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Abstract

The present dissertation develops an invariant framework for 3D gesture com-

parison studies. 3D gesture comparison without Lagrangian models is chal-

lenging not only because of the lack of prediction provided by physics, but

also because of a dual geometry representation, spatial dimensionality and

non-linearity associated to 3D-kinematics.

In 3D spaces, it is difficult to compare curves without an alignment opera-

tor since it is likely that discrete curves are not synchronized and do not share

a common points in space. One has to assume that each and every single tra-

jectory in the space is unique. The common answer is to assert the similitude

between two or more trajectories as estimating an average distance error from

the aligned curves, provided that the alignment operator is found.

In order to avoid the alignment problem, the method uses differential ge-

ometry for position and orientation curves. Differential geometry not only

reduces the spatial dimensionality but also achieves view invariance. However,

the nonlinear signatures may be unbounded or singular. Yet, it is shown that

pattern recognition between intrinsic signatures using correlations is robust

for position and orientation alike.



A new mapping for orientation sequences is introduced in order to treat

quaternion and Euclidean intrinsic signatures alike. The new mapping projects

a 4D-hyper-sphere for orientations onto a 3D-Euclidean volume. The projec-

tion uses the quaternion invariant distance to map rotation sequences into 3D-

Euclidean curves. However, quaternion spaces are sectional discrete spaces.

The significance is that continuous rotation functions can be only approxi-

mated for small angles. Rotation sequences with large angle variations can

only be interpolated in discrete sections.

The current dissertation introduces two multi-scale approaches that im-

prove numerical stability and bound the signal energy content of the intrinsic

signatures. The first is a multilevel least squares curve fitting method similar

to Haar wavelet. The second is a geodesic distance anisotropic kernel filter.

The methodology testing is carried out on 3D-gestures for obstetrics train-

ing. The study quantitatively assess the process of skill acquisition and transfer

of manipulating obstetric forceps gestures. The results show that the multi-

scale correlations with intrinsic signatures track and evaluate gesture differ-

ences between experts and trainees.
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Chapter 1
Literature Review

The present dissertation is concerned with the quantitative comparison of 3D,

non-periodic sequences of rigid motion in free- and articulated-bodies. Very

often, the term “gesture” appears in the literature to describe sequences of

rigid motion, specially in the case of anthropomorphic or mechanisms with

multiple degrees-of-freedom. However, “gesture” acquires different meanings

depending on the research area [24]. With the lack of a better term to describe

different aspects of motion sequences, Bobick [24] broadened out the meaning

of “gesture” to include manipulative aspects instead of only considering com-

municative ones. The main consideration is that often, artificial systems lack

information about the context. The context is absolutely necessary to infer

the meaning of a motion sequence in an information exchange. And although

sequences of motion for tool manipulation do not have a communicative con-

text, they certainly have a well defined purpose. Under such considerations

and hereafter, one embraces the term “gesture” to consider sequences of mo-

tion with manipulative purposes.

In this chapter, one reviews the current state-of-the-art and categorizes

various systems for non-periodic motion sequence analysis and recognition for

purpose of sequence comparison. The topic of recognition and quantification

of articulated motion is broad. Several areas such as biomedical engineering,

computer vision, robotics, and data analysis made important contributions;

some with very compelling results. The purpose is to focus on what are the

contributing factors for an accurate and efficient 3D motion sequence com-

parison. We review various aspects such as: purpose, input type, feature

space, internal model type and structure, spatial dimensionality, and technical

implementation. Different categorizations have different merits, however the

scope and main interest lie around two important aspects: non-stationarity

and system complexity for discrimination.
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1. Literature Review

The non-stationarity of a motion recognition system refers to the ability

for the system to recognize non-periodic sequences. An underlying aspect of

non-stationarity is the time variance in the sequences. Similar sequences may

follow the same spatial trajectory but completely different timing. Should they

be classified within the same or a different class base on their dynamics? Is

the trajectory more important? What is the noise in the trajectory? All these

aspects are not easily discernible in non-periodic sequences.

The system complexity for discrimination is an aspect related to the inter-

nal model used in the recognition system, namely, the classifier. The degree-

of-certainty to identify a motion sequence is usually a function of the classifier

complexity. The recognition efficiency and speed of a classifier depends on sev-

eral factors such as feature space dimensionality, linearity, and representability.

Although the complexity of a classifier is proportional to the algorithm com-

plexity (big O notation), while the efficiency in discrimination is not. The

efficiency in discrimination is rather related to the linearity of the feature

space. If the feature space is linear and separable, then the discrimination

should be also high. However if the feature space is nonlinear or not separa-

ble, then the discrimination efficiency using linear classifiers is low, even with

complex classifiers.

A lot of research in 3D motion sequence recognition for anthropomorphic

mechanisms has been done in the area of artificial visual systems and com-

puter science, yet the results are limited due to biological and technological

reasons. Thus we review the limits of artificial visual systems for motion

sequence classification from a technological perspective. One reviews the ca-

pabilities of different systems, their advantages and disadvantages, and specific

requirements necessary to achieve articulated motion recognition.

Modern visual systems used in the capture and the analysis of articulated

motion have foundations in perceptual-neuroscience studies trying to under-

stand how the human brain perceives and identifies articulated motion, es-

pecially biological motion. These studies were conducted using unreferenced

moving light displays [130], [131], [115]. Their conclusions initially supported

the hypothesis that articulated motion could be inferred from just basic fea-

tures without identifying the underlying structure of the motion mechanism.

This is the basic idea behind a lot of work in human tracking and the analysis

of articulated biological motion using simple feature spaces such as optical

flow, color, and texture cliques. Such feature spaces are used in conjunction

with affine linear models [189], [8], [158], [159] to track images. And later, with

the use of temporal templates [25], [2], [26], [65] as a way to decode complex

articulated motion in a fast and reliable way.

2



1.1. Design Philosophies

Other studies [179], [134], aimed at testing the moving light display hypoth-

esis. They led to the discovery of specialized sub-adjacent brain structures that

play an important part in the human visual system. The importance of such

structures lies in their exclusivity in revealing the underlying body structure of

articulated motion from motion cues. The discovery of such specialized struc-

tures presented a new basis for developing artificial recognition systems. This

new insight state that the capture of articulated motion can be significantly

improved by integrating internal models representing the geometrical informa-

tion into the system. Usually, internal models are abstract representations of

the physical structure of an articulated body.

1.1 Design Philosophies

Integrating geometric structures within the system somewhat contradicts Jo-

hanson’s observations [179], [93], [94] and yet, it complements the notion that

it is possible to detect complex articulated motion without first discovering

the underlying body structure. This perspective has generated two opposing

standings for articulate motion tracking within the computer vision commu-

nity. The first considers that a system should encompass a bottom up con-

struction. This perspective states that a model can be constructed directly

from adequate feature spaces by using clustering and generative models that

could eventually reach a higher abstractions of motion model representation.

This is better known as bottom-up view. The second, and opposing view, pro-

poses to consider first higher abstractions of complex motion and then generate

appropriate features. This standing is better known as the top-down view.

A bottom-up model starts from observing basic features in early stages of

data capture, often fulfilling some statistical measures of similitude between

elements. This design philosophy assumes that more complex relational con-

structions will develop from the features by using generative models. These

generative models would initially find random relationships between elements

and sets of chosen statistical models. The statistical models would provide

parametric groups that can be coordinated into organized relationships later.

And by using an iterative approach, such relationships will grow into orderly

sets of parameters identifying the phenomenon.

Conversely, a top-down model would initially start from a very generic

abstraction of the problem. This initial model provides a coarse simplification

for later refined versions that may include other factors. A designer can take

appropriate decisions about features and implementation issues from this early

simplified problem.

3



1. Literature Review

A common trait in bottom-up and top-down methodologies for motion

recognition is the need to impose structural constraints to the motion data.

These constraints can be used to explain or to smooth the data. Geometric

models are often used to impose such structural constraints to the data. The

major difference between the two approaches is the background motivation for

including a geometric model into a recognition system.

1.1.1 Bottom-up Models

Bottom-up models usually start-off using an available feature space. It is as-

sumed that the chosen feature space reflects key characteristics from the phe-

nomenon, although this may not be guaranteed. An example of such proposi-

tion is the generation of texture filters using Markov random fields [181], [199].

A generative model is a statistical model based on indirect observations of the

phenomenon. Generally, it is expressed as a set of conditional probabilities.

The fundamental statement of a generative model is that one can solve the

problem of finding the general relationships within feature spaces by observing

only their conditional probabilities. But it is not really clear whether the a

posteriori conditional probability of such filters is higher than the a priori con-

ditional probabilities. Nor their repeatability, the feature space for textures is

plagued with local minima that produces redundancies in the resulting filters.

On the second stage, the challenge is to find plausible relationships between

feature elements. These relationships are established using a generative model

based on a statistical measure of similarity among feature states [118], [199].

Other methods may use vectorial arrays or polynomial coefficients as a descrip-

tors. The correspondence between features and higher relational abstractions

is generally proposed as a combinatorial optimization problem. An example

of such approach is the definition of “textons” or texture atoms [118], [181],

[128], [199]. An analogous approach is to define “motons” or motion atoms

[200] for motion dynamics as a directed graph problem. Similar approaches

define “motons” with dynamic state-space models for two-dimensional motions

[160] while the relationships are proposed using a Markovian graph model.

The key assumption in a bottom-up model is that the temporal and spatial

relationships will naturally arise from solving the combinatorial problem. The

primary issue with the bottom–up methods is that without first establishing

the underlying motion structure, the relationships between different regions of

the feature space may remain hidden or even lost. This is due to local min-

ima with in the feature space, a common problem when identifying motion

using optical flow [128]. In a multivariate space, a global minimization solu-

tion is less probable. In order to avoid local minima, often it is necessary to

4



1.1. Design Philosophies

try different combinations of relation candidates to find feasible relationships.

The combinatorial problem usually grows exponentially with the number of

candidate relationships and frequently falls into local minima.

Bottom-up approaches also tend to have very hard implementation issues

that often require some form of bootstrapping [117],[119],[63]. Bootstrapping

in bottom–up models usually consists on imposing constraints that limit the

number of possible combinations between features. Geometric constraints im-

posed on the body structure often limits the number of elements in the candi-

date set. Often the problem and interaction complexities are reduced for the

feature space by using a geometric constraints. Consequently, this also sim-

plifies the combinatorial task in finding open sets of relationship candidates.

Moreover, the geometric constraints do not even have to be complex since a

simple bi-dimensional kinematic model can be used to establish relationships

between moving regions [4].

1.1.2 Top-down Models

Top-down models often arise from different research areas. Studies in neuro-

psychology [93], [134], [92] and motion perception [94], [166] in the human

brain usually yield newer relational models. The main concern is the con-

struction of simpler mathematical and computational models that can explain

the observations.

In a top-down approach to motion recognition, the first abstraction deals

with how biological visual systems discover the underlying motion structure.

Since finding how such a neurological system works may prove to be difficult,

the first step is to propose a simplified modeling structure that establishes

general relationships between moving regions instead. Usually, the geomet-

rical and mechanical nature of articulated motion simplifies the model since

the structure can be either a geometrical model, a mechanical model, or a

combination of both. The first internal model is often inaccurate and error

prone. In order to tune–up the initial model, the trend [118], [1], [41], [42] is

to increase the model complexity by adding parameters to reduce the initial

error. The process is applied iteratively until an acceptable error is reached.

Other top-down approach prefer to use dynamic physical models. They

depend on a state-space in order to relate the variations in a feature space

with simple dynamic constraints. The objective is to relate different regions of

the feature space with simple stationary dynamics. As an example, if a spring

model is added [117], depending on the initial conditions it will produce a

linear approximation to a stationary response. Regions within an optical field

representing parts of an articulated body can be related using such a mechan-

5



1. Literature Review

ical approximation. This also provides a physical meaning to the interactions

between regions and limits the range and velocity of particular regions in a

stationary manner [117]. This approach requires parameter tuning in order to

synchronize the tracked motion. Unfortunately, non–stationary conditions in-

cluded in transient responses are not considered as part of the model since the

input is actually unknown. This limits their usefulness in gesture comparison.

Advanced visual motion recognition systems use a battery of hardware

solutions to overcome or go around such problems as occlusion and region

segmentation. [85], [83], [38], [39] use both kinematic and dynamic constraints.

Sophisticated systems use combinations of basic and abstract feature spaces

[39]. A basic feature space is comprised of low level processing features such

as luminance, color, and edge information while an abstract feature space

encircles basic features that satisfies certain constraints within a structure.

Some examples of abstract feature spaces are the point distribution model

[111], [20], contour models [21], [22], and gradient flow vectors [196], [195].

Advanced visual motion recognition systems use a battery of redundant in-

formation to tackle problems such as occlusion and region identification. Com-

plex visual recognition systems employ multiple cameras to tackle occlusion

while color coded body suits [84, 85] tackle the region segmentation problem.

These systems commonly use internal models to represent the body geome-

try with simple three-dimensional geometrical objects such as cylinders and

spheres [82]. These systems define 3D motion as a set of discrete body poses

or configurations [4], [53], [65], [35]. These pose sets are better known as body

postures. The body poses are a code book from which a discrete sets of fixed

states comprises a gesture trajectory while the interpolated poses intermediate

configurations. The identification problem is then reduced to a combinatorial

optimization problem. The gesture recognition is achieved by solving the fit-

ting minimization problem between the observed posture sequence and the

code book sequence [101], [124].

In the case of stationary motion sequences, such as gait motion, [117],

[106], [143], [148], [129], the problem is simplified even further since the motion

sequence is periodic. The spatio-temporal trajectories are sets of homogeneous

transformation matrices within a bounded range. Usually, the segmentation

process is done by manually selecting specific known postures. Then, the

identification problem is expressed as a dynamic-programming minimization

problem. The fitness function minimizes a probabilistic form of a distance

between a specific state in the posture state sequence and the current estimated

posture. The estimation of the posture is done by determining the approximate

correspondence between tracked points and the system’s internal model [100],

[57], [113], [178].
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1.2. Motion Decoding and Encoding Trade-offs

Top-down models promote the use of kinematic and state-space model con-

straints by design. These constraints are intrinsic to the model and they are

not used to bootstrap the model as in the case of bottom-up models. Many

top-down models can be found in the robotics literature [68], [72], [114] where

the dynamics of articulated mechanisms is known. Advanced frameworks such

as the Muybridge project [41] use a combination of multilevel probabilistic con-

straints for feature clustering and deterministic models to improve the posture

estimation problem [38], [41]. Such combination is usually applied in target

optical capture systems that do not require retro-reflective or active targets,

a.k.a. target-less or free-target optical capture systems. The requirements of

a target-less system increase the complexity of the body’s region segmentation

problem for any articulated body. Some assumptions about the number of

segments and range of motion for each segment are necessary in order to iden-

tify specific body parts [63]. By definition, these models require a geometrical

description of the articulated body. Such description specificity specializes

the model exclusively to certain types of articulated bodies. The main issue

in any target-less system is solving the correspondence problem between the

geometrical description and the visualized areas. Different solutions to the

correspondence problem are proposed using methods such as: Markov random

fields analyzing clusters [41], [35], [144], [174], active contours [182], [127], [22],

[186], principal component analysis [19], [17], and binary template matching

[40], [15].

1.2 Motion Decoding and Encoding Trade-offs

Let’s start with an example designed to track and analyze American–sign

language from video cameras. It is assumed that such a system can measure

the six parameters of the scalar fields {r, θ} for a 3D trajectory for every

tracked target or region. This ability provides a rich output with a complete

set of six-dimensional trajectories for the upper-limps. An important issue is

to identify each segment a full conversation event. Several questions arise from

this conjecture: how to best represent such a trajectory? What is the best

model to represent motion: a state-space model or a probabilistic approach?

And what are the “critical” points that segment the conversation process with

a chosen model?

In this example, the system has a very rich and yet, an incomplete input

about the phenomenon. The system has access to a complete trajectory de-

scription but it lacks a description of the exerted forces on the mechanisms,

plus it lacks a detailed mass description for the body. What type of model can

one use to obtain a reliable segmentation. From the classification standpoint,

7
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how can one create a prediction for the next stage in a conversation? Addi-

tionally, other constraints are necessary for an on-line implementation such as

tractability and polynomial time complexity.

1.3 Abstraction Levels

As a solution to our hypothetical system, our recognition algorithm requires

a cognitive structure with three main elements:

1. a context for the gesture,

2. a grammar or dictionary, and

3. a segmentation process.

These abstraction levels are part of an artificial cognitive structure that has

been accepted as necessary by the computer vision [24] and neuroscience com-

munities [23].

According to this structure, the context is the highest level of abstraction.

The context are external significations that are conditioned by the environ-

ment. As such, the context is generally out of the scope of interpretation of

many recognition systems. “Context” is the matching problem between spe-

cific state of “intention,” “purpose,” or “emotion,” to particular sequences of

3D trajectories. The mechanisms on how humans interpret context and their

associated cognitive structures are unknown [23], [156]. Artificial recognition

systems define such labels implicitly by design [24]. Current recognition sys-

tems cannot interpret nor define the context by themselves, such definition is

embedded onto the system by the designer.

The intermediate level of the abstraction is the grammatical structure. It

is mainly concern with the ordering aspects or the configuration of a sequence

of motion states while the uniqueness of representation of the motion states

falls into the domain of the segmentation model.

Motion grammar can be seen as organizing model parameters into state

clusters that can be later used to identify motion trajectories. There are some

parallels with this approach to the context of automatic signature recogni-

tion systems. The key idea of “atoms” of motion is particularly interesting

for the fields of robotics and motor-skill transfer. Robotic mechanisms could

greatly benefit by constraining the inverse kinematic solutions of redundant

manipulators and solving piecewise linear dynamical models [171], [188].

Motor-skill transfer is a new field interested in the accurate evaluation and

repeatability of gesture and motor execution by humans. The order in which
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these atomic states of motion are executed is seen as a configuration problem

for the motion sequence. A set of motion states is a set containing all possible

values available for a motion sequence. Such a set is said to be an alphabet of

motion [24], [110].

Finally, the base element of the abstraction structure is the segmentation

process. The segmentation process is concerned at finding the uniqueness for

each possible state in a set of motion states. This is the key element of articu-

lated motion analysis, whether if it is possible for the motion to be decomposed

into ‘segments,” or “atomic” elements [163], [194]. A segmentation process for

articulated motion analysis requires that one must be able to analyze tem-

poral sequences with distinct and definitive parameters. The purpose of the

segmentation process is to define the states of motion relating a structure

motion model to data.

While the grammar structure is concerned with the combinatorial aspects,

the segmentation focuses on modeling aspects such as finding distinctive pa-

rameter cliques in the model representation. Using a music analogy, the seg-

mentation process is similar to determine the fundamental tone for each one of

the music keys. A segmentation process in music would be equivalent to find

a set of parameters for the fundamental tone from a bank of discriminating

filters. Then, the filter bank response would be used as a unitary element

for which a musical composition can be analyzed using those discrete states.

Other forms of similar segmentation processes can be done with autoregressive

models for stochastic signals such as electro-encephalography [152], [153].

Analogously, motion segmentation is seen as an organizing model in which

the parameters of state-clusters uniquely identify motion trajectories. Motion

segmentation processes with dynamical models benefit from physical motion

properties. Here, the goal is to locate points in the sequence that are considered

as “remarkable” or “critical.” The definition of “remarkable” or “critical”

point is somewhat arbitrary and highly dependent on the particulars of the

model used to describe motion. The critical points may be defined as the

points in which there is a significant event that occurs, such as the variation

of third statistical moments or jerk, a sudden change in direction, a stop, or

an acceleration [55], [68].

The inherent properties of a particular segmentation technique generally

depends on solving a minimization function for the trajectory model or a

transformation space such as scale space or differential geometry invariants

(curvature). Moreover, there are difficulties and trade-offs when expressing

what “remarkable” or “critical” constitutes between a model and the phys-

ical world. Certain aspects of what could be of interest for interpreting a

phenomenon may be completely masked by the choice of a particular feature
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space. Thus, the desired segmentation pattern is unattainable for a particular

set of features.

In purely geometric models, the idea of achieving motion segmentation with

time series analysis is very tempting. It is always possible to define state-space

descriptions using low-order autoregressive models [46], [45]. In this thesis, we

will show later that it is not always possible to analyze articulate human

motion with such signal processing tools due to fundamental constraints in

the Fourier domain.

1.4 Previous System Classifications

A classification based on feature complexity suggests that visual systems for

articulated motion capture can be divided into system for rigid and non-rigid

body motion [1]. Dedicated systems for rigid motion will always assume that

the features will provide some form of invariance such as: scaling, translation,

rotation, and occlusion. Non-rigid body dedicated systems, on the other hand,

make no assumption about such invariance to deformation, but they state the

requirement that the deformation in the feature space is always tractable.

A great deal of computer vision systems for automatic motion recognition,

tackle the problem of human motion recognition following an architecture with

the following stages: preprocessing, parameter clustering, code-book creation,

sequence classification, and finally, prediction. A general processing scheme

is shown at Figure (1.1). Scene understanding refers to the problem of seg-

menting the corresponding regions of the tracked objects from the rest of the

image. Different relationships between the distinct segments in the image are

often inferred from optical flow. The resulting information allows to create

a motion model that includes a hierarchy of regions with common features

such as velocities, textures, or intensity values. The clustering of the regions

is often done using statistical techniques such as Markov random fields [66].

While with occlusion the problem is predicting where the motion will emerge

from a temporal singularity, i.e., the impossibility to follow the motion due to

the disappearance of part of the object from the scene.

A proposed taxonomy divides the tracking and motion capture systems in

terms of the technical structure [136]. It classifies systems based on technology

and required assumptions such as appearance, model initialization, tracking

methodology, pose estimation, and recognition methods. The classification is

composed of two major groups: low level motion recognition and higher level

recognition systems.

In low-level recognition systems, there is no internal model and therefore

such systems lack any prediction capabilities. Low-level recognition systems
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Figure 1.1: Conceptualized General Block Diagram for Visual Systems for Articulated
Motion Analysis.

follow the assumption that motion can be recognized without establishing a

prior relationship between co-jointed parts. Great deal of applications within

this category involve automatic surveillance systems and systems to identify

human motion from basic features.

Higher level recognition systems on the other hand do possess an internal

kinematic model as part of the prediction phase. Such systems make assump-

tions about the pose, pre-modeled kinematics, and some prediction scheme.

In most of the visual system specific for human motion, the internal model

is reduced onto a two dimensional kinematic space or a form of representing

changes in the feature space. Appearance models, for example, use linear mod-

els to effectively predict the position of a group of projected pixels with some

basic assumptions on velocity. Deformable models use simple affine models

to capture the sequence of changes that an active contour encounters as the

image evolves. The randomness introduced by the digitalization of the visual

system is often dealt using a smoothing filter such as the Kalman filter, or

dealt with model identification with discrete sequence models such as hidden

Markov models.
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1.5 Internal Models

Our aim is to construct a categorization based on the internal model assump-

tions and its classification of computational requirements. It is also necessary

to review the associated recognition techniques and classify them into com-

prehensive groups. Whether we design a bottom-up or top-down system, one

important issue to discuss is the choice of the internal model governing the

system for articulated motion analysis. This choice essentially depends on the

articulated body characteristics and the amount of information provided by

the sensors. The internal model usually falls within one of following categories:

descriptive and predictive models.

Descriptive Models are not concerned with the causes of motion and they

describe motion in terms of geometric affine transformations. Descriptive mod-

els are used in the classification of motion using conditional probabilities. The

models can be group into two main subcategories: geometric and statistically-

based.

• geometric, or kinematic, models are sequences of affine transformations

that describe the spatio-temporal trajectories of an object;

• statistically-based models describe the motion in terms of a state-space,

but the main difference with predictive models is that the state-space re-

mains unobservable and one cannot guarantee that the model can predict

beyond a specific scope of training.

Descriptive models do not, in general, predict the motion as predictive models

do. Prediction in descriptive models is imposed with polynomial parameteriza-

tions of motion. A trajectory description is accomplished by keeping a discrete

set of sample trajectories. The sample length may be different for each tra-

jectory and the classification is done with different techniques. A popular

approach to compare multi-dimensional trajectories is to use dynamic time

warping [13] [37].

Predictive Models are physically-based linear state-space models. State-

space models solve differential equation for the discrete value in the state-

vector [78]. They are predictive models with high level of detail for variables

representing a system given specific inputs and conditions. These models re-

quire elaborate descriptions of a body’s physical properties and the external

forces exerted onto it. Lagrangian state-space models [78] are particularly

useful when complete force dynamics are available. Used in conjunction with

kinematic models describing the geometry body, it is possible to attain com-

plete spatio-temporal trajectory descriptions. Also, because the dynamics are
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encoded into the Lagrangian state-space, it is also possible to obtain non-

stationary predictions. The main hinder with state-space models is the elab-

orate description of the body and their computational complexity.

The reason for including statistically based models in this classification is

that although they may include a state-space, either continuous as a Kalman

filter or discrete as a hidden Markov model, the prediction stage is limited

to only the next step (Markovian condition). Statistically based models are

conceptually similar to state-space models [86], [88], [87], [168], although an

explicit description of the dynamics of the body is not readily available, the

stages of a motion are implicitly described in the form of a directed graph.

Graph models may also provide a prediction stage but such prediction is usu-

ally limited. Also, the scope of such prediction is limited to one step at a time

as in Markovian processes.

A primary example of predictive models is motion dynamics in robotics.

Motion dynamics in manipulators require models which take into account both

position and orientation of each of the segments comprising the mechanism.

Additionally, robotic mechanisms require to handle the static and dynamic

forces exerted onto them, thus such models also use additional dynamic La-

grangian mechanics. In such cases, the required characterization of both the

object and applied forces is very detailed. In the case of organic motion, such

descriptions are not available without having a complex experimental set-up.

Thus, a generalized description of motion for organic objects is usually based

on kinematics rather than Lagrangian mechanics.

1.5.1 Template and Parametric Models

Motion tracking and gesture recognition applications for human motion that

do not use state-space models are based on statistical properties of recorded

template signatures and parametric spaces [66], [64], [65]. In general, these

applications rely on complete signatures from the activities. The tracked tra-

jectories are not decomposed any further. These type of approaches can be

classified as motion template recognition methods.

The popularity of motion template approaches is due to quasi-real time

recognition for small sets of gestures [26]. The reason behind this quasi-real

time recognition is that the template evaluation is time linear O(n). The

working principle of temporal templates relies on the capture of a complete

spatio-temporal trajectory. Each spatio-temporal trajectory contains a com-

plete sequence of motions that total the gesture as a whole. In the case of

artificial visual systems, the captured sequence is treated as a complete set

of frames of pre-segmented binary images. The binary images are added to-
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gether time-wise forming a temporal template. Temporal templates achieve

invariance to translation, rotation, and scale by using statistical moments [25],

[66]. Template classification is achieved with statistical distances that are mea-

sured between the captured sequence and the stored template. This is a scalar

value from the total area of the temporal template. Nonetheless, such tem-

plate methods are not projective invariant since the method is designed to

work in two-dimensional image space. Therefore, any change in camera posi-

tion requires new template sets for distinct camera viewing angles. A major

differentiation of the template approaches from dynamical approaches is that

template methods do not segment motions into a sequence of possible config-

urations or principal modes.

More recent application of temporal templates is proposed for a hand ges-

ture recognition system [96]. As any template, it does not use any form of a

state-space, instead it uses a geometrical abstraction of the hand to create an

abstract template. The orientation and position of the hand is extracted from

disparity information using a stereo camera system. For each gesture available

to the system, an individual template is created by manipulating the geomet-

rical model, thus creating a sequence from individual templates. In order to

compare sequences, the system uses disparity information extracted from a

selected regions of interest. A form of projective invariance is accomplished by

un-warping the images. The statistical properties of selected features such as

color and region area determine a distance measure to the available templates.

The approach is similar to the temporal template techniques [66], [64], [35].

Another form of template technique is to use parametric modeling. In

parametric modeling, gestures are modeled as parameters or coefficients from

possible affine transformations [149]. The approach is similar to kinematic

transformations using interpolating schemes. A complete gesture is described

in terms of coefficient states that form a configuration of movements.

1.5.2 State-Space

The term state-space is frequently used with two related yet distinctive conno-

tations. In control engineering, a state-space representation is a mathematical

model of a physical system described as a set of inputs, outputs, and state

variables; all related by first-order differential equations. Whereas in computer

science, a state-space is a description of a configuration of state machines. Such

description is better posed by graph theory as a set of nodes (states), vertices

(state transitions), initial states (inputs), and goal states (outputs). A major

distinction between the two connotations is that whereas the former definition

refers to very specific physical laws with transient and stationary conditions
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from a system’s transfer function, the latter can only be a continuous or dis-

crete set of possible combinations from observed variables.

State-spaces admit matrix algebra descriptions. Such systems can be de-

scribed in one of two major canonical forms [105]: Controller and observer.

The observer canonical form is of special importance since it guarantees that

the internal state-space is observable. This is of vital importance to the esti-

mation of the internal state of the process.

A state-space of a system is usually represented by the general equation

ẋ[k + 1] = Ax[k] +Bu[k],

y[k + 1] = Cx[k + 1] +Du[k].
(1.5.1)

where A, B, C, and D are matrices and ẋ, x, y, and u are vectors. The

index k indicates an arbitrary time step. For time-dependent systems, the

matrices A, B, C, and D will also contain an index k. The matrix A usually

contains the system’s poles, while the matrix B contains the system’s zeros.

Since in any system the poles determine the stability, A is also known as

the characteristic matrix of the state-space system. Whether the system is

stable or not, depends on the position of the poles in A which is dependent

on the eigenvalues of A. If all the eigenvalues of A are all real, then A is

linearly independent and x is guaranteed to have a stable solution. If all the

eigenvalues of A are complex conjugates, then x has an oscillatory solution,

also known as critically stable. An finally, if the eigenvalues of A are a mixture

of real and complex values, then x may be nonlinear and unstable.

Hereafter, one will denominate any system which include a linear formula-

tion of motion in control engineering state-space as explicit state-space system.

One will make this specific distinction for systems whose descriptions can also

be formulated as state-spaces, but where the challenge of a technique is to

find a best formulation for the state-space. Such state-spaces are called im-

plicit state-spaces. Explicit state-space formulation is commonly used in the

predictive stage of a tracking system. It is applied to low level and high level

features in visual systems for motion tracking. And the most common form of

estimation is through a variant of a Kalman filter [105]. Implicit state-space

formulation is commonly found in systems in which the states are hidden and

an explicit formulation of the dynamics is not readily available.

1.5.2.1 Explicit State-Space Models

The category of explicit state-space models describes all those modeling tech-

niques for motion that decompose a gesture using a state-space description. In

particular, this category has numerous applications that make use of Gaussian
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modeling techniques such as linear models or Kalman filters, several variations

such as hidden Markov Models (HMMs), particle filters, and Gaussian mixture

models.

An application using an explicit state-space formulation does not necessary

express the state-space in terms of the object physical properties. Instead, such

a formulation can be expressed using properties from indirect sources such as

feature observations. Visual tracking systems for articulated motion often

use a state-space formulation that is specific for the application or feature

space used. This feature space is usually a bi-dimensional state-space (y, v)

formulation. In cases for which the tracking system deals with a 3D problem,

the state-space might achieve projective invariance using multiple views.

From the system identification perspective, segmentation of motion se-

quences is accomplished using explicit state-spaces modeling physical param-

eters such as velocity and acceleration. The observe parameters are measured

from particular features with the tracking system and a configuration space is

selected. The configuration space, ordered state-space sequences is expressed

as a regime problem. A “regime” refers to the principal mode of operation

of a system. The principal mode of operation is identified by observing the

eigenvalues and eigenvectors of the control matrix A. As a regime changes so

does the eigenvalues and consequently, the operation mode.

Regimes are identified as basic modes of operation. This has led to identify

these basic modes as “atoms” in dynamical systems. Dynamic models [68] aim

to discover the principal modes of operation and the configuration problem,

i.e. the switching sequence at which the state-space model changes for a given

system. An analogous idea has appeared for articulated motion analysis. The

terms change and several names had been given: “movelet” codewords [76],

behavior models [80], [81], and corpus of three-dimensional motions [91].

In order to observe a regime it is necessary to continuously solve the eigen-

value for the matrix A, which may be a hinder. Another possible way to quan-

tize the principal modes of operation, without solving the eigenvalue problem

for the system, is to quantize velocity profiles as part of a HMM [108]. In this

way, gestures can also be viewed as likelihood state machine. The issue with

this type of representation lies in the hidden state-machine of an HMM. How-

ever, the classification efficacy in a HMM improves as the hidden state-machine

approximates a deterministic one [56].

One way to train a curve-based HMM for gesture recognition can be ob-

tained by fitting discrete samples of a principal curve [29]. The state represen-

tation is usually obtained by manual means and the minimization algorithm is

complex and not be always stable. The classification of a gesture with princi-

pal curves is performed using an error function for the configuration sequence.
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It only works for three-dimensional positioning leaving the orientation to be

solved by other means.

We will now review basic fundamentals of some important explicit state-

spaces for visual tracking. Such state-spaces do not solve a pose configuration

space for an internal kinematic model, instead they use the evolution through

the state-space for different samples to describe a configuration based on prin-

cipal component analysis. However, the final configuration space does not

provide an exact solution to the gesture problem, although it recognizes se-

quences of motion by finding the sequence of eigenvectors that fit the available

data.

1.5.2.1.1 Active Contour and Active Appearance State-Space

The basic description of a deformable model and an active shape model are

the same. The spatial part of an active contour defines a shape using a closed

spline.

On the other hand, the temporal dynamics of an active contour are stated

in terms of a state-space model that consists of two parts. The first part takes

into account the modifications into the shape by modifying the location of the

control and the node points in the spline. Certain applications [22], [82], [111],

[18], [16] define spline families that use interpolating control points in order

to simplify the estimation of the final shapes. The control point array for the

spline is known as Point Distribution Model (PDM). The second part consists

at tracking the shape in time in the image.

