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Abstract

Optimal treatment regime, also called individualized treatment rule, is to

seek a rule that assigns a treatment to the subject based on its covariates.

It can be used in many areas such as: clinical studies, policy making and

economics. In recent years, estimating optimal treatment regime has received

considerable attention. However, most of the works focus on estimating the

mean-optimal treatment regimes, while not many works have been done on

estimating the quantile-optimal treatment regimes. In this thesis, we will

focus on estimating quantile-optimal treatment regimes using the residuals.

The quantile-optimal treatment regime is very important in many cases.

For instance, if the interest is to find the optimal treatment regime to in-

crease the benefit on the lower tails, or if the outcome distribution is heavily

skewed, then estimating the quantile treatment regime is more desirable than

the mean. In the former case, the optimal treatment regime should be the one

which maximizes some quantile of the potential outcomes, and in the latter

case, the treatment regime maximizing the median is more desirable than the

one maximizing the mean. Wang et al. firstly worked on the single-index

rule case in estimating then quantile-optimal treatment regime. However, the

parameters indexing the quantile treatment regime estimated by their frame-

work have large variances [19]. This leads to the problem that their optimal

treatment regime may be far away from the true optimal treatment regime,

especially when the sample size is small.

To alleviate these problems, we proposed a new framework based on the
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residuals, which can be derive by removing the estimated common effect from

the outcomes. Motivated by the residual learning framework proposed by

Zhou et al. [25], we remove the common effect from the observed outcomes,

and define the rest as the residual. The quantile optimal treatment regime

can be estimated from these residuals. However, it needs to note that quantile

does not have the addition property as mean does. Therefore, this framework

is limited to the case that removing the common effect does not change the

order of the original outcomes.

From the four simulation examples, it can be seen that removing the com-

mon effect from the outcomes can significantly reduce the variances of the

parameters indexing the treatment regime. This can stabilize the variance of

value function. Further, even using smaller sample size data, the estimated

quantile treatment regime is closer to the true treatment regime, comparing

to the results from framework proposed by Wang et al.

We also analyzed Data ACTG175 using our proposed framework, and com-

pare the results with Wang’s framework on 9 quantile levels. It shows that in

this data set, our new framework is comparable with the one from Wang et al.

and on some of the quantile levels, our framework has better performance on

providing higher value of the potential outcomes.
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Chapter 1

Introduction

A treatment regime is a decision rule of whether providing the treatment to

a subject based on its characteristics. The treatment regime which leads to

the most favourable outcome is called the optimal treatment regime. Recently,

studies on estimating the optimal treatment regime have received considerable

attention.

Based on different targeting favourable outcomes, studies on estimating op-

timal treatment regimes mainly includes: estimating the mean-optimal treat-

ment regimes and estimating the quantile-optimal treatment regimes. Cur-

rently, most of the studies focus on estimating the mean-optimal treatment

regimes [7, 16, 24, 21, 22]. Assuming a larger outcome is preferred, the

mean-optimal treatment regime followed by the whole population will yield

the most favourable outcome on average [16, 24]. On the other hand, follow-

ing the quantile-optimal treatment regime will maximize the most favourable

outcomes on other criteria such as median or some quantiles. In some appli-

cations, maximizing the median outcome or some quantiles of the outcomes
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can be more sensible than the average. For example, maximizing the median

of the potential outcomes would be more desirable than maximizing the mean

when the outcomes follow a heavily skewed distribution. Or in some cases, it

is more important to find the best treatment regime which has more effects

on the lower tail [19]. For instance, when finding a strategy to improve the

earnings for those people whose earnings locate on the lower tail of the earning

distribution, the optimal treatment regime should be considered to maximize

some quantiles of the outcomes.

This thesis is based on some current studies to further improve the frame-

work of estimating the quantile-optimal treatment regime. To better under-

stand the optimal treatment regime and our proposed framework, we will

review some researches in this chapter. In Section 1.1, we review some frame-

works on estimating the mean-optimal treatment regime, especially, the resid-

ual weighted learning. In section 1.2, we review the frameworks and results of

the quantile-optimal treatment regimes. The last section in this chapter is to

introduce the contribution of this thesis.

1.1 Mean-Optimal Treatment Regime

In a two-arm randomized trial, we suppose the observed data are {(Yi, Ai,X i), i =

1, 2, . . . , n} and assume these data are independent, identically distributed

(iid) copies of {Y,A,X}. Let X i = (x1, x2, ..., xl)
T denote the covariates of

the ith subject which are ascertained prior to the treatment and Yi denotes

the observed outcome. To keep consistent with other literatures in estimat-

ing optimal treatment regimes, we assume the larger value of Yi is desirable
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[7, 16, 24, 21, 22]. Let Ai denote the treatment assignment, where Ai ∈ {−1, 1}

(or Ai ∈ {0, 1} depends on the methodology). Ai = 1 implies that the treat-

ment is assigned to the subject, and Ai = −1 (or Ai = 0) means the subject

does not receive the treatment.

A treatment regime is defined by a function d which maps the value of

X to the treatment assignment A. For example, in a clinical study, we let

X denote the age and the treatment assignment is denoted by A ∈ {0, 1}.

A treatment regime d(X) = I(X > 20) implies assigning the treatment to a

patient older than 20 years old. The mean-optimal treatment regime is a rule

d0 maximizing the expected outcome when following the rule d(X). There are

two main approaches to estimate this mean-optimal treatment regime. We

will review these two approaches respectively.

In the first approach, the expected outcome can be mathematically ex-

pressed as

V (d) = E

[
I(A = d(X))

p(A|X)
Y

]
, (1.1)

where I(·) is the indicator function. V (d) is also called Value Function [16]

associated with d. Then, for a given class of treatment regime D, finding

d0(X) is equivalent to solve the following maximization problem:

d0 ∈ arg max
d∈D

V (d) = arg max
d∈D

E

[
I(A = d(X))

p(A|X)
Y

]
.

To estimate this d0, Qian et al. proposed a two-stage procedure [16]. The

first stage in the procedure is to estimate a conditional mean:

Q0(X, A) = E[Y |X, A].
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The second stage is to estimate the optimal treatment regime which maximizes

this conditional mean.

However, the success of Qian’s method highly depends on the estimation

accuracy of the conditional mean [16, 24]. Moreover, if the approximation

space does not provide the treatment effect term which is close enough to the

treatment effect term in Q0(X, A), then this two-stage procedure may not

yield optimal treatment regime.

Zhao et al. provided a solution to solve this problem by proposing a frame-

work called outcome weighted learning method. Instead of finding the correct

model to approximate Q0(X,A), this framework can directly estimate the op-

timal treatment regime.

Zhao et al. claimed that the value function V (d) can be approximated by

n−1
n∑
i=1

Yi
p(Ai|X i)

I (Ai 6= sign(f(X i))) , (1.2)

where f(x) is some decision function for the treatment regime. Consider (1.2)

as a weighted classification problem, then by applying the hinge loss used in

the SVM (Support Vector Machine) context (Corts and Vapnik [2] ), f̂(X)

can be estimated by minimizing

n−1
n∑
i=1

Yi
p(Ai|X i)

(1− Aif(X i))
+ + λn||f ||2, (1.3)

where x+ = max(x, 0), ||f || is some norm for f and term λn||f ||2 is used to

penalize the complexity of the decision function in order to avoid overfitting.

