
Benchmarks and Analysis of QUIC Performance on Emulab

by

Naveenraj Muthuraj

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Naveenraj Muthuraj, 2024



Abstract

QUIC has been a fast-evolving protocol and, with its standardization as part of

HTTP/3, it is an important part of the World Wide Web. Since its introduction in

2014, QUIC changed significantly from Google QUIC (gQUIC) to an IETF standard

(2021). Understanding the performance of the current version of QUIC and how it

compares to the older version is important, given its evolution and increased adoption.

We conduct a comprehensive performance evaluation of two versions of QUIC

against TCP: Google QUIC version 37 from 2017 (gQUICv37) and IETF QUIC ver-

sion 1 from 2021 (QUICv1). Following the parameters (e.g., latency, loss, and jitter)

and methodology established by a notable QUIC paper from 2017, we validate the

performance of gQUICv37 and extend our experiments to QUICv1. We leverage the

Emulab testbed, which facilitates reproducible research.

We show that the performance advantages of QUIC over TCP, from core features

like 0-RTT to reduce connection latency and multiple streams to avoid head-of-line

(HOL) blocking, are consistent in gQUICv37 (2017) and QUICv1 (2021). There are

also notable performance advantages due to the (1) new BBR congestion control algo-

rithm and (2) updated loss detection strategy, that improve QUICv1 over gQUICv37

under packet reordering scenarios by (1) 60% to 80% and (2) 46% to 48% (using CU-

BIC), respectively, particularly for 10 MB objects. By utilizing Emulab and sharing

our scripts and code, we enable other researchers to replicate and extend our study

for future versions of QUIC.

ii



Acknowledgements

I would like to express my deepest gratitude to my supervisor, Paul Lu, whose guid-

ance, mentorship, and unwavering support have been invaluable throughout this jour-

ney. Without his assistance, my thesis writing process would have been far more

challenging, and I am truly grateful for his patience and insights. I would also like

to thank Dr. Ivan Fair and Dr. Hamidreza Anvari for serving on my committee, and

Dr. Nilanjan Ray for being the exam chair.

Special thanks are due to the Flux group at the University of Utah for provid-

ing and supporting Emulab, which has facilitated the execution of my experiments.

The financial support of the Department of Computing Science through a Teaching

Assistantship is gratefully acknowledged.

I would like to thank my parents, Muthuraj and Kamala for deviating from the ru-

ral Indian norm of creating assets for children, and instead, making us assets through

education. I am grateful to my brother, Amruthraj, for his unwavering support and

encouragement throughout my academic journey.

Finally, I would like to thank my friends for their support and encouragement,

which has been a source of strength and motivation throughout my time at the

University of Alberta.

iii



Table of Contents

1 Introduction 1

2 Background and Related Work 5

2.1 QUIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 1-RTT / 0-RTT Connection . . . . . . . . . . . . . . . . . . . 8

2.1.2 Head-of-Line Blocking . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Loss Detection and Congestion Control . . . . . . . . . . . . . 15

2.1.4 Other features . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Experimental Methodology 22

3.1 QUIC Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Google QUIC (gQUIC) . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 IETF QUIC (QUIC) . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Experimental Setup on Emulab . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Emulab testbed . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Dummynet traffic emulator . . . . . . . . . . . . . . . . . . . 27

3.2.3 Chromium QUIC Stack . . . . . . . . . . . . . . . . . . . . . . 29

3.2.4 Setup Differences . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.5 Emulab Setup Calibration . . . . . . . . . . . . . . . . . . . . 33

3.3 Parameters, Workloads and Metrics . . . . . . . . . . . . . . . . . . . 35

3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Empirical Results 39

4.1 QUIC Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 CUBIC Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 BBR Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Page Load Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iv



4.3 QUIC in baseline setting: 36 ms RTT, 0% loss . . . . . . . . . . . . . 49

4.3.1 QUIC’s performance for single object . . . . . . . . . . . . . . 51

4.3.2 QUIC’s performance for multiple objects . . . . . . . . . . . . 55

4.4 QUIC with added loss: 36 ms RTT, 1% loss . . . . . . . . . . . . . . 58

4.4.1 Effect of N=2 on PLT under loss . . . . . . . . . . . . . . . . 59

4.5 QUIC with added latency: 112 ms RTT, 0% loss . . . . . . . . . . . . 60

4.6 QUIC with packet reordering due to jitter . . . . . . . . . . . . . . . 63

4.7 QUIC with BBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Concluding Remarks 72

Bibliography 74

Appendix A: Emulab profile 80

Appendix B: PLT Values 82

v



List of Tables

1.1 Overview of QUIC changes and their impact on performance . . . . . 3

2.1 Addressing TCP issues with corresponding QUIC features [7]. . . . . 6

3.1 Differences in experimental setup components. The use of Emulab and

Dummynet enables reproducible experiments. . . . . . . . . . . . . . 32

3.2 Differences in software versions for gQUICv37 and QUICv1 experi-

ments. (*) Ubuntu 14.04 was deprecated in Emulab, hence we used

Ubuntu 18.04 for gQUICv37 experiments. (ˆ) Chromium 60.0.3112.101

was not available in proto-quic repo, so we used the closest available

version 60.0.3108.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Differences in experimental parameters. . . . . . . . . . . . . . . . . . 36

4.1 Average throughput (5 Mbps link, RTT = 36 ms, loss = 0 %, buffer

= 30 KB, averaged over 5 runs) allocated to QUIC and TCP flows

when competing with each other. When both TCP and QUIC are

using CUBIC congestion control, the unfairness caused by QUIC flow

is simply due to N = 2 connection emulation. . . . . . . . . . . . . . 44

4.2 TCP BBR is unfair to both QUIC BBR and QUIC CUBIC. Average

throughput (5 Mbps link, RTT = 36 ms, loss = 0 %, buffer = 30 KB,

averaged over 5 runs) allocated to QUIC and TCP flows when com-

peting with each other. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.1 Values for Figure 4.6a. Varying object size, 0% loss, 36 ms RTT. . . . 82

B.2 Values for Figure 4.6d. Varying #object, 0% loss, 36 ms RTT. . . . . 82

B.3 Values for Figure 4.6b. Varying object size, 1% loss, 36 ms RTT. . . . 83

B.4 Values for Figure 4.6e. Varying #object, 1% loss, 36 ms RTT. . . . . 83

B.5 Values for Figure 4.6c. Varying object size, 0% loss, 112 ms RTT. . . 83

B.6 Values for Figure 4.6f. Varying #object, 0% loss, 112 ms RTT. . . . . 84

B.7 Values for Figure 4.11b. Varying object size, 0% loss, 112 ms RTT,

50 ms jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vi



B.8 Values for Figure 4.11d. Varying #object, 0% loss, 112 ms RTT, 50 ms

jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.9 Values for Figure 4.5a. Varying object size, 0% loss, 36 ms RTT. . . . 85

B.10 Values for Figure 4.5d. Varying #object, 0% loss, 36 ms RTT. . . . . 85

B.11 Values for Figure 4.5b. Varying object size, 1% loss, 36 ms RTT. . . . 85

B.12 Values for Figure 4.5e. Varying #object, 1% loss, 36 ms RTT. . . . . 86

B.13 Values for Figure 4.5c. Varying object size, 0% loss, 112 ms RTT. . . 86

B.14 Values for Figure 4.5f. Varying #object, 0% loss, 112 ms RTT. . . . . 86

B.15 Values for Figure 4.11a. Varying object size, 0% loss, 112 ms RTT,

50 ms jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.16 Values for Figure 4.11c. Varying #object, 0% loss, 112 ms RTT, 50 ms

jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vii



List of Figures

1.1 QUIC evolution timeline showing major QUIC versions and extensions.

The versions in bold are the ones we studied in this thesis. . . . . . . 2

2.1 QUIC in relation to TCP and TLS [7]. . . . . . . . . . . . . . . . . . 7

2.2 Connection establishment in TCP and QUIC. TCP incurs 3-RTT for

secure connection establishment, while QUIC incurs just 1-RTT. . . . 9

2.3 Connection establishment in gQUIC and QUIC for initial 1-RTT and

subsequent 0-RTT connection. gQUIC uses QUIC Crypto for securing

QUIC connection, while QUIC uses TLSv1.3 for the same. . . . . . . 11

2.4 QUIC processes each stream independently, avoiding blocking when

there is packet loss in a single stream. Whereas, TCP waits for the re-

transmission of a lost packet, blocking the transmission of other streams. 13

3.1 Experiment Topology in Emulab. The server and client are connected

via a link bridge node, which shapes the traffic. . . . . . . . . . . . . 26

4.1 Throughput timeline, QUIC CUBIC is unfair to TCP CUBIC when

N = 2. Throughput of QUIC and TCP when transferring data over

the same 5 Mpbs bottleneck link (RTT = 36 ms, loss = 0 %, buffer =

30 KB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 CWND timeline, the growth of QUIC’s CWND is influenced by the

CUBIC parameter N. Timeline showing CWND sizes of QUIC and

TCP when transferring data over the same 5 Mbps bottleneck link

(RTT = 36 ms, loss = 0 %, buffer = 30 KB). . . . . . . . . . . . . . 42

4.3 TCP BRR updates CWND more aggressively, capturing higher band-

width than QUIC BBR. Timeline showing throughput and congestion

window sizes of QUIC BBR and TCP BBR when transferring data over

the same 5 Mbps bottleneck link (RTT = 36 ms, loss = 0 %, buffer =

30 KB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



4.4 BBR is unfair to CUBIC CCA, irrespective of its use in QUIC or TCP.

Timeline showing throughput and congestion window sizes of QUIC

CUBIC and TCP BBR when transferring data over the same 5 Mbps

bottleneck link (RTT = 36 ms, loss = 0 %, buffer = 30 KB). . . . . . 46

4.5 gQUICv37 0-RTT (CUBIC, N = 2) vs TCP (CUBIC). Chrome client.

Red is better for gQUIC. Blue is better for TCP . . . . . . . . . . . . 50

4.6 QUICv1 0-RTT (CUBIC, N = 2) vs TCP (CUBIC), Chrome client.

Red is better for QUIC RFC v1. Blue is better for TCP . . . . . . . 50

4.7 Performance heatmaps showing the advantage given by QUIC’s 0-RTT

connection under 36 ms latency and 0% loss. The 0-RTT advantage is

higher for smaller objects and diminishes as the object size increases.

Subfigure (a) corresponds to Figure 4.6a showing QUIC with 0-RTT

against TCP, whereas, in Subfigure (b) 0-RTT is disabled and shows

QUIC with 1-RTT against TCP. The subfigure (c) shows the compar-

ison between QUIC with 0-RTT and without 0-RTT (1-RTT). . . . . 53

4.8 Hybrid Slow Start: QUICv1 (CUBIC, N = 1) vs TCP (CUBIC).

CWND and estimated RTT while transferring different numbers of

objects. When the number of objects increases (10Kx100) there is a

sudden spike in estimated RTT for QUIC, which leads to early exit

from Hybrid Slow Start phase. . . . . . . . . . . . . . . . . . . . . . . 56

4.9 QUIC (CUBIC, N=2) vs TCP and QUIC (CUBIC, N=1) vs TCP at

36 ms RTT and 1% loss. Subfigure (a) and (b) corresponds to Figure

4.6b and 4.6e respectively, with CUBIC CCA emulating 2 connections

(N = 2) in CWND update, which is the default in Chromium QUIC

implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Congestion window over time for QUIC and TCP at 100 Mbps rate

limit, 36 ms latency and 1% loss. . . . . . . . . . . . . . . . . . . . . 62

4.11 gQUICv37 vs TCP and QUICv1 vs TCP at 112 ms RTT with 50 ms

jitter that causes packet reordering (Delay = 112 ms, Jitter = 50 ms,

Loss = 0%). gQUICv37 uses a static NACK threshold of 3, while

QUICv1 uses a dynamic NACK threshold. Performance improvement

of Dynamic NACK is visible through blue squares getting lighter for

QUIC v1 PLT results (Subfigure (b) and (d)). . . . . . . . . . . . . 64

ix



4.12 QUIC’s loss detection mechanisms often trigger false positives due to

jitter-induced out-of-order packet delivery, hindering CWND growth.

gQUICv37’s use of a static threshold for packet reordering exacerbates

this issue, leading to increased false positives. However, QUICv1 em-

ploys a dynamic threshold, effectively reducing false positives and fa-

cilitating CWND expansion. The timeline figures illustrate the rela-

tionship between CWND (“Cong. Win. (KB)”) and detected losses

during the transfer of a 210 MB object. (BW = 100 Mbps, Delay =

112 ms, Jitter = 50 ms, Loss = 0%). . . . . . . . . . . . . . . . . . . 65

4.13 Packet reordering affects QUIC’s CWND growth more than TCP’s

CWND growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.14 QUICv1 (BBR) vs TCP (BBR). Red is better for QUICv1. Blue is

better for TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.15 QUICv1 (CUBIC) vs TCP (CUBIC) and QUICv1 (BBR) vs TCP

(BBR) at 0% loss, 112 ms RTT with 50 ms jitter that causes packet

reordering. As BBR does not rely on loss detection to regulate CWND,

QUIC with BBR does not suffer performance degradation due to falsely

detected loss due to packet reordering. . . . . . . . . . . . . . . . . . 69

x



Abbreviations

ACK Acknowledgment.

BBR Bottleneck Bandwidth and Round-trip propagation time.

BDP Bandwidth Delay Product.

CCA Congestion Control Algorithm.

CWND Congestion Window.

DNS Domain Name System.

gQUICv37 Google QUIC version 37.

HAR HTTP Archive format.

HOL head-of-line.

HTML Hyper Text Markup Language.

HTTP Hyper Text Transfer Protocol.

HTTP/3 Hyper Text Transfer Protocol version 3.

IETF Internet Engineering Task Force.

MASQUE Multiplexed Application Substrate over QUIC Encryption.

NACK Negative Acknowledgment.

PLT Page Load Time.

QUIC Quick UDP Internet Connections.

xi



QUICv1 IETF QUIC version 1.

QUICv2 IETF QUIC version 2.

RACK-TLP Recent ACKnowledgment with Tail Loss Probe.

RTT Round-trip time.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

UDP User Datagram Protocol.

xii



Chapter 1

Introduction

Over the years spanning from 2017 to 2021, the QUIC transport protocol has under-

gone significant changes, evolving from its inception by Google to its standardization

by the IETF (Figure 1.1). With the emergence of HTTP/3, which adopts QUIC as

its underlying transport layer protocol, understanding the performance of the current

version of QUIC is paramount. Equally crucial is establishing a reproducible exper-

imental framework to facilitate the evaluation of future iterations of QUIC. Since

QUIC operates in user space rather than relying on the underlying operating system,

it is easier to evolve and deploy. The rapid evolution of this transport protocol un-

derscores the necessity of an evaluation and analysis framework to discern the impact

of design decisions made along the way.

To address these imperatives, this thesis aims to achieve three primary goals.

Firstly, it seeks to comprehensively understand the performance of the recent version

of QUIC (i.e., QUICv1) within a modern and reproducible testbed called Emulab.

Secondly, it aims to provide an easily reproducible experimental framework that can

be used to evaluate future versions of QUIC. Lastly, by benchmarking two different

versions of QUIC, we aim to investigate the impact of changes in the QUIC protocol

over the years.

QUIC is a general-purpose transport layer protocol introduced by Google around

2014 [1] and later adopted by the IETF in 2016 [2]. The timeline of QUIC evolution is

1



Google QUIC
2017

QUIC v1
2021

QUIC v2
2023

gQUICv37
Mar 2017

RFC 9000
May 2021

RFC 9369
May 2023

RFC 9287
Aug 2022

draft-01
July 2017

draft-29
Dec 2020

gQUICv43
Jan 2018

gQUIC
Nov 2014

Figure 1.1: QUIC evolution timeline showing major QUIC versions and extensions.
The versions in bold are the ones we studied in this thesis.

shown in Figure 1.1. QUIC has evolved significantly while transitioning from Google

QUIC (gQUIC) to an IETF standard, which was released as RFC 9000 QUIC version

1 (QUICv1) in 2021 [3]. After which, it has continued to evolve with the release of

RFC 9369 QUIC version 2 (QUICv2) in 2023 [4].

In this work we study the performance of QUIC in two different versions, Google

QUIC version 37 (gQUICv37) and IETF QUIC version 1 (QUICv1), which are both

implemented in Chromium. While numerous studies have benchmarked QUIC per-

formance against TCP, this thesis takes a unique approach by benchmarking two

different versions of QUIC (gQUICv37 and QUICv1) from the same implementation

stack (Chromium), each compared against TCP. These versions are distinguished by

two standards (Google QUIC and IETF QUIC) and separated by five years of protocol

changes (2017 to 2021).

We conduct a comprehensive performance evaluation of QUIC in two stages, as

described in Section 3.2.4 and Table 3.2. Initially, we replicate experiments conducted

by Kakhki et al. [5] on gQUICv37. In the second stage, we reproduce the same

experiments using QUICv1 and draw comparisons with the results obtained from

gQUICv37. A direct comparison of gQUICv37 and QUICv1 is not the focus of this

work; rather, we compare each version of QUIC to the TCP implementation of its

respective period (i.e., 2017 and 2024). All our experiments are conducted on Emulab,

which enables reproducible research. Section 3.2.1 provides an overview of Emulab

and the experimental setup used in this thesis.

As presented in Chapter 4, our benchmarking results show that QUIC’s perfor-

2



Chromium QUIC Changes

Test parameter gQUIC v37 QUIC v1 Findings

Latency
QUIC Crypto

0-RTT

TLSv1.3

0-RTT

Different Library

Same functionality

Loss HOL HOL Same, N = 2 has impact

Bandwidth Depends on CCA Depends on CCA Same, N = 2 has impact on fairness

Jitter NACK = 3 NACK = Dynamic Dynamic NACK improves QUIC performance

CCA Cubic
Cubic,

BBR, BBRv2

Cubic with same parameters are fair

QUIC is effective with BBR under jitter

Table 1.1: Overview of QUIC changes and their impact on performance

mance advantages over TCP, given by fundamental features like 0-RTT (Section

4.3) and head-of-line (HOL) blocking (Section 4.4), have remained consistent across

the two versions. However, the introduction of new Congestion Control Algorithms

(CCA) like Bottleneck Bandwidth and Round-trip propagation time (BBR) (Section

4.7) and loss detection strategies under packet reordering (Section 4.6) have notably

improved QUICv1 in comparison to its predecessor, gQUICv37. Additionally, we

show that the CUBIC parameter (Emulated connection, N) in Chromium QUIC im-

plementation impacts its fairness with TCP (Section 4.1.1).

Our work makes the following contributions:

1. Benchmarking: We present a parameter sweep benchmark of QUIC vs. TCP,

using two versions of QUIC (gQUICv37, QUICv1), across a variety of web pages

(object sizes, and object counts) under different network bandwidths, latencies

and loss rates.

2. Reproducibility: We document the process for supporting our benchmarking

methodology on Emulab, which makes it easier for other researchers to directly

reproduce our results and extend them for future versions of QUIC.

3. Root cause analysis: We perform a root cause analysis of the performance

differences between QUIC and TCP, and the key changes in QUICv1 that led to

3



the performance improvements. Our three analyses include evaluating QUIC’s

0-RTT advantage, explaining CUBIC unfairness in QUIC, and the impact of

the updated loss detection strategy in QUICv1 under jitter.

In summary, this thesis conducts the performance evaluation of the recent version of

QUIC (i.e., QUICv1) using the Emulab testbed. Specifically, we benchmark QUICv1

and gQUICv37 in an extensive parameter sweep. By using two different versions of

QUIC, we investigate the impact of changes in QUIC protocol over the years. We

share a reproducible Emulab experiment profile to enable easier replication of our

work and extension to future QUIC versions. For every experiment, we try to explain

the root cause of the performance difference between QUIC and TCP, and the key

changes in QUICv1 that led to the performance improvements over gQUICv37.

4



Chapter 2

Background and Related Work

In this chapter, we discuss the design of QUIC and its features that can make it a

better transport protocol than TCP. We relate the features of QUIC to the problems

of TCP and how QUIC addresses them. For example, while TCP uses approximately 3

RTTs (TCP and TLS handshake, Figure 2.2a) to establish a secure connection, QUIC

uses 0-RTT connection establishment to reduce connection latency (Section 2.1.1).

Where applicable, we also note the differences between gQUICv37 and QUICv1 in

relation to the features being discussed. For instance, while gQUICv37 uses Google

Crypto for 0-RTT connection establishment, QUICv1 uses TLSv1.3 for the same

(Figure 2.3). Subsequently, we survey various related works that have studied the

performance of QUIC (Section 2.2).

2.1 QUIC

QUIC, originally an acronym for “Quick UDP Internet Connections” was initially

designed by Jim Roskind at Google in 2012. It was made public and described at

an IETF meeting in 2013 [6]. QUIC aimed to address three main problems of SPDY

(predecessor of HTTP/2) : Reduce connection latency and improve security, avoid

TCP head-of-line (HOL) blocking, and enable faster evolution and deployment than

TCP.

As seen in Table 2.1, the newly designed protocol addresses the issues with TCP

5



TCP Problems QUIC Solutions

Connection Delay 1-RTT / 0-RTT Connection

HOL blocking Independent Streams

Protocol Entrenchment End-to-End Encrypted

Implementation Entrenchment User-space implementation

Table 2.1: Addressing TCP issues with corresponding QUIC features [7].

by including new features. These feature ideas were a culmination of lessons learned

from previous protocol designs [8]. They are as follows:

1. QUIC combines transport and security handshakes to enable 1-RTT/0-RTT

connection establishment, therefore reducing connection latency.

2. QUIC supports multiple independent streams over a single connection, to avoid

HOL blocking.

3. QUIC uses the User Datagram Protocol (UDP) as the underlying protocol and

implements TCP functions like congestion control, flow control, and reliability

in the user space, enabling faster evolution and deployment.

Although we do not discuss all the features of QUIC, we will discuss three of

QUIC’s features, 1-RTT/0-RTT connection, HOL blocking, and congestion control,

in Section 2.1.1, Section 2.1.2 and Section 2.1.3, respectively.

While Google adopted and reported the benefits of QUIC to improve transport

performance for HTTPS [7], the QUIC working group at IETF was formed in 2016 to

standardize the protocol. The working group published QUIC version 1 (RFC 9000)

in 2021 [3], making QUIC a secure, general-purpose transport protocol. Along with

RFC 9000, additional specifications were also introduced. RFC 9001 [9] details the

integration of TLS to secure QUIC, and RFC 9002 [10] outlines the loss detection

and congestion control mechanisms for QUIC.

6



IP

TCP

TLS

HTTP/2

UDP

HTTP/3

Streams

TLS

TCP functions

(in-order, reliability, CCA)

Q
U
I
C

Network

Transport

Security

Application

Figure 2.1: QUIC in relation to TCP and TLS [7].

IETF also defined HTTP/3 [11], the mapping of HTTP to QUIC as a transport

layer protocol.

“HTTP/3 relies on QUIC to provide confidentiality and integrity protec-

tion of data; peer authentication; and reliable, in-order, per-stream deliv-

ery. While delegating stream lifetime and flow-control issues to QUIC, a

binary framing similar to the HTTP/2 framing is used on each stream.