The main distinction between active shape and active appearance models

is how the shape is estimated in both. In an active shape model, the shape

is estimated only once at the beginning of the image sequence since the shape

won’t change through out the image sequence. The problem to be solved is

to identify newer positions as the sequence evolves. On the other hand, in

an active appearance model, the shape of the tracked object changes at every

instant and the estimation has to be done at every frame. The models has to

take into consideration all the possible changes in shape of the object through

out the image sequence.

The main issue in active appearance models is how to estimate the cor-

responding affine transformation sequence for the control points in the active

contour. This is in fact a kinematic problem. There are several solutions to

this problem that do not solve the pose estimation configuration [112], [20].

When the motion is considered non-rigid then the dynamics of motion can

be described as a sequence of transformations that are applied to the active

shape when the articulated body is being tracked. The dynamics described by

the active shape models and particle filters rely on projective transforms. The
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affine transformations required to modify the non-rigid motion by comparing

the deformation sequence; and the estimation of the parametric angles of the

superimposed stick model could proved costly.

Additionally, the Kalman filter estimating the kinematic parameters may

not be able to overcome the problem of local minima. The matrix inver-

sion required by the Riccati’s equation is computationally expensive for multi-

dimensional spaces [71]. A cheaper solution is to use a weighted approach using

particle filters [69], [70]. Nonetheless, on the current hardware, the solution is

not fast enough to be easily implemented in real-time. These constraints have

a lot to do with the feature extraction process and; how costly the contour

determination is. It is an expensive method since the computation complexity

is O(n3) for a three degrees-of-freedom joint.

1.5.2.2 Implicit State-Space Models

Implicit state-space systems are black-box formulations of state-spaces. They

are usually based on Bayesian formulations with Gaussian assumptions. A

popular formulation of implicit state-space models used for articulated motion

tracking are the Hidden Markov models (HMM) [161], [88], [87]. To some ex-

tent, HMMs can be considered as a discrete Bayesian formulation of a Kalman

filter [168], [89]. The latter is due to the homologous formulation between a

Kalman filter and a hidden Markov model [167] but, in general terms, HMMs

are graph models [169], [165].

Implicit state-space models are commonly used on those systems for which

the internal variables can be inferred only from indirect observations. A great

deal of tracking systems that use low-level features such as optical flow and

pixel neighborhoods use HMMs to solve the configuration problem between

internal states [187], [193], [6] and state segmentation [147], [36]. A major

disadvantage of the implicit state-space models is the requirement to initially

guess the number of states in the model [132]. There is no solution for the

minimal number of internal states for a implicit state-space model.

Implicit state-space models are frequently found in applications where hu-

man gesture is being segmented into “atoms” of motion. Several approaches in

gesture segmentation have been tried with mixed results. A popular method

is to use linear models in the form of HMMs to create spatial invariants which

can be matched in the temporal sequence [27]. The applications use a series

of poses or orientations determined from features such as color or shapes [51].

In a commonly used formulation for gesture recognition, the gesture itself

is viewed as a position tracking problem with quantized probabilistic states

[22], [44], [43], [27], [192], [51]. The applications use a series of fixed poses or

orientations for which a specific gesture is traced. A downside of considering

18



1.5. Internal Models

a gesture as a state machine is the lack of model flexibility. Depending on

the complexity of the gesture, the proposed state machine can contain a large

number of states making model training difficult. The intuition is then to apply

a divide and conquer scheme. In the divide and conquer scheme with HMMs,

a complex model is transformed into a series of simpler, more manageable

models [44], [43]. Divide and conquer schemes constitute a higher abstraction

level for classes of simpler models that are fast to train and compute, but the

interactions between the models may also turn to be complex. Different types

of HMMs for multiple observations, multiple states, and parametric models

are described in the literature [142], [148].

In general, the interaction between lower order models and multiple obser-

vations is not intuitive enough to have a simple state description. An important

caveat in HMMs is that the number of internal states has to be determined

empirically [133]. A gesture class cannot only contain a large number of mod-

els, but also the models may have different number of internal states. Under

such circumstances, it is not possible to find a unique solution to gesture in-

terpretation. And finally, HMMs do not allow a natural inclusion scheme for

increasing the number of model classes that can constitute a family of gestures

[27], [192], [191].

A better strategy to solve the problem of larger gesture database is by using

hybrid models. Hybrid models include a form of candidate pre-selection phase

[150], [151], [154]. The pre-selection phase smooths the candidate models with

a Kalman filter. The Kalman filter smooths the autoregressive model parame-

ters [150] for a clustering phase which provides the priors for the HMMs. The

purpose of the Kalman filtering phase is to smooth the likelihood function of

the hidden states using the signal covariance. Thus, the unsupervised method

provides a better estimate of the number of internal states for the HMM.

However, applying such approach to three-dimensional gesture recognition

may prove difficult since the trajectories in the three-dimensional Euclidean

space are hardly stochastic. The traces not only are composed of low Fourier

frequencies but they are also deterministic in nature. Therefore, autoregressive

models may not be adequate or discriminative enough to differentiate between

close, but distinctive, clusters.

An abiding issue in unsupervised methods is to determine the optimal

number states that best describes a parametric space. The idea is that a

simple model provides a coarse approximation to any phenomenon and that

the error can be reduced by incrementing the number states in the model.

However, an indiscriminate increase in the state number will yield a problem

commonly known as the “dimensionality curse.” Models must rely on finding

an optimum number of parameters in order to best describe the phenomenon.
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How to achieve this goal is an enduring question. A way to measure the effect

of the parameters in the model representation is to use a metric known as

information criterion. There are several information criteria available, most of

them are based on the information entropy principle or Shannon entropy [172]

One useful criterion is the Minimum Description Length Criterion (MDLC).

MDLC is a modified version of Akaike’s information criterion (AIC) [123], [3].

Its purpose is to automatically find a plausible cluster configuration that best

describe a parametric data set with an optimal number of parameters [34],

i.e., it aims to automatically determine the number K for a given data set.

The MDLC aims to find a minimum number of states while preserving most

of the information conveyed by the feature space without falling into the “di-

mensionality curse.” The method itself is a blind recursive recalculation of

different clustering configurations for a particular data set. When the crite-

rion reaches a minimum scalar value inside a series of possible configurations,

the configuration with the minimum value is chosen as prior candidate to the

hidden state machine in the HMM.

1.5.3 Motion Description Using Geometric Models

Geometric models, a.k.a. kinematic models, are descriptive models. Geometric

models are used to describe complex articulated motion when state-dynamics

are not available. Motion is described as a series of affine transformations that

are relative to a reference frame F . The position and orientation of the frame

F are completely arbitrary. One can define a fixed global reference frame Fo

such that any motion is relative to this reference frame.

When motion is described using kinematic models, it is necessary to achieve

some form of invariance in order to guarantee recognition. There are two

common ways to achieve invariance in the motion recognition problem: Fourier

invariance and state–parametric invariance.

1.5.3.1 Fourier Invariance

Stationarity or periodicity is the most important factor to achieve invariance

in the Fourier domain. Periodicity implies that a sequence of states repeats

itself after a certain time interval.

Some kinematic problems are considered stationary, e.g. gait, cyclist’s leg-

pedal complex, arm swimming stroke, or certain repetitive gestures with com-

municative or manipulative purposes. However, not all motion sequences can

be considered stationary from a Fourier perspective. Thus, a natural classifi-

cation for motion sequences based on the Fourier domain are stationary and

non-stationary motion sequences.
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In general, manipulative gestures fall in the non-stationary motion sequence

category. In these situations, starting and finishing points have variable tim-

ings and the motion dynamics have also execution time differences for a same

gesture [28], [116], [180], [104], [120].

1.5.3.2 Parametric State-vector Invariance

Invariance in the state-parametric space is achieved through the geometric de-

scriptive parameters of a body. This means that a complex motion, described

in state-vector sequences will remain the same independently of an arbitrary

external reference frame F . Articulated bodies often use a modified state-

space representation for individual link-joint pairs. The state vector pair x is

not composed of six elements, but only four elements:

xT

k = [dk, χk]
T = [zk, xk, χk, αk]

T

∀ k = {1, . . . , m} m ∈ N.
(1.5.2)

where the parameters dk = [zk, xk]
T are Euclidean distances measured along

the link and the joint k respectively; χk = [χk, αk]
T are the rotation angles for

the joint and the angular difference between links measured about the normal

vector to two consecutive direction links ẑk and ẑk−1, .i.e, about the direction

ẑk × ẑk. One refers the xT

k state vector as the Denavit-Hartenberg vector for

the k link-joint pair.

The reduction in the number of descriptive parameters is possible due to

the Denavit-Hartenberg (DH) notation [60] uses for the kinematic link (KL)

a constrained description. The insight of the DH notation is that it describes

any KL intrinsically. Thus, the DH notation is independent from an external

reference frame F . It also simplifies the KL complex pose sequences by solving

one single variable at the time.

1.5.4 Geometric Models in Neuroscience

A major field of study in Neurophysiology is the study of reaching gesture

tasks for neuro-control of the upper limb [184], [185], [9], [145], [77]. The

first step in these studies is the characterization of a “geometric stage” of

the 3D–Euclidean space [184]. The geometric stage refers to the problem of

first finding geometric solutions for a reaching gesture for the upper limb.

The methodology has two important assumptions. First, the initial state is

a resting configuration where the kinematic energy is kept at minimum and

the potential energy does not change. Second, the reaching gesture passes

from the initial resting state to the reaching posture with minimum kinematic

energy change.
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Usually, the solution involves solving all parameters for the end effector

in the configuration space, and in general, the solution is not unique. The

goal of the geometric stage is to find out geometric constraints that reduce the

space to the most likely configurations. These studies produce high–likelihood

parameter configurations from data of exemplary sets of reaching gestures.

Although such solutions may not reproduce the internal processes occurring

in the human neuro-control system, they provide important clues about the

hidden dynamics of the upper limb.

1.5.5 Prediction With Geometric Models

A downside of geometric models is that they cannot deal with motion pre-

diction and tracking uncertainty without a priori assumption. Since external

forces to the body are unknown, the prediction of the dynamic behavior can be

only assumed. In the absence of a differential equation, one can only assume

a model, obtain statistics for average estimates for the trajectory. A popu-

lar choice is to assume a function such as the “constant acceleration” model

[77],[91]. Another possibility is to assume multiple linear dynamic models and

then choose a winner. In this situation Kalman filters are useful to consider

the prediction error for different models. The main issue is that such models

assume a free body where no possibility for modifying the inertia by altering

the momentum by itself. An improvement is to consider a Gaussian func-

tion with limited support for the ‘third order derivative and then integrate

[90],[145]. Although motion can be described by geometric models, the as-

sumptions imposed on the model severely constraint higher hierarchical stages

of motion prediction, smoothing and recognition.

If no physical constraints or motion model given, motion becomes a random

variable. Often, it is assumed the most simple random motion: Brownian

motion. However, under random motion assumptions it is never guaranteed

that two points in a three-dimensional Euclidean space would ever share the

same value, as it happens in a two-dimensional Euclidean space. In a two–

dimensional Euclidean space if a particle sweeps a bounded section with a

random Brownian motion, it is guaranteed that the same particle will pass at

the exact position twice in undefined amount of time. The implication is that

it is not advisable to use generative models in a three-dimensional Euclidean

space in order to predict the next point in the curve.

Since a gesture does not behave randomly, other simpler constraints are

required to delimit the body’s motion and eliminate the Brownian motion.

One can assume Markovian constraints [51], [164], [73] for which the particle

cannot randomly change directions, but to follow previous directions with a
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small random coefficient that depends on the previous state. Such constraints

can be expressed in terms of conditional probabilities or smoothing condi-

tions for the trajectories. Those constraints are not often easily identifiable

for particle motion, but are somewhat empirical approximations to assuming

quasi-Newtonian conditions.

Fortunately, there are some other intriguing experimental cues indicating

that the speed control of reaching gestures is path independent [9], [145]. A

seemingly evident assumption has been disproved, e.g., a reaching gesture, the

final arm posture depends on the initial shoulder and elbow angle configuration

[176]. Instead, an energy function that minimizes the work amount exerted

when passing from a point A to a point B in reaching gestures has been

adopted as for subsequent studies [145], [184], [185].

The work minimizing function is proposed as quasi-dynamic constraint. By

considering the motion direction of the upper limb, a reaching gesture can have

different weights for arm elevation and arm lateral pronation. The weights are

empirical approximations to physics constraints that minimizes a for minimal

energy cost function [184].

Other possible constraint to predict motion using geometric models emerges

from an invariance condition. A speed invariance has been reported [9], [184],

[185] for reaching gestures of the upper limb. In motion planning, if the dis-

tance from the starting pose to the final pose configuration is known and if

the maximum reaching speed is available, then the invariant functional can be

applied to a motor control approximation. Other weighted constraints, such

as comfort [184] or muscle metabolic intake consumption limits [5].

Although all of the above constraints allows us to restrict solutions for

under-determined reaching gestures, there should be clear that the main prob-

lem in reaching gestures is the definition of the configuration space for the

gestures. The initial and the final poses are known. However, in gesture

recognition there is not such a clear cut definition. Usually, motion recog-

nition and motion planning have broader expectations that involve difficult

recognition problems. These problems may include:

1. Description. A geometric trajectory can be easily described in two-

dimensional Euclidean space. It is even guaranteed that for a given

surface in a two-dimensional Euclidean space, if one follow a Brownian

motion, one will pass on the same point at least twice in an undetermined

amount of time. Such a condition does not exist for a three-dimensional

Euclidean space.

2. Temporal dynamics. Should one consider temporal dynamics to deter-

mine whether a spatio-temporal trajectory belongs into a given family
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of trajectories is being intensively discussed. But it actually depends on

how the spatio-temporal trajectories are being described. State-space

descriptions are time-dependant and therefore they should include tem-

poral dynamics in the model. Implicit state-space models such as hidden

Markov models also include temporal dynamics but they try to find a

form of time-invariance to the sequence, i.e. the observation vectors can

change their length but the statistical properties of the space configura-

tion remains. In other words, the state and state transition probabilities

do not change unless the model is also modified.

3. Constraints. An empirical constraint is necessary to limit an energy cost

function when a minimization is required. Such constraint may not be

realistic and requires parameter tuning. Also, it demands the use of a

training set of data. The descriptive data set used for training can be

map into a different space, in the hope of enhancing key features, but

it is not guaranteed. It is difficult to provide a single description for all

possible cases and all possible configurations, so constraints tend to be

application specific.

4. Noise sensibility. Although the noise can effectively be reduced in a

two-dimensional Euclidean space with uncertainty distances to the main

trajectory. Other considerations have to be taken into account when

dealing with noise in three-dimensional Euclidean space. For example,

when using principal curves method [103] for comparison, one also re-

quires integrating an area along the trajectory to be used as uncertainty

surface. Ideally, such a surface should be described as a function of the

normal to the tangent point on the main trace describing a family of

traces.

In general, 3D spatio-temporal curves are viewed as the composition of two

separate and geometrically different parametric spaces: position and orienta-

tion. Aside the intrinsic space geometry, the major issue with any 3D sequence

recognition is that most recognition algorithms for sequence recognition are

frequently limited to only one or two variables, but not three. Such situation

has created the need for other types of description that are able to reduce the

dimensionality. One of such descriptions is differential geometry with oscu-

lating reference frames. Differential geometry defines two main orthogonal,

osculating axes to represent a 3D-curve with two parameters: curvature and

torsion.

The definition of curvature and torsion in differential geometry can be for-

mulated using the Frenet-Serret (FS) formulas [99]. The notation uses upper-

case letters to represent vectors. This is against the notation in this document.
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However, since the notation is traditional when dealing with FS frames, this

convention will be preserved.

A FS frame defines n orientation vectors, one for each dimension, see Ap-

pendix A.1 . In 3D, a FS frame defines three normalized vectors: T̂, N̂ and B̂.

The first, the normalized tangent vector T̂ is defined as:

T̂ ≡ ̂̇r, ̂̇r =
ṙ

‖ṙ‖ (1.5.3)

where ̂̇r is the normalized velocity vector at the point on the curve r(t). N̂ is

the normalized normal vector and orthogonal to N̂, is defined as:

N̂ =
̂̇
T = ̂̈r, N̂ =

r̈

‖r̈‖ (1.5.4)

where r̈ = ∇ · ṙ = ∇ · (∇r) = ∇2r is the Laplacian of r(t). And the last

normalized vector B̂ is orthonormal to both T̂ and N̂ by construction:

B̂ = T̂× N̂ =
ṙ × (r̈ × ṙ)

ṙ · (r̈ × ṙ)
=

ṙ × (r̈ × ṙ)

‖ṙ‖ ‖r̈ × ṙ‖ . (1.5.5)

For a 3D-curve r(t) = {x(t), y(t), z(t)} the arc-length s is defined as:

s2 =

t∫

0

∥∥∇r(t)
∥∥dt (1.5.6)

where ṙ = ∇r(t) is the velocity vector. By normalizing Equations (1.5.3),

(1.5.4) and (1.5.5) against the curve’s arc-length s, Equation (1.5.6), a FS

frame is defined as: 

T̂

′

N̂
′

B̂
′


 =




0 κ 0

−κ 0 τ

0 −τ 0






T̂

N̂

B̂


 (1.5.7)

where κ is the curvature and τ is the torsion. The curvature and torsion can

be computed directly from the parametric curve description as:

κ(s) =
‖x′(s)y′′(s)− x′′(s)y′(s)‖
(
x′(s)2 + y′(s)2

) 3
2

(1.5.8)

and

τ(s) =
z′′′(s)(x′(s)y′′(s)− y′(s)x′′(s)) + z′′(s)(x′′′(s)y′(s)− x′(s)y′′′(s))

(x′(s)2 + y′(s)2 + z′(s)2)(x′′(s)2 + y′′(s)2 + z′′(s)2)

+
z′(s)(x′′(s)y′′′(s)− x′′′(s)y′′(s))

(x′(s)2 + y′(s)2 + z′(s)2)(x′′(s)2 + y′′(s)2 + z′′(s)2)
.

(1.5.9)
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The most important advantage of using curvature and torsion is that any

curve in a 3D-Euclidean space is defined uniquely. Another advantage is the

reduction of dimensionality in one dimension. This allows to apply classifica-

tion methods for sequences on the re-parameterized tuple sets {κ, τ}.
By contrast, the issues of using the (κ − τ) parametrization for curves

are not less important. First, both the curvature κ and the torsion τ , as

expressed by Equations (1.5.8) and (1.5.9) respectively, have numerical issues.

The curvature κ is very sensitive to noise while the torsion τ is numerically

unstable due to its dependency on the third derivative of r(s). And second,

both signal processing and classification methods for sequences usually assume

that sequences are continuous with no vanishing points. And yet, it is almost

ensured that the curvature κ and the torsion τ will contain vanishing points.

Numerical stability is the most important issue. Classification results de-

pend on the accuracy of the (κ − τ) representation. It has been reported

that classification results for HMMs with recognition rates around 95% using

differential geometry re-parametrization is possible if the training and classifi-

cation algorithm use polynomial interpolation filters to estimate higher-order

derivatives [52].

In general, conventional approaches use the (κ− τ) re-parametrization by

first fitting the curve r(s) with a 3D-spline [162], [49], [129], [141] and then

use the fitted curve to approximate curvature and torsion from the spline.

However, 3D spline fitting for curves is most difficult. First, spline fitting

depends on a minimization criteria that takes into account the characteristics

of a spline family [157]. Second, there is no proven method that solves the

minimization for fitting a spline onto a 3D curve [95].

Cubic splines have some advantageous characteristics since their control

points are the same as their knot nodes. This particularity simplifies the

minimization strategy when fitting data sets to splines. It is guaranteed that it

will produce a smooth curve with minimal curvature. And finally, cubic splines

are less computationally expensive than other spline interpolation algorithms.

However, cubic splines tend loop and wiggle due to a sensitivity to variations

in the second order initial conditions. The reason is that the control points

and the spline knots are the same.

Other spline families may have better smoothing characteristics. B-splines

are one of such families. However, the control nodes in the B-splines are not

part of the curve. The control points in the B-spline family lie at convex

positions outside the fitting curve. This particular characteristic posses a

difficult minimization problem. The construction algorithm of a B-spline is

based on the DeCasteljau algorithm. Although, the DeCasteljau algorithm is

well behaved in two dimensional fitting problems, it does not extend well for
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the three-dimensional problem [61]. The difficulty is that the control points

of a 3D B-spline may lie on an unrestricted number of possible locations, all

local minima, but the global minimum is not guaranteed.

Another way to smooth a trajectory data set is by using principal curve

methods [29]. Principal curves are trajectory reconstructions based on statis-

tical estimates of the curvature from numerous complete trajectory samples

[103]. The main difference between principal curves and splines is that a

principal curve does not use a single linear polynomial. Instead, the shape of

principal curve is reconstructed recursively using principal component analysis

(PCA) and least squares methods to fit polynomials of increasing order.

All of the above methods apply to the analysis of curves in Euclidean

spaces. However, 3D orientation and rotation take place in a non-Euclidean

space. Rotation sequences also describe trajectories that one should be able

to match. Yet, due to the characteristics of how orientations and rotations

are represented, trajectory matching is not an easy feat. One should make a

distinction between orientation and rotation. Orientation is the direction of

a rigid body relative to a reference frame. Rotations are mapping operators

that work upon the direction of a body.

Initially, a discrete orientation is represented as a state-space vector

θ = {θ, φ, ψ} , (1.5.10)

containing a scalar field with the Euler angle magnitudes for corresponding ro-

tation axes. Consequently, rotation sequences are represented as a state-vector

sequences for every discrete step i of the rotation sequence, i.e. a rotation se-

quence is represented as a set of vectors θ = {θ[1], θ[2], · · · , θ[i], · · · , θ[M ]}.
At every step i of the sequence, each specific orientation vector is decoded

with a rotation operator. The operator can be in the form of a matrix R or

other mathematical object that handles orientations.

An n-dimensional rotation operator can be obtained as the product of in-

dividual rotation operators in lesser dimensions. However, rotation operators

are non-commutative. Their sequential order is not interchangeable but it is

reversible. Consequently, the order in which the product is obtained is im-

portant. All rotation operators use an specific order to obtain the general

operator. This specific order is known as “convention.” Some common no-

tations are: the aeronautical convention (YPR for Yawl,Pitch and Roll), the

ZY Z convention, and the XY Z convention [60]. In this sense, representing

the orientation with a state-vector is advantageous since it is independent of

the rotation convention.

A rotation sequence represents an orientation trajectory. Orientation tra-

jectories, unlike Euclidean trajectories, are impossible to describe as continu-
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ous functions. A naive approach is to consider the state-vector set θ as linearly

independent functions for each Euler angle and use linear relationships for in-

terpolation. Such a description fails when the variations in θ are not small,

i.e.

θ + δθ 6≈ θ. (1.5.11)

The reason is that the rotation operator is nonlinear for variations of θ out-

side a small neighborhood [173]. It is common that the rotation operators

obtained under such premises contain unforseen singularities. This problem is

commonly known as the “gimbal lock.” The reason behind is that many of the

properties of Euclidean spaces are not available for rotation operators [125].

Establishing interpolation functions for orientation trajectories is another

important issue. Approximations to the orientation trajectory using linear

interpolation with rotation matrices usually yield jittering trajectories. The

jitter is because of the first-order approximation with the Jacobian matrix

[14], [185]. Additional constraints are necessary to smooth the inverse of Ja-

cobian matrix [183], [50]. Euler angles and rotation matrices are ill suited for

such a task because of the afore mentioned reasons. Other descriptions such

as quaternions allow interpolation functions for ranges outside a small vari-

ation of θ [173]. However, such functions consider geodesic paths [62]. The

consequence is that a rotation sequence is set of geodesic paths between fixed

orientations.

The most important limitation in comparing orientation sequences refers

to how to measure differences between two different orientation state-vectors.

Orientation matrices do define a distance between two orientation state-vectors.

Another important is that each orientation trajectory has to be preserved in

precisely n number of states comprising the whole rotation sequence.

An advantage of the orientation state-vector is that it is minimal and com-

plete representation. An orientation state-vector is minimal because there is

no further reduction in the number of parameters. It is also complete be-

cause it fully represents the rotation operation. Rotations are also represented

with other operations that require a greater number of parameters such as

vector-angle operations, homogeneous matrices, and unitary quaternions.

Rotation representation with either vector-angle rotation or unitary quater-

nions use four parameters. A rotation with vector-angle notation uses a three-

dimensional vector and an scalar. The unitary vector describes a directed

rotation axis while the scalar indicates the rotation magnitude. Quaternions

have a similar geometric interpretation.

However, one can reduce the number of parameters as a rotation vector

with only three parameters. The reduction involves a re-mapping from Carte-

sian to Polar coordinates. Instead of representing a direction as a unitary
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three-dimensional vector, the axis direction can be viewed as a point on the

surface of a unitary sphere. The sphere manifold requires only two param-

eters to indicate a direction. The direction is given by a set of coordinates

which direct an outward unitary-vector normal to the sphere surface at that

specific set of angular coordinates φ and ψ. Thus, the scalar set θ describes a

vector-angle operation, a representation that it is minimal.

Other forms for representing orientation paths are based on using a sub-

set of a Grassmann algebra, i.e. quaternions [74], [10], [11]. Quaternions are a

non-Abelian group, non-commutative algebra; meaning that the multiplication

order cannot be freely exchanged and the quaternion inverse has a negative

sign. An orientation and a rotation operation are generally represented with

a quaternion subset: unit quaternions. The unit quaternion subset is de-

fined by all the quaternion numbers with norms equal to one. Unfortunately,

the unitary quaternion subset is not a close set for addition and substrac-

tion. Algebraic operations such as addition and substraction will remain in

the quaternion domain, but their solutions will not have unit norm. Only the

multiplication and the division are closed operations for the unit quaternion

subset. Additionally, the rotation representation with quaternions is not min-

imal, both an orientation and a rotation are represented with four parameters

in quaternions.

Computer graphics is one of the first applications representing rotations

with unit quaternions. Quaternions have an interpolation framework for ro-

tations that is commonly used in computer animation. However, rotation in-

terpolation does not use quaternions directly. Rotation interpolation involves

an indirect approach in which two quaternion numbers mark the initial and

the final orientations. Then, the procedure divides the geodesic trajectory

between the two specific quaternions. Each point in the geodesic is estimated

using a linear weighted function and the corresponding orientation positions

are returned as Euler angles. The algorithm was first introduced by Shoemake

[173] and it has been used ever since. Other and more complex algorithms

construct splines using geodesics between specific orientation points, but all

use Shoemake’s algorithm as a foundation [62]. Quaternions are non-convex

and non-linear spaces. This is the limiting factor that makes their use in

applications other than computer graphics difficult.

In this thesis, we will demonstrate that it is in did possible to use quaternion

spaces for motion sequence recognition. We will also develop some arguments

over the properties of such spaces, some simplifications, and how they can be

actually used to simplify recognition tasks, even if these spaces are non-linear

and difficult to conceptualize.
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1.6 Summary

Several points can be drawn from the previous review of the literature.

1. The effectiveness of any recognition system is greatly enhanced when the

feature space truly represents the phenomena.

2. Any state-space representation has to include the geometric interpreta-

tion of the articulated motion. Many constraints need to be imposed to

restrict conditions such as scene or sequence length, producing specific

systems for very specific conditions. There are no general solutions.

3. Template approaches are computationally inexpensive but they do not

provide invariance to other factors, nor they can be used to segment the

elements of the gesture.

State-space models need a great amount of description about the body

structure and the external forces acting on it. For the case of human articu-

lated motion recognition systems such descriptions are not usually available. In

the case of robotics, it is possible to provide such descriptions, but they also re-

quire dynamic models for motion planing which is not easy to provide. Motion

planning requires multidimensional minimization that often is ill–constrained

yielding local minima solutions. Trajectory planning in robotics is a fertile

ground for geometrical models of motion where the state-space models of dy-

namics are complementary to each other.

Explicit and implicit space models can be seen as the two sides of the

same coin. Both tackling different perspectives and complementary aspects of

the problem. Explicit state-spaces have powerful differential descriptions of a

system. Such descriptions have to deal with some degree of randomness and

uncertainty due to system conditions and measurements. The best estimates

for such systems are provided with adaptive filtering techniques such as the

Kalman filter. Such filtering techniques require knowledge about the signal

uncertainty and therefore some assumptions are made about the noise. Implicit

state models are proxy models that do not have an explicit description of the

system and can be viewed as black boxes. The premise is to extract information

from indirect observations from inputs and outputs. Usually such observations

are expressed in form of discrete sets of conditional probabilities.

What it is expected from a proxy state-space system is that a Shannon

maximum entropy input will yield a minimum uncertainty output. This is

the rationale when a system is analyzed with implicit state–space methods,

one expects from the system to have some deterministic features that will be

reflected on the system’s output. This principle is applied to signal processing,
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signal compression, and system identification and it is also valid to implicit

state-space techniques such as hidden Markov models.

Some issues when using state-space models for gesture recognition are:

1. Determining a similitude metric. In other words, how one can determine

that a gesture belongs to a specific family of gestures from two different

spatial geometric spaces: position and orientation.

2. Explicit state-space models: when the sequence of consecutive observa-

tions remain in the same modal forms (eigen-values).

3. Implicit state models: when the sequence between comparative model

and the observed sequence remain within a probability threshold.

4. Geometric models: when the observed and pattern trajectories remain

within a threshold distance and their curvatures preserve the same se-

quences.

Current homogeneous representation of geometric models, a.k.a. kinematic

models, have shortcomings when representing rotations. Such deficiencies are

similar to state model representations in the sense that it is impossible to

obtain a short representation of the 3D trajectories of a rigid body.

In order to compare kinematic trajectories from a body, one has to com-

pare segments of the complete trajectory in the form of sequences of state-

space vectors. The memory and computational requirements to store individ-

ual trajectories are great. In addition, there is no mathematical formulation

for comparing directly sequences of state-vectors outside an Euclidean space.

Orientations and rotation operators possesses spherical geometry and linear

approximations on the sphere are ineffectual outside of a small neighborhood.

This implies that for fast changes in orientation the sampling rate for the tra-

jectory should be high. How high the sampling rate should be is speculative

at the moment. One must know the characteristics of the orientation space.

An important difficulty with rotation matrices is that they do not have

a geometric interpretation. The rotation matrices conform a special group,

namely special orientation group SO(3) [60], [125] in lie algebras. Often, in

the analysis of spatio-temporal trajectories, the first intuition is to extract the

Euler state-vector from the orientation matrices. Most of all state information

on the position and the orientation is provided in a state-vector form. The

position state is an Euclidean space, a space with metric. It is possible to use

interpolation to infer intermediate states. On the other hand, Euler spaces do

not have intrinsic metrics, and thus linear interpolation do not converge to an

accurate value in between Euler space-states. One has to use a different metric,
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other than Euclidean, to correctly interpolate points between two distinctive

orientations.

Rotors or quaternions are one specific Grassmann algebra that provides a

space with better comparative features for orientations, yet the spaces remain

mostly unexploited in pattern recognition. The reason is that quaternions are

far less intuitive than rotation matrices. A well known interpolation algorithm

that uses quaternions is the Spherical Linear Interpolation (SLERP) algorithm

[62].

More complex trajectories in the orientation space use other interpolation

algorithms, but they use SLERPs as primitives. A SLERP defines a geodesic

arc on the surface of a sphere such that it is analogous to straight line in a Eu-

clidean space. Rotation sequences can be segmentally described and classified

with sequences of geodesic arcs.
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Chapter 2
Mathematical Foundation for
3D Gesture Comparison

2.1 Introduction

In the previous chapter, we discussed different approaches to the motion se-

quence recognition problem based on dynamical and geometric models found

in the literature. The solutions are divided into two main groups: continuous

and discrete.

Continuous methods solve Lagrangian models under structural constraints

imposed by a geometric model. Lagrangian models are predictive and require

detailed physical parameters while geometric models are descriptive and their

parameter sets are rather small. Usually, a Kalman filter is used to smooth

the force estimates from the Lagrangian models. Continuous models define

structural and physics–based constraints for path trajectories in 3D space.

Discrete methods are proxy models to physical models. Unlike Lagrangian

methods, proxy models avoid large parameter sets using distribution likeli-

hoods instead. A motion recognition problem is viewed as a discrete optimiza-

tion problem for a set of state sequences. The motion is recognized when a

state sequence has an overall minimum distance to a pattern sequence. The

main concern is to define a distance metric between sequences.

From the signal processing standpoint, 3D-gesture comparison can be seen

as solving a template matching problem where motion sequences are identified

using template correlations. Fundamentally, a correlation is a linear measure

of similitude. In signal processing, correlations identify specific patterns with

a known spectral characteristic inside of a sequence of unknown patterns.

Spectral characteristics often depend on how the sequence and the metric

are defined. The ability to match any pattern within a sequence or a struc-
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2. Mathematical Foundation for 3D Gesture Comparison

ture is highly dependent on the invariance of the spectral description. In the

Fourier domain, the spectral characteristic of a signal is the signal’s power or

energy content per cycle unit

[
2π

sec

]2
. The estimate from the signal’s power

distribution in the Fourier domain is known as the signal’s spectrum. However,

in a geometric domain, the shape of a manifold is determined by its spectral

characteristic which is generally defined by solving the eigenvalue problem:

Ax = λx ∀ x 6= 0. (2.1.1)

Most geometric spaces define intrinsic measures of distance from their spec-

tral characteristic. By definition, Euclidean spaces define their intrinsic dis-

tance as the inner product 〈 , 〉 of the vector difference d between two points

x[j] and x[k] such that d = x[k]− x[j] ∀ {j, k ∈ Z} and under the Euclidean

inner product:

d2 ≡ 〈d,d 〉 = dTd = ‖d‖2. (2.1.2)

The distance d is invariant and extensible to points in Euclidean spaces of

higher dimensions. Other geometric spaces with geometries different to Eu-

clidean also define spectral distances accordingly.

