
Knowledge Graphs: Construction and Applications

by

Liang Tan

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Department of Electrical and Computer Engineering
University of Alberta

© Liang Tan, 2021

Abstract

Knowledge graphs become a de facto standard for representing data in situations

where relations between individual pieces of information are important. These seman-

tically rich data structures provide opportunities to develop methods and algorithms

for new ways of analysing and utilizing data.

In this work, we illustrate benefits of representing data as knowledge graphs. We

develop a number of algorithms that augment data via processing graph-based infor-

mation. We show how these enriched structures can be utilized for further processing,

and discovering of ‘unseen’ relations. In particular, we focus on two very different In

particular, we focus on two very different domains of interest: power systems, and

aspect-based sentiment analysis.

For a power system application, we construct a knowledge graph that combines topo-

logical data with information about technical details of electrical components, as well

as past events that occurred in the system. We utilize the graph for extracting details

needed for the analysis of different events. We develop methods that enable us to an-

alyze an impact of events on different parts of the system. For a case of aspect-based

sentiment analysis, we are interested in emotional-based representation of reviews.

Firstly, we identify words and simple phrases that describe different aspects of the re-

viewed items. Secondly, we create a knowledge graph that combines the reviews with

the description words and phrases, as well as with the Hourglass Model of Emotions.

The graph allows us to identify emotions linked with the reviewed aspects. Further,

we aggregate these emotions across all words and phrases that describe individual

aspects to obtain an ‘emotional summary’ of the reviews.

ii

Preface

This thesis was supervised by Professor Marek Reformat. Chapter 3 of this disserta-

tion have been submitted to the “ 2020 IEEE Electric Power and Energy Conference

(EPEC) ” by Yashar Kor, Liang Tan, Professor Marek Z Reformat, Professor Petr

Musilek. The name of the conference paper is “GridKG: Knowledge Graph Repre-

sentation of Distribution Grid Data” .

iii

Acknowledgements

I would first like to thank my supervisor Dr Marek Reformat. His help and encour-

agements have supported me a lot whenever I ran into troubles in my Master research.

Dr Marek Reformat also steered me into the right directions whenever I am confused.

I am grateful for his supervision.

Secondly, I would like to thank my colleagues, Yashar Kor and Manpreet Kumar.

They are professional and helpful and their advice is really helpful and enlightening.

It is a pleasure for me to work with them together for our research projects.

I would also like to express my gratitude to my parents and friends for their

unfailing support and encouragement throughout my years of the study. This accom-

plishment would not possible without them.

Finally, I would like to say thanks to the staffs of the Department of Electrical

and Computer Engineering, who are supportive and friendly. With their constantly

supports, I had an enjoyable and memorable study period.

Liang Tan

University of Alberta

January 2021

iv

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Contributions . 2

1.3 Thesis Outline . 3

2 Background and Related Work 5

2.1 Knowledge Graph . 5

2.1.1 Resource Description Framework (RDF) 6

2.1.2 Graph Database: Neo4j . 7

2.2 SenticNet and the Hourglass Model of Emotions 9

2.3 Aggregation Methods . 11

2.3.1 Group Making and OWA operator 11

2.4 Power Systems and Knowledge Graph 14

2.5 Aspect Based Sentiment Analysis . 15

3 Knowledge Graph Representation of Distribution Grid 17

3.1 Introduction . 17

3.2 Definitions of Concepts and Relations 18

3.2.1 Concepts Definition . 18

3.2.2 Relations . 19

3.3 Algorithms for Processing Power Grid Knowledge Graph 21

3.4 Utilization of Power Grid Knowledge Graph 22

v

3.4.1 Primary Switches on Path . 22

3.4.2 Primary Switches and Conditions 23

3.4.3 Elements and Conditions . 23

3.5 Results and Conclusions . 25

4 Emotion-based Analysis of Reviews using Knowledge Graph 27

4.1 Introduction . 27

4.2 Model of Reviews, Aspects, and Emotions 28

4.2.1 Model Overview . 28

4.2.2 Graph Schema . 29

4.2.3 Building Graph: Loading Data 30

4.3 Aspect-based Analysis: Utilization of KG-based Model 36

4.3.1 Analysis using Single Description Words 36

4.3.2 Analysis using Clusters of Description Words and their Synonyms 42

5 Conclusions and Future Work 48

5.1 Conclusions . 48

5.2 Future Work . 50

Bibliography 51

Appendix A:

Power Grid Knowledge Graph 55

A.1 Graph Construction Process . 55

A.1.1 Import from CSV files . 55

A.2 Processing Graph Data . 57

A.2.1 Converting Node Properties to Relationships 57

A.2.2 Determining Number of Downstream Customers 60

A.2.3 Multi-Source Path Search . 62

vi

Appendix B:

Sentiment Knowledge Graph 67

B.1 Construction of Review Model (REmModel) 67

B.2 SenticNet RDF Format . 69

vii

List of Tables

2.1 The sentic levels of the Hourglass Model of Emotions 11

4.1 REmModel database summarization 32

4.2 Description words for the aspect food 37

4.3 Values of emotions for selected description words 38

4.4 Aggregated values of emotions of words describing the aspect food . 38

4.5 Linguistic ‘view’ of emotions linked to the reviews of food 39

4.6 Linguistic terms defined for emotions (the left column indicates the

universe of discourse, from −1 to 1) 40

4.7 Linguistic description of the aspect food: optimistic aggregation . . . 42

4.8 Linguistic description of the aspect food: neutral aggregation 42

4.9 Linguistic description of the aspect food: pessimistic aggregation . . 43

4.10 Representative words of clusters as words describing the aspect food 47

viii

List of Figures

2.1 RDF: triples describing Berkeley . 6

2.2 Neo4j Architecture1 . 8

2.3 Hourglass Model of Emotions [9] . 10

2.4 Linguistic quantifiers at least half”, “most of” and “as many aspossible”

[18]. 14

2.5 An example for the AOWE task and polarity detection for aspect anal-

ysis. The words in blue are two given aspects while the words in green

are their corresponding opinion words. The arrows indicate the corre-

spondence between aspects and opinion words. 16

3.1 RDF triples with Element as their subject 19

3.2 Elements by location type . 20

3.3 Elements by component type . 20

3.4 Elements of downstream paths: their types identified by links to gray

circles where each circle represents a different type of electrical compo-

nent; their voltages – yellow circles; and their phases and orientation

– green circles. 24

3.5 Location of Primary Switch/protective devices on the upstream path

from top-left element to the primary breaker (down-right corner). . . 25

3.6 Primary switches in the ‘XYZ’ service area that connected to 14 kV

and provide power to more than 100 customers downstream: they are

of different scale, connected to different phases. 26

ix

4.1 Set of triples describing delicious based on SenticNet: I) synonyms;

II) Hourglass Model of Emotions; III) sentiment; and IV) mood-related

words. 29

4.2 Schema for Neo4j implementation of REmModel. 30

4.3 Set of triples describing delicious based on SenticNet: I) synonyms;

II) Hourglass Model of Emotions; III) sentiment; and IV) mood-related

words. 33

4.4 Snippet of REmModel for the aspect food: turquoise – Review En-

tries; beige – sentences; red – description words; pink – sentiment

(positive, neutral, negative); dark blue – category entry. 34

4.5 Fragment of REmModel illustrating integration of Review Entries

(blue) with the words related to delicious from SenticNet (green)

accomplish via the relation is equal for the two nodes of delicious –

one from the reviews and one from the SenticNet. 35

4.6 Fragment of REmModel for the word delicious: synonyms taken

from the SenticNet. 36

4.7 Membership functions and linguistic terms defined for emotions. . . . 40

4.8 Translation of values into 2-tuple their linguistic representation. . . . 41

4.9 3-level synonym tree for delicious: words in the thin white boxes are

further ‘unfolded’ unless they are at the 3rd level, words in the thick

white boxes are not unfolded due to their irrelevance (large distance

to the root word), words in the gray boxes already exist in the tree. . 44

x

Chapter 1

Introduction

The easiness of generating data has created needs for developing new data storing

formats that enable users to fully utilize collected information. It seems that current

ways of storing information in a form of relational databases does not provide sufficient

ways of extracting relevant information. Also, a process of finding new ‘views’ on facts

and relations in the collected and stored information is a challenging task.

Currently, an access to and understanding of information from the point of view of

connections and relations existing between individual pieces of data is rather limited.

Yet, during data processing activities it is quite often that we are interested in find-

ing and taking advantage of relationships – direct and indirect– that exist between

collected data. It can be stated that the aspect of relations between individual pieces

of data is of increasing importance.

1.1 Motivation

The growing amount of data available for processing leads to a number of new expec-

tations regarding data processing. This, on the other hand, creates some challenges

and requirements associated with data representation format. Let us take a look at

a few of them:

• large quantities of ‘hybrid’ data, i.e., numerical, symbolic, domain specific,

generic – this triggers a need for integration of variety of different type of data,

1

and methods that are able to take advantaged of such a diversity;

• importance of connections between pieces of information – it seems that data

semantics (defined via interconnections between data pieces) promises discovery

of new relations and dependencies not easy to spot especially in the case of large

data.

To summarize, we can say that there is a strong need/demand for representing and

storing data in more structural way where processing, utilization of existing and

discovering new relations among data pieces is more natural and straightforward.

1.2 Objectives and Contributions

In the light of the above mentioned needs, we focus on graph-based data representa-

tion. An increased popularity of such a data format has resulted in development of a

few standards for data graph formats. One that is of our interest is called Resource

Description Framework (RDF)1. This format – standardized byW3C – provides a very

simple yet efficient concept of representing data. The basic building block is called a

< triple >. It is a 3-tuple < subject, property, object > that expresses a simple fact

about subject. It is accomplished via linking it with another piece of information via

a property; the link is called < property >. For example, a statement Ottawa is cap-

ital of Canada is represented as the triple < Ottawa, capital, Canada >. A collection

of such triples interconnected between each other is called Knowledge Graph (KG).

In this thesis, we develop procedures that help constructing knowledge graphs,

integrating multiple data sources, enabling data processing to ‘generate’ new data,

and analysing graphs to gain new insight into phenomena described by the data.

In order to perform such activities , we have identified a number of sub-tasks:

• construction of vocabularies for graph databases that represent elements and

relations characteristic to a domain of interest;

1https://www.w3.org/TR/rdf-primer/

2

• create procedures for ‘translating’ tabular data into graphs;

• design and develop multiple approaches to utilize relation-based view of data,

and to generate new content based on the graph structure/relations.

In order to illustrate these activities, we look at two different domains of interest,

i.e., power systems and aspect-based sentiment analysis of reviews. We show how

data representation in a form of graph creates new possibilities in data processing

and analysis.

For a power system application, we construct a knowledge graph that combines

topological data with information about technical details of electrical components, as

well as past events that occurred in the system. We utilize the graph for extracting

details needed for the analysis of different events. We develop methods that enable

us to analyze an impact of events on different parts of the system.

For a case of aspect-based sentiment analysis, we are interested in emotional-based

representation of reviews. Firstly, we identify words and simple phrases that describe

different aspects of the re-viewed items. Secondly, we create a knowledge graph

that combines the reviews with the description words and phrases, as well as with

the Hourglass Model of Emotions.The graph allows us to identify emotions linked

with the reviewed aspects. Further,we aggregate these emotions across all words and

phrases that describe individual aspects to obtain an ‘emotional summary’ of the

reviews.

1.3 Thesis Outline

The thesis is divided into five sections. Section 2 introduces the background infor-

mation of knowledge graph, emotion models, sentiment analysis and group decision

making tasks. Section 3 proposes a knowledge graph representation of power grid

ontology, named GridKG. We illustrate the methods of GridKG construction and the

utilization of the Knowledge graph. Section 4 describes the emotion-based analysis

3

of reviews with NLP methods and create a Model called REmModel, and store the

extracted information in a knowledge graph for aggregation computation. Section 5

provides the conclusions for the thesis.

4

Chapter 2

Background and Related Work

2.1 Knowledge Graph

A knowledge graph(KG) is basically a data management system which combines var-

ious types of data and utilizes graphs to represent information and knowledge [1].

Their intrinsic ability to denote relations between individual pieces of data/infor-

mation makes them one of the most suitable forms for expressing data semantics.

A W3C standard that provides a definition of graph-based data format is Resource

Description Framework – RDF. Initially introduced by Google, the knowledge graph

concept was utilized to optimize search engine performance with the information

gathered from various sources. Knowledge graphs such as BabelNet [2], DBpedia [3],

WordNet [4], Microsoft’s Probase [5] and Google Vault [6] are created focusing on

text-based extraction of data from the web content. The existing generic knowledge

graphs prove their usefulness in applications such as semantic search, and information

fusion from various sources.Knowledge graph has intrinsic ability to denote relations

between individual pieces of data/information makes them one of the most suitable

forms for expressing data semantics. A W3C standard that provides a definition of

graph-based data format is Resource Description Framework – RDF.

5

country

Berkeley

United Statescity

69.7

type

mayHighF

place

type

49.4

mayLowF

Health_Initiative_of_the_Americas

locationOf

UC_Berkeley_School_of_Law

cityOf

University_of_California,_Berkeley

cityOf

Pacific Time Zone

timezone

Places_established
in 1850s

subject

Cities in the San Francisco
Bay Area

subject

Tom Bates
LeaderName

California

isPartOf

Mathematical_Sciences_Publishers

headquartersOf

94701

postalCode

Alameda County
California

isPartOf

Sybase

foundation
PlaceOf

Figure 2.1: RDF: triples describing Berkeley

2.1.1 Resource Description Framework (RDF)

A single RDF triple is of the following form: < subject − property − object >. A

component < subject− > represents an element that a given triple is describing.

Further, an < −object > is an element that is in relation < −property− > with the

< subject− > and contributes to its description. < −Property > is used to express

a relationship that exists between < subject− > and < −object >. Subject, objects

and properties can be of any type, but only objects can be alphanumeric literals.

