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ABSTRACT 

In recent years, video monitoring of construction sites has become increasing popular worldwide, 

with the video footage captured containing important visual information concerning the progress 

of the given project. Video monitoring also improves the security at construction sites, serving as 

a deterrent against theft of materials and equipment. Furthermore, vision-based analysis of video 

footage is beneficial to construction management in terms of facilitating crew productivity, 

reducing safety risks, and optimizing site layouts. Despite offering a range of potential benefits, 

though, the efficient use of raw jobsite videos by construction professionals remains a challenge. 

In current practice, construction engineers have to manually browse the entire video to retrieve 

the desired information from a particular period of footage, and this manual inspection is a time-

consuming and error-prone process. Meanwhile, storage of the video footage is challenging, 

especially considering the high resolution and long streaming time typical of construction site 

footage. Consequently, project managers have to recycle video footage every one or two weeks 

to free up digital storage space, discarding construction documentation that would have been 

invaluable as a long-term point of reference. To address these issues, this research proposes a 

deep learning-based framework to automatically distill raw video footage from construction sites 

into video highlights and text descriptions using a deep learning-based framework. To achieve 

this overarching goal, three specific objectives are pursued: (1) dataset development: developing 

an image dataset of construction machine images for deep learning object detection; (2) 

highlights detection: proposing a deep learning-based method for detecting video highlights from 

construction raw video footage; and (3) text generation: deploying deep learning image 

captioning methods to generate text descriptions from construction images. The outputs of the 
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proposed framework (i.e., video highlights and text descriptions) will help construction engineers 

to efficiently ascertain what is happening in construction site without the need to manually 

browse the original construction videos. Compared with the original raw footage, the video 

highlights and text descriptions require much less storage space, making it practical to retain 

them for a period of years rather than weeks. The proposed framework provides the foundation 

for several advanced applications that will benefit the construction management, including: (1) 

auto-generating reports from daily construction videos; (2) building a querying system that 

searches for clips of interest based on text descriptions; and (3) quantitatively analyzing 

construction productivity based on video highlights. The framework proposed in this research is 

focusing on summarizing videos of construction machines captured by stationary cameras, which 

can be expanded for processing other types of construction videos (e.g., workers and materials) 

in the future. 
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Chapter 1: INTRODUCTION  

1.1 Background  

Construction is one of the largest indutrial sectors in Canada, contributing around 8.3% ($137.13 

billion dollars) of Canada’s gross domestic product in 2020 (Statistia 2021). However, the 

construction industry remains largely low-tech and labor-intensive, with relatively few 

construction companies investing in innovation (Yang et al. 2015). Manual obervation remains 

the primary method by which crew productivity and site safety are monitored, presenting an 

opportunity to improve the efficiency of this task through the introduction of automation. Sensor 

technologies, such as frequency identiication (RFID), global positioning system (GPS), and laser 

scanning, have been widely adopted in automated applications in construction for the purpose of 

expediting processes, improving productivity, and reducing safety risks. However, the 

deployment, management, and maintenance of sensor systems can be costly and time-consuming 

(Luo et al. 2018). 

In recent years, video monitoring of construction sites has become increasingly popular in 

construction, as it allows project managers to monitor the status of their job sites remotely. 

Compared with other sensors (e.g., RFID, GPS, and laser scanners), the use of video cameras 

installed on site offers the advantages of lower cost, simple installation and maintenance, and 

larger monitoring range (Kim et al. 2019). In surveying 142 construction experts, Bohn and 

Teizer (2010) identified that construction cameras can reduce project budgets by boosting the 

efficiency of communication, resource management, and site security. In these respects, cameras 

are versatile tools in construction engineering for delivering high-quality and more economical 

projects.  
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Construction video footage captured by cameras contains important visual information about 

project progress and activities, while the analysis of this footage using computer vision methods 

is beneficial to construction management in terms of productivity analysis, safety control, and so 

forth (Xiao and Zhu 2018). For example, Chen et al. (2020) proposed a framework for 

recognizing excavator activities in video footage in order to automatically calculate the 

productivity of this equipment. To facilitate site safety, Chi and Caldas (2012) analyzed 

construction machines in video footage as a way of preventing potential collisions proactively in 

future operations. Besides the abovementioned benefits, construction videos are easily 

understood and interpreted by humans, and are widely adopted as a form of official project 

documentation (Zhou et al. 2012).  

Currently, most existing researches in construction community are aiming to use automatic 

methods to help professionals to reduce engineering works (e.g., productivity analysis, site 

planning, and decision making). In fact, construction engineers have to spend a lot of time on 

non-engineering works including inspecting videos, organizing documentations, and writing 

daily reports. In the construction project lifecycle, systematic storage and organization of 

construction video footage is critical with respect to the retrieval, analysis, and documentation of 

construction activities. By adotping automatic methods to solve these non-engineering works, 

construction engineers can get rid of tedious works and put more effors on engineering works, 

which will eventually improve the productivity and safety of construction projects. 

1.1.1 Vision-based monitoring in construction 

The monitoring of construction sites using vision-based methods has emerged as a promising 

avenue of research within the construction automation field. Figure 1-1 provides the workflow of 

the adoption of computer vision in construction management applications. The data inputted in 
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the deployment of these vision-based methods is construction video footage. There are two main 

video capture methods in vision-based monitoring of construction sites: single camera and multi-

camera. Single camera is adopted for monocular vision analysis (Chu et al. 2020), and multiple 

cameras are employed for stereo vision analysis (Kim and Chi 2020). The principal subjects of 

interest in construction video are machines (Kim et al. 2018b), workers (Park and Brilakis 2012), 

and materials (Song et al. 2006).  

As concluded by Xu et al. (2020), vision-based methods can be categorized into low-level 

processing methods and high-level processing methods. Low-level processing refers to the 

retrieval of direct information (e.g., object pixel location, object category, and object ID) from 

construction videos, focusing on image-level processing. The low-level processing methods 

applied in construction management include feature extraction (Dalal and Triggs 2010), object 

detection (Xiao et al. 2021a), object tracking (Konstantinou et al. 2019), and image captioning 

(Liu et al. 2020), to name a few. 

High-level processing refers to the task of gaining deeper understanding of the contents/scene in 

construction videos using the information retrieved from low-level processing, focusing on the 

holistic information in construction videos. The typical high-level processing methods in 

construction mangement include scene reconstruction (Yang et al. 2013), pose estimation (Chu et 

al. 2020), activity recognition (Chen et al. 2020), and 3D tracking (Lee and Park 2019). Various 

automated applications can then be built upon the high-level procesing methods in construction, 

such as productivity analysis (Kim et al. 2019), progress reporting (Park et al. 2018), safety 

control (Han and Lee 2013), and querying system (Ha et al. 2018). 
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in many research fields, including human–computer interaction (Wang et al. 2018), medical 

imaging (Bouget et al. 2017), and surveillance (Kumar et al. 2017).  

In construction, deep learning methods have been widely adopted for both low-level processing 

and high-level processing, as illustrated in Figure 1-1. The common deep learning architectures 

include convolutional neural networks (CNN), recurrent neural networks (RNN), long short-term 

neural memory networks (LSTM), and 3D CNN, to name a few (LeCun et al. 2015). CNN has 

been widely employed for detecting construction objects (e.g., machines, workers, and materials) 

from videos (Xuehui et al. 2021), while RNN and LSTM have been integrated for automatically 

generating texts from construction images (Liu et al. 2020). Moreover, 3D CNN can be used for 

recognizing construction machine activities from videos (Chen et al. 2020). Most deep learning 

methods applied in construction management are supervised learning methods, which means the 

deep learning methods learn from human-created datasets. As such, the quality and quantity of 

the image datasets have a strong influence on the performance of deep learning applications in 

construction. 

1.2 Research Gap 

Despite offering a range of potential benefits, the use of raw construction video for construction 

site monitoring is challenged in three notable respects: 

1. Retrieval of the desired information from construction video is time-consuming and 

labor-intensive. Construction professionals usually prefer to browse jobsite videos 

manually to retrieve the project information needed because videos provide visual 

information that can be understood by human eyes. However, manually browsing is time-

consuming and causes fatigue. In this regard, some owners and engineers underestimate 

the value and utility of construction videos due to the difficulty of browsing these videos. 
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2. The sheer volume of video footage generated from continuously recording construction 

sites can become practically unmanageable. For instance, a one-hour video in 1080p 

resolution necessitates approximately 2 GB of digital storage space. Assuming one 

camera streams 3,000 hours in a one-year construction project, 6 TB of space is required 

for storing this footage. As such, many project managers prefer to delete videos at one- or 

two-week intervals, resulting in a loss of video records that may be of some value for 

future reference. 

3. The practical efficiency of existing vision-based applications in construction is low. As 

illustrated in Figure 1-1, existing vision-based applications are built upon high-level 

processing methods, with these methods having a low processing speed and consuming 

considerable computational resources. Construction videos contain a significant number 

of redundant frames that can be removed without losing the relevant project management 

information. However, these redundant frames cannot be recognized and are integrally 

processed, wasting computational resources. As such, many vision-based applications 

have low processing speed and cannot be practically applied in construction management. 

1.3 Research Objectives and Scope 

To fill these gaps, this research proposes a deep learning-based framework to automatically 

summarize construction videos in the form of video highlights with corresponding text 

descriptions for vision-based monitoring of construction sites. The proposed framework is 

aiming reduce the efforts of construction engineers for inspection and management of 

construction videos. Through the adoption of the proposed framework, the generated video 

highlights and text descriptions can be used to replace the raw construction videos in project 

management, thereby reducing significantly the storage requirements and manual effort 
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To achieve this goal, the following objectives are pursued in this research: 

1. Dataset development: development of an image dataset for training deep learning object 

detection methods to recognize construction machines from videos. Since the proposed 

framework is based on detecting and tracking all construction objects, the development of 

such an image dataset is a fundamental step in this research. 

2. Highlights detection: development of a deep learning-based method for automatically 

generating video highlights from construction videos. This objective addresses the 

question of how to define, detect, and produce video highlights that are useful in vision-

based applications (e.g., productivity analysis and logistics management) in construction 

monitoring. 

3. Text generation: adoption of deep learning image captioning as the basis for generating 

text descriptions from construction images. The focus here is on the use of image 

captioning methods to generate construction-related texts from keyframes of construction 

videos. 

The scope of this research focuses on summarizing the construction videos captured by a 

stationary camera. It should also be noted that the proposed framework only tracks trajectories of 

construction machines (rather than workers or materials) for video summarization purposes, 

since, in many construction scenarios (e.g., earthmoving scenarios and gate scenarios), most 

keyframes are related primarily to equipment operations. Although tracking of workers and 

materials is not within the scope of this research, it can be achieved in future work by extending 

the proposed framework. The main scope of the present research, then, is the use of low-level 

image processing methods to summarize video footage of construction machines. Although high-

level image processing and vision-based applications are outside the scope of this research, 
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Chapters 5 and 6 will describe how the proposed method can contribute to vision-based 

applications. 

1.4 Thesis Organization 

This thesis comprises seven chapters. Chapter 1 illustrates the research background, including 

brief introductions of the current practice of vision-based monitoring in construction and deep 

learning methods. The research gaps, objectives, and scope are also outlined in this chapter. In 

Chapter 2, a thorough review of the literature on sensor-based monitoring in construction, vision-

based processing techniques, and construction applications of vision-based methods is provided. 

Chapter 3 provides an overview of the proposed framework, including a description of how the 

development of the proposed framework satisfies the research objectives. 

Chapter 4 describes the development of an image dataset of construction machines for deep 

learning object detection. The methodology for collecting and annotating construction images is 

introduced, and an algorithm analysis is conducted to validate the feasibility of the developed 

dataset. Chapter 5 demonstrates the methodology for detecting video highlights from 

construction videos. Two case studies are conducted on the construction gate scenario and 

earthmoving scenario, respectively, to evaluate the proposed highlight detection methods. In 

Chapter 6, deep learning image captioning methods are incorporated in order to automatically 

translate keyframes into text descriptions. Moreover, a linguistic schema is proposed to annotate 

images of construction machines for training image captioning methods. 

Finally, in Chapter 7, several conclusions are drawn, and the academic and industrial 

contributions of the research are summarized; the limitations of this research and potential areas 

of future works are also outlined in this chapter.  
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Chapter 2: LITERATURE REVIEW 

This chapter outlines the relevant research in the following areas as presented in the literature: (1) 

sensor-based monitoring in construction; (2) deep learning object detection; (3) image datasets 

for object detection; (4) vision-based object tracking; (5) video highlight detection; (6) deep 

learning image captioning; and (7) construction applications of vision-based methods. A 

comprehensive literature review has been conducted to support understanding the state-of-the-art 

studies in the research community and research objectives of this thesis. 

2.1 Sensor-based Monitoring in Construction 

Sensor-based methods refer to monitor entities by various sensors such as GPS, RFID, UWB 

(ultra-wideband), and laser scanner. GPS tracks the location of an entity remotely through well-

spaced satellites, and is a well-established monitoring system in construction scenarios (Li et al. 

2005). Ergen et al. (2007) have integrated GPS in a precast storage yard to monitor the 

trajectories of construction components. Lu et al. (2007) have proposed a method that positions 

construction vehicles in building construction sites based on GPS. However, GPS-based methods 

are inconvenient to set up and lose precision in an indoor construction environment.  

RFID is a wireless non-contact sensor using radio frequency waves to transfer data, and has been 

widely adopted for monitoring construction materials and workers. Song et al. (2006) have 

proposed a localization method of construction materials on jobsites based on RFID technology. 

Lee et al. (2012) have designed a RFID-based real-time locating system for construction safety 

monitoring; however, this tagging sensor-based technology does not perform adequately on 

modern construction sites because the deployment of sensors is costly.  
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UWB is another type of radio technology that transmits short-range pulses over a wide 

bandwidth range. The main advantage of UWB is this technology can provide precise 3D 

localization and requires lower power in harsh environments (Cheng et al. 2011). On 

construction sites, UWB can be used for real-time 3D tracking of workers to active tracking 

zones in order to improve workspace safety. Teizer et al. (2007) have employed UWB to monitor 

materials and ironworkers on construction sites. Shahi et al. (2012) have adopted UWB to track 

steel and timber in indoor construction projects. However, UWB systems require extra effort 

whereby professional engineers need to measure known positions by a total station in prior. 

Laser scanners capture accurate 3D point clouds of an object’s surface by combining two kinds 

of information: data from a laser being shone on the object and data from a moving camera. 

Zhang and Arditi (2013) have proposed a method to monitor the progress of a construction 

project using laser scanning technology. Bosché et al. (2015) have proposed a method to 

integrate laser scanning and building information modeling (BIM) to enhance construction site 

monitoring. Adán et al. (2018) have adopted laser scanning to reconstruct the BIM models of 

some components projected onto the wall. Laser scanners are expensive in terms of hardware 

and also require specialists to physically maintain and operate them. 

2.2 Deep Learning Object Detection 

Object detection is an important technique in machine learning that not only indicates the 

presence of a given class, but also indicates the position of instances (Kulchandani and 

Dangarwala 2015). Currently, state-of-the-art object detection methods are built up deep learning. 

A general type of deep learning object detection method produces a large number of candidate 

boxes, and then classifies these boxes using classification networks. This pattern is called two-

stage detection, which has achieved top tier performance in terms of accuracy with respect to 
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several benchmarks. The representative approach is the region-based convolutional neural 

networks (R-CNN) (Girshick et al. 2014), which has adopted convolutional neural networks to 

extract image features and support vector machine (SVM) to classify candidate boxes. This two-

stage detection method has been improved by other techniques, such as region-of-interest 

pooling (Girshick 2015), and anchor boxes (Ren et al. 2017), as these methods have achieved 

much faster speeds compared to their predecessors. Another promising deep learning object 

detection system is one-stage detection, which aims to further improve the processing speed. 

One-stage methods, such as YOLO (You Only Look Once) (Redmon et al. 2016) and SSD 

(Single-Shot MultiBox Detector) (Liu et al. 2016), store results prediction in the last 

convolutional layer, which enables the methods to achieve real-time speed.  

