
Extending Differentiable Programming to include
Non-differentiable Modules using Differentiable Bypass

for Combining Convolutional Neural Networks and
Dynamic Programming into an End-to-end Trainable

Framework

by

Nhat Minh Nguyen

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c Nhat Minh Nguyen, 2019

Abstract

Differentiable Programming is the paradigm where different functions or mod-

ules are combined into a unified pipeline with the purpose of applying end-to-

end learning or optimization. A natural impediment is the non-differentiability

characteristic of many modules. This thesis proposes a new way to overcome

this obstacle by using a concept called Differentiable Bypass (DiffBypass).

DiffBypass exploits the Universal Function Approximation property of neural

networks to mimic the output of non-differentiable functions or modules in the

pipeline, rerouting the gradient path to bypass these components entirely.

Further, as a significant application, we demonstrate the use of DiffBypass

to combine Convolutional Neural Networks (CNN) and Dynamic Programming

(DP) in end-to-end learning for segmenting left ventricle from short axis view

of heart MRI. Our experiments show that end-to-end combination of CNN and

DP requires fewer labeled images to achieve a significantly better segmentation

accuracy than using only CNN by allowing the incorporation of strong prior

knowledge into the pipeline to cope with lack of training data. Comparison

between DiffBypass and Evolution Strategy (ES), another method that can be

used to train non-differentiable modules, shows that DiffBypass is more robust

and has better performance for high-dimension problems.

Finally, as a technical contribution, we provide a set of recommendations

for training non-differentiable modules using DiffBypass. Furthermore, we also

provide a code base for reproducibility. We think DiffBypass has the potential

to become a blueprint to expand differentiable programming to include non-

ii

differentiable modules.

iii

Preface

Parts of this thesis have been submitted to The 26th biennial international

conference on Information Processing in Medical Imaging (IPMI 2019).

iv

To my mother for raising me and teaching me right from wrong.

v

My main interest is in trying to find radically different kinds of neural nets.

– Geoffrey Hinton.

vi

Acknowledgements

I would like to express my gratitude my supervisor Nilanjan Ray for his support

and guidance. Also, thank to the Mitacs Canada organization and the Canada

government for giving me this opportunity as well as providing me an entrance

scholarship.

vii

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Contributions . 4
1.3 Thesis Outline . 4

2 Background 6
2.1 Differentiable Programming 6

2.1.1 Manual differentiation 7
2.1.2 Numerical Differentiation 7
2.1.3 Symbolic differentiation 8
2.1.4 Automatic Differentiation 9

2.2 Neural Network overview . 11
2.2.1 Multilayer Perceptron 11
2.2.2 Convolutional Neural Networks 12
2.2.3 Universal Approximation Property of Neural Networks 14

3 Extending Differentiable Programming to include non-differentiable
components with Differentiable Bypass 16
3.1 Combining differentiable and non-differetiable modules for end-

to-end training using the backpropagation algorithm 16
3.2 Score function estimator . 18
3.3 Evolution Strategy . 19
3.4 Estimating the gradient of non-differentiable modules using Dif-

ferentiable Bypass . 20

4 End-to-end learning of Convolutional Neural Networks and
Dynamic Programming for Left Ventricle Segmentation 23
4.1 Left Ventricle Segmentation and Combining Traditional Tech-

inque with Deep Learning for Medical Imaging 24
4.1.1 U-Net for Segmenting Medical Image 25

4.2 Dynamic Programming . 26
4.3 End-to-end training using DiffBypass 28

5 Experiment Setup and Results 34
5.1 Dataset and Preprocessing . 34
5.2 Postprocessing . 35
5.3 Evaluation Metric . 35
5.4 Training Details and Hyperparameters 36
5.5 Experiment Results and Discussions 38

6 Conclusion 46

References 48

viii

List of Tables

5.1 Dice score of ablation study for U-Net, U-Net+DP and ED-
PCNN at different training set sizes. 40

5.2 Computation time on an NVIDIA GTX 1080 TI 42

ix

List of Figures

2.1 Example of using a two-layered Multilayer Perceptron to mimics
a function. The directions from top to bottom, left to right
indicates increasing number of parameters from 20 hidden layer
unit to 20000. 15

3.1 Illustration of a Differentiable Bypass. The broken red back-
ward arrows means the red module is non-differentiable and
Automatic Differentiation cannot work. The blue rounded rect-
angle is a differentiable function (for example, a neural net-
work) that is trained to approximate the output of the non-
differentiable red module. Blue arrow show the rerouting of
gradient to avoid non-differentiable modules. 21

4.1 U-Net architecture. Image belongs to the original authors at [38] 27
4.2 EDPCNN processing pipeline. 29
4.3 Illustrations of processing pipeline: (a) input image, (b) Output

Map with an example star pattern, (c) Warped Map and (d)
output indices indicating LV on the warped space 30

4.4 (a) segmentation obtained with EDPCNN (b) ground truth. . 30

5.1 Left: Original indices. Right: Smoothed indices. 35
5.2 Hyper-parameters search for DiffBypass. 37
5.3 Ablation study: training set size vs. Dice score on validation set.

EDPCNN uses the original U-Net as base network architecture. 39
5.4 Robustness test: Dice Score at different dataset size and differ-

ent jitter radius. 41
5.5 Dice Score on the training and validation sets during training

for EDPCNN and UNet for dataset size of 10 and 1436. 41
5.6 From top to bottom: segmentation mask from small to large.

From left to right: ground truth mask, predicted mask, CNN
output. 43

5.7 A failure case. From left to right: ground truth mask, predicted
mask, CNN output. 43

5.8 Training set size vs. Dice score on validation set for U-Net, ED-
PCNN trained using Evolution Strategy (ES) and DiffBypass
(denoted as EDPCNN (SG)). The base U-Net used here is a
modified version where no padding happen at the beginning. . 44

5.9 Ablation study: Performance of EDPCNN trained using Evolu-
tion Strategy. EDPCNN (ES-lo) denotes using the U-Net ver-
sion without input padding as the base CNN while EDPCNN
(ES-hi) denotes using the orignal U-Net as the base CNN. . . 45

x

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Recently, many challenging problems in Artificial Intelligence have been con-

quered by Deep Learning, which is a rebranding of Neural Networks. It turns

out that learning statistical patterns from a large amount of data is much more

effective at solving problems than crafting fine-tuned features or rules. Deep

Learning have achieved super-human performance in many areas, from detect-

ing objects in images [37] to playing games [43]. At the core of Deep Learning

is a decades-old timeless classic, the backpropagation algorithm, which is an

elegant and clever way of applying the chain rule to compute the gradients of

the parameters in neural networks effectively. The backpropagation algorithm

lends its magic to the nature of neural networks architectures: they can usu-

ally be expressed as directed acyclic graph. This kind of structure allow us

to go in the backward direction of the graph, accumulating and updating the

gradients along the way. The gradients are then used by optimization tech-

niques, most popular one being Stochastic Gradient Descent, to directly find

a better solution to the problem.

However, backpropagation is not the key to successes of modern Deep

Learning as traditional neural networks use the same algorithm at their core.

Take Computer Vision (CV) for example, CV borrows most of its recent suc-

cess from Convolutional Neural Networks, which is a special type of neural

networks that share their weights across all spatial location in images. Many

modern Natural Language Processing (NLP) algorithm use Recurrent Neural

1

Networks, a type of neural networks that share their weight across the time

dimension. These success stories have one thing in common, that is the idea

of using the same components of the neural networks in multiple places. This

type of weight sharing force the neural network components to adapt to mul-

tiple type of input at different situation, not just a single point place or time,

thereby making the model more robust and generalize better.

The idea that one component or module should be reused across places is

not new, as it a common theme in computer science, for example, program-

ming language. In fact, there is many common similarities between neural

networks architecture and functions in programming that it is not a stretch to

think that designing neural network architecture as a special, different form

of ”programming” where users create and put together blocks into a system

that can be differentiated so that users can train the system end-to-end us-

ing some kind of gradient optimization. Consequently, it is natural to bring

concepts from programming into neural network architecture design. One of

the most interesting and important one is that the structure of the program

should change accordingly to each situation. That means the input into the

program should affect which functions are used and how many time they get

called. This translates to allowing users to have conditionals and loops in

their neural network architecture design. This is expected to be the next step

in Differentiable Programming. Dynamical neural networks architecture that

change depending on their input have become more and more popular in the

past few years, especially after the inception of deep learning frameworks like

Pytorch [32] and Chainer [47]. An increasingly large number of deep learning

practitioners have picked up this dynamical design paradigm and there are ac-

tive works on compilers for imperative differentiable programming languages

[51]. In fact, Pytorch, a deep learning framework that use Automatic Dif-

ferentiation (AD), a concept that Differentiable Programming relies on, has

become one of the main contenders for being the most dominant framework

used in Deep Learning.

Despite the successes and wide-spread use of Differentiable Programming,

one of the paradigm’s main weakness currently is that it doesn’t allow the use

2

of non-differentiable modules within the pipeline. Everything has to be dif-

ferentiable from beginning to end for automatic differentiation to work. This

limit the classes of blocks or components that can be used in a pipeline to

ones that has clearly defined close form expression for their derivatives such

as linear matrix operations as well as activation function like ReLu, Sigmoid...

These kinds of differentiable modules work very well for most modern prob-

lems in artificial intelligence. However, they are not without downsides. First,

the modules are not usually interpretable and this impedes the use of neural

networks in safety-critical domains like health care or control system of im-

portant machinery. Second, it is not trivial to incorporate expert knowledge,

which can be used to improve sample efficiency as well as final performance,

into these modules. Moreover, combining modern neural networks architecture

with domain-specific algorithms is hard because these algorithm usually are

not differentiable therefore cannot be put into an end-to-end training system.

The aforementioned downside of current Differentiable Programming paradigm

calls for its extension into non-differentiable modules that includes traditional

domain-specific algorithms as well as algorithms that allow the incoporation of

prior knowledge into the end-to-end pipeline. This thesis presents a blueprint

for such an extension. The main idea presented is to create something called

”Differentiable Bypass” for the non-differentiable components. A Differen-

tiable Bypass is a module that is differentiable and approximates the output

of a non-differentiable one. During training, instead of having broken gradi-

ent backward pass for the non-differentiable components, the gradient flow are

rerouted to their own Differentiable Bypasses, creating a new, non-broken gra-

dient flow that can be used for gradient optimization algorithms like backprop-

agation. A requirement of differentiable bypasses is that they need to be able

to approximate their corresponding non-differentiable component well enough

for the gradient to be correct. To sastify this requirement, we resort to using

neural networks as our de facto implementation of the differentiable bypasses

as neural networks are known for their Universal Approximation property.

