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Abstract 

 
Miniaturization of spectrometers for microfluidic applications is currently an intense area of 

research. This thesis is devoted to the design, fabrication, and testing of a planar optical 

microspectrometer. Optical microspectrometers are potentially important candidates for 

noninvasive detection and identification of cells and other biological material. The focus of this 

study was to improve the functionality of the present lab-on-a-chip devices, through monolithic 

integration of microfluidic channels, optical waveguides and diffraction gratings on a single 

disposable opto-bio-chip. One important device for spectral analysis of cells and other analytes is 

the diffraction grating and most fluorescence detection systems reported to date use off-chip bulk 

optical gratings. Here, an integrated approach based on a planar curved focusing transmission 

grating fabricated together with microfluidic channels, optical waveguides and a collimating lens 

in a single layer of polydimethylsiloxane (PDMS) is described. Layers of lower-index PDMS 

were bonded to this layer to provide optical and fluidic confinement.  Because of the index 

contrast with the outer layers, light can be confined in the central “optofluidic” layer, so that 

propagation of light in the guiding (core) layer is governed by total internal reflection. The 

fabricated microspectrometer was tested using a variety of light sources including three different 

lasers and a broadband white light source. The optical performance of the fabricated 

microspectrometer closely matches the design specifications. 

In summary I have made the following contributions: i) developed a new optofluidic integration 

process in PDMS (Chapter 5). ii) developed a set of numerical tools for analyzing individual 

elements of a spectrometer such as planar gratings and lenses or the device as a whole (Chapter 

3). iii) fabricated and tested a novel, curved focusing transmission grating, and explored its use 



for fluorescence spectroscopy (Chapter 6). iv) developed a novel dynamic strategy for sensing 

using the diffracted orders of the grating (Chapter 7). 



Acknowledgements 

 

My deepest gratitude goes to my late advisor Dr. James Niel McMullin, who provided me the 

opportunity, direction and resources to carry out this research project. Jim was a man with many 

great virtues and those who were fortunate to know him can easily attest to that. I wish he didn’t 

leave so soon… 

Deepest appreciations are also extended to Dr. Ray G. DeCorby who immediately took over the 

responsibility of my supervision and who has since diligently spent numerous hours of his time to 

guide me through every aspect of my work. I am grateful to him for all the academic 

achievements I have had in the past two years.  

My sincere thanks to Dr. Robert Fedosejevs and Dr. Vien Van who graciously served in my 

advisory, candidacy and defense committees, reviewed my thesis, and provided me with their 

valuable suggestions and comments.  

I would also like to thank the other members of my examination committee, Drs. Christopher 

Dennison of Mechanical Engineering, Sandipan Pramanik of Electrical and computer 

Engineering, Frank Hegmann of Physics, and Dr. Kevin P. Chen of University of Pittsburgh 

Swanson School of Engineering for taking the time to review my thesis, and for the many useful 

corrections and comments. 

I am particularly grateful to Dr. Eric Flaim, Lawrence Lam, and Aaron Melnyk for their 

collaboration and contributions to this project. I am thankful to my colleagues and fellow 

graduate students, past and present, especially the members of the Photonic lab group,  Dr. 

Trevor Allen, Minchang (Carson) Zhang, Brian Drobot, Mohammadhossein Bitarafan. 

Many thanks to the staff at the University of Alberta’s Nanofabrication facility, especially Scott 

Monro, whose expert advice on fabrication was always greatly appreciated.  

Finally, I would like to thank my family, my brothers and sisters for their constant support and 

encouragement especially, my wife Nadia and my son Darius who had to make numerous 

sacrifices, without their love this work was impossible.         

  

                



Table of Contents 

 1  Introduction    1  

  1.1 Introduction…………………………………………………………………..... 1  

   1.1.1 Lab-on-a-Chip: A cursory review of early developments………………..1  

   1.1.2 Microfluidics…………………………………………………………….. 3  

   1.1.3 Microfluidic flow types and their mechanisms………………………….. 4  

   1.1.4 Scaling effects: opportunities and challenges…………………………… 5  

  1.2  Fabrication: Methods and choice of material………………………………….. 5  

   1.2.1 Plastic as material of choice for fabrication of the optical biochip…….... 6  

  1.3 Optical detection………………………………………………………………. 7 

   1.3.1 Absorption……………………………………………………………….. 8 

   1.3.2 Evanescent wave sensing………………………………………………....9 

   1.3.3 Leaky fluidic waveguide sensing………………………………………..10  

   1.3.4 Interferometric detection………………………………………………. .10  

   1.3.5 Surface plasmon resonance detection…………………………………...11  

   1.3.6 Localized surface plasmon resonance…………………………………...13  

   1.3.7 Surface-enhanced Raman spectroscopy……………………………….. .13  

  1.4 Fluorescence………………………………………………………………...   14  

  1.5 Spectroscopy…………………………………………………………………..17  

   1.5.1 Fluorescence spectroscopy………………………………………………17 

   1.5.2 Previously developed spectroscopy systems…………………………….20  

   1.5.3 Single molecule spectroscopy…………………………………………...22 

   1.5.4 Thesis outline……………….…………………………………………...23 

  2  Background Theory  24  

  2.1  Diffraction…………………………………………………………………….24  

  2.2  Diffraction grating…………………………………………………………….25 

  2.3  A brief history of grating developments…………………………………….. 26 

   2.4  Diffraction grating types…………………………………………………29 

   2.4.1 Transmission and reflection gratings…………………………………. 29 

   2.4.2 Concave and plane gratings……………………………………………. 30 

   2.4.3 Lithographic gratings…………………………………………………... 31 



  2.5  Grating Equation……………………………………………………………... 31 

   2.5.1 Dispersion……………………………………………………………… 33 

   2.5.2 Resolution……………………………………………………………… 33 

   2.5.3 Resolving power………………………………………………………. 34 

   2.5.4 Free spectral range…………………………………………………….. 34 

  2.6  The Scalar Theory of Diffraction…………………………………………… 34 

  2.7  Rayleigh-Sommerfeld diffraction formula………………………………….. 36 

   2.7.1 Approximations to the Rayleigh-Sommerfeld formula……………….. 40 

  2.8  Fresnel approximation………………………………………………………. 41 

  2.9  Fraunhoffer approximation………………………………………………….. 43  

 3  Numerical Simulation Tools                                                                            45 

  3.1  Overview of the LOC spectrometer system………………………………… 45 

  3.2 Simulation details…………………………………………………………… 48 

   3.2.1 Ray-tracing……………………………………………………………. 48 

   3.2.2 Wave optics simulations………………………………………………. 49 

  3.3  Free space propagation of a Gaussian beam………………………………… 50 

  3.4 Comparison of MathCAD and Matlab simulations of diffraction by slits...... 50 

  3.5 Simulation of a grism……………………………………………………….. 54 

   3.5.1 Position of diffracted orders in grating prisms………………………..  61 

  3.6 Simulation of a binary phase grating………………………………………… 65  

  3.7 Simulation of a blazed triangular-groove transmission grating…………….. 68 

   3.7.1 Position of diffracted orders in triangular-groove gratings…………… 72 

  3.8 Simulation of a complete spectrometer system……………………………… 73 

  3.9 Region of applicability of different diffraction models……………………… 76 

  3.10 Kirchhoff and Rayleigh-Sommerfeld diffraction integrals…………………. 77 

   3.10.1 Asymptotic series for the Hankel function…………………………..  84 

  3.11 Focusing gratings…………………………………………………………… 84 

  3.12 Design of a focusing grating/lens…………………………………………… 86 

   3.12.1 Details of the collimating lens……………………………………….. 88 

   3.12.2 Design details for the curved grating/lens…………………………… 88 

  



 

 4   Gaussian beam propagation: Comparison of the analytical closed-form  

           Fresnel integral solution to the simulations of the Huygens, Fresnel, and  

          Rayleigh–Sommerfeld I approximations   96  

  4.1  Introduction…………………………………………………………………  96 

  4.2  Spherical waves, Huygens’ principle and the Fresnel approximation……...  96 

  4.3  Rayleigh-Sommerfeld I diffraction formula………………………………... 98 

  4.4  Propagation of a Gaussian beam…………………………………………... 100 

  4.5  Results and discussion……………………………………………………... 103 

 5   PDMS biochips with integrated waveguides 106 

  5.1 Introduction………………………………………………………………… 106 

  5.2 Fabrication and properties………………………………………………….. 107 

  5.3 Demonstration of particle detection and identification…………………….. 110 

  5.4 Summary…………………………………………………………………….112 

 6   Design and fabrication of a planar PDMS transmission grating 

      microspectrometer                                                                                                113 

  6.1  Introduction………………………………………………………………… 113 

  6.2  Design of the LOC spectrometer device…………………………………… 115 

   6.2.1 The curved focusing phase transmission grating…………………….. 116 

  6.3  Approximate analysis based on the grating equation………………………. 118 

  6.4  Numerical simulation of the microspectrometer…………………………….120 

   6.4.1 Rayleigh-Sommerfeld diffraction formula…………………………… 121 

   6.4.2 Simulation of multiple wavelengths in the 2
nd

 diffraction order……... 122 

   6.4.3 Simulation of multiple orders at a single wavelength………………... 123 

  6.5  Method of fabrication………………………………………………………. 124 

  6.6  Experimental results………………………………………………………... 125 

  6.7  Concluding remarks………………………………………………………... 128 

 7   Spectral detection of moving emitters                                                                       129 

  7.1  Development of a Robust Detection Scheme……………………………….129 

   7.1.1  Dynamic Strategies for Optical Spectral Sensing…………………...129 

   7.1.2  A Novel Method for Wavelength Sensing………………………… 130 



  

8   Chapter summaries and suggested future work 136 

  8.1 Chapter summaries…………………………………………………………. 136 

   8.1.1 Chapter 2 summary…………………………………………………. 136 

   8.1.2 Chapter 3 summary…………………………………………………. 136 

   8.1.3 Chapter 4 summary…………………………………………………. 136 

   8.1.4 Chapter 5 summary…………………………………………………. 137 

   8.1.5 Chapter 6 summary…………………………………………………. 137 

   8.1.6 Chapter 7 summary…………………………………………………. 137 

  8.2 Suggested future work……………………………………………………… 138 

 Bibliography   140 

 Appendix I: Simulations 148 

  

 

 

    

  

   

   

 

 

  

   

 

 

 

 



 

List of Tables 

 
Table 3.1 Simulation parameters used for the grating prism………………………………...  57 

Table 3.2 Simulation parameters used to determine the position of orders 

  in a grating prism………………………………………………………………….  62 

Table 3.3 Parameters for simulation of a binary phase grating……………………………...  65 

Table 3.4 Simulation parameters for a blazed triangular-groove grating 

  in the first order……………………………………………………………………  70 

Table 3.5 Simulation parameters for determination of the position of orders 

  in a saw-tooth grating……………………………………………………………… 72 

Table 3.6 Parameters used in the Newton-Raphson iterations for defining 

  the position of the grating facets…………………………………………………… 86 

Table 6.1 Relative angle between adjacent orders…………………………………………... 126 

Table 7.1 Spacing (μm) between first and second diffracted orders 

  for different wavelengths…………………………………………………………. 131 

Table 7.2 The position of moving particles (wavelengths 500 to 600 nm) 

  in order to have the second diffracted order to appear at the position of 

  the fixed detector (-1293 μm)…………………………………………………….. 134 

Table 7.3 The position of moving particles (wavelengths 500 to 600 nm) 

  in order to have the third diffracted order to appear at the position of 

  the fixed detector (-1293 μm)…………………………………………………….. 134 

Table 7.4 The spacing between input particle positions 

  for wavelengths from 500 to 600 nm……………………………………………... 134 

 

 

 



List of Figures 

 
Fig. 1.1 (a) Schematic representation of a PDMS flow cell with air channels functioning 

 as mirrors to reflect the light back into the flow cell. (b) Photograph of the flow 

 cell showing fluorescein illumination which has an extended optical path length 

 due to presence of air mirrors as well as biconvex microlenses [30]……………….   .9 

Fig. 1.2 A Young interferometer biosensor in which the interference pattern changes due 

 to binding of analytes [34]…………………………………………………………  11 

Fig. 1.3 Schematic representation showing the cross-sectional view of the SPR sensor  

 (Sensata Spreeta). The actual device is shown in the inset [37]……………………  12 

Fig. 1.4 Spectra for absorption and emission of Cy5TM fluorochrome in water. The position 

 of the peaks for absorption and emission are at 649 nm and 670 nm respectively.  

 Cy5TM has an extinction coefficient (ε) of 250,000 M 
-1

 cm 
–1

 and a quantum  

 efficiency (φ) greater than 0.28 [43]………………………………………………… 15 

Fig. 1.5 Spectra (Excitation and emission) of 8 different dyes from a FACS 

 immunofluorescence experiment…………………………………………………...  17 

Fig. 1.6  General layout of a spectroscopic device [46]……………………………………...  18 

Fig. 1.7 A multi-parameter laser induced fluorescence-emission flow cytometer with an 

 octagonal geometry. (a) Photograph of the actual assembly, (b) The schematic 

  representation of the assembly, depicting a series of filters, reflectors and PMTs  

 in an octagonal arrangement [47]…………………………………………………...  19 

Fig. 1.8 The microspectrometer reported by Grabarnik et.al. [46]. (a) Illustration of a  

 double grating setup. The first grating performs diffraction and the second grating 

  is used for focusing (b) Image of the experimental setup…………………………  21 

Fig. 2.1 Grating angles and terms [66]………………………………………………………  32 

Fig. 2.2 Surface   bounding volume  with  and   the outward  

 unit normal of    at point  on ……………………………………………..........  36 

 



Fig. 2.3 Aperture containing surface  and the surface  .  is a portion of a sphere 

 centered on the observation point ………………………………………………..  37 

Fig. 2.4 Schematic representing Sommerfeld radiation condition.  

 Here   is on  so that  …………………………………………………  38 

Fig. 2.5 Schematic showing the geometry of the problem with   on   

 With on , ………………………………………………………………..  39 

Fig. 2.6 Schematic showing the aperture and the observation screens in 

 Fresnel approximation………………………………………………………………  41 

Fig. 3.1 Schematics representing total internal reflection (top) and the 

 waveguide and microfluidic channel (bottom)……………………………………..  46 

Fig. 3.2 Actual drawings of the grating prism microspectrometer (top figure). 

 A reservoir and a portion of the microfluidic channel (bottom left figure). 

 The U shaped section of the microfluidic channel and the horizontal and 

 perpendicular waveguides coming to this section (bottom right figure)……………  47 

Fig. 3.3 Grating lens spectrometer design (left). Enlarged sections of the chip 

 (middle and right)…………………………………………………………………...  48 

Fig. 3.4 Ray-tracing for a double parabolic lens (left). Ray-tracing for a single 

 aspheric lens (right). The regions of the lens are demarcated by the 

  solid lines.The assumed refractive index is indicated……………………………...  49 

Fig. 3.5 Comparison of analytical (left window in blue) and integral  

 (middle window in red) formulations of the Gaussian beam propagation.  

 The right window shows their complete overlap…………………………………...  50 

Fig. 3.6 MathCAD simulation of diffraction by two slits using closed form 

 expressions for intensity. The resulting intensity profile is shown in red…………..  51 

Fig. 3.7 Fresnel integral simulation (see App. I) of the far-field diffraction  

 intensity by two slits. Note the location of minima and maxima is  

 identical in Fig. 3.6 and Fig. 3.7…………………………………………………..... 52 

 



Fig. 3.8 MathCAD simulation of diffraction by four slits using closed form  

 expressions for intensity. The resulting intensity profile is shown in red…………..  53 

Fig. 3.9 Fresnel integral simulation (see App. I), of the far-field diffraction intensity 

 by four slits. Note the location of minima and maxima is identical in 

 Fig. 3.8 and Fig. 3.9………………………………………………………………...  54 

Fig. 3.10  Basic geometry of a grism………………………………………………………...  55 

Fig. 3.11  Diffraction in a grism……………………………………………………………..  56 

Fig. 3.12  Diffraction of a 40 μm Gaussian beam by the prism. The field intensity  

   is plotted versus lateral displacement at the output plane………………………...  58 

Fig. 3.13  A portion of the facets of the grism, as defined in the Matlab simulation………… 58 

Fig. 3.14  Field intensity of different wavelengths on grating facets………………………...  59  

Fig. 3.15  Relative output efficiency for different wavelengths, for the grating prism, 

   defined by the parameters in Table 3.1……………………………………………  59 

Fig. 3.16  Diffraction of a 40 μm Gaussian beam by a grating prism, where the facet 

   size has been reduced by a factor of two compared to the grating defined  

   in Table 3.1………………………………………………………………………...  60 

Fig. 3.17  Schematic representation of a general spectrometer system………………………  60 

Fig. 3.18  The geometry at the hypotenuse face of a grism.  

   The arrow shows the direction of the incident beam,  

   and of the diffracted beam at the design wavelength……………………………...  62 

Fig. 3.19  Intensity versus position at the output plane, as predicted by numerical 

   simulation of a grating prism. The peaks correspond to the zero, -1, and -2  

   diffracted orders as explained in the text………………………………………….  64   

Fig. 3.20  As in Fig. 3.19, but with a logarithmic scale for clarity. The zero order is 

   marked at -592 μm and -1
st
 order is marked at -260.5 μm………………………...  64  

Fig. 3.21  A zoomed in section of the binary grating showing three facets………………….  66 

Fig. 3.22  Output of a binary phase grating showing  -1, 0, and +1  diffracted orders………  66 



Fig. 3.23  Output field intensities of a binary phase grating  

   functioning as a 1 x 2 beamsplitter………………………………………………..  67 

Fig. 3.24  Orientation of the facets in a tilted binary phase grating………………………….. 67 

Fig. 3.25  Triangular-groove transmission grating…………………………………………...  68  

Fig. 3.26  Triangular-groove transmission grating with  n2  >  n1 …………………………...  69 

Fig. 3.27  Simulation output for a triangular-groove transmission grating. 

   The position of two neighboring wavelengths is being marked  

   for comparison with geometrical calculation……………………………………...  71 

Fig. 3.28  Simulation output for a triangular-groove transmission grating. 

   The position of two neighboring wavelengths is being marked  

   for comparison with geometrical calculations From the grating equation………...  71 

Fig. 3.29  Position of diffracted orders in a saw-tooth transmission grating………………...  73 

Fig. 3.30  Device layout of a complete spectrometer system………………………………...  74 

Fig. 3.31  Diffracted fields of the complete spectrometer system shown in Fig. 3.30……….  74 

Fig. 3.32  Actual drawing of our first spectrometer chip (left).  

   An enlarged section of the chip showing the two parabolic lenses  

   and the grating in the middle (right)………………………………………………  75 

Fig. 3.33  Two dimensional diffraction of an incident cylindrical wave  

   by a slit aperture…………………………………………………………………...  78 

Fig. 3.34  Simulation set-up for a bi-convex slab-waveguide lens…………………………..  81 

Fig. 3.35  Simulation results: 10 micron diameter Gaussian input beam (left).  

   Gaussian output beam (right), which has a profile that is identical  

   to the input beam…………………………………………………………………..  81  

Fig. 3.36  Near-Field diffraction at a single slit  

   (width 20 λ, Propagation distance 5 λ , λ = 1 μm)………………………………...  82 

Fig. 3.37  Near-Field diffraction at a single slit 

   (width 20 λ, Propagation distance 100 λ, λ = 1 μm)………………………………  82 



Fig. 3.38  Diffraction at a single slit 

   (width 20 λ, Propagation distance 500 λ, λ = 1 μm).  

   At this distance, Fresnel diffraction is valid………………………………………  83  

Fig. 3.39  Diffraction at a slit  

   (width 20 λ, Propagation distance 15000 λ, λ = 1 μm). 

   At this distance Fraunhoffer diffraction is valid…………………………………..  83 

Fig. 3.40  Geometry and the geometrical relations for the focusing 

   transmission grating proposed by Sander and Müller [50]………………………..  85 

Fig. 3.41  Layout of the proposed microspectrometer.  

   Fluidic channel and the three waveguides (left).  

   Optical component comprising a parabolic collimating lens and a 

   curved focusing grating (right). The black regions are air cavities 

   embedded within the PDMS claddings (see sec 3.1 and sec. 6.5)………………...  87 

Fig. 3.42  Dimensions of the lens-grating/lens component…………………………………….88  

Fig. 3.43  Geometry of the focusing grating/lens. The facets of the grating 

   are sections of circles that act like lenses with a common focal point. 

   X and Z are coordinates within the horizontal plane of the  

   slab-waveguide system…………………………………………………………….  89  

Fig. 3.44  The layout of the optical device (from Matlab simulation)……………………….  90 

Fig. 3.45  Shadowing effect among grating facets  

   (i.e. consider a beam propagating along x from left)……………………………...  90 

Fig. 3.46  No shadowing effect between the adjacent facets………………………………… 91 

Fig. 3.47  2
nd

 order Gaussian beam diffraction of multiple 

   wavelengths in the lens-grating/lens optical system………………………………  92 

Fig. 3.48  Enlarged figure showing the first few facets of the grating/lens………………….  92 

Fig. 3.49  Simulation input used for the demonstration of the grating’s focusing action. The  

   beam diameter is 12 μm and the propagation wavelength is λ = 0.645 μm……….  93 



Fig. 3.50  Field distribution on the collimating lens…………………………………………  93 

Fig. 3.51  Field distribution on the grating facets……………………………………………  94 

Fig. 3.52  Output Gaussian field at the gratin/lens focal region……………………………...  94 

Fig. 3.53  Three dimensional plot of the scattered field in the region starting right after 

   the grating and ending at the grating’s focus (x = -1293 μm) at 

   the spectrometer exit………………………………………………………………  95 

Fig. 4.1   Geometry for the evaluation of the Huygens’ integral…………………………….  97  

Fig. 4.2  Diffraction of an incident cylindrical wave by a slit aperture (after [71])………….  99  

Fig. 4.3  Gaussian beam with radius of the beam 0( ) at 2 or13.5%e      

 of its maximum intensity…………………………………………………………… 102  

Fig. 4.4  Logarithmic graphs of percent relative error Vs. / propagation distance 

 for maximum Gaussian beam intensity obtained from various  

 approximations as compared to the values obtained from the exact integration. 

 (a) Fresnel 1 & 2 approximations. (b) Rayleigh-Sommerfeld I approximation.  

 (c) Huygens and asymptotic approximations………………………………………. 105 

Fig. 5.1  Fabrication process for an all-PDMS LOC. (a) Steps (A-D) as described 

 in the text.  (b) SEM image of cross-section of a waveguide and air claddings 

 before the final  PDMS cladding layer is bonded; (c) cross-sectional 

 image of a waveguide after the final cladding layer is attached………………….. 109 

Fig. 5.2  Sidescattered power in dB along a PDMS waveguide at 532 nm 

 and 633 nm. The average waveguide attenuation is determined 

 from a linear fit to the raw data…………………………………………………… 110 

Fig. 5.3  (a) SEM image of  the silicon master showing raised features that become 

 channels in the core layer.  The U-shaped feature forms a microchannel 

 and the narrow straight lines form the air-claddings for two waveguides.  

 (b) The U-shaped microchannel is illuminated along its length by 633-nm light 

 from the waveguide on the left and intersected by 532-nm light from the 



 waveguide at the top.  Five fluorescent beads are visible in the channel………….. 111 

Fig. 5.4 (a) 6.5 seconds of raw data from  the PMT indicating the detection 

 of three beads. (b) Processed data indicating the detection of two 

 scarlet beads; (c) Processed data indicating the detection of  one orange bead........ 112 

Fig. 6.1 (a) Mask design layout of the LOC spectrometer device. In the fabricated chip,  

 the filled black regions become hollow (air-filled) cavities. The teardrop shaped 

 features at upper and lower left are microfluidic reservoirs. (b) Magnified view 

 of the intersection point between the microfluidic channel and three waveguides.  

 (c) Magnified view of the parabolic collimating lens together with the curved 

 focusing transmission grating.................................................................................... 115 

Fig. 6.2  Geometry of the focusing grating/lens. The facets of the grating are sections 

 of circles that act like lenses with a common focal point. X and Z are  

 coordinates within the horizontal plane of the slab-waveguide system..................... 117 

Fig. 6.3  The detailed layout of the grating/lens device is shown.  

 The focal point is chosen to lie at the same height as the first grating facet  

 (i.e. at x = -1293 μm).  The inset shows a magnified view of the central part of the  

 curved grating, which can be approximated as a linear grating with mean  

 facet period ~7.4 μm.................................................................................................. 118 

Fig. 6.4  The intensity profile at the output plane is shown, for a 40 μm input  

 Gaussian beam and wavelengths ranging from 532 to 758 nm.  

 The zero, first and second diffracted orders are labeled accordingly........................ 123 

Fig. 6.5  The intensity profile at the output plane is plotted, for an input Gaussian 

 beam and λ = 0.532 μm.  The horizontal axis was scaled to encompass  

 10 diffracted orders as indicated by the labels, including the m=+2 design order  

 centered at – 1551 μm................................................................................................. 124 

Fig. 6.6  (a) A schematic illustration of the integration strategy is shown.  

 The diagram represents the cross-sectional view of the 3-layer PDMS system 

  with waveguides and microfluidic channels patterned in the higher-index,  

 central PDMS layer. (b) SEM image of the grating facets on the silicon master.  



  (c) SEM image of the grating facets transferred to PDMS using  

  a soft-lithography process......................................................................................... 125 

Fig. 6.7  Scattered light images captured by a color camera are shown.  

 The images correspond to diffraction of a green laser, λ = 532 nm (a),  

 a red laser, λ = 632 nm (b), and an amber laser,  λ = 594 nm (c).  

 The light path, including the input waveguide, spherical lens interface,  

 and diffraction grating interface, are most clearly visible in part (c)..........................127 

Fig. 6.8  Average pixel intensity plotted versus vertical distance x along the output plane 

 for the 2nd order diffracted modes of 594 nm (left peak)  

 and 532 nm laser light (right peak)............................................................................ 128 

Fig. 7.1  Schematic description: A dynamic strategy for spectroscopic 

 detection of moving fluorescent microparticles. As a microparticle 

 moves down the microchannel its spectrum moves  

 in the opposite direction. A waveguide positioned 

 at an appropriate position (on the right edge of the microspectrometer) 

 can sequentially detect the entire spectrum………………………………………… 130 

Fig. 7.2  Spacing between first and second diffracted orders versus wavelength................... 131 

Fig. 7.3  Position of diffracted orders in the focusing 

 grating microspectrometer for λ = 560 nm………………………………………….132 

Fig. 7.4  Detected power versus particle position for the second (left peak)  

 and the third (right peak) diffracted orders at a 70 μm wide  

 detector positioned at -1293 μm at the output plane ( λ = 532 nm)………………... 133 

Fig. 7.5  Distance between input particle positions corresponding to the two peaks 

  (2
nd

  and 3
rd

 diffracted orders) at the detector versus wavelength………………… 135 

 

 

 

 

 



List of Symbols, Abbreviations, and Nomenclature 

 

 
 Symbols 

 

 ρ fluid density 

 v fluid velocity 

 μ fluid viscosity 

 Dh hydraulic diameter 

 Re Reynolds Number 

 A absorbance 

 b effective optical length 

 c analyte concentration 

 ε analyte’s molar absorption 

 P0 input optical power 

 Pt transmitted optical power 

 ε extinction coefficient 

 φ quantum efficiency 

 λ wavelength 

 ωo Gaussian beam radius (at 13.5% of maximum intensity) 

 ω Gaussian beam radius  

 Dλ angular dispersion 



 Dx linear dispersion 

 k wavenumber 

 H0 zero-order Hankel function of the first kind 

 H1 first-order Hankel function of the first kind 

      Nomenclature 

 i  angle of incidence  

 i’  angle of diffraction  

 m  diffraction order  

 d  grating period  

 u (r)  complex amplitude function 

 G  Green’s function 

 G-  a special Green’s function 

   position vector 

   unit normal (vector) 

 S  bounding surface 

 V  bounding volume 

 D  grating step 

 W  grating’s facet width 

 n  refractive index (medium 1) 



 n’  refractive index (medium 2) 

 n1  refractive index (medium 1) 

 n2  refractive index (medium 2) 

 δλ  small change in wavelength 

 δθ  small change in angle of diffraction 

 α  angle of incidence 

 β  angle of diffraction 

 θ1  angle of incidence 

 θ2  angle of diffraction  

 βB  blaze angle 

                ( , )    aperture dimensions (Sec. 3.9) 

 K  propagation vector (Sec. 3.10)  

 ξ  propagation angle (Sec. 3.10) 

 f  lens focal length 

 R  lens radius 

       Abbreviations 

 LOC  Lab-on-Chip 

 TAS  Total (chemical) Analysis System 

 μ-TAS Micro-Total Analysis System 



 PCR polymerase chain reaction 

 CE Capillary Electrophoresis 

 DNA deoxyribonucleic acid 

 RNA ribonucleic acid 

 MEMS Micro-Electro-Mechanical System 

 UV ultraviolet 

 EOP Electroosmotic pumping 

 EOF Electroosmotic flow 

 LIGA X-ray lithography, Electroplating, Moulding (German acronym) 

 PDMS  Poly(dimethylsiloxane) 

 PMMA Poly(methylmetacrylate) 

 PS polystyrene 

 PC polycarbonate 

 PVC polyvinylchloride 

 PETG polyethylenetetraphtalate glycol 

 C-O-C cycloolefin copolymer 

 SU-8 a negative photoresist 

 NMR nuclear magnetic resonance 

 MS mass spectrometric 

 TIR Total Internal Reflection 



 CCD  charge coupled device 

 LOD limit of detection 

 SPR surface plasmon resonance 

 IgG  Immunoglobulin G (biology assay) 

 LSPR localized surface plasmon resonance 

 SERS surface enhanced Raman spectroscopy 

 NA numerical aperture 

 SWE single-wavelength excitation 

 MWE multi-wavelength excitation 

 PMT photomultiplier tube 

 APD  avalanche photodiode 

 SPAD single-photon avalanche diode 

 CMOS  complementary metal-oxide semiconductor 

 EM-CCD electron multiplying charge-coupled device 

 DRIE deep reactive ion etching 

 RP resolving power 

 FSR free spectral range 

 AWG arrayed waveguide grating 

 SEM scanning electron microscope 

 FWHM full width half maximum 



 MM multimode 

 DAQ data acquisition (system)  



1 

 

CHAPTER 1 

 

1. Introduction 

 

1.1 Introduction 

In the past two decades we have witnessed the increasingly stringent requirements 

for fast online measurements of chemicals and biological materials at low 

concentrations. This trend has fueled rapid advances in sensor technology and has 

driven the development of numerous sensing devices and miniaturized 

multifunctional systems known as Lab-on-a-Chip (LOC). These advancements 

are most noticeable in the fields of chemical production, analysis of DNA and 

RNA macromolecules, cytometry (cell detection, identification, separation and 

counting), high throughput screening of drugs for pharmaceutical purposes, 

medical diagnostics and environmental testing [1]. Most LOC devices rely on 

optical detection for sensing due its noninvasive nature; furthermore the most 

widely used optical method is fluorescence spectroscopy because of its sensitivity 

and specificity. The focus of this study is to design and build an integrated 

optical/fluidic LOC device that will function as a microspectrometer for the 

analysis of chemical and biological material. 

In this introductory chapter, the necessary background information is provided to 

facilitate the understanding and the motivation behind this research, and provide 

context for the upcoming chapters.    

1.1.1 Lab-on-a-Chip: A cursory review of early developments  

In 1983 Widmer [2] (an analytical chemist) envisioned an integrated and fully 

automated analysis system, which he called Total (chemical) Analysis System 

(TAS). Such a system incorporates all of the stages of sampling, pre-treatment of 

the sample, driven chemical reactions, separation of products, detection, and 

isolation. Also, it was envisioned that the final analysis of data would be 

performed in a fully automated fashion.   
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The first step in realization of such systems came about in 1990 through the 

pioneering work of Manz et al. [3], who developed a miniaturized capillary 

electrophoresis device for separation of DNA molecules. Transformation of TAS 

to µ-TAS through miniaturization had a number of appealing advantages such as 

reduction of reagent and sample consumption, faster reaction times and improved 

analytical performance. The next milestones were the miniaturization of PCR
1
 [4] 

and development of the first miniaturized system for mixing, injection and 

separation [5]. Another important development in the field was the integration of 

PCR and capillary electrophoresis (CE) [6]. Since these early developments, µ-

TAS has found application to a variety of biological and medical problems. For µ-

TASs that are used in biomedical applications, Lab-on-a-Chip, bio-chip and DNA 

chip are other commonly used terms. The motivation behind LOC is to make 

miniature systems capable of performing complete chemical and biomedical 

assays on a chip, and which would fit into a portable device as small as the palm 

of the hand or even smaller. LOC has a number of advantages over macro-scale 

laboratory operations, including: 

1. The advantages gained by miniaturization, such as: lower consumption of 

samples and reagents, increased accuracy and speed of reactions, 

increased sensitivity, high throughput, low power consumption, reduced 

risk of cross-contamination, and potential for lower overall cost of the 

system. 

2.   The possibility for automation: Assays and routines are automatically 

performed on standard chips, reducing the cost of labor and possibility of 

human error. 

3. Integration and parallelism: Multiple functions of sample preparation, 

mixing, injection, reaction, separation, detection, can be integrated into 

one process and many such processes can run in parallel.  

Potential microfluidics LOC applications include detection of chemical and 

biological hazardous material, high-throughput screening for drug discovery, PCR 

                                                 
1
 PCR stands for Polymerase Chain Reaction, which is a molecular biology assay for rapid 

amplification of DNA and requires a machine, which is also called PCR.  
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techniques for DNA and RNA analysis, cytometry, cellular biosensing, cell 

culturing, cellular assay, enzyme assay, immunoassay, drug delivery, and 

environmental analysis, to name just a few. 

LOC is a truly multidisciplinary subject and has developed rapidly in the last 

decade. This is easily observed by the number of publications that appear each 

year under headings that include terms such as “microfluidics”, “lab-on-a-chip”, 

“bio-chip”, and “µ-TAS”. For a detailed and up-to-date account of progress in the 

field of µ-TAS, please refer to the extensive review articles available in the 

literature [7-11]. 

1.1.2 Microfluidics 

An integral element of a LOC device is the network of interconnected micro-

chambers and micro-channels for the containment and flow of fluids. The 

technology that entails the generation of micro-devices capable of handling small 

(micro/nano/pico/femto-litre) volumes of fluid is called microfluidics. 

Microfluidic devices have dimensions that range from a micrometer to several 

millimeters and often at least one dimension of the device is in the micrometer 

range [12, 13]. In a microfluidic device, the fluid flow behaves significantly 

different from our day-to-day experiences. Specifically, the flow is almost always 

laminar due to small size of the channels [13]. In laminar flow, the velocity of a 

particle in the stream of fluid is not a random function of time. An interesting 

characteristic of laminar flow is that two or more streams can flow in contact with 

each other without mixing, except by diffusion. In fluid dynamics fluid flow is 

characterized by Reynolds number (Re), which describes the flow’s regime (i.e. 

laminar or turbulent), and is defined by: 

         Re hD


  ,     (1-1) 

ρ is the fluid density, v is the velocity of the fluid, Dh is the hydraulic diameter, 

and μ is the fluid viscosity. 

Dh (hydraulic diameter) is a parameter that depends on the channel’s cross-

sectional geometry.  
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Laminar flow is indicated by small Reynolds number (Re < 2300). A flow with a 

Reynolds number greater than 2300 is considered turbulent [13].  

The example below is given for a system which exhibits low Reynolds number. 

Let’s assume a biomedical microfluidic device with square cross-sectional 

channels  (100 μm x 100 μm), completely filled with water using the following 

parameters: μ = 10
-3 

kg/(s.m), ρ = 10
3
 kg/m

3
, v = 1 cm/s (10

-2 
m/s), and Dh = 100 

μm (10
-4

m). 

(Please note that the hydraulic diameter of a channel with a square cross section 

when completely filled with fluid is simply equal to the width of the channel)    

The obtained Reynolds number is: Re = 1, which signifies a laminar flow.  

1.1.3 Microfluidic flow types and their mechanisms 

Several mechanisms can be used to drive a microfluidic flow:   

1. Classic Poiseuille flow results from an applied pressure difference. This 

type of flow is characterized by a parabolic flow velocity distribution 

across the channel. The flow velocity is maximum at the center of the 

channel and zero on the channel walls [12, 14]. 

2. Electroosmotic and electrophoretic flows are generated by the application 

of external electric fields. Electroosmotic flow occurs due to the formation 

of charged Debye double layers at the boundary regions between the fluid 

and the solid walls of the channels. In electroosmotic flow the velocity 

profile is uniform; electrophoretic flows arise from the dipole interactions 

with the external electric field.  The response of the electrophoretic flow is 

proportional to the square of the externally applied electric field [12, 14].  

3. Capillary action is due to capillary forces generated as a result of surface 

wetting. The flow has a parabolic front similar to Poiseuille flow described 

above, but strongly depends on the interface shape and its detail [12, 14]. 

4. Marangoni flow results from a differential surface tension that may exist 

between liquid layers in contact.  The source of this surface tension can be 

temperature or a chemical concentration gradient [12, 14]. 
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5. Spin associated flow is caused by the centrifugal forces that act on a 

spinning device, for example arrays of microchannels formed on a disk 

resembling a music compact disk (CD) [15]. 