Generally, multiple triples can have the same subject. Such a situation means

that all those triples constitutes a description of a single, the same, entity. One of

such triples, on the other hand, can be perceived as one feature of the entity/subject.

Further, those triples are a definition of this entity. An illustration of this is shown

in Figure 2.1. It is a definition of the city Berkeley.

When we look at a large number of RDF triples many of subjects and objects of

some triples are subject and objects of other triples. That means that multiple triples

are very interconnected between each other. So, RDF-based definitions of entities are

quite interleaved: features are shared and many of them are subjects and centers of

6

other RDF-based definitions.

An increasing importance of graph-based representation of data and information,

and an RDF in particularly, has led to multiple storing RDF triples. If we think of a

process of collecting RDFs as a learning process, we should be aware that the same

entity can be defined/described in multiple places and this can lead to some benefits

as well as complications.

In general, accumulating descriptions of the same entity is equivalent to a repet-

itive process of acquiring information and eventually gaining confidence in gathered

descriptions, i.e., RDF triples. At the same time, some discrepancies and inconsis-

tencies can occur. A methodology of dealing with such a learning process is being

proposed here. It enables a gradual learning, and leads to strong belief in individual

RDF triples. As a result, the information about an entity is composed of triples asso-

ciated with different levels of confidence. Those levels depend on how an assimilation

of new information is being performed.

2.1.2 Graph Database: Neo4j

Neo4j [7] is an open-source NoSQL database written in Java and Scala, implements

the generic graph models with full database characteristics such as ACID transac-

tion compliance, cluster support, runtime failover, and query language called Cypher

Query Language (CQL). It represents non-structural data by nodes with distinct la-

bels and relationships between nodes are called paths. Path-oriented operations are

highly efficient and suitable for production applications.

Figure 2.2, shows the main modules of the Neo4j’s architecture, including interface

APIs (Cypher, Traverse API, Core API), cache, transaction logs, records files and

disks. In Neo4j Enterprise version, it also includes High Availability module with the

master-slave pattern. If there is a Neo4j database cluster, there will be several Neo4j

databases inside. The master instance uses its cluster management system to keep

track of any replica instances joining or leaving. When the master instance broke

7

Figure 2.2: Neo4j Architecture1

down, the cluster will perform a leader election algorithm to ensure that the new

master is elected consistently.

Different types of APIs provide programmers with the flexibility to access the

database. Callback interface provided by Traversal API allows programmers to im-

plement his/her approach to traverse the graph. Cypher Query Language (CQL), is

an easy-to-use SQL-like language to query the database, providing similar function-

alities to other standard data access languages. Neo4j also provides core APIs such

that one can use JVM-based languages like Java and Scala to call Kernel APIs to

interact with the graph. The performance of reading from the database and writing

into the database highly relies on the caching options. Neo4j provides two different

types of caching layers. One is the File System cache which uses off-heap memory

to cache data stored on disk. The other one is the object cache. All writes and

reads are performed through these caches to improve throughput. All data in these

caches will not flush to durable storage until the logical logs are rotated. Transaction

logs, also known as logical logs can ensure ACID properties and provide the ability

1https://apprize.best/javascript/neo4j/13.html

8

to restore and recover database when needed. Record files are the files that contain

the information on nodes, relationships and properties.

2.2 SenticNet and the Hourglass Model of Emo-

tions

SenticNet5 [8] leverages the generalization power of recurrent neural networks, specif-

ically Bi-direction Long Short Term Memory networks (Bi-LSTM) to automatically

discover concept primitives for sentiment analysis. After that, the concept primi-

tives are used to build a large commonsense knowledge graph by multi-dimensional

scaling. SenticNet tries to merge symbolic and sub-symbolic AI in the context of

sentiment analysis. It contains 100,000 concepts as a commonsense knowledge which

are represented in an XML repository on the SenticNet website.

Emotions, rather than the classical sentiment classification tasks, are difficult to

define and modelling. Emotion categorization modelling is an intensive research area

so that there is a large amount of literature on emotion categorization model.

There is no such universal agreement on emotion modelling. Cambria [9] proposed

a model, called Hourglass Model of Emotions, Figure 2.3, for emotion categorization

recognition. The Hourglass of Emotions model utilize the empirical evidence in the

context of sentiment analysis, so it’s optimized for polarity detection and has powerful

effects for sentiment analysis [10].

The Hourglass Model of Emotions measures every emotion in four dimensions in

the context of Human-Computer Interaction (HCI), which are Pleasantness (how

much a person is amused by interaction modalities), Attention (how much a person is

interested in interaction contents), Sensitivity (how much a person is comfortable with

interaction dynamics) and Aptitude (how much a person is confident in interaction

benefits).

For each dimension, the strength of the emotion is classified into six-levels, terms

′sentic level′. Therefore, there are a set of 24 emotions in the Hourglass Model

9

Figure 2.3: Hourglass Model of Emotions [9]

10

of Emotions. Each emotion can be represented as a ′sentic vector′, based on the

intensity on different dimension, each emotion can be characterized by unique four

words in the table.

Table 2.1: The sentic levels of the Hourglass Model of Emotions

Interval Pleasantness Attention Sensitivity Aptitude

[G(1), G(2/3)) ecstasy vigilance rage admiration

[G(2/3), G(1/3)) joy anticipation anger trust

[G(1/3), G(0)) serenity interest annoyance acceptance

(G(0), –G(1/3)] pensiveness distraction apprehension boredom

(–G(1/3), –G(2/3)] sadness surprise fear disgust

(–G(2/3), –G(1)] grief amazement terror loathing

The Hourglass of Emotion model is not only for emotion detection, but also can be

used for polarity detection tasks. The polarity is defined in the following equation:

p =
N∑︂
i=1

(Pleasantness(ci) + |Attention(ci)| − |Sensitivity(ci)|+ Aptitude(ci))

3N

(2.1)

where ci is the input concept word and N is the total number of concept words

and 3 is the isolation factor.

Overall, the Hourglass of Emotion model is designed to potentially describe the

emotional experience which is suitable for every single person.

2.3 Aggregation Methods

2.3.1 Group Making and OWA operator

Group decision[11] is a task where several agents get involved in a decision process to

generate a value that represents their individual decisions in the group process. In a

classification group decision task, we would like to obtain a classification value which

11

can reflect the majority of all the classification agents and summarizes the collective

value from those agents.

Such task of aggregating diverse methods/agents can be achieved by the OWA

operator. OrderedWeighted Averaging (OWA) operator was first introduced by Yager

[12]. OWA is an aggregation mechanism which can prioritize the classification of some

methods based on the features of values those methods produced.

OWA operator Definition [12]: An OWA operator of dimension n is a mapping

function F: RN → R, where for each dimension, there is a weight wi associate with

it. wi ∈ [0, 1] and
∑︁n

i=1(wi) = 1 and is defined to aggregate a list of real values

a1, a2, ..., an according to the following expression:

F (a1, a2, ..., an) =
n∑︂

i=1

wi × aσ(i) (2.2)

Where σ{1, ..., n} −→ {1, ..., n} is a permutation such that aσ(i) ≥ aσ(i+1)

If B is the vector whose value is the ordered arguments values, e.g bi = aσ(i), then

F (a1, a2, ..., an) = W TB (2.3)

OWA operator can achieve the concept of fuzzy majority, hence, it is one of the

most commonly used operators in multi-criteria decision making. However, it is

restricted to some portion of the criteria must be satisfied [13].

There is a more generic type of OWA operator introduced by Mitchell and Es-

trakh[14], where the inputs of OWA are not rearranged by the values but using a

mapping function. Then, Yager introduced the more general type of the OWA oper-

ator, called the IOWA [15].

IOWA operator Definition [15]: An IOWA operator of dimension n is a mapping

function F: RN → R, where for each dimension, there is a weight wi associate with

it, wi ∈ [0, 1] and
∑︁n

i=1(wi) = 1. Thus, the equation of IOWA is defined as follows:

12

F (< u1, a1 >, ..., < un, an >) =
n∑︂

i=1

wi × aσ(i) (2.4)

where σ{1, ..., n} −→ {1, ..., n} is a permutation function such that uσ(i) ≥ uσ(i+1),

∀i = 1, ..., n− 1.

By this definition, the reordering of the set of values a1,, an are induced by the

reordering of the set of values u1,, un

The difference between OWA and IOWA operator is that they have a different way

of reordering values. The reordering step of OWA operator is based on the magnitude

of the values whereas the IOWA operator introduced a reordering function which

mapping the value into weights and ordered by the weights.

There are two ways described in Yager’s paper [16] for obtaining the associated

weights. The first way is to learn the weights by sampling data and the second

approach and the second one is to assign some semantics and weights to the weights.

According to Pasi and Yager [17], let Q : [0, 1] → [0, 1] be a function such that

Q(0) = 0, Q(1) = 1, and Q(x) ≥ Q(y) for x > y corresponding to a fuzzy set

representation of a proportional monotone quantifier. Q(x) is the degree to which x

satisfies the fuzzy concept being represented by the quantifier. The weighting vector

is represented as follows:

wi = Q(
i

n
)−Q(

i

n− 1
) (2.5)

There are some linguistic quantifiers introduced by Kacprzyk[18], that express the

“at least half,” “most of,” and “as many as possible,” using the formula in Equation

2.6 :

Q(r) =

⎧⎪⎨⎪⎩
0 if 0 ≤ r < a
r−a
b−a

if a ≤ r ≤ b

1 if b < r ≤ 1

(2.6)

13

Figure 2.4: Linguistic quantifiers at least half”, “most of” and “as many aspossible”
[18].

In the Figure 2.4, they use (0, 0.5), (0.3, 0.8), (0.5, 1) for (a, b) respectively, which

represents the semantic “at least half”, “most of” and “as many aspossible”.

2.4 Power Systems and Knowledge Graph

In the realm of the power industry, few studies have focused on domain-specific knowl-

edge graphs application in power grid operation. Industrial application of knowledge

graph at Siemens was an important step toward intelligent engineering and manu-

facturing which could highly improve workflow efficiency and data accessibility [19].

Tang [20] proposed an Enterprise-level information integration framework, enhanced

power equipment management and improved efficiency in querying and classifying

relevant information and updating product contents in realtime. Fan [21] proposed a

method to construct the dispatch Knowledge graph for power systems which describes

the behaviours of dispatchers semantically. They proposed the semi-auto labelling

method to build a dispatcher-oriented corpus and a BiLSTM-CRF model was built

and trained to extract the entities and create relationships for dispatcher behaviours.

Yang [22] proposed a generic way of building enterprise-level knowledge graph in

power field by fusing power transmission data and transformation assets with multi-

source heterogeneous information, which helps to reduce information redundancy and

14

improve the accuracy of fusion. Su [23] proposed an automatic framework to extract

ontological information which facilitates the sharing of multi-source heterogeneous

power grid equipment data.

In the paper [24], single- and multi-threading methods for the analysis of grid

energizing processes are designed. It was demonstrated that the graph database had

better efficiency compared to a relational database. Xu [25] extracted a knowledge

graph into topology and analyzed the relationship between the grid topology and

power system reliability using the graph theory and statistical analysis.

In summary, all these efforts and studies confirm the increasing interests and needs

for knowledge graph in the power grid domain.

2.5 Aspect Based Sentiment Analysis

Sentiment analysis (SA) [26], also known as opinion mining, has drawn increasing in-

terests and needs in recent years. Based on granularity, sentiment analysis can be cat-

egorized into different tasks, including document-level sentiment analysis, sentence-

level sentiment analysis, and aspect-level sentiment analysis [27]. Since document-

level or sentence-level sentiment analysis cannot provide more detailed information

sometimes, thus, the aspect-based sentiment analysis (ABSA) is proposed to identify

the opinions of a specific target or aspects in reviews [28]. ABSA contains subtasks

including aspect-category detection, opinion target extraction, opinion word extrac-

tion and aspect-level polarity classification. Opinion target, also known as aspect

term, refers to the words or phrases in the sentence represents the features or en-

tities towards which users show attitude. Opinion word, on the other hand, refers

to the terms used to express an attitude towards the Opinion target. For example,

in the sentence “the screen of the laptop is damaged, and it has a terrible battery

life”, the words “screen” and “battery life” are two opinion targets, and the words

“damaged” and “terrible” are opinion words. Opinion target extraction (OTE) and

Opinion word extraction (OWE) are two fundamental sub-tasks for aspect-level sen-

15

Figure 2.5: An example for the AOWE task and polarity detection for aspect anal-
ysis. The words in blue are two given aspects while the words in green are their
corresponding opinion words. The arrows indicate the correspondence between as-
pects and opinion words.

timent analysis. In the recent year of research studies, there is many research work

which has been done towards those two tasks. Xu [29] proposed a Dual Embedding

CNN (DE-CNN) model with general and domain-knowledge embedding for extracting

targets for product reviews. Yu [30] proposed a multi-task learning framework using

Bi-LSTM to implicitly capture the relationships between the two tasks and results in

an optimal prediction for both tasks.

Fan [31] defines a novel sub-task called aspect-oriented opinion words extraction

(AOWE), where the objective is to extract the corresponding opinion word towards a

specific aspect, Figure 2.5. They proposed a model called IOG, which refers to Inward-

Outward LSTM plus Global context to solve AOWE task. Ying [32] proposed a model

called Opinion Transmission Network that which exploit the connections between

aspect-term polarity detection and AOWE and solve those two tasks simultaneously.

16

Chapter 3

Knowledge Graph Representation
of Distribution Grid

3.1 Introduction

Distribution grid systems are complex networks containing multiple pieces of equip-

ment. All of them interconnected, and all of them described a variety of pieces of

information. A knowledge graph provides an interesting data format that allows us

to represent information in a form of graphs, i.e., nodes and edges – relations between

them. In this paper, we describe an application of a knowledge graph to represent

information about a power grid. We show the main components of such a graph –

called GridKG, a simple process of identifying electrical paths, and a few examples

of grid analysis related to primary switches. The knowledge graph that integrates

information about the topology of the power system with meta data about equip-

ment and customers. We enhanced the knowledge graph with the data generated

by algorithms we developed to identify upstream and downstream devices, as well as

the number of customers connected to them.This additional data leads to a holistic

view of the system. All this would allow us to gain further insight into the system’s

characteristics while analyzing the grid.

