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ABSTRACT

A numerical model and software interface for the design and modelling of Stirling engines was
presented. This model was developed to suit low-temperature Stirling engines, those that run at
source temperature of less than 150 °C and run at speeds where temporarily developed losses
become significant. The work had three objectives. The first was to create a combined mechanical
and thermodynamic model to solve dynamic problems. The second objective was to provide
graphical feedback during creation of the geometry and reviewing of a solution. The third objective
was to test the model against experimental data taken from a low-temperature gamma-type engine

and compare the model against another numerical code.

The resulting model, called the modular single-phase model or MSPM, incorporated a uniform
pressure assumption which was used to solve the instantaneous flow rates in a one-dimensional
network of pipes. The flow network is generated automatically from arbitrary arrangements of
cylindrical or annular extrusions created by the user, within which the solid heat conduction is
solved in 2-dimensions. Angular position dependent deformations are driven by the mechanical
system, which responded to the forces generated by the gas system. This scheme transferred
impulses from the gas network after short increments, which then defined the dynamics next
increment. To capture flow losses pressure drops are approximated from gas velocities and the

modified pressures are used to calculate the mechanism response.

The software itself presents the user with graphical feedback like that found in CAD software.
This makes it possible to generate informative animations of the moving boundaries of an engine.
These animations carry forward into the output of the code, presenting temperature, pressure,
turbulence, heat flow, flow direction and pressure drop in spatially relevant positions on the virtual
engine cross-section. The user can also place sensors, reuse previous simulation data, and run batch

tests and optimize engine geometry using the software.

When the uncalibrated model was compared against experimental results featuring an in-lab
engine running at 0.56 to 2.26 Hz, this numerical code developed a maximum discrepancy of
43.1% with an average deviation from the experimental results of 30.6%. An exploratory

calibration of the effects of compression was conducted drawing on conclusions from the initial

i



tests, resulting in an overall improvement of the accuracy to an average of 21.9%. The final
discrepancy is largely systematic, possibly correctable with reasonable adjustments to the
automatically generated convection and friction terms. A sensitivity study of the properties related
to heat transfer and friction was presented at two different speeds, the results indicated that the
most substantial and predictable effector of power was the convection coefficient. Flow friction
became a larger contributed at higher speeds. The code was then compared against SAGE, the
numerical code of choice, with 5 tests at 16.7 Hz and 50 bar and with source temperatures ranging
from 150 °C to 750 °C. Over these tests MSPM produced a maximum error of 59.1% and an
average deviation of 33.5%. When compared against a second patch of in-lab produced SAGE
results at slow speeds the two models diverged, it was concluded that the two models featured very
different flow loss characteristics at low speeds among a variety of other differences. In a final
experiment the optimal design of a beta type Stirling engine was obtained using the geometrical
optimization tool within MSPM the results and design process of the beta type engine was

presented.
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CHAPTER 1.INTRODUCTION

The following chapter outlines background information and the motivation for investigating
Stirling engines in the low-temperature regime. Relevant literature on the topic of numerical
modeling of Stirling engines will also be discussed. This chapter concludes with a summary of

objectives and thesis structure.

1.1 Project Background

1.1.1 General Background

The research conducted at the University of Alberta’s Dynamic Thermal Energy Conversion
Laboratory (DTECL), is focused, as of the writing of this thesis, on investigating the operation of
Stirling engines with reservoirs at temperatures between 100 °C and ambient (5°C). Such engines

are informally classified as low-temperature difference Stirling engines (LTDSE).

Heat sources that produce such low-grade heat streams in high amounts include: industrial
waste heat and geothermal heat, with geothermal being a focus of DTECL. Waste heat, in a study
by Stricker et al [1], accounts for 70% of the energy used in Canadian industries. With regards to
geothermal energy: Banks and Harris [2] estimated that a total of 6,100 MW of thermal energy
potential in their studied region (an area of Alberta South of Grand Prairie, West of Edmonton and
North West of Calgary). In their study, the highest potential sources (those with source temperature
above 120 °C) provide a total up to 712 MW of electrical power which could be reliably gathered
over 30 years with existing technology [2]. In addition to these findings, the prolific oil and gas
activity throughout Alberta has generated around 170,000 orphaned wells, which represent 37%
of all wells in Alberta [3]. Given these numbers, there is a likelihood that many of these may have
favorable downhole temperatures. With the high upfront cost of geothermal development, this
offers an important jumpstart to both geothermal investigation and capacity installment. Despite
this, no active examples of geothermal power generation exist in Canada, with the first example to

come online in Saskatchewan at the end of 2021 [4].



There are relatively few competing technologies designed for such temperature conditions.
Among them is the organic Rankine cycle (ORC), Kalina cycle and thermoelectric technologies
[5]. The ORC, is a relative to the steam Rankine used for high-temperature applications. It has
been very successful globally with 250 MW in electrical generating capacity as of 2015, with
roughly 40% of that capacity generated from geothermal sources [6]. The Kalina cycle has the
potential for higher efficiency [7] than the ORC and improved cycle control. However, it is a
proprietary technology with increased complexity, scale, and corrosion than an ORC [5].
Thermoelectric technologies offer simplicity given their solid-state nature, but often have poor
efficiencies with state of the art thermoelectric technologies achieving only 12% [5] of the Carnot

limit and the vast majority achieving less than 10% of Carnot [8], in the low-temperature regime.

Stirling engines are closed cycle, externally heated, reciprocating engines that utilizes a
chemically inert working gas [9] such as hydrogen, helium or air and are made of common
structural materials such as steel, polymers and aluminium. Stirling engines offer the additional
benefit of being able to increase in power density through pressurization while containing no
valves, pumps or turbines. This attribute makes them relatively simpler on an individual basis than
competing fluid-based technologies. At larger scales, engines would be coupled together, and the

resulting modularity may improve the ability of a generator to provide more consistent power.

1.1.2 Research Activities in DTECL

Stirling engines are a relatively insignificant player in the global low-temperature energy
market. It is the objective of the DTECL group to investigate whether this is a valid oversight.
Research began with Speer [10] who modified an existing mathematical model, the SIMPLE
model by Urieli and Berchowitz [11] to include a host of additional losses. This was used to predict
experimental results from a modified 90-degree gamma engine converted from a high temperature
solar application to work with low temperatures. The conclusions determined that the error of the
SIMPLE model increased substantially at lower temperatures (on the order of 150%) and speeds
and established that low temperature engines required different geometry and additional
investment in loss prevention. Stumpf [12] optimized the operating parameters of a large diameter
low-temperature gamma type engine for maximum shaft power. In doing so established a means

of predicting the optimal compression ratio based on the temperature ratio. Stumpf [12] also found



that the West number for well designed low temperature engines rested around 0.21, lower than
the expected value for high temperature engines equal to 0.25, indicating that performance
expectations are different for low-temperature engines. Miller [13] investigated the effect of
flywheel size on transient and steady-state performance. Miller [13] also investigated improvement
avenues for the modified model from Speer [10] with regards to low temperature machines, the
studies conducted showed that the model was less accurate for low-temperature regimes. The
suggestions were to include leakage into the model parameters and include a more sophisticated
mechanical power loss calculation and gas spring losses. Michaud [14] performed an experimental
optimization study on a low temperature alpha type engine. Though the engine failed to run due to
poor heat conduction and higher mechanical losses optimal crank angle was determined by driving

the engine with a motor.

The reason’s why Michaud’s engine [14] failed to run had not been predicted by the SIMPLE
model even after modification by Speer [10], where it still predicted 5 Watts of power. This was a
consistent finding through all the projects that existing models at the time performed poorly when
estimating low-temperature scenarios. For Speer [10] the modelling error increased dramatically
at low-temperature due to ignored losses, losses which Miller [13] identified as gas spring
hysteresis leakage and mechanical losses. Additionally, feedback from colleges indicates that user
error in encoding the engine behaviour into a numerical model is one of the most challenging

aspects of engine modelling using such models.

1.1.3 Project Goals

Given the work that has been completed at the University of Alberta, a new numerical model

was required. The model, would satisfy the following constraints:

1. It will be designed in the low temperature context, including features that are important to
low temperature engines, these will be discussed in further sub-sections.

2. The new model will be validated against experimental data as well as an existing
commercially available numerical code known as SAGE.

3. It will assist in the design of new engines, by allowing the incorporation and assessment of

geometrical features in a physical realizable arrangement. This will be realized through a



solid modelling interface. Which, given its visual nature, will be simple and intuitive to

learn, a benefit, given the user-base is regularly changing.

1.2  Stirling Engines

1.2.1 History

The Stirling engine, often called a hot air engine, as stated in the 1816 patent [15] was invented
by Rev. Robert Stirling as an industrial prime mover in the early days of the steam engine. Though
its introduction was proceeded by other air engines by more than a century, the addition of the
economizer, made the Stirling engine a much more efficient invention for the time. This
economizer, now termed a regenerator [16], is an internal thermal mass built to store thermal
energy for a later point in the cycle. In addition to its efficiency, Stirling engines were noted as
safer and quieter but ultimately had poorer economic efficiency [17]. Eventually Steam engines
became more efficient and safer and Stirling engines became low-power domestic engines before
being overshadowed again by electric motors [17]. The Stirling engine remerged as a quiet
alternative to internal combustion for military radio sets by Philips [9], their research forms the
basis of what is known today, but ultimately Philips only made financial success with reverse
Stirling cycle cryo-coolers. Today, Stirling engines quietly power submarines [18], domestic
combined heat and power systems [19], and high efficiency concentrated solar power systems [20].

Further detail into the history of Stirling Engines is discussed by Lloyd [21].

1.2.2 Stirling Engine Principles

Stirling engines fall under the category of heat engines, a group of processes that generate
usable energy from the heat transfer from high to low temperatures. The principles of design and
operation of Stirling engines are described in detail by West [22], as well as through preceding

thesis: [12], [13], [10] and [14]. The principles are also summarized in brief below.

1.2.2.1 Fundamental Components

There are several fundamental components of a Stirling engine, which for the purpose of clarity

are displayed in Figure 1.1 for both an alpha (top) as well as a gamma type (bottom) engine.



(1) Expansion Space — The variable volume zone that
when expanding facilitates the bulk heating of the
gas.

(2) Heater — The group of surfaces that facilitate the
heating of the gas. These surfaces may be within the
expansion space or have their own separate zone.

(3) Regenerator — A set of surfaces and material
volume that store a thermal gradient between the
heater and cooler, which preheats and precools the
gas before entering the opposite exchanger.

(4) Cooler — The group of surfaces that facilitate the
cooling of the gas. These surfaces may be within the
compression space or have their own separate zone.

(5) Compression Space — The variable volume zone
that when expanding facilitates the bulk cooling of
the gas.

(6) Power Piston — A piston which separates the engine
and a volume outside of the engine. This piston
changes the volume of the engine and extracts work.

(7) Displacer Piston — A piston which divides the
expansion and compression space. The displacer’s
function is to facilitate the movement of gas
between the expansion and compression space.

Figure 1.1: Fundamental components of Stirling engines: (top) alpha type engine, (bottom)
gamma/beta type engine

1.2.2.2 Ideal Stirling Cycle

All the possible configurations of a Stirling engine are an attempt to mimic the ideal Stirling
cycle, while satisfying specific constrains and minimizing losses within their intended application.
These configurations are reviewed in greater detail by West [22] as well as Martini [23]. A

summary, in the form of a gamma type engine, is also provided here.



Pressure

Schematic Representation

Figure 1.2: The 4 phases of the ideal Stirling engine cycle: arrows represent a motion
that is occurring during the phase. Components are defined in Figure 1.1.

Figure 1.2 schematically illustrates the 4 motions of the ideal Stirling cycle, which appear also
in Figure 1.3 as well as in following subsections. Figure 1.3 represents a different style of
representation, known in the literature as an indicator diagram. A typical indicator diagram plots
engine pressure against internal volume. The line color represents average engine internal
temperature, the horizontal dashed line represents the average pressure of the buffer space — the
space around the engine which imparts pressure on the backside of the power piston — and the

shaded region represents the total sum of work produced by the engine during a single cycle.

Pressure —

1
Volume —

Figure 1.3: Ideal Stirling engine cycle in a pressure-volume diagram form



The 4 steps of the ideal Stirling cycle outlined in Figure 1.3 are (1-2) isochoric heat addition,
(2-3) isothermal expansion (3-4) isochoric heat removal and (4-1) isothermal compression. These

steps are described in detail in the following subsections.

1.2.2.2.1. (1-2) Isochoric Heat Addition

The gas is pushed, by the displacer piston, from a mostly cold state to a mostly hot state. During

this stage, heat is added through the heat exchange surfaces into the gas. This produces a net

increase in the pressure of the engine and occurs while the volume is smallest.

1.2.2.2.2. (2-3) Isothermal Expansion

Energy, in the form of boundary work, is extracted by the expansion of the engine volume via

the power piston. Simultaneously, the thermal sources add thermal energy to compensate for

expansion cooling, thus maintaining an isothermal environment.

1.2.2.2.3. (3-4) Isochoric Heat Removal

The gas is pushed, by the displacer piston, from a mostly hot state to a mostly cool state. During
this stage, heat is discharged through the heat exchange surfaces from the gas. This produces a net

decrease in the pressure of the engine and occurs while the volume is largest.

1.2.2.24. (4-1) Isothermal Compression

Energy, in the form of boundary work, is added through the compression of the engine volume
via the power piston. Simultaneously, the thermal sources remove energy to compensate for

compression heating, thus maintaining an isothermal environment.

1.2.2.3 Methods of Idealization

Every idealized heat engine follows Carnot’s principle [24], which postulates that a heat engine
i1s most efficient when all of its processes are reversible. A reversible process indicates that it
happens in a way that requires the same amount of energy to accomplish a task as it does to undo
it. Alternatively, the reversible process does not produce entropy, which is a representation of a
loss of potential. There are two idealized thermal models, isothermal [25] and adiabatic [11], which
enable the ideal Stirling cycle to achieve its maximal efficiency. These two models establish that
heat transfer occurs always over a temperature difference of exactly zero. This negligible

temperature difference is important for heat transfer to be reversible, as entropy generation is



proportional to the difference in the inverses of temperatures by the following formula, from

Clausius [26]:

5:‘?(%‘%) ()

where:  S: Entropy generation.
Q: Thermal energy flux between temperature sources.
T;, T,: Temperatures, measured at two positions.

Notably, at higher temperatures a larger temperature difference can be utilized for the same entropy

generation rate due to the asymptotic nature of the inversed temperatures.

The analysis and derivation of these models are described in detail along side the SIMPLE
model [11]. The two models are quite similar; however, the adiabatic model allows the
temperatures to swing in the compression and expansion spaces according to compression heating
and cooling. Conversely, the isothermal model maintains a constant temperature in those spaces.

This is illustrated in Figure 1.4 and Figure 1.5 below.

A
=

Temperature
Temperature

Figure 1.4: Illustration of the isothermal Figure 1.5: Illustration of the adiabatic
idealization idealization

The isothermal idealization shown in Figure 1.4 is discussed by Urieli [11] and introduced by
Gustav Schmidt [25] in 1871. This analytical simplification describes an engine in which the

temperature in all spaces remain static. Thus, all temperature change occurs during the flow



through the regenerator and all other heat exchange occurs at a temperature difference of zero.
Notably, the compression and expansion spaces are kept consistently at the temperature of their
respective heat exchangers. Such an engine would exist only in a slowly cycling engine with heated

cylinder spaces and a perfectly effective regenerator.

The adiabatic idealization as shown in Figure 1.5 was introduced by Urieli [11] and serves as
an alternative to the ideal isothermal model. This model implies that heat transfer only occurs
within the boundaries of the heater, cooler and regenerator. The only variation between this and
the isothermal model is that the expansion and cooling spaces can oscillate according to
compression cooling and heating without heat transfer to the walls. The regenerator and heat
exchangers are perfectly effective, and thus all heat transfer pathways are kept at a temperature
difference of zero despite the discontinuities. Urieli argued that this modification was more

realistic for quickly rotating engines.

1.2.3 The Real Stirling Cycle

The following subsections discuss the idea of a realistic Stirling engine, an engine that diverges

from the impractical ideal cycle.

1.2.3.1 Continuous Volume Variations

Real systems use real mechanisms to move the boundaries of the engine. Kinematic engines
utilize slider cranks, yokes, rockers or wobble plates [9], which form motions derived from the
sum of several sinusoids, while the resonant free-piston engines use springs, forming near
sinusoidal motions. This is a divergence from the discontinuous motion prescribed by the ideal
cycle. The effect of these smoothed motions can be seen in Figure 1.6 below, the discontinuous

ideal indicator diagram is shown as the dashed outline.



Pressure —

Volume —

Figure 1.6: Pressure-volume diagram of an engine with a sinusoidal volume variation
compared against one with idealized motions

Note that the area of the curve is smaller than the ideal case for the same volume and
temperature bounds, indicating that the simple act of changing the motion of pistons relative to
pressure extremes results in lower engine power. Commonly, mechanisms are selected to
maximize the lifetime of the engine, with more specialized mechanisms being avoided for reasons
of balancing, design risk or manufacturing complexity [9]. Thus, with Stirling engines there is a
drive to produce a mechanism that is both mechanically efficient, produces good motion to
maximize the indicated power and offers good control over the phasing of the engine pistons. Senft
[27] discusses the mechanical efficiency and design of Stirling engines to great length and
produced a series of efficient low-temperature engines. Hargreaves [9], documents the long history
of Phillip’s Stirling engine technology which includes a variety of tested and successful

mechanical configurations.

1.2.3.2 Imperfect Thermal Control

The 1deal Stirling engine cycle is highly temperature-controlled, energy is assumed to transmit
only between the gas and the surfaces designed for heat transfer and it does so perfectly without
the solid surface changing temperature. In real systems, deviations from this ideal thermal
assumption always result in a loss of output energy. The following sub-sections outline how these
deviations come about. Losses in this area affect the indicator diagram by reducing the temperature
bounds, which has the effect of moving the isothermal/adiabatic lines closer together. This is

shown in Figure 1.7.
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Figure 1.7: Effect of thermal losses on the pressure-volume (indicator) diagram.

1.2.3.2.1. Conduction Loss

Figure 1.8: Thermal energy pathways in a Stirling engine
Conduction losses emerge from the conduction of energy through the solid structures of the
engine, which has several primary forms as shown in Figure 1.8. All of these are facilitated by the

combination of conduction, convection, and radiation. As all conduction between two bodies
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produces a loss in exergy it is important that conduction is minimized as much as possible, thus

heat transfers beyond the heat exchangers is a drain on the resulting power or efficiency.

1) Direct conduction between the hot and cold sources which simply results in that energy
bypassing the heat engine entirely. [9]

2) Conduction from the hot or cold exchanger through the walls to the surroundings, this
energy never engages in the cycle but is a loss component of engine systems.

3) Conduction from the interior of the engine to the exterior at ambient temperatures, which
represents energy entering the cycle, but exiting partway through the cycle.

4) Conduction supported by motion, often referred to as the shuttle loss [22], is where a moving
element, primarily a piston, carries with it a temperature gradient that is closely exposed to
a wall of a different or offset temperature gradient. Usually, this is reduced by introducing
a very long piston and/or modifying the gap between it and the wall. [22]

5) Heat transfer from the mixing of two gas streams of different temperatures. This happens
when gas from two separate spaces by-passes the heat exchangers, through a seal, or the
annular gap. This loss reduces the amount of heat transfer, due to a diminishing of total
flow-through, at the same time it reduces the maximum temperatures of both spaces by

mixing of hot with cold streams and vis-versa.

All these losses will result in a reduction of the temperature extremes and therefore pressure

extremes of the engine.

1.2.3.2.2. Non-Ideal Heat Exchanger
Gas Side

Heat Exchanger Solids
Thermal Source/Sink Side

Remote Source/Sink
with E,, 4., Whereas
Q < Emax

»

Q-
[

Figure 1.9: Thermal energy pathway through a heat exchanger
Heat exchange through a heat exchanger relies on 4 regimes, seen in Figure 1.9. For the

purposes of this discussion, let us refer to the exchanger as a source, as the same principles apply
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to thermal sinks. First of which, is the ability of the source to provide the exchanger with heat.
This value E,,4, could be limited by external factors such as rate of fuel injection, fluid flow rate
and heat capacity, solar irradiance, or any number of other factors. Exceeding or even approaching
this limiting rate may result in a drop in source temperatures. Secondly, there is a loss associated
with convection between the source fluid and the heat exchanger geometry. Thirdly, is the
conduction of the heat through the solid structure of the heat exchanger. Finally, the convection of
the heat from the solid surfaces into the gas. Increasing the resistance of any of these or lowering

the potential of the source result in lower gas temperature and thus lower power.

1.2.3.3 Gas Friction

Friction is experienced by the gas as it flows through the geometry of a Stirling engine. The
energy required to overcome this friction must be taken from the flywheel. These losses are
generated via two main sources. The primary source is flow along the main gas path, where flow
encounters the heat exchangers and regenerator and any fittings along the way. The second source
called pumping loss [16] is generated from the compression and expansion of gases which causes
the fluid to get pumped in and out of every crevasse of the engine, this is most noticeable in tight
components such as the annulus of the displacer. The effect of both of these flow losses is detected
by the mechanism as a shift in the pressure experienced at the piston faces. The net effect of this
disturbance always reduces the overall area of the pressure volume diagram by an amount equal

to the loss in energy.

1.2.3.4 Mechanical Friction

Friction, which exists in the sliding or rolling surfaces and seals of a mechanical devices, can
absorb a significant portion of the work produced by the engine. This topic is discussed in depth
by Senft [27] and often this loss can be as large as 5 to 15% of the output of engine [23]. These
losses are dependent on several factors, including engine speed, mechanism weight, balancing,
piston loading in both axial and perpendicular directions. Mechanical losses generally have a
strong relationship with machine lifetime as friction or imbalances in the engine cause surface
wear and fatigue, respectively. Mechanical losses are involved in the transport of energy to and
from the engine, the quantity of energy that re-enters the engine to assist in completing the

compression or expansion of the cycle can be directly calculated from the indicator diagram and
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occurs anytime a piston goes against its pressure regime. The study of this phenomenon, called
forced work, was pioneered by Senft [27] and is discussed in detail in the preceding theses [10],

[12], [13], and [14].
1.2.3.5 Compressibility

At higher speeds, gases compress up against accelerating surfaces, slightly changing the
experienced pressures. This results in higher pressures when compressing and a higher vacuum
when expanding. The study of this particular effect was pioneered by Petrescu et al [28].
Additionally, the density variations caused by pressure losses can cause variations in the local

properties of heat transfer, and flow friction.

1.24 What is important for low-temperature engine?

There is no strict definition of what constitutes a low-temperature engine. In the context of this
lab it is taken as having a hot side temperature of less than 150 °C. The cold side is ambient, as
opposed to engines which use cryogenic sources. The essence of a low temperature, or low

temperature ratio engine can be effectively by the following flowchart.

Low-Temperature Difference P Low Carnot Efficiency

T
Low q o« AT . Low Specific Power (g) J Low 7 ( B i)

v

Exaggerated Losses e Low Speed

Exaggerated Flow Friction

Figure 1.10: Thermodynamic consequences for of low temperature (ratio) engines

The following are consistent with DTECL’s low-temperature laboratory engines.

1. Low-temperature engines run slower than high-temperature engines.

2. Low-temperature engines have lower power density than high-temperature engines.

14



A non-dimensional number that is often used to represent the power of an engine is the West
number (Ny.s). In theory, this number allows for the direct comparison between engines of any
design with each other. This non-dimensional number, which is the ratio of actual output power to
a representation of ideal power, was introduced by West [22] and makes use of the fact that power
is proportional to charge pressure, the volume of gas that changes temperature and the engine

frequency. The West number is defined as:

Eshaft TH + TL

Nyrest = P (2)

avg: szept- fengine TH - TL

where:  Eg,, - Power as measured at the output shaft of the engine
Pavg: Mean, internal pressure in the engine over the cycle.
Vswept: Swept volume of the expansion space.

fengine: Running frequency of the engine, at which Eshaft was
measured.

Ty: Source temperature
T, : Sink temperature
1.2.4.1 Pressure Leakage

The energy loss between a sinusoidally varying pressure region and a constant pressure region

over one cycle is equal to the integration of the instantaneous energy loss over the cycle period
described by:

Eleak,cycle = ; Eleak- dt = ; F(P, — Py).dt

)
1

Eleak,cycle =C
fengine

where:  Ejeqi cycie: Sum of energy lost to a leak over one complete cycle
Ejeqr: Instantaneous energy lost to a leak.
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F(...): The leak function, which prescribes the amount of energy lost to
the leak (proportional to the mass which crosses it) as a function of the
pressure difference. Importantly, this function is ideally independent of
time.

C: A constant with respect to time. This occurs because F(...) is
independent of time, therefore the integral is equal to the integral of
F(...) over the range of P values which are governed by angular position.
Therefore, time will simply serve as a scaling factor on the magnitude on
Eleak cycle» as angular speed simply defines the slope of angle vs time.

This results in an energy loss which is inversely proportional to cycle time. With regards to
engine speed, a slow engine will accrue more power loss per cycle than a fast cycle. With regards
to engine size, given that a leak may be in some way related to engine size, for the same power

output a low-temperature engine will have a larger power loss due to leakage.

1.2.4.2 Heat Exchange

As sink temperatures are normally ambient temperatures given its accessibility, low-
temperature engines are limited by the Carnot efficiency as: n = 1 — T, /Ty. Low-temperature
engines are further disadvantaged by the proportional relationship between heat transfer and
temperature difference. Meaning that low-temperature engines require larger heat exchanger
surface areas to maintain an adequate temperature ratio, which ultimately balances friction losses
against power gains from better temperatures. Low-temperature engines are often limited by heat

exchange. Therefore, this requires a more detailed look into heat exchangers for such engines.

The construction of the West number [22] provides the greatest illustration of the effect of
temperature on Stirling engines. Specifically, the form of the derivative of shaft power with

response to rising source temperatures:

aEshaft —TC
W = 2Nwest- Pavg-Vswept- fengine (Ty +T¢)? @

The increase in power is approximately dependent on the inverse of source temperature squared,
such that at low-temperatures improvements in source temperature will lead to substantial

increases in power, while at higher temperatures, there is little incentive to improve gas
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temperatures. This will incentivize low-temperature engines to invest more into heat exchange

than high temperature engines, even at the increase in flow losses or dead volume.

1.2.4.3 Conduction Losses

Thermal conduction is a temporally developing loss found in Stirling engines, this loss has two
attributes associated with it: gas spring hysteresis (GSH) and wall conduction, which are innately
tied together. GSH has been well studied by the Stirling engine community and in general, all

equations for its loss rate follow some variation of the following form [29]:

AV \?
EGSH x Vn- ()/ - 1)2—71\/7.[. k-fengine- Pavg- Tavg <V ) A (5)
avg

where: y: The ratio of specific heats = ¢, /c,
n: Exponent, varies depending on approximation [29].
k: Thermal conductivity of gas
Tavg: Average temperature of engine interior space

AV: Difference between maximum engine volume to minimum engine
volume.

A: Surface area over which loss takes place.

If the properties of angular speed, surface area and temperature are isolated the following

equation is found.

EGSH o« A ’w-Tavg (6)

As a note, area is approximately proportional to volume to the 2/3™ power. According to the
scaling rules of Organ [30] the equivalent speed of a larger engine scales with volume to the

negative 1/3" power. Combining these into a single equation gives:
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(7

According to the West number, power is directly proportional to size, speed and exponentially
related to temperature. Thus, the GSH loss may be less of a burden at high speed and temperature
ratios. And larger engines will experience a lower GSH loss due to having a diminishing surface
area to volume ratio. A large low-temperature engine may have lower GSH than a small high-
temperature engine, but the resulting loss is likely to be a larger proportion of power in the low-

temperature Stirling engine due to the strong dependence of power on temperature difference.

The second attribute of thermal conduction losses is conduction through the solid containment
of the Stirling engine volume. This energy exchange pathway, governed by Fourier’s law, is

constant in time but linearly proportional to the difference in temperature extremes.

. A
EConduction X z AT dt

Where:
2 1 _1
A x V3, L x V3, dt «c V"3 [30] (8)
Thus:
2
V3 AT
V3V3

With regards to engine size this loss will be constant at equivalent speeds, as defined by Organ

2
[30]. The larger engine runs slower but will generate power proportional to V3 with the same

conduction loss as the smaller engine. With regards to engine speed, a slower engine has longer
time to develop this loss, thus allowing it to consume a greater proportion of power. Because power
output increases faster with respect to temperature difference than this loss, a high proportion of

power will be taken up by conduction losses in low-temperature engines.
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1.2.4.4 Viscous Friction

Viscous friction loss, or pressure loss, is a function of flow geometry, gas viscosity and gas
velocities. With regards to speed, the viscous friction loss is, in turbulent cases, dependent on
velocity squared according to the Darcy-Weisbeck equation [31] for pipe-flow. The viscosity of
the gas, which generally increases with temperature, will increase the pressure losses. This will be
seen to a much less extent than velocity as its effect is only seen in the friction factor (f) calculation
via (in the pipe flow case) the Colebrook-White equation [32]. The dependence of friction on
viscosity varies from linear in the laminar regime to a negligible effect in the fully turbulent

regime, where turbulent dissipation overshadows molecular dissipation.

With regards to geometry, an engine that is scaled to be 2 times larger in all dimensions will
have flow paths that are 2 times longer with cross-sections that are 4 times higher, hydraulic
diameters are 2 times larger and volumetric flow rates that are 8 times larger. This results in 2
times larger flow velocities. Larger scales also effect the surface finish, in theory an equivalent
surface finish could be obtained, which would allow a large engine to approach that of a smooth

pipe. Inserting these modified dimensions into the Darcy-Weisbeck equation [31]:

o LPL( * f.p@L) (8V\
~ 2D, <Z> ~ 2 (2D <ﬂ) B

)
1x

where: AP: Pressure drop over flow path

f: Darcy friction factor: defined as the Colebrook-White equation [32]:

1 ( e, 2.51>
—_ = 0
S\37Dn " NepdF
__p.DpU

Nge = === = 2 (2D4)(2U) = 4Npe,1x

€ € .
— = —, thus roughness is halved.
Dy 2Dp

p: Fluid density
L: Streamwise length of flow path
Dy,: Hydraulic diameter

V: Volumetric flow rate
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This results in a pressure drop that is roughly the same in the laminar case (as the 4’s cancels
out and roughness is neglected), and in the fully turbulent case is between 2 to 4 times larger for
the large engine, since roughness is — at best — linearly related to the friction factor. Based on the
West number, energy produced per cycle increases linearly with volume, so a large engine will
have 8 times as much power, but between 8 to 32 times as much flow losses when running at the
same speeds. Therefore, low-temperature engines must run at low-speeds to minimize these
increased flow losses, caused by their larger sizes. This is further enforced by the more constrictive
heat exchangers found in such devices. This is also confirmed by Organ [30], who’s scaling laws
declare that the speed of the engine will scale with volume to the 1/3™, or in our case here should

be halved, corresponding exactly to a 1:1 increase in cycle energy with flow losses.

An alternative to running at lower speeds is to increase the cross-sectional area of the heat
exchangers vs its length. This, in theory offers nearly the same temperature change (if the flow is
laminar, and therefore having a constant Nusselt number) but can run into problems with
preferential flow the lower the pressure drop gets, additionally it may be geometrically challenging
to design a high cross-section heat exchanger that does not introduce significant amounts of dead

volume from distribution geometry.

1.2.4.5 Mechanical Losses
Kinematic mechanisms, driven by a rotating drive, which are discussed in detail in CHAPTER
2 result in forces on the drive shaft that follow the following structure:

F = A(8).a + B(6).w* + G(6) + E(0).F, (10)

where: A(0): Coefficient on angular acceleration (a), represents the system
inertia as a function of angular position ()

B(0): Coefficient on angular velocity squared (w?), represents internal
inertia as a function of angular position (8)

G (6): Gravitation force, as a function of angular position (8)
E(8): Coefficient on piston force (F,), which represents how the piston

force, when translated through the mechanism produces a load on the
drive shaft.
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With most engines the value of angular acceleration (@) is small, the value of angular velocity
squared (w?) increases internal and external loads as a function of engine speed squared. With a
larger and slower engine, loads from the piston (E(6).F,) and static loads from gravity will
dominate. Friction is often taken as linearly proportional to the normal force [33] (as in Coulomb
friction), or rolling resistance such as in dry ball bearings, lubrication depends on both normal
force and speeds, and often the friction coefficient decreases with speed as lubrication films even
out. In addition, at high speeds lower viscosity lubricants are required [34] and many high-speed
Stirling engines utilize bearings that at high enough speeds utilize none contact gas bearings [21]

with very little friction or wear.

A high-speed engine will have larger internal loads due to the internal inertia term, which may
result in larger friction losses, however such an engine may reduce these loads with lower friction
components. Such an engine will require a lighter flywheel and suffer from lower static loadings
which would reduce friction further through leaner component design. Low-speed engines require
larger flywheels but suffer less from internal inertia forces, however they have to be designed for
larger static loads. Low-temperature engines could be the clear loser, with heavier components,
thicker lubricants and a power density that is exponentially less than their high-temperature

cousins.

1.2.5 Summary of Stirling Engines

In summary, while the ideal Stirling cycle provides the highest power per cycle, it is also
impossible to accomplish. Therefore, designers must be able to manage the losses that appear as
part of the practical modifications to the ideal cycle. The accurate modelling of these phenomena
is particularly important for low-temperature engines, which as shown in section 1.2.4 suffer to a
greater proportion in every loss category identified with the exception of inertia losses. Often the
first step in loss identification is numerical modelling of the engine, which is the topic of the

following section.

1.3 Modeling Techniques

There are many modeling tools developed specifically for Stirling engines or related machines.
The complexity, and variety of tasks that Stirling engines have been applied to has forced the
21



creation of many specific models. Many have significant simplifications for the sake of
computational efficiency which limit the scope of applicability of those models. Several advanced
models are commercially available [35]-[37], which are outlined below and many models are
described in the literature. Few are publicly available to the author’s knowledge, as a result, this
list is not all-encompassing, and many models and their implementation are only partially

described in the literature.

Stirling engine models are classified by their order, a classification scheme introduced by
Martini [23] in their “Stirling Engine Design Manual” of 1978. It is important to note that most
models have been designed for a high-temperature context and that although many models may
work under low-temperature conditions, the selection of correlations and factors common in lower-

order models becomes a challenge [10].

1.3.1 1%t Order Models

The most basic requirement for a model to be 1% order is that it produces closed-form solutions.
What is meant by this is that the power can be determined explicitly through an equation, with
often little more than the source and sink temperatures. Generally, they are recommended only for

those who wish to begin investigating the possibility of a Stirling engine [23].

1.3.1.1 Efficiency Prediction
The most basic of 1% Order models described by Martini [23] is described by multiplying the

Carnot efficiency by a series of efficiencies that represent different major losses:

T,
Nerf = (1 - T—) Me-Nu-Nm-Na (In
H
where: Ty, T;: Hot (source) and Cold (sink) gas temperatures.
7n¢: Carnot Efficiency, ratio of indicated efficiency to Carnot Efficiency,

includes all gas and thermal internal losses. Often = 0.65 — 0.75, but
can be as high as 0.80.
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ny: Heater Efficiency, a measure of how efficiency the heating element
deliverers heat to the engine. Often related to a burner, but can be related
to a heat delivery system. Often = 0.85 — 0.95

nu: Mechanical Efficiency, related to the reduction of energy from
the indicated power to the shaft power. Often = 0.85 — 0.95

n4: Represents the power loss due to the driving of auxiliary systems,
such as pumps, valves and instrumentation. Often = 0.95

This is multiplied by the input thermal power to form the expected power. Though useful, if
estimating the power output in a well understood design space, this sort of model offers little to

the designer for parametrization.

1.3.1.2 West Number

Introduced in the previous section, the West number [22] (Nyy .5 ) 1s @ non-dimensional number

that represents the performance of a Stirling engine as is defined as:

Eshaft = NWest- Pavg- szept- fengine u (12)
Ty + T,

where:  Eg,,-: Power as measured at output shaft of engine, after all engine
specific losses.

Pavg: Average internal pressure of engine, averaged over both space and
time.

Vswept: Volume of gas pushed through (in one direction) the exchangers.

fengine: Engine (cycle per second) frequency at which E'shaft is
measured.

Ty: Temperature of source, or average temperature in expansion space.
T, : Temperature of sink, or average temperature of compression space.

The normal range of West numbers is around 0.25 [22]; a number that was obtained from a
variety of high temperature high-performance engines. The power can be predicted by

rearrangement. The West number establishes a baseline given that an engine is well designed it
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should provide output power proportional to the macroscopic properties. However, it offers no key

information on what exactly an engine, well designed for its conditions, should look like.

1.3.1.3 Schmidt Model

The Schmidt model is a semi-ideal analytical model, created by Gustav Schmidt in 1871 [25],
that takes advantage of several assumptions about Stirling Engines. The Schmidt model offers
greater insight into parametrization, of importance is the influence of piston motions on the
indicated power. Due to its relative information density, it is the basis on which many 2"¢ and 3™
order models are constructed. As such it will be outlined in detail in the following pages, as
outlined by Walker [38]. The isothermal simplification was classically used in this model that

includes the following assumptions:

1. Perfect Regenerator:

a. While within the regenerator the gas and regenerator material are the same

temperature.

b. The Regenerator temperature is constant in time.

c. The Regenerator temperature follows a linear trend from the hot to the cold side.
The pressure is the same throughout the engine.
The working gas is ideal and therefore follows the equation of state: P.V = Rspec. T
There is no leakage internally or with the surroundings.
The piston motion and therefore the volume variations are perfectly sinusoidal in time.
Heat exchangers are uniform temperatures both spatially and temporally.
The cylinder wall and piston temperatures are constant.

There is perfect mixing in the expansion and compression volumes.

AR BN B S

The temperature of the dead volume is constant.
10. The speed of the machine is constant.
11. Flow conditions are steady state.

12. The expansion and compression spaces are assumed to be isothermal.

Starting from assumption 4, the constant total mass is equal to the mass of all the gas spaces
within the engine for every point in the cycle. The total mass (M) is the sum of masses (m) in

individual components as:
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M = mcompression + Meooler + mregenerator + Mpeater + mexpansion

(13)

M=m,+my+m,+my,+m,

where: M: Total mass
m: Mass of the contents of individual components

By substituting mass with its equivalents within the ideal gas law and applying assumptions 2 and

3:

Vet Vi Vo Vntle
M.R =P. ( — ) 14
spec TL TT TH ( )
where:  Rg,..: Specific gas constant of the gas inside the engine.
P: Pressure inside of engine (considered uniform, cycle position
dependent)
V: Instantaneous volume of individual component
T: Average temperature of whole gas contents of individual component
By assumption 1, a linear temperature profile must exist in the regenerator:
Ty —T.).x
T(x) = % +T; (15)
T

where: L,: Length, in flow direction, of regenerator.
x: Distance, in flow direction, from cold heat exchanger.

To calculate the mass of the regenerator, the temperature profile can be substituted in to give:

Ly 1

Vr V..P
m, = f p(x).dV, = = dx 16
0 Repec Jo Ty —Ti).x +T, (16)

Ly
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where:  p: Local gas density, is a function of P, Ry, and T (x)

This reduces to:

V..P.In (%’) -

Rspec- (TH - TL)

m, =

which gives the temperature for the regenerator as:

Ty —T1)

in (72) (19

T, =

This can also give the pressure of the engine volume as:

p M.Rgpec
= T
VC+Vk+Vr'1“(T_L)+Vh+Ve (19)
T Ty =T, Ty
The work done by a single cycle (W, ) is simply:
dav, dv,
chcle = ; P. (% + %) .do (20)

where: 6: Cycle angular position, from which V, and V, are both derived.

The volume variations as a function of 6 are different for each of the 3 classical engine
configurations but given a sinusoidal pattern the integral above may be solved simply by hand.
The final work may then be multiplied by the cycles per second to get the work at any running
speed. Using numerical integration, the above equations can be solved for non-sinusoidal motions
as well which allows the model to generally applicable. However, based on the discussions in
section 1.2.3, the isothermal idealization present in the Schmitt model make it a poor predictor of

actual engine performance.
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1.3.2 2" Order Models

Second-Order models are simulations that are based upon or are closed-form solutions.
According to Martini [23], 2™ Order models start with a 1% Order model, and then degrade the
resulting power output by losses that are decoupled from the engine cycle. 2" Order models often
apply empirical correlations for these losses which can be subjected to calibration. However, they
generally do not considered loss dependencies and often require expert knowledge to apply the
correct correlations [23]. This makes accuracy susceptible to a case-by-case basis. Like 1% order
models, speed is an input to these models, making them incapable of determining speed as an
output or modelling dynamic speed scenarios. Due to their uncoupled nature, 2™ Order models are
only capable of converging towards a steady state solution and the user must consult the produced
engine curves when determining the engine speed for a given loaded condition. The following

details the main 2™ order models discussed in the literature.

1.3.2.1 Urieli & Berchowitz

The SIMPLE model — so called as it is a simplification of the actual non-steady flow heat
exchange — was derived by Urieli and Berchowitz in their 1984 publication [16]. The scheme was
originally written in Fortran, but updated to MATLAB [39] and hosted online by Urieli [11]. This
software used the ideal adiabatic model assumption and integrates into the solution the non-ideal
performance of the heat exchanger sections. The model assumes quasi-steady assumption of
friction and heat exchange through the heat exchangers. This model is decoupled from losses not
associated with non-ideal heat exchanger or regenerator performance. The base model by default
subtracts regenerator wall leakage and pumping losses from the power output. The model was
expanded by Speer [10] to include a host of recognized Stirling engine losses as decoupled

subtractors.

1.3.2.2 Babaelahi & Sayyaadi

The SIMPLE model [16] was expanded in 2014 by Babaelahi and Sayyaadi [40]. The authors
included heat absorbed and rejected by the displacer piston and mass leakage between the engine
and buffer spaces in addition to using different equation forms for representing pressure.
Additional decoupled losses included finite speed losses, mechanical friction, and the longitudinal

conduction along the regenerator wall. The study predicted the power and efficiency of the high-
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temperature 3kW GPU-3 Stirling engine by General Motors with at least 5 times as much accuracy
compared to the original SIMPLE model and better than the state of the art of equivalent models

at the time.

Babaelahi and Sayyaadi [41] developed a new model in 2015, called the polytropic analysis of
Stirling engine with various losses or PSVL. The model takes into consideration that Stirling
engines are a continuously varying polytropic process. The author’s devised a method for
determining polytropic indexes for each working space as a function of crank angle. The method
also introduces 3 categories of loss considerations. The first of which was direct partial differential
equation representation for polytropic heat transfer, gas leakage and shuttle effect. The second,
including non-ideal heat transfer, pressure drops which applied their corrections to the
temperatures between each iteration. The third category involves losses that don’t affect the
temperature distribution and were therefore subtracted from the power afterward. The polytropic
index is derived from properties and used in heat conduction for each increment of the cycle, the
model is iterated until the index forms a continuous loop. The model proved to be more accurate

than the author’s previous models.

1.3.2.3 Commercial Codes

One of two commercially available 2" order models: SNAP pro by Altman [37] is a model
implemented within the MS Excel environment for straight forward user modification. By default,
an engine parameter set can be optimized via a genetic algorithm. SNAP Pro is based on the work
of various researchers including Martini [23], Berchowitz’s linear analysis [42] for free-piston

analysis and includes losses due to forced work from Senft [27].

The second commercially available software, PROSA 2 by Thomas [36] is implemented in a
self-contained program with a detailed parametrization scheme with simplex optimization. The
author also developed a 3™ order model that allows for speed variations and non-sinusoidal piston

variations, but further documentation for either model could not be found.

1.3.3 3"4 Order Models

According to Martini [23], third-order models divide the working volume into distinct volumes

and the basic equations are solved using numerical methods. This, as opposed to the 2™ order
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assumption, allows interdependent processes to affect one another. The field was pioneered by
Finkelstein [43], who developed the first nodal analysis, who’s work is updated by the models
discussed below. These models are regarded as more accurate than 2" order models in general, in
particular a 3™ order model will have greater accuracy when exploring a new design space, but
may be comparable to a 2" order model in a well-defined space [23]. Due to their sensitivity to
such features and higher general accuracy, they are often used in the later stages of engine design

and as part of optimization studies.

In addition to greater generality, 3 Order models offer outputs that cannot be measured
experimentally or by lower order models. Temperature is notoriously difficult to measure reliably
due to response times, whereas the 3™ Order model defines the instantaneous values. Depending
on the solution scheme, dynamic solutions may also be available which can detect phenomena
such as staling after a change in load and even allow initial design of engine control systems before

a physical prototype is even made.