In construction research community, a large number of researches have been conducted on 

advancing deep learning object detection methods specifically for detecting construction objects 

(e.g., construction machines and workers). Kim et al. (2018) has combined the region-based fully 

convolutional neural networks (R-FCN) and transfer learning techniques for robustly detecting 

construction equipment. Fang et al. (2018b) have proposed an improved faster region with 

convolutional neural networks for construction scenarios, which has achieved the average 

detection accuracy of 91% and 95% on worker and excavator, respectively. Arabi et al. (2019) 

has provided a comprehensive solution for construction equipment detection including the 

development and mobile-end deployment. Kolar et al. (2018) have proposed a deep learning 

detection method integrating transfer learning to detect safety guardrails in construction sites, 

which obtained the accuracy of 95.6% in testing. 
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2.3 Images Datasets for Object Detection  

The image datasets for object detection contain a large number of images and each image has 

been manually annotated at the object level. The development of detection image datasets 

expands the potential of deep learning algorithms, which is an important reason why deep 

learning is successful (Russakovsky et al. 2015). Deep learning algorithms that have been trained 

on large datasets have the ability to detect objects from new scenarios to avoid the overfitting 

problem (Cogswell et al. 2016). There are several comprehensive datasets available to the public 

in the computer vision community; however, these datasets are mainly aimed at natural 

categories, such as vehicles, animals, and furniture. The PASCAL visual object classes (VOC) 

dataset provides 11,530 images of 20 object classes for training and testing object detection 

algorithms (Everingham et al. 2010). Furthermore, the Microsoft common objects in context 

(COCO) dataset contains 160,000 labelled images belonging to 91 categories (Lin et al. 2014). 

Recently, Google AI has constructed the open image dataset v4 containing 478,000 labelled 

images with 6,000+ categories (Kuznetsova et al. 2020). 

There is limited research regarding the development of detection image datasets in construction 

scenarios. Tajeen and Zhu (2014) have developed an image dataset for evaluating construction 

equipment detection algorithms. However, that dataset was annotated to evaluate non-deep 

learning object detection algorithms in construction and the deep learning object detection 

algorithms were not considered. Also, that dataset includes only 5 machine types and contains 

only 2,000 annotated images, which need to be expanded for training deep learning object 

detection algorithms. Developing the annotated dataset is the fundamental step for all research 

that relied on deep learning object detection, while the quality and quantity of the dataset affects 
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the performance of vision-based applications. Therefore, more efforts are needed to develop the 

image datasets of construction machines for deep learning object detection. 

2.4 Vision-based Object Tracking  

Vision-based object tracking is conducted to address the tracking of single or multiple objects 

from videos. By integrating object detection, the tracking problem can be simplified to the 

association of detection results across frames (Milan et al. 2016). The vision-based tracking 

methods can be categorized into motion model methods and appearance model methods. The 

motion model methods associates the detection results based on the object’s movements (e.g., 

trajectories and object bounding boxes). Rezatofighi et al. (2015) have proposed a joint 

probability data association method for tracking multiple objects by the hypothesis of their 

trajectories. Bo and Nevatia (2012) have proposed a conditional random field graph method to 

associate tracking trajectories. Bewley et al. (2016) have proposed a simple online sort and real-

time tracking method (SORT) for multiple object tracking. In SORT, the detection results are 

tracked by the Kalman filter in each frame, where the detection and tracking results are 

associated by the intersection over union (IoU) matrix. Then, the Hungarian is employed to 

maximize the IoU matrix in order to assign tracking IDs to all objects. The association of motion 

model tracking can achieve high processing speed, while the tracking precision and robustness 

are impractical for complicated applications.  

The appearance model tracking associates the detection results based on both the pixel region of 

detected objects and their pixel location information. Ross et al. (2008) have proposed a tracking 

method that integrates the particle filtering and the eigen images as the appearance model. In 

their work, the particle filtering predicts multiple locations of the object in the next frame based 

on possibility distributions and then the tracker selects one object as the tracking result which has 
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the most similar appearance with the object in the current frame. Yu et al. (2016) proposed a 

tracking method that extracts object features by GoogleNet (Szegedy et al. 2014) to build the 

association matrix by calculating the cosine distance between the extracted features. Choi (2015) 

has proposed a multiple object tracking method based on the aggregated local flow descriptor. 

Milan et al. (2017) have employed the recurrent neural networks to extract features from the 

detection regions for association and tracking. Although the association of appearance model 

tracking has better tracking performance, its processing speed reduces when the number of 

objects increases. 

In construction, researchers have put much effort into developing vision-based object tracking 

methods for construction scenarios in terms of dealing with high-resolution images, frequent 

occlusions, and special features (e.g., vests for tracking workers). For tracking construction 

workers, Konstantinou et al. (2019) have proposed a vision-based object tracking method for 

workers in a complex environment based on both a filtering model and an appearance model. 

Angah and Chen (2020) have integrated the instance segmentation method into vision-based 

tracking of construction workers in outdoor environment. Park and Brilakis (2016) have 

developed a tracking method that integrates the SVM detection (Dalal and Triggs 2010) and 

particle filtering tracking (Ross et al. 2008) by bounding box location, size, and color histograms 

to track multiple construction workers under varied illumination scenarios.  

For tracking construction machines, Xiao et al. (2021b) have integrated illumination 

enhancement methods into construction scenarios for tracking multiple machines at nighttime, 

which has achieved the robust performance in extreme lighting conditions. Zhu et al. (2016) 

adopted a particle filtering tracker for construction equipment to overcome the short-term 

occlusions typical on construction sites. Although object tracking methods are widely adopted in 
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vision-based construction monitoring, few studies have integrated object tracking into video 

summarization tasks. 

2.5 Video Highlight Detection  

Video highlight detection refers to producing short and representative clips from the full-length 

video, which has been used in sport highlights, the film industry, and egocentric videos (Liu et al. 

2010). For example, Merler et al. (2019) developed multimodal excitement features to generate 

video highlights from a golf tournament and two international tennis tournaments, with the 

results having been closely aligned with the official video highlights. Wang et al. (2020) 

proposed a contrastive attention module as the feature representations to produce trailers from 

full-length movies. Yao et al. (2016) employed a pairwise deep ranking model to detect video 

highlights from first-person GoPro videos, achieving an accuracy of around 80% on over 100 

hours of videos from YouTube. Moreover, video highlight detection has significantly reduced 

the manual editing and reviewing effort required in many applications. 

A typical video highlight detection method extracts features from raw videos and then selects 

keyframes by analyzing changes in the feature space across frames. The video clips around 

keyframes, usually several seconds, are combined together to produce the video highlights for 

users (Lin et al. 2015). Feature extraction and keyframe selection are the main focuses in the 

computer vision community. A large number of features have been studied for the task of video 

highlight detection. For example, Laganière et al. (2008) integrated the spatio-temporal Hessian 

matrix to collect image features for video highlight detection. Liu et al. (2009) adopted the scale 

invariant feature transform to identify the boundary of video highlights. Deep neural network has 

also emerged as a promising method for extracting features from images by learning from 

human-created dataset. Mahasseni et al. (2017) employed the LSTM to summarize video 
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highlights. Xiong et al. (2019), meanwhile, adopted CNN technology to detect video highlights 

from Instagram videos. 

Keyframes are a set of representative frames in videos that define the quality of the video 

highlights. One approach in this regard has been to calculate the Euclidean distance of every two 

continuous frames. The keyframes can then be identified as the points in the video footage where 

feature distance changes rapidly (Truong and Venkatesh 2007). Moreover, the clustering 

technique has been employed to extract keyframes. For instance, Mundur et al. (2006) developed 

a keyframe selection method based on Delaunay clustering. Other studies have employed a 

method of selecting keyframes by ranking all frames with a pre-defined importance score, such 

as entropy (Muhammad et al. 2020), context prediction score (Lin et al. 2015), or influence 

metric (Lu and Grauman 2013). However, for two reasons in particular, existing methods in 

computer vision are not able to efficiently detect construction video highlights: (1) keyframes in 

construction cannot be simply defined as the frames with image features change rapidly; and (2) 

video highlights are expected to be interpretable and flexible for construction management. 

Researchers in the construction automation field have put efforts into developing video highlight 

detection methods to accommodate construction video characteristics. For instance, Chen and 

Wang (2017) developed construction-specific color, texture, and gradient features for extracting 

keyframes from videos. The developed methods were tested on four construction videos, and the 

experimental results suggested that color features generally outperform gradient and texture 

features. However, that study focused on exploring image features and did not utilize the content 

information. Ham and Kamari (2019) proposed a content-based keyframe selection method for 

construction videos captured by drones. However, their method was designed for drone videos, 

whereas it cannot be directly applied to videos captured by fixed-position cameras. 
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2.6 Deep Learning Image Captioning  

Image captioning generates one or several sentences from an image to describe the scene 

information inside of this image, which is an interdisciplinary research topic of computer vision 

and natural language processing (Huang et al. 2019). Recently, deep learning methods have 

gained superior performance for image captioning, while the general framework of image 

captioning methods consists of an “encoder” to retrieve features from images and a “decoder” to 

generate texts from retrieved features (Hossain et al. 2019). Mao et al. (2014) have proposed a 

deep learning image captioning method that uses CNN as the “encoder” and RNN as the 

“decoder”; this work has been improved in the “show and tell” method by only inputting the 

visual features at the first time-step of RNN (Vinyals et al. 2017). Furthermore, attention 

mechanism has been widely applied in deep learning image captioning, which allows the neural 

networks to focus on its subset of inputs to select specific features (Gao et al. 2019; Xu et al. 

2015). Recently, transformer attention has been implemented in image captioning studies(Vig 

2019; Vig and Belinkov 2019; Zhang et al. 2019) and achieved reliable performance. 

In construction management, image captioning can be used for scene analysis. By analyzing the 

sentences generated by image captioning methods, the major objects, activities, and interactions 

of objects can be retrieved. For example, Liu et al. (2020) have applied the CNN-LSTM 

captioning method for manifesting construction worker activity scenes. In that research, a 

linguistic schema used for annotating images of construction workers is proposed and three 

experiments are conducted to illustrate the feasibility of image captioning in construction. Bang 

and Kim (2020) have applied image captioning to drone images for vision-based monitoring of 

construction sites with achieving the mean average recall (mAP) of 45.52%. However, compared 

with other image processing methods, image captioning received limited attention in our 
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research community because this technique is relatively new. The performance of deep learning 

methods is still unclear and more investigations need to be conducted. 

2.7 Construction Applications of Vision-based Methods 

Construction video footage contains important visual information that can be used for 

productivity analysis, progress reporting, safety control, and querying system (Yang et al. 2015). 

For productivity analysis, Kim et al. (2018c) have conducted an interaction analysis of 

identifying the activities of earthmoving equipment based on vision-based tracking. Roberts and 

Golparvar-Fard (2019) have proposed an end-to-end solution of detection, tracking, and activity 

analysis of earthmoving equipment with high accuracy. Kim and Chi (2019) have developed a 

novel excavator action recognition method by integrating detection, tracking, and sequential 

pattern features. Kim and Chi (2020) have proposed a multi-camera vision-based productivity 

monitoring system of earthmoving operations based on detection and tracking excavators and 

dump trucks, which have achieved an accuracy of 97.6%.  

Thanks to the availability of fixed-position cameras and smartphones, the number of images and 

videos have increased significant in construction sites on a daily basis. Naturally, these 

photography documentations can be used to report construction progress to project participates 

(Han and Golparvar-Fard 2014). Vision-based methods reconstructed the 3D construction 

scenarios from images or videos, which can be used to compare with BIM to obtain the deviation 

of progress (Ibrahim et al. 2009). For example, Brilakis et al. 2011a) have adopted the structure 

from motion technique to conduct the 3D reconstruction to report project progress. Chen et al. 

(2019) have integrated deep learning techniques for 3D reconstruction in construction sites, 

which has gained the 84.2% validation accuracy in experiments. 
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Safety is the most important concern in construction industry, whereas analyzing construction 

videos can enhance the site safety. Gualdi et al. (2011) have proposed a head hat detection 

method for monitoring the safety of construction workers using videos. Chi and Caldas (2012) 

have recognized construction machines in videos for the purpose of obtaining vehicle speeds in 

order to alert in the case of potential collisions. Nguyen and Brilakis (2018) have developed a 

vision-based system to detect the over-height vehicle in bridge and tunnels for improving site 

safety. Tang et al. (2019) have proposed a novel vision-based method to detect construction 

objects and forecast the potential collisions based on mixture density network and long short-

term network, which can forecast the target location in the future 2 seconds. Zhong et al. (2020) 

have proposed a hybrid framework to extract construction procedural constraints from videos 

and compare with construction regulations in order to ensure site safety. Fang et al. (2020) have 

proposed a novel deep learning-based framework that combines data fusion and digital 

technologies to enhance construction sites safety. 

The querying of construction images or videos helps to the project documentations, and vision-

based methods can be used for efficiently querying in construction management. Brilakis and 

Soibelman (2005) have proposed a content-based search engine based on blind relevance 

feedback to retrieve construction images. Nath and Behzadan (2019) have investigated deep 

learning detection algorithms for retrieving construction visual data. Similarly, Ha et al. (2018) 

have proposed a BIM image retrieval method by implementing CNN networks. Li et al. (2020) 

have proposed a novel searching system named BIMSeek to retrieve BIM models by images or 

queries. Currently, the vision-based applications have to process the entire construction videos 

including the clips without any important information. By eliminating redundant frames in 

construction videos, the efficiency of vision-based applications can be remarkably facilitated.  
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Chapter 3: OVERVIEW OF THE PROPOSED PRAMEWORK 

3.1 Introduction 

As reviewed in the previous chapter, vision-based methods play an important role in automated 

monitoring of construction sites, and many research studies have been conducted in this domain. 

Management of the large volumes of video footage accumulating over the lifespan of a 

construction project, though, has proven challenging when using existing methods. In this 

chapter, a framework for automatically summarizing construction videos is outlined. The 

proposed framework can be divided into three main sections—dataset development, video 

highlight detection, and text description generation—each of which is described briefly in this 

chapter before being discussed in greater detail in subsequent chapters.  

3.2 Proposed Framework  

Figure 3-1 provides an overview of the proposed framework for construction video 

summarization. First, the construction engineer (user) inputs the raw construction video to the 

proposed framework through a web-based user interface (UI). Then, the object detection method 

detects all pre-defined classes of construction objects from each video frame. The object tracking 

method associates the detection results across frames in order to obtain the trajectories of 

construction machines appearing in the video, while the tracking results are stored in a database 

for further querying. Moreover, the keyframe detection recognizes the keyframes by analyzing 

the tracking trajectories and image features extracted from the raw construction video, whereas 

the keyframes can be used for producing video highlights. 

Since this framework integrates deep learning object detection, an annotation image dataset for 

training is necessary. Therefore, this research also involves the development of an image dataset 
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for machine selection, image collection, image selection, and image annotation. Meanwhile, a 

linguistic schema is proposed to generate construction-related text annotations of the developed 

dataset for training deep learning image captioning methods. The trained image captioning 

model is adopted to produce text descriptions from keyframes of construction video. Finally, the 

video highlights and text descriptions are fed back through the web UI to construction engineers 

for future browsing, storage, and querying. 

 

Figure 3-1. Overview of the proposed framework for video summarization 

As demonstrated in Figure 3-1, the proposed framework can be divided into three sections as 

follows: 

1. Dataset development: The dataset development serves research objective 1, where the 

main tasks are to develop a construction image dataset for deep learning object detection 

following the standard computer vision procedures. The performance of various existing 
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deep learning detection methods is also investigated. The dataset development is 

described in greater detail in Chapter 4. 

2. Highlight detection: The development of a highlight detection method serves research 

objective 2, where the method detects construction video highlights by integrating object 

detection, object tracking, and feature extraction. Two case studies are conducted to 

evaluate the proposed highlight detection method, which is described in greater detail in 

Chapter 5. 

3. Text generation: Development of an automated method to adopt deep learning image 

captioning for generating texts from construction images to fulfill the research objective 3. 

A novel linguistic schema is proposed in this section to bridge the gap between deep 

learning image captioning methods and construction management. Six deep learning 

methods are compared, and the best performing one is incorporated into the proposed 

framework for the purpose of producing text descriptions of keyframes. The details of the 

text generation are provided in Chapter 6.  
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Chapter 4: DEVELOPMENT OF AN IMAGE DATASET OF CONSTRUCTION 

MACHINES FOR DEEP LEARNING OBJECT DETECTION1 

4.1 Introduction 

Detecting construction resources (e.g., machines, workers, and materials) in images or videos is 

the first and fundamental step required in the development of automation to analyze construction 

videos. Once construction objects have been correctly recognized, a large number of construction 

monitoring tasks could be automated. For example, detecting excavators and dump trucks at the 

same time could automatically calculate the dirt-loading cycles in earthmoving projects (Chen et 

al. 2020). The continuous detection of machines and workers can prevent potential collisions and 

alert construction engineers in a timely manner (Zhu et al. 2017). Detection of construction 

materials identifies the material location in the supply chain, and enables effortless derivation of 

project performance indicators (Song et al. 2006). 