Gesture comparison, as defined in Chapter 1, is fundamentally a problem

of similitude metrics in spaces with two different geometries. Gesture compar-

ison is not only concerned with identifying a particular sequence of states, but

also with measuring the individual similitude between states in a sequence. In

human gesture, the comparison problem is more than simply identifying spe-

cific temporal sequences of motion. The comparison has to take into account

not only specific trajectories in a three-dimensional space, but their temporal

characteristics as well. Gesture comparison cannot be solved by only consider-

ing the state distribution in the feature space. Gestures are not just collections

of random points in space, they are deterministic, they have constraints and

they have limiting conditions due to structural relationships.

Another important aspect of gesture comparison are time dependencies.

Motion sequences may have the same spatial trajectories, but they may be

executed with different timing at different stages. A form of invariance in-

volving time is the stationarity or periodicity of a signal. There are motion

sequences that are also periodic and thus stationary. Often motion sequences

are compared based on their stationarity. A prime example of stationary mo-

tion are gaits. Gaits and other complex kinematic motion can be analyzed

using time or its reciprocal in the Fourier domain. However, aperiodic motion

sequences such as gestures are not stationary. This implies that for a real-life

gesture recognition system, spatial invariance is essential but not sufficient;

time invariance is also required.
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One of the main contributions of this thesis are the use of invariant repre-

sentations and distance metrics for both position and orientation to perform

temporal gesture comparison in 3D space. Gesture comparison cannot rely

only on solving the identification problem for a sequence, but it also has to

find spatial invariance and space metrics. This is key since the comparison

process has to be independent of the point of view of an arbitrary reference

frame F .

This chapter is divided into five main sections. Section 2.2 introduces

the concept of similitude metrics under geometric constraints for kinematics.

Section 2.3 describes the mathematical foundations for trajectory analysis of

position alone. Section 2.4 introduces fundamental concepts for orientation

trajectory analysis based on three different representations: rotation matrix,

vector-angle rotation, and quaternions. Section 2.5 introduces different quater-

nion projections onto 3D-Euclidean spaces. We introduce a projection space

that allow us to use Euclidean differential geometry directly to quaternions,

an important contribution of this thesis. We also analyze different metrics for

orientation transformation and dimensional reduction. We will then summa-

rize the advantages and disadvantages of the proposed method and the thesis

contributions.

2.2 Similitude Metrics and Geometric

Invariance

Invariance is the key feature for any similitude metric. Invariance is the prop-

erty of a vector x to remain unaltered by a n-dimensional affine mapping f .

The specific mapping may include one of the following operations: translation,

rotation, and scaling. The invariance is usually characterized by the mapping

f operating over a n-dimensional vector x such that:

‖f ◦ x‖ 7→ ‖x‖, (2.2.1)

where ◦ defines a general operation of f over x. The solution to Equa-

tion (2.2.1) is equivalent to finding a solution of the Eigenvalue problem:

Ax = λx ∀ x 6= 0 and λ = 1. (2.2.2)

In both Equation (2.2.1) and Equation (2.2.2), the inherent metric is one.

The functional form of f requires invariance in scaling, thus its metric is

fixed to one. In the Eigenvalue problem, if a solution for A−1 exists then, the

orthogonal vector corresponding to the smallest eigenvalue defines the principal
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0

x
0
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Figure 2.1: A set of points x = {x[1],x[2], . . . ,x[M ]} describes a 3D structure refer-
enced to an external reference frame F0. The object defined by the set x is not invariant
to translation or rotation from the external reference frame F0.

direction that does not modify the vector x, while the smallest eigenvalue

defines its metric.

The invariance property is not always guaranteed. Invariance is lost ei-

ther because an increase in the number of dimensions or because the intrinsic

space geometry diverges from an Euclidean representation. Here, the con-

cept of mathematical manifolds emerges to reconstitute an Euclidean space

at infinitesimal scales and thus to preserve some invariance at neighborhood

level.

In the case of disjoint spaces, such as Euclidean spaces, most similitude

metrics are based on the Euclidean distance, see Equation (2.1.2). The Eu-

clidean distance d2 is an invariant metric of similitude between points x in a

n–Euclidean space since if x[i+ 1] ≡ x[i] then d2 = 0 and d2 > 0 otherwise.

Now, suppose that a sequence or a structure is defined by a set x containing

M points x in an n-dimensional Euclidean space, i.e.:

x = {x[1],x[2], · · · ,x[M ]}T (2.2.3)

referred by an external reference frame F0, see Figure (2.1). It is assumed that

the data set x follows the rules of linear algebra and tensor notation.

From the reference frame F0 perspective, the object represented by x varies

according to changes in position and orientation. Affine invariance for set x is

achieved by referring it to a local reference frame Fℓ and then referring Fℓ to

the general reference frame F0, see Figure (2.2).
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2.2. Similitude Metrics and Geometric Invariance

x[1]
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x
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Figure 2.2: The set of points x is now translation invariant since the structure is
referenced by a local reference frame Fℓ. All distances to Fℓ are constant.

Essentially, positioning and orienting a local reference frame Fℓ follows one

of two basic strategies. The first one is based on statistical moments and it

involves placing the frame Fℓ outside of the manifold, yet within an optimum

distance from all the elements in the set x. The second one, places the local

reference frame F0 on the manifold at one element in the set x such that the

position rℓ of Fℓ is rℓ = x[ℓ].

In the statistical method, the position rℓ for the local reference frame F0

depends on the mean from the data set x̄ such that the frame position rℓ is:

rℓ = x̄ = E [x] . (2.2.4)

The frame orientation, denoted as Uℓ, is also determined using second

order statistical moments. The statistical variance of the data set x, denoted

as Σ(x) is the second statistical moment:

Σ(x) = E
[
(x− x̄)(x− x̄)T

]
. (2.2.5)

And the solution of the eigenvalue problem

det(Σ(x)− λI) = 0 (2.2.6)

provides the eigenvectors ui(x) for the local frame orientation Uℓ.

The second method is based on differential geometry of curves and surfaces

in space. The position rℓ for the frame Fℓ is, more o less, unconstrained.
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2. Mathematical Foundation for 3D Gesture Comparison

However, without distinction of a curve or a surface, the location of initial

local frame Fℓ[0] is always within the manifold, i.e.

rℓ = x[ℓ]. (2.2.7)

with the only constraint that the chosen point x[ℓ] is not an inflection point,

i.e.

lim
x→xℓ

f(x) = L usually,

∥∥∥∥
d(n) x

d sn

∥∥∥∥
x[ℓ]

<∞. (2.2.8)

where s is the cumulative arc-length for the manifold.

Now, let us consider an homogeneous superset X composed from individual

sets:

X = {x1, x2, · · · , xj , · · · , xk, · · · , xN} N ∈ N. (2.2.9)

describing N geometric objects either curves or surfaces. There are no con-

straints imposed on the individual element sets xj as for the Mj number of

points within in each set. The location and orientation of the individual local

reference frames Fℓ[j] is also dependent on the individual data set xj . The

problem is how to assert the similitude of the sequences or the structures rep-

resented by the individual sets xj. It is not possible to use a simple similitude

metric such as the Euclidean norm from Equation (2.1.2). The Euclidean

norm is not a similitude metric for structures or sequences in X. One must

take other factors in consideration.

The first factor is the individual number of samples Mj in each subset xj .

The general case assumes that

Mk 6=Mj {j 6= k} > 0 ∈ Z. (2.2.10)

One procedure to compare two different sets xj and xk with different sample

number Mj and Mk is to equate the sample number to the largest of the two.

Usually, the procedure involves a combination of interpolation functions and

re-sampling operations onto the set with the smallest number of samples.

The second factor is how to measure the overall similitude between the

different objects xj and xk. It is possible to compare sets xj and xk with

different sample numbers by either using dynamic programming techniques

that rely on the definition of a distance or using differential geometry that

uses a re-parametrization. However some minimum conditions are expected.

In 1D objects, the basic assumption is that xj and xk are sampled at the

same frequency rate. For 2D manifolds, the resolution, sampling rate over

manifold arc-length, may be different due to projection conditions but the

basic assumption is that both manifolds are analytic and aligned in the same

direction or, at least, they are invariant to 2D affine mappings. Finally, for 3D
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2.2. Similitude Metrics and Geometric Invariance

manifolds, besides the analytic condition, the minimum expectation is that a

3D alignment function exists.

Similitude metrics based on distances are subject to minimization con-

straints. Since the invariance for geometric objects is based on local reference

frames Fℓ, the correlation is highly dependent on the alignment between ref-

erence frames. The usual constraint is expressed as:

d = min

Q−1∑

i=1

∥∥∥
(
xj [i]− x̄j

)
− R̂

k

j

(
xk[Q− i]− x̄k

)∥∥∥
1
2

(2.2.11)

for the discrete case and

d = min

∞∫

−∞

∥∥∥
(
xj(t)− x̄j

)
− R̂

k

j

(
xk(t+ τ)− x̄k

)∥∥∥
1
2
dτ. (2.2.12)

for the continuous case. R̂
k

j is a n-dimensional tensor represented in matrix

form and it is an estimated alignment operator.

Finding the estimated alignment operator R̂
k

j is known as “the registration

problem.” The geometrical estimation of R̂
k

j is based on the well known

Iterative Closest Point (ICP) algorithm [198]. The ICP algorithm maximizes

the trace of the covariance, Tr (Σ(x)), for all the paired points as means to

determine the optimal alignment operator R̂
k

j . The main issue with ICP is

that its solutions require a good initial estimate of the initial pose profiles.

If the initial pose is under- or over-estimated, the minimization function may

fall into a local minimum. This is mainly because ICP assumes that the

global minimum is close to the initial estimate and thus there is only a small

orientation difference between the individual sets xj and xk.

In signal processing, one can compare two 1D functions g(t) and h(t) by

simply using cross correlation:

C(τ) = (g ∗ h)(τ) =
∞∫

−∞

g∗(τ)h(t + τ) dτ (2.2.13)

where g∗ indicates a complex conjugate of g, C(τ) is a scalar number, −1 ≤
C(τ) ≤ 1, that quantifies the similarity between the two sequences f(t) and

g(t). Or equivalently in the Fourier domain:

C(f) = G∗(f)H(f). (2.2.14)

The latter form is popular because it is computationally inexpensive when

using the Fast Fourier Transform (FFT), only O(N log2N). The cross corre-

lation coefficient C(τ) is invariant for one-dimensional functions or continuous
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sequences with respect to time. However, it is not possible to apply Equa-

tion (2.2.13) in higher dimensions.

The reason lies in the geometrical nature of the 3D data sets contained

in X. Equation (2.2.13) lacks invariance. The cross-correlation has to be

modified in order to take into account the alignment problem between distinct

subsets xj and xk. Assuming that the sampling rate is the same for both, one

defines Q =Mj +Mk to also include the individual lengths for the sets xj .

The modified n-dimensional correlation is:

C[i] =

Q−1∑

i=1

(
xj [i]− x̄j

)
T

R̂
k

j

(
xk[Q− i]− x̄k

)
. (2.2.15)

for the discrete case and

C(τ) =

∞∫

−∞

(
xj(t)− x̄j

)T
R̂

k

j

(
xk(t+ τ)− x̄k

)
dτ (2.2.16)

for the continuous case. The n-dimensional cross-correlation coefficients C[i]

and C(τ) are one-dimensional vectors of length Q− 1 and they are subject to

the alignment constraints in Equations (2.2.11) and (2.2.12) for they respective

cases.

The last similitude metric is based on differential geometry. A signature

is needed in order to compare two distinct curves or surfaces. The difference

between two or more intrinsic signatures from different curves or surfaces es-

tablishes a similitude metric that is invariant to affine mappings. In differential

geometry, curves and surfaces are manifolds xℓ that can be described with sets

of local reference frames {Fℓ[i]}. The location and the attitude of each frame

Fℓ[i] are function of each manifold derivatives ∂nx[i]. Every frame’s location

is function of the zeroth derivative, which is x[i]. Each frame’s attitude, which

is a tensor Uℓ[i], is determined by the directions of subsequent n-order deriva-

tives ∂nx[i]. The geometrical reasoning is that the n-order derivative set ∂nx

conforms an orthogonal directional set for each point x[i] on the manifold x.

The intrinsic signatures relate the set of tensors {Uℓ[i]} for each point x[i]

on the manifold x.

The position of the initial reference frame is always on the manifold, i.e.

rℓ ∈ x. In this case, the distance metric is defined by a local approximation

to the Euclidean distance at infinitesimal intervals. The distance between two

points in the manifold is the accumulation of all consecutive points in between.
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2.3. Geometric Models for Motion

2.3 Geometric Models for Motion

In the current section, we tackle the problem of kinematic representation.

Representing motion with homogeneous transformations presents the problem

of unrestricted minimization in a 6D-dimensional space. Generally, inverse

solutions for articulated bodies with more than six degrees-of-freedom are ill-

conditioned and not unique.

Geometric models, or kinematic models, are descriptive models. They do

not provide information about system dynamics. A point state-vector p is

described by a 6D set {x, y, z, φ, ψ, ϕ}. The state-vector p, namely location,

is subdivided into two state-vectors: position r = [x, y, z]T and orientation

θ = [θ, φ, ψ]T. The evolution of location, denoted as p(t) and p[i], uses these

two distinctive spaces:

p(t) =

[
r(t)
θ(t)

]
and p[i] =

[
r[i]
θ[i]

]
(2.3.1)

for the continuous and the discrete cases respectively. When comparing free

rigid motion using Equation (2.3.1), one has to solve two identification prob-

lems in different geometrical spaces: Euclidean and hyper-spherical, respec-

tively.

Two important concerns in a 3D-trajectory comparison are space dimen-

sionality and space metric. Both intertwine at different levels.

For example, Euclidean spaces can be both bounded or unbounded. Yet,

they guarantee that a solution exists for an trajectory identification problem

when the number of dimensions is limited to two; even for unbounded spaces.

However, with three dimensions, a solution existence for the identification

problem is not guaranteed, even when the space is bounded. On the other

hand, orientation spaces are always bounded and unlimited. However, the

number of space dimensions can be greater than three. Unlike Euclidean

spaces that define a metric in terms of an internal product, orientation spaces

are adimensional since they define an adimensional intrinsic metric measured in

degrees or radians. The metric is defined in terms of state–vector projections,

not internal products.

The dimensional complexity for comparing a curve is diminished by pro-

jecting the curve onto an intrinsic manifold. A high dimensional curve, such

as p(t) when it is projected onto a manifold, preserves its characteristics with

a reduced number of dimensions. However, not any projection nor any man-

ifold has the ability to preserve the curve’s characteristics. The projection is

limited by inherent constraints of the curve. For example, the description of

an articulated object can be simplified using fixed constraints given by the
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position and the orientation of each link and joint in the mechanism struc-

ture. Consequently, the mechanism’s intrinsic structure provides constraints

that reduce the dimensionality. The Denavit-Hartenberg notation [60] is an

example of dimensionality reduction using structural constraints.

In differential geometry, the structure of curves is best described by frames

and the relative geometrical relationships between them. The advantage is

that manifolds are described in terms of apparent Euclidean distances be-

tween frames. However, curves and manifolds may have geometries other than

Euclidean. The reduction in dimensionality appears because the frames lose

at least one degree of freedom when establishing relationships to other frames.

2.3.1 Frames

A frame F is a vector field in a n-dimensional space. Sometimes, a frame is

also referred as “tensor.” A n-dimensional frame F defines a set of linearly

independent but otherwise arbitrary vectors:

UF =
[
e1, . . . , ei, . . . , en

]
(2.3.2)

known as basis vectors. Such basis vectors are usually defined in terms of the

differential properties of the particular space.

The tensor UF is an arbitrarily oriented coordinate system. An n-dimen-

sional point xℓ becomes infinitesimally directed −→x ℓ by means of a local coor-

dinate system Uℓ acting upon the point, i.e.

−→x ℓ = Uℓxℓ. (2.3.3)

The subindex ℓ ∈ Z uniquely identifies each point in a space. Usually, the

subindex ℓ = 0 identifies a directed point as the global reference point for the

space.

In a set of directed points

−→x ≡
{−→x 0,

−→x 1, . . . ,
−→x i, . . . ,

−→xM

}
{i,M} ∈ Z

+, (2.3.4)

passing between individual points −→x ℓ is done by a mapping function Ri
ℓ :

R3 7→ R3 such that:
−→x i = Ri

ℓ
−→x ℓ (2.3.5)

or, equivalently,
−→x i = Ri

ℓUℓxℓ. (2.3.6)

The inverse mapping is simply

−→x ℓ = Rℓ
i
−→x i (2.3.7)
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or
−→x ℓ = Rℓ

iUixi. (2.3.8)

In the case of an sequential directed set −→x , each element −→x [ℓ] has a mono-

tonically increasing order such that the index is ℓ = {0 < 1 < · · · < i < · · · <
M} ∈ Z+. The mappings from the local frame Fℓ to the general one F0 and

viceversa are:

−→x [0] = Rℓ
0Uℓx[ℓ]

−→x [ℓ] = R0
ℓU0x[0]



 for ℓ = {1, · · · ,M}. (2.3.9)

Under Equation (2.3.9), the sequential directed set −→x is not invariant to ro-

tations acting upon the global reference frame at −→x [0], although it is invariant

to translations upon −→x [0].

2.3.2 Directed Curves

The sequential evolution of a directed point, as defined in Equation (2.3.3),

describes a discrete directed curve in a space −→p [i] with respect to a origin point
−→p0 that defines a global reference frame F0. Such a curve has mappings defined

by Equation (2.3.9). Now, let us assume that the individual directional frames

Ui have the same characteristics and that each basis vector ei are at least

orthogonal. Under such conditions, the directed curve −→p [i] can be expressed

in terms of a state vector containing individual positions r[i] and Euler state

vectors θ[i]

−→p [i] ≡
[
r[i]
θ[i]

]
. (2.3.10)

that contains the necessary information to recover U[i] and −→x [i] from the

general reference point −→p 0.

Equation (2.3.10) defines a discrete directed curve in terms of two geo-

metrically distinct subspaces. The analysis of gesture trajectories is usually

limited to the analysis of the position part, r[i]. The reason is the Euclidean

metric. The directional part, θ[i] is generally relegated due to the lack of a

linear metric. In the following sections, methods to achieve invariance in both

position and direction are introduced and reflected upon.

2.3.3 Gesture Comparison Using Position Alone

Gesture comparison using only position is deceptively simple. It is first as-

sumed that for each directed point in the directed set −→x , the local frames
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have the same direction as the global reference −→p 0, i.e.

Ui = U0 ∀ i. (2.3.11)

Thus, Equation (2.3.9) simplifies to

−→x [0] = Ri
0Ix[i]

−→x [i] = R0
iIx[0]



 for i = {1, · · · ,M}, (2.3.12)

which is simply a change in direction from the global reference frame −→p 0.

As the position x evolves as function of time t, then the direction from the

global reference point −→p [0] to the point x[i] also changes:

∆−→x [0] = Ri
0∆x[i] + ∆Ri

0x[i]

∆−→x [i] = R0
i∆x[0] + ∆R0

ix[0]



 for i = {1, · · · ,M}. (2.3.13)

As Equation (2.3.13) shows, there is a nonlinear term in the expression,

∆Ri
0 and its inverse. For simplicity, it is assumed that the change in direction

∆−→x [0] is mainly due to the change in position ∆x[i] and ∆Ri
0 is negligible.

Then Equation (2.3.13) is

∆−→x [0] = Ri
0∆x[i]

∆−→x [i] = R0
i∆x[0]



 for i = {1, · · · ,M}. (2.3.14)

2.3.3.1 Curve Invariance with Local Frames

The independent variable of time t plays an important role in many aspects of

motion, but one has to consider if the variable t is really valuable. Dynamics

are not part of the motion description using kinematic models. A motion is

described only in terms of geometric transformations. Time is valuable when

other physical variables such as mass, density, and momentum are part of the

model, but is meaningless otherwise. For these reasons, it seems reasonable to

leave the notion of time as a parameter to analyze gesture.

An invariant re-parameterizations is to redefine time parameter t in terms

of the cumulative arc-length s instead. By replacing time t with the cumulated

arc-length s, a curve is no longer influenced by an external variable but only

by the intrinsic geometry of the curve. The position trajectory r(t) is now

invariant under s and one can re-map r(t) 7→ r(s) directly. This effectively

changes the position of a point in the trajectory determined by an external

variable t to an intrinsic variable s which can be normalized between [0, 1].
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Figure 2.3: A set of discrete transformations describing a sequence of translations and
rotations. The discrete transformation T [i] translates and re-orients the previous state
vector p[i], effectively moving the origin for the next transformation T [i+1]. Thus, the
approximation p[i] is view–invariant as the continuous form pI(t).

The arc-length s of a limited continuous trajectory between [0, t] is defined

in Equation (1.5.6). For the discrete case, the arc-length is approximated by

a finite number N of discrete samples:

s2 =

N−1∑

i=1

〈∇r[i],∇r[i]〉 (2.3.15)

where 〈∇r[i],∇r[i]〉 is the Euclidean metric between two discrete points in

space. The analytic properties of r(s) are equivalent to the analytic properties

of r(t).

Gesture comparison is based mainly on comparing spatial trajectories.

Thus, it is critical to find viewpoint invariant descriptions to trajectory motion,

independent of time. With the proposed time re-parametrization, the prob-

lem complexity is reduced to spatial variables only, although time remains

implicitly expressed as a scaling constant of the trajectory sequence.

2.3.4 Viewpoint Invariant Analysis of Position

Using the Frenet-Serret Frame

View invariance refers to the problem of analyzing trajectory in space indepen-

dently of the coordinate reference frame. An reference frame F determines the

position of a point in space. Often, the reference frame location is independent

of the point and consequently, extrinsic to the point. A consequence of this
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relativistic description is that there is no single description which is above any

other. Thus, the point evolution, or trajectory r, is not invariant to distinct

external reference frames.

The only description of a particle’s trajectory that is invariant for any loca-

tion in space is one obtained by setting a reference frame F within the particle.

Since the reference frame “travels” with the particle it is said that it is local

to the particle or intrinsic. Any set of transformations changing the position

and/or orientation of the particle becomes relative to this frame. Within any

given sequence of transformations, the trajectory is fully determined by follow-

ing the transformation sequence back and forth. Any comparison between such

descriptions is invariant. The disadvantage of using intrinsic frames is that a

particular trajectory r(s) has to be traveled recursively from the beginning to

the end with the intrinsic frame.

Frenet-Serret frames map a global reference frame F0 into a local frame

Fℓ. The matrix representation of Equation (1.5.7) uses the curvature κ (s)

and torsion τ (s), and it shows how the dimensionality is reduced to only two

parameters.

2

T0

N0

N1

T1
N2

T2

∆ t ∆ t

T0
∆υ∆ s

∆ s

1

Figure 2.4: A Planar perspective of a curve for geometrical interpretation of the cur-
vature κ.

As it is seen at Figure (2.4), the tangent vector T̂ and the normal vector N̂

are characteristics of a planar curve. As the curve is sampled from an extrinsic

point of view, represented by ∆t, the arc-length of the individual sections ∆si
may differ between them. A linear approximation to the curvature κ[i] is

defined by the rate:

κ[i] ≈ ∆υi

∆si
=

1

∆si
arccos

(
T̂i · T̂i−1

)
. (2.3.16)
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2.3. Geometric Models for Motion

The inverse of the curvature, the radius of curvature rκ[i] can be seen as the

distance to the intersecting point between N̂i and N̂i−1. When T̂i and T̂i−1 are

parallel, the intersection point occurs at the infinity and thus the curvature is

zero, the opposite is also true. This situation causes an singularity in κ[i].

Similarly to Equation (2.3.17), the approximation to the torsion is

τ [i] ≈ 1

∆s2i

arcsin
(
N̂i − N̂i · N̂i−1

)

arccos
(
T̂i · T̂i−1

) , (2.3.17)

which is a rotation rate about T̂i.

The outer product T̂× N̂ defines a bi-osculating plane on which the curve

is moving, and the outer product T̂× B̂ defines a rate at which the curve r(s)

leaves the plane T̂× N̂ as shown at Figure (2.5).

T

^

N̂

1
(s  )N̂

1
(s  )B̂

2
(s  )

2
(s  )

2
(s  )

T̂
3

(s  )

B̂
3

(s  )

N̂
3

(s  )

1
(s  )T̂

^

B

Figure 2.5: Frenet-Serret Frames are characterized by two parameters: curvature κ(t)
and torsion τ(t). The vectors T̂, N̂ and B̂ are orthonormal, i.e. ‖T̂‖ = ‖N̂‖ = ‖B̂‖ = 1
and T̂ · N̂ = 0, T̂ · B̂ = 0 and N̂ · B̂ = 0

The name bi-osculating coordinate system is based on the fact that both

parameters, curvature κ (s) and torsion τ (s), are inverse values of radius dis-

tances, namely curvature radius rκ and torsion radius rτ . The curvature radius

is circumscribed to the plane T̂ × N̂ while the torsion radius is circumscribed

to the orthogonal plane T̂× B̂.
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2.3.5 Advantages and Disadvantages of Frenet-Serret

Frames

View invariance and dimensionality reduction are the main advantages of using

Frenet-Serret frames for trajectory descriptions. The reduction of the dimen-

sionality is done by swapping extrinsic reference frames for intrinsic frames to

the curve r(s). The descriptive space is a (n − 1)-dimensional orthonormal

space. Such reference frames are invariant to how the n-dimensional curve is

embedded in the space.

However, although the curve description is invariant, the associated costs

may offset the advantages. Intrinsic frames require smoothness from the tra-

jectories. As expressed by the generalization of Frenet-Serret frames to higher

dimensions in Appendix (A.1), the local frame is described in terms outer

products of the (n)-order derivative. For a two–dimensional curve, the cor-

responding Frenet-Serret frame requires the second spatial derivative, for a

three–dimensional curve, the associated Frenet-Serret frame requires the third

spatial derivative and so on.

Although higher derivatives may not be an issue as a theoretical descrip-

tion, for practical applications such as, real-time filtering, and comparison, the

numerical computation are challenging at best due to the effect of round off

errors as noise in the approximation.

2.3.6 Numerical Computation of Curvature and Tor-
sion

Curvature and torsion in 3D are approximated from the data set derivatives

with respect to the arc-length, r′, r′′ and r′′′ using outer products:

κ = |r′ ∧ r′′|,

τ =
|r′ ∧ r′′ ∧ r′′′|

|r′ ∧ r′′| .
(2.3.18)

Numerical approximations of the derivative vectors r′, r′′ and r′′′ can be

done by either convolving nonlinear interpolation filters [170],[177] or using

finite-difference methods [107]. In either case, the assumption is that the

curve’s sampling rate is approximately constant or varies smoothly:

δs ≈ c. (2.3.19)

Mapping a constant sampling interval from time to distance is more or less

guaranteed in Euclidean spaces due to the orthogonality of the space.
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Still, when the space geometry is such that the measure for distance is

not linearly constant, the method for approximating the derivatives must be

compensated or it will suffer from distortion [107], [155]. In following sections,

we analyze the respective cases for convolution and finite-difference methods

with non-equidistant samples.

2.3.6.1 Convolution Method for Spatial Derivative Approximations

2.3.6.1.1 The Signal

The key idea behind a convolution filter is that an observed n-dimensional

signal x[t], n×1 can be approximated as a linear combination of locally smooth

functions By[t] plus and error ε:

x[t] = By[t] + ε. (2.3.20)

In general, Equation (2.3.20) is an over-determined system and thus its

design matrix B is of size m× n and y[t] is a vector of size m× 1. The true

signal y[t] is approximately the expected value of the observed signal x[t], i.e.

y[t] ≈ x̄[t] ≡ E [x[t]] (2.3.21)

The expected value x̄[t] takes place within a window with support 2w+1 and

w ∈ Z. The error ε is considered of Gaussian nature with zero mean and σ2

variance, i.e. ε = N (0,σ2).

The smoothing filter is obtained from solving the signal model in Equa-

tion (2.3.20):

y[t] = (BTB)
−1
BT x[t] + ζ (2.3.22)

for which it is expected that ζ << ε.

2.3.6.1.2 The Noise

A tacit notion in convolution filtering is that the signal-to-noise ratio (SNR)

must be greater than a constant k. The SNR is defined for a discrete signal

x[t]:

SNR = k log10

( |x[t]|
ε

)
(2.3.23)

Since practical convolution is calculated using a binary representation, the

SNR includes the noise from the binary quantization k = 20 log10 2× (#bits).
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The error ε is also defined as an average:

ε2 =
1

T0

1
2
T0∫

−
1
2
T0

(x[t]− x̄[t])2dt ≤ σ2. (2.3.24)

When SNR ≤ k then the filter is inadequate since the noise level borderlines

a Wiener estimation problem.

2.3.6.1.3 Savitzky-Golay Filter

A Savitzky-Golay (SG) filter [170] is a moving averaging filter or low pass

filter. The SG filter smooths x[t] while it preserves the signal’s higher statisti-

cal moments. Higher statistical moments are preserved because the SG filter

employs a local fit of a high order polynomial [170], [177]. A high order poly-

nomial ensures that the smoothed output y[t] is C(n) continuous for the local

neighborhood. Also because the SG filter fits a local high order polynomial,

it can be used to compute time derivatives.

In classic digital signal processing, it is better to express a digital filter in

terms of the z-transform. The z-transform defines z is a complex number that

lies in the unit circle of the complex plane:

z = e j ω

2w+1 ∀ ‖z‖ = 1. (2.3.25)

which is the discrete Fourier frequency domain. ω has a periodic range, [0, 2πn)

∀ n ∈ Z, that represents the discrete Fourier frequency domain which limits

at the Nyquist sample rate fN :

ω = 2πnfN . (2.3.26)

Consequently, the z-transform is unique because integer powers of z are cyclic

by definition:

e ±j 1
2w+1

ω = e ±j 2
2w+1

ω = · · · = e ±j (n−1)
2w+1

ω = e ±j n

2w+1
ω ∀ n ∈ Z (2.3.27)

The smoothed signal y[z] is expressed with the smoothing model in Equa-

tion (2.3.22) but dependent on the discrete z polynomial as:

y[z] = Wx[z] + ζ (2.3.28)

where W is the smoothing weight matrix, x[z] is the polluted input expressed

in terms of the z-transform.
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Since one can consider the spatial components in Equation (2.3.22) as

independent, one can express the SG filter for a single component y[t] and

then generalize it for the rest. The expected signal value y[t0] is computed

from a linear combination of weights for window of size (2w+ 1) where w ∈ Z

such that

w =

{
δ[i]√
2w + 1

}
i = {−w,−w + 1, . . . , 0, . . . ,w − 1,w} (2.3.29)

where δ[j] is an impulse function, a.k.a. dirac function. The dirac function is

simply defined as:

δ[i] =

{
0 at i 6= j.
1 otherwise.

(2.3.30)

The sequential structure of the vector w in Equation (2.3.29) is expressed

as a z-transform polynomial:

w[z] =
1√

2w + 1

(
a−wz

−w + a−(w−1)z
−(w−1) + · · ·

+ a0z
0 + · · ·+ aw−1z

w−1 + awz
w
)
. (2.3.31)

And the n-order derivative in Equation (2.3.31) is simply:

w(n)[z] =
1√

2w + 1

(
(a−w(−1)nwn) z−w +

(
a−(w−1)(−1)n(w − 1)n

)
z−(w−1) + · · ·

+0 + · · ·+ (aw−1(w− 1)n) zw−1 + (aww
n) zw

)
. (2.3.32)

A Jacobian matrix J is the B term in signal model, Equation (2.3.20). J

is fully represented with a Vandermonde matrix:

J [z] =




(−1)0w0, · · · (−1)n−1wn−1, (−1)nwn

(−1)0(w − 1)0, · · · (−1)n−1(w − 1)n−1, (−1)n(w − 1)n

... · · · ...
...

00, · · · 0n−1, 0n

... · · · ...
...

(w − 1)0, · · · (w − 1)n−1, (w − 1)n

w0, · · · wn−1 wn




(2.3.33)

of size ((n + 1)× (2w + 1)). The maximum derivative order (n) is determined

by the window size w which is approximately (n) ≈
⌊w
2

⌋
.

It follows from the smoothing model, Equation (2.3.22), that the polyno-

mial fit matrix W is:

W =
((

JTJ
)−1

J
)
, (2.3.34)

and thus the smoothing for the SG filter is:

y[z] =
((

JTJ
)−1

J
)
x[z] + ζ. (2.3.35)
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2.3.6.1.4 Computing Derivatives With a SG Filter

The partial solution of the weighting matrix W for the SG filter, Equa-

tion (2.3.34), contains a complementary set of difference filters from the Jaco-

bian matrix J in Equation (2.3.33), i.e.

G = JTJ . (2.3.36)

G is a square matrix of size (2w + 1)× (2w + 1) since it arises from an over-

determined system. It is possible to obtainG−1 with several methods however,

it is possible to obtain a geometric interpretation by using QR decomposition

[177], [155]:

G = QR (2.3.37)

where QTQ = I and R is upper triangular, such that the inverse is

G−1 = R−1QT. (2.3.38)

A more detailed geometrical interpretation can be seen at Appendix (A.2).

The SG filter is not an optimal filter. Although, it is the filter with the

best characteristics when it is necessary to preserve higher statistical moments

in a smoothed signal y[z]. The amount of distortion caused by the SG filter

against the amount of improvement in the signal-to-noise ratio depends in two

main factors: the polynomial degree and the window size (2w + 1).

Three general recommendations are given in order to improve the SNR

and to reduce distortion in the SG filter. The first is considered critical. It

consists in adjusting the window size according to the data set x. The sec-

ond involves choosing the polynomial degree in order to consider higher or

lower statistical moments during filtering. However, the polynomial order is

restricted by the window size, a.k.a window support. The third and final

recommendation involves the SG filter support itself. Both small and large

window sizes for the SG filter are not recommended. Noise is pervasive in SG

filters with small window sizes and low order polynomials. Small window size

causes greater inaccuracies and lower SNR. However, large window sizes may

also cause problems. The numerical stability of the SG filter is compromised

for larger window sizes due to numerical overflow with high order polynomi-

als. While increasing computation times are because the SNR improvement is

asymptotic for larger window sizes [155].

