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Abstract

Weather-related power outages in the distribution grid have a significant im-

pact on the grid reliability – they impose a high cost on power utilities and

considerable inconvenience to customers. Improvements in monitoring and

data collection practices, as well as advanced data processing methods, pro-

vide opportunities for comprehensive modeling and analysis of grid operations.

At the same time, they allow for better understanding and handling reasons

for degradation of service quality due to power outages, weather patterns, and

asset-related performance.

The thesis focuses on applying Machine Learning and Computational Intel-

ligence methods for the analysis and processing of power distribution system

data. We design and develop a collection of data-driven algorithms, meth-

ods, and procedures for investigation of relations between power, outage and

weather data. Additionally, they constitute a framework suitable for building

a comprehensive system for analyzing and predicting weather-related outages

and their severity. We propose Weather outage Prediction System (WoutPS)

for forecasting outages based on multiple data-driven outage prediction models

combined with reasoning framework based on Dempster-Shafer theory (DST),

as well as Knowledge Graph-based representation of distribution grid topology

(GridKG) suitable for integration of data charactrizing different aspects of the

distribution system.

Three different architectures of a system for predicting types of weather-

related outages are proposed and evaluated. Weather and outage data are
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utilized for model development and evaluation of their performances. The

developed system is capable of identifying the probability of outage occurrences

with a focus on identifying outages caused by extreme wind, wet snow, and

icing. An analysis of the prediction results is provided.

The thesis includes details of developing a novel knowledge graph based

representation of a distribution system. The graph, called GridKG, integrates

variety of data: system topology, information about its components and cus-

tomers, as well as data collected during systems events, in particular, power

system outages. As a result, a comprehensive representation of a distribution

system is obtained. We anticipate that the proposed way of representing a

power distribution grid will lead to the discovery of novel ways of augmenting

and predicting its reliability. We show the benefits of such representation:

evaluation the impact of power outages on consumers in the power system

without and with Distributed Energy Resources.
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Chapter 1

Introduction

1.1 Motivation

Distribution grid power outages are relatively frequent and impose high costs

on power utilities as well as significant inconvenience to customers. Accord-

ing to [1], the US economy is affected by power outages between $20 billion

and $55 billion annually. Power outages are mainly the result of incidents

such as adverse weather, human element, foreign interference, defective equip-

ment, lightning, or tree contacts. These incidents lead to electrical faults in

the power system, which should be identified and isolated by power system

protective equipment. The protection system aims to keep the power network

stable, allowing as much of the network to remain operational as possible while

isolating the area under fault. Usually, after power outages, a utility needs to

dispatch a large number of crews to restore the interrupted services. The es-

timated cost of an average storm and the consequent power outages is around

$100,000 to $1,000,000 per hour [2].

Incidents leading to power outages in the distribution grid result in vari-

ous types of consequences. Most importantly, it reduces the power system’s

reliability in providing uninterrupted electricity energy to consumers, as well

as it leads to customer dissatisfaction and inconvenience. Reliability in power

systems refers to the power system’s ability to provide electricity to consumers

and satisfy their requirements adequately, and it demonstrates the power sys-

tem’s ability to efficiently responding to system disturbances and resisting

uncontrolled events [3], [4]. Furthermore, power outages and utility responses
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can highly affect the power system’s resiliency. Power system resiliency is

about grid restoration after power outages and the utility’s ability to respond

efficiently to limit power outage range, impact, and recover from it quickly

[5]. The broader definition of resiliency includes main characteristics such as

robustness, resourcefulness, adaptability, and rapid recovery [6], [7]. For relia-

bility analyses, protection systems are presumed to be fully reliable and thus

do not account for any malfunctions [8]. The protection system design affects

the processes of fault isolation and dealing with power outages.

In recent years, renewable energy technologies for generating electricity

have attracted more attention due to climate change and energy sustainability

concerns. However, the increasing integration of renewable energy resources

poses challenges to the protection system that might lead to its failure. In-

correct functionality of protection systems can cause damages to power equip-

ment, raise safety concerns, reduce power reliability and deteriorate customer

satisfaction.

Predicting and determining the severity of weather-related power outages

involves two aspects. First, it can be used as a means of identifying locations

in the grid that are the most vulnerable to extreme weather conditions, and

proposing long-term resilience programs and investments [9]. As a result of

these long-term actions, grid reliability, redundancy, and resistance will be

improved. Second, it will help with rapid recovery after outages and with

the development of emergency plans [10]. Fast recovery plans can prevent the

high costs of outages by helping utilities allocate resources in advance of an

outage. In addition to increased profitability for utilities, outage predictions

improve grid resiliency, reliability, operational efficiencies, as well as customer

satisfaction [11].

1.2 Objectives and Thesis Outline

The ultimate goal of this thesis is to analyze power system outages and de-

velop a collection of data-driven algorithms, methods, and procedures that

will constitute a framework suitable for building a comprehensive system for
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predicting weather-related outages and their severity. We believe that prior

to power system outage analysis, it is beneficial to understand the interaction

between fault incidents and the protection system and be aware of the protec-

tion system challenges in the face of the increasing penetration of distributed

energy resources (DERs) such as wind farms (WFs).

Categorization of Power System Protection Challenges

Many existing publications on protecting systems with renewable resources

have developed their test systems to investigate protection challenges and ver-

ify their proposed solutions [12]–[25]. However, the comparison and analysis

of the proposed protection schemes studied on different test systems could be

difficult.

Therefore, the first objective is to propose a sample ‘test’ system. It allows

us to describe the main challenges of protecting power grids with integrated

WFs, as well as to discuss the advantages and disadvantages of various relaying

algorithms proposed to address these challenges. The goal is to understand

the interaction of various WFs with the protection system, and be aware of

their influence on the protection relays. Such knowledge would help us esti-

mate how the location and area of power outages will be affected in various

configurations. The main objectives are:

• to understand the influence of protection challenges on the consequent

power outages and being aware of their impact on the outage location

and area;

• to categorize protection challenges and the proposed solutions for various

configurations of fault incidents and WFs in the power system.

Chapter 3 provides a description of protection system issues, and responds to

the above mentioned objectives.

Outage and Weather Data Analysis

Data collection, integration, and analysis of power outages did not receive

enough attention in the literature, and most papers simply used already pro-
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cessed data available for their application.

Our objective is to demonstrate different aspects of the process leading to

better understanding of available data. In particular, we aim at:

• providing an overview of the utility outage management system’s (OMS)

database through the data integration process and demonstrate the re-

lationship between various data sources;

• investigating the interactions between weather, power system, and power

outage data and presenting new insights and statistics on various types

of power outages; and

• calculating of power outage probability based on weather conditions and

similar historical events.

Therefore, in Chapter 4, we focus on data integration processes to construct

a unique overview of the utility outage management system (OMS) database.

Furthermore, new insights and statistics on the power outages and their re-

lationship to weather conditions are presented. The analysis included in the

chapter and its results enable us to better understand the interaction between

weather, power system, and power outage data. In addition, to find vulner-

able locations to specific weather conditions, we demonstrate the process of

calculating the probability of power outages based on similar historical events.

Weather Outage Prediction System – WoutPS

As mentioned in the abstract, one of the main objectives of the thesis is to

build a weather outage prediction system that has the capability to predict the

types of outages. Many papers discuss models for predicting power outages

caused by storms such as hurricanes, blizzards, tornadoes, and thunderstorms

in the literature [26]–[29]. However, outages caused by wet snow and icing

have received little attention in the literature. The goal is to differentiate

three major causes of power outages: severe wind, wet snow, and icing, which

are the most frequent types of weather-related power outages in Alberta.
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We propose data-driven algorithms and methods as a framework for de-

veloping a weather-related outage prediction system. Methodologies used to

create the framework include Machine Learning algorithms and elements of

Computational Intelligence. Furthermore, to provide users with more infor-

mation to understand the decision-making process involving predictive models,

a novel DST-based aggregation method is proposed to provide confidence lev-

els in the prediction. The result is a more powerful ensemble model which

aggregates the results of individual classifiers. As a summary, the objectives

are as follows:

• construction of a real-time weather outage prediction system capable of

predicting major types of weather-related power outages;

• development of reasoning framework to provide confidence in the predic-

tion.

Chapter 5 is fully dedicated to the process of developing of the prediction

system. It contains multiple details and descriptions of individual steps.

Knowledge Graph Representation of Power System

The main objective of next chapter, Chapter, 6 is to provide a new representa-

tion for a large-scale power system that enables the integration of data sources

distributed across various data repositories. This new representation provides

an easy and efficient way to grasp a better insight and understanding of the be-

haviour and mechanisms existing the system via data-driven approaches. The

goal is to utilize this representation to investigate the power outage severity

impact on utility customers.

Most of the research papers dedicated to the outage analysis discuss pre-

dicting how frequent power outages will occur during heavy storms and adverse

weather conditions [26], [30]–[32]. However, the number of power outages does

not adequately represent the severity of power outages. Yet, there is also a

need to estimate the number of customers affected by power outages to deter-

mine the actual impact of power outages at different geographical locations.
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To address these needs, we develop a power grid knowledge graph (GridKG).

It integrates information about the topology of the power system, equipment

and customer metadata, and the information about the power outage events

in the large scale distribution grid. The proposed GridKG enables deployment

of algorithms to identify electrical paths, upstream and downstream connec-

tions, and pre-computing the number of connected customers to each piece

of equipment in the large-scale grid. Adding these additional data provides a

holistic view of the system.

The main objectives of this chapter are as follows:

• to develop a knowledge graph representing a power grid that consoli-

dates various types of data distributed in data repositories and provide

a semantically rich representation of power system;

• to design and implement algorithms to enhance the proposed graph

with additional information obtained via processing data included in

the graph, and to generate more in-depth insight about power outages

and their severity.

Therefore, Chapter 6 contains details regarding a process of developing a

knowledge graph that provides the ability to integrate very different types of

information about the system. The graph will include data about system’s

topology, its component, type of customers (industrial, residential) and their

level of criticality, as well as information about system events – outages, i.e.,

type of involved equipment, their locations and causes. It will be shown how

all this is processed, enhanced and used to estimate the power outage severity.

The final chapter provides the discussion and conclusion, as well as recom-

mendations for future work.

Overall, the thesis is an important step towards advanced analysis of power

system outages and utilization of data-driven methods and knowledge graphs

in predicting the weather-related power outages and estimating the outage

severity impact. It also provides a testimony of the usefulness of such data-

driven technologies and a need for continuous data collection in other industrial

applications.
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Chapter 2

Background

This research is built on several existing approaches and computational meth-

ods, briefly outlined in this section.

2.1 Prediction Models

2.1.1 Random Forest

Random forests (RF) is an ensemble learning method that consists of a large

number of individual decision trees. Each decision tree (DT) is a tree-like

knowledge representation used to classify samples and is constructed in the

process of tree building and tree pruning [33]. In RF, each tree is considered

a random subset of features and is only trained on a subset of data pro-

vided by the bootstrapping method. Individual deep trees can over-fit their

training sets, have a low bias, but high variance. However, the random forest

model highly boosts the final model performance by averaging individual trees,

trained on bootstrapped data, leading to reduced variance at the expense of

slightly increased bias.

2.1.2 Multi Layer Perceptron

Multi-layer Perceptron (MLP) is composed of one input layer, one or more

hidden layers, and one output layer. Neurons in each layer are connected to

the neurons of the next layer and prior layer, parameterized by a weight. The

addition of non-linear activation functions to hidden layers and the output

layer enables MLP to learn non-linear functions. Weights of MLP are learned
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through a process of back-propagation, which is a gradient descent on a non-

convex objective.

2.1.3 Support Vector classification

Support vector classification (SVC) separates two classes by finding a hyper-

plane with the maximum margin between data instances. Originally, SVCs

are capable of linear classification; however, by applying a non-linear transfor-

mation to the original data, SVCs can be extended to a non-linear separated

problem. Obtaining such useful feature representation (kernel) for mapping

to a higher dimensional space is a central problem. Common non-linear ker-

nels used with SVCs include polynomial kernel, Gaussian radial basis function

(Gaussian RBF), Laplace RBF kernel, hyperbolic tangent kernel, sigmoid ker-

nel. We used the Gaussian RBF kernel since it is one of the most popular

and powerful kernels for the non-linear transformation of feature space. In

the presence of imbalanced data, SVCs are less likely to have a problem since

hyper-plane is learned using a few support vectors. Therefore, the small class

size of outage samples may not have a considerable effect on SVCs [33].

2.1.4 Other Classification Models

K-nearest neighbours (KN) classifies the data based on similarity measure and

assign each object to the class most common among its nearest neighbours,

AdaBoost (AdBo) is an ensemble boosting classifier that combining multiple

poorly performing classifiers to make strong classifier, and quadratic discrimi-

nant analysis (QDA) enables non-linear separation of data with the quadratic

combination of predictor variables [34].

2.2 Definition of Performance Metrics

There are various performance measures that represent the correctness of clas-

sification. One of the most popular sets of such measures includes precision,

recall, and F1 score. Precision (P ) is defined as the number true positive

samples (i.e. correctly classified as belonging to positive class), divided by
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the number of samples classified as positive, which is the summation of true

positive samples and false-positive samples (i.e. incorrectly classified as a pos-

itive class). Recall (R) or sensitivity is defined as the number of true positive

samples divided by the number of positive samples, which is the summation of

true positive samples and false-negative samples (i.e. samples incorrectly not

classified as belonging to positive class) [35]. The harmonic mean of precision

and recall is defined as F1 [36].

In order to provide their definitions, we introduce a confusion matrix where

O means Outage, and NoO NoOutage:

Real Value
O NoO

Predicted
O TruePositive : TP FalsePositive : FP
NoO FalseNegative : FN TrueNegative : TN

The performance measures are defined in the following way:

precision =
TP

TP + FP
recall =

TP

TP + FN
(2.1)

and

F1 = 2 · precision · recall
precision+ recall

(2.2)

Generalization of F1 which gives more flexibility to assigning importance of

precision and recall is called Fβ and is defined as [37]:

Fβ =
(β2 + 1) precision · recall
β2 precision+ recall

(0 ≤ β ≤ +∞) (2.3)

where β is a parameter that controls the relative importance of precision and

recall. If β = 1, Fβ becomes equivalent to F1. For β > 1, Fβ gives more

importance to recall and for β < 1, it gives more importance to precision such

that F0 = P [36].

2.3 Basics of Theory of Belief Functions

Belief function theory (also known as Dempster-Shafer theory(DST)) has been

recognized as a mathematical framework for uncertainty reasoning. It is re-

garded as an extension of Bayesian probability theory, and it is capable of
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assigning a mass function to a set of events. Uncertainty is expressed in vari-

ous mathematical frameworks such as Bayesian probability theory, possibility

theory [38], fuzzy set [39], and DST [40]. Bayesian probability is usually the

preferred framework when dealing with aleatory uncertainty, i.e., the inherent

uncertainty that comes from a random process. This kind of uncertainty comes

from the randomness and chance in the underlying variables, which make it ir-

reducible. However, epistemic uncertainty characterized by alternative models

is uncertainty in the model of the process, resulting from ignorance and lack of

evidence, which is different in nature from aleatory uncertainty. In particular,

DST can distinguish the epistemic uncertainty from aleatory uncertainty.

2.3.1 Basic Probability Assignment (bpa)

The finite set of all possible hypothesis or propositions that are collectively ex-

haustive and mutually exclusive is called frame of discernment Θ = {h1, h2, ..., hn}

where the symbol h denotes a hypothesis [41]. Power set of frame of discern-

ment is denoted by 2Θ and is defined as:

2Θ = {A | A ⊆ Θ} (2.4)

A Basic Probability Assignment (bpa) is a function, mapping m : 2Θ −→ [0, 1],

which satisfies:

m(∅) = 0 and
∑
A⊆Θ

m(A) = 1 (2.5)

m(A) represents a belief assigned exactly to any A ⊆ Θ, given a piece of

evidence. The basic probability assigned exactly to Θ represents the degree of

global ignorance, and the basic probability assigned to any subset of Θ which

is not a singleton represents the degree of local ignorance [41]. The basic

probability assignment will be a classical probability function if there is no

global or local ignorance [41].

2.3.2 Belief Function

A belief function, denoted by Bel : 2Θ −→ [0, 1], is defined as:
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Bel(A) =
∑
B⊆A

m(B), for all A ⊆ Θ. (2.6)

and satisfies the following conditions:

Bel(∅) = 0 and Bel(Θ) = 1 (2.7)

The belief function represents the total belief in a hypothesis A and its all

subsets based on one or more pieces of evidence. Subset A is called the focal set

of a belief function, if m(A) > 0, and their union is called core. One consider-

able difference between the theory of belief functions and Bayesian probability

theory is that the belief in hypothesis A and the belief in its complement or

its negation do not necessarily sum to one. This leads to an additional dimen-

sion of uncertainty, which results in discriminating between uncertainty and

ignorance and making ignorance explicit [42].

2.3.3 Plausibility Function

A plausibility function, denoted by Pl : 2Θ −→ [0, 1], is defined as:

Pl(A) =
∑

B⊆Θ,B∩A6=∅

m(B) (2.8)

Plausibility refers to the potential belief that can be placed on a hypothesis

A if further evidence becomes available [43]. It considers the masses that could

be assigned to A and its subsets [41]. Therefore, plausibility can be expressed

as Pl(A) = 1− Bel(¬A), and it demonstrates the disbelief in the negation of

A and shows the degree one fails to doubt in hypothesis A [42].