1.3.3.1 SAGE

Possibly the most well known commercially available 3™ Order model for Stirling engines is
SAGE, developed by Gedeon [35]. This modular model, which is well documented, creates
discretized networks of nodes, that are solved using the harmonic assumption. The harmonic
assumption, which represents cyclic values as a Fourier series, is largely accurate for a wide variety
of Stirling engine designs and very computationally efficient because parameters are defined as a
series of phases and magnitudes as opposed to individual timestamped values. SAGE has been
used for both low-temperature [44] and high-temperature Stirling engine designs [45]. A detailed
discussion of this model can be found in Gedeon [35], as well as Hoegel [45]. SAGE features high
performance, but through communication with users within the University of Alberta, it is noted
to have a high learning curve and has difficulty converging in unique circumstances. In addition,
SAGE is unable to support dynamic scenarios [35] due to the nature of the harmonic solver.
Regardless, this model was studied extensively during the development of the current model

presented later in this thesis.
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1.3.3.2 Nlog Thermodynamic Analysis Code

The Nlog thermodynamic analysis code is a 1D control volume code. The model was created
by researchers investigating neural-network-based performance prediction [46] and was even
modified to support dynamic scenarios [47]. Given a set of detailed parameters, Nlog solves the
equations of mass, momentum, and energy for each volume in the engine. The model ignores solid-
conduction effects and instead has two wall types: An isothermal wall type, i.e., temperature
remains constant and a regenerative wall type, i.e., net heat transfer to its control volume is zero
over the cycle. It is not well documented to the authors knowledge and may be difficult to configure

to engine types.

1.3.3.3 Anderson

Anderson et al [48], from the Technical University of Denmark, developed a modular model
for research usage using the MusSim framework, which the author also developed. The author
studied the effect of the regenerator’s thermal response within the cycle and found that handling it
dynamically introduced a relatively substantial change in calculated engine power. Anderson’s
model is constructed out of modular groups much like SAGE’s implementation but in the
incremental form, making it capable of deriving dynamic scenarios given that the mechanism
dynamics are provided. However, this model is not publicly available to the authors knowledge

and little information could be found on its implementation.

1.34 Higher-Order Models

Models that consider flow to be a one-dimensional phenomenon often have increased error
when the engine is not symmetric about its axis. Discretizing gas space in a 2" dimension is
generally what changes a 3™ Order model into a higher-order model. Substantially more
computationally expensive, this form of engine modeling is generally very accurate, but the
approach is currently too slow for any but final engine design and optimization. Two groups have
made advances in this level of modeling, researchers at the University of Northumbria [49] and

researchers at NASA [50].
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1.4 Chapter Conclusions

There is a great opportunity for alternative energy generation through recovery of low-
temperature energy source. These include: waste heat which accounts for up to 70% of all energy
used in Canadian industries [1] and geothermal energy. The energy recoverable from these
processes, which are limited by thermodynamics to between 2-4% in most cases still amounts to
significant energies. Geothermal energy has potential [2], but is completely untapped by existing
technologies in Canada. It is the goal of DTECL to investigate Stirling engines as potential

contributor to utilizing these energy sources.

Work is being conducted in this area, but a major weakness of the investigation is the models
that are being used, which are inaccurate [10], [13], [14], particularly at low-temperatures and are
difficult or inextensible in usage. A significant weakness in all the models presented is either being
too specific or opaque, as in 1% and 2" Order models. Or being inaccessible to new users such as

with many 3™ Order models.

1.5 Thesis Goals

The goals of this thesis are as follows.
To develop a numerical model to

1. Simulate low-temperature engines. This entails a model that focuses on heat transfer, flow
friction, leakage and allows detailed definition of the mechanism with its internal friction.
To improve computational efficiency, loss modes such as radiation, fluid inertia and
acoustics will be ignored.

2. Produce results that are validated against an experimental laboratory engine, analytical

experiments and results from SAGE, an accessible and well validated numerical code.
In addition, the software will

1. Allow a user to construct a full working model of arbitrary geometry using a graphical user
interface.
2. Present the model geometry in an intuitive and visual manner.

3. Provide the user with tools to record data of interest and interpret results.
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The goal of the remainder of this thesis is to devise an implementation of the above goals in

MATLAB [39] and test its ability to accurately model Stirling engines within the low-temperature

context.

1.6 Thesis Outline

CHAPTER 2 documents the development process for the structure of the software and the

problems that need to be solved using the model.
CHAPTER 3 documents the core mathematical and numerical processes.
CHAPTER 4 documents the implementation of the discretization and numerical solving.
CHAPTER 5 documents the algorithms used to enhance the convergence of the model.

CHAPTER 6 documents important information on how to use the software module, as well as

the importance of model outputs.
CHAPTER 7 documents the tests used to verify the performance of the model.
CHAPTER 8 concludes the thesis with an assessment of the project goals.

Further information for each of these chapters as well as the entire project code can be found in

the Appendices.
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CHAPTER 2.SYSTEM DEVELOPMENT AND ARCHITECTURE

2.1 Development

The following sections outline the type of problem that this model targets. This begins with
defining the processes that go on within an engine and then abstracting those phenomenon and
features into components that can be added by the user. Based on the discussion in section 1.2, a
low-temperature engine’s power is limited to a great extent by its losses. These losses stem from
poor heat conduction within heat exchangers, problems with heat control in other volumes,
pressure leakage, flow friction and mechanical friction. These losses are all interconnected, poorer
heat transfer into the engine, also reduces the loss of that energy to the wall. Internal to external
leaks or even leaks between different areas of the engine effect heat transfer and flow friction
through changing gas flow rates. Flow friction effects the force on the piston and thus the

mechanism losses.

2.1.1 The Gas Medium

The best way to model these losses is to model the physical system that produces these losses.
The extreme of this is to build physical prototypes. Outside of that the most conservative approach
is to use CFD or 4™ Order models which attempt to model all the physics with as little assumptions
as possible. A further compromise then exists by assuming that the flow is 1-dimensional, which
reduces the number of calculations but increases the complexity of each of them. This complexity
thankfully is very well studied as it reduces the Stirling engine into a dynamic pipe network
problem. Having modelled the gas inside the engine as a pipe network, albeit a cyclically changing
one, the viscous friction, leaks and the gas side of heat conduction can be relatively easily solved

using empirical correlations to match the encountered flow geometry and conditions.

2.1.2 Uniform Pressure

Stirling engines rely on the compressibility of their contents to function; therefore, the gas must
be modelled as compressible. This leads to a problem though, as the low-temperature Stirling

engines generally don’t operate at speeds that would require properly modelled acoustics, a
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phenomenon which requires that the timestep is restricted by the speed of sound and not the speed
of the gas. Practitioners have come up with ways of modelling the acoustic component implicitly
[51], which avoids this restriction, but the assumption is made here is that acoustics has a negligible
impact on the operation of the low-temperature Stirling engine. One way of modelling this is to
assume, as in the Schmidt model, that the pressure is uniform throughout the engine. Friction losses
can still be approximated as required by using the flow rates, but without compressibility, the gas
speed — not the speed of sound — contributes to the timestep. This is thoroughly discussed in

CHAPTER 3.

2.1.3 The Solid Medium

The next problem exists when solving the solid medium, solid conduction problems are simple
compared to their gas counterparts, the equations are linear, and the conduction does not
appreciably change with temperature within reasonable bounds. Therefore, it is easy to model
thermal conduction in the solid body of the engine as a 2D or 3D network, provided that an engine
is reducible to such a form. This will allow the system to naturally arrive at conduction losses

without resorting to empirical formulas or surface idealizations.

2.14 The Mechanical System

The last component of development is the mechanical system. At this stage, for simplicity, only
kinematic mechanisms will be studied. Thus, the volume of the piston cylinder spaces is solely
dependent on the angular position. The gas spaces, in return, provide a force on the piston itself;
composed of many individual pressures and shears. This force is translated through the
mechanism, which uses the equation form introduced in section 1.2.4.5 to output a set of normal
forces and torques. The normal forces are used to generate losses on the drive shaft. The torque,

minus losses, feeds into the flywheel, generating an acceleration of the system.

The inclusion of a mechanism was important, as it was desired that the software could model
dynamic scenarios. This would differentiate it from previous works such as SAGE [35] most of
which are optimized for solving steady-state solutions. This restriction is often justified due to the
fact that the majority of operating conditions Stirling engines will be connected to a reliable supply

of thermal energy and therefore run at steady-state. However, permitting dynamic speed allows
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MSPM to, in the future, support the design of control schemes for Stirling engine power systems.
It allows the designer to properly size flywheels, which are required to be large for slowly rotating
devices due to the inclusion of the w? term in rotational kinetic energy. Additionally, it can
prediction of conditions required for successful start-up of Stirling engines and predict stalling
behavior from changes in load, which are hypothesized to occur due to the thermal distribution

changes for different operating speeds.

2.1.5 Gas and Mechanism Relationship

The gas and mechanical systems are intimately linked, the question is then how to solve these
two systems together. In normal Stirling engine operation, the mechanical system does not change
speed very much over a cycle. The solution then is to break up the cycle into periods of time where
the speeds are precomputed, this would allow the mechanical system to change speed and is due
to the fact that the actual acceleration lags the force generated by the gas. A depiction of this can
be seen in Figure 2.1. It is important to note that the lag can be reduced to be as small as desired

by increasing the number of increments per cycle.

b On1 On+2
Solve the gas Solve the gas
and solid and solid
between 6, & between 6,, &
0,41 UsIng an 0141 using an
mterpolated mterpolated
speed. speed.
Average force Average force
on mechanism on mechanism

Wy

Ny /S

Wni1

When iteration reaches the
time corresponding to 6, :
Calculate w,,, , using the
average forces, total time and

average speed

Figure 2.1: Gas/solid system and mechanical system interaction loop
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2.1.6 Axial Symmetry

The design of Stirling engines revolves around the shape of its pistons, which make up the bulk
of its internal space. Extra space in a Stirling engine not swept by the pistons, called dead volume,
reduces the pressure swing and therefore the power of the engine. As a result, areas that are not
pistons are compact and conform to the engine. Since pistons are round, based on manufacturing
techniques used in the manufacture of both the bore and the piston head, Stirling engines are very
commonly symmetric about a single axis or at the very least symmetric about multiple axis
connected by round pipes. Round pipes due to the minimization of perimeter per cross-section as
well as pressure resilience are also optimal. In addition, asymmetry in a Stirling engine leads to
preferential flow, which makes them less efficient. All these factors enforce that a well-designed
Stirling engine aught to be axially symmetric. Additionally, this restricts the solid modelling to
only 2 dimensions which improves the readability of the model construction and reduces the

computational complexity.

2.1.7 First Elements

The preceding discussion leads to a virtual engine that is composed of groups of cylindrical or
annular elements. These elements are called bodies. A graphical depiction of this can be found in

Figure 2.2.

Inside vertical connection
Top horizontal connection

Outside vertical connection

Bottom horizontal connection

Figure 2.2: A body and member connections. In cylindrical elements, the inside vertical
connection may be reduced to a single line at the axis.
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These bodies have rectangular cross-sections when cut by a plane coincident with the center
axis. This restriction, while it limits the variation in geometry that can be modelled, drastically
reduces the complexity and handled cases from a programming perspective. A rectangle is
characterized by having 4 sides at right angles to each other, thus sides can only be cylindrical
shells or planes perpendicular to the center axis. As blocks of material in a Stirling engine are
packed together, it makes sense that these surfaces — called connections — rather than the blocks
themselves contain the dimension information, represented either a radius or distance along the
axis. This trait prevents blocks from overlapping, except for the case where the interface moves

enough to give an affected body a negative volume.

2.1.8 Further Abstraction

Often Stirling engines are not wholly axially symmetric. Gamma engines are classic examples
as characterized by power pistons that are not inline with their displacer pistons. This then requires
that to model these aspects, at least in a visually interpretable manner, that the ability to have
multiple sets of these elements; lying upon potentially different axis is required. These sets will be
called groups and allow the user to visually arrange the engine. With elements now separated in
this manner, the only way to connect them would be to artificially produce a connection between
a body in one group, to a body in another group, this component is called a bridge. Several
additional components such as the leak, custom minor loss coefficient and non-connection also
connect, modify, or disconnect two remote bodies in their own way. All these components will be

discussed in greater detail further into this chapter.

Some structures such as those found in regenerators or heat exchangers are too small or complex
to be modelled at the body level. Instead, it leads to an additional component called a matrix. This
matrix component will be added to a body, modifying it by introducing representations of the fine
geometry. These modifications will be such that interactions during simulation approximate the

macroscopic behaviour of the structure.

2.1.9 The Name

All models need a name. This software and the solving system that is contained within is

intended to solve the thermodynamics and losses of Stirling engines. As will be seen later in the
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following sub-sections and CHAPTER 3 the model is a modular structure that is intended to solve
single phase problems that have cyclically varying motions. Thus, from now on, the model is called
MSPM or Modular Single-Phase Model, as it does not have to be restricted to just Stirling engines.
The term modular refers to the fact that the network that is solved is formed from blocks
representing components such as bodies of solid material, flow channels, heat exchangers or open
volumes which change shape. These modules can be arranged into arbitrary arrangements, which

the software converts into a network, and solves for pressure, temperature and mass.

2.1.10 Final Structure

Figure 2.3 represents the final hierarchical map of the different components of a definition file.
These components — bodies, connections, groups, and bridges — contain the bulk geometrical
information as well as the information and functionality needed to discretize themselves. These
linking lines do not represent the programming concept of inheritance, but rather which objects

contain references to other objects.

Mechanical System Groups(i)

Linear to Rotati(:n Mechanisms(i) | Coune:tions(i) \ @
L [ Comestion |
——{ Connection | [ Connection |
——{ Connection | | Body |
]

Figure 2.3: A flow chart of the system architecture
The core element, a class called model — so called as it is a representation of the physical model
of an engine — includes a single mechanical system which links to multiple linear to rotational
mechanisms (such as slider crank mechanisms). Each linear to rotational mechanism provides a
motion profile, here called a frame. The model can contain multiple groups, which are collections
of bodies which lie around the same rotational axis. Each of these bodies contains a reference to 4
connections. Those connections that are oriented perpendicular to the normal axis can also

reference a frame and in turn are able to move in accordance with that frame using their current



position as the datum. In gas bodies a representation of an internal structure, here called a matrix,

can be added.

The next sub-sections, for the purposes of terminology, will discuss the numerical elements

followed by a section on the macroscopic features.

2.2 Finite Elements

Finite elements represent small sections of the engine, within which the properties are assumed
to be constant. The smaller these elements are, the more the modelled system reflects the
continuum of the real world. Following subsections will define the finite elements that play

important roles in the creation of the mesh.

2.2.1 Nodes

A node represents a small element of matter. The shape of gas nodes may evolve in response to
the motion of engine components, solid nodes - though incompressible - may translate through
space, for example as a part of piston assemblies. There are 4 variants of nodes as outlined in the

following sub-sections:
2.2.1.1 Common Properties
Volume (V) — The total volume of the node: V = (2 — %)/ (¥, — ¥i)

Internal Energy (u) — The specific internal energy of the node, this property is initially

determined as a function of the initial temperature, but later defines the temperature.

Temperature (T) — The temperature of the node

2.2.1.2 Gas

Mass (m) — The total amount of mass in the node, initial mass is derived from the set pressure,

temperature, and volume: m = VP /R, T

Pressure (P) — The pressure of the gas node
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Turbulence (T) — If the node is of constant volume, this value is the weighting factor between
laminar and fully turbulent. For variable volume nodes, it is a representation of the specific

turbulent kinetic energy, which is the amount of oscillatory kinetic energy for each unit mass.

Hydraulic Diameter (dj) — Geometry and orientation dependent

Radial Flow Annular Flow Cylindrical Flow

Z(Ymax - ymin) 2(rmax - rmin) 27"max

Nusselt Number Function (Fy, (Ng.) or Fy, (Ng., Np,)) — Geometry and orientation

dependent as:

Radial Flow Annular Flow Cylindrical Flow
Laminar
-0.43
3.66 Inner: 4.4438. (:—") 3.66

Outer: 4.6961. (:—”

2

Turbulent

0.035. (Nge)*7"* (Np,) %

The properties of the specific gas constant (Rgp..), inverse heat capacity (Fy,r(T)) correlation,
thermal conduction F; (T) correlation and viscosity F,(T) correlation are taken from the gas the

node inherits from its parent.

2.2.1.3 Solid

Mass (m) — The total amount of mass in the node, the mass is constant and initial determined

as m = Vp, whereas density is extracted from the material of its parent.

Heat capacity (Cy) is taken from the material the node inherits from its parent.
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2.2.1.4 Environment

Static convection coefficient (h) — Corresponds to the ambient atmospheric conditions, a
stagnant environment would be associated with a low convection coefficient. A well-ventilated

space or windy space may correspond to a higher value.

The environment node represents the atmospheric surrounding of the engine, it serves as a
source of gas, a place of exhaust and a constant temperature source. It contains all the properties
of a gas node, but never change from initial calculation. Additionally, the properties of mass (m)

and volume (V) are equal to infinity for calculation purposes.

2.2.2 Faces

A face is a physical interface between nodes. A face can take many forms, whether gas-gas,
gas-solid or solid-solid or any nodes with the environment. In general, a face contains an area and
transmit energy between nodes based on transport, conduction and convection. Faces can have
evolving properties or vanish when their two interacting nodes are no longer overlapping during

periods of the cycle. There are 4 variants of faces as outlined in the following subsections
2.2.2.1 Gas-Solid
Surface area (4) — The wetted area of the solid node concerning the gas node:

e Normal to the radial direction: A = 21T (Vimax — Ymin)

e Normal to the axial direction: A = m(124x — T)ain)

Resistance (R) — Calculated from the surface to the center of the solid node:

e Conduction in the radial direction:

_ rfc lrjq(r;;atio) (21)

where: 13, = radius of the nodal interface.

.. T T
Tyatio = The minimum of £ and —- (see Note)
Tri ch
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Note: 7, = \/Tin-Tmax as the position in the element where the conduction
coefficient towards the inside is equal to the conduction coefficient

. . 2 .
towards the outside. In cases where x,,;, 1s zero, r; = 3 ¥o representing
the average radius of the body.

e (Conduction in the axial direction:

Lec;
fc—oi
Rf; = ——
feot AfC'ki (22)

where: Lg._,; = Distance from the interface to the center of the solid node in the
direction parallel to the group axis.

2.2.2.2 Gas-Gas: & Gas-Environment
Area (A) — Calculated the same as with Gas-Solid faces

Friction distance (l;) — Represents the length that the face calculates its friction over. A

graphical representation is found in Figure 2.4.

Standard Pipe Adjacent to Transition
l l l l
f f f
....... s S s— | ped ———

Figure 2.4: Geometrical cases and resulting friction length
In cases where the node leads into a transition where a minor loss coefficient is used, then this
friction length extends to cover up until the transition. This only occurs in scenarios where the

node does not branch, for example, where each node involved only has 2 gas faces.

Minor loss coefficient (K,, K,1) —replaces the Darcy friction factor pressure loss, minor loss
coefficients are calculated by first determining three areas: the initial area (4;), the orifice area
(A;) and the final area (A3). The minor loss coefficient is then calculated by the following

equation.
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{ (1-B»? B>0.76 23)

0.42(1 — B?) otherwise

where: B = ratio of cross-sectional areas, equal to the smaller area divided by
the larger area.
The vast quantity of potential permutations of this quantity as well as its evolution under laminar
regimes are ignored under this implementation, this coverage is merely included as an estimate
and is not the primary contributor to flow losses when compared to matrix passages found in

Stirling engines.
Hydraulic diameter (dy) — calculated the same as it is for gas nodes.

Conduction distance (I.) — represents the length between neighbor node centers for thermal
conduction, this is the average dimension of the interacting nodes normal to the orientation of the

face.

Stability distance () — is the length used when solving for the local Courant number. This is
the minimum dimension of the interacting nodes normal to the orientation of the face. In most
situations it is equal to the minimum of the two aligned-node sizes. The Courant number is

typically defined as:

Neo == (24)

where: §: The length of a time-step during iteration.
U: Gas velocity normal to the direction of [;.
Reynolds Number (Ng,)

The Reynold’s number is calculated at the start of each cycle and as required after that for

friction updates. The Reynold’s number is defined here as:

(25)
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where: p: Density of fluid.
U: Velocity of fluid.
w: Dynamic viscosity of fluid.
dp: Hydraulic diameter of channel in direction of U.

Friction function (Fy, (Ng.))

Calculates the Darcy friction factor (Ny)

Radial Flow Annular Flow Cylindrical Flow
Laminar
96/ Nge 96/Nge 64/Nge
Turbulent

L, . 68925
0.11 (d—h + K) [35]

Mixing function (Fy, (Ngg))

Calculates the mixing enhancement factor (Ny,), for all geometries.
Laminar: N, = 1
Turbulent: N, = 0.022(Ng,)%75. Np,

Shear Factor (Cgpeqr) & Velocity Factor (Cyepocity)

Shear Factor is defined as the shearing rate of the gas node, in the axial direction, declared with
units of m/radians. Often combined with velocity factor. Velocity Factor is defined as the relative

motion of this gas face relative to the walls around it. Declared with units of m/radians.
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Figure 2.5: Shear and velocity factor input
variables

2.2.2.3 Solid-Solid

Conductance (C) — Calculated from the center of one node to the other, these are the inverses
of the resistances calculated under the gas-solid face (equations (21) and (22)), combined in series

to allow for material discontinuities.

-1

1 1

c=(z=+ ) (28)
Ciope  Cremj

2.2.2.4 Solid-Environment

Conductance (C) — Calculated from the center of the solid node to the environment using the

constant convection coefficient combined in series based on the following formula.

-1

1 1

C= + (29)
<Ci—>fc thfC>

In practice the conductance of the engine with the environment will be a constant value, and

therefore it possesses the same symbol as the conductance used for solid-solid interactions.

2.2.3 Node Contacts

A node contact is a temporary element that is used to define the contact of a node against the
1D surface of a connection. This allows all bodies to be discretized and these temporary data
structures to be sent to the respective connection to be later combined into faces. For connections

in the form of a cylindrical shell, a node contact represents a thin ring shape composed of a lower
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and upper bound in the direction of the local axis normal. For other connections of the horizontal
type, a node contact will be composed of an annular disk shape, with an inner and outer radius,
lying on the connection plane and centered concerning the axis. These boundaries also move with
the node, which facilitates the creation of faces with angularly dependent areas, existing only
during the crossing point of two nodes. The interaction with bridges necessitates the inclusion of
a local porosity, which represents how much of the total surface area is available, i.e. the hole
drilled to access the top of the engine body for the power piston would reduce the surface area of

the top plate.

2.24 Pressure Contacts

A pressure contact is a special surface used during simulation to connect a mechanism to
surfaces on which pressure acts. Pressure contacts are exclusive to faces that are both moving and
horizontally oriented. The properties of pressure contact include its area, direction and node index
from which the pressure can be recovered from the output array. This pressure is converted into a

force and sent to the mechanism during the mechanism loop.

2.2.5 Shear Contacts

Like a pressure contact, the shear contact approximates the proportion of shear drag from any
gas channels parallel to the moving surface. The properties of a shear contact include the acting
area, force direction and the face index from which shear is calculated. The force is calculated as

one half of the pressure drop across the face, which is attributed to the shear drag against the wall.

2.3 Interactable Elements

Interactable objects encompass the group of objects that the user modifies, moves about, and
interacts with. These objects can be thought of as a high-level perspective of the final numerical
model, which is produced when the model file is discretized. These elements all work within the
property inspection interface, can be created via the GUI, and contain the functionality to translate

their settings into numerical elements containing their own complex functionality.
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2.3.1 Groups

Groups are collections of bodies that all lie around a common axis of symmetry. Groups contain
a set of physical properties, including orientation data for their axis and the bounding box that
surrounds its contents. The group component also includes the functionality to form connections
between the bodies it encapsulates and the environment. In brief, this function collects all the
segments of all the connection at which a body intercepts, it then removes all the segments that are
covered twice by any body (i.e. a body on either side). The remaining segments after this algorithm
are either part of an illegal open space internal to the engine or are exposed to the surroundings.
At the point of discretization this information is passed down to the respective connections a
temporary construct known as a node contact featuring the gas node that represents the
environment. After processing, this results in connections that facilitate energy and mass exchange

with the environment when the model is simulated.

2.3.2 Bodies

Bodies represent a cylindrical or annulus shaped element that is aligned with a group axis. A
body can be any material, solid or gaseous. Bodies contain references to 4 connections that serve
to define its dimensions in the axial and radial directions. The primary function of a body is to be
discretized into nodes and faces. Those nodes that lie on a boundary are passed as node contacts
to connections. A body containing gas can also contain an internal structure represented by a
Matrix component, which it provides its created nodes to be further modified. Bodies also contain
functionality for validation, depending on the material. For example: solid bodies cannot change
its dimensions but may translate. Meanwhile, a gaseous volume can both translate and stretch in
their axial direction. Neither material allows for bodies to overlap or invert, which prevents the

model from simulating an engine that couldn’t exist or function.

Bodies can be discretized by two modes, which are shown in Figure 2.6, these modes can be

optionally applied to one of or both axial and radial directions:
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Figure 2.6: Discretization modes for body

Equal partitioning — The body is sliced into several equal layers in both the radial and axial

directions.

Smart partitioning — In solid bodies this discretization is dependent on whether a side is in
contact with a gas node or within a specific distance of a gas body. Only a small part of a side must
be in contact with a gas node to activate this function. But at those edges a specified number of
nodes will be placed within the oscillation penetration zone, a zone defined by the thermal
diffusivity and expected frequency of the engine test (discussed in section 6.2.1). Beyond that zone
the node size grows by a specified growth factor to a maximum node size. If neither side is in
contact with a gas node the body is discretized coarsely with equal partitioning such that the node

size is not greater than the maximum node size.

In Gas nodes this discretization works along the discretized direction and creates a series of thin
entrance nodes over the first and last 15% of the total length. Beyond these regions the nodes grow
using the prescribed growth factor. This style of discretization is inspired by the work of Anderson
[48] who applied this technique to regenerator and heat exchanger elements. These elements are

discussed in the next subsection as matrixes.
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2.3.3 Matrixes

Matrixes are found nestled within gaseous bodies; these elements represent a variety of fine
channeled geometries such as regenerators and heat exchangers. These elements are closely in
contact with the gas network and each has a porosity and geometry that merits an override of the

default defined hydraulic diameter (D), volume (V), area (A), Darcy friction factor (Ny)

correlation, Nusselt number (Ny;) correlation, and Axial Mixing enhancement coefficient (Ny).
When the matrix takes its parents nodes, it both modifies the provided nodes for the listed
properties and adds solid sources, surface nodes and faces which model the solid components of
the heat exchanger or regenerator as a nodal network. The following sub-sections discuss the

different types and their different properties.

2.3.3.1 Regenerators

The types of common Stirling engine regenerator structures and their discretization are outlined
here. For regenerators which are notably almost always laminar due to the domination of viscosity,
only the laminar correlation is provided. Property correlations, which for regenerators are taken
from Gedeon [35], are summarized in Appendix B of this thesis. The Darcy-Weisbach equation is
used here instead of Darcy’s law for flow through porose media both because it is used successfully

in SAGE [35] and as a consequence of maintaining consistency with the rest of the model.

2.3.3.1.1. Woven Screen

A woven screen regenerator is composed of a tight weave of filaments, often

arranged in layers perpendicular to the flow direction to minimize parallel
conduction losses. This is like the perforated screen type regenerator that is
not implemented here. The woven screen has 2 inputs: porosity (f) and wire

diameter (d,).
2.3.3.1.2. Random Fiber

A random fiber regenerator is usually composed of felt or batting of

randomly oriented fibers. The random fibre matrix has 2 inputs: porosity ()

and wire diameter (d,).
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2.3.3.1.3. Packed Sphere

A packed sphere regenerator is composed of many small packed spheres,
sometimes sintered together. The packed sphere matrix has 2 inputs: porosity

(8) and sphere diameter (d,,).

2.3.3.14. Stacked Foil

% A stacked foil regenerator is composed of many thin parallel channels between

thin foil elements. As this model is the most like an open channel, it provides

a laminar and turbulent friction and Nusselt number definition. The stacked

A\

foil matrix has 3 inputs: the gap width (l;), thickness (I;) and surface

roughness (1,.).

2.3.3.2 Heat Exchangers

Heat exchangers come in a wide array of different types; a selection of implemented types is
described here. In each of the diagram’s heat flow is identified by coloration with red at the heat
source and blue as it gets farther from the heat source. Air either travels into the page through the
open spaces or as indicated by arrows. All the correlations and property calculations for heat

exchangers can be found in Appendix B.

2.3.3.2.1. Fin Enhanced Surfaces

This type of heat exchanger is the case where one of the walls is the heat
exchange surface, this surface is covered with long parallel fins that span
across the gas space. This type of heat exchanger is common in a scenario

where the engine body itself conducts heat to and from a source/sink of

heat. Cases, where there are no fins and only a bare wall are handled

natively by the conduction with the wall, without need for a matrix

component.
Functionally, this matrix component allows the user to select a
Fin Separation  connection from which to grow the fins, the surface of this connection is

Fin Thickness
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2.3.3.2.2.

then integrated into the internal solid conduction network, which layers

nodes normal to the selected connection.

Fin enhanced surface exchangers have 4 inputs and assumes rectangular
fins: target connection, distance between fins (l;), fin thickness (l;) and
surface roughness ([,). Fin length is determined automatically by assuming
that the fins go right up to, but don’t touch the opposite side of the parent
body.

Fin Connected Channels

Gas Channel Width
Source Channel
‘Width

Skin Thickness

Fin Thickness

Base Width

This type of heat exchanger encompasses the subclass of heat
exchangers known as plate and frame heat exchangers. The main
feature being that the cross-section is an alternating pattern of the two

fluids, which persists through the depth.

The following two sub-types refers to the structure of the interstitial

fins:

e Rectangular Gaps: The fins cross at 90° across the gas side
forming many rectangular paths for the gas to flow through.
e Triangular Gaps: The fins zig-zag across the gas side forming

many triangular paths for the gas to flow through.

This heat exchanger has several inputs including: fin type (rectangular
/ triangular), gas space between source channels ([ 4), source channel
width (I,), skin thickness (I ,¢p), surface roughness (), base width /

fin separation (lf 4) and fin thickness (l¢p,).

51



2.3.3.2.3.

Fin Connected Tubes

Quter & Inner |,

Tube Diameter |<—.|

~@

Q0L

Parallel Spacirgj

Perpendicular
Spacing

This type of heat exchanger encompasses the subclass of heat
exchangers known as compact heat exchangers or finned tube heat
exchangers. The main feature of these heat exchangers is that one
fluid (assumed to be the source/sink fluid) traverses through a series
of tubes that are covered in surface enhancing fins or plates. The

tubes are most often arranged perpendicular to the flow direction.
Fin Type

Continuous Plate: The fins of this subtype bridge across from
tube to tube forming continuous plates. These are automatically

produced when the user does not submit a fin length.

Individually Finned: The fins of this subtype are associated

with just one tube.
Tube Pattern

Staggered: Staggered tube means that each consecutive layer of
tubes is offset relative to the previous one by exactly half the

perpendicular tube spacing. This is seen in the figure to the left.

Aligned: Aligned tubes are aligned, such that each tube lies in
the wake of the previous one. Aligned is generally not used unless
a very low-pressure drop is the essential requirement [52]. Which is

why it is not implemented here.

This type of heat exchanger accepts several inputs from the user
including: spacing perpendicular to flow (Ierp), spacing parallel to
flow (lparq), fin thickness (li,), fin separation (l;), tube outer
diameter (d,) and tube inner diameter (d;). In which fin thickness
and fin separation are identical to that identified for fin enhanced

surfaces.
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2.3.3.2.4. Tube Bank Internal

This type of heat exchanger is relatively common in high
temperature engines, it involves the forcing of air through many parallel
tubes each submersed in a thermally charged environment. The design
attempts to minimize flow losses while providing maximum surface

area and pressure containment ability.

This type of heat exchanger accepts 3 inputs: number of tubes (N),

Outer & Inner
Tube Diameter

outer tube outer diameter (d,) and tube inner diameter (d;).

2.3.3.3 Discretization

2.3.3.3.1. Regenerators

Regenerators typically contain extremely fine geometry, a well-designed regenerator, one that
behaves most like an ideal reversible device will maintain its temperature as close as possible with
the gas’s temperature. Thus, for a well-designed regenerator, the lumped mass assumption should
be able to be applied with little error. As a result, a typical regenerator only requires a single layer
of nodes. Discretization is straightforward then, simply construct a solid node for each gas node in
the body and form a mixed face between the two elements. The properties relevant to discretization

are as follows for each regenerator:
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Table 2.1: Discretization specific properties for common regenerator types.

Woven Screen & Random Fiber Packed Sphere Stacked Foil

Surface Area / A 1-p p 1-p 2
Total Volume d, d, L+,
(A/V)
Resistance to 3 d [
In(5)d i) -t
average radius . (2_) 0 6k 4k
times Area (R.A) 2k

2.3.3.3.2. Heat Exchangers

Heat exchangers are different compared to regenerators, as their purpose is to transport heat
from a physically separate space - the thermal reservoir - to the gas through their conducting
surfaces. A well-designed heat exchanger should have as little as possible resistance as this ensures
that the surfaces of the heat exchanger are as close as possible to the thermal source/sink, but often
they include extended geometry which may help the heat transfer but not be exactly at the desired
temperature. Therefore, heat exchangers are discretized along the path from the source to the gas.
The discretization scheme for the implemented types of heat exchangers is depicted in Figure 2.7,

through Figure 2.9 below.

Porous Solid Node Grid Gas Nodes

P i o
SR T I = = R N

Surface geteey . petens PR L — .

Figure 2.7: How elements are discretized in the fin enhanced surface type heat exchanger
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Source

\sink  SKI Pporous Solid Node Grid Gas Nodes

Node Node

Figure 2.8: How elements are discretized in the fin connected channels and finned tube
type heat exchanger

Source  Qkin

\Sink  Npde  Gas Nodes
Node

Figure 2.9: How elements are discretized in the tubes bank internal type heat exchanger

2.34 Connections

A connection represents a surface either as a cylindrical shell or as an axially normal plane.
Connections have a position, an orientation and a reference to a frame. A connection can use the
frame’s motion profile to shift its position depending on the angular position, which can move the

associated bodies. This only works when the connection is aligned as an axially normal plane.

To be discretized, connections find overlaps of node contacts, which over the course of

discretization, have been received from the environment, bodies and bridges. In many cases the
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properties of the faces that are generated from these overlaps will vary with respect to angular

position, thus these properties are stored as arrays, one value for each angular increment.

2.3.5 Bridges

A bridge is a geometric construct that facilitates the interface between two bodies, which may
or may not be part of the same group. These interfaces can occur between connections of
perpendicular and aligned orientations. The referenced bodies then connect, in disregard for any

existing external connections at that location.

There are four permutations of bridge definition. The first two are types which could have been
constructed as a combined structure from the start but convenience or perhaps requirements by the
program have made it more convenient to have separate. These versions are shown on Figure 2.10
below along with the third and fourth type. The third type of bridge is where the two selected
connections are both horizontal, much like type 1, but their axis are misaligned such that the node
interactions are only partial interactions. The fourth type is where there is a mix, where a horizontal

connection contacts the side of a vertical connection.

e @ ®

<)

-

O

Type | Type 2 Type 3 Type 4

Figure 2.10: Permutations of the bridge component definition (1) two horizontal (disk)
faces are stacked along a central axis (2) two vertical (annular shell) faces are aligned at
some offset from the origin (3) two horizontal faces are stacked with axis offset by a
specified amount (4) a horizontal face is perpendicularly mated up against a vertical face
with the axis at a prescribed offset from the origin of the vertically aligned face.

Type 1 and 2 add their own node contacts to the register of the foundation connection, and trim
node contacts on that register that both overlap the new contacts and are not from either body.

Types 3 and 4, as their construction is much more involved, create a series of faces of size equal
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to that which was produced by the overlap of 2 annular rings — in the case of type 3 — or an annular
ring and rectangle — in the case of type 4. The software then modifies the existing node contacts
by changing their porosity value, which will modify the area of faces created in subsequent
operations within the connection. It is important to note that because the software assumes that the
model is axially symmetric, any resulting faces are also axially symmetric, thus faces end up

stretched around the entire body rather than towards one side of the body.

2.3.6 Leaks

A leak component is a special feature that connects two separate bodies as if connected by a
small channel. When the leak is discretized, it forms a special face that stores the rate law
parameters for use by the solver. The rate law employed by default here is of the general form,

which has been applied as far back as 1881 [53].

V=C.(P—P)OM (30)
where: C: Leakage number

N1: Leakage exponent

2.3.7 Non-Connection

A non-connection was added so that the designer could create idealized representations. If two
bodies were not supposed to interact via conduction, convection, or transport, then the non-

connection can turn off these interactions by filtering the produced faces.

2.3.8 Custom Minor Losses

The custom minor loss feature was added to override the default defined minor loss coefficient
created between any two bodies. This feature also allows the user to add facsimile of check valves
by having a small loss in one direction, but a large loss in the other. Given the discussion defined
in CHAPTER 3, this will only work as a check valve when the face is a part of a loop, due to the
uniform pressure assumption, thus an alternative path must be provided, or the fluid will flow

regardless.
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2.39 Frames

A frame is a container for holding a position vector and mechanism reference. Connections that
contain a frame reference and are subject to pressure or shear force produce a Pressure or Shear

Contact object, which during simulation will pass these forces onto the mechanism itself.

2.3.10 Mechanism

Within the code, the mechanism is a container for a series of connected linear to rotational
mechanism. These sub mechanisms all share a common angular motion state. The mechanism
itself takes an accumulated driveshaft load as an input to its own internal friction, inertia, and load
calculations to return an acceleration. Generally, the flywheel and power outputs are defined within
this object. Currently the code does not support multiple mechanisms with multiple angular
positions, which would be one way to simulate free-piston engines or engines that have a free-

floating displacer piston.

The child linear to rotational mechanisms turn the rotation of the drive shaft into a translation,
that can be applied to a boundary. During each calculation step, occurring once per angular
increment, an average pressure force is calculated for all faces aligned normal to their motion.
These pressure forces form a combined piston load for each installed linear to rotational
mechanism — the forms of which can be found in the following sections. Each of these linear to
rotational mechanisms is derived to solve its internal friction and inertia and provide to the

driveshaft a pair of normal forces as well as a torque force.
Each mechanism contains stored coefficient vectors in the form of:

F = A(®)a + B(O)w* + G(8) + E(O)F, same as
3)

where: A(0): Coefficient on angular acceleration (@), represents the system
inertia as a function of angular position ()

B(0): Coefficient on angular velocity squared (w?), represents internal
inertia as a function of angular position ()
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G (0): Gravitation force, as a function of angular position (8)

E(8): Coefficient on piston force (F,), which represents how the piston
force, when translated through the mechanism produces a load on the

drive shaft.
In addition to the coefficients, all internal loads required to calculate the friction load (Ff) are
also stored, which have their own equations of the same form. Friction is a relatively small
component of internal forces, thus its effect on itself and normal forces is ignored and simply

subtracted from the torque after its power consumption is calculated, via:

Efriction = _lefrictionl = _lvarictionI (31)

The following sub-sections are common mechanisms used by DTECL; additional mechanisms
can be added to the code by following the template laid out by these. If a motion is desired, more
than the mechanism behind it, then the custom profile mechanism attempts to predict some of the

physics for such an unknown mechanism.

2.3.10.1 Slider-crank Mechanism

The slider-crank is by far the most recognizable linear to rotational

mechanism. The slider-crank is used almost universally by internal combustion

engines, this commonality leads it to be a convenient mechanism when designing
Stirling engines. Constructed out of 3 components: the crank arm, the connecting
rod, and the piston. There are three loss mechanisms associated with slider-
cranks that are considered: friction between the crank and connecting rod,
friction between the connecting rod and the piston and friction of the piston seal,
all of which are subtracted from the final torque. The derivation of the parameters

can be found in Appendix A.1.
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2.3.10.2 Rhombic Drive

i The rhombic drive is a very common mechanism in beta-type Stirling engines,

utilized primarily for its compact design and reduced side loads. Also, the

rhombic drive can be constructed such that it drives both the displacer and power

| piston on the same mechanism through the addition of a secondary set of
connecting rods and a nested shaft. In its essence, a rhombic drive is simply a
double slider-crank mechanism and thus its parameter derivation is built upon
the solution of the slider-crank with some specific modification, this derivation

can be found in Appendix A.2.

2.3.10.3 Scotch Yoke

! The Scotch yoke mechanism is a relative of the slider-crank mechanism that,

instead of a connecting arm, depends on a slot linkage to drive the piston forward.

The Scotch yoke is often used because its side loads are more easily managed or

relatively low due to the roller system. Another notable property of the scotch
%ﬁcza yoke is that it produces a truly sinusoidal motion profile. The derivation of the
parameters can be found in Appendix A.3.

2.3.10.4 Ideal Sinusoidal Mechanism

The ideal sinusoidal motion model is intended for use at the early stage of engine development.
The sinusoidal model is a frictionless scotch yoke and is only distinct as its definition interface is
based solely on the properties of the sine wave itself without introducing linkage dimensions. The

derivation of these parameters can be found in Appendix A.4.

2.3.10.5 Custom Motion Mechanism

The user can test different motion profiles for their effect on the thermodynamic cycle using a
custom motion mechanism. This mechanism results in a model that approximates the inertia of the
piston and driving mechanism through analysing the provided motion profile. The formulation is

discussed in Appendix A.S.
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2.4 Conclusion

Through the discussions presented in this chapter, it was established that the gas would be
modelled as a one-dimensional pipe network of uniform pressure. All geometry would be
considered axially symmetric, under the reasoning that well-designed Stirling engines are built in
that fashion. Under that, the solid would be modelled as a two-dimensional network. The
mechanism, due to low accelerations, would lag the gas network by short angular increments, in

which the velocity was deterministic.

Those discussions lead to the establishing of a model definition composed of annular blocks of
material, that connect to each other via mobile surfaces, grouped around a common axis. Bridges
and a variety of surface modifiers were added to support specialized geometry. Fine structures are
represented by network generating matrix components. These constructs decompose into a
network of smaller allotments of material called nodes and the faces that link them together. The

following chapter will discuss the mathematics required to solve this network.
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CHAPTER 3.CORE MATHEMATICAL PROCESSES

The following sections outline most of the mathematics used to solve the model during a
simulation. The mathematical complexities of specific components outlined in the subsections
within CHAPTER 2. This chapter in combination with CHAPTER 5 brings it all together into a

network solvable by a computer.

3.1 Terminology

The following terminology is defined here, other terms such as nodes, faces and the

environment are defined in CHAPTER 2.

Region: A region is a set of gas nodes, which are always connected during the entire cycle

through one path or another.

Loop: A loop occurs whenever there is more than one path between one part of a region to
another part of a region. A loop that often occurs in gamma type engines is the path past the
displacer and the path through the heat exchangers, which represent two different ways to get to

form the compression to expansion space.

3.2 General Heat Transfer

3.2.1 Thermal Conduction Within Solids

The solid conduction model is based upon Fourier’s Law, which calculate the thermal energy

transfer rate (Eqpng).

. dT
Econd == kAE (32)

where: k: Conduction coefficient of conducting material.
A: Cross-sectional area over which conduction occurs.

x: Position along the direction of heat flow.
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This can be rearranged to suit the case of conduction between nodes.

A 33
e (Ti — T]) (33)
Lisre | Lres

kK

Econd,fc =

where:  Ag., Econg,rc: Cross-sectional area and thermal energy transfer rate
of face, from node i to j.

LiferLfesj: Absolute distance, normal to the face, from the center of
node i or j to the face’s surface.

ki, k;, T;, Tj: Conduction coefficients and temperatures associated with
the nodes i or j.

In its final form, as seen in the model:
Econd,fc = Lcond- (Ti - Tj) (34)

where: C.onq: Combined coefficient that converts a temperature difference into
an energy flux.

Within the model faces can vary with angular position, thus this conductance property is
condensed into a single interpolated property. For static faces only the result of the above

coefficient is stored. This property is assumed to be constant concerning temperature.

3.2.2 Thermal Conduction Within Gases

Conduction between gas nodes is much like conduction between two solid nodes. Here only
molecular conduction is solved. Radiation would also be solved here but is ignored in this model
due to the low temperatures assumption. Thermal energy that is carried with mass flows is solved

within the volumetric flow rate solving step, section 3.3.

. oT
Econa = k. A.— (35)
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This is arranged to suit the case of internodal conduction/convection. The factor Nj is a
dimensionless conduction enhancement factor, which arises when turbulence or geometrical

pathing enhances the streamwise mixing action.

. Nk .k".Af
Econa re = —2———(Ti = T;) = Ceona- (T; = Ty) (36)

i—j
where: N, fet Conduction enhancement factor.

k;j: Thermal conduction coefficient measured at the face, equal to the
average value of node i and j’s conduction coefficient.

Li,;: Cumulative distance between the center of node i to the center of
the face to the center of node ;.

3.2.3 Thermal Conduction Between Solids and Gases

The conduction model between gases and solids is based upon the combination of conduction

and convection; radiation is ignored.

Econa = i (T; - T;) (37)

h;

Agc
i-fc

ki

where: Node i is the solid node and node j is the gas node.

h;: Is the convection coefficient produced by gas node j’s internal
geometry and flow conductions.

This is arranged to suit the case of internodal conduction/convection.