3

1.2 Contributions

The contributions of this thesis is as follow:

• We present a novel way to combine non-differentiable functions with

Deep Learning within an end-to-end framework. This is an extension

of Differentiable Programming, which has been applied only to differen-

tiable functions so far. In this context, we demonstrate the use of the

Universal Approximation property of neural networks by something call

Differentiable Bypass (DiffBypass) for a non-differentiable function. A

similar technique, called Synthetic Gradient, has been used before for

fast and asynchronous training of differentiable functions [22].

• As a demonstration of the aformentioned differentiable bypass strategy,

we propose a combination of deep learning and a traditional method,

namely Dynamic Programming (DP), using with strong prior knowledge

that can compensate for the inadequate amount of training data sig-

nificantly. Our combined method is applied to the context of medical

imaging domain, specially for the problem of segmenting left ventricle of

the heart in MRI images. [6]

1.3 Thesis Outline

The next sections of the thesis is partitioned as follow: Chapter 2 introduces

the background of Differentiable Programming and Neural Networks. Chapter

3 present a number of method to combine differentiable and non-differentiable

module, including the concept of Differentiable Bypass, which is the main

contribution of this thesis. Chapter 4 provides some background on combin-

ing and incoporating prior knowledge into medical imagining and why this

is an important research topic, then presents our method of combining Con-

volutional Neural Networks and Dynamic Programming into an end-to-end

trainable pipeline along with the experiments to show its effectiveness com-

pared to using Convolutional Neural Networks alone. Chapter 5 contains the

4

experiments result of our method mentioned in the previous chapter. Chapter

6 provides discussion and some future directions for our research.

5

Chapter 2

Background

2.1 Differentiable Programming

Differentiable Programming is a term coined by Yann Lecun [51] as a re-

branding of Deep Learning. Yet, Differentible Programming is more than

just Deep Learning. The main idea behind Differentiable Programming is to

extend the neural network layers to any type of function blocks that are pa-

rameterized and can be trained end-to-end using some form of gradient-based

optimization. The paradigm includes building neural networks in an adaptive,

data-dependent way with loops and conditionals. This allow users to specify

neural network architectures that change dynamically as a function of the in-

put data fed into them. The concept expand traditional neural network layers

to programs that can be parameterized and optimized.

Under the hood, Differentible Programming relies on techniques belong to

the family of general-purpose Automatic Differentiation. The benefits of ap-

plying Automatic Differentiation in machine learning are plentiful. Long gone

the days researchers have to manually derive analytical derivatives of new ma-

chine learning models to plug them into optmization algorithms. Automatic

Differentiation framework like Pytorch [32], Tensorflow [30] allows user to de-

fine and train neural network architectures in a convenient way. Automatic

Differentiation have become ubiquitous in the Machine Learning field.

The methods for computing the automatically derivatives in programs can

be classified into four categories as follow [6]: (1) no automation at all, manual

differentiation; (2) numerical differentiation using finite difference approxima-

6

tions; (3) symbolic differentiation and (4) automatic differentiation. Auto-

matic Differentiation (4) is the natural progression of the other categories.

The next four subsections described what each methods is and the strength

and/or weaknesses of each methods.

2.1.1 Manual differentiation

Manual differentiation happens when users provide both the code to compute

the output of a code block as well as the code to compute the derivative of it

with respect to the input. Some example of work that do manual differentiation

include [16], [36]. Because manual differentiation requires human in the loop, it

is prone to errors. Moreover, the derivative might not have a closed form that

can be derived manually or analytically. In some cases, the derivative might

have a closed form but is impossible to for users to write code to compute

because of its complexity.

Manual differentiation is not without an upside though. As the derivatives

are manually derived by humans, they can be analyzed and optimized for faster

computation in some cases.

2.1.2 Numerical Differentiation

Numerical differentiation involves using the finite difference approximation of

derivatives using values of the function evaluated at some sample points [6].

For example, let f be a multivariate function f : R → R, the approximate of

the gradient ∇f = (δf
δx1
, ..., δf

δxn
) can be computed using the limit definition of

a derivative as follow:

δf(x)

δxi
≈ f(x+ hei) − f(x)

h
(2.1)

where ei is the i− th unit vector and h is a small positive step size.

Numerical differentiation is simple to implement but its main disadvantage

is that the computation requires O(n) evaluation of f for a gradient of a n

dimension input as well as a good step size h.

Numerical approximation of derivatives are ill-conditioned and unstable

7

due to the limited precision of computer systems, such as truncation and

round-off errors, especially when h → 0 [6]. Various techniques have been

introduced to alleviate the approximation errors in numerical differentiation.

For example, center difference approximation can be used to reduce the trun-

cation errors down to the second order in h:

δf(x)

δxi
≈ f(x+ hei) − f(x− hei)

2h
+O(h2) (2.2)

However, these methods are often not as effective when h is very small and

usually increase computational complexity by a large margin.

The main road block to allow the use of numerical differentiation in Ma-

chine Learning is still the O(n) complexity. For modern Deep Learning ar-

chitectures, the number of parameters n can be in the range millions, making

numerical differentiation infeasible to use. On the other hand, approximation

errors can be tolerated because neural networks can still function almost as

good in low-precision system [17].

2.1.3 Symbolic differentiation

Symbolic differentiation is another paradigm where expressions of derivative

are obtained by expanding and manipulating expressions progressively using

differentiation rules [6]. For example:

d

dx
(f(x) + g(x)) → d

dx
f(x) +

d

dx
g(x)

d

dx
(f(x)g(x)) → (

d

dx
f(x))g(x) + f(x)(

d

dx
g(x))

(2.3)

Symbolic differentiation of a formula’s expression tree is a purely mechan-

ical process [6] that can be implemented effectively. Symbolic differentiation

address the weak points of manual differentiation as well as numerical differ-

entiation and it have found wide-spread successes in the past. Example of

symbolic differentiation can be found in software system like Mathametica,

Maple and some deep learning frameworks like Theano [46].

One strength of symbolic differentiation is that symbolic derivatives can

give valuable insight into the structure of the problem and in some cases can

8

produce analytical solution that are trivial compute. However, in general,

symbolic derivatives are not known for being efficient for runtime calculation

of derivative values, as they can get exponentially larger than the expression

whole derivative they represent [6].

As an example, consider a function h(x) = f(x)g(x). Using the multiplica-

tive rule for differentiation we get d
dx
h(x) → (d

dx
f(x))g(x) + f(x)(d

dx
g(x)). If

we just blindly proceed to symbolically differentiate f(x) and plug its deriva-

tives into the previous expression, we could create a lot of duplications. The

reason is that f(x) and d
dx
f(x) usually have a lot of common component to

compute. If we don’t take this into account when expanding the expression,

we could have nested duplications of any computation that appears in com-

mon between f(x) and d
dx
f(x). This can lead to exponentially large symbolic

expression that take very long time to evaluate during execution time. This

is the reason why Deep Learning frameworks that use symbolic differentiation

like Theano have an additional, optional step of optimize the computational

graph of the symbolic derivative before execution. However, these kind of

optimization are not perfect and we usually still end up with large cryptic

symbolic expressions with many redundancies.

2.1.4 Automatic Differentiation

In modern Deep Learning, for training neural networks, we usually care less

about the symbolic form of derivative and more about the numerical accuracy.

It is much better to store only the values of intermediate sub-expression in

memory. We can futher improve the effeciency by interleaving as much as

possible the differentiation and simplification step. This is the basic idea

of Automatic Differentiation: apply symbolic differentiation at the elmentary

operation level and keep intermediate numerical results, in lockstep with the

evaluation of the main function [6].

Automatic Differentiation can be thought as performing additional compu-

tation of various derivative on top of executing standard computer program.

In a system where all component are differentiable, such as neural networks,

all numerical computation of derivatives can be reduced into composition of

9

finite set of elementary operations whose derivative are known [50]. An impor-

tant point that need to be made here is that, unlike Symbolic Differentiation,

Automatic Differentiation can handle control flow such as branching, loop, re-

cursion and procedure call. This is due to the fact that any numeric code will

eventually result in a numeric evaluation trace that can be used to compute

the derivatives, regardless of any control flow path that was taken during exe-

cution. In another way, Automatic Differentiation is blind with respect to any

operation, including control flow statements because they do not directly alter

numeric values that are used for computing the derivative [6]. Compare this to

Symbolic Differentiation, which require having the symbolic expression of the

derivative before execution for computation efficiency. One can also rebuild

the symbolic expression every time there are change in control flow. However,

this is prohibitively expensive.

There are two step in Automatic Differentiation: forward mode and reverse

mode. Forward mode in Automatic Differentiation is analogous to the forward

pass in Deep Learning. In forward mode, Automatic Differentiation execute

the program and build up all the numerical value required for computing the

derivative in reverse mode in a book-keeping procedure. The stored informa-

tion includes the Jacobian of each function blocks. Additionally, the input and

output of each function blocks are also usually stored. Reverse mode in Au-

tomatic Differentiation is the step where we go backward and propagate the

derivative from a given output. Reverse mode in Automatic Differentiation

is related to the backpropagation algorithm. In fact, it is a generalization of

the latter. The details on how to implement the forward and reverse mode of

Automatic Differentiation is not in the scope of this thesis. However, a very

good explanation can be found in the survey paper by Baydin et al. [6].

Automatic Differentiation and consequently Differentiable Programming

are the newest development in the toolbox of computing derivative for gradi-

ent optimization in Machine Learning. It addressed the issue with previous

paradigms that have been used by the Machine Learning community over the

years. The end result of Automatic Differentiation in a Machine Learning

model is to obtain the dervative of all the parameters model with respect to

10

the loss function. However, Automatic Differentiation does not work when

some of the components in the end-to-end neural network architecture are

non-differentiable. For this reason, we propose a mechanism, called ”Differ-

entiable Pass”, to overcome this challenge in the next chapter. Differentiable

Pass uses use the Universal Approximation property of Neural Networks. The

next sections in this chapter provide an overview of Neural Networks as well

as their Universal Approximation property.