Some HTTP/2 features are subsumed by QUIC, while other features are

implemented atop QUIC” RFC 9114 [11, Section 1.2]

As seen in Figure 2.1, QUIC is a transport layer protocol that is built on top of

UDP and uses TLS for encryption. QUIC adds TCP-like features such as congestion

control, flow control, and reliability in the user space. Similar to HTTP/2, QUIC

provides multiple streams over a single connection, which the application can use to

send data.

Due to the performance benefits of QUIC over TCP, QUIC saw an increase in adop-

tion by the large providers [12], even before standardization. The trend of increasing

QUIC adoption has continued with the usage of HTTP/3, which has generally in-

creased for web traffic [13]. As of today, QUIC is supported by major web browsers

7



like Chrome, Firefox, Safari, and Edge [14].

2.1.1 1-RTT / 0-RTT Connection

While most web traffic on the Internet evolved to require secure connections, the

unencrypted TCP connection required TLS to make it secure (e.g., HTTPS). This

increased connection establishment latency, as the client and server had to perform

both transport (TCP) and security (TLS) handshakes. QUIC aims to improve upon

TCP by combining transport and security handshake, therefore reducing the connec-

tion establishment latency.

This section explores QUIC’s 1-RTT (Figure 2.2b) and 0-RTT (Figure 2.3d) con-

nection establishment, and how it compares to TCP’s 3-RTT connection (Figure

2.2a). Initial QUIC connection will incur 1-RTT (Figure 2.3b) for secure connection

establishment, while subsequent connections will incur 0-RTT (Figure 2.3d) for data

transmission. We now look at initial connection establishment in TCP and QUIC,

as shown in Figure 2.2, where 0-RTT, 1-RTT, 2-RTT, and 3-RTT along the vertical

axis refer to the timeline.

From Figure 2.2a, TCP uses a total of 3x RTT (from 0-RTT to 3-RTT in the

timeline) before it can send the data. Initially between 0-RTT and 1-RTT in Figure

2.2a, the client sends a SYN packet (SYN) to the server, which responds with a

SYN-ACK packet (SYN-ACK), acknowledging the connection request and sending

its synchronization information. Next, between 1-RTT and 2-RTT, the client receives

the SYN-ACK packet and sends an ACK packet (ACK) to acknowledge the server’s

information. This completes the TCP three-way handshake (3WHS), which incurred

1.5x RTT. The 3-way TCP handshake connection corresponds to unencrypted HTTP

traffic. To encrypt the connection, the client and server perform a TLS handshake,

which corresponds to HTTPS (secure) traffic.

At the same time after 1-RTT, the client and server perform a TLS handshake to

secure the TCP connection, which incurs another 1.5x RTT (from 1.5-RTT to 3-RTT

8



Client Server

SYN

ACK

Client
Hello

Server
Hello

Cipher
Spec

Cipher
Spec

SYN-
ACK

Finished

First Application Data

1-RTT

0.5-RTT

2-RTT

1.5-RTT

3-RTT

2.5-RTT

0-RTT

(a) 3-RTT TCP + TLS Connection

Client Server

Initial [0]

Initial [0]

Handshake [0]

1-RTT [0]

Handshake [1]

1-RTT [1]

Initial [1]

Handshake [0]

1-RTT [0]

1-RTT [1]

1-RTT [2]

First Application Data

(b) 1-RTT QUIC Connection

Figure 2.2: Connection establishment in TCP and QUIC. TCP incurs 3-RTT for
secure connection establishment, while QUIC incurs just 1-RTT.

in the timeline). The TLS handshake starts with the client sending a “Client Hello”

message to the server (after 1-RTT, at the start of the 2-RTT timeline), which includes

the TLS version and the cipher suites supported by the client. The server responds

with a “Server Hello” message, which includes the server’s SSL certificate and cipher

suite. At the end 2-RTT in the timeline of Figure 2.2a, the client verifies the server’s

SSL certificate and obtains the server’s public key. For the next 1-RTT, the client

then sends a pre-master secret to the server, which is encrypted using the server’s

public key and can only be decrypted by the server’s private key. The server decrypts

the pre-master secret and both the client and server generate the session key from

the pre-master secret. The server sends a “Finished” message to the client, which is

encrypted using the session key, and the application data can be sent encrypted using

the session key.

9



In total, TCP incurs 3x RTT for secure connection establishment, which includes

1.5x RTT for 3-way TCP handshake (3WHS) [15] and another 1.5x RTT for its

TLS handshake [16] (Total 3x RTT). Since TCP relies on TLS for encryption, and

these protocols operate at different network layers, an encrypted TCP connection

always incurs both transport and encryption handshake costs before data transmission

begins.

However, QUIC which is encrypted by default, uses UDP for transport and inte-

grates with TLSv1.3 for encryption. As shown in Figure 2.2b, the first QUIC packet

from the client (Initial[0]) includes both the client’s TLS “Client Hello” message and

the QUIC transport parameters. As a result, the initial QUIC handshake combines

the typical TCP 3WHS and TLS handshake [3]. After the server receives the Ini-

tial[0] packet, it responds with a packet that includes the server’s TLS “Server Hello”

message (Initial[0]). The server also sends a Handshake[0] packet that includes its

transport parameters. At this point (0.5-RTT in the timeline), the server, with its

private key and client’s public key (from “Client Hello”) can derive the session key

to send application data with 1-RTT packets (1-RTT[0]).

After 1-RTT in the timeline of Figure 2.2b, the client receives the server’s Initial[0]

and Handshake[0] packet and can derive the session key to send application data with

1-RTT packets (1-RTT[0]). Hence, QUIC will complete connection establishment

which includes authentication (3WHS) and encryption (TLS) using just 1x RTT.

Furthermore, QUIC due to its 0-RTT feature can send data over the network

without spending extra RTTs for handshake in subsequent connections. QUIC clients

can reuse the negotiated parameters from the previous connection to the same server,

to send data in the first packet of the connection. As shown in Figure 2.3d, QUIC uses

0-RTT packets to send data in the first packet of the connection. Figure 2.3a and 2.3b

show the initial 1-RTT connection establishment for gQUIC and QUIC, respectively.

Whereas, Figure 2.3c and 2.3d show the subsequent 0-RTT connection establishment

for gQUIC and QUIC, respectively. While both versions of QUIC achieve the same

10



CHLO

REJ

CHLO

REJSHLO

Client Server

Server
Config

Data

Server Hello

Inchoate
Client Hello

Full
Client Hello

Data

First Application Data1-RTT

2-RTT

0-RTT

0.5-RTT

1.5-RTT

(a) gQUIC 1-RTT

Client Server

Initial [0]

Initial [0]

Handshake [0]

1-RTT [0]

Handshake [1]

1-RTT [1]

Initial [1]

Handshake [0]

1-RTT [0]

First Application Data

(b) QUIC 1-RTT

CHLO

REJSHLO

Client Server

Full
Client Hello

Data

Server Hello

Data

Data

First Application Data

1-RTT

0-RTT

0.5-RTT

(c) gQUIC 0-RTT

Client Server

Initial [0]

0-RTT [0]
Initial [0]

Handshake [0]

1-RTT [0]Initial [1]

Handshake [0]

1-RTT [0]

First Application Data

(d) QUIC 0-RTT

Figure 2.3: Connection establishment in gQUIC and QUIC for initial 1-RTT and sub-
sequent 0-RTT connection. gQUIC uses QUIC Crypto for securing QUIC connection,
while QUIC uses TLSv1.3 for the same.

functionality, they use different cryptographic protocols to achieve the same.

While Google developed QUIC, it needed a cryptographic protocol to secure QUIC

connections. As a result, QUIC Crypto [17] was developed, which helped to combine

the cryptographic and transport handshakes to minimize connection RTTs. Figure

2.3a and 2.3c show the initial and subsequent connection establishment for gQUIC,

which uses QUIC Crypto for securing QUIC connection.

In Figure 2.3a, initially, the client “Client Hello” message with the tag CHLO,

are in their inchoate form. In response to an incomplete CHLO message, the server

11



will send a rejection message with the tag REJ. The rejection message will include

information that the client can use to complete the CHLO message, in subsequent

handshake attempts. Upon receiving a complete CHLO message, the server will send

a “Server Hello” message with the tag SHLO, which completes the handshake.

In Figure 2.3c, the 0-RTT connection starts with a Full Client Hello message, as

the client contains server config from the previous handshake. Since the client has the

server config, it can send the 0-RTT data in the first packet of the connection. As the

QUIC Crypto [17, Section: Client handshake] specifies, “Conceptually, all handshakes

in QUIC are 0-RTT, it’s just that some of them fail and need to be retried.”

However, when QUIC became an IETF specification, QUICv1’s cryptographic

handshake was based on TLSv1.3 [16]. Figure 2.3b and 2.3d show the initial and

subsequent connection establishment for QUICv1, which uses TLSv1.3 for securing

QUIC connection. Figure 2.3b is the same as Figure 2.2b, as it shows the initial 1-RTT

connection establishment for QUICv1, and was discussed previously in this section.

Figure 2.3d shows the subsequent 0-RTT connection establishment for QUICv1, where

the client will use the previous session ticket along with other connection parameters

to send 0-RTT data in the first packet of the connection.

In Figure 2.3d, the client initiates the handshake process by sending an Initial

packet (Initial[0]), similar to that in the 1-RTT handshake process, with a few addi-

tional TLS extensions. Specifically, the client utilizes the “pre shared key” extension

to communicate the PSK identity it possesses and employs the “early data” extension

to indicate that it has 0-RTT data to transmit. The application data is contained

within a 0-RTT packet (0-RTT[0]), which is protected with the resumption secret.

This packet, along with the Initial packet, can be encapsulated into a single UDP

datagram.

Upon verifying the 0-RTT packet using the TLS stack, the server will send an Initial

and Handshake packet similar to the 1-RTT handshake process (Figure 2.3b, with few

changes). In the “Server Hello” message, the server will include the “pre shared key”

12



extension to indicate its acceptance of the PSK identity. In the Handshake packet,

the TLS extension “early data” will be appended, signaling the acceptance of the

0-RTT data.

In summary, QUIC’s 0-RTT connection establishment allows it to send data in

the first packet of the connection, without incurring extra RTTs for handshake in

subsequent connections. QUIC’s combined cryptographic and transport handshake

for setting up a secure transport connection gives it an advantage over TCP when

there is a noticeable latency in the network, as we will see in Section 4.3 and 4.5.

2.1.2 Head-of-Line Blocking

TCP TCP

Client Server

HTTP/2 Stream31 2 1

1A1B1C2C 2A2B3A3B3C

Single TCP Connection

(a) TCP HOL blocking problem

QUIC QUIC

Client Server

QUIC Stream31 2 1 3

1A1B1C
2C 2A2B

3A3B3C

Single QUIC Connection

(b) QUIC solving HOL blocking problem

Figure 2.4: QUIC processes each stream independently, avoiding blocking when there
is packet loss in a single stream. Whereas, TCP waits for the retransmission of a lost
packet, blocking the transmission of other streams.

The combining of the security layer and transport layer in QUIC resulted in a

1-RTT/0-RTT connection, a significant improvement over TCP. In addition, QUIC

13



also adopted features from the application layer such as multiplexed streams from

HTTP/2, which allows it to avoid HOL blocking.

HTTP/2 introduced the concept of multiplexed streams (Figure 2.4a) [18, Section

5], which allows multiple independent exchanges of data over a single connection. The

multiplexed stream allowed HTTP/2 to avoid HOL blocking, which was a problem

in HTTP/1.1 [19]. However, HTTP/2 still uses “Single TCP Connection” as the

transport layer, which is unaware of the streams in the application layer. Hence,

TCP processes the data in the order it receives, which causes TCP to wait for the

retransmission of lost packets, causing all other packets in different streams to be

blocked.

For example, Figure 2.4a depicts a scenario where TCP’s HOL blocking disrupts

HTTP/2’s multiplexed streams. While HTTP/2 utilizes three streams (1,2 and 3)

to send data over a “Single TCP Connection”, TCP itself is unaware of the streams

within the data. When a packet 2A from stream 2 is lost, TCP’s in-order delivery

mechanism stalls all subsequent packets (Packet 2B onwards, including packets from

other streams. e.g., Packet 3A) until the missing packet (Packet 2A) is retransmitted

and received. As a result, all streams experience a delay because TCP waits to

resolve the missing packet in the sequence, hindering the potential for parallel data

transmission offered by HTTP/2’s multiplexed streams.

With QUIC adopting multiplexed streams called “QUIC Streams” (Figure 2.4b)

[3, Section 2], it can avoid TCP HOL blocking. As a result, when a packet is lost

in a QUIC connection, only the stream that the packet belongs to will be affected,

and other streams will continue to operate normally. In other words, only the stream

where the data is lost will need to wait for the retransmission of lost packets, and it

will not block other streams from sending data.

Figure 2.4b, shows how QUIC avoids HOL blocking issues. When the application

protocol (e.g., HTTP/3) sends data divided into three streams (1, 2, and 3), QUIC

processes them independently, differentiated by stream ID [3, Section 2.1]. As a

14



result, when packet 2A from stream 2 is lost, QUIC will not stall the transmission of

packets from the other two streams i.e., packets 1B, 1C, 3A, 3B, and 3C from stream

1 and 3 can continue to flow. QUIC maintains in-order delivery within each stream,

ensuring data integrity for each independent flow. QUIC’s ability to process streams

independently allows other streams to progress concurrently uninterrupted even in

case of packet loss.

In general, QUIC’s ability to process each stream independently allows it to avoid

HOL blocking, which results in better performance compared to TCP when there is

packet loss in the network. The performance benefits of QUIC over TCP due to HOL

blocking will be further explored in Section 4.4.

2.1.3 Loss Detection and Congestion Control

As seen previously in Figure 2.1, while QUIC borrowed streams from HTTP/2 and

secure connection from TLS, it uses UDP as the underlying transport protocol. QUIC

uses existing UDP to be able to deploy on the current Internet. However, UDP [20]

does not guarantee packet delivery, ordering, or duplicate protection. Hence, QUIC

has to implement its own TCP-like features of in-order delivery, reliability, and con-

gestion control mechanisms.

As per RFC 9002 [10], QUIC implements loss detection mechanisms similar to

TCP. However, due to protocol differences between QUIC and TCP, the loss detec-

tion and congestion control mechanisms vary slightly. For example, TCP conflates

transmission order at the sender with delivery order at the receiver, resulting in

the retransmission ambiguity problem [21]. QUIC separates transmission order from

delivery order: packet numbers indicate transmission order and delivery order is de-

termined by the stream offsets in STREAM frames. QUIC uses a monotonically

increasing packet number to identify each packet, which is used to detect packet loss

and reordering.

Furthermore, due to the lack of a reference implementation and the user-space

15



nature of QUIC, the CCAs in QUIC have deviated from the TCP implementation

in the kernel [22]. As a result, QUIC performance can vary depending on the loss-

detection mechanism employed, which is further explored in Section 4.6.

2.1.4 Other features

Apart from the features discussed above, QUIC has other features that make it a

better transport protocol than TCP. For example, QUIC uses a 64-bit Connection ID

to uniquely identify a connection, unlike TCP which uses a 5-tuple (source IP, source

port, destination IP, destination port, and transport protocol). This allows QUIC to

migrate connections between different IP addresses and ports, surviving changes to

the underlying network (e.g., NAT timeout and rebinding).

Further, QUIC as a transport protocol has seen applications beyond HTTP/3. For

example, DNS over QUIC (DoQ) [23] provides privacy and latency benefits over DNS

over UDP and DNS over TLS (DoT). Similarly, QUIC has been used for proxying

via MASQUE (Multiplexed Application Substrate over QUIC Encryption) [24][25],

which allows for secure and efficient proxying of application data over QUIC.

2.2 Related Work

QUIC has garnered significant attention from the research community, leading to nu-

merous studies benchmarking its performance against TCP since 2015. The literature

on QUIC performance is extensive, covering various aspects of its implementation [26],

adoption [7], and effects on network performance [5]. In this section, we will discuss

a few notable studies in this domain.

Google introduced QUIC, a new protocol designed from the ground up to im-

prove the performance of HTTPS traffic. The paper by Langley et al. [7] provides

motivation, design, and deployment experience of QUIC at Google. It presents the

motivations behind the development of QUIC, highlighting the limitations of existing

transport protocols as key drivers. These limitations include protocol entrenchment

16



(due to the middle-box), and implementation entrenchment (due to the coupling with

OS). These entrenchments make it slow and challenging to evolve TCP. Moreover,

the initial handshake delay in TCP due to TLS and HOL blocking issues, arising from

the layered structure of protocols, further necessitated the need for a new transport

protocol.

Introducing QUIC, Langley et al. [7] details its features, including connection estab-

lishment, 1-RTT and 0-RTT handshakes, version negotiation, stream multiplexing,

encryption, and other features. They describe how each of these features addresses

issues in TCP, including deployability, security, and reduction in handshake and HOL

blocking delays. For example, QUIC protocol combines its cryptographic and trans-

port handshakes to minimize connection RTTs. This was achieved by integrating

the cryptographic layer into the transport layer (Figure 2.1), reducing the number of

round trips required to establish a secure connection (handshake latency), something

that was not possible in TCP. Similarly, QUIC was designed to support multiple

streams of an application layer, e.g., HTTP/2. Making QUIC aware of multiple

streams over a single connection, allowed it to avoid HOL blocking.

Langley et al. [7] then describe a sophisticated experimentation framework built

within Chromium, enabling comprehensive testing and refinement of QUIC features.

This framework facilitated the gradual deployment of QUIC across Google services.

The performance evaluation of QUIC reveals significant improvements over TCP,

particularly in handshake latency. They see that with increasing RTT, average hand-

shake latency for TCP/TLS trends upwards linearly, while QUIC stays almost flat

(c.f., Figure 7 [7]).

The rigorous testing and iterative improvements resulted in the wide adoption of

QUIC across Google, resulting in 7% of Internet traffic being QUIC (2017), marking

a significant milestone in the evolution of Internet transport protocols. The proto-

col’s overall performance gains and scalability have been demonstrated convincingly

through empirical testing and deployment. The protocol used by Google before stan-

17



dardization is known as Google QUIC (gQUIC).

Following the deployment experience of QUIC at Google, an IETF working group

was formed to standardize QUIC, resulting in RFC 9000, also referred to as IETF

QUIC version 1 [3]. The paper ‘Quick look at QUIC’ by Dellaverson et al. [8] serves

as an RFC explainer, aiming to elucidate the core ideas behind QUIC’s design. Apart

from explaining features of standardized QUIC, they look into the insights gleaned

from the design of other transport protocols such as T/TCP, SCTP, RTP, TLS, and

DTLS which has helped QUIC. The paper underscores that the concepts embodied

in QUIC are a culmination of insights gained from decades of networking experimen-

tation and prior protocol designs.

For instance, inspired by T/TCP, QUIC preserves and leverages connection states

to enable 0-RTT communication. Drawing from RTP, QUIC operates over UDP to

remain outside the kernel. Similarly, akin to SCTP and HTTP/2, QUIC employs

multiple substreams to alleviate HOL blocking and the streams to facilitate multiple

independent exchanges of packets. Adopting these ideas and synthesizing them into

a single protocol allows the QUIC protocol to minimize latency (0-RTT) and address

problems encountered in other transport protocols (e.g., HOL and entrenchment of

TCP).

While Google introduced QUIC and presented its performance results for search

and video, the paper by Kakhki et al. [5] focuses on analyzing the performance of

gQUIC across a variety of network conditions. The work presents a methodology for

generating inferred state machine diagrams for the transport protocol. The authors

use this methodology to analyze the root cause for the performance benefits of QUIC

over TCP.

The experimental setup involved an EC2 instance hosting a Chrome QUIC server

and an Apache server, with clients running Chromium in a desktop environment

(similar to Figure 3.1 from Section 3.2, but over a live network). They use simple

web pages with single and multiple objects, to isolate the impact of parameters such

18



as the number and size of objects. They measure performance using page load time

(PLT), representing the time taken to download all objects on a page.

Notably, we use the same methodology, metrics, and measurement scripts from

Kakhki et al. [5] to measure the performance of QUIC in our work. In their ex-

periments, the authors compare gQUICv34 with TCP and also acknowledge that

gQUICv37 had a similar performance to gQUICv34. Our work benchmarks gQUICv37,

before extending the study to QUICv1, to assess the impact of changes in the pro-

tocol over time. Kakhki et al. [5] observe that QUIC generally outperforms TCP on

desktop environments, except in the jitter scenario (c.f., Figure 8 [5]). This superior-

ity is attributed to QUIC’s 0-RTT capability and efficient loss recovery mechanisms,

driven by its accurate RTT estimation for different network conditions. However,

QUIC exhibits sensitivity to out-of-order packet delivery, treating such occurrences

as losses. We validate these results in Sections 4.3, 4.4 and 4.5. Also, examining the

impact of the updated loss detection mechanism under jitter in QUICv1 in Section

4.6.

Kakhki et al. [5]’s findings reveal that QUIC’s performance advantage over TCP

persists across a range of bandwidths, although the improvement diminishes at higher

bandwidths. Notably, on mobile devices (c.f., Figure 12 [5]), QUIC’s performance is

affected by application-layer packet processing and encryption, leading to a slowdown

attributed to high resource utilization in the application space. Additionally, the

authors discover that QUIC consumes more than twice the fair share of bottleneck

bandwidth compared to TCP, indicating unfairness (c.f., Figure 4 [5]). We look at

this issue of fairness in Section 4.1.

Yu and Benson [27] studied the performance of QUIC and TCP against produc-

tion endpoints hosted by Google, Facebook, and Cloudflare. They find that QUIC’s

performance is largely dependent on the server’s choice of CCA. As an example, they

show that Cloudflare’s H3 (QUIC) lagged behind H2 (TCP). This is attributed to the

use of BBR CCA in H2, while H3 uses CUBIC. The authors also share that the QUIC

19



client configurations play an important role in optimizing QUIC performance. For

example, ngtcp2’s [28] default P256 TLS cipher group, which is incompatible with

Facebook Proxygen’s default X25519 TLS cipher group, resulted in ngtcp2 needing

an extra RTT to resend the correct cipher group. Their observations show that

QUIC’s performance is inherently tied to implementation design choices, bugs, and

configurations, and QUIC measurements are not always a reflection of the protocol.

Besides the performance studies of QUIC, some studies have focused on variations

in QUIC implementation and their impact. For example, Marx et al. [26] compares 15

IETF QUIC and HTTP/3 implementations and finds that there is large heterogeneity

between QUIC stacks. Additionally, they introduce qlog and qvis tools to generate

QUIC logs and visualization QUIC connections, to facilitate root-cause analysis of

different QUIC implementation behaviour. Mishra et al. [22] study the speciation in

QUIC CCA implementations with respect to the reference (kernel) implementation.

They find significant deviation between the existing QUIC implementation of stan-

dard CCAs (CUBIC, BBR, Reno) from the reference implementations. However, in

the following work [29] on 11 popular open-source QUIC stacks, they find that most

QUIC CCA implementations are conformant to kernel implementation in shallow

buffers, but less so in deep buffers.

While most studies either only benchmarked Google QUIC (gQUIC) [5] [7] or the

early draft versions of IETF QUIC [27][26] or both [30]. To the best of our knowledge,

there is no prior work comparing the older gQUIC and standardized IETF QUIC [3],

to assess the changes in a single implementation over 5 years. Our study of gQUICv37

and QUICv1 compares the performance of the two versions of QUIC against the

corresponding TCP version to assess the impact of the changes in the protocol over

time.