1.1.4 Scaling effect: opportunities and challenges 

Although the laws of physics are the same when we move from macro to micro 

scale, a number of effects which are relatively negligible at the macro-scale can 

become dominant at the micro-scale [13]. These effects include diffusion, fluidic 

resistance, surface area to volume ratio, surface charge and surface tension. For 

example, in microfluidics the flow is predominantly laminar (due mainly to 

viscosity), capillary action starts to appear due to surface forces, evaporation 

becomes significant due to the fluid’s large surface to volume ratio and 

electrokinetic (electroosmosis + electrophoresis) flow becomes possible due to the 

presence of an electric double layer at the charged surface of the microfluidic 

channel. Therefore, it is not possible to simply scale down the macro-scale 

devices to build their micro-scale equivalents. At the same time, careful 

considerations given to the scaling effects can provide the grounds for unique 

opportunities and new paradigms for design. 

1.2. Fabrication: Methods and choice of Material 

Microfluidic fabrication techniques were originally adopted from microelectronic 

and Micro-Electro-Mechanical system (MEMS) technology. Silicon is widely 

used for the fabrication of microelectronic and MEMS devices. The first 

microfluidic devices were fabricated in silicon. However, it soon became evident 

that silicon is not an ideal material for microfluidic applications. Silicon is an 

expensive material and its processing cost is quite high. It is typically not 

economical to fabricate microfluidic LOC devices in silicon, especially when the 

device is for single use. In addition, optical opacity of silicon is a major 

disadvantage for applications involving optical detection in the UV-visible range. 

Nevertheless, some techniques still require silicon, e.g. silicon is used as 

supporting material in hot embossing or as a master in replication molding.   

Some further disadvantages of silicon for LOC applications include:  
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1. Silicon fabrication is costly and requires skilled workers and highly 

specialized facilities such as clean rooms.  

2. Silicon inhibits many biological reactions [16-20]. This effect becomes 

much more significant at micro scale fluidic volumes where the surface to 

volume ratio is dramatically increased. 

3. The thermal conductivity in silicon is high. In some applications where 

heat is involved, insulation of the silicon is needed, which adds an 

additional layer of complexity to the fabrication. 

4. Silicon is a semiconductor and thus is not compatible with electroosmotic 

pumping (EOP), which is presently a popular method for liquid transport 

in microfluidic devices. 

5. Most importantly, as mentioned before silicon is not transparent and 

therefore it is not compatible with many important methods for optical 

sensing. 

Glass is another substrate that has been used for LOC systems. Glass possesses a 

well defined surface chemistry, excellent thermal and mechanical properties, good 

optical transparency, low autoflourescence, and good electroosmotic flow (EOF) 

characteristics. It has also proven to be well suited for fluid handling, as it is inert 

to most organic and inorganic compounds. The disadvantages of glass as a 

microfluidic LOC substrate include: High cost of fabrication, difficulty associated 

with anisotropic etching, the need for high temperature bonding, and adsorption 

of DNA [13], [21-23] . Because of the disadvantages mentioned, polymers are 

gradually replacing silicon and glass in microfluidic applications. 

 1.2.1 Plastic as material of choice for fabrication of the optical biochip 

Even though silicon and glass have been the most popular substrates for the 

fabrication of LOC devices in the past, a recent review of the literature reveals a 

very promising future for polymers, especially in the area of biomedical 

diagnostics. Polymers have the following advantages: 

1. Polymers are cheap. They enable simpler, less expensive manufacturing 

processes (e.g., replica molding, casting, injection molding, and hot 

embossing) [24]. 
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2. Polymer devices can easily be mass produced. 

3. Single-use, disposable plastic devices eliminate the possibility of cross 

contamination between analytes. 

4. Direct methods such as laser ablation, plasma etching, x-ray lithography, 

stereo-lithography, and LIGA
2
 can be used for fabrication of single 

devices. 

5. Polymers have a range of physical and chemical properties, which can be 

tailored to specific applications. 

6. Many of the advances made in state-of-the-art Micro-Electro-Mechanical 

Systems (MEMS) apply directly to polymers, and new micromachining 

techniques associated with polymers are continuously being developed 

[25]. 

Polymers also have some disadvantages, such as: Poor thermal stability, high 

autofluorescence, Poor dimensional tolerance and complex surface chemistry [13], 

[21-23].   

Polymers commonly used in LOC systems include poly(dimethylsiloxane) 

(PDMS), poly(methylmethacrylate) (PMMA), polystyrene (PS), poly-carbonate 

(PC), polyvinylchloride (PVC), polyimide, polyethylenetetraphthalate glycol 

(PETG), cycloolefin copolymer (COC), and UV-patternable negative photoresist 

SU-8 [26]. Among these, the most extensively used polymer is PDMS, which 

possesses many attractive properties for LOC systems [27].  

1.3. Optical detection 

Sensing or detection is a critical component of any LOC system and refers to 

mechanisms by which chemical or biological information is converted into 

meaningful electronic signals. The ultimate goal of a LOC is to incorporate all the 

processes necessary for a complete analysis into a microdevice. Thus, 

development of miniaturized detection modules for microfluidic systems is an 

important issue to be addressed. Detection systems currently under investigation 

can be broadly categorized into optical detectors, electrochemical detectors, mass 

                                                 
2
 German acronym: Lithographie, Galvanoformung, Abformung =X-ray lithography, 

Electroplating, Moulding 



8 

 

spectrometric (MS) detectors and nuclear magnetic resonance (NMR) detectors 

[28]. Optical detectors are especially appealing because no electrical 

interconnection is required between the detector unit and the microfluidic device. 

The optical interrogation involves photons only, so minimal disturbance is caused 

to the reaction system provided it is not susceptible to photochemical 

decomposition. Although optical detection is highly compatible with 

microfluidics, it can suffer from poor detection sensitivity due to the small 

amount of analyte present in the microchannels. As the analysis volume decreases 

and the number of molecules or ions present for detection diminishes, the need for 

sensing systems with higher sensitivity such as fluorescence detection arises. 

Many of the initial developments in microfluidics took advantage of fluorescence, 

and it is still a preferred mode of detection. The unique aspect of fluorescence 

detection is that its sensitivity improves as the volume of the sample under 

investigation becomes smaller. This is because Rayleigh and Raman scattered 

light are typically dominant noise sources in fluorescence experiment. As the 

volume of detection becomes smaller the ratio of fluorescent light to stray 

scattered light can be made larger. This is because fluorescence emission from a 

single molecule does not depend on the detection volume while scattered light 

noise scales directly with detection volume, leading to improvements in the signal 

to noise ratio [29]. Absorption, refractometric detection and fluorescence are the 

three most common modes of optical interrogation in microfluidics, and a brief 

overview of each is given in the following subsections.  

1.3.1 Absorption 

Absorption can be analyzed using Beer-Lambert law: 

       0log( / )tA P P b c     ,   (1-2) 

here A is the absorbance, P0 is the input optical power, Pt is the transmitted optical 

power, ε is the analyte’s molar absorption, b is the effective optical length, and c 

is the analyte concentration.         

Thus, by measuring optical attenuation, analyte concentration can be calculated. 

In microfluidic systems, however, this method faces a major limitation because of 
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the small optical lengths (normally, width or depth of the microfluidic channels) 

involved. The sensitivity can be improved using a number of different strategies 

to increase optical path length, such as:  using u-shaped channels, vertical 

channels through the thickness of the substrate, or multiple reflections on the 

channel walls. In reference [30],the authors incorporated small air cavities or “air 

mirrors” (Fig.1-1) adjacent to the bends of an illuminated bending flow cell. 

Because of the refractive index difference between PDMS and air, light was 

reflected back into the fluid at the bends causing an increase in the effective 

optical length. 

                  

     Fig. 1.1: (a) Schematic representation of a PDMS flow cell with air channels 

     functioning as mirrors to reflect the light back into the flow cell. (b) Photograph 

     of the flow cell showing fluorescein illumination which has an extended optical 

     path length due to presence of air mirrors as well as biconvex microlenses [30]. 

 

1.3.2 Evanescent wave sensing 

Another method of fluid analysis is by evanescent wave sensing [31]. In this 

method, the microfluidic channel is fabricated adjacent to an optical waveguide so 

that higher index core of the waveguide is one wall of the channel. Obviously, the 

fluid in the channel serves as a cladding for the waveguide. Any changes in the 
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fluid’s refractive index, such as those introduced by chemical changes in the fluid 

or adsorption (i.e. DNA hybridization) and reaction of molecules on the channel 

wall, would affect the evanescent fields that penetrate into the fluidic cladding of 

the optical waveguide. However, the penetration depth of the evanescent field is 

typically around one half of the wavelength which sets a low limit on the 

sensitivity of these devices. 

1.3.3 Leaky fluidic waveguide sensing 

In reference [32], prism coupling was used and the fluid-containing microchannel 

itself was illuminated to act as a leaky waveguide. Here the lossy waveguiding in 

the channels containing aqueous solutions is based on Fresnel reflection rather 

than Total Internal Reflection. Since (TIR) is not the waveguiding mechanism, the 

restriction that the guiding layer must be of higher index is removed. In leaky 

waveguides, the reflections are less than 100% and light gradually escape the 

waveguide, e.g. some light is lost at each successive reflection through absorption 

and/or radiative loss. But since the required length scales for light guiding in a 

microfluidic device is a few millimeter to few centimeters at most, leaky 

waveguides are sufficient for guiding the light in the microfluidic device. 

 1.3.4 Interferometric detection 

Label free and highly sensitive detection can potentially be accomplished by 

interferometric methods. Here, a single coherent light source is divided into two 

paths. Both paths either go through or are adjacent to the same sample media, but 

one path is chemically functionalized for sensitivity to the analyte under 

investigation. When an analyte differentially binds to the functionalized group/s 

in one optical path the refractive index for that optical path changes so that the 

two optical beams are no longer in phase. This phase shift between the two optical 

beams can have a dramatic effect on their projected interference pattern. 

Therefore, analyte binding events can be directly observed by imaging the 

interference patterns. The existence of a reference path is what makes 

interferometry so sensitive. Common mode interferences such as nonspecific 

molecular bindings and temperature and intensity fluctuations, do not alter the 

interference pattern. Ymeti et al. demonstrated an immunosensor interferometer 
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device based on Young’s interferometer configuration and used it for the 

detection of herpes simplex virus [33]. Four waveguides were integrated into the 

microfluidic chip; three were functionalized using three different antibodies, 

while the fourth was not functionalized and thus served as reference. A change of 

refractive index resulting from antigen bonding modified the evanescent field at 

the surface of the functionalized waveguides. This resulted in a shift in the 

interference pattern as projected and observed on a CCD image sensor (Fig.1-2). 

The complete analysis took only a few minutes and the limit of detection (LOD) 

was in the femtomolar range. There is one potential drawback for interferometers 

of this kind: the waveguides must have identical geometries and must be precisely 

matched in terms of their material properties. 

 

Fig. 1.2: A Young interferometer biosensor in which the interference pattern changes due 

to binding of analytes [34]. 

1.3.5 Surface plasmon resonance detection 

Surface Plasmons are surface electromagnetic waves that are produced at the 

boundary between a metal (normally a thin film of gold or silver) and a dielectric 

medium (vacuum, air, water, etc…). Surface plasmons are extremely sensitive to 

small changes that take place at the boundary such as minute changes in refractive 

index due to adsorption of molecules on the metallic surface. This provides the 

underlying mechanism for Surface Plasmon Resonance (SPR) detection.  In most 

implementations, a configuration known as the “Kretschmann” configuration, 

where a thin metal film is evaporated on the base of a prism, is used. The incident 

light is totally internally reflected inside the prism and at the same time an 
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exponentially decaying evanescent wave penetrates into the metallic film. If the 

light is monochromatic and p-polarized (a polarization that is parallel to the plane 

of incidence), there will be a specific incidence angle at which the intensity of the 

reflected light is sharply reduced and the surface Plasmon resonance (in the form 

of a sharp shadow) is excited. Since surface plasmon resonance is the result of a 

resonant energy transfer between the evanescent wave and surface plasmons, 

changes in the evanescent field (ex. when ligands are adsorbed on the surface of 

the metal and as a result change the refractive index of the media) alter the angle 

at which the reflectance is minimum. The SPR angle can be measured by 

monitoring the reflectance minimum as the incidence angle of a narrowly focused 

laser beam is varied, or by looking at the reflectance angle spectrum obtained by a 

slightly divergent laser beam upon its exit from the prism [35]. 

Several commercial laboratory scale systems for SPR detection exist. They are 

mostly used for immunosensing or DNA hybridization detection. Biacore from 

GE Healthcare is the most prominent one. The Sensata Spreeta SPR sensor (Fig.1-

3) is a low cost commercially available miniaturized integrated microfluidic 

system that can be used for a variety of applications.  The device performance as 

evaluated by Immunoglobulin G (IgG) tests was an impressive LOD of 80 pM. 

The sensor has been used for immunological detection of E. coli O157:H7 in 

ground beef extract, apple juice, and milk by Waswa et al., who demonstrated 

reliable quantification of E. coli in 30 min, as compared to 1-3 days by 

conventional culturing methods [36]. 

 
 Fig. 1.3: Schematic representation showing cross-sectional view of the  

SPR sensor (Sensata Spreeta). The actual device is shown in the inset [37]. 
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1.3.6 Localized surface plasmon resonance 

Localized Surface Plasmon Resonance (LSPR) of metallic nanoparticles is a new 

and powerful sensing method that offers many of the same advantages that SPR 

has to offer plus several additional benefits [35]. Interaction between light and 

particles of metal which are smaller than the wavelength of the light causes the 

conduction electrons at the surface of the metal nanoparticle to go through a 

collective resonance oscillation. This creates plasmons that are confined to the 

surface of the metallic nanoparticle. The resonance frequency of a particle is 

highly dependent on its size, shape, and composition. Of particular importance for 

biosensing applications, the resonance also depends on the molecules that are in 

close proximity of the nanoparticle. The mechanism of sensing for LSPR is 

similar to that for SPR;  changes in the local dielectric environment are monitored 

through LSPR wavelength-shift measurements. Like SPR, LSPR can provide real-

time kinetic and thermodynamic data correlated with chemical and biological 

binding processes. In LSPR, a binding event directly translates to a corresponding 

shift in the wavelength, thus eliminating the need for additional labeling steps. 

Whereas in conventional SPR, the excitation light is normally coupled using a 

prism or a grating coupler, in LSPR sensing there is no need for such optics. 

Typically, only a white light source is needed for excitation. LSPR scattering is 

very intense. According to Anker et al. the scattering obtained from the cross 

section of a gold nanoparticle is a million times greater than the scattering 

produced by a molecule of fluorescein [38]. In addition, as will be discussed in 

the next section, LSPR causes a major increase in the intensity of surface-

enhanced Raman scattering and has similar implications for other surface-

enhanced spectroscopic processes. 

1.3.7 Surface-enhanced Raman spectroscopy 

Raman Spectroscopy is based on the Raman scattering effect, which is an 

extremely weak phenomenon. This effect occurs when a small fraction of photons 

(approximately 1 in 10
7
) impinging on a molecule interact with the electron cloud 

surrounding the molecule and loose energy to or gain energy from the rotational 

and vibrational modes of the molecule. The scattering process is inelastic, and the 
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spectrum of the inelastically scattered light can be used to uniquely identify the 

molecule. Raman scattering can be dramatically increased using metal substrates 

with nanoscale features. This is the basis of a technique known as Surface 

Enhanced Raman Scattering (SERS) which was first demonstrated by 

Fleischmann et al. in 1974 using a roughened silver substrate [39]. Raman 

spectroscopy for chemical analysis typically involves powerful lasers and 

precision optics as well as large sample volumes. However nanoscale gaps or 

sharp features exhibited by certain LSPR substrates results in generation of 

extremely high electric field intensities in their neighboring volumes, which in 

turn causes a dramatic increase in the Raman scattering intensities of the 

molecules located in these volumes. Nano-structured LSPR substrates are 

currently a topic of active investigation by many research groups. For instance, 

Liu and Lee have developed a batch-fabrication process for the incorporation of 

patterned SERS substrates in microfluidic devices, and reported an enhancement 

of 10
7 

in comparison with unpatterned (i.e. smooth metal) substrates [40]. 

1.4. Fluorescence 

Fluorescence is the characteristic of some substances to absorb light of a 

particular wavelength and within a brief time interval, known as the fluorescence 

lifetime, to reemit light of a different wavelength. In most cases, the emitted light 

is at a longer wavelength than the light used for excitation [41]. Fluorescence 

detection is limited to compounds that either fluoresce themselves or have been 

chemically conjugated to a fluorescent material.  Each fluorescent molecule has a 

specific absorption and emission spectra. The separation of the excitation and the 

fluorescence peaks is known as the “Stokes’ shift”; in terms of wavelength, it 

ranges from approximately 7 nm to 238 nm [42]. This wavelength shift enables 

fluorescence detection of a target molecule; optical filters can be used to block the 

excitation signal, so that the typically weak fluorescent signal can be detected in 

spite of the stronger background excitation light. In addition, spectral filtering is 

normally combined with spatial separation in order to obtain higher sensitivities.  

The brightness of a fluorescent material (or fluorochrome) is proportional to the 

product of the extinction coefficient ε and the quantum efficiency φ [43]: 
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                   Brightness                      (1-3) 

The extinction cooeficient is the probability that the excitation photons are 

absorbed by fluorescent molecules. For useful fluorochromes the extinction 

coefficient ranges from 40,000  to  250,000 M
 -1 

cm
-1

.  Quantum efficiency is the 

ratio of quanta emitted to quanta absorbed. In practice a quantum yield of greater 

than 0.1 is typically required. 

Figure 1-4 shows the spectra for absorption and emission of cyanine 

fluorochrome (Cy5TM) (Amersham Life Science Ltd., Bucks, England). In this 

case, the Stokes’ shift is about 21 nm. This fluorescent marker is very bright and 

can be easily attached to proteins. In addition it has a longer excitation 

wavelength than many other fluorophores, which allows inexpensive red laser 

diode to be used. 

          

 

Fig. 1.4: Spectra for absorption and emission of Cy5TM fluorochrome in water. The 

position of the peaks for absorption and emission are at 649 nm and 670 nm respectively. 

Cy5TM has an extinction coefficient (ε) of 250,000 M 
-1

 cm 
–1

 and a quantum efficiency 

(φ) greater than 0.28 [43]. 

 

There are several practical challenges that should be mentioned. One is 

photobleaching, which is the photochemical destruction of a fluorophore as a 
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result of repeated excitation by high intensity illumination. All fluorophores, to 

varying degrees, are subject to photobleaching. In fluorescence techniques 

quenching and photobleaching are important sources of complication and need to 

be carefully avoided. Autofluorescence by polymers and non-specific 

biomolecules in the sample is another source of complication that can arise in 

practice; careful attention must be paid to the selection of the material and the 

purity of the samples. In fluorescence detection, the efficiency of fluorescence 

collection is often very low since fluorescence emission is isotropic, and it is 

typically possible to deliver only a fraction of fluorescence to the detector. This is 

because optical systems are limited in their light gathering ability (because of 

their limited numerical aperture (NA)) and have limited transmission and 

detection efficiencies. Collection efficiency is generally below a few percent, 

even for the most advanced fluorescence microscopes [44]. 

Fluorescence spectra can be altered by a variety of factors, which include 

interaction with other fluorophores, the solvent and ions in the solution, molecular 

association, and complex formation. For example, DNA hybridization can cause a 

dramatic shift in the spectrum as a result of a change in the solvent’s PH and the 

change in fluorescence intensity (Reference). Thus one can make an assessment 

of the environment and chemical composition by observing fluorescence spectra.       

Single Wavelength Excitation (SWE) and Multi-Wavelength Excitation (MWE) 

are the two distinct modes of fluorescence detection. SWE has the following 

advantages:  

1. It is simple 

2. Standard laser diodes can be used (high intensity). 

3. Photomultiplier tube (PMT) can be used (highe sensitivity). 

4. Many marker dyes are available. 

5. Inexpensive bandpass filters can provide wavelength selectivity. 

MWE detection is advantageous in that many different “species” can be 

simultaneously identified. For example, Fig. 1-5 exhibits a case where a 488 nm 

Argon source is used to excite four different dyes (Fluorescein, Phycoerythrin, 

Cy5-PE, and Cy7-PE) simultaneously. 
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Fig. 1.5: Spectra (Excitation and emission) of 8 different dyes from a FACS 

immunofluorescence experiment. [Ref.: http://www.drmr.com/abcon/allspec.html]. 

 

1.5. Spectroscopy 

Optical spectroscopy is a fundamental analytical tool that has applications in 

numerous fields of science. Simply speaking, spectroscopy is about breaking up 

an optical signal into its constituent wavelength components and measuring the 

intensity at each resulting wavelength. By spectroscopic measurements one can 

obtain valuable information about the sources of emission. In astronomy, for 

example, the spectral profile can reveal the composition and nature of gases that 

make up the atmosphere of stars. In chemistry and biology, as another example, 

one can identify a substance by analyzing the emitted or absorbed spectral profile.  

1.5.1 Fluorescence spectroscopy 

Fluorescence spectroscopy is the study of fluorescence emission and is 

accomplished by measuring the intensity of light emitted at different wavelengths. 

This work is accomplished by a spectrometer, which typically comprises a 

 



18 

 

dispersive element, a collimation element, and a detector [45]. The general layout 

of a spectroscopic device is shown in Fig. 1-6 [46].  

entrance 
slit

collimator Dispersive 
element

Focusing
element

photosensor

 

Fig. 1.6: General layout of a spectroscopic device [46]. 

The function of the dispersive element is to deflect wavelength components of an 

optical signal by varying amounts resulting in spatial separation among 

wavelengths, and thus allowing the intensity measurement of the spectral 

components. By passing the signal through an exit slit, a narrow bandwidth of the 

spectrum can be selected for measurement. Alternatively, large sections of the 

spectrum can be simultaneously detected by a charge-coupled device (CCD) 

camera or other types of detector array.  

A major application of fluorescence spectroscopy is in cell biology, where 

multiple fluorescent markers in a given cellular sample are simultaneously 

detected. In many experiments, both the intensity and spectral profile of a 

fluorescent tag need to be measured. Since many fluorescent markers have unique 

emission spectra, it is possible to carry out multianalyte measurements by using a 

spectrometric detector. By using multiple fluorescent tags, each signifying a 

particular parameter in a sample, one can also study the interactions and responses 

of cellular parameters. There are a number of challenges associated with 

spectroscopic fluorescence measurements. The fluorescent signals are often very 

weak, and therefore highly sensitive detectors are required. Sensitive detectors 

such as PMT’s and APD’s are expensive, and more importantly they are not 

capable of wavelength discrimination. Typical spectrometers use a CCD camera 

as the detector and have trouble registering weak transient signals. The typical 

requirement is to detect an entire spectrum, with each wavelength read by a single 
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pixel (or a few pixels) on the CCD camera. A weak but constant signal can be 

integrated over time but this is not feasible for transient fluorescent signals. An 

alternative would be to use a photomultiplier-tube (PMT) or a single-photon 

avalanche diode (SPAD). These single point detectors are quite effective in 

amplifying weak signals, but their signal amplification physics does not allow 

them to be easily organized in an array format close enough for measuring tightly 

spaced wavelengths. Because these detectors lack spatial resolution they have to 

be combined with filters and/or slits in order to measure each wavelength 

component separately. Perfetto et al. [47] have organized eight PMT’s in an 

octagon configuration with specific filters and reflectors in front of each PMT so 

that only a narrow band of electromagnetic spectrum is analyzed by each PMT. 

Figure 1-7 shows this octagon configuration. This setup is large, expensive, and 

requires careful calibration steps to account for the spectral overlap among 

PMT’s.  

      

 

Fig. 1.7: A multi-parameter laser induced fluorescence-emission flow cytometer with an 

octagonal geometry. (a) Photograph of the actual assembly, (b) The schematic 

representation of the assembly, depicting a series of filters, reflectors, and PMTs in an 

octagonal arrangement [47]. 
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1.5.2 Previously developed spectroscopy systems 

In this section we review spectroscopy systems reported by other groups for the 

purpose of fluorescence detection. 

Goldman et al. [48] reported a compact microspectrometer for chemical analysis, 

which consisted of polymeric and metal oxide planar waveguides in conjunction 

with buried grating couplers. Polymeric and metal oxide waveguides were 

deposited on a glass substrate with etched gratings. Light was coupled into the 

waveguide by one of the gratings and travelled through the waveguide and 

interacted with chemical samples. The resulting spectra were dispersed by the 

second grating and were analyzed by an array of photodiodes. The planar 

waveguide spectrometer demonstrated by Mohr et al. [49] was based on a 

reflection grating, which was fabricated by reactive ion etching. In this device, the 

detected light was introduced into the polymer waveguide using an optical fiber 

and was subsequently dispersed by the grating. Using a similar approach, Sander 

et al. [50] developed transmission gratings in SiON waveguides. A hybrid 

spectrometer system composed of silicon micromachined gratings and a CCD 

camera was demonstrated by Yee et al.  [51]. More recently, a chip size 

spectrometer in a microfluidic platform was demonstrated by Schmidt et al. [52], 

who used a linear variable band-pass filter in combination with a CMOS camera. 

An obstacle in microfabrication of spectrometers is the integration of lenses or 

mirrors for collimation and focusing. Microscale fabrication of these elements has 

proven difficult. Without a focusing element, the microspectrometer must have a 

large footprint or suffer from limited resolution. Some studies have used 

alternative designs to overcome this problem. For example, Traut et al. [53] 

developed a miniaturized spectrometer array by forming grating patterns on the 

top surface of an array of microlenses. In this design, each microlens in the array 

would function as a dispersive and focusing element. In the design by Grabarnik 

et al. a second grating was utilized as the focusing element [46]. Although, not 

integrated in a microfluidic platform, this miniaturized full system spectrometer is 

one of the smallest reported in the literature (Fig.1-8). A number of MEMS-based 

spectrometers were discussed by Wolfenbuttal [54, 55]. Smaller gratings were 
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typically utilized in these devices and the focusing element was omitted at the 

price of a reduction in resolution. In some of these devices, the diffracted signals 

were detected using custom-built photodiode arrays. 

         (a) 

 

          (b)    

 

Fig. 1.8: The microspectrometer reported by Grabarnik et. al. [46]. (a) Illustration of a 

double grating setup. The first grating performs diffraction and the second grating is used 

for focusing (b) Image of the experimental setup. 

 

Minas et al. [56, 57] designed an array of on-chip Fabry-Perot optical filters for 

simultaneous colorimetric measurements of biomolecules based on optical 

absorption. For each channel in the array only a specific wavelength band was 

allowed and the rest of the signal was filtered. For direct read out of the filtered 
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signals, photodetectors were placed underneath the channels.  For the detection of 

fluorescence in a microfluidic channel, Damean et al. [58] used an array of 

custom-built microlenses and a commercially available transmission grating 

above a microfluidic channel. A benchtop microscope and a CCD camera were 

used to collect and read the optical signal after diffraction. In this way they were 

able to demonstrate resolving of a fluorescent signal in space and time in a 

microfluidic system. A somewhat similar method for biochemical analyses was 

reported by Yee et al. [51].  

1.5.3 Single molecule spectroscopy 

Single molecule spectroscopy is a relatively new field of research for the study of 

molecules [59, 60]. By studying one molecule at a time, detailed information 

about the molecule and its interactions can be obtained. Importantly, the method 

guarantee that the detected signal is the one emitted by the molecule under 

investigation not an ensemble-average of signals coming from different 

molecules. Detection of extremely weak emissions from a single molecule 

requires highly sensitive, single-point detectors or a spatial detector such as an 

Electron Multiplying Charge-Coupled Device (EM-CCD) camera. A multianode 

PMT is another possible option; this is an array of PMT’s that allows spatial 

measurements to be made with PMT sensitivity [61]. Signal processing in a CCD 

camera is quite different from a multianode PMT. Unlike a CCD, a multianode 

PMT does not bin the detected signals and for each anode a separate readout 

connection is required. For a 32-anode PMT the required equipment and 

associated read out connections can become quite costly.  

In this section, a variety of techniques for spectral measurement have been 

reviewed. It is clear that polychromatic measurements are becoming increasingly 

important tools for scientific analysis, particularly in LOC systems, because of the 

rich and detailed information they can potentially reveal about molecules and 

reactions. 
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1.5.4 Thesis outline 

 

Chapter 2: Historical and theoretical background information on diffraction  

  and diffraction gratings and the approximate models of diffraction.  

Chapter 3: Development of numerical simulation tools for the study of  

  gratings and grating-based microspectrometers.  

Chapter 4: A comparative study of Gaussian beam propagation as a   

  diffraction model used for the assessment of various scalar   

  diffraction integral approximations. 

Chapter 5: Development of a monolithic integration strategy for optical and  

  fluidic devices using polymers for LOC applications. 

Chapter 6: Design, fabrication, and characterization of a focusing   

  transmission grating microspectrometer. 

Chapter 7: Development of a novel method for wavelength sensing using  

  spectral detection of moving emitters. 

Chapter 8: Chapter summaries and suggested future work 

  

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

CHAPTER 2 

 

2. Background Theory 

This chapter provides the supporting theory pertaining to the diffraction material 

presented in this thesis. First, the concept of diffraction is explained and the 

historical context for the early developments of wave diffraction theory is 

provided. The grating is introduced and the justification for spectral 

detection/spectroscopy is given. The key principles of diffraction gratings are 

discussed. The final part of this chapter is devoted to the scalar treatment of the 

theory of diffraction and the solution of diffraction integral using Green’s theorem 

followed by Rayleigh-Sommerfeld, Fresnel and Fraunhoffer approximations.  

2.1 Diffraction 

 “Diffraction refers to various phenomena which occur when a wave 

encounters an obstacle. In classical physics, the diffraction phenomenon is 

described as the apparent bending of waves around small obstacles and the 

spreading out of waves past small openings.” [Wikipedia].   

Sommerfeld [62] conveniently defines diffraction as:  

 “any deviation of light rays from rectilinear paths which cannot be 

interpreted as reflection or refraction.”  

Diffraction is due to the lateral confinement of the propagating waves and 

diffraction effects are most prominent when the size of the diffractive object ( i.e. 

the aperture) is comparable to the wavelength of the radiation that is being used.  

Historically [63] Leonardo da Vinci is the first person to have given reference to 

this phenomenon in his work. But the first description of diffraction was provided 

by Grimaldi in a book which was published in 1665 shortly after his death. Later 

in 1678 Christian Huygens –the first proponent of the wave theory of light- who 

apparently did not know anything about Grimaldi’s work proposed his theorem 

asserting that [63]: 

  “each element of a wave-front may be regarded as the centre of a 

secondary disturbance which give rise to spherical wavelets; moreover “the 
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position of the wave-front at any later time is the envelope of all such wavelets.” 

Further development in the field occurred in 1804 when an English physician 

named Thomas Young introduced the concept of interference as a consequence of 

the wave property of light. The next major step in understanding diffraction is due 

to Augustine Jean Fresnel who brought the ideas of Huygens and Young together 

in his historical memoir in 1818. Using Huygens construction and principles of 

interference, he was able to give an accurate account of light distributions in the 

diffraction patterns for the first time. In 1882 Fresnel`s ideas were put in a sound 

mathematical form by Gustav Kirchhoff. In his formulation of the diffraction 

problem, Kirchhoff made some specific assumptions about the light`s boundary 

values on the screen and the aperture which later proved to be inconsistent. 

Despite these inconsistencies, the Kirchhoff formulation produces results that are 

well supported by the experiments done in the microwave region [62]. A 

modification to this theory was finally proposed by Sommerfeld (1894) which 

removed the aforementioned inconsistency. This theory is known as the Rayleigh-

Sommerfeld theory of diffraction and will be discussed in detail later in this 

chapter. 

2.2 Diffraction Grating  

If an obstruction on the path of a travelling wave has dimensions comparable to 

the wave’s wavelength some of the wave’s energy will be scattered. In case of a 

periodic obstruction and in general whenever one of the parameters affecting 

wave propagation goes through a periodic variation, the scattered energy falls into 

a number of discrete directions, known as “diffracted orders”, and the periodic 

structure which acts in this manner is referred to as a “diffraction grating”. From 

the stand point of a travelling wave in a diffracted order, the grating action is to 

change the direction of propagation by an amount which depends on the 

wavelength of the wave and the period of the grating. It is in this way that a 

spectrum is formed from a continuum of wavelengths by the grating’s dispersive 

action. Although a prism may perform a similar function, a grating is more 

convenient to use and it outperforms the prism in many respects. Gratings are 

important optical tools. Gratings produce spectra and the detailed analysis of 
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spectra forms the basis of spectroscopy- a science that has a wide range of 

applications. Spectroscopy is based on separation and ordering of the constituent 

wavelengths in an emerging wave bundle and the display of radiation distribution 

in the form of a spectrum. Every atom and molecule has a characteristic 

absorption spectrum or spectral signature by which it may be uniquely identified. 

By analysing a spectrum one can obtain valuable information about the source of 

radiation or the medium in which the radiation passed through. Spectroscopy is 

used in hospitals to analyse blood samples. It is used in industry for process and 

quality control. Spectroscopy allows the detection of trace elements and minute 

amounts of impurities in various chemicals and products.  On the one hand, it is 

the science for the study of the innermost workings of atoms and molecules while 

on the other, it is our only means for knowing the composition of galactic 

particles and distant stars. Although, potentially any periodic structure may 

function as a diffraction grating, we shall only consider one dimensional array of 

parallel equispaced lines of arbitrary form which lie in the same plane. Diffraction 

equally applies to all wave motions (i.e. sound waves or water waves) when a 

suitable grating exist, but it is the optical region of electromagnetic radiation, and 

particularly the region between the infrared and X-rays that is most important and 

for which gratings of highest qualities have been developed [64] .  

2.3 A Brief History of Grating Developments  

It is widely believed that the American astronomer David Rittenhouse invented 

the diffraction grating in 1786. This grating consisted of parallel hairs which were 

laid across two fine screws. He was able to observe the spectral colours produced 

by the grating and noted that red light was bent more than blue and correctly 

attributed these effects to diffraction. Sir John Barton exploited the phenomenon 

of diffracted colours somewhat frivolously and in 1822 obtained a patent for the 

manufacture of various metallic ornaments. The claim entailed the fabrication of 

moulding dies formed by cutting crossed gratings on steel using a diamond. 

However, it was the work of Joseph von Fraunhofer which laid the foundation for 

the study of diffraction gratings. In 1821, unaware of the earlier reported work he 

made a grating with fine wire which resembled Rittenhouse’s grating. He also 
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produced reflection gratings by making grooves on the surface of mirrors with a 

diamond. He was the first one to use a grating (12 mm wide, 9600 grooves) for 

measuring the wavelength of light. He discovered the grating’s diffracted orders, 

derived the grating equation and verified it with experiments. He also made 

detailed analyses of the spectrum considering the effects dictated by the form of 

the grooves and such effects related to errors which occurred in the position of the 

grooves. Truly speaking, Fraunhofer set the grounds for studies which went on for 

over 150 years and still continue today. In 1826 Fraunhofer died and for almost 

50 years from this date, the grating attracted little interest. Although the work of 

the Prussian instrument maker F. A. Nobert is quite notable. He began to supply 

the spectroscopists at the time (1850) with gratings which were superior to 

Fraunhofer’s. The problem was no one knew how to make a grating with better or 

at least similar performance to a prism. In 1874 Lord Rayleigh theoretically 

proved that in resolving the spectral lines, the grating’s ability is superior to that 

of a prism. In about 1870, L.M. Rutherfurd, a New-York lawyer who had a great 

interest in astronomy, became interested in gratings and in just a few years 

learned to rule reflection gratings which outperformed the most powerful prisms. 

A giant leap in the development of the grating was the construction of a 

sophisticated “ruling engine” in 1882 by H. A. Rowland, professor of physics at 

Johns Hopkins University. Another successful invention of Rowland is the 

concave grating in which the grating grooves are ruled on the surface of a 

spherical mirror. In addition to dispersion, the new concave grating had a focusing 

capability. Rowland’s success in building the first ruling engine and his invention 

of the concave grating opened up a range of new possibilities in the field of 

spectroscopy. The work on gratings at Johns Hopkins University -the world’s 

principle supplier of scientific grade diffraction gratings at the time- was followed 

with great success by J. A. Anderson, by R. W. Wood, and by J. Strong up until 

the Second World War. An important contribution of R. W. Wood was the 

introduction of a new technique known as “blazing”, in which the distribution of 

light among different diffracted orders is controlled by the shape of the grating 

grooves. In this technique the grating grooves have a sawtooth profile and the 
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mirrored facets of the grating are designed to reflect the light preferentially into 

the direction of a chosen diffraction order, thereby concentrating a bigger 

proportion of the light energy in that order. Vacuum deposition of thin metal films 

such as aluminum on the surface of glass blanks was a new method introduced by 

Strong (1935). Before this date the grating grooves were ruled directly onto 

blanks formed by speculum metal. The new blanks were easier to make and easier 

to handle. In addition, the reflectance of aluminum was much higher than 

speculum and resulted in an increase in the grating’s efficiency. The remarkable 

ideas of A. A. Michelson, who as early as 1915 had suggested an interferometric 

servo system for controlling the position of grooves, was finally put to practice in 

1955 by Harrison and Stroke, and gratings of highest degrees of perfection were 

obtained. Next to the invention of the ruling engine itself, the most important 

development in the area of grating production is due to techniques introduced for 

high-quality replication of gratings by White and Fraser in the 1940s. Prior to 

replication, the gratings were never produced in any significant number and 

therefore the access to gratings was quite limited. It was in the 1950s that gratings 

started to replace prisms in commercial spectroscopic instruments due to 

increased availability of high quality gratings which had resulted from the advent 

of newly developed, fast and efficient replication techniques. The invention of the 

lasers in the 1960s greatly affected many branches of optics including 

spectroscopy. Soon, an entirely new technique for the fabrication of high-quality 

sinusoidal gratings based on the phenomenon of optical interference became 

available, which gave rise to a new category of gratings known as “Holographic 

Gratings”. The essential feature of the interference technique is that the 

interference fringes generated by the intersection of two coherent laser beams, 

when recorded in an appropriate photoresistive material, could form the grooves 

of a grating. The fringe spacing is dictated by the wavelength of the light and the 

angle of intersection of the beams. As a result, the interference gratings are 

inherently free from periodic and random errors associated with the ruled 

gratings. The first interference gratings were made by Burch (1960), but gratings 

suitable for general spectroscopic applications were developed rather 
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simultaneously by Rudolph and Schmahl (1967) in Germany and by Labeyrie and 

Flamand (1967, 1969) in France after the high-powered lasers became available 

[64] . For a more detailed account of the grating developments, the reader should 

refer to references by Loewen [65] and Hutley [64]. 