2.2 Neural Network overview

2.2.1 Multilayer Perceptron

Neural Networks are very powerful machine learning model that are loosely

inspired by the biological structure of the brain. One of the simplest form of

Neural Networks is a Multilayer Perceptron. The mathematical formulation

of a Multilayer Perceptron is shown below.

A Multilayer Perceptron consists of N layers fi for i : 1 → N connected

together sequentially. Each layer receive an input xi, which is a column vector

of li dimension. xi is then put through a linear transformation using a weight

matrix Wi and a bias vector bi. This linear transformation is followed imme-

diately by a non-constant, continuous almost everywhere activation function

σi : R → R that works on the output of the previous transformation in an

element-wise fashion. In summary, the formulation of a layer is:

fi(xi) = σi(Wixi + bi) (2.4)

The activation function σi can be chosen arbitrary as long as it satisfy the

requirement in the Universal Approximation Theorem. However, the most

common activation functions are ReLU, Sigmoid and Tanh or Identity (i.e.

no activation function). This formulation of a Neural Network layer is also

called a Fully Connected layer or a Dense layer. As the layers in a Multilayer

Percentron are connected together sequentially, the output of a layer is the

input of the layer immediately right after it. In other word, we have:

11

xi+1 = fi(xi) (2.5)

As the dimension of xi+1 is li+1, we can derive that the weight matrix Wi

must be of size li+1 × li while bi is a li+1 dimension vectors. Wi and bi for

i : 1 → N are the parameters of the Multilayer Perceptron and the targets of

optimization to find the best configuration that fit the training data.

The first input x1 to a Multilayer Perceptron are provided externally and

the last output y = f(xN) are considered the output of the whole Neural

Networks. The output y are then compared against a ground truth ygt using a

loss function L(y, ygt) that measures the difference between the two. Training

of Neural Networks then become minimizing the loss function and usually

Stochastic Gradient Descent [8] is used for the optimization. As every layer

in Multilayer Perceptrons are differentiable, the gradient/derivative used for

Stochastic Gradient Descent can be computed automatically with Automatic

Differentiation, in particular, using the famous backprogation algorithm.

2.2.2 Convolutional Neural Networks

For visual recognition related problem, such as working with images and

videos, Multilayer Perceptron does not work so well because these kind of

data are usually very high dimensional. Moreover, the inherent spatial struc-

tures of those data call for Neural Networks architecture that can exploit these

structures efficiently. Convolutional Neural Networks are natural solution to

those problems. In Convolutional Neural Networks, instead of having a weight

matrix Wi do a linear transformation on the input xi to project it to the output

in each layer, a bunch of filters are convoluted with the input volume across

all spatial dimensions. Contrary to popular thinking, Convolutional Neural

Networks work on volumes to transform them into other volumes (images are

special case of volumes where the depth dimension is one). The depth dimen-

sion of a volume effects the size of the 3D filters that would be applied to

that volume as well as the number of filters that would be used to generate

that volume. Selecting the depth of the volume in a Convolutional Neural

12

Networks usually depend on the problem one is working on, as the number of

filters usually correlate to the amount of distinct information that we want to

extract from the input of from the Convolutional layer.

Convolutional Neural Networks is related to Template Matching in tradi-

tion Computer Vision. However, instead of having the convolutional filters

being designed by human, Convolutional Neural Networks treat the filters as

learnable parameters and optimize the filters using Stochastic Gradient De-

scent so that the output of the whole Neural Networks best fit training data.

In this weight, the filters in Convolutional Neural Networks are analogous to

the weight matrix Wi in Multilayer Perceptron. In fact, implementation-wise,

the convolution between the filters in Convolutional Neural Networks and the

input volume use the same matrix multiplication as in Multilayer Perceptron.

To implement convolution as matrix multiplication, first, one has to convert

both the original input volume and the convolution filters into appropriate

form. The algorithm to do this is called im2col [2]. Moreover, conceptually,

one can think a fully connected layer applied to an volume that is flattened

into a vector as a convolutional layer with the filter size big enough to cover

the whole spatial dimensions of the volume.

Convolutional Neural Networks have found wide successes in solving many

real life problems, from solving many computer vision tasks such object de-

tection [37], image generation [14], image super resolution [26] to achieving

superhuman performance in Atari games [27] and board games [43]. The ef-

fectiveness of Convolutional Neural Networks is hypothesized to comes from

their inherent computation architectures, such as their translation invariant

property, for example. Therefore, the act of designing Convolutional Neural

Networks architectures can be thought as finding a good prior for the problem

one is trying to solve. Recently, works such as [48] has found that the archi-

tecture of a generator Convolutional Network is sufficient to capture a great

deal of low-level image statistics prior to any learning and randomly-initialized

Neural Network can be used as a handcrafted prior with excellent results in

standard inverse problems such as denoising, superresolution, and inpainting.

13

2.2.3 Universal Approximation Property of Neural Net-
works

Neural Networks has been studied extensively in the past few decades. One

of the most iconic property of Neural Networks is, arguably, their Universal

Approximation Property. Let F be a Multilayer Perceptron with at least two

fully connected layers where the first layer has N output dimension and σ :

R → R be a non-constant, bounded and continuous function. The Universal

Approximation states that for any function f and any positive infinitesimal

term , there always exists N large enough so that: |f(x) − f(X)| < for all

x in the domain.

The theorem presents the powerful learning capacity of Neural Networks.

It shows that a simple two-layered Multilayer Perceptron with enough param-

eters can match any function. The theorem doesn’t propose how to find such

set of Neural Networks parameters, but it guarantees they exists. Universal

Approximation Property of Neural Networks was proved first for sigmoidal

activation function in [10] and KurtHornik et al . proved the same theorem for

classes of all non-constant, bounded, continuous function in [20]. The Univer-

sal Approximation Property of Neural Networks is the reason why we choose

this class of function as implementation for our Differentiable Bypass concept

that will be presented in the next chapter.

Figure 2.1 show an example of using Mutilayer Perceptron to mimics the

function f(x) = x sin 4x − cos
p

15|x| in the range [−1, 1] with the number

hidden neurons in the set {10, 50, 200, 1000, 5000, 20000}. As the number of

hidden neurons increase, the Neural Networks fit the function better and better

and with enough training one can fit this function perfectly.

14

Figure 2.1: Example of using a two-layered Multilayer Perceptron to mimics a
function. The directions from top to bottom, left to right indicates increasing
number of parameters from 20 hidden layer unit to 20000.

15

Chapter 3

Extending Differentiable
Programming to include
non-differentiable components
with Differentiable Bypass

3.1 Combining differentiable and non-differetiable

modules for end-to-end training using the

backpropagation algorithm

Consider the problem of combining N differentiable or non-differentiable mod-

ules {f1, f2, ..., fN} sequentially (i.e. output of fi−1 is input into fi for i > 1)

into an end-to-end pipeline that can be trained end-to-end with the back-

propagation algorithm. In this chapter, we only consider the case where the

non-differentiable modules doesn’t have any parameters that we want to train.

If we would like to do so, we can treat these parameters or projections of these

parameters as part of the input into the non-differentiable modules and pro-

ceed like normal. Let φi be the parameters of each fi that is a differentiable

module. Further, let θi for i : 1 → n be the input to each module fi. By

definition, θ1 is the input provided by user to the whole pipeline and θi for

each i : 2 → n are also the output of the previous module fi−1. Additionally,

define θN+1 as the output of fN (i.e. the output of the whole pipeline).

Let L be a differentiable loss function that compare the output θN+1 of the

pipeline against some ground truth output that we want to minimize. To train

16

the parameters of all differentiable modules, the backpropagation algorithm

assume the gradients ∂L
∂θi

for all i where fi is differentiable are provided. Then,

the original backpropagation algorithm compute the gradient ∂L
∂φi

using the

chain rule as follow:

∂L

∂φi
=

∂L

∂θi+1

× ∂θi+1

∂φi
(3.1)

∂θi+1

∂φi
= ∂fi(θi)

∂φi
is well-defined because the assumption that fi are differen-

tiable with respect to their own parameters. The problem is how to calculate

∂L
∂θi+1

. In the case when there is no non-differentiable modules in the pipeline,

∂L
∂θi

can be computed recursively from the last to the first differentiable module

by using chain rule:

∂L

∂θi
=

∂L

∂θi+1

× ∂θi+1

∂θi
(3.2)

Again, we have ∂θi+1

∂θi
= ∂fi(θi)

∂θi
to be well-defined for i : 1 → N because

of the assumption that fi are differentiable with respect to their own input.

Addittionally, as L is differentiable with respect to θN+1, we can compute the

gradient ∂L
∂θN+1

easily. Going from N down to 1 and applying the equation

(3.2) recursively, we can compute all the ∂L
∂θi

.

In the case where the sequential chain of fi for i : 1 → N is broken,

i.e. there is at some i ∈ 1, ..., N where fi is non-differentiable, the previously

mentioned recursive strategy does not work anymore. The reason is that
∂θi+1

∂θi
= ∂fi(θi)

∂θi
is no longer well-defined for some i where fi is non-differentiable.

To continue using the backpropagation algorithm for gradient optimization, we

need to estimate the these gradient somehow. The problem become estimating

the derivative of a non-differentiable function with respect to its input, i.e.

estimating ∂fi
∂θi

where fi is non-differentiable.

The problems of estimating the derivative of non-differentiable functions

with respect to its input or parameters is well-studied with in the context of

Reinforcement Learning, Control and Operation Research. The next sections

describe two of the most popular methods for doing so, which are the score

function estimator and evolution strategy and how they are related to our

17

method described in this thesis. Then, we present our concept of Differentiable

Bypass, which is the main contribution of the work. For the sake simplifying

notations, we drop the index i from f , θ in the these sections.

3.2 Score function estimator

Consider the problem of computing the derivative of an expectation of a func-

tion f(x) with respect to θ where f is non-differentiable and the a random

variable x follow a distribution p(x; θ) parameterized by θ:

∇θEp(x;θ)[f(x)] = ∇θ

Z
p(x; θ)f(x)dx (3.3)

This is a recurring task in machine learning, for example, to compute the policy

gradient in reinforcement learning or computing the posterior in variational

inference. The derivative is hard to compute because the integral over the

whole distribution p(x; θ) are usually unknown. Using something called the

log derivative trick, we can rewrite the integral into this form:

∇θEp(x;θ)[f(x)] = Ep(x;θ)[f(x)∇θ log p(x; θ)] (3.4)

The formula on the right hand side has nicer property than the integral as

we can compute the expectation by sampling. The exact derivation of the

previous formula is shown below.