The above recommendations highlight the dependencies of the SG filter to

the data set x. Different data sets such as xj and xk may require specific SG

filters adapted for each data set. This is particularly important for multi-scale

smoothing because it shows that the filters are to be designed accordingly to
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the data set at hand [47]. However, the optimal window size is commonly

found by empirically testing the data sets x. Some theoretical approximations

to the optimal size have been done by comparing the filter with Lagrange

polynomials [155].

As for the application of convolution filters to find high order derivatives for

curvature and torsion analysis, one can conclude that although advantageous

from the online implementation perspective, SG filters present serious limita-

tions. According to Persson [155], third order derivative filter, as required by

the Frenet-Serret frames, requires a polynomial degree of at least fourth order

with a minimum window size of twenty five samples. However, the theoreti-

cal relationship is asymptotic, so SG filter with a fifth order polynomial with

forty-nine samples is needed. For small sample data-sets this proves costly in

terms of numerical stability and signal tail filtering.

2.3.6.2 Numerical Approximations for Computing Spatial Deriva-
tives using Finite Differences

Finite-difference methods are used to compute time and spatial derivatives.

These methods are favored because higher-order derivatives can be easily ap-

proximated by recursion. There are three main forms commonly used: forward,

backward, and central differences. The functional forms in the one-dimensional

case are:

Forward differences:
∆ [f(u[i])] = f(u[i+ h])− f(u[i])

Backward differences:
∇ [f(u[i])] = f(u[i])− f(u[i− h])

Central differences:
D [f(u[i])] = f

(
u
[
i+ 1

2
h
])

− f
(
u
[
i− 1

2
h
])

(2.3.39)

The central differences method is the most unbiased method for approximating

the derivative. Mistakenly, it is usual to associate the difference order to

derivative order, i.e.

f̈(u[i]) =
1

h
D(2) [f(u[i])] + ǫ. (2.3.40)

Although, the difference order is independent from the derivative order. Intu-

itively, any derivative order can be approximated with a single finite-difference

of the same order or a linear combination of irreducible low-order differences,

i.e.

D(n) [f(u[i])] =
n−1∏

i=1

(
f
(
u
[
i+ 1

2
h
])

− f
(
u
[
i− 1

2
h
]))

. (2.3.41)
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The choice of a particular difference order for a derivative approximation is

based on two competing conditions: accuracy and computation time. Higher

accuracy requires longer computational time while faster computational time

requires lesser approximation accuracy.

However, the difference order is just not enough to guarantee higher accu-

racy for the computation of the derivative. The main factor is the interval h.

Most finite difference methods assume that it is possible to approximate the

derivative using a constant difference. However, in the case in which is not

possible to establish a constant interleave for a mesh, the practical solution

is to decrease the interleave space h, even with simple differential equations.

A large mesh works against the computational speed, where computational

complexities of O(n3) are not unheard. This situation favors other methods

such as finite-elements which reduce the mesh size, but include other factors

such as the finite-element geometry.

Another way to increase the computational speed with finite-difference

methods is to use non-equidistant meshes. Non-equidistant meshes compen-

sate the finite-difference polynomial for the h parameter, Equation (2.3.39)

[107]. The polynomial compensation assumes that higher derivatives can be

obtained using recursion and consequently, only formulas for the first and sec-

ond derivative are available. An example are the central difference expressions

for the first derivative with second order accuracy with four point support

[107]:

ux(i) =
2(aui−2 + bui−1 + cui + dui+1)

(∆xi +∆xi+1)
(2.3.42)

a, b, c and d are constants that depend on the ratio gi between two grid values:

∆xi and ∆xi+1:

gi =
∆xi+1

∆xi
(2.3.43)

the values for the constants are obtained by solving a linear system:




a

b

c

d




=




1 1 1 1

−
(
1 +

1

gi−1

)
−1 0 gi

(
1 +

1

gi−1

)2

1 0 g2i

0 0 0 0




−1 


0

1
2
(1 + gi)

0

0




(2.3.44)

Approximations to second order derivatives with second order accuracy have

more complex equations.

The issue at hand is how to accurately calculate adequate differentials

for curvature κ and torsion τ . Combinations of first and second derivative
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approximations using finite differences use a recurrence such that

f ′′′(u[i]) = f ′(f ′′(u[i]) + ǫ2) + ǫ1. (2.3.45)

that yields a multiplicative error ǫ that depends on the approximation accu-

racy of previous steps. Given the sensitive nature of the torsion parameter τ ,

approximations using finite differences in spaces other than Euclidean is hard

and difficult.

2.4 Analysis of Orientation Alone

Characterizing the evolution of the orientation θ[i] is difficult. The reason is

the lack of a intrinsic metric in terms of frames and geometry. Euclidean spaces

provide simple intrinsic measures with the internal product of the difference

between two points. Orientations on the other hand do not have a simple

metric, it depends on the representation. For the above reasons, gesture is

commonly analyzed using only position, leaving the orientation as a secondary

parameter.

Traditionally, rotation sequences are represented as state-space vectors θ

containing Euler angles, namely the Euler state-space vector:

θ = [φ, ψ, ϕ]T. (2.4.1)

Unlike Euclidean spaces, there is no distance for such a vector. The Euler

state-vector θ does not represent a metric space as the position state-vector r

does in an Euclidean space. Consequently, concepts such as curvature κ and

torsion τ do not extend to the analysis of orientation trajectories.

In gesture comparison using orientation, the assumption is that the direc-

tion for each directed point in the directed set −→x has a different direction than

the global reference −→p 0, i.e.

Ui 6= U0 ∀ i. (2.4.2)

Consequently, Equation (2.3.9) remains as it is. For convenience it is repro-

duced here: −→x [0] = Ri
0U0x[i]

−→x [i] = R0
iUix[0]



 for i = {1, · · · ,M}. (2.4.3)

Now, as the position x evolves as function of time t, the direction from

the global reference point −→p [0] to the point x[i] has a specific sequence of

transformations in the directional tensor as well:

∆−→x [0] = Ri
0U0∆x[i] +

(
Ri

0∆Ux[i] + ∆Ri
0U0x[i]

)

∆−→x [i] = R0
iUi∆x[0] +

(
R0

i∆Ux[0] + ∆R0
iUix[0]

)
.

(2.4.4)
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Although Equation (2.4.4) looks ominous, what is really involved in the

term ∆U is another transformation between the local tensor Ui and the global

reference tensor U0. Assuming that the tensors in each directed point −→x [i]

are orthonormal and the only difference is a rotation operator, then one can

assume that Equation (2.4.4) reverts to:

∆−→x [0] = Ri
0Ui∆x[i] + ∆Ri

0Uix[i]

∆−→x [i] = R0
iU0∆x[0] + ∆R0

iU0x[0]



 for i = {1, · · · ,M}. (2.4.5)

The simplification is now to assume that the change in direction ∆−→x [0]

due to the change in orientation ∆Ri
0. Then Equation (2.4.5) is simply

∆−→x [0] = ∆Ri
0Uix[i]

∆−→x [i] = ∆R0
iU0x[0]



 for i = {1, · · · ,M}. (2.4.6)

In order to characterize rotation sequences with differential geometry, it

becomes necessary to define an appropriate metric for the operators ∆Ri
0

and ∆Ri
0. This is a specially sensitive issue. In the following paragraphs

one will discuss how different representation for orientations and rotations are

inadequate to define a metric in the orientation space. Although it is possible

to define a metric using projections for quaternions that map the trajectories

onto a 3D volume.

2.4.1 Using Euler Angles for Analysis

There are two main methods in which Euler angles play a key role in deter-

mining the orientation of a rigid body in three-dimensional space: rotation

matrices and vector axis-angle rotation.

2.4.1.1 Rotation Matrices

A 3D-space defines three rotation operators Rh, where h is the set of vectors

serving as rotation axes, i.e. h = {~i,~j,~k}. Each operator is defined in matrix

form as:

R~k(φ) =



cosφ − sinφ 0
sinφ cosφ 0
0 0 1


, R~j(ψ) =




cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ




R~i(ϕ) =



1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


.

(2.4.7)
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The general rotation operator is defined as the product of these three individual

operators:

R(θ) = R h[3](φ)R h[2](ψ)R h[1](ϕ). (2.4.8)

θ is the Euler state-space vector defined in Equation (2.4.1). The sub-index

set h indicates the axis about the individual rotation matrix Rh operates.

There are combinations with repetition for which the indexes in the set h

can be ordered. Each individual combination constitutes what is known as

“rotation convention.” A rotation convention is the particular order in which

the individual rotation operators have to be multiplied in order to obtain the

general rotation matrix Rh(θ). Due to the properties of rotation and linear

algebra, the different combinations are not interchangeable. Once a particular

conventions has been chosen, further operations should remain using the same

convention for consistency. The most notable conventions are the yawl-pitch-

roll with axis order ~k,~j,~i for aeronautics and the ZYZ with axis order ~k,~j,~k in

robotics.

Rotation operators are orthogonal operators, i.e.

R−1
h = RT

h , thus RT

hRh = RhR
T

h = I. (2.4.9)

The set of rotation operators defined in Equation (2.4.7) form a group, known

as rotation group, but they are also known as special orthogonal group in three

dimensions or SO3.

The main characteristic of any rotation operator, whether it has a matrix

representation or any other is its scalar value. In the case of rotation matrices

or tensors, the scalar value is given by its determinant:

det (Rh) = 1. (2.4.10)

Other representations may define this scalar as a vector norm, but it will

always be the unit. This is characteristic of any space or sub-space used to

represent rotation operators.

In order to recover the Euler state-space vector θ from a rotation operator

Rh, it is necessary to convert the matrix into a vector-angle representation.

2.4.1.1.1 Rotation Sequences and Rotation Matrices

A rotation sequence is an ordered set of Euler state-space vectors as

θ = {θ[1], θ[2], · · · , θ[i], · · · , θ[M ]} {i,M} ∈ N. (2.4.11)

The rotation sequence θ defines a general rotation matrix, product of the

individual rotation matrices in the set, i.e.

Rh(θ) ≡ Rh

(
θ[1]

)
Rh

(
θ[2]

)
· · ·Rh

(
θ[i]
)
· · ·Rh

(
θ[M ]

)
. (2.4.12)
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2.4.1.2 Vector Axis-Angle Rotation

A vector axis-angle rotation is a corollary of the Euler rotation theorem. The

Euler theorem states that any rotation or rotation sequence can be reduced to

a single operation representing a rotation about a directed axis. The vector

axis-angle operator uses the Euler state-vector, Equation (2.4.1), to find a

unitary direction vector êℓ and a scalar ϑ that defines the magnitude of the

rotation.

The vector axis-angle operation is defined for an arbitrary point x in the

Euclidean space as:

ϑ = arccos
(
1
2
(Trace(R(ϑ, êℓ))− 1)

)

êℓ =
1

2 sinϑ
[(R3,2 −R2,3), (R1,3 − R3,1), (R2,1 −R1,2)]

T

(2.4.13)

where Ri,j are the elements of a SO(3) matrix. The unitary direction vector

êℓ = [e1, e2, e3]
T and the arbitrary point x define together a rotation plane

while the scalar ϑ provides the rotation magnitude.

In order to recover the Euler state vector from vector axis-angle operator

it is necessary to first reconstruct the rotation matrix R(θ):

R(θ) = (1− cosϑ)(eℓ e
T

ℓ ) + cosϑ I − sinϑ S (2.4.14)

where

S =




0 −e3 e2
e3 0 −e1
−e2 e1 0


 (2.4.15)

is the skew-symmetric matrix. The outer product eℓe
T

ℓ constructs a plane

normal to the rotation axis. The rotation magnitude is given by the term

(1− cos ϑ). The rotation magnitude is one half of the orientation increase ∆θ

at the general reference frame.

2.4.1.3 Advantages and Disadvantages of Each Representation

Rotation matrices are intuitive. They are popular because they describe com-

plex kinematic chains with linear algebra. One can quickly construct a rotation

operator from an Euler state-vector, Equation (2.4.1).

However, there are disadvantages in using rotation operators Rh(θ) in ma-

trix form for 3D-gesture comparison. First, the lack of a metric. It is not

possible to distinguish a rotation sequence from another in the same form as

an Euclidean trajectory. Second, it is not possible to predict when the ma-

trix will loose rank. Rotation sequences may contain unpredictable vanishing
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2.4. Analysis of Orientation Alone

points for at least one degree of freedom. And third, rotation matrices do not

define interpolation functions between orientations. Although, some applica-

tions in computer graphics and in games specially, do define and use linear

spherical interpolation for small variations in angle δθ by trading speed for

accuracy.

Vector axis-angle rotations seem to be a good solution for tracing the ori-

entation trajectory, but requires greater computation resources. They require

to constantly calculate the solution of eigenvalue problem for each Euler state-

vector in the rotation sequence. Additionally, the solution of the eigenvalues

for rotation matrices commonly yields complex values that are not easily inter-

preted. This factor combined with the duality in direction for a rotation cause

ambiguities in the trajectory that are not easily explained or interpreted in the

geometrical sense. Finally, since the vector axis-angle rotation is dependent

on finding a rotation matrix, the operator also has the same caveats as any

rotation matrix. It is no possible to establish a distance function that relates

different vector-axes trajectories without imposing sets of heuristic rules.

2.4.2 Quaternions for Orientation Analysis

Quaternions represent orientations and rotations using two vectors and hence

the name of bi-vector operators. Essentially, quaternions define an orientation

as a linear combination of two irreducible vectors. “Irreducible” is a term

related to the orthogonality property of a vector space. As demonstrated by

Grassmann [74], any geometric operation that uses two n-dimensional vectors

in its definition, implicitly defines a hyper-plane, (see Appendix (A.3)).

In order to show how magnitude–constrained quaternions represent indi-

vidual orientations and rotation operations, one can use an analogy to point

positions and point translations in the Euclidean space. A quaternion defines

an orientation as a point in its 4D scalar field while a translation of that point

in the quaternion scalar field is analogous to a rotation operator. A quaternion

is, actually, a plane embedded in a 3D Euclidean space:

vector form: n(r − r0) = 0

explicit form: ax + by + cz + d = 0
(2.4.16)

Equations (2.4.16) are the definition of a plane from its normal vector n,

the intersecting point between the normal and the plane r0 and the distance

from r0 to any point on its surface r − r0.

In a magnitude constrained quaternion the norm has a fixed magnitude.

The implication is that the value of the norm is shared between the magnitude

of the normal vector defining the plane and the plane area. As such, the normal

59



2. Mathematical Foundation for 3D Gesture Comparison

vector stops being always unitary. At certain directional values, the norm of

the normal may be zero or one and inversely, the scalar representing the area

of the plane. One can think of a unit quaternion as a shrinking or expanding

vector or viceversa, as a expanding or shrinking plane, in that order.

The quaternion rotation operator is defined in terms of the differences of

such a variable vector-area planes. However, although the above geometri-

cal representation is easy to understand, unit quaternions are multiplicative

mathematical entities. It is possible to define differential forms based on linear

operations such as addition and substraction, but they have no relation as to

measure the distance between two different orientations. Distances with unit

quaternions are defined as products, not as differences.

The shortest distance between two orientations in the unit quaternion space

is not a straight line but a geodesic. Geodesics are fairly well known and docu-

mented [79],[102],[99]. Rotation sequences are represented as curves composed

of segment geodesics in the unit quaternion space [62],[125]. Smooth and con-

tinuous orientation trajectories are difficult to interpolate. The reason lies on

the nonlinear nature of the hyper-sphere. The amount of error introduced

by the nonlinear distances often limit the quality of a smooth interpolated

trajectory.

As in any other rotation operation, quaternions have a dual representation

for orientations and rotation operators in the unit quaternion space. However,

the dualities lie on antipodal point of the unit quaternion space. Additionally,

the singularities are always predictable, unlike rotation matrices. The key issue

is whether or not quaternions are better at representing rotation sequences.

2.4.2.1 Quaternions in Cartesian Space

A quaternions as Cartesian spaces are defined by a four parameter set

q = w + x î + y ĵ + z k̂ (2.4.17)

where the parameter set {w, x, y, z} defines a R4 space. The set of orthogonal

vectors { î , ĵ , k̂ } defines an orthogonal orientation tensor matrix Ξ such that:

q = Ξ[x, y, z]T + w. (2.4.18)

It is possible to redefine the expression in Equation (2.4.18) into linear algebra

terms using homogeneous coordinates:

q = Qx where Q =

[
Ξ 0
0T 1

]
and x = [x, y, z, w]T (2.4.19)

However, Cartesian quaternions are of little interest for representing ro-

tations. The parametrization of x is independent and thus the continuous
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2.4. Analysis of Orientation Alone

functions governing each parameter are independent. Such functions cannot

represent rotations. Cartesian coordinates for quaternions are analogous to

represent general states in matrix representation.

As in any other rotation operator, quaternions must impose a constraint

in their magnitude in order to represent a rotation. This is analogous to state

the Special Orientation group SO(3), then {Ξ ∈ SO(3) and |Ξ|2 = 1}.

2.4.2.2 Polar Representation of Quaternions

Hamilton [97] suggested to decompose a quaternion as a product of a magni-

tude and a phase components and he suggested two product operators:

q = M (q)U (q) (2.4.20)

where the operator M (·) is the quaternion norm:

M (q) = ‖q‖ = 〈q, q〉
1
2 (2.4.21)

and the operator U (·) defines the quaternion phase such that:

q̂ ≡ U (q) =
q

M (q)
, ‖U (q) ‖ = 1. (2.4.22)

q̂ describes a particular quaternion subset namely, unit quaternions. Unit

quaternions q̂ are characterized by:

q̂ ⊂ H | M (q) = 1. (2.4.23)

Three–dimensional rotations are completely described by unit quaternions.

The proposed analysis for quaternions is similar to the analysis of complex

numbers in polar coordinates. However, in the analysis for quaternions the

elements include scalar and vector parts, i.e.:

q̂ = (α, ξ) (2.4.24)

where

α = w, and ξ = Ξ[x, y, z]T. (2.4.25)

where α is the scalar part and ξ is the vector part of the quaternion respec-

tively. By definition, the magnitude of the unit quaternions is constrained to

the unit:

‖q̂‖ = 1. (2.4.26)
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The implication is the interdependence in the magnitudes of their parameters,

i.e.,

if α2 + ‖ξ‖2 = 1
then

‖ξ‖ = (1− α2)
1
2 .

(2.4.27)

The quaternion polar representation arises naturally from the magnitude

constraint. Lets assume that magnitude constrained quaternions are repre-

sented as:

‖q‖ = ρ, ∀ ρ2 = α2 + ‖ξ‖2 (2.4.28)

where ρ ≥ 0 ∈ R. Any magnitude constrained quaternion holds to the rela-

tionship:

q̂ =
α

|ρ| +
(ρ2 − α2)

1
2

|ρ| ξ̂. (2.4.29)

It is easily shown that both elements, scalar and vectorial, have angular rela-

tionships:

cos θ =
α

|ρ|

sin θ =

(
1−

(
α

|ρ|

)2
)1

2





∀ 0 ≤ |α| ≤ |ρ|. (2.4.30)

Then, for any magnitude–constrained quaternion q, the normalized quaternion

q̂ in (2.4.29) is analogous to the Euler formula for complex numbers:

q̂ = cos θ + ξ̂ sin θ ≡ exp( ξ̂θ) (2.4.31)

where ξ̂ is a normalized direction vector, i.e. ‖ξ̂‖ = 1. From the matrix-vector

product in Equation (2.4.18), the relationship between ξ and ξ̂ is such that

ξ = ξ̂ sin θ
and

0 ≤ ‖ξ‖ ≤ 1

(2.4.32)

The vector ξ, sometimes called “versor” [175], is interpreted as a great–circle

arc lying on the 4D hyper-sphere. The normalized vector ξ̂ is called “right-

versor.” A “right-versor” is defined as a “pure” quaternion since the magnitude

of the scalar part is zero, that is:

ξ̂ ≡
(
0,

1

sin θ
ξ

)
(2.4.33)
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A pure quaternion occurs for every instance in which sin θ = 1 or con-

versely, θ = (2n−1)
2

π. Thus, the polar representation of a general magnitude-

constrained quaternion has the form:

q = ‖q‖ exp( ξ̂ θ). (2.4.34)

As a corollary, a expression for the unit quaternion set is:

q̂ = exp(ξ̂ θ). (2.4.35)

2.5 Curve Invariant Analysis in Quaternion

Space

In the previous section, we reviewed different representations of 3D-rotations:

Homogeneous matrices, vector-axis angle rotations, and quaternions. Quater-

nions are probably the most consistent way for rotation representation in 3D.

The reason, as stated before, is their singularities are predictable and there are

interpolation functions that use the arc-length of the spherical space. However,

quaternion distances are often confused with angular values, but they are not,

they are geodesic-arcs. During the following discussion one will review some

concepts on how quaternions are used for interpolation and their importance

to evaluate orientation trajectories.

Quaternions can be treated exchangeably as vectors or planes:

scalar set: {1}
vector set: { ê1, ê2, ê3}
bivector set: { î = ê1ê2, ĵ = ê2ê3, k̂ = −ê3ê1}

î ĵ = k̂ ĵ k̂ = î k̂ î = ĵ

ĵ î = − k̂ k̂ ĵ = − î î k̂ = − ĵ

pseudoscalar: I = ê1ê2ê3 and I2 = −1

î 2 = ĵ 2 = k̂ 2 = î ĵ k̂ = −1 .

(2.5.1)

2.5.1 Three-Dimensional Projection Spaces

The intent of achieving a 3D projection for unit quaternions is to use the

3D Frenet-Serret framework in an orientation sequence. The unit quaternion

subset is a spherical scalar field. Each point on the manifold is represented as:

q̂ = [w, x, y, z]T subject to ‖q̂‖ = 1 (2.5.2)
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with a common juncture point at

q̂0 = [0, 0, 0, 0]T (2.5.3)

which is a null space. The geometrical interpretation of the unit quaternion

subset is of a spherical manifold embedded in a 4D-space. Every quaternion

has a negative conjugate at an antipodal position representing the same ori-

entation rotation in the opposite direction:

q̂ = −q̂
∗. (2.5.4)

However, this space representation is inadequate for comparison purposes.

Unit quaternions are not linearly independent scalar fields. The scalar part

and the vectorial part of any magnitude-constrained quaternion are interde-

pendent as shown by Equation (2.4.31). This parametric interdependence is

hierarchical. The angular value θ defined in terms of the scalar component w:

θ = arctan

(√
1− w2

w

)
, (2.5.5)

is used to represent the distance between two different orientations on the 4D-

spherical hyper-surface. The angular value θ is invariant for unit quaternions,

but it cannot be applied as distance metric for an orientation sequence. The

reason is that the manifold has constant curvature. Consequently, any map-

ping based on θ hides the true positions of an orientation sequence because it

losses two degrees-of-freedom instead of one.

There are two commonly used projective spaces. The first uses a pole-

projection, similar to a Mercator projection of a sphere. The second is a

tangent space known as ternion space. It projects the unit quaternion onto a

spherical volume. Both spaces are analytical with advantages and disadvan-

tages of their own.

2.5.1.1 Natural Logarithm Quaternion Projection

The natural logarithm quaternion space emerges naturally from the quaternion

polar representation:
q̂ = exp(θ ξ̂) (2.5.6)

then
ln q̂ = θ ξ̂ (2.5.7)

Since unitary quaternions are relative to each other with no global ref-

erence, all projections use the initial orientation as reference for a whole se-

quence, i.e. q̂0 is the initial anchoring point in the space. The distance from
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2.5. Curve Invariant Analysis in Quaternion Space

q̂0 to any other quaternion q̂1 is given by

dg = q̂
−1
0 q̂1 (2.5.8)

then the derivatives are ratios to the reference quaternion q̂0:

d(ln q̂)

ln q̂0

=

(
dξ̂

ξ̂0
+
dθ

θ0

)
,

d2(ln q̂)− d(ln q̂)2

ln q̂0
=

(
d2ξ̂ − dξ̂

2

ξ̂
2

0

+
d2θ − dθ2

θ20

)
,

(2.5.9)

See Figure (2.6) for a geometric interpretation.
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Figure 2.6: Geometric interpretation of differentials in the unit quaternion manifold.
Proportional quaternions q̂′

1, q̂
′
2 and q̂′3 have the same differential as q̂1, q̂2 and q̂3. The

differential in the manifold can be interpreted as rotating the set of quaternions between
q̂1 and q̂2 pivoting around q̂2 towards q̂3.

Higher order derivatives contain greater number of nonlinear elements.

And yet, all derivatives are always relative to a point in the space, a global

reference is undefined. The remaining higher order derivatives always consider

the ratio
dξ̂

ξ̂
, which is a vector projection.

Every quaternion on the surface of q̂ is re-projected on the 3D-plane ξ̂
∣∣
q̂0
,

hereafter one denominate this plane as ξ̂-plane. The ξ̂-plane is relative to

the initial position of the sequence, q̂0. The mapping is similar to a geodesic

polar projection, it also introduces distortions. The projection is illustrated

at Figure (2.7a)

The antipodal quaternion −q̂
∗
0 is represented at Figure (2.7b) as the center

point of a second circle. The second circle is a mirror for q̂0 since

q̂0 = −q̂
∗
0 (2.5.10)
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(a) Natural logarithm mapping. The basic distance is the product
q̂−1
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(b) The natural logarithm domain has a radius
√
2. It is bounded for

θ = (−π, π). For θ = ±π the mapping degenerates to a scalar equal
to zero. The two hemispheres are shown since q̂0 = −q̂∗0

Figure 2.7: Natural logarithm projection. The ξ̂0-plane is tangent to the reference

quaternion q̂0. The distance from q̂0 to any other given quaternion q̂1 is ln
(
q̂−1
0 q̂1

)
.

However, when q̂1 = q̂∗
0 then the mapping degenerates to a scalar equals to zero.
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are the same point. One concludes that both the initial q̂0 and the outer circle

are the same points in the mapping. Thus, a magnitude radius ‖θ ξ̂‖ =
√
2

in the ξ̂0-plane represents a 4π rotation in Euler angles.

2.5.1.2 Ternion Projection

A ternions are another projection of quaternions. The natural logarithm ro-

tates every point on the surface of the subset q̂ onto the tangent plane to the

reference quaternion q̂0. The ternion also uses the same ξ0-plane, however

the mapping is the intersection point between the radial direction and the

ξ0-plane, see Figure(2.8). The projection and its inverse are:

t = T (q̂) =
1

cos θ
q̂ − 1,

q̂ = T −1(t) = cos θ (t+ 1).

(2.5.11)

The resulting ternion t is not unitary, but its inverse yields a unitary quater-

nion q̂. The quaternion distance q̂
−1
0 q̂1 maps onto the ternion space as a pole

distance:

t−1
0 t1 = T

(
q̂
−1
0 q̂1

)
= tan θ ξ. (2.5.12)

where ξ = ξ1−ξ0 and θ = arccos(q̂1·q̂0). Ternions are compact representations

for 3D-orientations, only three parameters are necessary.

The main issue of the ternion projection is that the distance function is

nonlinear for θ >
π

4
and singular, tan θ = ∞, for values of θ ≈ ±π

2
. It is easy

to see from Figure (2.8a) that the intersection has a distance:

tan θ =
√
sec2 θ − 1. (2.5.13)

It is also easy to see that as θ approximates
π

2
, the intersection point in the

ξ0-plane occurs at ∞. Consequently, the mapping is unbounded, see Fig-

ure (2.8b).

The ternion projection differential has the same form as expressed in the

Equation set (2.5.9). However, the distance value for the scalar element has

an unbounded domain from (−∞,∞) unlike the natural logarithm.

2.5.1.3 Geometric Projection

The quaternion geometric projection is based on the quaternion product. A

quaternion q̂1 can be defined from an initial quaternion q̂0 with another quater-

nion p̂ such that

q̂1 = p̂
∗
q̂0p̂ = p̂q̂0p̂

∗. (2.5.14)
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Figure 2.8: The ternion mapping defines a pole distance. The pole distance is the
tangent function of θ. In this mapping, the ξ0-plane contains all quaternions with the
exception of q̂∗

0 which is a singularity.
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Since p̂ is located in between q̂0 and q̂1, then it has a different angular value

θp and a tangent plane ξ̂p:

q̂1 = (cos θp + ξ̂p sin θp)q̂0(cos θp − ξ̂p sin θp) (2.5.15)

by expanding and canceling terms

q̂1 = (1− 2 sin2 θp)q̂0

q̂1 = cos(2θp)q̂0
(2.5.16)

then
q̂1q̂

∗
0 = cos(2θp)

θp =
1

2
arccos(q̂1q̂

∗
0)

(2.5.17)

θp =
θ

2
⇒ p̂ = cos

θ

2
+ ξ̂p sin

θ

2
. (2.5.18)

Because recursive quaternion rotations will halve the q̂1q̂
∗
0 geodesic, the recur-

sive rotation is equivalent to propose a geometric series for the geodesic, thus

the name of the projection.

It is notable that the direction of the plane ξ̂p of the rotating quaternion p̂

is not important, it could be any quaternion lying on a geodesic bisecting the

geodesic defined by q̂0 and q̂1. For simplicity, the quaternion p̂ is chosen such

that it also lies on the geodesic joining q̂0 and q̂1. Two orientations can be

represented using the initial orientation q̂0 and the rotating quaternion p̂ using

Equation (2.5.14). The geometric representation can be seen at Figure (2.9)

The projection is similar to the ternion projection, except that the geodesic

distance from q̂
∗
0 to q̂1 is halved. Consequently, the projected distance from

q̂1 onto the ξ̂0-plane is reduced by half as well. The new projection domain

for a single hemisphere is not bounded [0,±∞). However, the singularity does

not occur until the geodesic reaches a value of −q̂
∗
0.

2.5.1.4 Geodesic-arc Projection

The geodesic-arc projection is equivalent to re-parameterize the unit quater-

nion manifold by arc-length or geodesic-arc, see Appendix (A.3.1). This is

a contribution in this dissertation and thus it will be reviewed with more

detail than previous projective spaces. However, one can use properties of

Grassmann algebras and quaternion functions to show intuitive aspects of the

projection and avoid many details (see Appendix A.3.2).

The above quaternion mappings use an intrinsic function to the unit circle.

All use basic circle relationships to map from n-space to n− 1 manifold. Unit

quaternions are an infinite quaternion subset in a (n− 1)-manifold embedded
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projection halves its projected distance to tan
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2
by using the quaternion rotation.

into a n-space. Any quaternion constrained by ‖q̂‖ = 1 lie on the surface a

sphere embedded in a 4D-space. This sphere is actually a 3D-manifold. The

most notable properties for all quaternion projections are:

1. Domain Range: All projections have a domain range determined by the

value of the intersection point to the ξ̂-plane. The domain is unbounded

if the intersection point is located at ±∞ and it is bounded if the inter-

section point has a limited value. A summary of the domain ranges for

each projection can be found in Table (2.1)

2. Projection singularities : All quaternion projections have singularities in

their domain. Singularities in the space are defined as the unit quater-

nion values q̂i for which the limit:

lim
q→q̂i

proj q̂i = ∞ (2.5.19)

is true.
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The specific values for which a singularity exist depends on the reference

quaternion q̂0 and the geometric considerations for the projection. Such

singularities are summarized in Table (2.1).

Table 2.1: Singularities for different unit quaternion projections

Projection Singularities Domain Range

Natural Logarithm q̂
∗
0 ln

(
q̂
−1
0 q̂

∗
0

)

Ternion T (q̂) q̂
∗
0 (−∞,∞)

Geometric p̂
∗
q̂p̂ −q̂

∗
0 (−∞,∞)

The cycloid projection is equivalent to state the angular value of θ between

two quaternions: q̂0 and q̂1 in terms of the arc-length of the sphere. Because

the modulus of the unit quaternion set is equal to one ‖q̂‖ = 1, one may

consider the arc-length relationship:

βθ = ‖q̂‖θ = |1|θ (2.5.20)

as an angular value, but it should not. The arc-length, βθ, has the same di-

mensional units as β while the angular value θ is dimensionless. The geometric

interpretation of β is a radius of the 4D–hyper-sphere.

The geometry of the unit quaternion hyper-surface has constant curvature.

The manifold distance can be easily measured. The geodesic distance on a

sphere can be measured using another geodesic as a pattern. This is the key

concept behind the cycloid mapping. One can transform a curved space into

another space with an Euclidean metric. The geometric concept is to measure

a fixed-position sphere with a planetary sphere moving along the periphery of

the first sphere. This is illustrated at Figure (2.10a)

Because a sphere is being used to measure the distance, the distance of the

geodesic-arc is implicitly expressed as a ratio of π. The mapping considers two

quaternions x̂ and ŷ to indicate directions. We consider every quaternion on

q̂
−1
0 q̂i as a linear combination of these two directional quaternions x̂ and ŷi

q̂i =

( ‖x̂‖
‖x̂‖+ ‖ŷi‖

x̂+
‖ŷi‖

‖x̂‖+ ‖ŷi‖
ŷi

)
q̂0 (2.5.21)

where x̂ is a unit quaternion representing an Euclidean axis for a quaternion

space. ŷ contains the direction −ξ̂i which is the radial direction from the

center of the hyper-sphere to the individual quaternion q̂i that lies on the

geodesic q̂
−1
0 q̂i, see Figure (2.10a).

Explicitly, x̂ always remains in contact with the unit quaternion manifold

at only one point. The planetary hyper-sphere is related to each quaternion
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Figure 2.10: The cycloid rises from measuring the arc-length of the sphere |1|θ with

another sphere of proportional radius aθ, (a > 0 ∀ a ∈ R). A ratio a =
1

2
is illustrated.