2.3.4 Dempster’s Combination Rule

Dempster’s Combination Rule aggregates two or more evidences defined over

the same frame of discernment. Let m1 and m2 be mass functions defined over

Θ, combined mass function m1⊕2 is defined as [44]:
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m1⊕2(A) =

∑
B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C)

, ∀A ⊆ Θ, A 6= ∅ (2.9)

2.3.5 Pignistic Transformation

Pignistic transformation of a mass function m defined over Θ into a pignistic

probability function, denoted by BetPm is defined as:

BetPm(a) =
∑
A3a

m(A)

|A|(1−m(∅))
, ∀A ∈ Θ. (2.10)

where |A| is the number of elements of Θ in A [45].

2.4 Knowledge Graphs

Graph-based data formats enable representation of a single entity as a graph

node related to other nodes via different relations. Those relations and other

nodes can be treated as properties of the entity. Analysis of such data formats

can provide insight and better understanding of represented information. It

would allow to discover rules that govern relationships between different en-

tities (nodes of a graph), as well as to enable building structures managing

synthesis of new information.

The Resource Description Framework (RDF) data format [46] introduced

by the Semantic Web as a standard for Linked Open Data is a popular graph-

based data format in which each piece of data is stored as a RDF triple.

containing two entities, two nodes in a graph, called a subject and an object

and a relation between them, an edge in a graph, called a property. Process-

ing data represented as knowledge graphs in an RDF format is generating a

lot of attention. There are multiple works focusing on different aspects re-

lated to RDF- based Knowledge Graphs: from their construction [47], via

storage [48], querying strategies [49], [50] and extracting information [51], to

applications [52], [53], just to mention a few. The fact that subjects of triples
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could be also objects of another triples, and vice versa, means that we deal

with a network of entities highly interconnected via properties.

A single RDF-triple <subject-property-object> can be perceived as a fea-

ture of an entity identified by the subject. In other words, each single triple is

treated as a feature of its subject. Multiple triples with the same subject con-

stitute a description of a given entity. A set of few RDF triples with John as

their subject is presented in Fig. 2.1. As it can be seen, each triple provides a

piece of description about John: his birth place is Toronto, he lives in Toronto

downtown, he likes hockey and swimming, and he works for City of Toronto.

Quite often a subject and object of one triple can be involved in multiple

other triples, i.e., they can be objects or subjects of other triples. In such a

case, multiple definitions can share features, or some of the features can be

centres of other entity descriptions. All interconnected triples constitute a

network of interleaving definitions of entities.

.birthPlace

John

Toronto

swimming

.likes

UBC

.attend

hockey

.likes

Toronto_DownTown

.live

City_of_Toronto

.work

Figure 2.1: Set of few RDF triples with John as their subject

For the purposes of this research, and according to graph database man-

agement system, Neo4j, certain terms are defined as follows. Labels are used

to assign nodes into groups, such as breakers, conductors, switches. Relation-

ships or properties are categorized into different classes by their types, such

as Connection to represent electrical connection for each node. Uni-directed

graphs have bi-directional relationships, while directed graphs have relation-

ships with specific directions. Directions add extra information to the graph;

for instance, they can be used to express the energy flow direction. The term

path is defined as a sequence of nodes and properties which are connected
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together [54]. For instance, it can be used to demonstrate the sequence of

equipment electrically connected together.
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Chapter 3

Categorization of Power System
Protection Challenges

3.1 Introduction

Renewable energy technologies such as wind, hydro, and solar have attracted

more attention due to climate change and energy sustainability concerns. The

recent grid-codes require distributed resources to remain connected to the

power grid during fault conditions for a specific time in order to increase

reliability and access to sustainable energy [55]. As a result, they affect the

current characteristics during faults and pose challenges to the protection sys-

tem. Incorrect functionality of protection systems can cause damages to power

equipment, raise safety concerns, reduce power reliability and deteriorate cus-

tomer satisfaction.

The fault ride-through method used in wind farms can significantly affect

their fault current behavior. The literature proposes a variety of methods for

improving the fault ride-through capability, including activating crowbar pro-

tection circuits [56]–[64], installing flexible ac transmission systems (FACTS)

devices, and modifying the converter controller[59], [65]. A converter inter-

faced synchronous generator (CISG) short circuit behavior depends upon the

converter controller, as opposed to a crowbar activated doubly-fed induction

generator (DFIG) or squirrel cage induction generator (SCIG) based wind

farms that depend upon the induction machine’s characteristics. The wind

farms should inject positive sequence [66] and both positive and negative se-
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quence currents [66], [67] into the grid during balanced and unbalanced fault,

respectively, to meet the recent grid-codes voltage support requirements [66].

The protection system aims to keep power grid stable [68], allowing as

much of the grid to remain operational while isolating the area under fault.

The protection system of a conventional power system is designed, taking into

account that synchronous generators energize the grid. A synchronous genera-

tor is modeled as a voltage source in series with an impedance in the fault study

of grids. Although such models are helpful for fault analysis and protection

design of conventional generators, they cannot be used with systems that in-

corporate wind farms fault currents because their fault current characteristics

differ considerably compared to conventional generators [18].

In general, the grid code requirements, controller structure, deployed fault

ride-through method, system topology, intermittent power, and various oper-

ating principle of wind farms, in addition to the intrinsic difference between

fault response of synchronous and induction generators, are the most critical

factors that affect characteristics of fault current and, accordingly, the protec-

tion of power grids.

In this chapter we develop a sample ‘test’ system to provide a better un-

derstanding of the protection challenges and their impact on the power grid.

We describe the main challenges of protecting power grids with integrated

wind farms, and discuss the advantages and disadvantages of various relaying

algorithms proposed to address these challenges. Our goal is to be able to

understand how various wind farms interact with the protection system and

understand how they influence protection relays. Having such information

would enable us to estimate how various configurations of wind farms and

faults will affect power outages. The main contributions are:

• Development of a sample ‘test’ system to discuss the main challenges of

protection system in the power grids with integrated wind farms.

• Investigation of the various configurations of fault locations and wind

farms to address the protection challenges.
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• Categorization of the protection challenges and the proposed solutions

for power grids with integrated wind farms.

3.2 Protection Challenge Categorization

In this section, we discuss the protection challenges associated with integrating

wind farms into power systems. Based on the type of affected relay, these

protection challenges can be divided into two categories, i.e., distance-based

or current-based.

A sample test system is presented in Fig. 3.1 to describe protection system

issues. The test system consists of several candidate locations for wind farm

installations and fault locations.

3.2.1 Distance Relays Challenges

Distance relays are commonly used in transmission grids when coordination of

current-based relays becomes difficult because of increased time delays. Dis-

tance relays estimate the fault distance by measuring the impedance between

fault location and relay, which can be expressed by:

Zdistance−relay = Z+ + ∆Z, (3.1)

Positive sequence impedance between fault and relay location, and the error

term are represented by Z+ and ∆Z, respectively.

The ∆Z error term in a conventional power system results from four key

factors, including current injection from adjacent lines, fault resistance [69],

Bus 2
R68

WF3

WF1

WF2 WF4

Recloser 1

R67

Line6-7

Bus1

R12

R23
f1

f2

f3

f4

f5

R24 R45 R54

R32

Fuse1 Fuse2

Figure 3.1: Test system single-line diagram
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and shunt current injection by compensators [70]–[76]. Adaptive relays are

used to address these errors by protection engineers.

Certain wind farm characteristics combined with the sources of error men-

tioned above result in even greater errors in the estimated impedance in power

systems with renewable resources. These characteristics include: wind farm

source impedance variations [12], [13], CISG variable phase angle and small

fault current magnitude [18], [19], SCIG small fault current after several hun-

dred milliseconds [21], DFIG off-nominal fault current frequency [22], and

DFIG and CISG reactive power support [25]. These combinations can result

in large inaccuracies in estimated impedances of distance relays and affect the

protection system.

Based on the mentioned wind farm characteristics, we can categorize dis-

tance relay protection challenges into five groups:

Wind Farm Source Impedance Variations

Variations in wind speed cause fluctuations in wind farms reactive and ac-

tive power [77], resulting in changes in voltage magnitude ratio and power

angle at ends of the line connected to a wind farm [12]. In addition, since the

wind farm source impedance depends on the number of generator units con-

nected to the power grid, the impedance can change over time. As a result of

these variations, distance relays located on lines connected to wind farms are

significantly affected [12], [78]. The impacts of wind farm source impedance

variations and FACTS devices on the ∆Z error term are discussed in [14]–[17].

It is shown that the reach settings and measured impedance of distance re-

lays are affected by the type of coupling transformer, FACTS devices, mutual

coupling of parallel transmission lines, and the wind farm source impedance

variations.

These publications mainly model the wind farm as a voltage source in series

with an impedance and consider the pre-fault condition in their protection

studies. These models may be used for protection analysis of wind farms

based on SCIG and DFIG, but they cannot be applied to CISG wind farms.
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SCIG Small Fault Current

After a balanced fault, the current fed by a SCIG drops rapidly, and it can be

neglected after 300-400 milliseconds [21], [79]. For a balanced three phase to

ground fault at f2, the impedance error term measured by relay R54 can be

expressed as:

∆Z = Rf
I54 + I24

I54
= RfMRf

, (3.2)

According to (3.2), following several hundred milliseconds from the fault in-

stant, ∆Z seen by relay R54 for a SCIG based wind farm at WF2 will be

significant as a result of the negligible values in the MRf
denominator. The

performance of distance relay secondary zone can be adversely affected by this

phenomenon during a high impedance balanced fault; as a result, the relay

may not provide adequate backup protection[79]. Despite the failures in the

secondary protection zone of the relay, faults in the primary protection zone

will be detected accurately due to the large fault current in the transient period

[21], [79].

CISG Variable Phase Angle and Small Fault Current Magnitude

Wind farms based on CISG are connected to the power system through a

converter. The grid-side converter in CISG controls the voltage on the DC

link and supplies voltage support to the power grid, while the generator-side

converter adjusts the electromagnetic torque for maximum power extraction

from the wind [65]. During a fault condition, for voltage support, the converter

current rises to increase reactive power and maintain the voltage at DC link

[65]. However, the maximum converter current is restricted by the thermal

limits of the converter switches. Thus, CISG fault currents are limited in

magnitude while having a variable phase angle. The structure and parameters

of the controller determine these fault current characteristics.

In the developed test system, for a fault at f1 and considering a CISG

based wind farm at WF1 location, the R32 relay sees a significant ∆Z factor

in its measured impedance due to small fault current contribution from wind

farm (local end) and the high fault current from the grid side (remote end).
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Additionally, the CISG variable phase angle, which is determined by its con-

troller, leads to a major current phase difference between remote and local

end, thereby adding a large imaginary term to the ∆Z factor [20].

Unlike the relay at the wind farm side, the ∆Z error factor for distance

relay R23, at the remote end, is relatively small because of the large fault

current magnitude in the local end of relay. Therefore, even with variations

in the fault current phase angle, the ∆Z factor is small and the measured

impedance by the relay R23 is more reliable for various types of faults [19].

DFIG Off-Nominal Fault Current Frequency

A DFIG operates similarly to a SCIG after when the crowbar circuit is acti-

vated. However, there are substantial differences between the fault currents

of the two types of wind farms from a protection point of view. Differences

between fault currents result from the range of machine slips. For DFIG, the

maximum slip is around thirty percent, as opposed to negligible slip for SCIG

[22]. Consequently, the fault current frequency may deviate greatly from its

nominal value. Based on the slip value, the fault current frequency can vary

from 42-78 Hz for a 60 Hz power system which causes the distance relay’s

impedance to be estimated incorrectly [22]. For a distance relay at the wind

farm terminal, the measured impedance shows a chaotic trajectory during a

fault [22]. As a result of such a trajectory, distance relay may fail even if there

are no other sources of errors [22]–[24], [80].

DFIG and CISG Reactive Power Support

The wind farms based on DFIG and CISG can inject reactive power through

their converters into the power grid, causing voltages to rise during fault events

which can adversely affect the distance relays performance [25]. For instance,

with a CISG based wind farm at WF2, and a fault at f1, the R12 distance relay

is likely to over-estimate the actual fault distance. This is because the grid-side

converter of WF2 raises the voltage magnitude at bus2 during the secondary

zone time delay of the backup relay. The increased voltage causes a decrease in

current on lines connected to bus2, resulting in a higher impedance estimated
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by the R12 relay. Consequently, the backup relay could overestimate the fault

distance, and it will fail to provide reliable backup protection. [25] addresses

the problem and presents an impedance calculation method to determine the

possible miscoordination in the secondary zone of distance relays.

3.2.2 Current-Based Relays Challenges

In distribution grids, the main protective devices are current-based relays,

such as over-current relays, fuses and reclosers. In general, there are three

main categories of challenges associated with wind farms and current-based

relays, including contribution to fault current, DFIG off-nominal fault current

frequency, and its coupled positive and negative sequence responses.

Wind Farms Contribution to Fault Current

The fault current contribution from wind farms during a fault is the major

protection problem of current-based relays. We can categorize the impact of

wind farms’ fault current contributions on the protection system into four

groups: loss of sensitivity, loss of coordination, fault current bi-directionality,

and recloser failure.

Loss of sensitivity: When wind farms are connected to the grid, they can

result in a lower fault current in-feed from the substation, reducing the sen-

sitivity of the main feeder protection devices to downstream faults [81]–[85].

In the test system, the fault current from the wind farm at WF3 to a down-

stream fault at f4, reduces the relay R68 reach. Consequently, there can be

inadequate backup protection, undetected faults, or delayed fault clearing in

case of primary protection failure.

Loss of coordination: An increased fault current may result in loss of co-

ordination between protective devices [81]. For instance the miscoordination

of Recloser1 and Fuse1 in Fig. 3.1 is one example. A wind farm located at

WF3 can increase the fault current of a temporary fault at f5 location. If the

fault current exceeds the intersection point between the fast recloser and fuse

time-current curves, the fuse will isolate the faulty area instead of the recloser

trying to clear the temporary fault [81]. This will cause unnecessary power
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outages, and data-driven models may underestimate the actual impact of the

power outage.

Fualt current bi-directionality: As a result of the connection of wind farms

in distribution grids, the fault current can be bi-directional, leading to un-

necessary outages in healthy parts of the system [81], [82], [86], [87]. In Fig.

3.1, with WF3, the relay R67 should clear a fault at f3. However, since the

wind farm feeds the fault and R68 measures the corresponding fault current,

R68 could send the trip signal faster than R67 which results in the unnecessary

disconnection of the line6−7 [81].

Recloser failure: In overhead lines, more than 80 percent of faults are tem-

porary. It is possible to extinguish the fault arc and clear the temporary short

circuit by disconnecting the fault path from the power grid. Once the elec-

tric arc path has been deionized, the line can be reclosed [88]. As a result,

the wind farm downstream of the recloser must be quickly disconnected dur-

ing the reclosing interval to provide enough arc path deionization time [83].

Otherwise, the recloser failure to complete the reclosing operation will result

in an unnecessary power outage, and data-driven models may underestimate

the actual power outage impact on customers. Fig. 3.1 shows that when

WF4 is connected to the power grid, even during the opening sequence of the

Recloser1, it will continuously feed the temporary fault at f5. As a result,

the connection of WF4 to the grid will prevent the deionization of the fault

arc path. Therefore, the recloser will lock out and result in an unnecessary

power outage. The data-driven models may underestimate the actual impact

of outages in this situation.

In particular, the protection challenges due to the fault current contribution

from wind farms, are more significant for SCIG and DFIG. The major reason

is that the short circuit level of these wind farms are higher than CISG due to

their direct connection to the power system.

DFIG Off-Nominal Fault Current Frequency

The off-nominal frequency of the fault current in DFIG results in the incor-

rect operation of the directional elements of over-current relays. The current

22



direction in over-current relays is generally identified by measuring the phase

difference between current and voltage. Because of the frequency difference

between grid voltage and fault current, the phase difference between them

changes continuously, resulting in an incorrect direction estimation [89].

Coupled Positive and Negative Sequence Responses

Negative sequence quantities are mainly utilized for ground fault detection in

conventional protection schemes [90]. In the presence of DFIG based wind

farms, protection schemes based on negative sequence quantities might not

be reliable. Without crowbar activation in DFIG, the controller generates

negative sequence voltage for reducing the negative sequence current in the

stator. In contrast to conventional generators, the DFIG positive and negative

sequence responses are not completely decoupled [91], [92], and it differs from

a conventional generator. Therefore, the conventional line protection schemes

that use negative sequence quantities cannot detect downstream ground faults

in grids with DFIG based wind farms. [90].

3.3 Proposed Protection Schemes in the Lit-

erature

Various solutions to overcome the protection system challenges have been pro-

posed in the literature. Protection methods can be divided into six categories:

adaptive protection, restricting wind farm fault current contribution, classifi-

cation techniques, distance formula modification, pilot schemes, and transient-

based approach for DFIG-based wind farms.