Understanding how QUIC behaves in different environments is valuable, but re-

producing such studies can be challenging due to the variability in methodologies

and setups provided. For example, Kakhki et al. [5] used a local server over a live

20



network, while Yu and Benson [27] used a production server, making replication diffi-

cult. Although Yu and Benson [27] provided setup information for reproduction, the

workloads were on a production server that no longer exists. Moreover, relying on

servers not controlled by the researchers introduces uncertainty due to the constant

evolution of QUIC implementations.

With our work in Emulab, we have configured the profile to enable the same exper-

iment to run effortlessly while still maintaining pluggable aspects such as workloads,

protocol versions, and network conditions. We provide all the necessary compo-

nents including workloads, servers, clients, testbed configurations [31], and automa-

tion scripts [32] to facilitate the complete reproduction of the experiments. Further,

during this work, we found that Chromium is dropping support for gQUIC versions

[33]. This makes it the right time to measure the performance of older gQUIC before

moving on to the future IETF version of a continuously evolving QUIC protocol.

2.3 Concluding remarks

In this chapter, we discussed the few important features of QUIC and how they

address the problems of TCP. We also surveyed the related works that have studied

the features, performance, and implementation of QUIC. In the next chapter, we will

discuss the methodology and setup used to measure the performance of QUIC and

TCP.

21



Chapter 3

Experimental Methodology

In this chapter, we present the methodology, tools, and workloads used in our ex-

periments. Building upon the work of Kakhki et al. [5], but in a different environ-

ment (i.e., Emulab), we extend their experiments to include IETF QUIC version 1

(QUICv1). For simplicity and clarity, we will refer to Google QUIC as gQUIC (e.g.,

gQUICv34, gQUICv37), IETF QUIC (as defined in RFC 9000 [3]) as QUICv1 (i.e.,

version 1 as QUICv1) and just QUIC to refer to the protocol. To enable easier repli-

cation of our work and extension of this methodology to future QUIC versions, we

share the reproducible the Emulab experimental profile.

3.1 QUIC Versions

We now explore the two QUIC versions of the QUIC protocol utilized in this study:

Google QUIC version 37 (gQUICv37) and IETF QUIC version 1 (QUICv1). While

both share the fundamental QUIC design, they possess distinct features (e.g., different

crypto protocols for encryption) and functionality (e.g., QUICv1 is general-purpose

transport, while gQUICv37 was only used for the web) stemming from their separate

development paths. Previous work conducted in 2017 [5] did not include QUICv1,

which was finalized in 2021 [3]. Therefore, we benchmark QUICv1 to assess its per-

formance in relation to the TCP in 2024. To understand how QUIC has evolved since

2017, we compare each QUIC version (gQUICv37 and QUICv1) to the TCP imple-

22



mentation of its respective period. QUIC version 2 (QUICv2) [4] was standardized in

May 2023. As per RFC 9369, “QUIC version 2 is meant to mitigate ossification con-

cerns and exercise the version negotiation mechanisms.” [4]. Since this does not define

or enhance any performance features, we do not include QUICv2 in our performance

benchmarking.

3.1.1 Google QUIC (gQUIC)

Since Google introduced the QUIC protocol to the world, Google’s implementation of

the protocol (gQUIC), formed the majority of QUIC traffic on the Internet [7]. How-

ever, the IETF QUIC working group subsequently took the lead in standardizing the

protocol, resulting in a version distinct from gQUIC (Figure 1.1). Post-IETF adop-

tion of the protocol, Google then started to converge Google QUIC to IETF QUIC.

This convergence began with gQUIC version 44 [34], which incorporated all changes

outlined in the IETF invariants draft [35]. While subsequent versions of Google QUIC

were based on the IETF QUIC standard, Google QUIC was still different from IETF

QUIC in many ways. For example, Google QUIC used Google’s QUIC Crypto library,

while IETF QUIC used TLSv1.3 for packet encryption (Table 3.2 QUIC crypto row).

For our experiments, we employed gQUICv37, because it represents the version of

gQUIC before the transition to IETF QUIC, and there is prior work that established

the performance of gQUICv37 [5]. We accessed gQUICv37 of 2017 by leveraging

an older Chromium codebase and browser that supported this earlier version. The

specific Chromium versions used are detailed in Section 3.2.3. During our experimen-

tation with Google QUIC, we found that the latest Chromium (i.e., version 112) is

deprecating gQUIC in favor of IETF QUIC, by dropping support for all pre-IETF

versions of QUIC (gQUIC and non-TLS code paths) [33]. As a result, starting from

Chromium version 112, we found that the Chromium browser did not connect to the

server running gQUIC. Hence, our work is useful in capturing the performance differ-

ence between these two versions of QUIC (gQUICv37 and QUICv1) before gQUIC is

23



fully phased out.

In our evaluation, we only benchmark version 37 of Google QUIC (gQUICv37).

Previous work by Kakhki et al. [5] demonstrated that gQUIC versions 34 and 37

exhibited similar performance characteristics. They reported that the primary dif-

ference between these versions was an increase in the Maximum Allowed Congestion

Window (MACW) from 430 to 2000 in version 37.

3.1.2 IETF QUIC (QUIC)

IETF QUIC [3] represents the standardized and evolved version of the Google QUIC [1].

While retaining the core design principles of QUIC, numerous significant changes have

been implemented. Notably, IETF QUIC leverages TLSv1.3 for packet encryption,

differing from gQUIC’s use of its own crypto library.

While Google QUIC was started as an alternative to TCP+TLS+HTTP/2, pri-

marily to improve web page load times, IETF QUIC defined a clear boundary between

the transport layer and the application layer. RFC 9000 [3] established QUIC as a

general-purpose transport layer protocol. HTTP/3, as described in RFC 9114 [11]

was the successor of HTTP/2 to use QUIC as its transport layer.

We utilized QUICv1, implemented within Chromium, as our second QUIC version

for the experiments (see Table 3.2, column ‘Extended’). While the fundamental design

of QUIC remained the same, there were significant changes in the protocol. As we will

see in Section 4, the performance benefits of QUIC over TCP, given by fundamental

features like 0-RTT (Section 2.1.1) and HOL blocking (Section 2.1.2), have remained

consistent across the two versions (Section 4.3 and 4.4). However, the performance

of QUICv1 has improved over gQUICv37 in scenarios with jitter, where there were

changes to loss detection strategies under packet reordering (Section 4.6).

24



3.2 Experimental Setup on Emulab

In this section, we detail the components of our experimental setup (Figure 3.1).

Starting with the Emulab as our hardware component, we then discuss Dummynet,

which we use to shape the network traffic. Next, we discuss the software involved,

such as Chromium as our QUIC implementation and other tools for traffic measure-

ment (e.g., chrome-har-capturer for HAR file.). Finally, we present the differences in

experimental setup and protocol versions compared to the original work by Kakhki

et al. [5].

3.2.1 Emulab testbed

Emulab is a network emulation testbed facilitating repeatable research [36]. It pro-

vides researchers with complete control over the experiment testbed, allowing them

to develop, debug, and evaluate their system in a controlled environment. With the

help of an Emulab profile [37], you can specify an arbitrary network topology, giving

you a controllable, predictable, and repeatable environment. While there are other

installations of Emulab, we use the primary installation [38] run by the Flux Group,

part of the School of Computing at the University of Utah.

The Emulab profile allows users to define the specific configuration of their ex-

periments, including network topology, node setup, and software environment. The

profile can be created using either a graphical user interface (GUI) or through Python

scripts using the geni-lib library. Once created, profiles can be shared with others,

allowing researchers to collaborate and reproduce experiments. By having the experi-

mental setup and configuration defined in a script, it is easy to have different versions

of the same experiment. For example, the “Replicated” and “Extended” experiments

of Table 3.2 are two different versions of the same profile. The profile also facilitates

the automation of software installation.

With reproducibility as one of our goals, all our experiments are conducted on the

25



QUIC
server

Dummynet

ServerBridge Node

1 Gbps
TCP Apache

server

1 Gbps

UbuntuFreeBSD

Chrome
Browser

HAR
capturer

Client

Ubuntu

Figure 3.1: Experiment Topology in Emulab. The server and client are connected via
a link bridge node, which shapes the traffic.

Emulab testbed [36]. As shown in topology Figure 3.1, the setup comprises three

physical nodes: a server, a client, and a link bridge node. The server and client are

designated as Emulab nodes of type d430 and d710, respectively [39]. The d430 node

has 64 GB memory and two Intel E5-2630v3 8-Core CPUs at 2.4 GHz. The d710

node has 12 GB memory, 8 Core Intel(R) Xeon(R) CPU E5530 @ 2.40GHz. Both

the server and client node run Ubuntu 22.04, while the link bridge node, connecting

them, operates on FreeBSD 13.2. Since Dummynet comes pre-installed on FreeBSD,

the Emulab “Bridge Node” (Figure 3.1) runs FreeBSD.

The server hosts both the TCP and the QUIC server, serving HTTP/2 and HTTP/3

requests, respectively. Since both servers are on the same hosts, we make sure that

both TCP and UDP reach the desired bandwidth and that all system configurations

are the same to ensure there is no unfair advantage for either protocol. We present the

precise socket buffer sizes and other system configurations in Section 3.2.4. Apache

is used as the HTTP/2 server (with default Linux TCP stack configuration), and

the QUIC sample server from Chromium [40] is used as the QUIC server. Addi-

tionally, Apache is configured to serve HTTPS requests using TLS, to make a fair

comparison with QUIC, which has encryption built in. Throughout this thesis, we

refer to measurements that include HTTP/2+TLS+TCP as “TCP” and HTTP/3 as

“QUIC”.

Our client has Chromium as the browser and chrome-har-capturer tool [41] for

26



request timing measurement. Both Chromium and HAR capture tool are further

discussed in Section 3.2.3 and 3.2.3 respectively. Apart from the browser, the client

also has the necessary network tools to measure and validate the network parameters.

For instance, we use iperf [42] to measure the bandwidth of the link between the

server and client and ping to measure the latency and packet loss. tcpdump [43] is

used to capture the network traffic between the server and client, for measuring the

throughput and packet inspection for further analysis.

To shape traffic between the server and client, we utilize Dummynet [44], a widely

used link emulator. Dummynet, running on the link “bridge node”, enables us to

precisely control network parameters such as bandwidth, latency, and packet loss.

We expand on the Dummynet usage in Section 3.2.2.

The two key benefits of using Emulab for our work are: Firstly, it allows us to define

the network topology we need in the form of a Python script using geni-lib [45], a

Python library for defining Emulab resources. Secondly, The Emulab experiment

profile that supports geni-lib can be shared with other researchers to replicate the

same experiments in Emulab. We have shared our experiment profile [46], which when

instantiated in Emulab or any testbed that uses components of the GENI Software

Architecture [47] produces a ready-to-use experimental setup. The shared profile,

workloads combined with methodology, and updated scripts [48] of Kakhki et al. [5]

our entire setup can be recreated with minimal effort and with configurable options

like choice of server, client, workloads, and network parameters. With this precise

network testbed, the results presented can not only be replicated but also used as the

basis for evaluation of future QUIC versions (Figure 1.1).

3.2.2 Dummynet traffic emulator

Dummynet [44] is a commonly used link emulator that relies on ipfw [49] for packet

classification. Upon interception in the network stack, packets are directed based on

ipfw rules to their respective pipes. Pipes are the core unit of Dummynet, responsible

27



for shaping the traffic after receiving packets from their corresponding ipfw rules.

Within a pipe, incoming packets are queued if capacity allows, with the queue

being emptied at a rate dictated by the link’s bandwidth. After exiting the queue,

packets undergo a specified propagation delay before being reintroduced into the

network stack. Additionally, Dummynet can perform non-congestion-related drops

based on the given loss probability, effectively emulating links with uniform random

loss patterns.

Emulab [36] uses Dummynet to emulate WAN links between nodes. The Emulab

resource mapper automatically inserts Dummynet-enabled Bridge Nodes [50] between

two physical nodes to shape traffic based on the specified network parameters. Bridge

nodes act as Ethernet bridges, so they are transparent to experimental traffic.

We use Link Bridge Nodes [50] (Figure 3.1) for traffic shaping between server

and client, to avoid the pitfalls of enforcing traffic shaping at endpoints as noted in

Kakhki et al. [5]. The Bridge Nodes [50] also provides a Dummynet wrapper script

called delay config which helps us to easily update the network parameters like

BANDWIDTH, DELAY, LOSS (PLR). The delay config script accepts the Emulab

project name, experiment name, and the link name (bridge) as arguments, and then

applies the specified network parameters to the link.

delay_config -b QUIC -BENCH EXP1 \\

link_bridge BANDWIDTH =10000 DELAY =36 PLR =0.01

Listing 3.1: Sample Delay config command to set link to 10 Mbps, 36 ms RTT and
1% loss.

In Listing 3.1, we show Emulab delay config traffic shaping command to limit

link bandwidth to 10000 Kb/s (10 Mbps), with 36 ms RTT and 1% loss (Example

parameter of Table 3.3, setting of 10 Mbps row of Figure 4.5b), for the link named

link bridge in the experiment EXP1 of QUIC-BENCH project.

28



3.2.3 Chromium QUIC Stack

We use Google’s Chromium QUIC as the QUIC stack for our experiments. Chromium

is an open-source browser project behind the Google Chrome browser and was the

sole browser to support QUIC in 2017 [5]. The Chromium project is one of the few

implementations that support both early versions of Google QUIC and standardized

IETF QUIC (see row “Chromium browser”, Table 3.2), both of which are essential

for our experiment. Additionally, the Chromium project provides both server and

client implementations of QUIC [40].

However, working with Chromium’s large codebase can be cumbersome. Down-

loading the complete codebase and its history of tags and branches results in a sizable

100 GB of data and requires several hours. Furthermore, Chromium lacks support

for building older versions of the code, specifically those predating version 68 (release

branch 3420)1. This presented a challenge as we needed access to the Chromium

60, which supports gQUICv37. Consequently, we sought an alternative approach to

building the entire Chromium codebase.

Fortunately, the Chromium project offers a standalone QUIC implementation, fa-

cilitating experimentation with QUIC without compiling the entire Chromium code-

base. Leveraging this, we built the QUIC sample server (Figure 3.1) [40] from the

standalone repository. Whereas, we obtained pre-built Chromium browsers as clients.

The smaller codebase of the standalone repository enabled us to instrument the QUIC

server for logging essential information during our experiments. For example, we

added logging to get packet loss count and congestion window size for the QUIC

server, which aided our analysis of QUIC fairness and performance.

Before Chromium version 68, proto-quic [51] served as a standalone repository for

QUIC code. However, following 2019, the proto-quic project was archived in favor

of Google quiche [52], an upstream repository for QUIC code used in Google servers

1“Getting started with release branches”. Retrieved from https ://www.chromium.org/
developers/how-tos/get-the-code/working-with-release-branches/ [accessed on 2024-03-05]

29

https://www.chromium.org/developers/how-tos/get-the-code/working-with-release-branches/
https://www.chromium.org/developers/how-tos/get-the-code/working-with-release-branches/


and the Chromium browser. Therefore, to build the 2017 version of the gQUICv37

server we use proto-quic and Google quiche to build the current QUICv1 server.

For the Chromium client, we utilized Chromium browser versions 60.0.3108.0,

supporting gQUICv37, and version 111.0.3112.101, supporting QUICv1 (see row

“Chromium browser” of Table 3.2), both obtained from the official Chromium build

page for Linux2.

Despite the standardization of QUIC, there are variations in QUIC implementa-

tions, including differences in design choices [26] and implementation of CCAs [22].

As a result, we have chosen to evaluate only a single QUIC implementation in our

study. This decision allows us to focus solely on assessing the protocol evolution from

Google QUIC to IETF QUIC within the Chromium project.

HAR Capturer

We utilize the Chromium browser’s ability to capture network-level metrics by gen-

erating HTTP Response Archive (HAR) [53] files for each request. These HAR files

enable us to measure the page load time (PLT) of web pages accurately. They help

us validate, if our requests are being served using the desired protocol (HTTP/2 or

HTTP/3) and that the requested resources are transmitted over the network without

any compression or caching.

To capture these metrics, we employ the chrome-har-capturer tool [41], which

automatically generates HAR files for each HTTP request made by the browser.

This tool allows us to automate the process by running the browser in headless mode

and capturing the HAR file of the request. We then use the HAR file to extract the

resource timings and calculate the PLT of the web page, facilitating our performance

evaluation. As shown in row “HAR Capturer tool” of Table 3.2, appropriate versions

of the chrome-har-capturer tool are used for each Chromium browser version, ensuring

compatibility with the respective browser.

2“Download Chromium”. Retrieved from https ://www.chromium.org/getting- involved/
download-chromium/#downloading-old-builds-of-chrome-chromium [accessed on 2024-03-05]

30

https://www.chromium.org/getting-involved/download-chromium/#downloading-old-builds-of-chrome-chromium
https://www.chromium.org/getting-involved/download-chromium/#downloading-old-builds-of-chrome-chromium


To enable 0-RTT connections in QUIC, the client must retain server information

from the previous connection. However, in our benchmarking experiments, each re-

quest is initiated from a new browser instance to prevent caching and the reuse of

previous TCP/UDP connections. This approach, aimed at ensuring consistent testing

conditions, inadvertently prevented our Chromium browser from attempting 0-RTT

connections in QUIC experiments, even for subsequent connections to the same server.

To address this issue, we modified the default behavior of the chrome-har-capture [41]

tool by leveraging its user script feature.

To ensure 0-RTT connection our custom user script makes use of a single browser

context for all measurements. Additionally, the script cleared the cache and closed

connections between subsequent measurements, preventing their reuse. As a result,

our first measurement involved launching a new Chromium browser instance to cap-

ture PLT values. However, since this initial fresh browser lacked sufficient information

about the server (Chromium HTTPServerProperties), it was unable to attempt a 0-

RTT connection. Subsequent measurements were conducted using the same browser

context after cache clearance and connection closure. In this scenario, the Chromium

browser possessed the necessary information about the QUIC server, enabling it to

attempt 0-RTT connections. Consequently, to accurately represent QUIC features

in our measurements, we discarded the initial measurement that used a 1-RTT con-

nection. In total, we conducted 21 runs for each scenario. The initial measurement

was discarded, and the remaining 20 runs were used in our experiments. However,

this initial measurement is included for comparison purposes when analyzing 1-RTT

versus 0-RTT PLTs of QUIC (see Section 4.3.1).

3.2.4 Setup Differences

In contrast to previous work by Kakhki et al. [5] (2017), our experimental setup

differs in several key aspects as detailed in Table 3.1. While Kakhki et al. [5] used

a desktop as the client and Amazon EC2 for the server, we utilize Emulab nodes

31



Kakhki ’17 [5] This work

Client Machine Desktop Emulab Node

Server Machine Amazon EC2 Emulab Node

Network Type Live Network Emulated Ethernet Bridge

Traffic Shaping TC Netem Dummynet and TC Netem

Workload HTML web pages with Images HTML web pages with Images

Table 3.1: Differences in experimental setup components. The use of Emulab and
Dummynet enables reproducible experiments.

for both client and server components. Moreover, Kakhki et al. [5]’s experiments

were conducted on a live network, with traffic shaping achieved using TC Netem,

whereas we employ an emulated network environment provided by Emulab, with

traffic shaping implemented using the Dummynet. We utilize Dummynet for all

aspects of traffic shaping. However, Dummynet within the link bridge node does not

support updating latency at a sufficiently high rate to introduce jitter. So, we use

TC on the client node to achieve this functionality.

Since we evaluate two QUIC versions, we use two versions of the same setup as

detailed in Table 3.2. In our first setup (Table 3.2, column “Replicated” for gQUICv37

experiments), aimed at replicating the conditions of the previous work by Kakhki et

al. [5], we had to go back in time to evaluate older Google QUIC version 37 from

2017. Running the older gQUIC version posed several challenges. Firstly, locating

the appropriate Chromium version that supported gQUICv37 and its corresponding

Chromium browser client was a hurdle, as older gQUIC versions are phased out

and are not readily available in the latest code base. Secondly, we had to set up

the appropriate build environment to compile and build the old Chromium code

base. For instance, Chromium from 2017 would only build on Ubuntu 14, 16, or 18,

making it necessary to find compatible tools and libraries for the older software stack.

Lastly, auxiliary tools like chrome-har-capturer had to be compatible with the older

Chromium version to capture the HAR files for performance analysis. We detail the

32



specific software versions used in Table 3.2.

To gain access to the gQUICv37 protocol code, we used the old Chromium release

branch version 60.0.3108.0 (60.0.3112.101, used by Kakhki et al. [5] was not available

in proto-quic repo [51]). The build scripts of Chromium from 2017 were not sup-

ported in the latest Ubuntu 22.04. Hence, we use Ubuntu 18.04 with Linux kernel

4.15.0-204-generic (Ubuntu 14.04, used by Kakhki et al. [5] was deprecated in Em-

ulab). Additionally, to encrypt HTTP/2 traffic, we utilized TLSv1.2 (TLSv1.3 was

not available in 2017) to be comparable with gQUICv37 which uses QUIC Crypto for

encryption.

In our second setup (Table 3.2, column “Extended” for QUICv1 experiments), the

same experimental topology (from Figure 3.1) was used, but with updated versions

to benchmark QUICv1. In contrast to the efforts required to set up the gQUICv37

environment, the QUICv1 setup was relatively straightforward. Since QUICv1 is the

current version, the Chromium browser and corresponding QUIC server code were

readily available in the latest Chromium codebase with support for the latest Ubuntu

22.04. Here, we utilized the latest Chromium browser version 111 and obtained the

QUIC server code from the corresponding upstream branch of Google quiche [52]. We

also employed the latest compatible versions of the chrome-har-capture tool, ensuring

compatibility with Chromium and the supported Chrome Debugging Protocol. For

HTTP/2, we upgraded to TLSv1.3, matching the encryption used by QUICv1 to

make a fair comparison.

3.2.5 Emulab Setup Calibration

We chose Emulab as our testbed for its ability to provide a controlled and reproducible

environment for our experiments. Our choice of an emulated test-bed presented its

own challenges, which required some calibration listed below.

1. Latency: We add an implicit latency of 36 ms (validated via ping) to the

link between server and client in Emulab, to match the typical WAN latency

33



Kakhki ’17 [5] Replicated Extended

QUIC version gQUIC v37 gQUIC v37 IETF QUIC v1

TCP version (Kernel) 4.4.0-34-generic* 4.15.0-204-generic 5.15.0-56-generic

QUIC server (Chromium) 60.0.3112.101ˆ 60.0.3108.0 C43017f

TCP server (Apache) Apache 2.4 Apache/2.4.29 Apache/2.4.52

QUIC crypto library QUIC Crypto QUIC Crypto TLSv1.3

TCP crypto library TLSv1.2 TLSv1.2 TLSv1.3

Operating System Ubuntu 14.04* Ubuntu 18.04 Ubuntu 22.04

Chromium browser 60.0.3112.101ˆ 60.0.3108.1 111.0.5563.0

HAR Capturer tool Unknown 0.9.5 0.14.0

Table 3.2: Differences in software versions for gQUICv37 and QUICv1 experiments.
(*) Ubuntu 14.04 was deprecated in Emulab, hence we used Ubuntu 18.04 for
gQUICv37 experiments. (ˆ) Chromium 60.0.3112.101 was not available in proto-quic
repo, so we used the closest available version 60.0.3108.0.

reported earlier [5].