72



2.5. Curve Invariant Analysis in Quaternion Space

conjugate −q̂
∗
i since it has opposite direction to its correspondent. One can

redefine x̂ = −x̂i ∀ i as the opposite direction as the geodesic q̂
−1
i q̂i+1, thus:

q̂
−1
0 q̂i =

( ‖x̂‖
‖x̂‖+ ‖ŷi‖

x̂+
‖ŷi‖

‖x̂‖+ ‖ŷi‖
ŷi

)
. (2.5.22)

The result is that every quaternion lying on geodesic-arc q̂
−1
0 q̂i is defined

in terms of two Euclidean quaternions:

x =
‖x̂‖

‖x̂‖+ ‖ŷi‖
, y =

‖ŷi‖
‖x̂‖+ ‖ŷi‖

. (2.5.23)

Since, the reference point q̂0 is fixed, a point moving on the sphere q̂
′
0, the

trajectory of q̂′
0 is described by a cycloid:

x = a

(
θ

a
− sin

θ

a

)

y = a

(
1− cos

θ

a

)

a =
r

r′

(2.5.24)

where a ∈ R is a ratio between radii for the quaternion sphere r = ‖q̂‖ and

the moving sphere r′.

The distance between two quaternions q̂i and q̂i+1 lying on the same

geodesic-arc q̂
−1
0 q̂i+1 is defined using the arc-length of a curve:

d(q̂−1
i q̂i+1) =

θi+1∫

θi

((
dx

dθ

)2

+

(
dy

dθ

)2
) 1

2

dθ ∀ i ∈ Z. (2.5.25)

The solution for the integral in Equation(2.5.25) when using the set of

Equations (2.5.24) is:

d(q̂−1
i q̂i+1) = −4a cos θ

∣∣∣
θi+1

θi

= 4a(cos θi − cos θi+1)

= 4a sin(
θi+1 + θi

2
) sin(

θi+1 − θi
2

)

= 4a(sin2 θi − sin2 θi+1)
= 4a(cos2 θi+1 − cos2 θi).

(2.5.26)

Since q̂0 = −q̂
−1
0 , the domain for the cycloid is bounded [0, π], the transfor-

mation domain is also bounded to:

d(−q̂
−1
0 q̂0) = 8a. (2.5.27)
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Now one can see that the values for the quaternion axes x̂ and ŷ in the cycloid

are:

x̂ =
1

2
(q̂iq̂

−1
0 + q̂0q̂

−1
i ), ŷi =

1

2
(q̂0q̂

−1
i − q̂iq̂

−1
0 )

or

x̂ = q̂
−1
0 · q̂i ŷi = q̂

−1
0 ∧ q̂i.

(2.5.28)

By choosing the value a = 1
2
, the transformation is equivalent to repre-

sent the quaternion values on the geodesic-arc q̂
−1
0 q̂i by their half-quaternion

rotations. However, both contributions from the internal product component

and the outer product component are separated as function of the angle dif-

ference ∆θ.

In order to maintain the consistency between the outer and inner products,

at least one of the vectors ê1, ê2 or ê3 has to maintain the direction of the

radial vector ξ̂i, that is, the internal product q̂
−1
0 · q̂i = ê3I while the outer

product is left to track the trajectory followed by the other two bi-vectors,

leaving only two degrees of freedom to q̂
−1
0 ∧ q̂i, e.g. ê2 ê3 and −ê3 ê1.

Consequently, the mapping looses a parameter in order to keep the rela-

tionship. The number of parameters is reduced from 4 to 3. The mapping is a

compact representation like ternions or a tangential projection. The new pro-

jective rotation space is a spherical volume in 3D. Its radius, ρ, is a nonlinear

distance representing the cycloid’s arc-length. The angular parameters φ and

ψ are functions for the direction vector ξ̂i, as shown at Figure (2.11).

In the cycloid projection, all individual orientations are mapped as points

inside the 3D-sphere. Their radii is proportional to the cycloid arc-length.

Their directions towards the unit sphere corresponds to their individual ξ̂i

vectors. For a proportionality ratio between the sphere radii a =
1

2
, the

projection is:

Radius: ρ = 4 cos θi

Angular Position:
φ = arctan

(y
x

)

ψ = arctan

(
z√

x2 + y2

) (2.5.29)

The radius ρ is independent from the angular coordinates (φ, ψ) that are

a function of ξ̂i. The mapping yields trajectory segments in the Euclidean

space. The segments correspond to the spherical geodesic-arc difference be-

tween different orientations.

Antipodal quaternions are the same orientation with opposite direction.

They are mapped on another sphere with negative directions. The corre-

sponding sign for the hemisphere is determined by the initial quaternion q̂0.
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ρ
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q
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Figure 2.11: The sphere radius ρ is the arc-length of the cycloid function relating the
angular value θ in the quaternion with the magnitude. The angular values of φ and ψ
are the local coordinates for the spherical projection in 2D. The quaternion conjugate
qI is the equator geodesic while the reference quaternion is qI .

One tends to use the positive sign. The mapping is used to express either

orientations or rotation operations.

An important precaution is that the mapping is not Euclidean. The dis-

tance between two different orientation vectors is:

d(q̂−1
i , q̂i+1) = 2(sin2 θi − sin2 θi+1) ∀ i = {1, . . . , N}, N ∈ Z (2.5.30)

and the total arc-length for the trajectory in a rotation sequence is the cumu-

lative of the distances:

d(q̂−1
0 , q̂N) =

N∑

i=1

2(sin2 θi − sin2 θi+1) N ∈ Z (2.5.31)

However, an Euclidean approximation to the distance can be done when the

difference magnitude in angular values for ∆θ are small, when ∆θi+1,i ≈ θ. An

empirical rule is ∆θ < 10 deg. Under such a constraint, the approximation

to the arc-length for the sequence is:

d(q̂−1
0 , q̂N) =

N∑

i=1

2
(∣∣∣|θi+1| − |θi|

∣∣∣
)
N ∈ Z (2.5.32)

Several advantages of using the cycloid to project unit quaternions over

the Euclidean quaternion space:

1. A positive and accumulable distance function;

2. Bounded projection;

3. Compact representation a vector field in 3D-Euclidean space.
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2. Mathematical Foundation for 3D Gesture Comparison

2.5.2 κ and τ for Orientation in Projective Space

All previously discussed methods had been directed towards one point. To

establish a comparison method for orientations in 3D. The idea is to use the

invariant FS framework for orientations as it is used for Euclidean trajectories

in 3D. The final objective is to simplify pattern recognition to simpler corre-

lations without the need to use an alignment operator, see Equation (2.2.15).

The necessary conditions to achieve such a goal are:

1. Establish a metric.

2. Guarantee view invariance, or solve the alignment problem.

Quaternion projections onto 3D-Euclidean space are nonlinear and often

unbounded. This is problematic since although one may describe an orienta-

tion trajectory in terms of the quaternion space, there is no way to guaran-

tee that the correlation is bounded in terms of energy. This is the case for

quaternion projections using polar projections such as ternions and geometric

progression.

When projecting quaternions using the logarithm function, the projection

is bounded but distorted because of the rotation from the surface to the tangen-

tial plane ξ̂0. The arc-length of a sequence cannot be measured nor compared

using the natural logarithm function. And finally, it is highly dependent of the

initial orientation point since the projection takes place in the tangent plane.

In this sense, the geodesic-arc projection offers better properties in order

to separate the distance and direction from the angular component in the

quaternion. The position of an specific orientation with respect to a reference

point determines the quaternion magnitude and vice-versa. This is the major

advantage of using the geodesic-arc projection.

However, the geodesic-arc projection does not allow us to use Frenet-Serret

frames directly. The vectorial components in the projection are just approxi-

mations to the geodesics between two different orientations. There is no con-

tinuous function relating more than two quaternion points in the projective

space. To use Frenet-Serret frames in the projection space is a mistake since

there are straight lines and the derivative approximations introduce too much

noise in the 3D–projection for a numerical approximation to the curvature.

Nevertheless, it is still possible to measure a curvature from the spherical

manifold obtained from the geodesic-arc projection. Using the transformation

set in Equation (2.5.29), the mapping of ξ̂i onto the sphere is expressed for
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the angular variables as:

φi = arctan

(
yi
xi

)

ψi = arctan

(
zi√

x2i + y2i

)

ξ̂i = q̂
−1
i−1 ∧ q̂i, ξ̂i = xi î+ yi ĵ+ zi k̂.

(2.5.33)

Then the curvature of the trajectory on the sphere r(φ, ψ, t) is also parame-

terized as κ(u, v, s) where s is the arc-length of a curve on the surface S(u, v).

2.6 Proposed Solution: Combined Spaces

The proposed system analyzes position and orientation trajectories in two

separate geometric spaces. The position is analyzed using general Frenet-

Serret frames for two main reasons: space reduction and view-point invariance.

The analysis of the orientation follows similar suit. Figure (2.12) illustrates a

block diagram of the system.

The proposal is novel in the sense that it is a geometric approach that

tackles at the same time the invariance problem for both position and orien-

tation using their intrinsic spaces. The system uses time-tested techniques of

signal processing adapted to the geometric problem using invariant templates

and compact description spaces.

Previous sections have shown that invariance in the Euclidean space re-

sults from embedding local reference frames into the position curve. Although

Frenet-Serret frames are the most common, other techniques are possible. One

of this frames uses parallel transport. Parallel transport [99] avoids the prob-

lem of indeterminacy of the curvature κ by proposing a second curvature κ2.

In quaternion spaces, the definition of the Frenet-Serret frames is done by

embedding the quaternion into the 3D frame [99].

2.7 Summary

Gesture comparison involves the classification of 3D spatio-temporal trajecto-

ries. The general solution often involves to establish a metric. However, even

when the metric is available, the number of spatial dimensions complicates the

problem. It is always desirable a low number of spatial dimensions.

Often, classification methods for state sequences rely on model properties

to parameterize a sequence. An important issue, for both signal processing

and data modeling, is that the data has to be representative independently
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Figure 2.12: Block diagram for analysis of position and orientation. Both position and
orientation follow similar paths. Orientation trajectories use the curvature of a projective
space in order to obtain the curvature.

of point of view or time scalability. While time-invariance is usually achieved

by means of the Fourier or Laplace domains, geometric invariance is more

difficult to achieve. Geometric comparison depends on an alignment factor

between reference frames. Time variations reflected by the Fourier domain

depend on the stationary condition. Time-invariance is not guaranteed when

a function is aperiodic. Since gestures are not necessarily periodic, comparison

cannot depend on Fourier transformations to achieve time-invariance.
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2.7. Summary

On the other hand, state models or differential equations in the Laplace do-

main, can achieve invariance by using the physical laws of motion in differential

form. However, laws of motion, namely Lagrangian models, require detailed

descriptions of the object and its properties, that in the case of gestures, are

seldom available.

The geometric treatment of curves in space deals preferentially with Eu-

clidean spaces. Local frame descriptions such as Frenet-Serret frames can even

be extended to higher dimensions by assuming the extensibility of the analytic

properties of the Euclidean space. They also assume that the curve is at least

C(n) continuous for the n-dimension.

A 3D curve p(t) is a description for a rigid body that uses two distinct

geometric spaces: an Euclidean manifold and an 4-spherical manifold. The

Euclidean manifold describes the position r(t). The 4D-spherical manifold

describes the orientation.

Differential frames provide an invariant description that, additionally, re-

duces the dimensionality, but it describes the trajectory in terms of two non-

linear parameters that should be treated carefully. Local frames are not the

first choice to describe a curve. The reason behind is that the local frames as-

sume that it is possible to always obtain the n-order derivative. However, when

dealing with discrete functions, such analytic conditions cannot be ensured.

Also, the signal-to-noise (SNR) ratio decreases exponentially when approxi-

mating derivative orders higher than the second order. Numerical approxi-

mations to the derivative with either convolution methods or finite differences

introduce both noise and distortion.

Then why it is important. The reason is that although the curvature

whether it is imprecise or not, contains enough information on the intrinsic

space so it is still viable to retain invariance even if higher derivatives are not

tenable. The difficulty lies in how to smooth the functions in the extrinsic

space, in the n-manifold, without distorting the available information in the

(n− 1)-manifold or intrinsic space.

Orientation spaces do not have the same properties as Euclidean spaces.

Rotations described by rotation matrices and vector axis-angle rotations do

not have a metric space nor a descriptive trajectory. Quaternions are the

only mathematical entity capable of giving a description of the shape of the

orientation trajectory of a local frame. The definition of a distance metric in

quaternions is only determined between two consecutive quaternions and the

functions are delimited to operations on planes.

In this chapter, we have shown that although an orientation trajectory has

special challenges. And yet, it is still possible to use the same descriptions

of curvature for an Euclidean trajectory. In the case of spherical spaces, one
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modifies the sphere-space by re-projection of the sphere onto a more suitable

space. Different mappings provide different characteristics, they may be un-

bounded or not. We developed a projection, namely geodesic-arc projection.

The projection uses the intrinsic properties of circles. It is an arc-length pro-

jection and thus nonlinear. However it provides a spherical distance that which

is closely related to navigation distances on 2D-spheres. That hint us that the

projection is correct.

An important contribution in the present discussion is a proposal for which

position and orientation can be treated online with the same local differential

framework. Invariance is key and it is achieved by switching to differential

local frames. Here, curvature measures for the n-dimension are numerically

stable, but not bounded. Our interest in such problem arises from the fact that

correlation between sequences is a time-tested method in pattern recognition

but it requires that the compared sequences are bounded. Correlations take

different forms for different mathematical and statistical tools.

The method has advantages over others. First, the number of spatial di-

mensions is reduced with local differential frames for both, position and orien-

tation spaces. This reduces the complexity of the recognition problem. Second,

the method is scalable to kinematic chains. The recognition and comparison

problem for a single point in space is scalable to kinematic mappings for both

position and orientation. Third, one can use simpler online signal processing

techniques with geometric descriptions. And last, view invariance for both

position and rotation using the same framework.

Nevertheless, the method also has disadvantages. It is necessary to imple-

ment an off-line methodology for the acquisition of trajectory templates, for

both position and orientation parameters. View and orientation invariance are

achieved at the cost of non-linear metric spaces with high sensitivity to noise.

Small variations have great repercussions in the comparison using curvature

and torsion. To deal with non-linear metrics, it is also necessary to imple-

ment an adaptive filtering procedure for both template acquisition and on-line

comparison. The purpose is to reduce the variability in the comparison.

In the next chapter, we will introduce a novel scale-space analysis that will

allow us to compare two trajectories independently of the space geometry.
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Chapter 3
Multi–scale Curvature Analysis

3.1 Extrinsic and Intrinsic Reference Frames

3D-geometric data is difficult to model. Solids and curves are frequently rep-

resented as sets of discrete points f in Euclidean spaces. These objects have

an extrinsic description f when they are referred by a global reference frame

denoted as F . The f object does not have an invariant representation to affine

transformations under F . However, a unique representation independent of

point of view, denoted by g, can be achieved by moving the reference frame

F to FI within the object’s manifold. Moving the external reference frame F
inside or onto the object’s manifold g creates an intrinsic description that is

critical for robust pattern recognition. The situation is expressed mathemati-

cally as:
G : Rn 7→ Rn

such that
FI = G(F) f 7→ g
F = G−1(FI) g 7→ f

(3.1.1)

The mapping G localizes the global frame F for an object f either inside or

onto the object’s (n − 1)–manifold g such that the geometric transformation

f 7→ g is invariant to affine transformations of g.

However, invariance has a cost. Moving the external reference frame G(F)

also eliminates other information than the manifold’s local distance d(g). The

manifold’s local distance d(g) is also blind to the global geometry since it is

measured over the manifold. Another downside is that the manifold’s local

distance d(g) may be nonlinear with respect to the extrinsic reference frame

F . At sufficiently small variations δd , the local distance d can be measured

on the surface of g as an Euclidean distance and thus, f 7→ g ∈ R2 defines an

(n− 1)-manifold of an Euclidean space.
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3. Multi–scale Curvature Analysis

Often it is assumed that when 3D-curves are digitalized, the samples are

located at evenly distributed distance intervals. In the case of smooth curves

and surfaces, it is reasonable for the objects to be sampled at constant time

intervals. And although constant time may translate into constant distance in

Euclidean spaces for analytic 3D-curves, often the assumption does not hold

true for spaces with other geometries. Mapping time constancy into distance

often justifies an approximation for the Nyquist theorem onto 3D-geometric

objects. However, it is inappropriate to hold that the same assumption will be

true for geometries other than Euclidean. Constant time-sampling does not

translate into constant distances in n-dimensional rotation geometries such as

quaternions. Thus, intrinsic measures such as curvature have to be reinter-

preted based on the characteristic inter–point distances for surfaces and curves

in other geometries.

3.2 Curvature Scale-space Analysis

Curvature is a metric of bending. Specifically, it is a rate that measures how

fast the tangent vector T̂ of a curve changes in direction as the curve evolves.

If the tangent vector T̂[0] at point r0 has the same direction as the tangent

T̂[i] at point ri, the curvature κ curvature between r0 and ri is zero because

the two tangent vectors are collinear, i.e, the intersection points meet at ±∞.

However, if the two tangents have different directions, then the curvature

κ 6= 0. Since the rate at which the angular value of the intersection between

the normals change is relative to the distance s measured on the curve r(s),

the general definition of the two-dimensional curvature κ is

κ ∝
∥∥∥∥
d2 r(s)

d s2

∥∥∥∥ . (3.2.1)

The curvature is always related to the second derivative of the curve r(s).

Because of how the curvature is defined, curvature correlations are seldom

used because they are not bounded. Curvature is nonlinear and not bounded.

This is a most important issue when comparing curves with curvature signa-

tures. Curvature signatures for a curve r[i] can be easily singular at any point.

Such singularities often occur either when a segment of the curve approaches a

straight line or the curve has an inflexion point. In both cases, the curvature is

singular either because there is no change in direction or because the change in

direction occurs at the same point, so ds = 0. The usefulness of the curvature

as intrinsic signature is severely compromised.

An implied factor with the nonlinearity of curvature signatures is noise.

The curvature, as metric, is very sensitivity to noise. One can show the non-
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3.2. Curvature Scale-space Analysis

linear nature of the sensitivity of the curvature to noise with a simple example

by using an analytical curve such as an helix, at Figures (3.3a) and (3.3b). The

helix curve has been uniformly and randomly sampled along the arc-length.

The arc-length is the same for both helixes but the samples are placed at

different positions along the curve. No other variations were used.
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Figure 3.1: Two helixes with different sampling along the arc-length. The difference
is the interleave from sample to sample: Uniform for Figure (3.3a) and random for
Figure (3.3b)

Sensitivity to noise from the curvature and torsion signatures is an impor-

tant concern. Even when the two curves are close to each other since their

metrics are close, the variation in their curvature signatures is noticeably differ-

ent. The key factor is to determine how much noise is allowed in the signature

and still be able to achieve a correct identification (See Figure (3.2)).

The nonlinearity of both curvature and torsion metrics is evident as il-

lustrated at Figures (3.2a) and (3.2b). The non-uniform sampling introduces

noise to both curvature κ(s) and torsion τ(s), although the latter is more se-

vere. The explanation is that the numerical approximation for the derivative

is not enough to cancel the odd terms of the Taylor series. Some improvement

is accomplished by compensating non-uniform interleave in the h parameter

for the Taylor series, but even these linear approximations cannot maintain

the analytic properties of the signal.

The curvature-torsion mappings at Figure (3.1) illustrate the dilemma.

The mapping is unique for the curve r(s), but it is numerically unstable. The

stability of finite difference methods depend on canceling the odd terms in the

Taylor series a function f . Canceling the odd terms depends on the uniformity

of the intervals h.
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Figure 3.2: Curvature and Torsion signatures for an uniformly and randomly sampled
helix.

Numerical instability arises when the higher odd terms have residuals. Such

a situation yields divergence for the derivative f ′. Even when some compensa-

tion for the polynomial of h is possible, the finite difference method is sensitive

to rapid changes in the distance h and performs poorly [107]. As shown at

Figure (3.2a), a second order polynomial of h can maintain a degree of stability

for the curvature calculation.

On the other hand and as shown in Section (2.3.6.1), convolution meth-

ods to obtain time–series derivatives, such as the Savitzky-Golay filter, also

introduce a distortion due to aliasing when the interleave distance is uneven.

3.3 Correlations with Curvature Signatures

The matrix form for 3D-Frenet-Serret, Equation (1.5.7), describes a curve

r(s) which is the solution of a system of ordinary differential equations. As

the curve evolves, both curvature κ and torsion τ also change along the curve’s

arc-length s.

In this sense, κ and τ are to local frames what the internal dot product xTx

is to Euclidean spaces, distances. However Frenet-Serret frames introduce a

skew–symmetry in the distance matrix K, characteristic of external products.

It also shows that the curvature-torsion space is singular and critically stable.

This is observed since its determinant is singular and consequently, all the
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Figure 3.3: Curvature-Torsion (κ − τ, s) maps for two helixes with different sampling
strategies. The randomly sampled data introduces arc-length differences in the deriva-
tives. Consequently the noise level is higher.

eigenvalues of curvature matrix K are complex conjugates:

|K| =

∣∣∣∣∣∣

0 κ 0
−κ 0 τ
0 −τ 0

∣∣∣∣∣∣
= 0. (3.3.1)
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3. Multi–scale Curvature Analysis

Complex conjugate eigenvalues indicate that the distances κ and τ are unique

and irreplaceable for every point in the sequence. The reason is that the eigen-

values generates orbits in different parametric spaces of κ and τ . Indicating

also that the curvature and torsion are orthogonal and independent from each

other.

Unfortunately, all the above properties also indicate that convolving a filter

to smooth the κ − τ signature is useless. Convolving a filter with the κ − τ

signatures yield a projection onto a null space. The conclusion is that if one

were to modify the signatures κ(s) and τ(s), the operation on the intrinsic

space would change the original curve r(s) into a completely different curve

r̃(s) in the extrinsic space. Proving that both parameters, curvature κ and

torsion τ , are invariant and unique.

How is it then possible to propose a multi-scale curvature analysis? An

example is the Curvature Scale-Space (CSS) in 2D-image spaces [137]. The

CSS analysis in 2D operates on the curvature sub-determinant:

|K3,3| =
∣∣∣∣
0 κ
−κ 0

∣∣∣∣ . (3.3.2)

CSS operates with smoothing filter on the extrinsic space before obtaining the

curvature signature (3.3.2) with a scaling function matrix ̥(σI) such that:

κ(σI,x) = f(̥(σI)x). (3.3.3)

The curvature κ depends on a scaling factor σI and the 2D position vector

x of an image feature such as an edge. Usually for simplicity, the diffusion

operator ̥ is a 2D Gaussian filter. Depending on how the factors in vector

σI are introduced in the operator ̥, the scaling effects of the filter are either

iso- or anisotropic. However, such approach is not adequate for the purposes

here discussed. The smoothing operator ̥(σI) over-smooths relevant points

of the curvature signature κ(s).

In theory, it is possible to use a direct approach to compare two distinctive

curves in a 3D-Euclidean space by using a two-dimensional correlation that

involves both signatures κ(s) and τ(s). However, in practice, both signatures

are highly nonlinear and not bounded. The κ(s) and τ(s) are plagued with

inflexion points for which

|κ(s)| = ∞ or |τ(s)| = ∞. (3.3.4)

Such a situation implies that correlations using such signatures to be un-

bounded as well.
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3.3. Correlations with Curvature Signatures

Correlations do not work in signals with unbounded energy. The condition

is clearly expressed by the Parseval’s theorem for a correlation between two

signals G(f) and H(f) in the Fourier domain:

∥∥∥∥G(f)H(f)
∥∥∥∥
2

<∞. (3.3.5)

In other words, the total energy content in the correlation must be finite.

However, this condition does not hold true in direct correlations with the

curvature and the torsion signatures.

However, it is still possible to use the intrinsic signatures in correlation

operations. The fundamental problem is how to bound the energy content for

κ(s) and τ(s). The following sections elaborate on two different multi-scale

methods that keep intrinsic signatures bounded and thus, their correlation is

also bounded.

A secondary issue with correlations is the length of the signals g[t] and h[t].

The correlation operation expects that both signals have the same number of

samples. But, usually, it is rare for g[t] and h[t] to have the same number

samples. A common solution is to use re-sampling methods in order to equate

the number of samples. However, re-sampling is essentially s nonlinear opera-

tor that tends to modify the signature. Due to the sensitive nature of the κ(s)

and τ(s) signatures, this situation is not desirable.

In order to solve these problems, we introduce two general multi-scale meth-

ods for 3D-geometric signal analysis using the curvature space as invariant

support. The purpose of our correlation methods is twofold. First, to deal

with curvature correlations in a bounded way, and second, to compare ges-

tures of different lengths while avoiding to use re-sampling methods. A valid

concern is that our algorithm approximates the manifold’s curvature signature

using finite differences. Finite difference methods assume that the intrinsic dis-

tance between samples is equidistant with constant sampling rate. However,

geodesic distances other than Euclidean do not hold this assumption true.

The hypothesis of an analytical signal introduces a non-linearity for the cur-

vature signature in geometries different than Euclidean. A constant sampling

rate does not guarantee equidistant samples in geometric problems. Con-

sequently, the curvature and torsion signatures may not be preserved in a

different geometry.

The first method is a non-linear least squares fitting algorithm that uses a

parametric shape of known curvature. The parametric function fits recursively

into the data by a process of fit and segmentation. The result is a multilevel

approximation going from the general curvature value to the smaller neigh-

borhood values. The output will include a residual from the fitting procedure.
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3. Multi–scale Curvature Analysis

The process is similar to approximating one-dimensional signals with limited

support linear polynomials at distinctive scalar values: wavelets. The main

difference is that the shape provides a predictable curvature ratio for the lo-

cally fitted neighborhood. One can use this shape fitting to approximate the

local curvature values of the geometric signal.

The second method is a technique based on geometric signal processing

kernel known as local-curvature filter. It is an anisotropic kernel filter because

it uses geodesic distances to produce a multi-scale approximations to smooth

the curve. A great advantages of the anisotropic kernel filter is that it does not

need an accurate approximations of the curvature κ. A coarse approximation

suffices to produce a smoothing kernel. The multi-scale is provided by the

neighborhood size k. The neighborhood size k relates the filter to the geodesic

distance and thus, it bounds the energy content of the neighborhood. The

result is an energy bounded description of the curvature signature in the man-

ifold. Our two general methods do multi-scale smoothing using the current

available curvature information.

We achieve two important goals: first, to create an invariant and bounded

metric of the manifold and second, to avoid using interpolation methods that

would modify the manifold curvature signature. The shape fitting algorithm

reduces the extrinsic curve into simpler local approximations to the curvature

values while its residuals indicate us the error magnitude in terms of local

energy. This technique is a general non-linear least squares fitting algorithm

and gives similar results to signal processing of one–dimensional signals using

wavelets. The intrinsic filter provides a non-linear smoothing function that

approximates the curve in the extrinsic space in the least square sense. The

advantage of the method is that it provides a simpler yet, powerful tool to

analyze the trajectory in both coarse and detail levels. The method is inspired

from techniques used in three-dimensional laser image ranging [32], [31], [30],

[33]. Similar filters using the diffusion equation have appeared in different

disciplines such as computer vision [137] and computational flow methods [75].

3.4 Curvature-based Correlation Methods

In this section two general methods for scale-space analysis in geometric data

sets using curvature are introduced. The methods use linear correlations with

nonlinear metrics. We apply both methods to the problem of 3D-gesture

comparison. The idea is to bound the signature energy by applying a linear

combination of intrinsic distances. In a way, the methods re-define the en-

ergy content of a geometric path over the normalized arc-length

[
1

s

]
, this is
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3.4. Curvature-based Correlation Methods

equivalent to estimate the signal’s power for a 3D geometric curve or surface.

The concept is inspired from three-dimensional range image processing [32],

[30],[31] where similar concepts apply and it is fundamental for our correlation

methods.

The first method is a divide and conquer strategy by fitting a function with

least-squares methods. The divide and conquer strategy divides the data set

into coarse and detail levels. The coarse levels are composed of the parametric

values for the fitting function while the detail levels are the corresponding resid-

uals of the fitting function. This is a multi-scale method that approximates

the curvature values from the parameters of the fitting, without calculating

the derivatives.

The second method is a convolution filter called anisotropic kernel filter-

ing. The main strength of the method is that it does not require for the

derivative approximations to be accurate. The method accepts derivative ap-

proximations from low order difference methods or convolution filters such as

the Savitzky-Golay filter. Although, it does require that the approximations

are second order continuous, i.e., C2 exists. The reason is that the method

applies a nonlinear kernel to the metric, so a certain level of inaccuracy is

tolerated. The weakness of the method is its computational complexity which

is approximately O(n2).

3.4.1 Curve Fitting for Curvature Analysis

This section introduces a curve fitting method that approximates the curvature

with multi-scale resolution without computing local derivatives. Computing

the curvature using curve fitting is hardly a novel technique, but it is advanta-

geous for two reasons. First, the curve fitting produces a natural smoothing for

the 3D-data set depending on the scale. Second, the derivative order for the

3D-data set completely depends on the model and not on the local differences

since they tend to be numerically unstable.

The key idea is to fit families of parametric shapes with known curvature

into the unknown data set. The shapes are fitted onto the unknown points by

using an objective function. The fitting error, which it is also proportional to

the curvature error, is evaluated by the objective function in the least square

sense.

Fitting a curve or a surface to the cloud of 3D points introduces a re-

lationship that abates the dimensionality and the complexity of the recogni-

tion problem. The initial hypothesis is that the set of points, x, belongs to

suspected surface in 3D. The scalar field in the set x is represented by an

embedded manifold with lower dimensionality such that there is a mapping
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3. Multi–scale Curvature Analysis

f (x) : Rn 7→ Rn−1 plus an error ε ∈ Rn−1. In the particular case of 3D, the

mapping has a form:

x = {x, y, z} 7→ f (u, v) + ε (3.4.1)

The known shape is also described as a three-dimensional multivariate func-

tion g(u, v : β) where β is a n-vector of adjustable parameters that controls the

shape. The algorithm minimizes a metric error e between the unknown surface

and the parametric surface by using the least-squares objective function:

e = min
β

N∑∥∥f (u, v)− g(u, v;β)
∥∥2 (3.4.2)

where N is the number of parameters in vector β.

Some curves and surfaces in 3D-Euclidean spaces may admit other simplifi-

cations due to their geometry. Thus one can solve Equation (3.4.2) with linear

programming, although it is not rare to find nonlinear minimization problems

for complex shapes.

Curves in space are sequences that follow a temporal order and not only

spatial locations. This characteristic is critical because it allows us to define the

space’s principal directions in terms of the sequence ordering. This approach

is similar to the principal component analysis in the sense that one has to

determine first the sequence’s principal direction. Finding a principal direction

for the sequence is a concern in the method. However, if it is not possible to

find a principal direction for the data sequence, then a possible solution is to

subdivide the ordering sequence into shorter sequences until a projection is

found.

Determining an optimal length for the subsequences is outside of the scope

of the current work. The reason is that determining the optimal length is

analogous to finding statistical invariants for a time-series or conversely. In

other words, it becomes necessary to solve a segmentation problem that fulfils

a stationarity condition. The current assumption is that the sequences do have

a principal direction and linear programming does yield results showing the

direction of the curve in space.

Reducing the dimensionality of the data set x allows us to simplify pattern

shapes to general quadratics such as the ones shown in Table 3.1. The cur-

vature values for each shape are shown in the third column for the different

curve patterns. An ellipse has a nice expression for its curvature, however it

requires at least four non-concyclic points and the solution may not be unique.

Both the parabola and hyperbolas are unbounded and asymptotic curvatures.

They may present other difficulties for curvature analysis.

A circle has constant curvature. Any type of curve analysis fitting circles

is a type of analysis with constant curvature. The circle is the simplest shape
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Table 3.1: Quadratic Functions For Shape Fitting

General Function
A(x2) +B(xy) + C(y2) +Dx+ Ey + F = 0

Shape Conditions Curvature

Circle
B = 0, D = 0, E = 0

Solve A, C and F for radius from the
point means X̄ and the estimated
center ĉ, then r = ‖X̄ − ĉ‖.

κ =
1

r

Ellipse

∣∣∣∣
A B

B C

∣∣∣∣ > 0

Solve A,B,C,D,E and F for the es-
timated parametric foci angle t, the
major axis a and minor axis b.

κ =
ab

(b2 cos2 t+ a2 sin2 t)
3
2

Parabola
B2 = 4AC A 6= 0, C 6= 0

Solve A,B,C,D,E and F for the
distance from point mean X̄ to the
estimated focal point f̂ .

κ =
1

2‖X̄ − f̂‖

Hyperbola

∣∣∣∣
A B

B C

∣∣∣∣ < 0

Solve A,B,C,D,E and F for the es-
timated parametric foci angle t, the
major axis a and minor axis b.

κ = − ab

(b2 cosh2 t+ a2 sinh2 t)
3
2

available and it provides a nice geometric interpretation for the curvature

κ. Constant curvature analysis has been used for automatic image query in

database search problems [137], but it has not been applied to the problem of

gesture comparison.

3.4.1.1 Why Curvature Only

Aside the numerical instabilities of the third derivative, there is a practical

reason that justifies the use of only the curvature parameter. Smoothing a

3D curve based only on the curvature parameter is equivalent to project the

3D data set onto a thin plate. This only justifiable if the error introduced

into the trajectory is small. The torsion parameter indicates the rate at which

a 3D curve leaves the thin plate plane. However, in a noisy 3D data set,

it does not indicate how far a peak point would be M samples ahead. It

becomes then necessary to find the maxima at which such peaks occur from the

projection plane. If the ratio between the total arc-length for the curve under
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3. Multi–scale Curvature Analysis

consideration and the distance at which the peaks occurs is not significant,

then the thin projection is justifiable.

In the case of our working data set, the above justification is valid. The

ratio I between curve arc-length s vs. maximum peak distance in between Z

zero crossings between curve and projection is small. The ratio is defined as

I =

Z−1∑
i=1

maxi
∣∣x−Px)

∣∣

s
. (3.4.3)

Such situation is illustrated at Figures (3.4a) and (3.4b). Other ratios consider

the total distance in between zero crossings:

Ii =
(x−Px)T(x− Px)

∆si
for ∆si = si − si−1. (3.4.4)

for which si and si−1 two separate zero crossings occur.