Suppose the decision function f ∗(X) minimizes (1.3) and fix sign(0) = −1,
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then the optimal treatment regime is d∗ = sign(f ∗(X)).

Later, Zhou et al. found three shortages in Zhao’s framework [25]. First, a

simple shift of the outcomes can affect the estimated optimal treatment regime

in the framework of Zhao et al.. This can be seen by adding an extremely

large number c to the outcome Y , then the weights are almost identical and

the weighed problem can be approximated by an unweighted one. Accord-

ing to this, the framework proposed by Zhao et al. does not hold the nice

property that a simple shift on the outcomes will not change the estimated

optimal treatment regime. Second, the estimated optimal treatment regime

obtained in the framework tries to keep the actually received assignments of

the treatments. Third, Zhao et al. did not include the variable selections in

their framework.

To alleviate these problems, Zhou et al. proposed a new framework: resid-

ual weighted learning (RWL) to estimate the optimal treatment regime. In

this framework, the optimal treatment regime is estimated by minimizing:

n−1
n∑
i=1

yi − ĝ∗(X i)

p(Ai|X i)
I(ai 6= sign(f(X i))), (1.4)

where ĝ∗ is an estimate of E
[

Y
2p(A|X)

|X
]

and reflects the common effects for

both treatment arms. Moreover, the common effect can be estimated by any

appropriate regression method. For example, Zhou et al. used E
[

Yi
2p(Ai|Xi)

|X i

]
=

β̂0 +XT β̂ to estimate ĝ∗(X).

Define yi − ĝ∗(X i) as the estimated residuals, then (1.4) can be viewed as

a classification problem weighted by the residual (yi − ĝ∗(X i))/p(Ai|X i). To
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solve (1.4), Zhou et al. applied the smoothed ramp loss defined by

T (u) =



0, if u ≥ 1,

(1− u)2, if 0 ≤ u < 1,

2− (1 + u)2 if − 1 ≤ u < 0,

2 if u < −1.

and concave-convex procedure to derive the optimal decision function f ∗. Then

optimal treatment regime is d∗ = sign(f ∗(X)).

The second approach to estimating the mean-optimal treatment regime is

based on the missing data analogy. The same with the first approach, Y de-

notes the continuous outcome and the larger value of Y is assumed desirable.

X denotes the characteristics of the subject. A treatment regime is also de-

fined as the same with the one in the first approach. However, the treatment

assignments are taken from A ∈ {0, 1} instead of {−1, 1}. Let Y ∗(A) denote

the potential outcome if a subject is given the treatment A. Then it can be

seen that E [Y ∗(A)] represents the mean of all the subjects when they receive

the treatment A. For any treatment regime d(X), we can further define the

potential outcome as Y ∗(d) = Y ∗(1)d(X) + Y ∗(0)(1 − d(X)) if following the

regime. The optimal treatment regime d0 in D (a class of treatment regimes

of interest) is

d0 = arg max
d∈D

E [Y ∗(d(X))] .

The expectation

V (d) = E [Y ∗(d(X))] , (1.5)

is called Value function associated with treatment regime d in this approach.
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In order to estimate the value function (1.5) based on observed data, three

assumptions must be satisfied:

1. The stable unit treatment value assumption.

2. Consistency assumption: Y = Y ∗(1)A+ Y ∗(0)(1− A)

3. The no-unmeasured-confounders assumption: A⊥{Y ∗(0), Y ∗(1)|X}

The stable unit treatment value assumption ensures that the potential outcome

of one subject will not be affected by the assignment of the treatment to other

subjects. The second assumption ensures that the unmeasured confounders

do not exist.

Zhang et al. followed the missing data analogy as in Cao et al. [1] to

estimate the optimal treatment regime d0. Let C(β) = Ad(X, β)+(1−A)(1−

d(X, β)), where β is a vector of the parameter indexing a treatment regime.

In the missing data analogy, the ’full data’ in this case is {Y ∗(d), X} and

the observed data is {C,CY ∗(d),X} = {C,CY,X}. Maximizing the value

function (1.5) is then equivalent to maximize the simple inverse probability

weighted estimator (IPWE), which is given in

IPWE(β) = n−1
n∑
i=1

C(β)Yi
p(Ai|X i)

. (1.6)

This estimator (1.6) is a consistent estimator of V (d) if the propensity score

p(Ai|X i) is correctly specified [21].

In addition, following Robins et al. [17], Zhang et al. also provided an

alternative doubly robust estimator: Augmented Inverse Probability Weighted
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Estimator (AIPWE) which is given by

AIPWE(β) = n−1
n∑
i=1

{
C(β)Yi
p(Ai|X i)

− C(β)− p(Ai|X i)

p(Ai|X i)
m̂(X i)

}
, (1.7)

where m̂(x) = µ̂1(x)I(d(x) = 1) + µ̂0(x)I(d(x) = 0), µ̂1 is the estimator of

E(Y |X = x, A = 1) and µ̂0 is the estimator of E(Y |X = x, A = 0). AIPWE

is a consistent estimator of V (d) if either the propensity score p(Ai|X i) or µ̂0

and µ̂1 is misspecified.

It is worth noting that by taking ĝ∗(X) = m̂(X), maximizing (1.7) is equiv-

alent to minimizing (1.4). Thus, Zhou’s methodology links AIPWE method

to a classification method, and can be also viewed as an improved AIPWE

methodology.

1.2 Quantile-Optimal Treatment Regime

If the interest is not of maximizing the average of the outcomes, but some τ th

quantile of the potential outcomes, then it is more desirable to consider the

quantile-optimal treatment regime. For instance, we suppose the outcome Y

can be modelled by Y = 1 + 3X + A(2 − 5X) + (1 + AX)ε, where X fol-

lows Uniform(0, 1) and denotes covariates of subjects, ε follows Normal(0, 1)

which is a random error, and A ∈ {0, 1} denotes the treatment assignment.

Consider 4 treatment regime: (1). A1 = I(X ≤ 3/4), (2). A2 = I(X ≤ 0.45),

(3). A3 = I(X ≤ 0.2), (4). A4 = I(X ≤ 0.1). Based on a Monte Carlo

experiment with 106 observations, we can derive the mean, median, the 0.25

quantile and 0.1 quantile of the potential outcome distribution corresponding
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to these four regimes. The results are reported in Table 1.1. Since A1 is the

mean-optimal treatment regime, then when the interest is of maximizing the

average, regime A1 should be selected. If the interest is of maximizing the me-

dian, then it can be observed that the regime A2 is better than A1. Further, if

the interest is to maximize the outcome on the lower tail, then regimes A3 or

A4 are better choices. This example illustrates that in some cases, estimating

quantile-optimal treatment regime is more desirable than the mean-optimal

treatment regime.

