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ABSTRACT

The widespread use of randomization in cxperimental design is due in large part to
its validation of the usual normal theory analysis of experimental data. This thesis
investigated how randomization tends to validate the usual statistical analysis for
treatment effects in a comparative cxperiment.

The first chapter gave a review of general background for the topic on valida-
tion of randomization. In Chapter 2, we discussed the validity measures ev(¢) in
Hooper (1989) and (jtyal, ova) in Hooper (1993) with regard to interpretation and
computation. We introduced the Beta-related validity measure [ev(7), ev(T7)], i.c.,
the coefficients of variation of the first two randomization moments of the Beta statis-
tic. By approximating the randomization distribution of the eta statistic by a Beta
distribution, we can interpret indirectly cv(¢) by [ev(T), ev(7T™)]. A relation hetween
[cv(T), cv(T?)] and (jival, oval) was derived, so the Beta-related measure can he esti-
mated at the same cost as (fiyal, Oval). We also derived an approximate Laguerre series
expansion for cv(¢), with leading terms related to (stval, vai)-

In Chapter 3, We investigated methods of randomization for asymmetric inodels
of the unit effects. Cox (1982) and Bellhouse (1986) suggested the truncated classical
randomized design (TCRD). We proposed a sequential procedure for generating a
sequence of TCRDs to assist in the selection of an appropriate truncation constant «.
Under a general linear model, Hooper (1993) proposed NORDs to achieve acceptable
levels of validity and efficiency. In order to improve NORD with respect to efficiency
and the selection of tuning constant we introduced the truncated NORD (‘TNORD).
The TNORD is invariant under reparameterization of the treatment cffects model
and can be generated by the same scquential procedure as the TCRD. We derived
some formulae for the minimization of the distance function for the TNORD. A

simulation study was presented showing that the same levels of validity and efficiency



can be achieved by snitable choice of the tuning or truncation constant in these three
el hods.

Chapter 4 deals sith optimal randomized design. A randomized design is defined
to he optimal for validity il it minimizes a validity criterion. A general sufficient
condition was obtained for an uniform distribution in a subset of P, to be optimal
for validity., Using the general sufficient condition, we obtained that some classical
randomized designs, such as CRD and randomized blocks design, are optimal for
validity among all distributions on a certain subset of Pn,. Under analysis of covariance
models, however, the uniform distribution on a certain subset of P, may not Me
optimal for validity. Therefore, under asymmietric models for unit effects, NORD
or TNORD may have higher validity than TCRD in some circumstances, although

TCRID is more casily generated.
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Chapter 1

Introduction

1.1 Review and Summary

The widespread use of randomization in experimental design is due in large part to
its validation of the usual normal theory analysis of experimental data. This notion
that randomization validates inference has been developed in various ways.

British statisticians defined validity in terms of whether the normal theory estima-
tors of certain first- and second-order quantities are unbiased under a randomization
model. Fisher (1925 and 1935) and Yates (1933) proposed an adequacy criterion for
randomization of an experiment with a single error term in the analysis of variance.
This criterion requires that the expectations of the treatment mean square and the er-
ror mean square are equal in the absence of treatment effects, the expectations being
obtained by averaging over all possible outcomes of the randomization. This is called
‘weak validity’, in contrast with the ‘strong validity’ of Grundy and Healy (1950),
which requires the mean square based on any set of treatment differences to have the
same expectation as the error mean square. Grundy and Healy’s strong validity was
generalized by Nelder (1965a and 1965b) to experiments with simple block structure.
Nelder used the block structure of an experiment to define strata and defined a ran-

domization strategy to be valid if all estimators of normalized treatment contrasts



within each stratum have the same variance under randomization. Suflicient combi-
natorial conditions for weai( and strong validity of randomization are well known for
some common classes of designs with single error strata. Bailey and Rowley (1987)
generalized these conditions to orthogonal designs with multiple error strata given by
an association scheme on the plots and with a treatment decomposition also defined
by an association scheme. Constrained randomization methods were developed to
provide validity while avoiding undesirable desigus; sce Bailey (1986) for a review.
In North America, statisticians typically described validity by the approximate
agreement between randomization tests and normal-theory tests. Fisher argned that,
when testing the hypothesis of no treatment effect in an agricultural experiment, the
normal-theory significance level usually approximates the corresponding randonziza-
tion significance level and the latter derives its validity solely from the physical act
of randomization. The tendency for agreement between normal theory and random-
ization tests was investigated by many authors. Eden and Yates (1933) showed close
agreement between the randomization and normal theory tests in an empirical inves-
tigation of a real data set. In a simulation study, Kempthorne and Doerfler (1969)
found agreement between the randomization and the normal theory tests based on
the F statistic. For the randomized blocks design and the Latin square design, Welch
(1937) and Pitman (1938) compared the randomization moments of a Beta stalistic
with the normal theory moments. Hoeffding (1952) and Robinson (1973) proved that
under general conditions the randomization tests are asymptotically as powerlul as
> corresponding normal theory tests. Davis and Speed (1988) obtained an Edge-
worth expansion of the randomization distribution of the F-ratio statistic and used
this to compare the randomization and normal theory sigrificance levels.
Hooper (1989) introduced a related notion of validity as a measure of agreement,
between model-assisted probabilities and randomization probabilitics. Here ‘model-

assisted probabilities’ are probabilities calculated under a model incorporating both



the randomization and normal theory assumptions and ‘randomization probabilities’
are conditional probabilities with all random variables held fixed except the random-
ization. Hooper carried out a simulation study involving several classical designs to
examine how validity depends on the design and the size of the experiment. Increasing
the size of the experiment generally improves the validity supplied by the random-
ization. In the simulation study, a coeflicient of variation measure was introduced to
evaluate the validity supplied by randomization of an experiment.