3.3.1 Adaptive Relays

Adaptive protection methods are utilized to address the diverse operating

conditions of grid-connected wind farms. According to these methods, relay

settings are updated based on the changes in system topology, measured data,

and operating conditions of wind farms. These methods are divided into:

adaptive distance relays and adaptive current-based relays.
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Table 3.1: Overview of protection challenges and their impact on data-driven power outage
prediction models

Relay Characteristic Likely impact on data-driven models

wind farm source impedance varia-
tions

unreliable protection - overestima-
tion of power outage

CISG variable phase angle and small
fault current magnitud

unreliable protection - overestima-
tion of power outage

Distance small Fault Current of SCIG unreliable backup protection - over-
estimation of power outage

DFIG off-nominal fault current fre-
quency

unreliable protection - overestima-
tion of power outage

DFIG and CISG reactive power con-
trol support

unreliable backup protection - over-
estimation of power outage

DFIG off-nominal fault current fre-
quency

unreliable direction estimation

Current-
based

coupled positive and negative se-
quence responses

unreliable protection - overestima-
tion of power outage

loss of sensitivity delayed fault clearing

loss of coordination underestimation of power outages

fault-current bi-directionality underestimation of power outages

recloser failure underestimation of power outages

Adaptive distance relays are designed to handle changes in wind speed, and

wind farm source impedance, which can adversely affect the distance relays

performance. Distance relays’ trip characteristics are automatically tuned by

adaptive methods utilizing measurements at the relay location. In addition,

to implement adaptive trip boundaries, the number of wind generating units

connected to the power grid and local current and voltage measurements at

the relay location can be used. Even though such a method performs well, it

can only be applied to systems with low levels of wind farm penetration. In

power grids with a high integration of wind farms, the impedance and voltage

information from the grid-side relay is essential for the relay’s proper operation

[12]. Based on an artificial neural network, [93] proposed a method to adjust

the relay trip boundaries. Although this method reduces the computational

complexity, it requires a large amount of memory to handle various possible

24



operating conditions [93]. [14]–[16] develop an adaptive algorithm to generate

trip boundaries for distance relays in parallel and single transmission grid with

wind farms and FACTS devices. [78] proposes an improved adaptive method

for distance relays that uses the pre-fault voltage as reference. The suggested

technique dynamically adjusts the reference voltage to compensate for wind

power variations,

Wind farms operating condition can significantly impact the fault currents

in the power grid, and consequently, a miscoordination may happen if the

over-current relays settings are not modified for the power system condition.

Several methods have been proposed for adaptive coordination of over-current

relays to deal with changing operating conditions of wind farms in the power

grid [82], [94], [95]. To address the coordination challenges, [94] uses adaptive

protection methods with adaptive group settings calculated through offline

analysis for the coordination of the relays. This method can be utilized only

when a few wind farms are connected to the power grid; otherwise, many op-

erating scenarios make the coordination task complicated [94]. In the paper,

[82] proposes a method for determining the settings of directional over-current

relays, including time dialing and pickup currents. The method minimizes the

operating time of the primary and backup relay for each setting. An adap-

tive approach is utilized by [95] to restrict the impact of fault current from

converter-based generator such as CISG on the current-based relay operation.

This approach uses the grid-side converter controller to adjust the relay set-

tings to compensate for grid topology changes and limit the fault current.

3.3.2 Restricting Wind Farms Fault Current

In order to maintain the relays existing settings like the coordination time

interval, several publications propose reducing fault current contribution from

wind farms [96]–[98]. According to [96], the converter output current should

be adjusted in response to the severity of the voltage drop, i.e., wind farms

should reduce the fault current for higher voltage drop. The [97] proposes

a method that limits the magnitude of the fault current and, consequently,

maintains the setting of current-based relays, taking into consideration the

25



size and maximum capacity of wind generators. The [98] suggests using a

superconducting current limiter to restrict fault currents in the power grid

with a large wind turbine generator.

3.3.3 Classification Techniques

We discussed in section 3.2.2 that a DFIG with an activated crowbar circuit

interferes with the directional elements of current-based relays. As a solution

to this problem, [89] proposes a wave shape identification method to identify

the direction of current in current-based relays. Unlike conventional gener-

ators, the DFIG balanced fault current contains a decaying ac component.

Therefore, after the fault instant, the amplitude of the current fundamental

frequency component declines over time. Based on this characteristic, [89] in-

troduces an index that can discriminate fault currents from DFIG from those

associated with conventional generators. The proposed method is useful when

only one side of a protection zone has wind farms; otherwise, the discussed

waveshape properties of the current cannot be utilized to determine fault di-

rection.

3.3.4 Modification of Distance Formula

In the presence of CISG based wind farms, the large value of the ∆Z factor

results in significant error in the measured impedance of distance relays, as

discussed in section 3.2.1. In order to address such large errors, distance relays

require modifications to their ground and phase elements. High impedance er-

rors result from the assumption that the phase and ground elements of distance

relays are calculated by ZBC = (VB−VC)/(IB−IC) and ZA = VA/(IA+K0I0),

respectively. [20] proposes a distance relay with modified current and voltage

signals. The proposed method is able to correctly estimate the fault distance

since the modified values reduce the imaginary component of the impedance

error [20].
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3.3.5 Pilot Protection

A communication link is used in protection systems based on pilot schemes to

access the measured voltage and current from each end of the protection zone.

In the following several pilot schemes are discussed.

Distance differential method is introduced in [99]. The relay is supposed to

have access to voltage and current signals from the remote-end. Then the fault

resistance can be calculated by assuming zero line resistance and calculating

the active power at each end of the line. Therefore, the ∆Z error term and

fault distance can be calculated by knowing MRf
, and Rf values. However,

due to assuming a zero resistance for the line, this method may result in an

increased impedance error.

For power grids with CISG based wind farms, a pilot scheme with a minimal

communication bandwidth is proposed by [20]. It is based on the impedance

calculation by a remote distance relay combined with the determination of

the current direction by the relays at the local end. Balanced and line to line

faults can be identified using this method, while the method in section 3.3.4 is

more appropriate for the line to line to ground faults since it does not require

communication [20].

[19] proposes pilot protection for the lines with high voltage direct current

(HVDC) that is based on voltage source converter technology. As the fault

current response of wind farms based on CISG and VSC-HVDC is similar,

the proposed method can also protect lines connected to CISG based wind

farms. According to the proposed algorithm, faults in the protected zone are

distinguished from external faults by the ratio of phase fault currents and

negative sequence fault currents at the two ends of the line connected to the

wind farm. However, the converter controller of a wind farm can inject both

positive and negative sequence currents into the power grid during unbalanced

faults, which may jeopardize its performance.
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3.3.6 Transient-based Approach for DFIG based Wind
Farms

In DFIG, the crowbar activation causes an error in conventional impedance

estimation methods that are based on the nominal frequency component of

current and voltages. [23] proposes a transient differential equation-based dis-

tance protection scheme along with a faulted phase selection algorithm to

minimize the impact of the off-nominal frequency component of the fault cur-

rent on the fault distance estimation. Because this scheme is a transient-based

approach, it functions properly before and after the activation of the crowbar

circuit. For ground relaying of lines emanating from DFIG based wind farms,

the zero-sequence current is used rather than the negative sequence current

[90].

3.4 Conclusion

In this chapter, we investigated the power system protection challenges in

the face of increasing penetration of wind farms into the power grid. We

developed a sample ‘test’ system for the comparison of different protection al-

gorithms. Additionally, we discussed various reasons and configurations that

may lead to the malfunction of the protection system. We investigated several

solutions proposed in the literature to address the protection-related chal-

lenges. The proposed protection schemes associated with current-based relays

include restricting wind farm fault current, classification techniques, and adap-

tive methods. It is possible to use the existing relay settings by limiting the

converter output current in CISG and restricting the maximum fault current

using superconducting fault current limiters. However, superconducting fault

current limiters increase the system cost and require proper protection co-

ordination. Furthermore, restricting wind farm fault current schemes do not

address the challenges associated with the diverse operating conditions of wind

farms. We further discussed that the protection systems based on fault clas-

sification techniques could be used when wind farms are located at one side

of the protection relay. We suggest that adaptive current-based relays, which
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automatically adjust the relay settings based on the measurements at the relay

location and system topology, are the most effective approach for addressing

the challenges. Furthermore, we discussed that adaptive distance relays could

be used to address the challenges related to wind farm source impedance vari-

ations. In distance relays, pilot relaying algorithms appear to be the most

effective protection scheme. In conclusion, we believe that understanding the

problems that the power system may experience has significant importance

for the power utilities to prepare themselves while integrating the grid with

renewable energy resources such as wind farms. If not addressed in advance,

these challenges can affect the expected behavior of the protection system, as

well as the location, severity, and impact of power outages.

29



Chapter 4

Outage and Weather Data
Analysis

4.1 Introduction

The process of data analysis and converting them into future insights requires

access to a sufficient amount of high-quality data. Data collection, integration,

and pre-processing are essential to ensuring high-quality data is used in the

research studies. Therefore, in this research, great effort is put into the data

processing and explaining them.

Furthermore, this chapter analyzes the prepared data sets and summarizes

the main characteristics of the available data using statistical graphics and data

visualization. The goal is to understand what the data can tell us ahead of the

formal modeling. This process is essential for understanding the interactions

among the variables, which could suggest hypotheses regarding the observed

events and their causes. Moreover, finding the important variables for power

outage analysis and formulating the probabilistic model for power outages were

another objectives of this chapter.

In the literature, the data collection, integration, and analysis of power

outages did not get enough attention, and most of the research papers used the

previously available data. However, we believe it is essential to demonstrate

the process to better understand the discussed variables and help to conduct

similar research in other industrial applications. The main contributions of

the chapter are:
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• providing an overview of the utility outage management system’s (OMS)

database, through the data integration process, and demonstrating the

relationship between various data sources;

• presenting new insights and statistics on various types of power outages;

• demonstrating the interaction between weather, power system, and power

outage data by transforming power outage data at the grid cells level and

integrating it with weather data;

• formulating the predictive inferences based on posterior predictive dis-

tribution of the power outages and the weather condition.

4.2 Data Description

The main data sets that include power outage, system data and weather data

are utilized in the thesis.

4.2.1 Power Outage and Power System Data

At most power utilities, the power outage data are stored in relational databases

called outage management systems (OMSs). The power outage data utilized

in this dissertation is collected by the OMS system of a major energy holding

company in Alberta, Canada. Power outage data are essential for recognition

causes of outages, their locations, and their effects. In this section, we focus on

integrating, storing, and accessing data. A variety of data and their formats

makes this task an important and necessary one for analyzing power outages.

The information regarding the customers’ calls and reporting outages are

stored in the “outcall” table. When each customer calls and reports an outage,

a new row with a unique “event id” is created to store the information such as

the outage id, customer location, time of the call, customer transformer num-

ber, and customer account and its premise number. The information from the

customer call starts the process of outage restoration if it is not a scheduled

power outage. The affected area that experiences power interruption is consid-

ered downstream of the location of the first upstream protective device. When
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several customers report an outage, the outage location is updated considering

the location of each customer, which may imply a greater affected area.

The information regarding outages is stored in the “aeven” table. For each

outage, a unique “outage id” is assigned to identify the outage. Furthermore,

the device that cleared the fault, i.e., “device id”, outage restoration time,

substation, and feeder number, are also included in this table.

Power outage causes and their description are stored in a separate table

“outage complete”. The primary key in this table is “event id,” and the outage

cause descriptions are provided as primary and secondary causes of the power

outages. Primary causes of outages include:

• Loss of Supply: Power outage due to interruptions of power from the

bulk electricity system (transmission grid) resulting from problems such

as maintenance on the transmission grid, under-frequency load shedding,

transmission system transients, and system frequency excursions.

• Tree Contacts: Power outage due to faults caused by contacting trees or

tree limbs to the energized section of the grid.

• Lightning: Power outage due to lightning striking the grid and resulting

in flashovers or insulator breakdowns.

• Defective Equipment: Power outage due to failure of defective equipment

because of lack of maintenance or age.

• Adverse Weather: Power outage due to extreme weather conditions and

as a result of extreme wind, icing, snow, ice storms, and other adverse

conditions.

• Adverse Environment: Power outage due to abnormal environments such

as fire, corrosion, humidity, salt spray, and flooding.

• Human Element: Power outage due to deliberate damage or utility staff

errors and incorrect settings, installation, and protection settings.

• Foreign Interference: Power outage due to out-of-control events such as

animals, vehicles, birds, and foreign objects.
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• Scheduled Outage: Power outage due to disconnection of part of a power

system for maintenance and construction.

• Unknown: Power outage due to no apparent cause or reason for the

power outage.

Furthermore, detailed secondary causes are provided to add more information

regarding each outage. The primary and secondary causes are represented as a

“prime cause”, “sup1 cause”, and “sup2 cause”, which describes each outage’s

main reason and supplementary information.

The list of transformers with power interruption for each outage is provided

in the “outhist transformers” table. For each transformer, information such as

the number of connected customers and the duration of outages is provided.

The customers’ information is stored in the “cispersl” table. It includes the

customers’ unique id, account number, premise number, and the transformer

id, to which the customer is connected.

The information regarding the connection of each electrical equipment is

provided in the “oms connectivity” table. This table provides information such

as the geographical coordination of each piece of equipment, type of device,

last modification date, and two electrical node values. Each piece of equipment

has two nodes, and if two pieces of equipment are connected, they share the

same node value. Thus, having the equipment node values, the topology of

the system, and their connections can be extracted from this table.

4.2.2 Geographic Information System (GIS) Data

GIS data provides information about each specific type of equipment in the

electric grid. The GIS format includes vectors to represent spatially referenced

data and attribute tables for tabular information. Vectors are classified into

polygon, lines, and point data and are utilized to represent regions, conductors,

and other equipment, respectively. The tabular data provides the technical

information regarding each piece of equipment. The topology of the power

system can be inferred both from the “oms connectivity” table and GIS data.

It should be noted that GIS provides more accurate geographical information
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for each piece of equipment. For, instance the exact location and shape of

conductors are available in GIS data, while the “oms connectivity” table only

provides the approximate location of the center of the conductor and its node

values.

4.2.3 Weather Data

Weather data are required for learning characteristics of extreme conditions,

such as wind/winter storms. To obtain that data, we used the Canadian

surface prediction archive (CaSPAr). Weather data preparation involves the

collection and storage of data for offline processing. This task focuses on two

activities: 1) collecting weather data representing weather conditions and 2)

preparing weather data as inputs for analysis.

Weather data in NetCDF4 format is collected from the CasPAr platform,

which provided the numerical weather predictions (NWP) archive issued by

Environment and Climate Change Canada (ECCC). For this study, we used

the regional deterministic prediction system (RDPS), which provides hourly

simulation of weather parameters with a rotated longitude-latitude grid with

∼ 10 km resolution. The RDPS is based on limited area configuration (LAM)

for the Global Environmental Multiscale (GEM) model, which covers North

America [100].

Wind-related variables are calculated at 10 m, temperature and due point

values are considered at 1.5 m, and the rest of the variables are considered at

the surface level.

4.3 Integration of Data

4.3.1 Outage and System Data

The data from the utility OMS is used to extract the information regarding

distribution grid power outages from 2015 to 2019 in Alberta, Canada. The

outage start time is approximated when the first customer reports the outage

to the utility and is found out from the “outcall” table. Outage location is

approximated, the location of the first upstream protective device, i.e., overcur-
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rent relays, switches, reclosers, fuses, and transformers from the outage loca-

tion report. The outage location is updated after the report of new customers.

The protective equipment location is extracted from the “oms connectivity”

table, which stores all the electrical equipment locations, node values, and

ids. Nested outages are distinguished as they have the same start time but

different restoration times, and they are considered unique outages. Outage

types are categorized into nine groups based on the information provided in

the “outage complete” table. For each outage, the list of affected customers is

extracted by cross-referencing the “aeven”, “outhist transformers”, and “cis-

persl” tables. Furthermore, the “oms nonconnect” table that provides the

geographic coordinates of customers and non-electrical equipment is used to

determine the geographical coordination of customers.

The schema of the database and one sample of outage data is depicted in

Figure 4.1.
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8940549}

{account: 0010510756817}

{premise: 
{x_coord: 
{y_coord: 
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777}
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Figure 4.1: Schema of the OMS database

4.3.2 Outage, System, and Weather Data

In order to find out the weather condition for power outages, the nearest

weather data point to the outage location are considered. A grid-cell based

on the ∼10 km weather grid is defined, and a mesh of grid cells with weather

data points at the center of each grid cell is created. The weather condition

is considered to be the same across each grid cell, and the power system and
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outage data are aggregated at the ∼ 10× 10 km grid cells. Figure 4.2 shows the

created grid cells for one service area in Alberta, which demonstrates the grid

cells, their centre, and the location of various weather-related power outages.

Longitude
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e

Grid Centre
Extreme Wind
Wet Snow
Ice / Icing

Figure 4.2: Service are grid cell and adverse weather relatd power outages

The weather data are stored on the native rotated latitude and longitude

grids issued by ECCC. For faster access to the weather data, the power outage

longitude and latitude are transformed to rotated longitude and latitude, and

then the corresponding weather data are queried from the weather database.

The grid cells in the rotated grid and the plot for temperature across the grids

are depicted in Figure 4.3.

The equipment data are aggregated at the grid cell level, i.e., the number of

each type of equipment is calculated for each grid cell. Figure 4.4 demonstrates

the location of transformers, fuses, and reclosers and the corresponding grid

cell with the color representing the density of each type of equipment.