17

3.2 Definitions of Concepts and Relations

One of the most critical activities required for constructing any knowledge graph is

‘building’ so called vocabulary. It is a set of concepts and relations that are used to

name nodes and edges of a graph. Due to a space limitation, we present the most

important categories of concepts (for nodes) and relations (for edges).

3.2.1 Concepts Definition

Classes of concepts should reflect items and elements that constitutes main pieces of

data that a graph suppose to represent. In the case of a distribution grid, it has been

decided to use a concept of Element as a basic component representing any asset of

the system. An Element has four attributes: id that is the same as the asset ID

assigned to it by the utility, no of customers that are connected to a downstream

path, and two coordinates x and y as identifiers of its geographical location.

Additionally, there are a number of concepts that provide information about El-

ements. Any piece of information about an Element is provided as a node connect-

ed/linked to it. They are:

cNode – a fictitious connection point, Element is connected to two of them: one upstream,
and one downstream (‘decided’ after running Algorithm, see the Section 3.3); there
are two unique nodes – ENode representing the last/end node, and an SNode that is
the staring node;

Component Type – a type of Element, for example, Primary Transformer, Primary fuse,
Capacitor, Elbow;

Feeder – an identification of a feeder to which Element is connected;

Service Area – a name of a service area where Element is located;

Connected Voltage – a voltage value of connected Element;

Phase Type – a phase to which Element is connected;

Location – a type of location of Element;

Customer – a no of customers (downstream) connected to Element;

A few illustrations how nodes of these categories are interconnected are provided

in the next subsection.

18

XYZ

123

customers

voltage

transformer

service area

feeder ID

connected phase

location type
cNodes

Figure 3.1: RDF triples with Element as their subject

3.2.2 Relations

Relations define a type of connection that exists between nodes. We are inclined

to say that these connection constitute an essence of a graph-based representation.

They allows to show how elements (nodes) are connected, and how they are linked

to categories representing additional pieces of information. Here we have:

type of component – links Element to Component Type;

name of feeder – links Element to Feeder;

name of service area – links Element to Service Area;

connected voltage has value – links Element to Connected Voltage;

value of no of phases – links Element to No of Phases;

phase has type – links Element to Phase Type;;

connection – links Element to cNode;

Let us take a look at a few examples how elements are represented in the GridKG.

The first example is already illustrated in Figure 3.1. Another one is shown in Fig-

ure 3.2. It displays Elements sorted by three different locations. An illustration of

different types of Elements is included in Figure 3.3.

19

urban

rural

substation

Figure 3.2: Elements by location type

primary

fuse

primary

transformer

components

capacitor

primary subStation

transfomer

regulator

Figure 3.3: Elements by component type

20

The figures exhibit a characteristic feature of GridKG: nodes that represent elec-

trical components and pieces of information describing them, as well as connections

that link them together. Further, the connections – edges in a graph – clearly define

relations that exist between nodes, i.e., components themselves, and components and

information.

3.3 Algorithms for Processing Power Grid Knowl-

edge Graph

An electrical path in a graph-based representation of grid is perceived as a sequence

of tuples composed of two triples: cNodex–Connection→Elementp and Elementp–

Connection→cNodey. Therefore, a process of identifying paths means ‘stitching’ to-

gether multiple tuples in a way that cNodey of the predecessor tuple matches cNodex

of the successor tuple.

The algorithm for identifying paths is shown below (Algorithm 1). At the begin-

ning, all element-breakers and cNodes connected to them are put into a queue Q

of elements to inspect for the purpose of finding other connected elements. Then a

Breadth-First search is applied to find all adjacent elements and cNodes which satisfy

the condition that the elements are not opened switches. A variable level is used as

a property of elements to ‘keep’ track of elements’ positions in the paths. For each

element, the algorithm modifies the direction of edges from element of lower value of

level to elements with higher value of level. The algorithm terminates when the queue

Q is empty.

One of the additional benefits of identifying paths and their direction is generating

new information about elements and adding it to the existing element nodes. For

instance, by implementing a simple algorithm, we compute a number of customers for

each element by a bottom-up approach. The number of customers for each element

is determined by aggregating all the downstream customers. This highly can be

beneficial to estimate the number of customers out of power after isolation of a grid

21

by a specific protection device.

Algorithm 1 Multi-Source Path Search

1: Initialization: Queue Q = [], level = 0, Sets: S ={}, nextElements = {}
2: Q ← list of pairs (cNode,breakers) i.e. Q ← { (n1, b1), (n2, b2), ... ,(nn, bn) }

3: while Q is not empty do
4: size ← Q.size()
5: for from 1 to size do
6: (cNode, element) = Q.poll()
7: if element.id ∈ S then ▷ Element visited
8: continue
9: S.add(element.id)
10: element.level ← level
11: next cN ← GetNextNode(element, cNode)
12: nextElements ← GetNextEl(element, next cN)
13: for next E in nextElements do
14: SetConDirect(element, next cN , next E)
15: if not (next E = Switch & next E.state = Opened) then
16: Q.add(next cN, next E)

17: end if
18: end for
19: end for
20: level← level + 1

21: end while
22: return

3.4 Utilization of Power Grid Knowledge Graph

3.4.1 Primary Switches on Path

Once electrical paths are identified, we can use GridKG to learn more about inter-

connection between its components. One of possible ways of learning more about the

grid is finding out all downstream (and upstream) elements and connections from a

given element of the system.

Listing 3.1: Code for Figure 3.4 code
MATCH

path = (source : Element{ id : 1235})
− [: Connection∗]−>(l e a f : Element)
−[c : Connection]−>(eNode : ENode)

RETURN
path , reduce (t o t a l = 0 , e IN nodes (path) |

CASE
WHEN e . length IS NOT NULL
THEN to t a l + e . length
ELSE t o t a l
END) AS tota lLength

22

An example of a query in Neo4j query language Cypher is shown below. We provide

a starting point/element and the query returns all downstream connected elements

(shown in Figure 3.4). Additionally, it gives us a length of the electrical path – in our

case it is equal to 911.34m. In Figure 3.4, we see information about types of elements,

as well as their connected voltage and phase details.

3.4.2 Primary Switches and Conditions

Another type of analysis could lead to learning more about electrical path in the

context of a number of protective devices present in the path. Such an information

is very easy to retrieve from GridKG.

Below, we include a query that provides – as a result – a number of primary

switches on the specified path, as well as all components of this path, Figure 3.5. We

can identify the first and all subsequent protective devices on the upstream path from

a specified element (top-left corner of the figure) to the primary breaker (down-right

corner).

Listing 3.2: Code for Figure 3.5
MATCH

path = (source : Element{ id : 1456})
<−[:Connection ∗]−(root : Element)
<−[c : Connection]−(sNode : SNode)

RETURN
path ,
[e lement IN nodes (path)

WHERE
(element)− [: component has type]
−>(:Component type
{ component type : ’Primary Switch ’})

] AS protec t iveE lements

Besides localization of the switches, we obtain more information about the path

itself – its components, and information about them.

3.4.3 Elements and Conditions

As the last example of utilization of GridKG, we show a bit more involving query.

This time, we want to know about the existence of primary switches that are in the

23

Figure 3.4: Elements of downstream paths: their types identified by links to gray
circles where each circle represents a different type of electrical component; their
voltages – yellow circles; and their phases and orientation – green circles.

24

Figure 3.5: Location of Primary Switch/protective devices on the upstream path from
top-left element to the primary breaker (down-right corner).

‘XYZ’ service area, connected to 14 kV, and located on paths that deliver power to

more than 100 customers.

The query is below, and the obtained data is illustrated in Figure 3.6.

Listing 3.3: Code for Figure 3.6
MATCH

(e : Element)
− [: component has type]
−>(c : Component type
{ component type : ”Primary Switch ”})

WHERE
(e)− [: s e rv i c e a r ea ha s name]
−>(: Serv i ce area name
{ s e rv i c e a r ea name : ”XYZ”})

AND
(e)− [: c onnec t ed vo l t ag e ha s va lu e]
−>(:Connected vo l tage va lue
{ connec t ed vo l t age va lu e : ”14 kV”})

AND e . num customer > 100
RETURN e

3.5 Results and Conclusions

Today’s distribution grids are complex networks constituted of multiple components.

Power utilities collect and store, in relational databases, large amount of information

about the grids’ elements from transformers to individual poles. It is important for

them to be able to have quickly access the data describing components, as well as

25

Figure 3.6: Primary switches in the ‘XYZ’ service area that connected to 14 kV and
provide power to more than 100 customers downstream: they are of different scale,
connected to different phases.

connections and relations between them.

We propose to use knowledge graphs as a suitable format for representing grid

data. We describe some of the categories of nodes designed for representing different

electrical elements and conceptual information describing those elements. We also

define a number of relations between elements/concepts that are linked to edges

connecting nodes of the graph.

Finally, we illustrate utilization of a distribution grid knowledge graph. We propose

an algorithm for identifying electrical paths in the grid. Further, we include a few

graph queries that take advantage of the identified paths and allow for: determining

a length of downstream path from a specific element; determining a sequence of

switches/protective devices on a given upstream path; as well as a set of switches

that satisfy a condition related to downstream components.

26

Chapter 4

Emotion-based Analysis of Reviews
using Knowledge Graph

4.1 Introduction

An continuous growing number of products and services means that a huge number

of their reviews is generated. People express their opinions and quite often they di-

rect some emotions towards the products and services they review. For both service

owners and manufactures it is important to know what customers thinks, what they

like and what they dislike – all this (could) have impact on what products and their

features – aspects – to change, improve, or discontinue. It is even more interesting to

find out what type of emotions the users have towards those services and products.

Additionally, it would be quite appealing to have these reviews aggregated over mul-

tiple users and represented in a form of linguistic description of emotions the reviews

have toward the reviewed items and products.

At the same time, advances in NLP techniques, development of the Hourglass

Model of Emotions, deep learning methods for aspect sentiment analysis, and a se-

mantically rich representation of data in a form of graphs create opportunities do

develop and utilize new approaches for discovering new analysis of data.

Therefore, we propose application of NLP/DL based techniques to obtain linguis-

tic description of aspects, and combine the identified aspects and their descriptions

with a model of emotions. We use a knowledge graph as data representation format

27

and apply linguistic focused aggregation methods to provide multi-facet analysis and

aggregation of reviews from the perspective of emotions of reviewers toward reviewed

items and their aspects.

4.2 Model of Reviews, Aspects, and Emotions

A need to work with multiple reviews, aspects, and categories of items means that

we need to represent them in a comprehensive and easily manageable way. This rep-

resentation should be able to embody all that information in a relation-rich, flexible

and expandable format. A model that addresses these needs and abilities is proposed

here. It is a multi-dimensional detailed view of reviews that includes reviews them-

selves, aspects of items they refer to, description of those aspects, as well as emotions

associated with them.

4.2.1 Model Overview

The advances in sentiment analysis techniques enable a through processing of sen-

tences, see Section 2.5. As a result, we are able to obtain not only an aspect to which

an identified sentiment refers to, but also a category to which it belongs to. Obtained

data is the basis and input of our proposed model.

Our purpose is to enhance the results obtained from sentiment analysis methods

with linguistic terms describing identified aspects. In other words, we want to find out

justification behind the determined sentiment; we are interested in words that have

been used to describe a given aspect. We apply a deep neural network to perform

NLP and to find words directly associated/linked with aspects.

All this information allows us to construct quite a comprehensive model of re-

views: it integrates information obtained from sentiment analysis, NLP processing

and SenticNet. In general the model is a tuple:

REmModel(ai, si, ci, {wni
, SNni

}ni=1,...,Ni
)

28

aspect

category

statement

w1 + SNet1(S1, M1, polarity1,

 pl1, at1, sen1, ap1)

w2 + SNet2(S2, M2, polarity2,

 pl2, at2, sen2, ap2)wk + SNetk(Sk, Mk, polarityk,

 plk, atk, senk, apk)

RevM(ai, si, ci, …)

RevM(ai, si, ci, wn
i
+ SNetn

i
(, Sn

i
, Mn

i
, polarityn

i
, pln

i
, atn

i
, senn

i
, apn

i
), ni=1, …, ki)

Figure 4.1: Set of triples describing delicious based on SenticNet: I) synonyms; II)
Hourglass Model of Emotions; III) sentiment; and IV) mood-related words.

where: ai is the aspect; ci is its category while si is a sentence that contains the aspect.

A set {wni
, SNni

} contains pairs composed of a description word ‘characterizing’ the

aspect and additional pieces of information obtained from the SenticNet:

SNni
= SNetni

(Sni
,Mni

, polarityni
, plni

, atni
, senni

, apni
)

In this case, we have a set of synonyms Sni
, a set of mood tags Mni

, as well as

sentiment polarityni
and its numerical value of intensity, and four values obtained from

the Hourglass Model of Emotions: pleasantness – plni
, attention – atni

, sensitivity –

senni
, and aptitude – apni

. It should be mentioned that the sets Sni
, and Mni

could

overlap, it means that all words and phrases are tightly interconnected.

4.2.2 Graph Schema

The presented above model of reviews is represented as a knowledge graph. To do

it in a way that the graph is flexible, scale-able and easy to read also for a human

29

description

entity

attribute

entry

hasAttribute

hasEntity

(e.g. FOOD)

(e.g. QUALITY)

category

target

sentence

reviewer

description

hasDescription

description -word from

SenticNet

isEqualTo

forCategory

forAspect

referToSentence

polarity

hasPolarity

isReviewedBy

(e.g. positive)

(e.g. Best Italian …)

(e.g. Italian food)

resource

pleasentness

resource

polarity

resource

sensitivity

resource

aptitude

resource

attention

polarity_intensity

(value: positive
uri: ../0.818)

resource

keyword_concept
semantics

(text: …)

senticnet_aptitude

senticnet_attention

senticnet_sensitivity

senticnet_pleasentness

(uri: ../0.073)

(uri: ../-0.151)
(uri: ../-0.876)

(uri: ../0.872)

resource

keyword_concept

concept_to_concpet

relationship

resource

keyword_concept
moodtags

Figure 4.2: Schema for Neo4j implementation of REmModel.

we define a schema and vocabulary of nodes and connections. A visualization of it is

presented in Figure 4.2.