2. Bandwidth: In the default settings of the Dummynet the throughput in higher

delays was not close to the desired bandwidth. Hence, we adopt calibration from

previous work [54] to reach the desired bandwidth (validated via iperf), by

increasing socket buffers and Dummynet queue sizes to match the bandwidth-

delay product (BDP) of our link.

Kakhki et al. [5] observed QUIC outperforming TCP in baseline scenarios (36 ms

RTT, 0% loss - Section 4.3) due to an implicit latency of 36 ms present in their live

network. However, our testbed had a significantly lower implicit latency of around

0.5 ms to 2 ms due to the direct connection between the server and client via a bridge

node (Dummynet pipes). To align with Kakhki et al. [5], we added a default implicit

latency of 36 ms in our experiment profile. Before each experiment, we validated the

latency using the ping command to ensure that the desired latency was present.

To achieve the desired bandwidth in Emulab under high BDP settings, we adjusted

the system configurations. Additionally, bandwidth measurements were conducted

34



using iperf [42] to ensure that the desired bandwidth was achieved. We ensured that

the link could hold 2x BDP of data throughout its path by increasing the socket

buffer sizes on all three nodes and enlarging the Dummynet queue size accordingly.

For instance, in a setting with 100 Mbps and a 112 ms RTT, we set the buffer size

and queue to 2800000 bytes (2 ∗ ((100 ∗ 106 ∗ 112 ∗ 10−3)/8)). We utilized previous

work by Jones [54] to configure the Dummynet queue size.

Apart from the calibration to our Emulab’s experimental setup, other software

calibrations were needed for a fair comparison with previous work [5]. Kakhki et

al. [5] had changed certain configurations of the QUIC sample server (Kakhki et al.

[5] uses the term “toy server”) to calibrate its performance close to Google servers.

However, upon our investigation, we found that those configurations and bug fixes

were already present in the current Chromium source code (Chromium version 111).

Namely, the slow start bug has been fixed [55] and the maximum congestion window

size has been increased [56] [57]. Our investigation in this regard was aided by previous

replication work by Wong and Tieu [58].

3.3 Parameters, Workloads and Metrics

In this section, we present the parameters, workloads, and metrics used in our exper-

iments to evaluate the performance of QUIC in a desktop environment.

Table 3.3 outlines the parameters considered for our tests, including variations in

RTT (36 ms, 112 ms), packet loss rates (1%), and bandwidths (10 Mbps, 50 Mbps,

100 Mbps), as well as webpage sizes and the number of objects per page. While

Kakhki et al. [5] considered additional setup and workloads such as proxy servers,

mobile environment, and video streaming performance, we focus on the parameters

listed in Table 3.3 to evaluate the PLT performance of QUIC in a desktop environ-

ment. We also do not consider 0.1% packet loss, as this was reported in Kakhki et

al. [5] while testing cellular networks.

In addition to the parameters listed in Table 3.3, we also consider the impact of

35



Parameter
Values Tested

Kakhki ’17 [5] This work

Rate limits (Mbps) 5, 10, 50, 100 5, 10, 50, 100

Net Delay (RTT) 36ms, 112ms 36ms, 112ms

Extra Loss 0%, 0.1%, 1% 0%, 1%

Number of objects 1, 2, 5, 10, 100, 200 1, 2, 5, 10, 100, 200

Object sizes (KB)
5, 10, 100, 200, 500, 1000,

10,000, 210,000

5, 10, 100, 200, 500, 1000,

10,000, 210,000

Proxy QUIC proxy, TCP proxy None

Clients Desktop Emulab Node

Video qualities tiny, medium, hd720, hd2160 None

Table 3.3: Differences in experimental parameters.

packet reordering on QUIC performance (Section 4.6). In our experiments, we cause

packet reordering by introducing a jitter, which is created by applying continuous

random latencies within a specific range (50 ms) to the link connecting server and

client. This random variation in latency causes different packets to experience differ-

ent latencies, resulting in packet reordering. To ensure a more rapid application of

latency, we use the tc command on the local client interface to add random latency.

This approach is preferred over Dummynet at the bridge node, as it provides a higher

frequency of updates, which is essential for effective packet reordering.

We use the same type of workloads as Kakhki et al. [5], which consist of simple

web pages comprising static HTML files referencing JPG images, of varying sizes

and numbers. To prevent caching and compression, we include all necessary HTTP

directives. For TCP, this involves modifying the Apache configuration (e.g., Header

set Cache-Control “no-store,no-cache”), while for QUIC, we prepare web pages with

embedded HTTP directives (e.g., cache-control: no-store,no-cache), due to the basic

functionality of the QUIC sample server. To assess the impact of multiple objects

36



on webpage loading, we embed multiple image files within a single HTML page.

In the TCP case, we use the Flask web framework to render HTML with multiple

object references, while for QUIC, we manually reference the objects multiple times

within the HTML file. All our workloads are synthetic and are shared as part of the

replication package [48].

Since QUIC is often used with HTTP/3 to deliver user-facing web content, we focus

on web PLT as a metric. PLT is the request-response latency obtained by measuring

the total duration from the time the client request started to the time when the web

page is completely loaded. PLT values are extracted from the “onLoad” field of HAR

file [53] produced by chrome-har-capturer tool [41] (Section 3.2.3). We make sure

to exclude DNS lookup time from the total timing, to ensure we only capture the

resource loading time.

We run the Chromium browser in headless mode and make requests via the chrome-

har-capturer [41], which connects to the browser using Chrome’s remote debugging

protocol. As described earlier, we utilize the chrome-har-capturer tool to capture

resource timings for each request. All measurements are automated through a Python

script, and the testbed is defined using the Emulab experimental profile [31]. To

facilitate result reproducibility, we provide our synthesized workloads of web pages as

part of our replication package on GitHub [48], which were absent in previous work

[5] [27].

37



3.4 Concluding remarks

In this chapter, we detailed the components of our experimental setup (Figure 3.1),

including the Emulab testbed, Dummynet traffic emulator, Chromium QUIC stack,

and the chrome-har-capturer tool. We also discussed the differences in our experi-

mental setup compared to the original work by Kakhki et al. [5], and the calibration

required to align our setup with the previous work. We then presented the param-

eters, workloads, and metrics used in our experiments to evaluate the performance

of QUIC against TCP in a desktop environment. In the next chapter, we present

the results of our experiments, comparing the performance of QUIC and TCP under

various network conditions and workloads.

38



Chapter 4

Empirical Results

By design, QUIC promises to provide performance improvements to TCP. It is im-

portant to evaluate these improvements in actual implementation, to measure the

effectiveness of the new features of QUIC. In this chapter, we discuss the empirical

results of evaluating QUIC and TCP using web workloads. Additionally, we bench-

mark two different versions of QUIC (i.e., gQUICv37 and QUICv1) and explain the

evolution of design and its performance impact.

In our fairness experiments, we show that the QUIC CUBIC Congestion Control

Algorithm (CCA), especially in Chromium, can be unfair to TCP CUBIC. However,

by changing a single parameter in QUIC CUBIC (N = 1), we can restore fairness. In

the performance experiment, QUIC outperforms TCP in most cases (e.g., with added

loss and latency, QUIC is better across bandwidths and workloads, see Figures 4.6b

and 4.6c) except when there are a large number of small objects (Figure 4.6d, column

10 KB x 100). We also show that the new dynamic reordering threshold in QUICv1

is better than the static reordering threshold of gQUICv37, for loss detection under

packet reordering scenario (Figures 4.11c and 4.11d).

4.1 QUIC Fairness

When multiple protocols are operating over a network, these transport-layer proto-

cols need to be fair to each other by consuming only their fair share of bottleneck

39



bandwidth. For example, if a network link is shared between two protocol flows, then

each protocol should consume half of the total bandwidth. An unfair protocol con-

suming more than its share may negatively impact the performance of the competing

protocol flow.

While Carlucci et al. [59] and Kakhki et al. [5] studied the fairness between older

versions of QUIC and TCP in 2015 and 2017, respectively, we evaluate the fairness

with the current state of QUIC (i.e., QUICv1). In addition to the CUBIC CCA

evaluation from previous studies, we also evaluate the fairness of QUIC with BBR

CCA, which was not readily available in 2017 [5]. We initiate HTTP/3 and HTTP/2

+ TLS connection from the client to the server simultaneously and measure the

throughput of each protocol. The HTTP/3 protocol is referred to as QUIC, and

HTTP/2 + TLS is referred to as TCP in our experiments. Below is the list of CUBIC

and BBR scenarios that we tested, and their results are summarised in Tables 4.1

and 4.2, respectively.

4.1.1 CUBIC Fairness

1. QUIC CUBIC vs QUIC CUBIC Similar to previous studies [5], we find

that two QUIC flows are fair to each other (Table 4.1, QUIC vs QUIC), and the

same is true for two TCP flows under CUBIC CCA (Table 4.1, TCP vs TCP).

2. QUIC CUBIC vs TCP CUBIC The Chromium QUIC implementation we

studied uses a CUBIC congestion control parameter called connection emulation

N, which emulates N TCP connections for the Congestion Window (CWND)

update. This N had a default value of N = 2 in gQUICv34 [5] and still has N

= 2 in QUICv1.

As shown in the timeline Figure 4.1a, QUIC CUBIC (red line) is unfair to

TCP CUBIC (blue line) by occupying twice the bandwidth as TCP CUBIC.

While QUIC CUBIC on average occupies 3.74 Mbps, TCP CUBIC is only able

40



to occupy 1.24 Mbps (Table 4.1, QUIC vs TCP). This is expected, as N = 2

means QUIC emulates 2 TCP connections. We further changed the QUIC server

(Table 3.2, row ‘QUIC server’, column ‘Extended’) to emulate 1 TCP connection

(N = 1) to study the influence of CUBIC parameter N. From Figure 4.1b, we see

that QUIC CUBIC and TCP CUBIC share almost equal amounts of bottleneck

bandwidth and are fair to each other (Bandwidth numbers for N = 1 case is

not shown in the Table). Hence, N directly influences the bandwidth-occupying

capacity of QUIC CUBIC. So, QUIC is fair to TCP, when it is emulating a

single TCP connection.

This result is different from the findings of Kakhki et al. [5], who reported that

when N (connection emulation) was set to 1, it did not affect the fairness of

QUIC and concluded that QUIC CUBIC was unfair to TCP CUBIC. But, our

results show that when N is set to 1, QUIC CUBIC is fair to TCP CUBIC. It

is important to note that we did not find the CUBIC parameter N, in other

implementations of QUIC (e.g., ngtcp2), and it was only relevant to Google’s

implementation [52] (quiche).

3. QUIC CUBIC vs multiple TCP CUBIC connections To further validate

the behavior of N, we repeat the experiment by having a single QUIC connection

compete with multiple TCP connections. When there are M TCP connections

and one QUIC connection, a QUIC connection should consume 2/(M+1) of the

bottleneck bandwidth [5].

From Figure 4.1c, we see that this holds true, where a single QUIC connection is

occupying the bandwidth equivalent of two TCP connections (Table 4.1, QUIC

vs TCPx2). The effect of N can be further validated from Figure 4.1d where

a single QUIC connection with N = 1 roughly occupies equal bandwidth as

the two other TCP connections. In general, with QUIC CUBIC parameter set

appropriately (i.e., N = 1), QUIC CUBIC is fair to TCP CUBIC.

41



(a) QUIC CUBIC (N=2) vs. TCP CU-
BIC

(b) QUIC CUBIC (N=1) vs. TCP CU-
BIC

(c) QUIC CUBIC (N=2) vs. 2 TCP CU-
BIC flows

(d) QUIC CUBIC (N=1) vs. 2 TCP CU-
BIC flows

Figure 4.1: Throughput timeline, QUIC CUBIC is unfair to TCP CUBIC when N
= 2. Throughput of QUIC and TCP when transferring data over the same 5 Mpbs
bottleneck link (RTT = 36 ms, loss = 0 %, buffer = 30 KB).

(a) QUIC CUBIC (N=2) vs. TCP CU-
BIC

(b) QUIC CUBIC (N=1) vs. TCP CU-
BIC

(c) 5-second zoom of above figure (d) 5-second zoom of above figure

Figure 4.2: CWND timeline, the growth of QUIC’s CWND is influenced by the
CUBIC parameter N. Timeline showing CWND sizes of QUIC and TCP when trans-
ferring data over the same 5 Mbps bottleneck link (RTT = 36 ms, loss = 0 %, buffer
= 30 KB).

To better understand the throughput behavior of these protocols and the effect of

N, we conduct a similar analysis to that performed by Kakhki et al. [5] (c.f., Figure 5).

This involves plotting the QUIC and TCP CWND during the throughput test. We

instrument the QUIC server code (Table 3.2, row ‘QUIC server’, column ‘Extended’)

42



to extract CWND sizes for QUIC, whereas for TCP we use ftrace’s tcpprobe event [60].

Figure 4.2 shows the CWND over time for TCP and QUIC. From Figure 4.2a, we

observe that QUIC’s CWND is larger than TCP’s CWND because QUIC CUBIC is

emulating two TCP connections (N = 2), whereas from Figure 4.2b, when N = 1,

QUIC’s CWND overlaps with TCP’s CWND. The two CWND Figures 4.2a and 4.2b,

make it evident that the QUIC’s larger CWND which resulted in higher bandwidth

utilization (Figure 4.1a) is a direct result of CUBIC parameter N. When we have a

closer look at the CWND update as shown in Figure 4.2d, we can see that when N

= 1, both QUIC and TCP grow their CWND uniformly.

Kakhki et al. [5] also tried modifying their QUIC implementation, but they were not

able to achieve fairness. Hence, they reported that QUIC is unfair to TCP even with

N = 1. However, our modifications to the Chromium code (version 60, gQUICv37)

required changes to three, non-adjacent, easily overlooked locations of N in the source

code. In QUICv1, which is used to produce the numbers in this discussion, there is

only one instance of N in the source code that needs to be changed, but this version

is from after 2017.

Our experiments demonstrate that QUIC CUBIC in Chromium is unfair to TCP

in its default setting of N = 2. However, by changing N = 1, QUIC CUBIC becomes

fair to TCP CUBIC. This observation aligns with the conclusions drawn by Mishra

et al. [22], which underscores the significant improvement in Chromium CUBIC’s

adherence to the TCP kernel implementation when N is set to 1. The CUBIC (N =

2) fairness results for 5 runs are summarised in Table 4.1.

4.1.2 BBR Fairness

In 2016, Google introduced a new congestion-based CCA called BBR [61]. QUIC,

due to user-space implementation and pluggable CCA, was quick to adopt BBR in its

early stages. While, BBR (i.e., BBRv1) was not available in Linux 4.4.0-34-generic

(2017), it is now available in Linux 5.15.0-56-generic (Table 3.2, TCP version). Hence,

43



Scenario Flow
Avg. Throughput

(std. dev.)
Fairness

QUIC vs QUIC
QUIC 1 2.45 (0.04)

fair
QUIC 2 2.51 (0.04)

TCP vs TCP
TCP 1 2.46 (0.03)

fair
TCP 2 2.52 (0.03)

QUIC vs TCP
QUIC 3.74 (0.14)

QUIC is unfair
TCP 1.24 (0.14)

QUIC vs TCPx2

QUIC 2.59 (0.02)
QUIC is unfair

TCP 1 1.21 (0.03)

TCP 2 1.18 (0.01)

QUIC vs TCPx4

QUIC 1.59 (0.03)
QUIC is unfair

TCP 1 0.82 (0.03)

TCP 2 0.88 (0.01)

TCP 3 0.82 (0.01)

TCP 4 0.85 (0.02)

Table 4.1: Average throughput (5 Mbps link, RTT = 36 ms, loss = 0 %, buffer =
30 KB, averaged over 5 runs) allocated to QUIC and TCP flows when competing
with each other. When both TCP and QUIC are using CUBIC congestion control,
the unfairness caused by QUIC flow is simply due to N = 2 connection emulation.

44



we extend the fairness experiment from Kakhki et al. [5] to include BBR as CCA for

both QUIC and TCP. All our experiments use BBR version 1 (BBRv1), which is

simply referred to as BBR in this chapter.

1. QUIC BBR vs TCP BBR Despite both QUIC and TCP using BBR, we

find that TCP BBR can occupy slightly more bandwidth when compared to

QUIC BBR as shown in Figure 4.3a. To understand this slight difference in

bandwidth sharing, we look at the CWND graph in Figure 4.3b which shows

that the blue TCP CWND for the most part sits above the red QUIC CWND.

The reason for unfair bandwidth occupancy becomes clear when we have a closer

look at this CWND update as shown in Figure 4.3c. Here we can see the TCP

BBR CWND is getting updated at a faster rate when compared to QUIC BBR

CWND (the frequency of CWND update is high). This allows TCP to gain

marginally more bandwidth than QUIC. Although the fast CWND update of

TCP BBR is observed, it is not clear why QUIC BBR is unable to match the

CWND update frequency of TCP BBR.

2. QUIC CUBIC vs TCP BBR Previous studies have shown BBR being un-

fair to CUBIC [62] [63]. To observe its behavior from two different protocols,

we conducted the same fairness experiment by running TCP with BBR and

QUIC with CUBIC (N=2). From Figure 4.4 we found that irrespective of the

protocol, BBR is unfair to CUBIC even when the CUBIC algorithm emulates

2 connections (N = 2).

In our BBR results, we observe that TCP BBR against QUIC BRR is unfair,

and so is TCP BRR against QUIC CUBIC. Specifically, we found that QUIC BBR

(1.74 Mbps) occupies lesser bandwidth than TCP BBR (3.18 Mbps) (Table 4.2, QUIC

BBR vs TCP BBR). On the other hand, Chromium QUIC CUBIC (1.34 Mbps),

occupies less than half the bandwidth as TCP BBR (3.60 Mbps) (Table 4.2, QUIC

CUBIC vs TCP BBR).

45



(a) QUIC BBR vs TCP BBR Through-
put

(b) QUIC BBR vs TCP BBR CWND (c) 5-second zoom of CWND

Figure 4.3: TCP BRR updates CWNDmore aggressively, capturing higher bandwidth
than QUIC BBR. Timeline showing throughput and congestion window sizes of QUIC
BBR and TCP BBR when transferring data over the same 5 Mbps bottleneck link
(RTT = 36 ms, loss = 0 %, buffer = 30 KB).

(a) QUIC CUBIC vs TCP BBR Through-
put

(b) QUIC CUBIC vs TCP BBR CWND (c) 5-second zoom of CWND

Figure 4.4: BBR is unfair to CUBIC CCA, irrespective of its use in QUIC or TCP.
Timeline showing throughput and congestion window sizes of QUIC CUBIC and TCP
BBR when transferring data over the same 5 Mbps bottleneck link (RTT = 36 ms,
loss = 0 %, buffer = 30 KB).

From these fairness experiments, we see that the fairness of a protocol is dependent

on its CCA, namely CUBIC and BBR, whereas the behavior of these CCAs depends

on their parameters. For example, as previously discussed in Section 4.1.1 connection

emulation parameter (N) choice of CUBIC has an impact on how the CWND grows

46



Scenario Flow
Avg. Throughput

(std. dev.)
Fairness

QUIC vs TCP
QUIC BBR 1.74 (0.04) TCP BBR is unfair

to QUIC BBRTCP BBR 3.18 (0.04)

QUIC vs TCP
QUIC CUBIC 1.34 (0.07) TCP BBR is unfair

to QUIC CUBICTCP BBR 3.60 (0.06)

Table 4.2: TCP BBR is unfair to both QUIC BBR and QUIC CUBIC. Average
throughput (5 Mbps link, RTT = 36 ms, loss = 0 %, buffer = 30 KB, averaged over
5 runs) allocated to QUIC and TCP flows when competing with each other.

and shares the bandwidth with competing protocols. Similarly, BBR is unfair to

CUBIC, irrespective of the protocol using it. Hence, in conclusion, we learn that,

while fairness is the function of CCA, the behavior of these CCAs depends on the

choices and accuracy of the parameters provided by the encapsulating protocols.

4.2 Page Load Time

Previously in Section 3.3, we discussed the use of Page Load Time (PLT) as a metric

for evaluating the performance of QUIC. Now, we perform a comparative analysis

of QUIC and TCP performance across various network conditions, with PLT as our

primary metric. Alongside fairness, the ability of a transport protocol to perform

optimally across diverse network conditions is crucial. Therefore, we assess the per-

formance of QUIC and TCP under different emulated network settings (Table 3.3)

by varying bandwidth (5 Mbps, 10 Mbps, 50 Mbps, and 100 Mbps), latency (36 ms,

112 ms) and loss (0%, 1%). Additionally, where applicable, we present the design

difference between gQUICv37 and QUICv1, and their impact on performance.

As will be shown below, QUIC outperforms TCP in all conditions, except for the

condition where there are a large number of small objects (Section 4.3.2) and when

there is packet reordering in the network (Section 4.6). We note the evolution of

designs between gQUICv37 and QUICv1 like the mechanism to adapt to packet re-

47



ordering using dynamic threshold, and show the performance impact of those changes.

In Figures 4.5 and 4.6, each square of a heatmap represents the percentage differ-

ence of TCP and QUIC PLTs averaged over 20 runs each (see Equation 4.1). The

percentage difference is mapped to a heatmap, from +100% faster for QUIC (red) to

-100% slower for QUIC (blue, i.e., faster for TCP).

PercentageDifference =
TCP −QUIC

QUIC
∗ 100 (4.1)

where:

• TCP = Average of 20 TCP PLTs

• QUIC = Average of 20 QUIC PLTs

If PercentageDifference is between 0 to +100 then QUIC is faster, indicated by a

red shade in the heatmap. If PercentageDifference is between 0 to -100 then TCP

is faster, indicated by a blue shade. For example, as seen in the left-top red square

of heatmap Figure 4.6a, when the percentage difference is +72%, then QUIC is 72%

faster than TCP. Similarly, in the right-bottom blue square of heatmap Figure 4.6d,

when the percentage difference is -1.7%, then TCP is 1.7% faster than QUIC.

As done by Kakhki et al. [5], to make sure our results are not impacted by the

noise in the experimental setup, we perform Welch’s t-test [64]. Welch’s t-test, or

unequal variances t-test, is a two-sample location test that is used to test the (null)

hypothesis that two populations have equal means [5]. We take PLTs of 20 runs of

each TCP and QUIC and calculate the p-value according to Welch’s t-test. If the

p-value is smaller than our threshold (0.01), then we reject the null hypothesis that

the mean performance for TCP and QUIC are identical, implying the difference we

observe between the two protocols is statistically significant. If the p-value is greater

than our threshold (0.01), the difference we observe is not significant and we indicate

the corresponding square with white color.

48



Strictly speaking, Figure 4.5 replicates the results of Kakhki et al. [5], but Fig-

ure 4.6 extends the results by using QUICv1 (which was not available in 2017). Some

important notes: First, the N = 2 CUBIC parameter in Figures 4.5 and 4.6 means

that the QUIC implementation (by Google) would be unfair to TCP if and only if

there are competing flows. However, other than for the fairness experiments (Sec-

tion 4.1.1), there are no competing flows. The N parameter does have an impact on

how packet loss is handled, which is discussed below (Section 4.4.1). Second, as dis-

cussed, we could force N = 1 by source code changes. Third, however, unless explicitly

noted, N is set to 2 for all QUIC CUBIC experiments to maintain commonality with

Kakhki et al. [5].