Start from equation (3.3), under some mild assumptions about the smooth-

ness of f we can move the derivative inside the integral:

∇θEp(x;θ)[f(x)] =

Z
∇θp(x; θ)f(x)dx

=

Z
p(x; θ)

p(x; θ)
∇θp(x; θ)f(x)dx

(3.5)

Now, apply the derivative rule of a logarithm ∇θ log p(x; θ) = ∇θp(x;θ)
p(x;θ)

we have:

∇θEp(x;θ)[f(x)] =

Z
p(x; θ)∇θ log p(x; θ)f(x)dx

= Ep(x;θ)[f(x)∇θ log p(x; θ)]

=
1

S

SX
s=1

f(x(s))∇θ log p(x(s); θ), x(s) ∼ p(x(s), θ)

(3.6)

18

Note that the last line means we can can approximate the derivative

∇θEp(x;θ)[f(x)] by doing Monte Carlo sampling of ∇θ log p(x; θ) weighted by

f(x). This way of estimating the derivative is called the score function esti-

mator [19]. In this thesis, we usually have p(x; θ) = N (θ, σ).

The score function estimator has the advantages is that it only requires the

derivative of log p(x; θ) to exists and it is unbiased. However, one downside

is that this derivative estimator has high variance. Reducing the variance of

this estimator as low as possible is crucial for effective learning. In practice,

we subtract a control baseline b from the estimator:

∇θEp(x;θ)[f(x)] = Ep(x;θ)[(f(x) − b)∇θ log p(x; θ)] (3.7)

Subtraction of this term does not change the expectation of the estimator while

effecting the variance. A constant control variate b can be used. However, this

is usually not useful and a careful, problem-dependent strategy of choosing b

can lead to much lower variance for learning.

We can apply the score function estimator to compute the gradient of a

non-differentiable function with respect to its input by treating the input θ

into a non-differentiable f as the parameters of the distribution p(x; θ). This

can be thought as applying a smoothing operation on the input space of the

non-differentiable function f(θ). Futhermore, θ can be a parameters of f itself

as well. That means we can also optimize the parameters of non-differentiable

function using the score function estimator.

3.3 Evolution Strategy

Another way to estimate the gradient of the integral is to use evolution strategy

[41]:

∇θEp(x;θ)[f(x)] =
1

σ
Ep()[f(θ + σ)] (3.8)

Start from the score function estimator:

∇θEp(x;θ)[f(x)] = Ep(x;θ)[f(x)∇θ log p(x; θ)] (3.9)

Note that: p(x; θ) = 1√
2πσ

e−
(x−θ)2

2σ2 .

19

Let us reparameterize the random variable x as x = θ + σ , where is

sampled from a normal distribution p(): ∼ N (0, I). Then,

∇θEp(x;θ)[f(x)] = ∇θEp()[f(θ + σ)]

= Ep()[f(θ + σ)∇θ{−
(x− θ)2

2σ2
− log

√
2πσ}]

= Ep()[f(θ + σ){(x− θ)

2σ2
}]

= Ep()[f(θ + σ){
σ
}]

=
1

σ
Ep()[f(θ + σ)]

(3.10)

Evolution strategy has the advantages that it is more easily parallelized

with less communication overhead between processes and has lower variance

than the score function estimator ([41]). Our preliminary results show that

for our particular problem in this thesis, Evolution strategy gives much lower

variance and faster learning during training than the score function estimator

without having to select the control variate b. We hypothesize that is because

of the reparameterization of x as this has been shown in previous literature

([39]). However, for our setting in this thesis, empirically, we show that Evo-

lution strategy doesn’t work well when the problem is high dimensional and

our method, backpropagation via Differentiable Bypass, is preferred.

3.4 Estimating the gradient of non-differentiable

modules using Differentiable Bypass

In this section, we present a novel way to compute the gradient of the non-

differentiable function f using a concept called a Differentiable Bypass. The

idea presented here is simple and can be applied to most non-differentiable f

as long as we can find a function to approximate it. Let g be a differentiable

function parameterized by φg that has the capacity to approximate f well

enough. g can be any class of function. However, in this thesis, g is chosen to

be neural networks because of their Universal Approximation property. Figure

3.1 shows a conceptual illustration of a Differentiable Bypass.

20

Differentiable
Module

Non-differentiable
Module

Differentiable
Module ... Differentiable

Module ...

Differentiable
Approximation

Differentiable Bypass

Figure 3.1: Illustration of a Differentiable Bypass. The broken red backward
arrows means the red module is non-differentiable and Automatic Differentia-
tion cannot work. The blue rounded rectangle is a differentiable function (for
example, a neural network) that is trained to approximate the output of the
non-differentiable red module. Blue arrow show the rerouting of gradient to
avoid non-differentiable modules.

Let y = f(θ) and y0 = g(θ) be the output of f and g for the input θ and

Lapprox(y, y
0) be a differentiable loss function that compare these two output.

The idea of Differentiable Bypass is to do the optimization:

min
φg

Lapprox(y, y
0) (3.11)

a bunch of time so that g fit the surface f well enough. Then, instead of using

the gradient of the function f with respect to θ, which is not available, we can

use the gradient of g with respect to θ instead, i.e. use ∂g
∂θ

in place of ∂f
∂θ

in the

normal backpropagation algorithm. In that case, we are assuming that:

∂g

∂θ
≈ ∂f

∂θ
(3.12)

if g fits f well enough.

In practice, during training of the whole {f1, f2, ..., fN} sequence, we need

g to fit a specific f for the area around the input θ that we is computing

the gradient for. Because of this reason, some kind of exploration in the

area around the current θ need to be employed otherwise the function g will

overfit to the value of θ and give us incorrect gradient. For an example of

this exploration mechanism, please see the end-to-end learnabel Convolutional

Neural Networks and Dynamic Programming algorithm that we propose in the

next chapter.

21

The idea to estimate the gradient of a function using the gradient of another

function that approximates it has been explored in the literature. Our method

is related to Deep Deterministic Policy Gradient (DDPG) [27]. In DDPG, the

authors train a neural network Q(s, a), called the Q-network, to approximate

the discounted return of an action a given a state s then use the gradient of

Q(s, a) with respect to a for gradient ascent on another network that out-

put the action a. DDPG has found wide successes in training Reinforcement

Learning agent to play Atari game and is still one of the algorithms of choice

for solving continuous action environment. There are difference between our

concept of Differentiable Bypass and DDPG, however. Our Differentiable By-

pass employs supervised signal that come directly from the module right after

it in the sequence while in DDPG, there is no such concept and the Q-network

learns from the signal that come directly from the rewards at the end of the

action execution. There is only one non-differentiable step in DDPG that come

from the act of receiving a reward from the environment compared to multi-

ple non-differentiable modules that can exist in our pipeline. The differences

between our Differentiable Bypass and DDPG come from the setting of the

problems even though the idea of using a Neural Networks to approximate

the gradient of a non-differentiable step might be the same. Another work

that is related to our is the Synthetic Gradient paper by Max Jaderberg et al .

[22] where the authors use a Neural Network to directly output the gradient

for training another Neural Network for decoupling the training of multiple

layers in a Recurrent Neural Networks. The authors provided justification for

training using Synthetic Gradient and proved the convergence of the train-

ing. Overall, we think the idea of approximating the gradient for training

Neural Networks using other Neural Networks are very interesting and worth

pursuing.

22

Chapter 4

End-to-end learning of
Convolutional Neural Networks
and Dynamic Programming for
Left Ventricle Segmentation

Recent progress in medical image analysis is undoubtedly boosted by deep

learning [15], [23]. Progress is observed in several medical image analysis tasks,

such as segmentation [9], [33], registration [13], tracking [18] and detection [11].

One of the significant challenges in applying deep learning to medical image

analysis is limited amount of labeled data [15].

Our contribution in this chapter is twofold. First, we demonstrate a com-

bination of deep learning and a traditional method with strong prior knowl-

edge can compensate for the inadequate amount of training data significantly.

The method in this chapter is referred to as End-to-end learning of Convolu-

tional Neural Networks and Dynamic Programming (EDPCNN). We use dif-

ferentiable programming [6] (i.e., end-to-end learning) for combining different

methods.

Our second contribution is a recommendation for combining a non-differentiable

function with deep learning using the concept of Differentiable Bypass (DiffBy-

pass) within an end-to-end learning framework. This is an extension of Differ-

entiable Programming, which has been applied only to differentiable functions

so far. In this context, we demonstrate the use of the universal function ap-

proximation property of neural networks to approximate a non-differentiable

23

function.

4.1 Left Ventricle Segmentation and Combin-

ing Traditional Techinque with Deep Learn-

ing for Medical Imaging

The left ventricle appears as a “blob” object in short axis MRI. Tradition-

ally active contours and level set based methods were used for blob object

segmentation [1]. While these methods offer object shape constraints, they

typically look for strong edges or statistical modeling for successful segmenta-

tion. These techniques lack a way to work with labeled images in a supervised

machine learning framework. For complex segmentation tasks, such as cardiac

MRI segmentation [5] these methods are inadequate. Deep learning (DL) has

invigorated interest for these classic techniques in the recent years, including

our present work, because starting from raw pixels DL can be trained end-

to-end with labeled images. With the exception of limited literature, such as

shape prior Convolutional Neural Networks (CNN) [52], DL lacks any inherent

mechanism to incorporate prior knowledge about object shapes; instead, DL

relies on the volume of labeled images to implicitly learn about object shapes

or constraints. Hence, there is a need to combine CNN with these traditional

methods so that the latter can provide adequate prior knowledge.

Hu et al. [21] proposed to use CNN to learn a level set function (signed

distance transform) for salient object detection. Tang et al. [45] used level set

in conjunction with deep learning to segment liver CT data and left ventricle

from MRI. However, their method does not use end-to-end training for this

combination. Deep active contours [40] combined CNN and active contours;

the work, however, fell short of an end-to-end training process.