Table 1.1: Summary results for the example

Regime A1 A2 A3 A4

Mean 2.901 2.894 2.801 2.675
Q0.10 −4.245 −4.376 −3.947 −3.931
Q0.25 −0.806 −0.865 −0.744 −0.802
Q0.50 2.928 2.934 2.801 2.670

Wang et al. proposed model-free framework to estimate the quantile-

optimal treatment regime [19]. In the study of Wang et al., instead of max-

imizing the average of the potential outcome E(Y ∗(d)) in the framework of

Zhang et al. [21], they considered the maximization of some quantiles of the

potential outcomes, which defined as Qτ (Y
∗(d)), where τ is a quantile level

of interest. This Qτ (Y
∗(d)) is called value function associate with treatment

regime d. Moreover, this quantile-optimal treatment regimes can be estimated

by

arg max
d∈D

Qτ (Y
∗(d)),

where D denotes a collection of all treatment regimes.

To estimate the quantile optimal treatment regime, Wang et al. used the
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induced missing data framework motivated by Zhang et al. [21]. Defining

C(β) = Ad(X, β) + (1− A)(1− d(X, β),

then for any quantile level τ ∈ (0, 1), the τ th quantile of the outcomes can be

estimated by

Q̂τ (β) = arg min
a∈R

n−1
n∑
i=1

Ci(β)ρτ (Yi − a),

where ρ(u) = u(τ − I(u < 0)) is the quantile loss function. Using genetic

algorithm, the estimator of β0 can be derived by solving

β̂n = arg max
β∈B

Q̂τ (β),

where B is a compact subset of Rl and l is the number of the features (number

of the columns of X).

Another contribution of Wang et al. is that they investigated the asymp-

totic theory on estimating the quantile-optimal treatment regime. By intro-

ducing

β̂n = arg max
β∈B

Png(,̇β, m̂n),

as an alternative expression of β̂n, where Pn is the empirical expectation and

g(,̇β, m̂n) = C(β)I{Y −m > 0}

m̂n = sup{m : supPng(,̇β,m)},

Wang et al. showed that the estimated parameter indexing the quantile-

optimal treatment regime has a nonstandard convergence rate and a non-
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normal limiting distribution. Their theoretical approach can be also applied

to investigate the asymptotic distribution of the estimators in the framework

of finding the mean-optimal treatment regime proposed by Zhang et al. [21].

To the best of our knowledge, Wang et al. are the first group who focused

on estimating the static quantile optimal treatment regimes. Their rich work

opens a gate of analyzing the quantile-optimal treatment regime.

However, even for some simple models which consists a single covariate,

the estimated parameters indexing the quantile-treatment regime have relative

large variances, some variances can be even larger than the absolute value of

the parameters. Also, when the sample size is small, the estimated optimal

treatment regime may not be stable and can be relatively far away from the

true one.

1.3 Contributions of My Thesis

To alleviate the problems in the framework proposed by Wang et al., we pro-

pose a new framework which minimizes the value function of the residuals

instead of the outcomes to estimate the quantile-optimal treatment regime.

In this framework, the residuals are defined the same with the one in Zhou’s

residual weighted learning framework, which can be derived by removing the

common effects from the outcomes [25].

One of the challenges needs to be noticed here is that, unlike calculating

the expected value of the outcome, the τ th quantile of the outcome may not

equal to the sum of the τ th quantile of the common effect and the τ th quantile

of the treatment effect. Therefore, to minimize the τ th quantile of the residual
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may not equivalent to minimize the τ th quantile of the outcomes if not follows

the treatment regime. It will be seen that by removing the common effect, the

prediction accuracy is increasing with limited sample size, and the variances

of the predicted coefficients become much smaller. Further, as the common

effect can be estimated by regressions, then the feature selection techniques

such as least absolute shrinkage and selection operator (LASSO) can be applied

to select those most impactive features to the potential outcomes.

The rest of this thesis is organized as follows. In chapter 2, the framework

of estimating the quantile-optimal treatment regime will be introduced. Sim-

ulation studies and a real data analysis will be reported in Chapter 3. Last,

results and possible future works will be summarized in Chapter 4.
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Chapter 2

Methodology

In this chapter, we propose a framework of estimating quantile optimal treat-

ment regimes. Suppose the observed data are (Yi, Ai,X i) for i = 1, 2, .., n, and

these data are independent, identically distributed (iid) copies of {Y,A,X}

for all i. Let A ∈ {0, 1} denote the treatment assignment, such that, if A = 1,

the treatment will be assigned to the subject, and while if A = 0, the subject

will not receive the treatment. X = (x1, x2, ..., xl)
T denotes the covariates of

the subjects which are ascertained prior to the treatment and Y denotes the

observed outcome. We also assume that the larger value of Y is preferred to

keep consistent with other literatures in estimating optimal treatment regimes

[22, 23, 25]. Our target is to estimate the quantile-optimal treatment regime

given a class of treatment regimes D = {I(XTβ > 0) : β ∈ B}, where β is

the parameter indexing a treatment regime and B is a compact subset of Rl.

Due to its simplicity and easy interpretability, this class is popular in practice

[19, 21, 22, 25].

Directly applying the framework provided by Wang et al. to estimate β,
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the variances of the estimated β̂ can be considerably large [19]. This may cause

the problem that if limiting the sample size to a relatively small number, the

estimated optimal treatment regime may not be stable and can be relatively

far away from the true one.

The residual weighted learning framework proposed by Zhou et al. provides

a potential solution, where the optimal treatment regime will be estimated by

residuals [25]. Figure 2.1 is an example which illustrates the idea of the residual

framework.

From Figure 2.1, it can be observed that a large value of Y may still be

considered small comparing to other subjects with similar covariates. For

example in the left figure in Figure 2.1, the subjects with x > 0.5 marked

by dots have larger values of Y comparing to other subjects marked by dots.

However, if compared to the subjects with x > 0.5 and marked by +, these

subjects marked by dots have relatively smaller Y . Since the treatment effect

is the one of interest, then it is more sensible to consider the residuals.

This motivates us to apply the similar methodology. Defining the residuals

as removing the common effect from the outcomes, we use the residuals instead

of the outcomes to estimate the quantile-optimal treatment regime.

However, it needs to note that, unlike the mean, quantile do not have the

additive property. This leads to the fact that minimizing the τ th quantile

of the residuals may not be equivalent to minimizing the τ th quantile of the

outcomes if not follows the treatment regime. Therefore, this methodology is

limited to the case that removing the common effect from the outcome would

not change the original order of the outcome. See Figure 2.2 as an example.
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Figure 2.1: This is an example of estimating quantile-optimal treatment regime.
The figure on the left is the raw data, which consists of a single covariate X, two
treatment assignments A = 0 and A = 1 and continuous outcome Y . The ’+’
marker is used to denote A = 1 and the dot marker is used to denote A = 0. In this
example, E [Y |X,A] = 3X + (6X + 1)A. The propensity score P (A|X) = 0.5. In
the figure on the right, the residuals (6X + 1)A was shown.
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Figure 2.2: This is an example of estimating quantile-optimal treatment regime.
The figure on the left is the raw data, which consists of a single covariate X, two
treatment assignments A = 0 and A = 1 and continuous outcome Y . The random
error is (1−0.8ax)ε, where ε follows standard normal distribution.The ’+’ marker is
used to denote A = 1 and the dot marker is used to denote A = 0. In this example,
E [Y |X,A] = 3X + (6X + 1)A. The propensity score P (A|X) = 0.5. In the figure
on the right, the residuals (6X + 1)A was shown.
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2.1 Estimation of the common effect

Considering the model

Y = µ(X) + δ(X)A+ ω(X, A)ε, (2.1)

where µ(X) models the common effect, δ(X) models the treatment effect

and ω(X, A)ε is the random error, we can see that for those subjects without

taking the treatment, then A = 0. Equation (2.1) will then become to

Y = µ(X) + ω(X, 0)ε. (2.2)

If we assume that ε has mean 0, then

µ(X) = E[Y |X, A = 0] = E[Y |X].