In the following sections from 4.3 to 4.6, we discuss QUIC’s performance over a

wide range of a parameter space. While Section 4.3 presents QUIC’s performance in

a baseline network setting of 36 ms RTT and 0% loss, Sections 4.4 and 4.5 talks about

scenarios with added loss and latency, respectively. Further, in Section 4.6 we present

QUIC under packet reordering before extending QUIC performance benchmarking for

the newly available BBR CCA in Section 4.7.

4.3 QUIC in baseline setting: 36 ms RTT, 0% loss

Due to the nature of our experimental setup in Emulab, where all the nodes are in

the same data center, we measure (using ping) that the default latency between the

server and client node connected via link bridge node (Figure 3.1) is in the range of

0.5 ms to 2 ms RTT. This kind of latency is lower than typical latency in a Wide

Area Network (WAN). Hence, we add an implicit latency of 36 ms RTT to the link

connecting server and client. The latency is introduced using the Dummynet pipes

[44] in the link bridge node. We chose 36 ms following the latency reported by Kakhki

et al. [5] for a shared WAN network, where they used a client machine connected to

the server in an AWS EC2 instance over the Internet. Similarly, with the baseline

parameter of 36 ms RTT and 0% loss, we choose bandwidths of 10 Mbps, 50 Mbps,

49



(a) Varying object size,
0% loss, 36 ms RTT

(b) Varying object size,
1% loss, 36 ms RTT

(c) Varying object size,
0% loss, 112 ms RTT

(d) Varying #object,
0% loss, 36 ms RTT

(e) Varying #object,
1% loss, 36 ms RTT

(f) Varying #object,
0% loss, 112 ms RTT

Figure 4.5: gQUICv37 0-RTT (CUBIC, N = 2) vs TCP (CUBIC). Chrome client.
Red is better for gQUIC. Blue is better for TCP

(a) Varying object size,
0% loss, 36 ms RTT

(b) Varying object size,
1% loss, 36 ms RTT

(c) Varying object size,
0% loss, 112 ms RTT

(d) Varying #object,
0% loss, 36 ms RTT

(e) Varying #object,
1% loss, 36 ms RTT

(f) Varying #object,
0% loss, 112 ms RTT

Figure 4.6: QUICv1 0-RTT (CUBIC, N = 2) vs TCP (CUBIC), Chrome client. Red
is better for QUIC RFC v1. Blue is better for TCP

50



and 100 Mbps for our experiments as used previously [5].

4.3.1 QUIC’s performance for single object

The heatmap of Figure 4.6a shows the PLTs in the default setting of 36 ms latency

and 0% loss for bandwidths of 10 Mbps, 50 Mbps, and 100 Mbps. Note that each

square of the heatmap is annotated by the percentage difference of PLT between

QUIC and TCP, as calculated from Equation 4.1. In this section we discuss the PLT

heatmap, comparing the performance of QUIC and TCP for two versions of QUIC

(QUICv1 and gQUICv37) using single objects of varying sizes (refer to Figure 4.6a

and Figure 4.5a). In Section 4.3.2, we will extend our analysis to scenarios of the

webpage with multiple objects of varying numbers. We first discuss the performance

of QUICv1 in the baseline setting (36 ms RTT and 0% loss) as shown in Figure 4.6a,

before discussing gQUICv37 results of Figure 4.5a.

As we can see from Figure 4.6a, QUIC outperforms TCP (i.e., red squares) through-

out the range of object sizes from 5 KB to 10 MB (along the x-axis, each column

represents different object size) over three different bandwidth of 10 Mbps, 50 Mbps,

and 100 Mbps (along the y-axis, each row represents different bandwidths). For ex-

ample, the performance difference ranges from 72% (top left square, 5 KB) to 0.53%

(top right square, 10 MB) better for QUIC against TCP for bandwidth of 10 Mbps

(Figure 4.6a top row).

However, we can observe a pattern that the red shade indicating better performance

for QUIC generally decreases as we move from object size of 5 KB to 10 MB of

10 Mbps bandwidth row in Figure 4.6a (with an exception of a 200 KB object). As

noted earlier, the highest performance gain of 72% for the 5 KB object drops to

0.53% for the 10 MB object. A similar pattern can be observed for the bandwidth

rows of 50 Mbps and 100 Mbps, except for the 100 KB object, where QUIC enjoys

a 70% performance gain against TCP for an object sized 5 KB, before dropping to

7.5% for 50 Mbps bandwidth. The same is true for 100 Mbps bandwidth, with QUIC

51



performance dipping to 12% for the 10 MB object from 70% for the 5 KB object.

The primary reason for QUIC’s superior performance over TCP in the baseline set-

ting of 36 ms RTT and 0% loss, as depicted in Figure 4.6a, stems from its utilization

of the 0-RTT connection time. As discussed in Section 2.1.1, QUIC connection estab-

lishment combines transport and cryptographic handshake reducing the connection

time to 1-RTT for the initial connection and 0-RTT for subsequent connections (Fig-

ure 2.3). We will return to discussing the implications of 1-RTT connections later. In

contrast, TCP necessitates 3-RTT for all connections (1.5 for TCP 3WHS and 1.5 for

TLS handshake, Figure 2.2a). Consequently, with a latency of 36 ms RTT, QUIC’s

0-RTT connection establishment gives it a significant advantage over TCP.

However, as the object size increases, the connection time contributes to a smaller

portion of the total PLT, leading to the amortization of QUIC’s 0-RTT advantage in

the context of larger objects. This phenomenon occurs because, with larger objects

like 10 MB, the time taken for the actual data transfer becomes a more substantial

factor in the total PLT compared to the time required for connection establishment.

Consequently, the initial advantage of QUIC’s 0-RTT, utilized only at the beginning of

the connection, starts to amortize. This trend explains the gradual decrease in QUIC’s

dominance as object size increases, particularly evident in the scenario with a 10 Mbps

bandwidth, as illustrated in Figure 4.6a. Here, QUIC demonstrates only a 0.53%

improvement over TCP for 10 MB objects, in comparison to the 72% improvement

seen for the 5 KB object.

As with Kakhki et al. [5], to understand the impact of 0-RTT on the PLT per-

formance, we directly compare the performance of QUIC with and without 0-RTT

enabled (0-RTT vs 1-RTT, Figure 4.7c). We show that the 0-RTT advantage amor-

tizes as the object size increases. The original work, as detailed in Fig. 7 of their

paper [5], isolated the influence of 0-RTT by comparing the performance of QUIC

with and without 0-RTT enabled. The results demonstrated a noticeable perfor-

mance benefit for small objects, while the impact became statistically insignificant

52



(a) QUICv1 (0-RTT) vs TCP (3-RTT) (b) QUICv1 (1-RTT) vs TCP (3-RTT)

(c) QUICv1 (0-RTT) vs QUICv1 (1-RTT).

Figure 4.7: Performance heatmaps showing the advantage given by QUIC’s 0-RTT
connection under 36 ms latency and 0% loss. The 0-RTT advantage is higher for
smaller objects and diminishes as the object size increases. Subfigure (a) corresponds
to Figure 4.6a showing QUIC with 0-RTT against TCP, whereas, in Subfigure (b) 0-
RTT is disabled and shows QUIC with 1-RTT against TCP. The subfigure (c) shows
the comparison between QUIC with 0-RTT and without 0-RTT (1-RTT).

for larger objects. In our study, we conducted a replication of a similar experiment.

As explained in Section 3.2.3, we disable the ability of the HAR Capturer tool to

reuse the existing browser context, therefore forcing the use of a 1-RTT connection

in QUIC. By comparing the QUIC’s 0-RTT PLT values with those obtained through

1-RTT connection, we aim to quantify the impact of 0-RTT connections on PLT

performance.

In Figure 4.7c, we present a heatmap illustrating the PLT of QUIC with and

53



without 0-RTT (0-RTT vs 1-RTT) in a baseline scenario of 36 ms RTT and 0% loss.

The red squares denote a positive performance difference, indicating the advantage

for QUIC with 0-RTT. Our findings from Figure 4.7c, reveal that QUIC with 0-RTT

exhibits a notable performance benefit, particularly for the smaller object of 5 KB.

The performance difference ranges from 41% to 47%, favoring QUIC with 0-RTT. As

we shift right towards the larger object of 10 MB on the heatmap (Figure 4.7c), the

performance gain diminishes to between 0.9% to 4.2%, represented by grey squares.

There is a noticeable drop in QUIC’s 0-RTT performance against QUIC’s 1-RTT for

all bandwidths as we move from smaller objects (5 KB, left-most column) to larger

objects (10 MB, right-most column). The amortization of QUIC’s 0-RTT advantage

(see Figure 4.7c) explains the diminishing performance of QUIC against TCP (see

Figure 4.7a, same as Figure 4.6a) as the object size increases.

In comparing the PLT of the baseline scenario for a single object between gQUICv37

(Figure 4.5a) and QUICv1 (Figure 4.6a), we observe many similar patterns. Under

the conditions of 36 ms RTT and 0% loss, both gQUICv37 and QUICv1 exhibit

comparable trends. For instance, in Figure 4.5a, gQUICv37 consistently outperforms

TCP across various scenarios, except for the 10 MB object at 100 Mbps bandwidth.

Notably, gQUICv37 demonstrates a 67% improvement over TCP for a 5 KB object

at 10 Mbps bandwidth (Figure 4.5a), mirroring QUICv1’s 72% improvement for a

similar object and bandwidth (Figure 4.6a). The pattern of similar results becomes

even more apparent for 50 Mbps and 100 Mbps bandwidths, where the performance

difference between gQUICv37 and QUICv1 remains within 10% for all object sizes

(except for the 10 MB object at 100 Mbps bandwidth).

Furthermore, the observed pattern of decreasing QUIC dominance with larger ob-

ject sizes is consistent in both gQUICv37 and QUICv1, with a notable exception for

the 100 KB object in both versions. The performance gain of gQUICv37 over TCP

decreases from 67% for a 5 KB object to 0.97% for a 10 MB object at 10 Mbps

bandwidth (Figure 4.5a), resembling QUICv1’s drop from 72% to 0.53% for the same

54



object sizes and bandwidth (Figure 4.6a). These findings in our baseline settings align

with a prior study on gQUICv37 [5], suggesting that the performance implications of

0-RTT for different object sizes observed in gQUICv37 persist in QUICv1 as well.

The similarity in performance of gQUICv37 and QUICv1 is likely because, despite

the use of different cryptographic handshake protocols in both versions of QUIC (Fig-

ure 2.3), the 0-RTT mechanism has remained unchanged. We know that gQUICv37

uses QUIC Crypto [17] and QUICv1 uses TLSv1.3 [9], and they both offer a similar

0-RTT functionality for QUIC. Since the 0-RTT has remained unchanged throughout

QUIC’s evolution, we see similar performance trends in both versions of QUIC.

4.3.2 QUIC’s performance for multiple objects

While measuring single-object performance is a good microbenchmark, a single page

of a modern website often contains more than one object. Hence, in this section, we

look at QUIC’s performance for different numbers of objects ranging from 1 to 200

as shown along the x-axis of Figure 4.5d for gQUICv37 and Figure 4.6d for QUICv1.

We find that QUIC performs poorly when there are a large number of small objects

(e.g., 10 KB x 100, 5 KB x 200 in 50 and 100 Mbps bandwidth), but QUIC continues

to perform better for a small number of large objects (e.g., 1 MB x 1, 500 KB x 2,

200 KB x 5 and 100 KB x 10).

Additionally, we validate Kakhki et al. [5]’s reasoning for QUIC’s poor performance

for a large number of small objects. We find that QUIC exits the Hybrid Slow Start

[65] early due to an increase in estimated RTT while multiplexing a large number of

objects causing it to perform poorly against TCP.

In Figure 4.5d and 4.6d, while QUIC has lower PLTs for the most squares of fewer

number of objects like 1 MB x 1, 500 KB x 2, 200 KB x 5 and 100 KB x 10, as

the number of objects increases QUIC starts to suffer. We can see this trend in

Figure 4.5d for gQUICv37, where QUIC is consistently 40% to 51% faster than TCP

for objects 1 MB x 1, 500 KB x 2, 200 KB x 5 and 100 KB x 10 of 50 Mbps and

55



100 Mbps bandwidth, but QUIC is 4.3% to 33% slower than TCP for 10 KB x 100

and 5 KB x 200 objects of the same bandwidth rows.

From Figure 4.5d and 4.6d, we also note that the performance issue of QUIC under

a large number of small objects persist even in QUICv1. For example, consider the

case of 100 objects of 10 KB (10 KB x 100) for bandwidths 50 Mbps and 100 Mbps

in Figure 4.5d. We see gQUICv37 performs poorly, indicated by dark blue squares in

the 10KBx100 column of Figure 4.5d, where gQUICv37 is 25% slower than TCP for

10 KB x 100 objects of 50 Mbps bandwidth, and 33% slower for 100 Mbps bandwidth.

Similarly, looking at Figure 4.6d for QUICv1, we see QUICv1 is 24% slower than

TCP for 10 KB x 100 objects of 50 Mbps bandwidth, and 27% slower for 100 Mbps

bandwidth.

(a) 100Kx10. (b) 10Kx100.

(c) 100Kx10. (d) 10Kx100.

Figure 4.8: Hybrid Slow Start: QUICv1 (CUBIC, N = 1) vs TCP (CUBIC). CWND
and estimated RTT while transferring different numbers of objects. When the

number of objects increases (10Kx100) there is a sudden spike in estimated RTT for
QUIC, which leads to early exit from Hybrid Slow Start phase.

We take the lead from Kakhki et al. [5]’s reasoning that QUIC’s poor performance

under a large number of small objects is due to the early exit of the Hybrid Slow

Start phase. As shown in Figure 4.8, we look at CWND to verify if the same issue

is present in QUICv1. We plot the CWND of TCP and QUIC with CUBIC as CCA

over time for 100 KB x 10 and 10 KB x 100 objects by clearly indicating the phases

56



of CWND growth, namely, Hybrid Slow Start [65] (“Hy. Slow Start”), Congestion

Avoidance, and Recovery. As discussed in Section 4.1.1, we know CUBIC CCA in

Chromium QUIC emulates 2 TCP connections (N = 2). Hence, we make sure to use

QUIC CUBIC with Emulated connection parameter N = 1, to make a fair comparison

with TCP CUBIC.

The Hybrid Slow Start [65] algorithm is an enhancement of the TCP Slow Start

algorithm [66], where the CWND grows exponentially until it either detects a loss or

high latency. After loss or high latency is detected, the CCA falls into the congestion

avoidance phase, in which CWND growth is slower. We identify the congestion stages

for QUIC by instrumenting the Chromium server code, whereas for TCP we use data

from tcpprobe [60]. The CWND line (Cong. Win. (KB)) along the y-axis in the

time series Figure 4.8a is color coded with blue to show the “Hy. Slow Start” phase

if cwnd (CWND in QUIC server code) is less than ssthresh (cwnd < ssthresh),

else it is marked as congestion avoidance phase indicated by green color (cwnd ≥

ssthresh). Chromium server code has a function to indicate the recovery phase

(largest acked packet number ≤ largest sent at last cutback) which is color

coded as red, but we were not able to come up with heuristics to identify the recovery

phase for TCP using tcpprobe data.

From Figure 4.8a, we see that while QUIC and TCP show the Hybrid Slow Start

phase up to a close time duration, where QUIC exits the Hybrid Slow Start at 0.27 sec-

onds (x-axis) and TCP exits Hybrid Slow Start at 0.29 seconds. As soon as the number

of objects increases to 100 objects (10K x 100) in Figure 4.8b, QUIC exits Hybrid Slow

Start far earlier than TCP as indicated by solid blue line of QUIC CWND (“Cong.

Win. (KB)” along the y-axis), which ends around 0.24 seconds as compared to TCP

Hybrid Slow Start exit which occurs at 0.34 seconds. More importantly, as an effect

of QUIC’s early exit from Hybrid Slow Start, QUIC CWND stays in the congestion

avoidance phase for a longer duration of the total transfer time. As a result, we ob-

serve that the CWND growth of TCP represented by the dotted line is exponential

57



for a longer period than QUIC’s CWND indicated by a solid line. The early exit from

Slow Start results in QUIC utilizing a smaller portion of links bottleneck bandwidth

(Figure 4.8b, solid line), resulting in higher PLT for QUIC.

To further validate the reason for early exit from the Hybrid Slow Start, we look

at the estimated latency of QUIC and TCP. As we know high latency along with

loss is one of the reasons for CCA to exit the Hybrid Slow Start phase, and the high

latency was given as the reason for the early exit of QUIC by Kakhki et al. [5]. From

Figure 4.8d we see that both QUIC and TCP’s estimated RTT is initially (up to 0.24

seconds) close to the actual latency of the link which is 36 ms. However, we see from

the same Figure 4.8c the immediate spike of estimated latency for QUIC right after

0.24-second mark in the transfer duration of 10 KB x 100 which causes QUIC to exit

the Hybrid Slow Start prematurely and enters congestion avoidance phase indicated

by green solid line in the corresponding CWND of Figure 4.8b. Further investigation

with other implementations is required to understand the spike in estimated RTT

when multiplexing multiple objects in QUIC.

4.4 QUIC with added loss: 36 ms RTT, 1% loss

In this section, we look at the performance of QUIC under lossy conditions of 1%

packet loss. Emulab [36] provides link bridge nodes, which are equipped with Dum-

mynet [44]. We use the Dummynet inside link bridge node to introduce packet loss,

these link bridge node sits in between server and client nodes (Figure 3.1).

QUIC’s superior performance under loss is evident from the Figures 4.5b and 4.5e

for gQUICv37 and Figures 4.6b and 4.6e for QUICv1. Every square of Figure 4.5b

is red, and performance improvement for gQUICv37 over TCP ranges from lowest

of 48% for 10 KB of 100 Mbps to highest of close to 300% for 500 KB of the same

bandwidth row. Similarly, QUICv1 of Figure 4.6b shows a similar trend of every

square being red, and performance improvement for QUICv1 over TCP ranges from

the lowest of 40% for 200 KB of 10 Mbps to highest of close to 230% (i.e., 2.3e+02)

58



for 1 MB object of the 100 Mbps bandwidth row. Furthermore, both QUIC versions

show similar trends of QUIC outperforming TCP throughout the range of objects

and bandwidth for multiple objects scenario, as seen from Figure 4.5e and 4.6e.

As discussed in Section 2.1.2, one of the advantages of HTTP/3 over HTTP/2 is the

ability to avoid head-of-line (HOL) blocking [11], where HTTP/3 benefits from the

underlying QUIC connection to support independent streams. Unlike HTTP/2 where

every stream is dependent on a single TCP connection [18], HTTP/3 streams are

independent of each other. Multiple stream support within a single QUIC connection

ensures that a packet loss in a single stream does not cause the blocking of packets

from another stream. This phenomenon helps QUIC to have better performance

under lossy conditions.

4.4.1 Effect of N=2 on PLT under loss

In Section 4.1.1’s discussion of fairness, we learned that QUIC CUBIC uses an Em-

ulated connection (N) of 2. QUIC’s use of N = 2 in CUBIC CCA, resulted in QUIC

being unfair to competing TCP connections while using the same link. In this section,

we see how the CUBIC factor N impacts QUIC performance under lossy conditions.

From the heatmaps of Figure 4.9, we see that while using QUIC CUBIC with N =

1 (Figure 4.9b and 4.9d), the performance of QUIC under loss condition diminishes

for large objects and a large number of small objects. For example, in Figure 4.9b

while moving from 5 KB to 10 MB objects columns, we see that QUIC performance

decreases, going from 180% for 5 KB to -10% for 10 MB object of 10 Mbps bandwidth

row. However, when QUIC CUBIC is using N = 2 in Figure 4.9a, the performance of

QUIC under loss conditions is better than TCP for all object sizes and bandwidths.

Similarly, in case of multiple objects of Figure 4.9c and 4.9d, we observe a similar

trend where QUIC CUBIC with N = 2 outperforming TCP for all squares in Figure

4.9c to QUIC CUBIC with N = 1 losing out to TCP when there are a large number of

small objects (e.g., 100 KB x 10, 10 KB x 100, 5 KB x 200). This shows that CUBIC

59



gained an advantage against TCP during our previous PLT experiment (Figure 4.6),

due to the use of a CUBIC factor called Emulated connections (N = 2).

Kakhki et al. [5] in Section 5.2, attributed the performance improvement of QUIC

under loss to QUIC CCA’s ability to cope with loss. This was backed by plotting

CWND of QUIC and TCP under loss (c.f., Figure 9 [5]). We perform the same

experiment, as shown in Figure 4.10. We observe that the ability of QUIC to increase

its CWND higher than TCP was simply due to the use of N = 2. By comparing

the Figures 4.10a and 4.10c, we see that the QUIC CUBIC CWND for N = 1 of

Figure 4.10c is same as TCP CWND of Figure 4.10a under loss condition. As we

can see the CWND in both Figure 4.10a and 4.10c fluctuate between a low of around

5 KB and a high of just below 40 KB. Similarly, by looking at Figure 4.10b where

QUIC CUBIC is using N = 2, the CWND range is higher, varying between a low

of 20 KB to a high of around 50 KB. Hence, QUIC’s higher performance for large

objects (10 MB) and multiple objects under loss was an artifact of QUIC CUBIC

using N = 2, and not due to its ability to cope with loss.

In summary, QUIC’s ability to avoid HOL blocking [11] results in better perfor-

mance than TCP under lossy conditions. However, for larger objects (10 MB) the use

of CUBIC factor N = 2 in QUIC, results in QUIC being better than TCP due to its

aggressive CWND growth (Figure 4.10b). For scenarios with no loss of Figure 4.6a,

4.6d, 4.6c, 4.6f, the value of N did not have a huge impact on QUIC performance.

4.5 QUIC with added latency: 112 ms RTT, 0%

loss

In this section, we look at QUIC performance under added latency. Similar to the

added latency scenario of Kakhki et al. [5], we add 76 ms of latency to the baseline

latency of 36 ms to induce a latency of 112 ms through Dummynet pipes.

Figure 4.6c and 4.6f represents QUIC performance under the latency 112 ms RTT.

We can observe that the trends from the baseline setting (36 ms RTT, 0% loss) of

60



(a) Varying object size,
1% loss, 36 ms RTT.

QUIC CUBIC N = 2 (Default)

(b) Varying object size,
1% loss, 36 ms RTT.

QUIC CUBIC N = 1

(c) Varying #object,
1% loss, 36 ms RTT.

QUIC CUBIC N = 2 (Default)

(d) Varying #object,
1% loss, 36 ms RTT.

QUIC CUBIC N = 1

Figure 4.9: QUIC (CUBIC, N=2) vs TCP and QUIC (CUBIC, N=1) vs TCP at
36 ms RTT and 1% loss. Subfigure (a) and (b) corresponds to Figure 4.6b and 4.6e
respectively, with CUBIC CCA emulating 2 connections (N = 2) in CWND update,
which is the default in Chromium QUIC implementation.