Literature on combined end-to-end learning is not yet abundant. End-to-

end learning employing level set and deep learning-based object detector has

been utilized in Le et al.’s work [25], where the authors modeled level set com-

putation as a recurrent neural network. Marcos et al. [29] have combined CNN

and active contours in end-to-end training with a structured loss function.

24

Proposed EDPCNN is another addition to the growing repertoire combin-

ing CNN and active contours with a noteworthy novelty. While all the afore-

mentioned literature on segmentation combines differentiable components, in

EDPCNN we demonstrate how to combine a DP-based active contour with

CNN in an end-to-end fashion, where DP is non-differentibale.

Medical image analysis often has to deal with limited amount of labeled

/ annotated images. DL has been most successful where plenty of data was

annotated, e.g., diabetic retinopathy [49]. Transfer learning is the dominant

approach to deal with limited labeled data in medical image analysis. In

transfer learning, a deep network is first trained on an unrelated, but large

dataset, such as Imagenet; then the trained model is fine-tuned on smaller

data set specific to the task. Transfer learning has been applied for lymph

node detection and classification [42], localization of kidney [34] and many

other tasks [44]. Data augmentation is also applied to deal with limited labeled

data [38].

In this work, we present a complementary approach to work with limited

amount of labeled images. Our guiding principle is to inject the learning

system with prior knowledge about the solution. A similar argument was made

by Ngo, Lu, and Carneiro [31] for combining level set and CNN to work with

limited labeled data for left ventricle segmentation. For this segmentation

task, the prior knowledge is a smooth shape, which can be modeled as a

closed contour drawn through a star pattern. To inject such knowledge into

the learning system, we resort to the principle of differentiable programming,

where more than one differentiable algorithms are stitched together. However,

the added difficulty in our case is the non-differentiable nature of DP that we

overcome using the DiffBypass strategy mentioned in the previous Chapter.

4.1.1 U-Net for Segmenting Medical Image

U-Net is a Convolutional Neural Networks architecture used for solving the

semantic segmentation problems. We include an introduction about U-Net

here because the architecture will be used as the base Convolutional Neural

Networks architecture for EDPCNN as well as the baseline we compare to.

25

Figure 4.1 show the architecture of U-Net.

U-Net is an autoencoder-like architecture. Conceptually, there are two part

in the U-Net: the encoder and the decoder. The decoder takes the input im-

age, progressively process and extract high level contextual features by using

convolutional layers and max pooling. The spatial dimensions of the feature

map reduce gradually while the depth dimension increases at the same time.

After the encoder layers, we obtain a feature map that has 1024 depth chan-

nel. The decoder part of U-Net uses up-convolution layers, which consists of

bilinear interpolation operation follow by convolution layers, to build up the

segmentation mask, again, progressively from the extracted high level feature

from the encoder. Additionally, U-Net employs skip connections from each

layer in the encoder to its corresponding layer in the decoder for improving

dense prediction accuracy. We choose U-Net as our base architecture because

U-Net has found wide successes in segmenting medical images with low amount

of data. However, other segmentation architectures, FCN [28] and SegNet [3]

for examples, can be used as the baseline. For more information about the

implementation detail of U-Net, please refer to the original paper [38].

4.2 Dynamic Programming

Use of Dynamic Programming (DP) in computer vision is wide ranging, includ-

ing interactive object segmentation [12]. Here, we use the DP setup described

in [35] to delineate star-shaped/blob objects that perfectly describe left ven-

tricles in the short axis view.

Let the star pattern have N radial lines with M points on each line. Dy-

namic Programming minimizes the following cost function:

min
v1,...,vN

E(N, vN , v1) +
N−1X
n=1

E(n, vn, vn+1), (4.1)

where each variable vn is descrete and vn ∈ {1, . . . ,M}. Cost component for

the radial line n is E(n, i, j) and it is defined as follows:

E(n, i, j) =
g(n, i) − g(n, i− 1) + g(n⊕ 1, j) − g(n⊕ 1, j − 1), |i− j| ≤ δ

∞, otherwise,
(4.2)

26

copy and crop

input
image

tile

output
segmentation
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

57
2

x
57

2

28
4²

64

128

256

512

57
0

x
57

0

56
8

x
56

8

28
2²

28
0²

14
0²

13
8²

13
6²

68
²

66
²

64
²

32
²

28
²

56
²

54
²

52
²

512

10
4²

10
2²

10
0²

20
0²

30
²

19
8²

19
6²

39
2

x
39

2

39
0

x
39

0

38
8

x
38

8

38
8

x
38

8

1024

512 256

256 128

64128 64 2

conv 1x1

Figure 4.1: U-Net architecture. Image belongs to the original authors at [38]
.

where g is the Warped Map in the EDPCNN pipeline (Fig. 4.2), with g(n, i)

representing the value of Warped Map on the ith point of radial line n. The

symbol ⊕ denotes a modulo N addition, so that N⊕1 = 1 and n⊕1 = n+1 for

n < N. The discrete variable vn ∈ {1, . . . ,M} represents the index of a point

on radial line n. DP selects exactly one point on each radial line to minimize

the directional derivatives of g along the radial lines. The collection of indices

{v(1), . . . , v(N), v(1)} chosen by DP forms a closed contour representing a

delineated left ventricle. To maintain the continuity of the closed contour,

(4.2) imposes a constraint: chosen points on two consecutive radial lines have

to be within a distance δ. In this fashion, DP acts as a blob object boundary

detector maximizing edge contrast, while maintaining a continuity constraint.

Algorithm 1 implements DP, where a number of calls to the argmin function

are responsible for the non-differentiable nature of it. So, during end-to-end

learning we cannot rely on the automatic differentiation of software packages.

Naive implementation of the nested for loops in algorithm 1 is prohibitively

inefficient for training of our model as its time complexity is O(N2M) for a

27

/* Construct value function V F and index function IF */

for n = 1, . . . , N − 1 do
for i, k = 1, . . . ,M do

if n == 1 then
V F (n, i, k) = min1≤j≤M [E(n, i, j) + E(n+ 1, j, k)] ;
IF (n, i, k) = argmin1≤j≤M [E(n, i, j) + E(n+ 1, j, k)] ;

else
V F (n, i, k) = min1≤j≤M [V F (n− 1, i, j) + E(n+ 1, j, k)] ;
IF (n, i, k) = argmin1≤j≤M [V F (n− 1, i, j) + E(n+ 1, j, k)] ;

end

end

end
/* Backtrack and output v(1), . . . , v(N) */

v(1) = argmin1≤j≤M [V F (N − 1, j, j)];

v(N) = IF (N − 1, v(1), v(1));
for n = N − 1, . . . , 2 do

v(n) = IF (n− 1, v(1), v(n+ 1));
end

Algorithm 1: Dynamic programming

single contour and the number of contours processed for each training batch

can be in order of thousands. Therefore, we need vectorize these for loops 1

so that they can be run efficiently on GPU. Moreover, pre-allocating of GPU

memory at the beginning and for reuse later during execution time is required

as memory allocation take a long time. To utilize GPU parallel computation

capability even better, algorithm 1 is extended to the batch dimension and

vectorized. Algorithm 2 shows the pseudocode of our modified version of

algorithm 1 that can run up to thousands of time faster than the original on

GPU. For a detailed implementation of algorithm 2, see our Github repository.

4.3 End-to-end training using DiffBypass

We apply DiffBypass to combine CNN with DP and refer to this method as

end-to-end DP with CNN. As a significant test application, we use EDPCNN

to segment left ventricle from short axis heart MRI [5]. Fig. 4.2 illustrates

our processing pipeline. The input to the CNN (we use U-Net [38] in our

experiments) is an MR image as shown in Fig. 4.3(a). Output from the CNN

28

https://github.com/minhnhat93/EDPCNN

/* Pre-allocate GPU arrays */

Initialize energy array E with size (batch size,N,M + 2δ,M + 2δ) ;
Initialize value array V F with size (batch size,N − 1,M,M + 2δ) ;
Initialize index array IF with size (batch size,N − 1,M,M) ;
/* Construct value function V F and index function IF */

for n = 1, . . . , N − 1 do
for i, k = 1, . . . ,M do

if n == 1 then
V S = E(:, 1, δ+1 : M+δ+1, :).toshape((−1,M,M+2δ, 1))+
E(:, 2, :, δ + 1 : M + δ + 1).toshape((−1, 1,M + 2δ,M)) ;

else
V S = E(:, n− 1, δ + 1 : M + δ + 1, :
).toshape((−1,M,M + 2δ, 1)) + E(:, n+ 1, :, δ + 1 :
M + δ + 1).toshape((−1, 1,M + 2δ,M)) ;

end
V F (:, n, :, δ + 1 : δ +M + 1) = min1≤j≤M V S(:, :, j, :) ;
IF (:, n, :, δ + 1 : δ +M + 1) = argmin1≤j≤M V S(:, :, j, :) ;

end

end
/* Backtrack and output v(1), . . . , v(N) like in the previous

algorithm */
Algorithm 2: Efficient Dynamic programming

CNN Interp DP

Approx.
Neural

Network

Input Image Output Map

Warped Map

Contour

Ground truth countour

Approx. Onehot

Legend
Forward (differentiable) Forward (non-differentiable)

Loss minimization
(explained below) Backward Synthetic Gradient

Star Pattern

Figure 4.2: EDPCNN processing pipeline.

29

Figure 4.3: Illustrations of processing pipeline: (a) input image, (b) Output
Map with an example star pattern, (c) Warped Map and (d) output indices
indicating LV on the warped space

Figure 4.4: (a) segmentation obtained with EDPCNN (b) ground truth.

30

is a processed image, called output map, on which a pattern is overlaid in Fig.

4.3(b). The pattern consists of a few graduated radial lines. We refer to it as

a “star pattern.” The interpolator (“Interp” in Fig. 4.2) interpolates output

map on the points of the star pattern and warp the interpolated values in a

matrix called “Warped Map” in Fig. 4.2. Fig. 4.3(c) illustrates a Warped

Map. DP minimizes a cost function on the Warped Map and chooses exactly

one point on each radial line in the star pattern to output a set of indices in

the warped domain as shown in Fig. 4.3(d). Mapping the indices back to the

image space gives us a closed contour as the final segmentation, as shown in

Fig. 4.3(e). In comparison, ground truth segmentation, created by an expert,

is shown in 4.3(f).