This µ(X) can be posited by a parametric regression model µ(X, η) such as

linear regression with finite-dimensional parameter η.

Another benefit from this method is that it is easy to apply feature selection

methods such as: least absolute shrinkage and selection operator (LASSO)[18]

or smoothly clipped absolute deviation (SCAD) [8]. For example, LASSO is to

solve

η̂ = arg min
η

m∑
i=1

(
Yi − xT

i η
)2

+ Pλ (η) ,

where m is the number of the subjects without assigning the treatment and
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the penalization term Pλ (η) is given by

λ

l∑
j=1

|ηj|

where λ ≥ 0 is the regularization parameter which can be estimated by cross-

validation. If λ = 0, then it can be seen that η̂ is estimated by regular

linear regression. Further, as λ increases from 0 to sufficiently large, LASSO

will continuously shrink some of the coefficients exactly to 0. Hence, LASSO

can be efficient to select most important features and estimate the regression

parameters simultaneously. In this thesis, we use linear regression with LASSO

to select the most important features and estimate the common effect.

Denoting the estimated common effect as µ̂(X), we can further define the

estimated residuals as

R̂ = Y − µ̂(X).

This R̂ will be used to estimate the optimal treatment regime. Further, follow-

ing the potential outcome framework, we let R̂∗(1) be the potential residual

with assigning the treatment, and let R̂∗(0) be the potential residual without

assigning the treatment. Then we can only observe either R̂∗(1) or R̂∗(0).

Moreover, the potential residual outcome can be expressed as:

R̂∗ = R̂∗(1)d(X) + R̂∗(0)(1− d(X))
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2.2 Quantile-Optimal treatment regime

To estimate the τ th quantile level optimal treatment regime where τ ∈ (0, 1),

we will estimate it from R̂∗ instead of Y ∗ in Wang’s framework, which means,

the optimal treatment regime will be defined by

arg max
d∈D

Qτ (R̂∗(d)) (2.3)

where D denotes a collection of treatment regimes, Qτ (R̂∗(d)) is the τ th quan-

tile of R̂∗(d). More specifically,

Qτ (R̂∗(d)) = inf{t : F (R̂∗(d)) ≥ τ}

with F (t) is the distribution of R̂∗(d). By defining a treatment regime d(X, β) =

I(XTβ > 0) indexed by β, the goal is to estimate β̂ which satisfy

β̂ = arg max
β∈B⊂Rl

Qτ (R̂∗(dβ), (2.4)

where R̂(dβ) denotes the residual which follows regime dβ indexed by β.

To estimate β̂, we first consider a randomized trial where the propensity

score p(A|X) is ordinarily known and constant. We can then follow the in-

duced missing data framework by defining

C(β) = Ad(X, β) + (1− A)(1− d(X, β).

We can consider the full but not completed observed data of interest are

{R̂∗(dβ),X} and the data which can be observed are {C(β), C(β)R̂∗(dβ),X} =
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{C(β), C(β)R̂,X}. Note that C(β) = 1 if and only if A = d(X, β), while

C(β) = 0 otherwise. This implies that the observed data are those data with

the assignment of the treatment following the treatment regime.

Note that Qτ (R̂∗(dβ) can be estimated by quantile regression by defining:

Q̂τ (β) = arg min
a

1

n

n∑
i=1

Ci(β)ρτ (R̂∗i − a),

as Q̂τ (β) is a consistent estimator of the τ th quantile of Qτ (R̂∗(dβ) shown in

the following theorem. Here ρτ (u) = u(τ − I(u < 0)) is the quantile loss

function.

Theorem 1 Suppose R∗(0) and R∗(1) follow continuous distributions and

their density functions are bounded and second order differentiable, then for

any β ∈ B, we have

Q̂τ (β)→ Qτ (R̂∗(dβ))

in probability.

Proof: The law of large numbers and convexity imply 1/n
∑n

i=1Ci(β)ρτ (R̂i−a)

uniformly converge to E[Ci(β)ρτ (R̂i − a)] in a in probability. Further, when

Ci(β) = 1, we have R̂i = R̂∗i (dβ). Therefore, by considering a randomized trial

case, we can have:

E[Ci(β)ρτ (R̂i − a)] = E[Ci(β)ρτ (R̂
∗(dβ)− a)]

By the Law of total expectation and the conditional independence of Ci(β)
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and ρτ (R̂
∗(dβ)− a) given X i, we can further derive that

E[Ci(β)ρτ (R̂i − a)] = E[Ci(β)ρτ (R̂
∗(dβ)− a)]

= E{E[Ci(β)ρτ (R̂
∗(dβ)− a)|X i]}

= E{E[Ci(β)|X i]E[ρτ (R̂
∗(dβ)− a)|X i]}

Since in a randomized trial, E[Ci(β)|X] = 1/2, then we have

E[Ci(β)ρτ (R̂i − a)] =
1

2
E[ρτ (R̂

∗(dβ)− a)]

Moreover, since E[ρτ (R̂
∗(dβ)−a)] is convex, continuous and can be minimized

by a = Qτ (R
∗(dβ)), then by the results of M-estimation, we can have

Q̂τ (β)→ Qτ (R̂∗(dβ)),

and the consistency of the estimation of R̂(d) can be derived.

By showing that Q̂τ (β) is a consistent estimator of the τ th quantile of

Qτ (R̂(dβ)), the τ th quantile treatment regime can be estimated by

β̂ = arg max Q̂τ (β),

where motivated by Zhang et al. and Wang et al. This can be solved by

Genetic Algorithm. The entire procedure can be summarized below

1. Select the subjects of those without assigning the treatment (those with

A = 0), and apply regression method with LASSO or other feature se-

lection technologies such as SCAD to select the most important features
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and estimate the common effect. From this step, we can determine the

number of the features l and estimate the common effect.

2. Derive the residuals R by removing the estimated common effect from

the original responses.

3. Take β as the parameter indexing a treatment regime, and C(β) =

Ad(X, β) + (1 − A)(1 − d(X, β) as the weight, then using traditional

quantile regression, we can derive a parametrictic function f(β) for es-

timating Q̂τ (β).

4. Apply Genetic algorithm on this f(β) to search for the value of β which

indexes the quantile-optimal treatment regime.