Due to the existence of variable area contacts, resistance is stored as the product of thermal
resistance and area. The following equation is modified to move area to the numerator, and use
RA in the denominator. As resistance is equivalent to a constant over area, multiplying by area
gives a constant. In this way, only area must be interpolated as resistance is proportional to the

inverse of area.
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Agc

Econd,fc =

d
Ri—>fc- Afc + (W;k

(T, - ;)
)

(33)

where: Nyy: The Nusselt number equal to %

dp: Hydraulic diameter with respect to the flow in node j

In a special case of constant convection coefficient, the system can be simplified to that of the

solid conduction. This is what is applied for connections to the environment.

3.24 Shearing Conduction Enhancement

In Stirling engines with a displacer piston, there is always a region of gas, called the annular
gap, that undergoes shearing. The act of shearing will affect the effective axial conduction
coefficient. This effect is approximated by assuming two things, which are also displayed

graphically in Figure 3.1:

——————————————————————————————————

1. Shearing conduction enhancement occurs

independently of transport via bulk convection.

2. A gas node is a uniform temperature with a

discontinuity at the face between.
Figure 3.1: Illustration of shear 3. The shear velocity profile is fully developed and

driven mixing linear.

4. After crossing the boundary, flows mix completely.

This equation introduces a non-dimensional number called the shear velocity factor, shear

velocity is equal to the ratio of shear speed over rotational speed. The mass exchanged is equal to

the following:

A F LW 1
. f h
mfc = (TC) (%) pfc = _Af(:' Fshear' w. pfc

Density at Face

Cross—section Average Velocity
over which it occurs
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where:  Fgpeqr = The face shearing rate expressed as velocity over angular
speed.

prc: Density calculated at face. In the current implementation this value
is taken from the node directly upstream from the face.

w: Angular velocity of engine.

The rate of thermal energy conducted downstream by shear (Ep,.q4r) is equal to the following:

. ) 1
Eshear = Cp-Myge. (Ti - Tj) = ch- Fshear- w-pr'Afc . (Ti - T]) (40)

where: c,: Thermal heat capacity with respect to constant volume.

This converts into a conduction coefficient for shear (Cgpeq,) Which is added to the existing

conduction coefficient:

1
Cshear = ch- Fsnear- 0. pre-Agc (41)

3.3 Determining Flow Rates

The following sections outline the determination, implicitly, of the flow rates between nodes of

the engine. This is derived starting from the foundation of equal pressures.

3.3.1 Assumptions

The following assertions lead to inertia independent scheme for solving for the approximate

internal thermodynamics of a Stirling Engine.

1. Pressure throughout connected regions is uniform in space but not time, in other words,
pressure change due to temperature and volume changes is much greater than pressure

changes from flow losses or acoustics.

M.Rspec.T

2. The air within the engine behaves as an ideal gas, following the law: P = ”
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3. The engine rotational velocity changes are negligible within small angular increments of
the cycle. Within these increments velocity is assumed to be known, but velocity may still
evolve in a rate that lags by an increment.

4. Boundary work on a single node within a region is distributed among nodes of the region
as if all the nodes were grouped into one.

5. Potential energy and kinetic energy concerning the gas is ignored given the low densities of
gas molecules and small vertical displacements.

6. Energy transport via radiation is ignored it is dependent on temperature to the fourth power
which for low temperatures results in a much lower effect at low temperature compared to

other thermal energy transport modes.

3.3.2 Deriving the Systems of Equations

The values of volume flow rate, internal energy, nodal mass and temperature of the engine are

solved based on the equations derived in the following section.

In consideration of the inherent compressibility of the Stirling engine system and avoiding
methods that encourage the emergence of undesirable acoustic effects, the following assumption
was used as the basis on which to derive the set of equations. The engine was first divided into

distinct regions, within which a uniform pressure would be enforced:

where: i, j: refer to two different nodes that fall within the same gas
region, whereas a gas region is an area of the engine which
is always fully connected throughout the cycle.

This equation states that the pressure of each node constituting a connected volume within the

engine has equal pressure. Starting from here the following is true for all nodes within a region:

<m. RspeC.T> _ (m.RSpeC. T)
4 it 4 jit

where: t: refers to the state at the current timestep.
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Thus, after a time step, the same condition applies:

(m. Rgpec- T) _ (m. Rgpec- T) 43)
4 Lt+8 4 jt+6

where: t + §: refers to the next state, after the timestep is traversed.

The specific gas constant: Ry, is assumed constant over a region, therefore it is removed in
further calculations. The first quantity, the volume at the new time (V; ;45), is easily determined,

as the volume at any angular position is predetermined by assumption 3:
Vitrs = fVi(9t+8) (44)

The second property, the mass of the gas node at the new time (m; ;+45), is as follows:

Mirrs = Mic + z ((V.y. 5. p)fc) (45)

where: y: Sign of face with regards the sign convention of volume flow rate.
If i is listed second with regards to face fc then y = 1. Otherwise,

y=-1
The third property, nodal temperature at the new time (T} ;4 5), must be determined via an energy
balance. The 1% law of thermodynamics is commonly represented as the following:

AEiot = AQtor — AWiot (46)

Whereas AU,,, is the change in the total internal energy of the control volume. AQq,, is the
transference of energy to the control volume through thermal energy. AW, is the transference of
energy away from the control volume by a force acting over a distance? The internal energy can

be expanded into kinetic, potential, and internal energy.

AEiot = AEgin + AEpo: + AU (47)
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The term AQ;,; can be expanded to include energy that is conducted to the control volume and

energy that is transported to the control volume in the form of internal thermal energy.

AQ,y; = Atz V.y.p.u+ AQ (48)

The term AW,,, can be expanded to include the flow work, kinetic energy and potential energy

of a flow as well as the boundary work.

. g
MW, = —Atz V.y.p <P. D+ g.z> + PAV (49)

Combining the expanded terms and converting into a derivative form the following equation is

obtained:
Eyin + Epot + U
—— “
Rate of change  Rate of change  Rate of change
of Kinetic of Potential of Internal
Energy Energy Energy

UZ
= E V.y.p u + PV + — + g.z (50)
N o —— 2 ——
Mass Specific Specific - Specific
Transport Internal  Pressure— Sp'QlellC Gravitation
Rate Across \ Energy Volume Kinetic Potential
Boundary Energy Energy Energy
+ Q - (PV)
- N——
PI-cl)fA(/letr Rate of Work
into the Applied on

System the surroundings

Several simplifications are applied to this equation:

1. Gravitational potential energy is ignored due to the short vertical distances found in
Stirling engines in combination with the low density of the working fluid.

2. Q and W), are combined into a single term E,,, which encompasses the thermal energy
conducted into the node and the boundary work or flow work acting externally on the

region, based on assumption 4.

69



3. Kinetic energy between nodes is ignored due to the low speeds and low densities of the
target engine environments.

4. Internal energy and flow work is combined into a single enthalpy term.

These simplifications result in:

Ekin"'Epot"'U:zV-Y-p. u+—+—+g9.z|+Q—-PV
I P2 5

3

Which results in the following:

. . p o
Fip = z <V.y.p. (u + ;)) —P.V+E,, 51)
fc

where: us.: Specific enthalpy, measured at the face, in the current
implementation this value is calculated using the Van-Alibaba flux
limiter [54] between a 15t order unwinding and 4th order polynomial
to prevent numerical artifacts.

Psc: Pressure as measured at the face, is the same as the pressure
throughout the region.

Prc: Density, measured at a face. Calculated using average of upstream
and downstream values.

The composite term: (V. y. p) fe is collapsed into m. in the next section for clarity.

For ideal gases it is commonly known that the change in temperature is dependent on the

internal energy.

dT_ 1 du

E = EE (52)

To calculate the next temperature:
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fet
Ti,t+8 =T, +— — U (53)

Coit \ Mitys

The equation for T; ;s can be inserted into equation (43).

P
. fc,t . .
mi’t. ui’t + 52 mfcli’t. <ufc + p ) - 6 Pi' Vi + 6 Eextl-

. P Y, ”
1 /mi,t-ui,t +8) Mpe it <ufc + p];;t) —46.P.V; + 4. Eexti \ Mirs P;
bt Cojt \ Mitrs l't/ Viers  Rspec 9

Multiplying m; ;s into the bracketed expression yields the following equation:

1 . Pres . .
Ti,t' milt+5 + C— mi‘t.ui‘t +46 mfc‘l-‘t. uf(: + - 4. Pi' Vi + 4. Eextl‘

vit pfc,t
(55)
s
— u., . m., s _—
vt bt Vi,t+6 Rspec
Expanding the value of m; ¢, s here:
Ti,t' milt + Ti,t' 5 Z(mfc uup)l,'t
1 . Pret . .
+ milt.ui‘t + 6 mfc‘l-‘t. qu + — 5 Pl" Vi + 5 Eexti — ui_t. mi_t (56)
Cvi,t pfc,t

DN ) L .5
— u.'t_ m it _—
' rel Vi,t+6 Rspec

Collapsing the sums into a single sum, this is possible because they all reference the same series

of faces that access the node i.
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1 . Pfc,t
Tip.mir + 6 Mecie| Tie + Uper — Ui +
Vi,t+6 Cvi,t pfc,t
(57)
mi‘t.uilt - 9. Pi' Vi + 0. Eextl‘ - ui‘t.mi‘t P]
Cvi‘t Rspec

Canceling out duplicate terms and reordering yields the following equation, which includes

both T;¢1s and m; 15 . When a set over the entire region, implicitly solves for the value of Vfc

when subjected to matrix inversion. Here, m is re-expanded to expose V.

1 8. (Eppe. — PV,
(Ti,t-mi,t‘l‘ ( ext; i l))
Vitrs Coie
(58)
1 . 1 1}6t) P,
+ ZV...S ) T-+—<u — U +— =
Vitrs ( y-p )fc‘l‘t vt Coip ret v Pfect Rspec

The exact same procedure can be conducted on the right-hand side to produce the following

equation.
1 8. (Eoxe, — pi_Vi)>
T, m;, +——*5t 2
Vitrs ( bt Coyy
. 1 Pfc
+ V.y.p.8 i T, + — .+ LE
Vi,t+6 z( y-p )fC,l.t it Cote (qu,t Uit pfc)
' / (59)
1 . (Bexty = B-V;)
= Tje.mje +
Vj,t+8 Cvj,t
1 1 ,
. e
+ Z V.y.p.8), . | T, + ., +LC
Vitrs (V-y-p )fCJ.f it Coje <ufc,t Ui pfc)

The terms of the full equation in for form AV = b are as follows:

Values of each element of column vector b. Here, each entry is for a face. Each face has two

nodes a node which a positive flow exits and a node which a positive flow enters, these are

presented as i; and jj respectively — where k is the face index.
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5-(Eext' _Pi-Vi) 1 6'(Eextj_Pj-Vj)
b, =F(i,j) = (T- .M+ : - Tieomip +
* J 5Vi,t+6 wbr e Cvi,t 6]/}',t+5 pet Cv]',t
b; F(iy,j1) (60)

b, F(iz,j2)
beCS F (iNfcs'ijcs)
where: N The number of faces being solved.

Values for each row of matrix A, whereas the column is defined by the face associated with the

value of V. Each row contains all the inflows and outflows for a pair of nodes i and j.

o) 1 Pr.
, — . Pcic| Ti +— <u —u; + —) if node i and face fc touch
g(l, fC) = Vi,t+5 feit i c fc i t

v Pgc
0 otherwise
. . s 7 j [ (61)
gD =g, D) gGu2)—g@,2) - (i Nyes) = g(ias Nyes)
A = g(jZ! 1) _9(12’1) g(]Z!Z) _g(lZ’z) o g(jZ:Nfcs) _g(iZ’NfCS)
g (ijCs’ 1) = 9N 1) i (ijCS' Nfcs) ~ 9Cng Nres)

There is a simplification to this when the region includes the environment, which is a node with

constant pressure.

8. (Eoxe, — P V) . 1 Py
(Ti,t-mi,t +———2)+6 Z Viee| Yeci-Pre|Ti +— | e —wi + L=
Coip Cy; Pfc

faces in"i" ¢ (62)
_ Vi,t+6- Peny
B Rspec
.. 1 V',t+5' P, 8. (Eexti - Pi' I./i
be=F(i.j) =3 (R— = Ty My = (63)
spec Cvl"t
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i 1
'y _ ) Veer| Yrei-Pr (T- +— (uf - u)) if node i and face fc touch
g (l, fc) —_ Cc ( C,l C l ; C l

CU
0 t otherwise
. L v 64
g g2 g (N 9
A= gl(inl) g,(iZ;Z) g,(iZ; Nfcs)
gy (iNfcs' 1) g’ (iNfcs’ 2) g (iNfcs' NfCS)J

The term E,,, represents the components of energy exchange to the node that can be
approximated using a previous value of the Reynolds number as between iterations the flow rate

changes are assumed to be small. This is defined:

Eexti = Z (yi- Ccond-AT)fc + Z (yi- Ccond-AT)fc (65)
Gas—-Solid Gas—Gas
3.3.3 Verifying as a Polvtropic Process

Stirling engines are a polytropic process, meaning that they exist anywhere along the spectrum

of processes. The polytropic index is a representation of the type of process that is going on.
dq
=1-y)—+ 66
n=(1-y)5 +y (66)

where: n = 0: Isobaric Process n = y: Isentropic Process
n = 1: Isochoric Process n = oo: Isochoric Process

The work from a polytropic process is equal to the following:

R(T, = T1)
w=—"—

T (67)

5
W(1—(1—y)ﬁ—y)=(1—y)(w—q)
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1

R Cp — Cy
— (T, —-T) = C (T, —=Ty) = —c,(T, — T)
Y 1--2

Cvy

q—w= CU(TZ _Tl)

This now aligns with the mathematics developed in the previous section; thus, the math should

have no problem simulating the polytropic processes of a Stirling engine.

3.34 Considering L.oops
Gamma Engine with Loop formed by mutual
Loop through Displacer Gap contact of 3 spaces.

|

7
i
i
H
1
1

\

.
S

e oy
‘ B ——rr——— >

Figure 3.2: Examples of common loops found in Stirling engines.

In systems that contain loops, as illustrated in Figure 3.2, it is observed that for each independent
loop added wherein the number of these loops is the same as in mesh analysis for solving circuits
[55], a new equation is required. A loop exists anywhere a gas particle can take more than one path
between any node an any other node. A common example, found in gamma type engines, is the
thin boundary around the displacer, which allows some gas to not pass through the heat exchangers
when traveling between compression and expansion spaces. This space is often minimized by close

running seals such that it could be modelled by a narrow gas path or even a leakage component.

Each loop is represented by a characteristic volumetric flow rate, called a loop flow rate. There
is one characteristic flow rate for each additional equation. The extra rows in the matrix will be
used to assign a value to the loop flow rates, producing, out the infinite set of solutions from the
indeterminant matrix, the solution that has those flow rates. This is done by having the row be all

zeros except for a 1 in the corresponding face’s column. The corresponding entry in b will be the
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value of this loop flow rate. The following discussion will outline how these loop flow rates are

determined.

Considering pressure to be akin to electric potential and a pressure drop to be akin to voltage in

an analogous circuit then over the entire loop the pressure drop should be zero:

ygAP —0 (68)

Calculating pressure drop using the Darcy-Weisbach equation [31].

_ L p.|ULU
APfc - f(NRe)d_h 2 (69)
fc

We can modify this term by considering the face’s movement relative to the geometry around
it. Hypothetically a translating face may have a gas flow rate that is zero across it but may still
develop a pressure drop because it is moving relative to the walls. The faces velocity is
precalculated in such a way that the product of the angle-dependent face velocity factor (F,) and

the instantaneous rotational speed equals the instantaneous face velocity.

U'=U+Us=U+Fo
L p.|U'|.U (70)
APs, = <f(NRe)d_T>

This results in the following equation for each loop.

Ngo) L
Z(ywd—hp.lU’l.Uj =0 (71)
fc

The equation introduces a non-linearity in the form of a squared velocity term as well as the
friction factor’s dependence on Reynold’s number, which is also dependent on velocity. This
equation is therefore solved by a root-finding scheme which sets the value of the set of

characteristic loop velocities until pressure drop across all loops is equal to zero.
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The derivative of this function concerning the change in the volume flow of a characteristic

volumetric flow rate is equal to the following:

Ve 0 ( y.L.p ) Dy > 0 jg
; ; N, AVecl. V, == AP
<aVloop anc Zdh.A2 fcf( Re,fc) | fC| fc aVloop (72)

For each
facein

loop

where: Vloop: Characteristic flow rate for loop, selected to be independent of all
other loops.

Manipulation of the expression gives:

1 Vi (y.p.L.|U| U 9f (Nge) 0
s v () e e 2100 =g foe
For each = ' loop h k Re X loop

facekin
loop i

(73)

where: %N’“): The change in the Darcy friction factor with respect to a change
Re

in Reynold’s number.

The intent in finding the derivative of the loop pressure drop is to use it as part of the Newton-
Raphson gradient descent algorithm. This algorithm makes incremental updates to a set of
parameters — in this case a set of velocities called generally here as X — seeking the set of velocities

at which the pressure crosses or equals zero. Each iteration step is as follows:
Xn+1 = Xn _]7:1-Fn (74)

where: X, = The vector of independent variables at iteration .
E, = The vector of dependent variables at iteration 7.
J». = The Jacobian of F concerning inputs X at iteration #.

Here the independent variable is the loop volume flow rate, which is a single flow rate that lies
in and only in the loop of interest, to minimize correlation during solving. The dependent variable
is the loop pressure drop. The Jacobian is constructed from the derivatives of the loop pressure
drop; the Jacobian formula is given below:
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aFl(X‘n) aFl(Xn)

axl axN
0Fy(X,) 0Fy (Xy)
axl axN
where: 9F, 1 Vi (v.p-LAUI\ (U  9f(Nge)
on_2 Tk < ) = Nge —= + 2f (Nie)
an 2 Foreach aVloop DhA k |U| 6NRE K
facekin

loop i

While the selected velocities are defined by this algorithm, all other velocities are still
dependent on the matrix defined in section 3.3.2. Additionally, the derivative with respect the loop
flow rate for all other flow rates can be obtained through querying the corresponding column in
the inverted matrix by (which is precalculated as only b is modified as part of the loop solving

scheme).

3.35 Considering Flow Losses

Due to the uniform pressure assumption all nodes have the same pressure. In the real system,
however, the flow loss would enact its effect by a rise or fall of the pressure acting on the piston
faces. This must be considered to some degree as the work of some pistons, namely the displacer,
is solely a function of this loss. This loss is solved by calculating the pressure in all nodes such
that the total pressure is equal to the Pr.q4;0, defined in equation (77), and that the pressure drop
between adjacent nodes matches equation (70). This results in a modified set of pressures that is
an estimate of the pressure drop, this will be particularly effective when the difference in pressure

is all that is required, such as the pressure difference across a displacer.

For each face, using the Darcy-Weisbach equation [31]:

1 Nf. L
P,—P, = E(K + C’;—h> p-|Usc|- Upe (76)

For all nodes:
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Z Png-Vna = Pregion- Vregion (77)

The matrix in the style of Ax =b:

'(1(K+Nf.L> v U)_
P, 2 d, )77

P:Z _ ()2 (78)

Py ()M

L Pregion- Vregion i

Vi Vy o e e e Wy

3.3.6 Smooth Property Changes

For many properties in the model, their value changes relative to the crank angle. These
properties called “x” may be linearly interpolated between crank angle or, for better results, they
can be interpolated using a cubic spline. The cubic spline provides several benefits, it ensures
changes, particularly in the derivative are smooth which improves the convergence of sensitive
components such as the loop solving in section 3.3.3. The following discussion outlines the
interpolation procedure, which considers the gradual change in speed of the engine between

angular positions.

Taking the volume as an example, the instantaneous change in volume is interpolated via a
cubic spline of the 4 points around the current simulation region. This cubic spline is derived such
that the 2" order central difference derivative at the start and endpoint of the section is the same,
this avoids discontinuities in rate when transitioning between angular increments. The locations of

the interpolation points are provided in Figure 3.3.
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Volume

Angular Position

Figure 3.3: Angular locations of V, through V3

At +B.t?+C.t' +D =V (")

av
34.t'* +2B.t' + C = - @)

where:
t—t,
t'=————  At=ty—t
tnir — tn n+1 n
(dV) _ V= Vo) avy (Vs —V1)
dt 1 B Binc (E)z B Oinc
2 0, 2 05 (79)

A—At(dv) +At<dv) 2(V, = V)
— 7 \dt /), dt/, 2

dv dv
B = —2At (—) — At (—) +3(V, = V)
1 2

dt dt
= ae()
- dt/,
D = V1

A similar procedure is applied for all dynamic properties. In addition to the cubic spline
interpolation, each interpolated value is clamped to be above zero depending on the physical

realism of a negative value occurring. Some properties, such as volume, which are featured on the
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denominator of a calculation are clamped to be above some small tolerance value to avoid the

small time-steps or errors that occur with smaller or zero values.

3.4 Turbulence

3.4.1 Open Channels Flows

Turbulence here is adapted from the implementation found in SAGE by Gedeon [35]. This
implementation represents turbulence in open channel flows as a conserved property bounded
between 0 and 1. Gedeon, through development of SAGE, observed that for oscillating flows while
the flow was turbulent it exhibited properties like that of steady-state turbulent flows and while it
was observed to behave in a laminar manner, its properties mimicked steady-state laminar flows.
Thus, this factor, T, attempts to predict the altered transitions between laminar and turbulent. In
practice, this factor serves as a weight between the laminar and turbulent values of the Darcy

friction factor (Nf) and the Nusselt Number (Ny,). The associated conservation equation is as

follows [35]:

a(r.A) O(r.U.4)
o T ox eem (80)

The weighting factor is carried with the flow and its generation follows a few rules.

Flows in the wake of large geometrical features such as those representing bends or area

changes always receive a fully turbulent flow corresponding to a value of T = 1.

Generation of turbulence within nodes occurs exclusively when the flow condition is above

Re.,;; represented below [35]:

NVa
N =200 115 81
Recrit max <o.075 +0.112w. (t — ty) ) &b

The Valensi number (Ny, ) represents the ratio of oscillatory fluid inertia to viscosity and is defined

as:
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(82)

The value t, represents the time at which the flow was at a velocity of zero. The function in the
denominator represents the growth of the momentum layer under sinusoidal oscillations, which is

close enough for this model.

The generation or decay term for turbulence weighting factor is represented as [35]:

oT w8 { 0.008Ngzg. (1 —71) Nge > Nge iy 83)
0t Ny |=0.25Nre minar- T Nre < Nre i
Outflows and inflows induce changes in turbulence weighting equal to the following:
5 . (Tge — Ty) V. is entering node i through a pipe
T, ™M i
a_tl = n{; (—Tge + Ty) V¢ is leaving node i (84)

(1—-1;) V. is entering node i through a minor loss

3.4.2 Matrix Flows

Flow within the fine geometry of features such as regenerators or heat exchangers is considered
a Matrix flow. Such flows develop rapidly and under oscillatory conditions are very close to
steady-state due to the domination of the viscosity term. Therefore, the weighting factor between

a turbulent and laminar value is as follows [35]:

Flam Nse < 0
F(Nge) =3swW.Figm + (1 —=w). Frypp 0 < Ng, <1
Fturb 1< Nse
where: . _ Nee—2300 _ Ng —2,300 (85)
Re ™ 4000 —2,300 1,700

and

w = Nz, (3 — 2Ng,)
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The incorporation of the smooth step function is an improvement over the discontinuous curve

applied in SAGE. This function applies to both the Darcy friction factor and the Nusselt number.

3.4.3 Variable Volume Spaces

Turbulence within variable volume spaces is generated by inflows and reduced by outflows and
remaining turbulence is decayed as a function of time. An important distinction is that turbulence
in variable volume spaces is not measured by the weighting factor T but is rather a specific

turbulent kinetic energy k.

The turbulence produced by an inflow is a function of the entrance velocity [35]:

. 2
. 1 Vfc L . ,
ok; My )| s\=—] —x;| Vg isentering node "i"
— = 2\ As,

ot m;

(86)

0 Vi, is leaving node "i

where: k;: The specific turbulent kinetic energy for node i

Flows that leave a variable volume space do not change the specific turbulent kinetic energy.
The entrance velocity turns its kinetic energy into the swirling motion observed in open chambers.
This swirling energy is decayed according to the following rule, derived by Gedeon [35], [56] and
presented by Cantelmi [57].

dmk Cp

N|w

= —————m.K
Ot gecay 0.021D,

87)

where: Cp: the turbulent energy dissipation constant for tube flow = 0.08
0.021Dy,: the spatial averaged length scale for tube flow and

k: is the specific turbulent kinetic energy

Through manipulations:
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aKl' 58K2 K; ami (88)

Turbulence in variable volume spaces affects the values of the effective conduction and
viscosity factors, also extracted from Gedeon [56]. These overwrite the default values of these

properties and result in higher wall conduction and higher friction losses in variable volume spaces.

(89)
Hepr = 1+ 0.021p.dy.\k

3.5 Chapter Conclusions

Through this chapter the equations needed to solve for the energy exchange due to conduction
was presented for all possible node combinations. Following this, the mathematics needed to solve
for the volumetric flow rates of ideal gases with volume and energy changes was outlined. Then,
the expansions applied when the network contains loops were discussed, allowing the code to solve
arbitrary networks. The pressure correction due to flow friction was provided, allowing the
uniform pressure assumption to still support the effect of flow losses across pistons. The cubic
spline used for smooth property transitions and handling of angular accelerations was presented.
The chapter concluded with the presentation of the turbulence handling mathematics derived from
SAGE’s [35] implementation. These theoretical formulations, lead into the next chapter where
they are implemented into algorithms which decompose the interactable blocks into the network,

and finally into a solution.
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CHAPTER 4.SIMULATION

During the solving phase MSPM follows the flow structure in Figure 4.1 below, each of the

actions are discussed in the following sections. All the project code can be found in Appendix G.

Get Simulation
Parameters from

Discretize
Apply Result — Calc. Dynamic Properties Calc. Next Velocity Target
Snapshot Calc. Flow Independent Flux's Calc. Acceleration

Calc. Explicit Mass Flux's

Calc. Drive Shaft Forces

Calc. Region Boundary Work

Calc. Piston Forces

User —
Calc. Implicit Mass Flux's
Pre-allocate -
Memory for Calc. Turbulence Flux's
Results Constrain Time Step
Run Warm-Up | | | Apply Flux's
Phase Record Statistics

Is the
Simulation
Finished?

Yes

d At end of Yes
increment?

Figure 4.1: Process structure of the simulation loop, elements inside of the box are
repeated until the simulation has timed out or converged.

Generate Results

|

4.1 Discretization and Conditioning

Many steps are involved in creating and conditioning the network for solving, these are outlined

in the following sections.

4.1.1 Discretize all Components and Collect Discrete Elements

The model discretizes components in a particular order, which is shown in Figure 4.2. The

discretization of each element is discussed in 0.
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‘ Node Contacts Node Contacts L:,: Node Contacts ‘
M Environment
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Nodes || Faces Faces Faces
[ Nodes || Faces | | Fa

Mordel

Figure 4.2: Flow of information during discretization

Bodies are discretized first, which generates the node contacts that are used by connections.

Then the environment is discretized, and its singular node is distributed among the boundary

connections. Following this, bridges are discretized as they will provide their own node contacts

as well as modify the existing ones. Lastly the connections are discretized, which pair up the node

contacts to form faces.

4.1.2

Decimate Nodes Based on Size

After the mesh is produced, a post processing step eliminates particularly thin nodes from the

calculation. This step prevents the existence of nodes that would otherwise produce an

unreasonably small timestep, dragging the entire simulation down for negligible gains in accuracy.

Small nodes are merged into larger nodes if the timestep, as defined by the Fourier number, falls

below a certain threshold. This timestep is constructed as follows:

where:

dU
5=N (d_T)nd _ N Heat Capacity
Fo( do ) Fo"Conductance
d(an)),

Fro: The maximum allowable Fourier number.

au o .
(d—T) : The derivative of total internal energy vs temperature of the
nd

node. Equivalent to the heat capacity of the material found in the node.

(d—Q) : The derivative of heat flow rate across a face of the node
d(am)/ g,

verses the temperature difference across it. Equivalent to the
conductance of the face.
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The larger node then takes on the unmodified faces and appends the properties of the smaller
node. This has a significant impact on the performance of the model at the loss of some small

elements.

4.1.3 Assign Minor Loss Coefficients

A minor flow loss coefficient (K) applies to a face when the flow area changes between the first
and second nodes. Faces in which this applies have two such coefficients a forward (K;,) and a
backward (K5, ) minor loss coefficient, corresponding to the two possible flow directions. These
can be applied using the default equation presented in section 2.2.2 or can be overridden by the

custom minor loss coefficient component.

4.1.4 Decimate Triads

The number of loops is a major factor in the run speed of the simulation. Oftentimes junctions
occur between 3 nodes, which form micro-loops, increasing the load on the solver. The decimate
triad’s function finds such triads of nodes and assesses them, looking at the relative size of the
faces. The node with the largest contact to the other two nodes becomes the base node and replaces
the connection that lies between the two other nodes. Figure 4.3 below illustrates this process. The
final area and loss coefficients of the non-eliminated faces are equal to the area weighted average

of the values.

Base Node Base Node

D

Face to Eliminate

Figure 4.3: Example of a triad elimination action: faces are selected based on their
relative size, the remaining 2 faces are then modified to compensate.
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4.1.5 Assign Indexes to all Elements

Though it is convenient to work with discrete elements as objects (as in object-oriented
programming), it is much faster to access vectorized elements in MATLAB. Therefore, a unique
index is assigned to each node and face in preparation for vectorization. The indexes are assigned
such that when sorted in ascending order the gas nodes appear before the environment nodes,

which are followed by solid nodes. Similarly, gas faces lead mixed faces, which lead solid faces.

4.1.6 Vectorize Node and Face Properties

Using the previously defined index, nodes and faces insert their physical properties — which are
defined in 0 — into arrays that are more computationally efficient to access than their current object-
oriented format. Here also the dynamic properties are referenced and stored in a master array. Due
to previous sorting the resulting property arrays are as small as possible as the most memory

demanding elements are listed first.

Specialized elements such as leaks, shear and pressure contacts remain in their object-oriented

format as they are typically few in number.

4.1.7 Determine Maximum Solid-Conduction Timestep

A loop through all the Solid Nodes calculates the absolute minimum allowable time step per
angular increment based on the maximum Fourier number (Ng,) defined in equation (90). If the
conductance changes due to a sliding boundary the most conservative value (smallest timestep) is

retained, this is derived from the definition of the Fourier number.

4.1.8 Determine the Conduction and Transportation Vectors

With irregular grids, one of the challenges is efficiently calculating the change in the nodal
properties. This is a challenge because a node can have many faces and finding them for each node
is a tedious task. even if a list of face indexes were obtained this would constitute many short and
therefore inefficient vector operations. As MATLAB is very fast at large vector calculations, the
goal is to define as many large vector calculations as possible, because the conduction values can

change every frame it would be a challenging pursuit to do this efficiently by constructing a matrix.
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The prework pseudo-code below produces sets of faces that can be added to the nodal values
without overlapping each other. The result of this operation is a vector of vectors which contains
parallel sets of 3 vectors, the first contains the sign of the operation, the second contains the vector
of nodes on which the operation is performed and the third indicates the face. In the case of a grid
mesh, this would produce at most 8 sets, no matter how large the grid was. (one for each face of a

node, one for each sign).

Inputs: List of all Nodes and Faces
Step 1: Initialize Vectors

CondNds = vector containing the indexes of all Nodes
CondFcs = vector containing the indexes of all Faces
Ndsl = vector containing only the first node listed by each Face
Nds2 = vector containing only the second node listed by each Face

Step 2: Make backups of Ndsl and Nds2
CondNdsl = Ndsl --- Duplicate of Ndsl
CondNds2 = NdsZ2 --- Duplicate of Nds2

Step 3: Exclude nodes that are constant values (surrounding, source, etc.)
Ndsl (indexes where the Node has static properties) = 0
Nds2 (indexes where the Node has static properties) = 0

Step 4: Calculate how many sets of vector to produce, based on the maximum
number of times any one node is referenced.
if any(Ndsl are not equal to 0)
x = mode of Ndsl excluding 0’s
N1 = number of times x occurs in Ndsl
else NI = 0
if any (Nds2 are not equal to 0)
x = mode of Nds2 excluding 0’s
N2 = number of times x occurs in NdsZ2
else N2 = 0

Step 5: Create vectorized references
i =1
CondVectors = vector of vectors of length = 3*%(N1 + NZ2)
if NI is not O
for k = 1 to N1 by stepping 1
N = count of unique values in Ndsl excluding 0’s
CondVectors[i] = -1
CondVectors[i+1] = vector of 0’s of length =
CondVectors[i+2] = vector of 0’s of length
Counter =1
for x = 1 to length(Ndsl) by stepping 1
if Ndsl[x] > 0
if (Ndsl[x] is not already in CondVectors[i+1])
CondVectors[i+1] [Counter] = Ndsl|[x]
CondVectors[i+2] [Counter] X
Ndsl[x] = 0
Counter = Counter + 1

I
=z =
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Step 6: Repeat Step 5 for N2 and Nds2
return CondVectors, CondNdsl, CondNds2, CondFcs, CondNds

-- Usage (as found in simulation.m)
Using CondFcs, update all conductances and calculate energy flows using
CondNds1 and CondNds2
for 1 = 1 to length(CondVectors) - 2 by stepping 3
QOnode [CondVectors[i+1]] = Qnode[CondVectors[i+1]] +
CondVectors[1] *Qface[CondVectors[i+2]]

The equivalent data structure for transportation is obtained by the same method above but for
solely the gas-gas faces and nodes. This is used to determine the nodal Reynold’s number, which

is simply the area weighted average of the Reynold’s number of its participating faces.

4.1.9 Establish Gas Regions

Given that the model can be defined arbitrarily, the interconnected gas spaces within the engine,
henceforth called regions, must be determined automatically. A region is distinct from another gas
space if at any point in the cycle it is completely cut off from that other space; thus, allowing a
build up in pressure. Such spaces are found via a recursive space filling algorithm starting at a root
node. The output is a vector with region indexes for each gas node including the environment node.

The pseudo-code below outlines the algorithm:

Inputs: List of all Nodes
Outer Loop: Loop through all the nodes to find ones that are not grabbed
by the recursive function. Any new ones indicate an unreached region.
n =0
region = vector of 0’s of length = number of Gas & Environment Nodes
for each Nd in Nodes
if the Nd is a Gas Node and it does not have an assigned region
n=n+1
region = PropegateRegion (Nd, region, n)
if all nodes have a region then exit for each Nd loop
return region

Inner Loop: Add the current node as a region member, look for unreached
neighbors, call the function using them as a starting point
Sub Function PropegateRegion (Nd, region, n)
if region[Nd.index] 1is 0 ... Nd does not have a region
region[Nd.index] = n
for each face associated with Nd
if the face is a gas face and never completely closes
node = other node of face relative to Nd
region = PropegateRegion(node, region, n)
return region
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Post-processing of the output vector provides a list of nodes for each region. Faces are assigned
to a region if both member nodes are within the same region. Also, the region that contains the
environment node is treated differently during simulation, so it is indicated with a Boolean value
if the current region is an environment region. It is treated differently because its pressure does not

change, resulting in a simplified solution.

4.1.10 Find Loops within each Region

Loop finding is another area where a specialized algorithm is required that is composed of
several steps. The first step eliminates dead-ends. Then faces that are within the region but are
closed for parts of the cycle are found. Followed by the actual loop finding algorithm. The final
output of this series of algorithms is two data structures. The first, RegionLoops, is a vector of
arrays with an array for each region that has 3 rows, the first for a node index, the second for a
face index and the third for a sign. The second, RegionLoopslnd, is a vector (corresponding to
each region) of arrays that contains pairs of numbers, in columns, indicating the start and end
column in RegionLoops for each distinct loop in the region. This data structure is shown in Figure

4.5. This algorithm is described in Figure 4.4 and also by the following code.

o Start Loop on edges Close the edge that the  Starting from the next open
Eliminate Dead Ends that disappear loop started on edge, make loops, etc....

e

Figure 4.4: Loop finding algorithm illustration. (dashed) face that has an area of zero at
any point of the cycle. (red) eliminated face. (blue node) starting point for algorithm.
(green) discovered loop.
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RegionLoopsind RegionLoops Graphical Representation

Region 1 Region 1
34 45 35

Region 2 Region 2

Loop 1 1 4 NodeID | 56 34 35 36 65

Loop2| 5 FaceID| 65 | 45 | 46 | 87 46

Loop 3 Sign| -1 -1 1 1

36 87
36
Region 3 Region 3 o
True direction of face

Figure 4.5: Loop data structure and graphical representation

-- Elimination of dead-ends

A node is a dead end if they have only one gas face, or they have two gas
face but one or both leads to a dead-end node. Mark these and all their
faces as closed in the closed edge array.

open = empty

for 1 is 1 to the number of regions
-- Region Enclosed Closing Edge Discovery
Collect faces whose area goes to zero at some point but both nodes lie
within the same region. Add these to the “holes” array and mark them

closed.

-- Loop Finding

visited edge = closed edge
lequ = 1
lcount = 0

N = number of faces in region 1 - number of nodes in region i + 1
for k = 1 to N by stepping 1
if k is less than or equal to the number of holes
-- Find a loop that covers this hole, one must exist
Start Face = holes[k]
else
-- Find open edges and find a loop that covers it
closed = []
for each face in Faces
1f face is a gas face, close edge[face.index] is false
and it is with region 1
Start Face = face
exit for each face loop
Closed Edge[face.index] = true
Vis Edge[face.index] = true

closed = LoopNode ([], Start Face, first node of Start Face)
target = first node of Start Face

open = LoopNode (closed, Start Face, second node of Start Face)
edge closed = Start Face
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-- Use open as a starting point to the path to “target”
done = false
while open is not empty and not done
len = length of open
for x = len to 1 by stepping -1
-- Expand open[x]
LpNd = open[x]
Add LpNd to closed
For each face associated with LpNd.Nd
If the face is a gas face, 1is in region 1
...and Vis edge[face.index]
visited edge[face.index] = true
newNd = other node of face relative to LpNd.Nd
if newNd is the target
done = false
add LoopNode (LpNd, Fc,newNd) to closed
else
add LoopNode (LpNd, Fc,newNd) to open
cut elements 1 to len from open

if done
-- Backtrace the loop
current = last element of closed
lcount = lcount + 1

RegionLoopsInd[i] [1,1count] = lequ

while not current is empty

RegionLoops[i] [1,1lequ] = current.Nd.index

RegionLoops[i] [2,1lequ] = current.parentFc.index

if the first node of current.parentFc is current.Nd
RegionLoops[i] [3,1equ] = 1

else
RegionLoops([i] [3,1equ] = -1

lequ = lequ + 1

current = current.parent

RegionLoopsInd[i] [2,1count] = lequ - 1
if the length of holes >= k

RegionLoopsInd[i] [3,1count] = holes[k].index
else

RegionLoopsInd[i] [3,1count] = 0

-- Close dead-ends from the nodes of edge closed
Not counting closed edges as faces, remove dead ends.

LoopNode (parent, parentFc, node)

4.1.11 Define Pressure Loss Matrix

Given the assumption that pressure does not change throughout a region, it does not allow

pressure drop to be naturally obtained by the solution. An approximation of the actual pressure is
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obtained in solution by solving for the nodal pressure. Thus, there is a need to determine the faces
that represent all the independent equations. The algorithm that does this is graphically represented
in Figure 4.6 and in the following pseudo-code. During this phase a matrix was created which
includes the sign of all the faces, the algorithm that creates this is not shown here. This algorithm
is akin to finding the minimum spanning tree of the network with the modification of excluding

the closing faces.

Starting at a random node, grow outwards, marking nodes as visited, only go to non-visited nodes, holes are closed

Figure 4.6: Determining the independent faces (dashed) face that has an area of zero at
any point of the cycle. (red) eliminated face. (blue node) visited node. (green) set of
independent equations obtained at iteration step

isvisited = vector of false of length = number of gas nodes

ActiveRegionFaces = vector, length = number of regions, of vectors
for i = 1 to number of regions by stepping 1

k=0

ActiveRegionFaces[1]

node = node in region 1

[ActiveRegionFaces[i], isvisited] =
PropegateActiveFaces (node, isvisited, ActiveRegionFaces[i])

Function [fcs, visited node] = PropegateActiveFaces (node, isvisited, fcs)
isvisited [node.index] = true
for each face associated with node
if the face is a gas face in the region and whose area is always > 0
if any of the nodes of this face are not visited
add face to fcs
[fcs, isvisited] = PropegateActiveFaces (
unvisited node of face, isvisited, fcs)
return fcs, isvisited
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4.1.12 Vectorize Node Faces

A different form than the transportation matrix, each node also requires, for the construction of
the volumetric flow rates solving matrix, a list representing its faces. This takes the form of a
vector of matrices. Each submatrix has 3 columns corresponding to the face index, the sign relative

to the node and a 0 or 1 which indicates whether the face is implicit or explicit respectively.

Faces that do not fall within a single region are defined explicitly using the pressure difference
across them. Explicit definition does bring instability but since it is between two regions, rather
than 2 nodes, the effective node size is much larger. Explicit calculation of those faces is done
because the two regions may be closed to each other during parts of the cycle. Over these parts
they can generate very different pressures. Within Stirling engines however, this sort of
phenomenon is relatively uncommon except for leaks and introduction of an explicit face will

likely drastically slow down or destabilize the simulation.

4.2 Simulation Setup

4.2.1 Apply Snapshot

If the user wishes they may apply a snapshot of a previous test, snapshots are always taken at
the same angular position (angular position of 0) which is the same angular position all simulations
start on. All bodies, when created, are assigned an integer, which serves as a unique identifier. The
same identifier is used to recast the data onto the body for the next simulation. A snapshot of nodal
temperatures and pressures is saved for each body based on nodal positions relative to the bodily
extremes (a value of 0 to 1). When recasting a snapshot, these non-dimensional positions are used
in the 2D interpolation of nodal properties. Otherwise, if a body is new relative to the snapshot or
has changed the phase of its material then the body maintains its default values. This flexible setup
allows a much greater useful lifetime for results, as a modified engine would have similar property

distributions to its original form.
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4.2.2 Get Simulation Parameters from the User

The user is provided with a series of options that control the type of simulation that they are

running. The controls and their summary are outlined in the following table:

Table 4.1: Simulation Parameters and Description

Maximum Simulation Time Determines the absolute maximum amount of time the
simulation will run. The actual simulation time will depend
on other properties such as steady-state convergence or

stalling.

End Condition The user can type “SS” for a steady-state simulation
termination condition or nothing to allow the simulation to
run till time-out. The SS condition looks for convergence in

the cycle power output to be under some tolerance.

Motion Condition The user can type “C” for constant velocity simulation or
“V” for variable velocity simulation. For a constant velocity,
the simulation will run on the initial velocity for all
increments. For the wvariable velocity simulation, the
mechanism will be used to calculate changes in velocity

throughout the cycle.

Initial Velocity This is the initial velocity that the engine will be running at

the start of the simulation.

Maximum Time Step Generally, this not recommended as time-step is already
automatically constrained, but the user has the option to

prescribe an absolute maximum timestep when desired.

4.2.3 Pre-allocate Memory for Results

For simulations that are run using the constant velocity assumption the total number of data

points to record is known, therefore these output arrays can be allocated at the beginning. For
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variable velocity simulations, the output arrays must periodically expand in chunks to allow for
further records. While MATLAB will automatically expand arrays when the provided index is
beyond the scope of the array, it is more efficient to expand the array in large chunks to minimize

the number of times the array must be copied.

4.2.4 Run Warm-Up Phase

The warmup-phase is inspired by laboratory experiments where engines with substantial
thermal inertia are warmed up for some time to allow them to start running, as a warmed engine
will generally run fast before slowing down to steady-state. With this simulation the same scenario
occurs, allowing the engine to approach steady-state from a faster speed (in a variable speed test).
This also will speed up convergence as components such as the piston, regenerator and walls will

already have a temperature gradient, which may take a great deal of time to develop.

The warm-up phase converts all nodes to solid, using the cycle average geometry and a Nusselt
number of 1 corresponding to pure conduction, region pressures are calculated to conserve mass,
but warm-up phase calculations do no simulate gas flow, a neglection that significantly speeds up
the calculation. When using thermal convergence acceleration (section 5.1) this step is not required
as the temperature profile can show up rapidly by using the quickly acclimated gas temperatures,

but this feature is retained as it can mimic a experimental process.

4.3 Gas Solver Loop

This is the actual simulation; the following sub-sections occur for each timestep.

4.3.1 Calculate Dynamic Properties

Properties that change according to angular position such as the hydraulic diameter, volume,
area, friction length, relative velocity factor or stability length (length that is used in Courant
number calculations) are interpolated according to the cubic spline formula. Also, within this
section, properties that rely on correlations are updated, these include conduction coefficient, heat
capacity, dynamic viscosity, nodal Reynold’s number and the Nusselt number are all recalculated.

If a function call is involved, then elements that use the same function are grouped together and
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all functions are created such that they can handle vector inputs; this improves computational speed

significantly as function calls to dynamic or anonymous functions are remarkably slow.