Deep learning algorithms have achieved superior performance in terms of robustness and 

processing speed. Recent studies (Liu et al. 2016; Ren et al. 2017) indicate that deep learning 

algorithms can effectively detect objects in certain challenging scenarios, such as occlusions and 

illumination variations. This is because neural networks extract high-level features from images 

instead of manually designing features (e.g., edges and colors) (LeCun et al. 2015). Moreover, 

deep learning object detection algorithms are able to process in real-time or near real-time speed 

by integrating parallel computation and graphic cards (Zhao et al. 2019). Considering these 

                                                

1 A version of this chapter has been published in ASCE Journal of Computing in Civil Engineering as 

follows: Xiao, B., and Kang, S. (2021). “Development of an Image Data Set of Construction Machines 
for Deep Learning Object Detection.” Journal of Computing in Civil Engineering, 35(2), 05020005. It has 
been reprinted with permision from the publisher. 
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advantages, deep learning object detection algorithms are widely employed in the field of 

construction automation to monitor productivity and safety (Fang et al. 2018; Kim et al. 2018a). 

To apply deep learning object detection, a construction-specific image dataset, which includes 

machines, workers, and materials, is necessary to recognize the underlying relationships between 

construction objects and images. However, the construction research community is lacking such 

an image dataset for training deep learning object detection algorithms due to: (1) the 

accessibility of construction images is limited and the number of online resources offering 

construction images and videos is relatively limited. In industry, many construction engineers do 

not realize the value of construction videos, and they therefore dispose of all video footage once 

a given project is complete; (2) it is difficult to achieve a high degree of diversity (e.g., number 

of images, object categories, object size, and camera views) in construction image datasets to 

avoid the overfitting problem; and (3) annotating construction images in a manner that ensures 

high quality, low cost, and efficiency is challenging. In construction research, employing 

graduate students specialized in construction management is the typical method used to annotate 

datasets, and this is time-consuming and costly. 

The primary objective of this chapter is to develop an image dataset specifically for construction 

machines. The development method focuses on how to collect construction images, how to select 

qualified images to ensure dataset diversity, and how to annotate construction images effectively. 

An image dataset has been developed in this research. A total of 10,000 images of ten types of 

machines (excavator, compactor, dozer, grader, dump truck, concrete mixer truck, wheel loader, 

backhoe loader, tower crane, and mobile crane) have been collected and annotated manually. An 

algorithm analysis has been conducted on the developed dataset to validate its capacity for 

training deep learning object detection algorithms. The algorithm analysis demonstrates the 
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Table 4-1. Descriptions of the construction machines selected in the proposed image dataset 

Construction 

Machine 

Description Image Example 

excavator Excavators are considered heavy construction equipment and 

consist of a boom, dipper, bucket and cab on a rotating 

platform known as the "house".  

Figure 4-2(a) 

compactor A compactor is a type of machine used for compacting 

crushed rock as the base layer underneath concrete or stone 

foundations or slabs. 

Figure 4-2(b) 

dozer A bulldozer is a crawler equipped with a metal plate and a 

claw-like device to loosen densely compacted materials 

Figure 4-2(c) 

grader A grader is a construction machine with a long blade used to 

create a flat surface during the grading process. 

Figure 4-2(d) 

dump truck A dump truck is used for transporting loads/dumps with a 

rear-hinged open-box equipped with hydraulic rams. 

Figure 4-2(e) 

concrete mixer truck A concrete mixer truck is used to mix concrete and transport 

it to construction sites. It consists of a truck body and a mixer 

bucket. 

Figure 4-2(f) 

wheel loader A wheel loader is heavy equipment machinery used in 

construction to load materials into or onto another type of 

machinery.  

Figure 4-2(g) 

backhoe loader A backhoe loader is a type of heavy equipment that consists 

of a loader-style bucket on the front and a backhoe on the 

back. 

Figure 4-2(h) 

tower crane A tower crane is a modern form of balance crane that consists 

of the same basic parts fixed to the ground on a concrete slab. 

Figure 4-2(i) 

mobile crane A mobile crane is a machine with a truck body equipped with 

a crane.  

Figure 4-2(j) 
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4.2.2 Image collection 

To develop a construction machine image dataset, all images were collected in either one of two 

ways: online collection and onsite collection. For online collection, construction images and 

videos were downloaded from photo-sharing and video-sharing websites using a web crawler. 

For onsite collection, images and videos of real construction sites were collected three ways: 

flying unmanned vehicles (UAV), installing on-site cameras, and manually conducting site visits. 

All videos collected online and onsite have been converted to images in JPEG format.  

Online images were downloaded from Google Images and Naver website using AutoCrawler 

software (YoongiKim 2018). AutoCrawler was asked to download 1,000 images from Google 

Images and 1,000 images from the Naver website for each class of construction machine by 

searching the machine names. It is difficult to download over 1,000 images per class from the 

photo-sharing websites since these websites have limited construction images. Meanwhile, it is 

observed that the dump truck, excavator, and wheel loader are relatively easier to find in the 

photo-sharing websites, while the mobile crane, tower crane, and concrete mixer truck are more 

difficult to find. YouTube was the main resource used for image collection. Totally 2,904 

construction videos were collected from YouTube with an average duration of 6 minutes and 

each included at least one target machine. These videos include footage from multiple 

construction stages and various activities, and from different types of construction scenarios 

including day shifts, night shifts, raining, snowing, outdoor construction, and indoor construction. 

Videos collected from YouTube were downloaded and converted to images using a rate of one 

image per ten seconds considering that, in general, construction videos change slowly. To sum 

up, the total number of construction images collected online from Google Images, Naver, and 

YouTube is approximately 124,500. 
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For the onsite collection, the author and the research team members visited seven construction 

sites that are managed by the municipal government of Edmonton, Canada. During the site visits, 

1,000 images were captured by cell phone cameras. Another 500 bird’s-eye view images were 

captured by a UAV craft (DJI Mavic 2) that flies over these construction sites multiple times. 

Moreover, over 100 hours of construction videos captured from onsite cameras located in Xi’an 

City, China have been acquired. Similar to the procedure followed for the YouTube videos, these 

onsite videos have been converted to images at the rate of one image per ten seconds. In total, 

there are 37,500 images acquired from the onsite collection. 

4.2.3. Image selection 

After the image collection step, in total there are 162,000 images collected from online and 

onsite resources. If the image dataset is to avoid the overfitting problem in deep learning training, 

it needs to offer a high degree of variation in the images. In the image selection stage, qualified 

images are manually selected from all the 162,000 collected images. To ensure the dataset 

quality, four criteria are proposed in the framework for image selection, which are duplication 

removal, image resolution, machine size, and privacy protection.  

(1) Duplication removal: Duplicate images were manually removed by researchers. For images 

retrieved from videos, although we only retrieve one image in ten seconds, there were many 

duplicate images because construction activities evolve very slowly, and the removal of the 

duplicate images was performed according to strict criteria. With respect to images extracted 

from the same video, to be considered for inclusion in the dataset each image must be 

significantly different from other images in terms of machine orientation, position, or 

illumination. Typically, 600 images are extracted from a 10-minute video (1 image per 10 

seconds), and only 5 to 10 images of those images are chosen after duplication removal. Figure 
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4-3 shows an example of how the criteria of duplication are applied. To be noted, the duplication 

removal can also be processed by adopting automated duplicate removal algorithms based on 

measuring the similarity between images (Appalaraju and Chaoji 2017; Wang et al. 2014), which 

will be investigated in the future.  

(a) not duplicated 

 

(b) duplicated 

Figure 4-3. Examples of applying the duplication criteria 

(2) Image resolution: The requirement for image resolution is to only select images with a 

resolution larger than 608×608. Most of deep learning object detection algorithms resize the 

images into specific resolutions (e.g., 400×400, 1280×800) before convolution operation. In the 

proposed framework, any images with a resolution smaller than 608×608 are removed and this 
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process is automated. The resolution criteria are customized and should not be too small since 

the resolution of construction images is usually high. 

(3) Machine size: Images are manually removed if machine objects are undersized or oversized 

with respect to the image size. The preferable machine size should between 1/42 to 3/4 of the 

whole image size. This is a soft regulation because the machine size is manually estimated, and if 

the construction machine is slightly oversized or undersized, this will not affect the dataset 

quality. An example of machine size selection is illustrated in Figure 4-4. 

 

Figure 4-4. Example images of machine size selection criteria 

(4) Privacy Protection: In the image collection step, some images were collected that contain 

workers and pedestrians. To avoid research ethical issues, all clear or partial clear human faces in 

the images are blurred.  

After image collection and selection, 10,000 images were deemed to qualify for inclusion in the 

image dataset. Figure 4-5 shows some examples of the selected images. Figure 4-6 shows 

example images based on their collected resources (e.g., YouTube, Google Images, and UAV). 

 

 
Figure 4. Example images of machine size selection criteria 
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Figure 4-5. Example images selected in the proposed image dataset 

 

Figure 4-6. Example images selected in the proposed dataset based on collection sources  
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For image selection, we first browsed all images to remove any images with duplication and 

oversize/undersize machines. The average browsing speed was 1,000 images per hour. There 

were 162,000 images collected from online and onsite sources. We spent around 162 man-hours 

in this step. After that, the computer program checked image resolutions to remove the images 

with low resolution (lower than 608×608). Then, a research team member then manually blurred 

all human faces appearing in the selected images. The blurring process took about 10 man-hours. 

4.2.4 Image annotation 

To be used as a dataset for object detection, the image annotation must include two components: 

class and position. Class refers to the object category, which is one of excavator, compactor, 

dozer, grader, dump truck, concrete mixer truck, wheel loader, backhoe loader, tower crane, or 

mobile crane. The position is represented by an axis-aligned bounding box surrounding the 

construction machine object in the image. All annotation results were stored with XML format, 

which is a common format used in the computer vision community and is compatible with other 

formats. In the annotation step, half of the images are labelled by annotators at the University of 

Alberta, and half of the images are annotated through the Amazon crowdsourcing platform called 

Mechanical Turk (MTurk). To ensure the annotation quality, all annotations have been checked 

two times, first by one annotator and then by the author of the current study.  

Annotation Standard 

In order to ensure the annotation results are high quality, three standards adopted in the 

development of the VOC dataset have been employed and were strictly followed during the 

annotation process:  
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(1) Consistency: All annotations in the proposed image dataset are consistent in terms of the 

class definition, bounding box placement, and how to deal with occluded objects. The 

consistency also applies to how to deal with illuminations, how to control annotation quality, and 

how to annotate under snowing, raining, and night conditions.  

(2) Correctness: All annotations in the proposed image dataset precisely describe the pixel-axis 

position of construction machine objects. The bounding boxes do not cut the objects, and the 

margins are within 5 pixels. The main objective is to annotate with as few errors as possible.  

(3) Completion: All objects belonging to the ten classes are labelled. There may be more than 

one machine object in one image, and the annotations are exhaustive. All objects that can be 

identified were annotated, and occluded objects were annotated according to the part of the 

machine that can be seen. 

Figure 4-7 shows two example images to illustrate the annotation standards in terms of dealing 

with occlusions and illuminations. The green color represents the objects that need to be 

annotated and the red color means the object should not be annotated. If the occluded area is less 

than 70% of the whole machine area and the machine can be easily identified upon sight, this 

machine needs to be annotated. For example, objects B, D, and E in Figure 4-7(a) need to be 

annotated. The objects I and J in Figure 4-7(b) should not be annotated because more than 70% 

of the objects are occluded and the contour of the dump trucks is incomplete. 

For illumination, if the object’s contours can be easily identified, this object needs to annotated. 

If the object is vague and incomplete because of illumination (too light or too dark), this object 

should not be annotated. For example, object E in Figure 4-7(a) needs to be labelled, and object 

F should not be labelled. Considering it may be difficult for annotators to discern the occluded 
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Manual Annotation 

A software program named LabelImg (Tzutalin 2015) is used by the five members of the 

research team to annotate 5,000 images. The user interface of LabelImg is shown in Figure 4-8. 

The annotation process consists of three steps: (1) five annotators are given a tutorial that 

explains what this research is for and how to annotate images. Each annotator is required to 

annotate 100 images as practice and their annotations are checked and corrected, if necessary, by 

the author of the present study; (2) the five trained annotators are then required to annotate the 

construction images according to the annotation standards. A well-trained annotator can label 50 

construction images per hour; and (3) to achieve consistency, all the completed annotations need 

to be checked by one other annotator and the author of the present study. 

 

Figure 4-8. Example of image annotation using LabelImg software 

Employing the research team to do the annotation is estimated to cost 170 man-hours for 5,000 

images, where 50 man-hours are for training, 100 man-hours are for annotating, and 20 man-
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Crowdsourcing the annotation involves two steps: (1) the first step is to post images on the 

mTurk platform. In this research, 1,000 images were posted each time and the annotation time is 

about 1 hour. The incentive for each image is $ 0.10; and (2) the annotation results are then 

checked by one trained annotator and by the author of the present study. The annotator must 

spend a significant amount of time rejecting the images that do not meet the standards and re-

labelling the images to meet the standards. This checking process costs 40 man-hours for 5,000 

images. Using mTurk, the cost of annotating one image is $0.22 and the average time cost is 

0.009 man-hours per image. 

4.3 Dataset Statistics 

In this chapter, the developed image dataset is named the Alberta Construction Image Dataset 

(ACID), also referred to herein as the ACID dataset. The dataset statistical analysis described in 

this section proves the diversity of ACID. ACID includes 10,000 images and 15,767 construction 

machine objects. Figure 4-10 depicts the number of objects and the number of images 

(containing at least one object in the respective category) for each type of construction machine. 

Dump trucks (3,713 objects), excavators (2,787 objects), and wheel loaders (1,823 objects) are 

recognized as the most frequent construction machines in ACID.  
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Figure 4-10. Number of objects and number of images for each type of construction machine in 
the ACID dataset 

Figure 4-11(a) shows the number of annotated objects per image in ACID: 68.15% of the images 

only contain one object, and 18.99% of the images contain 2 objects per image. Figure 4-11(b) 

shows the number of machine categories per image: 73.91% of images contain one type of 

machine in the ACID. The distribution (number of objects and number of categories per image) 

of ACID is similar to that of the VOC dataset used in the computer vision community. In the 

VOC dataset, approximately 72% of the images contain only one type of object and 

approximately 54% of the images have only one object per image (Everingham et al. 2010). 

Figure 4-11(c) shows the distribution of the size of the bounding boxes that contain the object in 

ACID, wherein 39.94% of objects occupy a pixel area representing less than 5% of the entire 

image, and 35.68 % of objects occupy a pixel area between 20% and 40% of the entire image. 
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The object size distribution in ACID is more balanced than the VOC dataset, which in 

comparison has 95% of objects together representing 60% of the total area in VOC. 

 

Figure 4-11. ACID dataset statistics 

 

(a) Number of objects per image in the ACID dataset 

 

(b) Number of categories per image in the ACID dataset 

 

(c) Distribution of the bounding box size containing objects in the ACID dataset 

Figure 11. ACID dataset statistics 
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4.4 Algorithm Analysis 

Investigating the effectiveness of deep learning algorithms is a necessary section in this research, 

mainly because the performance of these algorithms in construction scenarios is unclear based on 

the review of the literature. Algorithm analysis is conducted on the ACID dataset, and this 

analysis is expected to help construction researchers select the proper algorithm for their 

construction applications. Meanwhile, other researchers are welcome to use ACID to evaluate 

other construction-specific object detection algorithms and to compare their results with the 

algorithm analysis results presented in this study. 

4.4.1 Algorithm selection 

Based on their performance in the context of computer vision datasets, four deep learning 

algorithms have been selected: YOLO-v3 (Redmon et al. 2016), Inception-SSD (Liu et al. 2016), 

Faster-RCNN-ResNet101 (Ren et al. 2017), and R-FCN-ResNet101 (Dai et al. 2016). The 

detection mechanism of state-of-the-art deep learning object detection algorithms can be 

categorized as either one-stage detection or two-stage detection. In the computer vision 

community, one-stage detection frameworks (YOLO-v3 and Inception-SSD) are considered to 

perform better in terms of detection speed, while two-stage detection frameworks (R-FCN-

ResNet101 and Faster-RCNN-ResNet101) perform better in terms of accuracy. Brief 

descriptions of the chosen algorithms have been summarized in Table 4-2.  
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Table 4-2. Description of selected deep learning algorithms 

Detection Algorithm Detection Mechanism Brief Description 

One-stage Two-stage 

YOLO-v3 (Redmon et al. 2016) 

√  

A uniform detection method with high speed, 

integrated multi-scale in training and priors 

anchor boxes for prediction.  