In general, the schema is composed of two sets of nodes and relations: one of them

to represent details of reviews, and the other one to represents the Hourglass Model

of Emotions.

4.2.3 Building Graph: Loading Data

This subsection contains details about the used review data sets, a process of ex-

tracting description words related to aspects, and some information about SenticNet.

At the end, we include a few snippets of the constructed graph representing our

REmModel.

30

Review Data

In this section of the thesis, which is dedicated to the aspect based analysis processes,

we use two data sets of reviews.

The first one is Caroline [33]. It is a data set that contains all manually annotated

sentences with aspects from Foursquare comments. It includes about 215K user

reviews, in English, of restaurants all over the world. There are 585 samples with 1006

sentences. Samples are annotated following the SemEval2016 annotation guidelines.

The second data set of reviews is built by Fan [31] based on data sets from SemEval

containing the laptop and restaurant reviews. The original data sets have been an-

notated by authors. They identified opinion words for different aspects/targets. The

annotation was performed by two individuals. In the case of conflicts or difficulties

in finding corresponding opinion words, the respected entries were removed. The Se-

mEval data sets are very popular benchmarks for many sentiment related subtasks,

including Aspect category detection, Opinion Target Extraction, Opinion Words Ex-

traction and Target-Dependent Sentiment Analysis.

We utilize the Deep Neural Network architecture proposed by Fan [31], called IOG

(Inward-Outward LSTM Model with Global Context) to extract description words.

IOG can effectively encode target information into the left and right context. The

inward-LSTM runs from the first word to the opinion target as a forward-LSTM and

from the last word to the opinion target as a backward-LSTM. It is used to pass

information from context to target while Outward-LSTM is to pass the target to its

content, which runs from the opinion target to both ends of the sentence. To better

capture the global meaning from the sentence, the output from inward and output

LSTM takes as the input to the Bi-LiSTM. The model is trained on the SemEval

reviews and inference on the Caroline [33] data set to predict the description words

for each aspect term.

As a result of identification of description words, a number of pairs: aspect-

31

description, we call them Review Entries, have been loaded into the knowledge graph.

A total of more than 100k nodes have been created with almost 1,200k connections

between them. Table 4.1, contains details regarding names of all nodes and their

corresponding quantities.

Table 4.1: REmModel database summarization

Node Label Count

Categories 11

Reviewers 885

Sentences 2541

Review Entries (pairs:
aspect-description)

5804

Targets (Aspects) 1121

Identified Description words 974

SenticNet Entries 100000

SenticNet

A section of knowledge graph ‘dedicated’ to emotions is built based on SenticNet

model. It contains 100k phrases, and each phrase is ‘linked’ with the information

such as synonyms, mood-tags, and elements of the Hourglass Model of Emotions.

For example, the whole portrayal of the word delicious is shown below is a pseudo-

RDF format:

<rdf:Description rdf:about="http://sentic.net/api/en/concept/delicious">

<rdf:type rdf:resource="http://sentic.net/api/concept"/>

<text xmlns="http://sentic.net">delicious</text>

<semantics xmlns="http://sentic.net">

<concept xmlns="http://sentic.net" rdf:resource="http://sentic.net/api/en/concept/yummy"/>

<concept xmlns="http://sentic.net" rdf:resource="http://sentic.net/api/en/concept/tasty"/>

<concept xmlns="http://sentic.net" rdf:resource="http://sentic.net/api/en/concept/good eat"/>

<concept xmlns="http://sentic.net" rdf:resource="http://sentic.net/api/en/concept/creamy"/>

<concept xmlns="http://sentic.net" rdf:resource="http://sentic.net/api/en/concept/edible"/>

</semantics>

<sentics xmlns="http://sentic.net">

<pleasantness xmlns="http://sentic.net" rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.075</pleasantness>

<attention xmlns="http://sentic.net" rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.076</attention>

<sensitivity xmlns="http://sentic.net" rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0</sensitivity>

<aptitude xmlns="http://sentic.net" rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.166</aptitude>

</sentics>

<moodtags xmlns="http://sentic.net">

<concept xmlns="http://sentic.net" rdf:resource="http://sentic.net/api/en/concept/interest"/>

<concept xmlns="http://sentic.net" rdf:resource="http://sentic.net/api/en/concept/admiration"/>

</moodtags>

<polarity xmlns="http://sentic.net">

<value xmlns="http://sentic.net">positive</value>

32

tasty yummy edible

good eat creamy

interest edible

admiration delicious

.semantics

!!

.semantics

""

.semantics

##

.semantics

$$

.semantics

%%

.moodtag

&&
.semantics

''

.moodtag
((

.sentics

))

.polarity

**
.sentics

++

.sentics

,,

.sentics

--

aptitude(0.166)

positive(0.106)

sensitivity(0.0) attention(0.076) pleasantness(.075)

I

II

III

IV

Figure 4.3: Set of triples describing delicious based on SenticNet: I) synonyms; II)
Hourglass Model of Emotions; III) sentiment; and IV) mood-related words.

<intensity xmlns="http://sentic.net" rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.106</intensity>

</polarity>

</rdf:Description>

The presented above RDF description of the word delicious in the SenticNet is

shown in a graphical form in Figure 4.3.

Visual Samples

Let us show a few snippets of the knowledge graph implementation of our REm-

Model. Figure 4.4 is a fragment that shows Review Entries for the aspect food.

We can observe that there are three categories of the Review Entries: ones that are

positive, ones that are neural, and negative ones. There are decryption words (red

bubbles) that are linked with aspects, and well as sentences from which the pairs

<aspect-description word> have been taken.

A single description word delicious together with all Review Entries which use

this word as a description are shown in Figure 4.5. The figure also contains ‘a link’

to SenticNet entry delicious, as well as a number of words that are synonyms to

delicious. The synonyms are shown again in Figure 4.6.

33

Figure 4.4: Snippet of REmModel for the aspect food: turquoise – Review En-
tries; beige – sentences; red – description words; pink – sentiment (positive, neutral,
negative); dark blue – category entry.

34

Figure 4.5: Fragment ofREmModel illustrating integration of Review Entries (blue)
with the words related to delicious from SenticNet (green) accomplish via the rela-
tion is equal for the two nodes of delicious – one from the reviews and one from the
SenticNet.

35

Figure 4.6: Fragment of REmModel for the word delicious: synonyms taken from
the SenticNet.

4.3 Aspect-based Analysis: Utilization of KG-based

Model

4.3.1 Analysis using Single Description Words

As an example of utilization of the proposed REmModel, we analyze a single aspect

food that has been mentioned in multiple sentences in the presented data set. A few

examples of statements from different reviews for the aspect food are:

‘I attended a holiday dinner at the restaurant, and the food was majorly disap-

pointing’;

‘The food was great and tasty, but the sitting space was too small, I don’t like

being cramp in a corner.’; and

‘Price is high, but the food is good, so I would come back again’.

36

We start the analysis with identification of description words that are used to

characterize and provides the reviewer’s perception of the aspect. It means, we query

our model to obtain all description words of the term food. Table 4.2 contains a

few examples of words that have been identified. A total of 541 description words is

retrieved. As we can see, they are in a wide range from very ‘positive’ terms, like

great, excellent, yummy to very ‘negative’ ones: disappointed, awful or even horrible.

Table 4.2: Description words for the aspect food

Data Set Description Words

NY data ’crave’, ’horrible’, ’dirty’, ’excellent’, ’au-
thentic’, ’healthy’, ’beat’, ’old’, ’best’, ’nice’,
’yummy’, ’great’, ’good’, ’homemade’, ’not
good’, ...

Test data ’overrated’, ’recommend’, ’horrible’, ’accept-
able’, ’inconsistent’, ’professional’, ’helpful’,
’disappointed’, ’arrogant’, ’speaks for itself ’,
’well prepared’, ’refilled’, ’drenched’, ’not
brilliant’, ’lousy’, ’intimate’, ’best’, ’gross’,
’mediocre’, ’appropriate’, ’awful’, ...

Further, we proceed to extract from the model the values representing four emo-

tions associated with each description word. Again, we show a sample of such values

in Table 4.3. To illustrate how different values are linked with different words, we

have selected a number of words representing very emotionally dissimilar states.

Once the emotion values are available, we aggregate them emotion-wise, i.e., each

type emotion individually, per column in Table 4.3. The process of aggregation is

controlled by OWA (Section 2.3). As we have mentioned, OWA allows us to perform

an aggregation in a number of ways where each of them is represented by a different

degree of ‘orness’. We can have a very optimistic way – a high degree of ‘orness’ – or

very pessimistic one with a very low value of ‘orness’. We also use linguist quantifiers

to govern an aggregation process. In this work, we use three different aggregation

approaches:

37

Table 4.3: Values of emotions for selected description words

Word aptitude pleasantness sensitivity attention

‘great’ 0.892 0.905 0.000 0.773

‘excellent’ 0.706 0.781 0.000 0.000

‘yummy’ 0.113 0.076 0.000 0.000

...

‘disappointed’ 0.000 -0.840 0.898 0.000

‘awful’ -0.620 -0.080 0.615 0.202

‘horrible’ -0.940 -0.930 -0.930 0.000

...

1) optimistic with a level of ‘orness’ equal to 0.67;

2) neutral characterized by the value of ‘orness’ equal to 0.50;

3) pessimistic ruled by a linguistic quantifier MOST leading to the value of ‘orness’

of 0.33.

The values obtained via application of OWA are presented in Table 4.4. As intuition

dictates, we see decrease in the value of each emotion when we start with optimistic

and move towards a pessimistic view.

Table 4.4: Aggregated values of emotions of words describing the aspect food

Aggregation aptitude pleasantness sensitivity attention

optimistic 0.557 0.640 0.138 0.530

neutral 0.316 0.412 -0.033 0.295

pessimistic (MOST) 0.037 0.119 -0.128 0.045

As much as the numerical values are essential, it is more interesting and attractive

to use linguistic descriptions of aspects. These descriptions should be determined

based on the values of emotions obtained via aggregation of reviews. The approach

38

we applied here is quite simple – we query our model to retrieve the closest words to

a vector built from each emotion value.

For our exemplary aspect food, we query the model REmModel using three vec-

tors, Table 4.4, representing three levels of optimizing, i.e., ‘orness’ of the aggregation

process. The obtained words are presented in Table 4.5. It can be stated that the

found words reflect three different approaches to aggregate the reviews. It is espe-

cially visible for the optimistic one – the phrases order lunch, spread idea – reflect a

positive option regarding the aspect food. The words serve cold, hard find that have

been selected to represent a natural (simple averaging of emotion values) aggregation

are reasonable, yet somehow less coherent. For the case of an pessimistic method of

aggregation, we see a bit of mixture. The word think clearly could somehow reflect

the emotional evaluation of the aspect from a negative point of view, yet the other

word culture is more difficult to justify and explained.

Table 4.5: Linguistic ‘view’ of emotions linked to the reviews of food

Aggregation most relevant phrases

optimistic order lunch, spread idea

neutral serve cold, hard find

pessimistic (MOST) culture, think clearly

Additionally to the presented above approach, we provide another – linguistic-

based – form of representing the obtained four emotions. For this purpose, we apply a

procedure of converting numerical values into a 2-tuple fuzzy linguistic representation

[34]. The process is based on identifying the most suitable linguistic terms based on

a numerical value using a verbal description of six different states defined for each

emotion in the Hourglass Model of Emotions, Table 2.1).

In order to do this, we propose a linguistic representation structure that uses the

linguistic terms representing the states of emotions. The range of values of each emo-

39

0.250 0.417 0.583 0.750 1.000-1.000

loathing disgust boredom acceptance trust admiration

-0.2500.750 -0.500

terror fear apprehension annoyance anger rage

amazement surprise distraction interest anticipation vigilance

grief sadness pensiveness serenity joy ecstasy

Aptitude:

Pleasantness:

Sensitivity:

Attention:

Figure 4.7: Membership functions and linguistic terms defined for emotions.

tion is treated as the universe of discourse U = ⟨−1, 1⟩ on which the six linguistic

terms are defined. As mentioned earlier, these terms indicate different states of emo-

tion identified for each type of emotion. The terms are showed in Table 4.6. They are

arranged in the vertical form reflecting the range of the universe of discourse, from

−1 (top) to 1 (bottom). A more illustrative way is depicted in Figure 4.7. As we can

see, the six linguistic terms are equally ‘spread’ in the universe of discourse.

Table 4.6: Linguistic terms defined for emotions (the left column indicates the universe
of discourse, from −1 to 1)

U = ⟨−1, 1⟩ aptitude pleasantness sensitivity attention

⟨−1, . . . loathing grief terror amazement

. . . disgust sadness fear surprise

. . . boredom pensiveness apprehension distraction

. . . acceptance serenity annoyance interest

. . . trust joy anger anticipation

. . . , 1⟩ admiration ecstasy rage vigilance

Using the defined structure of linguistic terms and their membership functions, we

map the obtained emotion values to a more human-friendly format.

The approach presented in [34] is applied here for translating the values into lin-

guistic terms. Each value of emotion is represented as a term and a degree to which

40

o

0.250 0.500 0.750 1.000

acceptance trustAptitude:

oA

B

Figure 4.8: Translation of values into 2-tuple their linguistic representation.

this term is ‘satisfied’ by the value. Fig. 4.8 illustrate the approach for the emotion

of aptitude and two terms: acceptance defined as a triangular fuzzy function (-0.20,

0.20, 0.60) and trust as a fuzzy function (0.20, 0.60, 1.00).