EDPCNN pipeline is differentiable except for argmin function calls inside

the DP module that renders the entire pipeline unsuitable for end-to-end learn-

ing. For example, if there is a differentiable loss function that measures the

error between output contour and ground truth contour, we would not be able

to train the system end-to-end, because gradient would not reliably flow back

across the argmin function using the standard mechanisms of automatic dif-

ferentiation. In the past, soft assignment has been utilized to mitigate the

issue of non-differentiability for the argmin function [4]. Here, we illustrate

DiffBypass to approximate the gradient of the Warped Map, so that all the

preceding differentiable layers (Interp and CNN) can apply standard backprop-

agation to learn trainable parameters. Fig. 4.2 illustrates that an approximat-

ing neural network (“Approx. Neural Network”) creates a DiffBypass for the

non-differentiable DP module. This second neural network approximates the

contour that the DP module outputs. Then a differentiable loss function is ap-

plied between the ground truth contour and the output of the approximating

neural network, making backpropagation possible with automatic differentia-

tion. This mechanism is known as synthetic gradients, because the gradients

of the approximating neural network serves as a proxy for the gradients of the

DP module.

The DiffBypass strategy uses the universal function approximation prop-

erty of neural networks. This strategy is similar to using Synthetic Gradient

31

[22] to train deep neural networks asynchronously to yield faster training. In

order to use the DiffBypass strategy in the EDPCNN processing pipeline, as

before, let us first denote by g the Warped Map, which is input to the DP

module. Let L(p, pgt) denote a differentiable loss function which evaluates the

collection of indices output from the DP module p = DP (g) = {v1, ..., vN}

against its ground truth pgt = {v∗1, ..., v∗n}, which can be obtained by taking

the intersection between the ground truth segmentation mask and the radial

lines of the star pattern. Let us also denote by F a neural network, which

takes g as input and outputs a softmax function to mimic the output of DP.

In Fig. 4.2, F apperas as “Approx. Neural Network.” Let φ and ψ denote the

trainable parameters of F and U-Net, respectively. The inner minimization in

the Dynamic Programming algorithm (Algorithm 3) trains the approximating

neural network F , whereas the outer minimization trains U-Net. Both the

networks being differentiable are trained by backpropagation using automatic

differentiation. The general idea here is to train F to mimic the output in-

dices of the DP module p as closely as possible, then use ∇gL(F (g), pgt) to

approximate ∇gL(p, pgt), bypassing the non-differentiable argmin steps of DP

entirely. Minimizing L(p, pgt) then becomes minimizing L(F (g), pgt) with this

approximation.

The loss function L in this work is chosen to be the Cross Entropy between

the output of F against the one-hot form of {v1, ..., vN} or {v∗1, ..., v∗N}. In this

case, F (g) comprises of N vectors, each of size M , representing the softmax

output of the classification problem for selecting an index on each radial line.

We have observed that introducing randomness as a way of exploration in

the inner loop by adding σεs to g is important for the algorithm to succeed. In-

stead of minimizing L(F (g), DP (g)), we minimize L(F (g+σεs), DP (g+σεs)).

In comparison, the use of Synthetic Gradient in asynchronous training [22] did

not have to resort to any such exploration mechanism. The correctness of the

gradient provided by the DiffBypass depends on how well F fits the surface

of the DP algorithm around g. We hypothesize that without sufficient explo-

ration added, F will overfit to a few points on the surface and lead to improper

gradient signal. Hyperparameter σ can be set using cross validation, while the

32

number of noise samples S controls trade off between gradient accuracy and

training time. We found that σ = 1 and S = 10 works well for our experiments.

for I, pgt ∈ Training {Image,Ground Truth} Batch do
g = Interp(Unet(I));
Initialize s to 0;
while s < S do

Sample εs from N (0; I);
minφ L(F (g + σεs), DP (g + σεs));
s = s+ 1;

end
minψ L(F (g), pgt);

end
Algorithm 3: Training EDPCNN using DiffBypass

33

Chapter 5

Experiment Setup and Results

In this chapter, we discuss the experiment setup to evaluate the effectiveness

our combining Convolutional Neural Networks and Dynamic Programming

into end-to-end training agains our baselines.

5.1 Dataset and Preprocessing

We evaluate the performance of EDPCNN against U-Net on a modified ACDC

[7] datatset. As the test set is not publicly available, we split the original

training set into a training set and a validation set according to [5]. Following

the same work, the images are re-sampled to a resolution of 212 × 212. As

the original U-Net model does not use padded convolution, each image in the

dataset has to be padded to size 396 × 396 at the beginning, so that the final

output has the same size as the original image. After these steps, we remove

all images that does not have the left ventricle class from the two datasets,

resulting in a training set of 1436 images and a validation set of 372 images.

We train U-Net and EDPCNN increasing training sample size from 10

training images to the full training set size, 1436. To avoid ordering bias, we

randomly shuffle the entire training set once, then choose training images from

the beginning of the shuffled set, so that each smaller training set is successively

contained in the bigger sets, creating telescopic training sets, suitable for an

ablation study.

34

Figure 5.1: Left: Original indices. Right: Smoothed indices.

5.2 Postprocessing

As the output contour of DP may sometimes be jagged, we employ a post-

processing step where the output indices are smoothed by a fixed 1D moving

average convolution filter with circular padding. The size of the convolutional

filter is set using a heuristic to be around one-fourth the number of radial lines

on the star pattern. This post-processing also has the effects of pushing the

contour to be closer to a circle, which is also a good prior for the left ventricle.

This step improves our validation accuracy by around 0.5 to 0.8 percent. Since

Differentiable Bypass mimics the post-processed output, postprocessing is a

part of the end-to-end processing. Figure 5.1 shows an example of the selected

indices before and after postprocessing step.

5.3 Evaluation Metric

For evaluation of a segmentation against its corresponding ground truth, we

use Dice score [5], a widely accepted metric for medical image segmentation.

EDPCNN requires the star pattern to be available so that the output of U-Net

can be interpolated on the star pattern to produce Warped Map. The star

pattern is fixed; but its center can be supplied by a user in the interactive seg-

mentation. For all our experiments, the ground truth left ventricle center for

an image serves as the center of the star pattern for the same image. While by

design EPDCNN outputs a single connected component, U-Net can produce

35

as many components without any control. Thus, to treat the evaluation of

U-Net fairly against EDPCNN, in all the experiments we compute Dice scores

within a square, which tightly fits the star pattern. So, any connected compo-

nent produced by U-Net outside of this square is discarded during Dice score

computation.

5.4 Training Details and Hyperparameters

We train U-Net and EDPCNN using Adam optimizer [24] with β1 = 0.9,

β2 = 0.999, and a learning rate value of 0.0001 to make the training of U-Net

stable. Training batch size is 10 for each iteration and the total number of

iteration is 20000. No learning rate decay as well as weight decay are used

because we have not found these helpful. We evaluate each method on the

validation set after every 50 iterations and select the model with the highest

validation Dice score.

For EDPCNN, we use nearest neighbor method to interpolate the output

of U-Net on the star pattern to compute Warped Map g. We choose the center

of the star pattern for each image to be the center of mass. To make the model

more robust and have better generalization, during training, we randomly jitter

the center of the star pattern with the requirement that the center will still stay

inside the object. Define ”object radius” as the distance between the center

of mass of an object to its nearest points on the contour. We then randomly

move the true center inside a 2D truncated normal distribution with mean

equal to the coordinate of the center of mass and standard deviation equal

to the object radius. We find that this kind of jittering can improve the dice

score on smaller training sets by up to about 2%. We also randomly rotate

the star pattern from -0.5 to 0.5 radian as an additional random exploration.

The radius of the star pattern is chosen to be 65 so that all objects in

the training set can be covered by the pattern after taking into account the

random placement of the center during training. The number of points on a

radial line has also been chosen to be the radius of the star pattern: M = 65.

For the number of radial lines N and the smoothness parameter δ, we run a

36

Figure 5.2: Hyper-parameters search for DiffBypass.

grid search over N ∈ {12, 25, 50, 100}, δ ∈ {1, 2, 5, 7, 10} and find N = 25,

δ = 1 to be good values. We also find that the performance of our algorithm

is quite robust to the choices of these hyperparameters. The Dice score only

drops around 3% when the values of N and δ are extreme (e.g. N = 100,

δ = 10). Figure ?? shows the result of doing a grid search for selecting N

and δ on training set size of 200 samples over 200 epochs. Lastly, for the

optimization of minφ L(F (g + σεs), DP (g + σεs)) in Algorithm 3, to make

F (g) fit DP (g) well enough, we do the minimization step repeatedly for 10

times.

The architecture of F used to approximate the output of DP is a U-Net-like

architecture. As the size of g is smaller and the complexity of g is likely to be

less than the original image, instead of having 4 encoder and 4 decoder blocks

as in U-Net, F only has 3 encoder and 3 decoder blocks. Additionally, we

use padding for convolutions/transposed convolutions in the encoder/decoder

blocks so that those layers keep the size of the feature maps unchanged instead

37

of doing a large padding at the beginning like in U-Net. This is purely for

convenience. Note that these choices can be arbitrary as long as F can fit

the surface of DP well enough. For the same reason, we find that the number

of output channels in the first convolution of F , called base channels, is an

important hyperparameter because this value controls the capacity of F and

affects how well F fits the surface of DP. We find that base channels = 8

works well for our algorithm (compared to 64 in U-Net).

5.5 Experiment Results and Discussions

Fig. 5.3 shows an ablation study to demonstrate the effectiveness of combining

CNN and DP in an end-to-end learning pipeline. The numerical result for this

figure can be found in 5.1. The horizontal axis shows the number of training

images and the vertical axis shows the Dice score of LV segmentation on a

fixed validation set of images. Note that when the number of training images

is small, EDPCNN performs significantly better than U-Net. Eventually, as

the training set grows, the gap between the Dice scores by U-Net and EDPCNN

starts to close. However, we observe that EDPCNN throughout maintains its

superior performance over U-Net. Results section (Table 5.2) shows that the

performance gain of EDPCNN over U-Net comes only with a modest increase

(16%) in the processing time.