2.4 Diffraction Grating Types 

Diffraction gratings are differentiated based on various criteria, such as: method 

of manufacturing, geometry, material, usage, the efficiency behaviour, and the 

working spectral interval. The long list of categories such as phase – amplitude, 

phase – relief, transmission - reflection, concave – plane, dielectric – metallic, 

lamellar – triangular – sinusoidal – trapezoidal, ruled – holographic – 

lithographic, symmetrical - blazed, echelettes – echelles – echelons, flat-field 

spectrographic – based on Rowland circle – the ones used in Seya-Namioka 

monochromators, those for distributed feedback – those used in integrated optics, 

waveguide gratings -  fiber gratings, Bragg type – Raman-Nath type, masters – 

replicas and so on, points to complexity and lack of clarity in diffraction grating 

classification [65]. The existence of these categories is either rooted in the 

historical development of the gratings or the differences in their properties and/or 

their applications. From the above mentioned categories, transmission-reflection, 

concave-plane, and lithographic gratings are directly related to the present studies 

and will be discussed briefly. 

2.4.1 Transmission and Reflection Gratings 

The distinction between transmission and reflection gratings is rather obvious; 

one works in transmission and the other in reflection. Transmission gratings with 

triangular, rectangular or trapezoidal groove shapes have been widely used as 

laser beam dividers and combiners. Another application of transmission gratings 

is in direct imaging spectrographs. In the most common configuration, a camera is 

simply converted to a spectrograph by placing a transmission grating directly in 

front of the objective lens of the camera. This system can be used to acquire the 

spectrum of a distant luminous object, for example a falling meteor. In general, 

transmission gratings exhibit higher efficiencies than reflection gratings although 

reflection gratings are in general far more common. We chose transmission 
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gratings for our devices, since they allow a convenient chip layout while the 

additional steps for making the reflective surfaces are conveniently omitted. In 

addition, transmission gratings can achieve dispersion that is similar to that of 

reflection gratings, while having facets which are significantly larger [50]. For 

example a bulk grating fabricated with a material with a refractive index of 1.5 

when used in air or vacuum, can achieve similar dispersion as a reflection grating 

while having facets which are four times deeper. This is especially advantageous 

at the time of fabrication since large grating features are easier to fabricate.  

2.4.2 Concave and Plane Gratings 

The most commonly encountered gratings are formed on planar substrates and 

have straight, parallel, equidistant grooves. There are some instances (largely in 

integrated optics) where the grooves are bent slightly and the separation between 

the successive grooves is varied uniformly (chirped) to give the grating some 

focusing action in addition to dispersion. A more common practice is to form the 

curved and chirped grooves on a concave substrate to make a single element 

spectrograph or monochromator with the dual dispersion-focusing functionality. 

The first concave grating was made by H. A. Rowland in 1882. Rowland showed 

that by ruling the grating facets on a concave spherical substrate, both the 

dispersion and focusing of light can be simultaneously achieved. In this design a 

circle tangent to the spherical substrate at the pole of the grating has a radius that 

is one half the radius of curvature of the spherical blank substrate with the 

property that if a point source is located on this circle, the diffracted image would 

also be formed in another location on the same circle [64]. This circle is known as 

the Rowland circle. At the time of Rowland the reflective optical components 

were made using speculum metal with a maximum reflectance of R = 70%. For a 

device using  plane gratings equipped with collimation and  focusing optics, the 

total reflectance would be in the order of R
3
 = 35% which is half of that for an 

instrument equipped with a single concave grating. For this reason, for many 

years, the concave reflection gratings dominated the field of spectroscopy. 

Moreover, for wavelengths below 110 nm where the reflectance at normal 

incidence is about 20%, the transmission through an instrument equipped with a 
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plane grating is a mere 0.8% while it is 20% for an instrument using a concave 

grating. For this reason the use of concave gratings in this region of the spectrum 

is absolutely essential. A shift towards monochromator-based instruments 

utilizing plane grating designs has been taking place in recent years as a result of 

the advances in photoelectronics. Although such designs require mirrors for 

focusing they still provide maximum resolution and efficiency due to the 

advantages obtained by near stigmatic imaging [65]. The design, fabrication, and 

characterization of a chirped, concave, focusing transmission grating is an 

important component of the present studies that appear later in Chapter 3.  

2.4.3 Lithographic Gratings 

Lithographic gratings are produced by transferring the geometrical pattern of a 

grating from a photo-mask into a photosensitive layer (photoresist), which is 

deposited on a suitable substrate (semiconductor, glass, or metal), followed by the 

subsequent etching of this layer and the underlying substrate material. The single-

beam mask transfer method is limited by the diffraction phenomenon such that the 

lowest limit for the grating features that can be safely copied -in the best case- is 

in the range of ~1.5 – 2 m. In the present study we use lithography by first 

transferring the device patterns on to a photoresist layer that is spin-coated on a 

silicon wafer and then use Deep Reactive Ion Etching (DRIE), to etch away the 

silicon to make a master stamp for the subsequent steps of moulding. The details 

for this method are given in Chapter 5. 

 2.5 Grating Equation 

In the schematic shown in Fig. 2-1, a monochromatic light beam is incident on the 

surface of a reflection grating. Upon diffraction, light is distributed along several 

discrete directions known as diffracted orders. Diffraction is described by the 

general grating equation, normally written as: 

  m λ = d(sin i + sin i’)   m =  0,  +/- 1,  +/- 2, ….   (2-1) 
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                       Fig. 2.1: GRATING ANGLE AND TERMS [66]. 

In this equation m is the diffraction order, λ is the wavelength, d is the period of 

the grating or the grating constant, which is the distance between successive 

grooves, i is the angle of incidence  measured with respect to grating normal, and 

i’ is the angle of diffraction also measured with respect to grating normal. If in 

this equation m is zero, i will be equal to i’ in magnitude, which indicates that 

light is simply reflected. Let’s consider the grating equation for a given set of 

angles of incidence and diffraction (i, i’) and a set groove spacing (d). We notice 

that there are a number of wavelengths for which the grating equation is valid. In 

fact the condition for constructive interference is satisfied for successive values of 

the integer m (the diffraction order) at a number of different wavelengths. This 

implies that the constructive interference between the wave fronts emanating from 

successive grooves can only occur if the phase difference between the diffracted 

waves is an integral multiple of the wavelength. Since the maximum value which 

is possible for |sin i + sin i’| is equal to 2, the only orders that are possible are 

those for which |mλ/d| is less than 2. The zero order (m = 0), which signifies the 

specular reflection, is always possible and in most cases the existence of both 

negative and positive orders is possible according to the grating equation, as long 

as the inequality relation -2d < mλ < 2d is maintained. A closer look at the grating 

equation reveals how a spectrum is actually made. A polychromatic radiation is 

incident on the grating surface. According to grating equation for a chosen 

diffracted order (m) and a specific angle of incidence (i), the angle of diffraction 

(i’) would be different for different wavelengths such that each will appear at a 
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slightly different location. This is the mechanism by which a polychromatic light 

is resolved into its constituent wavelengths.   

2.5.1 Dispersion  

“Dispersion is a measure of the separation (either angular or spatial) between 

diffracted light of different wavelengths.” [67]. The dispersion of a grating is a 

function of both the groove spacing and the angle of incidence. Imagine a 

spectrum in which two spectral lines in the vicinity of λ are separated by a small 

wavelength difference Δλ. There should be a minimum spatial distance between 

these two lines if we are to unambiguously tell them apart. What we really need to 

know is how the angle of diffraction is changing as the wavelength changes which 

can be simply answered by differentiating the grating equation with respect to the 

angle of diffraction i’. Assuming the angle of incidence i to be constant we have: 

    
 

i' m

d cos i'
D




 
 

    (2-2) 

The quantity D is called the angular dispersion of the grating. In practice one 

often needs to know the linear dispersion xD which is the product of the angular 

dispersion and the effective focal length ( efff ) of the instrument: 

    eff

x i'
fxD

 

 
  
 

       (2-3) 

It should be noted that for a waveguide-based grating the equations [Eq. (2-1), Eq. 

(2-2) and Eq.(2-3)] have to be modified to include the effective refractive indices.  

2.5.2 Resolution 

The minimum wavelength separation Δλ between two spectral lines of 

wavelength λ and λ + Δλ that can be unambiguously resolved is referred to as 

resolution. In determination of resolution the image effects of the system must be 

taken into consideration; these include the dimensions of the entrance and exit 

apertures, the image magnification and the aberrations involved. Thus for a 

spectroscopic system resolution is more relevant than the dimensionless 

theoretical resolving power.  
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2.5.3 Resolving Power 

The product of the diffracted order and the number of grooves which are 

intercepted by incident radiation is the grating’s theoretical resolving power (RP). 

The resolving power can also be given in terms of grating width, the incident and 

the diffracted angles.  The formula to obtain the “theoretical resolving power” of a 

grating that has N grooves is:  

       m NRP



  


        (2-4)  

The accuracy of the ruling is the most important factor in determination of the 

actual resolving power of a grating. Usually 80-90% of the theoretical value for 

the resolving power can be achieved by using a high quality ruled grating. While 

resolution is dependent on the mechanical and optical characteristics of the 

instrument in which the grating is used, the resolving power is a property of the 

grating that is independent of these characteristics.  

2.5.4 Free Spectral Range 

The free spectral range (FSR) is the maximum spectral bandwidth which is 

possible in a given diffracted order in the absence of spectral interference 

(overlap) from neighbouring positive or negative orders. The free spectral range is 

inversely proportional to the period of the grating. The free spectral range is the 

separation between lower (λ1) and upper (λ2) limits for the band of interest and it 

can be represented by the following formula:     

      FSR = λ2 – λ1 = λ1/m    (2-5) 
 

which indicates that at higher orders the free spectral range decreases. In fact at 

higher orders efficiency and free spectral range both decrease while dispersion 

increases. 

2.6 The Scalar Theory of Diffraction 

The electromagnetic properties of light are completely characterized by 

Maxwell’s equations. However, light as a wave phenomenon was known long 

before Maxwell. Wave optics is capable of explaining the observed effects of 
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interference and diffraction with excellent accuracy as revealed by the results of 

measurements done in the microwave region [62]. 

In wave optics, one assumes that light may be represented with an (complex) 

amplitude function ( )u r , satisfying the scalar wave equation: 

        2 2( ) ( ) 0k u r       (2-6) 

where
2

k



  is the wavenumber.      

the problem is to find a solution to this equation at an arbitrary point located on 

one side of a  diffractive aperture in an otherwise opaque screen, while a light 

source ( )u r' of known distribution is illuminating the screen from the other side.   

Kirchhoff approached this problem by invoking Green’s theorem, which can be 

expressed as follows [62]: 

                         2 2(       )   n (       ) 

V S

dv ds                  (2-7) 

Here, n is the outward unit normal of the bounding surface S (see Fig.2-2) 

Let ( ) ( )r u r  , and let ( , ) G( , )r r r r   , 

where     2 2( )G  ( )k r r         (2-8) 

A possible solution of this equation is: 

       
exp( R)

G  =
4 R

jk



 ;  R   r r     (2-9) 

Since 

                     2 2 2 2G     G   G  ( )  ( G    ( ) )u u k u u k r r            

       =  ( )  ( ) .u r r r       (2-10)  

Substitution into Green’s function gives: 

             ( )  n   ( G       G  ) 

S

u r u u ds       

    For r in V      (2-11) 

Multiplying thru by -1 and interchanging r  and r  

          ( )  ( ) n    G   G  n     

S

u r u r u ds           (2-12) 

This relation is known as the Helmholtz-Kirchhoff Integral Theorem. 
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The theorem asserts the possibility of determining ( )u r which satisfies: 

       2 2( ) ( ) 0k u r   ,    (2-13) 

at any point in the volume V provided ( )u r'  and n     ( )u r   can be specified in a 

constant fashion at all points on the surface bounding .   

          
                            Fig. 2.2: Surface S bounding volume with R   r r  ,   

                and  n r the outward unit normal of S at point r  on S .    

2.7 Rayleigh-Sommerfeld Diffraction Formula 

In his formulation of diffraction, Kirchhoff made some simplifying assumptions 

regarding the field and its derivative at the boundary. Poincare, and later 

Sommerfeld, showed that these assumptions are inconsistent [62, 63]. 

Sommerfeld removed the inconsistency by choosing a special form of Green’s 

function ( G )  such that in addition to satisfying the Helmholtz-Kirchhoff 

integral theorem it was also zero at the boundary. There are two variations to the 

Rayleigh-Sommerfeld formula (I, II). In these formulas, the expression for ( )u r is 

considerably simplified. Rayleigh-Sommerfeld I and II formulations based on 

Hankel functions will be discussed in detail later in 3.10. The derivation of 

Rayleigh-Sommerfeld diffraction formula is as follows: 

First, we separate the surface S into two parts: 1S a plain containing the aperture(s) 

and 2S  a sphere centered on the observation point r (see Fig.2-3).      
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        Fig. 2.3: Aperture containing surface 1S nd the surface 2S . 

          2S is a portion of a sphere centered on the observation point 0P . 

 Let 0P be the observation point r and 0P be another point r outside the surface S .   

With R r r  and R r r  we define: 

      
exp( R) exp( R)

G    
4 R4 R

jk jk


 
 


.   (2-14) 

Then: 

   2 2( ) G   ( )   ( )k r r r r
             (2-15) 

Substituting for 2 G
 into Green’s theorem and noting that r  is not a point of the 

volume , we find as before: 

             ( )  n   (  G   G  ) 

S

u r u u ds 
         (2-16) 

or,  

   

1 2

 ( ) n   (  G  G ) n   (  G  G ) 

S S

u r u u ds u u ds   
                . (2-17) 

With ron 2S so that Rn 1  , the condition under which 

2

0

S

 as the radius R 

increases without bound can be shown to be: 

    
  

  (   1  ) 0r
r
lim r j k u u
 

   . 
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(Here rwas ecchanged for r for simplicity). This is the Sommerfeld radiation 

condition. 

 

                                   
      Fig. 2.4: Schematic representing Sommerfeld radiation condition. 

      Here r  is on 2S  so that Rn 1  . 

   
exp( R) exp( R)

G    
4 R4 R

jk jk


 
 


   (2-18) 

         R R

1 exp( R) 1 exp( R)
G 1 1  

R 4 R R 4 R

jk jk
jk jk

    
        

    
 (2-19) 

As 2S  (i.e. r  and R  ), so does R and RR
1 1 (see Fig.2-4). Since at 

optical wavelengths k is large in comparison to
1

R
and

1

R
(even for ordinary values 

of R and R ), then: 

     R R

exp( R) exp( R)
G  1    1  

4 R 4 R

jk jk
jk jk

 
   

 
 

         ~ R  1 Gj k       (2-20) 

As 2S  , it follows that: 

    n   G
  ~   Gj k   

     

2 2

2
 R

R
lim  (    G + G 1   ) R

S S

j k u u d 




         (2-22) 

For this result to go to zero we must have: 
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     
R  
lim   R    R    R  G 0j k u u 
 

     (2-23)  

Since
R  
lim RG
 

does not diverge therefore for 

            

2

0

S 

  

we require 

         lim  | | ( ) 0
r

j k r r u r r u


       .  (2-24) 

 Neglecting finite r  in comparison to r  we have: 

                lim    0
r

j k r u r u


     .   (2-25)  

 Expressed in un-primed variables this is the Sommerfeld Radiation Condition: 

                lim    1 0r
r

r j k u u


   .   (2-26) 

 Now with the double integral on 2S going to zero we have: 

      

1

 ( ) n   (  G  G ) 

S

u r u u ds 
          (2-27) 

Where 1S is of infinite extent and r is any point to the right of the plane 1S .       

With ron 1S , n 1z  . For 0P  the mirror image of 0P we have R R . 

Then G 0   and we obtain n  G
  as discussed below (Fig.2-5).  

 

                            
            Fig. 2.5: Schematic showing the geometry of the problem with r  on 1S . 

           With ron 1S , R R . 

   
   exp R exp R

 G 0
4 R4 R

jk jk


 
   


.   (2-28) 
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        R R

1 exp( R) 1 exp( R)
G 1 1  

R 4 R R 4 R

jk jk
jk jk

    
        

    
 (2-29) 

      R R

1 exp( R)
(1 1 )  

R 4 R

jk
jk

 
    

 
, since R R .  (2-30) 

             R R

R R R R ( )
1 1 1

R R R R RR
z

r r r r r r z z      
        

   
2( )

1
R

z

z z
       (2-31) 

With n 1z  , we have: 

      
1 on  

2( ) 1 exp( R)
G n    

R R 4 Rr S

z z jk
jk 

  
   

 
,  (2-32) 

     
1 on  

1 1 exp( R)
n  G    

2 R R Rr S

z z jk
jk 

  
   

  
.  (2-33) 

Finally: 

               

1

1 1 exp( R)
 ( )     ( )    

2 R R R
S

z z jk
u r u r jk ds

  
   

  
   (2-34) 

 

2.7.1 Approximations to the Rayleigh-Sommerfeld Formula 

 

We can relegate the dependence on z to a subscript and introduce 

          ( , ) ( , , )zu x y u x y z  ;  ( , ) ( , , )zu x y u x y z       

    
1 1 exp( R)

( ,  )    
2 R R R

z z

z z jk
h x x y y jk

  
     

  
 (2-35) 

where 2 2 2R ( ) ( ) ( )x x y y z z        . 

    

With this notation we have: 

        ( , ) ( , ) ( , ) z z z zu x y u x y h x x y y dx dy

 

 

 

          

         (x,y) ( , )z z zu h x y       (2-36) 

Where indicates convolution on the two variables x and y. In particular, with 

the origin in 1S , 0z  . Then: 
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          0( , ) ( , ) ( , ) z zu x y u x y h x x y y ds

 

 

        ,        

      0
0

0 0 0

exp( R )1 1
( , ) ( , )     

2 R R R
z

jkz
u x y u x y jk dx dy

 

 

  
     

  
  . (2-37) 

where             2 2 2

0    0
R R ( ) ( )

z
x x y y z

 
       ,   

            | |r     ,    (2-38) 

while 1 1 1 ( )x yx y           in cylindrical coordinates. 

At optical wavelengths, generally 0R even for small r and  , Thus
0

1

R
k  

and we have: 

            0

0 0

exp( R )
( ,  )    

2 R R
z

jkk z
h x x y y j


   


.  (2-39) 

Hence: 

                              

1

0
0

0 0

exp( R )
( , )   ( , )    

R R
z

S

jkj z
u x y u x y ds


  

   (2-40) 

 

2.8 Fresnel Approximation  

In the Fresnel approximation we have a configuration as shown in Fig. 2.6. 

  
Fig. 2.6: Schematic showing the aperture and the observation screens in Fresnel 

approximation. 

 

First note that we may write: 
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2 2

2 2

0R 1
x x y y

z
z z

      
      

     

.   (2-41) 

 

In Fresnel approximation it is assumed that z, the distance between 1S  (input 

plane) and the observation (output) plane is such that 

    

2 2

1
x x y y

z z

     
   

   
.   (2-42) 

The Fresnel approximation consist of setting 0R z in the denominator of zh (this 

makes the obliquity factor
0 R

z
equal to unity) and using the binomial expansion: 

   1/2 21 1
(1 ) 1

2 8
a a a             | |  < 1a   (2-43) 

in the phase term 0exp( R )jk . 

(However it is inappropriate to replace 0R by the first order approximation 

i.e. 0R z in the phase term because it is multiplied by the large factor
2

k



 ) 

       

2
2 22 2

0 2 4

( ) ( )1 ( ) ( ) 1
R     1      

2 8

x x y yx x y y
z

z z

               
  

 

          (2-44) 

2 2

0

2
2 2

3

 exp( R ) exp( ) exp ( ) ( )
2

                                                              exp ( ) ( )
8

k
jk jkz j x x y y

z

k
j x x y y

z

 
            

 

 
         

 

 

           (2-45) 

In the Feresnel approximation 

             
2

2 2

3
exp ( ) ( ) 1

8

k
j x x y y

z

 
        

 
  (2-46) 

If this is true, higher order terms in the binomial expansion are even less 

significant.  

The Fresnel approximation replaces, 
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   0

0 0

exp( R )
( ,  )    

R R
z

jkj z
h x x y y


   


  (2-47) 

 

by the expression (which replaces the spherical Huygens’ wavelets by quadratic 

surfaces): 

           2 2exp( )
( ,  )    exp ( ) ( )

2
z

j jkz k
h x x y y j x x y y

z z

  
              

  (2-48) 

or 

        2 2exp( )
( , )    exp ( )

2
z

j jkz k
h x y j x y

z z

  
   

  
  (2-49) 

thus: 

     2 2
0

exp( )
( ,   )     ( , ) exp ( ) ( )  

2
z

j jkz k
u x y u x y j x x y y dx dy

z z

  
              

  

          (2-50) 

2.9 Fraunhoffer Approximation 

The Fresnel approximation defines a region in space in which 

    2 2exp( )
( , )    exp ( )

2
z

j jkz k
h x y j x y

z z

  
   

  
  (2-51) 

            0( ,y) (x,y)  ( , )z zu x u h x y     (2-52) 

2 2

0( , ) ( , ) ( , )exp ( ) exp ( )
2

z z

k k
u x y h x y u x y j x y j xx yy dx dy

z z

 

 

   
             

   
   

          (2-53) 

The Fraunhoffer approximation assumes further that for sufficiently large z  

            2 2exp ( ) 1
2

k
j x y

z

 
    

 
   (2-54) 

over the part of 1S for which 0( , ) 0u x y    (i.e. the aperture region). 

 In making this approximation we destroy the convolution relation between input 

and output.  

We have: 

   0( , ) ~ ( , y) ( , )exp 2  (    )  z z

x y
u x y h x u x y j x y dx dy

z z


 

 

 

 
      

 
   

      0  ~ ( , ) U ( ,  )z x yh x y        
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where 

                                                  x

x

z



   ,    y

y

z



   (2-55) 

This important result shows that, apart from the quadratic phase factor of ( , )zh x y  

which marks the result, the field distribution, ( , )zu x y in any z plane in the 

Fraunhoffer region is related to the Fourier transform of the signal 0 ( , )u x y in the 

input plane. The system behaves essentially as a spectrum analyzer. In fact: 

                     0  y 

1
( , ) ~ | U ( , ) |z xu x y

z
 


   (2-56) 
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CHAPTER 3 

 

 

3. Numerical Simulation Tools 

This chapter provides a brief overview of the optofluidic Microsystems that were 

conceived and studied in this thesis research, followed by a detailed description of 

the numerical simulation tools developed to guide the design process.  

 3.1 Overview of the LOC spectrometer system 

To facilitate the subsequent discussion of simulation tools, we start with a high-

level description of the proposed system.  

While the trend for incorporating more and more components on a single chip 

continues, cost and material incompatibilities remain as barriers to monolithic 

integration. The approach taken in this thesis research can best be described as a 

hybrid integration strategy, namely; to incorporate the optics and the fluidics on a 

single disposable chip while the excitation source and detection unit as well as the 

electronic parts, remain off the chip. LOC devices were designed and fabricated 

(Fig.3.1) in such a way that light confinement by total internal reflection is 

possible. The planar devices are composed of three layers of PDMS. The central 

layer contains both fluidic and optical components, which are formed in the same 

fabrication step. The outer layers are made of Sylgard-184
®
, which has a 

refractive index of 1.41.  The central layer containing the optical and fluidic 

components is made from a formulation of PDMS that has higher refractive index 

of 1.43.  Because of the index contrast with the outer layers, light can be confined 

in the central “optofluidic” layer, also referred to as the core layer.  

The over-riding goal of the research project was to integrate a waveguide-based 

optical spectrometer into such a PDMS-based optofluidic chip. We chose to 

design diffraction-grating-based spectrometers. Along with the dispersive element 

(i.e. the diffraction grating), this implied the need to integrate lenses or mirrors for 

light collimation and focusing. 
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      Fig. 3.1: Schematics representing total internal reflection (top)  

        and the waveguide and microfluidic channel (bottom). 

 

The first spectrometer we considered was based on a Grating Prism (Grism, also 

called carpenter prism), which is simply a right angle prism with periodic steps on 

its hypotenuse. A chip comprising the grating, optical waveguides, and 

microfluidic channels was designed, and the layout of the chip is shown in Fig. 

3.2. The chip dimensions are (3.0 cm x 4.4 cm), and the steps of the grating are (3 

μm x 6 μm). A section of the fluidic channel is in U shape, and two waveguides, 

one from the middle and one from the side, come to the vicinity of this section 

(lower right figure). This section is where optical interrogation of the fluidic 

sample takes place. In addition, there are two slab-waveguide bi-convex lenses 

(one for collimation and one for focusing) before and after the grating, 

respectively. The dark areas are voids or empty spaces formed in PDMS during 

processing. There is also a waveguide to pick up the diffracted signal at the edge 

of the chip (the triangular formations at the right end of the chip). 
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  Fig. 3.2: Actual drawings of the grating prism microspectrometer chip   

  (top figure).A reservoir and a portion of the microfluidic channel   

  (bottom left figure). The U shaped section of the microfluidic channel and  

  the horizontal and  perpendicular waveguides coming to this section   

  (bottom right figure). 

 

Subsequently, we designed a chip in which the steps of the grating were placed on 

a curve, designed to both disperse and focus the light. This allows the chip to be 

smaller (1.7 cm x 2.1 cm), since the second lens can be eliminated. The grating 

was designed such that each facet is an arc or section of a circle, the radius of 

which is uniquely determined to obtain a common focal point among all facets. 

There are 600 facets on this grating and the facets gradually decrease from 6 m 

(the first facet) to 4.93 m (the last facet) each time reducing by 0.0018 m. 

Gratings of this type where the facets are not equal and they vary slowly across 

the length of the grating are known as chirped gratings. A chirped grating further 

enhances the focusing action of the grating. As mentioned, in this geometry there 

is no need for a separate focusing lens. Thus, the number of interfaces that light 

has to go through is reduced. This is highly desirable, especially when we are 
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dealing with a weak source such as a fluorescent signal. Figure 3.3 shows the 

grating lens spectrometer and enlarged sections of this design. Details regarding 

the simulation of this chip follow, and experimental results are reported in 

Chapter 6. 

       

Fluid reservoir

   

Light

Grating
 

Fig. 3.3: Grating lens spectrometer design (left). Enlarged sections of the chip (middle 

and right). 

3.2 Simulation details 

3.2.1 Ray-tracing  

In general, propagation of light can be treated using two fundamentally different 

theoretical approaches. One is the geometrical or ray optics approach and the 

other is the wave optics approach. Ray optics assumes that light consists of 

independent bundles of electromagnetic energy travelling along trajectories called 

rays. When the refractive index of the medium of propagation is constant, rays 

travel in straight lines and when they encounter a new refractive index at an 

interface they change direction according to Snell’s law [68]. When the medium 

is a graded index medium, rays travel along curved trajectories but regardless of 

the index of the medium, at every point the ray trajectory is normal to the phase 

front of the propagating electromagnetic wave. The ray equation can be derived 

from an approximate solution to the wave equation and rays are solutions to this 

equation [68]. The concept of rays is easy to understand and visualize and ray-

tracing softwares are easy to develop. Furthermore, since each ray is independent, 

parallel processing is possible. The ray picture is exact when the ratio of 

wavelength to feature sizes approaches zero. Ray theory has been used 
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extensively in fibre optics. In general, when a qualitative and fast analysis is 

intended, ray theory may be very helpful, However, in cases where the size of the 

guiding medium is comparable to a wavelength, interference and diffraction 

effects become important, the ray picture breaks down, and wave theory needs to 

be invoked.  

Accordingly, a number of simple ray-tracing routines were written in Matlab to 

get a qualitative picture of the behaviour of light at spherical, parabolic, and 

simple aspheric interfaces. In addition, the extent and nature of aberrations in the 

focal regions of such lenses was determined. Fig. 3.4 below shows ray tracing in a 

double parabolic (a) and a single aspheric (b) lens. Note that these are two-

dimensional simulations. For the cases shown in Fig. 3.4, each region has a 

refractive index, n = 1 (representing air), or n = 1.59 (representing SU-8). 

             
 Fig. 3.4: Ray-tracing for a double parabolic lens (left). Ray-tracing for a single 

 aspheric lens  (right). The regions of the lens are demarcated by the solid lines.  The 

 assumed refractive index is indicated. 

Ray-tracing Matlab codes for the double parabolic and single aspheric lens are 

listed in Appendix-I (App. I). 

3.2.2 Wave optics simulations 

As the name implies, in wave optics the wave nature of light is considered. Unlike 

ray optics, wave optics can provide a detailed account of interference and 

diffraction. We have utilized the two-dimensional Fresnel diffraction operator 

[69], 

             

           (3-1) 

2

0 0

i.k .( y)
i i.k . x 2* xE(y, x) * * *E(y , x )*dy
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Using this operator, simulation routines were developed in Matlab that use an 

electric field,  

E(y0, x0), as input and calculate the resulting electromagnetic field intensity at an 

output plane (which could be a plane or any arbitrary surface) located at a 

distance Δx from the input. In case of multiple interfaces, the output obtained at 

the first interface in the cascade is treated as the input for the next interface and so 

on. 

3.3 Free space propagation of a Gaussian beam  

 As the first test of the wave optics implementation, free pace propagation of a 

Gaussian beam was simulated. Fig. 3.5 shows the predicted profile for a beam 

with wavelength of 633 nm and input beam diameter of 200 μm, after travelling a 

distance of 10,000 μm. The results obtained using the Fresnel integral, were 

compared to the results obtained using an exact formulation of the two-

dimensional Fresnel diffraction integral. The exact formulation was coded in a 

separate Matlab file. 

 
Fig. 3.5: Comparison of analytical (left window in blue) and integral (middle window in 

red) formulations of the Gaussian beam propagation. The right window shows their 

complete overlap.  

 

3.4 Comparison of MathCAD and Matlab simulations of diffraction by slits 

Next we tested the accuracy of the Fresnel diffraction operator approach for 

simulating structures involving interference and diffraction. To do this, far-field 

diffraction simulations of double and multiple slits were compared with 

MathCAD programs that used the well-known [70] exact formulae for the 
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calculation of intensity at the output. The parameters used for the next two 

simulations (Fig.3.6 and Fig. 3.7) are as follows: Propagation wavelength, λ = 

0.0005 mm, slit width, d = 0.02 mm, centre to centre separation of slits, a = 0.02 

mm, number of slits N = 2, propagation distance, X = 40,000 mm, and the output 

plane extends from Y = -2000 mm to Y = 2000 mm. Matlab code for this 

simulation is listed in App. I. 

 

 

  N 2   Y 2000 2000  

   0.0005  X 40000  
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  a 0.02  
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Fig. 3.6: MathCAD simulation of diffraction by two slits using closed form expressions 

for intensity. The resulting intensity profile is shown in red.  
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Fig. 3.7: Fresnel integral simulation (see App. I) of the far-field diffraction intensity by 

two slits. Note the location of minima and maxima is identical in Fig. 3.6 and Fig. 3.7. 

 

The parameters of simulation for diffraction by four slits (Figs. 3.8 and 3.9) are as 

follows: 

Propagation wavelength, λ = 0.5 m, slit width, d = 4 m, centre to center 

separation of slits,  

a = 12 m, number of slits N = 4, propagation distance, X = 4000 m, and the 

output plane is extended from Y = -2000 m to Y = 2000 m. Matlab code for 

this simulation is listed in App. I. 
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Fig. 3.8: MathCAD simulation of diffraction by four slits using closed form expressions 

for intensity. The resulting intensity profile is shown in red. 
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Fig. 3.9: Fresnel integral simulation (see App. I), of the far-field diffraction intensity by 

four slits. Note the location of minima and maxima is identical in Fig. 3.8 and Fig. 3.9. 

3.5 Simulation of a grism 

Another test of the Fresnel integral formulation was carried out for a grism in the 

paraxial regime, and the diffracted field was compared with that obtained 

analytically (Fig. 3.10 and Fig. 3.11). The calculation of the position of diffracted 

field for a grism based on geometrical optics is described in the following 

paragraphs.  
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  Fig. 3.10: Basic geometry of a grism.  

 

Let W, D, and Λ denote the three sides of the right triangles which form, Echelle 

grating type steps on the hypotenuse face of a right-angle prism as illustrated in 

Fig. 3.10. Note that the following three trigonometric relations hold: Λ2
 = W

2
 + D

2
,  

W = Λ cos α, and  D = Λ sin α.  

For a straight-through wavelength λ (the design wavelength), the diffraction 

equation for the grism can be written as: 

    n' sin n sin
m

     


 ,   (3-2) 

which can be rearranged as follows: 

       
(n' n) sin

m


  
  .    (3-3) 

Here, m is the diffraction order, α is the angle of incidence (and also the angle of 

diffraction for the design wavelength), Λ is the grating period, and n and n’ are the 

refractive indices before and after the grating, respectively. Note that the analysis 

and Fig. 3.10 use the convention that the angle of incidence and diffraction are 

both measured from the normal to the grating plane. It should also be noted that at 

the design wavelength (the wavelength that goes through the grating without 
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deflection) the angle of incidence and the angle of diffraction are equal in 

magnitude and of opposite signs.   

Thus the constructive interference condition between adjacent facets is satisfied 

when:  

        D
n' n

m 



 .   (3-4) 
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                         Fig. 3.11: Diffraction in a grism. 

For a small change of wavelength, δλ there is a corresponding small change δθ in 

the angle of diffraction such that:    

      
( )

n' sin ( sin
m   

       


 .  (3-5)  

A small angle approximation (sin δθ = δθ  and  cos δθ = 1 ) yields: 

 

   
( )

n' sin n' cos sin
m   

       


 . (3-6) 

After some algebra, and using a paraxial approximation, the following equation 

can be derived. 

 

            
n' W

m
 


 .    (3-7) 
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This equation allows the wavelength-dependent position of diffracted light to be 

estimated analytically, and was used to assess the validity of the numerical 

simulations based on the Fresnel integral. A Fresnel integral simulation of a 

grating prism was carried out using the parameters shown in Table 3.1. For the 

simulation, the input field was assumed to have a Gaussian beam profile, with 

beam diameter of 40 m. As can be seen in Fig. 3.12, the results perfectly match 

with those obtained using Eq. (3.7); δϴ = (2 x 0.05) / (1.5 x 3.7216), tan(δϴ) x 

11163.6 = 200 m. 

Figure 3.13 shows an enlarged section of the grating facets. The field intensity for 

different wavelengths on the grating facets is shown in Fig. 3.14. As can be seen 

in this figure, the shape of the beams on the grating facets is still Gaussian. Figure 

3.15 shows the relative output efficiency for different wavelengths. Here the 

fields have been normalized to unity. Note that the central (design) wavelength 

has the maximal power. The Matlab file for this simulation is listed in App. I. 

  

  

File name: 

mygrating_new_approximation_new_facets_6R_mod.m 

Simulation Parameters 

NF = 95  (number of facets) 

m = 2   (diffraction order) 

W = 3.7216  m  (facet width) 

n = 1  (refractive index before grating) 

n’ = 1.5  (refractive index after grating) 

beam diameter (1/e^2) = 40 m 

distance (input to grating centre) = 6500 m 

distance(output to grating centre) = 11163.6 m 

output plane span = 800 m 

simulation wavelengths = [0.5 , 0.55 , 0.6 , 0.65 , 0.7] m 

  
    Table 3.1: Simulation parameters used for the grating prism 



58 

 

 
 Fig. 3.12: Diffraction of a 40 m Gaussian beam by the grating prism. 

 The field intensity is plotted versus lateral displacement at the output plane. 
 

 

      
  Fig. 3.13: A portion of the facets of the grism, as defined in the  

  Matlab  simulation. 
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       Fig. 3.14: Field intensity of different wavelengths on grating facets. 

 

 

 

 
              Fig. 3.15: Relative output efficiency for different wavelengths, for the        

      grating prism, defined by the parameters in Table 3.1. 
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In the next simulation, we kept all the parameters as given in Table 3.1, except we 

doubled the number of facets, thus the widths of the facets are reduced by a factor 

of two i.e. from 3.7126 m to 1.8608 m. The simulation results are shown in 

Fig. 3.16, and verify that the resolution of the grating (i.e. the spatial dispersion) 

is doubled for the case of smaller grating facets. 

 
 Fig. 3.16: Diffraction of a 40 m Gaussian beam by a grating prism, where 

 the facet size has been reduced by a factor of two compared to a  grating defined 

 in Table 3.1. 

 

Next, consider the spectrometer system depicted in Fig. 3-17. 

 

 

 
 

             Fig. 3.17: Schematic representation of a general spectrometer system 
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Assume that λ1 and λ2 define the limits of the spectral range of interest. For 

example, if λ1 = 600 nm and λ2 = 800 nm, then δλ = 200 nm is the spectral range 

considered. In this system the input signal gets collimated by lens-1, then the 

grating diffracts the signal, and finally lens-2 focuses the deflected signal at the 

output plane where a pick-up fiber directs the signal to a PMT. As an illustration, 

assume that the goal is to capture 10 nm wavelength channel in one pick-up fibre. 