Let us take a value A=0.250. Following the approach proposed in [34], the value is

mapped into the term acceptance as the first element of a tuple, and then the second

element of this tuple is the value of A minus the centre of acceptance, i.e., 0.250-0.200.

The value is then normalized into the interval (0.0, 0.5). The normalization factor is

determined using the distance form the centre of the term acceptances to the ‘middle

point’ between acceptance and trust. In our case, Fig. 4.8, the normalization factor is

equal to 0.4 (0.2/0.5). Therefore, the obtained 2-tuple representation is (acceptance,

+0.125). Following the same process, another point: B = 0.500 is translated into the

2-tuple (-0.250,trusthe).

The linguistic descriptions, i.e., 2-tuples, of emotions obtained via the aggregation

process, Table 4.4, are included in Tables 4.7, 4.8, 4.9. As we can see that each 2-

tuple provides us with two pieces of information: the most suitable linguistic terms

together with the value from the range -0.5 to 0.5 that indicates ‘deviations’ to the

left or right from the centre of the term.

41

Table 4.7: Linguistic description of the aspect food: optimistic aggregation

optimistic

Emotion:

aptitude: (-0.11, trust)

pleasantness: (joy, +0.10)

sensitivity: (-0.16, annoyance)

attention: (-0.18, anticipation)

Table 4.8: Linguistic description of the aspect food: neutral aggregation

neutral

Emotion:

aptitude: (acceptance, +0.29)

pleasantness: (-0.47, joy)

sensitivity: (apprehension, +0.42)

attention: (interest, +0.24)

4.3.2 Analysis using Clusters of Description Words and their
Synonyms

The presented analysis of emotions associated with the reviews of a given aspect

is based on the description words that directly characterize a given aspect. In this

section, we propose and describe a bit different approach that leads to the broader

and more expressive characterization of aspects. The idea is to increase a set of

description words, group them, and use the most representative ones from each group

to characterized the investigated aspect.

In order to accomplish that we execute the following process. We extend the set

of words that describe a considered aspect via extracting from SenticNet ‘emotional’

synonyms of the previously identified description words. The extracted words con-

42

Table 4.9: Linguistic description of the aspect food: pessimistic aggregation

pessimistic

Emotion:

aptitude: (-0.41, acceptance)

pleasantness: (-0.20, serenity)

sensitivity: (apprehension, +0.18)

attention: (-0.39, interest)

stitute a tree-like structure of synonyms. Each word/synonym is represented as a

4-dimensional vector with aptitude, pleasantness, sensitivity, and attention as indi-

vidual dimensions.

Further, we use the trees of synonyms and vector representations of their nodes

(words) to build a directed, weighted graph. This directed graph is clustered. The

clusters are groups, formed by similarity between vectors, of words that are utilized

to provide yet another description of the investigated aspect.

Extraction of synonyms from SenticNet is done in a very simple way due to the

knowledge graph representation of the Hourglass Model of Emotions. A Cypher query

on Neo4j executed for each description word provides as with a set of trees of synonyms

– one tree, called hereafter a synonym tree. A single description word is associated

with a single synonym tree. It is very easy to control the depth – number of levels –

of synonym trees. The words/synonyms are nodes of the trees, while edges represent

<word-its synonym> relations. It should be stated that the process of extracting

synonyms for a word already in the tree is controlled by checking a distance of this

word from the root word. In a case, the word is ‘too far’ (irrelevant) to the root it

is not ‘unfolded’ anymore. An example of a synonym tree for the word delicious is

shown in Figure 4.9.

The obtained trees of words and their synonyms together with 4-dimensional vec-

43

delicious

yummy tasty good_eat creamy edible

mouth_water

edible

good_eat

delicious

yummy

tasty

good_eat

delicious

yummy

tasty

yummy

delicious

eatable

bake_product

bake_product

bake_good

yummy

sweet_food

eatable

bake_good

soft

bake_good

bake_product

cook_good

part_of_meal

edible

delicious

yummy

tasty

eatable

delicious

good_eat

yummy

edible

delicious

eatable

sweet_food

bake_product

bake_good

sweet

bake_product

bake_good

yummy

eatable

sweet_treat

bake_product

bake_good

eatable

breakfast

fuzzy

biodegrad.

material_ty

fabric_type

softness

sweet_food

morning_food

round_pastry

bake_good

sweet_food

eatable

aftertaste

put_ice

reproduct.

survival

host_party

breed

bake_product

bake_good

sweet_food

round_pastry

bake_treat

bake_treat

bake_product

bake_goods

cooked

round_pastry

bake_good

round_pastry

sweet

bake_goods

cover_ice

bake_treat

bake_good

sweet_food morning_food

Figure 4.9: 3-level synonym tree for delicious: words in the thin white boxes are
further ‘unfolded’ unless they are at the 3rd level, words in the thick white boxes are
not unfolded due to their irrelevance (large distance to the root word), words in the
gray boxes already exist in the tree.

44

tors representing them are used to construct a directed graph of words. This graph is

built by fusing all synonym trees. In this graph, each word is uniquely represented by

a single node what means that nodes from the synonym trees representing the same

word are collapsed into one node. At the same time, edges from synonym tress are

taken and inserted into the directed graph. In many cases, this results in multiple

edges existing between two words going in both directions, as well as nodes (words)

which are connected to multiple other nodes (a one to many scenario). The multiple

edges between two different nodes (words) are fused into two – one in each direction

– and weights reflecting a number of fused edges are assigned to each of them.

A single weight is computed in the following way:

• for each pair <wordA, wordBi
> (where i is a number of other words to which

wordA is connected) an Euclidean similarity is calculated;

• each similarity value is multiplied by a number of edges between <wordA,

wordBi
>, as a result a weight for each edge from wordA to wordBi

is determined;

• the weights are normalized using softmax, and these values are assigned as

weights to single edges between <wordA, wordBi
>.

We use the Markov Cluster algorithm (MCL) [35] as the clustering algorithm to

detect clusters in the directed graph we have been created. MCL is an unsupervised

clustering algorithm on the graph with the process of stochastic flow simulation.

When running the MCL algorithm, there is a hyper-parameter called inflation. It

controls the cluster granularity: increasing inflation increases granularity, thus results

in more clusters. We use modularity [36] as the measurement to optimize the inflation

parameter. The modularity can be considered to be the fraction of graph edges which

belong to a cluster minus the fraction expected due to a random chance, where the

value of it lies in the range from -1 to 1. Higher positive modularity values implies

higher clustering quality. We tune the MCL algorithm by selecting the inflation with

highest modularity value.

45

We use obtained clusters to describe an investigated aspect. We retrieve centers

of the clusters – and in many cases the two most representative words of each cluster

– and apply these words to construct a new description of the aspect. The fact

that words in these clusters have been grouped based on the values of emotions (4-

dimensional vectors crated based on values of aptitude, pleasantness, sensitivity, and

attention) we can state that they represent an aggregated information about emotions.

Further, we can say that these emotions reflect states of mind, moods of reviewers

who provided their opinions about the considered aspect.

Of course, we should have in mind that clustering of description words and their

synonyms could provide a bit too broad view. Another issue that should be consider it

that these grouping of words is done based on the similarity of emotions. It means that

the words themselves could be perceived as irrelevant, yet they represent ‘emotional’

similarity.

Let us take a look at one example of centers of clusters. Following our example

of the aspect food we extract synonyms of description words from our model. The

retrieving process has been performed up to the third depth-level in the case of syn-

onym trees; please look at Figure 4.9 for an example of such a tree. After construction

of the directed graph we have cluster it. As a result we obtained 15 clusters of words.

Once again, we would like to emphasize the fact that the clustering is performed based

on ‘emotional’ similarity. The obtained words for the aspect food are in presented

in Table 4.10.

As it can be seen, we have obtained a very interesting set of new words that

describe the aspect food. They provide a summary of all reviews using not only

words directly related to our aspect. Among all presented words some of them seems

to be very adequate, like amazing, dumbstruck, creamy, lovely, healthy, yucky, gross;

while some seem to be quite distant, such as demand, ancient, similar, glimpse, mass

measure, same. Again, these words should invoke emotions about the reviewed food

and some look like descriptions while some look more like metaphors.

46

Table 4.10: Representative words of clusters as words describing the aspect food

Cluster words

Cluster 00 astonishment, amazing

Cluster 01 dumbstruck, dumb-stricken

Cluster 02 demand, attentive

Cluster 03 sweet, creamy

Cluster 04 sheepishness, confusedly

Cluster 05 ancient artifact, ancient

Cluster 06 merit, great

Cluster 07 similarity, similar

Cluster 08 solid, glimpse

Cluster 09 mass measure, description

Cluster 10 good look, gorgeous

Cluster 11 lovely, familiar

Cluster 12 same, all right

Cluster 13 yucky, soapy

Cluster 14 gross

Cluster 15 healthy, live long life

47

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Knowledge graphs become more and more popular. We see their applications in many

different domains from e-commerce, via many fields of engineering, governmental open

data, to a variety of medical areas. These semantically rich data structures seem to

provide a number of benefits: simplicity in collecting and storing streaming data,

flexibility and easiness of modifications and changes in data structures/schema, and

most in enabling to process and analyze data from the point of view of relations

between individual pieces of data.

In this thesis we have applied knowledge graphs as data structures to two very

different domains: power systems and analysis of reviews. It has been important to

gain a first-hand experience in application of graphs and acquire practical knowledge

of all processes related to their construction and practical and effective utilization.

The work presented in the thesis allows us to confirm a number of important

aspects related to utilization of knowledge graphs.

• There is no doubt that building a vocabulary used for naming nodes and re-

lations is a critical activity that should be done as the first step. It seems

extremely important for multiple reasons: easiness of construing a graph, it

means developing procedures and scripts for translating data into graphs; abil-

ity to query and retrieve information in a simple and intuitive way; and easiness

48

in interacting with graphs to develop data processing algorithms and procedures.

• Graphs as semantically rich structures offer a very easy and efficient access to

relations between pieces of data. The ability to identify, extract, update, and

create relations is unprecedented. There have been no problems with retrieving

data points connected via a large number of relations, as well as creating new

relations span across multiple data nodes.

• Graphs seem to provide a good framework for developing methods and algo-

rithms for processing existing relations and information stored in graphs in order

to augment them with additional data and information generated.

From the point of view of application of graphs to specific domains, we have been

able to achieve the following contributions.

• In the area of power systems:

– we have integrated information about topological structure of grid with

data describing different pieces of equipment related to their operations

and maintenance;

– we have equipped a knowledge graph with new pieces of information via

deploying algorithms for processing data about relations, this has led to a

more comprehensive view of the system;

– we have used the grid representing graph to retrieve, in a very easy way,

information that otherwise requires an extensive manipulation and analysis

of data extracted from multiple sources.

• In the are of analysis of reviews:

– we have combined results of NLP-based analysis of reviews with the Hour-

glass Model of Emotions in a straightforward way building the REm-

49

Model that contains aspects, words describing these aspects, ad emotions

associated with these words – all of them interconnected;

– we have used the graph-based model of reviews and emotions to extract op-

tions related to a specific aspect over a number of reviews, and aggregated

that information to obtain a simple and more human friendly description of

the aspect taking into account emotions associated with words and phrases

used to review the aspect by multiple reviewers.

5.2 Future Work

The presented work on application of knowledge graphs to the domains of power

system and review analysis can be treated as an onset for future work. We anticipate

to continue working on building more comprehensive graphs and their more advanced

utilization. In particular, we envision:

• integrating a graph-based model of the electrical grid with algorithms and pro-

cess that allows us to simulate different events occurring the modeled system

and in investigate their effects;

• adding more information of different nature, for example maintenance one, to

the existing graph to create more comprehensive view of the system;

• developing methods and procedures that better utilize model of emotions and

reviews in the context of analysis not only reviewed aspects of different items

but also items and reviewers themselves;

• applying the graph-based model of emotions and reviews to variety of domains,

for example, electronics and tourism.

50

Bibliography

[1] Y. Tang, T. Liu, G. Liu, J. Li, R. Dai, and C. Yuan, “Enhancement of power
equipment management using knowledge graph,” in 2019 IEEE Innovative
Smart Grid Technologies-Asia (ISGT Asia), IEEE, 2019, pp. 905–910.

[2] R. Navigli and S. P. Ponzetto, “Babelnet: Building a very large multilingual
semantic network,” in Proc. of the 48th annual meeting of the association for
Comput. linguistics, 2010, pp. 216–225.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Db-
pedia: A nucleus for a web of open data,” in The semantic web, Springer, 2007,
pp. 722–735.

[4] A lexical database for english, https://wordnet.princeton.edu/, Accessed: 2020-
08-11.

[5] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: A probabilistic taxonomy
for text understanding,” in Proc. of the 2012 ACM SIGMOD Int. Conf. on
Management of Data, 2012, pp. 481–492.

[6] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang, “Knowledge vault: A web-scale approach to probabilistic
knowledge fusion,” in Proc. of the 20th ACM SIGKDD Int. Conf. on Knowl.
discovery and data mining, 2014, pp. 601–610.

[7] J. Webber, “A programmatic introduction to neo4j,” Oct. 2012, pp. 217–218.
doi: 10.1145/2384716.2384777.

[8] E. Cambria, S. Poria, D. Hazarika, and K. Kwok, “Senticnet 5: Discovering
conceptual primitives for sentiment analysis by means of context embeddings,”
in AAAI, 2018.

[9] E. Cambria, A. Livingstone, and A. Hussain, “The hourglass of emotions,” in
COST 2102 Training School, 2011.

[10] Y. Susanto, A. G. Livingstone, B. C. Ng, and E. Cambria, “The hourglass
model revisited,” IEEE Intelligent Systems, vol. 35, no. 5, pp. 96–102, 2020.
doi: 10.1109/MIS.2020.2992799.

[11] F. Herrera and E. Herrera-Viedma, “Linguistic decision analysis: Steps for solv-
ing decision problems under linguistic information,” Fuzzy Sets and Systems,
vol. 115, pp. 67–82, Oct. 2000. doi: 10.1016/S0165-0114(99)00024-X.