4.4 Analysis of Data

4.4.1 Outage and System Data

Some analyses about power outage data are provided in this section to better

understand the characteristics of the studied power outages.
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Figure 4.3: Weather in rotated pole

Figure 4.4: Transformers, fuses, and reclosers spatial distribution
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Primary cause of outages

The primary cause of power outages and their frequency from 2015 to 2019

in Alberta, Canada is depicted in Figure 4.5. The loss of supply or inter-

ruptions of power from the transmission grid is only responsible for 0.5% of

outages, which indicates that most of the power interruptions that customers

experience are due to the incidents in the distribution grid. The most frequent

cause for interruption of power is scheduled outages, mainly due to mainte-

nance and construction. The distribution grid consists of numerous equipment

and thousands of kilometres of power lines that justify periodic maintenance

and construction. The second most frequent reason is reported as unknown

outages, which means the utility could not find any apparent reason for the

outage. Power utilities usually send crews to find the outage cause and restore

the power after the incident is reported.

The power outage locations are mainly approximated by the first upstream

protective device, which clears the fault and isolates the downstream grid,

and it can be far from the location of the incident that triggered the outage.

Therefore, it can be very costly for utilities to search for the exact location

and find the outage cause if the incident did not cause permanent damage to

the power grid.

Power outages due to defective equipment are mainly because of electrical

or mechanical failure in equipment such as fuses, pole mount transformers,

primary conductors, secondary cables, tie wires, or pin insulators.

Foreign interference, which represents more than 11% of power outages,

is mainly due to out-of-control events such as wildlife (birds, animals) which

mainly cause phase-to-phase and phase-to-ground short circuit faults. Fur-

thermore, incidents caused by vehicles, agricultural equipment, digging in,

and vandalism are the next important causes of foreign interference outages.

Adverse weather is responsible for more than 9% of power outages in the dis-

tribution grid.

Adverse weather and tree contacts and lightning are the major reasons for

unscheduled power outages. The main reasons that adverse weather conditions
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lead to power outages are extreme wind, wet snow, icing, and freezing rain.

Among adverse weather-related power outages, icing, extreme wind, and wet

snow are almost equally frequent in the distribution grid.
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Protective device

The protective devices are responsible for clearing the faults and minimizing

the affected area by isolating part of the power grid. As depicted in Figure

4.7, line and transformer fuse clear the faults in more than 85% of the power

outages. It demonstrates the importance of fuses in the protection of the dis-

tribution grid. When fuses blow, the downstream grid is disconnected perma-

nently, and the utility should send the crews to restore the power. Therefore,

to minimize power outage duration for temporary faults, reclosers are used to
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disconnect the grid for a short time and restore the power if the fault is cleared.

However, in case the fault is permanent, the recloser disconnects the down-

stream grid. As shown in Figure 4.7, reclosers cleared the permanent faults in

the distribution grid in more than 8% of power outages. Switches such as air

break, solid, and ganged air break are the main types of switches utilized in

the distribution grid and cleared 3.8% of the faults. Primary circuit breakers

located at the beginning of the feeders are the primary protective devices that

disconnect the whole feeder. Although the primary breakers clear only 1.2%

of the faults, they cause a power outage for all the customers connected to

that feeder and affect more customers.
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Figure 4.7: Protective device frequency (percentage)

Duration of outages

The bars in Figure 4.8 show the mean value of outage duration for each outage

cause. The error bars show the uncertainty around that mean value, and

they indicate the 95% confidence interval for the population mean value. The

adverse environment has the highest outage restoration duration. Events such

as fires or floods usually affect more areas, and they need more time and effort

to restore the power. Outages due to adverse weather also have a relatively

long duration compared to other causes such as scheduled outages. Figure 4.9

depicts outage duration for secondary causes of adverse weather conditions,

including extreme wind, ice/icing, freezing rain, and wet snow power outages.
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It shows that restoring power outages due to wet snow takes more time than

other weather-related power outages.
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Figure 4.8: Outage duration for various causes
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Figure 4.9: Outage duration for various causes

Month

Figures 4.10, and 4.11 show the frequency of power outages for each month and

outage cause. It can be seen that tree contacts, lightning, foreign interference,

and adverse environment outages mainly happen in the summer months in

Alberta due to a higher number of fire events, lightning, tree growth, and

animal activities during that time. The number of scheduled outages is lower

during December, January, and February, but it is almost the same for the

rest of the year. Figure 4.12 depicts the frequency of adverse weather-related

outages for various months. Outages due to extreme wind mostly happened in

June, mainly because of tree growth. Outages due to wet snow mainly occurred

in April, May, and October when temperatures are around zero, while Icing

41



outages mostly occurred during cold weather conditions in October, November,

and January.
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Figure 4.12: Frequency of adverse weather-related outages for various months

Locations

Figure 4.13 depicts the location of outages due to adverse weather, including

extreme wind, wet snow, and icing conditions. It can be observed that location
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has a considerable effect on the type of power outages. Some locations are

more vulnerable to specific types of outages due to equipment, vegetation,

and geographical features.

Figure 4.13: Locations of adverse weather-related outages

Correlation between power outage and power equipment

In this section we are interested in understanding the relationships between

frequency of various types of power outages and the number different equip-

ment in each area. There is not evidence that the number of power outages

and the number of equipment are normally distributed across the grid cells.

Therefore, non-parametric methods are used to determine whether there is a

statistical relationship between variables. Spearman rank correlation is calcu-

lated as a measure of monotonic association between the number of equipment

and various outage types. This test determines if a monotonic function can

be used to describe the relationship between the variables. The correlation

coefficient is scaled between 1 and -1. The value around 0 means there is

no monotonic associations between variables, and the values approaching +-1

indicate a strong increasing or decreasing monotonic relationship. Figure 4.14

demonstrates the calculated correlation coefficients based on the information

of more than 800,000 equipment and 100,000 power outages across all grid

cells in the province.
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Figure 4.14: Clustering of the correlation of equipment and various power outage types

Various types of outages can be grouped based on the similarity of their

correlations with types of equipment in each grid cell. Based on Figure 4.14

which depicts the clustering of equipment and outage types, the outage can be

categorized into three main groups. The first group with the highest correla-

tion with the number of transformers, fuses, and conductors consists of sched-

uled outages, foreign interference, defective equipment, and unknown outages.

The grid cells with the higher number of the equipment generally indicate

the higher number of defects and requirements for maintenance, which justi-

fies the high correlation between defective equipment and scheduled outages.

The second group with a lower correlation with the number of equipments
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includes lightning, tree contacts, extreme wind, and wet snow. The lower cor-

relation with the number of equipment indicates that some other factors have

a more substantial influence on the number of outages, such as vegetation and

weather patterns. The third group with the least correlation with the number

of equipment consists of outages due to icing, adverse environment, the hu-

man element, and loss of supply. Outages due to icing seem more influenced

by weather conditions rather than the number of equipment. The outages

due to loss of supply have a higher correlation with the primary breaker and

substation bus. Loss of supply indicates the power interruption in the trans-

mission grid, and they are reported at the location of primary breakers, which

are located at the beginning of the feeder in the substations. The adverse en-

vironment outages are mainly due to flooding and fire, which highly influence

the spatial distribution of this type of outages.

4.4.2 Power Outage and Weather Data

In this section, the weather data and their relationship with power outages are

investigated.

Outage probability

Power outages are dependant on various conditions such as power system pro-

tection design, topology, system state, weather condition, vegetation, environ-

mental factors, soil type, elevation, animals, humans, etc. However, it is not

feasible to measure and estimate some of the mentioned factors and conditions.

In the probabilistic modeling of the power outages, we have several sources

of uncertainty, including inherent stochasticity, incomplete observability, and

incomplete modeling [101]. Stochasticity can appear even in deterministic sys-

tems if we cannot observe all the variables driving the behavior. For instance,

we do not have the tools to measure all vegetation variations, environmental

factors such as fire and flood, and the power system state due to lack of enough

measurement in the distribution grid. This results in incomplete observability

and adds to the uncertainty of the model. Furthermore, since we are interested

in weather-related power outages, we mainly concern with finding out the in-
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teractions of weather variables with the power outages and discard some other

factors that do not have any reasonable and clear interaction with weather-

related power outages. For instance, we can discard the effects of humans and

animals on this type of outage since we considered a separate outage cause for

them.

Let us assume that system protection design, topology, equipment, and

weather variables are the factors that can affect the occurrence of weather-

related power outages. Bayes’ theory can be used to calculate the power outage

probability given that some other events such as f1, ..., fn have happened. In

(4.1), P (outage) is the prior probability, P (f1, ..., fn|outage) is the likelihood,

and P (outage|f1, ..., fn is the updated belief (posterior) of power outage with

knowing extra information about f1, ..., fn.

P (outage|f1, ..., fn) = P (outage)× P (f1, ..., fn|outage)
P (f1, ..., fn)

(4.1)

We can rewrite (4.1) as (4.2) and (4.3) in which the variables weather

and system represent the weather condition and the power system related

information such as topology, equipment, and protection.

P (outage|weather, system) = P (outage)× P (weather, system|outage)
P (weather, system)

(4.2)

= P (outage)× P (weather|outage)P (system|weather, outage)
P (weather)P (system|weather)

(4.3)

In (4.3) we can simplify P (system|weather, outage) into P (system|outage)

and P (system|weather) into P (system) since the power system topology,

number of equipment, or the protection system is independent of the weather

condition. Therefore, the (4.3) will be simplified into (4.4).

P (outage|weather, system) = P (outage)× P (weather|outage)P (system|outage)
P (weather)P (system)

(4.4)
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We can take advantage of available spatial information and define a unique

probabilistic model for each grid cell in the service area. The location in-

formation embed some information about its unique characteristics such as

vegetation, environmental factors, elevation, and power system related infor-

mation. However, by spatial discretization of the service area, we discard some

information about the precise location of events and equipment, which will add

some uncertainty due to incomplete modeling. We consider the location by

defining a unique probability distribution for outages for each grid cell. There-

fore, variables such as the number of equipment and system topology can be

considered independent of power outages since they are the same during power

outages or after power restoration. Therefore P (system|outage) can be writ-

ten as P (system), and P (outage|weather, system) as P (outage|weather) for

each grid cell and (4.4) can be written as:

P (outage(x,y)|weather(x,y)) = P (outage(x,y))×
P (weather(x,y)|outage(x,y))

P (weather(x,y))
(4.5)

The o(x,y) is a random variable that can take different values randomly

which represents the number of weather-related power outages during a time

window in a specific grid cell. The sample space for the outcome of o(x,y) can

be defined as Ω = {0, 1, 2, 3, ...} that represents the set of number of power

outages. The events o0 = {0}, and o1 = {1, 2, 3, ...} are two members of the

event space (ξ) which represent having no outage or having at least one outage

in a time window. The event o1 is the complement of o0 and to satisfy the

axiom of probability P (Ω) = 1, we get P (o1) + P (o0) = 1. The W(x,y) =

(W1,W2, ...,Wd)(x,y) is a multivariate random variable which is a vector of ran-

dom variables with vector valued outcomes w = (w1, w2, ..., wd) representing

weather condition features. Equation (4.6) estimates the probability of having

at least one weather-related power outage in a gridcell(x,y) over a specific time

window and having weather condition in the range of w1 and w2.

P (o(x,y) = o1|w1 < W(x,y) < w2) =

P (o(x,y) = o1)×
P (w1 < W(x,y) < w2|o(x,y) = o1)

P (w1 < W(x,y) < w2)

(4.6)
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In order to calculate the power outage probability, we use a sliding window

with length T to create samples and slide it with stride S over four years of

weather and power outage data. Information in each window is considered as

one sample from the sample space. The prior probability of power outage for

gridcell(x,y) can be calculated as:

P (o(x,y) = o1) =
num windows with outage in cell(x,y)

num windows in the sample space in cell(x,y)
(4.7)

calculate the likelihood of weather conditions given power outage as:

P (w1 <W(x,y) < w2|o(x,y) = o1) =

num windows with outage in cell(x,y) that satisfies the weather condition

num windows with outage in cell(x,y)

(4.8)

and calculate the normalization factor as:

P (w1 < W(x,y) <w2) =

num windows in cell(x,y) that satisfies the weather condition

num windows in the sample space in cell(x,y)

(4.9)

By substituting (4.7), (4.8), and (4.9) into (4.6) we get:

P (o(x,y) = o1|w1 < W(x,y) < w2) =

num windows with outage in cell(x,y) that satisfies the weather condition

num windows in cell(x,y) that satisfies the weather condition
(4.10)

The (4.10) can be calculated as:

P (o(x,y) = o1|w1 < W(x,y) < w2) =

∑Nwindow
n=1 o1 condition

(x,y)
n∑Nwindow

n=1 condition
(x,y)
n

(4.11)

where
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condition(x,y)
n =

T∑
i=1

ωiF
(x,y)
condition(tni) (4.12)

o1 condition
(x,y)
n =

T∑
i=1

ωiF
(x,y)
condition(tni)F

(x,y)
o1 (tni) (4.13)

The functions F
(x,y)
condition, and F

(x,y)
o1 are defined to determine how much each

window satisfies the conditions. The F
(x,y)
condition as defined in (4.14) returns 1

for any hour in the time window that the weather condition in gridcell(x,y)

is satisfied, otherwise it returns zero. The F
(x,y)
o1A

as defined in (4.15) returns

one for every hour before the last power outage in a given time window in

gridcell(x,y), and it returns zero after the last power outage in the time window.

The F
(x,y)
o1A

is defined based on the fact that only the weather condition before

the outage contribute to the power outage event. However, one may argue

that F
(x,y)
o1A

can underestimate the power outage probability, and the weather

condition after the power outage should also be considered. When power

outages happen, the faulty part of the power system gets isolated; therefore,

even if the weather condition is the same as before the power outage and

potentially can cause more power outages, the utility may not experience any

other power outages downstream of the grid. Therefore, we introduce F
(x,y)
o1B

as defined in (4.16) which returns one for every hour in a time window if a

power outage occur in that window. However, it should be considered that

F
(x,y)
o1B

may overestimate the power outage probability.

F
(x,y)
condition(tni) =

{
1 if w1 < W(x,y)tni

< w2

0 if else
(4.14)

F
(x,y)
o1A

(tni) =

{
1 if tn1 ≤ tni ≤ max(t(x,y)outage) ≤ tn1 + T

0 if tn1 ≤ max(t(x,y)outage) ≤ ti ≤ tn1 + T
(4.15)

F
(x,y)
o1B

(tni) =

{
1 if tn1 ≤ t(x,y)outage ≤ tn1 + T

0 if else
(4.16)
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Having storms or specific weather conditions just before the power outage

may seem more important than satisfying the same conditions several hours

after the power outages. Therefore, we defined the weights ωi corresponding

to the hours in the window to assign different weights for the each hour. In

order to limit the value of condition
(x,y)
n and o1 condition

(x,y)
n , the constraint

(4.17) is defined to limit the maximum value of each window to one.

T∑
i=1

ωi = 1 (4.17)

By defining F
(x,y)
o0A

(tni
) as (4.18), and F

(x,y)
o0B

(tni
) as (4.19) and substituting

each of them into (4.13) we can verify that (4.20) and (4.21) are satisfied.

F
(x,y)
o0A

(tni) =

{
0 if tn1 ≤ tni ≤ max(t(x,y)outage) ≤ tn1 + T

1 if tn1 ≤ max(t(x,y)outage) ≤ ti ≤ tn1 + T
(4.18)

F
(x,y)
o0B

(tni) =

{
0 if tn1 ≤ t(x,y)outage ≤ tn1 + T

1 if else
(4.19)

o1 condition
(x,y)
n + o0 condition

(x,y)
n = condition(x,y)

n (4.20)

P (o(x,y) = o1|w1 < W(x,y) < w2) + P (o(x,y) = o0|w1 < W(x,y) < w2) = 1 (4.21)

In Figure 4.15 the weather-related power outage probabilities across one ser-

vice area with weather conditions defined in (4.22), and parameters defined

in (4.23) is depicted. For each grid cell, the power outage probabilities are

calculated using (4.11).

wind speed > 10 km/h,

temperature < −5,
(4.22)

T = 3, S = 1,

[ω1, ω2, ω3] = [0.1, 0.3, 0.6]
(4.23)
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Figure 4.15: Power outage probability given specific weather condition

Power utilities mainly depend on the skills of their experienced crews to

estimate the chance of having power outages based on their knowledge about

the past storms and consequent outages happened in the grid. However, the

proposed method enables the power utility to utilize their massive amount of

power outage data in their OMS system. Based on the historical events, they

can estimate the probability of power outage on a grid cell level and update

that estimation with the newly available weather forecast data. Furthermore,

this method can be utilized to investigate other scenarios like having 10%

stronger or weaker storms and update the estimation based on past events. It

can also be used to identify the more sensitive locations to specific weather

conditions and reveal the locations that historically were more prone to power

outages. However, it should be noted that this method relies on the historical

power outages that happened in one area, and it will not provide any valuable

probability estimation if there is not any power outage in the database that can

satisfy the defined conditions. Although it can be considered a weakness that

this method cannot extrapolate and interpolate to provide estimations when

the data is not available, with the recent advances in the data-driven methods,
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more utilities are continuously collecting data that can highly improve the

future probability estimation.