Thus, for 200 nm total bandwidth there are 20 channels that must be dispersed 

over a distance that is equal to 20 times the fibre diameter. If the diameter of a 

fibre is 65 m then 65 x 20 = 1300 m or 1.3 mm is the spatial extent of the 

output. If we denote this length (1.3 mm) by L, the total angle of deflection by δθ, 

and the focal length of the focusing lens by f, then we have: 

 

                                                          L f  .    (3-8) 
We also previously found                      

            
n' W

m
 


 ,    (3-9) 

so that           

                       L f
n' W

m
 


 ,    (3-10) 

or 

            
f

W
n' L

m 



 .    (3-11)  

 
For a hypothetical spectrometer made in PDMS (refractive index of 1.43), a 

focusing lens with focal length equal to 10 mm, and operation in the 2
nd

 

diffraction order, the required facet width is  

         
10 mm 2 0.2 m

W 2.15 m
1.43 1.3 mm

   
  

 
. 

A spectrometer system with the above given parameters can achieve the intended 

spatial dispersion of approximately 10 nm / 65 m. 

 

3.5.1 Position of diffracted orders in grating prisms 

Consider the basic geometry at the hypotenuse face of a grating prism (Fig. 3-18). 

Typically, the depth of the steps (D) is defined such that, for a specific diffraction 
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order (the design order) and design wavelength (λc), the incident beams which are 

perpendicular to grating facets continue along the same direction upon diffraction. 

This property provides in-line viewing for one wavelength and is useful in certain 

applications such as direct vision spectroscopy [67].  

      
   

 Fig. 3.18: The geometry at the hypotenuse face of a grism. The arrow  

 shows  the direction of the incident beam, and of the diffracted beam  

 at the design wavelength. 

 

 Table 3.2 shows the parameters of simulation relevant to this discussion: 

 

Simulation Parameters 

NF = 95  (number of facets) 

m = -2   (diffraction order) 

W = 3.7216 m (facet width) 

n = 1.5  (refractive index before grating) 

n’ = 1  (refractive index after grating) 

beam diameter (1/e^2) = 100 m 

distance (input to grating centre) = 5750 m  

distance(output to grating centre) = 1500 m  

output plane span = 2000 m 

simulation wavelength = [ 0.6 ] m 

 
 Table 3.2: Simulation parameters used to determine the position of  

 orders  in a grating prism. 
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Note that for the grating simulated, a refractive index of 1.5 and 1 was assumed 

for the incident and exit sides of the grating, respectively. From Eq. (3-4) we 

calculate D = 2.4 μm and using right triangle trigonometric relations it follows 

that Λ = 4.428 μm and α = 32.817 degrees. 

Now we write the grating equation [65]: 

            (n' sin n sinm        .    (3-12) 

With n’ = 1, it follows that: 

     n sin sin
m



   


.   (3-13) 

Substituting the values from above into this equation and assuming the negative 

second order ( m = -2), gives β = 32.817 degrees. This confirms that α and β at the 

design wavelength are equal in magnitude. The angle of deflection  in the -2
nd

 

order is δθ2 = α – β = 0, meaning that the -2
nd

 order goes straight through the 

grating without deflection as expected.  

For the -1
st
 order, Eq. (3-13) gives β = 42.6 degrees and thus δθ1 = α – β = -9.8 

degrees. The position of the -1
st
 order diffracted wave at the output plane is then 

given by x = tan(-9.8) .1500 (μm) = -259.8 (μm). 

This result is very close to that obtained by simulation (-260.5 m), as shown 

below in Fig. 3.20.  

Next consider the position of the zero order, which can be calculated using Snell’s 

law:  

           n sin sin    ,   (3-14) 

and results in β = 54.38 degrees and δθ0 = α – β = -21.567 degrees. Thus the 

predicted position of the zero order diffracted wave at the output plane is given by 

x = tan(-21.587) .1500 = -592.89 (μm). This result also matches well with that 

obtained by simulation (-592 m), as shown below in Fig. 3-20. As shown in Fig. 

3-19, the numerical simulation predicts that almost all of the energy appears in the 

design order (m = -2). Figures 3-20 shows the output field intensities in 

logarithmic scale, to facilitate a better comparison. There are four other peaks to 

the right of zero that belong to -3, -4, -5 and -6 orders, but, because the intensities 

at these orders are weak, they don’t show up in Fig. 3-19.   
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     Fig. 3.19: Intensity versus position at the output plane, as predicted by 

  numerical simulation of a grating prism. The peaks correspond to the  

 zero, -1 and -2 diffracted orders as explained in the text.  

                           

 
 Fig. 3.20: As in Fig. 3.19, but with a logarithmic scale for clarity. The  

 zero order is marked at -592 m and -1
st
  order is marked at -260.5 m. 

           

As demonstrated by this example, the numerical simulation based on the Fresnel 

diffraction integral produces results that are in good agreement with analytical 
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predictions for a simple grating. Further examples are provided in the following 

sections. 

3.6 Simulation of a binary phase grating 

A binary phase grating is perhaps the most basic form of grating. It is often used 

as a beamsplitter in laser systems. We developed a simulation program for a 1 x 2 

beamsplitter to demonstrate this functionality. The beamsplitter system 

considered is composed of a parabolic lens for collimation and a binary phase 

grating for diffraction. The lens is located at a distance of 100 m before the 

grating. The facets of the grating are approximately one wavelength (i.e. 0.6 m) 

deep, as shown in Fig. 3-21. Other parameters of the simulation are listed in Table 

3.3. 

  

    

  Table 3.3: Parameters for simulation of a binary phase grating 

 

Figure 3-22 shows the simulation results, confirming that the output energy gets 

divided equally between -1 and +1 orders while only a small portion of the total 

energy appears in the zero order (the peaks in the middle). It is worth mentioning 

that for the design wavelength (0.6 m), the numerical simulation of the idealized 

 

File name: binary_grating.m 

Simulation Parameters 

NF = 95  (number of facets) 

Fw = 5.2632 m (facet width) 

n = 1  (refractive index before grating) 

n’ = 1.5  (refractive index after grating) 

beam diameter (1/e^2) = 200 m 

distance (input to grating centre) = 2500 m  

distance(output to grating centre) = 10,000 m  

output plane span = 1600 m 

simulation wavelengths = [0.5 , 0.55 , 0.6 , 0.65 , 0.7] m  
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grating predicts that the energy is divided equally between -1 and +1 orders (Fig. 

3-23). 

                                              
Fig. 3.21: A zoomed in section of the binary grating showing three facets 

 

            

 

 
       Fig. 3.22: Output of a binary phase grating showing  -1, 0, and +1 diffracted orders. 
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Fig. 3.23: Output field intensities of a binary phase grating functioning as a 1 x 2 

beamsplitter. 

We also made a variation of this code that allows tilting of the grating with 

respect to the input field, for situations where the incident beam is illuminating 

the grating facets at an angle (the incidence angle can be chosen). Figure 3-24 

shows a section of a binary grating with a 10 degrees angular tilt in the positive 

direction.               

      

           Fig. 3.24: Orientation of the facets in a tilted binary phase grating. 
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Matlab codes, binary_grating.m  and  binary_grating_10deg_tilt.m  are listed in 

App. I. 

3.7 Simulation of a blazed triangular-groove transmission grating 

Triangular groove (saw-tooth) transmission gratings are frequently used in 

spectrometry. 

Figure 3-25 shows the typical geometry of this type of grating. In this 

configuration the incident light is normal to the back surface of the grating (α = 

0), so the grating equation reduces to: 

          sinm        (3-15) 

Here m is the diffraction order (usually |m| = 2), λ is the wavelength, Λ is the 

groove spacing and β is the angle of diffraction. 

Blazing for this type of grating occurs when the refraction of the incident beam at 

a mini prism that constitutes a grating groove coincides with the diffraction of the 

beam given by the grating equation. That is, in addition to the grating equation, 

the following Snell’s law equation needs to be satisfied: 

      n sin sin ( )x x      .   (3-16) 

 
  Combining equations (3-15) and (3-16) sets the condition for blazing as: 

 

        B

B

sin
tan ( )

n cos
x




 


 ,   (3-17) 

where βB is the blaze angle. 

 

 
 

      Fig. 3.25: Triangular-groove transmission grating. 
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Since our simulations are based on gratings formed in slab waveguides, we need 

to make some modifications to these equations. Consider the case shown in Fig. 

3-26, where the incident light originates in air ( n1 = 1) and enters into a medium 

of higher refractive index n2. 

 
 

        Fig. 3.26: Triangular-groove transmission grating with  n2  >  n1. 

The grating equation for this configuration is: 

        2n sinm     ,    (3-18) 

and the Snell’s law equation is: 

       2sin n sin ( )x x     .   (3-19) 

Thus, the condition for blazing is as follows: 

     
2 B

2 B

n sin
tan ( )

n cos
x





 
 

 
.   (3-20) 

Using Eq. (3-18) and a small angle approximation, we can obtain an equation for 

the linear separation between diffracted wavelengths at the output plane of the 

spectrometer system.  

If the design wavelength λ is increased by δλ, the angle of diffraction β will 

correspondingly increase by δθ, so that: 

         2n sin ( )m          .    (3-21) 

In the small angle approximation, cos δθ = 1 and  sin δθ = δθ. Therefore: 
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       2 2n sin n cosm m          ,   (3-22) 

    2n cosm      ,   (3-23) 

and 

      
2n cos

m




 

 
 .    (3-24) 

If we represent the linear separation between two wavelengths at the output plane 

by δL and the distance from grating to output plane by D, using the small angle 

approximation we have: 

      
L

tan )
D


    ,   (3-25) 

       
2

D
L=

n cos

m






 
 .    (3-26) 

Next consider an example simulation of a grating of this type. The simulation 

parameters are listed in Table 3.4. 

 

        Table 3.4: Simulation parameters for a blazed triangular-groove grating in the 

         first order 

The output from this simulation is shown in Fig. 3.27 and Fig. 3.28. As can be 

seen in these figures, the output energy is primarily concentrated in the intended 

order +1 order .  

File name: my_blazed_grating.m 

Simulation Parameters 

NF = 95  (number of facets) 

Grating period (Λ) = 2  m    

m = 1  (diffraction order) 

n = 1  (refractive index before grating) 

n’ = 1.5  (refractive index after grating) 

Input Gaussian beam diameter (1/e^2) = 40 m 

distance (input to grating centre) = 1,250 m  

distance(output to grating centre) = 5,500 m  

output plane span = 3000 m 

simulation wavelengths = [0.306 , 0.356 , 0.406 , 0.456 , 0.506] m  
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Fig. 3.27: Simulation output for a triangular-groove transmission grating. The position of 

two neighboring wavelengths is being marked for comparison with geometrical 

calculations. 

 

 
Fig. 3.28: Simulation output for a triangular-groove transmission grating. The position of 

two neighboring wavelengths is being marked for comparison with geometrical 

calculations. 
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From the grating equation: 

         2n sinm     ,   (3-27) 

The angle of diffraction β can be calculated and is given by β = 7.778 degrees. 

The two wavelengths marked in Figs. 3.27 and 3.28 are separated by 0.05 m. We 

can calculate their linear separation δL at the output plane from Eq. (3-26), which 

results in δL = 92.5 m. 

According to the output of the simulation (Figs. 3.27 and 3.28), δL = 91.9 m. 

The difference of 0.6 m can be attributed to the fact that the geometrical 

calculations are based on small angle approximations. 

3.7.1 Position of diffracted orders in triangular-groove gratings 

We used the parameters listed in Table 3.5 to simulate the diffraction of a 

Gaussian beam at a specific wavelength by a triangular-groove transmission 

grating. 

 

File name: my_blazed_grating_orders.m 

Simulation Parameters 

NF = 195  (number of facets) 

Fw = 7.3923 m (facet width) 

m = 2  (diffraction order) 

n = 1  (refractive index before grating) 

n’ = 1.43  (refractive index after grating) 

Input Gaussian beam diameter (1/e^2) = 40 m 

distance (input to grating centre) = 1,250 m  

distance(output to grating centre) = 1,500 m  

output plane span = 800 m 

simulation wavelength = [0.533] m  
 

          Table 3.5: Simulation parameters for determination of the position 

          of orders in a sawtooth grating 

The position of diffracted orders in a triangular-groove grating can also be 

obtained using the grating equation, Eq. (3-27). For the first order, m = 1 and  
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λ = 0.533 m, the angle of diffraction is easily calculated as: β = 2.89 degrees. 

The lateral displacement at the output plane can be estimated as: δL = tan β x D = 

tan (2.89
 o

) .1500 (μm) = 75.7 (μm). Similarly, in the second order (m = 2), we 

have β = 5.79 degrees and δL = 152 μm. For the third order (m = 3) we have β = 

8.7 degrees and δL = 229.5 μm. 

From the graph of Fig. 3.29, the numerically predicted values of δL for the 1
st
, 

2
nd

, and 3
rd

 order diffractions are 75.86 m , 151.7 m, and 229.1 m 

respectively, once again verifying the accuracy of the numerical simulations 

based on Fresnel diffraction integral. The simulation codes, my_blazed_grating.m 

and  my_blazed_grating_orders.m are listed in App. I. 

            Fig. 3.29: Position of diffracted orders in a sawtooth transmission grating. 

3.8 Simulation of a complete spectrometer system 

Next, we describe results for the propagation of a Gaussian beam through a 

collimating lens, a diffraction grating and a focusing lens (i.e. a complete 

spectrometer system) using the Fresnel diffraction integral approximation. As 

shown in Fig. 3.30, the input field (located at the light blue rectangle) encounters 

a number of interfaces before it reaches the output plane (the dark blue rectangle). 
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From left to right, these interfaces are the collimating lens, the lens boundary, the 

grating boundary, the grating facets, and the focusing lens. Figure 3-31 shows the 

output of the system. Spectrometer.m is the Matlab routine for this system (see 

App. I). The Matlab program became very slow as the number of interfaces and 

the number of facets got larger so we found it necessary to rewrite this program in 

FORTRAN. 

          Fig. 3.30: Device layout of a complete spectrometer system 

 

 

 

 
        Fig. 3.31: Diffracted fields of the complete spectrometer system 

          shown in Fig.3.30. 
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Based on the analysis above, we designed a microspectrometer system in which 

collimation and focusing elements are parabolic waveguide bi-convex lenses. In 

this design a parallel architecture is used to incorporate two microspectrometer 

systems side by side. In each system there are two waveguides, one along the 

spectrometer’s optical axis and the other coming from the side of the chip. These 

waveguides provide alternative routes for the illumination of the microfluidic 

channel in the u-section intended for optical interrogation. As fluorescing 

particles pass through this section of the microfluidic channel (i.e. the 

interrogation region) they can get excited by the laser light carried by the 

waveguides coming to this section of the microfluidic channel. To prevent the 

excitation light from entering the detector, the orientation of the side waveguides 

is at 90 degree angle to that of the triangular shaped output waveguides located 

horizontally at the specified points along the output plane (right edge of the chip).  

 The schematic layout of this system is shown in Fig. 3.32. This layout was used 

to design a mask and to fabricate chips. However, the optical experiments with 

grating were not successful. This was attributed to fabrication imperfections, and 

to the fact that, in this design, the excitation light originating from the input 

waveguide must traverse five interfaces before landing on the grating wall. Based 

on a simple analysis, a slightly tilted side-wall would cause the light to miss the 

grating completely. 

             
Fig. 3.32: Actual drawing of our first spectrometer chip (left). An enlarged section  

of the chip showing the two parabolic lenses and the grating in the middle (right). 

 

We also discovered that we could not use our simulation program to analyze this 

design, because the two parabolic surfaces making up the lenses were in close 



76 

 

proximity of each other. This violated the condition for the validity of the Fresnel 

diffraction integral, as discussed further below. We specifically found that, with 

this configuration, for the Fresnel diffraction integral simulations to produce 

meaningful results, a minimum separation of ~ 1000 μm between two consecutive 

interfaces was needed. Our solution to this problem was to use other more 

rigorous diffraction models such as the scalar Kirchhoff or Rayleigh-Sommerfeld  

approximations [71], as discussed below. 

3.9 Region of applicability of different diffraction models 

The most rigorous treatment of the diffraction problem is to solve the vector wave 

equations derived directly from Maxwell’s equations. However, this is truly a 

monumental task, especially when the geometry of the diffractive object is 

complex.      

All other diffraction models belong to the scalar domain, where it is necessary to 

assume that the diffractive element is large in comparison to the wavelength, and 

the observation plane is not close to the diffractive element. In the category of 

scalar equations, there are four different approximations: Kirchhoff, Rayleigh-

Sommerfeld, Fresnel (near-field), and Fraunhoffer (far-field). The range of 

applicability of Kirchhoff and Rayleigh-Sommerfeld approximations extends to 

all values of  (the distance from the aperture to observation plane), provided the 

basic assumptions of the scalar model stated above are met. Fresnel and 

Fraunhoffer approximations each have specific ranges of applicability, which we 

will discuss with the help of examples. 

First, consider a 10 m x 10 m rectangular aperture, a 100 m x 100 m 

observation plane, and a monochromatic input field of λ = 500 nm. The Fresnel 

approximation is valid when the value of z  is such that [62]: 

   
2

2 2
3

max
( ) ( )

4
z x y


 


     .    (3-28) 

 Here z is the optical propagation distance, ( , )  represent the aperture size, and 

(x, y) represent the observation plane size. For the values mentioned above, the 

condition becomes  
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z >> 972.56 m.  

Next, consider a strictly paraxial case in which a 10 m x 10 m rectangular 

aperture is viewed at a 10 m x 10 m observation plane using monochromatic 

light with  λ = 500 nm. Substituting these values into Eq. (3-28) yields z >> 100 

m.  

The Fraunhoffer, or far-field approximation, is valid when: 

    
2 2

max( )

2

k
z

 
.   (3-29) 

As above, z is the optical propagation distance, and ( , )  represent the aperture 

size, while 
2

k



 . 

For the examples given above, the minimum distance between the aperture and 

the observation plane (i.e. the beginning of the Fraunhoffer range) would be z >> 

1256.6 m. 

It is also worth mentioning that for an aperture that is 1 cm  x 1 cm, z >> 1256 

meters is the condition for validity of the Fraunhoffer approximation. 

3.10 Kirchhoff and Rayleigh-Sommerfeld diffraction integrals 

In solving a planar, scalar diffraction problem, there are three relatively accurate 

methods available: Kirchhoff, Rayleigh-Sommerfeld I and Rayleigh-Sommerfeld 

II. These methods are closely related and their differences result from different 

assumptions regarding the boundary conditions. As outlined by M. Totzeck, the 

two-dimensional Kirchhoff and Rayleigh-Sommerfeld I and II diffraction 

integrals can be written in terms of the Hankel function [71]. Consider the 

problem of finding simplified solutions for the two-dimensional diffraction of a 

monochromatic, cylindrical wave by a slit. The slit width is 2b and it is made in 

an opaque, completely absorbing and perfectly conducting screen (Fig. 3-33).        
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Fig. 3.33: Two dimensional diffraction of an incident cylindrical wave by a slit aperture 

[71] 

According to the Kirchhoff and the Rayleigh-Sommerfeld theories, the field at 

any point beyond the aperture screen is due to the field and/or its derivative on the 

planar screen. In the Kirchhoff method, the assumption is that the field and its 

normal derivative are known everywhere on the screen. On the other hand, for the 

Rayleigh-Sommerfeld theory, the boundary condition is either on the field 

(Rayleigh-Sommerfeld I) or on the normal derivative of the field (Rayleigh-

Sommerfeld II). 

The following treatment is based on the expressions in reference [72]. 

The diffraction integral for the Rayleigh-Sommerfeld I, where U0 is the boundary 

value, is given by: 

               I 0

exp( )1
( ) ( ) d dy

2

b

b

ik r r'
U r U r' x' '

r r'



 

 
  

   
  n

.  (3-30) 

The diffraction integral for the Rayleigh-Sommerfeld II, where 0U

n
 is the 

boundary value, is given by: 

   II 0

exp( )1
( ) ( ) d dy

2

b

b

ik r r'
U r U r' x' '

r r'



 


 

   n
.  (3-31) 

For the Kirchhoff method, where both U0 and 0U

n
 are boundary values, the 

diffraction integral is given by: 
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          I II( ) 1/ 2 ( ) ( )kU r U r U r  .   (3-32)  

The three-dimensional diffraction integrals can be converted to two-dimensional 

diffraction integrals using the following transformation [71]: 

   
0

exp( )
d ( )

ik r r'
y' i H k '

r r'
  






 

 .  (3-33) 

Here, ρ = (x, 0, z) and H0 the zeroth-order Hankel function of the first kind. 

Substituting Eq. (3-33) into the diffraction integrals above, we find that for the 

Rayleigh-Sommerfeld I case: 

            I 0 0( ) ( ) ( )d
2

b

b

i
U U ' H k ' x'   




 

 n
,   (3-34) 

whereas for the Rayleigh-Sommerfeld II case: 

            II 0 0( ) ( ) ( )d
2

b

b

i
U H k ' U ' x'   




  

 n
.                 (3-35) 

For the Kirchhoff integral, we take the mean value of UI and UII, as specified in 

Eq. (3-32). 

In order to calculate the normal derivative of U0, we can assume that U0 is a plane 

wave with a constant magnitude A0 and a propagation angle ξ, such that: 

            0 0 0( , ) exp( ) exp ( sin cosU x z A ik A ik x z      .  (3-36) 

Taking the normal derivative of Eq. (3-36), we have: 

          0 0
0 cos( )

U U
ik U

z


 
   

 n
.   (3-37) 

The propagation angle ξ, between n and the plane wave’s propagation vector K, 

can be found from: 

              0(arg )
arcsin

U

k x


 
   

.    (3-38)  

The normal derivative of the Hankel function H0 can be found as: 

  
0

0

( ) ( )
( )

H k ' '
H k ' k

k ' '

   
 

   

  
   

   
n

n
 

        1( )cos( )kH k '    ,   (3-39) 
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where   is the angle between n and (ρ- ρ′) (refer to Fig. 3-33) and H1 is the first-

order Hankel function of the first kind. 

Substitution of normal derivatives in the three scalar diffraction integrals yields: 

I 1 0( ) ( )cos( ) ( )d
2

b

b

ik
U H k ' U ' x'    



  .   (Rayleigh-Sommerfeld I) 

          (3-40) 

II 0 0( ) ( )cos( ) ( )d
2

b

b

k
U H k ' U ' x'    



  .   (Rayleigh-Sommerfeld II) 

          (3-41) 

1 0 0( ) ( )cos( ) ( )cos( ) ( )d
4

b

K

b

ik
U H k ' iH k ' U ' x'       



    
  .                 

     (Kirchhoff)     (3-42) 

We developed a Matlab program based on the Rayleigh-Sommerfeld-I theory of 

diffraction. Here, the two-dimensional diffraction integral is represented by an 

integral equation that incorporates the built-in Matlab function “besselh”, which is 

the first-order Hankel function of the first kind. In order to prove the accuracy of 

this routine, we replaced the Fresnel diffraction operator of a number of previous 

simulation programs with the Rayleigh-Sommerfeld-I diffraction integral, and in 

all cases we obtained results that were similar to those obtained by Fresnel 

approximation. As stated above, this generation of software is capable of 

simulating near- field diffraction effects. In order to demonstrate this, we 

simulated the passage of a Gaussian beam (with a specific diameter) through a 

slab-waveguide bi-convex lens, as depicted in Fig. 3.34. Figure 3.35 shows that a 

10 m input Gaussian beam produces a 10 m Gaussian output field. The output 

beam diameter was confirmed using ABCD matrix calculations [73]. It should be 

noted that the two lens interfaces are only twenty nanometers apart in this 

simulation, for Fresnel approximation this distance cannot be less than 100 m. 
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        Fig. 3.34: Simulation set-up for a bi-convex slab-waveguide len 

 

 

          

 

 Fig. 3.35: Simulation results: 10 m diameter Gaussian input beam (left). Gaussian            

 output beam (right), which has a profile that is identical to the input beam. 

The program for this simulation is my2lens_Hankel.m and is listed in App. I. 

The accuracy of the Rayleigh-Sommerfeld I method was further investigated 

through simulations for the case of diffraction of a step input by a single slit. The 

results are shown in Figs. 3.36-3.39. 
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Fig. 3.36: Near-Field diffraction at a single slit (width 20 λ, Propagation  distance 5 λ,  

λ = 1m)  

 

         
Fig. 3.37: Near-Field diffraction at a single slit(width 20 λ, Propagation distance 100 λ, 

 λ = 1m) 
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Fig. 3.38: Diffraction at a single slit (width 20 λ, Propagation distance 500 λ, λ = 1m).    

At this distance, Fresnel diffraction is valid. 

 

           
Fig. 3.39: Diffraction at a slit (width 20 λ, Propagation distance 15000 λ, λ = 1m). 

At this distance, Fraunhoffer diffraction is valid.  

Marathay et al. [74]  utilized a full vectorial method in which the diffracted fields 

were calculated by the summation of the fields due to EM dipoles, and they 

reported results which are in good agreement with Figs. 3.36-3.39, verifying the 

accuracy of an integral formulation. 
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3.10.1 Asymptotic series for the Hankel function 

According to the Handbook of Mathematical Functions by Abramowitz and 

Stegun (page 365) [75], it is possible to use asymptotic expansions for the 

Modulus and Phase of the Hankel function: 

2

2 4 6

2 1 1 1 3 ( 1)( 9) 1 3 5 ( 1)( 9)( 25)
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When ν is fixed, x is large and positive, and μ = 4 ν
2
. 

 
Using the first two terms of the expansions, and for the Hankel function of the 

first order and first 

 

 kind, we have: 

          1

1 ( ) 2 / exp ( 0.75 )H x x j x   .                (3-43) 

We tested this expression by writing a Matlab script (ahankel1.m), which 

compared the asymptotic values with the built in Matlab hankel function “ 

besselh”, for increasing values of x. The general conclusion was that for x > 200, 

that is for distances greater than  approximately 20 μm, the error is < %1. 

Furthermore, this error decreases in proportion with the distance x. The Matlab 

script ahankel1.m is listed in App. I.    

3.11 Focusing gratings 

As discussed in Chapter 1, the primary motivation for the work on gratings was to 

develop a microspectrometer technology for LOC systems. Such a device would 

be especially useful for fluorescence spectroscopy applications.  

Because of the weak nature of fluorescent signals, it is important to minimize the 

number of interfaces that the light has to go through before it reaches the output 

plane for detection. By using curved gratings, it is possible to incorporate the 

focusing action of the lens into the grating element. Another important advantage 
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of using a focusing grating is that a significant reduction in the size of the 

microspectrometer chip is possible.  

An algorithm is required to define the curvature and the position of the grating 

facets. For reflection gratings, the well known Rowland Circle [64] as well as a 

number of other configurations are often employed. For example, our lab 

previously reported the design of circular and elliptical reflection gratings [76, 

77], but these methods cannot be easily adapted to transmission gratings. Sander 

et al. [50] reported an analytical method to define the facets of a focusing 

transmission grating by solving a system of non-linear equations, for the geometry 

presented in Fig. 3.40. 
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Fig. 3.40: Geometry and the geometrical relations for the focusing transmission grating 

proposed by Sander and Müller [50]. 

To verify this design, I used the Newton-Raphson method in order to solve the 

above system of over-determined nonlinear equations. Using parameters listed in 

Table 3.6 and by iteration of m from 1 to m (where m is the total number of 

facets), the positions xi and yi (unknowns of the equations) were determined. 

Setting these points as the centre of the facets, a non-periodic grating in planar 
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format can be produced, in which the width and depth of the facets are equal and 

they range from a = b = 0.5 m to a = b = 1.5 m. This type of grating, in which 

the facets are not equal but rather vary gradually and uniformly across the length 

of the grating, are known as chirped gratings. The self-focusing transmission 

grating obtained has a spectral dispersion equal to D = (λ2 -  λ1) / (
2

y -
1

y ) = 60 

nm/mm. 

 

 
Table 3.6: Parameters used in the Newton-Raphson iterations for defining the positions of 

the grating facets [50]. 

 
Although a grating defined in this way provides the focusing function (i.e. there is 

no need for additional focusing elements such as mirrors or lenses), it only 

focuses the two design wavelengths λ1 and λ2. The images of the other 

wavelengths, which fall in between and outside of the two design wavelengths 

will be blurred.  

3.12 Design of a focusing grating/lens 

Based on the insights gained from simulations described above, a compact LOC 

system for microspectrometry was conceived.  

Here we present the preliminary details of the theory and simulation of this 

system. A more complete description, including fabrication details and 

experimental results, can be found in Chapter 6. As shown in Fig. 3.41, the optical 

system is composed of two principal components; a parabolic lens for collimation 

and a curved grating for dispersion and focusing.  

λ1 = 400 nm xλ1 = 10000 nm yλ1 = 2500 nm n1 = 1.5 

λ2 = 550 nm xλ2 = 10000 nm yλ2 = 5000 nm n2 = 1 
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Fluidic channel Waveguide

Waveguide

Waveguide

Parabolic
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Fig. 3.41: Layout of the proposed microspectrometer. Fluidic channel and the 

three waveguides (left). Optical component comprising a parabolic collimating 

lens and a curved focusing grating (right). The black regions are air cavities 

embedded within the PDMS claddings (see sec. 3.1 and sec. 6.5) 

Three waveguides (left), one along the optical axis and the other two coming from 

the top and bottom of the chip  provide alternative ways to illuminate a section of 

the microfluidic channel used for optical interogation. As the fluorescing particles 

pass through this section of the channel they can get excited by the laser light 

carried by the waveguides coming to this region. To prevent the excitation light 

from entering the detector, the orientation of the waveguides coming from the top 

and bottom is in 90 degree angle to that of the detector which is to be positioned 

in a horizontal fashion at a specified point along the output plane (the right edge 

of the chip).  

The dimensions of the lens-grating/lens (right figure shown above) is shown in 

Fig. 3.42,  
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  Fig. 3.42: Dimensions of the lens-grating/lens component. 

3.12.1 Details of the collimating lens  

The focal length of the collimating lens was chosen as 3 mm. The radius of the 

lens is obtained from the formula for spherical lenses given by: 

           2 1

2

n n
R f

n


 ,    (3-44) 

where f is the focal length of the lens, n2 is the refractive index of the lens 

material (1.43),  is the refractive index of vacuum (1.0) and R is the radius of 

the lens. The coordinates x and y for the collimating lens are obtained from the 

formula: 

             
2

2R

y
x    ,    (3-45) 

which assumes a left opening parabola. 

3.12.2 Design details for the curved grating/lens 

We designed a grating where each facet is an arc or section of a circle, the radius 

of which is uniquely determined to obtain a common focal point among all facets 

(Fig. 3.43). This gives the grating a focusing property while making the 

spectrometer more compact. In this design, the number of interfaces is reduced, 

which is especially advantageous when faint signals such as fluorescent sources 

are involved. 
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Fig. 3.43: Geometry of the focusing grating/lens. The facets of the grating are sections of 

circles that act like lenses with a common focal point. X and Z are coordinates within the 

horizontal plane of the slab-waveguide system.   

 

For the design wavelength (λ = 0.645 m), the constructive interference of light 

from adjacent facets will occur when the difference in focal length for the two 

facets, ∆ f = f j – f j+1  satisfies: 

          
2 1

f
n n

m
 


 ,    (3-46) 

where m is the diffraction order, n2 = 1.43 is the refractive index of the grating 

material and n1 = 1.0  is the refractive index of vacuum. using the parameters 

mentioned gives Δf = 3 m.       

In order to produce a compact spectrometer the focal length of the grating was 

chosen as 10 mm. The grating was designed to have 600 facets where each facet 

is a small section of a cylindrical lens. The facets gradually decrease from 6 m 

(the first facet) to 4.93 m (the last facet) each time reducing by  0.0018 m. 

Gratings of this type, where the facets are not equal but vary slowly across the 

length of the grating, are known as chirped gratings. Chirping can further enhance 

the focusing function of the grating as discussed in sec. 3.11. Figure 3.44 shows 

the device layout. In this figure, the lower and upper boundary rays (the red lines) 

come together at the common focal point of the grating, which is actually the 

focal point of all the mini-lenses (i.e. the facets). The grating was furthermore 

designed to eliminate shadowing effects among facets. Figure 3.45, shows a 
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grating from an earlier design where facets partially shadow one another. As 

shown in Fig. 3.46, the facet layout was subsequently modified to eliminate 

shadowing effects. 

 

Fig. 3.44: The layout of the optical device (from Matlab simulation). 

 
      Fig. 3.45: Shadowing effect among grating facets  

     (i.e. consider a beam propagating along x from left). 
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                      Fig. 3.46: No shadowing effect between the adjacent facets 

This modification to the grating facets caused the focus of the grating to shift 

from 10000 m to 10214 m. Accordingly, we increased the length of the chip by 

214 m, in the actual drawings used for writing the mask. 

We used the Rayleigh-Sommerfeld I method and simulated the diffraction of a 20 

μm diameter Gaussian beam in the above mentioned lens-grating/lens optical 

system. Figure 3.47 shows the result of this simulation. As can be seen from this 

figure, the diffracted Gaussian beam for the design wavelength (0.645μm) appears 

at -1293 μm at the output plane. Figure 3.48 is an enlarged figure showing the 

first few grating facets. Note that the position of the first facet is also at -1293 μm 

on the vertical axis. Thus, at the design wavelength, the focusing grating brings 

the intended order into focus at the output plane, at a point directly in line with the 

first facet.  

Although we were initially concerned about the rather large air-gap in the lensing 

region (the area between the parabolic lens and the curved grating in Fig. 3.44 and 

Fig. 3.42) which suggested a lower transmission efficiency, as some of the light 

trapped in the core layer would scape from this un-guided section, our laser 

experiments (please refer to Chapter 6) showed that the existence of this air-gap 
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does not pose major limitations on the performance of the spectrometer. In fact as 

observed by light transmission experiments with the “air-core waveguides” 

(discussed in sec. 6.2 and sec. 6.4) the air gap, is expected to work as an optical 

mode filter to enhance the resolution of the microspectrometer.    

The Matlab code for this simulation is mygrating_lens_Gaussian_input.m which 

is listed in App. I. 

  
          Fig. 3.47: 2

nd
 order Gaussian beam diffraction of multiple wavelengths in the lens  

          grating/lens optical system. 

 
         Fig. 3.48: Enlarged figure showing the first few facets of the grating/lens  
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Figure 3.49 shows the input Gaussian beam for a simulation which clearly 

illustrates the focusing function of the curved grating as a lens.   

  

Fig. 3.49: Simulation input used for the demonstration of the grating’s focusing action. 

The beam diameter is 12 μm and the propagation wavelength is λ = 0.645 μm.  

    

Figures 3.50 and 3.51 correspond to the field distributions at the collimating lens 

and the focusing grating respectively. 

  

        Fig. 3.50: Field distribution on the collimating lens.  
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       Fig. 3.51: Field distribution on the grating facets. 

Figure 3.52 shows the Gaussian output field in which, the normalized intensity 

has peaked to ~ 0.04 at the focal region, as compared to ~ 0.01 at the position of 

the grating facets (Fig. 3.51). It should be noted that the beam diameter is 

considerably reduced as a result of the grating’s focusing action.                       

    

             Fig. 3.52: Output Gaussian field at the gratin/lens focal region. 
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Figure 3.53 is a three-dimensional plot showing the field as it propagates through 

a region immediately after the grating and ending at the output plane (the exit end 

of the spectrometer). As can be seen in this plot the Gaussian beam intensity 

gradually increases and it reaches its peak near the focal point of the grating. This 

focusing property was experimentally verified by the observed narrowing of the 

laser beam fringes which started immediately after the grating and continued 

towards the spectrometer’s focal point at the edge of the chip (data not shown).  

 

 

Fig. 3.53: Three dimensional plot of the scattered field in the region starting right after 

the grating and ending at the grating’s focus (x = -1293 μm) at the spectrometer’s exit.   

A microspectrometer chip was fabricated based on this design. Experimental 

results are reported in Chapter 6, along with additional analytical and numerical 

results. 
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CHAPTER 4 

 

4. Gaussian Beam Propagation: Comparison of the analytical 

closed-form Fresnel integral solution to the simulations of the 

Huygens, Fresnel, and Rayleigh-Sommerfeld I approximations
3
 

 

4.1. Introduction 

In physical optics, propagation of the field is normally posed as a 

diffraction problem. In order to solve this problem diffraction integrals need to be 

invoked. Because of mathematical difficulties rigorous solutions to diffraction 

integrals are rare [63]. As discussed in this paper Gaussian beam is an important 

special case for which an analytical solution exists. Otherwise in most cases of 

practical interest approximate methods are used [63]. We use the exact solution 

for the propagation of Gaussian beam as reference in order to determine the level 

of accuracy obtained from the Huygens, Fresnel and Rayleigh-Sommerfeld I 

approximations.           

The propagation of waves can be effectively analyzed using the Huygens 

and Fresnel integral approaches. Anthony E. Siegman in his book “lasers” takes a 

brilliant approach and begins with the spherical waves as the general solution to 

the exact wave equation in order to facilitate the understanding of the Huygens’ 

Principle and consequently the paraxial Fresnel approximation [73]. We adopt the 

same strategy and begin our discussion with the spherical waves. 