3.4.1.2 Basic Algorithm for Constant Curvature Analysis

The shape fitting algorithm does not handle curvature values directly. How-

ever, it is numerically more stable and makes more physical sense to use the

radius of curvature instead. Approximating curves and surfaces with circles

and spheres converges rapidly at least at the proximity of the point of in-

terest and it quickly provides a local measure of the curvature. The rapid

convergence of the algorithm is because circle fitting admits a reduction in the

complexity that other shapes do not [58].

The initialization of the algorithm consists in finding a common projection

plane to the majority of points in the sequence. The plane is a least-square fit

to all the points in the sequence. The next step is to construct a projection

of all point in the sequence onto the common plane. For small to medium

size sequences the method works well because curves composed of a limited

number of elements can be approximated by planes.

Next, the algorithm uses a divide and conquer strategy in conjunction

with a tree data structure for constant curvature analysis. The tree structure

constructs different levels for which the curve r(s) fits a circle for different

arc-lengths for a constant α ∈ R such that αs, 0 < α ≤ 1. The base node uses

α = 1 to include the full length of the curve r(s) and fit the known curvature.

Subsequent nodes use proportional arc-lengths to fit subsequent shapes. Unlike

wavelet analysis, curvature analysis does not guarantee equally split steps as

in a geometric series. The complexity of O(n logn) is due to the tree data

structure.
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(a) A 3D Forceps trajectory and its planar projection
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Figure 3.4: The ratio between maxima peaks between a 3D curve and its planar
projection vs. the arc-length is small. The reason is that the maximum number of
crossings between projection and curve is small or because the distance differences at
peaks are also small.
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At each level, there are ns possible nodes. The number of nodes varies

according to the shape fitting. In order to determine the number ns, the algo-

rithm determines the high curvature values peaks encountered at each scale.

It does not guarantee the same number of segments in a particular level. How-

ever, the method guarantees that the curvature values are quantized, and thus

bounded. The residuals of the fitting function at each specific level consti-

tute the total fitting error at each level node. The decomposition provides

quantized coarse values of curvature for each approximation. The details or

residuals are kept on the tree leaves.

The lower bound of the algorithm is reached at N/3 samples. A minimum

of three samples are required to fit a circle. This lower bound is rarely needed

because either the fitting error is too small at higher nodes or because the

noise introduced by not considering lower levels is negligible and considered

as an acceptable noise level for the signal-to noise ratio.

Other basic shapes can be used to fit the basic shape of the curve. Another

choice would be the ellipse or a parabola for small sections. However, choosing

an ellipse must take into account that the fitting may not be unique. The

fitting algorithm to fit conics other than circles is still somewhat unreliable, and

in practical applications, uses more than four samples. Open end conics such

as the parabola would additionally require to find the dominant directions for

the parabola. Continuity conditions may be also problematic at the extremity

of the curve.

3.4.1.3 Constant Curvature Fitting Results

Lets consider a 3D curve as the one presented at Figure (3.5). The curve

presented at Figure (3.5) is part of a gesture data set for Forceps handling

gestures that will be explain later. Only the position is presented in this

section.

Both trajectories at Figure (3.5) are for position. The curves are composed

of discrete samples in a 3D-Euclidean space. The trajectory at Figure (3.5a)

has of a total of 183 samples while the trajectory at Figure (3.5b) has a total

of 174 samples. The sampling rate was of 40 samples/s. The curves can be

considered mostly planar and thus the planar projection is easy to do without

previous segmentation.

Figure (3.6a) shows the planar projection for the curve at Figure (3.5) and

the initial step in fitting circles in order to approximate the curvature at the

projection plane. The curvature error for each point is inversely proportional to

the closeness to the intersection points. This is clearly shown at Figures (3.6c)

and (3.6d). The curvature spikes at Figures (3.6c) and (3.6d) represent the

points for which the circle approximation intersects the thin–plate projection
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Figure 3.5: A 3D position trajectory for a forceps blade. Two different trajectories are
presented. Figure (3.5a) is a trajectory from an experienced user while Figure (3.5b) is
a trajectory from an inexperienced user. Both have distinct number of samples. Units
(cm.)
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causing a high local curvature with respect to the circle approximation. Such

intersections are the key segmenting points for the curve.

The curve is naturally segmented from the intersection points from the

curve and the fitted shape. At each level, the local curvature minima points

allows us to establish boundaries for which a new circle is fitted. The points are

grouped by considering the local minima as boundaries for which in between

sequential points belong into a group. This situation is clearly illustrated at

Figures (3.7) and (3.8). The number of segments ns in both figures is similar

yet not equal. It is not expected that the number of sub-segments should be

the same, only that the number of groups is similar.

The natural segmentation process at different iteration or decomposition

level is illustrated at Figures (3.7a), (3.7c), (3.8a), and (3.8c). Different levels

of analysis, from the initial fitted circle to all subsequent branch fittings up

to the fifth iteration, are shown for an experienced gesture and quantized

with the local reference curvature. Figures (3.7b), (3.7d), (3.8b), and (3.8d)

correspond to the same curvature analysis for an inexperienced student after

receiving instruction and being allowed to practice the same gesture.

The rapid convergence of the algorithm is illustrated at Figures (3.9) and

(3.10). It is noticeable that only after two iterations, curvature analysis at

level 3, the gesture has been segmented into several clusters containing points

with approximately the same curvature. The reconstruction, using only curva-

ture radii approximations for the curve at Figures (3.9c) and (3.9d), is piece-

wise continuous within each cluster but discontinuous at the segmenting points.

Further analysis using circle fitting increases the number of clusters seg-

menting the gesture curve. However, when the number of clusters increases,

the number of samples per cluster decreases very rapidly. The significance is

that even one can reduce the error to the curvature value per each sample, the

generalization of the curvature to a group of samples is lost. The curvature

quantization per sample is further specialized, but the curvature generaliza-

tion is lost at the same time. This is illustrated at Figures (3.8) and (3.10)

where at further iterations the fitting error is reduced, the number of clusters

is increased and the number of samples in each cluster is small.

The resulting estimated curvature signatures, illustrated at Figures (3.11)

and (3.12), are similar to a Haar wavelet analysis of a 1D–signal [59]. Fig-

ure (3.11) illustrates the estimated curvature signature for the experienced

gesture at different levels of analysis while Figure (3.12) illustrates the same

estimate for an inexperienced user after explanation and practice. For clarity,

we present five signatures, one per iteration, where Figure (3.11a) and (3.12a)

are the initial circle fitting and Figures (3.11e) and (3.12e) are the outputs for

last iteration of the algorithm. A negative sign in the value of the estimate for
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user at level 1.

Figure 3.6: Thin plate projection for the curve at Figure (3.5). The randomly sampled
data introduces arc-length differences in the derivatives. The local curvature is measured
from the fitted circle to the corresponding point in the curve. First approximation level.
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(a) Experienced user at level 2 cluster-
ing. Total clusters: 6

(b) Inexperienced user at level 2 clus-
tering. Total clusters: 7

(c) Experienced user at level 3 cluster-
ing. Total clusters: 25

(d) Inexperienced user at level 3 clus-
tering. Total clusters: 23

Figure 3.7: There is a rapid cluster progression as the algorithm progresses to smaller
scales. At coarser levels, levels 2 and 3, the clusters contain large number of points, but
the curve fitting returns large errors. The number of discrete states is low.
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(a) Experienced user at level 4 cluster-
ing. Total clusters: 36

(b) Inexperienced user at level 4 clus-
tering. Total clusters: 36

(c) Experienced user at level 5 cluster-
ing. Total clusters: 41

(d) Inexperienced user at level 5 clus-
tering. Total clusters: 39

Figure 3.8: Rapid progression in the number of clusters. The clusters contain smaller
and smaller sets of points as the algorithm progresses into finer scales. After reaching
level 5, the clusters barely contain enough points to fit a curve, the finest level has been
reach. The number of discrete states is high, probably inadequate for a HMM.
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(b) Inexperienced user at level 2 seg-
mentation.
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(c) Experienced user at level 3 segmen-
tation.
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(d) Inexperienced user at level 3 seg-
mentation.

Figure 3.9: At coarser levels, the approximation error for the circular basis function
is relatively high, but they offer a better generalization with fewer discrete states. At
level 3, a balance is reached between the approximation error of the basis function and
the number of discrete estates that is more manageable than at finer scales.
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(a) Experienced user at level 4 segmen-
tation.
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(b) Inexperienced user at level 4 seg-
mentation.
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(c) Experienced user at level 5 segmen-
tation.
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(d) Inexperienced user at level 5 seg-
mentation.

Figure 3.10: At finer levels, the cluster numbers increase. However, the approximation
error reaches a plateau. The reason is that the circular basis functions have reach its
limits as shown at Figure (3.10d).

101



3. Multi–scale Curvature Analysis

a single sample indicates its relative position with respect to the previous iter-

ation. It simply indicates that the curvature radius estimate has a lower value

from the intersection point perspective. The spikes at the curvature signature

estimates are present because these are the boundary locations indicating high

local curvature values at different iterations.

3.4.1.4 Advantages and Disadvantages

The main advantage of the algorithm is that the curvature estimate has a

lower and an upper bound. The estimates are also a function of the scale since

they are inversely proportional to the radii at different decomposition levels.

The curvature scale analysis is analogous to Haar wavelet multi-scale analysis

for curvature. Each decomposition level is an invariant signature for curve on

the plane at a concordant neighborhood size w projection.

The algorithm output can be used to apply direct correlations between two

different signatures. Each level in the decomposition is invariant in the arc-

length sense. A correlation between the same levels yield a similitude measure

providing a distance metric between the curves.

An important disadvantage of the method is the data structure in the com-

parison. The tree structure allows us to improve the multi-scale decomposition

of the curvature signature. However, it does not guarantee that the same tree

shape will remain for similar curves. Slightly different trees may represent the

same curve with slight different branch shape and numbers. In this sense, the

tree structure is unreliable. Consequently, it is preferable to maintain a low

level decomposition with shallow levels for recognition purposes while the tree

uncertainty is treated as noise at higher levels.

3.4.2 Anisotropic Kernel Filtering

We start by defining two general representations X and XM for two discrete

n– and (n − 1)–dimensional spaces where XM ⊂ X. Both are vector repre-

sentations of an extrinsic and an intrinsic spaces respectively.

The discrete extrinsic space is a set of points x of n-dimensions:

XT =

{
x[1],x[2], . . . ,x[i], . . . ,x[m]

}
∀ i = {1, 2, . . . , m} m <∞.

(3.4.5)

Each point in the space, x, is represented as an n–tuple. In the other hand,

an intrinsic space or manifold, is a discrete set of points x lying in the (n−1)–

dimensional manifold M :

XT

M =

{
xM [1],xM [2], . . . ,xM [i], . . . ,xM [m]

}
∈M ∀ m <∞ (3.4.6)
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(a) Curvature estimate for level 1.
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(b) Curvature estimate for level 2.
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(c) Curvature estimate for level 3.
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(d) Curvature estimate for level 4.
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(e) Curvature estimate for level 5.

Figure 3.11: Discrete curvature estimates from fitting circles. The position of curvature
values at finer levels depend on the coarser levels. However, a summation in the log-
space produces a curvature profile containing coarse and fine scales. It presents a similar
behavior as a Haar wavelet.
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(a) Curvature estimate for inexperi-
enced user at level 1.
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(b) Curvature estimate for inexperi-
enced user at level 2.
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(c) Curvature estimate for inexperi-
enced user at level 3.
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(d) Curvature estimate for inexperi-
enced user at level 4.
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(e) Curvature estimate for inexperi-
enced user at level 5.

Figure 3.12: Cumulative curvature profile from an inexperienced user. The estimates
from the fitting algorithm rapidly and correctly localizes high curvature values at finer
scales. Spikes in the finer scales indicate a sudden changes in direction, a situation that
is not desirable.
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where each point xM is an (n − 1)–tuple. The index i uniquely defines each

point in both the space and the manifold. There are no repeated indexes and

while the space may be infinite, the manifold is either finite or it has a closed

form. One also assume that the manifold XM is an invariant representation

of an object in the X extrinsic space.

As in any other smoothing filter, the basic idea of the anisotropic kernel is to

use a weighted average to smooth an object in X. An important characteristic

of the weighted average is that the kernel achieves signal smoothing using

invariant distances. In the case of geometric signals, the expected invariance

stands from the geometric standpoint. The smoothing process should not

change an arrangement configuration or the expected output under a geometric

transformation. In Euclidean spaces the natural relationships are distance

between points and straight lines.

For geometries other than Euclidean where geodesic curves are analogs to

straight lines, the geodesic distance provides unique scalar values to point

clique. These unique scalars are averaged and then used to determine a

smoother estimate for the expected central point in the neighborhood. In

multidimensional geometric signal processing it is more adequate to refer to

this type of filter as averaging or smoothing filter since one cannot define an

intrinsic frequency domain as in Fourier analysis.

Cartesian spaces use the Euclidean distance as intrinsic metric. It is defined

as an internal product. For a sequence of N discrete points x[i] in an Euclidean

space, the geodesic metric is

d2
g =

N−1∑

i=1

(x[i+ 1]− x[i])T(x[i+ 1]− x[i]) N ∈ Z (3.4.7)

also known as arc-length.

However, the definition of distance for other geometries Equation (3.4.7)

may be inappropriate. The definition of a geodesic distance dg is dependent

of the manifold geometry and thus, anisotropic in nature.

3.4.2.1 Anisotropic Kernel and Gaussian Filters

The Gaussian filter is, in a sense, an isotropic or extrinsic filter. The weights

do not depend on the manifold geometry as they are a function of an estimated

covariance matrix Σ in the Euclidean space. The estimation of the covariance

matrix is extrinsic to the points describing the manifold. Its reference frame

is located outside the manifold.

The distance function for the Gaussian filter is the Mahalanobis distance.

The matrix D contains the smoothed distance covariance from x[
⌊
w

2

⌋
+ 1] to
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3. Multi–scale Curvature Analysis

each point x inside the window W:

D
[⌊

w

2

⌋
+ 1
]
= XT

w
[i]Σ−1Xw[i]

i = {1, 2, . . . ,w}, w ∈ Z <∞.
(3.4.8)

where Xw is a difference distance matrix from points x starting at index i to

the window center point x
[⌊

w

2

⌋
+ 1
]
. The filter output y[i] is:

y[i] =
1

((2π)n |Σ|)1/2
1

w
OT

w
exp

(
−1

2
XT

w
[i]Σ−1Xw[i]

)
x[i] (3.4.9)

where

OT = [o1, · · · ,oi, · · · ,on], oi = 1, ‖oi‖ = w (3.4.10)

is a cumulation matrix of size w × n. The covariance matrix Σ is of size

n × n with n > 0 ∈ Z. It is a vectorial representation of the points inside a

neighborhood window of size w. The shape of the window is considered at the

moment of choosing the vectorization Xw and it is defined at i as:

XT

w
[i] =




xT[i]− xT
[
i−
⌊
w

2

⌋]

xT[i]− xT
[
i−
⌊
w

2

⌋
+ 1
]

...

0

...

xT[i]− xT
[
i+
⌊
w

2

⌋
− 1
]

xT[i]− xT
[
i+
⌊
w

2

⌋]




. (3.4.11)

The matrix contains the difference vectors from points inside the neighborhood

x[i], i =
{
−
⌈w
2

⌉
, . . . ,−1, 0, 1, . . . ,

⌊w
2

⌋}
to a central point, x [0].

The smoothing is provided by the covariance matrix Σ. The main assump-

tion is that a statistically significant number of points x in the space X are

explained by the covariance matrix. The weight w at i is

w[i] =
1

((2π)n |Σ|)1/2
oT

w

w
exp

(
−1

2
XT

w
[i]Σ−1Xw[i]

)
ow (3.4.12)

In contrast to the Gaussian filter, an anisotropic kernel filter does not use

the covariance matrix to smooth a value. The smoothing of the filter is solely

determined by a scalar value acting upon the eigenvectors of covariance matrix
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3.4. Curvature-based Correlation Methods

of the anisotropic distance d | x : Rn 7→ R in the corresponding manifold. As

an example in Euclidean spaces, the distance function is the internal product:

d2 |x : xTx

w[i] =
1

α(d(x), σ)
exp

(
− 1

2σ2
xT

w
[i]xw[i]

)
(3.4.13)

where α(d(x), σ) is a normalization factor that depends on the values of the

distance function d(x) and the scaling parameter σ.

In order to extend the covariance of the anisotropic distance to other ge-

ometries as an internal product, one can apply geometric considerations about

the manifold into Equation (3.4.13):

w[i] =
1

α(d(x), σ)
exp

(
− 1

2σ2
xT[i]G−T

w
[i]Gw[i]x[i]

)
(3.4.14)

where Gw is a vectorial representation of a general windowed geodesic-distance

difference matrix that includes information about the scalar curvature tensor

for the manifold.

3.4.2.2 Curvature Scale-space and the Anisotropic Kernel Filter

We showed in Section 3.4.1 that a natural form of curvature scale-space emerges

from recursively fitting a known-curvature parametric shape family along a

three-dimensional curve. The analysis starts by initially fitting to all points

in the trajectory in the least square sense and then locating the high curva-

ture point values as natural segmentation points. Then recursively repeat the

procedure until a desired error value is obtained or the number of points runs

out. The scale-space thus produced has constant curvature values for differ-

ent sections on the curve with different lengths. This curve analysis is only

approximations to the real values of the curvature at each point in the curve.

The advantage is that uses well known strategies but it misses the generality

of an energy-based method.

In curvature scaling, the scale weight has to be modified without changing

the curvature signature. In many ways the natural distance function for any

space is the geodesic distance in Equation (3.4.14). The scalar curvature tensor

is an invariant value closely related to the second derivative of the space. The

significance is that the geodesic distance of any surface or any trajectory is a

local geodesic function of a neighborhood. Closer points do affect the curvature

value while farther points should not affect the neighborhood. The natural

question is how do one choose the corresponding weighting values for the filter

at different scale values.
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The scalar curvature tensor has a projection matrix. If one analyze Equa-

tion (3.4.14), the matrix-vector product xT[i]G−T

w
[i]Gw[i]x[i] yields a squared

scalar value. Using associative laws and dropping off the discrete index i, it

easy to show that if:

a = Gx, (3.4.15)

the scalar curvature tensor has the form of a distance function

d2
g = aTa = xTG−TGx (3.4.16)

for each one of the points in the manifold. Each and every point on the curve

or the surface is uniquely characterized by a geodesic distance denoted as dg.

If one places a reference frame onto the manifold, then Equation (3.4.16) must

also include the Riemannian information G into the geodesic difference matrix

as:

d2
g = aTa = xTXT

w
GTGXwx (3.4.17)

where the geodesic difference matrixXT

w
may include either a small portion, or

a complete manifold, by controlling the window size w. The specific geometry

of the window is generalized by vectorizing the geodesic-distance difference

matrix, so any kernel function Φ(w) can be included.

By observing the covariance between the neighboring set of points in the

manifold, one can gain an insight of the manifold’s structure X . The neigh-

borhood is determined by a vector of size w×1 with an odd number constraint

w = 2n+1. The center point in the neighborhood x[i] defines our origin onto

the manifold. It defines a window for a geodesic-distance difference vector dg,w

such that:

dg,w[i] =




dg [i]− dg
[
i−
⌊
w

2

⌋]

dg [i]− dg
[
i−
⌊
w

2

⌋
+ 1
]

...

0

...

dg [i]− dg
[
i+
⌊
w

2

⌋
− 1
]

dg [i]− dg
[
i+
⌊
w

2

⌋]




(3.4.18)

and a geodesic-distance covariance matrix Dg,w[i] from the manifold window

projection matrix:

Dg,w[i] =
dg,wd

T

g,w√
d T

g,wdg,w

. (3.4.19)
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The size of the geodesic-distance covariance matrix is w × w. There is no

assumption on the properties ofDg,w except that is symmetric by construction.

The geodesic-distance covariance matrix can be ill-conditioned depending on

the structure of the manifold and the size of the neighborhood.

The geometric interpretation of the scaling the curvature appears when

considering the extrinsic space as a n + 1-dimensional space by generalizing

the (n−1)–dimensional plane given by windowed-geodesic-distance covariance

matrix as a projection:

P w = Dg,w (3.4.20)

where P w is the generalized projection matrix for the local neighborhood on a

n-dimensional space. The key assumption is that the manifold lies in a (n+1)-

dimensional space. By definition P w is singular and therefore is not invertible,

but in exchange, it possesses some useful properties:

P T

w
= P w,

P n
w
= P w.

(3.4.21)

The smoothing process at different scales of the anisotropic kernel fil-

ter is explained by factoring the local projection matrix for a point in a n-

dimensional manifold neighborhood. Using singular value decomposition to

uncover the structure of the projection matrix P [i] for the local neighbor-

hood:

P w[i]V w[i] = Uw[i]Λw[i] (3.4.22)

Uw[i] is the orthonormal extrinsic vector space, Λw[i] is the singular value

diagonal matrix and V w[i] is the orthonormal anisotropic vector space for

the centered point x[i] in the manifold. The direction of the local extrinsic

orthonormal vectors Uw[i] depends on the choice of the adequate value for the

corresponding Λ−1
w
[i] steering the local anisotropic space V w[i], i.e.,

Uw[i] = P w[i]V w[i]Λ
−1
w
[i]. (3.4.23)

The effect of Λ−1[i] is to maximize the effect of the anisotropic distances in

the extrinsic space by choosing adequate scalar values. This is accomplished

for the local neighborhood when the following condition applies:

(
XT

w
[i]U g,w[i]Xw[i]−Dg,w[i]V [i]Λ−1[i]

)
x[i] = 0. (3.4.24)

This set of normal equations degenerates into a scalar with no unique solu-

tion. However, Equation (3.4.23) shows that the family of solutions lie on the

n-dimensional normal vector to the manifold plane given by the anisotropic

distance covariance matrix Dg,w at the centered point x[i]. The projection
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matrix provides us with the general direction of the solution for the local

neighborhood at the centered point.

The geodesic covariance matrix Dg,w can be unbounded, meaning that the

total energy of the anisotropic kernel filter may be undefined:

w∑

i=1

d2
g [i] = ∞. (3.4.25)

In order to avoid such a situation, a nonlinear kernel controls the geodesic

distance values within the neighborhood. A reasonable choice for the kernel is

the negative exponential function e−(
x
2 )

2

. Then, our anisotropic kernel matrix

is defined as:

W g,w[i] = H−1(dg,w)[i] exp

(
−1

2
Dg,w[i]V

T[i]V [i]Λ−2[i]

)
(3.4.26)

where Dg,w is the anisotropic distance covariance matrix, V are the orthonor-

mal anisotropic manifold direction vectors whose internal dot product V T[i]V [i]

is a diagonal matrix, and H(dg,w)[i] (Uppercase Eta) is the matrix contain-

ing the singular values for the principal directions in the manifold. Further

simplification on Equation (3.4.26) yields:

W g,w[i] = H−1(dg,w)[i] exp

(
−1

2
Dg,w[i]IΛ

−2[i]

)
. (3.4.27)

This shows that the singular value matrix Λ contains the scaling factors for the

principal directions of the anisotropic covariance matrix Dg,w for the neigh-

borhood around the point x[i]. In other words, one can manipulate the scaling

factors of the principal directions that maximize the anisotropic smoothing for

the data in U [i].

The normalization factor H(dg,w) is a diagonal matrix containing the

energy signatures for the directions of the local neighborhood. It is defined as

H(dg,w)[i] =
1

w
O T

w
exp

(
−1

2
Dg,w[i]V [i]Λ−1[i]

)
. (3.4.28)

The diagonal vector η
w
inH(dg,w) contains the total energy in the anisotropic

manifold for a specific neighborhood size w, i.e.,

Hw =




ηw1,1 0 · · · 0 0
0 ηw2,2 · · · 0 0
...

. . . 0 0
0 0 · · · ηwm−1,m−1 0
0 0 · · · 0 ηwm,m



. (3.4.29)
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The norm of ‖η(g ,w)‖2 is an important weighting signature. The reason

is that once the normalization factors for all the manifold has been computed,

the resulting vector diagonal η(dg,w) preserves a complete description of the

manifold that is also bounded and normalized at different window sizes.

One of our main contributions in this thesis is given by Equations (3.4.28)

and (3.4.29). They are important and critical equations. They allow us to

compare directly two curvature signatures, κ′[l] and κ′′[l] in terms of curve

power or energy per arc-length unit.

From a signal processing standpoint, the normalization factor η(κ, σ,w)

defines the characteristic impulse response of a finite impulse response (FIR)

filter, η
w
, of size m× 1 taps. η

w
is a vector containing the energy description

of all the directions in the anisotropic manifold. Since the impulse response

function characterizes the local geometry of the manifold at point x[i], the

energy content is also invariant.

This alone provides the means to directly compare two distinctive curvature

signatures. The filter characteristic summarizes all the necessary information

to compare two different impulse responses by convolving the unknown impulse

response into the known response filter. Now, one can quantify the signatures

similitude in terms the power residuals based on a single anisotropic parameter:

the curvature κ.

The general smoothing of the anisotropic kernel filter is defined for n-

dimensions as:

y[i] = H−1(dg,w)
(
XT

w
[i]W g,w[i]Xw[i]

)
x[i] (3.4.30)

and W g,w[i] as defined in (3.4.26) and of size w × w. The matrix Xw[i] is

windowed the difference vectors for the local neighborhood in the extrinsic

space, as defined in (3.4.11). The size of Xw is w × n

3.4.2.3 Determining the Optimum Estimate Λ̂

A direct solution to determining the values of Λ is to use singular value decom-

position for each individual point in the manifold and solve the pseudo-inverse:

D−†
g,w[i] = V [i]Λ−1[i]UT[i]. (3.4.31)

D−†
g,w is the pseudo-inverse, usually obtain by means of the Singular Value De-

composition method. Its solution is computationally expensive, but it uniquely

determines the adequate singular values for each direction in the anisotropic

space.

Another, and less expensive, solution is to use a least squares approxima-

tion to a common value that is satisfactory for the majority of points in the
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anisotropic space. The values for Λ−1 are determined indirectly by observing

the auto-correlation function between the curve x(l) in the anisotropic man-

ifold and the resulting filtered signal y(l). The auto-correlation function will

produce a maximum at the approximate value of the optimum estimate Λ̂.

3.4.3 Multi-scale Curvature with the Anisotropic
Kernel Filter

The behavior of the filter depends on selecting two main parameters: σ and k.

The former defines the importance scaling for the anisotropic directions while

the latter parameter defines the window support for the local neighborhood.

Due to the similitude to the Gaussian filter, common sizes for the window are

values like k = 7, 9, 11, 13. This window length ensures that, at least in theory,

the support takes into consideration at least 99.9%, 99.994% or higher of the

total energy content from the local neighborhood.

By using second order differences one can estimate the discrete derivatives

ẋ and ẍ in order to approximate the curvature value κ. However, the torsion

parameter demands an estimate of the third derivative
...
x. Although our esti-

mates for both the first and second derivatives of x are sufficiently stable, we

found that the estimate for the third derivative is still numerically unstable

and insufficient to obtain a reliable measurement estimate for the torsion, see

Figure (3.2).

3.4.3.1 Anisotropic Kernel Smoothing

The algorithm is straightforward. Initially one relies on the auto-correlation

coefficient ρ to provide a characterization for the filter’s smoothing process.

The pseudo-algorithm for the local-curvature anisotropic kernel filter is:

1. Provide initial estimates for filter tap number k and scaling factors σ̂
and δσ̂

2. Re-parameterize the curve x[t] as

x[t] 7→ x[s] for s = 1. (3.4.32)

3. Estimate the initial curvature signature κ̂[0] ∀ s.

4. Calculate the curvature reciprocal vector

r̂κ[0] =
1

κ̂[0]
. (3.4.33)

5. Iterate with index i:
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(a) Iterate for all s with index [j]:

i. Calculate the filter window Xk[j] = kernel(r̂k[i], σ̂[i], k)

ii. Use Equation (3.4.40) to calculate the anisotropic kernel filter
Xk[j] and obtain the smooth vector x̃

x̃[i+ 1][j] = Xk[j] ∗ x[i][j]. (3.4.34)

(b) Determine auto-correlation coefficient ρ[i] from the original x[i] and
the smoothed cross-correlation coefficient ρ̃[i] from x̃[i+ 1] and the
original x[i]. Take the first maximum.

(c) Termination condition:
∣∣ρ[j]− ρ̃[j]

∣∣ < threshold (3.4.35)

or
max(Iter) < i. (3.4.36)

(d) Calculate new curvature estimate κ̂[i+ 1]

(e) Increase σ̂ = σ̂ + δσ̂.

(f) Increase index i

6. Return max σ̂(ρ)

Only the initial curvature vector estimates κ̂ and r̂κ are important. In fact,

both remain constant during the smoothing procedure since they are the best

approximations to the manifold signature. The index i is an innovation index.

At each step one use auto-correlation to determine an optimal value σ̂[i] by

locating the maximum correlation value from the previous value of σ[i − 1].

Then, one proceed to recalculate the new curvature vector κ[i] for our gesture

exemplar. At each step one consider the maximum auto-correlation coefficient

and observe its evolution. An optimum value σ occurs when the coefficient

reaches a maximum and then it starts decreasing. This is concordant with the

rotation of the local values of curvature explained above. One uses σ̂ as the

optimum value for the curvature signature in the cross-correlation with other

exemplars.

3.4.3.2 Numerical Stability of the Anisotropic Kernel Filter

The anisotropic kernel filter, as stated in Equation (3.4.27), is numerically

unstable when using curvature values κ for smoothing the extrinsic space.

The reason is that the curvature covariance matrix

Kw[i] =
κw[i]κ

T

w
[i]

κT
w
[i]κw[i]

(3.4.37)
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is ill-conditioned for large curvature values and thereby, the numerical reso-

lution is easily overflowed. However, one can eliminate this issue by using

instead the curvature reciprocal or the curvature radius rκ:

rκ =
1

κ
. (3.4.38)

The geodesic distance covariance matrix is now defined as

Rw[i] =
rκ,w[i]r

T

κ,w[i]

r T
κ,w[i]rκ,w[i]

. (3.4.39)

Such a substitution is viable because the curvature is an invariant scalar for

the anisotropic space. When the curvature approximates a large numerical

value, its reciprocal approximates zero. Thereby, one have only applied a

conditioning factor and our new smoothing function is written as:

y[i] = H−1(rκ, σ̂,w)

(
XT

w
[i] exp

(
− 1

2σ̂2
Rκ,w[i]

)
Xw[i]

)
x[i] (3.4.40)

with the new normalization matrix as

H(rκ, σ̂,w) =
1

w
OT

w
exp

(
− 1

2σ̂2
Rκ,w[i]

)
ow. (3.4.41)

and σ̂ is our estimated value for the general steering factor Λ.

3.4.4 Parameter Estimation for the Anisotropic Kernel

Filter

The problem of finding adequate values for the scalar value σ and window size

k is illustrated at Figure (3.13). The residual error for the curvature approx-

imation in the anisotropic kernel filter depends on the adequate parametriza-

tion. In the following, we determine the parametrization tuple (σ, k) for the

anisotropic kernel filter on 3D Euclidean and quaternion curves. In order to

determine a pair of general parameters, we used a 3D gesture data set con-

taining six values for position and orientation.

We applied statistical data analysis on the curvature energy provided by

Equation (3.4.41) and estimated the sum square error (SSE) of fitting residuals

for different curves in a estimation data set. In order to create an estimation

data set, several samples were randomly selected without replacement. A total

of 24 samples containing position and orientation were used for the parameter

estimation.
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(a) 3D position curve. Viewing (Azimuth = −32o, Elevation = −28o)

(b) Close up panning for the same trajectory. Axes not shown.

Figure 3.13: A raw 3D position trajectory (continuous line) and the anisotropic smooth-
ing for σ = 0.01 (red) , 0.1 (black), 1.0 (green) and 10.0 (magenta). The window size
is k = 11. The nonlinear nature of the filter is clear at σ = 0.01 where several spikes
appear at point where the curvature signature is close to indetermination.
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In order to determine the most general interaction pair from different para-

metric values of (σ, k), we applied single factor ANOVA for a logarithmic

sequence of values for σ = {0.01, 0.02, · · · , 0.09, 0.1, 0.2, · · · , 0.9, 1, 2, · · · , 19}
and a linear sequence of odd window sizes k = {3, 5, 7, 9, 11, 13, 15}. We are

interested in testing if different combinations of σ and k influence the sum of

square error. Mathematically, the statistical hypotheses are stated as:

H0 : µ(σ1) = µ(σ2) = · · · = µ(σn)
H1 : Not µ(σ1)

(3.4.42)

for σ and
H0 : µ(k1) = µ(k2) = · · · = µ(kn)
H1 : Not µ(k1)

(3.4.43)

for the window size. Due to the space geometries, the hypothesis are applied

to each space, Euclidean and quaternion, independently.

3.4.4.1 Position Trajectories

The parameter interaction for σ and k for the position curves is shown at

Figure (3.14). The behavior for σ and k is asymptotic with respect to the

curvature SSE. It is apparent that the curvature SSE reaches a plateau for

σ > 0.2 at a window size k = 15. However, the curvature SSE remains

constant at different window sizes.

This behavior is corroborated by the box plots at Figure (3.15a) and Fig-

ure (3.15b). The p-value at the standard 0.05 significance level is p0.05 = 0.716

thus we cannot reject the null hypothesis H0 for σ. This indicates that there

are no significant statistical differences in the means for the SSE at different

values of σ.

On the other hand, the probability value for the null hypothesis for the

window size factor is p0.01 = 4.52 × 10−6, indicating a strong dependency of

the SSE to the window size k and rejecting the null hypothesis. This is clearly

illustrated at Figure (3.14) where the minimum SSE is presented at a window

size k = 5. And although it is not shown at Figure (3.14), a window size k = 3

introduces a large SSE, measured at least of three orders of magnitude the

error of a window size k = 15. This particular window size is not useful for

the filter for this testing data set.

