History.Score(count-1) < 1e-2

 fprintf('Simulation Stalled\n');

 break;

 end

 end

 end

 % History.EPara2 = EPara2;

 % History.EGrad2 = EGrad2;

 History.Scale = Scale;

 History.gradient = gradient;

 Study.History = History;

 save(Model.name,'Model');

 % Record Matrix of Body Sizes

 for iGroup = Model.Groups

 for iBody = iGroup.Bodies

 if iBody.matl.Phase == enumMaterial.Gas

 if isempty(iBody.customname); field = ['Body_' num2str(iBody.ID)];

 else; field = replace(iBody.customname,' ','_');

 end

 [~,~,x1,x2] = iBody.limits(enumOrient.Vertical);

 [~,~,y1,y2] = iBody.limits(enumOrient.Horizontal);

 sets(optrial).(field) = [pi*(x2^2-x1^2) y2(1)-y1(1)];

 sets(optrial).Score = Power;

 end

 end

 end

625

 sets(optrial).Score = Power;

 sets(optrial).Converged = success;

 sets(optrial).statistics = statistics;

 sets(optrial).HistoryScore = History.Score;

 sets(optrial).HistoryDOF = History.data;

 sets(optrial).HistoryNames = History.Names;

 save(['Optimization_set_' replace(replace(date,' ','_'),':','-')], 'sets');

end

end

function [Parameter, success, ShaftPower, statistics] = RunSubFunction(Model, RunConditions,

options)

 [success] = Model.Run(RunConditions);

 addpath(['..\runs\' RunConditions.title]);

 load([RunConditions.title '_Statistics'],'statistics');

 ShaftPower = mean(statistics.Power);

 switch options.OptimizedProperty

 case 'Max Power'

 Parameter = ShaftPower;

 case 'Max Thermo Power Per Unit Engine Volume'

 ThermoPower = 0;

 for iPV = Model.PVoutputs

 ThermoPower = ThermoPower + iPV.Power;

 end

 Vol = mean(statistics.VMax);

 if ThermoPower < 0 % To prevent convergence on an incorrect sense of optimal

 Parameter = ThermoPower;

 else

 Parameter = ThermoPower/Vol;

 end

 statistics.Power = ThermoPower;

 case 'Max Efficiency'

 Q = -sum(statistics.To_Source);

 Parameter = ShaftPower/Q;

 case 'Max West Number'

 Wo = ShaftPower;

 P = RunConditions.EnginePressure;

 dV = statistics.VMax - statistics.VMin;

 V = mean(dV(dV~=0));

 f = RunConditions.rpm/60;

 TH = RunConditions.SourceTemp;

 TK = RunConditions.SinkTemp;

 Parameter = Wo/(P*V*f)*(TH + TK)/(TH - TK);

 end

 statistics.Power = mean(statistics.Power);

 statistics.Time = [];

 statistics.Angle = [];

 statistics.Omega = [];

 statistics.TotalPower = [];

 statistics.To_Environment = sum(statistics.To_Environment);

 statistics.To_Source = sum(statistics.To_Source);

 statistics.To_Sink = sum(statistics.To_Sink);

 statistics.Flow_Loss = sum(statistics.Flow_Loss);

 %{

 Power = 0;

 for PV = Model.PVoutputs

 str = [PV.name '_' Model.name];

 str = replace(str,':',' -');

 load(['..\runs\' RunConditions.title '\' str '.mat'], 'data');

 pV = zeros(size(data.DependentVariable,1)+1,1); pP = pV;

 for i = 1:size(data.DependentVariable,2)

 pV(1:end-1) = data.IndependentVariable(:,i);

 pV(end) = data.IndependentVariable(1,i);

 pP(1:end-1) = data.DependentVariable(:,i);

 pP(end) = data.DependentVariable(1,i);

 Power = Power + PowerFromPV(pP,pV);

 end

 end

 %}

end

626

function [grad, History] = getShiftObject(grad,obj,fld,History,...

 Model,RunConditions,options)

if grad < 0

 modshift = -0.001;

else

 modshift = 0.001;

end

grad = 0;

backup = obj.get(fld);

newValue = backup + modshift;

try_ = 0;

while obj.get(fld) ~= newValue

 obj.set(fld,newValue);

 if obj.get(fld) == newValue

 [Power, success, ~, ~] = RunSubFunction(Model,RunConditions,options);

 % Undo

 obj.set(fld,backup);

 if ~success

 modshift = -modshift / 2;

 newValue = backup + modshift;

 obj.set(fld,newValue);

 try_ = try_ + 1;

 if try_ > 8; break; end

 else

 grad = (Power - History.Score(end))/modshift;

 return;

 end

 else

 modshift = -modshift / 2;

 newValue = backup + modshift;

 obj.set(fld,newValue);

 try_ = try_ + 1;

 if try_ > 8; break; end

 end

end

if grad == 0

 fprintf('err');

end

end

function [grad, History, RunCon] = getShiftRunCon(grad,History,...

 Model,RunCon,Field,MinVal,MaxVal,options)

success = false;

backup = RunCon.(Field);

while ~success

 if strcmp(Field,'EnginePressure')

 modshift = 100;

 elseif strcmp(Field,'rpm')

 modshift = 0.1;

 end

 RunCon.(Field) = min(MaxVal,max(MinVal,backup + modshift));

 [Power, success, ~, ~] = RunSubFunction(Model,RunCon,options);

 if ~success

 modshift = modshift/2;

 RunCon.(Field) = backup;

 end

end

grad = (Power - History.Score(end))/modshift;

% if sign(grad) == sign(modshift)

% % Take advantage of it

% History.Score(end) = statistics.TotalPower(end);

% else

% % Undo the small change

% RunCon.(Field) = RunCon.(Field) - modshift;

% end

end

627

Optimization Scheme

classdef OptimizationScheme < handle

 properties

 Model;

 name;

 ID;

 Names;

 Classes;

 IDs;

 Fields;

 History;

 end

 methods

 function this = OptimizationScheme(Model)

 if nargin > 0

 this.name = getProperName('Optimization Study');

 this.Model = Model;

 this.ID = Model.getOptimizationStudyID();

 end

 end

 function AddObj(this, obj, field)

 len = length(this.Names)+1;

 this.Names{len} = getProperName('Degree of Freedom');

 if strcmp(this.Names{len},'')

 this.Names{len} = [...

 class(obj) ' - ' num2str(obj.ID) ' - ' field];

 end

 this.Classes{len} = class(obj);

 this.IDs{len} = obj.ID;

 this.Fields{len} = field;

 end

 function Item = get(this,PropertyName)

 switch PropertyName

 case 'Name'

 Item = this.name;

 case 'DOFs'

 Item = this.Names;

 otherwise

 fprintf(['XXX Optimization Study GET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 function set(this,PropertyName,Item)

 switch PropertyName

 case 'Name'

 this.name = Item;

 case 'DOFs'

 for i = length(Item):-1:1

 if Item(i)

 this.Names(i) = [];

 this.Classes(i) = [];

 this.IDs(i) = [];

 this.Fields(i) = [];

 end

 end

 otherwise

 fprintf(['XXX Optimization Study SET Inteface for ' PropertyName ...

 ' is not found XXX\n']);

 end

 end

 end

end

628

	Sheet1
	Drawing View2
	Section View A-A
	Detail View B (2 : 1)
	Detail View C (2 : 1)