So far we only considered the randomized trial with the propensity score

p(A|X) is constant and equals to 0.5. For the observational studies, the

propensity score needs to be estimated. Following Zhang et al., let p(A|X) =

π(X, γ). This π(X, γ) can be estimated by a logistics regression model π(X; γ) =

exp(γTX̃)/(1+exp(γTX̃)), X̃ = (1,XT )T . We can then estimate the propen-

sity score for the observational study using

π̂ = π(X, γ̂)d(X, β) + (1− π(X, γ̂)(1− d(X, β)).

Following the missing data analogy, and IPWE estimator, in an observational

study, the new Q̂τ (β) can be expressed as:

Q̂τ (β) = arg min
a

1

n

n∑
i=1

Ci(β)

π̂
ρτ (R̂∗i − a),
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By using the same procedure as before, we can obtain the quantile-optimal

treatment regime in an observational study.
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Chapter 3

Simulation

In this chapter, we will use numerical simulations to illustrate our proposed

method and compare the estimated quantile optimal treatment regimes with

the ones estimated by Wang’s framework. In the simulation examples, we

generate covariates X = (x1, . . . , x4), which are independent uniform random

variables following U(−1, 1). The treatment assignment A, which is indepen-

dent ofX, are taken from {0, 1} with probability P (A = 0) = P (A = 1) = 0.5.

Therefore, the propensity score p(A|X) = 0.5 can be considered as constant.

Further, the outcome Y (X, A) can be generated by the model:

Y (X, A) = µ(X) + δ(X)A+ ω(X, A)ε,

where µ(X) models the common effect, and δ(X) models the treatment ef-

fect. In the following examples, this random variable ε follows either standard

normal distribution or Gamma distribution.

We will consider the class of treatment regimes having the form I(XTβ >
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0) due to its simplicity and interpretability. Unlikely to the mean optimal

treatment regime, the true parameter value of quantile-optimal treatment

regime is very complicated. Therefore, instead of calculating the true optimal

treatment regime, we use the estimated quantile treatment regime obtained

by Monte Carlo experiments with the sample size n = 105. This treatment

regime will be considered as the ideal treatment regime and called True values.

In all of the simulation examples, the accuracy rate is defined by

P∗n[I(d(X) = d∗(X))] (3.1)

where P∗n is the empirical average, I(·) is the indicator function, d(X) is the

true optimal treatment regime estimated by Monte Carlo experiments, and

d∗(X) is the optimal treatment regime estimated either by our proposed frame-

work or by the method proposed by Wang et al. This accuracy rate can be

interpreted as: the higher the accuracy rate, the closer the estimated treatment

regimes to the true ones.

3.1 Simulations

Example 1. We take a simple example with only one covariate x1. In this

example, µ(X) = 3x1, δ(X) = 6x1 + 1 and ω(X, A) = 1 − 0.8ax1 and the

quantiles are chosen as τ = 0.1 and τ = 0.25. The random error ε follows

Normal(0, 1). The class of treatment regime is I(β0 + β1x1 > 0). The treat-

ment assignment which indicated by A follows a Bernoulli distribution, and

will be considered in two cases based on different success probability. The first
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case takes the success probability 0.5, while in the second case, the success

probability satisfies logit(P (Ai = 1|Xi) = logit(Xi − 1), where logit(x) is de-

fined by logit(x) = exp (x)/(1 + exp (x)). The sample size considered in this

example is n = 500 and n = 1000, and simulation is repeated 500 times for

both of the cases.

Note that Example 1 is a simple example with only one feature, thus there

is no need to apply LASSO to perform the feature selection. Therefore, the

common effect can be easily estimated by the Linear Regression and then be

removed from the original observed outcomes Y .

Case 1 in Example 1. Table (3.1) and Table (3.1) report the estimated

β values, where RCE which short for Remove Common Effect, denotes our

proposed method, and WCE, which is short for With Common Effect, denotes

the method proposed by Wang et al.. ’true value’, as mentioned previously,

is derived from Monte Carlo experiments with the sample size n = 105 and

served as true the optimal treatment regime.

It can be seen that in either of two quantiles (τ = 0.1 and τ = 0.25),

removing the common effect from the outcomes can significantly increase the

accuracy rates. Further, the standard deviation also becomes smaller than the

ones if not removing the common effect. Figure 3.1 and Figure 3.2 provide

visualized comparisons for this example. These two figures are the scatter

plots for a test data set with sample size n = 500. The vertical lines, defined

as x̂ = −β̂0/β̂1, denote the true decision boundary and the estimated one

respectively.

Case 2 in Example 1. This case of Example 1 is used to simulate an

observed data case. In this case, the treatment assignment A follows binomial
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Table 3.1: Summary results for the first example when τ = 0.1. RCE
stands for removing common effect and WCE stands for with common
effect. The numbers in the parenthesis are standard deviations. The
last column is the accuracy rate defined by P∗n using the true value in
the last row.

β0 β1 accuracy rate

n = 500
RCE -0.385 (0.034) 0.922(0.014) 0.975
WCE -0.332(0.256) 0.370(0.774) 0.745

n = 1000
RCE -0.387 (0.025) 0.921(0.01) 0.980
WCE -0.357(0.227) 0.371(0.764) 0.788

true value -0.424 0.906

Table 3.2: Summary results for the first example when τ = 0.25. RCE
stands for removing common effect and WCE stands for with common
effect. The numbers in the parenthesis are standard deviations. The last
column is the accuracy rate defined by P∗n using the true value in the last
row.

β0 β1 accuracy rate

n = 500
RCE -0.377 (0.037) 0.925(0.015) 0.99
WCE -0.279(0.247) 0.334(0.855) 0.802

n = 1000
RCE -0.3774 (0.028) 0.926(0.011) 0.992
WCE -0.351(0.193) 0.604(0.686) 0.925

true value -0.392 0.92
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distribution with the success probability satisfying logit(P (Ai = 1|Xi) = Xi−

1. The corresponding propensity score π(x, a) = P (A = 1|X) = 0.272 can be

estimated by logistic regression.

Table (3.3) reports the simulation results of this observed data case. The

same with case 1, removing the common effect can increase the accuracy rate

comparing to the one with keeping the common effect in the outcomes. This

implies that, with the same sample size, by removing the common effect, the

estimated quantile optimal treatment regime can be much more closer to the

ideal one than the regime estimated with common effect.

Further, from both of the cases in Example 1, it can be seen that increas-

ing the sample size can also increase the accuracy rate, and the variances of

the estimated coefficients of the optimal treatment regime are smaller when

removing the common effect, which make the estimation of the optimal treat-

ment regime more stable. This implies that removing the common effect from

the outcomes can provide better estimation of the optimal treatment regime

if the sample size is relatively small.

Table 3.3: Summary results for the first example when τ = 0.25. RCE
stands for removing common effect and WCE stands for with common
effect. The numbers in the parenthesis are standard deviations. The last
column is the accuracy rate defined by P∗n using the true value in the last
row.