4.3.2 Calculate Flow Independent Flux’s

Calculate any conduction fluxes. Some of these may be dependent on the flow conditions such
as the Reynold’s number, or Nusselt number but these properties are assumed to be slowly
evolving relative to the size of the timestep. This section utilizes the conduction network produced

in section 4.1.8 to apply calculated flux to their respective nodes.

4.3.3 Calculate Explicit Mass Flux’s

Explicit mass fluxes are determined via the pressure drop across a boundary. Generally, these
passages are small, given that during some part of the cycle their area is zero. However, they cannot
be part of a region because they represent a perfect seal during the closed-off period, allowing the
two regions to exhibit different pressures. The internal energy and mass transport are automatically
handled in the implicit mass flux stage. Open channels are iterated to converge on a volume flow
rate appropriate for the change in pressure, leaks determine flow rate via the pressure difference.
Explicit faces are excluded from the timestep calculation as they can introduce extremely high

velocities, the timestep will still dramatically fall as the gas is distrusted through the network.

4.3.4 Constrain Time Step Pre-Mass Flux

At this point the time step is restricted based on the Courant number for velocity and the
maximum Fourier number for mixed heat conduction. Solid conduction is already analyzed using

the precalculated angular timestep limitation, serving as the initial maximum timestep size.

4.3.5 Calculate Implicit Mass Flux’s

Produce matrix 4 and b such that the solution of Ax = b will give uniform pressure over all
region nodes. The first section of pseudo code occurs before the differentiation between regular

and environment region. The region with loops section occurs conditionally after both of those.

faces = ActiveRegionFcs of region 1
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nodes = nodes of region 1
F2C = array that takes a face index and returns a column index associated
with A
-- Structure of data:
1 column for each face
The first row = face index
The second row = sign of face relative to the node
The third row = 1 if the face is explicit, 0 otherwise
A = matrix of square size = count all of region 1i's faces
= column vector of size matching matrix A

o
|

1. Environment Region

Since the pressure of the environment is static, each node of a region that contains the
environment maintains this static pressure in a simplified set of equations which are outlined in

CHAPTER 3. The implementation of pseudo-code is as follows:

for row = 1 to the length of faces
nd = nodes/[row]
b[row] = Vnew[nd]*Penv - T[nd]*m[nd] - dT du[nd]*h*Qnode[ni]
data = faces associated with nd
for p = 1 to count of rows in data
fc = datalp,1]
X = h*datal[p,2]*Fcrho[fc]*(T[nd] + dT du[nd]*(Fcu[fc] - u[nd]))
if data[p,3] is 1
bl[row] = b[row] - Fc V[fc]*X
else
Alrow,F2C[fc]) = Al[row,F2C[fc]] + X
newV = A \ b
Fc V[faces] = newV[F2C[faces]]
Update Fc U, Fc RE, Friction Factors, etc.

2. Standard Region

Each node is compared with one of its neighbors through equations outlined in section
CHAPTER 3. Through the restricting action of all the paired equations, all nodes advance to a

future point having a uniform pressure. The implementation of pseudo-code is as follows:

for row = 1 to the length of faces
ndl = first node for face[row]
nd2 second node for face[row]
bl[row] = (T[ndl]*m[ndl] + dT du[ndl]*h*Qnode([ndl])/Vnew[ndl] -
(T[nd2]*m[nd2] + dT du[nd2]*h*Qnode[nd2])/Vnew[ndZ2]
data = faces associated with ndl
for p 1 to count of rows in data
fc = datalp,1]
X = h*datal[p,2]*Fcrho[fc]*(
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T[ndl] + dT du[ndl]*(Fcu[fc] - u[ndl]))/Vnew[ndl]
if datal[p,3] is greater than 0 // It is a explicit face
bl[row] = b[row] + Fc V[fc]*X
else
Alrow,F2C[fc]) = Alrow,F2C[fc]] - X
data = faces associated with nd2
for p = 1 to count of rows in data
fc = datal[p,1]
X = h*data([p,2] *Fcrho[fc]*(
T[nd2] + dT du[nd2]*(Fcu[fc] - u[nd2]))/Vnew[ndZ2]
if data[p,3] is greater than 0 // It is a explicit face
bl[row] = b[row] - Fc V[fc]*X
else
Alrow,F2C[fc]) = Alrow,F2C[fc]] + X
newV = A \ b
Fc V[faces] = newV[F2C[faces]]
Update Fc U, Fc RE, Friction Factors, etc.

3. Region with Loops

In regions that have excess faces, additional independent equations are provided in the form of
loops, which all such regions with excess faces are guaranteed to contain. The equations are
outlined in section 3.3.3. The method begins by estimating the root using the previous 2 answers.
A record of the solution values is kept so that values can be extrapolated through time to improve

the initial guess.

Function Inputs(this,region,F2C,startrow,A,b,Fcrho,Fcmu,time)

-- this = the simulation object, contains all nodal and face properties

-- region = index of current region, used to get recorded points and loops
-- F2C = F2C|[face index] returns the column index that face is mapped to
-- startrow = row number in A where loop entries start

-- A = matrix as constructed by volume low rate solver prior to this

-- b = array as

-- Fcrho = array of face densities

-- Fcmu array of face viscosities

-- time = current time, for extrapolation

-- Loop Definitions

Loop = RegionLoops array for region 1
Ind = RegionLoopInd array for region 1
Nloops = number of loops 1in region

-- UnCollapsed References (some faces are removed from the calculation as they
do not affect the loop pressure drop.
Rows = vector of numbers from startrow to startrow + Nloops by stepping I

-- Extrapolate values at this time-step
if 3 points are recorded
for each loop velocity
0 indicates the "“t-3” recorded point

100



1 indicates the "“t-2” recorded point

2 indicates the “t-1” recorded point

prediction = y0*(((time-tl)* (time-t2))/((t0-tl)*(t0-t2))) +
yl*(((time-t0)*(time-t2))/((t1-t0)*(tl1-t2))) +
y2*(((time-t0) * (time-tl1l) )/ ((t2-t0) *(t2-tl1)))

-- Define SkipLoop as a boolean indicator of whether or not the loop is considered
during this solution phase.
SkipLoop = vector of false booleans of length = number of loops
For p = 1 to Nloops by stepping 1
If the loop is closed off during this increment
A(rows(p), F2C(Ind(3, p))) =1
SkipLoop (p) = true
Else
A(rows (p), F2C(loop (2, Ind(2,p)))) =1
If predition was made
b(rows(p)) = prediction (p)
Else
b(rows(p)) = volume flow rate of face index= loop (2, Ind(2, p)))

-—- Calculate Inverse of “A” Matrix
Ainv = inv(A) // By LU Decomposition

-- Eliminate the rows of the solution that are not important
Indl = vector containing increments from 1 to the number of loops stepping 1

Remove skipped entries from both rows and Indl

-- Initialize Solving Loop

Iteration = 1

Max Iterations = 300

Fn = vector of ones equal of length equal to number of active loops
Tol = le-8

If any loops need to be solved

-- Newton-Raphson Method
J = square array of zeros of length = the number of active loops
While Iteration < Max Iterations
-- Define Jacobian
For i = 1 to the length of Indl
Elements = Ind[1, Indl[i]] to Ind[2, Indl[i]] stepping 1
S = Loop[3, elements]
Fcs = Loop[2, elements]
For j = 1 to length of Indl
DeltaV = column “rows[j]” of Ainv
If 1 ==
[dfi dxj, fni] = getCost(this, x[F2C[Fcs]], S, Fcs,
Fcmu[Fcs], Fcrho[Fcs], DeltaV[F2C[Fcs]])
Jli,j] = dfi_dxj
Fn[i] = fni
Else
[dfi dxj] = getCost(this,x[F2C[Fcs]], S, Fcs,
Fcmu[Fcs], Fcrho[Fcs], DeltaV[F2C[Fcs]])
Jli,j] = dfi_dxj

-- Test Convergence
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If the sum of Fn is less than Tol then exit While loop
-—- Calculate the shift in x
dx = Ainv/[:,rows]* (J\-Fn)
X = X + dx
Iteration = Iteration + 1
Record Calculated values and their associated timestamp
this.Fc V[faces in region] = x[F2C[faces in region]]
-- getCost Function
Inputs(this, x, S, Fcs, Fcmu, Fcrho, DeltaV)

-- Calculates the loop pressure loss given loop volume flow rates "“x”, also
calculates the derivative of the loop pressure loss.

4.3.6 Constrain Time Step Post-Mass Flux

After flow velocities are initially calculated the maximum timestep is updated. If the maximum
timestep is smaller than the timestep that was used, then the flow rate calculation is repeated until

this condition is satisfied.

4.3.7 Update Properties

Using the flow rates, the nodal internal energy, mass, and temperature (derived from internal

energy) are calculated, in preparation for the next iteration.

4.3.8 Calculate Turbulence Flux’s

Turbulent fluxes are calculated according to each element type. Turbulence values are
incremented at steps that are limited by a maximum change in turbulence weight. The turbulence

loop is repeated until the timestep is completely traversed by the limited steps.

4.3.9 Record Statistics

Having stored the indexes and sign of all faces that conduct to a source, to a sink or the
environment in a pre-processing step, the program adds the total of these over the increment to a

collection variable, that can be accessed by outside processing.
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4.4 Mechanical Solver Loop

4.4.1 Calculate Piston Forces

The first step to calculating piston forces is to calculate the pressure drop. This value is defined

exclusively by the volumetric flow rate. The Reynolds number is calculated as:

(% + Fy. a)) p.dp,
Nge = 1 (29)

fc

The following matrix contains 1 row for each independent face’s pressure drop and a single
additional row which ensures that the partial pressures of each node add up to the pressure of the
region, multiplied by its volume. This region pressure is the pressure established through the

volume flux solving section. The first n — 1 rows of this matrix are precalculated.

AP, 1 -1 0 .. 077 P,

| APZ -I |[0 1 _1 e O -I[ P2 ]

[ : =[: & i (92)
AP, lo 0 0 1 —1J P,

Pregion- VT Vl VZ V3 Vn Pn

The final pressures are then used in conjunction with the pressure and shear contacts to calculate

forces which pass onto the linear to rotational conversion functions via the following equations:

Fp = Zy.A. P (93)
E=Y 22 -8) (o4

where: y: The sign of the face relative to the orientation of the mechanism.

4.4.2 Calculate Driveshaft Forces

Each mechanism contributes a processing function that takes an input (including position,
angular velocity, angular acceleration, and index of sub mechanism) and outputs the driveshaft

forces including the two normal forces and torque. These are simply added up, as driveshafts can
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take a wide variety of forms and the total force including the weight of the flywheel is calculated

is multiplied by the driveshaft friction coefficient.

4.4.3 Calculate Acceleration

Acceleration is determined by simply calculating the acceleration induced on the flywheel via

the sum of driveshaft torques.

95)

T
=7

where: T: The total torque generated by the mechanism acting on the flywheel.
This is produced via the translation of piston forces through the linear-
to-rotational mechanisms onto the drive shaft.

I: The moment of inertia of the flywheel.

a: The angular acceleration of the flywheel.

4.4.4 Calculate Next Velocity Target

The angular acceleration produced in the previous section is assumed to have happened over
the angular increment immediately preceding this calculation. Therefore, the acceleration is
multiplied by that timestep to produce the change in velocity. The boundary motions experienced

by the gas, over the next angular increment, will ramp up to that next velocity.

In closing this step, the solver has two potential strategies. It can re-enter the gas loop to solve
the next angular increment. Or it can exit having satisfied one of the following conditions: it has
reached steady state, it has run out of time or it has detected that the engine has stalled. Steady-
State is detected via the difference between the current and previously calculated power falling

below a tolerance. An engine stall is detected via the calculation of a negative angular velocity.

4.5 Conclusion

This chapter outlined the entire simulation process. The process started with discretization, then

filtered the nodes for unnecessary loops and poorly sized nodes. Then the nodes were converted
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into arrays of properties, along side several other structures designed to facilitate the solving of the
solid and gas networks. Then the user was queried for details on the setup, the conditions to start

from and the conditions of termination.

The main solving loop was characterized by an initialization phase, where temperature or flow
dependent properties were recalculated given new conditions. Then flow independents were
calculated such as conduction and explicit faces. Then the gas network was solved, considering
changes in volume and energy introduced to each node. Then flow rate dependent properties such
as mass and energy were distributed. Following this turbulence was transported, generated, and

decayed.

At the end of each increment the mechanism took the cumulative pressure on its pistons as an
impulse. This impulse was transferred through the linear to rotational mechanism, onto the
driveshaft until finally causing the flywheel to either accelerate or decelerate for the next angular
increment. The cycle can continue like this for many steps. The next chapter presents a series of
advanced methods available in MSPM to reduce the number of steps, the time required for each

step or use MSPM to automatically improve the engine.
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CHAPTER 5.ADVANCED FEATURES

The following sub-sections outlines some of the successful tools used to enhance the

convergence of the algorithm when a steady state is desired.

5.1 Solid Temperature Distribution Acceleration

One of the primary restrictions to reaching steady state is the rate at which heat diffuses into
the body of the engine. A technique used by some researchers in the massively parallel
computational fluids areas [58] is to decouple the gas and solid networks and on occasion calculate
the steady-state temperature regime of the solid component based upon the mean thermal fluxes
from the gas component. Often this is validated by the concept that temperatures in the solid evolve

on a much slower rate than the temperatures in the gas. The algorithm, in this case is as follows.

The algorithm builds off the following equation, which applies for every solid node for a given

instant in time:

Qin,i(t) = Z Ci(T —T) + Z Cix(Ty — T) (96)
other solid adjacent
nodes (j) gas nodes (k)

The solution that this algorithm is seeking will solve for all T; such that Q;,, ;, the flux into each
solid node, is zero when integrated over the entire cycle. Since the conductance between solid
nodes is only dependent on angular position, and velocity change during the cycle is assumed to

be negligible in a well, then the cycle averaged conductance between solid nodes Cjj 55 is the

following:
Cij For static faces
Cijerr = %Z Ci;(8)dB For dynamic faces ©7)
where:  C;; = Static value assigned to conductance between node i and j
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C;;(8) = Angular dependent value of conductance between node i and j

df = Angular increment that separates unique values in the dynamic
values lookup table.

The conductance between the gas and a solid node depends on velocities and temperatures, and

therefore the effective conductance Cy ¢ for these nodes is equal to the following:

c 1 z 6 1 266
ik'eff_z6t le+A1h _26 ik¢
ik''k

t

where: §; = Instantaneous timestep between which each conductance samples
are gathered.

: 98
Cix, = Instantaneous conductance between the gas node and solid node. ©8)

Ay, = Instantaneous value of the surface area of the mixed face.

R = Thermal resistance of the solid component of conduction.

h, = Convection coefficient, as derived from the Nusselt number,
associated with the gas node.

The effective value of Ty . with respect to the faces that it interacts with is dependent on the
instantaneous value of conductance for each face. Thus:

_ X(6CuT)

Ticert = S 5Cc ©

The cycle averaged version of equation (96) is as follows:

jg Qini = Z Cijerr(T —T;) + Z Cirerr(Ticers — Ti)
other solid adjacent (1 00)
nodes gas nodes

Since every solid flux should integrate to zero over the cycle, this forms a set of equations,

which can be arranged in matrix form (AT = b):
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Z Cijefr + Z Cikerf —Cizerf —Cinesr
; %
! T] (b
—Carefr Z Cajerr t+ Z Coerr —Conerr T,| _|b,
J k N I
: : : T, b,
—Chiefr —Crzerr Z Crjerr + Z Cokesr (101)
; X ]
where:

b; = Z CierfTikerf = Z Z(5Cika)t
X Xt

The resulting set of temperatures are adjusted to account for the current offset from the mean

cycle temperature, this equation appears as:

1 1
Ti,new =A""b+ Ti,o - Ti,avg + E (Ti,O - Ti,o prev)

where: T;, = Temperature of node at the end of this cycle (last measured
temperature) (102)

T; 0 prev = Temperature of node at the end of previous cycle

T avg = Average temperature of node as measured over the previous
cycle.

The concluding formula attempts to recapture the oscillations that each node experiences over
the cycle. As used in the solver, the engine is cycled until reaching convergence with this method.
The last cycle is then conducted without this acceleration and with a tighter timestep. This final

step ensures that the results are relatively free of numerical artifacts.

The performance of this algorithm was compared against natural convergence on the EP-1 test
engine, an experimental engine compared against in CHAPTER 7, from a cold state. The log plot
in Figure 5.1, below, illustrates the convergence behaviour. The initial sharp climb in both models
is due to the rapid temperature changes of the gas volume experienced over the first few cycles.
The remaining period involves the gas exchanging heat with the solid elements of the body until
the amount of energy exchanged over the cycle is zero. The resulting algorithm converged to 2%

of the final value in 9 cycles, equivalent to approximately 9 seconds in simulated time, the
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unaccelerated model would converge to this level of tolerance after 2057 cycles, approximately 34
minutes of simulated time. The two simulations converged on the same value within 0.01% of
each other. This indicates that acceleration did not significantly alter the result of the simulation,

but rather improved the rate at which this result is obtained.

2.5

-----
-
-
-
-

Accelerated

— — = Normal

Energy Produced Per Cycle (J/Cycle)

1000 10000

Number of Cycles

Figure 5.1: Comparison of accelerated vs natural convergence of Stirling engine
performance of the EP-1 model (defined in Appendix C)

5.2 Progressive Refinement

Taking inspiration from multi-grid methods discussed in [59] which are effective convergence
enhancement tools for CFD solvers, the following section outlines progressive refinement as a tool
to accelerate an incremental simulation to a steady-state position. The strategy that would be
undertook by this is to run the engine on a coarse model to establish a quick overall picture of the
macroscopic behaviour of the engine. Then progressively run the engine on a series of finer grids,
before ultimately establishing the final temperature distribution with the desired grid size. The

Snapshot feature would assist with interpolating between different granularities.

The speed at which the gas system may run is theoretically proportional to the number of gas
nodes divided by the size of each node. Ideally, due to the reduction of the number of nodes by the

same amount, the simulation will run at speeds proportional to the inverse of the number of nodes
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squared. In the EP-1 simulation model, which is a comparison with a real-world engine found in

CHAPTER 7, the trend shown in Figure 5.2 is found.
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Figure 5.2: Computational Time vs Number of Gas Nodes,
The trend follows closely the power curve: 0.0011x2°°68 + 7,625, it varies from the

theoretical case of Cx? for the following reasons.

e Node densities are not high nor uniform enough such that node growth could be
considered a uniform action.

e Loop calculation may be relatively independent of the number of nodes and have a
significant impact on the run speed.

e Larger memory requirements can slow down operations through higher computational

overhead, this is not included in the theoretical case.

During test sets this progressive refinement does not activate if following a similar experiment
such as the snapshot from a previous experiment as this is typically close to the steady state for the
following experiment. As a result, time investment into further development of this tool was not
considered. It does however allow the user to quickly estimate the result from a more advanced
model by reducing the number of nodes through modification of the de-refinement factor entry on

the GUI, as discussed in CHAPTER 6.
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5.3 Geometrical Optimization

Traditionally, engines have been designed by skilled experts, who start with defining the basic
parameters of a design using low-order models and then through use of higher models, make small
adjustments to improve the predicted performance of the engine. These adjustments can be made
by computers as well, and learning algorithms have been incorporated into a variety of 3™ and 2"
order models in the past [35]-[37], [46]. The choice of learning algorithm depends on the runtime
of each test, which for this model can take between 10 minutes for a detailed model to several
seconds for a simple model. Other involved factors include the presence of local maximums, the
existence of saddle points and the non-linearity of results. Thankfully, the power response of a
Stirling engine given reasonable geometry will be continuous as discontinuities will only exist
when two parts of the engines are separated into two regions for part of the cycle, likely a sub-
optimal process. There is no guarantee of a single optimal geometry as Stirling engines can exhibit

two possible optimal configurations, isothermal and adiabatic.

To conduct this optimization a combination of standard gradient descent with a line searching
algorithm is applied. Wherein, after a step is made in the direction it is tested, if the step resulted
in greater power then it is the new point, if the step did not then the step is backtracked. If the first
step resulted in a reduction of power then the step length is backtracked then the step length is
reduced by half trying again at the intermediate position, this is conducted until an increase is
recorded, after which a new gradient is taken. If the first step was successful, then more steps are
taken in that direction until a reduction in power occurs. The inclusion of this improves the rate of

convergence of the optimization as a gradient calculation is very expensive.

The MSPM software can modify piston strokes, the position of surfaces (connections), the fill
pressure and rotational speed to seek the optimal power. These are governed by the optimization

scheme builder on the GUI.

5.4 Conclusions

This chapter contained a series of optional features which were designed to enhance the model.
Temperature convergence acceleration resulted in 2 orders of magnitude improvement in

convergence rate at a small computational cost while converging to the same state as natural

111



methods. The second section included a mesh refiner which allows the designer to choose between
accuracy and computational speed. The third section outlined a geometrical optimizer which can
be applied to optimize a given part of the engine, or the entire engine, allowing the designer to

automate this part of the design process.
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CHAPTER 6.MODEL USAGE

6.1 Constructing a Model

A model of a Stirling engine is initialized by opening the GUI interface. By default, a single
group is created along with 2 orthogonal connections placed at the origin. From this point the user

can construct their design.

Figure 6.1 shows the entirety of the main interface, from which all of the main functionalities

can be accessed. In further sections each area of this GUI is broken down.

4] SimulationinterfaceVs - X
MSPM by Steven Middleton, 2020
Save Modal Save Model As. Load Mode! Switch Current Study Current Opt. Create New Study
Switch Dropdown I... Dropdowen Run Study
Insert Toggle Relations | RN
Body on Group (Group): [Default Group]
Display Window
Group
.. Bridge
05
.. Leak Connection
... Sensor
04
PV Output Location
2-Body Non-Connect 03r
Custom Minor Loss
Animation Frame Time (s} 0.05
02
Relation (®) Generate Pressure Animation (®) Record Pressure
(®) Generate Temperature Animation  (®) Record Temperature
Select 04 F (@) Generate Velocity Animation (®) Record Velocty
Select Objects. (® Generate Pressure Drop Animation (@) Record Pressure Drop
Wult Select Objects (®) Generate Turbulence Animation (8 Record Turbulence
or | W (®) Generate Cond. Flux Animation (8 Record Conduction FL..
Dynamics L L L L ' ' ' ' (®) Record Only Last Cycle (®) Record Statistics (Qh,Qe,Qsur)
04 0.3 0.2 0.1 0 01 02 03 04
Create Wotion Output File
Show Options
Warm Up Cycle Length (s| 0
Animate (® Groups. @ Leaks (O Environments @) Sensors Erazrs Run el gth (=)
(® Bodies (® Bridges O Ghosts () Relations Recenter View e —— Derefinement Factor 1
Clear Ax;
Delete Selected @) Connections () NodeConnection ) Node Outines =

Figure 6.1: The main MSPM graphical user interface.
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6.1.1 Display Window

Display Window

0.2
0.18
0.16
0.14
0.12

0.1 !
0.08 !
0.06 !
0.04 !

0.02 [

L i . |

0.15 0.1 0.05 0 0.05 0.1 0.15
Figure 6.2: The main model display window
The display window displays the model view. The user can modify the view with the box zoom
options. The default window contains all the geometry of the model, default views can be reset via
the re-center view option. Mode specific instructions will appear above the display window,
informing the user of the next step that they need to accomplish in the insertion of elements. When
producing both live and output animations, the current display window acts as the animation scope.
The model within this window is displayed in cross-section and each group is assumed to be

azimuthally symmetrical.
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6.1.2 Left Toolbar — Create, Destroy and Select

Insert
... Body
... Group
... Bridge
Select
... Leak Connection
Select Objects

e EE Multi Select Objects

... PV Output Location

Dynamics
2-Body Mon-Connect Create Motion

) Animate
Custom Minor Loss

i Delete Selected
Relation

Figure 6.3: Create, Destroy and Select Toolbar
Here, using the group of controls seen in Figure 6.3, the user has the control to add to or delete
elements from the virtual engine. The elements in order of appearance and their description is as

follows:
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6.1.2.1 Insert: Body

Plastic body associated with
moving connections, acting as a
power piston.

Steel body representing thermal
mass and heat transfer of a flange.

Gas (Air) body representing the expansion
space, squished by the displacer motion. (as
seen in ghost of displacer bodies)

Gas (Air) body with matrix
component representing the cold
heat exchanger.

Figure 6.4: Examples of Bodies Being Used to Construct Geometry

Bodies as shown in Figure 6.4, are foundational elements of an engine model and the only
means of representing a physical object. This is defined through the definition of 4 constraining
surfaces, referred to as connections. There are multiple ways of creating these. A left mouse click
will select the nearest properly oriented connection. On the 1% connection this can be any
connection, horizontal or vertical. The even numbered connections will be oriented the same as
their preceding connection with the 3™ connection being the opposite orientation as the first 2. On
a right click, the model will ask for either an offset from the previous connection or, in the case of
an odd numbered connection, an offset from the origin. If no connections have been created, then
this first right creates a connection that is parallel to the axis (the radial direction). Care should be
taken to always define mobile elements at their bottom position (bottom being the farthest in the
negative direction). If a new group is required, then this can be added using the insert group

functionality.
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6.1.2.2 Insert: Group

Group containing 4 bodies
representing the offset power
piston assembly of a gamma-type
engine.

Group containing many bodies
representing the main part of a
gamma-type engine, all
components are axisymmetric
about the same axis.

Figure 6.5: Example of an engine containing two groups, one for the main engine
assembly and a second for a power piston offset from the main axis.

A group, as shown in Figure 6.5, is a container for a set of bodies which lie around a common
axis of rotation. For a wholly axially symmetric engine, only one group would be required. A
group can be inserted by using the left mouse button in the empty space of the display window.
The software will insert a new group there. In post model assessment the created groups can be
moved into a more compact or physically representative location by editing the position property

of the group using the property inspector.

6.1.2.3 Insert: Bridge

If the engine design incorporates multiple groups, there may be a need to include a bridge into
the design. Bridges connect one body to another via a connection interface. An example of the

usage of a bridge in a practical engine is found on Figure 6.6.
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Bridge between the bottom of the
gas body in the offset group and
the top surface of the expansion
space.

Bridge between the bottom of the
gas body in the offset group and
the top surface of the gas space
above the hot heat exchanger.

Figure 6.6: Example of a usage of the bridge component
Bridges can represent axially aligned connections, offset connections or even T-junction
connections. It is important to note that the simulation does not support the non-symmetries that
arise from any of the scenarios as there is no discretization in the direction of rotation. However,
the software still utilizes the same area and hydraulic diameters of the connection. The available
configurations to be used by a bridge are found on Figure 2.10.To produce a bridge the following

steps must be followed:

Select the first connection: Select a connection which touches one of the bodies, in particular
this body is called the foundation onto which the other body is added on. This connection may be
in the horizontal or vertical orientation and represents the surface that the two bodies will meet

against.

Select the first body: Select the body, that is touching the first connection. In the event of an

offset, this body is considered static.

Select the second connection: This is the face of the second body that will interface with the
first body. This may ask several times, as this connection may be in a different group than the first

body-connection set.

Select the second body: Select the second body.
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Input the offset from the origin: If the two connections are horizontally aligned, provide an
offset from being coaxial. If one of the connections is vertically aligned, provide the offset of the
center of the horizontally aligned participant from the origin of the vertically aligned participant.
If both connections are vertical then the second body is offset from the first body (in addition to

the local coordinates of the second body within its group) by the set amount.

6.1.2.4 Insert: Leak Connection

The leak connection connects two separate bodies with a leak function that provides a leak flow

rate that is dependent on the pressure difference through the general formula:

V= C.(Pl_Pz)Nl
where: C: Leakage number
N1: Leakage exponent

The exponent and number depend on the properties of the leak. These can be obtained by observing
the pressure drop of a physical engine of similar design or used as an aid in sensitivity studies. A

leak is created by selecting two bodies to link together and then by providing the coefficients.

6.1.2.5 Insert: Sensor

Sensors are intended to be used to measure a specific property at a specific location and show
the evolution of that property over the course of the experiment or over the course of a single cycle.
This has two forms: a single point, which generates a line plot (the parameter vs time) and a line
sensor, which generates a surface plot (the parameter at N points down the line vs time). The steps

to create a sensor are as follows:
Selecting the target body: Select a body, from within which you will record the data.

Selecting an orientation: There are several options for this, you can select the center of the
body, the center of the bottom, top, inside or outside face or an axial line through the middle either
going in the y-direction (y-axis) along the group axis, or in the x-direction (x-axis) which is the

radial direction.
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Selecting the independent variable: The independent variable is the variable that changes in
time but is only dependent on the motion of the engine. Currently, the two independent variables
are time and angle. If angle is selected the variable will, in the end, have only recorded the last
cycle (as it over-writes the same angular positions). If time is selected it will record each value

uniquely with time until the simulation ends.

Selecting the dependent variable: Currently, this can be either temperature, pressure, or the

turbulence weighting factor.

6.1.2.6 Insert: PV QOutput Location

PV Output locations are specialized sensors that are designed to output an indicator (pressure
vs volume over a cycle) diagram. These features are created by selecting a gas body. Internally,
the code will then scan the selected region (all gas bodies touching the selected body). Each
variable volume space that it finds will be represented by an individual indicator diagram on the
final plot. For example, the plot displayed in Figure 6.7 below is the indicator diagram produced
by this sensor for a gamma type engine. A gamma engine has 3 variable volume spaces: the
expansion space, the compression space, and the power piston space. The sensor also colors plots
as blue if they produce positive power and red if they produce negative power and places a marker

where the cycle start position was.
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Figure 6.7: Example indicator diagram from PV Output sensor

6.1.2.7 Insert: Two Body Non-Connection

This feature was added to fit a specific problem, which is outlined here for clarity. The EP-1,
the test engine that will be compared against, contains a flexible thin, rubber bellow. However, as
solid bodies currently cannot stretch, and an immobile rubber sleeve would fail to model the
thermal transport across the real system. Thus the Two-Body Non-Connection was added and

prevented the gas body under the power piston from interfacing with the environment.
Thus, this feature involves two steps as follows:
Selecting a Body: This body will not connect to the second body by any means.

Selecting a Second Body: This second body will not connect to the first body through any

means.
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6.1.2.8 Insert: Custom Minor Loss Coefficient

This feature enables the user to create a custom minor loss at any boundary between bodies.
The minor loss can be non-symmetric, which allows the user to, to a degree, simulate check valves
in cases where a different flow direction is available. In cases where the check valves completely
close off two gas spaces they will not work as only the loop solver uses flow losses to determine
flow rates. In these cases, the user may have to create their own solution or create a piston that

blocks the two spaces when desired.
Selecting a Body: Defines body 1.
Selecting a Second Body: Defines body 2.

Providing a name, K12 and K21: This user-form appears after the user creates the feature, the
name is important for identification later, K12 is the minor loss for flow going from Body 1 to

Body 2, while K21 is the flow going in the opposite direction.

These features can be deleted by finding them in the Model and following the instructions to

delete the desired Custom Minor Losses.

6.1.2.9 Insert: Relation

This feature allows the selection of 2 connections to associate with each other. Doing so ensure
that when one connection is moved that any connections or mechanism strokes that are associated
with it will also move. A relation comes in several forms: (a) constant distance: when one
connection moves the second moves the same amount, (b) scaled: when one connection moves the
other moves an amount scaled by its distance from zero, (c) scaled based on lowest value: when
one connections moves the other connection moves based on distance from the minimum extreme
of this group of connections (or relative to the maximum if it is the minimum that moves), (d)
width: when 4 or 6 connections are grouped together by having this relation type, any modifications
are reflected. If the two extreme points move, the inner points shift by half that amount in the same
direction. This is of particular use in cases where the heat exchangers sandwich the regenerator,
lengthening one heat exchanger will length the other one and keep the regenerator centered
between. (e) Stroke: selecting 2 connections and a mechanism will allow the difference between

those connections to define the stroke. A unit change in that distance results in a unit change of
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the stroke. (f) Piston: selecting 2 connections and mechanism will allow the difference between
those connections to define the length of a piston. This relationship is only of physical suitability
in the case of a displacer piston which moves within an encloser. A unit increase in the distance
will result in a unit decrease in the mechanism stroke. Relationships can be toggled on and off via

the Toggle relations button along the top of the GUI.

This feature was introduced to reduce the degrees of freedom used by the gradient descent

algorithm.

6.1.2.10 Select: Select Objects

While this is activated, clicking on the graphical window will give you a list of elements that
you may have wanted to select. Including, within a selection tolerance, a group, a connection and

a body. Selecting an object with this mode will remove any currently selected objects from the list.

6.1.2.11 Select: Select Multiple Objects

Similar to select objects. However, this option appends the new object to the selected object

list.

6.1.2.12 Dynamics: Create Motion

Using the create motion interface a frame can be connection. After creation, clicking on a body
or a connection exposes the drop-down menu, where a reference frame can be added. The animate
function can provide some feedback on the resulting motion. As a note, stretching solid bodies are
not supported realistically in the model, so ensure that every element in compound shapes such as

pistons are given the same movement.

Note that the motions that are define here can be found and edited through the property inspector

window, as they can are stored under the default expandable object found there.

6.1.2.13 Dynamics: Animate

Pressing this button will begin a 30 second animation of the model’s defined motion. Useful

for understanding the phasing or interference caused by a prescribed motion.
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6.1.2.14 Delete Selected

This function deletes (without undo) the selected element. This will also delete any element that

relied on the deleted object.

6.1.3 Bottom Toolbar — View options
Show Options
®) Groups (®) Leaks () Envircnments  (®) Sensors Box Zoom
(®) Bodies (®) Bridges () Ghosts (") Relations Recenter View

Clear Axes
(®) Connections () NodeConnection) Node Outlines

Figure 6.8: View options

The view options bar provides the user with the ability to modify what is shown in the display
window. Several of these are self-explanatory: Groups, Bodies and Connections are common
properties of any model. Bridges appear as lines that go from the center the side of one body, to
the center of the side of another. Leaks is a placeholder for future development but will appear like
bridges. Node-Connections connect the center of nodes together if those nodes share a connection
via a face. Node Outlines simply places a marker at the center of all the nodes. Environments does
not show the environment, but rather shows what the software has identified as the environment
exposed surfaces. Ghosts show the maximum positions of any solid body that translates (as the
minimum position is covered by the current placement). Sensors place a magenta marker or line
segment along the area that will be measured by the sensor during simulations. Showing Relations
update the colors on connections based on their existing geometrical relations with each other,

those with multiple associates are colored in the default color, however.

The view option Box Zoom allows the user to zoom in on a box, the code maintains the aspect
ratio, zooming in as much as it can. Recentre View resets the display window to its default all
encompassing mode. Clear Axis is useful for removing graphics are plotting incorrectly or may

represent deleted objects.
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6.14 Top Toolbar — Save / L.oad options

Save Model Save Model As Load Model
Figure 6.9: Save / Load options
The save options, allow a user to save a model, save the model as a specific name and load
models. If there is an existing model that is called by the default name (which is the model’s name),

then the save model button asks for permission or a new name.

6.1.5 Top Toolbar — Geometrical Optimizer, Relation Toggle &

Dropdown mode

Switch Current Study Current Opt. Create New Study
Switch Dropdown M... Dropdown Run Study

Toggle Relations Model (Model): []
On Group (Group): [Default Group]

Figure 6.10: Geometrical Optimizer, Relation Toggle & Dropdown mode
6.1.5.1 Switch Current Study

The Switch Current Study button switches the optimization study that will run or be appended
through interfacing with the dropdown, via the dropdown mode being in the “optimizer” setting.
The text label to the right of it will cycle between the named studied or display “Create New
Study”, indicating that when this study is appended it will create a new optimization study. The
study displayed here will be the one ran by selecting “Run Study”.

6.1.5.2 Switch Dropdown Mode

This button toggles the text label to the right of it from blank to “optimizer”, when the text label
is blank the drop down will work normally. Otherwise, anything clicked on in the dropdown menu
will be added as a degree of freedom to the optimization study indicated by the Current Opt. text
label.

6.1.5.3 Run Study

This runs the indicated optimization study. It will also ask for a set of run conditions, which are

in the same format as the test set structures. If the run condition structure contains a field called
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“PressureBounds” it will assume that pressure is a degree of freedom. If the run condition structure

includes “SpeedBounds” it will assume that speed is a degree of freedom.

6.1.5.4 Toggle Relations

Toggling this button from “On” to “Off” will make relations not work when a change is made,
allowing you to change the position of connections or length of strokes in isolation. Turning it

back to the “On” position will reactivate these relations.

6.1.6 Right Toolbar — Property dropdown and Simulation options
Model (Model): [EP_1 0,09 DP e0 PP 0] A
... Name: [EP_1 0,09 DP e0 PP e0]
... Groups]...]

...... Group (Group): [Main Engine]
...... Group (Group): [Power Piston]
. . Bridges]...]
. . Leaks[empty]
.. Sensors|...]
... PVoutputs|...]
.. SnapShots]...]
. . NonConnections[empty]
.. Custom Minor Losses[empty]
... Lin. to Rot. Mechanisms]...]
. . Optimization Studies[empty]
. Initial Internal Conditions (Environment): [Standard AIR Environment]
. . External Conditions (Environment): [Standard AIR Environment]
. . Engine Temperature: [298 K]
. . Engine Pressure: [101325 Pa]
. Minimum Speed: [3 Hz]
. Mechanical System (MechanicalSystem): [Mechanical System]

Animation Frame Time (s) 0.05
O Generate Pressure Animation O Record Pressure
O Generate Temperature Animation O Record Temperature
O Generate Velocity Animation O Record Velocity
OGenerate Pressure Drop Animation O Record Pressure Drop
O Generate Turbulence Animation O Record Turbulence
O Generate Cond. Flux Animation O Record Conduction Flux
O Record Only Last Cycle O Record Statistics (Qh,Qc,Qsur)
Output File
Warm Up Cycle Length (s) 0 Reset Discretization
Derefinement Factor 1

Disp numbers
Figure 6.11: Property dropdown and Simulation options
The property drop-down shows by default the root object, represented by “Model (Model) [the

name of this file]”, which can be expanded to see a host of options or lists of other expandable
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objects. Any selected objects will also appear at the bottom of this dropdown menu. Each object
has multiple properties and child objects, that can either be edited, expanded or in some cases
deleted from this menu. This is where motions are added to connections (or bodies), where
discretization schemes are assigned and where matrixes are added to a body using the “Change

Matrix” option as shown in Figure 6.12.

Model (Model): [EP_1 0,09 DP e0 PP e0 - Clean] ~
: [AIR Body (0.13653, 0.151 )(0.16695, 0.2495
.. Name: [AIR Body (0.13653, 0.151 )(0.16695, 0.2495 )]
. . Bottom Connection (Connection): [Horizontal Connection at y = 0.167]
.. Top Connection (Connection): [Horizontal Connection at y = 0.249]
. Inner Connection (Connection): [Vertical Connection at x = 0.137]
. . Outer Connection (Connection): [Vertical Connection at x = 0.151]
. .. Material: [AIR]
.. Temperature: [298 ]
. Pressure: [101325]
. .. Radial Divides: [1 divisions]
. . Axial Divides: [12 divisions]
.. Frame:
.. Change Matrix: [Heat ExchangerMatrix with 77.6% Porosity and Hydraulic D
. Expand Matrix (Matrix): [Heat ExchangerMatrix with 77.6% Porosity and Hyc
. . Radial Discretization Function: [...]
. . Axial Discretization Function: [@VVall_Smart_Discretize]
. [X] Delete

< >

Figure 6.12: Properties of Bodies including location of Change Matrix where Matrix
components are initialized

The options on the lower half of this side of the GUI refer to the simulation and simulation
outputs. Checking these radio buttons will permit the software to record the referenced property
and optionally generate an animation for quick review. The animation frame time refers to the
amount of time that each frame of the animation covers. The output file is the path of a folder
where you want the files to be saved. The warm-up cycle is a simulation option that is added for
transient scenarios from start-up where the engine, is warming up for a period before turning over.
The de-refinement factor is a global modifier that decimates the mesh by a set, approximately
uniform, amount. A factor of greater than 1 will result in more nodes, while a factor of smaller

than 1 result in less nodes.
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6.1.7 Start the Simulation

Run

Run Test Set

Figure 6.13: Run Interface
6.1.7.1 Run

Runs a single test, after querying the user for simulation parameters.

6.1.7.2 Run Test Set

Runs a single test by calling a test set function by name. Said function returns a structure that
contains simulation parameters for several tests in series, these functions are stored as files in the
Test_ Running folder. An exemplar test definition file is included below. This version is the default
test definition for a gradient ascent and shows all the properties available. A test set function can

output an array of structs to perform several tests in series.

function [RunConditions] = GA Template ()

RunConditions = struct(...
'Model','EP_ 1 0,09 DP e0 PP e0 - GA', ...
'title','"',
"'simTime', 60, ... [s]
'SS', true, ...
'movement option','C', ...
'rpm', 60, ... [rpm]
'max dt',0.1,... [s]
'SourceTemp',90 + 273.15,... [K]
'SinkTemp',5 + 273.15,... [K]

'EnginePressure', 101325, ...
'NodeFactor',1, ...

'Uniform Scale',1,...
'"PressureBounds', [101325 3*101325], ...
'SpeedBounds', [60 10001 , ...

'HX Convection',1.0, ...

'Regen Convection',1.0,...

'Outside Matrix Convection',1.0,...
'"Friction',1.0,...

'Solid Conduction',1.0,...

'"Axial Mixing Coefficient',1.0,...
"HX C1',1.0,...

'"HX C2',1.0,...
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'"HX C3',1.0,...

'HX C4',1.0,...

"HX SA V',1.0,...

'Regen C1',1.0,...

'Regen C2',1.0, ...

'Regen C3',1.0,...

'Regen C4',1.0,...

'Regen SA V',1.0,...

'Regen Porosity',1.0);
end

Model refers to the file to load in, which is the same as the name property of the root object.
Title will be the name that the results are saved under. SimTime is the amount of in simulation time
allotted. SS is a flag indicated whether or not the simulation will stop at steady state. Movement
Option can have defined either constant speed (C) or variable speed (V) indicating if the results
should contain the velocity variations. Rpm indicates the initial or target speed in revolutions per
minute. Max dt indicates the maximum timestep to use, normally this only applies for exceedingly
slow scenarios. SourceTemp, SinkTemp indicates the temperature that will applied to constant
temperature elements flagged as source or sink respectively, which are automatically identified by
relative temperature. EnginePressure indicates the fill pressure of the engine, the internal volume
of the engine is identified by the placement of a PVoutput sensor. NodeFactor is the mesh
refinement factor applied to the test instance, which scales the number of nodes by this amount.
Uniform_Scale scales the geometry by the specified amount in all directions. PressureBounds
and SpeedBounds is used by gradient ascent to bound the search space for pressure and speed
respectively. The next 6 fields allow the user to apply factors on each of the described properties,

a factor of 1 uses the results of the default equations. The final set of equations modify custom
type heat exchangers with correlations Ny, = C;NgZN2:33, Ny = C3Ng2, surface area to gas

volume ratios (SA_V) and porosity.

6.2 Discretization

In simulations there are two types of discretization, spatial and temporal. The following sections
outline some recommendations and theory on discretization. These are controllable through
interfacing with each body via the property drop-down menu, where the number of nodes in each

direction can be controlled. Specialized functions that allow for better modelling of surface
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gradients can be added by loading the wall smart discretize function as a discretization function.
This function uses the global mesher properties. Those properties can be found under Model-

>Mesher. Other meshing functions can be added if required.

6.2.1 Spatial Discretization

The spatial discretization is how much space is broken up; it is simplest to assign this at the
start of the simulation. If this is the case, certain assumptions have to be made by the designer to
ration nodes to areas that truly need it. With spatial discretization of the solids the main concern is
high gradients, as high gradients require greater node density to be properly modelled, particular
at their edges. Three phenomena utilize these high gradients, which will be discussed in the next

three paragraphs.

The first aspect is gas spring hysteresis which occurs between the gas and the very surface of
the solids surrounding it. If this is the case then these surface nodes will experience strong gradients
and curvature, which would vary depending on the expected frequency, and the thermal diffusion
of the material. These oscillations are experienced throughout the material, but at a specific depth
they become negligible. This depth, which is called the oscillation penetration depth was studied
by Wang [60], who presented the following. The formula here is modified such that at this distance

only 5% of the oscillation is present.

’Za
X0.05 = 3 Tt (103)

where: x,o5: Represents the distance at which the temperature fluctuations
are at 5% of their original value.

w: Angular velocity

a;: Thermal diffusivity (@, = ——)

per

Beyond this point, temperatures experience a slowly evolving or static temperature profile, which
is a phenomenon assumed by several Stirling engine modelers [35], [46]. The ratio of conduction,

density and heat capacity is equal to the thermal diffusivity, a representation of the thermal inertia
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of the material. The angular velocity (w) is established at the beginning of the simulation as an

estimate of the final angular velocity.