4.2. Spherical Waves, Huygens’ Principle and the Fresnel Approximation 

A source point radiating a uniform diverging spherical wave from position 0r  can 

be expressed as: 

           
~

0
0

0

exp[ ( , )]
( ; )

( , )

jk
E








r r
r r

r r
   (4-1) 

                                                 
3
 This chapter was published in J. Opt. Soc. Am. A 30(4), 640-644 (2013) 
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where 
~

0( ; )E r r is the field at point ( , , )x y zr  due to a source at point 

0 0 0 0( , , )x y zr , and where the observation point , zs  is separated from the source 

point 0 0, zs  by the distance 0( , ) r r  

given by: 

2 2 2

0 0 0 0( , ) ( ) ( ) ( )x x y y z z      r r     (4-2)  

According to Huygens ’ Principle: “every point on a propagating wavefront 

serves as the source of spherical secondary wavelets, such that the wavefront at 

some later time is the envelope of these wavelets” [78]. In other words, each of 

the Huygens’ wavelets is a spherical wave of the form given by Equation (4-1) 

and sum of all these wavelets leads to Huygens’ integral equation of the form 

[73]: 

0

~ ~
0

0 0 0 0 0

0

exp[ ( , )]
( , ) ( , ) cos ( , )

( , )S

jkj
E z E z ds




 


 

r r
s s r r

r r
  (4-3) 

Where
~

0 0 0( , )E zs is the incident field distribution, 0ds is an incremental element of 

the surface 0S at the point 0 0, zs and 0cos ( , ) r r is an “obliquity factor” defined by 

the angle 0( , ) r r between the line 0( , ) r r and the normal to the surface element 

0ds (Fig. 4.1).  

~

0 0 0( , )E zs

0ds

0z z

~

( , )E zs
0( , ) r r



 

Fig. 4.1: Geometry for the evaluation of the Huygens’ integral [73]. 

We are interested in Huygens’ integral in one dimension since all our simulations 

are one dimensional. Considering only one transverse dimension: ( , )x zr ; 

0 0 0( , )x zr  and for 0 0z  , and replacing 0( , ) r r  by L , the Equation (4-2) 

becomes                                      2 2

0( )L x x z        (4-4) 



98 

 

For free space propagation and in the paraxial approximation where the point 

source 0x is not too far off the z axis , L can be approximated as independent 

of 0x and the one dimensional Huygens’ integral [73] can be given by:  

~ ~

0 0 0 0( , ) ( , )exp( )cos
j

E x z E x z jkL dx
L




   (4-5) 

To obtain the Fresnel integral in the paraxial approximation we expand Equation 

(4-2) as a power series 

2 2

0 0
0 0

0

( ) ( )
( , )

2( )

x x y y
z z

z z


  
    


r r    (4-6) 

In rewriting the spherical wave of Equation (4-1) , we disregard all terms higher 

than quadratic terms in the power series expansion  for the phase shift factor 

0exp[ ( , )]jk r r  and in the denominator we simply replace 0( , ) r r by 0z z , then 

we have what we may consider  “paraxial-spherical wave” in the Fresnel 

approximation [73]: 

  
2 2~

0 0
0

0 0

( ) ( )1
( , , ) exp ( )

2( )

x x y y
E x y z jk z z jk

z z z z

   
    

  
 

          (4-7) 

The two dimensional diffraction integral in the Fresnel approximation can be 

written as [73]: 

2 2~ ~
0 0

0 0 0 0 0

0 0

0 0

( ) ( )
( , , ) ( , , ) exp ( )

( ) 2( )

                                                                                                          cos

x x y yj
E x y z E x y z jk z z jk

z z z z

dx dy





   
     

  



  

          (4-8) 

With 0 0z  , the one dimensional Fresnel integral has the form [73]: 

        
2~ ~

0
0 0 0 0

( )
( , ) ( , )exp cos

2

x xj
E x z E x z jkz jk dx

z z




 
   

 
   (4-9) 

 

4.3. Rayleigh-Sommerfeld I diffraction formula 

For the case of the Rayleigh-Sommerfeld I formulation of diffraction [79] 

the two-dimensional diffraction integral can be written in terms of the Hankel 
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function as outlined by M. Totzeck in [71]. The example case chosen for the 

derivation of the Rayleigh-Sommerfeld I formula is the classical problem of two-

dimensional diffraction of a monochromatic, cylindrical scalar wave by a slit, 

although we are going to use the obtained integral formula for propagation 

(diffraction) of a Gaussian beam. Figure 4.2 illustrates the geometry under 

consideration.  

x

z

p

r

r’

r-r’

k
n



 

Fig. 4.2: Diffraction of an incident cylindrical wave by a slit aperture ( after [71] ) 

The slit width is 2b and the aperture screen is opaque, completely absorbing and 

perfectly conducting. According to the Rayleigh-Sommerfeld theory the field at 

any point beyond the aperture screen can be calculated from the field or its normal 

derivative on the planar screen. In the first Rayleigh-Sommerfeld integral the 

boundary condition is on the field while in the second Rayleigh-Sommerfeld 

formula the boundary condition is on the normal derivative of the field. For the 

Rayleigh-Sommerfeld I formulation the diffraction integral can be written as [72, 

79]: 

     

b '
' ' '

I 0 '

b

1 exp( | |)
( ) ( )

2 n | |

ik r r
U r U r dx dy

r r



 

  
  

  
    (4-10) 

With 0U  as the field at the aperture. 

The following equation can be used to convert the three-dimensional diffraction 

integral into a two-dimensional diffraction integral [80]: 

           
'

' '

0'

exp( | |)
( | |)

| |

ik r r
dy i H k

r r
  






 

   (4-11) 

Here 0H  is the zero-order Hankel function of the first kind, ( ,0, )x z   and 

' ' '( ,0, )x z  . 
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By substituting Equation (4-11) in the integral of Equation (4-10) we obtain: 

           ' ' '

I 0 0( ) ( ) ( | |)
2 n

b

b

i
U U H k dx   




 

            (4-12) 

Taking the normal derivative of the Hankel function 0H  we have: 

' '
' 0

0 ' '

( | |) ( )
( | |) n

n | | | |

H k
H k k

k

   
 

   

  
   

   
 

     '

1( | |)cos( )kH k                

     (4-13) 

Where 1H  is the first order Hankel function of the first kind and  is the angle 

between n  and '( )  , (see Fig. 4.2).  

By substituting Eq. (4-13) into Eq. (4-12) we obtain the first Rayleigh-

Sommerfeld diffraction formula in terms of Hankel function [71]: 

                            ' ' '

I 1 0( ) ( | |)cos( ) ( )
2

b

b

ik
U H k U dx    



            (4-14) 

4.4. Propagation of a Gaussian beam 

A Gaussian beam is an optical beam such that the amplitude of the wave 

function ( , , )u x y z associated with it has a Gaussian distribution at each cross-

section. Laser beams emerging from cylindrically symmetric cavities have this 

character. For convenience we relegate the dependence on z to a subscript and 

introduce  

    ( , ) ( , , )zu x y u x y z     (4-15) 

To study the propagation of a Gaussian beam we may consider a “signal” in an 

input plane ( 0)z  with a Gaussian distribution 

           
2 2

0 2

0

( )
( , ) exp

x y
u x y c



 
  

 
  (4-16) 

where c and 0 are constants. Its square amplitude, known as irradiance or 

intensity, is also Gaussian: 

            
2 2

2 2

0 2

0

2( )
( , ) | ( , ) | exp

x y
I x y u x y c



 
   

 
  (4-17) 
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Using the Fresnel diffraction formula we shall obtain an expression for ( , )zu x y , 

the complex optical signal at a plane z units distant from the input plane. It will be 

shown that the amplitude distribution remains Gaussian for all z and the radius of 

the beam increases with z . 

In the Fresnel approximation we have 

'2 '2
' 2 ' 2 ' '

2

0

exp( ) ( )
( , ) exp exp ( ) ( )

2
z

j jkz x y k
u x c j x x y y dx dy

z z 

 

 

    
          

  
 

          (4-18) 

Separating the integral with respect to 'x  

          2 '2 ' '

2

0

1
exp exp ( ) exp

2 2

k k k
j x j x j xx dx

z z z





    
       
    

   (4-19) 

We note that the integral is of the form of a Fourier transform of a Gaussian 

function 

                           
2

2exp( ) exp( ) exp
4

j d
 

 
 





 
          

 
   (4-20) 

Here       
2

0

2 2

0 0

21
( )

2 2

z j kk k x
j

z z z


 

 

    
    

 
  (4-21) 

After some algebra we find for the 'x part  

      
2 2 2

2 20 0

2 2 2 4 2 2 4

0 0 0

2 2
exp exp

2 4 4

z kkz
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z j k z k z k
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        
 (4-22) 

A similar result is found for the integral with respect to 'y  except that x is 

replaced by y . 

Thus we obtain 

2
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2 2 2 4
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            (4-23) 

Note that at 0z  , this reduces to 
2 2

2

0

( )
exp

x y
c



 
  

 
as it should.  

If the real exponential is written 

                           
2 2 2 2

2 20

2 2 4 2
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exp ( ) exp
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

 
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  (4-24) 

Then for 2 2 2( ) ( )x y z  the amplitude of ( , )zu x y is down to 1e (and its square 

is down to 2 13.5e   ) of its value at 0 , 0x y    . Thus ( )z is a measure of 

the beam radius (half-width) at any plane z (Figure 4.3). 

 

         

e-2=13.5%0

 

Fig. 4.3: Gaussian beam with radius of the beam 0( ) at 
2 or13.5%e   of its maximum 

intensity  

From the above definition we have 

   

2
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
 

 
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  (4-25) 

Another parameter frequently used is the Rayleigh range: 0z  

       
2 2

0 0
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  
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      (4-26) 
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In terms of 0z we may write the beam radius and radius of curvature of the 

wavefront as 

    

2

0

0

( ) 1
z

z
z

 
 

   
 

             (4-27);       
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      (4-28) 

Finally the closed form solution of the one dimensional Fresnel diffraction 

integral that can be used for the propagation of a Gaussian beam is given by 

2
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         (4-29) 

4.5. Results and Discussion 

We have implemented the analytical closed form solution of the Fresnel 

diffraction integral for an input Gaussian field Eq. (4-29), together with Huygens, 

Fresnel and Rayleigh-Sommerfeld I approximations Eq. (4-5), Eq. (4-9), and Eq. 

(4-14) respectively, in a Matlab program for comparison. The parameters of the 

simulation are the beam radius 0 of the initial Gaussian field, the optical 

wavelength , and the propagation distance z . In all simulations the 

parameters 0 and were kept constant. We have increased z from 1 m  to 

1,000,000 m  in increments that translate to half a unit in the logarithmic scale 

(i.e. 1,3,10, 32...     ). For each approximate method we recorded the values for the 

maximum intensity of the output Gaussian beam as the propagation distance z 

was incrementally increased. We then compared these values with maximum 

intensities obtained from the exact integration of the Fresnel diffraction integral. 

The results are compiled in the logarithmic graphs of Fig. 4-4. According to our 

simulations in the Fresnel approximation a Gaussian beam that has a radius of 

0 20 m    requires a minimum propagation distance of at least 10  (Fresnel 
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near field criteria). We have implemented two versions of the Fresnel integral. In 

the first version (Fresnel 1) the obliquity factor is 
1 cos

2

 
 
 

while in the second 

version (Fresnel 2) the obliquity factor is  cos . Based on our simulations, 

1 cos

2

 
 
 

 provides more accurate results. See Fig. 4.4(a). As we expect the 

Rayleigh-Sommerfeld formula provides the most accurate approximation. For 

example at propagation distance of 1 m  the relative error is less 

than 0.00000001 . Contrary to the other approximations used in this study in the 

Rayleigh-Sommerfeld approximation the level of accuracy falls off rapidly at the 

beginning as the propagation distance increases but even in the worst case the 

relative error is still around 0.001 %. See Fig. 4.4(b). To evaluate the Hankel 

function in the Rayleigh-Sommerfeld I integral we have used the built in Matlab 

function “besselh”. In the program we have also included an integral simulation in 

which an asymptotic expansion for large arguments (4-30) is used in lieu of 

Hankel function (see the Handbook of Mathematical Functions by Abramowitz 

and Stegun page 364 section 9.2.3) [75]. 

               1

1 ( ) 2 ( ) exp ( 0.75 )H x x j x     (4-30) 

Looking at Fig. 4.4(c) we notice that using the above expansion instead of Hankel 

function we obtain results that are identical to the ones obtained by Huygens’ 

approximation. As indicated by the logarithmic graphs of Fig. 4.4 the level of 

accuracy for each method fluctuates throughout the propagation region. While 

accuracies of the Fresnel method are generally increased as the propagation 

distance increases, the accuracy of the Rayleigh-Sommerfeld I approximation for 

propagation distances in the range of 1 m  to m  diminishes at first and 

later recovers as the propagation distance is further increased. The relative percent 

error for the ending point of all five simulations (at 1z  meter) is in the 

0.000003%  range, which is an excellent approximation. 
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(a)                                                                 (b)  

 

                    (c) 

Fig. 4.4: Logarithmic graphs of percent relative error Vs. / propagation distance for 

maximum Gaussian beam intensity obtained from various approximations as compared to 

the values obtained from the exact integration. (a) Fresnel 1 & 2 approximations. (b) 

Rayleigh-Sommerfeld I approximation. (c) Huygens and asymptotic approximations. 
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CHAPTER 5 

 

5. PDMS biochips with integrated waveguides
4
 

 

5.1 Introduction 

Optical waveguides in lab-on-a-chip devices (LOCs) can provide a number of 

important functionalities such as eliminating the need for the alignment of bulk 

optical instruments as the optical and fluidic elements can be precisely aligned at 

design level; increasing the optical path length in absorbance measurements; 

minimizing optical losses and reflections by reducing the number of interfaces 

and analysing multiple samples in parallel using arrays of elements such as 

waveguide splitters and combiners for multi-point excitation and detection [81]. 

Typically, a planar LOC with integrated optics consists of a central core layer that 

contains the microchannels and waveguides and outside layers of lower refractive 

index that act as the upper and lower waveguide claddings.  Taking advantage of 

the advanced micromachining and processing techniques already developed for 

semiconductor technology, many lab-on-a-chip devices have been fabricated in 

silicon and glass [82-87]. However polymers such as optical adhesives, SU-8 and 

polydimethylsiloxane (PDMS) are favoured in many applications due to ease of 

fabrication and lower cost of production [88-97]. PDMS in particular is a cheap, 

easy-to-handle and safe material that possesses excellent physical and mechanical 

properties and has been widely used in microfluidic applications [27]. It is 

transparent in the UV-visible (230nm to 700nm) and selected bands of near-IR 

and hence is suitable for the fabrication of waveguides and other on-chip optical 

elements.  A common method of making waveguides in PDMS LOCs is by the 

formation of dedicated channels that are subsequently filled by a higher index 

liquid or solid material.  For liquid-core waveguides, higher-index PDMS pre-

polymer and glycerine have been used [93, 94, 96].   For solid-core waveguides, a 

                                                 
4
 This chapter was published in Journal of Micromechanics and Microengineering 20(8), 1-5 
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UV-curable resin of higher refractive index has been injected into the waveguide 

channels and cured [98, 99]. 

Recently, other groups [100-102] have used a "doctor-blading" method to form a 

high-index PDMS waveguide/microfluidic core on a master of SU-8 that has the 

device features. In this method, a flexible blade is used to remove any excess 

material outside of the features on the master.  After curing of the core, a lower-

index PDMS cladding layer is bonded to the core and the two PDMS layers are 

removed from the master.  A final PDMS layer is bonded to the exposed side of 

the core to complete the all-PDMS chip.  The disadvantage of this method is that 

the excess material may not be completely removed [100, 103] thus leading to 

formation of a leaky layer by the remaining high index material.  Also, there is the 

danger that doctor-blading may damage the fine micron-size features of the 

master even when soft PMMA blades are used.  Furthermore, curvature in the 

surfaces of the waveguides due to surface tension cannot be easily avoided [102]. 

In this note, we demonstrate a practical alternative to the doctor-blading method 

for forming such all-PDMS optofluidic devices that is simple, inexpensive and 

does not require expensive equipments or special laboratory setups and uses 

commercially available PDMS materials. As in the doctor-blading method, the 

core is formed on a master (a silicon wafer in this case). However, the excess 

PDMS is removed by applying uniform pressure from an applied weight and 

when all the excess material has been squeezed out, the core is cured.  The 

subsequent steps are similar.  This method avoids the disadvantages of the doctor-

blading method as well as the labour-intensive steps of filling the waveguide 

channels with high-index liquids (as is done for liquid-core waveguides) or high-

index UV-curable resins (in case of solid-core waveguides).  

In the next section, details of the fabrication are given.  In the third section, the 

detection and identification of two fluorescent microparticle species is 

demonstrated in a LOC fabricated by this new method. 

5.2 Fabrication and Properties    

The optofluidic core layer contains channels that serve as fluidic pathways or 

hollow side claddings for the waveguides.  The patterns for these channels are 
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transferred to the surface of a silicon wafer and the areas between these patterns 

are removed by a standard deep reactive ion etching (RIE) method to the desired 

channel depth, 50 um in our case.  The silicon master is then silanized to enable 

easy removal of the PDMS core layer.  The subsequent fabrication steps, shown 

schematically in Fig. 5.1(a), are as follows. 

(A) A thin layer of low-temperature PDMS (Dow Corning 3-6121; grey in the 

figure) with refractive index 1.43 is cast on the silicon master (black).  The 

uncured PDMS is then covered with two plastic sheets (textured), a thin Mylar™ 

sheet to which cured PDMS will not stick and a photocopier transparency sheet to 

provide a smooth cushion between the PDMS and the 12-15 kg weight that is next 

placed on top in Step B. 

(B) The weight expels PDMS (indicated by the arrows) from all but the 50-um-

deep etched regions over a 24-hour period.  Since the unetched regions are a very 

small fraction of the total area, any remaining PDMS on these regions is expected 

to be very much smaller than a wavelength of light [103] and leakage of light to 

be  negligible.  If left, the PDMS layer will completely cure in 48 hours at room 

temperature.  For more rapid processing, it can be cured in a vacuum oven in 20 

min. at 100
O 

C.   

(C) After curing of the core layer, the weight and plastic sheets are removed and a 

1-mm layer of PDMS (dark grey), Sylgard® 184, refractive index 1.41, is cast 

and cured on the exposed core layer. The combined cladding /core layer is 

removed from the master and reservoirs and microchannel access holes are 

punched through the cladding and core layers as indicated by the white dashed 

lines.  Figure 5.1(b) is a SEM image of the cross-section of a portion of the 

cladding/core showing a waveguide and its two side-channel air claddings.  The 

boundary between the two types of PDMS, indicated by the white arrow, is faintly 

visible in the figure.   

(D) To complete the fabrication, the cladding/core combination is bonded to a 

substrate (dark grey) of the low-index PDMS (dark grey), Sylgard 184®.  

Irreversible bonding is achieved by exposing the two parts to an oxygen plasma in 

a reactive ion etcher (O2 flow: 25sccm; Pressure: 700 mTorr; RF Power: 40 W) 

(b) 
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for 30 seconds.  Figure 5.1(c) is an image of a waveguide and its two side-channel 

air claddings.  This figure clearly shows how the rectangular shape of the 

channels is preserved in the fabrication process. 

  
 

Fig. 5.1: Fabrication process for an all-PDMS LOC.  (a) Steps (A-D) as described in the 

text.  (b) SEM image of cross-section of a waveguide and air claddings before the final  

PDMS cladding layer is bonded; (c) cross-sectional image of a waveguide after the final 

cladding layer is attached.  

The propagation loss in the PDMS waveguides was measured by a common 

technique that assumes that the side-scattered light power at any point along a 

waveguide is proportional to the propagation power at that point [94].  Laser light 

at 532-nm and 635-nm was launched into optical fibres that were butt-coupled to 

straight PDMS waveguides at the edge of a device.  Side-scattered light was 

captured with a 1-mm plastic optical fibre at intervals of 1 mm and delivered to a 

photomultiplier tube (PMT) detection system under LabVIEW® control.  The 

uncalibrated results in dB are plotted in Fig. 5.2 along with least square linear fits 

to the data from which the waveguide loss in dB/mm is obtained from the slopes 

of the straight lines.  The measured losses of 0.31 db/mm at 532 nm and 0.29 

db/mm at 633 nm are comparable with the waveguide losses in earlier PDMS 

LOC devices [94, 96, 97].  While these are not low losses by integrated optics 
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standards, they are adequate for LOC applications where light travels over short 

distances.  The losses are most likely due to surface roughness that results from 

the deep RIE processing of the master since the inherent loss in PDMS has been 

reported to be much lower [104]. 

Fig. 5.2: Sidescattered power in dB along a PDMS waveguide at 532 nm and 633 nm. 

The average waveguide attenuation is determined from a linear fit to the raw data. 

5.3 Demonstration of particle detection and identification†
 

The functionality of devices fabricated by this method is demonstrated by the 

detection and identification of 15-m orange and scarlet fluorescent styrene beads 

[105] in a pressure-driven flow through a U-shaped section of a microfluidic 

channel as shown in Fig. 5.3 and in the video clip presented as electronic 

supplementary data. Red light is launched into the horizontal section of the 

channel from the left and illumiantes beads along the length of the horizontal 

channel.  Green light from the top waveguide intersects the channel at its 

midpoint and illuminates beads only in a 50 um zone.  The image also clearly 

shows stray light that propagates in the core layer outside the waveguides and 

scatters from the edges of the air claddings .  This stray light aids in the 

observation of the beads before they enter the regions directly illuminated by the 

waveguides. Five beads are visible with one scarlet bead fluorescing brightly in 

the horizontal channel. 
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Fig. 5.3:  (a) SEM image of  the silicon master showing raised features that become 

channels in the core layer.  The U-shaped feature forms a microchannel and the narrow 

straight lines form the air-claddings for two waveguides. (b) The U-shaped microchannel 

is illuminated along its length by 633-nm light from the waveguide on the left and 

intersected by 532-nm light from the waveguide at the top.  Five fluorescent beads are 

visible in the channel. 

The red (633 nm) and green (532 nm) excitation lasers are modulated with 

mechanical choppers at 250 Hz and 125 Hz respectively. The flourescent signals 

are picked up by a multimode plastic optical fiber placed underneath the chip at 

the intersection of the green and red lasers. The flourescent signals are directed to 

a Hamamatsu R2949 PMT equipped with high-pass (540 nm cut-off) and notch 

(627-637 nm) filters for suppression of scattered laser light. The electronic signal 

from the PMT is sampled by the DAQ system at 20000 Sample/s and 10 

consecutive samples are averaged (to suppress PMT noise) providing an effective 

sampling frequency of 2000 Sample/s. The raw data are exported to a text file and 

a windowed Fourier transform algorithm is executed in Matlab™ to extract the 

components of the signal from each modulation frequency thus identifying the 

type of fluorescent bead (red or green) causing the signal at a specific time[99]. 

Figure 5.4 (a) shows 6.5 seconds raw data in which there are three pulses 

indicating the passage of three particles at 0.4 s, 3.9 s and 5.6 s.  Figure 5.4 (b) 

shows the windowed Fourier transform component at 250 Hz indicating two 

scarlet particles at 3.9 s and 5.6 s.   Figure 5.4 (c), the windowed Fourier 

transform component at 125 Hz, shows the third pulse at 0.4 s is a green particle. 

The small width of the third pulse (at 0.4 s) indicates that the green particle was 

moving faster compared to the two scarlet particles (at 3.9 s and 5.6 s). 
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Fig. 5.4: (a) 6.5seconds of raw data from  the PMT indicating the detection of three 

beads. (b) Processed data indicating the detection of  two scarlet beads; (c) Processed 

data indicating the detection of  one orange bead. 

5.4 Summary 

In summary, we have introduced an improved fabrication method for the 

integration of optical and fluidic components in all-PDMS  lab-on-a-chip devices. 

The fabrication method is simple and overcomes the difficulties associated with 

previous methods for making all-polymer devices with liquid or solid core 

waveguides. In particular, there are no surface tension effects to distort the 

waveguide shape as in reference 21.  After the fabrication of the master, no 

expensive equipment is required and many masters could be processed in parallel.   

The device functionality in a cytometry application was demonstrated by uniquely 

identifying fluorescent particles in a mixed population using lasers of different 

wavelengths modulated at distinct frequencies. Note that the propagation of light 

along a U-channel (red light in this case) could be utilized for absorbance 

measurements if a device were designed with a collection waveguide at the end of 

the channel to catch the throughput light. 

Notes 

†Please view “Video.wmv” (submitted supplementary media file). It is a video 

clip showing fluorescent microparticles flowing in the fluidic channels of the 

LOC device. 

 

(a) 

(b) 

(c) 
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CHAPTER 6 

 

6. Design and fabrication of a planar PDMS transmission grating               

microspectrometer
5
 

6.1 Introduction 

Optical spectroscopy, the precise determination of the wavelength composition of 

light, is arguably the most powerful analytical tool at the disposal of science. 

Optical spectrometers are required in the fields of chemical production, analysis 

of DNA and RNA macromolecules, high throughput screening of drugs for 

pharmaceutical purposes, medical diagnostics, and environmental testing [1]. Not 

surprisingly there has been great interest in microspectrometers [55] that can be 

integrated within lab-on-a-chip (LOC) and Micro-Total-Analysis-Systems 

(μTAS) [106]. One of the earliest works was by Goldman et al. [48], who reported 

spectral analysis based on waveguide grating couplers. Later, Yee et al. reported a 

hybrid spectrometer for chemical analysis [51], composed of silicon 

micromachined gratings and a CCD camera, in a system that was characterized by 

separate microfluidic and optical parts. For optimal performance, grating-based 

spectrometers require lenses or mirrors for collimation and focusing [55]. Micro-

scale fabrication of these elements is often difficult, and this has prompted 

exploration of several alternative strategies. For example, Traut et al. [53] 

developed a miniaturized spectrometer by forming grating patterns on the top 

surface of an array of microlenses. In that design, each microlens in the array 

functioned as a dispersive and focusing element. In the design by Grabarnik et al. 

[46], a second grating was utilized as the focusing element. Adams et al. [107] 

proposed a non-grating approach based on monolithic integration of microfluidics 

and thin-film filters directly on top of image sensor arrays, but their experimental 

results were restricted to the filtering of excitation and fluorescence light. For 

many LOC applications, there remains a need for closer integration of the optical 
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parts, including a diffraction-grating-based spectrometer, within the microfluidic 

platform.  

Poly(dimethylsiloxane) (PDMS) is a low cost, biocompatible polymer 

increasingly used for the fabrication of microfluidic and LOC devices [27, 108]. It 

is transparent in the UV–visible range (230 nm to 700 nm) and within selected 

bands of the near-IR, and hence is suitable for the fabrication of waveguides and 

other on-chip optical components. Given the popularity of optical detection for 

LOC sensing systems, there is a natural impetus to develop optical componentry 

(including spectral dispersion devices) in PDMS. Previous research includes work 

on PDMS-based waveguides [109] and lenses [110]. Researchers have also 

considered both hybrid and monolithic integration of spectral discrimination 

devices with PDMS microfluidics. For example, Domachuk et al. [111] embedded 

a microfluidic channel adjacent to a PDMS-based planar grating and used external 

lenses for focusing and collimation, while Yang et al. [112] reported a PDMS-

based diffractive optical element that combined both spectral dispersion and 

focusing functions. 

Waveguide-based spectrometers (and waveguide-based optics, generally 

speaking) are attractive for optofluidics and LOC systems, since they enable built-

in alignment of optics and fluidics. While hybrid approaches, such as wafer 

bonding of PDMS microfluidics to silicon-based arrayed waveguide gratings 

(AWG) [113], have been described recently, there are very few reports of PDMS-

based waveguide gratings.  For example, Kee et al. [114] described a PDMS-

based arrayed waveguide grating (AWG) with ~1 nm resolution but only 4 output 

channels and a correspondingly limited operating range (~640 to 645 nm).  Here, 

we describe a PDMS-microsystem that monolithically integrates microfluidic 

channels, multimode waveguides, a collimating lens, and a slab-waveguide-based, 

focusing transmission grating.  In addition to enabling a convenient chip layout, 

the use of a transmission grating (rather than a reflection grating) is partly 

motivated by the possibility for high spectral dispersion with large facet 

dimensions [50]. The grating described operates in second order with feature sizes 

greater than 3 μm, and incorporates a novel self-focusing design based on the use 
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of cylindrical facets.  Below, we provide a theoretical analysis and an 

experimental characterization of the spectrometer part of our chip.  A wavelength 

resolution <10 nm over a free spectral range >200 nm in the visible band was 

predicted and verified by experimental results.  

6.2 Design of the LOC spectrometer device 

A typical spectrometer consists of a light source, a dispersive element (typically a 

diffraction grating), lenses or mirrors for light collimation and focusing, and a 

detector. In the present design, a parabolic lens is used to collimate the light while 

the necessary dispersion and focusing is accomplished by a curved transmission 

grating, as shown in Fig. 6.1. 

                 

(a)                              (b)             (c)  

Fig. 6.1: (a) Mask design layout of the LOC spectrometer device. In the 

fabricated chip, the filled black regions become hollow (air-filled) 

cavities. The teardrop shaped features at upper and lower left are 

microfluidic reservoirs. (b) Magnified view of the intersection point 

between the microfluidic channel and three waveguides. (c) Magnified 

view of the parabolic collimating lens together with the curved focusing 

transmission grating.  

The focal length of the collimating lens was set as 3 mm to match the lateral 

extent of the grating (2585μm). The radius of the lens is obtained from the well-

known formula for spherical lenses: 

                  2 1

2

n n
R f

n


    ,  (6-1) 

where f is the focal length of the lens, n2 is the refractive index of the lens 

material (1.43), n1 is the refractive index of air (1.0) and R ~ 902 μm is the value 

obtained for the radius of the lens. 
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As described previously [11], the optical waveguides are nominally 

configured to confine light by total internal reflection (TIR), between the high and 

low index PDMS layers in the vertical direction, and between the PDMS core and 

the adjacent air channels (side claddings, see Fig. 6.6 below) in the horizontal 

direction.  Note, however, that the air channels themselves can act as ‘leaky’ 

waveguides, with propagation loss on the order of 1 dB/cm for the dimensions 

used here (~50 m x ~50 m) [115].  Such air-core waveguides can operate in a 

quasi-single-mode regime, since propagation loss scales quadratically with mode 

number [115]. Thus, a sufficient length of straight leaky waveguide preferentially 

suppresses high-order modes. For the optical characterization of the grating 

spectrometer (see below), laser light sources were coupled into the air-core leaky 

waveguides at the left edge of the chip (Fig. 6.1), whose inherent mode filtering 

resulted in an input field (at the start of the slab waveguide section prior to the 

lens) that better approximates the Gaussian input field assumed for numerical 

simulation purposes. This was motivated by a desire to simplify the comparison 

of experimental results with analytical and numerical predictions, and also allows 

us to assess the best-case resolution of the spectrometer. In practice, the existence 

of multiple waveguide modes will degrade the resolution of the instrument, as 

discussed in more detail below and elsewhere [76, 77, 116]. 

6.2.1. The curved focusing phase transmission grating 

We designed a grating where each facet is an arc or section of a circle, the radius 

of which is uniquely determined to obtain a common focal point among all facets 

(Fig. 6.2). By using curved grating facets, the focusing action is obtained without 

a lens. Furthermore, by eliminating the focusing lens, the number of interfaces 

that light must traverse is reduced. This is advantageous in cases where the 

spectral measurement of a faint signal such as a fluorescent source is needed. 
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Fig. 6.2: Geometry of the focusing grating/lens. The facets of the grating 

are sections of circles that act like lenses with a common focal point. X 

and Z are coordinates within the horizontal plane of the slab-waveguide 

system. 

The device shown in Fig. 6.2 is a slab waveguide phase transmission grating.  

The constructive interference of light from adjacent facets will occur when the 

difference in focal length for the two adjacent facets, ∆ f = f j – f j+1  satisfies [50]: 

                              
2 1

f
n n

m 
 


  ,  (6-2) 

where m is the diffraction order, n2 = 1.43 is the refractive index of the grating 

material (PDMS), and n1 = 1.0 is the refractive index of the air region to the left of 

the facets. Here, a simple, single-stigmatic-wavelength criterion based on a design 

wavelength of λ = 645 nm was used to specify the facets. Furthermore, the grating 

was designed to operate in second order (m = 2) rather than the first order (m = 

1), which allowed us to double the size of the grating steps. This greatly 

simplified the soft-lithography fabrication of the grating facets, while still 

ensuring a tolerable free spectral range for the grating. These parameters 

correspond to a nominal value of ∆f (the size of the grating steps) equal to 3 μm. 

For the self-focusing grating described above, this means that the focal length of 

adjacent facets should differ by 3 μm. The grating was designed to have 600 

facets, so that there are effectively 600 lens sections, each with a unique focal 

length. Fig. 6.3 shows the grating overlaid on the coordinate system we chose for 

design and discussion purposes.  Note that the center of the grating lies on the z 

axis, and that we denote the lower-most facet as the ‘first’ facet of the grating, 

positioned at x = -1.293 mm and z = 1 cm.  Furthermore, the grating is designed 



118 

 

to focus second-order diffracted light (of the design wavelength) at a position 

directly in line with the first facet and with a first-facet focal length of 1 cm.  This 

focusing action is illustrated by the lower and upper boundary rays (the red lines) 

in Fig. 6.3, which come together at the common focal point of the grating.  This 

focal point corresponds to the position denoted by x = -1.293 mm and z = 2 cm in 

our chosen coordinate system.  In order for each of the ‘lens’ sections to share this 

common focal point, it is necessary to adjust the radius of curvature for each 

facet. Accordingly, we used the spherical lens equation, Eq. (6-1) to uniquely 

determine the necessary radius of each lens element in the grating. In order to 

avoid ‘shadowing’ between facets, the width of the facets was monotonically 

decreased from 6 μm (first facet) to 4.93 μm (last facet) by equal increments of 

0.0018 μm across the length of the grating. The resultant spectrometer is 

reasonably compact, and is integrated within a microfluidic platform that has 

overall dimensions of (1.7 cm  x  2.1 cm). 

 
Fig. 6.3: The detailed layout of the grating/lens device is shown. The 

focal point is chosen to lie at the same height as the first grating facet 

(i.e. at x = -1293 μm).  The inset shows a magnified view of the central 

part of the curved grating, which can be approximated as a linear grating 

with mean facet period ~7.4 m. 

6.3 Approximate analysis based on the grating equation 

Analytical treatment of the curved, focusing phase grating is difficult [50].  

However, as shown in the inset of Fig. 6.3, the central portion of the grating can 

be well-approximated as a straight grating with uniform facets. In practice 
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(including the experiments described below), most of the incident light interacts 

with the central portion of the grating. Thus, a first order approximation based on 

standard grating theory can be employed for insight.   

Basic details of a grating’s behavior can be readily obtained by using the 

grating equation from classical diffraction theory: 

     2 2 1 1n sin n sin m          ,  (6-3)  

where n1 = 1 is the refractive index for the vacuum in the (air-core) cavity before 

the grating, n2 = 1.43 is the refractive index of the PDMS material, 1  is the angle 

of incidence, 2  is the angle of diffraction, and  is the period of the grating. 

Directly from the geometrical layout of the central portion of the grating and 

assuming incidence along the optical axis (x=0), we estimate 1 ~ 47.6 degrees 

and a mean grating period  ~ 7.4 m.  From the grating equation, this results in 

an estimate for the second-order (m = 2) diffraction angle (at the design 

wavelength) of 2 ~ 39.6 degrees.  Note that this angle is relative to the effective 

grating normal at the central part of the grating; the predicted angle (of the 

second-order diffracted beam) relative to the optical axis is then simply 1 -2 ~ 8 

degrees, which is in very good agreement with the numerical simulations below.   

For spectral analysis, another key parameter is the angular dispersion of the 

grating. From the grating equation with the angle of incidence1 fixed, it follows 

that: 

               2

2 2

m

n cos( )
D



 


 
  

   (6-4) 

where D is the angular dispersion of the grating. In practice one often needs to 

know the linear dispersion which is the product of the angular dispersion and the 

effective focal length ( efff ) of the instrument: 

        2
eff

x
fxD



 


  
 

    (6-5) 

The effective focal length in the present case is the geometrical distance from the 

grating center to the position of the focal point (for second-order diffraction at the 

design wavelength), which is ~ 9.3 mm. Given the diffraction angle and other 

geometrical parameters estimated above, this produces an estimate of the linear 
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dispersion (for m = 2) at the ouput plane DX ~ 2.3 m/nm. As discussed below, 

the numerical and experimental results are in good agreement with these first-

order predictions.  

6.4 Numerical simulation of the microspectrometer 

The integrated planar microspectrometer, fabricated in PDMS as described below, 

is a multimode (MM) waveguide device. In a MM waveguide device, the 

polarization dependence can be neglected for simplified analyses [77]. Moreover, 

since the smallest features of the present device (i.e. the grating facets) are large 

in comparison to the operational wavelengths, a scalar electromagnetic simulation 

considering only the TE modes is expected to be sufficiently accurate. Consider a 

Cartesian coordinate system where x and z are the horizontal coordinates in the 

plane of the slab and y is the vertical (out-of-plane) coordinate. Strictly speaking, 

the field for each wavelength at a point (x, y, z) within the slab is a linear 

combination of vertical
 

modes supported by the slab waveguide [77]. As 

discussed above and in Section 6 below, however, we used the air channels as 

leaky waveguides for launching the laser beams used to experimentally 

characterize the grating. This ensured that the field launched into the slab 

waveguide section prior to the collimating lens was quasi-single-moded in the 

vertical direction. Based on this assumption, only the fundamental slab waveguide 

mode was considered in the scalar simulation of the grating.  Furthermore, a ‘hard 

boundary’ assumption [77] was used to obtain the relevant parameters of the 

fundamental mode, which is justified by the large thickness of the PDMS core. As 

mentioned above, excitation of higher-order modes is expected to degrade the 

resolution of the spectrometer. However, it should be noted that the use of air-

core waveguides for delivery of excitation and emission light, and thus as a mode 

filter prior to the grating, is a realistic option in practice, and is a subject we hope 

to explore in greater detail in future work. To approximate the fundamental mode 

of the square hollow input waveguide, a 40μm diameter Gaussian field was 

assumed as the input field at the start of the slab waveguide section. 