Inception-SSD (Liu et al. 2016) 

√  

Single-shot multi-box detection method with 

classification that uses inception architecture. 

Of the one-stage detection algorithms, it is a 

high accuracy detection method.  

Faster-RCNN-ResNet101 (Ren 

et al. 2017) 
 √ 

Detection with region proposal networks that 

uses ResNet101 to extract features from raw 

images and integrate ROI pooling before 

region proposal process. 

R-FCN-ResNet101 (Dai et al. 

2016) 
 √ 

A detection method via region-based fully 

convolutional network to reduce the proposal 

cost. Uses Resnet101 to extract features from 

images. 

To conduct the algorithm analysis, the ACID dataset was divided into a training set (80%) and a 

validation set (20%). The four selected algorithms were trained on the training set with the 

default hyperparameter configuration, which has been summarized in Table 4-3 including input 

image size, training iterations, batch size, learning rate, and optimizer. Then, the trained models 

were tested on the validation set. The algorithm analysis was conducted on a computer with the 

following hardware configuration: a NVIDIA GTX 1080Ti graphic card, which has 11 GB of 

memory; an Intel Core i9-7920X@2.90 Hz CPU with 12 cores; and two 32 GB memory cards. 

YOLO-v3 is implemented using C language, and the rest of the three algorithms are 

implemented using the Tensorflow object detection API (Huang et al. 2017). 
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Table 4-3. Hyperparameter information for training selected deep learning algorithms 

Algorithm Input 

image size 

Training 

iterations 

Batch 

size 

Learning 

rate 

Optimizer Momentum Decay 

factor 

YOLO-v3 608×608 200,000 32 0.0010 Momentum Decay 0.9 0.0005 

Inception-SSD 300×300 200,000 32 0.0040 RMSprop 0.9 0.9 

Faster-RCNN-

ResNet101 

1024×600 200,000 2 0.0030 Momentum 0.9 N/A 

R-FCN-ResNet101 1024×600 200,000 2 0.0003 Momentum 0.9 N/A 

Figure 4-12 shows the learning curve graphs (training vs. validation loss) of four deep learning 

algorithms training on ACID, where the red lines refer to training loss and green lines represent 

the validation loss. It is found the training loss decreases when the training step increases for four 

algorithms. To be noted, the validation loss of YOLO-v3 is missed because the validation 

function is not available in YOLO-v3 implementation. Also, the loss values for different 

algorithms are not necessarily comparable since the testing algorithms have implemented 

different loss functions. The learning curve graphs in Figure 4-12 have indicated all four deep 

learning algorithms are well-fitted on the ACID dataset. The training loss and validation loss 

have decreased in the training process, while the validation loss is higher than training loss. The 

learning curve graph shows limited degree of overfitting, which demonstrates the robustness and 

versatility of the ACID dataset. The learning curves of Faster-RCNN-ResNet101 and R-FCN-

ResNet101 are not as smooth as YOLO-v3 and Inception-SSD due to the fact that they have 

smaller batch sizes. 
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Figure 4-12. Learning curve graphs of training four deep learning algorithms 

4.4.2 Analysis results 

Mean average precision (mAP) is the evaluation metric used in algorithm analysis to describe the 

accuracy of object detection algorithms (Yilmaz and Aslam 2006), which is calculated by 

precision and recall (Davis and Goadrich 2006). Precision is a measurement of how accurate the 

object detection method is (Equation 4-1), while recall measures how well the object detection 

method can find all positives (Equation 4-2). Then, the average precision (AP) is the 

measurement of the average of precision at different recall levels #	(# ∈ {0.1,0.2,… ,1}) for one 

class of object (Equation 4-3), and mAP is the mean of AP of all pre-defined classes (Equation 4-

4). A higher mAP indicates better performance of an object detection algorithm in terms of both 
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accuracy and robustness. Frames per second (fps) is the criterion employed in algorithm analysis 

to evaluate the detection speed, which is calculated as the number of processed images per 

second.  

0#1234356	 =
89

89:;9
                                                  (Equation 4-1) 

<12=>>	 =
89

89:;?
                                                        (Equation 4-2) 

	@0	 =
A

AA
∑ 0#1234356@#																	D∈{E,E.A,E.F,…,A}       (Equation 4-3) 

G@0	 =
A

?
∑@0                                                         (Equation 4-4) 

where TP (true positive) is the number of correct detected bounding boxes. The correct detection 

box is determined by the IoU metric. If the IoU of a ground truth box and a detected bounding 

box is larger than 0.5, the detected bounding box is considered as a correct detection box; FP 

(false positive) is the number of negative instances that have been recognized as positive; FN 

(false negative) is the number of positive instances that have been recognized as negative, and; N 

is the number of pre-defined classes.  

Table 4-4 shows a summary of the analysis results for the four selected deep learning object 

detection algorithms in terms of accuracy and speed. All four deep learning object detection 

algorithms have shown good performance in terms of detecting construction machines after 

having been trained on the ACID dataset. The Faster-RCNN-ResNet101 achieved the best 

performance in terms of accuracy with a mAP of 89.2%. The other two-stage algorithm, R-FCN-

ResNet101, achieved the second-best performance in terms of accuracy with a mAP of 88.8%. 

For one-stage algorithms, the YOLO-v3 has achieved the mAP of 87.8%, and the Inception-SSD 

has gained the mAP of 83% in the algorithm analysis. All four deep learning object detection 

algorithms achieved a mAP of between 80% and 90%. The algorithm analysis results of ACID 

are similar to the results of the analysis conducted on the VOC dataset, which indicates the 
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complexities of ACID and VOC are at the same level. In terms of detection speed, YOLO-v3 

achieved the best performance at 26.3 fps, and Inception-SSD ranked second with 20.8 fps.  

Table 4-4. Algorithm analysis results in terms of AP, mAP, and detection speed (the best 
performance is denoted in bold) 

 YOLO-v3 Inception-

SSD 

Faster-RCNN-

ResNet101 

R-FCN-

ResNet101 

AP (excavator) 93.50% 85.40% 92.50% 90.80% 

AP (compactor) 94.80% 89.50% 92.30% 92.20% 

AP (dozer) 89.90% 91.80% 95.60% 94.60% 

AP (grader) 95.10% 96.00% 98.70% 98.30% 

AP (dump truck) 83.30% 71.20% 81.50% 82.40% 

AP (concrete mixer truck) 94.90% 90.80% 92.60% 94.30% 

AP (wheel loader) 84.60% 83.00% 90.60% 88.60% 

AP (backhoe loader) 95.60% 93.60% 95.90% 95.70% 

AP (tower crane) 62.00% 54.40% 64.40% 64.20% 

AP (mobile crane) 84.50% 84.30% 88.40% 84.30% 

mAP  87.80% 83.00% 89.20% 88.80% 

Detection speed (fps) 26.3 20.8 8.3 11.5 

A confusion matrix (Luque et al. 2019) is a specific table for visualizing the errors of an machine 

learning algorithm. In this research, the confusion matrix has also been studied to visualize 

detection errors and present more details. Figure 4-13 shows the confusion matrix on the ACID 

validation set produced by the Faster-RCNN-ResNet101 algorithm. It is found the tower crane 

and mobile crane are prone to be mis-classified with each other from Figure 4-13. Around 14% 

of tower cranes have been mis-categorized into mobile cranes, while 20% of mobile cranes have 

been mis-classified as tower cranes.  





 49 

 

Figure 4-14. Example images in ACID validation set under snowy, rainy, and night conditions 
detected by Faster-RCNN-ResNet101 

4.5 Discussion 

The research in this chapter provides a standard image dataset for deep learning-based 

construction applications, which can be used as a platform for the evaluation and comparing of 

various deep learning object detection algorithms in construction scenarios. The research 

findings are discussed as follows: 

• One-stage detection algorithms are considered more suitable for recognizing construction 

machines than two-stage detection algorithms. In the context of ACID, two-stage 

algorithms achieved higher accuracy compared to one stage algorithms; however, the 

difference was not significant and one-stage algorithms are much faster than two-stage 

algorithms. For example, YOLO-v3 achieved a mAP of 87.8%, which is only 1.4% lower 

than Faster-RCNN-ResNet101, while YOLO-v3 is three times faster than Faster-RCNN-
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ResNet101 in terms of processing speed. It is noted that ACID dataset is easier than the 

PASCAL VOC dataset from two perspectives: (1) ACID only contains 10 classes of 

objects, which VOC contains 20 classes of objects; and (2) detecting construction 

machines is relatively easier than detecting natural objects (e.g., person, animal, and 

vehicles). When dealing with an easier detection dataset, it is reasonable that the 

difference between one-stage detection and two-stage detection is decreased. Therefore, 

one-stage detection algorithms with higher detection speeds and similar accuracies are 

more suitable for construction applications. 

• The detection performance for tower crane and mobile crane is lower in comparison to 

the other construction machines based on the results of the algorithm analysis. For 

example, the Faster-RCNN-ResNet101 algorithm achieved an AP of 64.4% when 

detecting tower crane. It was found that the trained algorithms miscategorized mobile 

crane and tower crane, because some mobile cranes look very similar to tower cranes 

when in operation. As demonstrated in Figure 4-13, about 14% of tower cranes have been 

mis-categorized into mobile cranes, while 20% of mobile cranes have been mis-classified 

as tower cranes. This limitation may be solved in two ways: (1) categorize tower crane 

and mobile crane to crane; and (2) in specific construction applications, delete one type of 

crane and keep the other type of crane, depending on which is needed in a particular 

application. 

• One of the main challenges with respect to developing ACID is the limited number of 

construction images that are available online. For example, all the images in the VOC 

dataset were downloaded from the Flickr website and the collection process was efficient 

in terms of time. In the case of the ACID dataset, the research team collected suitable 
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construction videos from YouTube by watching the video content, which was a time-

consuming and labor-intensive process. Meanwhile, only 10,000 images of the 162,000 

collected images qualified for the dataset according to the selection criteria, which is a 

qualifying ratio of approximately 6.2%. Although many construction sites have installed 

cameras for security and recording purposes, the captured videos are usually deleted after 

one week, which is a problem when trying to collect images from construction job sites. 

• Online collection is recommended for collecting construction images, which is about 3 

times more efficient than onsite collection. For online collection, we employed the 

research team to collect the videos from YouTube, which is estimated to cost 100 man-

hours to collect 2,904 videos. Extracting images from YouTube videos was executed by 

the computer program, while the time and cost are minimal. For Google Images and 

Naver, the images were downloaded by the AutoCrawler software, while the time and 

cost can be ignored. It is estimated to cost 100 man-hours for collecting 124,500 images 

from online sources. The pay rate is $15 per man-hour; therefore, the average cost to 

collect one image from online sources is $0.012, and the average time cost is 0.0008 

man-hours per image. For onsite collection, we visited seven construction sites located in 

Edmonton, Canada, once per month over a period of six months in order to capture the 

images from different construction stages. In each visit, we captured images by cell 

phones and the UAV for 2 man-hours (84 man-hours in total). Meanwhile, we have 

acquired 100 hours of videos from the construction sites directly and converted these 

videos to images by the computer program, while the time and cost can be ignored. It is 

estimated to cost 82 man-hours for collecting 37,500 images from onsite sources. The 
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average cost to collect one image from onsite sources is $0.0328, and the average time 

cost is 0.0022 man-hour per image.  

• For annotating the images in the ACID dataset, the crowdsourcing performed more 

efficiently than did the research team using a manual approach. The crowdsourcing 

approach cost $0.22 per image and required 0.09 man-hour to annotate one image, which 

is 2.3 times cheaper and 3.8 times faster than annotation by the research team. Meanwhile, 

crowdsourced annotation reduces the amount of time that would have been required to 

train new annotators tasked with manual annotation. There are, however, two problems 

when using crowdsourcing: (1) the precision of crowdsourcing the annotation task is 

lower in comparison to the annotations conducted by the research team. Bounding boxes 

produced by crowdsourcing are often larger than the machine objects by more than the 

allowable 5-pixel tolerance; and (2) many crowdsourced workers did not correctly 

identify the construction machine types even though instructions were provided, and 

some machine objects were missed because the workers cannot identify the machine 

types. 

4.6 Summary 

In this chapter, a new image dataset, ACID, developed specifically for training deep learning 

object detection algorithms to recognize construction machines, was described. ACID contains 

10,000 annotated images belonging to ten types of construction machines. Four state-of-the-art 

deep learning algorithms have been evaluated on ACID, and the results show ACID can be used 

to train deep learning object detection algorithms to detect construction machines with high 

accuracy and near real-time speed. ACID can be integrated with construction automation studies 

to recognize machines from images and videos.  
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The contributions of this research are three-fold: (1) an image dataset of construction machines is 

developed for deep learning object detection algorithms. Other construction datasets (e.g., 

workers and materials) can be built by following the same development method; (2) the 

efficiencies of two methods for annotating the construction dataset are compared. This research 

provides validation that crowdsourcing the annotation task is the more suitable option in the 

development of construction image datasets; and (3) an algorithm analysis is conducted on ACID. 

The results prove the feasibility of using deep learning object detection algorithms to recognize 

construction machines in images and videos.  
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Chapter 5: DEEP LEARNING-BASED METHOD OF AUTOMATICALLY DETECTING 

CONSTRUCTION VIDEO HIGHLIGHTS2  

5.1 Introduction 

Cameras have emerged as an important piece of equipment in construction management, widely 

used for remote monitoring of job sites. Indeed, construction videos contain important visual 

information that can serve multiple purposes in project management, such as crew productivity 

evaluation (Chen et al. 2020), material logistics management (Song et al. 2006), and safety 

control (Han and Lee 2013). As such, systematic storage of construction video footage is critical 

with respect to the retrieval, analysis, and documentation of construction activities throughout 

the project life cycle.  

However, the management of construction video footage is difficult because construction videos 

have a long duration and only a few clips contain useful project information. For example, the 

footage captured during non-working hours has negligible value for management purposes. Even 

in working hours, most video clips are useless when project progress is slow. Meanwhile, a large 

number of video footage is generated in construction projects because cameras are streaming 24 

hours per day in job sites. Storage of such amount of video data is challenged in project 

management because of the limited electronic disk spaces. By removing these unnecessary 

frames, processed video can replace the raw construction videos for productivity analysis, 

logistics management, and safety control. By attaching the time stamp and content information 

                                                

2 A version of this chapter has been published in Automation in Construction as follows: Xiao, B., Yin, X., 

and Kang, S. (2021). “Vision-based Method of Automatically Detecting Construction Video Highlights 
by Integrating Machine Tracking and CNN Feature Extraction.” Automation in Construction, 129, 
103817. It has been reprinted with permision from the publisher. 
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(e.g., objects and activities), the condensed video can be stored economically, more easily 

indexed, and efficiently retrieved for project management purposes.  

Video highlight detection is a technology in computer vision that refers to the process of 

compactly depicting the original video and distilling its important contents into a short, 

watchable synopsis (Jiao et al. 2018). The video highlights allow users to obtain certain 

perspectives of a video without having to view the raw footage in its entirety. This technology 

has enjoyed success in the entertainment field (e.g., sports highlights and films). In construction, 

video highlight detection can be used to “distill” the raw construction videos and help project 

managers to quickly understand the salient developments at a given job site.  

Generally, highlight detection methods select keyframes based on image feature changes and 

then combine clips around keyframes to produce video highlights. However, for three reasons in 

particular, these feature-based methods are not able to efficiently detect construction video 

highlights: (1) the performance of existing methods needs to be improved. Unexpected 

illumination changes in construction videos decrease the performance of feature-based methods; 

(2) keyframes in construction cannot be simply defined as the frames with image features change 

rapidly; and (3) the video highlights are expected to be interpretable and flexible for construction 

management. 

To address these issues, this chapter proposes a vision-based method to detect video highlights 

from construction videos. The proposed method explores the context information from videos by 

tracking construction machines, and then selects object keyframes by analyzing the content 

information as prescribed by pre-defined construction rules. In parallel, CNN is employed to 

extract features from each frame, while the feature keyframes can be selected by calculating the 

feature changes. As such, the object keyframes and feature keyframes can be processed to 
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produce video highlights. The detected video highlights are expected to help project managers to 

efficiently retrieve and economically store their job site video footage.  