Classification

In this section, we define a classification model to predict power outages given

the weather condition. The goal is to minimize the expected cost of the classi-

fier. The cost(ô, o) represents the penalty or cost of predicting ô where the true

target is o. Given continuous weather vectors as inputs from ω, and discrete

target set {o0, o1} we can express the expected cost as follows:

E[cost] =

∫
ω

∑
o∈{o0,o1}

cost(ô, o)p(w, o)dw (4.24)

=

∫
ω
p(w)

∑
o∈{o0,o1}

cost(ô, o)p(o|w)dw (4.25)

In optimal classifier we want to minimize the expected cost; therefore, the

optimal classifier can be written as:

argmin
ô∈{o0,o1}

E(cost|W = w) (4.26)

For each input w the optimal classifier can be expressed as (4.27):

f∗(w) = argmin
ô∈{o0,o1}

∑
o∈{o0,o1}

cost(ô, o)p(o|w) (4.27)

For a cost function defined as:

cost(ô, o) =

{
0 if o = ô

1 if o 6= ô
(4.28)

By converting argmin into argmax and knowing
∑

o∈{o0,o1} p(o|w) = 1 the f ∗

can be simplified into:

f∗(w) = argmax
ô∈{o0,o1}

(1−
∑

o∈{o0,o1}

cost(ô, o)p(o|w)) (4.29)

= argmax
ô∈{o0,o1}

∑
o∈{o0,o1}

(1− cost(ô, o))p(o|w) (4.30)

= argmax
ô∈{o0,o1}

∑
o∈{o0,o1},o6=ô

(1− 1).p(o|w) +
∑

o∈{o0,o1},o=ô

(1− 0).p(o|w) (4.31)

= argmax
o∈{o0,o1}

p(o|w) (4.32)
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Therefore, by calculating posterior distribution P (o(x,y) = o0|w1 < W(x,y) <

w2) and P (o(x,y) = o1|w1 < W(x,y) < w2) and choosing the highest probability

we can minimize the expected cost. However, it should be noted that the power

outages are rare events compared to the no outage conditions. Therefore, the

definition of cost function should be modified to compensate the rareness and

higher importance of power outages.

In general, however, the probability distribution p(o|w) is usually approxi-

mated using a specific functional form and a set of adjustable parameters. The

direct estimation of posterior probability could not be possible if there is not

enough historical data. However, the functional estimation of the probability

distribution enables us to estimate the posterior probability even for the in-

puts that do not correspond to any data point in the historical power outages

and weather conditions.

4.5 Conclusion

This chapter provides a detailed overview of the outage management systems

that utilities use for storing and analysis of outage data. We investigate and

explain the relationships between various data sources, and demonstrate re-

sults of integration of the power outage, power system, and weather data.

New insights and statistics regarding the power outage causes, protective de-

vices, duration, time, and location are presented. The relationship between

power equipment and power outage types is investigated, and based on their

similarity, three main groups of power outages are identified.

We utilize Bayes’ rule and define posterior probability distribution for

power outages. We introduce a window sampling for the power outage proba-

bility calculation. The proposed analysis method can be used by power utilities

to perform their assessment of power outages based on the available weather

data. Furthermore, the maximum posterior classifier model for power outage

prediction is derived. We demonstrate that it can be used as a classifier to

distinguish power outages versus no power outage conditions. At the same

time, we show that it may not be applicable to use it as a classifier when there
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are not enough data points.
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Chapter 5

Weather Outage Prediction
system – WoutPS

Improvements in monitoring and data collection practices provide opportuni-

ties for more comprehensive modelling and managing grid operations. At the

same time, advanced data analysis methods should be able to address service

quality degradation due to outages, weather patterns and asset-related per-

formance. In this chapter, we apply Machine Learning and Computational

Intelligence methods for the analysis of power distribution system data and

constructing a system for predicting power outages. Weather and outage data

are utilized by the proposed system for predicting purposes. We evaluate the

prediction performance of different types of prediction models. We also pro-

pose and validate three different architectures of a system for predicting types

of weather-related outages. We focus on outages caused by wind, snow and

ice. An analysis of the prediction results is provided.

5.1 Introduction

Power outages in distribution networks are relatively frequent, and they impose

a high cost on power utilities and considerable inconvenience to customers.

According to [1], 44%-78% of the power outages reported in various studies

were weather-related, costing between $20 billion and $55 billion annually only

to the U.S. economy. A utility usually needs to send out a large number of

crews to restore services during power outages, followed by severe weather
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conditions. The estimated cost of an average storm is around $100,000 to

$1,000,000 per hour [2].

Prediction of weather-related power outages and their severity utilization

have two aspects. First, it can be utilized to identify the most vulnerable loca-

tions to extreme weather in the power grid and to suggest long term resilience

investment and hardening programs. These long term actions will influence

grid resistance, reliability, and redundancy. Second, it will be utilized for rapid

recovery after outages, and contingency plans and emergency operations [10].

Rapid recovery plans play a significant role in preventing very costly outages

by helping utilities to forward plan the resource allocation prior to the outage.

Outage prediction results in increased profitability of utilities, improved grid

reliability, resiliency, operational efficiency, and enhanced customer experience

[11].

In this chapter, a collection of data-driven algorithms and methods that

constitute a framework suitable for building a system for predicting weather-

related outages is developed. The core methodology used to build the frame-

work consist of technologies, including Machine Learning algorithms and ele-

ments of Computational Intelligence, which results in:

• developing models suitable for predicting different types of weather-

related outages;

• developing a novel approach for reasoning under uncertainty to combine

evidence from various models based on Dempster-Shafer theory (DST);

• constructing a Weather outage Prediction System (WoutPS) based on

multiple models combined with reasoning framework for predicting out-

ages.

A significant number of research papers related to outage analysis focus

on models for predicting power outages caused by storms such as hurricanes,

blizzards, tornadoes, and thunderstorms. However, outages due to wet snow

and icing have not gained a lot of attention in the literature. The proposed

models and the system WoutPS are able to distinguish three main causes of
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outages, including severe wind, wet snow, and icing. Furthermore, in order

to provide users with more information so decisions made using WoutPS are

better understood, a novel DST-based aggregation method is proposed to pro-

vide levels of confidence in WoutPS’s predictions. This method combines the

results of individual classifiers and leads to a more powerful ensemble model.

5.2 Related Work

Outages, as disruptions in energy delivery, are quite frequent events [102],

[103]. They happen more often in systems with ageing equipment, as well as

due to changing weather patterns [104]. The ability to predict their occurrence

and severity is essential for power utilities [105]. Multiple different methods

and models, that include SVM [106], linear regression [107], artificial neural

networks [108], and tree-based models [26], [30], have been reported in liter-

ature. Most of them are based on analysis of historical data about outages,

weather and environment [9].

Parametric statistical models such as negative binomial generalized linear

model and Poisson generalized additive model are developed for estimation of

the spatial distribution of power outages caused by hurricane [109], [110]. Non-

parametric models such as Bayesian additive regression splines and classifica-

tion and regression trees further improved the prediction accuracy compared

to non-parametric models [111].

The prediction of number of outages due to extreme weather events – ice

storms, hurricanes – has been addressed in [2], [112]–[114]. An interesting work

focusing on predicting wind and lightning outages using artificial neural net-

works with a modified back-propagation algorithm has been presented in [115].

Various extreme weather events such as thunderstorms, hurricanes, and bliz-

zards are considered to develop prediction models in [30]. In [112], two models

for power outage estimation are developed to predict the overhead lines failure

rate in the distribution grid caused by ice/snow storms and thunderstorms.

The failure rate has been predicted based on average wind speed and different

weather categories using models such as multiple linear regression [112] and
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generalized linear models [116]. A Poisson regression model combined with

a Bayesian network model using gust wind speed and lightning strike counts

have also been reported in [112]. A fuzzy clustering-based approach has been

used to predict the impact of hurricanes on the failure rate of transmission

lines [117]. The model has been built on data representing wind speed and

rainfall. The outage prediction model built based on gust wind speed, duration

of strong winds, week-long rainfall, and population density has been described

in [118].

Another work of line developed models to rank power system components

by their susceptibility to failure [119], [120]. Ensemble models based on boost-

ing algorithms outperformed the accuracy of neural networks [115] and a mix-

ture of expert models [121] for prediction of lighting and wind-related power

outages [122]. One of the most effective ensemble models used for outage pre-

diction has been random forest (RF), which is able to capture the non-linearity

of complex outage data. It has been used in [123] and utilized input data such

as a wind gust speed, a duration of wind above 20 m/s, a number of customers,

tree trimming, and soil moisture. Similarly, in [32], the authors have presented

an RF predictor built based on wind, soil and drought data, as well as eight

classes of land cover to improve prediction performance. In [29], the same type

of models have been used to predict outages due to hurricanes; vegetation and

location have been used as input data.

Hybrid classification method, tree/regression, and its ability to handle zero-

inflation is investigated in [124]; furthermore, quantile regression forests cou-

pled with RF model is developed to give more insight about target variable

distribution [125], and to demonstrate the usefulness of land cover variables

in predicting power outages [126]. It further used Monte Carlo simulation to

investigate the tropical cyclone track impact on prediction performance, and

demonstrated the importance of initial intensity and official track forecast.

Other models – based on fuzzy logic techniques and neural networks – have

been presented in [127] and [128], respectively. The fuzzy model has evaluated

weather-related hazards and probabilities of occurrence of component outages,

while the neural network one has predicted outage duration combining envi-
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ronmental factors with textual information from field reports.

5.3 Data Description

The final performance of any arbitrarily optimal model, even with an unlim-

ited number of data, cannot exceed a certain value [129]. The reason is an

inherent, irreducible error, which is the minimum error that can be achieved.

Irreducible error is the result of lack of information, partial observability, noise,

and variability of the target variable, leading to a distribution on the probable

target variable for any input data [130].

A process of constructing machine learning models requires access to a

sufficient amount of high-quality data. Data is an integral element of building

outage prediction models. In this research, a great effort is put into collecting

and pre-processing the required data.

5.3.1 Outage Data Description

At most power utilities, outage data are stored in the form of relational

databases called Outage Management Systems (OMSs) (Section 4.2). The

OMS records included an outage start time, a restoration time, geographic co-

ordinates, number of affected customers, affected feeder, transformers, and an

isolating device. An outage start time is considered the time when the first cus-

tomer reports the outage. An outage location is approximated, the location of

the first upstream isolating device, i.e., overcurrent relays, switches, reclosers,

fuses, and transformers. When several customers report an outage, the outage

location is updated considering the location of each customer. Nested outages

are distinguished as they have the same start time but different restoration

times and they are considered as unique outages.

Outage types are categorized into nine groups: unknown, scheduled out-

age, tree contacts, lightning, defective equipment, extreme weather, adverse

environment, the human element, and foreign interference. In this research,

we focus on predicting outages caused by extreme weather conditions.
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5.3.2 Weather Data Description

Extreme weather conditions identified here refer to: extreme wind, wet snow

accumulation, and equipment icing caused by wind/winter storms. The effect

of extreme wind on a power system condition is substantial. The extreme wind

breaks the trees and causes them to collapse on the power lines. Throughout

the spring and summer times, when leaves are on trees even not so, strong

winds lead to power outages by breaking the branches and throwing them

over power lines [131]. Extreme winds can also lead to the collapse of poles

depending on a type of pole, a level of maintenance, a span length, and dete-

rioration caused by age or insects [132], [133].

Both ice accretion and snow accumulated over power equipment cause sev-

eral problems. Some equipment fails due to an icing flashover [134]–[136],

and when combined with extreme wind icing can cause a phenomena called

‘galloping’ in overhead conductors [137], [138]. Ice accretion on equipment is

influenced by elevation and atmospheric conditions such as air temperature

and wind speed. Its growth rate is dependant on a water droplet velocity, size,

and effective structure area [139], [140]. A flashover is more likely to occur at

higher voltages due to decreased dielectric strength of ice-covered insulators

[141]. Decreased impedance leads to increased voltage stress over air-gaps, and

creates partial arcs which can grow into high energy arcs leading to a flashover

[134], [135], [142], [143]. Ice and freezing rain also accumulate on power lines

and form heavy layers of ice around conductors. This leads to collapsed power

lines. Ice also can accumulate on tree limbs. The increased weight damages

trees and causes them to collapse on power lines [131]. Wet snow, similarly to

icing and freezing rain, causes trees to collapse on power lines. Moreover, it

can lead to the breakdown of insulation components.

Wind-related parameters are used because a wind-force is the primary rea-

son for tree uprooting or breakage, as well as the collapse of poles. Precip-

itation moistens the ground and leads to uprooting trees uprooting in the

presence of high winds [28]. Furthermore, precipitation in the form of snow,

as well as ice, temperature and humidity, are the main atmospheric factors
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leading to icing and wet snow outages.

The weather parameters used in this study include air temperature (ºC),

relative humidity (%), wind speed (km/hr), wind direction (º), surface pressure

(kPa), mean sea level pressure (kPa), cloud coverage (%), and precipitation

(mm).

5.3.3 Importance of Parameters for Analysis of Outage

The important weather parameters affecting power outages are investigated

in this section based on univariate statistical testing. Statistical hypothesis

tests, such as ANOVA (Analysis of Variance), are widely used in analyzing and

understanding the difference between group means. ANOVA test is primarily

used to determine whether the means of two or more populations are equal or

there are statistically significant differences between them. The null hypothesis

is that the group means are equal. For instance, we want to see if the mean

value of weather parameters are the same for various types of power outages.

If we can reject the null hypothesis, we can conclude that the average value of

weather parameters significantly varies between different power outage types

and could be an important feature for classifying power outages and their

types.

Table 5.1 presents the F-statistic and P-values for various weather param-

eters from four groups of data, including power outages caused by extreme

wind, wet snow, icing, and no outages. It can be observed that the mean

value of weather parameters for various types of power outages are not the

same since the P-values are less than 0.05 level of significance and the null

hypothesis can be rejected with a confidence interval of 95%. In Table 5.2,

based on the results of the ANOVA test for each type of power outage versus

no outage, the weather parameters are listed in order of their importance.

5.4 Weather Outage Prediction System – WoutPS

A model that can predict the expected value of the target variable given an

input data point is an optimal model and has the highest performance given
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Table 5.1: F-statistic and P-value for weather parameters

Feature F-statistic P-value

Temperature 1557.44 0.0

Snowfall 1463.03 0.0

Relative humidity 893.99 0.0

Wind speed 514.41 0.0

Cloud coverage 293.47 1.40 e-187

Surface pressure 249.48 8.98 e-160

Precipitation 162.98 9.79 e-105

Mean sea level pressure 118.02 5.97 e-76

Wind direction 112.75 1.42 e-72

Table 5.2: Weather parameters importance on the power outage types

Importance Extreme wind Wet snow Icing

1 Wind speed Snowfall Temperature

2 Surface pressure Relative humidity Relative humidity

3 Wind direction Temperature Surface pressure

4 Mean sea level pressure Cloud coverage Mean sea level pressure

5 Precipitation Precipitation Precipitation

6 Temperature Wind direction Cloud coverage

7 Cloud coverage Mean sea level pressure Wind direction

8 Snowfall Surface pressure Wind speed

9 Relative humidity Wind speed Snowfall

a data-set. In order to build an optimal model, two components of a pre-

diction error, i.e., bias and variance are considered. Simple models that are

not powerful enough to represent a true input-output relation introduce some

bias and low variance, which is called under-fitting. On the other hand, too

complex models usually correspond to a true input-output relation, but they

lead to over-fitting to the training data. Complex models can fit the noise,

and consequently, they may not generalize well. Both of them are a function

of model complexity and can be minimized by a proper selection of model

hyper-parameters. A random search approach is implemented to find the best

combination of hyperparameters, i.e. a single model is built and evaluated for
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each combination of model hyper-parameters.

5.4.1 System Architecture Investigations

In order to ensure a balance between the simplicity and complexity of a system

yet to obtain good performance results, we investigate three architectures for

predicting extreme weather power outages and their causes.

Architecture a: is a simple multi-class classifier based on weather param-

eters and location information recognizes and predicts the following conditions:

NoO (NoOutage), O (outage) – extreme wind outage, wet snow outage, and

icing caused outages. Classifiers such as RF, MLP, KN, DT are inherently

capable of multi-class classification. However, classifiers such as SVC require

a one-vs-all strategy to reduce a multi-class problem to multiple binary pre-

diction problems.

Architecture b: splits the prediction process into two stages. At the

first stage, we have a binary classification that distinguishes NoO versus O

conditions. At the second stage, we have a multi-class predictor that is able

to identify the outage cause – extreme wind, wet snow, and icing.

Architecture c: is kind of a combination of the two previously presented

architectures. There are two motivations here. Firstly, an optimal model may

not be constructed using a specific classification algorithm and its tuneable

hyper-parameters. It can be proved that an ensemble style optimal classi-

fier has the best performance. Both these facts lead us to construct various

prediction models and combining their outputs. Therefore, the architecture c

leverages the power of ensemble learning. Secondly, each classifier is consid-

ered as a piece of evidence, and DST is utilized to determine a confidence level

in the final prediction. The level of confidence in each classifier is determined

by calculating a mean of cross-validated F1 scores of the classifier with best

hyper-parameters, Algorithm 1.