Grating-based microspectrometers typically operate in the Fresnel diffraction 

regime, and thus can be treated using the Fresnel diffraction integral [69]:  
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          (6-6)                                  

where E(x0 , z0) is the input field, Δx = x - x0, Δz = z - z0, k
eff

 = n · 2 and n is 

the effective refractive index of the medium. As mentioned above, the Fresnel 

formalism is the usual approximation used for scalar electromagnetic field 

simulations. In the present design, however, the collimating lens and the curved 

grating are very close, such that the minimum distance required for the validity of 

Fresnel diffraction is violated. As described in the following, we used the 

diffraction formula known as the Rayleigh-Sommerfeld integral, which is valid 

for propagation distances as short as a few wavelengths.  

6.4.1. Rayleigh-Sommerfeld I diffraction formula 

The Rayleigh-Sommerfeld diffraction model was first proposed by A. 

Sommerfeld [79]. The so-called Rayleigh-Sommerfeld diffraction integrals I & II 

can be written in terms of Hankel functions, as outlined by M. Totzek [71]. A 

step-by-step derivation of the Rayleigh-Sommerfeld I diffraction integral in terms 

of the first-order Hankel function of the first kind can be found in our recent 

publication [117] . The Rayleigh-Sommerfeld I diffraction integral in terms of the 

Hankel function is given by:         

      ' ' '

I 1 0( ) ( | |)cos( ) ( )
2

beff
eff

b

ik
U H k U dx    



    (6-7)  

Here, U0( 
′ 
) is the initial field at the position of the input field ( ′

 = ( x
′
, 0, z

′
 ) 

),U1( )  is the diffracted field at the point of observation or output ( = ( x, 0, z ) 

), H1 is the first-order Hankel function of the first kind, | ′
 |is the distance 

between the input and output points,   is the angle between the normal and the 

line from ′
 to  , and , k

eff
 = n · 2  is the effective wavenumber.  

This integral expresses the fact that the field at every output point is due to the 

sum of fields at all input points. The simulation routine (encoded in Matlab) uses 

a Gaussian electric field as input and calculates the resulting electromagnetic field 

intensity at the output plane, which is located at a distance | ′
 | from the input. 
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Since there are several interfaces (lens, curved grating and output plane), the 

output obtained at the first interface is treated as the input for the next interface 

and so on.  

6.4.2. Simulation of multiple wavelengths in the 2
nd

 diffraction order  

Figure 6.4 shows the intensity profiles at the output plane of the spectrometer, for 

a 40 μm diameter input Gaussian beam and five different wavelengths ranging 

from 532 to 758 nm, centered around the design wavelength of 645 nm. For 

clarity, the zero, first and second diffraction orders are labeled.  

Consistent with the discussion in Section 2, the second-order diffracted beam 

at the design wavelength (λ = 0.645m, which is shown in red) appears at x = -

1293 m, directly in line with the first grating facet (see Fig. 6.3).  At the lower 

left corner of Fig. 6.4, the zero order beams for all wavelengths are shown 

overlapping at a single position. The explanation is that the position of the zero 

order beam (regardless of wavelength) is determined only by Snell’s law of 

refraction ( n1.sin1 = n2.sin2 ) applied to the air-PDMS interface along the line of 

the grating. Here n1 = 1 , n2 = 1.43 (i.e. assumed wavelength-independent),  1 is 

the angle of incidence, and 2 is the angle of refraction. According to the 

simulation, the position of the zero order beams is at -2734m.   Since the 

horizontal distance (on the optical axis) from the grating centre to the output plane 

is 9224 m, we can substitute 2 = [1–tan
-1

(2734 / 9224)] into Snell’s law to 

obtain an estimate for the effective incident angle, 1 =  47.6
o
, which is in 

agreement with the geometrical estimate from Section 6.3. This provides further 

evidence that good qualitative predictions are obtained by approximating the 

curved grating as a straight grating, in turn approximated by the central ~150 

grating facets in the vicinity of the optical axis.  

In keeping with the discussion in Section 6.3, we can thus use the diffraction 

equation Eq. (6-3) to obtain an analytical estimate of the position of any 

wavelength in any given order. For example, consider the second-order (m = +2) 

diffraction of λ = 0.532 m light. Using n1 = 1, n2 = 1.43, 1 = 47.6
o
, m = 2, λ = 

0.532 m and Λ = 7.4 m for the mean value of the grating period near the 



123 

 

optical axis, we obtain 2 = 38.1
o
 as the angle of diffraction.  As above, the angle 

with respect to the optical axis follows as 2 -1 = -9.54
o
. The position on the 

output plane is then obtained as tan (-9.54
o
)  9224 m = -1551 m. As shown in 

Fig. 6.4, the simulated results are in nearly exact agreement with this analytical 

prediction. 

 

Fig. 6.4: The intensity profile at the output plane is shown, for a 40 m 

input Gaussian beam and wavelengths ranging from 532 to 758 nm. The 

zero, first and second diffracted orders are labeled accordingly.  

6.4.3. Simulation of multiple orders at a single wavelength 

Figure 6.5 shows the predicted intensity profile at the output plane, for the same 

Gaussian input beam mentioned above, and for  = 0.532 m.  Note that the 

horizontal axis encompasses 10 diffracted orders and that the intensity is plotted 

on a logarithmic scale. The position of each order at the output plane (Xm) is 

indicated on the plot. As expected from the design criteria above, the 2
nd

 

diffracted order (i.e. the design order) is located at X2 = -1551 μm and has the 

highest intensity. Given the distance from the grating centre to the output plane 

mentioned above (Z = 9224 μm) , the angle (m) between a given order and the 

optical axis is obtained from tan(m) = Xm/Z. The relative angles between 

successive orders were extracted from the simulation in this way, and are 

compared to the experimental results in Section 6.6 below. 
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Fig. 6.5: The intensity profile at the output plane is plotted, for an input 

Gaussian beam and λ = 0.532m.  The horizontal axis was scaled to 

encompass 10 diffracted orders as indicated by the labels, including the 

m=+2 design order centered at – 1551m. 

6.5 Method of Fabrication 

The main details of our fabrication process, which enables the integration of 

optical and fluidic components in a monolithic LOC platform, have been 

described elsewhere [109].  Briefly, the planar system (Fig. 6.6.a) comprises three 

layers of PDMS. The upper and lower layers are Sylgard-184
®
, which has a 

refractive index of 1.41, while the central layer is a higher index (n ~ 1.43) 

formulation of PDMS.  The higher index PDMS is patterned using a soft-

lithography molding technique, to simultaneously define both fluidic channels and 

optical waveguide channels (i.e. waveguide cores) within the same layer. Because 

of the index contrast with the upper and lower cladding layers, light can be 

confined within the central “optofluidic” layer, also referred to as the core layer. 

Furthermore, channel waveguides are enabled by the in-plane refractive index 

offset between the PDMS core and the adjacent air channels (i.e. ‘side claddings’, 

see Fig. 6.6 and Fig. 6.1 above).  As briefly discussed in Section 6.2, the side 

claddings themselves were found to function as excellent air-core, leaky 

waveguides while providing a desirable suppression of high-order modes. For the 
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experimental characterization of the grating described below, these air-core 

waveguides were used for the in-coupling of laser light 

 
Fig. 6.6: (a) A schematic illustration of the integration strategy is shown. 

The diagram represents the cross-sectional view of the 3-layer PDMS 

system with waveguides and microfluidic channels patterned in the 

higher-index, central PDMS layer. (b) SEM image of the grating facets 

on the silicon master. (c) SEM image of the grating facets transferred to 

PDMS using a soft-lithography process.  

A single silicon master (see Fig. 6.1) was used to pattern the entire optofluidic 

chip, including microchannels, waveguides, the lens, and the curved focusing 

transmission grating.  From a fabrication tolerance perspective, the curved grating 

represents the most critical aspect of the fabrication process.  In particular, it is 

important that the grating facets on the silicon master are smooth and vertical. As 

shown in Fig. 6.6(b), this was accomplished using the well-known “Bosch
®”

 deep 

reactive ion etching (DRIE) process. Furthermore, proper operation of the grating 

relies on an accurate transfer of these facets into the PDMS waveguide core layer.  

As shown in Fig. 6.6(c), excellent replication of the grating features was achieved 

using an optimized soft-lithography process [11].  

6.6 Experimental results 

In order to verify the functionality of the grating/lens combination, we first 

launched a green laser into one of the air-core leaky waveguides aligned with the 

optical axis. This ensured that the light field was nearly single-moded at the start 

of the slab waveguide section prior to the lens, and was approximately aligned 

with the centre of the grating. Diffraction effects were studied by imaging the 

light scattered from the waveguide core layer onto a color camera mounted on top 

of a standard zoom microscope. This circumvented the problem of preparing a 
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high-quality facet at the output plane of the chip, although end-facet light 

collection was also verified (not shown) and would likely be the most desirable 

configuration in practice. As expected and shown in Fig. 6.7(a), the input light 

was dispersed into a number of diffraction orders. As described in Section 6.2, the 

grating is designed to diffract light preferentially into the second diffraction order. 

Consistent with this ‘blaze’ condition, the second-order beam was observed to be 

significantly brighter than those of adjacent orders. As an initial assessment of the 

grating, we measured the angles between consecutive diffracted orders, and 

compared the results to the predictions of the numerical simulations from Section 

6.4. The comparison is summarized in Table 6.1, and reveals excellent agreement 

between experimental and numerical results.      

 

Table 1 - Relative angles between adjacent orders 

Orders 

 

Orders 

  3, 2 

    

   3, 2
 

 

  2, 1 

    

   2, 1 

  1, 0 

    

   1, 0 

 0, -1 

      

  0, -1 

 -1, -2 

     

 -1, -2 

 

 

 -2, -3 

     

 -2, -3 

 

 

 -3, -4 

 

 -3, -4 

 

 -4, -5 

 

 -4, -5 

Simulation 
  (degrees) 

  3.76
o
 

 

  3.56
o
 

 

 3.41
o
   3.31

o
   3.17

o
   3.12

o
  3.05

o
  2.99

o
 

Experiment 
 (degrees) 

  3.76
o
 

 

 3.54
o
 

 

 3.42
o
  3.24

o
  3.15

o
  3.08

o
  3.09

o
  2.95

o
 

  

We performed similar experiments using other laser sources, including a red laser 

with wavelength λ = 632 nm (Fig. 6.7(b)) and an amber laser with wavelength λ = 

594 nm (Fig. 6.7.(c)). Data from these experiments was used to quantify the 

dispersion and resolution of the grating. A key figure of merit for a spectrometer 

is the resolving power (RP), commonly expressed as RP ≡ λ/ dλ, where dλ is the 

resolution, in turn defined by the full width half maximum (FWHM) or -3db 

power bandwidth for the fringe of interest. Most microspectrometers reported in 

the literature have a RP in the range of ~10 -100 [55].  
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        (a)                                     (b)                                      (c) 

Fig. 6.7: Scattered light images captured by a color camera are shown.  

The images correspond to diffraction of a green laser, λ = 532 nm (a), a 

red laser, λ = 632 nm (b), and an amber laser,  λ = 594 nm (c).  The light 

path, including the input waveguide, spherical lens interface, and 

diffraction grating interface, are most clearly visible in part (c). 

 

In order to experimentally assess the optical resolution of the grating, we 

observed the second-order diffraction fringes produced by two laser sources. 

Figure 6-8 plots the average pixel intensity versus distance along the output plane 

for the second order diffracted modes associated with 594 and 532 nm laser light. 

These lasers were coupled into the same air–core leaky waveguide, and scattered 

light images were captured near the output end of the device. Column-wise 

averaging of the pixel intensity was used to reduce noise. Device features of 

known size were used to scale the images and to enable a mapping between pixel 

number and spatial coordinates. Based on this mapping, the resolution was 

estimated from dλ ~dx/(Δx/Δλ), where Δλ is the known wavelength spacing 

between the two lasers. Resolution as good as ~6nm was extracted from such 

measurements (i.e. RP ~ 100 ) ; a typical example is shown in Fig. 6.8. For a 

grating, RP ~ mN , where N is the number of grating facets contributing to the 

interference fringes. From the experimental estimate of the second-order RP 

above, this suggests ~ 50 facets are effectively illuminated by the input laser 

beam, which is reasonably well supported by close inspection of the images in 

Fig. 6.7. However, it is also likely that fabrication defects contributed to the 

lowering of the measured RP. Optimization for these details is left for future 

work. 
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Fig. 6.8: Average pixel intensity plotted versus vertical distance x along 

the output plane for the 2nd order diffracted modes of 594 nm (left peak) 

and 532 nm laser light (right peak). 

6.7 Concluding remarks 

To our knowledge, this is the first report of a slab-waveguide-based transmission 

grating fabricated directly in PDMS.  The parameters of the microspectrometer 

(RP~100 and a free spectral range >200 nm in the visible region) compare 

favorably to most other microspectrometers reported in the literature. Moreover, 

these performance specifications should be adequate to address many applications 

of current interest in LOC analysis systems, including visible-band fluorescence 

and absorptance spectroscopy. Furthermore, since the device is fabricated directly 

in PDMS, it offers good potential for monolithic integration within LOC and 

optofluidic microsystems.  

We expect that the RP of the grating could be improved by optimization of the 

light collection and collimation prior to the grating, to increase the number of 

illuminated facets.  Furthermore, it should be possible to fabricate significantly 

smaller grating facets in PDMS using an optimized soft-lithography process, 

thereby increasing the spectral dispersion and RP of the spectrometer.  These 

refinements are left for future work. 
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CHAPTER 7 

 

7. Spectral detection of moving emitters 

In this chapter we disclose a novel strategy for wavelength sensing in grating- 

based spectroscopic devices using a single sensitive point detector such as a PMT.   

 

7.1 Development of a Robust Detection Scheme 

The most common approach for spectral detection in LOC spectrometer devices is 

to use a CCD camera or an array of photodetectors placed at the edge of the chip. 

Another option is to use custom built integrated photodiode arrays. For example, a 

number of MEMS-based spectrometers using custom built photodiode arrays 

were discussed by Wolfenbuttal [54, 55]. For cheap, portable, handheld systems, 

avalanche photodiodes may be used in place of the bulkier and more expensive 

CCD camera. In the following, we propose alternative strategies based on a single 

fixed detector (i.e. a PMT) for dynamic detection of spectral information from 

moving fluorescent particles. 

  

7.1.1 Dynamic Strategies for Optical Spectral Sensing 

First, consider the dynamic detection strategy for obtaining spectra from moving 

fluorescent particles depicted in Fig. 7-1
6
. In the approach depicted, a single fixed 

detector is placed in the output plane, and used to capture the spectrum of a 

moving, fluorescing particle as it passes in front of the grating (thus causing the 

diffraction pattern to sweep spatially across the output plane, so that the spectrum 

can be de-convolved from the time dependence of the detected power).  

 

                                                 
6
 The late professor J. N. McMullin is gratefully acknowledged for suggesting some of the 

underlying ideas for the work described in this chapter. 
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Transmission Grating

Detect

    

Fig. 7.1: Schematic description: A dynamic strategy for spectroscopic detection of 

moving fluorescent microparticles. As a microparticle moves down the microchannel, its 

spectrum moves in the opposite direction. A waveguide positioned at an appropriate 

position (on the right edge of the microspectrometer) can sequentially detect the entire 

spectrum. 

A preliminary theoretical analysis of this strategy was reported previously [118]. 

An important feature and motivation for that work was that, using an Echelle 

transmission grating of modest feature sizes (grating step = 3.56 μm and grating 

facet width = 5.7 μm), a 200-nm spectrum with 10-nm resolution might be 

obtained using a single sensitive PMT. 

 

7.1.2 A Novel Method for Wavelength Sensing  

In line with these ideas, we explored another novel detection strategy based on 

using multiple diffracted orders of the grating. The idea is quite simple, and relies 

on the fact that the separation between the diffracted orders is a wavelength 

dependent quantity. Thus the separation of two neighboring orders can be used as 

a wavelength sensing mechanism. To illustrate the idea we first performed 

simulations using the curved focusing transmission grating described in Chapter 6 

[119]. In the first set of simulations, we placed an input Gaussian beam at the 

focal point of the collimating lens (Fig. 6.7) on the optical axis (x = 0)  and looked 

at the position of diffracted orders at the output plane for a number of 
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wavelengths. From these simulations we obtained the distance between two 

neighboring orders (i.e. between 2
nd

 and 3
rd

 order or 1
st
 and 2

nd
 order, etc.). Table 

7.1 shows the distance between first and second diffracted orders in μm for 

wavelengths between 500 to 800 nm, according to simulation. 

 

Wavelength 

(nm) 

 

500 

 

525 

 

550 

 

575 

 

600 

 

625 

 

650 

 

675 

 

700 

 

725 

 

750 

 

775 

 

800 

Spacing 

(μm) 

1st   &   2nd 

 

556 

 

586 

 

614 

 

642 

 

672 

 

702 

 

733 

 

763 

 

791 

 

821 

 

851 

 

882 

 

912.2 

 
Table 7.1: Spacing (μm) between first and second diffracted orders for different 

wavelengths 

 

Figure 7.2 shows the Excel plot of the spacing between first and second grating 

orders versus wavelength.  

     

y = 1.1871x - 38.892
R² = 0.9999

500

550

600

650

700

750

800

850

900

950

1000

0 200 400 600 800 1000

O
rd

er
 s

p
a

ci
n

g


m
)

Wavelength (nm) 

 

Fig. 7.2: Spacing between first and second diffracted orders versus wavelength. 

Thus, from the linear relationship between wavelength and order spacing, it 

should be possible to extract the wavelength of a source from the measured order 

spacing. For example the output intensity profile for an input signal of 560 nm is 
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shown in Fig. 7.3. This wavelength is representative of orange fluorescent beads 

that are available from Invitrogen (orange Fluospheres). 

           
        Fig. 7.3: Position of diffracted orders in the focusing grating microspectrometer for  

 λ = 560 nm. 

   

As can be seen, the separation between first and second orders according to 

simulation is: 2112 μm - 1486 μm = 626 μm, which is in agreement with the 

graphical result in Fig. 7.2.  

This result is interesting, since it suggests we can identify the wavelength of a 

source from the distance between orders, without knowing the spectral 

composition of diffracted light within the individual orders. However, we would 

still need an array of detectors at the output plane to find the separation between 

orders. 

In the next set of simulations, we placed a 70 μm detector at a fixed point (ex. 0 or 

-1293 μm) at the output plane and started a sequential shift of the input field at the 

input plane that resembled a moving fluorescing particle. The power 

was integrated over a 70 μm distance (the span of detection region) at the output 

plane. These simulations allowed us to determine the input position that would 

cause a given order at a given wavelength to appear at the position of the detector.  
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Figure 7.4 is the result of a simulation showing second and third diffracted orders 

appearing at the output for λ = 532 nm. 

  
Fig. 7-4. Detected power versus particle position for the second (left peak) and the third 

(right peak) diffracted orders at a 70 μm wide detector positioned at -1293 μm at the 

output plane ( λ = 532 nm). 

 

Based on this simulation, when a moving particle (with peak fluorescent intensity 

at λ = 532 nm) is at -95 μm from the optical axis, the second order appears at the 

position of the detector (-1293 μm), and when the moving particle is at +125 μm 

from the optical axis, the third order appears at the detector. We performed 

simulations for a range of wavelengths, to position the 1
st
 & 2

nd
 orders at the 

detector (-1293 μm) or to position the 2
nd

 & 3
rd

 orders at the detector. The 

simulation results for the latter case are shown in Table 7.2 and Table 7.3. 
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Wavelength 

(nm) 

 

500 

 

525 

 

532 

 

550 

 

560 

 

575 

 

594 

 

600 

Particle 

Position 

(μm) 

 

-122.4 

 

-101 

 

-95 

 

-80 

 

-71.4 

 

-58.7 

 

-43 

 

-37.7 

  
Table 7.2: The position of moving particles (wavelengths 500 to 600 nm) in order to 

have the second diffracted order to appear at the position of the fixed detector (-1293 μm) 

 

 

 

Wavelength 

(nm) 

 

500 

 

525 

 

532 

 

550 

 

560 

 

575 

 

594 

 

600 

Particle 

Position 

(μm) 

 

86.5 

 

117 

 

125 

 

146.5 

 

157.9 

 

175.5 

 

197.3 

 

204 

  
Table 7.3: The position of moving particles (wavelengths 500 to 600 nm) in order to 

have the third diffracted order to appear at the position of the fixed detector (-1293 μm) 

 

Next, we calculated the spacing between input particle positions using the data 

provided in Table 7.2 and Table 7.3 and the results are shown in Table 7.4 and 

plotted in Fig. 7.5. 

 

 

Wavelength 

(nm) 

 

500 

 

525 

 

532 

 

550 

 

560 

 

575 

 

594 

 

600 

 

Spacing 

(μm) 

 

208.9 

 

218 

 

220 

 

226.5 

 

229.3 

 

234.2 

 

240.3 

 

241.7 

  
Table 7.4: The spacing between input particle positions for wavelengths from 500 to  

600 nm 
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Fig. 7-5. Distance between input particle positions corresponding to the two                

peaks (2
nd

 and 3
rd

 diffracted orders) at the detector versus wavelength. 

 

Thus, If we know the velocity of the moving particle, we can calculate the spacing 

between input particle positions corresponding to the two peaks from the time 

dependent signal recorded by a detector (for example a PMT). Using the value 

obtained for the spacing, the wavelength of the fluorescing particle can be 

extracted from the linear relationship in Fig. 7.5. 

We believe that this idea represents a fundamentally new strategy for the spectral 

detection of fluorescent particles. For example, it would allow the counting and 

sorting of two or more types of particles that are uniquely labeled to fluoresce at 

different wavelengths. Compared to using a conventional spectrometer approach, 

the system described requires only a single sensitive detector, rather than a 

detector array. Moreover, PMT’s are widely used for fluorescence studies in LOC 

systems. 

Supporting experiments and corroboration of the results with first order 

diffraction theory are the subjects of ongoing work, and we hope to report the 

results elsewhere.  
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CHAPTER 8 

 

8. Chapter summaries and suggested future work  

 

8.1 Chapter summaries 

 

8.1.1 Chapter 2 summary 

Chapter 2 is intended to serve as an introductory chapter for the diffraction 

material presented in later chapters. Although brief, a historical overview on the 

development of diffraction theory, similarly, diffraction gratings is provided. 

Grating equation is presented and key diffraction grating principles are discussed. 

The final part of this chapter is devoted to the scalar treatment of the theory of 

diffraction and the solution of diffraction integral using Green’s theorem followed 

by Rayleigh-Sommerfeld, Fresnel and Fraunhoffer approximations.  

8.1.2 Chapter 3 summary 

An overview of the optofluidic microsystems studied in this research, and their 

high level design details are provided. Simulation tools, based on Fresnel 

diffraction integral were developed, and their accuracy was verified analytically 

in a number of different grating structures and optical systems. In order to 

accommodate diffraction effects in the near field region, simulations based on 

Rayleigh-Sommerfeld I diffraction model, were implemented. 

8.1.3 Chapter 4 summary 

Simulations of the Huygens, Fresnel, and Rayleigh–Sommerfeld I approximations 

in the case of free-space propagation of a Gaussian beam were compared with 

analytical solutions. The most accurate results were obtained by the Rayleigh–

Sommerfeld I approximation. This study reveals that the approximations are not 

uniform throughout the propagation region. While the accuracies of the Huygens 

and Fresnel methods generally increase as the propagation distance increases, the 



137 

 

accuracy of the Rayleigh–Sommerfeld I approximation at first starts to diminish 

and later recovers as the propagation distance is further increased. 

8.1.4 Chapter 5 summary 

Development of a new LOC integration strategy, and its use for fluorescence 

detection is the subject of this chapter. A general method is described for the 

fabrication of polydimethylsiloxane (PDMS) lab-on-a-chip (LOC) devices with 

integrated optic and fluidic elements. The PDMS core layer containing the optic 

and fluidic components is cast and cured under pressure on a silicon master. 

Subsequently, outer layers of lower-index PDMS are bonded to the core layer to 

provide optical and fluidic confinement. The functionality of the waveguides and 

microchannels is demonstrated by the detection and identification of two different 

types of fluorescent polystyrene beads in a pressure-driven flow inside a 

microfluidic channel in a device fabricated by this process. 

8.1.5 Chapter 6 summary 

Development of a novel focusing grating-based microspectrometer and its 

integration into a PDMS optofluidic system is presented. Using methods  

described in Chapter 5 (see above), a monolithic integration of microfluidic 

channels, optical waveguides, a collimating lens and a curved focusing 

transmission grating in a single PDMS-based microsystem  is demonstrated. Here, 

we focus on the design and characterization of the microspectrometer part, which 

employs a novel self-focusing strategy based on cylindrical facets, and exhibits 

resolution <10 nm in the visible wavelength range. The dispersive behavior of the 

grating was analyzed both experimentally and using numerical simulations, and 

the results are in good agreement with simplified analytical predictions. 

8.1.6 Chapter 7 summary 

A novel strategy is proposed to identify the color of a fluorescent particle, using a 

fixed grating and a single detector. Based on the simulation results obtained using 

the focusing grating microspectrometer, the spacing between two adjacent grating 

orders is a wavelength-dependent quantity, which suggests that we can identify 

the wavelength of a source, simply from the distance between orders, without 
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knowing the full spectral composition in that order. But more interesting results 

were obtained through simulations of moving emitters (of particular wavelength) 

in front of the grating, using a single detector fixed at an arbitrary location at the 

microspectrometer exit. As a fluorescing particle is moving in a microfluidic 

channel directly across the grating, the diffracted orders sequentially sweep across 

the detector. For every intensity peak (i.e. diffracted order) at the detector, there is 

a corresponding position for the particle in the channel. We performed these 

simulations for two adjacent orders (i.e. 2
nd

 and 3
rd

), and for a range of 

wavelengths and obtained the corresponding particle positions for the two peaks. 

Interestingly, particle spacing was also linearly related to wavelength. Thus, if we 

know the velocity of the moving particle, we can calculate the spacing between 

input particle positions, corresponding to adjacent peaks from the time dependent 

signal recorded by a detector (for example a PMT). Using the value obtained for 

the spacing, the wavelength of the fluorescing particle can be extracted from the 

linear relation between particle spacing and wavelength.      

8.2 Suggested future work 

While proof-of-principle experimental results were described, there is significant 

scope for future work. For example, functionality of the fabricated devices should 

be experimentally tested using fluorescent dyes and fluorescent microparticles. 

Ultimately, similar experiments could be performed using fluorescently tagged 

living cells. It should also be possible to improve the quality of devices, as 

follows.   

The fabrication process of the silicon master might be further optimized, to reduce 

the surface roughness in order to minimize waveguide propagation losses as well 

as optical scattering losses at the facets and the surfaces of the lens. 

Using an optimized soft-lithography process, it should furthermore be possible to 

fabricate significantly smaller grating facets. For example, by reducing the size of 

the facets from 6 μm to 3 μm, the acquired dispersion and, in turn, resolution 

might be doubled. 
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It might also be possible to automate the fabrication of the chips by using a hot 

embossing process. A process plan for this method of fabrication might use 

Cyclic-Olefin-Copolymer (C-O-C) elastomer (i.e. Topas 8007) which is a glass-

like transparent material with refractive index slightly higher (1.53-1.54 in the 

visible range) than glass (~1.52).  

The steps of the proposed fabrication process are as follows:  

 Spin-coat a thin layer (~50 μm) of C-O-C on a glass wafer and cure; 

 Use a silicon master as the stamp in hot-embossing equipment to make the 

optofluidic components in the thin layer of C-O-C produced in the first 

step; 

 Bond a second glass wafer in order to seal the device and provide an upper 

cladding; 

 Dice the wafer in to individual microspectrometer chips. 

This process could potentially be used for mass-production.  
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APPENDIX-I: Simulations 
 

%full_parabolic2.m is a program to simulate collimated rays hitting a double  

% parabolic lens in a slab waveguide with refractive index of 1.59  

% (i.e. in photoresist material SU-8) 
clear all 
x1=zeros(51); 
x2=zeros(51); 
x3=zeros(51); 
y1=zeros(51); 
y2=zeros(51); 
y3=zeros(51); 
n = 1.59; 
figure(1) 
hold on 
grid on 
x1 = 0:0.1:5; 
y1 = -x1.^2/20+2; 
plot(x1,y1) 
plot(-x1,y1) 
x2 = 0:0.1:5; 
y2 = x2.^2/20+4.5; 
plot(x2,y2) 
plot(-x2,y2) 

  
m = -x1/10; 
alpha = abs(atan(m)); 
alpha_1 = asin(n*sin(alpha)); 
m2 = tan(alpha_1+(pi./2-alpha)); 
x3 = 10.*m2 + sqrt(100*m2.*m2-20*m2.*x1+20.*y1-90); 
y3 = x3.*x3./20 + 4.5; 
for i=2:length(x1) 
%rays hit the first lens 
yray(1)=0; 
xray(1)=x1(i); 
xray(2)=x1(i); 
yray(2)=y1(i); 
plot(xray,yray); 
plot(-xray,yray) 
end 
for j=2:length(x1) 
%rays hit the second lens 
yray2(1)=y1(j); 
xray2(1)=x1(j); 
xray2(2)=x3(j); 
yray2(2)=y3(j); 
plot(xray2,yray2) 
plot(-xray2,yray2) 
end 
m3=x2/10; 
beta = atan(m3); 
beta_1=beta-(alpha_1-alpha); 
beta_2=asin(sin(beta_1)./n); 
m4=tan(pi./2+(beta-beta_2)); 
y_focal=-m4.*x3+y3; 
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for k=2:length(x1) 
%rays hit the y axis (the focal points) 
yray3(1)=y3(k); 
xray3(1)=x3(k); 
xray3(2)=0; 
yray3(2)=y_focal(k); 
plot(xray3,yray3) 
plot(-xray3,yray3) 
end 

 

 

 

The following three programs need to be executed sequentially for the description 

and the ray-tracing of a specially designed aspheric lens. 

These programs are:   1)  runge_katta4.m     2)  aspheric_runge_katta4.m and 

3)  aspheric_point_source_test.m 

 

The following function needs to be saved as runge_katta4.m and placed in the 

matlab folder where the other two programs for the aspheric lens are being 

executed. 
function [x, w] = runge_kutta4(a, b, N, alpha) 

   
b=2; 
a=0; 
alpha=0; 
N=800; 

   
h = (b-a)/N;        %the step size 
x(1) = a;            
w(1) = alpha;       %the initial value 

  
for i = 1:N 
   k1 = h*f(x(i), w(i)); 
   k2 = h*f(x(i)+h/2, w(i)+(k1)/2); 
   k3 = h*f(x(i)+h/2, w(i)+(k2)/2); 
   k4 = h*f(x(i)+h, w(i)+k3); 
   w(i+1) = w(i) + (k1 + 2*k2 + 2*k3 + k4)/6; 
   x(i+1) = a + i*h; 
end 

  
plot(x, w) 

   
function dy = f(x, y) 

  
dy=(1.59*sqrt(x.^2/(x.^2+(5-y).^2)))/... 

(1.59*sqrt((5-y).^2/(x.^2+(5-y).^2))-1); 

 

 

 

 

% aspheric_runge_katta4.m is a program that obtains the values of  

% x and w from a function called runge_katta4.m and produces a data file  

% named lens_coordinates_runge_katta4.dat  which contains the coordinates 
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% of a specially designed aspheric lens. 
  
clear all 
n=1.59; 
[x, w] = runge_kutta4(0, 2, 800, 0); 

  
c = x'; 
d = w'; 
e = [c d]'; 
fid = fopen('lens_coordinates_runge_katta4.dat','w'); 
fprintf(fid,'%1.12f %1.12f\n', e); 
fclose(fid); 

  
g = [x(1:500)' w(1:500)']'; 
fid = fopen('my_lens_coordinates_runge_katta4.dat','w'); 
fprintf(fid,'%1.12f %1.12f\n', g); 
fclose(fid); 

  
x_coord = c; 
y_coord = d; 

  
x2 = 5-y_coord; 
y2 = x_coord; 
m = y2./x2; 

  
for i = 1:length(x) 
    theta(i) = atan(m(i)); 
end 
%theta = (theta./pi)*180; 
for i = 1:length(x) 
    tan_theta2(i) = (n*sin(theta(i))/(n*cos(theta(i))-1)); 
end 
theta2 = atan(tan_theta2); 
%theta2 = (theta2./pi)*180; 
theta1=theta2-theta; 

  
for i = 1:length(x) 
    sin_theta2(i) = sin(theta2(i)); 
end 
 sin_theta2 = sin_theta2'; 

  
 for i = 1:length(x) 
    n_times_sin_theta1(i) = n*sin(theta1(i)); 
end 
 n_times_sin_theta1 = n_times_sin_theta1'; 

  
 final_proof = [sin_theta2(1:200,1) n_times_sin_theta1(1:200,1)] 

  

  
figure(1) 
hold on 
grid on 
plot(x,w,'k') 
title('Solution of differential Equation'); 
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xlabel('x'); 
ylabel('g(x)'); 
b=0:0.01:3; 
g=b.^2/4; 
plot(b,g) 

 

 

% aspheric_point_source_test.m is the third and final program needed to simulate 

%ray-tracing 

% from a point source through an especially designed aspheric lens  
clear all 
n = 1.59; 
fid = fopen('lens_coordinates_runge_katta4.dat','r'); 
pts = fscanf(fid,'%g %g'); 
[m p]=size(pts); 
pts=[reshape(pts,2,m/2)]; 
pts=pts'; 
x=pts(:,1); 
y=-pts(:,2); 
fclose(fid); 
[x y];  

  
for i = 2:length(x)-1 
    vx_t(i) = x(i+1) - x(i-1); 
    vy_t(i) = y(i+1) - y(i-1); 
    norm_factor(i) = sqrt((x(i+1)-x(i-1))^2 + (y(i+1)-y(i-1))^2); 
    vx_tan(i) = vx_t(i)/norm_factor(i); 
    vy_tan(i) = vy_t(i)/norm_factor(i); 

     
    vx_s(i) = x(i); 
    vy_s(i) = y(i) +5 ; 
    norm_factor_s(i) = sqrt((x(i)^2 + (y(i)+5)^2)); 
    vx_source(i) = vx_s(i)/norm_factor_s(i); 
    vy_source(i) = vy_s(i)/norm_factor_s(i); 

     
end 

  
vz_tan = zeros(1,length(vx_t)); 
vx_horiz = ones(1,length(vx_t)); 
a = [vx_tan' vy_tan' vz_tan']; 
b = [-vy_tan' vx_tan' vz_tan']; % b is the normal (n) 
c = [vx_horiz' vz_tan' vz_tan']; 
s = [vx_source' vy_source' vz_tan']; % s is the rays incident 

%upon the aspheric lens from source ( source at x=0, y=-5 ) 
for k = 2:length(x)-1 
theta(k,1:3) = 

atan2(norm(cross(s(k,1:3),b(k,1:3))),dot(s(k,1:3),b(k,1:3)));   
alpha(k,1:3) = 

atan2(norm(cross(b(k,1:3),c(k,1:3))),dot(b(k,1:3),c(k,1:3)));   

  
theta_1(k,3) = asin(n*sin(theta(k,3))); 

  
m(k,3) = tan(theta_1(k,3)+alpha(k,3)); 
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x_wall(k) = (m(k,3)*x(k) - y(k)+5)/m(k,3); 
end 
x_wall' 

  
figure(1) 
hold on 
grid on 
plot(x,y,'--') 
plot(-x,y,'--') 
for i=2:18:length(x)-1 
%rays hit the lens 
yray(1)=-5; 
xray(1)=0; 
xray(2)=x(i); 
yray(2)=y(i); 
plot(xray,yray); 
plot(-xray,yray) 
end 
for k=2:18:length(x)-1 
%rays hit the wall at y=5 (producing parallel rays) 
yray3(1)=y(k); 
xray3(1)=x(k); 
xray3(2)=x_wall(k); 
yray3(2)=5; 
plot(xray3,yray3) 
plot(-xray3,yray3) 
end 

 

 
%two_slits.m is a Fresnel integral approximation for  
%diffraction of a plane input field due to a double_slit 
clear all 
clc 
close all 

  
lambda0 = 0.0005;  
n1 = 1;   %index of slab for simulation 

  
W=0.02;  
h=0.02; 
N=2; 

  
n1 = 1; 
k1 = (2*pi/lambda0)*n1; 
y=40000; 

  
dxin=lambda0/5; 
xtot=(N-1)*h+W; 
Npts=1001; 
xin=linspace(-xtot/2,xtot/2,Npts); 

  
for j=1:N 
    C(j)=(N-1)*(-h/2)+(j-1)*h; 

        
end; 
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x_output = linspace(-2000,2000,Npts); 

  
j=1;   
n=1; 
while   n<=Npts; 
        if abs(xin(n)-C(j))<=W/2 
            E(n)=1; 
        end 

        
        n=n+1; 
        if n==Npts+1 
            break; 
        end; 

         
        if (abs(xin(n)-C(j))) >= W/2 & (n~=Npts) 
            j=j+1; 
            n=n+((h-W)/dxin); 
        end; 
end 

     
for n=1:Npts; 
    L = sqrt((x_output(n)).^2+y^2); 
     obliq=y/L; 
     E_out(n) = sum(sqrt(i*k1/(2*pi.*y)).*exp(-i*k1*y).*... 
exp((-i*k1*((x_output(n)-xin).^2))/(2*y)).*... 
((1+obliq)/2).*E.*dxin); 
 end; 
figure(1) 
hold on 
grid on; 
plot(x_output,(abs(E_out).^2)/max(abs(E_out).^2),'k');   %filed 

%on grating boundary 
title('Plane wave diffraction (double-slit)'); 
xlabel('x of Output field (mm)'); 
ylabel('Optical intensity'); 

 

 

 
  