5.2 Methodology for Video Highlight Detection 

The overview of the proposed method of video highlight detection is illustrated in Figure 5-1. As 

shown in the figure, two types of keyframes are involved in generating video highlights: object 

keyframes and feature keyframes. Object keyframes are the frames that contain important 

construction management information related to continuous activities (e.g., machines accessing 

the working zone). Feature keyframes are the frames where the image feature changes 

significantly because of scene changes (e.g., camera zooming, edited changeover, task changes). 

In this research, the object keyframes are used to distill the important information from video 

clips in which construction machines appeared, while the feature keyframes are used to identify 

notable developments on the site by scanning the entire video. 

First, the input video is processed by the machine detection and tracking module to produce the 

tracking results, including machine categories, machine ID, and the corresponding pixel 

locations of machines. The tracking results are stored in a database, and can be conveniently 

processed by structured query language (SQL). Then, a rule-based method is used to select 

object keyframes by applying pre-defined construction rules in analyzing the tracking results. 

These rules are deployed to explore the working zone, working status, and working interaction 

information of construction machines. For feature keyframe selection, the ResNet50 is employed 

to extract high-level features from all frames of the input video. The features across frames are 

evaluated using cosine similarity to select the keyframes that represent scene changes. Finally, 

object keyframes and feature keyframes are combined together in the video editing module to 

remove the duplicated keyframes and generate the video highlights.  
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Detection of construction machines 

In the detection process, all images in the construction video are resized into 416×416, while the 

resized images are processed by YOLO-v3 to produce the detection results. In this process, the 

ACID dataset described in Chapter 4 is adopted for the purpose of training YOLO-v3. It is also 

important to track commuter cars in some construction scenarios (e.g., construction gate 

scenario); as such, we randomly select 2,000 car images containing 3,895 car objects from the 

COCO dataset to combine with ACID for training purposes. YOLO-v3 is selected because of its 

high processing speed and reliable perfromance, which has achieved the detection speed of 26.3 

fps and the mAP of 87.8% in ACID dataset. Moreover, YOLO-v3 has adopted multiple-scale 

CNNs for detecting small objects, and this mechanism is helpful in construction scenarios since 

cameras are usually installed in high positions on construction sites and construction machines 

and therefore only cover small pixel areas. 

Association of detection results 

Once the detection windows, herein referred to as !" (i.e., the set of all detection windows in 

frame #) has been produced, the association process matches !" with the detection windows from 

the previous frame, !"$%, based on machine categories and the similarity of detection. The 

similarity of detection is qualified by image hashing association and IoU association. The image 

hashing association determines the object relationship based on pixel features and the IoU 

association determines the pixel location relationship. Figure 5-3 shows a simulation of the 

association process where the blue windows represent !" and the red windows represent !"$%, 

which will together be used as an example to demonstrate the association process. 
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machine, the IoU for each pair of detection windows at two consecutive frames, !" and !"$%, is 

calculated to construct the IoU matrix &6278"91 . Two IoU matrixes are built based on the Figure 

5-3 example for excavator and dump truck, respectively, and they are shown in Equations 5-2 

and 5-3. In each matrix, the	&'(;< represents the &'( of detection window = at frame # and the 

detection window y at the previous frame # − 1. 

&@A6B_D0A7E =
⎢
⎢
⎢
⎢
⎡&'(%% &'(%H &'(%I &'(%J &'(%K
&'(H% &'(HH &'(HI &'(HJ &'(HK
&'(I% &'(IH &'(II &'(IJ &'(IK
&'(J% &'(JH &'(JI &'(JJ &'(JK
&'(K% &'(KH &'(KI &'(KJ &'(KK⎥

⎥
⎥
⎥
⎤
                 (Equation 5-2) 

&1;72N2DO0 = P&'(%% &'(%H&'(H% &'(HHQ                                                (Equation 5-3) 

The steps of calculating image hashing similarity (Coltuc 2000) are depicted in Figure 5-4. For 

each object, the original pixel region is converted to a greyscale image and resized to a scale of 

8×8. Then, the average of all grey values of the 8×8 greyscale image is calculated and the pixels 

are then examined one by one. If the grey value is larger than the average, a 1 is added to the 

hash, otherwise, a 0 is added. Therefore, a 64-bit hash is generated for each object by performing 

the average hashing, and the similarity of two objects has been translated to the similarity 

between two hashes. The hashing similarity can be calculated by the number of bit positions in 

which the two bits are the same. 

 

Figure 5-4. Steps in calculating image hashing similarity 
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Similar to IoU association, the hashing matrix R6278"91  is constructed for each type of machine. 

Two hashing matrixes, as shown in Equations 5-4 and 5-5, are built from the Figure 5-3 example 

for excavator and dump truck, respectively. For each matrix, ℎ;< represents the pixel similarity 

of the detection window = at frame # and the detection window T at the previous frame # − 1. 

R@A6B_D0A7E =
⎢
⎢
⎢
⎢
⎡ℎ%% ℎ%H ℎ%I ℎ%J ℎ%K
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ℎI% ℎIH ℎII ℎIJ ℎIK
ℎJ% ℎJH ℎJI ℎJJ ℎJK
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⎥
⎥
⎥
⎤
                               (Equation 5-4) 

R1;72N2DO0 = Pℎ%% ℎ%H
ℎH% ℎHHQ                                                 (Equation 5-5) 

Based on the IoU and image hashing association results, the final association matrix U6278"91  

can be calculated by linear combination using Equations 5-6 and 5-7.  

U6278"91 = V × &6278"91 + (1 − V) × R6278"91                                     (Equation 5-6) 

*;< = U6278"91[=, T] = V × &'(;< + (1 − V) × ℎ;<                                   (Equation 5-7) 

where 0 < V < 1. The association matrix U6278"91  describes the relationship between each pair 

of objects at the current frame and the previous frame for a specific machine. The larger value in 

the association matrix means these two detection windows have a higher likelihood of being 

matched. In this research, the V equals to 0.5. 

Linear assignment  

The assignment process aims to assign each detection window in !" to one detection window in 

the previous frame !"$%. For each association matrix U6278"91 , the assignment process can be 

formulated according to Equation 5-8. 

]*=#]^]:	 ∑ ∑ *;< ∗ b;<9<c%6;c%                                            (Equation 5-8) 

 b"d = e1, #f	gℎh	ihghjg#'k	l#ki'l	=	#m	*mm#nkhi	g'	ihghjg#'k	l#ki'l	T0, #f	gℎh	ihghjg#'k	l#ki'l	=	#m	k'g	*mm#nkhi	g'	ihghjg#'k	l#ki'l	T 

which is subject to: 
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∑ b;< = 1, lℎhk	T = 1,… , k6;c%                                               (Equation 5-9) 

∑ b;< = 1, lℎhk	= = 1, … ,]9<c%                                            (Equation 5-10) 

where the variables ] and k are the number of detection windows at the frame # and frame # − 1, 

respectively, belonging to a particular machine category. In the present study, the Jonker-

Volgenant algorithm is adopted to solve the linear assignment problem due to its high processing 

speed (Jonker and Volgenant 1987). 

The assignment process returns one of three statements: matched windows, unmatched windows, 

and new entry windows. If a detection window i; 	(i;p!") is matched with a previous frame 

detection window i< 	(i<p!"$%) and the corresponding *;< ≥ 0.5, i"  is the matched window 

and inherits the tracking ID. If a detection window i; is matched with i< , but the corresponding 

*;< < 0.5, the i; is considered a new entry window and i< is the unmatched window while the 

threshold 0.5 is an empirical value. The detection windows that are not matched with a previous 

detection window are also categorized as new entry windows. If the detection window i; in the 

previous frame cannot be matched with any window, i< will be categorized as an unmatched 

window. The unmatched windows will be added to the detection results set !" and will be 

associated with the detection results set !"t% for the next frame. If unmatched windows cannot 

be updated to be associated with any windows in ten continuous frames, this window will be 

deleted for subsequent tracking. 

Tracking results 

A database is created to store the tracking results. The table contains nine attributes: frame 

number, time stamp, if_tracked, machine category, machine ID, j=, jT, l, and ℎ. The frame 

number attribute indicates the sequencing of the current frame, and the time stamp attribute 
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shows the time of the current frame in the video, accurate to the second. Meanwhile, the 

if_tracked attribute is a Boolean value that indicates whether any machine has been identified in 

the frame. If there is a machine object in the current frame, the type of machine and its ID 

number will be stored in the machine category attribute and the machine ID attribute, 

respectively. The j= and jT attributes indicate the pixel coordinates of the centroid point of the 

bounding box, while the l  and ℎ  attributes refer to the width and height of the machine 

bounding box, respectively. Using the database, the tracking results can be organized in a 

structured format within the database and conveniently analyzed by the rule-based keyframe 

detection module. 

5.2.2 Rule-based keyframe detection 

The purpose of this module is to select object keyframes by integrating predefined construction 

rules and tracking results. Three types of construction rules—working zone rule, working status 

rule, and working interaction rule— are proposed, where Table 5-1 summarizes the definition 

and target of each rule. 

Table 5-1. Summary of predefined construction rules  

Rule name Rule definition Rule target 

Working zone  Any frame that contains interested machines entering or 

leaving the working zone should be considered a 

keyframe. 

Site safety and logistics management 

Working status  Any frame that contains machine working status 

changes between working and idling in the working 

zone should be considered a keyframe. 

Productivity analysis 

Working 

interaction  

Any frame that contains extensive overlap between 

cooperating machines in the working zone should be 

considered a keyframe. 

Site safety and productivity analysis 
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Working zone rule 

Working zone control is important for site safety and resource logistics in construction 

management. For instance, there is a risk of collisions between machines and pedestrians when 

machines access the working zone in some scenarios (e.g., road maintenance construction). The 

time stamp of machines accessing the working zone also indicates the actual scheduling 

information that can be compared with the planned schedules for logistics management purposes. 

Therefore, the frames that feature interested machines entering or leaving the working zone are 

selected as keyframes in the present study. 

Equation 5-11 shows the judgement criterion underlying the working zone rule, where U/uvw is 

the area of the working zone polygon ABCD, x" is the pixel location of the machine object’s 

central point in frame #, and fy is the frame rate of the video. Connecting the location of the 

central point at the current frame, #, and the location at frame # − fy can generate a segment 

x"x"$z0 . If the segment x"x"$z0  has more than 0 intersections with the polygon area U/uvw, frame 

# is selected as the keyframe. Figure 5-5 shows an example of application of the working zone 

rule. In Figure 5-5(a), segment x"x"$z0 has no intersection with the working zone ABCD and 

should be ignored for keyframe selection. In Figure 5-5(b), the dump truck is entering the 

working zone, while segment x"x"$z0  has one intersection with the working zone ABCD. 

Therefore, this frame should be selected as a keyframe based on the working zone rule. 

CountÄx"x"$z0 ∩ U/uvwÅ > 0                                       (Equation 5-11) 
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less than iH. When the average distance is between i% and iH, the current frame indicates the 

machine is in transition between working and idling status, and as such it should be selected as a 

keyframe. The variables i%  and iH  are threshold values and need to be set for the given 

construction scenario. 

i% > %
z0∑ Ü(j=E − j=E$%)H + (jTE − jTE$%)Há > iHE∈("$z0,"]             (Equation 5-12) 

Working interaction rule 

A certain level of interaction between two construction machines is often indicative of a 

meaningful moment with respect to crew productivity analysis and safety monitoring. For 

example, high overlap between the excavator and the dump truck in earthmoving represents a 

loading activity, which can be used for cyclic productivity calculation. High overlap between 

two dump trucks, meanwhile, may signify a potential collision and may be of interest for safety 

alerting purposes. In this research, the working interaction rule selects keyframes by analyzing 

the overlap between two interested construction machines in the working zone. To apply the 

working interaction rule, the IoU between two machine objects, ] and k, at the current frame # 
is calculated by means of Equation 5-1, where É ∈ Ν. If the average IoU in fy continuous frames 

is greater than threshold * (see Equation 5-13), the current frame is considered a keyframe. 

Figure 5-6 shows an example of an application of the working interaction rule. In Figure 5-6 (a), 

the dump truck and the wheel loader are overlapping. If these two machines are in the working 

zone and the average IoU is greater than *, this frame should be selected as the object keyframe. 

In Figure 5-6 (b), the excavator and dump truck have no interactions, so this frame will not be 

selected as a keyframe. 

%
z0∑ &'((]E, kE)E∈("$z0,"] > *                              (Equation 5-13) 
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describing scene changes (e.g., camera zooming, moving, and length transition). Compared with 

manually designed features, such as SIFT, CNN has been shown in previous studies to be more 

effective in representing construction images (Ha et al. 2018; Kolar et al. 2018). 

In CNN feature extraction, all frames in the construction video are processed with the CNN 

neural networks to produce feature vectors for the purpose of representing original frames. In 

this research, the ResNet50 neural network (He et al. 2016) is employed for feature extraction 

due to its excellent performance in computer vision applications. The ResNet50 has 50 layers of 

neural networks for implementing the residual block, where the residual block is defined as per 

Equation 5-14. 

T = ℱ(Χ) + Χ					                                       (Equation 5-14) 

where Χ is the input feature map, ℱ(Χ) is the feature map processed by the stacked layers, and T 

is the output feature map of the residual block. 

As shown in Figure 5-7, the residual block is a “shortcut connection” that adds the outputs of the 

stacked layer ℱ(Χ) to the input feature map Χ, where this residual learning solves the gradient 

vanishing problem in training the deep neural networks. In the CNN feature extraction module, 

all frames of the input video are first resized into 224×224 resolution. The resized frames are 

then inputted to the ResNet50, which has been pretrained on the ImageNet dataset (Russakovsky 

et al. 2015) for forward propagation. A vector with dimensions of 2,048×1 can then be extracted 

from the flatten layer as the output of this module.  
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Figure 5-7. Illustration of residual block 

The purpose of the similarity evaluation module is to select feature keyframes based on the 

average similarity Uä at each frame. To calculate Uä, we first define the similarity ä(], k)	of 

two frames (i.e., ] and k) as the cosine similarity (Nguyen and Bai 2011) of their corresponding 

feature vectors (as shown in Equation 5-15).  

	ä(], k) = N(6)N(9)ã
‖N(6)‖‖N(9)‖	                                     (Equation 5-15) 

where b(]) and b(k) are the feature vectors processed by ResNet50 for frame ] and frame k, 

respectively, and ‖b(k)‖ is the norm of vector b(k). 

Then, the average similarity Uä(#) at frame # (defined in Equation 5-16) is calculated as the 

average of similarity between the feature vectors of the frame # and the frame (# − fy) in one 

continuous second where fy is the video framerate and É ∈ Ν. 

Uä(#) = %
z0∑ ä(É, É − fy)E∈("$z0,"] 	                        (Equation 5-16) 

If Uä(#) is smaller than threshold value, m, the current frame, #, is considered to be a feature 

keyframe. Here, the smaller the value of m that is adopted, the fewer feature keyframes will be 
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detected. In construction videos, continuous frames usually have high similarity because 

construction activities change in a relatively gradual manner. In the present case, the threshold m, 

at just 0.9, is relatively small. Because the role of the similarity evaluation module is to detect 

significant feature changes resulting from scene changes.  

5.2.4 Video editing 

The function of the video editing module is to produce video highlights based on detected object 

keyframes and video keyframes. This is carried out in two steps: redundancy removal and video 

concatenation. It should be noted that the detected object keyframes and feature keyframes are 

intervals of sets of frames rather than discrete frames. The object keyframes can be represented 

as çO4d17D = {[m, h}%, [m, h}H, … , [m, h}"}, where [m, h]"  is a time interval of keyframes, #	is the 

index, and m and h are the start- and end-frame number of the time interval, respectively. It is 

possible that the time interval may have only a few frames due to tracking errors. As such, any 

time intervals that have fewer than five frames (h − m < 5) are first removed. To generate useful 

and understandable video highlights, each video clip should be several seconds in length at a 

minimum in order for users to understand what is occurring in the highlight. In consideration of 

this, we expand the time interval [m, h]" to [mê, hê]" as per Equation 5-17. This equation calculates 

the median frame of the time interval [m, h]" and then finds the k seconds before and after the 

central frame as the basis for determining the new time interval, where the present research 

assigns k a value of 2. After this step, all time intervals have the same length of 4 seconds.  