5.4.2 Data Pre-processing and Model Construction

Collected weather data are standardized, i.e., the distribution values are re-

scaled to have the mean values of zero and standard deviation of one. Stan-
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Figure 5.1: System Architecture [144] ©2020 IEEE

Algorithm 1 Fusion algorithm, [144] ©2020 IEEE

1: Initialize classifiers Ci, j : i ∈ {RF,MLP, SV C}, j ∈ {An, Bn}
2: Initialize frame of discernment Θ = {wind, snow, ice,NoO} and its power set

2Θ

3: An : n ∈ {{NoO}, {wind, snow, ice}}
4: Bn : n ∈ {{NoO}, {wind}, {snow}, {ice}}
5: for i, j do
6: ci,j ← Ci,j with best mean cross-validated F1 score
7: confidenceci,j ← mean(F1(ci,j))

8: procedure Fusion(ci,j , confidenceci,j )
9: for i, j do

10: mci,j ,ignorance ← 1− confidenceci,j
11: for n do
12: mci,j ,n ← Prci,j ,n × confidenceci,j
13: m =

⊕
i,jmi,j

14: Pra = BetPm(a), ∀a ∈ Θ
15: return Pra, ∀a ∈ Θ

dardization is a feature scaling method that plays an essential role in training

prediction models by helping gradient descent to converge faster. Z-score,

which is a parametric outlier detection method that assumes a Gaussian dis-

tribution for weather parameters, is implemented to detect and remove samples

that are ‘far’ from sample mean values. These samples could be a result of

a wrong measurement process, make data unreliable. This profoundly affects

the model performance.

The models used in our WoutPS predict the occurrence and type of an

outage based on 12 hours of weather data prior to the outage time. These
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models extract location-sensitive patterns in weather data that lead to an

outage. Assuming weather parameters in the past are available at each time,

power outages can be predicted up to 12 hours prior to its occurrence. For

instance, to predict a probability of power outage 8 hours into the future, 4

hours of weather data in the past and 8 hours of weather forecast are required.

In order to construct the best possible model, a number of evaluation tech-

niques are used. They are also applied to determine the values of hyper-

parameters of a single model and to compare different models. To properly

compare built prediction models, we should ensure that performance metrics

obtained for the available data are reliable indicators of the model perfor-

mance when applied to new data. To achieve this confidence, stratified k-fold

cross-validation (CV) and statistical significance tests are implemented to gain

evidence in the model’s prediction abilities. K-fold CV splits the data into k

subsets, and a single model is trained on k-1 folds, named training partition,

then evaluated on the holdout validation partition. The processes of parti-

tioning the data, training the model and evaluating it are repeated for k times

on k different validation partitions and their associated training partitions,

Fig. 5.2. The cross-validation technique is less likely to add bias to the model

since all samples have the chance to participate in training and evaluation pro-

cesses. Stratified k-fold CV is a technique that ensures each fold has a similar

distribution to the data by keeping the same percentage of each class across

each fold by rearranging the data. When the data is unbalanced, stratifica-

tion plays a significant role in preventing the over-representation of a specific

class. Implementation of CV provides k performance measures obtained for

each model.

5.5 Outage Prediction Models

The measure used to evaluate the models’ performance is F1. So, k F1 are used

to find out whether a difference in the performance of two models is meaningful

or is due to a chance. The models’ difference can be proved by rejecting the

null hypothesis H0, which assumes two models are equal. The null hypothesis
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Figure 5.2: Cross validation process [145], [144] ©2020 IEEE

can be rejected if p ≤ α , i.e., p value is the probability Pr(T > t = d−0
σd/
√
n
) ,

where T is a random variable, σd and d are standard deviation and mean of

F1 measures of each model, and α is the significance value which is usually

assumed to be equal to 0.05. If H0 cannot be rejected, it can be concluded

that there is not sufficient evidence that the two models are different.

5.5.1 Model Selection Process

Various outage prediction models have been evaluated to select a set of mod-

els that provided the best prediction results. We have used a random search

approach with various combinations of hyper-parameters for each model, and

for each combination, a stratified 10-fold CV has been implemented on 80% of

the data, which is sampled randomly for training and testing purposes. Best

hyper-parameters are selected for each model by comparing all combinations,

Fig. 5.3. The obtained results for all models used in binary and multi-class

classifiers with tuned hyper-parameters are depicted in Fig. 5.4 and 5.5, re-

spectively.

RF, MLP, and SVC classifiers have the best F1 scores among all evaluated

classifiers. However, applying independent t-test on CV results demonstrated
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Figure 5.3: Hyper-parameters tuning [145], [144] ©2020 IEEE

that there is no sufficient evidence that the performances of these classifiers are

statistically different, Table. 5.3. Therefore, a system with the architecture a

is trained with only an SVC classifier, which has the highest F1 score.

Table 5.3: P-values for student T-test for all model, [144] ©2020 IEEE

Model RF MLP SVC KN AdBo DT QDA

RF 1 0.7915 0.2939 0.0001 3.4941 e−8 2.3690 e−7 1.2680 e−8

MLP 1 0.1898 0.0001 2.9700 e−8 1.8938 e−7 1.0970 e−8

SVC 1 0.0004 1.5844e−8 1.9914 e−7 1.6626 e−8

KN 1 0.0212 0.04532 3.3652 e−6

AdBo 1 0.7963 2.4009 e−5

DT 1 2.4830 e−5

QDA 1

5.5.2 Evaluation of WoutPS

Based on the results of identifying the best prediction model, we conclude that

WoutPS can be built with any of the three best models: RF, MLP, and SVC.

Therefore, it seems that the selection of a specific classier among these three

should not affect the process of selecting the most suitable architecture.

An evaluation process is done using 20% of the available data. Please, recall

we have used 80% of data for CV process of evaluating the best prediction

model. The results of the evaluation are presented in Table 5.4. The values

in bold represent the best precision, recall, and F1 obtained across all three
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Figure 5.4: Comparison of macro average F1, recall, precision score of binary classifier (stage
1) used in architecture b, c

architectures. As can be observed, WoutPS with the architecture c has the

majority of bold, i.e., best scores. Only the value of recall for predicting Icing

is better for architecture a, while the value of precision for NoO is the same

for all architectures. Such a result is a clear indication of better performance

when the architecture c is used.

Furthermore, if we look into the precision and recall performance metrics

in 5.4 and 5.5, it can be observed that the SVC has the highest recall, and

the RF has the highest precision among the models. It seems architecture c

which utilizes the DST-based aggregation of RF, SVC, and MLP models, can

take advantage of each unique model’s better recall and precision and provide

a more powerful ensemble model.
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Figure 5.5: Comparison of macro average F1, recall, precision score of multi-class (stage 2)
classifier used in all architectures.

Table 5.4: Precision, Recall, and F1 score report on test data for architectures a, b, c, [144]
©2020 IEEE

Metric NoO Wind Snow Icing Macro Ave.

Precision a 0.93 0.65 0.83 0.73 0.79

Recall a 0.96 0.41 0.68 0.76 0.70

F1 score a 0.94 0.50 0.75 0.74 0.74

Precision b 0.93 0.66 0.85 0.74 0.80

Recall b 0.96 0.41 0.68 0.73 0.70

F1 score b 0.95 0.51 0.76 0.74 0.74

Precision c 0.93 0.68 0.86 0.81 0.82

Recall c 0.97 0.42 0.73 0.73 0.71

F1 score c 0.95 0.52 0.79 0.77 0.76
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5.5.3 WoutPS with Dempster-Shafer Aggregation

As it has been indicated earlier, the best results are obtained for WoutPS

with the architecture c. The application of the Demeter-Shafer theory allows

us to look a bit ‘deeper’ into the obtained results. We can not only obtain a

prediction pointing to a specific type of outage but also levels of Pignistic prob-

abilities. An illustration of results presented in such a way – the probabilities

– is included in Table 5.5.

Table 5.5: Pignistic probability for various samples and the reference values, [144] ©2020
IEEE

Id Reference NoO Wind Snow Icing

1 NoO 0.9981 0.0005 0.0008 0.0006

2 NoO 0.9653 0.0077 0.0093 0.0177

3 NoO 0.0579 0.3232 0.2362 0.3828

4 Wind 0.0047 0.9756 0.0098 0.0098

5 Wind 0.2342 0.7181 0.0246 0.0230

6 Wind 0.8203 0.1684 0.0056 0.0056

7 Snow 0.0286 0.0145 0.9402 0.0167

8 Snow 0.4527 0.0103 0.525 0.012

9 Snow 0.6642 0.0798 0.1836 0.0724

10 Icing 0.0007 0.0085 0.008 0.9827

11 Icing 0.0297 0.0339 0.0559 0.8804

12 Icing 0.0058 0.6912 0.1294 0.1736

Let us take a close look at the presented results. If we look at rows 1, 2,

4, 5, 7, 8, 10, and 11, we see examples of correct classification. The highest

probability values are associated with proper predictions – the ‘Reference’

column versus columns ‘NoO’, ‘Wind’, ‘Snow’, and ‘Icing’.

The interesting cases are shown in rows 3, 6, 9, and 12. They represent

misclassified predictions. When we compare the probabilistic values, we notice

that the values reveal an interesting insight into the prediction process. It

seems there is no agreement between classifiers, and that means that a user

can make a judgment on how much she trusts the obtained predictions. For

example, the values in row 3 show almost equal probability between Wind,
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Snow and Ice, although the correct prediction would be NoO. In rows 6, 9,

and 12, we see more considerable differences between probability values, yet

they convey a diminished trust in the predictions.

The obtained results and their statistical analysis indicate that three pre-

diction models: RF, SVC, and MLP are the best – yet indistinguishable from

the performance point of view – prediction models. In the case of the WoutPS’s

performance, the ensemble-based architecture that uses DST has provided the

best results. Additionally, this architecture enables a user to look ‘inside’ the

results and learn a bit more about a way how predictions are determined.

5.6 Conclusion

The ability to predict outages, and even their type, is of significant impor-

tance for power utilities. In this chapter, we present the result of a process

of constructing a Weather Outage Prediction System WoutPS. Special atten-

tion has been put to the selection of the most suitable prediction model and

the system’s architecture. The obtained results and their statistical analysis

indicate that three prediction models: RF, SVC, and MLP are the best – yet

indistinguishable from the performance point of view – prediction models. In

the case of the WoutPS’s performance, the ensemble-based architecture that

uses Dempster-Shafer Theory has provided the best results. Additionally, this

architecture enables a user to look ‘inside’ the results and learn a bit more

about a way how predictions are determined.
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Chapter 6

Knowledge Graph
Representation of Power System

6.1 Introduction

A distribution level power system is a complex and connection intense struc-

ture. It can be characterized by the presence of multiple components of differ-

ent type – many of them ‘small’ and of a low economical value when compared

with elements of a transmission level system – that are connected in a chain-

like mode. Such a nature of a distribution grid makes it quite tedious to

oversee, analyze, and maintain.

A power utility keeps information about its grid in relational databases

spread across multiple organizational units. In order to ‘see’ a part of the sys-

tem, i.e., components, their types and parameters, and details of their physical

connections, as well as information about linked customers and their locations,

a number of operations related to accessing few databases and performing mul-

tiple operations on tables containing information about components of interest

need to be performed.

Recently, a new type of databases that offer a different data representation

format become more and more popular. They are graph-based databases that

represent information as network of nodes and relations between them. Such

databases provide a number of benefits:

• easiness of data integration from multiple data sources;

• easiness of expansion, i.e., ability to continuously append new pieces of
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data;

• simplicity of accessing individual pieces of information and performing

queries, especially in the context of connections/relations between data

nodes;

• openness to develop and execute variety of algorithms on graphs in or-

der to gain additional information and enhancing graphs, for example,

computing a length of sequence of specific types of nodes.

This chapter shows how the power grid’s components can be stored in a

format of the knowledge graph in a graph database, Neo4j. We provide details

related to concepts and relations between them that constitute nodes and

edges of a graph. We briefly describe a graph – called GridKG – representing

a distribution grid. A few examples showing how such a database can be

utilized are described.

The chapter’s main contribution is constructing a knowledge graph that

integrates information about the topology of the power system with meta data

about equipment, customers and power outages. We enhanced the knowledge

graph with the data generated by algorithms we developed to identify upstream

and downstream devices, the number of customers connected to them, as well

as the impact of power outages . This additional data leads to a holistic view

of the system. All this would allow us to gain further insight into the system’s

characteristics while analyzing the grid.

6.2 Knowledge Graphs – Brief Overview

A knowledge graph is basically a data management system which combines

various types of data and utilizes graphs to represent information and knowl-

edge [146]. Initially introduced by Google, the knowledge graph concept was

utilized to optimize search engine performance with the information gathered

from various sources. Knowledge graphs such as BabelNet [147], DBpedia

[148], WordNet [149], Microsoft’s Probase [150] and Google Vault [151] are

created focusing on text-based extraction of data from the web content. The
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existing generic knowledge graphs prove their usefulness in applications such

as semantic search, and information fusion from various sources.

The Resource Description Framework (RDF) data format [46] introduced

by the Semantic Web as a standard for Linked Open Data is a popular graph-

based data format in which each piece of data is stored as a RDF triple that

contains: two entities, two nodes in a graph, called a subject and an object;

and a relation between them, an edge in a graph, called a property. Processing

data represented as knowledge graphs in an RDF format is generating a lot

of attention. There are multiple works focusing on different aspects related to

RDF- based Knowledge Graphs: from their construction [47], via storage [48],

querying strategies [49], [50] and extracting information [51], to applications

[52], [53], just to mention a few. The fact that subjects of triples could be also

objects of another triples, and vice versa, means that we deal with a network

of entities highly interconnected via properties.

A single RDF-triple <subject-property-object> can be perceived as a fea-

ture of an entity identified by the subject. In other words, each single triple

is treated as a feature of its subject. Multiple triples with the same subject

constitute a description of a given entity.

Quite often a subject and object of one triple can be involved in multiple

other triples, i.e., they can be objects or subjects of other triples. In such a

case, multiple definitions can share features, or some of the features can be

centres of other entity descriptions. All interconnected triples constitute a

network of interleaving definitions of entities.

6.3 Related Work

A major challenge in managing the power grid with hundreds of thousands

of power devices is how to collect, analyze, and manage the equipment of the

grid [152], [153]. Using a knowledge graph can greatly enhance the efficiency of

knowledge retrieval and greatly improve the quality and accuracy of the search

results. However, few studies have focused on domain-specific applications of

knowledge graphs in power grid operations in the power industry realm. In the
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following, a few examples of using graph-based data representations in power

systems is provided.

Industrial utilization of knowledge graph at Siemens was an essential move

toward intelligent engineering and production, improving workflow perfor-

mance and data accessibility. The proposed knowledge graph could overcome

traditional database challenges, provide an integrand view of data, improve

search functionalities and data control [154]. Enterprise-level power equipment

knowledge graph, improved power equipment management, and enhanced ef-

ficiency in retrieving, classifying, and updating relevant information [146]. In

[155], an architecture for modeling and energization analysis of the IEEE 118-

bus system topology is designed. It demonstrated the higher performance

of the graph database compared to a relational database for the power grid

analysis.

Various relation extractions between power grid asset entities have been

investigated in some recent works. An ontology extraction framework was

created to automatically build power terminal knowledge graphs [156]. The

framework facilitates the sharing of heterogeneous data between multiple sources.

A management system based on ontologies has been developed, capable of

modeling interactions across multiple domains [157]. This study demonstrates

the advantage of using ontologies to build decision support tools and provides

an example of implementing optimal power flow in knowledge graphs. The

AI-enhanced labeling method to create a knowledge graph was developed to

group the power grid equipment with similar characteristics [153]. In [158], the

authors demonstrated the knowledge graphs ability to evolve based on business

needs and enhance the database expansion process and response time.

The deployment of advanced metering infrastructure and sensors has ac-

celerated as smart grids grow, which generated unprecedented amounts of

multi-source heterogeneous big data [159]. For a smooth transition to the

next generation of smart grid systems, knowledge graphs assist in incorporat-

ing additional information and connectivity across all devices [153]. In smart

grids, the information island problem was addressed using grid equipment

knowledge graphs considering the multifaceted equipment nature and inter-

75



equipment relationships [160]. Based on the knowledge fusion, [161] proposed

a multi-source information fusion method to provide a unified knowledge base

to utilize power equipment data efficiently. [162] utilize knowledge graphs to

integrate power grid and environmental information and use it as a reference

to perform signal correlation algorithms for abnormality detection in the grid.

Dispatch knowledge graph for power grid was developed by extracting the en-

tities and identifying the relationship patterns in dispatching behavior using

natural language processing, and machine learning techniques [163]. These

efforts and studies confirm the growing interest and demand in power grid

knowledge graphs.

6.4 Power Knowledge Graph

In this section, we introduce PowerLOV – a Power Linked Open Vocabulary

– that defines classes and relations that should be used to build a graph-

based representation of any power system. The vocabulary is built as an

extension of the ontology PowerSystems.owl. We present a list of concepts

of PowerLOV as well as a set of relations. We follow up with a number of

exemplary cases that illustrate, as well as emphasize, benefits of representing

Power Distribution Grid as a knowledge graph.