β0 β1 accuracy rate

n = 500
RCE -0.372(0.043) 0.927(0.017) 0.981
WCE -0.245(0.245) 0.29(0.893) 0.794

n = 1000
RCE -0.3782 (0.033) 0.925(0.013) 0.986
WCE -0.297(0.219) 0.457(0.81) 0.893

true value -0.399 0.916

Example 2. In the second example, we still use a single covariate and
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Figure 3.1: This is the simulation result for the first example when τ = 0.25. In this
figure, the light squares denote the subjects with treatment, while the dark squares
are the ones without treatment. Both of the light and dark squares with smaller
white circles inside them, denote the subjects follow the optimal treatment regime.
The solid vertical line denote the estimated quantile treatment regime estimated
by our framework, and the dashed vertical line denotes the true optimal treatment
estimated by Monte Carlo experiment with sample size n = 105.

29



Figure 3.2: This is the simulation result for the first example when τ = 0.25. In
this figure, the light squares denote the subjects with treatment, while the dark
squares are the ones without treatment. Both of the light and dark squares with
smaller white circles inside them, denote the subjects follow the optimal treatment
regime. The solid vertical line denote the estimated quantile treatment regime using
the framework proposed by Wang et al., and the dashed vertical line denotes the true
optimal treatment estimated by Monte Carlo experiment with sample size n = 105
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Figure 3.3: This is the simulation result for the first example considering as ob-
served data when τ = 0.25. In this figure, the light squares denote the subjects with
treatment, while the dark squares are the ones without treatment. Both of the light
and dark squares with smaller white circles inside them, denote the subjects follow
the optimal treatment regime. The solid vertical line denote the estimated quantile
treatment regime estimated by our framework, and the dashed vertical line denotes
the true optimal treatment estimated by Monte Carlo experiment with sample size
n = 105.
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Figure 3.4: This is the simulation result for the first example when τ = 0.25. In this
figure, the light squares denote the subjects with treatment, while the dark squares
are the ones without treatment. Both of the light and dark squares with smaller
white circles inside them, denote the subjects follow the optimal treatment regime.
The solid vertical line denote the estimated quantile treatment regime estimated
by our framework, and the dashed vertical line denotes the true optimal treatment
estimated by Monte Carlo experiment with sample size n = 105
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consider µ(X) = 4 + 3x1, δ(X) = 5x1 + 2 and ω(X,A) = 1 − ax1, and the

treatment assignment A follows a Bernoulli distribution with probability of

0.5. However, instead of using a normal distributed random error, in this

example, ε follows Γ(shape = x + 1, scale = 1).The quantiles considered in

this example are still considered to take τ = 0.1 and τ = 0.25. The class

of treatment regime is I(β0 + β1x > 0). The sample size considered in this

example is n = 500 and n = 1000. The same with Example 1, simulation is

repeated 500 times for both of the methods.

In this example, the common effect can still be estimated by linear regres-

sion. However, note that the random error in this example follows Γ distribu-

tion with shape x+ 1 and scale 1. This implies the estimation of the common

effect is biased and simply using linear regression may not be appropriated.

However, from the simulation where the results is reported in Table 3.5, it can

be seen that even in this case, the accuracy of the prediction still increases,

and meanwhile, the variances of the parameters are also reduced. Figure 3.5

and Figure 3.6 also provide visualized comparisons of the estimated optimal

treatment regime without and with common effects in the outcomes.

Example 3. In the third example, we consider the scenario with two

covariates (x1, x2). µ(X) = 1 + 3x1 + 2x2 + 5x22, δ(X) = 6x1 + 5x2 + 1 and

ω(X,A) = 1 − 0.8ax1 − 0.8ax2. The random error ε follows Normal(0, 1).

The treatment assignment A follows a Bernoulli distribution with probability

of 0.5. The quantile criterion is considered to take τ = 0.25. The class of

treatment regime is assumed as I(β0 + β1x1 + β2x2 > 0).

It is worth to noting that the common effect in this example contains a

quadratic term 5x22, thus a higher order of polynomial regression can estimate
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Figure 3.5: This is the simulation result for the second example when τ = 0.25.
In this figure, the light squares denote the subjects with treatment, while the dark
squares are the ones without treatment. Both of the light and dark squares with
smaller white circles inside them, denote the subjects follow the optimal treatment
regime. The solid vertical line denote the estimated quantile treatment regime
estimated by our framework, and the dashed vertical line denotes the true optimal
treatment estimated by Monte Carlo experiment with sample size n = 105
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Figure 3.6: This is the simulation result for the second example when τ = 0.25.
In this figure, the light squares denote the subjects with treatment, while the dark
squares are the ones without treatment. Both of the light and dark squares with
smaller white circles inside them, denote the subjects follow the optimal treatment
regime. The solid vertical line denote the estimated quantile treatment regime
estimated by our framework, and the dashed vertical line denotes the true optimal
treatment estimated by Monte Carlo experiment with sample size n = 105.
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Table 3.4: Summary results for the second example when τ = 0.25.
RCE stands for removing common effect and WCE stands for with com-
mon effect. The numbers in the parenthesis are standard deviations.
The last column is the accuracy rate defined by P∗n using the true value
in the last row.

β0 β1 accuracy rate

n = 500
RCE -0.229 (0.087) 0.968(0.061) 0.968
WCE -0.013(0.321) 0.216(0.921) 0.88

n = 1000
RCE -0.248 (0.048) 0.967(0.011) 0.983
WCE -0.027(0.344) 0.121(0.929) 0.967

true value -0.287 0.958

the common effect more accurately than linear regression does. However,

to illustrate the benefit of removing the common effect, we still use linear

regression to estimate the common effect for simplicity. Table 3.5 reports the

estimated β values and the accuracy rate of Example 3. It can be seen that

even though the common effect is estimated by linear regression, the standard

deviations decrease when we remove the common effect from the observed

outcomes. Further, the accuracy rate increases. These two results can be

easily seen in Figure 3.7. Further, Figure 3.8 shows the comparison of the two

methodologies.

Example 4. In the forth example, we generate random data from µ(X) =

1+3x1+2x32, δ(X) = 1+6x1+5x2+x3+3x4 and ω(X,A) = 1−0.8ax1−0.8ax2.

The treatment assignment A follows a binomial distribution with probability

of 0.5. The random error ε follows Normal(0, 1). The quantile considered

in this example is τ = 0.25. The class of treatment regime is assumed as

I(β0 + β1x1 + β2x2 + β3x3 + β4x4 > 0).

In this example, the common effect is modelled by two of the four co-
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Figure 3.7: This is the box plot for the three parameters in the third example
when τ = 0.25. In this figure, dot-dash line denotes the true optimal treatment
estimated by Monte Carlo experiment with sample size n = 105.
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Table 3.5: Summary results for the third example when τ = 0.25. RCE stands for
removing common effect and WCE stands for with common effect. The numbers
in the parenthesis are standard deviations. The last column is the accuracy rate
defined by P∗n using the true value in the last row.