51

https://wordnet.princeton.edu/
https://doi.org/10.1145/2384716.2384777
https://doi.org/10.1109/MIS.2020.2992799
https://doi.org/10.1016/S0165-0114(99)00024-X

[12] R. R. Yager, “On ordered weighted averaging aggregation operators in multicri-
teria decisionmaking,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 18, no. 1, pp. 183–190, 1988. doi: 10.1109/21.87068.

[13] O. Appel, F. Chiclana, J. Carter, and H. Fujita, “A consensus approach to the
sentiment analysis problem driven by support-based iowa majority,” Interna-
tional Journal of Intelligent Systems, vol. 32, no. 9, pp. 947–965, 2017. doi:
https://doi.org/10.1002/int.21878. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/int.21878. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/int.21878.

[14] H. B. Mitchell and D. D. Estrakh, “A modified owa operator and its use
in lossless dpcm image compression,” Int. J. Uncertain. Fuzziness Knowl.-
Based Syst., vol. 5, no. 4, 429–436, Aug. 1997, issn: 0218-4885. doi: 10.1142/
S0218488597000324. [Online]. Available: https://doi.org/10.1142/S0218488597000324.

[15] R. R. Yager and D. P. Filev, “Induced ordered weighted averaging operators,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 29, no. 2, pp. 141–150, 1999. doi: 10.1109/3477.752789.

[16] R. R. Yager, “On ordered weighted averaging aggregation operators in multicri-
teria decisionmaking,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 18, no. 1, pp. 183–190, 1988. doi: 10.1109/21.87068.

[17] G. Pasi and R. Yager, “Modeling the concept of majority opinion in group
decision making,” Inf. Sci., vol. 176, pp. 390–414, Feb. 2006. doi: 10.1016/j.
ins.2005.07.006.

[18] J. Kacprzyk, “Group decision making with a fuzzy linguistic majority,” Fuzzy
Sets and Systems, vol. 18, no. 2, pp. 105 –118, 1986, issn: 0165-0114. doi:
https://doi .org/10.1016/0165- 0114(86)90014-X. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/016501148690014X.

[19] T. Hubauer, S. Lamparter, P. Haase, and D. Herzig, “Use cases of the industrial
knowledge graph at siemens,” in International Semantic Web Conference, 2018.

[20] Y. Tang, T. Liu, G. Liu, J. Li, R. Dai, and C. Yuan, “Enhancement of power
equipment management using knowledge graph,” in 2019 IEEE Innovative
Smart Grid Technologies - Asia (ISGT Asia), 2019, pp. 905–910. doi: 10.1109/
ISGT-Asia.2019.8881348.

[21] S. Fan, X. Liu, Y. Chen, Z. Liao, Y. Zhao, H. Luo, and H. Fan, “How to con-
struct a power knowledge graph with dispatching data?” Scientific Program-
ming, vol. 2020, pp. 1–10, Jul. 2020. doi: 10.1155/2020/8842463.

[22] Y. Yang, Z. Chen, J. Yan, Z. Xiong, J. Zhang, Y. Tu, and H. Yuan, “Multi-source
heterogeneous information fusion of power assets based on knowledge graph,” in
2019 IEEE International Conference on Service Operations and Logistics, and
Informatics (SOLI), 2019, pp. 213–218. doi: 10.1109/SOLI48380.2019.8955005.

52

https://doi.org/10.1109/21.87068
https://doi.org/https://doi.org/10.1002/int.21878
https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.21878
https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.21878
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21878
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21878
https://doi.org/10.1142/S0218488597000324
https://doi.org/10.1142/S0218488597000324
https://doi.org/10.1142/S0218488597000324
https://doi.org/10.1109/3477.752789
https://doi.org/10.1109/21.87068
https://doi.org/10.1016/j.ins.2005.07.006
https://doi.org/10.1016/j.ins.2005.07.006
https://doi.org/https://doi.org/10.1016/0165-0114(86)90014-X
http://www.sciencedirect.com/science/article/pii/016501148690014X
http://www.sciencedirect.com/science/article/pii/016501148690014X
https://doi.org/10.1109/ISGT-Asia.2019.8881348
https://doi.org/10.1109/ISGT-Asia.2019.8881348
https://doi.org/10.1155/2020/8842463
https://doi.org/10.1109/SOLI48380.2019.8955005

[23] Z. Su, M. Hao, Q. Zhang, B. Chai, and T. Zhao, “Automatic knowledge graph
construction based on relational data of power terminal equipment,” in 2020 5th
International Conference on Computer and Communication Systems (ICCCS),
2020, pp. 761–765. doi: 10.1109/ICCCS49078.2020.9118512.

[24] B. Kan, W. Zhu, G. Liu, X. Chen, D. Shi, and W. Yu, “Topology modeling
and analysis of a power grid network using a graph database,” International
Journal of Computational Intelligence Systems, vol. 10, p. 1355, Jan. 2017. doi:
10.2991/ijcis.10.1.96.

[25] Y. Xu, T. Yu, and B. Yang, “Reliability assessment of distribution network
through graph theory topology similarity and mathematical statistic analysis,”
IET Generation, Transmission Distribution, vol. 13, Oct. 2018. doi: 10.1049/
iet-gtd.2018.5520.

[26] B. Liu, Sentiment Analysis and Opinion Mining. Morgan Claypool Publishers,
2012, isbn: 1608458849.

[27] Q. T. Ain, M. Ali, A. Riaz, A. Noureen, M. Kamran, B. Hayat, and A. Rehman,
“Sentiment analysis using deep learning techniques: A review,” International
Journal of Advanced Computer Science and Applications, vol. 8, 2017.

[28] M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, M.
AL-Smadi, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq, V. Hoste, M. Apid-
ianaki, X. Tannier, N. Loukachevitch, E. Kotelnikov, N. Bel, S. M. Jiménez-
Zafra, and G. Eryiğit, “SemEval-2016 task 5: Aspect based sentiment analy-
sis,” in Proceedings of the 10th International Workshop on Semantic Evaluation
(SemEval-2016), San Diego, California: Association for Computational Linguis-
tics, Jun. 2016, pp. 19–30. doi: 10.18653/v1/S16- 1002. [Online]. Available:
https://www.aclweb.org/anthology/S16-1002.

[29] H. Xu, B. Liu, L. Shu, and P. S. Yu, “Double embeddings and CNN-based
sequence labeling for aspect extraction,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Pa-
pers), Melbourne, Australia: Association for Computational Linguistics, Jul.
2018, pp. 592–598. doi: 10 .18653/v1/P18- 2094. [Online]. Available: https :
//www.aclweb.org/anthology/P18-2094.

[30] J. Yu, J. Jiang, and R. Xia, “Global inference for aspect and opinion terms
co-extraction based on multi-task neural networks,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 27, no. 1, pp. 168–177, 2019.
doi: 10.1109/TASLP.2018.2875170.

[31] Z. Fan, Z. Wu, X.-Y. Dai, S. Huang, and J. Chen, “Target-oriented opinion
words extraction with target-fused neural sequence labeling,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Minneapolis, Minnesota: Association for Computational Linguis-
tics, Jun. 2019, pp. 2509–2518. doi: 10.18653/v1/N19-1259. [Online]. Available:
https://www.aclweb.org/anthology/N19-1259.

53

https://doi.org/10.1109/ICCCS49078.2020.9118512
https://doi.org/10.2991/ijcis.10.1.96
https://doi.org/10.1049/iet-gtd.2018.5520
https://doi.org/10.1049/iet-gtd.2018.5520
https://doi.org/10.18653/v1/S16-1002
https://www.aclweb.org/anthology/S16-1002
https://doi.org/10.18653/v1/P18-2094
https://www.aclweb.org/anthology/P18-2094
https://www.aclweb.org/anthology/P18-2094
https://doi.org/10.1109/TASLP.2018.2875170
https://doi.org/10.18653/v1/N19-1259
https://www.aclweb.org/anthology/N19-1259

[32] C. Ying, Z. Wu, X. Dai, S. Huang, and J. Chen, “Opinion transmission network
for jointly improving aspect-oriented opinion words extraction and sentiment
classification,” in. Oct. 2020, pp. 629–640, isbn: 978-3-030-60449-3. doi: 10 .
1007/978-3-030-60450-9 50.

[33] C. Brun and V. Nikoulina, “Aspect based sentiment analysis into the wild,” in
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, Brussels, Belgium: Association for Com-
putational Linguistics, Oct. 2018, pp. 116–122. doi: 10.18653/v1/W18-6217.
[Online]. Available: https://www.aclweb.org/anthology/W18-6217.

[34] F. Herrera and L. Martinez, “A 2-tuple fuzzy linguistic representation model for
computing with words,” IEEE Transactions on Fuzzy Systems, vol. 8, pp. 746–
752, 2000.

[35] S. Dongen, “Graph clustering by flow simulation,” PhD thesis, Center for Math
and Computer Science (CWI), May 2000.

[36] F. D. Malliaros and M. Vazirgiannis, “Clustering and community detection in
directed networks: A survey,” CoRR, vol. abs/1308.0971, 2013. arXiv: 1308.
0971. [Online]. Available: http://arxiv.org/abs/1308.0971.

54

https://doi.org/10.1007/978-3-030-60450-9_50
https://doi.org/10.1007/978-3-030-60450-9_50
https://doi.org/10.18653/v1/W18-6217
https://www.aclweb.org/anthology/W18-6217
https://arxiv.org/abs/1308.0971
https://arxiv.org/abs/1308.0971
http://arxiv.org/abs/1308.0971

Appendix A:
Power Grid Knowledge Graph

A.1 Graph Construction Process

A.1.1 Import from CSV files

The data describing details regarding connectivity and information about components

of a power system, as well as customers is stored in CSV files. Therefore, the first

step is importing all that data into a graph database. This involves creation of nodes

that represent electrical components and relationships that represent electrical paths.

The set of input CSV datafiles contains:

• a file with information about electrical components of the system;

• a file with basic data (all personal, sensitive information is removed) about

customers being served by the power system.

• a file containing data with physical location of customers and which components

they are connected to.

Below, we include a listing with procedures, written in Cypher – Neo4j graph

query language, that read information from CSV files and create nodes and relations

between them. The procedures use the vocabulary defined for representing power

system information.

55

Listing A.1: Procedures for importing data from CSV files into Neo4j DB

// load c onne c t i v i t y data
: auto USING PERIODIC COMMIT 1000
LOAD CSV WITH HEADERS
FROM ’file :/// oms_connectivity.csv’ AS network
WITH to In t e g e r (network . node1) AS network NODE1 ,

t o In t e g e r (network . node2) AS network NODE2 ,
network

MERGE (n1 :CNode {number : network NODE1})
MERGE (n2 :CNode {number : network NODE2})
RETURN count (DISTINCT n1) , count (DISTINCT n2) , count (network) ;

: auto USING PERIODIC COMMIT 1000
LOAD CSV WITH HEADERS
FROM ’file :/// oms_connectivity.csv’ AS network
WITH

to In t e g e r (network . msl ink) AS network MSLIN ,
toFloat (network . length) AS network LENGTH ,
network ,

(CASE network . f e a t u r e i d
WHEN ’171’ THEN ’Primary Isolation Point ’

WHEN ’254’ THEN ’Fault Indicator ’

WHEN ’299’ THEN ’Primary Substation Transformer ’

WHEN ’300’ THEN ’Primary Breaker ’

WHEN ’301’ THEN ’Primary Substation Bus’

WHEN ’302’ THEN ’Capacitor ’

WHEN ’304’ THEN ’Primary Fuse’

WHEN ’305’ THEN ’Primary Generator ’

WHEN ’306’ THEN ’Primary Conductor ’

WHEN ’307’ THEN ’Primary Meter’

WHEN ’308’ THEN ’Recloser ’

WHEN ’309’ THEN ’Regulator ’

WHEN ’310’ THEN ’Sectionalizer ’

WHEN ’313’ THEN ’Primary Switch ’

WHEN ’314’ THEN ’Primary Transformer ’

WHEN ’322’ THEN ’Elbow’

WHEN ’327’ THEN ’Primary Switch Gear’

ELSE ’OTHER’ END) AS FEATURE

MERGE (e : Element {mslink : network MSLINK})
SET e . f e a t u r e i d=FEATURE,

e . length=network LENGTH ,
e . no phases=network . no phases ,
e . normal s ta tus=network . normal status ,
e . o r i e n t a t i o n=network . o r i en t a t i on ,
e . phase=network . phase ,
e . s c a l e=network . s ca l e ,
e . s e r v i c e a r e a=network . s e r v i c e a r e a ,
e . connec t ed vo l tage=network . connected vo l tage ,
e . sy s t em vo l tage=network . system voltage ,
e . no rma l f e ed e r i d=network . no rma l f e ede r id ,
e . x coord=network . x coord ,
e . y coord=network . y coord ,
e . name=’Element ’

: auto USING PERIODIC COMMIT 1000
LOAD CSV WITH HEADERS
FROM ’file :/// oms_connectivity.csv’ AS network
WITH network , t o In t e g e r (network . msl ink) AS network MSLINK ,

t o In t e g e r (network . node1) AS network NODE1 ,
t o In t e g e r (network . node2) AS network NODE2

MATCH (n1 :CNode {number : network NODE1})
MATCH (n2 :CNode {number : network NODE2})
MATCH (e : Element {mslink : network MSLINK})
MERGE (n1)−[c1 : Connection{name : network . normal s ta tus }]−(e)

56

MERGE (e)−[c2 : Connection{name : network . normal s ta tus }]−(n2)
RETURN count (c1) , count (c2) ;

// import c i s p e r s l csv f i l e s to the database
CREATE CONSTRAINT ON (cp : CPremise) ASSERT cp . msl ink IS UNIQUE;
: auto USING PERIODIC COMMIT 1000
LOAD CSV WITH HEADERS
FROM ’file :/// customer.csv’ as line

WITH line . premise AS premise msl ink , line . xfmr AS xfmr , line

MERGE (cp : CPremise {mslink : premise ms l ink })
SET cp += { c r i t i c a l c u s t ome r : line . c r i t i c a l c u s t ome r ,

account type : line . account type ,
customer phases : line . customer phases ,
xfmr : xfmr}

: auto USING PERIODIC COMMIT 10000
LOAD CSV WITH HEADERS
FROM ’file :/// customer.csv’ as line

With
line . msl ink AS premise msl ink ,
t o In t e g e r (line . x coord) AS x coord ,
t o In t e g e r (line . y coord) AS y coord

MERGE (cp : CPremise {mslink : premise ms l ink })
SET cp += { x coord : x coord , y coord : y coord }

CREATE INDEX index xfmr FOR (cp : CPremise) ON (cp . xfmr) ;
: auto USING PERIODIC COMMIT 10000
LOAD CSV WITH HEADERS
FROM ’file :/// customer_connect.csv’ as line

MATCH (e : Element{mslink : t o In t e g e r (line . msl ink)})
MATCH (cp : CPremise{xfmr : line . xfmr })
MERGE (e)−[c : Connection]−(cp)

A.2 Processing Graph Data

A.2.1 Converting Node Properties to Relationships

The code we use to process nodes of graphs is shown below. Its purpose is to con-

vert node property information into nodes. As a result, we create an inter-operable

ontology-based representation. The code performs a number of steps for each prop-

erty:

• extracts values that the property takes;

• creates a single node for each property value;

• deletes the property from nodes, and connects these nodes to newly created

nodes representing different values of the property.