The second aspect is static conduction within the solids of the body. With first order
discretization schemes the error associated with discretization increases proportional to the local
element size, a length representing how far elements are from each other. This error also increases
based on the distribution of values among the nodes, if a high gradient or curvature is to be
represented then a fine grid is required. These areas namely exist in features that divide two areas

of very different temperatures, or at interfaces of materials of very different thermal properties.

The third aspect is dynamic conduction. As Stirling engines contain moving components, there
is an opportunity for momentarily high gradients to be generated when two components closely
cross paths. This leads to gradients which exist both into the material depth as well as along the

interface length.

For gases the same thing is true as for solid elements, however, the areas in which they occur
are different. As the one-dimensional assumption prevents the modelling of the temperature
gradients in large chambers, particularly off of walls, these areas are considered well mixed and
don’t require many nodes. To partially account for this and other factors gas nodes should include
turbulence, a representation of how disturbed the flow is. Therefore, there may exist areas of high
gradients in turbulence, such as areas directly following geometrical non-uniformities. These
gradients persist for about one diameter from the entrance according to Gedeon [35]. Temperature
gradients exist at the start and end of heat exchangers and regenerators, Anderson [48] studied this
extensively, the exact breadth of the inlet gradient will depend on the effectiveness of the heat
exchangers. In addition, Anderson identified that gradients can persist in the areas around heat
exchangers, in particular after reversal events, highly diffusive schemes require many nodes to
properly represent these moving gradients. Anderson utilized an advanced flux limiting scheme to

preserve these gradients.
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6.2.2 Temporal Discretization

Temporal discretization is how much time progresses after each flux calculation. For solids this
is calculated based on the Fourier number, which sets a limit to the timestep based on the numerical

volatility of a numerical element. This non-dimensional number is identified here:

ag. At k1 (k.A) ( 1 )At Cre. At At N Cr
= = = = - — —
Fo™Ax2 "~ p.cp Ax? Ax ) \p.cy.Ax. A Cr FoCre (104)

Cfe 1/Cr
where: Ng,: Fourier number
a;: Thermal Diffusivity
At: Timestep

Crc: Thermal conductance of a face, used as AQ = AtCy (T, — Ty),
where T, and T; are temperatures of two nodes connected by a face.

Cr: Specific heat capacity of node, used as AQ = C(T, — T;), where T,
and T; are temperatures of the same node from different times.
Recommendations from Hensen and Nakhi [61] indicate that the iteration is stable — errors do
not grow — for a Fourier numbers of 0.25 or less. Therefore, a Fourier number of 0.25 is selected
as the maximum of any node. In determining the timestep, the entire pool of nodes is queried for

the timestep limit.

For gases the maximum time step is established based on the Courant Friedrichs Lewy [62]

condition:

_UA vV
“7 Ax T Apebx

At S Nclmax (105)

where: N, = Courant number, less than 1 for theoretical stability.
U = Speed at which information travels, the speed of the gas

Ax = Spatial difference between two measurement points. Between
which the information is travelling.
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This condition ensures that a property is not transported any farther than is calculatable by the
underlying numerical system. The term At represents the time step, Ax represents the spatial

distance between adjacent nodes and U represents the velocity.

Numerical algorithms that cover a longer distance, such as one that considers 2 neighbors on
either side may be stable with a maximum courant number of 3 due to the added information. In
practice however, these theoretical maximums are limited by lower node quality, the presence of

destabilizing features and numerical errors, often by an order of magnitude.

6.3 Simulation Tools

6.3.1 Snapshot

A snapshot is an image of the engine at the 0" angular position on the last cycle of the engine,
this obtains a snapshot of all the bodies of the engine and records to the granularity of the body
discretization. These are recorded in arrays of temperatures that are accompanied by X and Y values
scaled to the body as if it were of unit dimensions, such that interpolating onto a modified body is
a trivial manner. This option does not handle new bodies, instead leaving them with the default

temperature values.

6.3.2 Test Set Running

A series of tests may be run using test definitions. These run in series, each test starting from
the conclusion of the previous, the goal would be that an engine curve could be defined by setting
the engine to run at a set of constant speeds in sequence. Each run can be told to look for a snapshot
title which will by default be used as the starting point, otherwise it uses the last defined snapshot
as a starting point. The use of snapshots allows this approach to construct an engine curve more

quickly than starting from scratch each time.

6.3.3 Geometrical Optimization

The MSPM software includes a geometrical optimizer, which when given a series of

parameters, will tune the geometry until the engine gives optimal power output. These parameters

133



include connection positions, mechanism strokes, charge pressure and engine speed. The optimizer
makes use of gradient ascent to make small adjustments to the geometry in the direction of positive
slope until it reaches either the maximum number of iterations or reaches a point at which the RMS
of all gradients is below a set tolerance. Further details on this is found in 6.1.5 for interfacing with

it and 5.3 for details into the algorithm.

6.4 Model Outputs

6.4.1 Engine Assessment

6.4.1.1 PV Diagram & Thermodynamic Work

Pressure-volume (PV) or indicator diagrams, produced by the PV output sensor, are an excellent
descriptor of the engine’s thermodynamic cycle. Several quantitative measures can be quickly

extracted from the PV diagram. These are labeled on the sample indicator diagram below.

|
L

L
Pressure

Volume

Figure 6.14: A plot and definition of the pressure-volume (PV) diagram
1. Minimum Volume — This quantity represents the minimal volume of the engine. This can
be used for two imported parameters. The dead volume and the compression ratio.

a. Dead Volume Vaeaa = Vimin — Vpp,swept
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This parameter represents the volume that does not change its temperature during the
cycle, in practice these are all the spaces not swept by the pistons. This dead volume
acts as a form of compliant boundary for the engine, which reduces the maximum
pressure that the engine reaches. In general, this quantity should be minimized as much
as possible.

b. Compression Ratio 7. = V,,.../Vinin

This non-dimensional parameter represents the proportion that the volume changes
throughout the cycle. The optimum point of this value is a function of the temperature
ratio but is influenced by a variety of factors including the mechanism design. Review
and experimentation on low-temperature engines by Stumpf [12], indicates that an
approximate value of this optimal point can be obtained as the value: 0.624(Ty/T,,) +
0.376.

2. Total Change in Volume — This quantity represents the dV in the basic equation for
pressure work W = PdV. However, increasing this quantity does not increase the amount
of power produced linearly as various factors influence the power output of the engine.

3. Engine Pressure Swing — This dependent property of the cycle represents the P in the basic
equation for pressure work W = PdV. This property is indicative of the magnitude of the
temperature swing in combination with the volume change.

4. Area Enclosed by the Curve — This measure represents the amount of work, as defined by
W = PdV that the gas volume being observed sent to the mechanism. An engine that
produces negative work would still maintain an area here, but the border would progress
through time in the counter clockwise direction. A discrepancy between this value and the
measured shaft power indicates the amount of energy lost to the mechanism.

5. Average Pressure — This quantity indicates the mean pressure that the engine operates at.
This property is directly proportional to the amount of produced power, according to the

West Number.

When used properly an indicator diagram captures most interactions between the gas and the
mechanism. Proper use of an indicator diagram would capture all spaces that are being compressed

or expanded. This is important as minute differences in pressure in these spaces can be
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embodiments of flow friction effects. This results in an indicator diagram with multiple loops. The

indicator diagram does capture shear from flows pushing past the piston.

6.4.1.2 Energy Transfer Statistics

The series of information defined here as Energy Transfer Statistics include values that go to
and from major elements of the engine. These are defined in Figure 6.15 through the generic Heat

Engine Diagram.

'@Enviroment

Figure 6.15: Generic Heat Engine Model
These terms are automatically generated by analyzing the given model for constant temperature
elements and making note of all possible avenues of exit to such nodes, sources and sinks are
differentiated by assigned temperature. The actual efficiency and Carnot adjusted efficiency of the

engine are calculated as follows from these values.

W (106)
H= Qin
;L u
= (1-5) (107)
Ty

The actual efficiency is a measure of how well an engine converts one form of energy into
another. However, all technologies that utilize heat to generate energy must be subjected to the

limitation of Carnot which artificially undervalues machines that have a lower maximum
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efficiency. Therefore, the second efficiency adjusts for this and is considered a better measure of

the quality of an engine design, irrespective of the quality of its thermal sources.

6.4.1.3 Mechanical Work

Mechanical work is the integral of the equation W = Td8 over the tested time frame. The
difference between the area of the sum of the PV diagrams and this measured quantity indicates
the efficiency of the mechanical system at converting linear into rotational force. In dynamic and

constant speed cases the instantaneous mechanical power is equal to the following.

Power = lLw.a + Tioad- @
Excess Power Power Consumed (108)
given to Flywheel by Load

6.4.1.4 Sensors

Sensors define an explicit output from the model that will be automatically produced when the
simulation completes. Single point sensors will produce data suitable for a line graph, line sensor
output data that is suitable for a surface plot. The user can select from any of the properties in the
model and compare them against either time or angular position. An example of the plots produces

by this at the end of the simulation is found in Figure 6.17.

! Do i
Sensor reading
temperature down the
length of the hot side
heat exchanger

I
b ‘
Sensor reading pressure |
. - [
in the expansion space i

I
|
I
I

N

Figure 6.16: Sensor Usage Examples as shown in the GUI
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Expansion Side Temperature: Temperature vs angle
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(a) Temperature vs angle plot of expansion space of engine with a source temperature of 368
K, discontinuity between 4 and 5 matches up with when flow would reverse.
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(b) Temperature vs time plot down length of a low effectiveness heat exchanger.

Figure 6.17: Output of sensor (a) point sensor (b) line sensor, locations shown on Figure
6.16
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6.4.1.5 Heatmap Animations
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Figure 6.18: An example temperature heatmap snapped during an animation of the
modelled Stirling engine

While not an integral part of the model, the software has the built-in capability to generate
graphical outputs of properties. Figure 6.18 presents one of these outputs, which displays the
temperature of different nodes through the engine. These types of animations may allow the
designer to visualize the flow of matter, energy and motion of the engine allowing conclusions to
be drawn more quickly. Pressure, turbulence, temperature, and conduction are plotted in this
fashion. This is a function that is not normally found by default in Stirling engines codes, even

commercial ones such as SAGE [35], but is relatively mainstream among generic CFD codes.
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6.4.1.6 Conduction
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Figure 6.19: An example conduction heatmap snapped during an animation of the
modelled Stirling engine

Volumetric conduction is a tool introduced in this thesis as a measure of the energy passing

through an element as a function of its volume at any given time. This is calculated via the formula:

(109)

% nale
Cond:]n< allfacesmndl fC|

Vnd

The application of the natural logarithm is simply for enhancing the contrast when the value is
plotted in the heatmap style. The purpose of this plot, though it lacks physical meaning, is to
provide designers with the locations in which heat flows, which is generally undesired, outside of
the heat exchangers. From the plot in Figure 6.19 it is observed that the central divider, that lies
between where the displacer piston moves and the heat exchangers, exchanges quite a lot of heat,
comparible to the heat exchangers themselves at that moment. The top and bottom caps of the

engines on the other hand loose very little heat to the surroundings.
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6.4.1.7 Face Based Animations
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Figure 6.20: 4 frames of an instantaneous flow velocity plot snapped during an animation
of the modelled Stirling engine (running at 1 Hz)

Velocity and pressure drop animations give insight into areas of the highest flow and pressure
loss, it may serve as an indication to the designer of areas where the flow is bypassing or features

that introduce most of the flow loss experienced by the system. An example of a face-based

animation is in Figure 6.20. This animation depicts relative gas speeds in the engine.

6.5 Chapter Conclusions

This chapter outlined the basic usage of the GUI, an interface that allows the user to construct
a complete model from blocks without any contact with the code. The software offers a variety of

simulation tools which aid in the running of groups of experiments while the user is away and use
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the results from previous experiments to kickstart the progress of the next. Outputs from the model
use the GUI to generate indicator diagrams, acquire virtual sensor data and construct animations
that provide a visual perspective to the acquired results. These visual features are unheard of among

Stirling engine modelling programs beneath 4 order simulations.
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CHAPTER 7.VALIDATION

7.1 Theoretical Validations

Each of the following tests are conducted within the same environment and aims to show the
flexibility of this software to provide results at varied levels of detail and geometry. These early
tests allow for a certain level of confidence with regards to the performance of the model, before

simulating full scale engines.

7.1.1 Steady-State Solid Heat Conduction

Steady-state solid heat conduction was validated using a composite annular ring, the inside was
heated to an elevated temperature of 100 C and the outside was cooled to a temperature of 0 °C.
The ring was composed of multiple materials, which exhibited different material properties. The

equations used for the analytical model are as follows:

In (rmax,i)
Tmin,i
R, = — TmtZ (110)
L 21, ki' L
-1
Tena — Tstare
Tstart,i = lendi-1 = Tstare + %z R; (111)
t i=1
In (r r )
Ti(r) = Tseare,; — (Tstart,i - Tend,i) W 112)
Tmin,i

where: R; = The overall resistance of material layer i
Tstare,; = The temperature on the inside radius of material layer i
Tenai = The temperature on the outside radius of material layer i

The discretization and material composition are displayed in Table 7.1. The resulting
temperature profile appears in Figure 7.1. The steady-state profile which emerges closely matches

the analytically derived profile.
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Table 7.1: Steady-state Heat Conduction Validation: Material Properties

Radius Material Thermal Conductivity Number of Nodes
(m) (W/mK)
0.1-0.15 Copper 401 10
0.15-0.1999  Carbon Steel 43 10
0.1999 -0.2 ABS Plastic 0.25 5
0.2-0.25 6061 Aluminum 176.5 10

Analytical O Simulated

120

100

80
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40

Temperature (°C)

20

0.1 0.125 0.15 0.175 0.2 0.225 0.25
Radial Position (m)

Figure 7.1: Steady-state temperature profile obtained via heat conduction through a
layered annular conductor compared against analytical predictions

7.1.2 Transient Solid Heat Conduction

Transient solid heat conduction was validated through a comparison of the analytical solution
of a cylinder heated by uniform convection. The discretization scheme and material composition
are displayed in Figure 7.2 and Table 7.2 respectively. The cylinder of material is 15 cm in radius,
30 cm in length with a 3 cm thick outer layer of nodes of that are 1 cm square and an inner core of

nodes of square dimensions of 2 cm square.
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Figure 7.2: Discretization scheme for transient heat conduction test

Table 7.2: Experimental properties of Transient heat conduction test
Property Value  Unit
Density 8960 kg/m3

Thermal Conductivity 401  W/mK

Specific Heat Capacity 0.385 KkJ/kg
Surface Temperature 100 °C
Initial Temperature 0 °C
Cylinder Length (L) 0.3 (m
Cylinder Radius (r,)  0.15 (m)
Small Node Size 0.01 (m)
Large Node Size 0.02 (m)
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The analytical profile is produced by the product solution between an infinite plate of thickness
L and an infinitely long cylinder of radius 7,,. For the plate’s contribution the solution is derived

from 200 terms of the Fourier series [63] using:

(0]

x2L Plate ~ z ,

1

e n ” sm (nZTZ x)

SHIES

(113)

where: n =1,3,5, ...

The cylinder’s contribution is derived from the numerically derived solution of the following
equation, which is created from the heat equation in cylindrical coordinates. This is provided to

MATLAB’s ode45 solver in the subsequent set of equations.

aT _ 10T + d0%T

ot~ “\ror T or (114)
dTl _ TZ - 2T1 + T1
ac YT are

ari _ (Ti+1 —2Ti 4T iy AT = Ti—l)
dt dr? T; 2dr

Boundary Conditions (115)
Ty =100
Initial Conditions:
Tll Tz, T3, ey TN—l = O
Thus, the center temperature of the short cylinder, Figure 7.2, is mathematically determined. A

comparison between the analytical and simulated center temperature is shown in Figure 7.3. The

simulated transient center temperature matches up closely with the analytically obtained solution.
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Figure 7.3: Analytically obtained results vs simulated temperature with time measured at
the center of test block.

7.1.3 Adiabatic Compression/Expansion of Gas

The compression of a volume of ideal gas within a perfectly insulated chamber results in a curve

in the Pressure vs. Volume space that follows the relationship defined by.

PV
- = Constant (116)
A perfectly insulated chamber was constructed within the program, a moving boundary applied
a compression, expansion cycle to the gas. The pressure of the gas was measured and plotted after
compressing from atmospheric conditions. The results are plotted in Figure 7.4, along with the

simulated curve. The simulated compression-expansion cycle matched up well with the expected

adiabatic trend.
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Figure 7.4: Analytically obtained results compared against simulation results in the case
of adiabatic compression/expansion

7.1.4 Isothermal Compression/Expansion of Gas

The compression of a volume of ideal gas within a perfectly conductive chamber under

compression over an infinitely long-time scale results in a curve in the Pressure vs. Volume space

that follows the relationship:
P.V = Constant (117)
A Chamber was constructed out of constant temperature material at a temperature of 298 K, the
chamber was cycled at a frequency of 0.01 rpm to allow enough time for the gas to exchange
energy with the wall. The initial conditions are used to generate the isothermal curve. The results

are plotted in Figure 7.5, along with the simulated curve. The simulated compression-expansion

cycle matched up well with the expected isothermal trend.
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Figure 7.5: Analytically obtained results compared against simulation results in the case
of isothermal compression/expansion

7.2 Comparison with Experiments

It was important to compare with experimental results within the low temperature regime in
order to get a correct reflection of the accuracy of MSPM’s predictions of the losses and effects
which were important to a low temperature engine. Experimental results with suitable detail on
the engine geometry could not be found in the literature, thankfully the works of DTECL had

produced several low temperature engines with the EP-1 being the latest.

The following validations are a comparison of the model output with values obtained through
physical experimentation on the EP-1 engine. These serve to assess the general performance of the
model. Unless otherwise noted, error is calculated based on the percent difference in non-
dimensional indicated power. This non-dimensional power is derived from non-dimensional

pressure and volume, which are defined below:
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Povg (118)
V= V- Vmin
Vmin - Vmax (119)
pr=_r
™ Pavg (120)

The EP-1 as discussed by Stumpf [12] was modified to host a drive train composing of circular
or elliptical gears [64]. These studies were intended for the experimental analysis of the effect of
non-sinusoidal piston motion on engine performance by Nicol-Seto [64]. Because this model can
host mechanical components of arbitrary linear motions, this is an important comparison to see the
accuracy of the model under those conditions as this phenomenon is one of the most difficult
scenarios to model due being lesser studied oscillatory phenomena. The detailed geometry is found
in Appendix C. Within the user interface the engine appears as a 2D cut-away view of the

geometry, here the pistons are shown at their lowest point, the default position of the simulator.
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Figure 7.6: EPM engine body geometry as shown in graphical user interface of software

7.2.1 Constant Speed Steady-State Experiments

The engine’s offset power piston is connected using a bridge component such that the geometry
may be maintained as closely as possible. The model was run for several combinations of elliptical
and circular gears, as outlined in the following table, the motion profiles for each of the following
are calculated in Appendix D. All tests are conducted with a charge pressure equal to atmospheric
(101,325 Pa) with a hot source temperature equal to 95°C and a cold sink temperature of 5°C. All
tests covered a range of speeds from 0.2 — 2.6 Hz. All mechanisms for displacer have a crank to
connecting rod length ratio of 6, a value of 2 is applied for the power piston. All tests use a slider
crank mechanism, but between the drive shaft either have a set of circular gears (standard) or a set
of elliptical gears arranged in either a dwelling cycle (square wave), or to have a minimal velocity
cycle (saw wave). Only tests 1-3 were conducted on a physical test engine, 4-6 are expansions
upon the existing data set using untested but promising mechanisms. Test 1-3 were performed with
the engine driving itself, loaded by a friction brake. The pressure was measured using a pressure
diaphragm sensor. The volume of the experimental results is estimated with the bellow volume
being calibrated via a shadowgraph technique [64]. Additional tests were also conducted on speeds

from 0.2 Hz to 4.0 Hz, a scope beyond the 12 selected experimental tests.
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Table 7.3: EP-1 test sets

Test Set Displacer Piston Power Piston
1 Standard Standard
2 1/5 Elliptical for square wave, Standard
dwelling cycle
3 1/5 Elliptical for square wave, 1/5 Elliptical for square wave,
dwelling cycle dwelling cycle
4 1/5 Elliptical for saw wave, Standard
minimum velocity cycle
5 1/5 Elliptical for saw wave, 1/5 Elliptical for square wave,
minimum pressure loss cycle dwelling cycle
6 1/5 Elliptical for saw wave, 1/5 Elliptical for saw wave,

minimum pressure loss cycle

minimum pressure loss cycle

The mesh density settings applied to both the experimental and SAGE comparisons has an
approximate mesh sensitivity related error of 0.8%, these results are shown in Appendix F and is

assumed to be representative of all speeds and configurations.

The PV diagrams and thermodynamic powers are compared in terms of non-dimensional
pressure and volume as the model was simulated at an average pressure of 101,325 Pascals, while

the test engine tended to rest somewhere above or below that value.

Figure 7.7 displays an indicator / pressure-volume diagram from both the experiment and
simulation for the same conditions, given the default uncalibrated model output using properties
taken from the solid model of the engine that was used for construction. Experimental results are

attributed to Nicol-Seto [64].
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Figure 7.7: Indicator diagram comparison between EPM-1 experiments and MSPM. (a) DP &
PP: Standard at 1.1055 Hz (b) DP: Square Wave Elliptical, PP: Standard at 0.8818 Hz (c) DP &
PP: Square Wave Elliptical at 1.1992 Hz

Over the 12 tests considered, MSPM had a maximum error of 43.1% and an average error of
30.6%. The shape of the indicator diagram is close, particularly at the ends where each of the
configurations has a distinctive shape. The non-dimensional cycle energy extracted from the 12

matching experiments is displayed in Figure 7.8 below:
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Figure 7.8: Non-dimensional power for each of the 12 matching experiments

The main sources of error are likely resulting from 2 areas. Firstly, the EPM-1 features a power
piston which is facilitated by a rubber bellows. The bellows serves as a well sealed and low friction
alternative to a piston-cylinder design. It is known [12], [14], however, to affect the pressure
maximums by expanding and contracting in response to internal pressures. Secondly, the exact
heat transfer and friction characteristics of the inline set of finned tubes with directing geometry is
unknown. With the directing geometry, the exchangers resemble staggered tube banks, but with
the directing geometry being non-conductive the model was compensated by multiplying the total
surface area by half. It is likely that the friction characteristics are the most off as MSPM
disproportionately disadvantaged motions that included rapid flushing through the heat exchangers
with relation to the experiments. Determining the exact characteristics of these heat exchangers is
out of the scope of this thesis. This second group of effects is strongly correlated to the broadness
of the indicator diagram, which can be seen earlier in Figure 7.7. These combined errors are
systematic, amendable by correction to the source temperatures, convection and friction
correlations, though it is possible that they mask the errors produced via the modelling
assumptions, further study with a more well understood experimental engine is necessary to assess

the magnitude of those errors.
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Along side the 12 matching tests, a total of 39 tests were conducted including the 3 mechanisms

not tested experimentally (DP: Saw PP:Sqr, DP:Saw PP:Sine & DP:Saw PP:Saw) , these are shown
following on Figure 7.9 and Figure 7.10.
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Figure 7.9: MSPM vs experimental power piston indicated work
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Figure 7.10: MSPM displacer piston indicated work, experimental version not collected
The results show that the highest power output will come from configuration 4, with a saw wave
on the displacer and the power piston set to a sinusoidal motion, the lowest power is from the tests
that used the dwelled motion for the displacer. The fact that the dwelling motion is such a
disadvantage is found by inspecting the indicated work of the displacer piston. The configurations
become more distinct at higher speeds, seen by the 2" order growth of the flow losses at higher

speeds.

The clearest change that could be made to improve the correlation of the simulation with the
experiment is to modify the bellows. By observing the indicator diagram, the pressure swing of
the simulation is proportional to the compression of the power piston. The effect of compression
is tested in a second set of tests in which the stroke is reduced to 84.3% of its original value. This
value was determined by assuming that pressure is inversely related to volume and given that the
pressure swing was 18.7 £+ 1.4% among the 12 tests. Dead volume is also increased by 7.8% of
original stroke to account for bellow expansion and contraction at stroke extremes. A sample result

appears in Figure 7.11 below. Only the 12 comparison experiments were repeated.
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Figure 7.11: Indicator diagram comparison between EPM-1 experiments and simulations
with reduction in stroke by 15.7% and increase in dead volume equivalent to 7.8% of
stroke. (test: Standard-Standard at 1.1055 Hz shown)

The resulting error in non-dimensional pressure is decreased to an average discrepancy of
21.9% (from 30.6%) and maximum error of 35.2% (from 43.1%) over the 12 modified tests. The
discrepancy in pressure maximums appears to be completely corrected, indicating that the property
of indicator diagrams is strongly dependent on volume in the regime of interest. Remarkably the
broadness in the Sinusoidal cases is also very close with the 4 sinusoidal tests (test set 1) providing
an average error of 19.0% with a maximum of 28.5%. The error in the set with the sinusoidal
power piston and dwelling displacer provided an average of 24.0% and the set with both pistons
dwelling provided an average error of 31.5%. The error of MSPM increased with dwelling cycles,
it is possible that this is due to overestimating the flow losses in the heat exchangers. The overall
error appears systematic, indicating that it is likely a problem with an equation used to calculate
heat transfer, flow losses or even turbulence; as turbulence was originally designed for mostly

sinusoidal motions.

7.2.2 In Cycle Speed Variations

As a complement to the above studies the dynamic response portion of the code was evaluated
against actual in-cycle velocity variations for 4 tests. These represent the actual conditions of the
tests that were compared against previously, where the simulation was set to a constant speed.

These tests are outlined in Table 7.4:
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Table 7.4: Velocity variation experiment. “B” is a reference to the “Box” / square wave. “0”
refers to the standard / sinusoidal trial (Elliptical factor of 0).

Test Properties:

PP: Standard DP: Standard

Fast 0,0
Average Speed: 1.918805 Hz
PP: 1/5 Elliptical for square wave
Fast_B, B DP: 1/5 Elliptical for square wave
Average Speed: 1.346884 Hz
PP: Standard  DP: Standard
Slow_0, 0
Average Speed: 1.130698 Hz
PP: 1/5 Elliptical for square wave
Slow_0, 0 DP: 1/5 Elliptical for square wave

Average Speed: 0.602163 Hz

Here a new non-dimensional number is introduced, the velocity ratio (1, = wmm). This ratio is
max

equal to the minimum instantaneous speed (W) divided by the maximum instantaneous speed
(Wmax)- A comparison of the angular velocity curves between the EPM-1 tests and MSPM under
the above scenarios is found in Figure 7.12 below, it is also presented in an alternative form in

Figure 7.13:
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Figure 7.13: Velocity ratio results for experiment and simulation for 4 different velocities
This result indicates that MSPM follows the same trend as the experimental simulations and is
within a close margin on the error, on the 3 tests which line up closely in speed, due to is asymptotic
nature the error is calculated based on the difference between the speed ratio and the ratio of 1:

(1 — ry), the error in this value is largest at the highest speed with a value of 30.6%.
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The differences in velocity variations may be caused by various factors, including the
differences when and how much power is entering the mechanism at any one time, which is
indicated in the differences between the experimental and modelled indicator diagrams. These
differences are caused by a variety of effects. Firstly, are flow losses, which would be different in
the true heat exchangers. Secondly, leaks and displacer by-passing which are assumed negligible
in the model and may be associated with lower power produced by the experimental engine.
Thirdly, as the mechanism frictions were not included in these experiments, their effect,
specifically, their intermittent and phase dependent effects are not captured. The actual experiment
used a set of 3D printed elliptical gears to define the motion of the pistons for both the sinusoidal
and dwelled tests which may have inconsistent loss characteristics. While the model maintains its
ability to model friction as an angularly varying loss, it was outside the scope of this thesis to

determine what these values were in the experimental engine.

7.2.3 Sensitivity Studies

A set of sensitivity studies were performed on the EP-1 model (filled at atmospheric pressure,
and using sinusoidal motions for both pistons) and the change in the pressure-volume diagram was
observed. These studies were performed on a test at 0.5 Hz and a test running at 2 Hz. A summary
of the changed properties can be found in Table 7.5 below.

Table 7.5: Sensitivity Studies (results are colored based on absolute value, -50% uses
backwards difference, +50% uses forward difference, £2% uses central difference for slope

calculation)
0.5 Hz Test, 7.824 J/cycle 2 Hz Test, 1.707 J/cycle
Slope (J/cycle/%) Slope (J/cycle/%)

Change -50% +2% +50% -50% +2% +50%
Heat Exchanger Nusselt | '8.10E-02  5.35E-02 3.84E-02 8.20E-02 7.10E-02  5.86E-02
Regenerator Nusselt  1.16E-02  8.00E-03  7.40E-03 8.20E-03  6.75E-03  6.40E-03
All Friction Factors [-1.60E-03 -1.50E-03 -1.60E-03 -1.56E-02 -1.53E-02 -1.58E-02
All Solid Conduction -1.16E-02 -7.50E-03 -5.60E-03 -1.66E-02 -1.18E-02 -1.00E-02
Axial Mixing Coefficient [=1.00E-03  -7.50E-04 -8.00E-04 -6.00E-03 ' -5.00E-04  -6.00E-03

The property that has the strongest response is the heat exchanger Nusselt number. In both the
slow and fast trials reducing the convection coefficient resulted in a drop of roughly 4 Joules per
cycle. Increasing it increased the power output by a smaller margin. The increase was more

significant on the faster trial, presumably as this trial existed farther down the arctan shaped
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response curve for Nusselt number. The effect was similar when the regenerator including that the
up and down values were closer together in magnitude on the fast trial. Increasing/decreasing the
solid conductance and axially Nusselt number was more significant on the fast trials, possibly due
to the heat exchangers being less capable of compensating for any drops in temperature. The
increased effect of viscous friction is inline with the close to order of magnitude increase in friction
losses. A sensitivity study like this can help to guide the designer in identifying where

improvements may lie with respect to the running conditions of the engine.

7.3 Comparison with SAGE

7.3.1 In High-Temperature, High Speed Context

To assess the model performance against published literature the paper by Hoegel et al [44] was
selected. This work was selected because it provided geometry details and results for a set of
different engines and included several tests at with lower source temperatures. The premise of the
referenced work was to compare optimized designs between low and high-temperature alpha type
Stirling engine using the commercial software SAGE, the MSPM model of this engine is shown

below:

Expansion Piston

Hot Heat Exchanger
Regenerator
Cold Heat Exchanger
/ / / Compression Piston
[ ||/

Figure 14: Annotated alpha engine for Phase 135°, Source 150 °C test as shown in
MSPM

For the purposes of comparison SAGE is correct, however this is not necessarily true as SAGE
is not perfect, and the given results do not provide an experimental validation. The model

parameters of the tested opposed piston alpha type engine are shown in Table 7.6.
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Table 7.6: Alpha engine geometrical properties for SAGE comparison [44]

Component Value Unit
Material (heat conductors and regenerator) Steel
Bore 0.2 m
Stroke 0.1 m
Phase Angle Test Dependent degrees
Angular Speed 16.7 Hz
Heat Source Temperature Test Dependent °C
Heat Sink Temperature 40 °C
Mean Pressure 5,000,000 Pa
Working Fluid Helium
Heat Exchanger Type Tube Bundle
Tube Diameter 0.003 m
Tube Wall Thickness 0.0005 m
Tube Number Test Dependent
Heat Exchanger Length Test Dependent
Regenerator Cavity Diameter 0.2 m
Regenerator Wall Thickness 0.0075 m
Regenerator Matrix Random Fibre
Fibre Diameter 0.00005 m
Porosity Test Dependent
Length Test Dependent
Table 7.7: Alpha engine test and specific geometrical properties for SAGE comparison [44]
Test HX Tube HX Length Regen. Regen. Power
All at 16.7 Hz Number (m) Porosity  Length (W)
Phase 135°, Source 150 °C 1054 0.1604 0.9686  0.6709 3,630
Phase 165°, Source 150 °C 1042 0.1441 0.9067 0.01441 4,840

Phase 90°, Source 750 °C  Cold: 277 Cold: 0.2628 0.7846  0.03220 96,286
Hot: 398 Hot: 0.2592

Phase 135°, Source 750 °C Cold: 233 Cold: 0.2496 0.6902 0.009823 104,470
Hot: 401 Hot: 0.1895

Phase 165°, Source 750 °C Cold: 330 Cold: 0.1607 0.7301 0.009823 45,736
Hot: 510 Hot: 0.1108

Some information, such as the thickness of the cylinder walls is missing. Therefore, a thickness
of 7.5 mm is also selected for those points. All components including pistons and walls are

assumed to be steel. The results from the 5 tests conducted are presented in the following table:
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Table 7.8: Output power comparison between MSP and SAGE simulations at 16.7 Hz

Test MSPM Output SAGE Output Error (%)
Power (W) Power (W)
Phase 135°, Source 150 °C 1,484 3,630 59.1%
Phase 165°, Source 150 °C 3,507 4,840 27.5%
Phase 90°, Source 750 °C 73,146 96,286 24.0%
Phase 135°, Source 750 °C 72,478 104,470 30.6%
Phase 165°, Source 750 °C 33,734 45,736 26.2%

The PV diagrams for each of the tests are compared in Figure 7.15. Note that pressures and

volumes are converted to their non-dimensional form.
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Figure 7.15: Pressure — volume diagram comparison between MSPM and SAGE, data
extracted from: [44]

There are several observations that are made about the above figures. Firstly, the pressure
maximums are reduced, which indicates that MSPM underpredicts — relative to SAGE — the
temperature performance of the engine given that both models should have the same motions. This
is likely due to a combination of two things: different Nusselt number correlation in the heat
exchangers and the neglection of tortuosity. MSPM uses the same turbulent correlations as SAGE
but could not adapt SAGE’s complex scheme for determining the laminar Nusselt number of its
tube bank heat exchangers which involved compression and advection driven flows [35] in
complex form. Also, it is not known what values SAGE uses for minor losses at component
transitions as these are not shared in the documentation. In addition, MSPM does not include
tortuosity in its analysis, which approximates the curviness of a fluid streamlines through a
medium, this alone would result in lower regenerator performance, as incorporating tortuosity
would result in a higher effective speed, yet similar residence time in the regenerator. Additionally,

SAGE uses areal gas representation [35], which under high pressures approximates the divergence
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of real gases from ideal ones, in particular on the higher temperature and higher phase runs where

the limiting factor in the short regenerators may be the local Nusselt number.

7.3.2 In Low-Temperature, Low-Speed Context

The following tests expand upon the previous tests, which though useful are not running at
speeds or temperatures for laboratory engines produced by DTECL which MSPM was designed
for. These new experiments feature the following modified properties, properties not listed are the
same as those found in Table 7.6. It should be said that, though results are compared against SAGE,
it is not clear whether SAGE models correctly the low-temperature, low-speed regime. Results
from Table 7.10 indicate that MSPM and SAGE predict a similar trend but diverge at higher

speeds.

Table 7.9: Unique properties for low-speed/low-temperature alpha engine SAGE

comparisons
Component Value Unit

Phase Angle 160 degrees
Angular Speed 0.5-5 Hz
Heat Source Temperature 95 °C
Heat Sink Temperature 5 °C
Mean Pressure 101325 Pa

HX Tube Number 459.6

HX Length 0.2348 m
Regenerator Porosity 76.47 %

Regenerator Length 0.001350 m

Table 7.10: Test results for low-speed/low-temperature alpha engine SAGE comparisons
Test  Non-Dimensional Power (W)  Error

(Hz) SAGE MSPM (%)
0.5 0.015 0.006 59.9%
1.0 0.027 0.028 2.5%
1.5 0.053 0.054 3.0%
2.0 0.079 0.083 4.0%
2.5 0.101 0.107 6.3%
3.0 0.111 0.123 10.2%
3.5 0.107 0.125 16.4%
4.0 0.078 0.107 36.9%
45 0.016 0.066 301.5%
5.0 20.077 20.004 94.3%
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Figure 7.16: Pressure — volume diagram comparison between MSPM and SAGE for low-
speed, low-temperature, low-pressure case.

The results indicate that MSPM, relative to SAGE, sometimes overestimates the temperature
ratio that the gas achieves — via the broadness of the indicator diagram. At the same time MSPM
underestimates, by a factor of roughly 2 the pressure loss through the components — via the
pressure difference between the peaks of expansion and compression curves. Here the differences
between SAGE’s representation of the laminar Nusselt and friction loss coefficient are seen to a

greater extent.

7.4 Optimization Studies

MSPM was tasked with optimizing a new engine to be created by the laboratory. The proposed
engine would be in a beta-style configuration, as shown on Figure 7.17, with the power piston
residing on the cold side of the engine. During optimizations only the stroke of the pistons and size
of the power piston was kept constant while the diameter of the displacer and heat exchangers was
modified. During these tests the target parameter was volumetric power density e =
E shaft / Vengine Which gave rise to reasonable engines. The properties of the running conditions

and heat exchangers for an engine without a regenerator are included in Table 7.11.
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Figure 7.17: Depiction of beta-layout engine to be optimized. Large volume beneath
engine represents the crankcase, the additional bodies jutting out of the engine are added
to prevent the optimizer from making certain features too small leading to instabilities in

the solution. (these bodies will overlap before the gas body becomes too small)

Table 7.11 Test properties for Beta-Engine Optimization

Running Properties Value
Running Speed 1 Hz
Phase 90°
PP & DP Stroke 0.254 m
PP Diameter 0.3048 m
Fill Pressure 1 - 6 atm
Mechanism Efficiency 0.8 0.9
Heat Exchanger Properties Bell AW450085060
Material Aluminium Alloy
Air Gap Between Water Channels 0.00635 m
Water Channel Width 0.003175m
Wall Thickness 0.0008128 m
Surface Roughness le-6 m
Fin Period 0.0023314 m
Fin Thickness 0.00021195 m
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Table 7.12 Geometrical properties for Beta-Engine Optimization, Optimized for Maximum
Power vs Gas Volume (1 Hz, filled with air)

Design .
Variables Post Optimal Values
Charge
Pressure (atm) Heater / Swept / PP HX/ Compression PV Power / Flow Loss
. Cooler Swept . Shaft
/ Mechanism Volume Ratio / PV Power
. Volume Volume Power
Efficiency
2atm/0.8 1.088 5.755 0.434 1.116 0.455 0.058
4 atm /0.8 1.142 4.010 1.140 1.104 0.475 0.050
6atm/0.8 1.179 5.894 1.339 1.065 0.470 0.117
2atm/0.9 1.095 5.261 0.696 1.099 0.783 0.090
4 atm /0.9 1.037 4.879 0.938 1.094 0.755 0.073
6atm/ 0.9 1.178 5.860 1.347 1.091 0.678 0.089
2atm/ 1.0 1.071 5.204 0.824 1.094 0.985 0.085
4atm/ 1.0 1.091 4.760 1.071 1.090 0.986 0.067
6atm/ 1.0 1.069 4.722 1.069 1.090 0.978 0.083

From Table 7.12, it can be observed several clear trends: Optimal Heater/Cooler volume is not
strongly related to either mechanism efficiency or fill pressure. Optimal swept volume over power
piston volume hovers around 4-6. Optimal heat exchanger volume vs swept volume ratio hovers
around 1 at low temperatures. Compression ratio is slightly greater that which is predicted by Kolin
[65] equal to 1.082 for temperatures of 95 and 5 Celsius. The ratio of PV power / shaft power is
strongly dependent on the mechanism efficiency falling on the line 2.5831n,,,0cn — 1.5957 with
an R value of 0.999. The extra mechanism losses are due to energy transmitting back and forth to
the engine to compress or expand against the pressure regime or fight flow losses. With regards to
flow losses, it appears to be good practice to ensure that flow losses never amount to more than

10% of PV.

An improvement was proposed to optimize the engine for maximum efficiency as the above
tests featured an average efficiency on the order of 1% and would overload the available heating
supply within the test laboratory. As a reference the Carnot Efficiency is on the order of 24%. As
the expected range of fill pressures is between 1 to 10 atmospheres an engine will be designed to
be optimum at 5 atmospheres. It was determined that a mechanism effectiveness of 80% could be
used to conservatively model the mechanism currently in the design phase, though it is likely to
be in the range of 85%. The addition of a regenerator and insulation of the engine is known to
strongly effect the efficiency. Also, it is proposed that thin, large cross-section heat exchangers are

desirable for maintaining good heat exchange without much pressure drop. Thus, the new engine

173



features a HX stack which is detached from the engine such that the length can be optimized
independent of the displacer cylinder length, at the introduction of some additional dead volume.
Through previous investigations a regenerator porosity of 95% is expected to be close to the
optimum value, the stainless steel randomly oriented fibres are 0.1 mm in diameter, in line with

coarse steel wool. The results of these further optimizations are shown on Table 7.13.

Table 7.13 Test properties for Beta-Engine Optimization (listed component volumes are for
available gas volume only, heat exchangers have a surface are to volume ratio of about 1.52
m?/Litre, 1 Hz, 80% efficient mechanism, wire diameter of 0.1 mm in regenerator, HX

volume is for heater and cooler only, with air if not otherwise indicated)
Power Heater/ HX/ Regen./ Swept/

Details (W)  Cooler Swept Swept PP
Volume Volume Volume Volume

Eff.
(%)

Power Density

90% porosity regen. 328.4 1.074 0.809 0.0363 6.372 2.18%

95% porosity regen. 336.3  1.054  0.706  0.0680 6.579 2.12%

Insulated, 95% porosity regen. 431.7 1.053  0.660 0.0653 6.673 3.70%

As above with 24” DP 416.0  0.958  0.554 0.0965 5 4.95%

Insulated, offset HX, 95% por. regen. 427.5 1.003 0.478 0.0882 5.462 4.72%
Efficiency

Insulated, offset HX, 95% por. regen. 407.5 0.9488 0.567 0.142 4925 5.55%

As above with 24” DP 329.0 0.838 0.842  0.383 5 6.20%

Insulated, offset HX, 95% por. regen. 486.15 0.930 0.5515 0.180 4.975 8.02%
(Optimized with Helium)

Based on the results in Table 7.13 several observations can be made. Firstly, efficiency strongly
correlates with the size of the regenerator. Secondly, well insulating the engine body can improve
the efficiency by several percent and will reduce the requirements on HX size vs swept volume.
Relative size of both heat exchangers is consistent among trials. Peak power density and peak
efficiency occur at similar but notably different conditions. The final test, which featured an engine
filled with helium resulted in increased power with very similar geometry. The power increase is
largely attributed to an increase in efficiency from reduced flow losses; 33% lower than the optimal
point for air. This is created by reduced viscosity in similarly sized heat exchangers and

regenerators.
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CHAPTER 8.CONCLUSIONS

8.1 Conclusions

The model presented here predicts the complex phenomenon present in Stirling engines. The

following subsections will discuss the model through the lens of the project goals.

8.1.1 Create a Combined Mechanical and Thermodynamic Model for

Low-Temperature Stirling Engines

This was accomplished through the alternating coupling of the gas and kinematic mechanical
system. The gas system was solved as a one-dimensional pipe network around the assumption of
equal gas pressures, which prevented the emergence of acoustic instabilities and allowed each step
to be solved using a larger timestep than the compressible simulation would allow. The mechanical
system using an alternating coupling allows the mechanical system to respond quickly to changes

in the gas system, while allowing the gas network to use deterministic positions and velocities.

8.1.2 Ensure the model is User-Friendly and Intuitive

While not an engineering issue, ease of use is an important component of the selection and
further development of any software tool, this model is no exception. To support the user, this
model features a graphical user interface (GUI) which allows the user to define engine-geometry
in a physically viable context. The model may include as much detail as required, and internally
develops the connectivity of the user defined blocks. Other features such as: a drop-down menu
for editing object properties, an animation tool for visualizing motions and mesh visualization are
included to support the user. Additionally the MSPM software package uses no external MATLAB
toolboxes and requires only the MATLAB editor to run.

MSPM natively creates animations of the view-screen after simulation, which are much easier
to inspect than data-structures, which it also produces. The user can also place generic point and
line sensors in addition to indicator diagram generating sensors. These output features may allow

the model to serve as a explanation or presentation tool.
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8.13 Validate the Model against Experimental and a well Established

Numerical Model

The model is tested against a variety of classical experiments to check the correctness of
different aspects of the code in isolation. In these tests MSPM matched up well with analytical
results, these tests show that the fundamental aspects of the model are correct, and that the

numerical method used converges to the expected trend.

When compared against the EP-1 (in lab engine) under-steady-state conditions without
calibration, MSPM developed a maximum error of 43.1% with an average error of 30.6% over the
12 tests with speeds ranging from 0.56 to 2.26 Hz. The model was calibrated through modification
of the compression to match the observed variance in pressure ranges which reduced the maximum
and average error to 35.2% and 21.9% respectively. The remaining error was systematic and
consistent among all the speeds, this indicated that the actual error may be in the effectiveness of
the heat exchangers to expose the air to actual source temperatures. This fine perspective on the

heat exchangers is possible in MSPM but was not explored in detail here.

When compared against SAGE, a well established and accurate numerical code, 5 tests were
extracted from Hoegel [44], which modelled an opposed alpha type engine. Over the 5 tests, in
which error is calculated relative to SAGE’s output indicated power, MSPM developed a
maximum discrepancy of 59.1% with an average of 33.5%. The cycle speed for these tests was
16.7 Hz. It was concluded that the error was largely due to differences in convection and the
exclusion of tortuosity from MSPM as it stands currently. Each of these tests were tested with

different geometrical and phasing parameters.