β0 β1 β2 accuracy rate

n = 100
RCE -0.463 (0.106) 0.558(0.226) 0.601 (0.226) 0.969
WCE -0.267(0.270) 0.119(0.581) 0.526 (0.476) 0.845

n = 500
RCE -0.513 (0.056) 0.599(0.122) 0.586 (0.126) 0.986
WCE -0.422(0.182) 0.328(0.488) 0.607 (0.272) 0.943

n = 1000
RCE -0.528 (0.03) 0.634(0.074) 0.552(0.082) 0.995
WCE -0.482(0.133) 0.471(0.375) 0.580 (0.224) 0.972

true value -0.539 0.642 0.545

Figure 3.8: This figure shows the comparison of the three methods in the forth
example with three sample size: 100, 500, 1000. The dot-dash line represents the
method with common effect. The solid line represents the method in which the
common effect is removed.
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variates, (x1, x2). Therefore, we can apply LASSO method to perform the

feature selection and then estimate the common effect more accurately. Ta-

ble 3.6 reports the estimated result for this example. Here, WCE is short for

With Common Effect, RL is short for Remove common effect using LASSO

and RWL is for Remove With Linear regression. Note that there is a tun-

ing parameter in the linear regression with LASSO (RL), this parameter was

estimated by 10-fold cross-validation.

From Table 3.6 and Figure 3.9, it can be seen that the two methods (RL

and RWL) have smaller variances and higher accuracy rates, comparing to the

method WCE. This conclusion is the same with the one obtained in previous

examples. Further, since applying LASSO can perform a better estimation on

the common effect, then comparing the two accuracy rates between RL and

RWL, we can see that better estimating the common effect can imply better

estimating of quantile optimal treatment. Figure 3.10 shows the accuracy

comparison of these three methods.

These four examples use four cases to compare the performances of the

two methodologies. From these four cases, it can be seen that, removing

the common effect can significantly reduce the variances of the parameters

indexing the quantile-optimal treatment regime and increase the accuracy of

the prediction.

3.2 Real Data Analysis

Similarly to Wang’s work, we will apply our proposed new quantile OTR

method on the data set ACTG175 which can be found in the R package sp-
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Table 3.6: Summary results for the forth example when τ = 0.25. RCE stands for
removing common effect and WCE stands for with common effect. The numbers in
the parenthesis are standard deviations. The last column is the accuracy rate defined
by P∗n using the true value in the last row.

Method β0 β1 β2 β3 β4 accuracy rate

n = 100
RL -0.522 0.529 0.431 0.057 0.245 0.965

(0.163) (0.152) (0.176) (0.248) (0.238)
RWL -0.529 0.523 0.437 0.071 0.245 0.961

(0.162) (0.152) (0.179) (0.242) (0.226)
WCE -0.242 -0.048 0.244 0.061 0.226 0.875

(0.336) (0.446) (0.413) (0.414) (0.416)

n = 500
RL -0.617 0.548 0.465 0.07 0.273 0.985

(0.03) (0.053) (0.061) (0.089) (0.082)
RWL -0.618 0.554 0.458 0.072 0.272 0.984

(0.031) (0.052) (0.064) (0.09) (0.075)
WCE -0.479 -0.075 0.331 0.098 0.389 0.902

(0.249) (0.398) (0.327) (0.309) (0.269)

n = 1000
RL -0.626 0.551 0.459 0.081 0.273 0.992

(0.021) (0.042) (0.048) (0.065) (0.059)
RWL -0.626 0.549 0.462 0.078 0.275 0.990

(0.022) (0.038) (0.044) (0.063) (0.056)
WCE -0.567 -0.062 0.399 0.100 0.409 0.930

(0.194) (0.384) (0.258) (0.214) (0.205)
true value -0.644 0.517 0.485 0.064 0.279
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Figure 3.9: This is the box plot for the three parameters in the third example
when τ = 0.25. In this figure, dot-dash lines denote the true optimal treatment
estimated by Monte Carlo experiment with sample size n = 105.
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Figure 3.10: This figure shows the comparison of the three methods in the forth
example with three sample size: 100, 500, 1000. The dot-dash line represents the
method with common effect. The dash line represents the method which removes
the common effect without using LASSO. The solid line represents the method in
which the common effect is removed and also using LASSO for feature selection.
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eff2trial. ACTG175 data set records a randomized clinical trial to compare

two single therapies: zidovudine (ZI), didanosine (DI), with two combination

therapies: zidovudine with didanosine (ZID), and zidovudine with zalcitabine

(ZIZ). The goal of this trial is to evaluate the single therapies and the com-

bination therapy to check that which performs better to the patients with

CD4 T cell between 200 and 500/mm3 [9], as the count of CD4 T cell is good

indicator of the disease progression for the patients who with HIV infection.

This data set records 2139 HIV-infected patients with 27 variables such

as age,weight and so on. The response variable can be considered either the

CD4 count at week 20 (denoted as CD420) or the CD4 count at week 96 (de-

noted as CD496). Since there are missing data in CD496, we choose CD420

as our response variable. Figure 3.11 and Figure 3.12 indicate that the distri-

butions of the response CD420 is asymmetric and right-skewed for both of the

treatments. Moreover, all the patients participate have taken ZI before they

entered this trial. Therefore, we compare two treatments: DI (with sample

size 561) and ZID (with sample size 522) to find the treatment which performs

better. Further, the treatment assignment is set to 0 for those patient only

took DI, and is set to 1 if the patient took ZID.

The covariates initially considered here are: baseline age (X1), and baseline

count of CD4 cells (X2) at the starting week of the trial. These two covariates

were chosen based on the fact that the age [13] has impacts on the count of the

CD4 cells and the count of CD4 at the week 20 is also related on the count of

the cell at the beginning of the trial. The treatment regime considered in this

case has the form of I(η0+η1X1+η2X2 > 0), where ηi ∈ (−1, 1), i = 0, 1, 2 and

||η||2 = 1. If η0+η1X1+η2X2 6= 0, then the patient will take DI, otherwise, the
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Figure 3.11: This is the Q-Q plot of the count of CD4 T cell with DI at week 20.
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Figure 3.12: This is the Q-Q plot of the count of CD4 T cell with ZID at week
20.
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patient will be assigned to ZID. Further, since the treatments are randomly

assigned, it can be calculated that the propensity score in this case study is

0.482, which can also be considered as constant.

Note that the large count of CD4 cell at week 20 of a patient may either

comes from an effective treatment, or comes from a large baseline count at

week 0. This provides us an example of the reason to remove the common

effect from the response. To estimate the common effect, we focus on the 561

samples with DI, and apply linear regression with L1 penalty (Lasso). The

common effect can be estimated by:

̂countweek20 = 186.91− 20.402age + 659.59countweek0.

From the above model of the common effect, it can be seen that the coefficient

of the Age is negative. This implies that age has a negative impact on the

count of CD4 cell at week 20. This result is consistent with the one shown

by Means et al. [13], where they stated that the total immune reconstitution

potential and the reconstitution rate are decreasing with age. This would lead

to the fact that older patients’ CD4 cell recovery is slower than the younger

patients, and then further impact the total count of CD4 cells.

Removing the common effect, we can estimate the optimal treatment regime.

Table 3.7 reports the comparison of method RCE (Remove Common Effect)

and WCE (With Common Effect) by providing the estimated value function

on 9 different levels of quantiles. It can be observed that in this data set, on

most of values are the same. This may due to a relatively small sample size.