Figure 4.6c and 4.6f is similar to that of the added latency setting (112 ms RTT, 0%

loss) of Figure 4.6a and 4.6d except for the fact that QUIC’s dominance is more evi-

dent with darker red color throughout the range of objects. For example, in baseline

Figure 4.6a we see QUIC outperforming TCP by 72% for 5 KB object of 10 Mbps

bandwidth, which has increased by 15% to QUIC outperforming TCP by 87% for the

same object size and bandwidth in added latency setting of Figure 4.6c. The same

is true for all other object sizes and bandwidths, where the performance difference

61



(a) TCP CUBIC cwnd under loss

(b) QUIC CUBIC (N=2) cwnd under loss (c) QUIC CUBIC (N=1) cwnd under loss

Figure 4.10: Congestion window over time for QUIC and TCP at 100 Mbps rate
limit, 36 ms latency and 1% loss.

between QUIC and TCP increases in the added latency setting as compared to the

baseline setting.

For the multiple object scenario of Figure 4.6f, we see that QUIC continues to

improve as compared to the corresponding baseline Figure 4.6d. The added latency

also resulted in QUIC gaining an advantage over TCP for a large number of small

objects (e.g., 10 KB x 100, 5 KB x 200). For example, QUIC’s negative performance

difference for 10 KB x 100 in 50 Mbps, shown in Figure 4.6d, dropped from -24% to

-1.2% with the added latency, as shown in Figure 4.6f.

The 0-RTT connection establishment time is the reason behind QUIC’s improved

performance under higher latency (112 ms) (see Figure 4.6f). QUIC’s performance

with respect to TCP increases as the latency increases because as the latency increases

the connection time of TCP increases linearly. However, QUIC connection establish-

ment time is largely insensitive to RTT due to the fixed latency cost of 0-RTT as

noted in Langley et al. [7].

62



4.6 QUIC with packet reordering due to jitter

Networks exhibiting jitter (per packet variance in latency) might have multiple effects

on packets, one of which is out-of-order packet arrival. Servers that rely on ACKs to

detect loss will prematurely declare a packet is lost when it receives ACK for newer

packets while the packet that was sent earlier is still in flight and not actually lost.

Referring to the networks that possess packet reordering, RFC 9002 [10] (Section

6.1.1) notes that “packet reordering could be more common with QUIC than TCP

because network elements that could observe and reorder TCP packets cannot do

that for QUIC and also because QUIC packet numbers are encrypted.” Hence, it is

important to study the performance of QUIC under jitter conditions.

Packet reordering can be caused by varying latency (jitter) using TC (Section 3.3).

In our setup, we induce a jitter of 50 ms to cause packet reordering, which is described

in Section 3.3. While the same magnitude of packet reordering can be caused by a

smaller jitter in a live network, due to the nature of our setup (directly connected

server and client) we observed that to cause a measurable packet reordering we need

to induce a jitter of 50 ms.

Figure 4.11a, shows the QUIC performance under jitter, which shows a trend of

QUIC performing better for small objects of size from 5 KB to 500 KB. However,

QUIC starts to suffer for large objects of size 1 MB and 10 MB of Figure 4.11a.

Similarly, QUIC has poor performance compared to TCP for a whole range of multiple

objects (from 1 MB x 1 to 5 KB x 200) of Figure 4.11c.

Now, we compare the jitter results of gQUICv37 from Figures 4.11a and 4.11c to

QUICv1 results from Figures 4.11b and 4.11d. We notice that the blue square gets

lighter in both single-object and multiple-object scenarios. For example, in Figure

4.11b for QUICv1, the percentage difference for 10 MB object of 10 Mbps bandwidth

is higher than the corresponding square of gQUICv37 in Figure 4.11a, which increase

from -60% to -12%, indicating an improvement to QUIC over TCP. Similarly, in Fig-

63



(a) Varying object size,
gQUICv37 NACK threshold 3

(b) Varying object size,
QUICv1 dynamic NACK threshold

(c) Varying #object,
gQUICv37 NACK threshold 3

(d) Varying #object,
QUICv1 dynamic NACK threshold

Figure 4.11: gQUICv37 vs TCP and QUICv1 vs TCP at 112 ms RTT with 50 ms
jitter that causes packet reordering (Delay = 112 ms, Jitter = 50 ms, Loss = 0%).
gQUICv37 uses a static NACK threshold of 3, while QUICv1 uses a dynamic NACK
threshold. Performance improvement of Dynamic NACK is visible through blue
squares getting lighter for QUIC v1 PLT results (Subfigure (b) and (d)).

ure 4.11d for QUICv1, the percentage difference for all objects of 100 Mbps bandwidth

is higher than the corresponding row of gQUICv37 in Figure 4.11c. The above trend

implies that QUICv1 is able to offer slightly better performance than gQUICv37 when

there is packet reordering.

To explain this we look at the loss detection algorithm under jitter for both the

gQUICv37 and QUICv1 protocol. The NACK threshold1 (A.k.a. packet reordering

1We use the term NACK threshold instead of packet reordering threshold to be consistent with
previous work [5]. RFCs use the term packet reordering threshold (kPacketThreshold).

64



threshold) is the number of packet reorderings allowed before a packet is declared lost.

While gQUICv37 uses a static NACK threshold of 3, QUICv1 uses a dynamic NACK

threshold. Hence, in gQUICv37 if there is a packet reordering of more than 3 packets,

the packet is declared lost, whereas in QUICv1 the NACK threshold increases with

the increase in packet reordering.

(a) gQUICv37 CUBIC CWND (b) QUICv1 CUBIC CWND

(c) gQUICv37 detected loss with fixed
NACK threshold

(d) QUICv1 detected loss with dynamic
NACK threshold

Figure 4.12: QUIC’s loss detection mechanisms often trigger false positives due to
jitter-induced out-of-order packet delivery, hindering CWND growth. gQUICv37’s use
of a static threshold for packet reordering exacerbates this issue, leading to increased
false positives. However, QUICv1 employs a dynamic threshold, effectively reducing
false positives and facilitating CWND expansion. The timeline figures illustrate the
relationship between CWND (“Cong. Win. (KB)”) and detected losses during the
transfer of a 210 MB object. (BW = 100 Mbps, Delay = 112 ms, Jitter = 50 ms,
Loss = 0%).

As shown in the timeline Figure 4.12c, which plots detected loss (y-axis) against

time (x-axis), the fixed NACK threshold (3) of gQUICv37 causes continuous prema-

ture loss detection due to packet reordering. This is indicated by the dense black

bars occurring almost continuously throughout the test duration from 0 seconds to

150 seconds. The continuously detected loss constantly limits the CWND growth, as

CUBIC updates CWND based on reported loss. As seen in Figure 4.12a, the CWND

stays below 50 KB for the most part of 150 seconds due to the constant loss detection.

As a result QUIC CUBIC under static NACK is unable to utilize the full capacity

65



of the link, resulting in higher PLT, represented by blue squares in Figure 4.11a and

4.11c.

However, from Figure 4.12d, we can observe that as the dynamic NACK threshold

of QUICv1 increases (yellow line), the occurrence of premature loss decreases (black

bars). This is indicated by the sparse appearance of black bars after the 80-second

timestamp, coinciding with the increase in the NACK threshold above y = 40, as

shown by the yellow line. As a result of this reduction in loss over time due to the

higher NACK threshold, there is a gradual growth in the CWND, as depicted by

the red line in Figure 4.12b. Initially, the CWND remains below 100 KB until the

60-second mark, after which it steadily increases, reaching 200 KB by the 120-second

timestamp. This growth in CWND correlates with the decrease in loss observed

around the same time duration, as illustrated in Figure 4.12d. As a result, QUICv1

is able to utilize the full capacity of the link, resulting in lower PLT, represented by

the dimming of blue squares in Figure 4.11b and 4.11d.

(a) QUICv1 CUBIC (N = 2) CWND (b) TCP CUBIC CWND

Figure 4.13: Packet reordering affects QUIC’s CWND growth more than TCP’s
CWND growth.

When there is packet reordering, even though QUICv1’s dynamic NACK threshold

improved performance over gQUICv37’s static NACK threshold (from Figure 4.11c

to Figure 4.11d), QUICv1 is still not on par with TCP’s performance under jitter. We

again look at CWND of both QUICv1 and TCP protocols, to see possible reasons.

As shown in the CWND timeline Figure 4.13, the CWND growth of TCP is higher

than QUICv1 for the same CCA under jitter. This suggests that the loss detection

mechanism of QUICv1 is not able to cope with packet reordering as well as TCP’s

loss detection mechanism.

66



We look at the loss detection mechanism used in QUIC and TCP. QUIC’s “Loss

Detection and Congestion Control” RFC 9002 Section 6.1.1 [10], recommends using

TCP’s RACK-TLP [67] for updating the reordering threshold. However, we were

not able to verify the same in Chromium QUIC through source code analysis. We

also looked at other studies [22][29] which measure the conformation of Chromium

QUIC implementation with TCP(kernel). While Mishra and Leong [29] shows that

Chromium QUIC’s CUBIC is not conforming to TCP CUBIC, it does not go into

details of any deviation in implementation in terms of loss detection (except CUBIC

Emulated connection, N). Therefore, we conclude that either a detailed analysis or a

more sophisticated tool is required to identify if Chromium QUIC and other imple-

mentations are following the RFC standard for loss detection under packet reordering.

4.7 QUIC with BBR

In this section, we demonstrate that QUIC with BBR outperforms TCP with BBR

throughout the parameter sweep of our experiments (Figure 4.14). For example, many

squares of multiple object in Figures 4.14d, 4.14e and 4.14f are red, with positive

performance difference of QUIC over TCP ranging from 43% to 0.74%. We further

show that QUIC is even more effective when used with BBR CCA as compared to

CUBIC CCA under packet reordering scenario (Figure 4.15).

QUIC being in user space can evolve faster than other protocols. Additionally,

QUIC is highly modular and can switch CCAs irrespective of its availability in the

operating system kernel. While we cannot use BBR [61] with gQUICv37, we run

QUICv1 with BBR (BBRv1) and configure the Linux kernel to use TCP with BBR

(BBRv1).

We perform the PLT experiment with both QUIC and TCP using BBR. When

QUIC BBR results (Figure 4.14) are compared to QUIC CUBIC results (Figure 4.6),

we find a similar trend under are three conditions (baseline Figure 4.6a, added loss

Figure 4.6b and latency Figure 4.6c). In baseline Figure 4.14a, QUIC BBR outper-

67



(a) Varying object size,
0% loss, 36 ms RTT.

(b) Varying object size,
1% loss, 36 ms RTT.

(c) Varying object size,
0% loss, 112 ms RTT.

(d) Varying #object,
0% loss, 36 ms RTT.

(e) Varying #object,
1% loss, 36 ms RTT.

(f) Varying #object,
0% loss, 112 ms RTT.

Figure 4.14: QUICv1 (BBR) vs TCP (BBR). Red is better for QUICv1. Blue is
better for TCP

forms TCP BBR for all object sizes and bandwidths, with the performance difference

in 10 Mbps bandwidth decreasing from 73% to 0.26% as the object size increases

from 5 KB to 10 MB. The decreasing dominance of QUIC BBR over TCP BBR is

also observed in the case of added latency, as shown in Figure 4.14c. For example in

the 100 Mbps bandwidth row, QUIC BBR is 87% better than TCP BBR for a 5 KB

object, which drops to 11% for a 10 MB object.

However, we could observe that the QUIC BBR figures under 1% packet loss (Fig-

ure 4.14b) are more similar to QUIC CUBIC with N = 1 (Figure 4.9b) than N =

2 (Figure 4.9a). The performance of QUIC BBR is similar to QUIC CUBIC N=1

because Chromium QUIC BBR does not have a parameter similar to N (Emulated

connection) in CUBIC. Further, in the case of multiple objects, QUIC BBR outper-

forms TCP BBR for all squares of Figure 4.14d and 4.14f, which is in contrast to

QUIC CUBIC of Figure 4.6d and 4.6f.

68



(a) Varying object size,
QUICv1 with CUBIC

(b) Varying object size,
QUICv1 with BBR

(c) Varying #object
QUICv1 with CUBIC

(d) Varying #object
QUICv1 with BBR

Figure 4.15: QUICv1 (CUBIC) vs TCP (CUBIC) and QUICv1 (BBR) vs TCP (BBR)
at 0% loss, 112 ms RTT with 50 ms jitter that causes packet reordering. As BBR
does not rely on loss detection to regulate CWND, QUIC with BBR does not suffer
performance degradation due to falsely detected loss due to packet reordering.

Furthermore, we look at the packet reordering scenario, where we find significant

improvement in QUICv1 BBR performance as compared to QUICv1 with CUBIC

under a jitter of 50 ms (compare Figure 4.15b with Figure 4.15a). For easier compar-

ison, we present the jitter results of QUICv1 with CUBIC and BBR side by side in

Figure 4.15. Where Figure 4.15b and 4.15d represents BBR results (QUIC vs TCP),

Figure 4.15a and 4.15c represents CUBIC results (QUIC vs TCP). By comparing

CUBIC (left column of Figure 4.15) results with BBR (right column of Figure 4.15),

we notice the disappearance of blue squares in BBR results. The absence of blue

69



squares indicates that QUICv1 with BBR outperforms TCP with BBR for almost all

object sizes and number of objects (except 10 MB of 50 Mbps).

The reason for QUICv1 BBR’s better performance under jitter compared to QUICv1

CUBIC is that BBR does not rely on loss detection to regulate CWND. As seen pre-

viously in Section 4.6 and Figure 4.12, packet reordering led to falsely detected loss

in both gQUICv37 and QUICv1 CUBIC, reducing CWND and increasing PLT (lower

PLT). In contrast, BBR’s loss-independent CWND regulation prevents performance

degradation in QUIC with BBR under packet reordering.

4.8 Concluding remarks

In this chapter, we compared gQUICv37 and QUICv1 with TCP under different

network conditions. We see that QUIC’s performance is better than TCP under

latency and lossy conditions due to its 0-RTT connection and ability to avoid HOL

blocking. Our experiments show that the performance advantages of QUIC over

TCP are consistent in both gQUICv37 and QUICv1, validating the results of the

previous study [5]. However, we find different results than the previous study [5] on

QUIC unfairness to TCP, and also observe scenarios where QUICv1 has improved

over gQUICv37. The notable differences and new insights from our experiments are

listed below:

1. Unfairness: We show the QUIC unfairness reported in previous study [5]

was an artifact of the CUBIC parameter (Emulated connection, N=2) used

in Chromium QUIC implementation and not because of QUIC protocol itself

(Figure 4.1). When QUIC CUBIC Emulated connection is set to one (N = 1),

it is fair to TCP CUBIC in both gQUICv37 and QUICv1. For example, from

Figure 4.1a, QUIC CUBIC (red) with N = 2 occupies 4 Mbps bandwidth, which

is twice as much as TCP CUBIC (blue). But, when QUIC CUBIC is emulated

with N = 1 (Figure 4.1b), it occupies half of the total 5 Mbps bandwidth, which

70



is the same as TCP CUBIC (approximately 2.5 Mbps).

2. Updated loss detection: Our empirical result shows that the performance

of QUICv1 has improved over gQUICv37 under jitter, due to an updated loss

detection strategy (dynamic vs static threshold) under packet reordering (Fig-

ure 4.11). For instance, from 10 MB object square of 10 Mbps row in Fig-

ure 4.11b, QUICv1 with dynamic threshold is only 12% slower than TCP, which

is an improvement from 60% slower for gQUICv37 with static (3) threshold

(Figure 4.11a).

3. BBR results: We benchmark the newly available BBR CCA and show that

QUIC BBR outperforms TCP BBR for PLT results, even in a jitter scenario

(Figure 4.15). Most squares of QUIC BBR in Figure 4.14 are red indicating

QUIC BBR is better than TCP BBR in the measured bandwidth, latency, and

loss conditions. The same is true for BBR jitter scenario of Figure 4.15b and

Figure 4.15d, where QUIC BBR outperforms TCP BBR for all object sizes and

number of objects (except 10 MB of 50 Mbps), with the performance improve-

ment of QUIC BBR over TCP BBR ranging from 98% to 8.9% (Figure 4.14).

While our experiments demonstrate that QUIC outperforms TCP for web work-

loads with a maximum object size of 10 MB under bandwidths up to 100 Mbps, other

studies have shown that QUIC is not always superior, particularly for large object

size under higher bandwidths [68]. This is because QUIC, being implemented in user

space, does not benefit from NIC offloading and hardware acceleration like TCP [68].

Therefore, one must consider the specific workload and network conditions before

choosing to use QUIC over TCP.

71



Chapter 5

Concluding Remarks

In this thesis, our primary aim was to understand the performance of a recent version

of QUIC (i.e., QUICv1), using a contemporary experimental platform like Emulab,

and provide an easily reproducible experimental framework for enabling the evaluation

of future versions of QUIC. To achieve this goal, we adopt methodology from the

previous work of Kakhki et al. [5] and benchmark gQUICv37 against TCP and then

extended those experiments for QUICv1. Along the way, we encountered interesting

findings that shed light on QUIC’s performance and behavior.

During our first phase of benchmarking gQUICv37, we discovered a different result

from previous a study [5] regarding QUIC fairness, which we found to be an artifact

of the CUBIC parameter N (Emulated connection) being 2 in Chromium’s QUIC

implementation. The unfairness was an issue with the Chromium QUIC stack rather

than an inherent issue with the QUIC protocol itself. Furthermore, in our second

phase of experiments of benchmarking QUICv1, apart from establishing the consistent

performance of two QUIC versions, we observed notable performance improvements

in QUICv1 compared to gQUICv37, particularly in scenarios involving jitter, due to

an updated loss detection strategy and the use of new BBR CCA.

Our use of Emulab addressed our second goal of reproducibility, providing a con-

trolled and predictable environment for conducting experiments. Moving forward,

our experimental framework in Emulab can serve as a valuable tool for evaluating

72



future versions of QUIC. With the recent release of QUIC extensions such as QUIC

for proxy and QUIC for media, our framework can be extended to evaluate these

features and contribute to a deeper understanding of the evolving QUIC protocol.

73



Bibliography

[1] QUIC at 10,000 feet, Nov. 2014. [Online]. Available: https://docs.google.com/
document / d / 1gY9 - YNDNAB1eip - RTPbqphgySwSNSDHLq9D5Bty4FSU /
edit.

[2] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and Secure
Transport,” Internet Engineering Task Force, Internet-Draft draft-ietf-quic-transport-
00, Nov. 2016, Work in Progress, 45 pp. [Online]. Available: https://datatracker.
ietf.org/doc/draft-ietf-quic-transport/00/.

[3] J. Iyengar and M. Thomson, Rfc 9000: Quic: A udp-based multiplexed and secure
transport, USA, 2021.

[4] M. Duke, QUIC Version 2, RFC 9369, May 2023. doi: 10.17487/RFC9369.
[Online]. Available: https://www.rfc-editor.org/info/rfc9369.

[5] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove, “Taking a
long look at quic: An approach for rigorous evaluation of rapidly evolving trans-
port protocols,” in Proceedings of the 2017 Internet Measurement Conference,
ser. IMC ’17, London, United Kingdom: Association for Computing Machinery,
2017, 290–303, isbn: 9781450351188. doi: 10.1145/3131365.3131368. [Online].
Available: https://doi.org/10.1145/3131365.3131368.

[6] J. Roskind, QUIC: IETF-88 TSV Area Presentation, 2013. [Online]. Available:
https://www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf.

[7] A. Langley et al., “The quic transport protocol: Design and internet-scale de-
ployment,” in Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’17, Los Angeles, CA, USA: Asso-
ciation for Computing Machinery, 2017, 183–196, isbn: 9781450346535. doi:
10 . 1145 / 3098822 . 3098842. [Online]. Available: https : / / doi . org / 10 . 1145 /
3098822.3098842.

[8] J. Dellaverson, T. Li, Y. Wang, J. Iyengar, A. Afanasyev, and L. Zhang, A
Quick Look at QUIC, 2021. [Online]. Available: https://web.cs.ucla.edu/∼lixia/
papers/UnderstandQUIC.pdf.

[9] M. Thomson and S. Turner, Using TLS to Secure QUIC, RFC 9001, May 2021.
doi: 10.17487/RFC9001. [Online]. Available: https://www.rfc-editor.org/info/
rfc9001.

74

https://docs.google.com/document/d/1gY9-YNDNAB1eip-RTPbqphgySwSNSDHLq9D5Bty4FSU/edit
https://docs.google.com/document/d/1gY9-YNDNAB1eip-RTPbqphgySwSNSDHLq9D5Bty4FSU/edit
https://docs.google.com/document/d/1gY9-YNDNAB1eip-RTPbqphgySwSNSDHLq9D5Bty4FSU/edit
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/00/
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/00/
https://doi.org/10.17487/RFC9369
https://www.rfc-editor.org/info/rfc9369
https://doi.org/10.1145/3131365.3131368
https://doi.org/10.1145/3131365.3131368
https://www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3098822.3098842
https://web.cs.ucla.edu/~lixia/papers/UnderstandQUIC.pdf
https://web.cs.ucla.edu/~lixia/papers/UnderstandQUIC.pdf
https://doi.org/10.17487/RFC9001
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9001


[10] J. Iyengar and I. Swett, QUIC Loss Detection and Congestion Control, RFC
9002, May 2021. doi: 10.17487/RFC9002. [Online]. Available: https://www.rfc-
editor.org/info/rfc9002.

[11] M. Bishop, HTTP/3, RFC 9114, Jun. 2022. doi: 10.17487/RFC9114. [Online].
Available: https://www.rfc-editor.org/info/rfc9114.

[12] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and G. Carle,
“It’s over 9000: Analyzing early quic deployments with the standardization on
the horizon,” in Proceedings of the 21st ACM Internet Measurement Confer-
ence, ser. IMC ’21, Virtual Event: Association for Computing Machinery, 2021,
261–275, isbn: 9781450391290. doi: 10.1145/3487552.3487826. [Online]. Avail-
able: https://doi.org/10.1145/3487552.3487826.

[13] D. Belson and L. Pardue, Examining HTTP/3 usage one year on, 2023. [Online].
Available: https://blog.cloudflare.com/http3-usage-one-year-on.

[14] Wikipedia contributors, Quic — Wikipedia, the free encyclopedia, [Online; ac-
cessed 29-May-2024], 2024. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=QUIC&oldid=1224553354.

[15] W. Eddy, Transmission Control Protocol (TCP), RFC 9293, Aug. 2022. doi:
10 .17487/RFC9293. [Online]. Available: https ://www.rfc - editor .org/ info/
rfc9293.

[16] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3, RFC
8446, Aug. 2018. doi: 10.17487/RFC8446. [Online]. Available: https://www.rfc-
editor.org/info/rfc8446.

[17] A. Langley and W.-T. Chang, QUIC Crypto, Dec. 2016. [Online]. Available:
https : / / docs . google . com/document / d / 1g5nIXAIkN Y - 7XJW5K45IblHd
L2f5LTaDUDwvZ5L6g/edit.

[18] M. Thomson and C. Benfield, HTTP/2, RFC 9113, Jun. 2022. doi: 10.17487/
RFC9113. [Online]. Available: https://www.rfc-editor.org/info/rfc9113.

[19] R. T. Fielding, M. Nottingham, and J. Reschke, HTTP/1.1, RFC 9112, Jun.
2022. doi: 10.17487/RFC9112. [Online]. Available: https://www.rfc- editor.
org/info/rfc9112.