57

Listing A.2: Java program for converting node properties into relationships

1 /**

2 * 1. create nodes for all property values;

3 * CALL apoc.refactor.categorize(sourceKey , type , outgoing ,

label , targetKey , copiedKeys , batchSize)

4 * return each unique propertyKey into a category node and

connect to it

5 */

6 private Result insertPropertyValueNode (Session session ,

String sourceProperty , String propertyRelName , String

propertyLabel , String propertyNodePro , boolean outgoing ,

int batchSize) {

7 String sourceKey = sourceProperty;

8 String type = propertyRelName; // relationship name;

9 String label = propertyLabel ; // UpperCase + "_VALUE "; //

node type

10 String targetKey = propertyNodePro; // node property

11 System.out.println("insertPropertyValueNode for property:

" + sourceKey);

12 return session.run(

13 "CALL apoc.refactor.categorize($sourceKey , $type ,
$outgoing , $label , $targetKey , $copiedKeys ,
$batchSize)"

14 ,

15 parameters("sourceKey", sourceKey ,

16 "type", type , "outgoing", outgoing , "label

", label ,

17 "targetKey", targetKey , "copiedKeys", new

ArrayList <>(),

18 "batchSize", batchSize)

19);

20

21 }

22 /**

23 * 1. Create Property Class Node (if not exists in the

database)

24 * 2. Add the relationships between property value node and

property -type class node

25 * @param tx

26 * @param clsLabel : the label for the PropertyClassNode ,

27 * @param clsRel: the relationship to the clsNode

28 * @parm ingoing:

29 * @return

30 */

31 private Result insertPropertyClassNodeAndRel (final

Transaction tx, String clsLabel , String proLabel , String

clsRel , boolean ingoing) {

32 System.out.println("insertPropertyClassNodeAndRel for

clsLabel: " + clsLabel + "...");

33 if (ingoing) {

34 return tx.run("Merge (clsNode:" + clsLabel + ") " +

35 "WITH clsNode " +

58

36 "Match (valNode: " + proLabel + ") " +

37 "MERGE (valNode) -[r: " + clsRel + "]-(clsNode)

"

38);

39 }

40 return tx.run("Merge (clsNode:" + clsLabel + ") " +

41 "WITH clsNode " +

42 "Match (valNode: " + proLabel + ") " +

43 "MERGE (clsNode) -[r: " + clsRel + "]-(valNode)"

44);

45

46 }

47 /**

48 * View each categorizing properties to ontology

relationships as a transcation work

49 * consist of two steps :

50 * 1. Create a unique key constraint on the sourceProperty

51 * 2. create value nodes and relationships to the nodes which

has the property.

52 * 3. creating a single node as the class node and linking

to all value nodes.

53 * @param sourceProperty

54 * @param propertyRelName

55 * @param propertyLabel

56 * @param propertyNodePro

57 * @param outgoing

58 * @param batchSize

59 * @param clsLabel

60 * @param clsRel

61 * @param ingoing

62 * @param savedBookmarks

63 * @return

64 */

65 public List <Bookmark > convertPropertyToOntology (

66 final String sourceProperty , final String propertyRelName ,

final String propertyLabel ,final String propertyNodePro ,

final boolean outgoing ,final int batchSize ,

67 final String clsLabel ,final String clsRel ,boolean ingoing ,

List <Bookmark > savedBookmarks) {

68

69 // To collect the session bookmarks

70

71 try (Session session1 = driver.session(builder ().

withDefaultAccessMode(AccessMode.WRITE).withBookmarks(

savedBookmarks).build()))

72 {

73 session1.writeTransaction(transaction -> {

74 return this.createConstraint(transaction ,

propertyLabel , propertyNodePro);

75 });

76 savedBookmarks.add(session1.lastBookmark ());

77 }catch (ClientException e) {

78 System.out.println("index has already been created:

detailed message as follows:");

59

79 System.out.println(e.getMessage ());

80 }

81

82

83 // apoc.refactor.categorize may occur deadlock because of

simultaneously write transaction ,

84 // retry 5 times if deadlock happens

85 try (Session session2 = driver.session(builder ().

withDefaultAccessMode(AccessMode.WRITE)

86 .withBookmarks(savedBookmarks).build ())) {

87 this.insertPropertyValueNode(session2 ,sourceProperty ,

propertyRelName ,

88 propertyLabel ,propertyNodePro ,outgoing ,

batchSize);

89 savedBookmarks.add(session2.lastBookmark ());

90 } catch (Exception e) {

91 System.out.println("Refactoring relationship have some

issues with deadlocks , retried some times , " +

92 "but still having some issues: ");

93 System.out.println(e.getMessage ());

94 }

95

96

97 try (Session session3 = driver.session(builder ().

withDefaultAccessMode(AccessMode.WRITE).withBookmarks(

savedBookmarks).build()))

98 {

99 session3.writeTransaction(transaction -> {

100 return this.insertPropertyClassNodeAndRel(

transaction , clsLabel , propertyLabel , clsRel ,

ingoing);

101 });

102 savedBookmarks.add(session3.lastBookmark ());

103 }

104

105 return savedBookmarks;

106

107 }

A.2.2 Determining Number of Downstream Customers

The graph representation of components of the system allows us to easily compute

a number of customers who are connected to the system downstream from a given

node. This is achieved by performing two steps:

• finding the max level in Elements

• iterating from max level to zero, and computing a number of customer at the

current level (node) based on already determined number at the next level.

60

Listing A.3: Code snippet for computing number of customers

1 private int queryMaxLevel(final Transaction transction) {

2 Result result = transction.run("MATCH (e:Element) " +

3 " RETURN {max_level: MAX(e.level)}");

4 while (result.hasNext ()) {

5 Record record = result.next();

6 return record.values ().get (0).get("max_level").asInt()

;

7 }

8 return -1;

9 }

10

11 private Result updateNumberOfCustomer(final Transaction

transaction , int level) {

12 String queryTemplate = "MATCH (parent:Element) -[:

Connection]->(n:CNode) -[: Connection]->(cur: Element) "

+

13 "WHERE parent.level = $level AND cur.level =

$level + 1 " +

14 "WITH parent , SUM(cur.num_customer) AS

totalNumCustomer " +

15 "SET parent.num_customer = totalNumCustomer";

16

17 return transaction.run(queryTemplate , parameters("level",

level));

18

19 }

20

21 public void preComputeNumberOfCustomer () {

22 List <Bookmark > bookmarks = new ArrayList <>();

23 try (Session session = driver.session(builder ().

24 withDefaultAccessMode(AccessMode.READ)

25 .build ())) {

26 this.maxLevel = session.readTransaction(transaction ->

{

27 return this.queryMaxLevel(transaction);

28 });

29 bookmarks.add(session.lastBookmark ());

30 }

31

32 if (this.maxLevel == -1) {

33 System.out.println("The max level is not retrieved

correctly");

34 return;

35 }

36

37 for (int level = this.maxLevel -1; level >= 0; level --) {

38 try (Session session = driver.session(builder ()

39 .withDefaultAccessMode(AccessMode.WRITE)

40 .withBookmarks(bookmarks)

61

41 .build ())) {

42 final int currentLevel = level;

43 System.out.print("computing number of customers

for level :" + currentLevel);

44 session.writeTransaction(transaction -> {

45 return this.updateNumberOfCustomer(transaction

, currentLevel);

46 });

47 bookmarks.add(session.lastBookmark ());

48 }

49 }

50 return;

51 }

A.2.3 Multi-Source Path Search

A detailed description of Multi-Source Path Search algorithm is included in Section

3.3. Below, we list a Java program implementing the algorithm.

Listing A.4: Code snippet for search algorithm

1 private List <Element > queryRootElement(final Transaction tx ,

long parentId) {

2 Result result = tx.run(

3 "MATCH (e: Element {feature_id: $featureType }) -[c:
Connection]-> (n:CNode {number: $parentId }) " +

4 "RETURN {mslink: e.mslink , feature_id: e.

feature_id} UNION " +

5 "MATCH (e: Element {feature_id: $featureType }) <-[c
:Connection]-(n:CNode{number: $parentId }) " +

6 "RETURN {mslink: e.mslink , feature_id: e.

feature_id };", parameters("featureType",

START_STR , "parentId",parentId)

7);

8 while (result.hasNext ()) {

9 Record record = result.next();

10 Element breaker = Element.builder ()

11 .mslink(record.values ().get(0).get("mslink").

asInt ())

12 .featureId(record.values ().get(0).get("

feature_id").asString ())

13 .build ();

14 breakers.add(breaker);

15 }

16 return breakers;

17 }

18

19 private Node queryNextNode(final Transaction tx , int mslink ,

long parentId) {

20 Result result = tx.run(

62

21 "MATCH (e: Element) <-[c:Connection]- (n:CNode)" +

22 "WHERE e.mslink = $mslink AND n.number <>

$parentId " +

23 "RETURN {number: n.number} " +

24 "UNION " +

25 "MATCH (e: Element) -[c:Connection]-> (n:CNode) "

+

26 "WHERE e.mslink = $mslink AND n.number <>

$parentId " +

27 "RETURN {number: n.number };",

28 parameters("mslink", mslink , "parentId",parentId)

29);

30 while(result.hasNext ()) {

31 Record record = result.next();

32 int nodeNum = record.values ().get(0).get("number").

asInt();

33 return Node.builder ()

34 .number ((long) nodeNum)

35 .build ();

36 }

37 return null;

38 }

39

40

41

42 private List <Element > queryNextElements(final Transaction tx ,

int mslink , long parentId) {

43 List <Element > resultList = new ArrayList <>();

44 Result result = tx.run(

45 "MATCH (e: Element) <-[c:Connection]- (n:

CNode) " +

46 "WHERE e.mslink <> $mslink AND n.number =

$parentId " +

47 "RETURN {mslink: e.mslink , feature_id: e.

feature_id} " +

48 "UNION " +

49 "MATCH (e: Element) -[c:Connection]-> (n:

CNode)" +

50 "WHERE e.mslink <> $mslink AND n.number =

$parentId " +

51 "RETURN {mslink: e.mslink , feature_id: e.

feature_id };",

52 parameters("mslink", mslink , "parentId",parentId)

53);

54 while(result.hasNext ()) {

55 Record record = result.next();

56 resultList.add(Element.builder ()

57 .mslink(record.values ().get(0).get("mslink").

asInt ())

58 .featureId(record.values ().get(0).get("

feature_id").asString ())

59 .build ());

60 }

61

63

62 return resultList;

63 }

64 private Result setLevelProperty(final Transaction tx , int

mslink , int level) {

65 return tx.run("MERGE (e: Element {mslink: $mslink }) " +

66 "SET e += {level: $level} ", parameters("mslink",

mslink , "level", level)

67);

68 }

69 /**

70 * Reverse the connection to let it consistent with the energy

flow

71 * @param tx

72 * @param preMslink

73 * @param number

74 * @param mslink

75 * @return

76 */

77 private Result modifyNodeRelationship(final Transaction tx ,

int preMslink , long number , int mslink) {

78

79 String queryTemplate = "MATCH (e:Element {mslink:

$premslink }) <-[c:Connection]-(n:CNode{number:$number })
" +

80 "WITH id(c) as id MATCH () -[r]->() WHERE id(r) =

id " +

81 "CALL apoc.refactor.invert(r) yield input , output

RETURN * " +

82 "UNION " +

83 "MATCH (e:Element {mslink: $mslink }) -[c:

Connection]-> (n:CNode{number:$number }) " +

84 "WITH id(c) as id MATCH () -[r]->() WHERE id(r) =

id " +

85 "CALL apoc.refactor.invert(r) yield input , output

RETURN * ";

86 Result result = tx.run(queryTemplate , parameters("

premslink", preMslink , "number", number , "mslink",

mslink));

87

88 return result;

89 }

90

91 /**

92 * [optional] set the parentNode and childNode information

93 * @param tx

94 * @param mslink

95 * @param parentNum

96 * @param childNum

97 * @return

98 */

99 private Result createDirectionProperty(final Transaction tx ,

int mslink ,

100 long parentNum , long

childNum) {

64

101 return tx.run(

102 "MERGE (e:Element {mslink: $mslink })" +

103 "SET e += {parentNum: $parentNum , childNum:

$childNum}",
104 parameters("mslink", mslink , "parentNum", parentNum , "

childNum", childNum)

105);

106 }

107

108 public void buildHierarchical () {

109 buildHierarchicalIteratively(this.breakers , Node.builder ()

.number (0L).build ());

110 }

111

112 /**

113 * build the power stream by setting the level property for

each element ,

114 * 1. set the property of the current Element

115 * 2. query the neighbourhood node.which is the childNode

116 * 3. find childElement and call the func recursively if it

satisfiy filter requirement.