However, it can also be seen that for some cases when τ = 0.3 and on the me-
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dian level (τ = 0.5), a better treatment regime can be obtained by removing

the common effect.

Table 3.7: Summary data analysis results for ACTG175

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RCE Q̂τ 221 277 315 349 393 431 484 540 608

WCE Q̂τ 221 277 313 349 390 431 484 540 608

Table 3.8 and Table 3.9 report the comparisons among the two methodolo-

gies of estimating quantile optimal treatment regimes (with and without com-

mon effect), and the mean optimal treatment regime obtained by the method

proposed by Zhang [21]. From these two tables, it can be seen that the mean-

optimal treatment regime estimated by removing the common effects has the

largest mean outcome 427.080. This means if the goal is the improve the over-

all outcomes of the target population, then choose the mean optimal treatment

regime is the best choice. However, if τ = 0.3 and τ = 0.5 level quantiles of the

outcomes are of interest, which means in this case that the goal of interest lo-

cates on the lower tail the the outcome distribution, then the quantile-optimal

treatment regimes perform better than the regime relies on the mean. Further,

the quantile-optimal treatment regime derived by removing the common effect

provides a better regime than the regime estimated by framework proposed

by Wang et al.

Table 3.8: Summary results on four different methods for ACTG175 when τ = 0.3

η0 η1 η2 Q̂0.3 Q̂mean

RCE (τ = 0.3) -0.319 (0.116) 0.468 (0.144) 0.824 (0.433) 315 394.98
WCE (τ = 0.3) -0.320 (0.148) 0.454 (0.250) 0.831 (0.401) 313 394.87

Mean -0.110 (0.411) 0.770 (0.664) -0.629 (0.540) 313 414.37
Mean (WCE) -0.372(0.348) 0.918(0.496) 0.141(0.545) 313 427.080
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Table 3.9: Summary results on four different methods for ACTG175 when τ = 0.5

η0 η1 η2 Q̂0.5 Q̂mean

RCE (τ = 0.5) 0.305 (0.309) 0.192 (0.428) -0.934 (0.555) 393 400.680
WCE (τ = 0.5) 0.415 (0.206) -0.686 (0.298) 0.597 (0.584) 390 402.230

Mean -0.110 (0.411) 0.770 (0.664) -0.629 (0.540) 390 414.37
Mean(WCE) -0.372(0.348) 0.918(0.496) 0.141(0.545) 391 427.080

Note that in the previous data analysis, we used a different subset data of

ACTG175 from the one used by Wang et al., and also, we considered a different

model using age instead of using weighted. Therefore, to further compare with

the result obtained by Wang et al., we last use the same data and features to

do the data analysis.

To be consistent with the method used by Wang et al., we also rescale the

weight and the count of CD4 cells at the starting week into [−1, 1]. Then using

linear regression with LASSO to estimate the common effect, we can derive

̂countweek96 = 129.322 + 72.057weight + 611.983countweek0,

as the estimated common effect. Subtracting this from the observed counts

of CD4 cells at week 96 and applying our proposed residual quantile-optimal

treatment regime, we can have table 3.10 and table 3.11 which reports the

comparison of the results from our proposed framework and the one from

the framework proposed by Wang et al.. (The results from Wang et al. are

used the same ones from their paper [19].) From the two tables, it can be

observed that, when τ = 0.25, the framework proposed by Wang et al. yields

a higher value 261. When τ = 0.5, our proposed framework yields 361, which

is higher than the one derived by Wang et al. This implies that our framework
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is comparable to the one proposed by Wang et al..

Table 3.10: Summary results on three different methods for ACTG175 when τ =
0.25

β0 β1 β2 Q̂0.25

RCE (τ = 0.25) 0.543 (0.241) -0.346 (0.473) -0.765 (0.382) 259
WCE (τ = 0.25) -0.231(0.303) 0.533(0.533) 0.814 (0.576) 261

Table 3.11: Summary results on three different methods for ACTG175 when τ =
0.5

β0 β1 β2 Q̂0.5

RCE (τ = 0.5) 0.552 (0.341) -0.425(0.625) -0.718 (0.420) 361
WCE (τ = 0.5) 0.594 (0.399) -0.564 (0.677) -0.574 (0.574) 360
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Chapter 4

Conclusion

A lot of researches have been done on finding the optimal treatment regimes

which maximize the mean of the potential outcomes, but only a few have been

done on finding the regimes maximizing certain quantiles of the outcomes.

However, in many applications such as economics, it is of great interest to

find the quantile optimal treatment regimes. Wang et al. are the ones who

firstly engaged in this study and provided a good framework of finding the

optimal treatment regimes based on quantile. Motivated by Zhou’s work on

the residual weighted learning on the mean-optimal treatment regimes, we

further improve Wang’s framework by removing the common effect from the

response.

It has been shown that after removing the common effect, the estimated

quantile optimal treatment regime is much closer to the true ones. Moreover,

removing the common effect can greatly reduce the variance of the coefficients

of the estimated treatment regime. It is worth noting that both Wang’s frame-

work and our proposed framework do not rely on a specified outcome regression
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model. This leads to the difficulties of using feature selection techniques. How-

ever, we can apply feature selections when estimating the common effect. We

can choose those features have more impacts on the response as the covariates

and then calculate the quantile optimal treatment regimes.

Even though this framework made some progress in the study of finding

optimal treatment regimes, there are still several aspects needed to be improve.

First, this framework successfully reduce the variances of the estimated param-

eters indexing quantile-treatment regime, however, this framework only works

under some conditions, where the treatment effect must be monotone and re-

moving the common effect will not change the order of the original outcomes.

This condition can not be easily checked in real data analysis. Therefore,

it is important to analyze this deeply to find out a solution to alleviate this

problem. Second, unlike in mean-optimal treatment regimes where the true

values of coefficients of treatment regimes can be easily obtained, it is much

more complicated to obtain the true values for the quantile-optimal treatment

regimes to compare the estimated result. We, following the research of Wang

et al. [19], used n = 105 Monte Carlo experiment to approximate the true

values of coefficients in our study, but this method is not a perfect one due to

the fact that the ’true’ values still have some bias. This can be a problem espe-

cially when we want to compare the result and try to obtain a more accurate

one. Therefore, further mathematical analysis needs to be done on this aspect

to obtain the true values of the coefficients. Third, our proposed framework

is also a two-step one. Thus, more theoretical work need to be developed to

directly derive the quantile optimal treatment regimes. Forth, there has been

some work on finding the mean-optimal treatment regimes on the data with
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randomly censored response variables. To the best of our knowledge, no works

have been done on finding the quantile-optimal treatment regimes on these

censored data. Fifth, feature selection technologies are very important in ma-

chine learning, which can help to find the most important features and provide

more accurate results. In the treatment regime studies, it should be noticed

that the features used to estimate the treatment regimes may be different from

the ones in common effects, and could be a subset of all the features. However,

we have not considered this case in our study. Following the studies of using

genetic algorithm to perform feature selections [20, 11, 15], we can further use

genetic algorithm to find the most important features in the treatment effect

and then further improve the performance of the quantile-optimal treatment

regime. All these three are possible works for future studies.
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