[mê, hê]" = [fë''y(ít1H ) − k × fy, fë''y(
ít1
H ) + k × fy]"      (Equation 5-17) 

It is possible that the different construction rules will locate adjacent, overlapping, or identical 

keyframes. In other words, many time intervals in çO4d17D are redundant and will need to be 

removed. For two continuous time intervals, we remove the first interval [mê, hê]" if m"t%ê − m"ê ≤
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fy. If two continuous time intervals are close to one another (2k × fy > m"t%ê − m"ê > fy), they 

are merged to a new interval [m"ê − k × fy, h"t%ê + k × fy]. The same process is conducted with 

respect to the feature keyframes çz12DA01 . 

The processed çO4d17D and çz12DA01  can then be used to produce video highlights by extracting 

the corresponding frames from the original construction video and concatenated these frames 

together. It should be noted that the object keyframes and feature keyframes may be overlapping. 

In the present study, overlapping frames are not removed. Instead, all object keyframes and 

feature keyframes are merged in the final video highlights as the final keyframe set ç. Users are 

thereby able to recognize whether a given video highlight frame belongs to object or feature 

keyframes. 

5.3 Implementations and Evaluation Metrics 

In this section, first the implementation of the proposed video highlight detection method is 

introduced. The evaluation metrics to validate the proposed method are also illustrated. 

5.3.1 Implementations 

The proposed method is programmed in Python 3.6, and the Opencv library is adopted for the 

video input/output. The YOLO-v3, originally programmed in C, is implemented via Python 

wrapper with an acceleration of CUDA 9.0 and Cudnn 7.0. In the CMT method, the Jonker-

Volgenant algorithm was originally implemented in C++ language and integrated into the 

proposed method. Moreover, the rule-based keyframe selection module is built using the SQLite-

Python library, whereas the construction rules are implemented using SQL queries. The 

ResNet50 is implemented using the Pytorch library, while the cosine similarity is built using the 
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scikit-kearn library. For video editing, the Moviepy library is employed to generate the final 

video highlights.The proposed method is tested in an Ubuntu 18.04 64-bit system environment. 

For the hardware configuration, the proposed method is tested on a computer with a NVIDIA 

GTX 1080Ti graphics card, 11 GB memory, an Intel Core i9-7920X@2.90 Hz CPU with 12 

cores, and two 32 GB memory cards. The processing speed when implementing the proposed 

method is approximately 7 frames per second. It should be noted that the graphics card 

specifications affect the speed of executing YOLO-v3 and ReNet50. As such, the processing 

speed can be increased by upgrading to an advanced graphics card or implementing parallel 

programming. 

5.3.2 Evaluation metrics 

Following the protocols set out in previous work (Zhang et al. 2016), precision, recall, and F1 

score are employed as the evaluation metrics in the present study, where A denotes the video 

highlights generated by the proposed method, and B denotes the annotated ground truth video 

highlights. Precision, meanwhile, is the measurement of how accurate the highlight detection 

method is (see Equation 5-18), while recall measures how effective the highlight detection 

method is in identifying the correct highlight clips according to Equation 5-19. The F1 score is 

the harmonic mean of precision and recall as defined in Equation 5-20. 

xyhj#m#'k = ïA6410	Oz	7O0017D	8"ñ8ó"ñ8D	7ó"Bí
ïA6410	Oz	8"ñ8ó"ñ8D	7ó"Bí	"9	/	                       (Equation 5-18) 

òhj*ëë = ïA6410	Oz	7O0017D	8"ñ8ó"ñ8D	7ó"Bí
ïA6410	Oz	8"ñ8ó"ñ8D	7ó"Bí	"9	u                             (Equation 5-19) 

ô1 = 2 × ö017"í"O9×õ172óó
ö017"í"O9tõ172óó                                                   (Equation 5-20) 

where the correct highlight clip is decided by the temporal intersection over union (TIoU) 

between the generated highlight clip *	(* ∈ U) and the ground truth highlight clip ,	(, ∈ ú), as 
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Table 5-2. Specifications of test videos for construction gate case 

 
Duration 

(minutes) 

Video 

Resolution 

Frame rate 

(fps) 

Number of 

highlights contained 

Gate-Video1 60 1920×1080 12 20 

Gate-Video2 60 1920×1080 12 19 

Gate-Video3 60 1920×1080 12 14 

To evaluate the performance of the proposed approach, the ground truth video highlights in each 

test video had to be manually annotated. Of course, the annotation of video highlights is an 

inherently subjective task since there is no absolute definition of what constitutes a highlight. 

However, construction engineers are likely to share similar points of view with regard to what 

constitutes a useful video highlight of construction site footage for construction management 

purposes based on their experience, knowledge, and intuition. In our research, five graduate 

students majoring in construction management were invited to manually identify highlights from 

construction video footage. Their annotations of these highlights consisted of a time stamp of the 

highlight and a short description (e.g., “From 27:01 to 27:05: A dump truck exits the gate and 

turns right”). A two-step strategy was implemented for video highlights annotation: (1) each 

participant was asked to find the video clips in which machines access the construction gate, the 

camera working state changes, or unusual activities occur, or other clips they think may be 

highlights; and (2) the author of this research manually browses the video highlights annotated 

by all participants to decide the final video highlights as ground truth. The annotated video 

highlights were then used to assess the proposed method. 

In case 1, the working zone rule and working status rule were applied, with the detailed 

configurations of these two rules summarized in Table 5-3. The working zone rule was applied to 
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detect video highlights featuring machines accessing the gate. Machines suddenly stopping in the 

gate area, meanwhile, signified potential highlights that could be detected by the working status 

rule.  

Table 5-3. Construction rules applied to construction gate case 

Index Rule name Machine/s of interest Working zone ùû 

(pixel) 

ùü 

(pixel) 

1 Working zone  Dump trucks, concrete 

mixer trucks, dozers, 

and cars 

[(0,600), (1920,600), (0,1080), 

(1920,1080)] 

N/A N/A 

2 Working status  Dump trucks, concrete 

mixer trucks, dozers, 

and cars 

[(0,600), (1920,600), (0,1080), 

(1920,1080)] 

60 10 

To validate the feasibility of the proposed highlight detection method, a baseline method has 

been proposed by removing the machine tracking module and the rule-based keyframe detection 

module from the proposed method. Figure 5-10 shows the overview of the baseline method. The 

baseline method retained the same CNN feature extraction module  similarity evaluation module, 

and video editing module as those in the proposed method. In the baseline method, however, the 

threshold m in the similarity evaluation module was set at 0.95, a higher value of m than that 

employed in the proposed method, in order to produce more video highlights. 
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illumination variations. The proposed method adopted object keyframes by tracking construction 

machines from videos, while the machine tracking module was built upon deep learning object 

detection. Therefore, the proposed method was found to be more robust than the feature-based 

method in detecting construction video highlights. 

Table 5-4. Experimental results of proposed method in construction gate case 

 Precision Recall F1 score Correct highlights 

detected 

Gate-Video1 Proposed method 90.0% 90.0% 90.0% 18 

Baseline method 84.2% 80.0% 82.0% 16 

Gate-Video2 Proposed method 86.4% 100.0% 92.7% 19 

Baseline method 70.8% 89.5% 79.1% 17 

Gate-Video3 Proposed method 86.7% 92.9% 89.7% 13 

Baseline method 66.7% 71.4% 69.0% 10 

Average Proposed method 87.7% 94.3% 90.8% 16.7 

Baseline method 73.9% 80.3% 76.7% 14.3 

5.4.3 Video highlights for construction gate control 

In construction management, gate control is a critical factor in achieving project success. 

Construction machines should access the gate at the scheduled time to complete their 

construction tasks, and the timestamp of machines accessing the gate should be recorded. 

Construction video highlights can serve the gate control purpose by providing video records and 

corresponding time stamp. Table 5-5 shows the actual number of instances of machines 

accessing the gate in the raw video, the number of instances of machines accessing the gate 

contained in the video highlights, and the accuracy of the three test videos. In case 1, the three 
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test videos showed 48 records of machines accessing the gate, while 45 access records were 

found to be contained in the detected video highlights, resulting in an accuracy of 93.8%. This 

result indicates that the video highlight detection method is reasonably effective for construction 

gate control, and that the generated video highlights can be useful as a form of project 

documentation for future reference. 

Table 5-5. Summary of machines accessing the gate 

 
No. of machine accesses 

in original video 

No. of machine accesses in 

detected video highlights 

Accuracy 

Gate-Video1 18 16 88.9% 

Gate-Video2 18 18 100.0% 

Gate-Video3 12 11 91.7% 

Average 48 45 93.8% 

5.5 Case Study 2: Earthmoving 

Case study 2 focused on earthmoving, where the proposed method was tested on video footage 

of an excavator working with several dump trucks. Earthmoving, it should be noted, refers to a 

range of activities that involve excavating soil or rock and moving it to another part of the site, 

fundamental activities in all types of construction (e.g., residential building, roads, and bridges). 

5.5.1 Experimental setup 

In case 2, the proposed method was tested on a 40-minute earthmoving video with a resolution of 

1280×720 and a frame rate of 30 fps. In the video, a Volvo EC210BLC excavator (bucket 

payload of 2.1 loose cubic yards (LCY)) works with several dump trucks in an outdoor 

construction environment and completes several earthmoving cycles. In each cycle, the 
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excavator digs soil and loads it into a dump truck. After the dump truck is fully loaded, it moves 

away and another dump truck approaches the excavator for the next cycle.  

The earthmoving video footage was manually annotated to obtain the ground truth video 

highlights by following the same procedure described in reference to the construction gate case 

(i.e., participants were required to find the video clips of the excavator loading the dump truck, a 

change in status of the excavator, or any clips that may be of interest for construction 

management purposes). Through this process, 115 video clips were identified as video highlights 

in this case study. As with the other case, the feature-based highlight detection method was 

adopted as the baseline method to test the earthmoving video footage. The configuration of the 

baseline method was the same as in case 1. 

In the earthmoving case, the working zone rule, working status rule, and working interaction rule 

were applied for detecting object keyframes. The details of these rules are summarized in Table 

5-6. It should be noted that the working zone rule and working status rule only target the 

excavator, since the excavator is the major construction machine in this case and it governs the 

productivity of the whole crew. The working interaction rule, meanwhile, focuses on cases of 

overlap between the excavator and dump truck.  
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Table 5-6. Construction rules applied to earthmoving case 

Index Rule name Machine/s 

of interest 

Working zone ùû 

(pixel) 

ùü 

(pixel) 

a 

1 Working zone  Excavator [(0,215), (1045,215), 

(0,720), (1045,720)] 

N/A N/A N/A 

2 Working status  Excavator [(0,215), (1045,215), 

(0,720), (1045,720)] 

20 10 N/A 

3 Working interaction  Excavator 

and dump 

truck 

[(0,215), (1045,215), 

(0,720), (1045,720)] 

N/A N/A 0.1 

 

5.5.2 Experimental results 

Table 5-7 shows the experimental results of the proposed method and the baseline method in 

terms of precision, recall, F1 score, and the number of correct highlights. The proposed method 

detected 111 video highlights, 104 of them being correct highlights, achieving a precision of 

93.7%, recall of 90.4%, and F1 score of 92.0%. Meanwhile, the baseline method achieved a 

precision of 70.9%, recall of 63.5%, and F1 score of 67.0%. As can be seen, the proposed 

method outperformed the baseline feature-based method by a margin of 22.8% with respect to 

precision, 26.9% on recall, and 25.0% in terms of F1 score for the earthmoving case. It is also 

worth noting that, although the earthmoving case contains more extensive video highlights than 

the construction gate case, the proposed method achieved similar performance for both cases, 

underscoring the ability of the proposed method to deal with different construction scenarios. 
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Table 5-7. Experimental results of proposed method in earthmoving case 

 Precision Recall F1 score Correct highlights 

detected 

Earthmoving-Video1 Proposed method 93.7% 90.4% 92.0% 104 

Baseline method 70.9% 63.5% 67.0% 73 

5.5.3 Video highlights for productivity analysis 

In the earthmoving case, the detected highlights were found to contain meaningful video clips of 

loading activities that would be useful for productivity analysis. As mentioned, in the 

earthmoving cycle, the excavator digs soil into the bucket and then loads it into a dump truck. 

Once the dump truck is fully loaded, it moves away and another dump truck approaches the 

excavator for the next cycle. As such, the number of cycles is equal to the number of loading 

activities, such that the excavator productivity can be calculated as per Equation 5-22, where the 

bucket payload per cycle is given by the excavator manufacturer (2.1 LCY, in this case). 

xy'i^jg#b#gT = 9A6410	Oz	7<7ó1í
D"61	(80) 	× 4A7E1D	B2<óO2@

7<7ó1 	 (†°¢)             (Equation 5-22) 

In Earthmoving-Video1, the excavator has completed 99 work cycles in 40 minutes and the 

ground truth productivity is 311.85†°¢/ℎy. By manually analysis the video highlights detected 

by the proposed method, the author of the present study found 93 video clips of the loading 

activity. In other words, if the video highlights are used for advanced vision-based method for 

productivity analysis, the ideally analyzed productivity of Earthmoving-Video1 can reach 

292.95†°¢/ℎy. The accuracy of the productivity analysis, then, is 93.9%, which means 93.9% 
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of the relevant productivity information can be retrieved from the detected video highlights 

without browsing the original construction videos. 

5.6 Discussion 

The experimental results indicate that the proposed method can successfully produce video 

highlights from construction videos for the purpose of reducing manual inspection efforts and 

digital storage requirements. The research findings identified in analyzing the test results are 

discussed below. 

• The proposed video highlight detection approach exhibited better performance than the 

feature-based method for detection of construction video highlights. In experiments, the 

proposed method has achieved an average precision of 89.2%, recall of 93.3%, and F1 

score of 91.1% for two case studies, respectively (4 videos in total), while the baseline 

method has achieved the average precision of 73.2%, recall of 76.1%, and F1 score of 

74.3%. The proposed method outperforms the baseline method over 10.0% on three 

evaluation metrics. Technically, the proposed method achieved better performance than 

existing methods for two reasons: (1) adopting pre-defined construction rules (i.e., 

working zone, working status, and working interaction) to detect object keyframes by 

analyzing machine trajectories. As such, the proposed method explores the context 

information from construction videos and becomes more robust; and (2) employing 

ResNet50 to detect feature keyframes to describe scene changes in construction videos. 

The feature keyframes efficiently represent the video clips that have no construction 

machines, while improve the precision of the proposed method. 

• Reducing the amount of construction video footage is a crucial benefit of applying video 

highlight detection in construction. In this regard, Table 5-8 provides a comparison of the 
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original raw video and the detected video highlights in terms of duration and storage size 

in reference to the two case studies. The average size of the original videos is 635.5 MB. 

After implementing with the proposed highlight detection method, the average size is 

reduced to 43.8 MB, a reduction in storage size requirement of approximately 93.1%. The 

average duration of video highlights is 2.77 minutes, while the original videos average 55 

minutes in duration. The results indicate that the video highlights generated represent a 

more watchable synopsis of the raw video, meaning that the use of this method can 

reduce the amount of effort required in order to maintain construction video 

documentation. 

Table 5-8. Duration and storage size of video highlights in construction gate case 

 Original video Detected video highlights 

Duration 

(minutes) 

Storage size 

(MB) 

Duration 

(minutes) 

Storage size 

(MB) 

Gate-Video1 60 713.1  1.33 35.6 

Gate-Video 2 60 713.5  1.30 39.3 

Gate-Video3 60 713.3  1.15 27.8 

Earthmoving-Video1 40 402.1 7.30 72.5 

Average 55 635.5 2.77 43.8 

• Compare to the baseline method, the proposed method is less sensitive to illumination 

changes, as demonstrated in the construction gate case. Most construction sites are 

outdoors, and as such illumination changes are frequent in construction video footage. 

Feature-based highlight detection methods are prone to errantly detect frames that contain 

significant illumination variations as keyframes, decreasing the accuracy of the highlight 
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detection. In contrast, the proposed method shows stable performance in dealing with 

illumination changes because it adopts the machine tracking module for object keyframe 

selection. The CMT tracking method, built upon YOLO-v3 object detection, shows 

excellent performance in tracking machine trajectories under illumination changes. In this 

respect, the proposed method exhibits reliable performance even in challenging 

construction scenarios. 