Fig. 5.3 shows another experiment called “U-Net+DP”. In the U-Net+DP

processing pipeline, DP is applied on the output of a trained U-Net without

end-to-end training. Once again, EDPCNN shows significantly better perfor-

mance than U-Net+DP for small training sets, demonstrating the effectiveness

of the end-to-end learning. We hypothesize that DP infuses strong prior knowl-

edge in the training of U-Net within EDPCNN and this prior knowledge acts

as a regularizer to overcome some of challenges associated with small training

data.

Supply of the target object center to EDPCNN can be perceived as a

significant advantage. We argue that this advantage cannot overshadow the

contribution of end-to-end learning. To establish this claim, we refer readers

38

Figure 5.3: Ablation study: training set size vs. Dice score on validation set.
EDPCNN uses the original U-Net as base network architecture.

39

Table 5.1: Dice score of ablation study for U-Net, U-Net+DP and EDPCNN
at different training set sizes.

10 20 50 100 200 500 1000 1436
U-Net 0.5115 0.6511 0.7321 0.7990 0.8392 0.8862 0.9020 0.9096

U-Net+DP 0.6025 0.6558 0.7296 0.8135 0.8558 0.8891 0.8978 0.9031
EDPCNN 0.7270 0.7569 0.8015 0.8328 0.8701 0.8990 0.9093 0.9137

to Fig. 5.3 and note that the Unet+DP model, despite having the same

advantage, lags significantly behind EDPCNN. Therefore, end-to-end learning

is the only attributable factor behind the success of EDPCNN.

Further, to test the robustness of EDPCNN with respect to the position of

the star pattern center, we perform an experiment where the supplied center

during testing is purposely jittered inside the object in the way it was done

during training. Fig. 5.4 shows the effect of random jitter with the increase of

jitter radius from no jitter to 0.5 of the object radius. We can see that there

is no significant degradation in performance, especially for 0.2 jitter or below.

Fig. 5.4 plots the average Dice scores for these experiments. In all the cases,

the standard deviation of Dice scores remains small, below 0.01. Thus, the

standard deviation has not been shown in Fig. 5.4.

Fig. 5.5 shows training iterations vs. Dice scores for training and validation

sets. Two training sample sizes were shown: 10 and 1436 (full training set). For

training sample size 10, the Dice scores on the validation set show significant

variations and eventual overfitting for the U-Net model, while EDPCNN does

not exhibit such a tendency. This overfitting behaviour is counter intuitive,

because learnable parameters in EDPCNN form a superset for those in U-Net.

Our hypothesis is that a strong object model and prior knowledge infused by

DP into U-Net prevents overfitting.

Table 5.2 shows running time for U-Net and EDPCNN. We observe that

computationally EDPCNN is about 64% more expensive during training. How-

ever, test time for EDPCNN is only about 16% more than that of U-Net.

To further evaluate the result of what the U-Net in EDPCNN has learned,

we plot the predicted segmentation mask as well as the output of U-Net for

some typical images that has the left ventricle of size from small to medium and

40

Figure 5.4: Robustness test: Dice Score at different dataset size and different
jitter radius.

Figure 5.5: Dice Score on the training and validation sets during training for
EDPCNN and UNet for dataset size of 10 and 1436.

41

Table 5.2: Computation time on an NVIDIA GTX 1080 TI
Method Time / Training iteration Total training time Inference time / Image
U-Net 0.96s 5h 20m 0.01465s

EDPCNN 1.575s 8h 45m 0.01701s

large in figure 5.6. Overall, we find that U-Net learn to distinguish the edge

of the left ventricle against the rest of the image very strongly. Additionally,

figure 5.7 shows a failure case of our EDPCNN pipeline. In general, we find

EDPCNN doesn’t work as well on images with the left ventricle of smaller size.

Finally, we do another ablation study by training EDPCNN using Evolu-

tion Strategy (ES). We find that ES work well on a low dimensional version of

U-Net where the input is not padded, resulting in a final feature map of lower

dimension that will be upsampled as input into the Dynamic Programming

step. In this low dimensional optimization problem, ES works well and has

similar performance to DiffBypass (see figure 5.8. However, when we use ES

on the original U-Net, the performance of ES is worse than using DiffBypass.

In fact, ES on original U-Net is even worse than ES on the low dimensional

U-Net (see figure 5.9. We hypothesize that this maybe because the number

of random samples used to train ES does not scale well with the dimension

of the input. This show that our DiffBypass migh be preferred over Evolu-

tion Strategy for estimating the gradient of non-differentiable module in high

dimensional problems.

42

Figure 5.6: From top to bottom: segmentation mask from small to large. From
left to right: ground truth mask, predicted mask, CNN output.

Figure 5.7: A failure case. From left to right: ground truth mask, predicted
mask, CNN output.

43

Figure 5.8: Training set size vs. Dice score on validation set for U-Net, ED-
PCNN trained using Evolution Strategy (ES) and DiffBypass (denoted as ED-
PCNN (SG)). The base U-Net used here is a modified version where no padding
happen at the beginning.

44

Figure 5.9: Ablation study: Performance of EDPCNN trained using Evolution
Strategy. EDPCNN (ES-lo) denotes using the U-Net version without input
padding as the base CNN while EDPCNN (ES-hi) denotes using the orignal
U-Net as the base CNN.

45

Chapter 6

Conclusion

In this thesis, we present a method to combine a non-differentiable module

into Differentiable Programming via a concept called Differentiable Bypass.

We illustrate how to combine Convolutional Neural Networks and Dynamic

Programming for end-to-end learning. Combination of Convolutional Neural

Networks and traditional tools is not new; however, the novelty here is to

handle a non-differentiable module, dynamic programming, within the end-

to-end pipeline. We employ a neural network as our Differentiable Bypass to

approximate the gradient of the non-differentiable module. We found that the

approximating neural network should have an exploration mechanism to be

successful.

As a significant application we choose left ventricle segmentation from short

axis MRI. Our experiments show that end-to-end combination is beneficial

when training data size is small. Our end-to-end model has very little compu-

tational overhead, making it a practical choice.

In the future, we plan to segment myocardium and right ventricle with

automated placement of star patterns. For these and many other segmentation

tasks in medical image analysis, strong object models given by traditional

functional modules, such as dynamic programming, provide a way to cope with

the lack of training data. Our presented method has the potential to become

a blueprint to expand differentiable programming to include non-differentiable

modules.

The concept of Differentiable Bypass we presented here works in the case

46

where the non-differentiable modules have no parameters. A natural extension

of Differentiable Bypass is to include the training of non-differentiable modules

that have parameters into the pipeline as well. To do this, one possible solution

could be to model the Differentiable Bypass as a function of both the input into

the non-differentiable module as well as its parameters. We think that this

extension is a very interesting concept and would like to pursuit this direction

in the future.

Another very ambitious direction to extend this thesis would be automating

the designing the neural network architecture of the Differentiable Bypass. To

do this, Neural Architecture Search would be required. Additionally, we can

also model the problem of choosing the Differentiable Bypass architecture as a

Reinforcement Learning problem as well. Successfully solving the problem of

automating the architecture search for the Differentiable Bypass would implies

lots of breakthrough for Differentiable Programming. For one, it means that

we can construct a black box programming language that allow users to write,

combine and optimize modules and functions that are either differentiable

or non-differentiable. To be able to achieve this step would require a lot

of engineering as well as scientific efforts. However, we think that the step of

being able to optimize both differentiable as well as non-differentiable modules

at the same time will be an important step to help solving many problems and

worth pursuing.

47

References

[1] S. T. Acton and N. Ray, “Biomedical image analysis: Segmentation,”
Synthesis Lectures on Image, Video, and Multimedia Processing, vol. 4,
no. 1, pp. 1–108, 2009. doi: 10.2200/S00133ED1V01Y200807IVM009. 24

[2] Artificial intelligence gitbook, http://archive.is/dqmXQ, Accessed:
2018-12-22. 13

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” arXiv
preprint arXiv:1511.00561, 2015. 26

[4] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by
Jointly Learning to Align and Translate,” ArXiv e-prints, Sep. 2014.
arXiv: 1409.0473 [cs.CL]. 31

[5] C. F. Baumgartner, L. M. Koch, M. Pollefeys, and E. Konukoglu, “An
exploration of 2d and 3d deep learning techniques for cardiac mr image
segmentation,” in Statistical Atlases and Computational Models of the
Heart. ACDC and MMWHS Challenges, M. Pop et al., Eds., Cham:
Springer Int. Publishing, 2018, pp. 111–119, isbn: 978-3-319-75541-0. 24, 28, 34, 35

[6] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Auto-
matic differentiation in machine learning: A survey,” Journal of Machine
Learning Research, vol. 18, no. 153, pp. 1–43, 2018. [Online]. Available:
http://jmlr.org/papers/v18/17-468.html. 4, 6–10, 23

[7] O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P.-A. Heng,
I. Cetin, K. Lekadir, O. Camara, M. A. G. Ballester, et al., “Deep learn-
ing techniques for automatic mri cardiac multi-structures segmentation
and diagnosis: Is the problem solved?” IEEE Transactions on Medical
Imaging, 2018. 34

[8] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–
186. 12

[9] T. Brosch, L. Y. W. Tang, Y. Yoo, D. K. B. Li, A. Traboulsee, and R.
Tam, “Deep 3d convolutional encoder networks with shortcuts for mul-
tiscale feature integration applied to multiple sclerosis lesion segmenta-
tion,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1229–
1239, May 2016, issn: 0278-0062. doi: 10.1109/TMI.2016.2528821. 23

48

https://doi.org/10.2200/S00133ED1V01Y200807IVM009
http://archive.is/dqmXQ
http://arxiv.org/abs/1409.0473
http://jmlr.org/papers/v18/17-468.html
https://doi.org/10.1109/TMI.2016.2528821

[10] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989. 14

[11] Q. Dou, H. Chen, L. Yu, L. Zhao, J. Qin, D. Wang, V. C. Mok, L.
Shi, and P. Heng, “Automatic detection of cerebral microbleeds from mr
images via 3d convolutional neural networks,” IEEE Trans. Med. Im.,
vol. 35, no. 5, pp. 1182–1195, May 2016, issn: 0278-0062. 23

[12] P. F. Felzenszwalb and R. Zabih, “Dynamic programming and graph
algorithms in computer vision,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 33, no. 4, pp. 721–740, Apr. 2011, issn:
0162-8828. doi: 10.1109/TPAMI.2010.135. 26

[13] S. Ghosal and N. Ray, “Deep deformable registration: Enhancing ac-
curacy by fully convolutional neural net,” Pattern Recognition Letters,
vol. 94, pp. 81–86, 2017, issn: 0167-8655. doi: https://doi.org/10.
1016/j.patrec.2017.05.022. 23

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–2680. 13

[15] H. Greenspan, B. van Ginneken, and R. M. Summers, “Guest editorial
deep learning in medical imaging: Overview and future promise of an
exciting new technique,” IEEE Transactions on Medical Imaging, vol. 35,
no. 5, pp. 1153–1159, May 2016, issn: 0278-0062. 23

[16] K. Gregor and Y. LeCun, “Learning fast approximations of sparse cod-
ing,” in Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, Omnipress, 2010, pp. 399–406.