A second batch of SAGE tests were included, which were modelled in-house but at the reduced
speeds and temperatures common to low-temperature Stirling engines. The two models followed

a similar trend in power however diverged at higher speeds.

Finally, MSPM was used to optimize a beta engine. The resulting engines displayed consistency
in the relative size of certain components and informed the design of a new engine project. The
information gained from the model included optimal geometrical sizes, expected power,

anticipated supply power and expected losses due to friction.
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8.2 Sources of Error

The following sub-sections outline specific areas where for a variety of reasons errors are
introduced in the name of simplicity or computational efficiency. The possible sources of error

include:

8.2.1 Decoupling of Flow Friction and Volumetric Flow Rate

This will have the effect of incorrectly determining the phase lag and dampening of volumetric

flow rates as well as incorrectly determining of the density of the gas.

8.2.2 Constant Properties

Material properties such as solid conductivity, solid heat capacity as gas-constants is assumed
constant given that these properties did not vary significantly over the temperature range
considered. However, this introduces a bias error for any point that is not equal to the calibration

point.

8.2.3 Ideal Gas Representation of the Fill Gas

The ideal gas representation is valid only for low-pressures and high-temperatures. Of course,
these statements are relative, and error increases the moment the gas is no longer at the point for
which the gas constant was derived. At atmospheric pressure the ideal gas law for air is accurate
to within 2% from 100 K with an upper bound exceeding 1000 K, at a pressure of 20 bar, the lower
bound rises to 250 K and at a pressure of 100 bar, this range shrinks to within 300 to 350 K, outside

of which error increases rapidly [66].

8.24 Radiation Heat Transfer is Ignored

In the annular gap in particular radiation heat transfer plays an important role in the heat transfer
from 2 surfaces separated by a very small air gap. In MSPM this effect is ignored. This was
justified because of the low temperature assumption which states that because the magnitude of

radiation is based on temperature to the power of 4, that for tow-temperature Stirling engines the
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magnitude would be very small. While very small, the radiation effect would still produce a loss

and thus results in a small bias error.

8.2.5 No Contact Resistance

Built into the conduction algorithm is an assumption that all interfaces have zero contact
resistance. This is particularly unlikely in cases where a cylinder and wall are closely mated but
run against each other, the model assumes that the two surfaces are bonded perfectly, when in

reality a thin layer of air and other fluids would offer a measurable resistance.

8.2.6 Nusselt Number is Node Based, not Surface Based

The Nusselt number is intended and derived for convection between a gas and a surface with a
particular geometry. This non-dimensional number was expanded to having a single value of
Nusselt number per node due to the computational complexity of solving a Nusselt number for
each face. This simplification was justified based on the concept that within a Stirling engine
surfaces affect each other. Thus, turbulence created by one surface would throw off the Nusselt
number calculation for another, therefore a single value from the most dominant surface would be

the best guess at a global Nusselt number without ugly area weighted anonymous functions.

8.2.7 Constant Friction Coefficients in Mechanism

Currently, the system takes only normal force in the calculation of friction coefficients. More
realistic models would incorporate temperature buildup effects, speed, lubricant film thickness and

could introduce drag from the air around the mechanism and flywheel.

8.2.8 One Dimensional Flow Assumption

The one-dimensional flow assumption has its drawbacks, including the inability to evaluate the

following:

- Recirculation regions [35] or complexities within open chambers

- Preferential flows [67] either due to offset designs or due to manufacturing inconsistencies
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Not modelling these phenomena means that generic approximations are required. Recirculation
regions are approximated by a combination of minor loss coefficients and turbulence in variable
volume spaces, which are general at best, especially when combined with the mono-Nusselt
number assumption. Minor loss coefficients are used out of scope as no minor loss coefficients
could be found for annular interfaces. There is no generic approximation for preferential flows as
it is assumed that the designer avoids it as much as possible and that features are uniform all the
way around the engine, even in cases where a bridge is applied to an offset or side position, the
inflow and outflow is assumed to be distributed or smeared all the way around the engine. The
problem of preferential flows becomes particularly problematic with thin, HX’s, which are optimal
with regards to flow losses, but may result in inefficient use of HX volume or lower than expected

exit temperatures.

8.2.9 Minor Loss Coefficients are Naively Applied

The model does not incorporate support for laminar minor loss coefficients. Ideally these would
be calibrated through CFD or real-world experiments for a range of flow through rates, but likely
the designer will be restricted to generalized formulas such as the Hooper 2-K [68] or Darby 3-K

[69] which provide loss coefficients for fittings in the laminar regime.

Turbulent minor loss coefficients are calculated simply by determining the change in flow area
between one zone and the next. No modifications are made for turns, for the number or distribution

of openings or for the effect of annularity.

8.2.10 Fluid Inertia and Acoustics, are Ignored

Neglecting fluid inertia will prevent any inertia effects, such as the pressure increase/decrease
in response to the speed of a moving boundary, or acoustic resonance at higher speeds. Neglecting
acoustics will have the effect of improving the simulated performance of the engine due to reduced
friction losses. Acoustics were neglected here to improve computational efficiency using gas speed

instead of sound speed as the timestep limiter and reduce anomalies at low speeds.
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8.2.11 Steady-State Convergence

Currently, the model uses the deviation from cycle to cycle as the assessment criterion for
convergence to steady state, for particularly large engines it may take a great deal of time to
converge. Thus, the model may recognize an engine as converged even if the slope is not
asymptotic but slow enough to fall within the tolerance bounds. In these cases, it is recommended
that tolerance be reduced until the model shows truly convergent behavior, thankfully any follow

up experiments can use the end of the previous experiment, the snapshot, as the starting point.

8.2.12 Calculation Errors

Computers work within a limited scope of possible values, therefore any operations conducted
using a computer has limitations. MATLAB natively uses double precision values (15 decimal
digits) in its calculations, which results in very little calculation error through basic operations.
Therefore, the only meaningful sources of error lie within areas where these values are magnified.
These areas are matrix inversion and large values. These areas are often combined, as was the case
with the flow rate solving. The error of matrix inversion is said to be on the order of the condition
number of the matrix. For a typical matrix in the flow rate solving loop of the EP-1 model the
condition number was on the order of 1-10* which means that the matrix is somewhat ill-

conditioned, and a small error in any of the properties may be magnified by roughly this amount.

8.3 Future Opportunities

8.3.1 Real Gases

Due to the use of Stirling engines in cryogenic fields, under high pressure and with large
changes in pressure and temperature it would be beneficial to represent the gas as a non-ideal gas.
The Van der Waals or Redlich-Kwong model of gases would be sufficient for this and even would

allow prediction of the phase change behavior of the constituent gas.
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8.3.2 Interface for Simulating Control System

An improvement would introduce smart valves, localized sensors and modifiable transmission
systems driven by a control system designed by the user. Ideally the system would control the
mechanism phasing, which would involve a modification of how the mechanism is interpolated,

fill pressure through an orifice and source temperatures.

8.3.3 Multi-Phase simulations

Simulating multiphase transport, condensation, evaporation, and mixed properties would allow
this to simulate more complex systems. This would involve a condensation / evaporation rate series
of equations based on presence of a liquid film and flow properties, thermodynamic properties of
mixtures, species transport as particulate, flow due to gravity and assisted liquid transport. Phase
change is a promising angle for Stirling engines, typically incorporating phase change reduces the
efficiency of a Stirling engine [70] but it is known to increase the power density substantially.
With controlled evaporation it may be possible to significantly improve the performance of Stirling

engines and with modification, MSPM could assist in that goal.

8.34 Source/Sink Simulation

Simulating the temperature regime within the thermal sources and sinks along the length of the
heat exchanger might be of interest in cases where significant amounts of heat are transferred. This
could involve defining the source fluid path through the heat exchanger and adding more detail to

the source’s convection behavior, which is currently not defined.

8.3.5 Material Distortion

Within the laboratory, there have been many observations of substantial flexing of members in
response to pressure, the two most notable are the 17 thick acrylic blind flange of the EP-1 flexing
close to 2 mm in either direction and the flexible bellow expanders which notably balloon outward
or collapse under negative pressure. In short, modeling of flexible interfaces could prove valuable
in cases where the pressure is contained by soft materials or when the engine body is to be analyzed

for structural stability. With material distortion the simulation of more abstract structures may be
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possible, including diagrams which are often used as frictionless pistons where high efficiency is

required.

8.3.6 Improved modelling of Entrance Turbulence and Swirl in Open

Volumes

The current formulation of open space turbulence is extracted from SAGE. It would be of
interest to investigate this topic further to ensure that these values are true, as it is known that
interfaces between gases and solids support a laminar, near-wall, region which must be accounted

for. This is not accounted for in the current implementation.

8.3.7 String or Text File Based Test Set Run Files

To take this code out of the MATLAB environment it would be prudent to add an interface for

the construction of test sets or allow the user to submit them as a standard text file.

8.3.8 Modelling of explicit faces

When two regions become exposed to each other the resulting outflow is explosive. Such a flow
process would be modelled as a compressible process. After a short period though, if the two
regions remain connected this explicit face would continue to slow the simulation down as the
flow would oscillate. The solution would be to combine the two regions into one during this
connected period and handle the opening or closing event as a regulated transition between the
separated and combined states. As such connections where not required for simulation of
DTECL’s Stirling engines it was not within the scope of this project to implement the projected

complexity that this transition system would entail.

8.3.9 Improvements to Geometry Optimizer

The current geometry optimizer does not consider that an improvement might occur through
the modification of one or more properties simultaneously where independent modification of
those same properties may result in a loss. This would be very common in cases where increasing
the diameter of the displacer causes the heat exchangers to shrink simultaneously reducing their

effectiveness and inducing more friction losses, while increasing both the displacer and heat
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exchangers might result in a gain. To avoid the added cost of gradient calculation, the edits could
be designed such that the cross-section of components that are downstream is maintained. This
would involve turning on and off relationships, which could be made part of the degree of freedom

definition.

In its current state it may be prudent then to optimize in stages, have one model broken up so
that features can be as independent as possible, then reassemble into a compact interconnected

engine and optimize all the features again.

8.3.10 Parallelization

The program produced as part of this thesis runs entirely on a single core. A parallel
implementation could, on a 4-core computer, be capable of operating at speeds close to 4 times as

fast. Alternatively, this could allow the code to run more than one simulation at a time.

Alternatively, the model for steady-state cases could be discretized in both the spatial and time
grid and a parallel non-linear solver would use to solve the resulting matrix. This would present a
much better alternative to solving each step individually as it is done in this model and the resulting
matrix updates would be calculated in parallel, preferably on the GPU as with modern CFD
simulations. In such simulation the multi-grid consideration would work both in the time and space
domain, the snapshot would serve as an initial guess and the steady-state solid temperatures

assumption used to increase the convergence rate would replace the nodes deep within the bodies.

8.3.11 Other Programming L.anguages

MATLAB is primarily a prototyping language and is very strong at vectorizable operations and
in matrix operations, in these areas the built-in technology is almost unmatched. However,
MATLARB is typically slow at conducted sequential operations, an area where C++ is more suited

for. Replacing sections of the code base with C files could offer dramatic improvements.
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Appendices

Appendix A. Mechanisms

The mechanisms described below are only a subset of the myriad of linear to rotational

mechanisms proposed for Stirling Engines. Each of them assumes the following:

- A piston force is considered positive if it pushes the piston away from the driveshatft.

- Friction is excluded except for a modification on the output torque which takes the
rotational speed and formulates a moment such that the energy loss from each source of
friction is represented in the modified torque.

- To ensure that the bearing load on the driveshaft is properly oriented in space the
orientation of the mechanism, rotates the coordinate system of the output normal loads
before outputting.

- As a piston can be based either as coming from above the cylinder or below, each
mechanism has an orientation property, in addition to its rotation, which changes the sign

of the piston forces and inverts the returned position offsets.

A.1. Slider-crank Mechanism

Each component of the Slider-crank is solved using Newton’s law, resulting in 7 semi-explicit

equations.

Figure 8.1. Slider-crank Mechanism: dimensions, masses, and gravity
Crank Arm
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Connecting Rod Connection

Drive Shaft Connection

Figure 8.2. Free Body Diagram of Crank Arm
Osc=0+0¢

Oy =0+ ¢+ 0,
Im1 = mlrlz
The moment generated around the driveshaft

Z M=I,a= (F12)xly sin(Bs.) — (F12)yl1 cos(Bsc) + Mo, — gmyricos (6y)

Forces in the local x-direction

Z FE, =mq(a)x = (For)x — (F12)x — gmysin (¥)

Forces in the local y-direction

Z E, = ml(al)y = (F01)y - (F12)y — gmycos (y)
Linking acceleration to relevant parameters
(a1)y = (—11 cos(Osc + O, ) )w? + (=1 sin(Bse + O, ))& = Bayxw? + Copx
(a1)y = (—rl sin(@sc + Hml))a)z + (rl cos(@sc + Bml))a = Ba1yw?® + Caiya
Loss associated with My ,:
L= |Mf120)1(1 — Cu2)|
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Connecting Rod

Connecting Rod Connection

M1z, @ Ly (ay),

Mgas
Piston Head Connection

Figure 8.3. Free Body Diagram of Connecting Rod

- (l3 = 1l;sin(6,.)
ﬁsc =Sin 1<3 1l2 * )

.Bg =PsctY
I, = myr5
The moment generated around Crank Arm — Connecting Rod joint
z M =1, a,= (F23) 213 sin(Bsc) — (F23)yl2 cos(fsc) — gmyryc0s (.Bg)

Forces in the local x-direction

Z E, =my(az)y = (Fi2)x — (F23)x — gm, sin(y)

Forces in the local y-direction

Z E, =m, (aZ)y = (F12)y - (F23)y — gm; cos(y)
Linking acceleration to relevant parameters

( l; cos(Bs.)
(1)2 =

———w; =C,,w
ZZCOS(ﬁSC)> ! @z

<l1 Sin(esc) + lz Sin(ﬁsc) szz) 2 ( ll COS(QSC)
a, = w*+ | —

—————)a=B, w?+C,
l2 Cos(ﬁsc) 12 COS(ﬁsc)) 2 “2
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(az)x = (_ll COS(BSC) -1 COS(BSC) Ca)zz -1 Sin(ﬁsc) Baz)(‘)z

+ (_ll Sin(esc) ) Sin(ﬁsc) Ca)z)a = Bawa2 + Coox

(aZ)y = (_ll Sin(gsc) - N Sin(ﬁsc) szz + g Cos(ﬁsc) Baz)(‘)z

+ (1 cos(Bse) + 15 c0s(Bsc) Coy, )@ = Buayw? + Copypa
Loss associated with My, 3:
L = |Myy30,C,p|
Piston Head

(FZS)yfFS

(a3)XJ (FZS)XI P;:Ur FfS

gams |
I

Figure 8.4. Free Body Diagram of Piston Head

Forces in the local x-direction
Z E, =mz(az)y = F, + (F23)x — gmssin(y)

D B = 0= (), + F - gm; cos(y)
Linking acceleration to relevant parameters

(a3)x = (_ll COS(HSC) =1, Cos(ﬁsc) szz =1 Sin(ﬁsc) Baz)wz
+ (_ll Sin(esc) =1 Sin(ﬁsc) sz)a = Ba3x(‘)2 + Cy3x

Piston Motion and position

y = by c0s(6,0) + Ly cos(B0) — [l — 1)? ~ L

Up = (=1 sin(Bsc) — I3 sin(Bsc) Cpz)w

Loss associated with Fp3:
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L = [Fysvp|
Deriving M1, (Fo1)x and (Fo1), as F = Aa + Bw*+ G+ E
(Fp3)x = (M3Ca3x)a + (M3Bgzy)w? + (gms sin(y)) — E,

:Ala‘l‘Bl(l)Z + G1 +E1

(F12)x = (MyChay + Apa + (myB gy, + By w? + (gmy sin(y) + Gy) + (Ey)

:Aza‘l‘Bza)z +GZ +E2

F _ _Im2 sz y _Iszaz B )
(F23)y = (m + tan(Bs.) 1) a+ (m + tan(fs.) 1) w

N —gm,T, cos(ﬁg)
lZ Cos(ﬁsc)

+ tan(fsc) Gl) + (tan(Bsc) E4)

= Asa + Bzw? + G5 + E5

(Fi2)y = (mzCazy + A3)a + (szazy + B3)w2 + (gmz cos(ﬁg) + G3) + (E3)
= Asa + Byw? + G, + E,

(Fo1)x = (M1 Carx + Ap)a + (M Baix + Br)w? + (gmy sin(y) + G,) + (E>)

= Asa + Bsw? + Gs + Ex

(Fo1)y = (M1 Cary + Ay)a + (myBaiy + By)w? + (gmy cos(y) + Gy) + (Ey)
= Agat + Bgw? + G¢ + Eq

Output Variables (converted to global coordinates)

Torque from the driveshaft to the slider-crank mechanism

z M=I,a= (Fi2)xly sin(Bs.) — (F12)yl1 cos(Bsc) + Mo, — gmyrycos (Qg)
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My = (I,; — 1y sin(6,.) A, + 1, cos(0s.) Ay a + (=1, sin(Bs.) B, + 1, cos(8,.) By) w?
+ (gm1r1 cos(ﬁg) — 1, sin(6,,.) G, + 1, cos(b,,) 64)
+ (Fpll (cos(8.) tan(Bs.) — sin(bs.)) ) = Aya + Byw? + Gy + Ey

Horizontal force as felt by the driveshaft.

E, = (—cos(y) As + sin(y) 4g)a + (— cos(y) Bs + sin(y) Bg)w? + (— cos(y) Gs + sin(y) Gg)
+ (—cos(y) Es + sin(y) Eg) = Aya + Byw? + G, + E,
Vertical force as felt by the driveshaft.
E, = (=sin(y) As — cos(y) Ag)a + (= sin(y) Bs — cos(y) Bg)w?* + (—sin(y) Gs — cos(y) Ge)
+ (=sin(y) Es — cos(y) E¢) = Aya + B,w* + G, + E,
Losses:

Mposs = |Mf12(F12xJ F12y)001(1 - sz)l + |Mf23(F23x' F23y)(‘)lcw2| + |Ff3(F23y)Vp|
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A.2. Rhombic Drive Mechanism

Half of the Rhombic Drive mechanism is very similar to the slider-crank mechanism except
that the friction for the piston is only a product of side-load free seal friction. Also, half of the
bearing load on the shaft is placed on an auxiliary shaft that can be entirely contained in the engine

body without a seal.

|

|

|
o B
="y

My

Figure 8.5: Rhombic Drive Mechanism: dimensions, masses, and gravity

Output Variables (converted to global coordinates)
Torque from the driveshaft to a slider-crank mechanism

My = (Iyg — 15 sin(0s.) A, + 14 cos(8,.) Ay a + (=1, sin(8s,) B, + 1; cos(6.) By) w?
+ (gm1r1 cos(Hg) — 1, sin(8,.) G, + 1; cos(6,,) G4,)

+ (F,,ll (cos(6s.) tan(B.) — sin(bs.)) ) = Aya + Byw? + Gy + Ey
Horizontal force as felt by the driveshaft.

E, = 0.5((— cos(y) As + sin(y) Ag)a + (— cos(y) Bs + sin(y) Bg) w?

+ (= cos(y) Gs + sin(y) Gg) + (—cos(y) Es + sin(y) E¢))
= A,a+ Byw? + G, + E,
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Vertical force as felt by the driveshaft.

F, = 0.5((=sin(y) As — cos(y) Ag)a + (= sin(y) Bs — cos(y) Bs)w*
+ (= sin(y) Gs — cos(y) Gg) + (—sin(y) Es — cos(y) Es))
=Aya + B,w* + G, +E,
Losses:

F23 F23
 [eMyas (.52 01

Fizx Fiz
Mposs = ‘ZMﬂz (Tx.Ty) w1 (1= Cy2)

+ |Ff3(0)vp|

M
+ |Faux(Fx: Fy)wll + |Egear ((‘)1 70)
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A.3. Scotch Yoke Mechanism

Crank Arm

Connecting Rod Connection

Drive Shaft Connection

Figure 8.6. Free Body Diagram of Crank Arm
Osy =0+ ¢

O, =0+ ¢+ 0p,

The moment generated around the driveshaft

2 M =1y a = (Fi3)l sin(8sy) — (Fi2)yl cos(6sy) + Moy — gmyrycos (6,)
Forces in the local x-direction

z Fe = my(a)y = (For)x — (Fi2)x — gmysin (v)
Forces in the local y-direction
> By =mi(a)y = (Fory — gmycos ()

Linking acceleration to relevant parameters

(a), = (—rl cos(HSy + Hml))a)z + (—r1 sin(HSy + Hml))a = By, w? + Cy

(a1)y = (-7 sin(fsy + 6, ) )w? + (11 cos(Bsy + O, ))& = Bgyyw? + Coyyax
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Loss associated with My ,:
L= |Mf12(‘)1(1 - sz)l
Piston Assembly

The piston for the scotch yoke mechanism is supported by a linear bearing assembly, which has
a moment dependent and constant component to friction loss. The forces in the local x-direction

are as follows:

Z F=mp(ay), = F + (Fi2)x
Z Fy = (FBAsm)y —gmy cos(y)

D M = 0= Mo — (i)l sin(0sy) = gy siny)

Where:
Xp = Coffser + 1y c0s(Bsy)
v, = —lwsin(fs,)
a, = —Lasin(6;,) — Lw? cos(8,,)
Thus:

(F12)x = —myly (asin(6sy) + w? cos(6s,)) — E,
(Fpasm)y = gmy cos(y)
Mg asm = —(m, 12 sin?(6s, ) a + m, 12 cos(6s, ) sin(6s,) w? + 12 sin?(6,) F,) — gm,, sin(y)
(For)x = my(ar)yx + (Fiz)x + gmysin (y)

(Fo)x = My (Ba1xw? + Ca1,@) — myly (asin(bsy, ) + w? cos(6sy)) — F, + gm, sin(y)
=Aa + Biw? + EyF, 4+ G,

(F01)y = ml(al)y + gm, cos(y)
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(Fo1)y = MyBg1yw? + myCayya + gmy cos(y) = A,a + B,w? + G,
Moy = I, + (mplf sinz(ﬁsy) a+myl3 cos(@sy) sin(esy) w? + 12 sinz(esy) Fp)

+ gmyry cos(6;) = —Aya — Byw? — EyF, — Gy

Torque from the driveshaft to a slider-crank mechanism

My = Aya + Byw? + Gy + Ey
Ay = Iy, — m, % sin?(6;,)
By = —m, 2 cos(6y,) sin(6s,)

Gy = —gmyr; cos(6,)
Ey = —1Z sin?(6s,)

Horizontal force as felt by the driveshaft.

E, = ((— cos(y) A; + sin(y) A,)a + (— cos(y) B; + sin(y) B,) w?
+ (= cos(y) Gy + sin(y) G,) + (—cos(y) Ey)) = Ara + Byw? + G + E,,

—cos(y) (m1Ca1x —mply sin(@sy)) + sin(y) (m1Ca1y)

A, =
By = — cos(y) (m1Bg1x — myly cos(6sy)) + sin(y) (myBgyy)
G, =0

Ey = cos(y)

Vertical force as felt by the driveshaft.
E, = ((=sin(y) 4, — cos(y) Az)a + (= sin(y) By — cos(y) By) w?
+ (=sin(y) G; — cos(y) G,) + (=sin(y) Ey)) = Aya + Byw* + G, + E,,

A, = —sin(y) (m1Ca1x —myly sin(@sy)) — cos(y) (m1Ca1y)

B, = —sin(y) (mlBalx —myly cos(@sy)) — cos(y) (mlBaly)

Gy = g(m1 + mp)
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E, = sin(y)
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A.4. Ideal Sinusoidal Mechanism

The ideal sinusoidal mechanism is simply a simplified Scotch Yoke mechanism
Osc =0+0
The moment generated around the driveshaft

Z M =1, a = (Fi3)xl; sin(6s.) + My,

Forces in the local x-direction

D Be=0= (For)e = (Fia)y — gmusin (1)

Forces in the local y-direction

Z F, =0 = (Fo1)y — gmycos ()

Piston
Z Fe = a,m, = (Fi2)x + B, —gmy, sin(y)

> B =0= (), - gm, cos(y)
xp = 1y cos(0s) + C
v = 1y sin(6s0) wye
ap, = —ly cos(fs) wge — by sin(Bgc) asc
Separating the root forces F; and M,
(Fi2)x = —myly cos(sc)wéc — mpyly sin(8c) agc + gmy sin(y) — E
(Fo1)x = —mply cos(O5)wi: — mply sin(B.) ase + gmy, sin(y) + gmy sin(y) — F,

(F01)y = gm cos(y)
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Mo = L, asc + myl§ cos(8s) sin(Bsc) wé. + my, 13 sin®(0sc) as + Fyly sin(Bs,)

— gmyl, sin(y) sin(6s.)

A, = —cos(y) (—myl, sin(6s,))
B, = — cos(y) (—myl; cos(6s.))
G, =0
E, = —cos(y) (—Fp)

Ay, = —sin(y) (-myl sin(6s,.))
B, = —sin(y) (—myl; cos(6s.))
Gy = g(m1 + mp)

E, = —sin(y) (—Fp)

Ay = (Im1 +m,1Z sin?(6,.))
By = my,l3 cos(8y,) sin(6y,)
Gy = —gmyly sin(y) sin(6s,)

EM = Fpl1 Sln(esc)
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A.5. Custom Profile Mechanism
The following mathematics determines a generic representation of a custom profile mechanism.
The custom motion mechanism is simply a modified Scotch Yoke mechanism
0'=0+¢

Forces in the local x-direction
z F, = mya, cos(y) = —Fy ps — g(my + my) sin(y) + E, cos(y)

Fyps = —g(m1 + mp) sin(y) + (F;j - mpap) cos(y)

Forces in the local y-direction
Z E, = mya, sin(y) = —F), ps — g(m1 + mp) cos(y) + E, sin(y)

Fyps = —g(m1 + mp) cos(y) + (Fp - mpap) sin(y)

Inertia of piston

1 5 dKE
KE = Empvp, i myv,a, = a)Tp
Up
Ty = —mpa,

This torque is positive concerning the driveshaft when the acceleration is opposite to the
current velocity, as in kinetic energy is leaving the piston and being transmitted to the driveshatft.

When the velocity and acceleration have the same sign, this should be negative. Thus:

Up
Tpps = — » Ml

Work against forces

dE _

T (Fp — g sin(y) mp)vp = Ty
v, .

T = ” (Fp — g sin(y) mp)
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This torque is positive when the force is in the same direction as the velocity, thus:

%
P .
Trps = =~ (F, — g sin(y)my)
Work into rotating inertia

dE

E— Imla

When acceleration is positive will reduce the torque sent to the driveshaft.

Tmps = —In,@
Moment around driveshaft
Mps = —Ipp, a — %mpap + 1:)_p (E, — gsin(y) m,)
The Piston Motion
x, = x(0)
dx
v =0y
dx d?x

ap =a%+wzw

Separating the root forces Fy;
Fyps = —g(m1 + mp) sin(y) + (F;9 - mpap) cos(y)

dx d*x

Fyps = —my (“@ + w? W) cos(y) — g(my + m,) sin(y) + F, cos(y)

Fyps = —g(m1 + mp) cos(y) + (Fp - mpap) sin(y)

dx  d%x\ _
F,ps = —my, ag +w 07 sin(y) — g(m1 + mp) cos(y) + E, sin(y)

dx _ dx , d%x
Mpg = —Im1a+ﬁ E, — gsin(y) m, —m, QE-HU FTH
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dx
A, = —cos(y) (mp %)

d*x
B, = —cos(y) mPW
G, =0
E, = cos(y) (Fp)

_ dx
A, = —sin(y) (mp E)

_ d?x
B, = —sin(y) | m, 207

Gy = g(m, +m,)
E, = sin(y) (Fp)

dx\2
b=t )
5 — dx d*x
M= "M 19402
G o) dx
m =—gsin(y)m, -
£ Fdx
M= "Pqg
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Appendix B.  Property Correlations, Surface Area &

Resistance of Matrix Elements

Table 8.1: User inputs and correlations for various properties based on regenerator type.
Correlations from (Gedeon, SAGE users manual [35]).

Regenerator Type

Woven Screen Random Fiber Packed Sphere Stacked Foil

Inputs Porosity () Porosity (f8) Porosity () Gap Width (1)
Wire Diameter (d,) Wire Diameter (d,)Sphere Diameter (d,) Thickness (I;)

Roughness (1,-)
Hydraulic d, d, do-PB 21
Diameter (d},) 1-p 1-p 6(1—p) 7
L 25.7¢ +79.8 <157
aminar —_—
o 129 291 Nge Nge 96
Friction Fzzj\‘;;))r N_Re + W 0.146¢ + 3.76 N 515 ( B )3.48 N_Re
ngé00283c+0.0748 ngé137 039
Laminar
Nusselt Number+ 0.99N, 0.66)131.79 1+ 0.186¢Np,°%5 1+ 0.48N,, % 8.23
(Nyw) ~ ¢
Laminar 066
Conduction Np, ™ 0.55 0.65
Enhancement 1+ W 1+ Nee 14 3Nee !
Factor (Ny)
l
Turbulent 0.121 <d_r
Friction Factor - - -—- 68 0.35
Ny)
(N¢ + )
NRe
Turbulent
Nusselt Number —-- —-- - 0.025NQ.7°. N33
(NNu)
CTuébutlgnt 0.022NR.5. Np,
onduction
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Enhancement

Factor (Ny)
Extra _ _ P _
Equations: Npe = Nre-Ner cT1C B p= lg + 1

WOVEN SCREEN & RANDOM FIBER REGENERATORS

For a long cylindrical element

Surface Area= 2mrlL

Volume = Tr?L

. r 2 L3
Average Radius = Jo 277747 _ 5™ _ 2
r? r?
: . In( o
Resistance from Surface to Average Radius = (%r) m(3)

Surface Area per unit Volume = (1 — f3) 2_ 40P

Resistance times Area = n(G)r _ m(Z)dw

PACKED SPHERE REGENERATORS

For spherical elements

Surface Area= 4nr
4
Volume = 37T

r 4
Jy 4mr3dr an“ 3
o3 T A3 T Zr
3 3

Average Radius =
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)

Resistance from Surface to Average Radius = N =
4k (Z)Tz 12mkr

4mr? (1-p)

Surface Area per unit Volume = (1= B)a— =6~
3 S

amr? ds

Resistance times Area= —— ==
12mkr 6k

STACKED FOIL REGENERATORS

For Planar Elements
Surface Area= 2dxdy

Volume = dxdy(lt + lg)
Average Radius = ilt

1
Lt

Resistance from Surface to Average Radius = =
k2dxdy 8kdxdy

2
Surface Area per unit Volume = 7~

lt+lg
esistance tumes Arca = 8kdxdy = Ik
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Table 8.2: User inputs and correlations for various properties based on heat exchanger
type: Fin Enhanced Surface, Fin Connected Channels. Correlations from [35] unless
otherwise indicated.

Heat Exchanger Type
Fin Connected
Fin Enhanced Surface Channels Fin Connected Channels (Triangular)
(Rectangular)
Gas space between source channels (I )
Fin Separation (Iy) Source channel width (I,,)
Inputs Fin Thickness (I;) Source channel wall thickness (I y¢n)
Roughness (1) Surface roughness (1)
Surface to build off of Base Width / Fin Separation (I 4)
Fin Thickness (I;)
. lg Ly L g leg lrg
Porosity (8) L+ Lo I+ Loy lrg + Lon Lo+ low g+ lory
Hydraulic 2l l 2l ig _05lrg 4
Diameter (dp,) 1+ ﬁ 1+ ]lr—'fg 1+\I1+ﬁ
Laminar
Friction Factor —43.9403+123.20°-118.31a+96,, —6.11810%+8.8371P+49.433,,
(Nf) Nge Nge
Laminar Nusselt 873 2.6600° — 12.190* + 21.63P3 —

Number (Ny,,) ) 19.992 + 8.92d + 0.956**

Lam. Cond.

Enhancement 1
Factor (Ny)

Turbulent  (—0.0086¢3 + 0.0223¢2 — 0.0247c +  (—0.018462 + 0.04146 + 0.0847) (ZT +
h

Friction Factor 1 68 \025, 0.25
roy 68 68\

V) 0.121) =t NRe) NRe) «
Turbulent (g)NRe-NPr
Nusselt Number 0.025N07°. N2:33 P

(Nyw) 1.07+12.7<N1?;r—1> ?f
Turbulent
Conduction
Enhancement 0.022Ng."*Npr
Factor (Ny)
Depending on the
orientation of the fin, lp=lcg—ln
Fin Length (I5) is L= —]
Extra Yo = Xi g C’gl t? ® = tan-1 0.5l 4
Equations: z _ or ¢ = min (M,L> - an ly
mln(yog - Yig) lf lf'g ltn
lr 1 leff = —=
¢ = min <li'lﬁ> fT ™ cos (D)
g 'f

*Polynomial Fit to Table Data of weights [71] multiplied onto equation for circular pipe [35]
**Constant Wall Temperature inflow and peripheral directions [72]
*#*(Gnielinski correlation [73]
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Table 8.3: User inputs and correlations for various properties based on heat exchanger
type: Tube and Plate Heat Exchangers.

Continuously Finned

Staggered — always turbulent

Spacing Perpendicular to Flow (,¢rp)
Spacing Parallel to Flow (1,,4,4)
Fin Thickness (l;y)

Input ) .
nputs Fin Separation (l,)
Tube Outer Diameter (d,)
Tube Inner Diameter (d;)
borosity () 3% ()
orosity -
lperp- lpara lg + lth
P]I)yigfsggr: 4B. Lyerp- Lpara-len-lg
(dh) TT. dO' lg + Z(Zperp- lpara — TT. dO)
Friction 1 A7—0.521 1 (do ~0.18
Factor (Nf) C4.NR€ + C5 (d_hNRe) *
IfN, >4
Nusselt lpara 0502 1\ 0672 703335
Number 0.14 (lperp) (d_o) Nre”™™- Npr
(Nyw) Else
Cp. N3 ND;333%
Conduction
Enhancement 1
Factor (Ny)
I 0502 ,; 0031
¢ = 0.14 <M> <ﬁ>
lperp do
4 | 0031 (70607(4=Nr)
c, =¢;0.991 <2.24 (N_> )
c3 =1+ (—0.092 *«0.607(4 — N,.) — 0.328
r S
Extra"total streamwise distance =T —
Equations: = Stube T S

cs=(1- C4)(1 - ﬁf)
l 1.318
ch = 2.032c4( ”;m)

(o]

cy =
][—0.108 0.730 —0.213

2 2
4c5[(‘Pﬂ) bew 111 0314 —1.296 0.561}.[(1‘”‘&) Lpors

lpara lpara

—0.234 1.034 —0.747

* [74]

** Combined formula of [74], with component representing pressure drop of bare staggered tube
banks derived from data of [75].
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Table 8.4: User inputs and correlations for various properties based on heat exchanger
type: Individually Finned Tube Heat Exchangers.

Individually Finned
Staggered
Inputs Fin Length ()
d, 2 ( ly ) d 2 d,)?
=+1) —|\—| |5+ ) — (5
-7
lperp- lpara
4B. Lyerp- Lpara-lin- |
Hydraulic Diameter p . zpamd 2 .
(dn) m.dy.ly + 21 ((70 +1) - () ) + 1.1 (dy + 1)
Laminar Friction
Factor (N;) Assumed to be always turbulent
Laminar Nusselt
Number (Ny,,) Assumed to be always turbulent
Laminar
Conduction 1+ 0.5(0.51137291 (Ng,Np,)*66)
Enhancement Factor A Re™tPr
(Ny)
If ls/d, < 0.09 (Low Finned Tubes)
lf-do 0.1738 do 0.599
4<1'748(1g-lpara) (lperp) >*
Turbulent Friction Nie”
“ Else (High Finned Tubes)
Factor (Ny) 4 \0927 l 0.515
4| 9.465 (l_0> ( =t )
perp vV lperp + lpara »
NQ316
If s /d, < 0.09 (Low Finned Tubes)
2lf+do ) 770.7 A70.333 55
Turbulent Nusselt 0.255 ( lg >NR€ Ny
Number (Nyy,) Else (High Finned Tubes)
1\%2 /011
0.134 (l—9> (32) 7 NpssL N33
f th
Turbulent
Conduction 1
Enhancement Factor
(Ny)
* Chai [76]

** Webb [74]
*** Ganguli & Yilmaz [77]
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Table 8.5: User inputs and correlations for various properties based on heat exchanger
type: Bare Tube Banks (internal). Correlations from [35] unless otherwise indicated.

Bare Tube Banks (internal)

Staggered

Tube Spacing (I4ype s) (Circle Packed Arrangement)

Inputs Tube Outer Diameter (d,)
Tube Inner Diameter (d;)
Porosity (5) . d?
orosi —_—
Y \/gltzube,s
Hydraulic d.
Diameter (d},) '
Lamipar 64
Friction
Factor (Ny) Nre
Laminar
Nusselt 6.0
Number (Ny,)
Laminar
Conduction 1
Enhancement
Factor (Ny)
Turbulent 0.25
Friction 011 (i + 58 )
Factor (Ny) . Nre
Turbulent -0.055
Nusselt 0.036 (d—) Nge. Np;i*
Number (Ny,,) h
Turbulent
Conduction 0.75
Enhancement 0.022Nge ™. Npr
Factor (Ny)
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Appendix C.  EP-1 Geometry
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Appendix D.  Motion Profile Mathematics for EP-1 Studies

For all elliptical profiles the following equations convert the number of lobes (n) and the
Elliptical Factor (e) and lobe phase (¢;,pe) into the resulting series of angles for input into the

attached slider crank.

C_\/1+(n2—1)(1—ez)+e
h n(l—e)

' = atan(C.tan(6 + gboff)) + Prope

For all of the following profiles the conversion of the translated angle is as follows. This

converts it into the distorted harmonic motion produced by slider crank mechanisms.

Loy sin(@’))

lCOTL

0, = asin <—

X = lgon(cos(83) — 1) + 1-(cos(8") + 1)

The final profile is shifted numerically post calculation.

Motion Number of Elliptical Phase Lobe

Lobes (n) Factor (e) Shift (porr) Phase (¢;ope)
Sinusoidal 1 0 0 0
1/5 Elliptical 2 0.2 T n
for Square 2 2
Wave
1/5 Elliptical 2 0.2 s 0
for Saw Wave
Extreme 2 0.8 T n
Square Wave 2 2

Extreme Saw  Due to the extreme necking that occurs with a highly elliptical set of gears set

Wave into the saw wave configuration, a synthesized version was created, which was
originally seeded as a pure saw wave, followed by several iterations of
smoothing filter.

The Extreme Saw Wave is defined by a smoothed and normalized saw wave to avoid the
extreme necking that occurs when a saw wave is constructed from a set of highly elliptical gears.

The non-phase-shifted profiles are displayed below.
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- - - - Extreme Saw —-— 1/5Saw

Figure D.1: Different motion profiles tested — using a connecting arm to crank arm ratio
of 6.

When the mechanism orientation is stated as downwards the profile will appear inverted as

well.
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Appendix E.  EP-1 Studies PV Diagrams

Included in the power curves produced for each mechanical arrangement, a series of simulations
were taken to line up with experiments conducted by Nicol-Seto [61]. These test cases and the
simulation-experiment percent error are as follows. The percent error is calculated by comparing
the area under the curve associated with the power piston, that is, the pressure measured at the

power piston, plotted against the volume of the power piston.

Test Gearing (DP, PP) Speed (Hz) Exp. MSPM: Power
# Normalized | Normalized Piston
Cycle Cycle PV error
Energy Energy (%)

1 1.1055 11.01 8.21 25.4%
Sinusoidal

2 1.5257 11.26 8.27 26.6%
Sinusoidal

3 1.8735 11.57 7.83 32.3%

4 2.2606 12.01 8.13 32.3%

5 0.582 10.21 8.14 20.3%

1/5 Elliptical for Square
6 0.8818 10.65 8.21 22.9%
Wave

7 ) ) 1.2407 10.89 8.24 24.3%
Sinusoidal

8 1.6444 11.43 7.46 34.7%

0

9 1/5 Elliptical for Square 0.5558 11.45 7.79 32.0%

10 Wave 0.9051 12.24 7.80 36.3%

11 1/5 Elliptical for Square 1.1992 12.54 7.83 37.6%

12 Wave 1.5825 13.05 7.43 43.1%

The following plots include the simulated as well as experimental PV diagrams for the 12 tests.
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Appendix F. Mesh Sensitivity
G.1. EPM-1 Model

A correctly performed mesh independency test should capture a series of tests in which the
model decays on a predictable, mono-directional rate towards the exact value (given the
assumptions made to construct the model). Sensitivity of the results on the mesh are plotted on
Figure G.1.

Expenimental
Mode] Size

§.12

Fn
—t
—

]
—

Pressure Volume Wark / Cvele (1)
=
[E=]

40 400
Total Mumber of Gas Modes
Figure G.1: Sensitivity of indicated cycle energy on Test Set 1 at 1 Hz

The amount of error between the highest mesh size and the mesh which was used for the
experiments is equal to 0.8%. The final order of convergence, p, is equal to 3.84. This is calculated
via the following formula:

In (}’?L__y;;iz) _ 384

)

A value in the range of 3 would be expected, given that MSPM uses a 3™ order polynomial for

interpolation.
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Appendix G. MATLAB CODE
The MATLAB code can found in this appendix or hosted on GITHUB.

G.1. GUI
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Simulation Interface V5

The following code is the main GUI of the software, this is paired with the actual controls which

are stored as a .fig file. There are several main sections of this code:
1. Required Header Components

2. Insert, Select, Delete and Animate buttons, which all use the “GUI_ButtonDownFcn” under

different modes to provide different functionality.

(98]

. Green Highlighting of active buttons and initialization of the modes is handled by ButtonCore

4. Save, Load Functionality

W

. Show Option set of functions

6. Box & Recenter Zooms

~

. Recording & Animation Options

8. Other Simulation Options

\O

. Run Options (Run & Run Test Set)

function varargout = SimulationInterfaceV5 (varargin)

% SIMULATIONINTERFACEV5 MATLAB code for SimulationInterfaceVb5.fig

SIMULATIONINTERFACEVS5, by itself, creates a new SIMULATIONINTERFACEV5 or raises the
existing

singleton*.

oe

o0 oo

oe

H = SIMULATIONINTERFACEVS returns the handle to a new SIMULATIONINTERFACEVS or the handle

to

% the existing singleton*.

% SIMULATIONINTERFACEVS ('CALLBACK',hObject, eventData,handles,...) calls the local

% function named CALLBACK in SIMULATIONINTERFACEV5.M with the given input arguments.

% SIMULATIONINTERFACEVS ('Property', 'Value',...) creates a new SIMULATIONINTERFACEV5 or
raises the

% existing singleton*. Starting from the left, property value pairs are

o

applied to the GUI before SimulationInterfaceV5 OpeningFcn gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to SimulationInterfaceV5 OpeningFcn via varargin.

o o oP

o

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o0 oo

o°

See also: GUIDE, GUIDATA, GUIHANDLES

o

Edit the above text to modify the response to help SimulationInterfaceV)5

o

Last Modified by GUIDE v2.5 16-0Oct-2020 09:07:43

o

Begin initialization code - DO NOT EDIT
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gui Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui_ Singleton', gqui Singleton,
'gui OpeningFcn', @SimulationInterfaceV5 OpeningFcn,
'gui OutputFcn', @SimulationInterfaceV5 OutputFcn,
'gui LayoutFcn', 1,
'gui Callback', [1);

if nargin && ischar(varargin{l})
gui State.gui Callback = str2func(varargin{l});

end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui_ State, varargin{:});

end

o

Hh o

o°

End initialization code - DO NOT EDIT

--— Executes just before SimulationInterfaceV5 is made visible.
unction SimulationInterfaceV5 OpeningFcn (hObject, ~, handles, varargin)
This function has no output args, see OutputFcn.

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

o

o

varargin command line arguments to SimulationInterfaceV5 (see VARARGIN)

UIWAIT makes SimulationInterfaceV5 wait for user response (see UIRESUME)
uiwait (handles.figurel);

% Choose default command line output for SimulationInterfaceVb

handles

o

handles
handles

handles

handles

.output = hObject;

%% Generate space for mouse events
.MODE = "'"';

.SelectCon = Connection.empty;
handles. ;
.SelectBod = Body();
handles.
.SelectGroup = Group.empty;
handles.

IndexC = 1;

IndexB = 1;

IndexG = 1;

%% Set Initial Values for Display Options

handles.
handles.

InterGroupDistance = 0.05;
ClickTolerance = 0.1;

%% Generate Default Model

handles.
handles.
handles.
handles.

Model = Model () ;
Model.AxisReference = handles.GUI;
corner points = [];
SimulationParameters = cell (0);

DistributeGroup (handles) ;
show Model (handles) ;

%% Object Properties

handles.
handles.
handles.
handles.