6.4.1 Vocabulary Overview

As we have mentioned earlier, the proposed approach for representing a power

system in a form of a knowledge graph requires defining a special vocabulary

that allows to combine all three categories of information. In order to construct

such a vocabulary, we have followed an example of the existing power system

ontology called PowerSystem.owl [157]. Yet, to satisfy our needs, we have

added more concepts and relations that address our particular requirement of

representing diverse type of information.
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6.4.2 Concepts

Some concepts that enable construction of power system model have already

been defined in PowerSystem.owl. Yet, we have extended this ontology to

accommodate concepts and categories required to represent such information

as geographical locations, events, and maintenance activities. These concepts

allow to build a view/representation of the system beyond its basic electrical

components.

Two essential concepts – building blocks of any knowledge graph aimed at

representing a power system – are Element-Asset and cNode. Element-Asset

is equivalent to the category ElectricalEquipment from PowerSystem.owl. In

PowerLOV, the class has the following attributes: id that is the same as

the asset ID assigned to it by a utility, and two sets of coordinates x, y and

longitude and latitude as identifiers of its geographical location. The second

concept – cNode – is a fictitious connection point. Each Element-Asset is

connected to two of them. They play the role of points linking two adjacent

Element-Assets.

Each Element-Asset – a node in the graph – is further described by con-

necting it to other nodes. In other words, each node is defined by a number

of features, i.e., connections to nodes representing additional information re-

lated to Element-Asset. These nodes represent facts that define specifics of

an asset. They are divided into three different groups: 1) nodes identifying a

type of an asset and details of its specification; as well as information contain-

ing details of maintenance activities performed on an asset; 2) nodes related

to system topology, i.e, their geographical locations; and 3) nodes describing

system events in which assets were involved.

The first group is organized as a hierarchy of classes, Fig. 6.1. We defined

the following superclasses:

• Components – it is a superclass that contains a number of subclasses

called ComponentType that provide a means to identify a type of an

asset; we have the following subclasses: Switch, VoltageRegulator, Ener-

gyMeter, ElectricalLine, PowerGenerator, CapacitorBank, SwitchGear,
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Sectionalizer, Elbow, Recloser, Fuse, SubstationBus, FaultIndicator, Iso-

lationPoint, Breaker, SubstationTransformer ;

• ConnectionStatus – with subclasses ConnectionStatusTypes that indicate

an operational status of an asset: Connected or Opened ;

• Phases – it a superclass of PhaseValue that stands for phase(s) to which

an asset is connected;

• Orientations– with two subclasses of a type OrientationType that indi-

cate if an asset is undegroundCable or overheadLine;

• Voltages – with subclasses VoltageValue that specify rated and connected

voltages of an asset;

• Customers – with a subclass Customer instances of which represented

customers of the modelled system.

The second group includes classes used to identify specifics of geographical

location of assets. Before we provide a short description of the classes, we

would like to indicate that besides such obvious location indictors as service

area and feeder, to which an asset is (indirectly) connected, we have introduced

a much finer division of service areas – a grid of polygons. The motivation to

introduce a grid of polygons has been twofold: 1) to better localize different

elements and events at the resolution that is ‘between’ service areas and geo-

graphical coordinates; and 2) to prepare an introduction of additional data –

for example, weather – that enhances even further possibilities of analysis of

power system behaviour at different (weather) conditions. The classes of the

second group are:

• ServiceAreas – with a number of subclasses ServiceAreaNames repre-

senting names of the utility’s service coverage zones;

• Feeders – it is a superclass of FeederID that provides identification of an

upstream feeder to which an asset is (indirectly) connected;
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• GridCell – identification of an individual grid cell in the created grid of

polygons.

In the case of the third group, we define two categories that allows us to

provide details regarding events, for example outages, that occurred in the

modelled system and effected an asset:

• OutageEvent – provides details regarding an outage, such as time of

event, power interruption interval, supplementary cause;

• OutageCauses – with a subclass OutageCauseType that identifies a pos-

sible cause of an outage, examples of recognized causes are: Lightning,

DefectiveEquipment, ForeignInterference, AdverseWeather, just to name

a few.

6.4.3 Relations

As we have mentioned earlier, nodes of a knowledge graph are connected via

well-defined and semantically meaningful links – relations. These relations

allows for characterizing assets and providing details describing assets. In the

context of PowerKG, we recognize a number of relations:

• Connection – links Element-Asset to cNode;

• hasComponentType – links Element-Asset to ComponentType;

• hasConnectionStatusType – links Element-Asset to ConnectionStatusType;

• hasCustomer – links Element-Asset to Cusomer ;

• hasFeederId – links Element-Asset to FeederId ;

• hasGridCellId – links Element-Asset to GridCellId ;

• hasLocationType – links Element-Asset to LocationType

• hasOrientationType – links Element-Asset to OrientationType

• hasOutageEvent – links Element-Asset to OutageEvent
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Figure 6.1: Schema of PowerKG: red names represent superclasses of items

• hasOutageCauseType – links OutageEvent to OutageCauseType

• hasPhaseValue – links Element-Asset to PhaseValue;

• hasServiceAreaName – links Element-Assetto ServiceAreaName;
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Figure 6.2: RDF triples with Element-Asset as their subject

• hasVoltageValue – links Element-Asset to VoltageValue;

All concepts and relations created for PowerKG are presented in Fig. 6.1:

superclasses are in red, subclasses and both Element-Asset and CNode are in

yellow, while relations used to define details of Element-Asset are in green.

6.4.4 Simple Examples

Before we present more involving examples, we include a simple relation-based

description of of an asset, Fig. 6.2. It is a transformer, in the service area

1811460, in the polygon grid cell 104-114, connected to the feeder 1811522,

at the Rural location. Its rating is 25kV, it is connected to all phases (CCC )

ABC, and its orientation is Overhead.

As we have mentioned earlier, the Element-Asset in Fig. 6.2 is an example

of a basic building block of graph representing a power system. Each Element-

Asset that is an electrical component is linked – via the relations Connection

– to CNodes. Such an arrangement links all components together ‘electrically’.

Links to other, non-electrical, nodes determine details of components. A frag-

ment of a graph-represented system that contains five Element-Asset : Fuse,
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Transformer and three ElectricalLines is illustrated in Fig. 6.3.
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Figure 6.3: A fragment of the distribution grid with a transformer, three electrical lines and
a fuse: electrical connections are shown as thick grey lines.

6.5 GridKG – Graph-based Representation of

Distribution Grid

The defined above vocabulary PowerLOV is used to construct a representa-

tion of real power distribution grid. A graph-based model of a full-sized power

distribution system is called, hereafter, GridKG. It contains more than 2 mil-

lions of nodes and 10 millions of connections. Fig. 6.3 shows its very small

fragment.

GridKG combines information of very different nature: details of electrical

equipment, system topology, and system events. All pieces of information

are semantically interconnected. The connections between nodes of GridKG

create an opportunity to process available data and analyze the modelled grid

in multiple different ways. The following two sections – this one and Section 6.6

– provides a number of examples what can be done.
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6.5.1 Electrical Paths

One of the most interesting examples of processing data included in GridKG,

and enhancing it at the same time, is identification of electrical paths in a

system. This allow for determining upstream and downstream elements, and

as the consequence analyze the graph from yet different points of view.

In a graph-based representation of a grid, an electrical path is considered

as a sequence of tuples

〈cNodex→c→Element-Assetp→c→cNodey〉

where c represents the relation Connection. This tuple is composed of two

triples connected via the same Element-Assetp, i.e., 〈cNodex→c→Element-

Assetp〉 & 〈Element-Assetp →c→cNodey〉. An example of an electrical path is

shown in Fig. 6.3 where nodes representing Element-Asset ’s are connected with

via thick grey links. The proposed process of ‘building’ paths is equivalent to

‘stitching’ together a number of tuples in a way that cNodey of the predecessor

tuple matches cNodex of the successor tuple. Algorithm 2 shows the simplified

steps.

An input to the algorithm is a queue Q of triples 〈Element-Asset-c-cNode〉,

where Element-Asset is of type Breaker. Based on the triples from the queue

Q, the Breadth-First search algorithm finds a sequence of adjacent Element-

Asset ’s. If it happens that the encountered Element-Asset is of type Switch

then its ConnectionStatusType has to be Connected. If it is Open it is not

considered as a part of a continuous electrical path.

We define a special attribute of the Element-Asset – called level – that is

used to ‘keep’ track of the elements’ position in the path. For each Element-

Asset, the algorithm modifies a direction of connections from an element of a

lower value of level to the adjacent element with a higher value of level. The

algorithm finishes when the queue Q is empty.

A process of establishing electrical paths allows us to easily identify up-

stream and downstream elements. This can be used, for example, to deter-

mine a number of customers that ‘depend’ on each element. The deployment

of a single algorithm augments each element with an additional information,
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Algorithm 2 Multi-Source Path Search, [152] ©2020 IEEE

1: Input:
2: Q ← list of triples 〈cNode− c−Breaker〉

3: Initialization:
4: level = 0
5: set: nextElements = {}, . Elements to visit
6: set: S ={}, . visited Elements

7: while Q is not empty do
8: size ← numberOfTriples(Q)
9: for 1 to size do

10: 〈cNode− c− Element〉 ← getTriple(Q)
11: if id(Element) ∈ S then . Element visited
12: continue
13: level of Element ← level
14: S ← Element
15: cNode next ← getNextcNode(Element)
16: nextElements ← getNextElment(cNode next)
17: for each Element next ∈ nextElements do
18: setCDirection(Element, cNode next, Element next)
19: if not (type(Element next) == Switch &
20: state(Element next) == Opened) then
21: Q← 〈cNote next− c− Element next〉
22: end if
23: end for
24: end for
25: level← level + 1

26: end while

27: return

stored in yet another additional attribute numCustomer, that indicates how

many customers are located downstream of the element.

6.5.2 Review of Switching Elements

With electrical paths identified, we can utilize GridKG to learn more about

connections between different Element-Assets. One of possible ways of learn-

ing more about the grid is finding out all downstream (and upstream) elements

and connections from a given element of the system.

Example A

Let us ask GridKG about downstream paths/components from a specific

location. Additionally, we can impose a condition regarding a maximum num-
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ber of components composing the path, and retrieved lengths of these paths

together with some basic information about events – outages in our case –

involving the paths’ components.
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Figure 6.4: Elements of downstream paths: their types identified by links to light blue circles
where each circle represents a different type of electrical component; their voltages – light
pink circles; their phases – dark pink circles; as well as outages – red circles.

The Neo4j query, in the language Cypher, is shown below. We provide

a starting element source, and a number representing a maximum number of

components. The query returns all downstream connected elements, Fig. 6.4.

Additionally, it returns lengths of the electrical paths – there are seven paths

of the length: 465.21m, 445.09m, 595.25m, 595.25m, 1272.90m, 1325.93m, and

1599.44m, respectively. It also returns the Element-Assets on the path asso-

ciated with power outages. In Fig. 6.4, we see information about types of
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elements, their connected voltage values and phase, as well as outage events

(for clarity, some details are not shown).

MATCH path = ( source : Element{mslink :7892771} )
− [ : Connection ∗ . . 4 0 ]
−>(c : Customer )

RETURN path , reduce
( t o t a l = 0 , e IN nodes ( path ) |

CASE
WHEN e . LengthValue IS NOT NULL
THEN t o t a l + e . LengthValue
ELSE t o t a l

END )
AS tota lLength , [ e lement IN nodes ( path )
WHERE ( element ) − [ : hasOutageEvent ] −( : OutageEvent ) ]

Example B

Let us take a look at another way of analyzing the distribution system, i.e.,

finding a number of protective devices that exist on a path upstream from a

specific location.

This time, the query – presented below – returns a path of upstream el-

ements from the specified Element-Asset up to the breaker, Fig. 6.5. As we

can see, the path includes two Element-Asset of type Switch – this allows us

to locate the first and the second of these devices on the path. Additionally,

we obtain more information about the path itself – its components, and infor-

mation about them, as well as a number of customers connected downstream

from the specified Element-Asset – it is 1828 in the case of the system rep-

resented by GridKG. This query can be used to investigate how many more

customers will be affected by the activation of backup protection in case the

primary protection fails to act. It is possible to investigate the whole grid

and find out the critical locations requiring closer attention to its protection

system design.

MATCH path = ( source : Element{mslink :1169863288} )
<−[:Connection ∗ ]
−( p r o t e c t i v e : Element )

WHERE p r o t e c t i v e . ComponentType IN [ ’ Breaker ’ , ’ Switch ’ , ’ Fuse ’ ]
RETURN p r o t e c t i v e . NumCustomer , path
LIMIT 10
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Figure 6.5: Location of Primary Switch/protective devices on the upstream path from top-
left element to the primary breaker (down-right corner).

6.5.3 Review of System Events

Integration of different types of information in GridKG enables analysis of

system components, in particular their status and maintenance activities, as

well as system events occurring at specific locations.

Example C

Let us retrieve from GridKG a list of outage events that occurred downstream

from a specific Element-Asset. We want to know details of the outages as well

as a graph representing a fragment of the system with information about the

components. For illustrative purposes we have limited the response to 10 out-

ages. The query we use is shown below.

MATCH path = ( source : Element{mslink :7892771} ) −[ c : Connection ∗ . . ] −>(
element : Element ) − [ : hasOutageEvent]−>(outage : OutageEvent )

RETURN [ outage . OutageCause , outage . OutageTime , element . NumCustomer ,
element . GridCel l Id , element . Longitude , element . Lat i tude ] AS

OutageInfo , path
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LIMIT 10

The obtained data in a form of a list of outages is shown in Table 6.1.

As we can see, details related to times and causes of outages are retrieved.

Additional information, types of involved Element-Assets and their electrical

specifications, as well as details related to effected customers are included in

a graphical view of the obtained data, Fig. 6.6. The figure shows that one

of the involved elements was Fuse, connected to the phase A of 14kV line,

that was involved in seven outages. Three of them were caused by a wildlife,

and four were of an unknown cause. Other outages were associated with a

transformer, a switch and another fuse. Via interacting with the GridKG

more information about specific outages, involved Elements-Assets, as well as

the effected customers can be easily obtained and examined.

Table 6.1: Details of 10 outages (selected information)

Id Time Primary Cause Secondary Cause

1 1997-12-07 14:23 Unknown –

2 1997-06-24 23:59 Defective Equip. Electrical Failure

3 1997-06-28 22:04 Unknown –

4 1998-05-13 06:06 Unknown –

5 1999-09-10 18:08 Unknown –

6 2000-08-14 10:53 Foreign Intrf. Wildlife (bird/animal)

7 1998-07-27 18:38 Foreign Intrf. Wildlife (bird/animal)

8 1998-08-09 02:25 Unknown –

9 1996-07-30 08:15 Foreign Intrf. Wildlife (bird/animal)

10 1997-06-28 21:53 Unknown –

Example D

Another query could be related to outage events occurring in a specific service

area and linked to a specific Element-Asset that satisfies particular conditions.

For example, we can ask for outages linked with Switches that went through

maintenance activities taking place during a specific period of time. An addi-

tional condition could be related to finding the switches on the path that has

at least fifty customers downstream.
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Figure 6.6: Details of 10 outage events downstream of a specific Element-Asset.

The Cypehr query is shown below. As we can see, we are asked for a list of

switches involved in the outage caused by Adverse Weather and a maintenance

activity XYZ done on the switches between time1 and time2.

MATCH ( switch : Element{ComponentType : ” Switch ” , ServiceAreaName : ”
St . Paul” })

− [ : hasOutageEvent ]
−(oe : OutageEvent{OutageCause : ’ Adverse Weather ’ })

MATCH ( switch ) −[ c : Connection ∗ . . ] −>( downstream element : Element )
WHERE switch . NumCustomer > 50
AND downstream element . MaintenaceTime > time1
AND downstream element . MaintenaceTime < time2
AND downstream element . maintenaceType = ”XYZ”
RETURN switch , downstream element

6.6 Analysis of Outage Severity

The disruption of energy delivery caused by power outages occurs quite often in

the power distribution grid [144]. They result in high costs for power utilities,
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with an estimated $20 to $55 billion annual cost to the U.S. economy due to

storm-related outages [1]. Predicting the severity and impact of power outages

help power utilities to plan ahead for resource allocation which will lead to fast

recovery after power outages, improve customer satisfaction, grid reliability,

and profitability of utilities [144].

As reported in the literature, analysis of power outages focuses on predict-

ing a number of outages [26], [28], [30]–[32].

Generally, the effort is put into predicting the number of outages due to

adverse weather conditions as per single cell of a grid that a specific area had

been divided into. Yet, it seems that a more appropriate way to determine

the effect of outages is to consider the number of affected customers. Some

published work suggests predicting the number of affected customers instead

of the number of outages [164]. This would provide the ability to estimate

the effect of adverse weather conditions on the power system reliability by

calculating the SAIFI 1 index. But, development of such models is not easy.

The models would require a large number of data points that often is not

possible.

Estimation of power outage severity impact can be done by applying GridKG

for estimating the number of affected customers. The graph provides an easy

access to the power system topology. This alone allows to consider differences

in locations between power outages and customers. An extreme weather event

that leads to a power outage in one grid cell can affect customers in various

grid cells positioned downstream to the power outage or the protective equip-

ment locations. Therefore, information stored in the presented GridKG can

help to better estimate the number of affected customers regardless of their

physical location.

6.6.1 Monte Carlo Simulation: Overview

In order to illustrate an application of GridKG to a more demanding/complex

analysis – in our case, the analysis of severity of outages – we have developed a

1The System Average Interruption Frequency Index (SAIFI), and defined as the average
number of interruptions that a customer would experience.
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process, based on GridKG, to estimate a number of affected customers. It ap-

plies a Monte Carlo simulation to construct distributions of affected customers.