7

[17] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International Conference
on Machine Learning, 2015, pp. 1737–1746. 8

[18] T. He, H. Mao, J. Guo, and Z. Yi, “Cell tracking using deep neural net-
works with multi-task learning,” Image and Vision Computing, vol. 60,
pp. 142–153, 2017, issn: 0262-8856. 23

[19] S. G. Henderson and B. L. Nelson, “Stochastic computer simulation,”
Handbooks in Operations Research and Management Science, vol. 13,
pp. 1–18, 2006. 19

[20] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation
of an unknown mapping and its derivatives using multilayer feedforward
networks,” Neural networks, vol. 3, no. 5, pp. 551–560, 1990. 14

49

https://doi.org/10.1109/TPAMI.2010.135
https://doi.org/https://doi.org/10.1016/j.patrec.2017.05.022
https://doi.org/https://doi.org/10.1016/j.patrec.2017.05.022

[21] P. Hu, B. Shuai, J. Liu, and G. Wang, “Deep level sets for salient object
detection,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jul. 2017, pp. 540–549. doi: 10.1109/CVPR.2017.
65. 24

[22] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves,
and K. Kavukcuoglu, “Decoupled neural interfaces using synthetic gra-
dients,” CoRR, vol. abs/1608.05343, 2016. arXiv: 1608.05343. [Online].
Available: http://arxiv.org/abs/1608.05343. 4, 22, 32

[23] J. Ker, L. Wang, J. Rao, and T. Lim, “Deep learning applications in
medical image analysis,” IEEE Access, vol. 6, pp. 9375–9389, 2018, issn:
2169-3536. doi: 10.1109/ACCESS.2017.2788044. 23

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014. 36

[25] T. H. N. Le, K. G. Quach, K. Luu, C. N. Duong, and M. Savvides,
“Reformulating level sets as deep recurrent neural network approach
to semantic segmentation,” IEEE Transactions on Image Processing,
vol. 27, no. 5, pp. 2393–2407, May 2018, issn: 1057-7149. 24

[26] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic single
image super-resolution using a generative adversarial network.”. 13

[27] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015. 13, 22

[28] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440. 26

[29] D. Marcos, D. Tuia, B. Kellenberger, L. Zhang, M. Bai, R. Liao, and R.
Urtasun, “Learning deep structured active contours end-to-end,” ArXiv
e-prints, Mar. 2018. arXiv: 1803.06329 [cs.CV]. 24

[30] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manju-
nath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, Soft-
ware available from tensorflow.org, 2015. [Online]. Available: https :

//www.tensorflow.org/. 6

50

https://doi.org/10.1109/CVPR.2017.65
https://doi.org/10.1109/CVPR.2017.65
http://arxiv.org/abs/1608.05343
http://arxiv.org/abs/1608.05343
https://doi.org/10.1109/ACCESS.2017.2788044
http://arxiv.org/abs/1803.06329
https://www.tensorflow.org/
https://www.tensorflow.org/

[31] T. A. Ngo, Z. Lu, and G. Carneiro, “Combining deep learning and level
set for the automated segmentation of the left ventricle of the heart
from cardiac cine magnetic resonance,” Medical Image Analysis, vol. 35,
pp. 159–171, 2017, issn: 1361-8415. doi: https://doi.org/10.1016/
j.media.2016.05.009. 25

[32] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z.
Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation
in pytorch,” in NIPS-W, 2017. 2, 6

[33] S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain tumor segmenta-
tion using convolutional neural networks in mri images,” IEEE Transac-
tions on Medical Imaging, vol. 35, no. 5, pp. 1240–1251, May 2016, issn:
0278-0062. doi: 10.1109/TMI.2016.2538465. 23

[34] H. Ravishankar, P. Sudhakar, R. Venkataramani, S. Thiruvenkadam, P.
Annangi, N. Babu, and V. Vaidya, “Understanding the Mechanisms of
Deep Transfer Learning for Medical Images,” ArXiv e-prints, Apr. 2017.
arXiv: 1704.06040 [cs.CV]. 25

[35] N. Ray, S. T. Acton, and H. Zhang, “Seeing through clutter: Snake
computation with dynamic programming for particle segmentation,” in
Proceedings of the 21st International Conference on Pattern Recognition
(ICPR2012), Nov. 2012, pp. 801–804. 26

[36] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788. 7

[37] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99. 1, 13

[38] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Net-
works for Biomedical Image Segmentation,” ArXiv e-prints, May 2015.
arXiv: 1505.04597 [cs.CV]. 25–28

[39] F. R. Ruiz, M. T. R. AUEB, and D. Blei, “The generalized reparameter-
ization gradient,” in Advances in neural information processing systems,
2016, pp. 460–468. 20

[40] C. Rupprecht, E. Huaroc, M. Baust, and N. Navab, “Deep active con-
tours,” CoRR, vol. abs/1607.05074, 2016. arXiv: 1607.05074. [Online].
Available: http://arxiv.org/abs/1607.05074. 24

[41] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
Strategies as a Scalable Alternative to Reinforcement Learning,” ArXiv
e-prints, Mar. 2017. arXiv: 1703.03864 [stat.ML]. 19, 20

51

https://doi.org/https://doi.org/10.1016/j.media.2016.05.009
https://doi.org/https://doi.org/10.1016/j.media.2016.05.009
https://doi.org/10.1109/TMI.2016.2538465
http://arxiv.org/abs/1704.06040
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1607.05074
http://arxiv.org/abs/1607.05074
http://arxiv.org/abs/1703.03864

[42] H.-C. Shin et al., “Deep Convolutional Neural Networks for Computer-
Aided Detection: CNN Architectures, Dataset Characteristics and Trans-
fer Learning,” ArXiv e-prints, Feb. 2016. arXiv: 1602.03409 [cs.CV].

25

[43] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017. 1, 13

[44] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall,
M. B. Gotway, and J. Liang, “Convolutional neural networks for medical
image analysis: Full training or fine tuning?” IEEE Trans. on Med. Im.,
vol. 35, no. 5, pp. 1299–1312, May 2016, issn: 0278-0062. 25

[45] M. Tang, S. Valipour, Z. V. Zhang, D. Cobzas, and M. Jägersand, “A
deep level set method for image segmentation,” CoRR, vol. abs/1705.06260,
2017. arXiv: 1705.06260. [Online]. Available: http://arxiv.org/abs/
1705.06260. 24

[46] Theano Development Team, “Theano: A Python framework for fast com-
putation of mathematical expressions,” arXiv e-prints, vol. abs/1605.02688,
May 2016. [Online]. Available: http://arxiv.org/abs/1605.02688. 8

[47] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: A next-generation
open source framework for deep learning,” in Proceedings of Workshop on
Machine Learning Systems (LearningSys) in The Twenty-ninth Annual
Conference on Neural Information Processing Systems (NIPS), 2015.
[Online]. Available: http://learningsys.org/papers/LearningSys_
2015_paper_33.pdf. 2

[48] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018, pp. 9446–9454. 13

[49] G. V, P. L, C. M, and et al, “Development and validation of a deep
learning algorithm for detection of diabetic retinopathy in retinal fun-
dus photographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 2016. doi:
10.1001/jama.2016.17216. eprint: /data/journals/jama/935924/
joi160132.pdf. 25

[50] A. Verma, “An introduction to automatic differentiation,” Current Sci-
ence, pp. 804–807, 2000. 10

[51] Yann lecun post on differentiable programming, http://archive.is/
esnO3, Accessed: 6 Jan 2018 00:41:57 UTC. 2, 6

[52] C. Zotti, Z. Luo, A. Lalande, and P. Jodoin, “Convolutional neural net-
work with shape prior applied to cardiac mri segmentation,” IEEE Jour-
nal of Biomedical and Health Informatics, pp. 1–1, 2018, issn: 2168-2194.
doi: 10.1109/JBHI.2018.2865450. 24

52

http://arxiv.org/abs/1602.03409
http://arxiv.org/abs/1705.06260
http://arxiv.org/abs/1705.06260
http://arxiv.org/abs/1705.06260
http://arxiv.org/abs/1605.02688
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
https://doi.org/10.1001/jama.2016.17216
/data/journals/jama/935924/joi160132.pdf
/data/journals/jama/935924/joi160132.pdf
http://archive.is/esnO3
http://archive.is/esnO3
https://doi.org/10.1109/JBHI.2018.2865450

	Introduction
	Motivation and Problem Statement
	Contributions
	Thesis Outline

	Background
	Differentiable Programming
	Manual differentiation
	Numerical Differentiation
	Symbolic differentiation
	Automatic Differentiation

	Neural Network overview
	Multilayer Perceptron
	Convolutional Neural Networks
	Universal Approximation Property of Neural Networks

	Extending Differentiable Programming to include non-differentiable components with Differentiable Bypass
	Combining differentiable and non-differetiable modules for end-to-end training using the backpropagation algorithm
	Score function estimator
	Evolution Strategy
	Estimating the gradient of non-differentiable modules using Differentiable Bypass

	End-to-end learning of Convolutional Neural Networks and Dynamic Programming for Left Ventricle Segmentation
	Left Ventricle Segmentation and Combining Traditional Techinque with Deep Learning for Medical Imaging
	U-Net for Segmenting Medical Image

	Dynamic Programming
	End-to-end training using DiffBypass

	Experiment Setup and Results
	Dataset and Preprocessing
	Postprocessing
	Evaluation Metric
	Training Details and Hyperparameters
	Experiment Results and Discussions

	Conclusion
	References