• Compared with feature-based methods, the proposed method has better interpretability 

and flexibility because it integrates object keyframe selection with feature keyframe 

selection. The outputs of the proposed method include not only video highlights, but also 

the intuitive interpretation of selection rationale, such as a machine entering or leaving 

the frame. This information is beneficial for project management in terms of gate control 

and productivity analysis, as illustrated in the case studies. Furthermore, in the proposed 

method, the construction rules can be flexibly customized based on the particular needs 

of a given construction project. For example, the proposed method can generate video 

highlights that relate only to a specific construction machine (e.g., dump truck), or 

movement (e.g., machine leaving the site); this is not possible using feature-based 

highlight detection methods. The proposed method demonstrates the feasibility of rule-

based highlight detection methods in construction scenarios. 

5.7 Summary 

An effective and efficient method for converting construction video footage into concise video 

data is in high demand in today’s construction industry. In Chapter 5, a novel vision-based 

method has been proposed to generate video highlights from construction videos, and the 

objective 2 of this thesis has been achieved in this chapter. The proposed method consists the 
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following modules: machine detection and tracking, rule-based keyframe selection, CNN feature 

extraction, similarity evaluation, and video editing. Two case studies were conducted to validate 

the performance of the proposed method using construction gate and earthmoving video footage, 

respectively. The proposed method was found to achieve average precision of 89.2% and 

average recall of 93.3%, outperforming the feature-based highlight detection method. The 

proposed method can be integrated into several advanced applications that may potentially 

benefit construction management, including: (1) auto-generating reports from lengthy 

construction videos; (2) building a query system that searches for clips of interest in the video 

footage; and (3) quantitatively analyzing construction productivity based on video highlights. 

The contributions of the research contained in Chapter 5 are three-fold. First, this research has 

proposed a novel method to detect video highlights from construction videos, while the proposed 

method outperforms the baseline method over 10% on robustness and precision. Second, three 

construction rules have been proposed for object keyframe detection: the working zone rule, the 

working status rule, and the working interaction rule. By integrating these rules, the detected 

video highlights are interpretable and flexible, meaning that the resultant construction videos are 

searchable, filterable, and manageable. Third, the proposed method is shown to be feasible in 

that it reduces the storage space requirement by over 90% while retaining most of the useful 

information for construction video documentation.  



 88 

Chapter 6: GENERATING TEXT DESCRIPTIONS FROM CONSTRUCTION IMAGES 

BY ADOPTING DEEP LEARNING IMAGE CAPTIONING4 

6.1 Introduction 

Construction videos contain important visual information (e.g., working objects and their 

activities) that is of benefit for project management purposes. By analyzing construction videos 

using vision-based methods, many applications can be developed to automatically monitor crew 

productivity, identify safety risks, and so forth. For example, Chen et al. (2020) developed a 

vision-based system to calculate excavator productivity in earthmoving. Kolar et al. (2018), 

meanwhile, proposed a vision-based method for identifying safety guardrail at construction sites 

in order to prevent workers from accessing hazardous site areas. 

Based on the target information, existing vision-based methods can be divided into object 

recognition, motion recognition, activity recognition, and scene analysis (Liu et al. 2020). The 

abovementioned four categories of methods target the retrieval of information pertaining to 

objects (Park and Brilakis 2012), movements (Zhu et al. 2016a), activities (Golparvar-Fard et al. 

2013), and relationships between objects (Wang et al. 2019), respectively, from construction 

images or videos. However, these methods have two limitations: (1) the different scene 

information (e.g., objects, activities, and relationships between objects) in construction videos is 

retrieved separately, making it a time-consuming process; and (2) the retrieved scene information 

is usually combined based on pre-defined orders in order to generate a set of words or a sentence 

as the final output, but these results are prone to be incomplete. An automated method of 

generating a complete, concise, and correct sentence that contains the integral information 

                                                

4 A version of this chapter is under review for publication in Automation in Construction entitled as “Deep Learning 

Image Captioning in Construction: A Feasibility Study”. 
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text descriptions for construction management purposes. A linguistic schema for annotating 

construction machine images is currently lacking within this research area.  

The main objective of the research described in this chapter is to automatically generate text 

descriptions from construction images by adoption of deep learning image captioning. To 

achieve this goal, a linguistic schema for annotating construction machine images is proposed, 

and a captioning dataset is developed based on the ACID dataset described in Chapter 4. 

Moreover, six state-of-the-art deep learning methods from the computer vision community have 

been tested on the captioning dataset to investigate their performance in construction scenarios. 

Finally, the best performing image captioning method is integrated in the proposed video 

summarization framework to generate text descriptions of keyframes. 

6.2 Methodology for Generating Text Descriptions  

Figure 6-2 illustrates the methodology used in the present study for generating text descriptions 

from construction images. First, a linguistic schema for instructing the annotation of construction 

machine images is proposed. The images from the ACID dataset that is developed in Chapter 4 is 

annotated according to the linguistic schema, and a captioning dataset is developed in this 

process. Then, six deep learning image captioning methods are selected because of their reliable 

performance in computer vision community. The developed captioning dataset is divided into a 

training set and a validation set for testing six image captioning methods. In evaluation, six 

methods are compared at the sentence level using five evaluation metrics. After that, the best 

performing image captioning method is evaluated in the element level to indicate the feasibility 

of image captioning in construction management. The best performing method is ultimately 

integrated into the proposed video summarization framework to caption keyframes detected 

using the method described in Chapter 5. 
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Figure 6-2. Methodology for generating text descriptions from construction images 

6.2.1 Linguistic schema and image annotation 

The linguistic schema informs the process of annotating construction images, which in turns 

plays an important role in the application deep learning image captioning in construction. For 

computer vision tasks, the annotators are required to describe images in their own words because 

the target images are captured from daily life. In construction, the text annotations of images 

should be professional and precise for construction management purposes. The annotators are 

required to use correct terms to describe construction objects, activities, and working contents 

using the linguistic schema rather than simply using their own words as in some other computer 

vision applications. 

Figure 6-3 shows the linguistic schema used in this study for annotating construction machine 

images. First, the following elements should be deconstructed from the construction image 

according to the linguistic schema: (1) the primary machine object; (2) the machine object 

cooperating with the primary object; (3) the working contents (e.g., dirt, stone, and construction 

materials) of the primary object; (4) the activities of the primary machine; and (5) supplementary 
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of the primary object from the options listed in Table 6-1, although they are also permitted to use 

other activity terms based on their construction knowledge/background if needed. 

Table 6-1. List of suggested activities for construction machines 

Construction Machine Customized Activity 

Excavator swinging/dumping/excavating/loading/etc. 

Compactor compacting/etc. 

Dozer grading/stripping/loosening/pushing/etc. 

Grader grading/stripping/loosening/pushing/etc. 

Dump Truck dumping/hauling/transferring/etc. 

Concrete Mixer Truck dumping/transferring/loading/etc. 

Wheel Loader dumping/excavating/loading/transferring/etc. 

Backhoe Loader dumping/excavating/loading/transferring/etc. 

Tower Crane lifting/transferring/swinging/etc. 

Mobile Crane lifting/transferring/swinging/etc. 

General Activity travelling/waiting/idling/driving/parking/etc. 

In the image annotation process, 30 volunteered annotators from the University of Alberta with 

engineering background were participated in this annotation task. First, all annotators were given 

a half-hour presentation to introduce the research, including an overview of deep learning image 

captioning, annotation tasks, and the linguistic schema. Then, the volunteers were assigned a 

series of construction images and prompted to write one sentence describing the contents of each 

image. The research team then provide further instruction and feedback in reference to their 

annotations. Once the annotators had finished their tasks, the research team members manually 

checked the annotation results and resolved any errors identified. 
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6.2.2 Captioning dataset summary 

Four thousand images from the ACID dataset were annotated to produce the captioning results. 

Meanwhile, a total of 8,226 captions were annotated, meaning that each construction image was 

annotated by two annotators on average. Figure 6-4 shows the element distribution in the 

captioning dataset, including the machine terms and activity terms. It can be observed that the 

excavator and dump truck are the two object terms appearing most frequently in the captioning 

dataset, while loading and dumping are the top two activity terms. Table 6-2 outlines the top 20 

N-grams in the developed captioning dataset, indicating the most frequent 1-gram, 2-gram, and 

3-gram terms and their quantities. The captioning dataset is divided into a training set (80%) and 

a validation set (20%) for evaluation purposes. 

 

Figure 6-4. Element distribution of captioning dataset 
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Table 6-2. Statistics of Top 20 N-Gram of the captioning dataset 

Index 1-Gram Count 2-Gram Count 3-Gram Count 

1 a 7795 loader is 2069 wheel loader is 1151 

2 is 7568 dump truck 1575 a dump truck 979 

3 the 5340 wheel loader 1392 a wheel loader 894 

4 loader 2426 excavator is 1319 backhoe loader is 885 

5 truck 2161 on the 1025 an excavator is 880 

6 dump 1985 an excavator 1014 a backhoe loader 665 

7 soil 1940 backhoe loader 988 a grader is 618 

8 on 1926 a dump 983 mobile crane is 597 

9 site 1819 truck is 916 a compactor is 508 

10 excavator 1610 a wheel 898 a mobile crane 468 

11 wheel 1431 grader is 896 dump truck is 445 

12 road 1396 crane is 761 compactor is compacting 441 

13 an 1217 compactor is 722 concrete mixer truck 401 

14 backhoe 1053 mobile crane 715 a dozer is 387 

15 to 1014 a backhoe 676 excavator is excavating 369 

16 grader 959 a grader 645 mixer truck is 350 

17 and 930 the soil 625 loader is loading 319 

18 crane 928 dozer is 590 the dump truck 318 

19 are 810 is loading 585 into a dump 318 

20 compactor 802 the road 558 is travelling on 316 
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Table 6-3. Information on deep learning image captioning methods used for evaluation 

Method Encoder Decoder Self-critical 

base ResNet101 LSTM  

base-sc ResNet101 LSTM √ 

att ResNet101 Attention  

att-sc ResNet101 Attention √ 

tsfm ResNet101 Transformer  

tsfm-sc ResNet101 Transformer √ 

6.2.4 Evaluation metrics 

At present, no single general metric for evaluation of image captioning methods in computer 

vision is proposed. For the purpose of this study, five automatic evaluation metrics are adopted 

in order to assess the performance of deep learning image captioning methods by comparing the 

ground truth sentences and the generated sentences: Bilingual Evaluation Understudy (BLEU), 

Recall-Oriented Understudy for Gisting Evaluation (ROUGE), Metric for Evaluation of 

Translation with Explicit ORdering (METEOR), Consensus-based Image Description Evaluation 

(CIDEr), and Semantic Propositional Image Caption Evaluation (SPICE). For these metrics, a 

higher value indicates better captioning performance. It should be noted that the scale of values 

for CIDEr is 0 to 10, while the scale for the other four metrics is 0 to 1. 

BLEU 

BLEU (Papineni et al. 2001) measures the overlap between the predicted single word or n-gram 

(sequence of n adjacent words) and a set of reference sentences. BLEU only measures the word 
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match and sentence length match and does not take the semantic meaning of the words into 

account. Variations of BLEU include BLEU-1, BLEU-2, BLEU-3, and BLEU-4, where the 

number appearing after the hyphen signifies the number of words used up to n-grams (the 

variations listed here are the ones adopted in the present study). 

ROUGE-L 

ROUGE (Chin-Yew 2004) utilizes n-grams to measure the recall score of the generated 

sentences relative to the reference sentences. The most widely used version of ROUGE, 

ROUGE-L, is adopted in the present study. ROUGE-L computes the recall and precision of the 

longest common subsequences between the candidate and reference sentences. 

METEOR 

METEOR (Lavie and Agarwal 2007) introduces semantic matching for automatic evaluation. It 

includes lexical match, stemmed words match, synonym match, and paraphrase match. The 

METEOR score is calculated by mapping the unigrams of the candidate and reference sentences 

and measuring their alignment. 

CIDEr  

CIDEr (Vedantam et al. 2014) first converts the words in both the candidate and reference 

sentences into their root forms and then measures the co-existence frequency of the n-grams in 

both sentences. During the measurement, the term frequency inverse document frequency is 

applied. The most commonly used version today is CIDEr-D, as it is capable of preventing 

outlier scores resulting from poor human judgment. The present study adopts CIDEr-D version.  

SPICE 
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SPICE (Anderson et al. 2016) calculates the score by measuring the similarity between the scene 

graph tuples of the candidate and reference sentences. The scene graph includes objects, their 

attributes, and relationships extracted from the sentence. 

6.3 Implementation and Evaluation Results 

In this section, the implementation of six deep learning image captioning methods is described., 

The evaluation results at the sentence level and element level are then presented. 

6.3.1 Implementation 

All six deep learning image captioning methods are implemented in the Python language. The 

encoder (i.e., ResNet101) and decoders (i.e., LSTM, attention, and transformer) adopted in this 

study are implemented by the Pytorch library. The ResNet101 is pretrained on the ImageNet 

dataset, while the Opencv library is employed for image input/output. In terms of hardware, the 

evaluation is conducted on a computer that features two NVIDIA GTX 1080 Ti GPUs (11 GB 

each), an Intel Core i9-7920X@ 2.90 Hz CPU with 12 cores, and two 32 GB memory cards. The 

testing environment uses the Ubuntu 16.04 system. 

In the training process, all images are resized to 256 × 256 and normalized based on a mean of 

[0.485, 0.456, 0.406] and a standard deviation of [0.229, 0.224, 0.225]. Moreover, the sentence 

annotations are tokenized in order to divide them into lists of single words without punctuation. 

As part of the tokenization process, the <start> and <end> label are added to the beginning and 

ending of each token list to indicate the start and end of each annotation. The number of training 

epochs is 30 for the non-self-critical training methods (i.e., base, att, and tsfm). For base-sc and 

att-sc, the models are first trained for 30 epochs by optimizing the cross-entropy loss and then 
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training for 20 epochs using the self-critical training strategy. For tsfm-sc, the model is trained 

for 15 epochs for the traditional strategy and for 5 epochs for the self-critical training strategy. 

6.3.2 Sentence level evaluation  

The deep learning image captioning methods are trained on the training set and then validated on 

the validation set. Table 6-4 summarizes the validation results for the deep learning image 

captioning methods. Among the six methods, the tsfm-sc achieves the best performance on the 

task of captioning construction images, attaining a BLEU-1 score of 0.606, BLUE-2 of 0.506, 

BLEU-3 of 0.427, BLEU-4 of 0.349, METEOR of 0.287, ROUGE-L of 0.585, CIDEr of 1.715, 

and SPICE of 0.422, underscoring the feasibility of the transformer decoder and self-critical 

training strategy in deep learning image captioning. In computer vision, it should be noted, the 

up to date leading scores in the COCO captioning challenge are a BLEU-1 of 0.795, BLEU-2 of 

0.635, BLEU-3 of 0.485, BLEU-4 of 0.363, ROUGE of 0.573, METEOR of 0.277, CIDEr of 

1.196 and SPICE of 0.213, and these metrics are close to the performance observed in the 

present study. This indicates that the deep learning image captioning methods under 

consideration attain comparable results in construction applications to those observed in the 

computer vision community. Figure 6-8 shows example captioning results in the validation set 

produced by the tsfm-sc method, which can describe the contents of construction images with 

correct descriptions in most cases. 
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ROUGE-L of 0.560, CIDEr of 1.499, and SPICE of 0.394, and outperforming the attention-

based method (att) and the transformer-based method (tsfm) in construction scenarios. In 

computer vision, in contrast, the att and tsfm achieve better performance than the base. This 

result demonstrates the different characteristics of image captioning in construction versus in 

computer vision. In fact, the degree of difficulty of image captioning in construction is lower 

than that in computer vision applications. As such, a simpler method (base) can achieve 

comparable performance to more advanced methods (i.e., att and tsfm). 

6.3.3 Element level evaluation  

Image captioning provides a holistic solution for understanding the scene information (i.e., 

objects, activities, and relationships between objects). By analyzing the generated sentences, this 

scene information can be retrieved for various uses related to construction object and activity 

recognition. For example, construction machine objects can be extracted from sentences to 

replace the object detection methods. To validate the feasibility of deep learning image 

captioning methods for construction scene analysis, the tsfm-sc method is evaluated at the 

element level in terms of its ability to recognize machine objects in images. 