3.4.4.2 Orientation Trajectories

The parameter interaction for σ and k for the orientation curves is shown at

Figure (3.16). The behavior for σ and k is also asymptotic with respect to the

curvature SSE. It is also apparent that the curvature SSE reaches a plateau for
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Figure 3.14: Parameter interaction in the intrinsic filter. On the abscissa, the value σ
for different window sizes from 3 to 15 showing the minimum sum of the square error
(SSE) for the curvature approximation. All the curves are asymptotic for σ > 0.2. The
curve that minimizes the SSE is k = 5.

σ > 0.03 at a window size k = 15. The curvature SSE also remains constant

at different window sizes.

Again, this is corroborated by the box plots at Figure (3.17a) and at Fig-

ure (3.17b). The p-value at the standard 0.05 significance level is p0.05 = 0.914

so we cannot reject the null hypothesis H0 for σ, indicating that there are no

significant statistical differences in the means for the SSE at different values

of σ also.

The probability value for the null hypothesis for the window size factor is

p0.01 = 8.43× 10−6, so there is a strong dependency of the SSE to the window

size k, rejecting the null hypothesis H0 for the window size. This is illustrated

at Figure (3.16) where the minimum SSE occurs at a window size k = 3.

In this case, the very own nature of the quaternion space relates curvature

directly to a window size of three points.
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Figure 3.15: Box plots for different values of σ and window size k. The σ plot shows
that there are no significant differences between data means for any σ > 0.2 with a
p-value p0.05 = 0.716, accepting the null hypothesis.
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Figure 3.16: The minimum SSE error for the curvature residual for the orientation
space is present for a window size k = 3 and any σ > 0.09.

3.4.4.3 Window Size vs. Scope

A particular point to be discussed is shown at Figures (3.15b) and (3.17b). The

box plots for window size, for both position and orientation, indicate that there

is no homogeneity in the variance for the curvature SSE. The reason behind this

is anisotropic nature of the filter. The weights minimize, on different degrees,

the curvature signature of the trajectory. By definition every curve has its own

signature. Different window sizes k approach each signature differently and

thus it is expected that the variance between signature to be non-homogeneous.

The results for position and orientation for the data set are summarized in

Table 3.2

Table 3.2: Values for window size k and scalar σ for 3D position and orientation
trajectories.

Position Orientation
Window Size k = 5 k = 3

σ Any > 0.1 Any > 0.05
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Figure 3.17: Box plots for different values of σ and window size k for the orientation
trajectories. The σ plot shows that there are no significant differences between data
means for any σ > 0.03 with a p-value p0.05 = 0.914, accepting the null hypothesis.
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3.5. Summary

A characteristic of anisotropic smoothing is that the initial components for

the trajectory may be smooth and analytic; however, that may not be the

case once smoothed against the curvature signature. The filter minimizes the

geodesic distance of the trajectory through out the use of different window sizes

and reaches a limit for which the initial components may be distorted from

their initial values. Nevertheless, the resulting curve in the space is smooth in

curvature.

Also, since the filter does not considers the second curvature, the approx-

imation to the initial curve lacks a degree of freedom that would it allow it

to match the initial curve. In other words, the anisotropic kernel filter follows

the curve in the curvature κ(s) but not in torsion τ(s).

3.5 Summary

We introduced two new methods for geometric signal processing using the

curvature κ as weighting parameter for gesture comparison. The first method,

use of constant curvature as basis function to approximate general and local

curvatures from a signal. The second method is based on a three-dimensional

range geometric processing algorithm using anisotropic filters. Both methods

share a common point, the use of eigenvalue decomposition in the form of

singular value decomposition.

The first method using constant curvature decomposition is not a novel

approach and it can be classified a top-down approach. The novelty lies in

the application of the constant curvature approach to the problem of gesture

comparison and the similarity to other scale-space approaches such as wavelets

for signal processing. It relies heavily on a least squares curve fitting algorithm

which can fail if a number of samples lie in a straight line. The strong point

of the constant curvature fitting algorithm is that the number of iterations

necessary to obtain a good estimate of the curvature is relatively low, usually

two or three iterations for the exemplary gestures. It also provides a natural

segmentation for the curve at point where the constant curvature and the local

curvature of the signal cross providing a high curvature point in the residuals.

Using such characteristics, gesture comparison can be done in a scale-space

fashion with constant values of curvature and the residuals as analogous to

the high frequency values.

A major advantage of the constant curvature decomposition over the aniso-

tropic kernel approach lies in its direct application to rotation sequences with

quaternions. Unitary quaternions are intrinsic spherical spaces with constant

curvature geodesics. Complex orientation sequence trajectories sequences can

be simplified using projections of the unitary quaternion space to the (φ, ψ)-
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plane, as defined by the Equation set (2.5.29). Other considerations follow

since the spherical projection is independent from the quaternion magnitude.

The angular distance is kept separate. Without this independent value, the

spherical projection is useless to characterize the rotation sequence.

The second method, anisotropic kernel filter, is a bottom-up approach in

which the similarities between two arc-length vectors are measured in terms

of a weighted average from the curvature distances of x(s). We analyzed

the relationship between combinations of different values for the parameters

(σ, k). For a particular data set, we concluded that the steering scalars σ have

no major weight in our multi-scale curvature approach. The deciding factor is

the window size k. Different geometries requires different window sizes.
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Chapter 4
Study Case and Results

Gesture comparison main objective is to assess how the motor dynamics of

a gesture are performed and passed on between individuals. Generally, the

assessment of motor dynamics is done using indirect, subjective methods where

apprentices are evaluated under the guidance of experts.

Medical training has unique requirements where individuals have to learn

specific gestures and techniques to be applied in specific circumstances. Yet,

the pending question is how to quantitatively assess how well a new practi-

tioner acquires and continues to improve the various skills necessary to per-

form his work. As previously discussed, the main difficulty in assessing gesture

motor skills lies in comparing three-dimensional gesture trajectories in space.

The current approach relies on subjective assessments from experts that, fre-

quently, are difficult to translate into quantitative measures of performance.

Even when assessing skill differences between experts, it is difficult to quanti-

tatively measure motor skill differences between them.

There has been an increased interest to quantitatively evaluate gesture in

recent years. Due to both ethical and practical reasons, it has become desir-

able to use of simulators or emulators for training. The two main issues that

simulators attempt to solve are: emulate real life-like situations and quantify

an individual’s skills solving specific situations.

In this chapter, we will evaluate how the proposed methodology can be

applied to quantitatively assess the skill of obstetric surgeons for the use of

forceps. We hypothesize that specific three-dimensional gestures and kine-

matic state sequences cannot only be recognized but also be compared to one

another by using standard signal processing applied to invariant differential

geometry representations of the three-dimensional gesture trajectories. Our

primary hypothesis is tested in the gesture evaluation phase for a medical

simulator, specifically a childbearing simulator.
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4. Study Case and Results

BirthSIM is a robotic medical simulator system developed at the Ampère

Laboratory at INSA of Lyon, France [138] [139] [140]. In our case study, the

objective is to test our methodology for which one can compare the three-

dimensional trajectories for the blade placement gesture of both right and

left forceps blades placing onto the targeted area. An important constraint is

time independence. Time independence refers to the fact that gesture analysis

requires us to compare how similar the gesture is against a pattern. The

hypothesis is that the execution of a specific gesture by an expert has a short

execution time, yet, in the case of an apprentice, the gesture execution time

is large due to ongoing learning.

4.1 Evaluating Obstetric Reaching and Grasp-

ing Gestures

One may think that the use of forceps is an outdated exercise. Mainly, due to

the availability of new procedures for childbearing distress such as C-section

or vacuum cup extraction. However, the technique is taught as a failsafe

emergency procedure when the latter options are not possible.

In obstetrics, forceps are classified into three taxonomical groups: outlet,

mid-cavity and rotational. Each type is appropriate for specific situations.

Each one requires different levels of expertise. A general description of for-

ceps structure is one of a pincer instrument composed of two independent

flat-flanked, curved blades. The blade tips are shaped as a elongated spoons.

The blade tip is known as the curve. The curve has a other specializations

depending on the grasping region: cephalic or pelvic curve. The second struc-

ture in the forceps are the handles. The length and retraction action of the

handle is designed with the type of intended reaching area in mind. Forceps

with short handles are usually intended for use in the perineal and the vaginal

region when the fetus is crowning at the vulva. Forceps with medium length

handles, called also mid-cavity forceps, are intended to engage the fetus at the

pelvic brim in the birth canal. Forceps with longer handles are intended to

reach the fetus at the mid-cavity region. A third characteristic to be consid-

ered in forceps is related to the rotation action intended for the rotation and

repositioning of the fetus. This type of handle provides a sliding action besides

the grasping and clamping action.

Forceps blades are clamped and secured at one junction point in the handle

section. The position and securing method of this clamping point varies from

design to design, but the end purpose is to provide a mechanical pincer-like

action so the targeted regions can be mechanically grasped and secured.
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4.1.1 Forceps Application Procedure

The application of forceps has three major stages: placing, clamping, and

rotation and traction. Placing the forceps involves various specific techniques

that have to be passed on to new trainees. It is a critical phase in the use of

obstetric forceps. In the case of outlet cephalic forceps, the obstetrician first

finds the sagittal plane, by either visual or tactile inspection of the cranial

sagittal fissure in the crowning fetus. This stage is important to locate the

mento-vertical line. The mento-vertical line is a reference line located between

mid-section of the temporal bone in the cranium, the mandibular condyle and

the mandibular angle. The target placement area for the cephalic forceps

is located along the mandibular angle and the temporal bone. Both blades

are placed onto the opposite sides of the cranium, separately. The blades

placement in the correct position is critical to avoid tissue damage to the fetus

during the rotation and traction phase.

At the clamping stage, the blades are mechanically secured at the pincer’s

pivoting point. Depending on the forceps design, the pivoting point may have

one or two degrees of freedom, allowing for a gentle rotation of the fetus’ skull

or just by securing the grasping points at the placement areas. At the grasping

stage, just before clamping, the obstetrician must check that the pressure is

correctly applied to the grasping areas, or it may cause damage to soft tissues

or even may cause neurological damage.

Finally, the traction stage is performed once the forceps have been me-

chanically secured onto the correct regions. In order to expedite the fetus’

expulsion, the obstetrician applies a gentle traction and/or rotation action

during the contraction phase of the labor. Obstetricians have to learn how to

synchronize the traction motion along the contraction phase to avoid unnec-

essary stress for both the mother and the fetus. If traction is applied during

the relaxation phase, the action may cause tension on the soft tissue that may

create further damage to the fetus.

4.1.2 BirthSiM Simulator

BirthSiM is an anatomically correct robotic simulation system. The mechani-

cal core of the simulator is a pneumatic piston with two degrees of freedom, a

linear displacement and a rotation axis around the piston’s shaft. The piston is

terminated with an anatomically correct dummy of a fetus cranium. The birth

canal surrounding the piston shaft is also completed with realistic anatomical

reference points that obstetricians use to orientate themselves when locating

the forceps. The perineum region is also realistic, presenting both labia majora

and minora, see Figure (4.1).
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The expulsion motions of the birth canal are simulated by small displace-

ments of the pneumatic piston. A previous calibration was performed to sim-

ulate contraction motions as realistic as possible. Different orientations of

the piston’s end effector simulate different delivery orientations for the fetus

cranium. This allows obstetricians to practice the different referencing tech-

niques, both visual and tactile, at distinct stages of the labor. The realism and

correctness of the fetal cranium is indispensable to locate the correct grasping

points along the temple-mandibular-angle line.

Figure 4.1: Robotic application BirthSIM

4.1.2.1 Interaction with BirthSIM

BirthSIM process data in real time. Both experts and apprentices can observe

the position and orientation of each blade using a two-dimensional display of

the region. The graphical interface uses a low-resolution polygonal approxima-

tion for the robotic elements in the emulator by using actual information from

electromagnetic sensors tracking the forceps and pneumatic piston position

and orientation.

A first approach to help students to follow a correct trajectory path is to

present a series of goal positions to be reached. At each position, a spherical

marker representing a point in space for which the blade has to go through,
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is placed along the chosen optimal trajectory to reach correctly the location

at the fetus’ cranium. The positioning of the markers was done by dividing

an averaged expert trajectory in equal length segments. Different projective

views are possible, as illustrated at Figures (4.2a) and (4.2b). The sphere sizes

are reduced in order to increase the difficulty at different training stages. At

this point, the optimal trajectory is just a visual aid for students and not a

comparison between experts and juniors.

(a) Transverse plane view (b) Sagittal plane view

Figure 4.2: Visual aids for different perspectives for the neonatal pose presentation and
cue markers for both blade trajectories

4.1.2.2 Digitalizing Gesture

The position and orientation data from the forceps reaching gesture’s are cap-

tured using electromagnetic receivers mounted at the handles of each blade,

see Figure (4.3). The sampling rate for the motion capture system is of 50

samples/s per channel. In order to reduce the electromagnetic field distortion,

the simulator’s forceps are not actual obstetric forceps but they are made

of non-magnetic bronze. Bronze has lower conductivity coefficient than cop-

per which reduces the reflection of the electromagnetic field. Bronze has also

greater tensile strength making the blades more brittle, so they have to be

handled carefully.

For simplicity, each forceps is considered as a free moving object in 3D-

space. The actual location of the end-effector of a forceps is a complex kine-

matic chain. However, the kinematic chain remains hidden to the sensor and

was calibrated by scanning the forceps with a laser scanner. Other assump-
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tions had to be taken into account as well. Ideally, the sensor positioning

should be at the tip of the forceps blade, but that would affect the handling

and placing of the blade’s curve on the targeted area. Instead, the sensor is

placed at the forceps’ handle. This introduces a trade-off between accuracy

and practicality. The trade-off is the assumption that there are no deforma-

tions nor vibration between the blade’s curve and its handle. Although such

an assumption may not be entirely true, it is necessary in order to estimate the

rigid transformation between the tip and the sensor’s location. The coordinate

transformation from the tip of the blade to sensor’s coordinates is shown at

Figure (4.3).

Figure 4.3: Reference frame transformation for both trajectory and orientation on a
forceps blade.

4.1.2.2.1 Electromagnetic (EM) Tracking System

Electromagnetic (EM) sensors provide us with information for both position

r and orientation θ. EM trackers measure the intensity of an electromagnetic

field from a nearby source. The main advantage of EM trackers is their immu-

nity to occlusion. However, their disadvantages are the need for a calibrated

space and body restriction.

The EM tracker accuracy is highly dependent on the stability of the near–

source EM field. An EM near–field is easily distorted by the presence of any

ferromagnetic material [197], [109]. The reason is that metallic surfaces with
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magnetic properties deflect EM waves, effectively distorting the near–field. It

is recommended to avoid the presence of any magnetic metal object during

motion capture.

The distortion in the EM near–field source due to environmental elements

such as equipment and materials lying near to the tracking space is called

static field distortion. A certain amount of static field distortion for the EM

trackers can be compensated for position. The compensation process requires

an involved calibration procedure of a volume in tracking space [48], [67], [121],

[122], [126]. However, the static field distortion for orientation has very little

representation in the literature [135], [146].

A major disadvantage of earlier EM tracking systems is motion restric-

tiveness. Earlier versions of EM tracking sensors used heavy shielded cables

thus restricting motion. In general, the tracking space is mapped to a global

reference frame, usually located at the transmitter antenna. Newer version of

the systems, such as the Mini-Bird from Ascension TechnologiesTM, offer less

motion restriction by using a wireless interface between sensors and portable

data acquisition units. The sensor placement always considers the position

and orientation correspondence to the tracked link.

4.1.2.2.2 Tracker Accuracy

EM trackers are sensitive to the presence of ferromagnetic materials in their

surroundings. After a calibration procedure, the presence of such materials can

be compensated and the static accuracy is improved at the calibrated points

but diminished for volumes in between the calibration points. The calibration

procedure was done for a mesh of 10× 10× 10cm. The average isotropic error

at the center of the cube was 8 mm3. The static isotropic error is then

ε =
max Volume Error

Total Volume
× 100% =

8 mm3

1000 mm3
× 100% = 0.8%. (4.1.1)

A trajectory error is 0.8% of the arc-length in any direction.

A more accurate model is to consider an anisotropic error since the di-

rectional variations in the electromagnetic field will have different scalars for

different directions. However, since the static error is lower than 1%, the ex-

perimental measurements are considered accurate with in a cube of 2× 2× 2

mm.
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4.2 Analysis of 3D-Trajectories

4.2.1 Analysis of the Three-dimensional Position

As previously mentioned, 3D-trajectory analysis must have two important

characteristics: viewpoint and time invariance. In the current dissertation

the view invariance is tackled by switching global reference frames to local

trajectory reference frames. Whereas the time invariance is solved by replacing

the evolutionary time variable by a geometric equivalent: the trajectory arc-

length.

As mentioned in the previous chapter, one can minimize the number of

dimensions necessary to describe a trajectory in a three-dimensional Euclidean

space using Frenet-Serret frames with two main variables, namely curvature

κ and torsion τ . Numerically, both parameters, κ and τ are very sensitive to

noise. Curvature and torsion estimates depend on numerical approximations

of the spatial derivatives of the underlying trajectories.

Though in theory both curvature κ and torsion τ are essential to describe

a three-dimensional trajectory. Our comparison procedure has to be limited

to use the curvature κ alone. There are two justifications to do so based on a

physical and a numerical constraints.

The physical, or intrinsic, constrains reduce the comparison dimensionality

for only the curvature. In humans, the number degrees of freedom for the upper

limbs is redundant, yet limited. This implies that any trajectory described by

the conjunction of all possible rotational joints indeed does not present high

values of torsion. The torsion of a curve is the rate at which the normal vector

N̂ changes direction along the arc-length s. In other words, this means that

one do not expect sudden changes by the rolling of the joints.

In a free-body, the torsion τ has to be considered in lesser degree of impor-

tance if the numerical approximations to the third order derivative are noisy.

In practice, approximating the third derivative is tricky and it can only be

done with acceptable numerical error for analytical functions. A possible so-

lution is to use function fitting with thin plates for small trajectory sections

in order to estimate the direction change. However, with this approach over-

fitting is always a latent problem. More often, approximations to the third

derivative for discrete data contain large approximation errors, resulting in

poor approximations of the torsion parameter τ (see Figure (3.2b)).

During the discriminating stage, a sampled trajectory curvature is calcu-

lated and then compared against a reference. To compute the corresponding

curvature, the data are first expressed according to their cumulated arc-length

s as described in Chapter 3. Three-dimensional gestures are first assessed ac-

cording to their path length. Here, the cumulated arc-length (s) is used to
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guarantee time independence. The discrete evolution of the position r at time

t is expressed as an array r(t) = [x(t), y(t), z(t)]T. The cumulated arc-length

s(t) is calculated from an initial fixed time index t = 0. Then, the position data

are expressed with respect to this parameter, i.e. r(s) = [x(s), y(s), z(s)]T.

4.2.2 Analysis of the Sensor Orientation

In the case of forceps placing gesture, the evolution is traced by tracking the

end-effector’s position and orientation with respect time. Our end-effector is

one forceps blade. The electromagnetic tracking sensor is physically placed

at the handles. By assuming a rigid transformation, the physical coordinates

of the sensor are translated and re-oriented at the tip of the forceps blade.

We consider the blade as a free kinematic rigid body. In order to fully de-

termine the corresponding analysis, both position and orientation trajectories

are considered.

Metric for orientation trajectories are nonlinear. The definition of a dis-

tance is done in a four parametric space, the quaternion space. Quaternions

have different projections that can be used to represent trajectories, see Sec-

tion 2.5.1. Each one has advantages and disadvantages. However only two

spaces are bounded, other projective spaces are unbounded. The meaning

of bounded in this case refers to finite distances. Projective spaces such as

ternions and polar projections are not bounded because at one point they

project a point into infinity. In order to solve this issue, one can use a quater-

nion three-dimensional projection defined by another quaternion space (see

Section (2.5.1.4)).

The projection is defined by a relative distance between two quaternions

and a trajectory on the surface of a sphere. The (φ−ψ)-manifold is the surface

of a unit sphere. q̂0 is the initial orientation in the quaternion space.

Metric: ρ[i] = d (q̂ [i], q̂ [i+ 1]) = sin2 θ[i]− sin2 θ[i+ 1]

(φ− ψ)
φ = arctan

(
z√

x2 + y2

)

ψ = arctan
(y
x

)
(4.2.1)

Unlike other projections, the angular parameters φ and ψ are completely in-

dependent from the value of ρi.

The distance ∆ρi admits an Euclidean simplification if ∆θ[i] = θ[i+1]−θ[i]
is less than 10 degrees:

ρ[i] ≈ θ[i+ 1]− θ[i] ∀ θ < 10 deg. (4.2.2)
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The arc-length s for a N point sequence in the quaternion space is then

defined as:

s =

N−1∑

i=1

ρ[i]
(
∆2φ[i] + ∆2ψ[i]

)1
2 (4.2.3)

which is nonlinear.

In order to compare two orientation trajectories one can use 2D curvature

analysis since N tends to be large and E [∆ri] = k, K = Nk = constant.

These two conditions simplify the curvature analysis for orientations in the

plane (φ− ψ):

s ≈ K
N∑

i=1

(
∆2φ[i] + ∆2ψ[i]

)1
2 . (4.2.4)

The approximation is only valid for a large number of points N and small

increments between quaternion orientations ∆θ[i]. If such approximation is

not valid, then the distance approximation is done using other equations.

The rotation sequence arc-length corresponds to the quaternion cumulative

distance. Once it is known, data is treated in the same manner as it was for

the position case:

1. Expression of data according to their cumulated arc-length.

2. Calculation of the quaternion curvature κ(s) with respect to the cumu-

lated arc-length.

3. Application of a sliding window for the anisotropic filter in order to

smooth data, and

4. Calculation of the correlation coefficient from the smoothed curves of

the studied path.

4.2.3 Algorithm of the method

The following algorithm resumes the general solution to compare two 3D-

gestures using curvature signatures: The algorithm is available for analyzing

position and orientation data necessary to compare two gestures and thus to

evaluate a gesture relative to a reference one set by the experts.

4.3 Experimental Results

The main issue of using curvature as a way to identify 3D-trajectories is finding

the true curvature signature at the corresponding neighborhood size. Often,
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Table 4.1: General Algorithm for Curvature Comparison

1
r(t) = [x(t), y(t), z(t)]T

θ(t) = [φ(t), ψ(t), ϕ(t)]T

Data from sensors: position
orientation data.

⇓

2
r(s) = [x(s), y(s), z(s)]T

θ(s) = [φ(s), ψ(s), ϕ(s)]T

Data parametrization with
respect to cumulative arc-
length.

⇓

3
κpos

κang

Compute curvature using sec-
ond order finite differences
with respect to the arc-length.

⇓

4
Spos(s)

Sang(s)

Filtered data using the
anisotropic filter or quantized
curvature estimates using
cicle approximations.

⇓

5 ρpr

Compute correlation coeffi-
cient with displacements in
arc-length to compare curva-
ture signatures.

sampling noise and numerical approximations yield curvature values that are

deceiving. Curvature estimates are obtained from series of consecutive points

that may not be uniformly distributed in the space, creating numerical errors

in the derivative estimates. Yet, any curvature estimate has no meaning if it is

not related to the size of the neighborhood or scale. It is in this sense that time

series smoothing for non-linear parameters is critical. A multi-scale approach

similar to wavelet analysis is necessary to evaluate the main curvature and

torsion of different section sizes.

In order to determine adequate values for a correlation function ρpr to

measure similarity, we need to use a multi-scale approach to measure the

curvature of different sections of a trajectory in 3D-space. We experiment with

two dynamic procedures in which several estimated values of κ̂i are studied

for a given estimated window size ŵj along the trajectory. The hypothesis

is that distinct smoothed or quantized curvature values along the cumulative

arc-length will create a template that yields different correlation values.
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Our first dynamic method is similar approach to Haar wavelets. The algo-

rithm is described in more detail at Section (3.4.1). It is a non-linear multi-

scale approach that approximates local curvature values by fitting constant

curvature shapes to a 3D-curve. It is a least squares approximation method.

Unfortunately, the method proves to be difficult to implement for 3D orien-

tation spaces. The difficulty essentially lies in the fact that quaternions are

spherical spaces. Determining a principal direction for large signal scopes in-

side a sphere is difficult using planar projections.

Our second dynamic method is an nonlinear averaging smoothing filter.

The filter coefficients are assigned according to an intrinsic measure for a

distance d . Since intrinsic distances may be anisotropic in nature, the filter is

also known as anisotropic smoothing filter. It can be best described from the

signal processing standpoint, as a low pass discrete infinite impulse response

(I.I.R.) filter. However, its Fourier spectral characteristic is non-linear and

dependant on the geometry of the distance function.

4.3.1 The Experiment

In order to test the gesture evolution and the differences between experts and

trainees, an experiment was conducted. The experiment consisted in analyzing

the gesture of trainees at four training sessions:

1. Initial session,

2. Observation session,

3. Explanation session, and

4. Practice session.

During the initial session, trainees have not received any information on

the handling technique of obstetric forceps. They have been asked, however, to

execute the gesture after a brief informative session on how to locate anatomic

key references and they have been shown the target areas on the fetus prop.

At this particular point, the students receive no help from any expert nor they

have seen the experts during the gesture execution and perform the gesture

without any guidance.

In the observation session, trainees were allowed to observe an expert per-

forming the handling gesture. Using the interactive features of BirthSIM, the

trainees follow the expert’s gesture remotely. No detail explanation of the

handling technique was presented, only the expert’s motion was observed.

At the explanation session, trainees were given a detailed explanation on

the forceps handling gesture by an expert at the same time that the gesture

134



4.3. Experimental Results

was performed using BirthSIM. However, the trainees were not allowed time

to performed the gesture on their own.

At the practice session, trainees had time to perform the handling gesture

on their own accord after the previous session. At this phase, the experts were

present only as observers, not as mentors.

4.3.2 Constant Curvature Fitting

4.3.2.1 Multi-scale Curvature Radii Profiles

The profiles for the radii of curvature were obtained using the constant cur-

vature fitting algorithm with only three decomposition levels. Hereafter, we

call such profiles Multi-scale Curvature Radii Profiles (MCRP) and denoted

as rκ[i] where i = {1, . . . ,M}M ∈ Z. A MCRP is composed of the individual

values rkℓ [i] for level ℓ = {1, . . . , N} N ∈ Z. A summated MCRP is obtained

with the product of the radii of curvature at the different decomposition levels:

rκ[i] =

N∏

ℓ=1

rκℓ
[i]. (4.3.1)

In order to emphasize and avoid round-off errors in the MCRPs, we applied a

logarithmic transformation to each level ℓ such that

log10(rκ[i]) =

N∑

ℓ=1

log10(rκℓ
[i]) (4.3.2)

and the summated MCRP is kept as an extra level in the profile.

Figures (4.4) and (4.5) illustrate MCRPs for two experts’ gestures for the

right blade. As in any multi-scale representation the trade-off is individual

accuracy for generalization. The quantized representation of a general radius

of curvature for a number of points in a neighbor is inaccurate for individual

points within the neighbor.

From a qualitative standpoint, Figures (4.4) and (4.5) also illustrate a

typical conduct in the expert’s gesture for forceps handling. There are three

observable stages: initiation, approximation and placing. The initiation phase

is characterized in the expert’s gesture by combined high and low curvature

radii values, as shown in the first third of the MCRP at decomposition levels 2

and 3. Between the second third or to half of the gesture execution, the middle

decomposition level is characterized by low to middle curvature radii values

while the detail level can contain middle to high curvature radii values, mostly

due to corrections in the trajectory for approximation. During the final stage,
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(b) Expert 1’s Discrete curvature radii profile

Figure 4.4: Expert 1’s multilevel cumulative curvature radii profile for a right blade
handling gesture. At Figure (4.4a) three levels are shown. Figure (4.4b) illustrates the
summated profile.

both the middle and detail levels, 2 and 3 respectively, are characterized with

low curvature radii values.

On the other hand, the MCRP for trainees varies noticeably even in a

simple visual inspection depending on the training stage. This is an important
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(b) Expert 2’s multilevel cumulative curvature radii profile

Figure 4.5: Expert 2’s multilevel cumulative curvature radii profile for a right blade
handling gesture. At Figure (4.5a) three levels are shown. Figure (4.5b) illustrates the
summated profile.

result because it shows that the method can be used to evaluate the evolution

of the gesture at different stages.

Figure (4.6a) illustrates a common MCCRP of a trainee at the very first

training session. Aside the length of the gesture, the MCCRP has a slight

tendency to be periodic, specially at the middle decomposition level. The
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finer curvature radii neighborhood, there are oscillations between high and

low curvature radii. But the most important tendency is the final placing of

the sensor. The values of the radius of curvature tend to be high, indicating

that the final motion reaches the placing target in a straight line. Observing

the same stage in the experts, the final motion is not a straight line, but a

gentle notch on the target area that is noticeable in medium and finer scales.

During the second phase of training, the students are allowed to observe an

expert performing the procedure, but they are not taught directly. An MCRP

at this stage is shown in Figure (4.6b). The length of the gesture performance

has been shortened, but the fines scales show still some oscillation between

high and low curvature radii. The final placement is gentler but hastened at

the end.

In the third phase of training, trainees are introduced to the handling with

a detail explanation of the technique, but they are not given the time to hone

the gesture. An typical MCRP at this stage is illustrated at Figure (4.7a). The

length of the gesture remains similar to the observation part at Figure (4.6b).

However, the improvement is noticeable in all three stages of the gesture per-

formance. The all important final placement stage is gentler with finer curves.

Figure (4.7b) illustrates a typical MCRP after the trainees had been al-

lowed to hone the gesture. The gesture length is the shortest of all the previous

performances with fewer high values in both scales, indicating a smoother ges-

ture curve.

4.3.2.2 Differences Between Experts and Trainees

In order to determine which are the dominant features on a multi-scale cur-

vature radii profile, we applied an autocorrelation function to every decom-

position level of multi-scale profile. Unlike random signals, the correlation

coefficients do not decay quickly on deterministic signals and the influence

between coefficients is strong even when the signals’ overlapping is partial.

However, in the case of discrete curvature profiles, the correlation between

coefficients is dissimilar at different scales. It is expected that in the autocorre-

lation at different scales will have dominant modes that influence the summed

up autocorrelation profile.

4.3.2.2.1 Autocorrelation for Experts

The autocorrelation of the MCRP for experts allow us to analyze further

an expert’s performance. The autocorrelation for two different experts is il-

lustrated at Figure (4.8).
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(a) MCRP for a trainee at the first session of training.
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(b) MCRP for a trainee after observing an expert execution of the
gesture, but no explanation nor correction are given.

Figure 4.6: MCRPs at two initial training phases. (4.6a) illustrates the initial gesture
performance of a trainee without references of the gesture performance. (4.6b) illustrates
the same gesture after being allowed to observe the performance of the gesture.
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(a) MCRP for a trainee after the gesture performance had been ex-
plained.
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(b) MCRP for a trainee after practicing the gesture.

Figure 4.7: MCRPs at two final training phases. (4.7a) illustrates the handling gesture
performance right after receiving a detailed explanation on the gesture performance.
(4.7b) illustrates the final gesture performance after being allowed time to practice the
handling gesture.
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Figure 4.8: Autocorrelation functions for the curvature radii profiles using the constant
curvature fitting algorithm. The autocorrelation functions operate at each decomposi-
tion level and the general curvature profile.
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In both, Figure (4.8a) and Figure (4.8b) one can see that the shape of

the autocorrelation of the summed up profile is mostly determined by the

approximation of the curvature radii at the middle level of decomposition, not

the finer detail level. This is key since it shows that the coarser level dominates

the shape of the autocorrelation, no the fine detail level. The detail level is

usually associated with fast changes in the trajectory.

4.3.2.2.2 Autocorrelation for Trainees at Different Stages

Next we introduce a qualitative explanation of the autocorrelation results

at different stages of training for the forceps gesture.

Initial Session

Figure (4.9) shows two typical autocorrelation profiles for the multi-scale cur-

vature radii of two trainees at this stage. The most notable observation aside

the length of the autocorrelation is that the shape of the summed up profile

is strongly influenced by the correlation in the details level.

Observation Session

Figure (4.10) illustrates two autocorrelation for the MCRP of two juniors at

after observing the gesture performance from an expert. The length of the

autocorrelation is shorter but the summed up profile is still strongly influenced

by the correlation in the details level.

Explanation Session

Figure (4.11) shows two autocorrelation for the MCRP after the explanation

session. The length of the autocorrelation is similar to the observation session,

however the shape of the summed up profile is now influenced by the correlation

in the coarser curvature radii level.

Practice Session

Figure (4.12) illustrates two typical autocorrelation profiles for the multi-scale

curvature radii of two juniors. The length of the autocorrelation is the shortest

of all training sessions. They are the most similar to the autocorrelation from

the experts’. The autocorrelation is now clearly dominated by the coarse

decomposition level instead of the details level.
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(a) Junior 1 Autocorrelation function for right blade at the
initial session
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Figure 4.9: Autocorrelation functions for multilevel curvature radii profiles. (4.9a)
Junior 1 and (4.9b) Junior 2 first session. The technique has not been shown nor
explained to the trainees.
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(a) Junior 1 Autocorrelation function for right blade at the
observation session
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Figure 4.10: Autocorrelation functions for multilevel curvature radii . (4.9a) Junior 1
and (4.9b) Junior 2 observation session. The technique has been shown but not explained
to the trainees.
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(a) Junior 1 Autocorrelation function for right blade at the
explanation session
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Figure 4.11: Autocorrelation functions at for multi-scale curvature radii. (4.9a) Junior 1
and (4.9b) Junior 2 after receiving instruction. The technique has been explained to the
trainees.
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practice session

Figure 4.12: Autocorrelation functions at for multi-scale curvature radii. (4.9a) Junior 1
and (4.9b) Junior 2 last session. The technique has been explained and the trainees had
time to practice the handling gesture.
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4.3.3 Anisotropic Kernel Smoothing

4.3.3.1 Optimal Anisotropic Kernel Filter Parameters

The two main parameters for the anisotropic filter, scale σ and window sup-

port k, were determined statistically by constructing an estimation set from

randomly picked samples from experts and juniors, see Section 3.4.4. The pa-

rameter tuple σ and k was found using single factor ANOVA for the curvature

approximation sum of squares error (SSE). The statistical results show that σ

is an independent parameter with respect to the curvature’s SSE for σ > 0.09

with p-values of p0.05 = 0.714 and p0.01 = 0.916 for position and orientation

respectively.