[20] J. Postel,User Datagram Protocol, RFC 768, Aug. 1980. doi: 10.17487/RFC0768.
[Online]. Available: https://www.rfc-editor.org/info/rfc768.

[21] P. Karn and C. Partridge, “Improving round-trip time estimates in reliable
transport protocols,” ACM Trans. Comput. Syst., vol. 9, no. 4, 364–373, 1991,
issn: 0734-2071. doi: 10.1145/118544.118549. [Online]. Available: https://doi.
org/10.1145/118544.118549.

[22] A. Mishra, S. Lim, and B. Leong, “Understanding speciation in quic conges-
tion control,” in Proceedings of the 22nd ACM Internet Measurement Confer-
ence, ser. IMC ’22, Nice, France: Association for Computing Machinery, 2022,
560–566, isbn: 9781450392594. doi: 10.1145/3517745.3561459. [Online]. Avail-
able: https://doi.org/10.1145/3517745.3561459.

75

https://doi.org/10.17487/RFC9002
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9002
https://doi.org/10.17487/RFC9114
https://www.rfc-editor.org/info/rfc9114
https://doi.org/10.1145/3487552.3487826
https://doi.org/10.1145/3487552.3487826
https://blog.cloudflare.com/http3-usage-one-year-on
https://en.wikipedia.org/w/index.php?title=QUIC&oldid=1224553354
https://en.wikipedia.org/w/index.php?title=QUIC&oldid=1224553354
https://doi.org/10.17487/RFC9293
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc9293
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://doi.org/10.17487/RFC9113
https://doi.org/10.17487/RFC9113
https://www.rfc-editor.org/info/rfc9113
https://doi.org/10.17487/RFC9112
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9112
https://doi.org/10.17487/RFC0768
https://www.rfc-editor.org/info/rfc768
https://doi.org/10.1145/118544.118549
https://doi.org/10.1145/118544.118549
https://doi.org/10.1145/118544.118549
https://doi.org/10.1145/3517745.3561459
https://doi.org/10.1145/3517745.3561459


[23] C. Huitema, S. Dickinson, and A. Mankin, DNS over Dedicated QUIC Con-
nections, RFC 9250, May 2022. doi: 10.17487/RFC9250. [Online]. Available:
https://www.rfc-editor.org/info/rfc9250.

[24] T. Pauly, D. Schinazi, A. Chernyakhovsky, M. Kühlewind, and M. Westerlund,
Proxying IP in HTTP, RFC 9484, Oct. 2023. doi: 10.17487/RFC9484. [Online].
Available: https://www.rfc-editor.org/info/rfc9484.

[25] D. Schinazi, Proxying UDP in HTTP, RFC 9298, Aug. 2022. doi: 10.17487/
RFC9298. [Online]. Available: https://www.rfc-editor.org/info/rfc9298.

[26] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same standards, different
decisions: A study of quic and http/3 implementation diversity,” in Proceed-
ings of the Workshop on the Evolution, Performance, and Interoperability of
QUIC, ser. EPIQ ’20, Virtual Event, USA: Association for Computing Machin-
ery, 2020, 14–20, isbn: 9781450380478. doi: 10.1145/3405796.3405828. [Online].
Available: https://doi.org/10.1145/3405796.3405828.

[27] A. Yu and T. A. Benson, “Dissecting performance of production quic,” in Pro-
ceedings of the Web Conference 2021, ser. WWW ’21, Ljubljana, Slovenia: Asso-
ciation for Computing Machinery, 2021, 1157–1168, isbn: 9781450383127. doi:
10 . 1145 / 3442381 . 3450103. [Online]. Available: https : / / doi . org / 10 . 1145 /
3442381.3450103.

[28] ngtcp2, Ngtcp2 project is an effort to implement ietf quic protocol, https ://
github.com/ngtcp2/ngtcp2, 2023.

[29] A. Mishra and B. Leong, “Containing the cambrian explosion in quic congestion
control,” in Proceedings of the 2023 ACM on Internet Measurement Conference,
ser. IMC ’23, Montreal QC, Canada: Association for Computing Machinery,
2023, 526–539, isbn: 9798400703829. doi: 10.1145/3618257.3624811. [Online].
Available: https://doi.org/10.1145/3618257.3624811.

[30] T. Shreedhar, R. Panda, S. Podanev, and V. Bajpai, “Evaluating quic perfor-
mance over web, cloud storage, and video workloads,” IEEE Transactions on
Network and Service Management, vol. 19, no. 2, pp. 1366–1381, 2022. doi:
10.1109/TNSM.2021.3134562.

[31] Anonymous, Quic setup - emulab profile, 2023. [Online]. Available: https ://
figshare.com/s/7a8c5015e26b14a6020a.

[32] Anonymous, Long look quic modified scripts, 2023. [Online]. Available: https:
//figshare.com/s/5767a449a1a006e2d6b0.

[33] Remove code-paths for pre-ietf quic, Chromium code review, accessed on 2024-
03-11. [Online]. Available: https : / / chromium- review . googlesource . com/c/
chromium/src/+/4265375.

[34] Quic version 44 and ietf quic, Google Groups discussion, accessed on 2024-03-
11. [Online]. Available: https://groups.google.com/a/chromium.org/g/proto-
quic/c/b6gZ18W5qn0.

76

https://doi.org/10.17487/RFC9250
https://www.rfc-editor.org/info/rfc9250
https://doi.org/10.17487/RFC9484
https://www.rfc-editor.org/info/rfc9484
https://doi.org/10.17487/RFC9298
https://doi.org/10.17487/RFC9298
https://www.rfc-editor.org/info/rfc9298
https://doi.org/10.1145/3405796.3405828
https://doi.org/10.1145/3405796.3405828
https://doi.org/10.1145/3442381.3450103
https://doi.org/10.1145/3442381.3450103
https://doi.org/10.1145/3442381.3450103
https://github.com/ngtcp2/ngtcp2
https://github.com/ngtcp2/ngtcp2
https://doi.org/10.1145/3618257.3624811
https://doi.org/10.1145/3618257.3624811
https://doi.org/10.1109/TNSM.2021.3134562
https://figshare.com/s/7a8c5015e26b14a6020a
https://figshare.com/s/7a8c5015e26b14a6020a
https://figshare.com/s/5767a449a1a006e2d6b0
https://figshare.com/s/5767a449a1a006e2d6b0
https://chromium-review.googlesource.com/c/chromium/src/+/4265375
https://chromium-review.googlesource.com/c/chromium/src/+/4265375
https://groups.google.com/a/chromium.org/g/proto-quic/c/b6gZ18W5qn0
https://groups.google.com/a/chromium.org/g/proto-quic/c/b6gZ18W5qn0


[35] M. Thomson, Version-Independent Properties of QUIC, RFC 8999, May 2021.
doi: 10.17487/RFC8999. [Online]. Available: https://www.rfc-editor.org/info/
rfc8999.

[36] B. White et al., “An integrated experimental environment for distributed sys-
tems and networks,” in Proc. of the Fifth Symposium on Operating Systems
Design and Implementation, USENIX Association, Boston, MA, Dec. 2002,
pp. 255–270.

[37] Emulab documentation: Creating profiles, https://docs.emulab.net/creating-
profiles.html, Accessed on November 5, 2023.

[38] Emulab. “Emulab Testbed.” (), [Online]. Available: https://www.emulab.net/.

[39] Emulab hardware, The Emulab Manual, Accessed on 2024-03-02, 2023. [Online].
Available: https://docs.emulab.net/hardware.html.

[40] Chromium, Playing with quic, https://www.chromium.org/quic/playing-with-
quic/, 2023.

[41] A. Cardaci, Chrome-har-capturer, 2023. [Online]. Available: https : / / www .
npmjs.com/package/chrome-har-capturer.

[42] E. L. B. N. Laboratory, Iperf3: A tcp, udp, and sctp network bandwidth measure-
ment tool, Accessed on 2024-03-11, 2024. [Online]. Available: https://software.
es.net/iperf/.

[43] Tcpdump, Accessed on 2024-03-05, 2024. [Online]. Available: https : //www.
tcpdump.org/.

[44] M. Carbone and L. Rizzo, “Dummynet revisited,” SIGCOMM Comput. Com-
mun. Rev., vol. 40, no. 2, 12–20, 2010, issn: 0146-4833. doi: 10.1145/1764873.
1764876. [Online]. Available: https://doi.org/10.1145/1764873.1764876.

[45] B. S. Ltd). and the University of Utah., Geni-lib, 2014. [Online]. Available:
https://docs.cloudlab.us/geni-lib/intro/intro.html.

[46] N. Muthuraj, QUIC Setup, https://github.com/naveenrajm7/quic-setup, 2024.

[47] M. Brinn and c.-c. Rob Ricci, Geni federation software architecture document,
2012. [Online]. Available: https://groups.geni.net/geni/raw-attachment/wiki/
GeniArchitectTeam/GENI\%20Software\%20Architecture\%20v1.0.pdf.

[48] N. Muthuraj, Long Look QUIC, https://github.com/naveenrajm7/long-look-
quic/tree/feb-2023, 2024.

[49] Wikipedia contributors, Ipfirewall — Wikipedia, the free encyclopedia, [Online;
accessed 25-April-2024], 2023. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Ipfirewall&oldid=1145680286.

[50] Emulab, Emulab bridgenodes, 2023. [Online]. Available: https://wiki.emulab.
net/wiki/BridgeNodes.

[51] Google, Proto-quic (archived), Archived repository, accessed on 2024-03-05,
2024. [Online]. Available: https://github.com/google/proto-quic/tree/merge-
to-60.0.3108.0.

77

https://doi.org/10.17487/RFC8999
https://www.rfc-editor.org/info/rfc8999
https://www.rfc-editor.org/info/rfc8999
https://docs.emulab.net/creating-profiles.html
https://docs.emulab.net/creating-profiles.html
https://www.emulab.net/
https://docs.emulab.net/hardware.html
https://www.chromium.org/quic/playing-with-quic/
https://www.chromium.org/quic/playing-with-quic/
https://www.npmjs.com/package/chrome-har-capturer
https://www.npmjs.com/package/chrome-har-capturer
https://software.es.net/iperf/
https://software.es.net/iperf/
https://www.tcpdump.org/
https://www.tcpdump.org/
https://doi.org/10.1145/1764873.1764876
https://doi.org/10.1145/1764873.1764876
https://doi.org/10.1145/1764873.1764876
https://docs.cloudlab.us/geni-lib/intro/intro.html
https://github.com/naveenrajm7/quic-setup
https://groups.geni.net/geni/raw-attachment/wiki/GeniArchitectTeam/GENI\%20Software\%20Architecture\%20v1.0.pdf
https://groups.geni.net/geni/raw-attachment/wiki/GeniArchitectTeam/GENI\%20Software\%20Architecture\%20v1.0.pdf
https://github.com/naveenrajm7/long-look-quic/tree/feb-2023
https://github.com/naveenrajm7/long-look-quic/tree/feb-2023
https://en.wikipedia.org/w/index.php?title=Ipfirewall&oldid=1145680286
https://en.wikipedia.org/w/index.php?title=Ipfirewall&oldid=1145680286
https://wiki.emulab.net/wiki/BridgeNodes
https://wiki.emulab.net/wiki/BridgeNodes
https://github.com/google/proto-quic/tree/merge-to-60.0.3108.0
https://github.com/google/proto-quic/tree/merge-to-60.0.3108.0


[52] Google, Quiche (quic, http, etc.) Accessed on 2024-03-05, 2024. [Online]. Avail-
able: https://github.com/google/quiche.

[53] J. Odvarko, A. Jain, and A. Davies, Http archive (har) format, 2012. [On-
line]. Available: https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/HAR/
Overview.html.

[54] A. Jones, Fun with dummynet: Maintaining high throughput in large bandwidth-
delay product networks, Dec. 5. [Online]. Available: https://www.cs.unc.edu/
∼jeffay/dirt/FAQ/hstcp-howto.pdf.

[55] Chromium, Receiver buffer size, https://groups.google.com/a/chromium.org/
g/proto-quic/c/PyENXwCs1qc, 2023.

[56] Chromium, Old congestion window, https://source.chromium.org/chromium/
chromium/ src /+/ refs / tags / 52 . 0 . 2743 . 116 : net /quic / congestion control /
send algorithm interface.cc;l=23, 2027.

[57] Chromium, New congestion window, https://source.chromium.org/chromium/
chromium/src/+/main:net/third party/quiche/src/quiche/quic/core/quic
protocol flags list.h;l=180, 2023.

[58] M. R. Wong and S. Tieu, Reproducing ”taking a long look at quic”, https :
//reproducingnetworkresearch.files .wordpress .com/2020/06/wong tieu.pdf,
June 11, 2020.

[59] G. Carlucci, L. De Cicco, and S. Mascolo, “Http over udp: An experimental
investigation of quic,” in Proceedings of the 30th Annual ACM Symposium on
Applied Computing, ser. SAC ’15, Salamanca, Spain: Association for Comput-
ing Machinery, 2015, 609–614, isbn: 9781450331968. doi: 10 .1145/2695664.
2695706. [Online]. Available: https://doi.org/10.1145/2695664.2695706.

[60] S. Rostedt, Ftrace - function tracer, 2017. [Online]. Available: https://www.
kernel.org/doc/html/v5.0/trace/ftrace.html.

[61] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “Bbr:
Congestion-based congestion control,” ACM Queue, vol. 14, September-October,
pp. 20 –53, 2016. [Online]. Available: http://queue.acm.org/detail.cfm?id=
3022184.

[62] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of bbr conges-
tion control,” in 2017 IEEE 25th International Conference on Network Protocols
(ICNP), 2017, pp. 1–10. doi: 10.1109/ICNP.2017.8117540.

[63] H. Anvari and P. Lu, “Machine-learned recognition of network traffic for op-
timization through protocol selection,” Computers, vol. 10, no. 6, p. 76, 2021.
doi: 10.3390/computers10060076.

[64] Wikipedia contributors,Welch’s t-test — Wikipedia, the free encyclopedia, https:
//en.wikipedia.org/w/index.php?title=Welch%27s t-test&oldid=1181349917,
[Online; accessed 26-October-2023], 2023.

78

https://github.com/google/quiche
https://dvcs.w3.org/hg/ webperf/raw-file/tip/specs/HAR/Overview.html
https://dvcs.w3.org/hg/ webperf/raw-file/tip/specs/HAR/Overview.html
https://www.cs.unc.edu/~jeffay/dirt/FAQ/hstcp-howto.pdf
https://www.cs.unc.edu/~jeffay/dirt/FAQ/hstcp-howto.pdf
https://groups.google.com/a/chromium.org/g/proto-quic/c/PyENXwCs1qc
https://groups.google.com/a/chromium.org/g/proto-quic/c/PyENXwCs1qc
https://source.chromium.org/chromium/chromium/src/+/refs/tags/52.0.2743.116:net/quic/congestion_control/send_algorithm_interface.cc;l=23
https://source.chromium.org/chromium/chromium/src/+/refs/tags/52.0.2743.116:net/quic/congestion_control/send_algorithm_interface.cc;l=23
https://source.chromium.org/chromium/chromium/src/+/refs/tags/52.0.2743.116:net/quic/congestion_control/send_algorithm_interface.cc;l=23
https://source.chromium.org/chromium/chromium/src/+/main:net/third_party/quiche/src/quiche/quic/core/quic_protocol_flags_list.h;l=180
https://source.chromium.org/chromium/chromium/src/+/main:net/third_party/quiche/src/quiche/quic/core/quic_protocol_flags_list.h;l=180
https://source.chromium.org/chromium/chromium/src/+/main:net/third_party/quiche/src/quiche/quic/core/quic_protocol_flags_list.h;l=180
https://reproducingnetworkresearch.files.wordpress.com/2020/06/wong_tieu.pdf
https://reproducingnetworkresearch.files.wordpress.com/2020/06/wong_tieu.pdf
https://doi.org/10.1145/2695664.2695706
https://doi.org/10.1145/2695664.2695706
https://doi.org/10.1145/2695664.2695706
https://www.kernel.org/doc/html/v5.0/trace/ftrace.html
https://www.kernel.org/doc/html/v5.0/trace/ftrace.html
http://queue.acm.org/detail.cfm?id=3022184
http://queue.acm.org/detail.cfm?id=3022184
https://doi.org/10.1109/ICNP.2017.8117540
https://doi.org/10.3390/computers10060076
https://en.wikipedia.org/w/index.php?title=Welch%27s_t-test&oldid=1181349917
https://en.wikipedia.org/w/index.php?title=Welch%27s_t-test&oldid=1181349917


[65] S. Ha and I. Rhee, “Taming the elephants: New tcp slow start,” Comput. Netw.,
vol. 55, no. 9, 2092–2110, 2011, issn: 1389-1286. doi: 10.1016/j.comnet.2011.
01.014. [Online]. Available: https://doi.org/10.1016/j.comnet.2011.01.014.

[66] E. Blanton, D. V. Paxson, and M. Allman, TCP Congestion Control, RFC 5681,
Sep. 2009. doi: 10 .17487/RFC5681. [Online]. Available: https : //www.rfc -
editor.org/info/rfc5681.

[67] Y. Cheng, N. Cardwell, N. Dukkipati, and P. Jha, The RACK-TLP Loss De-
tection Algorithm for TCP, RFC 8985, Feb. 2021. doi: 10 .17487/RFC8985.
[Online]. Available: https://www.rfc-editor.org/info/rfc8985.

[68] B. Jaeger, J. Zirngibl, M. Kempf, K. Ploch, and G. Carle, “Quic on the highway:
Evaluating performance on high-rate links,” in 2023 IFIP Networking Confer-
ence (IFIP Networking), 2023, pp. 1–9. doi: 10.23919/IFIPNetworking57963.
2023.10186365.

79

https://doi.org/10.1016/j.comnet.2011.01.014
https://doi.org/10.1016/j.comnet.2011.01.014
https://doi.org/10.1016/j.comnet.2011.01.014
https://doi.org/10.17487/RFC5681
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://doi.org/10.17487/RFC8985
https://www.rfc-editor.org/info/rfc8985
https://doi.org/10.23919/IFIPNetworking57963.2023.10186365
https://doi.org/10.23919/IFIPNetworking57963.2023.10186365


Appendix A: Emulab profile

Listing A.1: Emulab profile for QUIC experiments
”””# The p r o f i l e f o r exper iment ing with QUIC pro toco l
The p r o f i l e has three nodes : ∗∗ s e rve r ∗∗ , ∗∗ c l i e n t ∗∗ and ∗∗ l i n k ∗∗ .
The Execute s c r i p t i n s t a l l r equ i r ed packages f o r running experiments .

I n s t r u c t i on s :
Af ter the experiment i s i n s t a t i a t e d ,
S ta r t running example se rve r from serve r node ,
and example c l i e n t from c l i e n t node .
”””

# Import the Por ta l o b j e c t .
import gen i . p o r t a l as p o r t a l
# Import the ProtoGENI l i b r a r y .
import gen i . r spec . pg as pg
# Import the emulab ex t ens ions l i b r a r y . ( BridgedLink )
import gen i . r spec . emulab as emulab

# Create a po r t a l context , needed to de f ined parameters
pc = p o r t a l . Context ( )

# Create a Request o b j e c t to s t a r t b u i l d i n g the RSpec .
r eque s t = pc . makeRequestRSpec ( )

# Describe the parameter ( s ) t h i s p r o f i l e s c r i p t can accept .
# qu i c v e r s i on i s used to dec ide which OS vers ion , chrome−har−capturer ver s ion i s

used .
pc . de f ineParameter ( ” q u i c v e r s i o n ” , ” Spec i f y  the  qu ic  v e r s i on  to  setup  (Q037 , RFCv1) ”

, p o r t a l . ParameterType .STRING, ”RFCv1” )
# pro j e c t i s used to s p e c i f y the p r o j e c t path to g i v e permiss ions to apache se rve r .
pc . de f ineParameter ( ” p r o j e c t ” , ” Spec i f y  the  emulab  p r o j e c t  name” , p o r t a l .