SData = SelectionListDatal();
SData.Code = '';

SData.ListObjs = ListObj.empty;
DropDownMode = '';

updateSelectionList (handles) ;

[

%% Show
set

set

set
set
set
set

%% Optimization Stuff
handles.

OptimizationStudyIndex = O;

Options

S

(handles.showGroups, 'Value', handles.Model.showGroups) ;

(handles.showBodies, 'Value',handles.Model.showBodies) ;

set (handles.showConnections, 'Value',handles.Model.showConnections) ;

(handles.showLeaks, 'Value',handles.Model.showLeaks) ;

(handles.showBridges, 'Value', handles.Model.showBridges) ;
(handles.showInterConnections, 'Value',handles.Model.showInterConnections) ;
(handles.showEnvironmentConnections, 'Value', handles.Model.showEnvironmentConnections) ;
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set (handles.
set (handles.
set (handles.
set (handles.

showNodes, 'Value',handles.Model.showNodes) ;
showSensors, 'Value',handles.Model.showSensors) ;
showRelations, 'Value', handles.Model.showRelations) ;
RelationMode, 'String', 'On'")

handles.Model.RelationOn = true;

%% Update handles structure

guidata (hObj

o

ect, handles);

% —-- Outputs from this function are returned to the command line.

function varargout = SimulationInterfaceV5 OutputFcn (hObject, ~, handles)
% Get default command line output from handles structure

varargout{1l}

= handles.output;

% General button codes
unction GUI ButtonDownFcn (hObject, ~, h)

f

C = get (hObj
C =20C(1,1:2)
i

ect, 'Currentpoint');

’

f isempty (h.Model.ActiveGroup)

[

h.Model.
end

% Select the group based on where the user clicked

FindGroup (C) ;

switch h.MODE
case 'InsertBody'

[

% Select 4 connections

switch get (gcf, 'SelectionType')

case 'normal'
L = true;
case 'alt'
L = false;
case 'extend'

L = false;
otherwise
L = true;
end
found = false;

[

%% Get round specific information

switch h.IndexC

case 1
DIR = enumOrient.Vertical;
prompt = 'New Body Inner Radius 1: ';
OFFSET = 0;
case 2
OFFSET = h.SelectCon(l) .x;
if h.SelectCon(1l) .Orient == enumOrient.Vertical
DIR = enumOrient.Vertical;
prompt = 'New Body Radial Thickness: ';
else
DIR = enumOrient.Horizontal;
prompt = 'New Body Vertical Thickness: ';
end
case 3
OFFSET = 0;
if h.SelectCon(2) .0rient == enumOrient.Vertical
DIR = enumOrient.Horizontal;
prompt = 'New Body Lower Vertical Position: ';
else
DIR = enumOrient.Vertical;
prompt = 'New Body Inner Radius: ';
end
case 4
OFFSET = h.SelectCon (3) .x;
if h.SelectCon(2) .0rient == enumOrient.Vertical
DIR = enumOrient.Horizontal;
prompt = 'New Body Thickness: ';
else
DIR = enumOrient.Vertical;
prompt = 'New Body Radial Thickness: ';
end
otherwise % We are done here
found = true;
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nd

s I
f h

ind connection at click
&& found == false % Left Click
if h.IndexC == 1

h.SelectCon (h.IndexC) =
h.Model.ActiveGroup.FindConnection (C) ;
found = true;
fprintf (['Selected Connection: ' ...
h.SelectCon (h.IndexC) .name '.\n']);
else
Con = h.Model.ActiveGroup.FindConnection(...
C,DIR,h.SelectCon (h.IndexC-1));
if ~isempty (Con)
h.SelectCon (h.IndexC) = Con;
fprintf (['Selected Connection: ' ...
h.SelectCon (h.IndexC) .name '.\n']);
found = true;
else
found = false;
end
end

et user Input
ound == false
% Get User Radius Submission
DIM = '';
while ~isnumeric (DIM)
answer = inputdlg(prompt, 'Specify Dimension Window');
if ~isempty (answer)
DIM = str2double (answer{l});
else
return;
end
end
% If this does not match any Group Connection then CreateNew
found = false;
for iCon = h.Model.ActiveGroup.Connections
if iCon.Orient == DIR && iCon.x == DIM+OFFSET
h.SelectCon (h.IndexC) = iCon;
found = true;
end
end
if ~found

h.SelectCon (h.IndexC) = Connection (DIM+OFFSET,DIR,h.Model.ActiveGroup) ;

end

terate or finish up
.IndexC ==

% Define the body
matl = [];

show_Model (h) ;
while isempty (matl)
[matl, tf] = listdlg(...

'PromptString', 'Select a material type for this new body:',...

'SelectionMode', 'single', ...
'ListString',Material.Source);

end

if tf

newBody = Body(...
h.Model.ActiveGroup, ...
h.SelectCon, ...
Material (Material.Source{matl}));
if handles.Model.ActiveGroup.isOverlaping (newBody)

fprintf ('XXX New Body overlaps, creation cancelled XXX\n');

handles.Model.clearHighLighting () ;
else

h.Model.ActiveGroup.addBody (newBody) ;
end
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else
fprintf ('XXX You must select a material, creation cancelled XXX\n');
h.Model.clearHighLighting() ;
end
h.IndexC = 1;
else
h.Model.HighLight (h.SelectCon (1l:h.IndexC));
h.IndexC = h.IndexC + 1;
end
case 'InsertGroup'
Will simply define a vertical Group at the next slot
Determine where the user clicked
= get(gca, 'Currentpoint'); C = C(1,1:2);
.Model.addGroup (Group (h.Model, Position(C(1),0,pi/2),[1));
.Model.distributeGroup (h.InterGroupDistance) ;
case 'InsertBridge'
% Select 2 horizontal connections and 2 bodies
if h.IndexC ==
if h.IndexB ==
% Picking the first Connection
if isempty(h.Model.ActiveGroup)
ChangeGroup Callback (hObject, [], h);
end
Con = h.Model.ActiveGroup.FindConnection (C);
if ~isempty(Con)
h.SelectCon(h.IndexC) = Con;
h.Model.HighLight (Con) ;
h.IndexC = 2;
set (h.message, 'String', '[click] Select the Foundation Body');
end
end
elseif h.IndexC ==
if h.IndexB ==
% Picking the first Body
Bod = h.SelectCon (1) .findConnectedBody (C) ;
if ~isempty (Bod)
h.SelectBody (h.IndexB) = Bod;
h.Model.HighLight (Bod) ;
h.IndexB = 2;
set (h.message, 'String', '[click] Select the Connection for the other body (the
Body that may shift)');
end
else
% Picking the second Connection
ChangeGroup_Callback (hObject, [], h);
Con = h.Model.ActiveGroup.FindConnection (C);
if ~isempty (Con)
h.SelectCon (h.IndexC) = Con;
h.Model.HighLight (Con) ;
h.IndexC = 3;
set (h.message, 'String', '[click] Select the associated body');
end
end
else
if h.IndexB ==
% Picking the second Body
Bod = h.SelectCon(2) .findConnectedBody (C) ;
if ~isempty (Bod)
% Finish and Create
if h.SelectCon(l) .0Orient == h.SelectCon(2) .0Orient
if h.SelectCon(l) .Orient == enumOrient.Vertical
prompt = 'Select the height adjustment for body 2 as it is placed

o°

o

jn e BN Q]

around body 1';
[~,~,defaultval,~] = h.SelectBody(l).limits (enumOrient.Vertical);

else
prompt = 'Select the radial offset distance';
defaultval = 0;
end
else
prompt = 'Select the vertical center offset for the horizontal face to be

up the vertical face';
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if h.SelectCon(l) .Orient == enumOrient.Vertical
[~,~,defaultval,~] = h.SelectBody(l).limits (enumOrient.Vertical);
else
[~,~,defaultval,~] = h.SelectBody(2).limits (enumOrient.Vertical);
end
end
x = inputdlg (prompt, 'Specify Bridge Offset',[1 35], {num2str (defaultval)});
% Define the Bridge
if ~isempty (x)
h.SelectBody (h.IndexB) = Bod;
h.Model.HighLight (Bod) ;
h.Model.addBridge (Bridge (...
h.SelectBody(l),h.SelectBody(2), ...
h.SelectCon(1l),h.SelectCon(2),str2double (x{1})));
h.IndexC = 1;
h.IndexB = 1;
set (h.message, 'String', '--=-");
end
end
end
end
case 'InsertLeakConnection'
% Select 2 horizontal connections and 2 bodies/Environments
case 'InsertSensor'
% Select a group
C=20C(1,1:2);
Select a body
, objects] = h.Model.findNearest (C,h.ClickTolerance);
if ~isempty (objects)
for obj = objects
if isa(obj{l}, 'Body")
h.Model.HighLight (obj{1});
h.Model.addSensor (Sensor (h.Model,obj{1}));
end
end

[~

end
case 'InsertPVoutput'

% Find, within a radius of confidence, the nearest Body

C=20C(1,1:2);

[~, objects] = h.Model.findNearest (C,h.ClickTolerance);
if ~isempty (objects)

for obj = objects

if isa(obj{l}, 'Body")

if obj{l}.matl.Phase == enumMaterial.Gas
h.Model.addPVoutput (PVoutput (obj{1}));
set (h.message, 'String', [ 'PVoutput added to Body: ' obj{l}.namel);
else
set (h.message, 'String', '"Must select a Gas Body');
end

end
end
end
case 'InsertNonConnection'
% Select 2 horizontal connections and 2 bodies
Bod = Body.empty;

if h.IndexB == 1
% Picking the first Body
[~, objects] = h.Model.findNearest (C,h.ClickTolerance);
for obj = objects; if isa(obj{l},'Body'); Bod = obj{l}; break; end; end
if ~isempty (Bod)
h.SelectBody (h.IndexB) = Bod;

h.Model.HighLight (Bod) ;
h.IndexB = 2;
set (h.message, 'String’', '[click] Select the second body, or click in open space to
select the environment');
end
elseif h.IndexB ==
% Picking the first Body
[~, objects] = h.Model.findNearest (C,h.ClickTolerance);
for obj = objects; if isa(obj{l},'Body'); Bod = obj{l}; break; end; end
if Bod ~= h.SelectBody (1)
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if ~isempty (Bod)
h.SelectBody (h.IndexB) = Bod;
h.Model.HighLight (Bod) ;
set (h.message, 'String', '--=-");
h.Model.addNonConnection(...
NonConnection (h.SelectBody(1l),h.SelectBody(2)));
end
return;
end
% No object was selected, select the environment instead
set (h.message, 'String’', '---");
h.Model.addNonConnection(...
NonConnection (h.SelectBody(1l),h.Model.Surroundings)) ;
end
case 'InsertCustomMinorLoss'
% Find, within a radius of confidence, the nearest body

C=20C(1,1:2);
[~, objects] = h.Model.findNearest (C,h.ClickTolerance);
if ~isempty (objects)

for obj = objects
if isa(obj, 'Body")
h.SelectBody (h.IndexB) = obj;
if (h.IndexB == 2)
% Finalize Custom Minor Loss
h.IndexB = 1;
h.Model.AddCustomMinorLoss (...
CustomMinorLoss (...
h.SelectBody (1), ...
h.SelectBody(2)));
end
h.IndexB = 2;
end
end

end
case 'Select'

% Find, within a radius of confidence, the nearest...

% Body, Group, Connection, Bridge and Leak Connection

C =0C(1,1:2);

[names, objects] = h.Model.findNearest (C,h.ClickTolerance);

if ~isempty (names)

if length(names) > 1
[index,tf] = listdlg(...
'PromptString', 'Which Object did you select?',...
'ListString', names, ...
'SelectionMode', 'single', ...
'ListSize', [400 1007);
else
index = 1;
tf = true;
end
if tf
h.Model.switchHighLighting (objects{index}) ;
end

end
case 'MultiSelect'

% Find, within a radius of confidence, the nearest...
Body, Group, Connection, Bridge and Leak Connection
C=20C(1,1:2);

[names, objects] = h.Model.findNearest(C,h.ClickTolerance);
if ~isempty (names)

if length(names) > 1

[index,tf] = listdlg(...
'PromptString', 'Which Object did you select?',...
'ListString', names, ...
'SelectionMode', 'single’', ...
'ListSize', [400 1007);

o

else
index = 1;
tf = true;
end
if tf
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h.Model.HighLight (objects{index}) ;
end
end
case 'InsertRelation'
% Find, within a radius of confidence, the nearest connection
C=0C(1,1:2);
[~, objects] = h.Model.findNearest (C,h.ClickTolerance);
if ~isempty (objects)
for objcll = objects
obj = objcll{l};
if isa(obj, 'Connection')

if h.IndexC == 1 ||
(obj.Orient == h.SelectCon(l).Orient &&
obj.Group == h.SelectCon(l) .Group)
h.SelectCon (h.IndexC) = obj;
if (h.IndexC == 2)

% Finalize the new relation

% Ask the user about the type

names = {
'Constant Offset',
'Cross-Section Maintaining',
'Zero x Based Scale',
'Smallest x Based Scale',
'Width Set'};

if obj.Orient == enumOrient.Horizontal
names{end+l} = 'Defines Stroke Length';
names{end+1l} = 'Defines Piston Length';
end
for RMan = obj.Group.RelationManagers
if RMan.Orient == obj.Orient; break; end
end
if ~isempty (RMan)
[Type, tf] = listdlg(...

'PromptString’', 'What type of relationship?',...
'ListString',names, ...
'SelectionMode', 'single', ...
'ListSize', [400 1007);
switch names{Type}
case 'Constant Offset’
EnumType = enumRelation.Constant;
case 'Cross-Section Maintaining'
EnumType = enumRelation.AreaConstant;
case 'Zero x Based Scale'
EnumType = enumRelation.Scaled;
case 'Smallest x Based Scale'
EnumType = enumRelation.LowestScaled;
case 'Width Set'’
EnumType = enumRelation.Width;
case 'Defines Stroke Length'
EnumType = enumRelation.Stroke;
case 'Defines Piston Length'
EnumType = enumRelation.Piston;
end
if tf
Label = RMan.getLabel (EnumType,
h.SelectCon(l), h.SelectCon(2));
if isempty(Label)
Label = getProperName ([names{Type} ' Relation']);
end
if isempty(Label); return; end
if EnumType == enumRelation.Stroke ||
EnumType == enumRelation.Piston
% Ask which mechanism?
objs = h.Model.Converters;
mecs = cell(0);
for index = length(objs):-1:1
mecs{index} = objs(index) .name;
end
index = listdlg(...
'ListString',mecs, ...
'SelectionMode', 'single') ;
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if isempty (index)
break;
else
Mech = objs(index) .Frames (1) ;
end
end
switch EnumType
case {enumRelation.Constant,
enumRelation.AreaConstant,
enumRelation.Scaled,
enumRelation.LowestScaled,
enumRelation.Width}
success = RMan.addRelation(...
Label,
EnumType,
h.SelectCon(l),
h.SelectCon(2));
case {enumRelation.Stroke,
enumRelation.Piston}
% Ask which mechanism?
success = RMan.addRelation(...
Label,
EnumType,
h.SelectCon(l),
h.SelectCon(2),

Mech) ;
otherwise
msgbox (['Selected relation type'
' is not implemented']);
h.IndexC = 1;
break;

end
if ~success
msgbox ([ 'Relationship was not '

'added successfully']l);
end
h.IndexC = 1;
end
end
h.IndexC = 1;
end
h.IndexC = 2;
else

msgbox (['The two connections must have the '
'same orientation.']);
end
end
end
end
otherwise
end
show Model (h) ;
hP = pan(h.output) ;
hP.ModeHandle.Blocking = false;
hP.Enable = 'off';
updateSelectionList (h);
guidata (hObject,h) ;
drawnow () ; pause (0.05);

function objs = getButtonObjs (handles)
objs = [...

handles.InsertBody
handles.InsertGroup
handles.InsertBridge
handles.InsertLeakConnection
handles.InsertSensor
handles.InsertPVoutput
handles.NonConnection
handles.CustomMinorLoss
handles.InsertRelation
handles.SelectObjects
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handles.MultiSelectObjects];

function ButtonCore (hObject,Mode,handles,message)
== 0;

inactivated = hObject.UserData (1)

handles = clearButtons (handles) ;

if inactivated

handles.MODE
show Model (handles) ;
set (handles.message, 'String',message) ;
hObject.BackgroundColor = [0.33 0.67 0.33];
hObject.UserData(l) = 1;

else

end

=M

show_Model (handles) ;
updateSelectionlList (handles) ;
guidata (hObject, handles);
drawnow () ; pause (0.05);

function handles =

hObjects = getButtonObjs (handles);
handles.Model.clearHighLighting() ;

ode;

clearButtons (handles)

set (handles.message, 'String', '--=-");

handles.MODE =

v,
;

for obj = hObjects

if obj.UserData(l) == 1
obj.UserData(l) = 0;
obj.BackgroundColor = [0.94 0.94 0.94];
break;

end

end

handles.IndexC
handles.IndexG
handles.IndexB

handles.SelectCon

1;
1;
1;

handles.SelectBody =

Connection.empty;

Body.empty;

%% Individual button codes
function InsertBody CreateFcn (hObject, ~, ~)

hObject.UserData (1)

= 0;

function InsertBody Callback (hObject, ~, handles)
ButtonCore (hObject, 'InsertBody',handles, {'[left click] To select a connection.','[right click]
prescribe a dimension.'});

function InsertGroup_ CreateFcn (hObject, ~, ~)

hObject.UserData (1)

function InsertGroup Callback (hObject,

= 0;

’

handles)
ButtonCore (hObject, 'InsertGroup’', handles, ' [click] To select a position to place a new group.');

function InsertBridge CreateFcn (hObject, ~, ~)

hObject.UserData (1)

= 0;

function InsertBridge Callback (hObject,
ButtonCore (hObject, 'InsertBridge', handles, '[click] To select the connection associated with the

foundation body"');

’

handles)

function InsertLeakConnection CreateFcn (hObject,

hObject.UserData (1)

= 0;

~ )

function InsertLeakConnection Callback (hObject, ~, handles)
ButtonCore (hObject, 'InsertLeakConnection’', handles, '[click] To select Connection 1');

function SelectObjects CreateFcn (hObject,

hObject.UserData (1)

= 0;

function SelectObjects Callback (hObject,
ButtonCore (hObject, 'Select',handles, ' [click]

’

’

~)

handles)
To select a single object');

function MultiSelectObjects CreateFcn (hObject,

hObject.UserData (1)

= 0;

function MultiSelectObjects Callback (hObject,
ButtonCore (hObject, '"MultiSelect',handles, '[click] To add to select objects'):;

function InsertSensor CreateFcn (hObject,

’

~)

’

;)

handles)
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hObject.UserData(l) = 0;
function InsertSensor Callback (hObject,~,handles)
ButtonCore (hObject, 'InsertSensor',handles, '[click] To select a body');

function InsertPVoutput CreateFcn(hObject, ~, ~)

hObject.UserData(l) = 0;

function InsertPVoutput Callback (hObject, ~, handles)

ButtonCore (hObject, 'InsertPVoutput', handles, '[click] To select a body');

function CustomMinorLoss CreateFcn (hObject, ~, ~)

hObject.UserData(l) = 0;

function CustomMinorLoss Callback (hObject, ~, handles)

ButtonCore (hObject, 'InsertCustomMinorLoss', handles, '[click] To select a body');

function NonConnection CreateFcn (hObject, ~, ~)

hObject.UserData(l) = 0;

function NonConnection Callback (hObject, ~, handles)

ButtonCore (hObject, 'InsertNonConnection',handles, '[click] To select a body');

function InsertRelation CreateFcn(hObject, ~, ~)

hObject.UserData(l) = 0;

function InsertRelation Callback (hObject, ~, handles)

ButtonCore (hObject, 'InsertRelation’',handles, '[click] To select a connection');

function ChangeGroup Callback (hObject, ~, handles)

[x,y] = ginput(1l);

Pnt = [x yIl;

backupMessage = get (handles.message, 'String');

set (handles.message, 'String', ' [click] Select A group');

handles.Model.switchHighLightedGroup (...
handles.Model.findNearestGroup (Pnt,handles.ClickTolerance”2) );

set (handles.message, 'String', backupMessage) ;

guidata (hObject,handles);

drawnow () ; pause (0.05);

%% Selection Properties

function updateSelectionList (h, index)

switch h.DropDownMode

case ''
if nargin ==
if index > length(h.SData.ListObjs) || index < 1
fprintf ('Index Exceeds Matrix Dimensions: This may be caused by severe lag');
return;
else
if strcmp(h.SData.ListObjs (index) .MODE, 'Deleteob]")
% Close all
Code = '"';
else
Code = MakeCode (h.SData.ListObjs, index) ;
end
end
else
Code = MakeCode (h.SData.ListObjs) ;
Code = ResetCode (Code) ;
end
n =1 + length(h.Model.Selection);
SelectedObjs(n,1l) = ListObj();
for Obj = [h.Model.Selection {h.Model}]
SelectedObjs (n) = ListObj ('Expandobj',0,[]1,0bj{1l});
n=mn-1;
end

h.SData.ListObjs = ReadCode (Code, SelectedObijs);
ListString = cell (length(h.SData.ListObjs),1);
for i = 1l:length(h.SData.ListObjs)

ListString{i} = h.SData.ListObjs (i) .getString();

end
if nargin < 2; index = get(h.SelectionProps, 'Value'); end
set (h.SelectionProps, 'Value',max ([l min([index length(ListString)])1));

set (h.SelectionProps, 'String',ListString);
case 'Optimizer'
h.DropDownMode = '';
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if h.OptimizationStudyIndex ==
% Create a new study
h.Model.OptimizationSchemes (end+1) =
OptimizationScheme (h.Model) ;
h.OptimizationStudyIndex =
h.Model.OptimizationSchemes (end) .ID;
end
% This appends the object and field to the optimization study
if h.OptimizationStudyIndex > 0O
for scheme = h.Model.OptimizationSchemes

if h.OptimizationStudyIndex == scheme.ID
break;
end
end
if scheme.ID == h.OptimizationStudyIndex

if nargin > 1
obj = h.SData.ListObjs (index) .Parent;
child = h.SData.ListObjs (index) .Child;
if isa(obj, 'Connection')
scheme.AddObj (obj, 'x"');
elseif isa(child, 'LinRotMechanism')
scheme.AddOb]j (child, 'Stroke');
elseif isa(child, 'Connection')
scheme.AddOb]j (child, 'x'") ;
end
end
end
end
end

function SelectionProps_Callback (hObject, ~, h)

% The user has clicked on the SelectionProp's listbox

index = get (hObject, 'Value');

if index <= length(h.SData.ListObjs)
h.SData.ListObjs (index) .on click();

end

updateSelectionList (h, index) ;

function SelectionProps_ CreateFcn (hObject, ~, ~)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

%% Optimization
function SwitchDropdownMode Callback (hObject, ~, h)
% Interfaces with the drop down menu when selecting parameters
if strcmp (h.DropDownMode, '")
h.DropDownMode = 'Optimizer';
set (h.DropDownModeUTI, 'String', h.DropDownMode) ;
else
h.DropDownMode = '';
set (h.DropDownModeUI, 'String', h.DropDownMode) ;
end
guidata (hObject, h);

--- Executes on button press in SwitchOptimizationStudy.
unction SwitchOptimizationStudy Callback (hObject, ~, h)
Find the optimization scheme after the current one
Find the current one
if h.OptimizationStudyIndex ==
if ~isempty(h.Model.OptimizationSchemes)
h.OptimizationStudyIndex h.Model.OptimizationSchemes (1) .ID;
set (h.OptStudyName, 'String',h.Model.OptimizationSchemes (1) .name) ;
else
set (h.OptStudyName, 'String', 'Create New Study');
end
guidata (hObject,h);
return;
end
for i = l:length(h.Model.OptimizationSchemes)
if h.Model.OptimizationSchemes (i) .ID ==

o Hh oo

o
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h.OptimizationStudyIndex
set (h.OptStudyName, 'String',h.Model.OptimizationSchemes (i) .name) ;
end
end
i=1+1;
if 1 > length(h.Model.OptimizationSchemes)
h.OptimizationStudyIndex = 0;
set (h.0OptStudyName, 'String', 'Create New Study');
else
h.OptimizationStudyIndex = h.Model.OptimizationSchemes (i) .ID;
end
guidata (hObject,h) ;

function RunStudy Callback(~,~,h)
if h.OptimizationStudyIndex ~= 0
found = false;
for i = 1l:length(h.Model.OptimizationSchemes)

if h.Model.OptimizationSchemes (i) .ID == h.OptimizationStudyIndex
found = true;
break;
end
end
if found

History = GradientAscent (h.Model,h.OptimizationStudyIndex) ;
if ~isempty (History)

save ([h.Model.OptimizationSchemes (i) .name ' - History', 'History']l):;
end
end
end
%% Visual Appearance
function DistributeGroup (handles)

o°

Look at handles.Model.Bridges
Simultaneously minimize the distance that things move, as well as the
bridge horizontal distance
handles.Model.distributeGroup (handles.InterGroupDistance) ;
show Model (handles) ;

o

o

function GUI_ CreateFcn (hObject,~,handles) %#ok<INUSD>
%% Create a figure that has zoom & pan capabilities
set (hObject, 'NextPlot', 'add');

% pan off;

% mouse figure (gcf);

%% Dynamics
function CreateMechanism Callback (hObject, eventdata, handles) $#0k<INUSL>
Open up user form asking for
Type from Source (mechanism type)
Stroke (m) (double)
Weight (kg) (double)
Phases (rad) (double)
TiltAngle (rad) (double)
MaximumCrankArmAngle (rad) (double)
... ... CustomProfile Fcn
Data = Holder ({}):;
[h] = CreateMechanismInterface (Data):;
uiwait (h);
handles.Model.addConverter (LinRotMechanism (handles.Model, ...
Data.vars{l},Data.vars{2}));

00 o2 dP d° d° o° o°

oe

% —--- Executes on button press in Animate.
function Animate Callback (hObject, ~, handles)
% Temporarily turn off connections, ghosts, groups... etc.
if handles.Model.isAnimating
hObject.BackgroundColor = [0.94 0.94 0.94];
handles.Model.isAnimating = false;

if handles.ViewOptionBackup(l); showConnections Callback (handles.showConnections,
handles); end

if handles.ViewOptionBackup (2); showBodyGhosts Callback (handles.showBodyGhosts, O,
end
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show_Model (handles) ;

else
hObject.BackgroundColor = [0.33 0.67 0.33];
handles.ViewOptionBackup = false(2,1);
handles.ViewOptionBackup (1) = handles.Model.showConnections;
handles.ViewOptionBackup (2) = handles.Model.showBodyGhosts;
if handles.ViewOptionBackup (1l); showConnections Callback (handles.showConnections, 0,
handles); end
if handles.ViewOptionBackup(2); showBodyGhosts Callback (handles.showBodyGhosts, 0, handles);
end
handles.Model.isAnimating = true;
guidata (hObject,handles) ;
drawnow () ; pause (0.05);
handles.Model .Animate(); % ANIMATE IT!
if handles.Model.isAnimating
hObject.BackgroundColor = [0.94 0.94 0.94];
handles.Model.isAnimating = false;
if handles.ViewOptionBackup (1l); showConnections_ Callback (handles.showConnections, 0,

handles); end

if handles.ViewOptionBackup(2); showBodyGhosts Callback (handles.showBodyGhosts, O,

handles); end
show Model (handles) ;
end
end

% —--—- Executes on button press in Delete.
function Delete Callback(~, ~, handles)
% Delete Selection
if length(handles.Model.Selection) == 1
if handles.Model.ActiveGroup == handles.Model.Selection{1l}
handles.Model.ActiveGroup (:) [1;
handles.Model.Selection{1l}.deReference () ;
handles.Model.Selection = cell (0);
return;
end
end
for obj = handles.Model.Selection
if ~isa(obj{1l}, 'Group')
obj{1l}.deReference();
end
end
handles.Model.Selection = cell(0);
% For all the selected items

--- Executes on button press in Revive.
unction Revive Callback (hObject, eventdata, handles) %#ok<INUSD>
Open up the recycle bin, Full of Bodies and Special Components that
have handles and dependencies

o Hh o°

o

%% Save Functionality

function save Callback(~, ~, handles)

saveModel (false,handles) ;

function saveas Callback(~,~,handles)

saveModel (true, handles) ;

function saveModel (savenew,h)

% The Model name is by default used, if the model name is blank, then the
userform asks for a name.

if isempty(h.Model.name) || savenew

o

notdone = true;
while notdone
if ~isempty(h.Model.name)

name = inputdlg('Save as...','Save Model', 1, {h.Model.name});
else

name = inputdlg('Save as...',6 'Save Model');
end
if isempty(name); return; else; name = name{l}; end

if ~isempty(regexp (name, ' [/\*:?"<>|]"','once'))
fprintf (['XXX Invalid File name, a file name cannot contain '
'the characters [/*:?2"<>|] XXX\n']);
else
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if all (ismember (name (1), '0123456789"))
fprintf (['XXX Invalid File name, a file name cannot start '
'with a number. XXX\n']);
else
notdone = false;
end
end
end
if length(name) > 4 && strcmp (name (end-3:end),'.mat')
name = name (l:end-4);
end
ogname = name;
else
name = h.Model.name;
ogname = name;
end
% If the name is already an existing file, it asks to overwrite, if false,
then asks for a new name, suggesting a variation.
SavedModels = dir('Saved Files');

oo

start = 3;
dupfound = false;
notdone = true;

naming = true;
while naming

while notdone

for i = start:length(SavedModels)
if strcmp(SavedModels (i) .name, [name '.mat'])
% Devise an alternative

if strcmp(SavedModels (i) .name (end-4),")")

offset = 1;

while

all (ismember (SavedModels (i) .name (end-4-offset), '0123456789"')) ||...

SavedModels (i) .name (end-4-offset) == '.'

offset = offset + 1;
end
offset = offset - 1;
num = str2double (SavedModels (i) .name (end-4-offset:end-5));
num = num + 1;
name = [SavedModels (i) .name (l:end-5-offset) num2str (num) ')'];
notdone = true;
dupfound = true;

break;
else
name = [SavedModels (i) .name(l:end-4) ' (1)'];
dupfound = true;
end
end
end
if notdone
notdone = false;

o

% Double check that there are no duplicates
for i = 3:length(SavedModels)
if strcmp (SavedModels (i) .name, [name '.mat'])
notdone = true;
start = i;
break;
end
end
end
end
% We have the new unique name
if dupfound
switch questdlg(['Do you want to overwrite the existing file: ' ogname])
case 'Yes'
name = ogname;

naming = false;
case 'No'
cellname = inputdlg('Name: ', ['Rename: ' ogname],l, {name});
if isempty(cellname); return; end
newname = cellname{l};

if strcmp (newname, name)
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naming = false;
else
ogname = newname;
notdone = true;
dupfound = false;
end
name = newname;
case {'Cancel',''}
return;
end
else
naming = false;
end
end
h.Model.name = name;
backupAxis = h.Model.AxisReference;
h.Model.AxisReference(:) = [];
newfile = ['Saved Files\' name '.mat'];
Model = h.Model; $%#0k<NASGU>
Model.saveME () ;
h.Model.AxisReference = backupAxis;
fprintf ('Model Saved\n');
%% Load Functionality
function h = load sub (name, h)
newfile = [pwd '\Saved Files\' name];
File = load(newfile, 'Model"');
h.Model = File.Model;
h.Model.AxisReference = h.GUI;

.Model.showInterConnections = false;

.Model.showNodes = false;

.Model.RelationOn = true; set(h.RelationMode, 'String’', 'On');
.Model.showGroups = get (h.showGroups, 'Value');

.Model.showBodies = get (h.showBodies, 'Value');
.Model.showBodyGhosts = get (h.showBodyGhosts, 'Value') ;
.Model.showConnections = get (h.showConnections, 'Value');
.Model.showLeaks = get (h.showLeaks, 'Value');

.Model.showBridges = get (h.showBridges, 'Value');
.Model.showSensors = get (h.showSensors, 'Value');
.Model.showRelations = get (h.showRelations, 'Value');
.Model.showInterConnections = get (h.showInterConnections, 'Value');
.Model.showEnvironmentConnections = get (h.showEnvironmentConnections, 'Value');
.Model.showNodes = get (h.showNodes, 'Value') ;

oo e = ji o S = o e Nie Hie = g o )

.Model.showPressureAnimation = get (h.ShowPressureAnimation, 'Value');
.Model.recordPressure = get (h.RecordPressure, 'Value');
.Model.showTemperatureAnimation = get (h.ShowTemperatureAnimation, 'Value');
.Model.recordTemperature = get (h.RecordTemperature, 'Value');
.Model.showVelocityAnimation = get (h.ShowVelocityAnimation, 'Value');
.Model.recordvVelocity = get (h.RecordVelocity, 'Value');
.Model.showTurbulenceAnimation = get (h.ShowTurbulenceAnimation, 'Value');
.Model.recordTurbulence = get (h.RecordTurbulence, 'Value');
.Model.recordOnlyLastCycle = get (h.RecordOnlyLastCycle, 'Value');
.Model.outputPath= get (h.OutputPath, 'String’');

.Model.warmUpPhaseLength = str2double (get (h.WarmUpPhaseLength, 'String'));
.Model.animationFrameTime = str2double (get (h.AnimationFrameTime, 'String'));

oo s e = g o je = i o No = o

cla;
show Model (h) ;
drawnow () ; pause (0.05);

function load Callback (hObject, ~, h)
% Asks the user if they want to save the current model
% 1f True. Call save_ Callback.
switch questdlg('Do you want to save the current model?')
case 'Yes'
if ~isempty(h.Model.name)
switch questdlg('Do you want to save as a new Model?')
case 'Yes'
saveModel (true, h) ;
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case 'No'
saveModel (false, h);
case {'Cancel',''}

return;
end
else
saveModel (true, h) ;
end
case 'No'

o

% Do nothing
case {'Cancel',''}
return;
end

% Then provide the user with a list of saved models in the Saved Files

% folder.

SavedModels = dir('Saved Files');

names = {SavedModels.name};

i=1;

while names{i} (1)
i=1i+41;

end

[selection, tf] = listdlg('ListString',names(i:end),...
'SelectionMode', 'single') ;

if tf
name = names{selection+i-1};

else
return;

end

o

if the user selects one, then replace current model with the loaded one
% and reset the userform.

[h] = load sub(name, h);

guidata (h.load, h);

%% Show Options

function showGroups Callback (hObject, ~, h) $#ok<*DEFNU>

value = get (hObject, 'Value');

if (value ~= h.Model.showGroups)
h.Model.showGroups = value;
show_Model (h) ;

end

function showBodies Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~=h.Model.showBodies)
h.Model.showBodies = value;
show Model (h) ;

end

function showConnections Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showConnections)
h.Model.showConnections = wvalue;
show Model (h) ;

end

function showLeaks Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showLeaks)
h.Model.showLeaks = value;
show_Model (h) ;

end

function showBridges Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showBridges)
h.Model.showBridges = value;
show Model (h) ;

end

function showInterConnections_ Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showInterConnections)
h.Model.showInterConnections = value;
show_Model (h) ;
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end

function showEnvironmentConnections_ Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showEnvironmentConnections)
h.Model.showEnvironmentConnections = value;
show_Model (h) ;

end

function showBodyGhosts Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showBodyGhosts)
h.Model.showBodyGhosts = value;
show Model (h) ;

end

function showNodes Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showNodes)
h.Model.showNodes = value;
show_Model (h) ;

end

function showSensors Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showSensors)
h.Model.showSensors = value;
show_Model (h) ;

end

function showRelations Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showRelations)
h.Model.showRelations = value;
show Model (h) ;

end

function BoxZoom Callback (hObject, eventdata, h) %#ok<INUSL>
%handles.corner points = ginput(2);
show_Model (h, ginput (2));

function show Model (h, cornerpoints)
h.Model.show () ;
if nargin ==

o

% Preserve aspect ratio

axes = gca;
width = abs(cornerpoints(l,1) - cornerpoints(2,1));
height = abs(cornerpoints(1l,2) - cornerpoints(2,2));

r new = width/height;

% Get current aspect ratio
r old = axes.PlotBoxAspectRatio(l)/axes.PlotBoxAspectRatio (2) ;

if r old > r new

width = width*r old/r new;
else

height = height*r new/r old;
end

% Determine the center

c x = 0.5* (cornerpoints(1,1) + cornerpoints(2,1));
c y = 0.5* (cornerpoints(1,2) + cornerpoints(2,2));
% Adjust the axes
axes.XLim = [c x-width/2 c_ x+width/2];
axes.YLim = [c_y-height/2 c ytheight/2];

end

drawnow () ; pause (0.05);

function RecenterView Callback(~, ~, h)
axes = gca;

x1lim = h.Model.getXLim() ;
ylim = h.Model.getYLim() ;
ar = abs(ylim(1l)-ylim(2))/abs(xlim(1l)-x1im(2));

cur xlim = axes.XLim;

cur_ylim = axes.YLim;

cur_ar = abs(cur_ylim(l)-cur ylim(2))/abs(cur xlim(1l)-cur x1lim(2));
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if ar > cur_ar
% ylim is the base
cxX = mean (xlim);
dx = 0.5%abs(ylim(1l)-ylim(2))/cur_ar;
xlim = [cx - dx, cx + dx];
else
% xlim is the base
y = mean(ylim);
dy = 0.5*cur ar*abs(xlim(1l)-xlim(2));
ylim = [cy - dy, cy + dyl;
end
if any(isnan(xlim))
if any(isnan(ylim))
axes.XLim = xlim;
axes.YLim = ylim;
show Model (h) ;

Q

any (isinf(xlim)); return; end
any (isinf(ylim)); return; end

%% RunTime Show Options

function showLivePV_Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showLivePV)
h.Model.showLivePV = value;

end

function stopSimulation Callback(~, ~, h)

h.Model.stopSimulation();

function Run_ Callback(~, ~, h)
h.Model.Run () ;

function CreateMechanism CreateFcn(~, ~, ~)
function Animate CreateFcn(~, ~, ~)

%% Simulation Options

function Reset Discretization Callback(~, ~, h)
h.Model.resetDiscretization() ;

show_Model (h) ;

function DispNumbers Callback(~, ~, h)
h.Model.dispNodeIndexes() ;

function clearAxes Callback(~, ~, ~)

cla;

function ShowPressureAnimation Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showPressureAnimation)
h.Model.showPressureAnimation = value;

end

if value
set (h.RecordPressure, 'Value',value);
RecordPressure Callback (h.RecordPressure, [],h);

end

function RecordPressure Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.recordPressure)
h.Model.recordPressure = value;

end

if ~value
set (h.ShowPressureAnimation, 'Value',value);
ShowPressureAnimation Callback (h.ShowPressureAnimation, [],h);

end

function ShowTemperatureAnimation Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showTemperatureAnimation)
h.Model.showTemperatureAnimation = value;

end

if value
set (h.RecordTemperature, 'Value',value) ;
RecordTemperature Callback (h.RecordTemperature, [],h);

end

function RecordTemperature Callback (hObject, ~, h)

value = get (hObject, 'Value');
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if (value ~= h.Model.recordTemperature)
h.Model.recordTemperature = value;
end
if ~value
set (h.ShowTemperatureAnimation, 'Value',value);
ShowTemperatureAnimation Callback (h.ShowTemperatureAnimation, [],h);
end

function ShowVelocityAnimation Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showVelocityAnimation)
h.Model.showVelocityAnimation = value;

end

if value
set (h.Recordvelocity, 'Value',value);
RecordVelocity Callback (h.RecordvVelocity, [],h);

end

function RecordVelocity Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.recordVelocity)
h.Model.recordvelocity = value;

end

if ~value
set (h.ShowVelocityAnimation, 'Value',value);
ShowVelocityAnimation Callback (h.ShowVelocityAnimation, [],h);

end

function ShowTurbulenceAnimation Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showTurbulenceAnimation)
h.Model.showTurbulenceAnimation = value;

end

if value
set (h.RecordTurbulence, 'Value',value) ;
RecordTurbulence Callback (h.RecordTurbulence, [],h);

end

function RecordTurbulence Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.recordTurbulence)
h.Model.recordTurbulence = value;

end

if ~value
set (h.ShowTurbulenceAnimation, 'Value',value);
ShowTurbulenceAnimation Callback (h.ShowVelocityAnimation, [],h);

end

function ShowConductionAnimation Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.showConductionAnimation)
h.Model.showTurbulenceAnimation = value;

end

if value
set (h.RecordConductionFlux, 'Value',value);
RecordConductionFlux Callback (h.RecordConductionFlux, [],h);

end

function RecordConductionFlux Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.recordConductionFlux)
h.Model.recordTurbulence = value;

end

if ~value
set (h.ShowConductionAnimation, 'Value',value) ;
ShowConductionAnimation Callback (h.ShowConductionAnimation, [],h);

end

function PressureDropAnimation Callback (hObject, ~,h)

value = get (hObject, 'Value');

if (value ~= h.Model.showPressureDropAnimation)
h.Model.showPressureDropAnimation = value;

end

if value
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set (h.recordPressureDrop, 'Value',value);
recordPressureDrop_Callback (h.recordPressureDrop, [],h);

end

function recordPressureDrop Callback (hObject,~,h)

value = get (hObject, 'Value');

if (value ~= h.Model.recordPressureDrop)
h.Model.recordPressureDrop = value;

end

if ~value
set (h.PressureDropAnimation, 'Value',value);
PressureDropAnimation Callback (h.PressureDropAnimation, [],h);

end

function RecordOnlyLastCycle Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.recordOnlyLastCycle)
h.Model.recordOnlyLastCycle = value;

end

function RecordStatistics Callback (hObject, ~, h)

value = get (hObject, 'Value');

if (value ~= h.Model.recordStatistics)
h.Model.recordStatistics = value;

end

function OutputPath CreateFcn(~, ~, ~)

function OutputPath ButtonDownFcn (hObject, ~, h)
value = uigetdir;

set (hObject, 'String',value);

h.Model.outputPath = value;

function WarmUpPhaseLength Callback (hObject, ~, h)
value = get (hObject, 'String');
if isempty(value); value = '0'; end
if all (ismember (value,'.0123456789"'))
set (hObject, 'UserData’',value);
h.Model.warmUpPhaseLength = str2double (value);
else
msgbox ('The length must be a number, the units are already defined as seconds');
set (hObject, 'String',get (hObject, 'UserData'));
end

function WarmUpPhaseLength CreateFcn (hObject, ~, ~)

set (hObject, 'UserData','0");

set (hObject, 'String','0"');

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor’', 'white');

end

function AnimationFrameTime Callback (hObject, ~, h)
value = get (hObject, 'String');
if isempty(value); value = '0.05'; end
if all (ismember (value,'.0123456789"))
set (hObject, 'UserData’',value);
h.Model.animationFrameTime = str2double (value);
else
msgbox ('The length must be a number, the units are already defined as seconds');
set (hObject, 'String', get (hObject, 'UserData')) ;
end

function AnimationFrameTime CreateFcn (hObject, ~, ~)

set (hObject, 'UserData’', '0.05") ;

set (hObject, 'String','0.05");

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");

end

function RecordSnapShot Callback(~, ~, handles)

if ~isempty(handles.Model.Result)
name = getProperName ( 'SnapShot' );
handles.Model.Result.getSnapShot (this, handles.Model, name)
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end

function RunTestSet Callback(~, ~, h)
% Find the Folder "Test Running"
files = dir('Test Running');
names = {files.name};
names (1:2) = [];
if ~iscell (names)
names = {names};
end
for index = size(names,1):-1:1
names{index} = names{index} (1l:end-2);
end
index = listdlg('ListString',names, ...
'SelectionMode', 'single', ...
'InitialValue', index) ;
if ~isempty (index)
if strfind(names{index},'.m'")
func = str2func (names{index} (1l:end-2))
else
func = str2func (names{index});
end
Test Set = func();

o

group_start = 1;

group_end = 1;

while group end <= length(Test Set)
Model = Test Set (group start) .Model;
while group end <= length(Test Set) &&

’

% Chunk the test set into groups that have the same model

strcmp (Model, Test Set (group_end) .Model)

group_end = group_end + 1;
end
group_end = group end - 1;
h = load sub(Model, h);

h.Model.Run (Test Set (group_start:group end)) ;

group_start = group end + 1;
group_end = group_start;

oe

oe

name = h.Model.name;

o

o

Model = h.Model;
save (newfile, 'Model"') ;
fprintf ('Model Saved.\n');

oe

oe

end
end

The Model name is the default name used, it overwrites automatically

newfile = ['Saved Files\' name '.mat'];

function DerefinementFactor Callback (hObject, ~, handles)

value = str2double (get (hObject, 'String'));
if isnan(value)
set (hObject, 'String','1");
return;
end
if value >= 0.01 && value <= 100

handles.Model.deRefinementFactorInput = value;

else
if value < 0.01
set (hObject, 'String','0.01");
handles.Model.deRefinementFactorInput
else
set (hObject, 'String', '100") ;
handles.Model.deRefinementFactorInput
end
end
handles.Model.resetDiscretization();
guidata (hObject,handles) ;

function DerefinementFactor CreateFcn (hObject,

;)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
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set (hObject, 'BackgroundColor', 'white'");
end

% --- Executes on button press in SwitchRelationMode.

function SwitchRelationMode Callback(~, ~, handles)

if strcmp(get (handles.RelationMode, 'String'),'On'")
set (handles.RelationMode, 'String', 'Off"'");
handles.Model.RelationOn = false;

else
set (handles.RelationMode, 'String', 'On"') ;
handles.Model.RelationOn = true;

end

248



Create Mechanism Interface

This module pops up when the user creates a new linear to rotational mechanism. The interface
includes a type selection drop-down. This dropdown then switches what is displayed in the
property editor, in the form of an editable table. The table contains a column for each property and
multiple rows in the case where multiple mechanisms attached to the same point, such as a 90

degree gamma or beta type engine.

function varargout = CreateMechanismInterface (varargin)
% CREATEMECHANISMINTERFACE MATLAB code for CreateMechanismInterface.fig

% CREATEMECHANISMINTERFACE, by itself, creates a new CREATEMECHANISMINTERFACE or raises the
existing

% singleton*.