117 * @param rootElements

118 * @param rootNode

119 */

120 private void buildHierarchicalIteratively(final List <Element >

rootElements , final Node rootNode) {

121 List <Element > nextElements = null;

122 Set <Integer > visited = new HashSet <>();

123 Deque <Holder > queue = new LinkedList <>();

124 ElementFilter switchFilter = SwitchFilter.getSwitchFilter

();

125 for(Element breaker: rootElements) {

126 queue.add(new Holder(breaker , rootNode));

127 }

128 int level = 0;

129 while (! queue.isEmpty ()) {

130 int size = queue.size();

131 // iterate all children

132 for (int idx = 0 ; idx < size; idx ++){

133 final Holder holder = queue.poll();

134 final Element curElement = holder.getElement ();

135 final Node parentNode = holder.getNode ();

136 final int curLevel = level;

137 if (visited.contains(curElement.getMslink ())) {

138 continue;

139 }

140 try (Session session = driver.session(builder ().

withDefaultAccessMode(AccessMode.WRITE).build ()

))

141 {

142 session.writeTransaction(transaction -> {

143 System.out.println("mslink: " + curElement

.getMslink () + " set level value: " +

curLevel);

65

144 return this.setLevelProperty(transaction ,

145 curElement.getMslink (), curLevel);

146 });

147 visited.add(curElement.getMslink ());

148 final Node childNode = session.readTransaction

(transaction -> {

149 return this.queryNextNode(transaction ,

curElement.getMslink (),parentNode.

getNumber ());

150 });

151 if (childNode != null) {

152 nextElements = session.readTransaction(

transaction -> {

153 return this.queryNextElements(

transaction , curElement.getMslink ()

,childNode.getNumber ());

154 });

155 }

156 if (childNode != null && nextElements != null

&& nextElements.size() > 0) {

157 List <Element > elements = switchFilter.

doFilter(session , nextElements);

158 elements.forEach(element -> {

159 if (element.getMslink () != null) {

160 session.writeTransaction(

transaction -> {

161 return this.

modifyNodeRelationship(

transaction ,

162 curElement.getMslink ()

, childNode.

getNumber (),

element.getMslink ()

);

163 });

164 queue.add(new Holder(element ,

childNode));

165 }

166 });

167 }

168 }

169 }

170 level += 1;

171 }

172 }

66

Appendix B:
Sentiment Knowledge Graph

B.1 Construction of Review Model (REmModel)

The graph-based Review EmotionModel (REmModel) contains information that has

been obtained as a results of aspect-based sentiment analysis process. The file re-

sult.csv contain the results. The information is organized in the form of columns:

• reviewer : id of the reviewer;

• text : sentence of the review;

• category : aspect term category;

• target : aspect term;

• polarity : sentiment polarity (positive/negative);

• description list : list of opinion words described the aspect term.

The Cypher code implementing the construction process.

Listing B.1: Code snippet for REmModel
//1 . import r ev i ewer nodes with Reviewer Label and id (NOT NULL) as i t s property .

LOAD CSV WITH HEADERS FROM "result.csv"

AS row
WITH row
WHERE row . r ev i ew id IS NOT NULL
MERGE (rev i ewer :Rev i ewer { r ev i ew Id : row . r ev i ew id })

// 2 . import t a r g e t with targetValue as p rope r t i e s ,
// change the d e f au l t va lue to ’UNKNOWN_TARGET ’

// only one node has property UNKNOWNTARGET.
// TEST VIA COMMAND :
// MATCH (n:Target)
// WHERE n . targetValue = "UNKNOWN_TARGET" r e turn COUNT(n)

67

// OUTPUT: n = 1
LOAD CSV WITH HEADERS FROM "result.csv"

AS row
MERGE (ta r g e t :Ta rg e t { t a rg e tVa lue : CASE trim (row . t a r g e t)
WHEN ’NULL’ THEN ’UNKNOWN_TARGET ’ ELSE trim (row . t a r g e t) END})

// 3 . import p o l a r i t y from the f i l e .
// p o l a r i t y only has three type va lue s . (no miss ing va lue s)
// Tes t :
// MATCH (n :Po l a r i t y) RETURN n LIMIT 25
//
// "n"

//
// {"polarityValue" : "negative"}
//
// {"polarityValue" : "positive"}
//
// {"polarityValue" : "neutral"}
//

LOAD CSV WITH HEADERS FROM "result.csv"

AS row
MERGE (p o l a r i t y : P o l a r i t y { po l a r i t yVa lu e : CASE trim (row . p o l a r i t y)
WHEN ’NULL’ THEN ’UNKNOWN_POLARITY ’

ELSE trim (row . p o l a r i t y) END})

// 4 . import sentence with text as i t s property ,
// and f i nd the rev i ewer who wr i t e s the sentence ,
// add r e l a t i o n s h i p s to that s e t en c e s .
// E x a m p l e f i nd a l l the s en tence s wr i t t en by rev i ewer 1004293

// MATCH (rev i ewer :Rev i ewer { r ev i ew Id : "1004293" })
// <−[:IS REVIEWED BY]− (s en t ence :Sen t ence)
// RETURN sentence . t ex t

USING PERIODIC COMMIT 500
LOAD CSV WITH HEADERS FROM "result.csv"

AS row
MERGE (sen tence :Sen t ence { t e x t : tr im (row . t ext)})

USING PERIODIC COMMIT 500
LOAD CSV WITH HEADERS FROM "result.csv"

AS row
MATCH (rev i ewer :Rev i ewer { r ev i ew Id : row . r ev i ew id })
MATCH (sen tence :Sen t ence { t e x t : tr im (row . t ext)})
MERGE (sentence)−[r:IS REVIEWED BY]−>(r ev i ewer)

// 5 . import Entity and Att r ibut e s s imutanoues ly .
// Tes t : MATCH (n :Ent i ty) RETURN COUNT(n) | Expected: 6
// Tes t : MATCH (n :At t r i bu t e) RETURN COUNT(n) | Expected: 5

LOAD CSV WITH HEADERS FROM "result.csv"

AS row
WITH SPLIT(row . category , ’#’) AS ca t ego ryL i s t
MERGE (en t i t y :En t i t y { en t i t yVa l : tr im (ca t ego ryL i s t [0] }))
MERGE (a t t r i b u t e :A t t r i b u t e { a t t r i b u t eVa l : tr im (ca t ego ryL i s t [1] }))

// 6 . Create Re l a t i on sh ip s f o r category .

68

LOAD CSV WITH HEADERS FROM "result.csv"

AS row
WITH SPLIT(row . category , ’#’) AS ca t ego ryL i s t
MATCH (en t i t y :En t i t y { en t i t yVa l : tr im (ca t ego ryL i s t [0]) })
MATCH (a t t r i b u t e :A t t r i b u t e { a t t r i b u t eVa l : tr im (ca t ego ryL i s t [1]) })
MERGE (category :Category { ca tegoryVa l : c a t ego ryL i s t })
MERGE (category)−[:HAS ATTRIBUTE]−>(a t t r i b u t e)
MERGE (category)−[:HAS ENTITY]−>(e n t i t y)

// 7 . manipulate the d e s c r i p t i o n l i s t s , and c r e a t e a l l d e s c r i p t i o n s nodes
// Make Sure to have apoc i n s t a l l e d .

LOAD CSV WITH HEADERS FROM "result.csv"

AS row
WITH row , apoc . convert . f romJsonList (row . d e s c r i p t i o n l i s t) AS d e s c r i p t i o nL i s t
UNWIND de s c r i p t i o nL i s t AS descr ipt ionWord
MERGE (d e s c r i p t i o n :D e s c r i p t i o n { d e s c r i p t i o n : tr im (descr ipt ionWord)})

// 8 . Create Entry nodes with p r op e r t i e s ID: "categoryId#SentenceId#TargetId"

// An Entry Node i s unique determinated by sentence , t a r g e t and category .
LOAD CSV WITH HEADERS FROM "result.csv"

AS row
WITH row , SPLIT(row . category , ’#’) AS ca t ego ryL i s t
MATCH (rev i ewer :Rev i ewer { r ev i ew Id : row . r ev i ew id })
MATCH (en t i t y :En t i t y { en t i t yVa l : tr im (ca t ego ryL i s t [0]) })
MATCH (a t t r i b u t e :A t t r i b u t e { a t t r i b u t eVa l : tr im (ca t ego ryL i s t [1]) })
MATCH (category :Category)−[:HAS ATTRIBUTE]−>(a t t r i b u t e)
MATCH (category :Category)−[:HAS ENTITY]−>(e n t i t y)
MATCH (ta r g e t :Ta rg e t { t a rg e tVa lue :
CASE trim (row . t a r g e t)
WHEN ’NULL’ THEN ’UNKNOWN_TARGET ’

ELSE trim (row . t a r g e t) END})
MATCH (sen tence :Sen t ence)−[:IS REVIEWED BY]−>(r ev i ewer)
MERGE (entry :Entry { en t r y Id : apoc . t ex t . j o i n ([t oS t r i ng (id (sentence)) ,
t oS t r i ng (id (t a r g e t)) , t oS t r i ng (id (category))] , ’#’)})
RETURN entry . entryId , s entence . text , t a r g e t . targetValue ,
id (category) , r ev i ewer . reviewId ,
en t i t y . ent i tyVal , a t t r i b u t e . a t t r i bu t eVa l

B.2 SenticNet RDF Format

The original XML file that contains SenticNet model has been processed according

to the following procedure:

• based on the DOM4j library the XML file is parsed into org.dom4j.Elements;

• distinct objects bypassing the elements are created, and then combined in ordeer

to create RDF triples;

• RDF objects triples are converted back to dom4j.Elements, and an output RDF

file is created.

69

The interface that describes the steps, as well as an example of RDF description are

shown below.

Listing B.2: Interface for converting XML to RDF format

1 public interface InterfaceHandler <T> {

2

3 /**

4 * Process the whole documents for particular nodes

5 * @param document

6 * @return

7 */

8 Document processAll(Document document);

9

10 /**

11 * Convert org.dom4j.Element to particular pojo object

instance

12 * @param element

13 * @return

14 */

15 T convertElement2Object(Element element);

16

17

18 /**

19 * Create triples based on the mapped pojo object

20 * @param object

21 */

22 void createTriples(T object);

23

24

25 /**

26 * Modify the representation of the original triple

27 * @param element

28 * @param object

29 */

30 void modifyRepresentation(Element element , T object);

31

32 }

Listing B.3: A Valid RDF description
<r d f :D e s c r i p t i o n rd f : abou t="http:// sentic.net/api/en/concept/a_little">

<r d f : t y p e r d f : r e s o u r c e="http:// sentic.net/api/concept"/>
<t ex t xmlns="http:// sentic.net/">a l i t t l e</ text>
<concept : concept−r e l a t i o n s h i p

r d f : r e s o u r c e="http:// sentic.net/api/en/concept/least"/>
<concept : concept−r e l a t i o n s h i p

r d f : r e s o u r c e="http:// sentic.net/api/en/concept/little"/>
<concept : concept−r e l a t i o n s h i p

r d f : r e s o u r c e="http:// sentic.net/api/en/concept/small_amount"/>
<concept : concept−r e l a t i o n s h i p

r d f : r e s o u r c e="http:// sentic.net/api/en/concept/shortage"/>
<concept : concept−r e l a t i o n s h i p

r d f : r e s o u r c e="http:// sentic.net/api/en/concept/scarce"/>

70

<concept : concept−r e l a t i o n s h i p
r d f : r e s o u r c e="http:// sentic.net/api/en/concept/sadness"/>

<concept : concept−r e l a t i o n s h i p
r d f : r e s o u r c e="http:// sentic.net/api/en/concept/disgust"/>

<s e n t i c s : p l e a s a n t n e s s r d f : r e s o u r c e="http:// sentic.net/pleasantness / -0.99"/>
<s e n t i c s : a t t e n t i o n r d f : r e s o u r c e="http:// sentic.net/attention /0.0"/>
< s e n t i c s : s e n s i t i v i t y r d f : r e s o u r c e="http:// sentic.net/sensitivity /0.0"/>
<s e n t i c s : a p t i t u d e r d f : r e s o u r c e="http:// sentic.net/aptitude /-0.7"/>
<p o l a r i t y : i n t e n s i t y r d f : r e s o u r c e="http:// sentic.net/intensity /-0.84"/>

</ r d f :D e s c r i p t i o n>

71

	Introduction
	Motivation
	Objectives and Contributions
	Thesis Outline

	Background and Related Work
	Knowledge Graph
	Resource Description Framework (RDF)
	Graph Database: Neo4j

	SenticNet and the Hourglass Model of Emotions
	Aggregation Methods
	Group Making and OWA operator

	Power Systems and Knowledge Graph
	Aspect Based Sentiment Analysis

	Knowledge Graph Representation of Distribution Grid
	Introduction
	Definitions of Concepts and Relations
	Concepts Definition
	Relations

	Algorithms for Processing Power Grid Knowledge Graph
	Utilization of Power Grid Knowledge Graph
	Primary Switches on Path
	Primary Switches and Conditions
	Elements and Conditions

	Results and Conclusions

	Emotion-based Analysis of Reviews using Knowledge Graph
	Introduction
	Model of Reviews, Aspects, and Emotions
	Model Overview
	Graph Schema
	Building Graph: Loading Data

	Aspect-based Analysis: Utilization of KG-based Model
	Analysis using Single Description Words
	Analysis using Clusters of Description Words and their Synonyms

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix A: Power Grid Knowledge Graph
	Graph Construction Process
	Import from CSV files

	Processing Graph Data
	Converting Node Properties to Relationships
	Determining Number of Downstream Customers
	Multi-Source Path Search

	Appendix B: Sentiment Knowledge Graph
	Construction of Review Model (REmModel)
	SenticNet RDF Format