As with the sentence level evaluation, in the element level evaluation the tsfm-sc method is 

trained on the training set and validated on the validation set. In the evaluation process, the 

machine objects are extracted from the generated sentences and ground truth sentences for the 

purpose of comparison. Following the evaluation metrics for object detection, the precision, 

recall, and F1 score are used for element level evaluation. The calculation of these metrics is 

illustrated in Equations 6-1 to 6-3. 

xyhj#m#'k	 = ©ö
©öt™ö                                                  (Equation 6-1) 
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òhj*ëë	 = ©ö
©öt™ï                                                        (Equation 6-2) 

ô1 = 2 × ö017"íO9×õ172óó
ö017"í"O9tõ172óó                                          (Equation 6-3) 

where TP (true positive) is the number of machine objects appearing in both generated sentences 

and ground truth sentences. FP (false positive) is the number machine objects appearing in the 

generated sentences but not appearing in the ground truth sentences, and FN (false negative) is 

the number of machine objects appearing in the ground truth sentences but not in the generated 

sentences. 

Table 6-5 shows the element level evaluation results. As can be seen in the table, the tsfm-sc is 

found to achieve, on average, a precision of 91.1%, recall of 83.3%, and F1 score of 86.6% for 

the validation set, meaning that it has comparable performance with state-of-the-art object 

detection methods in construction scenarios. The tsfm-sc method achieves the highest precision 

(94.6%) recognizing dozer objects and the highest recall (92.9%) recognizing grader objects. It 

should be noted that, in current practice, image captioning methods cannot serve as a 

replacement for object detection methods when it comes to recognizing construction objects. 

Image captioning focuses on the primary and cooperating machine objects, while the small 

machine objects in the background are ignored. Object detection methods, on the other hand, are 

capable of recognizing all machine objects appearing in the given image or video. In real cases, 

however, recognizing the major construction objects is sufficient for the purpose of construction 

management, and this can be achieved using deep learning image captioning methods. 
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Table 6-5. Element level evaluation results of tsfm-sc method 

Scene Element Precision Recall F1 score 

Excavator 87.6% 89.9% 88.7% 

Compactor 92.9% 90.8% 91.9% 

Dozer 94.6% 76.8% 84.8% 

Grader 92.9% 92.9% 92.9% 

Dump truck 79.6% 89.9% 84.4% 

Concrete mixer truck 91.9% 61.8% 73.9% 

Wheel loader 93.1% 77.7% 84.7% 

Backhoe loader 90.9% 85.7% 88.2% 

Tower crane 100.0% 82.1% 90.2% 

Mobile crane 87.0% 85.7% 86.3% 

Average 91.1% 83.3% 86.6% 

6.4 Keyframe Captioning  

Captioning the keyframes detected using the highlight detection described in Chapter 5 is an 

important objective of the research described in this chapter. In this regard, the proposed video 

summarization framework is able to generate text descriptions from raw construction videos. As 

introduced in section 5.2.4, the keyframes ç detected from construction videos are a set of image 

sets, while ç = {[m, h]%, [m, h]H, … , [m, h]", }, where # is the index, and m and h represent the start 

and end frames of each highlight clip. In this study, only the median frame, ]", of a given clip, 

[m, h]", is selected for captioning. As such, the set of median keyframes ´ = []%, ]H, … ,]"] is 

captioned by the deep learning image captioning method tsfm-sc.  
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incorporated into the video summarization framework for the purpose of captioning keyframes. 

The evaluation results indicate that the objective underlying the research described in this 

chapter has been successfully achieved. The specific research findings of note are outlined as 

follows: 

• The self-critical training strategy has been shown to improve the performance of image 

captioning methods in construction. In the evaluations, the three methods in the present 

study adopting self-critical training obtained an average BLEU-1 of 0.576, BLEU-2 of 

0.483, BLEU-3 of 0.410, BLEU-4 of 0.336, METEOR of 0.271, ROUGE-L is 0.578, 

CIDEr of 1.655, and SPICE of 0.399. For the methods not adopting self-critical training, 

the average performance was 0.581 for BLEU-1, 0.471 for BLEU-2, 0.392 for BLEU-3, 

0.313 for BLEU-4, 0.271 for METEOR, 0.555 for ROUGE-L, 1.445 for CIDEr, and 

0.388 o for n SPICE. With the exception of BLEU-1 and METEOR, the methods 

adopting self-critical training outperformed the methods without self-critical training. The 

results indicate that applying specific strategies in training can improve the performance 

of image captioning methods. 

• The transformer encoder performs better than the attention decoder in construction 

scenarios. In this study, two methods—tsfm and tsfm-sc—employed the transformer 

decoder. These two methods achieved an average BLEU-1 of 0.596, BLEU-2 of 0.490, 

BLEU-3 of 0.410, BLEU-4 of 0.330, METEOR of 0.280, ROUGE-L is 0.571, CIDEr of 

1.571, and SPICE of 0.405 in the evaluation. For the attention-based methods (att and att-

sc), the average results were 0.573 for BLEU-1, 0.474 for BLEU-2, 0.399 for BLEU-3, 

0.324 for BLEU-4, 0.271 for METEOR, 0.566 for ROUGE-L, 1.555 for CIDEr, and 

0.400 for SPICE. The transformer-based method achieved higher performance than 
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• Image captioning methods have practical implications for construction management. The 

sentences generated by image captioning methods contain rich information about 

construction objects, activities, and relationships that constitutes an integral data package 

for vision-based construction applications. Moreover, generating text descriptions from 

construction images/videos helps with documentation of construction site footage by 

fulfilling the role of “text-index”. Construction engineers can obtain information of 

interest by simply querying the generated text descriptions. By reviewing video 

highlights and text descriptions together, the project manager can readily gauge the daily 

project progress to inform decision-making and resource allocation in construction 

projects. 

6.6 Summary 

This chapter proposed a linguistic schema for deconstructing construction machine images into 

primary objects, cooperating objects, activities, working contents, and supplementary 

information. Using the linguistic schema, professional descriptions can be annotated for the 

purpose of training deep learning image captioning methods. A captioning dataset was developed 

containing 4,000 images and 8,226 sentences. In turn, six deep learning image captioning 

methods were tested on the captioning dataset, with the tsfm-sc method achieving the best 

performance. The tsfm-sc was then employed for scene element analysis and incorporated into 

the proposed video summarization framework. 

The contributions of the research described in this chapter are three-fold. First, an annotated 

image dataset has been developed for training deep learning methods for captioning of images 

featuring construction machines. The developed dataset can also be used for other studies in the 

construction automation field. Second, six deep learning image captioning methods have been 
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compared, and their performance in construction applications investigated. Third, an analysis of 

the efficacy of various image captioning methods in identifying construction objects has been 

conducted using the tsfm-sc method, demonstrating the potential of applying image captioning in 

scene element analysis. In conclusion, the use of deep learning image captioning methods has 

been shown to provide a tremendous opportunity as an advanced vision-based application that 

makes construction videos searchable, filterable, and manageable. 
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Chapter 7: CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORKS 

7.1 Conclusions 

Construction videos contain important visual information about projects that allows project 

managers to monitor jobsites remotely. Automatically analyzing construction videos using 

vision-based methods is beneficial to construction management in terms of expediting processes, 

improving productivity, and reducing safety risks. However, the current practice of using raw 

construction video for vision-based sites monitoring is challenged in three notable respects: (1) 

retrieval of the information of interest from construction videos is time-consuming and labor-

intensive because construction videos are un-structured data; (2) digital storage of construction 

videos requires large a large amount of disk space, considering the long streaming time and high 

resolution associated with construction site footage; and (3) existing vision-based applications 

are inefficient because, although many or most frames contain little relevant project information, 

significant computational resources are consumed in processing them. 

To fill the above gaps, this research proposed a deep learning-based framework to summarize 

construction videos into video highlights and text descriptions for vision-based monitoring of 

construction sites. The main idea here is to convert un-structured video data into structured video 

highlights and text descriptions, thereby significantly reducing the inspection time and storage 

requirements. In this way, vision-based applications can then be limited in scope to processing 

only the detected video highlights and text descriptions rather than having to process entire raw 

construction videos, thereby increasing markedly the efficiency of the analysis. Meanwhile, this 

research is aiming to reduce the efforts on non-engineering works (video inspection, 

documentation, and management) in projects instead of replacing engineers on decision making 
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tasks. To accomplish the goal of this research, three main objectives have been pursued as 

summarized below: 

1. Development of an image dataset of construction machines for deep learning object 

detection. A useful image dataset of construction machines for training deep learning 

object detection is not currently available due to the limited accessibility of construction 

images, the time- and-labor-intensiveness of manual annotations, and the knowledge base 

required in terms of both construction and deep learning. The present study developed a 

comprehensive image dataset, called ACID, specifically for construction machines. In 

ACID, 10,000 images belonging to ten types of construction machines are compiled and 

annotated with machine types and their corresponding positions on the images. To 

validate the applicability of this image dataset, four existing deep learning detection 

algorithms were trained on ACID: YOLO-v3, Inception-SSD, R-FCN-ResNet101, and 

Faster-RCNN-ResNet-101. The mAP was found to be 83.0% for Inception-SSD, 87.8% 

for YOLO-v3, 88.8% for R-FCN-ResNet101, and 89.2% for Faster-RCNN-ResNet-101. 

The average detection speed of the four algorithms was found to be 16.7 fps, a speed that 

satisfies the needs of most studies in the field of automation in construction.  

2. Development of a deep learning-based method for detecting video highlights from 

construction videos by exploring context and feature information. To obtain and store 

useful video footage systematically and concisely, the present study proposed a vision-

based method to automatically generate video highlights from construction videos. The 

proposed method categorizes construction keyframes into feature keyframes and object 

keyframes. The proposed approach was validated through two case studies: a gate 

scenario and an earthmoving scenario. In the experiments, the proposed method achieved 
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89.2% precision and 93.3% recall, outperforming the feature-based method by 16.1% and 

17.2% on precision and recall, respectively. Meanwhile, the proposed method was shown 

to reduce the digital storage requirement by 93.1%. The proposed approach offers 

potential benefits to construction management in terms of significantly reducing video 

storage space and efficiently indexing construction video footage. 

3. Adoption of deep learning-based image captioning as the basis for generating text 

descriptions from construction images. Generating text descriptions from construction 

images can help engineers to expeditiously ascertain an image’s contents, and provides a 

“text index” for construction image/video documentation. In this study, a linguistic 

schema for annotating construction machine images was proposed. A captioning dataset 

based on the developed ACID dataset was then developed by following the proposed 

linguistic schema. Six deep learning image captioning methods built upon the encoder–

decoder architecture were trained and validated on the captioning dataset. The best 

performing method, tsfm-sc, was then applied for scene element analysis, achieving an 

F1-score of 86.6% on the validation set. The tsfm-sc method was then integrated with the 

proposed video summarization method for captioning keyframes, while the contents of 

the keyframes were successfully converted into text descriptions. 

7.2 Contributions 

This research makes several notable contributions to the body of knowledge on vision-based 

monitoring of construction sites. The academic and industrial contributions are outlined in this 

section. 
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7.2.1 Academic contributions 

1. A novel deep learning-based framework of construction video summarization has been 

proposed. The concept of video summarization builds on existing research on vision-

based monitoring in construction by introducing a mid-level image processing method. 

The proposed framework increases the processing efficiency compared to current vision-

based applications in construction. 

2. A method for developing construction image dataset for deep learning object detection is 

proposed that consists of four main steps: category selection, image collection, image 

selection, and image annotation. By following the same development method, other 

construction datasets (e.g., workers and materials) can be built in future work. 

3. A novel method for construction video highlight detection has been proposed in this 

research that outperforms the feature-based method over 10% in terms of recall and 

precision. In the video highlight detection method, three construction rules have been 

proposed for object keyframe detection: the working zone rule, the working status rule, 

and the working interaction rule. As results, the detected video highlights in this research 

are interpretable and flexible. 

4. This study demonstrated how to generate professional text descriptions from construction 

images by adopting deep learning image captioning methods. A linguistic schema for 

annotating construction machine images was proposed, and a captioning dataset was 

developed based on the linguistic schema. Meanwhile, the feasibility of state-of-the-art 

deep learning captioning methods was investigated in this research. The investigation 

results can be used to instruct researchers in the construction field on selecting the proper 

image captioning method for a given application. 
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7.2.2 Industrial contributions 

1. Providing a standard image dataset of construction machines for deep learning object 

detection and image captioning. The dataset is one of the most important resources for 

applying deep learning methods in the construction industry. A standardized dataset can 

improve the performance of vision-based applications adopted deep learning in 

construction projects. The developed ACID dataset presented in this thesis has been made 

available to the broader construction community on the following website 

(www.acidb.ca). To date, the ACID dataset has been used by over 130 research groups 

from universities/institutions, demonstrating the impacts of the present research. 

2. The proposed framework reduces the manual inspection requirement in the analysis of 

construction video footage. In the current practice of construction management, engineers 

typically prefer to manually browse videos to retrieve the desired information because 

video data is easily understood, but this manual process is highly time consuming due to 

the sheer volume of video data to analyze. In this context, through two case studies, the 

proposed framework has been shown to reduce the average construction video duration 

from 55 minutes length to 2.77 minutes. What this demonstrates is that the proposed 

framework is able to remove redundant video clips from raw construction videos and 

thereby reduce manual inspection efforts. 

3. The proposed framework reduces the digital storage requirement for construction videos. 

In the experiments carried out as part of this research, the proposed framework reduced 

the video storage requirement by 93.1% while retaining most of the relevant content for 

construction management purpose. The video documentation in construction projects can 

thereby be improved. Assuming the available digital storage space is sufficient for about 
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one month of raw video, the same storage capacity could accommodate up to 2 years of 

video footage when applying the proposed framework. 

4. The text descriptions generated in this research facilitate construction management tasks 

in terms of indexing and documenting construction videos. For indexing, the text 

descriptions can be used for querying the video highlights by incorporating a search 

function. (Text-based searching is more efficient and precise than content-based 

searching and tag-based searching.) Meanwhile, the text descriptions contain information 

about construction objects, activities, and relationships that is integral for generating 

daily reports and documenting project progress. 

7.3 Future Works 

To improve the performance and feasibility of the proposed framework, the research limitations 

are identified, while avenues of research that can be pursued in future work are recommended: 

1. The scale of the developed ACID dataset needs to be enhanced in terms of the number of 

images and the number of classes of construction machines. Compared with other 

comprehensive image datasets in the computer vision community, the number of images 

in ACID is relatively low. For example, the COCO2014 dataset has around 160,000 

images from 91 categories. To maximize the capacity of deep learning algorithms in 

construction applications, more images and classes of construction machines will be 

added to the ACID dataset in the future.  

2. The annotations of the ACID dataset need to be extended. At present, ACID can only be 

used for training deep learning object detection and image captioning methods. By 

annotating the datasets at the pixel level, we can train object-segmentation algorithms and 
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produce masks of objects, which are more precise than bounding boxes. Therefore, 

annotating the ACID dataset at the pixel level is another important area of future work. 

3. The detection of keyframes in the video highlight detection method presented herein 

needs to be enhanced. At present, the parameters of pre-defined construction rules are 

manually set up, and the parameters in one scenario are not typically generically 

applicable to other scenarios. Future work will focus on developing an automated process 

to set up the parameters of construction rules using machine learning techniques. 

Meanwhile, the ResNet50 was adopted in the proposed framework for feature keyframe 

detection, while other feature extraction networks may perform better than ResNet50 and 

need to be investigated in the future.  

4. More encoder neural networks need to be investigated in construction scenarios. In the 

present study, the author implemented only the same CNN networks (i.e. ResNet101) for 

all deep learning image captioning methods, with more emphasis placed on the decoder 

networks (i.e., LSTM, attention, and transformer). Therefore, in future work, the 

ResNet101 will be replaced with more advanced encoder networks. Additionally, the 

present research only investigates “encoder–decoder” image captioning methods, 

whereas there are some deep learning image captioning methods available built upon 

other mechanisms (e.g., captioning by detection) whose application to construction 

warrants investigation in future work. 

5. This research explored the feasibility of deep learning image captioning in construction 

management, while more successive researches need to be conducted in the future. 

Currently, the text descriptions only contain limited project information in terms of 

objects, activities, weather, and so forth. However, the image captioning methods adopted 
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in this research cannot provide more granular information such as project stage of this 

construction image. In the future, the proposed linguistic schema will be improved in 

order to annotation construction images from a more comprehensive way. As such, the 

deep learning image captioning methods will be able to retrieve more in-depth project 

information from construction images.  

6. The proposed framework introduced a new concept named mid-level processing in the 

vision-based monitoring of construction sites, while the development of novel vision-

based applications is not in the scope of this research. In the future, more applications 

based on the proposed video summarization framework need to be developed. By 

integration of the proposed framework, advanced vision-based applications, such as daily 

log generation, earthmoving productivity calculation, and gate logistics reminding, can be 

developed in an efficient manner. 
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