% H = CREATEMECHANISMINTERFACE returns the handle to a new CREATEMECHANISMINTERFACE or the
handle to

% the existing singleton*.

% CREATEMECHANISMINTERFACE ('CALLBACK', hObject,eventData, handles,...) calls the local

% function named CALLBACK in CREATEMECHANISMINTERFACE.M with the given input arguments.

%

% CREATEMECHANISMINTERFACE ('Property', 'Value',...) creates a new CREATEMECHANISMINTERFACE or
raises

% the existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before CreateMechanismInterface OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to CreateMechanismInterface OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

% See also: GUIDE, GUIDATA, GUIHANDLES

o

Edit the above text to modify the response to help CreateMechanismInterface
% Last Modified by GUIDE v2.5 13-Dec-2018 14:29:58

% Begin initialization code - DO NOT EDIT

gui_ Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui_Singleton', gui_Singleton,
'gui OpeningFcn', @CreateMechanismInterface OpeningFcn,
'gui OutputFcn', @CreateMechanismInterface OutputFcn,
'gui_ LayoutFen', [1 .,
'gui Callback', [1);

if nargin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

--- Executes just before CreateMechanismInterface is made visible.
unction CreateMechanismInterface OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

o o o Hh o

o°
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[

% varargin command line arguments to CreateMechanismInterface (see VARARGIN)
% Choose default command line output for CreateMechanismInterface
handles.output = hObject;
switch length (varargin{l}.vars)
case 0 % Create New

handles.iType = [];

handles.iData = [];

)

case 2 % Modify Existing
% assume it is a "Holder"
handles.iType = varargin{l}.vars{l};
handles.iData = varargin{l}.vars{2};
case 1 % 2?27
handles.iType = varargin{l}.vars{l};
handles.iData = [];
end
handles.outData = varargin{l};

handles.DataEstablished = false;

% Setup MechType
if ~isempty(handles.iType)
% Find the index

i = FindStringInCell (LinRotMechanism.Source, handles.iType) ;

if i ~=0
set (handles.MechType, 'Value',i);

else
% Type not found, erase handles.iData & handles.iType
fprintf (['XXX Type not found in registry, make sure to include '

'support for "' handles.iType '" if you want to use it. XXX\n']);

handles.iType = [];
handles.iData = [];

end

end

% Setup Data
if ~isempty(handles.iData)
Make sure iType is wvalid

o°

i = FindStringInCell (LinRotMechanism.Source, handles.iType) ;

if i ~=0
set (handles.PropertiesTable, 'Data', handles.iData) ;

else
% Type not found, erase handles.iData & handles.iType
fprintf (['XXX Type not found in registry, make sure to include '

'support for "' handles.iType '" if you want to use it. XXX\n']);

handles.iType = [];
handles.ibData = [];

end

handles.DataEstablished = true;

else

set (handles.PropertiesTable, 'Visible', 'off'");
handles.DataEstablished = false;
end

% Other things
handles.MODE = '';

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes CreateMechanismInterface wait for user response (see UIRESUME)
uiwait (handles.TheWindow) ;

o

% —-- Outputs from this function are returned to the command line.

function varargout = CreateMechanismInterface OutputFcn (hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT) ;

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{l} = handles.output;
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o

contents = cellstr (get (handles.MechType, 'String'));
varargout{l} = contents{get (handles.MechType, 'Value')};
varargout{2} = get (handles.PropertiesTable, 'Data');

oo

oo

)

% --- Executes on selection change in MechType.
function MechType Callback (hObject, eventdata, handles)
contents = cellstr (get (hObject, 'String'));
Type = contents{get (hObject, 'Value') };
if ~handles.DataEstablished
[Data, Instructions] = ...
LinRotMechanism.GetPropertyTableSource (Type) ;
handles.DataEstablished = true;
else
[Data, Instructions] = ...
LinRotMechanism.GetPropertyTableSource (...
Type, ...
get (handles.PropertiesTable, 'Data'));
end
set (handles.PropertiesTable, 'Visible', 'on');
set (handles.PropertiesTable, 'Data',Data) ;
handles.PropertiesTable.ColumnEditable = true(l,size(Data,2));
handles.PropertiesTable.ColumnFormat = cell(l,size (Data,2));
set (handles.Instructions, 'String', Instructions);
EstablishWidths (handles) ;
guidata (hObject, handles);
% —--- Executes during object creation, after setting all properties.
function MechType CreateFcn (hObject, eventdata, handles)
set (hObject, 'String', LinRotMechanism.Source) ;
if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");
end

% —--—- Executes during object creation, after setting all properties.
function PropertiesTable CreateFcn (hObject, eventdata, handles)

% —--- Executes when entered data in editable cell(s) in PropertiesTable.
function PropertiesTable CellEditCallback (hObject, eventdata, handles)
% hObject handle to PropertiesTable (see GCRO)

o

eventdata structure with the following fields (see MATLAB.UI.CONTROL.TABLE)
Indices: row and column indices of the cell(s) edited
PreviousData: previous data for the cell(s) edited
EditData: string(s) entered by the user
NewData: EditData or its converted form set on the Data property. Empty if Data was not

o o oo

o

changed

oe

Error: error string when failed to convert EditData to appropriate value for Data

handles structure with handles and user data (see GUIDATA)
if eventdata.Indices(l) ==

Data = get (hObject, 'Data');

Data{eventdata.Indices (1), eventdata.Indices (1)} = eventdata.PreviousData;

set (hObject, 'Data',Data);

fprintf ('XXX You cannot edit column headers, no matter how hard you try. XXX\n');
end

o

function EstablishWidths (handles)
Source = get (handles.PropertiesTable, 'Data');

for col = size(Source,2):-1:1
Widths{col} = length(Source{l,col})*6;
end

set (handles.PropertiesTable, 'ColumnWidth',Widths) ;

% Sum of widths
totalwWidth = 0;
for i = l:length (Widths)
totalWidth = totalWidth + Widths{i};
end

PosInst = get (handles.Instructions, 'Position');
PosTable = get (handles.PropertiesTable, 'Position');
PosFrame = get (handles.PropertiesFrame, 'Position’');
PosWin = get (handles.TheWindow, 'Position');
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% Table Size

PosTable (3) = totalWidth+32;

set (handles.PropertiesTable, 'Position', PosTable) ;
% Instructions Size

PosInst (3) = min([400 PosTable(3)]);

set (handles.Instructions, 'Position',PosInst);

% Frame Size

PosFrame (3) = PosTable(3) + 2*PosTable(l);

set (handles.PropertiesFrame, 'Position', PosFrame) ;

% Window Size

PosWin (3) = PosTable(3) + 4*PosTable(l);
set (handles.TheWindow, 'Position', PosWin) ;
guidata (handles.TheWindow, handles);

function Ok Callback(~, ~, handles)

Types = get (handles.MechType, 'String');
Type = Types{get (handles.MechType, 'Value') }
Source = get (handles.PropertiesTable, 'Data’
handles.outData.vars = {Type, Source};
close (handles.TheWindow) ;

o

% Close it.

)i

o

% —--- Executes when selected cell(s) is changed in PropertiesTable.
function PropertiesTable CellSelectionCallback (hObject, eventdata, handles)
if ~isempty(eventdata.Indices)
row = eventdata.Indices(1l);
if row ~= 1
switch handles.MODE
case 'delete'

Data = get (handles.PropertiesTable, 'Data');

NewData = cell (size(Data)-[1 0]):

k =0;

for 1 = 1l:size(Data,l)

if i ~= row

for j = 1l:size(Data,2)
NewData{i-k,j} = Data{i,j};
end
else
k=1;
end
end

set (handles.PropertiesTable, 'Data’',NewData) ;
case 'copy'
Data = get (handles.PropertiesTable, 'Data');
NewData = cell (size(Data)+[1 01);
for i = l:size(Data,l)
for j = l:size(Data,?2)
NewData{i,j} = Data{i,j};
end
end
for i = l:size(Data,?2)
NewData{size (Data,1l)+1,i} = Data{row,i};
end
set (handles.PropertiesTable, 'Data’',NewData) ;
otherwise
end
end
end
% —--- Executes on button press in DeleteOnClick.
function DeleteOnClick Callback (hObject, eventdata, handles)
if strcmp (handles.MODE, 'delete')
handles.MODE = '';
set (hObject, 'BackgroundColor', [0.94 0.94 0.94]);
else
handles.MODE = 'delete';
set (hObject, 'BackgroundColor', [0 1 0]);
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set (handles.CopyOnClick, 'BackgroundColor', [0.94 0.94 0.94]);
end
guidata (hObject, handles);
% —--- Executes on button press in CopyOnClick.
function CopyOnClick Callback (hObject, eventdata, handles)
if strcmp (handles.MODE, 'copy"')
handles.MODE = '';
set (hObject, 'BackgroundColor', [0.94 0.94 0.94]);
else
handles.MODE = 'copy';
set (hObject, 'BackgroundColor', [0 1 0]);
set (handles.DeleteOnClick, 'BackgroundColor', [0.94 0.94 0.94]);
end
guidata (hObject, handles);
% --- Executes on button press in AddBlankRow.
function AddBlankRow Callback (hObject, eventdata, handles)
handles.MODE = '';
set (handles.CopyOnClick, 'BackgroundColor', [0.94 0.94 0.94]);
set (handles.DeleteOnClick, 'BackgroundColor', [0.94 0.94 0.941]);
Data = get (handles.PropertiesTable, 'Data’');
Data = AddRow (Data,l);
set (handles.PropertiesTable, 'Data’',Data);
guidata (hObject, handles);
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G.2. Major Elements
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Body

The body is a class that includes:

A creation function

Functions used to append internal lists of other classes.

Function which is called when it is destroyed: to properly disable its dependents.
A get/set interface, used by the property drop-down on the main GUI.

A set of utility functions which calculate the body orientation, sort connections, detect overlaps
and update the bodies derived properties. Including its bounds, its validity, its name, translation

reference, moving mode, discretization status, default temperatures, default pressures.
A function to discretize it.

A set of functions that get its color from the material, remove it from the figure and add it to

the figure.

classdef Body < handle
% body Summary of this class goes here
% Detailed explanation goes here

properties (Constant)

MaterialUndefinedColor = [1 0.5569 1];
ActiveColor = [0 1 0];
NormalColor = [0 O 0];
InvalidColor = [1 0 0];

end

properties (Hidden)

GUIObjects;
isStateValid logical = false;
isStateDiscretized logical = false;

StateMovingStatus enumMove;
s_1lb Vert double;
s_ub Vert double;
s_lb Hor double;
d_1b_Hor double;
s_ub Hor double;
d_ub_Hor double;
customTemperature = [];
customPressure = [];

end

properties (Dependent)
name;
isvalid;
MovingStatus;
RefFrame;
Temperature;
Pressure;
isDiscretized;
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end

properties
customname = '';
ID;
nodeIndex int32;
Group Group;
Connections Connection;
PVoutputs PVoutput;
Sensors Sensor;
matl Material;
divides = [1 1]; % [Nx, Ny]
NuFunc function handle;
fFunc function handle;
Matrix Matrix;
Mesher Mesher;
DiscretizationFunctionRadial;
DiscretizationFunctionAxial;
% Boolean Values
isActive logical = false;
isChanged logical = true;

% Discretization
Nodes Node;
Faces Face;

end

methods
%% Constructor
function this = Body (Group,Connections,matl)
if nargin == 3
% Get name from
this.Group = Group;
this.Connections = Connections;
for iCon = this.Connections; iCon.addBody(this); end
this.isChanged = true;
this.matl = matl;
fprintf (['Body created in Group ' Group.name '.\n']);
end
end
function addPVoutput (this, PVoutputToAdd)
this.PVoutputs = PVoutputToAdd;
end
function addSensor (this, SensorToAdd)
for iS = SensorToAdd

found = false;
for i = l:length(this.Sensors)
if this.Sensors (i) == iS
found = true;
break;
end
end
if ~found
this.Sensors (end+1) = iS;
this.Group.Model.addSensor (iS) ;
end
end

end
function deReference (this)

[

% Remove Reference from connections

for iCon = this.Connections
for i = length(iCon.Bodies):-1:1
if iCon.Bodies (i) == this
iCon.Bodies (i) = [];
iCon.change () ;
break;
end
end
end
for i = length(this.Connections):-1:1
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if isempty(this.Connections (i) .Bodies)
this.Connections (i) .deReference() ;
end
end
% Remove Reference from Group
iGroup = this.Group;
for i = length(iGroup.Bodies):-1:1

if iGroup.Bodies (i) == this
iGroup.Bodies (i) = [];
iGroup.isChanged = true;
break;
end
end

% Remove Reference from any Bridges
iModel = iGroup.Model;
for i = length(iModel.Bridges):-1:1
if iModel.Bridges (i) .Bodyl == this || iModel.Bridges (i) .Body2 == this
iModel.Bridges (i) .deReference () ;
end
end
% Remove Reference from any Leaks
for i = length(iModel.LeakConnections):-1:1
if (isa(iModel.LeakConnections (i) .objl, 'Body"')

&& iModel.LeakConnections (i) .objl == this)
|| (isa(iModel.LeakConnections (i) .obj2, 'Body"')
&& iModel.LeakConnections (i) .obj2 == this)
iModel.LeakConnections (i) .deReference () ;
end
end
% Remove Reference from any Custom Minor Losses
for i = length(iModel.CustomMinorLosses) :-1:1
if iModel.CustomMinorLosses (i) .Bodyl == this ||
iModel.CustomMinorLosses (i) .Body2 == this
iModel.CustomMinorLosses (i) = [];
end
end

[

% Remove Reference from any NonConnections
for i = length(iModel.NonConnections):-1:1

if iModel.NonConnections (i) .Bodyl == this ||
iModel.NonConnections (i) .Body2 == this
iModel .NonConnections (i) = [];
end
end

o

% Remove Reference from any PVoutputs
for i = length(iModel.PVoutputs):-1:1
if iModel.PVoutputs (i) == this.PVoutputs
iModel.PVoutputs (i) .deReference () ;
end
end
% Remove Reference from any Sensors
for i = length(iModel.Sensors):-1:1
for j = l:length(this.Sensors)

if iModel.Sensors (i) == this.Sensors(j)
iModel.Sensors (i) .deReference () ;
break;
end
end
end
this.Nodes (:) = [];
this.Faces(:) = [];

[

% Remove any visual remenant
this.removeFromFigure (gca) ;
this.delete();

end

$% get/set

function Item = get(this,PropertyName)
switch PropertyName

case 'Name'

Item = this.name;
case 'Bottom Connection'

257



end

miny = inf;
for iCon = this.Connections
if iCon.Orient == enumOrient.Horizontal && iCon.x < miny
miny = iCon.x;
Item = iCon;
end
end
case 'Top Connection'
maxy = -inf;
for iCon = this.Connections
if iCon.Orient == enumOrient.Horizontal && iCon.x > maxy
maxy = iCon.x;
Item = iCon;
end
end
case 'Inner Connection'
minx = inf;
for iCon = this.Connections
if iCon.Orient == enumOrient.Vertical && iCon.x < minx
minx = iCon.x;
Item = iCon;
end
end
case 'Outer Connection'
maxx = —-inf;
for iCon = this.Connections
if iCon.Orient == enumOrient.Vertical && iCon.x > maxx
maxx = iCon.x;
Item = iCon;
end
end
case 'Material'
Item = this.matl;
case 'Temperature'
Item = this.Temperature;
case 'Pressure'
Item = this.Pressure;
case 'Radial Divides'
Item = this.divides (1) ;
case 'Axial Divides'
Item = this.divides(2);
case 'RefFrame'
Item = Frame.empty;
for iCon = this.Connections
if iCon.Orient == enumOrient.Horizontal && ~isempty (iCon.RefFrame)
if isempty (Item)
Item = iCon.RefFrame;
else
if Item ~= iCon.RefFrame
Item = Frame.empty;
break;
end
end
end
end
case 'Change Matrix'
if isempty(this.Matrix)
Item = Matrix (this); %#ok<PROPLC>
this.Matrix = Item;
else
Item = this.Matrix;
end
case 'Expand Matrix'
Item = this.Matrix;
case 'Radial Discretization Function'
Item = this.DiscretizationFunctionRadial;
case 'Axial Discretization Function'
Item = this.DiscretizationFunctionAxial;
otherwise

fprintf (['XXX Body GET Inteface for ' PropertyName ' is not found XXX\n']);
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end
function set (this, PropertyName, Item)
switch PropertyName
case 'Name'

this.customname = Item;
case 'Radial Divides'

this.divides (1) = Item;
case 'Axial Divides'

this.divides (2) = Item;

case 'Temperature'
if Item ~= this.Group.Model.engineTemperature
this.customTemperature = Item;
else
this.customTemperature = [];
end
case 'Pressure'
if Item ~= this.Group.Model.enginePressure

this.customPressure = Item;
else
this.customPressure = [];
end
case 'Change Matrix'
this.Matrix = Item;

this.Matrix.Body = this;
case 'Radial Discretization Function'
this.DiscretizationFunctionRadial = Item;
case 'Axial Discretization Function'
this.DiscretizationFunctionAxial = Item;
case 'RefFrame'
if isempty (Item)
for iCon = this.Connections
if iCon.Orient == enumOrient.Horizontal
iCon.set ('RefFrame',Item) ;
end
end
else
for iCon = this.Connections
if iCon.Orient == enumOrient.Horizontal
if isempty(iCon.RefFrame) || iCon.RefFrame ~= Item
iCon.set ('RefFrame',Item);
end
end
end
end
otherwise
fprintf (['XXX Body SET Inteface for ' PropertyName ' is not found XXX\n']);
return;
end
this.change();
end

%% Utility
function sortConnections (this)

% Sort the connections in an order that is xmin,xmax,ymin, ymax

for i = 1l:length(this.Connections)-1
for j = it+l:length(this.Connections)
if this.Connections (i) .Orient == this.Connections(j) .Orient

if this.Connections (i) .x > this.Connections(j) .x

% swap the two
tempCon = this.Connections(i);

this.Connections (i) = this.Connections(j);
this.Connections (j) = tempCon;
end
elseif this.Connections (i) .Orient == enumOrient.Horizontal
% swap the two
tempCon = this.Connections (i) ;
this.Connections (i) = this.Connections(j);
this.Connections (j) = tempCon;

end
end
end
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end
function dir = getBodyDirection(this)
if this.divides(l) > this.divides(2)

dir = 1;

elseif this.divides(2) > this.divides (1)
dir = 2;

else
cons = zeros(1l,2);

for iCon = this.Connections
switch iCon.Orient
case enumOrient.Vertical

[bl,b2,~,~] = this.limits (enumOrient.Horizontal);
for iBody = iCon.Bodies
[vl,v2,~,~] = iBody.limits (enumOrient.Horizontal);
if ~(all(yl > b2) || all(y2 < bl))
cons(l) = cons(l) + 1;
end
end
case enumOrient.Horizontal
[bl,b2,~,~] = this.limits (enumOrient.Vertical);
for iBody = iCon.Bodies
[x1,%2,~,~] = this.limits (enumOrient.Vertical);
if ~(all(xl > b2) || all(x2 < bl))
cons(2) = cons(2) + 1;
end
end
end
end
if cons(l) == 0
if cons(2) == 0
dir = 2;
else
dir = 2;
end
else
if cons (2) ==
dir = 1;
else
if cons (1) > cons(2)
dir = 1;
else
dir = 2;
end
end
end

end
end

%% Creation Tests
function isit = overlaps (thisBody, otherBody)
isit = false;
if thisBody ~= otherBody
% Test x-coords

[ ~, ~, xminl, xmaxl] = thisBody.limits (enumOrient.Vertical);
[ ~, ~, xmin2, xmax2] = otherBody.limits (enumOrient.Vertical);
if xminl >= xmax2 || xmin2 >= xmaxl

isit = false;

return;
end
[yminl, ymaxl, ~, ~] = thisBody.limits (enumOrient.Horizontal);
[ymin2, ymax2, ~, ~] = otherBody.limits (enumOrient.Horizontal);
N = max ([l length(yminl) length(ymaxl)]);
if N ~= 1

if (~isscalar(ymin2) && N ~= length(ymin2)) ||
(~isscalar (ymax2) && N ~= length (ymax2))
otherBody.update () ;

[ymin2, ymax2, ~, ~] = otherBody.limits (enumOrient.Horizontal);
end
end
if all(yminl >= ymax2) || all(ymin2 >= ymaxl)
isit = false;
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return;
end
isit = true;
end
end
function [doesit, orient, xmin, xmax, y] = touches (thisBody,otherBody)
if thisBody.Connections(l) == otherBody.Connections(2) ||
thisBody.Connections (2) == otherBody.Connections (1)
% Vertical Connections
orient = thisBody.Connections (1) .0Orient;
[ ~, ~, xminl, xmaxl] = thisBody.limits (enumOrient.Vertical);
[ ~, ~, xmin2, xmax2] = otherBody.limits (enumOrient.Vertical);
xmin = xminl; xmin (xmin<xmin2) = xmin2 (xmin<xmin?Z2) ;
xmax = xmaxl; xmax (xmax>xmax2) = xmax2 (Xxmax>xmax?) ;
if thisBody.Connections(l) == otherBody.Connections (2)
y = thisBody.Connections (1) .x;
else
y = thisBody.Connections (2) .x;
end
doesit = any(xmin<xmax) ;
elseif thisBody.Connections(3) == otherBody.Connections(4) ||
thisBody.Connections (4) == otherBody.Connections (3)
% Horizontal Connections
orient = thisBody.Connections (3) .0rient;
[yminl, ymaxl, ~, ~] = thisBody.limits(enumOrient.Horizontal);
[ymin2, ymax2, ~, ~] = otherBody.limits (enumOrient.Horizontal);
xmin = yminl;
if isscalar (ymin2)
xmin (xmin<ymin2) = ymin2;
else
if isscalar (yminl)
xmin = yminl*ones (size (ymin2));
end
xmin (xmin<ymin2) = ymin2 (xmin<ymin2);
end
xmax = ymaxl;
if isscalar (ymax2)
xXmax (xmax>ymax2) = ymax2;
else
if isscalar (yminl)
xmax = ymaxl*ones (size (ymax2));
end
xmax (xmax>ymaxz2) = ymax2 (xmax>ymax2) ;
end
if thisBody.Connections(3) == otherBody.Connections (4)
y = thisBody.Connections(3);
else
y = thisBody.Connections (4) ;
end
doesit = any(xmin<xmax) ;
else
doesit = false;
orient = enumOrient.Vertical;
xmin = inf;
xmax = inf;
y = inf;
end
end

[N

%% Update on Demand
function update (this)
if isempty(this.ID); this.ID = this.Group.Model.getBodyID(); end
if isempty (this.Connections)
this.isChanged = false;
return;
end
if any(~isvalid(this.Sensors))
this.Sensors = this.Sensors(isvalid(this.Sensors));
end
if any(~isvalid(this.PVoutputs))
this.PVoutputs = this.PVoutputs (isvalid(this.PVoutputs));
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end

if ~isempty(this.Matrix)
if isempty(this.Matrix.matl) || isempty(this.Matrix.Dh)
delete (this.Matrix);

this.
elseif ~(
this.
end
end

Matrix(:) = [];
this.Matrix.Body == this)
Matrix.Body = this;

this.isChanged = false;

o

for iCon = th

% Update Connections

is.Connections

found = false;
iCon.CleanUpBodies;
for iBody = iCon.Bodies
if iBody == this; found = true;
end
if ~found; iCon.addBody(this); end
end
this.sortConnections () ;
%% Update Limits
% Find vertical connections
nv = 2; nh = 2;
arrConV (2) = Connection();
arrConH(2) = Connection();
for iCon = this.Connections
if iCon.Orient == enumOrient.Vertica
arrConV(nv) = iCon; nv = 1;
else
arrConH(nh) = iCon; nh = 1;
end
end
if arrConV(l).x > arrConV(2) .x
this.s 1lb Vert = arrConV(2).x;
this.s ub Vert = arrConV(l) .x;
else
this.s 1lb Vert = arrConV(1l) .x;
this.s ub Vert = arrConV(2).x;
end

if arrConH (1)

.x > arrConH(2) .x

this.s 1b Hor = arrConH(2) .x;

if arrCon
this.
else
this.
end

H(2) .get('isStationary')
d 1b Hor = this.s 1lb Hor;

d 1b Hor = this.s 1lb Hor +

this.s ub Hor = arrConH(1l) .x;

if arrCon
this.
else
this.
end
else

H(l) .get('isStationary"')
d ub Hor = this.s ub Hor;

d ub Hor = this.s ub Hor +

this.s 1b Hor = arrConH(1l) .x;
if arrConH(1l) .isStationary
this.d 1b_Hor = this.s_1lb Hor;

else

this.d 1lb Hor = this.s_lb Hor +

end

this.s ub Hor = arrConH(2).x;
if arrConH(2) .isStationary
this.d ub Hor = this.s_ ub Hor;

else

this.d ub_Hor = this.s_ub Hor +

end
end
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%% Update MovingStatus

found = false;

frame = [];

varenum = enumMove.Stretching;

for i = 1l:length(this.Connections)

if ~this.Connections (i) .get('isStationary"')
frame = this.Connections (i) .RefFrame;
found = true;
break;
end
end
if ~found
varenum = enumMove.Static;

else
found = false;
for j = i+l:length(this.Connections)
if ~this.Connections(j).get('isStationary"') .
&& this.Connections (i) .RefFrame == frame
varenum = enumMove.Moving;
found = true;
end
end

if ~found
varenum = enumMove.Stretching;
end
end
this.StateMovingStatus = varenum;

%% Update isValid
varb = true;
isSolid = (this.matl.Phase == enumMaterial.Solid);
% Gas bodies do not support multiple dimensions
if isSolid
% SOLIDS MUST HAVE FINITE VOLUME
[~,~,diml, dim2] = limits(this,enumOrient.Vertical);
if diml == dim2
fprintf (...
['Solid volumes must have finite volumes, please '
'define a x-dimension for '
this.name '.\n']);
varb = false;
end
[~,~,diml, dim2] = limits(this,enumOrient.Horizontal);
if diml == dim2
fprintf (...
['Solid volumes must have finite volumes, please '
'define a y-dimension for '
this.name '.\n']l);
varb = false;
end
% SOLIDS CANNOT STRETCH
if this.MovingStatus == enumMove.Stretching
fprintf (...
['Solid volumes cannot be stretched, please define '
'the same frame to both lateral surfaces of '
this.name '.\n']l);
varb = false;

% GASES CANNOT HAVE MULTIPLE DIMENSIONS
if min(this.divides) ~= 1

fprintf (...
['Gas volumes are restricted to single dimensional discretization,'
'please review ' this.name '"s definition.\n']);
varb = false;
end
end

% Check with interference from other bodies
if this.Group.isOverlaping(this)
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o

varb = false;

end
$fprintf (['Update Body: ' this.name '\n']);
this.isStatevalid = varb;
end
function resetDiscretization (this)
for iCon = this.Connections
iCon.resetDiscretization();
end
this.Nodes (:) = [];

this.Faces(:) = [];
this.isStateDiscretized = false;
end
function change (this)
this.isChanged = true;
this.resetDiscretization();
this.Group.change() ;
end
function name = get.name (this)
if isempty(this.customname)

[~,~,%x1,x2] = this.limits (enumOrient.Vertical);
[~,~,v1l,y2] = this.limits (enumOrient.Horizontal) ;
name = [this.matl.name ' Body '
"('" num2str(xl) ', ' num2str(x2) ' )' ...
'('" num2str(yl) ', ' num2str(y2) ' ) vol:'
num2str (pi* (x272-x172)* (y2(1)-y1(1))) 1;
else
name = this.customname;
end
end
function [d 1lb, d ub, s 1lb, s ub] = limits(this, Orient)
if this.isChanged; this.update(); end

switch Orient
case enumOrient.Vertical
d 1b = 0;
d ub = 0;
s 1lb = this.s 1lb Vert;
s ub = this.s ub Vert;
case enumOrient.Horizontal
d 1b = this.d 1lb Hor;
d ub = this.d ub_ Hor;
s_1b = this.s 1b Hor;
s _ub = this.s ub Hor;
end
end
function isValid = get.isValid(this)
this.update();

if this.isChanged; this.update(); end
isValid = this.isStateValid;
end
function frame = get.RefFrame (this)
if this.isChanged; this.update(); end
frame = [];
if this.MovingStatus == enumMove.Moving
for iCon = this.Connections
if iCon.Orient == enumOrient.Horizontal && ~iCon.get ('isStationary')
frame = iCon.RefFrame;
end
end
end
end
function MovingStatus = get.MovingStatus (this)
if this.isChanged; this.update(); end
MovingStatus = this.StateMovingStatus;
end
function Discretized = get.isDiscretized(this)
if this.isChanged; this.update(); end

if isempty(this.Nodes)
this.isStateDiscretized = false;

end

Discretized = this.isStateDiscretized;
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end

%% Property Parameters
function Temp = get.Temperature (this)
if isempty(this.customTemperature)

Temp = this.Group.Model.engineTemperature;
else
Temp = this.customTemperature;
end
end
function Press = get.Pressure(this)

if isempty(this.customPressure)
Press = this.Group.Model.enginePressure;
else
Press = this.customPressure;
end
end

%% Node Generation
function discretize (this)
this.update();

if this.isDiscretized % || ~this.isValid
return;
end
isSolid = (this.matl.Phase == enumMaterial.Solid);

if isSolid; FType = enumFType.Solid; else; FType = enumFType.Gas; end
if this.isChanged
this.update();

end
%% DETERMINE THE NODE TYPE
if isSolid
NType = enumNType.SN; % SN - Solid Node
else

o°

SVGN - Static Volume Gas Node

VVGN - Variable Volume Gas Node

% SAGS - Shearing Annular Gas Node

switch this.MovingStatus

case enumMove.Static
% Decide, is it shearing or just moving?
% Looking at the two vertical connections

o

for iCon = this.Connections
NType = enumNType.SVGN;
if iCon.Orient == enumOrient.Vertical

% Find a body that shares that

% connection and scope of x

for iBody = this.Group.Bodies
if iBody ~= this

$NType = enumNType.SAGN;
$frame = iBody.RefFrame;
break;
end
end
end
end
end
case enumMove.Moving
% Decide, is it shearing or just moving?
% Looking at the two vertical connections
for iCon = this.Connections
NType = enumNType.SVGN;
if iCon.Orient == enumOrient.Vertical
% Find a body that shares that
% connection and scope of x
for iBody = this.Group.Bodies
if iBody ~= this
if isempty (iBody.RefFrame)
NType = enumNType.SAGN;
frame = this.RefFrame;
break;
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end
end
end
end
end
case enumMove.Stretching
NType = enumNType.VVGN;

end
end
%% Y LIMITS
[ymin, ymax,~,~] = this.limits (enumOrient.Horizontal);
if ~prod(ymax>=ymin) % Will give false if this is not true everywhere

changed registered = false;

for iCon this.Group.Connections
if iCon.Orient == this.Connections (3) .0rient &&
iCon.x == this.Connections(3) .x
if length(iCon.RefFrame) ~= length(this.Connections (3).RefFrame)
this.Connections (3) = iCon.x;
this.update();
changed registered = true;
end
elseif iCon.Orient == this.Connections (4) .Orient &&
iCon.x == this.Connections (4) .x
if length(iCon.RefFrame) > length(this.Connections(4).RefFrame)
this.Connections (4) .RefFrame = iCon.RefFrame;
this.update();
changed registered = true;
end
end
end
if changed registered
fprintf (...

['XXX A memory error occured for Body ' this.name
' in which a connection reference was duplicated,’
this has been mitigated but will require a restart of'
the discretization. XXX\n']);
return;
else
fporintf (...
['XXX Calculated maximum and minimum positions ' this.name
' for will result in a case of negative area, consider'
readjusting gas volume or start positions to mitigate'
this overlap. XXX\n']);
return;
end
end
%% X LIMITS
[~,~,xmin, xmax] = this.limits (enumOrient.Vertical);
if isempty(this.DiscretizationFunctionRadial)
X = transpose (linspace (xmin,xmax, this.divides(1)+1));
else
if isSolid
[x] =
this.DiscretizationFunctionRadial (this, this.Group.
if isempty(x); return; end
deltas = diff(x);
if ~(all(sign(deltas) > 0) || all(sign(deltas) < 0))
fprintf ('XXX x generation issue in Body\m');
[x] =
this.DiscretizationFunctionRadial (this, this.Group.Model.Mesher,enumOrient.Vertical);

Model .Mesher, enumOrient.Vertical) ;

end
if x(end,1l) < x(1,1); x = flip(x,1); end
else
if isempty(this.Matrix)
fprintf (...
['XXX Smart Discretization functions currently cannot'
' be used for matrixless gas nodes. Problem found in radial direction
of Body:'
this.name '. XXX\n']);
return;
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else
if this.divides(1l) > 1
[x] =
this.DiscretizationFunctionRadial (this,this.Group.Model.Mesh, enumOrient.Vertical) ;
if isempty(x); return; end
deltas = diff (x);

if ~(all(sign(deltas) > 0) || all(sign(deltas) < 0))
fprintf ('XXX x generation issue in Body\m');
[x] =
this.DiscretizationFunctionRadial (this, this.Group.Model.Mesher,enumOrient.Vertical);
end
if x(end,1) < x(1,1); x = flip(x,1); end
else
X = [xmin; xmax];
end
end
end
end
%% Y LIMITS
LEN this.divides (2)+1;

if isempty(this.DiscretizationFunctionAxial)
if isscalar (ymin)
if isscalar (ymax)
% SCALAR-SCALAR CASE
y = transpose (linspace (ymin, ymax, LEN)) ;
else % only ymin is scalar - stretching
y = zeros (LEN, Frame.NTheta) ;
for i = 1l:length(ymax)
y(:,1) = transpose(linspace (ymin,ymax (i), LEN));
end
end
elseif isscalar(ymax) % only ymax is scalar - stretching
y = zeros (this.divides (2)+1,Frame.NTheta) ;
for i = 1l:length(ymin)
y(:,1) = transpose(linspace (ymin (i), ymax,LEN))
end
else % both are stretching or moving
y = zeros (this.divides (2)+1,Frame.NTheta) ;
for i = l:length(ymin)
y(:,1) = transpose(linspace(ymin(i),ymax (i), LEN))
end
end
else
if isSolid
[yl =
this.DiscretizationFunctionAxial (this,this.Group.Model.Mesher, enumOrient.Horizontal);
if isempty(y); return; end
deltas = diff(y);
try
if ~(all(all(sign(deltas) > 0)) || all(all(sign(deltas) < 0)))
fprintf ('XXX y generation issue in Body\m');

this.DiscretizationFunctionAxial (this, this.Group.Model.Mesher, enumOrient.Horizontal) ;
end
catch
fprintf('err');
end
if y(end,1l) < y(1,1); yv = flip(y,1); end
else
if isempty(this.Matrix)
fprintf (...
["XXX Smart Discretization functions currently cannot'
' be used for matrixless gas nodes. Problem found in axial direction
of Body:'
this.name '. XXX\n']);
return;
else
if this.divides(2) > 1
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lyl =
this.DiscretizationFunctionAxial (this, this.Group.Model.Mesher,enumOrient.Horizontal) ;
if isempty(y); return; end
deltas = diff (y);
try
if ~(all(all(sign(deltas) > 0)) || all(all(sign(deltas)
fprintf ('XXX y generation issue in Body\m');

this.DiscretizationFunctionAxial (this,this.Group.Model.Mesher,enumOrient.Horizontal);

end
catch
fprintf ('err');
end
if y(end,1) < y(1,1); y = flip(y,1); end
else

if isscalar (ymin)
if isscalar (ymax)
% SCALAR-SCALAR CASE
y = transpose (linspace (ymin, ymax, LEN)) ;
else % only ymin is scalar - stretching
y = zeros (LEN, Frame.NTheta) ;
for i = 1l:length (ymax)
y(:,1) = transpose(linspace (ymin,ymax (i), LEN)) ;
end
end
elseif isscalar(ymax) % only ymax is scalar - stretching
y = zeros (LEN, Frame.NTheta) ;
for i = 1l:length(ymin)
y(:,1) = transpose(linspace(ymin (i), ymax,LEN));
end
else % both are stretching or moving
y = zeros (LEN,Frame.NTheta) ;
for i = 1l:length(ymin)
y(:,1) = transpose(linspace(ymin(i),ymax (i), LEN))
end
end
end
end
end
end

if strcmp(this.matl.name , 'Perfect Insulator') ||
strcmp (this.matl.name , 'Constant Temperature')

x = [x(1,:); x(end,:)];
y = [y(l,:); y(end,:)];
end
divx = size(x,1) - 1;
divy = size(y,1) - 1;
this.Nodes = Node.empty;
this.Faces = Face.empty;

%% INITIALIZE

sendtoConnections{4} = NodeContact.empty;
ncount = divx*divy;
fcount = (divx-1)*divy + divx*(divy-1);

%$fcount = prod([divx divy]-[1 0])+prod(this.divides-[0 1]);

%% FOR EACH DISTINCT NODE WITHIN BODY
for iy = size(y,1) - 1:-1:1

% loop initialization
starty = y(iy,:);
endy = y(iy+l,:);
starty = CollapseVector (starty);
endy = CollapseVector (endy) ;

for ix = size(x,1) - 1:-1:1
%% Define this.Nodes
CurrentNode =
Node (NType, x (ix) ,x (ix+1l),starty,endy, Face.empty,Node.empty, this, 0);
this.Nodes (ncount) = CurrentNode;
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ncount = ncount - 1;
end
end

for i = 1l:length(this.Nodes)
nd = this.Nodes (i) ;
if nd.xmin == xmin
sendtoConnections{1l} (end+1l) =
NodeContact (nd, nd.ymin, nd.ymax, FType, this.Connections (1)) ;
end
if nd.xmax == xmax
sendtoConnections{2} (end+1l) =
NodeContact (nd, nd.ymin, nd.ymax, FType, this.Connections (2)) ;
else
% Make Vertical connection
this.Faces (fcount) = ...
Face ([this.Nodes (i+1l) nd],FType,enumOrient.Vertical);
fcount = fcount - 1;
end
if nd.ymin (1) == ymin (1)
sendtoConnections{3} (end+1l) =
NodeContact (nd, nd.xmin, nd.xmax, FType, this.Connections (3));
end
if nd.ymax(1l) == ymax(1l)
sendtoConnections{4} (end+1) =
NodeContact (nd, nd.xmin, nd.xmax, FType, this.Connections (4));
else
% Make Horizontal connection
this.Faces (fcount) =
Face ([this.Nodes (i+divx) nd],FType,enumOrient.Horizontal) ;
fcount = fcount - 1;
end
end

%% SEND THE COMPILED LIST TO CONNECTIONS FOR PROCESSING

for i = l:length(this.Connections)
this.Connections (i) .addNodeContacts (sendtoConnections{i});

end

if ~isempty(this.Matrix) && ~isempty(this.Matrix.Geometry)

o

% Pass Nodes to Matrix for generation

[nodes, faces] = this.Matrix.discretize (this.Nodes) ;
this.Nodes = [this.Nodes nodes];
this.Faces = [this.Faces faces];

end

this.isStateDiscretized = true;
% fprintf(['Body ' this.name ' is discretized, but this.Nodes still need to reference
their this.Faces.\n']);

end

%% GRAPHICS FUNCTIONS
function color = getColor (this)
if this.isActive
color = Body.ActiveColor;
else
color = Body.NormalColor;
end
end
function updateColor (this)
if ~isempty(this.GUIObjects)
for iGraphicsObject = this.GUIObjects
set (iGraphicsObject, 'FaceColor', this.getColor());
end
end
end
function removeFromFigure (this,AxisReference)
if ~isempty(this.GUIObjects)
children = get (AxisReference, 'Children');
for obj = this.GUIObjects
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if isgraphics (obj)
for i = length(children):-1:1
if isgraphics(children(i)) && children(i) == obj
children(i) .delete;
break;
end
end
end
end
this.GUIObjects = [];
end
end
function show (this,AxisReference, Inc)
if this.isChanged; this.update(); end
fprintf (['Plotted Body ' this.name '.\n']);
Remove object from plot
this.removeFromFigure (AxisReference) ;

o 0P

o

if this.isValid
if ~isempty(this.matl) && ~isempty(this.matl.Color)
fillcolor = this.matl.Color;
else
fillcolor = Body.MaterialUndefinedColor;
end
else
fillcolor = Body.InvalidColor;
end
edgecolor = this.getColor();
% Find the extents of the body and position the rectangle(s)
accordingly

o°

o

% Case 1: If it has 6 connections it is a cuboid
if length(this.Connections) == 6

[

% Render as cuboid

return;
end

o

% Case 2: It is a cylinder

% If one connection is vertical and x = 0
for iConnection = this.Connections
if iConnection.Orient == enumOrient.Vertical && iConnection.x == 0

% Treat it as a cylinder
[~, ~,~,maxx] this.limits (enumOrient.Vertical);
if nargin > 2 % Inc Exists
[miny, maxy,~,~] = this.limits(enumOrient.Horizontal);
if length(miny) > 1; miny = miny(Inc); end
if length(maxy) > 1; maxy = maxy(Inc); end
else
% plot a motion ghost
if this.Group.Model.showBodyGhosts && this.MovingStatus ==

o |l

enumMove .Moving
[vl,y2,miny,maxy] = this.limits (enumOrient.Horizontal);
gminy = max(yl);
gmaxy = max(y2);
OffsetRot = this.Group.Position.Rot;
R = RotMatrix (OffsetRot);
RootPosition = [this.Group.Position.x; this.Group.Position.y];
p = [R*[gminy;maxx]+RootPosition
R* [gmaxy;maxx]+RootPosition
R* [gmaxy; -maxx]+RootPosition
R* [gminy;-maxx]+RootPosition];

this.Group.Model.GhostGUIObjects (end+1l) = fill(p(l,:),p(2,:),...

fillcolor, ...
'EdgeColor', edgecolor, ...
'LineWidth',1, ...
'"HitTest', 'off', ...
'FaceAlpha',0.25,...
'EdgeAlpha’',0.75);

else
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[~,~,miny,maxy] = this.limits (enumOrient.Horizontal) ;
end
end

OffsetRot = this.Group.Position.Rot;
R = RotMatrix (OffsetRot) ;
RootPosition = [this.Group.Position.x; this.Group.Position.y];
p = [R*[miny;maxx]+RootPosition
R* [maxy;maxx]+RootPosition
R* [maxy;-maxx]+RootPosition
R* [miny;-maxx]+RootPosition];

this.removeFromFigure (AxisReference)

this.GUIObjects = fill(p(l,:),p(2,:),...
fillcolor, ...'FaceColor',fillcolor, ...
'EdgeColor', edgecolor, ...
'LineWidth',1, ...
'"HitTest', 'off"'");

return;

end
end

% Case 3: It is an annulus
% Get extents of body
[~,~,minx, maxx] = this.limits(enumOrient.Vertical);
if nargin > 2 % Inc exists
[miny, maxy,~,~] = this.limits(enumOrient.Horizontal);
if length(miny) > 1; miny = miny(Inc); end
if length(maxy) > 1; maxy = maxy(Inc); end
else
% plot a motion ghost
if this.Group.Model.showBodyGhosts && this.MovingStatus == enumMove.Moving
[vl,y2,miny,maxy] = this.limits (enumOrient.Horizontal);
gminy = max(yl);
gmaxy = max(y2);
OffsetRot = this.Group.Position.Rot;
R = RotMatrix (OffsetRot);
RootPosition = [this.Group.Position.x; this.Group.Position.y];
p = [R*[gminy;maxx]+RootPosition
R* [gmaxy;maxx]+RootPosition
R* [gmaxy;minx]+RootPosition
R* [gminy;minx]+RootPosition];

o

this.Group.Model.GhostGUIObjects (end+l) = fill(p(l,:),p(2,:),...
fillcolor, ...
'EdgeColor', edgecolor, ...
'LineWidth', 1, ...
'HitTest', 'off"', ...
'FaceAlpha',0.25,...
'EdgeAlpha’',0.75);

p = [R*[gminy;-minx]+RootPosition
R* [gminy; -maxx]+RootPosition
R* [gmaxy;-maxx]+RootPosition
R* [gmaxy;-minx]+RootPosition];

this.Group.Model.GhostGUIObjects (end+l) = f