However, the curvature SSE is strongly dependent on the window size k

with p-values p0.01 = 4.52 × 10−6 and p0.01 = 8.43 × 10−6 for position and

orientation trajectories respectively. High correlation coefficients are expected

for parameter tuples σ ≥ 0.1 and k = 5 for position trajectories and σ ≥ 0.05

and k = 3 for orientation trajectories.

The significance is clearly that multi–scale curvature analysis using our

anisotropic filter relies on the window support k and less on the scaling factor σ.

4.3.3.2 Pearson’s Correlation

By calculating Pearson’s correlation coefficient between the curvatures of the

trainee paths and the reference curvature during their training, it is possible

to quantify the progression of the trainee skills.

Figures (4.13) and (4.14) are the analyzed curves for the expert trajectories

which has been used as reference. The two other paths correspond to the

forceps blade placement carried out by two novices at different training stages.

On these figures, from a qualitative point of view, the paths after the

training are more similar to the expert one than before the training, in the

next section the study of the correlation coefficient between the curvatures

allows to quantify this similarity. Figures (4.17) and (4.18) summarize results

for the training evolution of a single novice at different training stages.

At different stages the number of sampled trajectories varies and thus the

number of correlation coefficient varies as well. One can observe that for the

initial training sessions, where no explanation and no observation are given,

the trajectories are long with comparatively low correlation between the expert

and the novice. At the second session, the novices were allowed to observed

the expert, the correlation coefficients where higher, but still long sequences.

During the third session, the novices were also given a detailed explanation on

the handling of forceps and the gesture. The correlation coefficients remained

more or less the same, but the sequences where shorter. In the final day, where
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(b) Anisotropic-smoothed Expert 1.

Figure 4.13: Raw and smoothed trajectories with right and left Forceps blade position
in 3D for Expert 1.
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(b) Anisotropic-smoothed Expert 2.

Figure 4.14: Raw and anisotropic-smoothed trajectories with right and left Forceps
blade position in 3D for Expert 2.
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(b) Anisotropic-smoothed Junior 2.

Figure 4.15: Raw and anisotropic-smoothed trajectories with right and left Forceps
blade position in 3D for Junior 2.
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(a) Raw Junior 3
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(b) Anisotropic-smoothed Junior 3

Figure 4.16: Raw and Anisotropic-smoothed trajectories with right and left Forceps
blade position in 3D for Junior 3.
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Figure 4.17: Cross-correlation functions comparing Junior 3 vs. Expert 1. Different
stages in training. Figure (4.17a) shows the correlation coefficients between the first
and last training days. Figure(4.17b) shows the correlation coefficients between after
observing the expert but no explanation was given.
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the trainees were allowed some practice. During this stage, the sequences

showed the higher correlation against the expert and the shortest arc-length.
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(a) Junior 03 Third Day. After Explanation

Figure 4.18: Correlation coefficients comparing Junior 03 vs. Expert 01. Different
stages in training. Figure (4.18a) shows the correlation coefficients between after the
trainee receives detail explanation, but no practice. All coefficients are compared against
the last day in training where the trainee has given time to practice after receiving a
thorough explanation in the use of forceps

4.3.4 Analysis for the Sensor Positions Trajectory

Table 4.2 is a brief summary of results for different training days (from 1 to 3).

Each individual result is the Pearson’s cross-correlation coefficient ρ between

the trainee and an expert. It indicates the similarity to an expert path used as

reference. This result corresponds to the average of the three recorded paths

at the end of the training day (except for the first day where the first forceps

blade placements were recorded to know their skill before the training).

In Table 4.2 the acronyms LFB, RFB, T and TD refers to the terms: Left

Forceps Blade, Right Forceps Blade, Trainee and Training Day, respectively.

These notations are used hereafter. In Table (4.2), one can observe a raise

in the correlation coefficient between the path curvature of the trainee and

the expert one during their training. At the end of the training, all trainees

manage to obtain more than ρpr = 0.44 of similarity except for the right blade
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4. Study Case and Results

Table 4.2: Evolution of the correlation coefficient of the curvature for the positions in
% for trainees according to the training day

Correlation Coefficient ρpr TD 1 TD 2 TD 3
for Curvature Signatures

T 1
LFB 0.34 0.11 0.46
RFB 0.28 0.25 0.53

T 2
LFB 0.18 0.38 0.44
RFB 0.03 0.44 0.33

T 3
LFB 0.29 0.17 0.35
RFB 0.28 0.26 0.61

Trainee’s Average
LFB 0.27 0.22 0.42
RFB 0.20 0.32 0.49

of Trainee 2 and the left blade of Trainee 3. Lets arbitrarily consider the

correlation coefficient ρpr as:

excellent : if ρpr is beyond 0.70,
good : if ρpr is between 0.50 and 0.70,
fair : if ρpr is between 0.30 and 0.50,
poor : if ρpr is between 0.10 and 0.30,
very poor : if ρpr is less than 0.10.

Table 4.3 is obtained by rearranging the results according to this arbitrary

grouping.

Table 4.3: Distribution of the correlation coefficient for the position curvature according
to the training day

Correlation Coefficient ρpr TD 1 TD 2 TD 3
for Curvature Signatures

Excellent (ρpr > 0.70) 0 0 0
Good (0.50 < ρpr < 0.70) 0 0 2
Fair (0.30 < ρpr < 0.50) 0 2 4
Poor (0.10 < ρpr < 0.30) 5 4 0
Very Poor (ρpr < 0.10) 1 0 0

This table shows the progression of the trainees according to the training

day, all their results are fair and good at the end of the training whereas they

only have poor and very poor results before the training.
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It is then possible to find where high variations of the curvature occur.

These variations represent fast modifications of the direction which could lead

to injuries for the fetus and the mother during real deliveries. They could also

represent hesitations during the forceps blade placement or simply a with-

drawal of the forceps blade in order to replace it correctly.

These curvature peaks appear when their values are beyond the threshold

of high curvature variations. This threshold is fixed at a value of 5 but could

be changed according to the expert choice. For increased clarity, only the path

and the curvature of left forceps blade are represented on these figures.

In Table 4.4, the number of the curvature points beyond the threshold,

fixed at value 5, are represented according to the training day. This number

represents the average of the number of peaks for the three paths recorded

during each training day. The smaller this number is, the smoother the path

is, and the less dangerous the gesture is. Some of the peaks on the curvature

appear at the beginning or at the end of the gestures, i.e. when the forceps

entered inside the maternal pelvis,or took its final position behind the fetus

ear, or due to the fact that the right blade has to be assembled with the

left one to complete the placement. One can then count two kind of peaks

according to their position during the gesture. In Table 4.4, the column 100%

corresponds to the total number of peaks and the column 80% represents the

peaks which appears between 10% and 90% of the total chord length in order

to avoid taking into account the extremity peaks. The peaks in this area are

potentially dangerous because they appear while the blade is displaced along

the fetal face.

Table 4.4: Evolution of the number of curvature peaks beyond the threshold for the
positions for trainees according to the training day

Number T 1 T 2 T 3
of peaks LFB RFB LFB RFB LFB RFB

TD 100% 18 17 20 24 29 40
1 80% 6 11 14 10 20 28
TD 100% 18 29 7 25 27 40
2 80% 10 21 2 10 23 24
TD 100% 12 35 11 16 17 4
3 80% 3 21 2 4 3 2

Except for Trainee 1 with his right blade all trainees manage to reduce their

number of peaks, this result means that fast modifications of the direction
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during forceps blade placement are reduced. At the end of the training, the

trainees obtained similar results than the expert. Indeed for both blades on the

reference paths there are 9 peaks and only 2 of them appear between 10% and

90% of the total chord length. The visualization component of the BirthSIM

simulator could help novice to modify his gesture in order to become smoother

and surer. As shown Tables 4.2 to 4.4, trainees manage to reduce their number

of peaks, in other terms, their gesture become smoother during the training.

Concerning the position analysis, one can conclude that Trainee 1 needs

more training in order to smooth his handling trajectory during the placing

phase for the right blade. Otherwise, the trainees have manage to improve

their skills and may proceed to the traditional training in order to gain more

experience.

4.3.5 Analysis of the 3D Orientation Curve

Figure (4.19) illustrates a trainer’s orientation path on the unit quaternion

space.

Figure 4.19: Expert 1 forceps handling gesture in the unit quaternion space

The 3D orientation trajectory is illustrated as a 2D trace on the surface

of the unit sphere. However, the orientation trajectory is a 3D curve itself.

This curve is also approximated using the curvature, see Section 3.4. Both

projections are shown at Figures (4.20a) and (4.20b).
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4. Study Case and Results

Figures (4.21a) and (4.21b) show an example of the orientation path on

the unit quaternion space at the beginning and at the end of the training for

the left forceps blade. Similar results are obtained for the right one.

(a) A trainee orientation path at the beginning of his training.

(b) Trainee orientation paths at the end of his training.

Figure 4.21: Junior 3 orientation path at two different stages of training. Figure (4.21a)
shows the orientation path at the initial day of training. Figure (4.21b) shows the
orientation path for the same junior at the final day of training.
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Both Figures (4.21a) and (4.21b), illustrate how noticeable the trainee

improved is at handling the forceps blade as the path becomes smoother and

similar to the expert’s. This result shows that the quaternion unit space allows

to qualitatively quantify the skill progression even to the naked eye with a

cleaner and shorter path.

By smoothing the curve base on the curvature, one can apply correlation

based methods independently of the geometry of the problem. Orientations

are hyper-spherical spaces. Table 4.5 gathers the correlation coefficient for the

curvature of the orientation paths.

Table 4.5: Correlation coefficient ρpr for the orientation curvature according to session
number.

Trainee Forceps handle
Session Number

TD 1 TD 2 TD 3

T 1
LFB 0.05 0.08 0.31
RFB 0.23 0.46 0.40

T 2
LFB 0.23 0.36 0.46
RFB 0.27 0.33 0.61

T 3
LFB 0.09 0.02 0.19
RFB 0.41 0.10 0.46

As mentioned previously, the trainee skills raise up to 40% except for the

left blade of Trainee 1 and Trainee 3. Concerning the expert results, the

correlation coefficient is 0.75 and 0.70 of similarity for the left and right blades

respectively.

If the correlation coefficients are gathered according to the distribution

presented subsection 4.3.4, the Table 4.6 is obtained.

Table 4.6: Distribution of the correlation coefficient for the orientation curvature ac-
cording to the training day

Curvature correlation values
TD 1 TD 2 TD 3

ρpr for the orientations

Excellent ρpr > 0.70 0 0 0
Good 0.50 < ρpr < 0.70 0 0 1
Fair 0.30 < ρpr < 0.50 1 3 4
Poor 0.10 < ρpr < 0.30 3 1 1
Very Poor ρpr < 0.10 2 2 0
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4. Study Case and Results

As for the position study, trainees have better results at the end of the

training. None of these results are very poor and only one is poor conversely

to the beginning of the training whereas all results are very poor and poor

except one which is fair.

The study of the high variations of the curvature concerning the orientation

paths are gathered in Table 4.7 where the number of the curvature points

beyond the threshold fixed at 5 are represented according to the training day

as for the positions. This number represents the average of the number of peaks

for the three paths recorded during each training day. Peaks are gathered in

two groups to distinguish the extremity peaks and the ones appeared between

10% and 90% of the total chord length.

Table 4.7: Evolution of the number of curvature peaks beyond the threshold for the
orientations for trainees according to the training day

Number T 1 T 2 T 3
of peaks LFB RFB LFB RFB LFB RFB

TD 100% 18 18 20 23 31 45
1 80% 10 14 14 17 24 36
TD 100% 27 37 12 25 24 43
2 80% 11 27 7 14 14 30
TD 100% 13 38 13 17 16 23
3 80% 5 25 5 9 5 9

As for the positions, except for the right blade of Trainee 1, all of them

manage to reduce their number of peaks, this result highlights that important

changes of direction during forceps blade placement are reduced. For the

reference paths, the numbers of peaks are 16 (2) and 18 (7) respectively for

the left and right forceps blade (the number in brackets indicates the number

of peaks appeared between 10% and 90% of the total chord length). The

trainees finally obtained similar results than expert at the end of the training.

4.4 Summary

The evaluation of a specialized gesture is compulsory in order to validate

a training method. A general method based on the six degree of freedom

measurement of a medical gesture was developed in order to quantify the

progression of novice skills compared to an expert.
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4.4. Summary

By estimating the curvature signature of the forceps blade placement ges-

ture, it is possible to evaluate inexperienced trainees against qualified experts.

Time independence of the analysis is ensured by expressing data with respect

to the path’s arc-length. The orientation trajectory is also analyzed in the

unit quaternion space. It provides a curvature analysis for the orientation tra-

jectory that is analogous to Euclidean curvature. The correlation coefficient

between invariant signatures measures the similarity between different paths.

The statistical frequency of curvature peaks over a threshold is a measure of

how smooth the manipulative gesture for forceps blade is.

Simulator training allows to proceed to risk-free training and to reduce

training time. Some trainees obtained satisfactory results that allow them to

proceed with the traditional training in the delivery ward. However they still

have the possibility to increase their performance with continuous training

on the BirthSIM simulator. The trainees learnt how to correctly place the

forceps by visualizing the expert’s path represented with guiding spheres in

the visual interface. The trainee’s progression was quantitatively qualified with

the developed method.

The next series of measurement carried out on the BirthSIM simulator

will have to take into account more novices and a longer follow-up period.

The objective will explore if a training using a simulator allows trainees to

accumulate useful experience before carrying out a childbearing procedure with

forceps. In the long term the intent is to quantify the utility of a childbirth

simulator both as a learner’s tool and qualitative evaluator.

In this chapter two estimation procedures for the curvature signature of a

3D-gesture were introduced. These estimation procedures quantify the per-

formance of 3D-gesture for different individuals at different skill levels. An

important objective of the current dissertation. Both methods improve on

previous estimates of the curvature obtained from either analytic means such

as finite differences or by fitting piecewise approximations of linear quadrics.

Both methods are different from diffused curvature approximations such as

the curvature scale space [137]. The anisotropic kernel filter has an addi-

tional advantage over fitting methods. It can not only be used on traditional

Euclidean spaces, but it also can be used in spaces such quaternions. Shape fit-

ting methods depend on finding a principal direction which can not be found

in spherical geometries, making their application on those particular spaces

difficult at best.

161





Chapter 5
Conclusion and Future Work

The current dissertation is a study in 3D gesture comparison in the absence

of predictive models. 3D gesture comparison without Lagrangian state-space

models is challenging not only because of the lack of prediction provided by

physical state-space models, but also because of its multi-geometric space, its

spatial complexity and the nonlinearity of the invariant spaces associated to

3D curves. The multi-geometry treatment for the spatio-temporal trajectory

arises from using an Euclidean space to trace position and a hyper-sphere

to trace orientations. The spatial complexity arises from the fact that one

cannot guarantee that trajectories in a 3D-space will ever meet at one point.

The significance is that one has to assume that each and every trajectory in

the space is unique. Then the problem is asserting the similitude between

two or more trajectories. And the third issue refers to the use of invariant

descriptions or how to ensure that a trajectory is the same from different view

points.

We tackled all the above problems both theoretically and practically. We

devised a uniform treatment for 3D location trajectories that is geometry

independent. Location being defined as the composition set of variables in

both geometries, Euclidean and hyper-spherical. We define a 3-tuple of vector

variables (r, θ, t) for position, orientation and time respectively. Our work

hypothesis states that under an invariant transformation any trajectory in a

3D space, Euclidean or hyper-spherical, can be compared to each other with

time-tested similitude measures such as correlation. Consequently, any other

similitude measure based on geometrical alignment such as the Iterative Clos-

est Point (ICP), dynamic programming such as time warping, or graph models

such as Hidden Markov Models (HMMs) should also simplify and improve.

Finding a uniform space description for both position and orientation is

challenging. Unlike position, that is described with Euclidean spaces, orien-
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tations have been traditionally described in terms of rotation matrices and

vector-angle operations. These descriptive spaces for orientations are not lin-

ear space and one cannot define a metric between points and thus there are no

interpolation functions available. Additionally, there are singularities within

these spaces that are unpredictable. Quaternions, on the other hand, are a

better descriptive spaces for orientations and rotation operations. They do

define an invariant space metric, their singularities are predictable, and they

do possess interpolation functions. However, quaternions are nonlinear plane

operators with four parameters. Four parameters is not a minimum number

of parameters for a 3D-space.

One may think that instead of reducing the spatial complexity of an ori-

entation curve, quaternions actually increase it. If a common point for two

curves in a 3D space is not guaranteed, in a 4D-space it almost certain that

they will also have redundancies. As matter of fact, they do. Quaternions

have mirror representations in the same space. An orientation trajectory has

two antipodal mirror curves.

We have shown that although quaternions are four parameter spaces, quater-

nion subsets with magnitude constraints abate the number of parameters with

projections onto 3D manifolds. There are different projections available with

advantages and disadvantages of their own. One main contribution in our work

is a projection from unit quaternion space onto a 3D manifold that is bounded.

We denominate such a projection as geodesic projection or cycloid projection.

The projection is a consequence of the very own nature of hyper-spherical

spaces. Its main advantage is that the projection is both limited and simpli-

fied onto a 3D vector field. However, a manageable nonlinearity is involved

but the space itself can be consider a 3D volumetric sphere. Unlike Hanson’s

proposal for embedding quaternions onto the Frenet-Serret (FS) differential

frames [99] on 3D-Euclidean curves, our proposal is a direct description of the

orientation curve in a 3D space. The 3D-curve accepts FS frames since the

orientation curve is just another 3D curve inside of a sphere volume.

In n-dimensional Euclidean spaces, invariance is achieved using local dif-

ferential reference frames, mainly FS frames. However, other reference frames

such as parallel transport are also possible [99] [98]. The differential reference

frames offer two main compelling characteristics: invariance and spatial com-

plexity reduction. However, there are some trade-offs in exchange for these

two advantages: nonlinearity and noise sensitivity.

Likelihood methods, mainly graph models using dynamic programming

such as HMMs or time warping, consider 3D-curves as compositions of three

non-covariant factors evolving through an independent variable t. The issue

with such a view is the dependance on the location of the general reference
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frame F0. The significance is that these models are not view-point invariant.

Geometric procedures such as the ICP algorithm do consider non-covariant

factors as well; however, the basic assumption is that one should align first the

curves before comparing them with a series of affine geometric transformations.

In this case, the view-invariance is forced upon the comparison.

Descriptions based on differential geometry do not consider non-covariant

factors, on contrary, it is assumed that within a sequence of local frames, the lo-

cation of the following frame depends only on the previous one. This constraint

reduces the number of degrees of freedom for the local frames but in exchange

a trajectory is represented with one less dimension. The parametrization of

3D-curves depends now on local distance metrics and angular relationships

between the local frames within a sequence. Time stops being an important

independent variable and it is re-parameterized in terms of the arc-length for

the sequence. This is key when comparing gestures using kinematic models.

Curve arc-length re-parametrization s is view invariant since there is no

general external reference frame F0. As trade-off, the re-parametrization now

depends on two nonlinear values κ(s) and τ(s), or curvature signatures. These

signatures depend on the C(n) continuity condition or n-order derivative, which

is a major downside.

Although in theory the derivative of parametric curves easy to calculate, in

practice, the derivatives are approximated from discrete data sets. Any numer-

ical approximation usually introduces noise and distortion due to anisotropic

conditions of the space metric. Using traditional signal processing methods,

one must assume that the sensor induces some error in the measurements and

in general, the quantity of induced noise is unknown. Depending on the scale

of the signal, the noise can be manageable or not. If the signal to noise ratio

(SNR)is above one, then simple convolution filters may yield a fair approxima-

tion to the signal. Otherwise, if the SNR is below one, then one has to smooth

the data based on estimation techniques such as the Kalman filter. The deriva-

tive approximation is in general, highly dependent on the smoothing process

applied to the data.

In practice, one approximates the curvature κ with ease because the second

derivative can be robust to variations in the spacing interval h, even when the

differences do not cancel the odd components of the Taylor expansion. The

robustness is achieve by linearly compensating the finite difference method

against anisotropic distances. However, the torsion τ depends on the third

derivative. Nonlinear noise is introduced to the torsion τ through the finite

approximations. Usually, one cannot guarantee that the third derivative con-

verges to analytical conditions.
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A design decision was made to characterize 3D-curves mainly on the first

curvature κ and consider the lack of approximation to the original curve as an

approximation error due to the second curvature τ . The consequence is that

the method lacks perfect reconstruction characteristics. In other words, we

can not reconstruct the original 3D-curve from our analysis coefficients. We

took the perspective of a principal component analysis in which we considered

the first curvature κ as our main description for smoothness. Evidently, we

could have considered the approximation error as part of the second curvature

τ and achieve perfect reconstruction later on with a similar analysis as for the

first curvature.

An important contribution in this thesis is the proposal of multi-scale cur-

vature analysis. We proposed two techniques that are robust to noise due to

approximations to the derivative. The first is a least square fitting of constant

curvature curves to the data. The second is the anisotropic filter that is able

to handle the approximation error for finite difference methods.

The least squares constant curvature fitting algorithm is not novel. It

basically consists of fitting circles to thin-plate projections of the 3D-curves.

However, this simple algorithm presents an advantage over other methods, the

derivative approximation to real data is not calculated directly from the data

but by the fitting of a curve. The approximation error for the circle is a multi-

scale process, in similar spirit to wavelet decomposition, specifically the Haar

wavelet. In the same manner as a Haar wavelet, constant curvature curves do

not approximate a curve perfectly, there will always exist an approximation

error and the continuity conditions will be violated at the junction points.

However, the advantage is that it provides a natural discretization and group-

ing of points with similar curvature values. This is advantageous for graph

models such as HMMs where the sequences are found with high likelihood in

the state machine. Our experiments suggest that the multilevel discretization

and grouping of the data into constant curvature sections is fast, providing

generalization for up to three decomposition levels. Beyond this point, the

number of sections grows and diverges very rapidly until they reach a lower

bound imposed by the fitting algorithm. These common curvature sections

can be used to train the hidden state machine in the HMMs.

In the case of position trajectories in a 3D Euclidean space, the curva-

ture analysis there is enough evidence that indicate the influence of different

curvature scales in the assessment of a gesture. In the BirthSIM study case,

the differences between experts and trainees were established with the energy

content in the detail level with respect to the discrete curvature profile. If

the detail level dominates the shape of the autocorrelation function, it shows

inexperience in the gesture performance. While on the other hand, if the
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autocorrelation shape is dominated by the coarse level, then it indicates as-

surance in the gesture performance. This is a quantitative measure of gesture

performance.

The main disadvantage of the curve fitting approach is that it is difficult

to apply to orientation spaces. An orientation space has a spherical geometry

and it is difficult to find a principal direction for a planar projection except for

small sections of the trajectory, i.e. the details. The implication is that the

projections are not invariant in large scales and thus useless for our purposes.

Our second method is more interesting. The idea is to create a smoothing

filter from first curvature κ approximations. The curvature signatures κ(s)

and τ(s) cannot be compared directly with any correlation method available.

In general, any curvature signature has singularities or inflection point at any

given moment within the signature. Any correlation under such conditions is

undetermined. However, if we use the reciprocal of the curvature distances

to assign the coefficients of an averaging filter, the output signal will in turn

be smoother in its corresponding extrinsic 3D-space. The curve’s component

themselves are distorted but the combined trace is smooth if we had found

the appropriate parameters for window size and weighting function. We de-

termined anisotropic filters for both trajectories in Euclidean and orientation

spaces for gesture sets.

Multi-scale curvature analysis using the anisotropic filter is not done di-

rectly. In this case, the multi-scale is provided by different window sizes based

on the curvature signature. Each signature is unique and numerically stable

since it is a FIR filter. In order to establish a form of comparison between

different signals, we correlated the smoothed outputs and measure their corre-

lation coefficients. However, a major disadvantage of the method is the window

support in Euclidean spaces. The window size is limited only to odd sizes such

that the scaling is non-uniform. In order to test increasingly larger neighbor-

hood sizes, the signal tails at the section of interest must be also larger. A

non-optimal solution to this problem is to consider a blind decimation method

that uses the curvature residuals from the previous smoothing.

In orientation spaces, the window support for the anisotropic filter is enough

to show variations of the curvature. The reason is that trajectories in rotation

sequences cannot contain large number of points for a single geodesic. Usually,

complex rotation sequences in the geodesic-arc projection change direction on

the surface of the unit sphere within less than few samples. The anisotropic

filter smooths the rotation trajectory such that averages these rapid changes

to a point inside a plane defined by only three quaternions. Increasing the win-

dow support in orientation spaces has the effect of collapsing smaller geodesics

onto a single larger geodesic defined by the extreme points in the sequence. In
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this sense, the anisotropic filter is the only capable of explaining the trace in

orientation spaces at different scales.

We tested our framework on gesture data sets showing the evolution of

trainees versus experts. A forceps 3D data set was provided by the BirthSIM

training. The data set contained several experts and trainees with differ-

ent number of samples per expert and trainee. The best smoothing using

anisotropic filtering was obtained for window size and the weighting factor σ

for both position and orientation. The objective was to observe the evolution

of trainees at different stages of their training. Our framework showed that

simple correlations can be used to quantitatively observe the differences at

different stages and determine how close the trainees had become in relation

to the experts.

Future Work

We have devised new forms to process geometric signals involving two differ-

ent geometric spaces and treat them similarly. This has led to new ways of

simplifying complex comparisons that we are still exploring.

There are some open questions about how to treat average curvature sig-

natures in order to create a general pattern for expert signatures in form of

filters. Our method can also be extended to other problems such as 3D geomet-

ric representation of objects at different curvature scales. In 2D applications,

multi-scale curvature signatures can be used to simplify or reduce methodolo-

gies in which level set methods require constant calculation of a propagating

curvature signature. Instead, one could use the approximations for different

window sizes in order to create nonlinear propagation wavefronts.

Our framework was tested only on the birth simulator case. A natural

extension of this work is the application to multi-joint mechanisms. Our pro-

jection for quaternion spaces satisfies multiple conditions for which different

scales can be used to smooth kinematic solutions that are currently solved

using constraints on a Jacobi matrix.
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Appendix A

A.1 Frenet-Serret Frames In Higher Dimen-

sions

One can show by induction and Gram-Schmidt decomposition that the Frenet-Serret
formulas can be written in a brief form as:

ζ ′s = Ksζs (A.1.1)

where:



dζ1
ds
dζ2
ds
dζ3
ds
...

dζn−1

ds
dζn
ds




=




0 κ1 0 · · · 0 0 0

−κ1 0 κ2 · · · 0 0 0

0 −κ2 0 · · · 0 0 0

...
...

...
. . .

. . .
. . .

...

0 0 0 · · · −κn−2 0 −κn−1

0 0 0 · · · 0 −κn−1 0







ζ1

ζ2

ζ3

...

ζn−1

ζn




(A.1.2)

Where ζi (i = 1 , . . . , n) denote the vectors of the local ortho-normal Frenet-
Serret basis and κj (j = 1 , . . . , n−1) the generalized curvatures of the n-dimensional
curve respectively.

By applying the properties of the inner product and the collinearity of two
multi-vectors, it is easy to demonstrate that the formulas expressing the generalized
jth-dimensional curvature κj with respect to the arc length parametrization can be
express as [7]:

κ1 = |γ ′ ∧ γ ′′| = ‖ζ ′1‖

κ2 =
|γ ′ ∧ γ ′′ ∧ γ ′′′|

|γ′ ∧ γ′′|2
...

κn−1 = |γ ′ ∧ . . . ∧ γ(n)| |γ
′ ∧ . . . ∧ γ(n−2)|

|γ ′ ∧ . . . ∧ γ(n−1)|2

(A.1.3)
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where ∧ denotes the outer product for multi-vectors as defined by Grassmann’s
algebra [12, 54, 190].

Note that a multi-vector of n vectors γ ′∧. . .∧γ(n) in Rn has only one component
which is equal to the determinant of the matrix formed by the components of these
vectors. That is to say:

kn−1 = det
(
γ′, . . . ,γ(n)

) |γ ′ ∧ . . . ∧ γ(n−2)|
|γ ′ ∧ . . . ∧ γ(n−1)|2 (A.1.4)

Let us define the vectors γ̇t, γ̈t, ..., γ
(n)
t as the successive derivatives of γ(t) with

respect to the time variable t. If the parametrization is not the arc-length but the
time, then evidently:

|γ ′ ∧ γ ′′| = |γ̇t ∧ γ̈t|
∣∣∣∣
dt

ds

∣∣∣∣
3

(A.1.5)

And

‖γ ′‖ = 1 = ‖γ̇t‖
∣∣∣∣
dt

ds

∣∣∣∣
3

(A.1.6)

So the formula for k1 becomes:

k1 =
|γ̇t ∧ γ̈t|
‖γ̇t‖3

. (A.1.7)

Furthermore, one have:
k21k2 = |γ̇t ∧ γ̈t ∧ γ̈t| (A.1.8)

Hence:

k2 =
|γ̇t ∧ γ̈t ∧ γ̈t|
‖γ̇t‖ |γ̇t ∧ γ̈t|

(A.1.9)

One can rewrite (A.1.3) and (A.1.4) with a time parametrization as following:

kj−1 = |γ̇t ∧ . . . ∧ γ
(j)
t | |γ̇t ∧ . . . ∧ γ

(j−2)
t |

‖γ̇t‖ |γ̇t ∧ . . . ∧ γ
(j−1)
t |2

kn−1 = det
(
γ̇t, . . . ,γ

(n)
t

) |γ̇t ∧ . . . ∧ γ
(n−2)
t |

‖γ̇t‖ |γ̇t ∧ . . . ∧ γ
(n−1)
t |2

(A.1.10)

A.2 Geometrical Interpretation of Derivatives

with Savitzky-Golay Filter

Although the method has fallen in disuse because numerical instability, it provides
a useful geometrical interpretation. Assume a matrix A = [a1, · · · ,ai, · · · , an]
where ai is a column-vector of A. The projection of a vector a onto e is defined as:

proje a =
e · a
‖e‖ ê (A.2.1)
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then

u1 = a1 ê1 =
u1

‖u1‖
u2 = a2 − proje1

a2 ê2 =
u2

‖u2‖
u3 = a3 − proje1

a3 − proje2
a3 ê3 =

u3

‖u3‖
...

...

un = an −
n−1∑
i=1

projei
ai ên =

un

‖un‖

(A.2.2)

It follows that

an =
n∑

i=1

(ei · ai) êi (A.2.3)

and ei · ai = ‖ui‖. The matrix form of A is

A = QR (A.2.4)

and

Q = [e1, . . . , en] R =




‖u1,1‖ ‖u1,2‖ ‖u1,3‖ · · ·
0 ‖u2,2‖ ‖u2,3‖ · · ·
0 0 ‖u3,3‖ · · ·
...

...
...

. . .


 (A.2.5)

The off-diagonal values contain the residuals from the vector projections to the
corresponding main vector axes. In other words, the inversion of the QR product
produces an averaging filter while the corresponding inversion of the residuals in R

produces the corresponding difference filter B(z), i.e.,

B(z) = kR−1(z)R−T(z)J(z), (A.2.6)

the constant value k is an adjusting parameter to adjust the derivative magnitude.

A.3 Quaternions

A.3.1 Invariant Quaternion Metric

A distance function for a geodesic-arc between two quaternions a and b is defined
in terms of the quaternion dot product:

d(a, b) = a−1b = a−1 · b = b · a−1 (A.3.1)

is invariant for the 4D-space. Hereafter we will denote the geodesic-arc for any
quaternion as the quaternion product a−1b.
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A.3.2 Gram-Schmidt Quaternion Decomposition

Quaternions are bi-vectors in a 4D-space, they can also use the same tools for vector
analysis. A quaternion a can be decomposed into two orthogonal components using
a reference quaternion b:

a‖ = (a · b)b
a⊥ = a− (a · b)b (A.3.2)

Using the Clifford algebras for the quaternion product:

ab = a · b+ I a ∧ b

ba = a · b− I a ∧ b
(A.3.3)

such that

a · b =
1

2
(ab+ ba)

(a ∧ b) I =
1

2
(ab− ba)

(A.3.4)

The distance function using Gram-Schmidt decomposition defines a distance
function in terms of rotations of quaternions using vector reflections such that:

d(a, b) = −n∗an = −nan∗ = −1

2
a−1b. (A.3.5)

where the quaternion n defines the reflection plane between a and b.

A.3.3 Quaternion Interpolation Functions

Quaternion interpolation uses the distance definition for quaternions in (A.3.1) along
with quaternion exponentiation. The exponentiation of a quaternion a by a value
t ∈ R is defined as

at = elna
T

= et lna = ‖a‖t etθξ̂ (A.3.6)

where the term etθξ̂ is periodic for t = (−1)nnπ. This implies that the domain is
limited to [0, π).

The general function for interpolation on the unit quaternion space is the Spher-
ical Linear Interpolation formula for two limit quaternions â and b̂:

â(t) = −(â−1b̂)tâ ∀ 0 ≤ t ≤ 1, t ∈ R (A.3.7)

It is easy to show that Equation (A.3.7) corresponds to Shoemake’s original formula
[173]:

â(t) =
sin(1− t)Ω

sinΩ
b̂− sin tΩ

sinΩ
â 0 ≤ t ≤ 1

Ω =
1

2
(θb − θa)

(A.3.8)

Then, an invariant quaternion distance is defined by the interpolation function as

d(a, b) = −â−1b̂â = 2a−1b (A.3.9)
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