%four_slits.m is a Fresnel integral simulation that shows  

%diffraction of a plane input field due to four slits 
clear all 
clc 
close all 

  
lambda0 = .5; 
n1 = 1;   %index of slab for simulation 

  
W=4; 
h=12; 
N=4; 

  
n1 = 1; 
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k1 = (2*pi/lambda0)*n1; 
y=4000; 

  
dxin=lambda0/20; 
xtot=(N-1)*h+W; 
Npts=(xtot/dxin)+1; 
xin=linspace(-xtot/2,xtot/2,Npts); 

  
for i=1:N 
    C(i)=(N-1)*(-h/2)+(i-1)*h; 

        
end; 

  
x_output = linspace(-2000,2000,Npts); 

  
i=1;   
n=1; 
while   n<=Npts; 
        if abs(xin(n)-C(i))<=W/2 
            E(n)=1; 
        end 

        
        n=n+1; 
        if n==Npts+1 
            break; 
        end; 

         
        if (abs(xin(n)-C(i))) >= W/2 & (n~=Npts) 
            i=i+1; 
            n=n+((h-W)/dxin); 
        end; 
end 

     
for n=1:Npts; 
    L = sqrt((x_output(n)).^2+y^2); 
     obliq=y/L; 
            A=sqrt(j*k1/(2*pi.*y)).*exp(-j*k1*y); 
            B=((x_output(n)-xin).^2); 
            C=((1+obliq)/2)*dxin; 
            E_out(n) = sum(A*C*exp((-j*k1*B)./(2*y)).*E); 
 end; 
figure(1)         
grid on; 
hold on; 
plot(x_output,(abs(E_out).^2)/max(abs(E_out).^2),'k');   %field 

%on grating %boundary 
title('Plane wave diffraction (Multi slit)'); 
xlabel('x of Output field (um)'); 
ylabel('Optical intensity'); 

 

 
%From here on all routines listed require to accompany a function 

%file named  

%make_gaussian1.m to run. This function is listed below: 
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% make_gaussian1.m is the function that produces Gaussian beams 
%---output--- 
%y: y-coordinate of field points, vector 
%E: complex field amplitude, vector 
%dy: distance between field points 

  
function [y,E,dy] = make_Gaussian1(ms,nms,NP,y0)  

  
%make sure NP is odd 
% if mod(NP,2)==0 
%     NP = NP+1; 
% end 

  
dy = nms*ms/(NP-1); 
y = [-nms*ms/2:dy:nms*ms/2]; 
E = exp(-(y-y0).^2/(ms/2)^2); 
% normalize power 
pow = (sum(E.^2)*dy); 
E = E./sqrt((pow)); 

 

 
% mygrating_new_approximation_new_facets_6R_mod_T.m is a program 

%for %simulation 
% of a gaussian beam diffraction due to an echelle grating. a 

%function named  
% make_gaussian1.m must be placed in the same directory in order 

%to run this %routine. 

  
clear all; 
f = 250;  
d = 7500;  
R = 250;  
R2 = 12000;  
a = -2500; 
n1 = 1.0;    
n2 = 1.5;    
lambda0 = 0.6;   %design wavelength  
lambda1 = 0.5;   %lowest wavelength  
S = 100;  
m = 2;  %grating diffraction order 
NF = 95; 
NFP = 11;    %number of points per facet, odd 
TFP = NF*NFP;   
xI = -d-3*500;   %input point 
yI = 0.0; 
yD = yI; 

  
yup = sqrt(R.^2/2.); 
ylow = -yup;%-sqrt(R.^2/2.); 
xup = -d-(R-sqrt(R.^2/2.)); 
xlow = xup; 

  
w= (yup-ylow)/NF; 
f2= f; 
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xD = 11163.60574-2500;   %output center 

  
%parabolic collimating lens 
yL = [ylow:(yup-ylow)/(TFP-1):yup]; %y for collimating lens      
xL = -d-yL.^2/(4*f); %x for collimating lens 

  
xLB = -12*R; 
yLB = yL; 
xFL = -d-yL.^2/(4*f2)+d+R; 
yFL = yL; 
xGB=-3000; 

  
figure(1); 
title('Device layout'); 
hold on; 
grid on; 
axis equal; 
plot(xI,yI,'rs');   %input point 
plot(xD,yD,'rs');   %output center 
%plot(xL,yL,'k-');  %collimating lens 
%plot(xLB,yLB,'k-'); %boundary of space behind lens 
%plot(xFL,yL,'k-');  %focusing lens 
plot([xI,-d,d,xD],[yI,0,0,yD],'r-');  %central ray 
plot([xI,xGB,xFL(TFP),xD],[yI,yL(TFP),yL(TFP),yD],'r-');  %upper 

%boundary ray 
plot([xI,xGB,xFL(1),xD],[yI,yL(1),yL(1),yD],'r-'); %lower 

%boundary ray 

  

  
%---------------------------- 
%construct grating 
dx = m*lambda0/(n1-n2); %dx displacement from facet to facet 

  
Fw = (yup-ylow)/NF; 
dyLin = Fw/(NFP-1); 
NF2=(NF+1)/2; 
for n=1:NF 

     
    dFP(n)=(NF2-n)*dx+a; 

    
end 
for j=1:NF 
    k=1:NFP; 
        xFP(j,k)=dFP(j); 
    end 
    xFP=xFP'; 
xFP=reshape(xFP,1,TFP); 
h=ylow 
for n=1:NF 
    for m=1:NFP 
    yFP(n,m)=h+(m-1)*dyLin; 
end 
h=yFP(n,NFP) 
end 
yFP=yFP' 
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yFP=reshape(yFP,1,TFP); 

  
TFP=TFP; 
FPw=Fw/NFP; 
xGB = -3000  %x of left boundary of grating area 
fill([xFP(1),xFP,xGB,xGB],[yFP(1),yFP,yup,ylow],'c');   %plot 

%grating area and facets; 
plot(xFP,yFP,'k.');    %plot grating facet points 
gtext(['dx = ',num2str(abs(dx),'%2.2f'),... 

' um    dy = ',num2str(min(Fw),'%2.4f'),' um']); %facet feature 

%size 
clear yend; 

  

  

  
%------------------------------------- 
lambda0 = 0.6;    
lambda1 = 0.5;    
n1 = 1.0;   %index of slab for simulation 
n2 = 1.5;   %index of grating groove for simulation 

  
NINP = TFP; %number of input points, odd 
in_ms = 40;  %input Gaussian field mode size 
in_range = 4;   %input field calculation range, in number of mode 

%size 
NOP = NINP;  %number of output field points, odd 
out_range = 12;   %output field calculation range, in number of S  
dlambda = 0.05;    %simulation wavelength step 
lambda = [lambda1:dlambda:2*lambda0-lambda1];   %wavelengths to 

%be simulated 

  
%get input field 
[Sin,Ein,dyin] = make_Gaussian1(in_ms,in_range,NINP,0);  %assume 

%Gaussian 
xin = xI; 
yin = Sin; 
plot(xin,yin,'c+'); %input plane 
figure(2); 
hold on; 
grid on; 
plot(Sin,abs(Ein).^2);  %input field 
title('Normalized input field'); 
xlabel('Distance (um)'); 
ylabel('Optical intensity'); 

  
% %boundary of vertical flat surface behind collimating lens, 

%take same %number of points as on grating 
yLB = yL; 
yGB = yLB; 
figure(1); 
plot(xGB,yGB,'k-') 
%output plane 
dout = out_range*S/(NOP-1); %output point width  
Sout = [-out_range/2*S:dout:out_range/2*S]; 
xout = xD; 
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yout = Sout; 
plot(xout,yout,'b+');   %flat output plane 

  
%loop thru wavelength     
for nWL=1:length(lambda) 
    k1 = 2*pi/lambda(nWL)*n1; 
    k2 = 2*pi/lambda(nWL)*n2; 
    powGG = 0.0; 

   
    %calculate field on grating  
    for n=1:TFP 

         
        EG(nWL,n) = sum(sqrt(i*k1/2/pi./(xFP(n)-xin)).*... 

exp(-i*k1*(xFP(n)-xin)).*... 

exp(-i*k1*((yFP(n)-yin).^2)./(2*(xFP(n)-xin))).*Ein.*dyin); 
        powGG = powGG+abs(EG(nWL,n))^2*FPw;   %power on grating 

%boundary %before calibration  

  
    end  

     
    EG(nWL,:) = EG(nWL,:)/sqrt(powGG); %calibrate field on 

%grating   
    powG(nWL) = powGG;  %grating power  

     
    for n=1:NOP            
        Eout(nWL,n) = sum(sqrt(i*k2/2/pi./(xout-xFP)).*... 

exp(-i*k2*(xout-xFP)).*... 

exp(-i*k2*((yout(n)-yFP).^2)./(2*(xout-xFP))).*EG(nWL,:).*FPw); 
    end        
    powOUT(nWL) = sum(abs(Eout(nWL,:)).^2*dout); %total output 

%power 
end 

  
leg_txt = []; 
for nWL=1:length(lambda) 
    leg_txt = strvcat(leg_txt,[num2str(lambda(nWL)),'micron']); 
end 

  

  
figure(6); 
hold on; 
grid on; 
plot(yFP,abs(EG).^2);   %field intensity on grating facets 
title('Optical field on grating facets'); 
xlabel('Height y (um)'); 
ylabel('Optical Intensity'); 
legend(leg_txt); 

  
figure(8); 
hold on; 
grid on; 
plot(Sout,abs(Eout).^2);    %field on output plane 
title('Output fields'); 
xlabel('Distance (um)'); 
ylabel('Optical intensity'); 
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legend(leg_txt); 

  
figure(9); 
hold on; 
grid on; 
plot(lambda,[powG;powOUT],'-*');    %field on output plane 
title('Optical power'); 
xlabel('Wavelength (micron)'); 
ylabel('Power'); 
legend('grating','output plane'); 

 

% binary_grating.m simulates the diffraction of a gaussian beam  
% by a binary phase grating 
% this simulation shows the function of binary grating as 1x2 

%beam splitter 
clear all 
clc 
n1 = 1.0;   %index between the lens and the grating 
n2 = 1.5;   %index of the slab waveguide 
lambda0 = 0.6; 
x_grating=0.0; 
depth_grating=lambda0; 
f = 20; %focal length of the first parabolic lens interface (1) 
R = 2*f; %Radius of the first parabolic lens interface 
yup=250; 
ylow=-250; 
NFP = 11; 
NF = 95; 
NF2plus= floor(NF/2)+1; 
TFP=NF*NFP; 
Fw=(yup-ylow)/NF; 
FPW=Fw/(NFP-1); 
dy=FPW; 
FPw=Fw/NFP; 
for n=1:NFP 

     
    d1(n)=x_grating 

    
end 
for n=1:NFP 

     
    d2(n)=x_grating+depth_grating 

    
end 
d=[d1 d2]; 
d=d'; 
d=repmat(d,NF2plus,1); 
d=d(1:end-NFP); 
xFP=d' 

  
for n=1:NF 
    for m=1:NFP 
    y(n,m)=ylow+(m-1)*dy; 
end 
ylow=y(n,NFP) 
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end 
y=y'; 
yFP=reshape(y,1,TFP); 

  
xI=-2500; 
yI=0.0; 
xD=10000; 
yD=0.0; 
xout = xD; 

  
yup = yFP(end); 
ylow = -yup; 
dyLin=(yup-ylow)/(TFP-1); 
%parabolic collimating lens 
yL = [ylow:(yup-ylow)/(TFP-1):yup]; %y for collimating lens      
xL = -100-yL.^2/(10000); %x for collimating lens 

  
figure(1); 
title('Device layout'); 
hold on; 
grid on; 
axis equal; 
plot(xI,yI,'rs');  %input point 
plot(xD,yD,'rs');  %output center 
plot(xL,yL,'k-');  %collimating lens 
xGB = 100;         %x of left boundary of grating area 
fill([xFP(1),xFP,xGB,xGB],[yFP(1),yFP,ylow,yup],'c');   %plot 

%grating facets; 
plot(xFP,yFP,'k.');    %plot grating facet points 

  
TFP=TFP; 
lambda0 = 0.6;   %design wavelength  
lambda1 = 0.5;   %second stigmatic wavelength 
dlambda = 0.05;    %simulation wavelength step 
lambda = [lambda1:dlambda:2*lambda0-lambda1];   %wavelengths to 

%be simulated 
% lambda = [0.6]; 

  
S = 50;  
in_ms = 200;  %input Gaussian field mode size 
in_range = 4;   %input field calculation range, in number of mode 

%size 

  
%get input field 
[Sin,Ein,dyin] = make_Gaussian1(in_ms,in_range,TFP,0);  %assume 

%Gaussian 

  
pow=(sum(abs(Ein).^2*dyin)^2); 

  
xin = xI; 
yin = Sin; 
plot(xin,yin,'c+'); %input plane 
figure(2); 
hold on; 
grid on; 
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plot(Sin,abs(Ein).^2);  %input field 
title('Normalized input field'); 
xlabel('Distance (um)'); 
ylabel('Optical intensity'); 

  

  
%output plane 
Sout = linspace(-800,800,TFP); 
dout = Sout(2)-Sout(1); 

  
xout = xD; 
yout = Sout; 
figure(1); 
plot(xout,yout,'b+');   %flat output plane 
plot(xin,yin,'c+'); %input plane 

  
%loop thru wavelength     
for nWL=1:length(lambda) 
    k1 = 2*pi/lambda(nWL)*n1; 
    k2 = 2*pi/lambda(nWL)*n2; 

     
%calculate field on the first lens  
    for n=1:TFP 
        theta_d_in = atan((yL(n)-yin)./(xL(n)-xin)); 
        l = sqrt((xL(n)-xin).^2+(yL(n)-yin).^2); 
         EL(nWL,n) = sum((i*k2/2).*besselh(1,k2*l).*... 

cos(theta_d_in).*Ein.*dyin); 
    end 
%calculate field on grating 
      powGG = 0.0; 
        for n=1:TFP 
        theta_d_in = atan((yFP(n)-yL)./(xFP(n)-xL)); 
        l = sqrt((xFP(n)-xL).^2+(yFP(n)-yL).^2); 
        EG(nWL,n) = sum((i*k1/2).*besselh(1,k1*l).*... 

cos(theta_d_in).*EL(nWL,:).*dyLin); 
         powGG = powGG+abs(EG(nWL,n))^2*FPw;   %power on grating   

  
    end  

     
    EG(nWL,:) = EG(nWL,:)/sqrt(powGG); %calibrate field on 

%grating   
    powG(nWL) = powGG;  %grating power  

     
    for n=1:TFP        
        theta_d_out = atan((yout(n)-yFP)./(xout-xFP)); 
        l = sqrt((xout-xFP).^2+(yout(n)-yFP).^2);       
        Eout(nWL,n) = sum((i*k2/2).*besselh(1,k2*l).*... 

cos(theta_d_out).*EG(nWL,:).*FPw); 
    end        
    powOUT(nWL) = sum(abs(Eout(nWL,:)).^2*dout); %total output 

%power 
end 

  
leg_txt = []; 
for nWL=1:length(lambda) 
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    leg_txt = strvcat(leg_txt,[num2str(lambda(nWL)),'micron']); 
end 

  
figure(3); 
hold on; 
grid on; 
plot(yFP,abs(EG).^2);   %field intensity on grating facets 
title('Optical field on grating facets'); 
xlabel('Height y (um)'); 
ylabel('Optical Intensity'); 
legend(leg_txt); 

  
figure(4); 
hold on; 
grid on; 
plot(Sout,abs(Eout).^2);    %field on output plane 
title('Output fields'); 
xlabel('Position of the fields across the output plane (um)'); 
ylabel('Optical intensity'); 
legend(leg_txt); 

  
figure(5); 
hold on; 
grid on; 
plot([lambda],[powG;powOUT],'-*');   
title('Optical power'); 
xlabel('Wavelength (micron)'); 
ylabel('Power'); 
legend('grating','output plane'); 

 

 
% binary_grating_10deg_tilt.m is a program that simulates 

%diffraction of a  
% gaussian beam due to a binary phase grating that is tilted by 

%10 degrees 
clear all 
clc 
n1 = 1.0;   %index after the grating 
n2 = 1.6;   %index before the grating   
lambda0 = 0.6328;   %design wavelength 
lambda1 = 0.5328;   %second stigmatic wavelength 
dlambda = 0.05;    %simulation wavelength step 
lambda = [0.5328:0.05:0.6328];   %wavelengths to be simulated 
incidence_angle = pi/18 
x_grating=0.0; 
depth_grating=0.5; 
yup=23.75; 
ylow=-23.75; 
NFP = 11; 
NF = 95; 
NF2plus= floor(NF/2)+1; 
TFP=NF*NFP; 
Fw=(yup-ylow)/NF; 
FPW=Fw/(NFP-1); 
dy=FPW; 
FPw=Fw/NFP; 
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for n=1:NFP 

     
    d1(n)=x_grating 

    
end 
for n=1:NFP 

     
    d2(n)=x_grating+depth_grating 

    
end 
d=[d1 d2]; 
d=d'; 
d=repmat(d,NF2plus,1); 
d=d(1:end-NFP); 
xFP=d' 

  
for n=1:NF 
    for m=1:NFP 
    y(n,m)=ylow+(m-1)*dy; 
end 
ylow=y(n,NFP) 
end 
y=y' 
yFP=reshape(y,1,TFP); 

  

  
xFP_r=xFP*cos(incidence_angle)+yFP*sin(incidence_angle); 
yFP_r=yFP*cos(incidence_angle)-xFP*sin(incidence_angle); 
plot(xFP_r,yFP_r) 

  

  
xI=-1000; 
yI=0.0; 
xD=10000; 
yD=0.0; 
xout = xD; 

  
yup = yFP(end); 
ylow = -yup; 
dyLin=(yup-ylow)/(TFP-1); 

  
figure(1); 
title('Device layout'); 
hold on; 
grid on; 
axis equal; 
plot(xI,yI,'rs');   %input point 
plot(xD,yD,'rs');   %output center 
xGB = 100;  %x of left boundary of grating area 
fill([xFP_r(1),xFP_r,xGB,xGB],[yFP_r(1),yFP_r,ylow,yup],'c'); 

%plot grating facets; 
plot(xFP_r,yFP_r,'k.');    %plot grating facet points 

  
S = 50; 
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in_ms = 20;  %input Gaussian field mode size 
in_range = 4;   %input field calculation range, in number of mode 

%size 

  
%get input field 
[Sin,Ein,dyin] = make_Gaussian1(in_ms,in_range,TFP,0);  %assume 

%Gaussian 
xin = xI; 
yin = Sin; 
plot(xin,yin,'r'); %input plane 
figure(2); 
hold on; 
grid on; 
plot(Sin,abs(Ein).^2);  %input field 
title('Normalized input field'); 
xlabel('Distance (um)'); 
ylabel('Optical intensity'); 

  
%output plane 
Sout = linspace(-10000,10000,TFP); 
dout = (Sout(2)-Sout(1))*cos(incidence_angle); 

  

  
xout = xD; 
yout = Sout; 
figure(1); 
plot(xout,yout,'b+');   %flat output plane 
plot(xin,yin,'c+'); %input plane 

  
%loop thru wavelength     
for nWL=1:length(lambda) 
    k1 = 2*pi/lambda(nWL)*n1; 
    k2 = 2*pi/lambda(nWL)*n2; 

     

  
%calculate field on grating 
      powGG = 0.0; 
        for n=1:TFP 
        theta_d_in = atan((yFP_r(n)-yin)./(xFP_r(n)-xin)); 
        l = sqrt((xFP_r(n)-xin).^2+(yFP_r(n)-yin).^2); 
        EG(nWL,n) = sum((i*k2/2).*besselh(1,k2*l).*... 

cos(theta_d_in).*Ein.*dyin); 
         powGG = powGG+abs(EG(nWL,n))^2*FPw;     
        end  

     
    EG(nWL,:) = EG(nWL,:)/sqrt(powGG); %calibrate field on 

%grating   
    powG(nWL) = sum(abs(EG(nWL,:)).^2*FPw);  %grating power  

     

     
    for n=1:TFP        
        theta_d_out = atan((yout(n)-yFP_r)./(xout-xFP_r)); 
        l = sqrt((xout-xFP_r).^2+(yout(n)-yFP_r).^2);       
        Eout(nWL,n) = sum((i*k1/2).*besselh(1,k1*l).*... 

cos(theta_d_out).*EG(nWL,:).*FPw); 
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    end        
    powOUT(nWL) = sum(abs(Eout(nWL,:)).^2*dout); %total output 

%power 
end 

  
leg_txt = []; 
for nWL=1:length(lambda) 
    leg_txt = strvcat(leg_txt,[num2str(lambda(nWL)),'micron']); 
end 

  
figure(3); 
hold on; 
grid on; 
plot(yFP,abs(EG).^2);   %field intensity on grating facets 
title('Optical field on grating facets'); 
xlabel('Height y (um)'); 
ylabel('Optical Intensity'); 
legend(leg_txt); 

  
figure(4); 
hold on; 
grid on; 
plot(Sout,abs(Eout).^2);    %field on output plane 
title('Output fields'); 
xlabel('Distance (um)'); 
ylabel('Optical intensity'); 
legend(leg_txt); 

  
figure(5); 
hold on; 
grid on; 
plot(lambda,[powG;powOUT],'-*');    %field on output plane 
title('Optical power'); 
xlabel('Wavelength (micron)'); 
ylabel('Power'); 
legend('grating','output plane'); 

  
figure(6); 
hold on; 
grid on; 
plot(lambda,[powOUT./sum(powOUT)],'-*');    %field on output 

plane 
title('Optical power at output'); 
xlabel('Wavelength (micron)'); 
ylabel('Power'); 
legend('output plane'); 

 

 
% my_blazed_grating.m is a program to simulate diffraction  
% of a gaussian beam by a sawtooth grating, the grating 
% is blazed for +1 order 
clear all; 
clc; 
f = 500;  
d = 3000;  
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R = 250;  
R2 = 12000;  
a = -2500; %distance from device center to grating center 
n1 = 1.0;   %index before grating 
n2 = 1.5;   %index after grating 
lambda0 = 0.406;   %design wavelength  
lambda1 = 0.306;   %second stigmatic wavelength  
S = 100;  
m = 1;  %grating diffraction order 
NF = 95;     %number of facets 
NFP = 11;    %number of points per facet, odd 
TFP = NF*NFP;   

  
xI = -d-3*R;   %input point 
yI = 0.0; 
yD = yI; 

  

  
%--------------------------------------- 
yup = sqrt(R.^2/2.); 
ylow = -sqrt(R.^2/2.); 
xup = -d-(R-sqrt(R.^2/2.)); 
xlow = xup; 

  
w= (yup-ylow)/NF; 
f2= f; 
xD = 6*R*2;   %output center 
xGB=-3000; 

  
%---------------------------- 
%construct grating 
dx = m*lambda0/(n2-n1); %dx displacement from facet to facet 
NF2 = (NF-1)/2; 
NFP2 = (NFP-1)/2; 
blaze_angle = pi/8.149; 
theta = pi/2 - blaze_angle; 
x = dx*sin(theta); 
dd = dx/sin(blaze_angle); 
y = dx/tan(blaze_angle); 
dy = (dx/tan(blaze_angle))/(NFP-1); 
h=-(dy*NF2*(NFP-1) + NFP2*dy);  
for n=1:NF 
    for m=1:NFP 
    yFP(n,m)=h+(m-1)*dy; 
end 
h=yFP(n,NFP); 
end 
yFP=-yFP'; 
yFP=reshape(yFP,1,TFP); 

  
yup = (dy*NF2*(NFP-1)+ NFP2*dy); 
ylow = -(dy*NF2*(NFP-1) + NFP2*dy); 
Fw = x/sin(blaze_angle); 
dyLin_grating = Fw/(NFP-1); 
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xdiff = dy*tan(blaze_angle); 
for n=1:NFP 
    xFP(n)= x-(n-1)*xdiff+a; 
end 
xFP = repmat(xFP,1,NF); 

     

  
figure(1); 
title('Device layout'); 
hold on; 
grid on; 
axis equal; 
plot(xI,yI,'rs');   %input point 
plot(xD,yD,'rs');   %output center 
plot([xI,-d,d,xD],[yI,0,0,yD],'r-');  %central ray 
plot([xI,xGB,xFP(TFP),xD],[yI,yFP(TFP),yFP(TFP),yD],'r-');%upper 

%boundary ray 
plot([xI,xGB,xFP(1),xD],[yI,yFP(1),yFP(1),yD],'r-'); %lower 

%boundary ray 

  
FPw=Fw/(NFP); 
xGB = -3000;   %x of left boundary of grating area 
fill([xFP(1),xFP,xGB,xGB],[yFP(1),yFP,ylow,yup],'c');   %plot 

%grating facets; 
plot(xFP,yFP,'k.');    %plot grating facet points 
gtext(['dx = ',num2str(abs(dx),'%2.3f'),... 

' um, dy min = ',num2str(min(Fw),'%2.5f'),' um']); %facet feature 

%size 

clear yend; 
%------------------------------------- 
NINP = TFP; %number of input points, odd 
in_ms = 40;  %input Gaussian field mode size 
in_range = 4;   %input field calculation range, in number of mode 

%size 
out_range = 24;   %output field calculation range, in number of S  
dlambda = 0.05;    %simulation wavelength step 
lambda = [lambda1:dlambda:2*lambda0-lambda1];   %wavelengths to 

%be simulated 

  
%get input field 
[Sin,Ein,dyin] = make_Gaussian1(in_ms,in_range,NINP,0);  %assume 

%Gaussian 
xin = xI; 
yin = Sin; 
plot(xin,yin,'c+'); %input plane 
figure(2); 
hold on; 
grid on; 
plot(Sin,abs(Ein).^2);  %input field 
title('Normalized input field'); 
xlabel('y (vertical axis) (um)'); 
ylabel('Optical intensity'); 

  
%output plane 
dout = out_range*S/(TFP-1); %output point width  
Sout = [-out_range/2*S:dout:out_range/2*S]; 
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xout = xD; 
yout = Sout; 
figure(1); 
plot(xout,yout,'b+');   %flat output plane 

  
%loop thru wavelength     
for nWL=1:length(lambda) 
    k1 = 2*pi/lambda(nWL)*n1; 
    k2 = 2*pi/lambda(nWL)*n2; 

     
     powGG = 0.0;    
    %calculate field on grating  
    for n=1:TFP 
        EG(nWL,n) = sum(sqrt(i*k1/2/pi./(xFP(n)-xin)).*... 

exp(-i*k1*(xFP(n)-xin)).*... 

exp(-i*k1*((yFP(n)-yin).^2)./(2*(xFP(n)-xin))).*Ein.*dyin); 
        powGG = powGG+abs(EG(nWL,n))^2*FPw;   %power on grating   
    end  

     
    EG(nWL,:) = EG(nWL,:)/sqrt(powGG); %calibrate field on 

%grating   
    powG(nWL) = powGG;  %grating power  

     
%     %calculate field on output plane 
    for n=1:TFP            
        Eout(nWL,n) = sum(sqrt(i*k2/2/pi./(xout-xFP)).*... 

exp(-i*k2*(xout-xFP)).*... 

exp(-i*k2*((yout(n)-yFP).^2)./(2*(xout-xFP))).*EG(nWL,:).*FPw); 
    end        
    powOUT(nWL) = sum(abs(Eout(nWL,:)).^2*dout); %total output 

%power 
end 

  
leg_txt = []; 
for nWL=1:length(lambda) 
    leg_txt = strvcat(leg_txt,[num2str(lambda(nWL)),'micron']); 
end 

  

  
figure(3); 
hold on; 
grid on; 
plot(yFP,abs(EG).^2);   %field intensity on grating facets 
title('Optical field on grating facets'); 
xlabel(' y (vertical axis) (um)'); 
ylabel('Optical Intensity'); 
legend(leg_txt); 
%  

  
figure(4); 
hold on; 
grid on; 
plot(Sout,abs(Eout).^2);    %field on output plane 
title('Output fields'); 
xlabel('Field position at the output plane (um)'); 
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ylabel('Optical intensity'); 
legend(leg_txt); 

  
figure(5); 
hold on; 
grid on; 
plot(lambda,[powG;powOUT],'-*');    %field on output plane 
title('Optical power'); 
xlabel('Wavelength (micron)'); 
ylabel('Power'); 
legend('grating','output plane'); 
 

  
% my_blazed_grating_orders.m is a program that predicts 
% the position of different diffracted orders in a sawtooth  
% transmission grating  
clear all; 
clc; 
f = 500; 
d = 3000; 
R = 250;  
R2 = 12000;   
a = -2500; %distance from device center to grating center 
n1 = 1.0;   %index before grating 
n2 = 1.43;   %index after grating  
lambda0 = 0.645;   %design wavelength  
lambda1 = 0.533;   %wavelength of the orders  
S = 100;  
m = 2;  %grating diffraction order 
NF = 195; 
NFP = 11;    %number of points per facet, odd 
TFP = NF*NFP; 

  
xI = -d-3*R;   %input point 
yI = 0.0; 
yD = yI; 
%--------------------------------------- 
yup = sqrt(R.^2/2.); 
ylow = -sqrt(R.^2/2.); 
xup = -d-(R-sqrt(R.^2/2.)); 
xlow = xup; 

  
w= (yup-ylow)/NF; 
f2= f; 
xD =-1000;% 6*R*2;   %output center 
xGB=-3000;          %grating boundary 
%---------------------------- 
%construct grating 
dx = m*lambda0/(n2-n1); %dx displacement from facet to facet 
NF2 = (NF-1)/2; 
NFP2 = (NFP-1)/2; 
blaze_angle = pi/8.149; 
theta = pi/2 - blaze_angle; 
x = dx*sin(theta); 
dd = dx/sin(blaze_angle); 
y = dx/tan(blaze_angle); 
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dy = (dx/tan(blaze_angle))/(NFP-1); 
h=-(dy*NF2*(NFP-1) + NFP2*dy);  
for n=1:NF 
    for m=1:NFP 
    yFP(n,m)=h+(m-1)*dy; 
end 
h=yFP(n,NFP); 
end 
yFP=-yFP'; 
yFP=reshape(yFP,1,TFP); 

  
yup = (dy*NF2*(NFP-1)+ NFP2*dy); 
ylow = -(dy*NF2*(NFP-1) + NFP2*dy); 
Fw = x/sin(blaze_angle); 
dyLin_grating = Fw/(NFP-1); 

  
xdiff = dy*tan(blaze_angle); 
for n=1:NFP 
    xFP(n)= x-(n-1)*xdiff+a; 
end 
xFP = repmat(xFP,1,NF); 

  
figure(1); 
title('Device layout'); 
hold on; 
grid on; 
axis equal; 
plot(xI,yI,'rs');   %input point 
plot(xD,yD,'rs');   %output center 
plot([xI,-d,d,xD],[yI,0,0,yD],'r-');  %central ray 
plot([xI,xGB,xFP(TFP),xD],[yI,yFP(TFP),yFP(TFP),yD],'r-');%upper 

%boundary ray 
plot([xI,xGB,xFP(1),xD],[yI,yFP(1),yFP(1),yD],'r-'); %lower 

%boundary ray 

  

     
FPw=Fw/(NFP); 
xGB = -3000;   %x of left boundary of grating area 
fill([xFP(1),xFP,xGB,xGB],[yFP(1),yFP,ylow,yup],'c');   %plot 

%grating facets; 
plot(xFP,yFP,'k.');    %plot grating facet points 
gtext(['dx = ',num2str(abs(dx),'%2.3f'),... 

' um, dy min = ',num2str(min(Fw),'%2.5f'),' um']); %facet feature 

%size 
clear yend; 
%------------------------------------ 
NINP = 1045; %number of input points, odd 
in_ms = 40;  %input Gaussian field mode size 
in_range = 4;   %input field calculation range, in number of mode 

%size 
NOP = 1045;  %number of output field points, odd 
out_range = 8;   %output field calculation range, in number of S  
dlambda = 0.05;    %simulation wavelength step 
% lambda = [lambda1:dlambda:2*lambda0-lambda1];   %wavelengths to 

%be simulated 
lambda=[lambda1]; 
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%get input field 
[Sin,Ein,dyin] = make_Gaussian1(in_ms,in_range,NINP,0);  %assume 

%Gaussian 
xin = xI; 
yin = Sin; 
plot(xin,yin,'c+'); %input plane 
figure(2); 
hold on; 
grid on; 
plot(Sin,abs(Ein).^2);  %input field 
title('Normalized input field'); 
xlabel('y (vertical) axis (um)'); 
ylabel('Optical intensity'); 

  
%output plane 
dout = out_range*S/(NOP-1); %output point width  
Sout = [-out_range/2*S:dout:out_range/2*S]; 
xout = xD; 
yout = Sout; 
figure(1); 
plot(xout,yout,'b+');   %flat output plane 

  
%loop thru wavelength     
for nWL=1:length(lambda) 
    k1 = 2*pi/lambda(nWL)*n1; 
    k2 = 2*pi/lambda(nWL)*n2; 
     powGG = 0.0;    
    %calculate field on grating  
    for n=1:TFP 
        EG(nWL,n) = sum(sqrt(1i*k1/2/pi./(xFP(n)-xin)).*... 

exp(-1i*k1*(xFP(n)-xin)).*... 

exp(-1i*k1*((yFP(n)-yin).^2)./(2*(xFP(n)-xin))).*Ein.*dyin); 
        powGG = powGG+abs(EG(nWL,n))^2*FPw;   %power on grating  
    end  

     
    EG(nWL,:) = EG(nWL,:)/sqrt(powGG); %calibrate field on 

%grating   
    powG(nWL) = powGG;  %grating power  

      
%     %calculate field on output plane 
    for n=1:NOP            
        Eout(nWL,n) = sum(sqrt(1i*k2/2/pi./(xout-xFP)).*... 

exp(-1i*k2*(xout-xFP)).*... 

exp(-1i*k2*((yout(n)-yFP).^2)./(2*(xout-xFP))).*... 

EG(nWL,:).*FPw/1.027); 
    end        
    powOUT(nWL) = sum(abs(Eout(nWL,:)).^2*dout); %total output 

%power 
end 

  
leg_txt = []; 
for nWL=1:length(lambda) 
    leg_txt = strvcat(leg_txt,[num2str(lambda(nWL)),'micron']); 
end 
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figure(3); 
hold on; 
grid on; 
plot(yFP,abs(EG).^2);   %field intensity on grating facets 
title('Optical field on grating facets'); 
xlabel(' Position on grating plane (um)'); 
ylabel('Optical Intensity'); 
legend(leg_txt); 
%  
figure(4); 
hold on; 
grid on; 
plot(Sout,(abs(Eout).^2));    %field on output plane 
title('Output fields'); 
xlabel('Position at the output plane (um)'); 
ylabel('Optical intensity'); 
legend(leg_txt); 

  
figure(5); 
hold on; 
grid on; 
plot(lambda,[powG;powOUT],'-*');    
title('Optical power'); 
xlabel('Wavelength (micron)'); 
ylabel('Power'); 
legend('grating','output plane'); 
 

  

%spectrometer.m is a Program to construct and simulate an  
% integrated microspectrometer based on two parabolic lenss 
% and a single transmission grating in between them.  
% Seyed Azmayesh-Fard Dec-2008 

  
clear all; 
clc; 
f = 3000; %focal length of the collimating lens 
R = 822; %Radius of the collimating lens 
n1 = 1.43;   %index of slab for grating construction 
n2 = 1.0;   %index inside grating compartment 
n3 = 1.0;   %index behind lenses 
lambda0 = 0.645;   %design wavelength  
lambda1 = 0.545;   %second stigmatic wavelength  
S = 40; 
m = 2;  %grating diffraction order 
NF = 95; 
NFP = 11;    %number of points per facet, odd 
TFP = NF*NFP;%number of points on lens 
NLP = TFP; 

  
xI = 0;   %input point 
yI = 0.0; 
yD = yI; 
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%--------------------------------------- 
%construct lenses 
%search lens boundary 
yup = R*sin(pi/18); 
ylow = -yup; 
xup = 3*R-(R-R*cos(pi/18)); 
xlow = xup; 

  
w= (yup-ylow)/NF; 
xD = 14*R;   %output center 

  
%parabolic collimating lens 
yL = [ylow:(yup-ylow)/(NLP-1):yup]; %y for collimating lens      
xL = 3*R-yL.^2/((4*f)*(n1/n3-1)); %x for collimating lens 

  
xLB = 4*R; 
yLB = yL; 
xGB = 5*R; %x of left boundary of grating area 
xFL = 8*R-yL.^2/((4*f)*(n1/n3-1)); 
yFL = yL; 

  
figure(1); 
title('Device layout'); 
hold on; 
grid on; 
axis([0 11508 -1000 1000]);  
plot(xI,yI,'rs');   %input point 
plot(xD,yD,'rs');   %output center 
%plot(xS,yS,'gs');   %second stigmatic point 
plot(xL,yL,'k-');  %collimating lens 
plot(xLB,yLB,'k-'); %boundary of space behind lens 
plot(xFL,yL,'k-');  %focusing lens 
plot([xI,xD],[yI,yD],'r-');  %central ray 
plot([xI,xL(NLP),xFL(NLP),xD],[yI,yL(NLP),yL(NLP),yD],... 

'r-');%upper boundary ray 
plot([xI,xL(1),xFL(1),xD],[yI,yL(1),yL(1),yD],'r-');%lower 

%boundary ray 
%---------------------------- 
%construct grating 
dx = m*lambda0/(n1-n2); %dx displacement from facet to facet 
Fw = (yup-ylow)/NF; 
dyLin = Fw/(NFP-1); 
NF2=(NF+1)/2; 
for n=1:NF 

     
    dFP(n)=(NF2-n)*dx+6*R; 

    
end 
for j=1:NF 
    k=1:NFP; 
        xFP(j,k)=dFP(j); 
    end 
    xFP=xFP'; 
xFP=reshape(xFP,1,TFP); 
h=ylow; 
for j=1:NF 
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    for k=1:NFP 
    yFP(j,k)=h+(k-1)*dyLin; 
end 
h=yFP(j,NFP); 
end 
yFP=yFP'; 
yFP=reshape(yFP,1,TFP); 

  
FPw=Fw/(NFP); 
fill([xFP,xGB,xGB,xFP(1)],[yFP,yup,ylow,yFP(1)],'c');   %plot 

%grating facets; 
plot(xFP,yFP,'k.');    %plot grating facet points 
gtext(['dx = ',num2str(abs(dx),'%2.2f'),... 