ParameterType .STRING, ”FEC−HTTP” )

# Retr ieve the va lue s the user s p e c i f i e s during i n s t a n t i a t i o n .
params = pc . bindParameters ( )

# Check parameter v a l i d i t y .
# Add custom cond i t i ons here
v a l i d v e r s i o n s = [ ”Q037” , ”RFCv1” ]
i f params . q u i c v e r s i o n not in v a l i d v e r s i o n s :

e r r o r = p o r t a l . ParameterError ( ” I n v a l i d  q u i c v e r s i o n .  I t  should  be  e i t h e r  ’Q037 ’ 
or  ’RFCv1 ’ . ” , [ ’ q u i c v e r s i o n ’ ] )

pc . r epor tEr ro r ( e r r o r )

# t h i s func t i on w i l l s p i t out some nice JSON−formatted excep t ion in f o on s t d e r r
pc . ve r i fyParamete r s ( )

# Add a raw PC to the reque s t .
s e r v e r = reques t .RawPC( ” s e r v e r ” )
# d430 −> 64GB ECC Memory , Two I n t e l E5−2630v3 8−Core CPUs at 2.4 GHz ( Haswel l )
s e r v e r . hardware type = ’ d430 ’

80



# ht t p s :// docs . emulab . net /advanced−t o p i c s . html , Pub l i c IP Access
# serve r . r o u t a b l e c o n t r o l i p = True
i f a c e 1 = s e r v e r . add In t e r f a c e ( )
# Spec i f y the IPv4 address
i f a c e 1 . addAddress ( pg . IPv4Address ( ” 1 9 2 . 1 6 8 . 1 . 1 ” , ” 2 5 5 . 2 5 5 . 2 5 5 . 0 ” ) )

c l i e n t = reques t .RawPC( ” c l i e n t ” )
# d710 −> 12 GB memory , 2.4 GHz quad−core
c l i e n t . hardware type = ’ d710 ’
# c l i e n t . r o u t a b l e c o n t r o l i p = True
i f a c e 2 = c l i e n t . add In t e r f a c e ( )
# Spec i f y the IPv4 address
i f a c e 2 . addAddress ( pg . IPv4Address ( ” 1 9 2 . 1 6 8 . 1 . 2 ” , ” 2 5 5 . 2 5 5 . 2 5 5 . 0 ” ) )

ubuntu 22 = ”urn : p u b l i c i d : IDN+emulab . net+image+emulab−ops //UBUNTU22−64−STD”
ubuntu 18 = ”urn : p u b l i c i d : IDN+emulab . net+image+emulab−ops //UBUNTU18−64−STD”
fbsd image = ”urn : p u b l i c i d : IDN+emulab . net+image+emulab−ops : FBSD132−64−STD”

# Request t ha t a s p e c i f i c image be i n s t a l l e d on t h i s node
ubuntu image = ubuntu 22 i f params . q u i c v e r s i o n == ’RFCv1 ’ else ubuntu 18
s e r v e r . d i sk image = ubuntu image
c l i e n t . d i sk image = ubuntu image

# Create the br idged l i n k between the two nodes .
l i n k = reques t . BridgedLink ( ” l i n k ” )
l i n k . br idge . hardware type = ’ d710 ’
# Add the i n t e r f a c e s we crea ted above .
l i n k . add In t e r f a c e ( i f a c e 1 )
l i n k . add In t e r f a c e ( i f a c e 2 )

l i n k . br idge . d i sk image = fbsd image

# Give b r i dge some shaping parameters . ( Imp l i c t parameter found in r e a l l i n k )
# l i n k . bandwidth = 10000
# l i n k . l a t ency = 36 # Imp l i c i t l a t ency in l i v e network l i n k (IMC ’17)

# pass v a r i a b l e to s c r i p t
p r o j e c t = params . p r o j e c t
# I n s t a l l and execute a s c r i p t t ha t i s contained in the r epo s i t o r y .
s e r v e r . addServ ice ( pg . Execute ( s h e l l=”sh” , command=” export PROJECT=”+ p r o j e c t + ” 

QUIC VERSION=”+ params . q u i c v e r s i o n +” && / l o c a l / r e p o s i t o r y / s c r i p t s / i n s t a l l −deps .
sh” ) )

c l i e n t . addServ ice ( pg . Execute ( s h e l l=”sh” , command=” export PROJECT=”+ p r o j e c t + ” 
QUIC VERSION=”+ params . q u i c v e r s i o n +” && / l o c a l / r e p o s i t o r y / s c r i p t s / i n s t a l l −deps .
sh” ) )

# I n s t a l l s p e c i f i c packages
s e r v e r . addServ ice ( pg . Execute ( s h e l l=”sh” , command=”/ l o c a l / r e p o s i t o r y / s c r i p t s / i n s t a l l −

apache . sh” ) )
c l i e n t . addServ ice ( pg . Execute ( s h e l l=”sh” , command=” export QUIC VERSION=”+ params .

q u i c v e r s i o n +” && / l o c a l / r e p o s i t o r y / s c r i p t s / i n s t a l l −c l i e n t . sh” ) )
l i n k . br idge . addServ ice ( pg . Execute ( s h e l l=”sh” , command=”/ l o c a l / r e p o s i t o r y / s c r i p t s /

br idge−tunning . sh” ) )

# Print the RSpec to the enc l o s ing page .
pc . printRequestRSpec ( r eque s t )

81



Appendix B: PLT Values

Table B.1: Values for Figure 4.6a. Varying object size, 0% loss, 36 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 106.37 183.41 110.71 185.87 187.55 303.04 353.05 389.39 535.41 647.64 951.41 1057.93 8567.22 8612.22

10 MbpsSTD 2.17 9.44 1.82 1.77 2.25 2.72 25.22 2.03 2.59 2.04 7.11 2.25 2.18 1.97

% diff 72 68 62 10 21 11 0.53

Avg 102.67 174.23 102.48 175.84 151.68 284.69 186.09 301.94 239.05 373.34 324.13 456.61 1864.58 2004.53

50 MbpsSTD 2.32 1.32 2.15 1.53 2.31 2.18 2.75 2.24 1.74 2.28 2.72 1.76 2.52 4.53

% diff 70 72 88 62 56 41 7.5

Avg 102.77 174.61 102.94 174.11 151.32 284.29 183.93 293.74 227.87 364.47 269.95 409.03 1056.82 1180.75

100 MbpsSTD 1.92 2.65 2.58 2.24 2.68 2.65 2.2 2.64 2.5 2.75 2.52 3.93 2.83 9.1

% diff 70 69 88 60 60 52 12

5 KB 10 KB 100 KB 200 KB 500 KB 1 MB 10 MB

Table B.2: Values for Figure 4.6d. Varying #object, 0% loss, 36 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 953.45 1057.57 971.38 1077.74 971.82 1076.85 970.48 1078.01 1045.63 1112.41 1148.46 1245.02

10 MbpsSTD 9.46 1.62 4.53 2.01 7.41 1.71 7.13 1.86 12.01 7.32 17.33 31.35

% diff 11 11 11 11 6.4 8.4

Avg 322.75 460.92 326.79 460.71 324.74 460.04 325.11 470.5 707.12 535.35 822.8 807.31

50 MbpsSTD 2.05 17.94 2.15 2.55 2.8 2.41 2.44 27.61 62.34 5.92 48.55 19.09

% diff 43 41 42 45 -24 -1.9

Avg 270.42 408.77 270.95 412.12 272.28 412.4 268.94 411.54 727.09 533.73 821.93 807.81

100 MbpsSTD 2.89 3.68 3.54 3.5 2.68 6.47 2.63 3.08 38.96 12.32 49.7 12.67

% diff 51 52 51 53 -27 -1.7

1 MB x 1 500 KB x 2 200 KB x 5 100 KB x 10 10 KB x 100 5 KB x 200

82



Table B.3: Values for Figure 4.6b. Varying object size, 1% loss, 36 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 110.86 206.44 110.11 225.71 195.26 400.33 325.85 455.28 567.78 1126.55 1038.29 1475.56 13583.54 26191.19

10 MbpsSTD 18.29 74.36 2.31 105.33 27.68 143.76 51.21 126.59 63.27 611.61 143.65 608.31 970.26 2456.35

% diff 86 1e+02 1.1e+02 40 98 42 93

Avg 109.73 196.3 105.53 218.81 169.53 374.98 220.84 385.66 349.27 862.78 665.46 1363.64 11969.13 22052.33

50 MbpsSTD 20 68.95 8.33 91.23 18.62 146.22 42.47 117.31 154.8 482.99 342.53 757.22 2736.38 2451.55

% diff 79 1.1e+02 1.2e+02 75 1.5e+02 1e+02 84

Avg 110.53 252.24 120.49 209.42 169.9 319.23 241.1 498.91 335.65 888.5 509.71 1663.57 12257.21 22250.19

100 MbpsSTD 23.4 238.67 36.36 78.74 19.35 79.78 53.07 217.03 116.66 459.24 191.48 812.58 1795.45 2649.96

% diff 1.3e+02 74 88 1.1e+02 1.6e+02 2.3e+02 82

5 KB 10 KB 100 KB 200 KB 500 KB 1 MB 10 MB

Table B.4: Values for Figure 4.6e. Varying #object, 1% loss, 36 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 1030.01 1909.06 1152.28 1771.06 1008.56 1763.49 1119.25 1866.74 1256.2 1610.27 1369.24 2052.4

10 MbpsSTD 143.13 910.9 289.87 714.56 92.68 601.84 208.81 1007.49 190.68 675.97 222.64 839.02

% diff 85 54 75 67 28 50

Avg 723.97 1009.85 695.91 1467.3 856.51 1515.85 660.8 1264.49 1213.1 1647.89 1253.59 1937.12

50 MbpsSTD 374.86 761.71 444.9 1026.37 451.67 967.24 403.61 845.93 327.45 868.94 304.97 874.14

% diff 39 1.1e+02 77 91 36 55

Avg 550.45 1426.71 896.68 1738.04 803.83 1179.02 802.51 1558.08 1106.53 1609.25 1250.19 1776.43

100 MbpsSTD 274.3 704.54 396.27 1024.98 425.83 891.92 394.7 826.04 310.42 843.27 313.73 860.96

% diff 1.6e+02 94 47 94 45 42

1 MB x 1 500 KB x 2 200 KB x 5 100 KB x 10 10 KB x 100 5 KB x 200

Table B.5: Values for Figure 4.6c. Varying object size, 0% loss, 112 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 260.28 485.6 263.6 490.22 420.01 827.5 531.21 912.67 792.3 1188.65 1211.32 1599.5 8821.83 9154.85

10 MbpsSTD 2.4 1.54 2.4 1.79 1.53 2.3 2.32 1.91 2.69 1.59 1.82 2.34 1.66 2.06

% diff 87 86 97 72 50 32 3.8

Avg 257.76 479.36 260.33 480.54 411.02 818.3 508.55 835.94 632.46 1055.33 742.85 1174.86 2297.05 2691.91

50 MbpsSTD 1.94 1.79 1.85 2.22 1.56 2.1 2.18 2.7 2.99 2.63 3.23 2.38 12.95 2.57

% diff 86 85 99 64 67 58 17

Avg 257.03 479.63 260.38 480.18 410.72 818.01 508.43 827.02 631.48 1051.48 735.34 1166.99 1534.43 1962.65

100 MbpsSTD 1.49 2.03 1.67 1.31 1.97 2.3 2.22 2.48 2.04 2.29 3.04 2.68 2.88 2.34

% diff 87 84 99 63 67 59 28

5 KB 10 KB 100 KB 200 KB 500 KB 1 MB 10 MB

83



Table B.6: Values for Figure 4.6f. Varying #object, 0% loss, 112 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 1211.49 1599.54 1224 1620.58 1221.21 1619.75 1218.96 1619.81 1623.98 1583.61 1498.51 1681.48

10 MbpsSTD 2.13 2.38 2.24 1.81 1.65 2.1 2.06 1.73 390.42 13.28 295.47 97.67

% diff 32 32 33 33 -2.5 12

Avg 743.44 1175.53 746.16 1179.48 743.04 1178.64 736.8 1179.51 1149.98 1136.01 1266.47 1283.03

50 MbpsSTD 2.32 2.78 3.18 2.58 2.02 2.96 2.89 3.15 552.09 9.2 427.93 16.62

% diff 58 58 59 60 -1.2 1.3

Avg 735.36 1167.82 736.43 1170.51 733.81 1169.4 731.95 1169.44 1081.39 1121.04 1125.02 1280.77

100 MbpsSTD 1.93 2.75 2.94 2.94 2.54 2.16 2.76 2.68 510.79 15.09 324.1 13.27

% diff 59 59 59 60 3.7 14

1 MB x 1 500 KB x 2 200 KB x 5 100 KB x 10 10 KB x 100 5 KB x 200

Table B.7: Values for Figure 4.11b. Varying object size, 0% loss, 112 ms RTT, 50 ms
jitter.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 257.58 489.84 252.21 454.99 416.92 827.7 584.77 940.86 1123.26 1325.95 1740.02 1926.39 11227.84 9848.51

10 MbpsSTD 29.51 39.46 19.76 43.49 30.93 63.6 94.65 73.26 284.79 133.55 519.21 186.19 2134.96 702.72

% diff 90 80 99 61 18 11 -12

Avg 256.47 472.65 262.78 466.25 409.36 820.05 562.44 871.78 1121.06 1117.65 1532.03 1470.13 9324.74 6429.17

50 MbpsSTD 25.15 40.19 39.03 45.35 62.4 67.18 120.06 80.29 342.88 147.81 508.3 324.72 3656.8 2182.96

% diff 84 77 1e+02 55 -0.3 -4 -31

Avg 260.27 479.42 257.84 476.44 437.45 807.2 628.85 846.44 874.81 1207.84 1461.02 1516.11 10460.01 6043.42

100 MbpsSTD 29.41 49.39 27.88 64.99 54.85 57.08 124.89 74.13 237.74 163.13 753.49 360.96 3734.96 2468.65

% diff 84 85 85 35 38 3.8 -42

5 KB 10 KB 100 KB 200 KB 500 KB 1 MB 10 MB

Table B.8: Values for Figure 4.11d. Varying #object, 0% loss, 112 ms RTT, 50 ms
jitter.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 1539.17 1855.34 1600.22 1839.07 1817.51 1828.52 1652.73 1858.42 2032.02 1941.51 2136.36 2107.1

10 MbpsSTD 425.65 232.33 513.11 260.39 479.64 221.85 482.32 217.73 550.89 302.76 532.96 411.26

% diff 21 15 0.61 12 -4.5 -1.4

Avg 1709.41 1423.43 1487.7 1708.18 1782.76 1598.1 1627.41 1567.44 1919.6 1727.42 2321.31 1709

50 MbpsSTD 620.92 291.7 638.66 402.74 657.22 326.24 541.67 297.72 673.35 510.81 688.61 313.71

% diff -17 15 -10 -3.7 -10 -26

Avg 1770.1 1446.17 1787.54 1619.35 1515.38 1640.94 1615.06 1557.87 1821.09 1711.19 2153.56 1867.54

100 MbpsSTD 671.56 360.35 758.91 371.53 697.52 321.21 588.52 401.67 760.71 386.1 633.95 285.56

% diff -18 -9.4 8.3 -3.5 -6 -13

1 MB x 1 500 KB x 2 200 KB x 5 100 KB x 10 10 KB x 100 5 KB x 200

84



Table B.9: Values for Figure 4.5a. Varying object size, 0% loss, 36 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 104.73 175.04 108.77 179.02 186.11 300.71 272.28 389.16 531.72 652.26 942.02 1085.18 8541.5 8624.62

10 MbpsSTD 0.91 0.86 1.09 1.08 1.17 1.09 1.18 0.93 1.38 1.57 0.98 42.37 50.36 1.11

% diff 67 65 62 43 23 15 0.97

Avg 99.52 169.5 100.06 170.43 150.25 281.47 183.56 316.62 238.3 372.46 319.66 457.04 2320.5 2460.84

50 MbpsSTD 0.85 1.15 1.17 1.49 1 1.34 1.43 5.61 2.52 1.78 1.39 1.9 360.33 628.25

% diff 70 70 87 72 56 43 6

Avg 99.19 169.27 100.15 169.4 149.08 280.7 181.32 301.33 228.11 362.17 270.23 404.82 1416.39 1176.88

100 MbpsSTD 1.12 1.11 1.55 1.11 1.11 1.29 1.18 14.45 3.13 1.93 5.11 2.02 235.71 32

% diff 71 69 88 66 59 50 -17

5 KB 10 KB 100 KB 200 KB 500 KB 1 MB 10 MB

Table B.10: Values for Figure 4.5d. Varying #object, 0% loss, 36 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 941.89 1070.72 962.03 1092.38 963.13 1094.46 964.29 1094.5 992.34 1096.64 1059.44 1130.23

10 MbpsSTD 1.38 1.21 0.89 1.15 1.17 5.37 1.59 1.95 23.34 3.45 83.32 5.09

% diff 14 14 14 14 11 6.7

Avg 326.96 459.29 323.94 462.56 324.19 461.03 324.49 462.48 621.21 464.47 609.95 583.12

50 MbpsSTD 28.99 7.04 2.4 3.25 1.33 2.44 1.42 2.39 89.88 5.67 47.96 11.59

% diff 40 43 42 43 -25 -4.4

Avg 268.88 405.24 274.07 407.82 277.8 408.53 273.25 409.25 624.11 417.33 597.61 572.02

100 MbpsSTD 3.3 2.28 6.04 2.89 12.43 2.11 4.93 3.19 95.44 5.73 37.43 10.51

% diff 51 49 47 50 -33 -4.3

1 MB x 1 500 KB x 2 200 KB x 5 100 KB x 10 10 KB x 100 5 KB x 200

Table B.11: Values for Figure 4.5b. Varying object size, 1% loss, 36 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 109.56 178 125.25 208.69 202.02 474.2 287.78 684.08 578.17 892.43 944.83 1783.29 8968.12 16961.06

10 MbpsSTD 12.34 7.99 48.88 73.48 51.13 94.82 27.06 71.19 100.16 207.29 8.63 489.15 329.78 1494.64

% diff 62 67 1.3e+02 1.4e+02 54 89 89

Avg 108.44 174.45 100.2 199.82 156.64 428.16 201.37 698.26 280.09 1088.82 534.33 1798.89 5923.66 16265.16

50 MbpsSTD 36.62 16.59 1.15 86.47 16.4 62.85 20.21 149.78 76.32 224.64 234.57 511.69 1560.84 1192.81

% diff 61 99 1.7e+02 2.5e+02 2.9e+02 2.4e+02 1.7e+02

Avg 113.45 185.37 115.72 172.52 169.67 457.98 205.75 568.58 290.17 1118 461.49 1292.74 5867.75 16798.87

100 MbpsSTD 45.1 25.76 46.66 13.36 40.75 156.27 30.21 103.23 64.41 261.28 176.07 374.87 1291.16 2090.2

% diff 63 49 1.7e+02 1.8e+02 2.9e+02 1.8e+02 1.9e+02

5 KB 10 KB 100 KB 200 KB 500 KB 1 MB 10 MB

85



Table B.12: Values for Figure 4.5e. Varying #object, 1% loss, 36 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 981.02 2048.42 979.69 1771.26 964.43 1781.55 994.5 2247.93 1015.3 1811.35 1046.72 1971.08

10 MbpsSTD 80.86 509.48 61.2 544.99 4.6 457.06 62.12 338.08 29.77 302.46 73.52 403.44

% diff 1.1e+02 81 85 1.3e+02 78 88

Avg 560.69 1892.52 488 1703.73 498.81 1251.33 432.32 1179.08 714.52 1283.82 810.71 1152.31

50 MbpsSTD 258.56 459.09 160.45 281.75 198.38 257 150.65 302.97 232.14 414.5 158.15 347.19

% diff 2.4e+02 2.5e+02 1.5e+02 1.7e+02 80 42

Avg 430.72 1787.56 442.61 1625.08 423.11 1760.23 442.24 1870.25 751.55 2204.79 770.65 2408.05

100 MbpsSTD 173.14 334.19 188.85 380.28 104.27 345.43 137.32 403.01 99.05 505.06 130.97 450.92

% diff 3.2e+02 2.7e+02 3.2e+02 3.2e+02 1.9e+02 2.1e+02

1 MB x 1 500 KB x 2 200 KB x 5 100 KB x 10 10 KB x 100 5 KB x 200

Table B.13: Values for Figure 4.5c. Varying object size, 0% loss, 112 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 257.1 480.51 261.02 484.45 417.64 825.6 534.68 914.45 792.29 1233.13 1218.36 1648.09 8773.19 9203.46

10 MbpsSTD 1.27 1.07 1.2 1.17 0.63 1.4 1.65 1.25 1.51 68.7 27.84 17.14 1.75 19.24

% diff 87 86 98 71 56 35 4.9

Avg 252.45 475.18 253.26 474.76 405.8 816.68 508.97 857.54 633.3 1054.15 746.08 1185.39 2698.08 2738.84

50 MbpsSTD 1.13 1.1 1.09 1.13 1.08 0.94 1.75 6.54 2.86 3.05 2.26 46.78 1711.91 138.12

% diff 88 87 1e+02 68 66 59 1.5

Avg 252.51 474.85 252.49 474.8 406.15 816.37 508.11 844.74 633.09 1047.91 736.38 1166.33 1781.44 2044.88

100 MbpsSTD 1.1 1.21 1.08 0.7 1.27 0.73 1.56 16.21 1.8 2.71 2.38 8.32 439.9 117.03

% diff 88 88 1e+02 66 66 58 15

5 KB 10 KB 100 KB 200 KB 500 KB 1 MB 10 MB

Table B.14: Values for Figure 4.5f. Varying #object, 0% loss, 112 ms RTT.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 1217.54 1667.61 1240.51 1661.67 1241.72 1662.95 1244.02 1675.9 1267.13 1648.3 1257.65 1645.95

10 MbpsSTD 26.56 88.39 24.86 20.01 24.31 20.19 19.55 36.77 149.7 17.34 15.43 61.01

% diff 37 34 34 35 30 31

Avg 746.53 1184.27 749.53 1179.57 751.05 1180.42 750.67 1202.88 781.01 1172.8 793.94 1141.15

50 MbpsSTD 2.79 42.64 1.79 3.09 2.28 3.06 2.3 56.87 90.4 43.99 19.14 15.9

% diff 59 57 57 60 50 44

Avg 736.87 1165.88 738.8 1191.79 740.43 1186.8 747.07 1169.17 740.91 1181.18 984.2 1156.17

100 MbpsSTD 2.24 3.33 2.14 69.48 2.25 77.31 28.64 3.93 6.26 32.01 435.83 84.53

% diff 58 61 60 57 59 17

1 MB x 1 500 KB x 2 200 KB x 5 100 KB x 10 10 KB x 100 5 KB x 200

86



Table B.15: Values for Figure 4.11a. Varying object size, 0% loss, 112 ms RTT, 50 ms
jitter.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 259.04 480.15 265.72 485.83 453.65 807.25 617.59 959.84 1192.04 1345.39 1904.64 1746.54 24825.78 9880.72

10 MbpsSTD 36.14 30.88 26.89 37.4 53.82 52.41 115.9 106.18 323.12 198.45 722.82 196.86 3570.03 506.86

% diff 85 83 78 55 13 -8.3 -60

Avg 244.82 480.92 242.95 485.19 430.87 784.63 603.27 871.83 920.46 1172.55 1854.38 1549.27 23875.52 4898.06

50 MbpsSTD 32.49 46.29 27.55 49.66 54.32 53.87 121.42 76.17 262.5 184.16 647.97 351.48 4598.88 1043.11

% diff 96 1e+02 82 45 27 -16 -79

Avg 241.9 455.87 248.37 473.38 430.54 822.05 587.48 824.92 1098.04 1089.77 1901.75 1310.84 24327.86 2833.4

100 MbpsSTD 19.83 52.16 30.54 29.8 71.92 56 101.8 69.26 336.82 86.03 617.94 190.12 5115.28 814.87

% diff 88 91 91 40 -0.75 -31 -88

5 KB 10 KB 100 KB 200 KB 500 KB 1 MB 10 MB

Table B.16: Values for Figure 4.11c. Varying #object, 0% loss, 112 ms RTT, 50 ms
jitter.

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP

Avg 2194.27 1928.75 2039.51 1947.71 1866.99 2057.53 1983.04 1787.75 2099.12 1950.31 1969.95 2125.73

10 MbpsSTD 748.93 335.13 626.45 256.27 575.56 299.96 639.45 190.61 603.62 265.97 623.06 273.12

% diff -12 -4.5 10 -9.8 -7.1 7.9

Avg 1635.5 1464.03 1971.03 1526.45 2049.05 1467.63 1487.35 1644.2 1499.24 1453.73 1805.54 1439.42

50 MbpsSTD 802.89 337.97 632.15 358.63 517.37 275.13 680.2 328.15 598.46 212.84 679.1 253.89

% diff -10 -23 -28 11 -3 -20

Avg 1626.07 1263.02 1696.82 1298.21 1813.36 1390.51 1651.75 1292.98 1727.91 1232.58 1811.22 1281

100 MbpsSTD 747.44 165.83 777.6 201.6 676.44 188.8 649.96 149.18 775.51 163.42 859.28 183.34

% diff -22 -23 -23 -22 -29 -29

1 MB x 1 500 KB x 2 200 KB x 5 100 KB x 10 10 KB x 100 5 KB x 200

87


	Introduction
	Background and Related Work
	QUIC
	1-RTT / 0-RTT Connection
	Head-of-Line Blocking
	Loss Detection and Congestion Control
	Other features

	Related Work
	Concluding remarks

	Experimental Methodology
	QUIC Versions
	Google QUIC (gQUIC)
	IETF QUIC (QUIC)

	Experimental Setup on Emulab
	Emulab testbed
	Dummynet traffic emulator
	Chromium QUIC Stack
	Setup Differences
	Emulab Setup Calibration

	Parameters, Workloads and Metrics
	Concluding remarks

	Empirical Results
	QUIC Fairness
	CUBIC Fairness
	BBR Fairness

	Page Load Time
	QUIC in baseline setting: 36 ms RTT, 0% loss
	QUIC's performance for single object
	QUIC's performance for multiple objects

	QUIC with added loss: 36 ms RTT, 1% loss
	Effect of N=2 on PLT under loss

	QUIC with added latency: 112 ms RTT, 0% loss
	QUIC with packet reordering due to jitter
	QUIC with BBR
	Concluding remarks

	Concluding Remarks
	Bibliography
	Appendix A: Emulab profile
	Appendix B: PLT Values