A pseudocode of the process in presented in the form of the algorithm 3.

Algorithm 3 Power Outage Severity Impact Simulation

1: procedure PreProcess(GridKG)

2: Initialization:
3: k = 0.1, . smoothing factor
4: set: customers = {}, . set of unique customers

5: for each protect equipi in gridcellm,n do

6: Pi = (Noutage
i + k)/(kNequip +

∑Nequip

i=1 Noutage
i ) . smoothed probability of

power outages
7: set: microgridCustomers = {} . set of unique customers supplied by a

microgrid
8: for each pcc in downstream of protect equip do
9: microgridCustomers ← getDownstreamCustomers(pcc)

10: end for
11: customers ← getDownstreamCustomers(protect equip)
12: AffectedCustomers of protect equip ← customers - microgridCustomers

. Subtract the microgrid Customers from all customers downstream of protective equip-
ment to find the affected customers

13: end for

14: procedure Simulation(GridKG)

15: Initialization:
16: S = 1000, . number of simulation
17: list: numberOfCustomers = [], . list of number of affected customers for each

iteration of simulation
18: for i = 1, ..., S do . S times random sampling
19: select n protective equipment according to the power outage probability distri-

bution
20: set: eventCustomers = {} . set of unique affected customers with an event

with multiple outages
21: for each selected protect equip do
22: eventCustomers ← getAffectedCustomers(protect equip)

23: end for
24: numberOfCustomers ← getLength(eventCustomers) . append to the list

25: end for

26: return numberOfCustomers

In a nutshell, the idea behind the process is as follows: for a given number

of required outages N in a given polygon P , we randomly select N outage

locations – by an outage location we understand a location of a protective

device, such as breaker, switch, and fuse – and identify how many customers
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are affected. This is repeated S times.

We consider two approaches to identifying locations of outages.:

• a location is picked based on uniform probability among all protective

devices in given polygon;

• a location is picked based on a probability distribution calculated for

a given protective device based on the involvement of this device in

the previous (historical) outages information of which we have stored

in GridKG; if, historically, a specific location and equipment are more

prone to experience a power outage, there is a higher probability of being

selected as in the simulation process.

For the example included in the chapter, we selected an arbitrary service

area. As it has been mentioned earlier, the whole area has been divided into

a grid of 10 × 10 km cells. The Figure 6.7 shows the studied region. The

locations of historical power outages are depicted with the black dots. The

power outage severity impact simulation is calculated for the blue grid cell as

an example.

Longitude

La
tit

ud
e

Power Outages

Figure 6.7: Service area grid cell with power outage locations - blue grid cell represents the
cell that power outages in the simulation are located
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6.6.2 Analysis of Simulation Results

Various number of power outages, N = 1 . . . 30, are considered to happen in

the blue grid cell, Figure 6.7. Each of them is simulated S = 1000 times. We

present the results in the form of box plots which show the distribution of the

number of affected customers with respect to to the number of power outages

in the blue grid cell, Figure 6.8. Each box depicts the first and third quarterlies

of the data with green line representing the median of the data. The whiskers

extend from both sides with the maximum length of 1.5 interquartile range

(IQR) and represent the rest of the distribution, with small circles considered

as the outliers.

Let us take a closer look, Figure 6.8 (a) shows the results when the historical

information, stored in GridKG, is taken into account when ‘selecting’ an

element associated with an outage; while (b) assumes uniform probability of

selecting an element. In general, it can be seen that the slope of the line

connecting the median values of the affected customers decrease for higher

number of power outages due to having higher number of overlapping between

affected customers. Yet, it looks that the inclusion of the historical data leads

to a quicker rise in the number of affected customers yet a more consistent

numbers. It can be said, based on that, the equipment that is more prone

to be associated with the outages is ‘responsible’ for affecting more customers

and should be given more attention.

It is interesting to compare the distributions of number of affected cus-

tomers for both scenarios of selecting components involved in the outages.

Figure 6.9 shows the distributions for N = 15 power outages. Once again,

quite a difference can be observed. It reconfirms an earlier observation of im-

portance of putting attention to the components heavily involved in outages

in the past.

So far, we consider the number of affected outages without looking at the

locations of customers. In this study, we look closer at the spatial distribution

of outages. Figure 6.10 shows the studied service area with clearly marked

polygons – green cells – with customers affected by the outages for the scenario
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Figure 6.8: Number of all affected customers distribution for various number of power
outages in the blue grid cell – equipment selection based on: (a) historical power outage
probability; (b) uniform probability

when the involvement of elements is determined by the historical information.

The darker green represents the higher number of affected customers. It shows

how spatially areas are connected and how an outage in one specific area can

affect the downstream customers. Yet, another view at this can be provided by

looking at the distribution of the affected customers in each of the polygons.

Such distributions are presented in Figure 6.11. It can be observed that a

number of cells – 3, 6, 7, 8 and 9 – have ‘binary’ distributions. Among them,

for the case of cell 7, none or all customers are affected. For the cells 3, 6, 8, and

9 it seems that only a fraction of customers are affected with the probability

0.6-0.75 if the outages ‘reach’ these areas.
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Figure 6.9: Number of all affected customers distribution for N = 15 power outages: (a)
equipment selection based on historical power outage probability; (b) uniform probability
equipment selection.

6.6.3 Analysis of System with Micro-grids

Microgrids are small-scale energy systems powered by distributed energy re-

sources and rely on them to work in a standalone islanded or grid-connected

mode [165], [166]. The set of studies we present in this section focuses on

effect of microgrid on the number of affected customers. We consider four

microgrids connected to the grid. In the case of a power outage, microgrids

disconnect themselves from the main grid at the PCC point and operate in

islanded mode. Therefore, microgrids can lead to the reduction of the number

of affected customers.

To incorporate micgrods in the simulations, the PCC points are added

to the specific nodes of the GridKG, and are taken in consideration during

calculations of affected customers.
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Figure 6.10: Service area grid cell and customers location - the green grid cell represents
the customers that experience power interruption due to power outages in the blue grid cell
- the darker colour represents the higher number of affected customers
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Figure 6.11: Number of affected customers distribution in the affected grids (green cells,
Figure 6.10) due to power outages in the blue grid – equipment selection based on historical
power outage probability.
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As before, we provide two sets of plots: for a range of outages N = 1 . . . 30,

Figure 6.12, and for N = 15, Figure 6.13. The first figure shows the boxplot

of number of affected customers for various number of power outages with

the presence of the microgrids. As we can see, in comparison with plots in

Figure 6.8, overall number of affected customers dropped as expected. The

differences between outages involving elements historically more prone to out-

ages versus uniform distribution of outages across all protective devices the

similar as before. For the case of N = 15 outages, Figure 6.13, probabilities

have similar trends.
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Figure 6.12: Number of all affected customers distribution for various number of power
outages in the blue grid cell, considering the micro-grids connection to the PCC points: (a)
equipment selection based on historical power outage probability; (b) uniform probability
equipment

We also provide a set of plots allowing us to look inside multiple cells that

contain affected customers geographically distributed, Figure 6.14. A visual

inspection shows the largest different for the cell #5. The details regarding
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Figure 6.13: Number of all affected customers distribution for 15 power outages in the blue
grid cell considering the micro-grids connection to the PCC points: (a) equipment selection
based on historical power outage probability; (b) uniform probability equipment

mean values of affected customers for each cell are in Table 6.2.

6.7 Conclusion

Today’s distribution grids are complex networks constituted of multiple com-

ponents. Power utilities collect and store, in relational databases, large amount

of information about the grids’ elements from transformers to individual poles.

It is important for them to be able to have quick access the data describing

components, as well as connections and relations between them.

We propose to use knowledge graphs as a suitable format for representing

grid data. We describe some of the categories of nodes designed for represent-

ing different electrical elements and conceptual information describing those

elements. We also define a number of relations between elements/concepts
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Figure 6.14: Number of affected customers distribution in the affected grids (green cells)
due to power outages in the blue grid cell considering the micro-grids connection to the
PCC points - equipment selection based on historical power outage

Table 6.2: Mean number of affected customers with 15 power outages in the blue gridcell

Location Historical Uniform Historical Uniform

w Micro-grid w Micro-grid

All 442.83 305.04 385.81 281.14

Cell #1 121.70 174.98 117.9 170.14

Cell #2 36.38 13.18 35.53 12.84

Cell #3 16.36 5.58 16.36 5.58

Cell #4 108.48 47.65 95.45 42.82

Cell #5 48.73 17.22 10.06 3.56

Cell #6 37.87 12.93 37.2 12.7

Cell #7 8.48 3.87 8.48 3.87

Cell #8 64.23 29.36 64.23 29.36

Cell #9 0.60 0.27 0.60 0.27
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that are linked to edges connecting nodes of the graph.

Finally, we illustrate utilization of a distribution grid knowledge graph. We

propose an algorithm for identifying electrical paths in the grid. Further, we

include a few graph queries that take advantage of the identified paths and

allow for: determining a length of downstream path from a specific element;

determining a sequence of switches/protective devices on a given upstream

path; as well as a set of switches that satisfy a condition related to downstream

components.
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Chapter 7

Conclusions & Future Work

7.1 Discussion and Conclusion

The development of techniques for monitoring and data collection, and lever-

aging advanced data analysis methods provide the opportunity for thorough

modeling and management of grid operations. It also creates a suitable cir-

cumstances for improving service quality in response to power outages, adverse

weather conditions, and power equipment failures.

In Chapter 3, we investigated the power system protection challenges in

the face of increasing penetration of wind farms into the power grid. We de-

veloped a sample ‘test’ system for objective comparison of different protection

algorithms. In addition, we discussed various reasons and configurations that

may lead to the malfunction of the protection system.

We analyzed several solutions proposed in the literature to overcome pro-

tection related challenges. We found out that understanding of the problems

that the power system may experience has significant importance for the power

utilities to prepare themselves while integrating the grid with renewable energy

resources such as wind farms. If not addressed in advance, these challenges can

affect the expected behavior of the protection system, as well as the location,

severity, and impact of power outages. The main contributions of this chapter

can be summarized as follows.

• Development of a sample ‘test’ system to discuss the main challenges of

protection system in the power grids with integrated WFs.
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• Investigation of the various configurations of fault locations and WFs to

address the protection challenges.

• Categorization of the protection challenges and the proposed solutions

for power systems with integrated WFs.

In Chapter 4, we provided a comprehensive overview of the power utility

outage management system. We put much effort into collecting, understand-

ing, cleaning, integrating, and processing all related data – the power system

data, power outage data, and weather data. Furthermore, we provided new

insights and statistics about power outages and their relationship with the

power system and weather conditions.

We presented the Bayesian-based analysis of power outage in order to deter-

mine/update the power outage probability with the high spatial and temporal

resolution based on the available weather data. The Bayesian approach pro-

vided valuable insight into the historical events that happened in the power

grid.

Due to the availability of the weather data at the level of the 10x10 km

grid, we defined a unique random variable to describe the posterior probability

of power outage for each grid cell. This allowed us to determine probabilities

that take into account the unique characteristics of the individual cells. We

further demonstrated that the maximum posterior classifier model can be used

as a classifier to distinguish between power outages and no power outages.

The main contributions of this chapter are:

• An overview of the utility outage management system’s (OMS) database,

through the data integration process, and demonstrated the relationship

between various data sources.

• New insights and statistics on various types of power outages.

• Investigation of the interactions between weather, power system, and

power outage data by transforming power outage data at the grid cells

level and integrating it with weather data.

102



• Formulation of the predictive inferences based on posterior predictive

distribution of the power outages and the weather condition.

In Chapter 5, we developed data-driven models to predict potential weather-

related power outages. We constructed a reasoning framework that integrated

pieces of evidence from various models under uncertainty using Dempster-

Shafer’s theory (DST).

Based on this, a system for predicting power outages and their type by

combining multiple machine learning models had been developed for real-time

outage prediction. A particular emphasis was placed on selecting the most

suitable prediction model as well as on the overall architecture of the system.

DST-based ensemble architecture provided the best results. Furthermore, this

architecture allowed the user to look ‘inside’ the obtained results and gain a

deeper understanding of how predictions were made. As a summary, the main

contributions are as follows:

• Investigation of data-driven models to predict different weather-related

power outages and their causes.

• Development of a reasoning framework under uncertainty using Dempster-

Shafer theory (DST) for combining evidence from various sources is de-

veloped.

• Construction of a real-time weather outage prediction system by com-

bining multiple models with a reasoning framework for predicting power

outages.

The comparison of the probabilistic approach, Chapter 4, and machine

learning models, Chapter 5, can provide a deeper insight into their differences

in the context of their utilization.

The probabilistic model aimed to determine the probability of power out-

ages based on the available data. We further discussed the cost function to

assign a higher penalty for certain inaccurate predictions and to use the poste-

rior probability as a classifier. However, in practice, it may not be applicable
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when there are not sufficient data points. Therefore, in Chapter 5, we in-

troduced machine learning models as classifiers. These models use functional

form to learn the probability distribution p(o|w, f). For these models, it is

important challenge to make sure that they generalize well and have good per-

formance on new unseen data. We tuned the hyper-parameters to minimize

the generalization error to change the model capacity and prevent underfitting

and overfitting.

The advantage of the power outage prediction system developed in Chapter

5 compared to Chapter 4 is its ability to generalize to unseen data. Since we

tuned the parameters of the functional form of the probability distribution,

the ‘chapter 5 model’ can interpolate or extrapolate based on the training data

and provide inference on the unseen data.

The next important difference is how these models handle the unbalanced

power outage data. In Chapter 4, we discussed the cost function as a means

to put more penalties on specific inaccurate predictions. However, in ma-

chine learning models, although modifying the cost function is an applicable

solution, under-sampling, over-sampling, and the utilization of performance

metrics such as precision, recall, and F1 are important techniques to deal with

unbalanced data sets.

In Chapter 6, a power grid knowledge graph (GridKG) was developed. It

had the capability to integrate grid topology information, data from customers,

and information about power outages. In addition, algorithms were developed

for identifying characteristics of the power grid and obtaining more insights

from them. We enriched the GridKG with information such as the electrical

paths in the grid, identifying the upstream and downstream paths, and pre-

calculating the number of customers supplied through each specific device.

Furthermore, we demonstrated that GridKG is an effective tool for per-

forming atypical analysis of grid behaviour. We used GridKG to perform

Monte-Carlo simulations in order to estimate the impact of power outages and

to determine distributions of affected customers in reference to their location.

GridKG gives an easy way to access the topology of a power system and his-

torical outage data at the same time – all of this allows to analyze impact of
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power outages on customers distributed across service areas while taking into

account historically-based probabilities of equipment failures.

The main contributions of this chapter are as follows:

• Development of a power grid knowledge graph (GridKG) that integrates

the grid topology data, with equipment, customers, and power outage

data

• Design and implementation of algorithms to enhance the GridKG and

generate more in-depth insight from the power grid characteristic

• Illustration of the GridKG ability in performing Monte-Carlo simula-

tion for estimating the impact of power outage severity and providing

probabilistic results

We can state that the proposed graph representation of the distribution

system creates a unique environment for the processing and analysis of system

data. It allows for a variety of algorithms to be deployed on it; it can be

integrated and used with multiple data-driven techniques, such as a Monte-

Carlo simulation.

7.2 Future Work

In general, this thesis represents a very important contribution to future activi-

ties related to power system outage analysis and utilizing data-driven methods

and knowledge graphs in predicting weather-related power outages and esti-

mating outage severity impacts. As a result of the proposed approaches in this

research, several topics can be addressed and investigated in future studies.

7.2.1 Power System Protection Challenges

In the distribution sector, photovoltaic (PV) power generation has increased

rapidly, resulting in more importance of PV system protection. The future

work can focus on investigating the challenges imposed by PV energy pene-

tration into the grid. Furthermore, it will be an interesting topic to compare
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the protection challenges and proposed solutions with systems with integrated

WFs.

7.2.2 Outage and Weather Data Analysis

There are some potential topics for discussion in future studies to fully utilize

the discussed approaches in Chapter 4. The posterior power outage proba-

bility estimation can be further developed to incorporate additional features

such as vegetation status and equipment maintenance status. Furthermore, it

can be implemented for various types of power outages. Different cost func-

tions can be investigated, and the results can be compared with power outage

estimation models based on the DST-based architecture. Moreover, The vari-

ous time window sizes, weights, and window value functions can be examined

further, and their impact on the posterior probability of power outages can be

discussed.

7.2.3 Weather Outage Prediction system – WoutPS

Future work can focus on the DST-based fusion algorithm and investigate the

local conflict and weight of conflict between pieces of evidence to estimate

final confidence in WoutPS outputs. Furthermore, designing and developing

a self-adapting subsystem for the continuous update of the prediction system

can be another valuable topic for future studies.

7.2.4 Knowledge Graph for Power System

The concept of using knowledge graphs to represent grid data has numerous

advantages compared to conventional data representation methods. Here are

some suggestions for future research on this topic.

Integration of real-time data from power system measurement devices into

the GridKG and commutation with protection relays can enhance the utiliza-

tion of GridKG. It can be deployed into the outage management system and

provide real-time severity and impact analysis of the ongoing power outages

in the grid.
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