' um, dy min = ',num2str(min(Fw),'%2.4f'),' um']); %facet feature 

%size 

%------------------------------------- 
NINP = TFP; %number of input points, odd 
in_ms = 40;  %input Gaussian field mode size 
in_range = 4;   %input field calculation range, in number of mode 

%size 
NOP = TFP;  %number of output field points, odd 
out_range = 24;   %output field calculation range, in number of S  
dlambda = 0.05;    %simulation wavelength step 
lambda = [lambda1:dlambda:2*lambda0-lambda1];   %wavelengths to 

%be simulated 

  
%get input field 
[Sin,Ein,dyin] = make_Gaussian1(in_ms,in_range,NINP,0);  %assume 

%Gaussian 
xin = xI; 
yin = Sin; 
plot(xin,yin,'c+'); %input plane 
figure(2); 
hold on; 
grid on; 
plot(Sin,abs(Ein).^2);  %input field 
title('Normalized input field'); 
xlabel('Distance (um)'); 
ylabel('Optical intensity'); 

  
% %boundary of vertical flat surface behind collimating lens 
yLB = yL; 
yGB = yLB; 
figure(1); 
plot(xGB,yGB,'k-') 
%output plane 
dout = out_range*S/(NOP-1); %output point width  
Sout = [-out_range/2*S:dout:out_range/2*S]; 
xout = xD; 
yout = Sout; 
plot(xout,yout,'b+');   %flat output plane 

  
%loop thru wavelength     
for nWL=1:length(lambda) 
    k1 = 2*pi/lambda(nWL)*n1; 
    k2 = 2*pi/lambda(nWL)*n2; 
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    k3 = 2*pi/lambda(nWL)*n3; 

    
    %calculate field on the first lens 
    for n=1:TFP 
        %theta_d_in = atan((yL(n)-yin)./(xL(n)-xin)); 
        %l = sqrt((xL(n)-xin).^2+(yL(n)-yin).^2); 
        EL(nWL,n) = sum(sqrt(1i*k1/2/pi./(xL(n)-xin)).*... 

exp(-1i*k1*(xL(n)-xin)).*... 

exp(-1i*k1*((yL(n)-yin).^2)./(2*(xL(n)-xin))).*Ein.*dyin); 
    end 

      
    %calculate field on boundary of flat surface behind first 

%lens 
    dyLin = (yup-ylow)/(NLP-1); 
    for n=1:TFP 
        ELB(nWL,n) = sum(sqrt(1i*k3/2/pi./(xLB-xL)).*... 

exp(-1i*k3*(xLB-xL)).*... 

exp(-i*k3*((yLB(n)-yL).^2)./(2*(xLB-xL))).*EL(nWL,:).*dyLin); 
    end 

     
    %calculate field on grating boundary 
    powGG = 0.0; 
    for n=1:TFP 
        EGB(nWL,n) = sum(sqrt(1i*k1/2/pi./(xGB-xLB)).*... 

exp(-1i*k1*(xGB-xLB)).*... 

exp(-1i*k1*((yGB(n)-yLB).^2)./(2*(xGB-xLB))).*ELB(nWL,:).*dyLin); 
    end 

     
    %calculate field on grating  
    for n=1:TFP 
        EG(nWL,n) = sum(sqrt(1i*k2/2/pi./(xFP(n)-xGB)).*... 

exp(-1i*k2*(xFP(n)-xGB)).*... 

exp(-1i*k2*((yFP(n)-yGB).^2)./(2*(xFP(n)-xGB))).*... 

EGB(nWL,:).*dyLin); 
        powGG = powGG+abs(EG(nWL,n))^2*FPw;   %power on grating  
    end  

     
    EG(nWL,:) = EG(nWL,:)/sqrt(powGG); %calibrate field on 

%grating   
    powG(nWL) = powGG;  %grating power  
    %calculate field on focusing lens 
    for n=1:NLP 
        EFL(nWL,n) = sum(sqrt(1i*k1/2/pi./(xFL(n)-xFP)).*... 

exp(-1i*k1*(xFL(n)-xFP)).*... 

exp(-1i*k1*((yFL(n)-yFP).^2)./(2*(xFL(n)-xFP))).*EG(nWL,:).*FPw); 
    end   
    powFL(nWL) = sum(abs(EFL(nWL,:)).^2*(yup-ylow)/(NLP-1)); 

     
    %calculate field on output plane 
    for n=1:NOP             
        Eout(nWL,n) = sum(sqrt(1i*k3/2/pi./(xout-xFL)).*... 

exp(-1i*k3*(xout-xFL)).*... 

exp(-1i*k3*((yout(n)-yFL).^2)./(2*(xout-xFL))).*... 

EFL(nWL,:).*dyLin); 
    end        
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    powOUT(nWL) = sum(abs(Eout(nWL,:)).^2*dout); %total output 

%power 
end 

  
leg_txt = []; 
for nWL=1:length(lambda) 
    leg_txt = strvcat(leg_txt,[num2str(lambda(nWL)),'micron']); 
end 

  
figure(3); 
hold on; 
grid on; 
plot(yL,abs(EL).^2);   %filed on first lens 
title('Optical field on first lens'); 
xlabel('Height y (um)'); 
ylabel('Optical intensity');    
legend(leg_txt); 

  
figure(4); 
hold on; 
grid on; 
plot(yL,abs(ELB).^2);   %filed on plane surface after first lens 
title('Optical field on plane surface after first lens'); 
xlabel('Height y (um)'); 
ylabel('Optical intensity');    
legend(leg_txt); 

  

  
figure(5); 
hold on; 
grid on; 
plot(yGB,abs(EGB).^2);   %filed on grating boundary 
title('Optical field on grating boundary'); 
xlabel('Height y (um)'); 
ylabel('Optical intensity');    
legend(leg_txt); 

  
figure(6); 
hold on; 
grid on; 
plot(yFP,abs(EG).^2);   %field intensity on grating facets 
title('Optical field on grating facets'); 
xlabel('Height y (um)'); 
ylabel('Optical Intensity'); 
legend(leg_txt); 

  
figure(7); 
hold on; 
grid on; 
plot(yFL,abs(EFL).^2);   %filed on focusing lens   
title('Optical field on focusing lens'); 
xlabel('Height y (um)'); 
ylabel('Optical intensity'); 
legend(leg_txt); 
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figure(8); 
hold on; 
grid on; 
plot(Sout,abs(Eout).^2);    %field on output plane 
title('Output fields'); 
xlabel('Position at output plane (um)'); 
ylabel('Optical intensity'); 
legend(leg_txt); 

  
figure(9); 
hold on; 
grid on; 
plot(lambda,[powG;powFL;powOUT],'-*');    %field on output plane 
title('Optical power'); 
xlabel('Wavelength (micron)'); 
ylabel('Power'); 
legend('grating','focusing lens','output plane'); 
 

 

%my2lens_Hankel.m is a Program to construct and simulate  
%the results obtained from a given Gaussian input field 
%after passing through a collimating and a focusing lens. 
%Field calculations are based on Rayleigh-Sommerfeld-I 
% diffraction integral that uses Hankel function 
clear all; 
f = 10; %focal length of the collimating lens 
f2 = 10; %focal length of the focusing lens 
d = .02; %distance from first lens vertex to device center 
R = 2*f; %Radius of the collimating lens 
R2 = 2*f2; %Radius of the focusing lens  
n1 = 1.5;   %index of slab for lens construction 
n2 = 1.0;   %index between two lens interfaces 
lambda0 = 0.6;   %design wavelength  
lambda1 = 0.5;   %second stigmatic wavelength  
S = 10;  
NF = 95; 
NFP = 11;   %number of points per facet, odd 
NLP = NF*NFP;  %number of points on lens 
TFP = NLP; 
xI = -d/2-3*R;   %input point 
xD = 3*R+d/2;   %output center 

  
yI = 0.0; 
yD = yI; 

  
%--------------------------------------- 
%construct lenses 
%search lens boundary 
alpha = pi/18; % alpha is the positive ray angle with optic axis 
yup = (-2*R + sqrt(R.^2*(4+24*(tan(alpha))^2)))/(2*tan(alpha)); 
ylow = -yup; 

  
%parabolic collimating lens 
yL = [ylow:(yup-ylow)/(NLP-1):yup]; %y for collimating lens      
xL = -d-yL.^2/(4*f);    %x for collimating lens 
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yup2 = (-2*R2 + 

sqrt(R2.^2*(4+24*(tan(alpha))^2)))/(2*tan(alpha)); 
ylow2 = -yup2; 

  

  
%parabolic focusing lens 
yFL = [ylow2:(yup2-ylow2)/(NLP-1):yup2]; %y for focusing lens      
xFL = yFL.^2/(4*f2);    %x for focusing lens 

  

  
figure(1); 
title('Device layout'); 
hold on; 
grid on; 
axis equal; 
plot(xI,yI,'rs');   %input point 
plot(xD,yD,'rs');   %output center 
plot(xL,yL,'k-');  %collimating lens 
%plot(xLB,yLB,'k-'); %boundary of space behind lens 
plot(xFL,yFL,'k-');  %focusing lens 
plot([xI,-d,d,xD],[yI,0,0,yD],'r-');  %central ray 
plot([xI,xL(NLP),xFL(NLP),xD],[yI,yL(NLP),yFL(NLP),yD],'r-');   

%upper boundary ray 
plot([xI,xL(1),xFL(1),xD],[yI,yL(1),yL(1),yD],'r-'); %lower 

%boundary ray 

  

  
%---------------------------- 
gtext(['xI = ',num2str((xI),'%2.2f'),... 

' um, xD = ',num2str((xD),'%2.2f'),...' um']); %input and optput 

%points 

gtext(['f (collimating) = ',num2str((f),'%2.2f'),... 

' um, f2 (focusing) = ',num2str((f2),'%2.2f'),' um']); 

  

  

  
%------------------------------------- 

  
NINP = 1045; %number of input points, odd 
in_ms = 10;  %input Gaussian field mode size 
in_range = 4;   %input field calculation range, in number of mode 

%size 
out_range = 4;   %output field calculation range, in number of S  
dlambda = 0.05;    %simulation wavelength step 
lambda = [lambda1:dlambda:2*lambda0-lambda1];   %wavelengths to 

%be simulated 

  
%get input field 
[Sin,Ein,dyin] = make_Gaussian1(in_ms,in_range,NINP,0);  %assume 

%Gaussian 
xin = xI; 
yin = Sin; 
plot(xin,yin,'c+'); %input plane 
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figure(2); 
hold on; 
grid on; 
plot(Sin,abs(Ein).^2);  %input field 
title('Normalized input field'); 
xlabel('Field position at input plane (um)'); 
ylabel('Optical intensity'); 

  

  
figure(1); 

  
dout = out_range*S/(NLP-1); %output point width  
yout = [-out_range/2*S:dout:out_range/2*S]; 
xout = xD; 

  
plot(xout,yout,'b+');   %flat output plane 

  
    k1 = 2*pi/lambda0*n1; 
    k2 = 2*pi/lambda0*n2; 

    
    %calculate field on the first lens  
    for n=1:TFP 
        theta_d_in = atan((yL(n)-yin)./(xL(n)-xin)); 
        l = sqrt((xL(n)-xin).^2+(yL(n)-yin).^2); 
        %EL(n) = sum(sqrt(i*k1/2/pi./(xL(n)-xin)).*exp(-

%i*k1*(xL(n)-xin)).*exp(-i*k1*((yL(n)-yin).^2)./(2*(xL(n)-

%xin))).*(1+cos(theta_d_in))./2.*Ein.*dyin); 
        EL(n) = sum((i*k1/2).*besselh(1,k1*l).*... 

cos(theta_d_in).*Ein.*dyin); 
    end 
    powL(n) = sum(abs(EL(1,:)).^2*(yup-ylow)/(NLP-1)); 

      
%     %calculate field on second lens 
    dyLin = (yup-ylow)/(NLP-1); 

  
    for n=1:TFP 
        theta_d_F = atan((yFL(n)-yL)./(xFL(n)-xL)); 
        l = sqrt((xFL(n)-xL).^2+(yFL(n)-yL).^2); 
        %EFL(n) = sum(sqrt(i*k3/2/pi./(xFL(n)-xL)).*exp(-

%i*k3*(xFL(n)-xL)).*exp(-i*k3*((yFL(n)-yL).^2)./(2*(xFL(n)-

%xL))).*(1+cos(theta_d_F))./2.*EL(1,:).*dyLin); 
        EFL(n) = sum((i*k2/2).*besselh(1,k2*l).*... 

cos(theta_d_F).*EL.*dyLin); 
    end   
    powFL(n) = sum(abs(EFL(1,:)).^2*(yup-ylow)/(NLP-1)); 

     
    %calculate field on output plane 

     
    for n=1:NLP        
        theta_d_out = atan((yout(n)-yFL)./(xout-xFL)); 
        l = sqrt((xout-xFL).^2+(yout(n)-yFL).^2);       
        %Eout(1,n) = sum(sqrt(i*k1/2/pi./(xout-xFL)).*exp(-

%i*k1*(xout-xFL)).*exp(-i*k1*((yout(n)-yFL).^2)./(2*(xout-

%xFL))).*(1+cos(theta_d_out))./2.*EFL(1,:).*dyLin); 
        Eout(n) = sum((i*k1/2).*besselh(1,k1*l).*... 
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cos(theta_d_out).*EFL.*dyLin); 
    end        
    powOUT(n) = sum(abs(Eout(1,:)).^2*dout); %total output power 
    %end 

  
leg_txt = []; 
for nWL=1:length(lambda) 
    leg_txt = strvcat(leg_txt,[num2str(lambda(nWL)*1E3),'nm']); 
end 

  

  

  
figure(3); 
hold on; 
grid on; 
plot(yL,abs(EL).^2);   %field intensity on collimating lens 
title('Optical field on first lens'); 
xlabel('Height y (um)'); 
ylabel('Optical Intensity'); 
legend(leg_txt); 

  

  
figure(4); 
hold on; 
grid on; 
plot(yFL,abs(EFL).^2);   %filed on focusing lens   
title('Optical field on focusing lens'); 
xlabel('Height y (um)'); 
ylabel('Optical intensity'); 
legend(leg_txt); 

  
figure(5); 
hold on; 
grid on; 
plot(yout,abs(Eout).^2);    %field on output plane 
title('Output field'); 
xlabel('Field position at output plane (um)'); 
ylabel('Optical intensity'); 
legend(leg_txt); 

  

 
%ahankel1.m FOR THE 
%TEST OF THE ASYMPTOTIC EXPANSION OF THE HANKEL-1 FUNCTION 
%USING THE MAGNITUDE AND PHASE SERIES FROM Abramowitz&Stegun, 

%PAGE 365, 
%AND COMPARING TO THE MATLAB FUNCTION 
% 
clear all; 
clc; 
%Expansion coefficients 
  A1 = 3/8; A2 = -45/128;   
  B1 = -21/128; B2 = 1899/5120; 
%Loop thru values of x of argument (1, 10, 100, ..., 100000) 
  fprintf('\n            x        percent err    x*(p.c.er)'); 
for ix=1:11 
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  xix = (10^6)/(10^(0.5*(12-ix))); 
  x(ix) = xix; 
  %Matlab hankel.................. 
  h1 = besselh(1,xix);  magnh1 = abs(h1);  anglh1 = angle(h1); 
  %Asymptotic hankel............. 
  rtpx = sqrt(2/(pi*xix));  xmtp4 = xix - 3*pi/4; 
  Mah1 = rtpx*(1+A1/xix^2+ A2/xix^4);   
  Thah1 = xmtp4 + B1/xix; 
  ah1(1) = Mah1*exp(i*Thah1); 
%Find error and print 
  pcrelerr= (100*abs((ah1-h1)/h1)); 
  xpcerr= xix*pcrelerr; 
  fprintf('\n %12.0f        %8.5f      %8.5f',xix, pcrelerr,... 

xpcerr); 
  logx(ix) = log10(xix);  pcerr(ix) = pcrelerr; 
  logpcerr(ix) = log10(pcrelerr); xpce(ix) = xix*pcerr(ix); 
end; %of x-value loop 
; 
  plot(logx,logpcerr); 
  xlabel('Log10(x)'); 
  ylabel('Log10(percent error)') 
  title('Error in Asymptotic Approx. of H1(x)');  

 

 
%system_of_nonlinear_equations_it_is_order_2.m is a program for 
%constructing a self focusing transmission grating which 

%simulates 
%the diffraction of a gaussian beam for different wavelengths  
clear all 
clc 
NF=395; 
NFP=11; 
TFP=NF*NFP; 
n1=1.5; 
n2=1.0; 

  
x=0.55; 
y=0.55; 
delta=zeros(2,1); 
epsilon=1e-3; 
err=1; 

  
for j=1:NF 

     
    while err >= epsilon 

     
        f1=(sqrt((5000-y)^2+(10000-x)^2))*... 

n2-(sqrt((5000)^2+(10000)^2))*n2+x*n1+j*0.4; 
        f2=(sqrt((2500-y)^2+(10000-x)^2))*... 

n2-(sqrt((2500)^2+(10000)^2))*n2+x*n1+j*0.7; 

  
        r_f1_x=-n2*(10000-x)/(sqrt((5000-y)^2+(10000-x)^2))+n1; 
        r_f1_y=-n2*(5000-y)/(sqrt((5000-y)^2+(10000-x)^2)); 

  
        r_f2_x=-n2*(10000-x)/(sqrt((2500-y)^2+(10000-x)^2))+n1; 
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        r_f2_y=-n2*(2500-y)/(sqrt((2500-y)^2+(10000-x)^2)); 

  
        A=[r_f1_x r_f1_y; r_f2_x r_f2_y]; 
        B=[-f1;-f2]; 

     
        delta=A\B; 
        x=x+delta(1); 
        y=y+delta(2);     

     
        err=max(delta); 
    end 
    err=1; 
    delta=zeros(2,1); 
    xx(j)=x; 
    yy(j)=abs(y); 
    x=0.55; 
    y=0.55; 
end 

  
for j=1:NF 
    k=1:NFP; 
        xFP(j,k)=xx(j); 
end 
xFP=xFP'; 
xFP=reshape(xFP,1,TFP); 

  
h=0.0; 
yy(NF+1)= yy(NF)+(yy(NF)-yy(NF-1)); 

  
for n=1:NF 
    dyLin(n)= (yy(n+1)-yy(n))/(NFP-1); 
end 
for n=1:NF 

     
    for m=1:NFP 

         
        yFP(n,m)=h+(m-1)*dyLin(n); 
    end 
h=yFP(n,NFP); 
end 
yFP=yFP'; 
yFP=reshape(yFP,1,TFP); 

  

  
yFP= yFP-(yFP(end)-yFP(1))/2; 
xFP= xFP-(((xFP(end)-xFP(1))/2)+xFP(1)); 

  

  

  
Fw=[abs((yFP(1:NFP:end)-yFP(NFP:NFP:end)))'] 
Fd=[abs(xFP(1:NFP:end-NFP) - xFP(1+NFP:NFP:end))'] 

  
dyLin = (yFP(end)*2)/TFP; 
FPw=mean(dyLin); 
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xI=-1000; 
yI=0.0; 
xD=10000; 
yD=0.0; 
xout = xD; 

  
figure(1); 
title('Device layout'); 
hold on; 
grid on; 
axis equal; 
plot([xI,xD],[yI,yD],'-k.');  %central ray 
plot(xI,yI,'rs');   %input point 
plot(xD,yD,'rs');   %output center 
fill([xI,xFP(1),xD,xFP(end)],[0,yFP(1),0,yFP(end)],'c');%plot 

%grating facets; 
plot(xFP,yFP,'-k.');    %plot grating facet points 

  
TFP=TFP; 
lambda0 = 0.6;   %design wavelength  
lambda1 = 0.5;   %second stigmatic wavelength 
dlambda = 0.05;    %simulation wavelength step 
lambda = [lambda1:dlambda:2*lambda0-lambda1];   %wavelengths to 

%be simulated 

  

  
S = 50;  
TFP = TFP; %number of input points, odd 
in_ms = 100;  %input Gaussian field mode size 
in_range = 4;   %input field calculation range, in number of mode 

%size 
out_range = 40;   %output field calculation range, in number of S  

  
%get input field 
[Sin,Ein,dyin] = make_Gaussian1(in_ms,in_range,TFP,0);  %assume 

%Gaussian 
xin = xI; 
yin = Sin; 
figure(2); 
hold on; 
grid on; 
plot(Sin,abs(Ein).^2);  %input field 
title('Normalized input field'); 
xlabel('Distance (um)'); 
ylabel('Optical intensity'); 
figure(1); 
%output plane 
dout = out_range*S/(TFP-1); %output point width  
Sout = [-out_range/2*S:dout:out_range/2*S]; 
xout = xD; 
yout = Sout; 

  
%calculation of linear shift of principal maxima(for when there 

%is no 
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%dispersion of the wavelengths) 
Sin_gama_b=(sum(Fd(1:end))/length(Fd))/... 

(sum(Fw(1:end))/length(Fw)); 
Linear_shift_maxima=asin((n2-n1)*Sin_gama_b)*xout 

  

  

  
plot([0,0],[Sout(1),Sout(end)],'k-');  %central ray 
plot(xout,yout,'b+');   %flat output plane 
plot(xin,yin,'c+'); %input plane 

  
%loop thru wavelength     
for nWL=1:length(lambda) 
    k1 = 2*pi/lambda(nWL)*n1; 
    k2 = 2*pi/lambda(nWL)*n2;  
       powGG = 0.0; 
        for n=1:TFP 
        EG(nWL,n) = sum(sqrt(i*k1/2/pi./(xFP(n)-xin)).*... 
            exp(-i*k1*(xFP(n)-xin)).*... 
            exp(-i*k1*((yFP(n)-yin).^2)./(2*(xFP(n)-xin))).*... 
            Ein.*dyin); 
        powGG = powGG+abs(EG(nWL,n))^2*FPw;   %power on grating   

  
    end  

     
    EG(nWL,:) = EG(nWL,:)/sqrt(powGG); %calibrate field on 

%grating   
    powG(nWL) = powGG;  %grating power  

     
    for n=1:TFP            
        Eout(nWL,n) = sum(sqrt(i*k2/2/pi./(xout-xFP)).*... 
            exp(-i*k2*(xout-xFP)).*... 
            exp(-i*k2*((yout(n)-yFP).^2)./(2*(xout-xFP))).*... 
            EG(nWL,:).*FPw); 
    end        
    powOUT(nWL) = sum(abs(Eout(nWL,:)).^2*dout); %total output 

%power 
end 

  
leg_txt = []; 
for nWL=1:length(lambda) 
    leg_txt = strvcat(leg_txt,[num2str(lambda(nWL)),'micron']); 
end 

  

  
figure(3); 
hold on; 
grid on; 
plot(yFP,abs(EG).^2);   %field intensity on grating facets 
title('Optical field on grating facets'); 
xlabel(' y axis (um)'); 
ylabel('Optical Intensity'); 
legend(leg_txt); 

  
figure(4); 
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hold on; 
grid on; 
plot(Sout,abs(Eout).^2);    %field on output plane 
title('Output fields'); 
xlabel(' Position at output plane (um)'); 
ylabel('Optical intensity'); 
legend(leg_txt); 

  
figure(5); 
hold on; 
grid on; 
plot(lambda,[powG;powOUT],'-*');    %field on output plane 
title('Optical power'); 
xlabel('Wavelength (micron)'); 
ylabel('Power'); 
legend('grating','output plane'); 

  

 
% A function named make_gaussian1.m listed previously must be 

%placed in the 

% same directory in order to run the following routine. 

 

% The following two programs have to be executed in sequence.  

% First program to run is mygrating_lens_facet_definition.m which 

%defines the % facets of the lens-grating/lens optical system.  

% Second program is mygrating_lens_Gaussian_input.m which 

%simulates the 

% diffraction of a Gaussian beam in the lens-grating/lens optical 
%system at 

% different wavelengths. “Processing time for this program is >10 

%minutes” 

% mygrating_lens_facet_definition.m is a program which defines 

%the 
% facets of the lens-grating/lens optical system.  
clear all 
clc 
NF=600; 
NFP=11; 
TFP=NF*NFP; 
Fw=6; 
n1=1.43; 
n2=1.0; 
f=10000; 
R1=f/(n1/(n1-n2)); 
lambda0 = 0.645;   %design wavelength  
lambda1 = 0.545;   %second stigmatic wavelength  
m = 2;  %grating diffraction order 
xI = 0.0;   %x of input point 
yI = 0.0;   %y of input point 
% xD = 456*2;   %x of output center 
yD = yI;  %y of output center 
%construct lens and grating 
dx = m*lambda0/(n1-n2); %dx displacement from facet to facet 
F(1) = f; 
for i = 1:NF 
    F(i) = F(1)-(i-1)*dx; 
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    R(i) = ((n1-n2)/n1)*F(i); 
end 
theta=linspace(pi,1.944383494,NF)%2.842290364 
polar(theta,R,'r'); 
[x,y]=pol2cart(theta,R); 
plot(x,y) 
for i=1:NF-1 
theta2(i,:)=linspace(theta(i),theta(i+1),NFP); 
end 
theta2=theta2'; 
theta3=theta(end):(theta(2)-theta(1))/... 

(NFP-1):(theta(end)+(NFP-1)*((theta(2)-theta(1))/(NFP-1))); 
theta2=reshape(theta2,[1,(NF-1)*NFP]); 
theta2=[theta2 theta3]; 
theta=theta'; 
theta2=reshape(theta2,[NFP,NF]); 
for i=1:NF 
    r(i,:) = ones(1,NFP) * R(i); 
end 
[x2,y2]=pol2cart(theta2,r'); 
figure(1) 
hold on  
grid on 
axis equal 
% axis([-1600 0, 0 1200]) 
plot(x2,y2,'r-') 
x2 = x2 +10000+3007; 
y2 = y2 -1.2928e+003; 
x2=reshape(x2,[1,(NF*NFP)]); 
d1=x2(:,1:NFP); 
for i=1:(length(x2)-1), 
    j=NFP:NFP:(length(x2)-1); 
    c1=x2(j+1)-x2(j); 
end 
c1 
x2=x2(NFP+1:end); 
x2=reshape(x2,[NFP,NF-1]); 
x2=x2'; 
x2=x2(:,:)-c1(1); 
a1=x2(1,:); 
for i=1:(NF-2) 
x2=x2(2:end,:)-c1(i+1); 
e1(i,:)=x2(1,:) 
end 
e1; 
g1=(NF-2)*NFP; 
e1=reshape(e1',[1,g1]); 
x2=[d1 a1 e1]; 
x2=reshape(x2,[NFP,NF]); 
   t=x2(:,1); 
   x2=x2(:,2:end); 

    
for i=1:NFP, 
for j=1:(NF-1), 
b(i,j)=j*3;  
end 
end 
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x2=x2+b; 
   x2=[t x2]; 
   x2=reshape(x2,[1,TFP]); 

  
y2=reshape(y2,[1,(NF*NFP)]);    
d=y2(:,1:NFP) 
 for i=1:(length(y2)-1), 
    j=NFP:NFP:(length(y2)-1); 
    c=y2(j+1)-y2(j); 
end 
c 
y2=y2(NFP+1:end); 
y2=reshape(y2,[NFP,NF-1]); 
y2=y2'; 
y2=y2(:,:)-c(1); 
a=y2(1,:); 
for i=1:(NF-2) 
y2=y2(2:end,:)-c(i+1); 
e(i,:)=y2(1,:); 
end 
e; 
g=(NF-2)*NFP; 
e=reshape(e',[1,g]); 
y2=[d a e]; 
xFP=x2; 
yFP=y2; 
xFP' 
    fid = fopen('xFP1.out','w'); 
    fprintf(fid,'%f\n', xFP); 
    fclose(fid); 
yFP' 
    fid = fopen('yFP1.out','w'); 
    fprintf(fid,'%f\n', yFP); 
    fclose(fid); 
 

% xFP_t=xFP(1926:3575) 
% yFP_t=yFP(1926:3575) 
%  
% xFP_t' 
%     fid = fopen('xFP_t.out','w'); 
%     fprintf(fid,'%f\n', xFP_t); 
%     fclose(fid); 
% yFP_t' 
%     fid = fopen('yFP_t.out','w'); 
%     fprintf(fid,'%f\n', yFP_t); 
%     fclose(fid); 

     
    xFP_t=xFP(1596:3575) 
    yFP_t=yFP(1596:3575) 

     
    xFP_t2=xFP(1035:4400) 
    yFP_t2=yFP(1035:4400) 

  
xFP_t' 
    fid = fopen('xFP_t.out','w'); 
    fprintf(fid,'%f\n', xFP_t); 
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    fclose(fid); 
yFP_t' 
    fid = fopen('yFP_t.out','w'); 
    fprintf(fid,'%f\n', yFP_t); 
    fclose(fid);   

     
xFP_t2' 
    fid = fopen('xFP_t2.out','w'); 
    fprintf(fid,'%f\n', xFP_t2); 
    fclose(fid); 
yFP_t2' 
    fid = fopen('yFP_t2.out','w'); 
    fprintf(fid,'%f\n', yFP_t2); 
    fclose(fid); 

 

% mygrating_lens_Gaussian_input.m is a program which simulates 

%the 

% diffraction of a Gaussian beam in the lens-grating/lens optical 
%system at 

% different wavelengths.   

clear all 
clc 
NF=600; 
NFP=11; 
TFP=NF*NFP; 
n1=1.43; 
n2=1.0; 
f=3000; 
R1=f/(n1/(n1-n2)); 
lambda0 = 0.645;   %design wavelength  
lambda1 = 0.545;   %second stigmatic wavelength  
m = 2;  %grating diffraction order 
xI = 7000.0;   %x of input point 
yI = 0.0;   %y of input point 
xD = 20214%2*642.88;   %x of output center 
yD = yI;  %y of output center 
%construct lens and grating 
dx = m*lambda0/(n1-n2); %dx displacement from facet to facet 
%--------------------------------------- 
%construct collimating lens 
%search lens boundary 
alpha1 = pi/5; % alpha is the positive ray angle with optic axis 
yup1 = (-2*R1 + 

sqrt(R1.^2*(4+24*(tan(alpha1))^2)))/(2*tan(alpha1)); 
ylow1 = -yup1; 
%--------------------------------------- 
%parabolic collimating lens 
yL1 = [ylow1:(yup1-ylow1)/(TFP-1):yup1]; %y for collimating lens      
xL1 = 7000+(n1/(n1-n2))*R1-yL1.^2/(2*R1);    %x for collimating 

%lens 
dyLin = (yup1-ylow1)/(TFP-1); 

  
xL1' 
    fid = fopen('xL1.out','w'); 
    fprintf(fid,'%f\n', xL1); 
    fclose(fid); 



189 

 

yL1' 
    fid = fopen('yL1.out','w'); 
    fprintf(fid,'%f\n', yL1); 
    fclose(fid); 

  
[xFP]=textread('xFP1.out', '%f') 
[yFP]=textread('yFP1.out', '%f') 
xFP=xFP' 
yFP=yFP' 

  
x11=xFP(11:11:end-11); 
y11=yFP(11:11:end-11); 

  
x12=xFP(12:11:end); 
y12=yFP(12:11:end); 

  
     fid = fopen('x11.out','w'); 
    fprintf(fid,'%f\n', x11); 
    fclose(fid); 

  
    fid = fopen('y11.out','w'); 
    fprintf(fid,'%f\n', y11); 
    fclose(fid); 

     
    fid = fopen('x12.out','w'); 
    fprintf(fid,'%f\n', x12); 
    fclose(fid); 

  
    fid = fopen('y12.out','w'); 
    fprintf(fid,'%f\n', y12); 
    fclose(fid); 

  

     
figure(1); 
title('Device layout'); 
hold on; 
grid on; 
axis equal; 
% axis([1000 1400 -200 200]);; 
plot(xI,yI,'rs');   %input point 
plot(xD,yD,'rs');   %output center 
plot(xL1,yL1,'k-');  %first parabolic lens 
% plot(xL2,yL2,'k-');  %second parabolic lens 
% plot(xL3,yL3,'k-');  %third parabolic lens 
% plot(xL4,yL4,'k-');  %fourth parabolic lens 
plot([xI,xD],[yI,yD],'r-');  %central ray 
plot([xI,xL1(TFP),xFP(end),xD],[yI,yL1(TFP),yFP(end),yD],'r-'); 

%upper boundary ray 
plot([xI,xL1(1),xFP(1),xD],[yI,yL1(1),yFP(1),yD],'r-'); %lower 

%boundary ray 
fill([xFP(1),xFP,xL1(end),... 

xL1(end-1:-1:1)],[yFP(1),yFP,yL1(end),... 

yL1(end-1:-1:1)],'c'); 
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% 

%fill([xFP(1),xL1,xFP(end),wrev(xFP)],[yFP(1),yL1,yFP(end),wrev(y

%FP)],'c'); 

%plot grating area and facets; 
plot(xFP,yFP,'-k.');    %plot grating facet points 

  

  
%---------------------------- 
gtext(['xI = ',num2str((xI),'%2.2f'),... 

' um, xD = ',num2str((xD),'%2.2f'),' um']); %input and optput 

%points 

t=yFP(2:end)-yFP(1:(end-1)); 
FPw=[0.6010 t]; 

  
dlambda = 0.05;    %simulation wavelength step 
lambda = [0.545 0.595 0.645 0.695 0.745]; %wavelengths to be 

%simulated 
S = 40;  
in_ms = 20;  %input Gaussian field mode size 
in_range = 4;   %input field calculation range, in number of mode 

%size 
out_range = 60;   %output field calculation range, in number of S  
%------------------------------------- 

  
NINP = 1045; %number of input points, odd 
%get input field 

  
[Sin,Ein,dyin] = make_Gaussian1(in_ms,in_range,NINP,0);  %assume 

%Gaussian 
xin = xI; 
yin = Sin; 
%plot(xin,yin,'c+'); %input plane 
figure(10); 
hold on; 
grid on; 
plot(Sin,abs(Ein).^2);  %input field 
title('Normalized input field'); 
xlabel('Distance (um)'); 
ylabel('Optical intensity'); 
figure(1); 
%output plane 
Sout=linspace(-1700,-800,TFP); 
dout=Sout(2)-Sout(1); 
xout = xD; 
yout = Sout; 
plot(xout,yout,'b+');   %flat output plane 
plot(xin,yin,'c+'); %input plane 

  
%loop thru wavelength     
for nWL=1: length(lambda) 
    k1 = 2*pi/lambda(nWL)*n1; 
    k2 = 2*pi/lambda(nWL)*n2; 

     
    for n=1:TFP 
    theta_d_in = atan((yL1(n)-yin)./(xL1(n)-xin)); 
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    l = sqrt((xL1(n)-xin).^2+(yL1(n)-yin).^2); 

     
    EL1(nWL,n) = sum((i*k1/2).*besselh(1,k1*l).*... 

cos(theta_d_in).*Ein.*dyin); 
    end 
    powL1(nWL) = sum(abs(EL1(nWL,:)).^2*dyLin); %power on lens 
%calculate field on grating 
      powGG = 0.0; 
    for n=1:TFP 
    theta_d_in = atan((yFP(n)-yL1)./(xFP(n)-xL1)); 
    l = sqrt((xFP(n)-xL1).^2+(yFP(n)-yL1).^2); 
    EG(nWL,n) = sum((i*k2/2).*besselh(1,k2*l).*... 

cos(theta_d_in).*EL1(nWL,:).*dyLin); 
      powGG = powGG+abs(EG(nWL,n))^2*FPw;   %power on grating 

%boundary  
     end  
      powG(nWL) = sum(abs(EG(nWL,:)).^2*FPw'); 

     
    for n=1:TFP        
        theta_d_out = atan((yout(n)-yFP)./(xout-xFP)); 
        l = sqrt((xout-xFP).^2+(yout(n)-yFP).^2);       
        Eout(nWL,n) = sum((i*k1/2).*besselh(1,k1*l).*... 

cos(theta_d_out).*EG(nWL,:).*FPw); 
    end        
    powOUT(nWL) = sum(abs(Eout(nWL,:)).^2*dout); %total output 

%power 
end 

  
leg_txt = []; 
for nWL=1:length(lambda) 
    leg_txt = strvcat(leg_txt,[num2str(lambda(nWL)),'micron']); 
end 

  
figure(5); 
hold on; 
grid on; 
plot(yL1,abs(EL1).^2);   %field intensity on collimating lens 
title('Optical field on first lens'); 
xlabel('Height y (um)'); 
ylabel('Optical Intensity'); 
legend(leg_txt); 

  
figure(6); 
hold on; 
grid on; 
plot(yFP,abs(EG).^2);   %field intensity on grating facets 
title('Optical field on grating facets'); 
xlabel('Height y (um)'); 
ylabel('Optical Intensity'); 
legend(leg_txt); 

  
figure(8); 
hold on; 
grid on; 
plot(Sout,(abs(Eout).^2));    %field on output plane 
title('Output fields'); 
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xlabel('Distance X on output plane (um)'); 
ylabel('Optical intensity'); 
legend(leg_txt); 

  
figure(9); 
hold on; 
grid on; 
plot(lambda,[powL1;powG;powOUT],'-*');    %field on output plane 
title('Optical power'); 
xlabel('Wavelength (micron)'); 
ylabel('Power'); 
legend('lens','grating','output plane'); 

 

 

 