Hooper (1993) developed a new family of randomized designs, termed nearly or-
thogonal randomized designs (NORDs), intended to achieve high levels of efficiency
and validity within the context of a general linear model for treatment and unit ef-
fects. A diagnostic measure of validity was proposed to aid in the seiection of a tuning
constant in NORDs that determines a trade-off between validity and efficiency. Cox
(1982) suggested truncated completely randomized designs (TCRDs) in the context of
analysis of covariance models and Bellhouse (1986) investigated the validity supplied
by TCRDs. The TCRD also requires a tuning (truncation) constant.

In this thesis, I investigate how randomization tends to validate normal theory
methods of analysis. First, I study mecthods to measure the validity supplied by
randomization. I introduce a validity measure which is related to the randomization
mon-ents of a Beta statistic. Relationships among the two measures of Hooper and
my measure are investigated by analytic and numerical methods. Second, I study
randomization methods that achieve acceptable levels of efficiency and validity. A new
method, called Truncated NORD (TNORD), is presented to improve NORDs. Results
of a simulation study comparing TNORDs, NORDs and TCRDs are described. A
sequential procedure is proposed to determine a value for the truncation constant
that achieves a trade-off between efficiency and validity.

All of my investigations are based on a general linear model for treatment and unit

effects in a comparative experiment, proposed by Hooper (1993). Before presenting



my results, | state this model and the related normal theory anal/sis in the next

section.

1.2 Normal Theory Model and Inference

Consider a comparative experiment in which treatments are applicd to experimen-
tal units and responses are observed. Although randomization can be deseribed in
several ways, see Preece, Bailey and Patterson (1978), the following treatment as-
signments are used in following discussions. Let the units involved i the experiment
be numbered from 1 to n and imagine a set of labels also numbered fron 1 to n. We
choose a fixed arrangement of treatments among labels and then assign (he treatment.
associated with label Gz to unit 7, for 7z = 1,...,n, where (7 is a random permutation.
A randomized design is thus defined as a distribution of G given the arrangement of
treatments among labels. For example, in a randomized blocks design labels within
blocks are randomly permuted and then blocks of labels are permuted.

Let Y; denote the response from unit G~'z. Thus Y; is the response from a fixed
treatment and a random unit. We assume that treatment effects and umt effects are

additive, so we have

Y: = 0; + Ug~1;, 1=1,...,n, (1.2.1)

where 0; is the effect from the treatment associated with label 7 and UU; is the effect
from unit G~'i. It is convenient to express model (1.2.1) in vector form. Define
column vectors Y = (V1,...,¥,)7,0 = (0y,...,0,)7 and U = (Uy, ..., 1,)". For cacl

permutation g of {1,...,n}, let § be the n x n permutation matrix defined by
(gU)i = Uy, 1=1,...,n.

The mapping ¢ — § is a group isomorphism. We shall suppress the tilde and let

G denote both a random permutation and the cerresponding random permutation



matrix. Let P, denote both the group of permutations of {1,... ,n} and the group

of n x n permutation matrices. So, model (1.2.1) can be writter
Y =0-+GU. (1.2.2)

We assume a linear model for the treatment effects, using a corvenient canonical

paramecterization:

where fy is qo X 1 vector of nuisance parameters and [ is the ¢ x 1 vector of parameters
of intcrest. The matrices Ap : n X go and A : n x g are known and the columns of
[Ao : A] are orthonormal. Let R(Ay) denote the column space of Ag and assume
that R(Ag) contains 1, = (1,..., 1)T. In a factorial design, for example, AB might
represent. the main effects and low order interactions. If all treatment contrasts in
the model are of interest then Ay = (1/y/n)1,.

A linear model for the unit effects is also assumed:
U=By+ KV (1.2.4)

where B is a non-random n X r matrix, v is a non-random r X 1 vector, K is a
random matrix taking values in P,(B) = {J € Pp;R(JB) = R(B)} and V is a
random n x 1 vector. The columns of B are orthonormal and the column space
R(B) contains the vector 1,. The components of V' are independent with common
distribution N(0,0?). The matrix B is known; 7. K,V and 0? are unknown. The
random permutation matrix /' and random vector V are not assumed independent
and the distribution of K is unknown. Model (1.2.4) may represent the analysis of
covariance models and spatial models for unit effects. Also, models for unbalanced
designs and for missing data can be described by the linear model (1.2.4).

The permutation matrix K is included in the model to ailow some dependence

between the error terms while permitting an exact normal theory analysis under
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randomization. The components of 'V are not assumned independent but, as shown
later, K is ‘randomized out’ leaving a vector GR'V with independent and identically
distributed random variables.

Combining equations (1.2.2), (1.2.3) and (1.2.4), we have

Y = Ao+ AB+GBy+ GKV. (1.2.5)
We shall require that the distribution of G satisfies the following conditions:
rank[GB : Ao : A] = rank[GB : Ag] + rank(A), (1.2.6)
G is distributed independently of (K,V), (1.2.7)
GJ ~ G forall J € P.(R), (1.2.8)

where ‘~’ means ‘is distributed as’. Condition (1.2.6) ensures that all lincar func-
tions of B are estimable. From conditions (1.2.7) and (1.2.8) we obtain that (/I is
distributed independently of V and then GK'V has the same distribution as V' and
GKYV is distributed independently of R(GB) = R(GK I3).

The usual normal theory methods of inference on f are conditioned on R(G/13) and
can be carried out as follows. We define X; = GramSchmidt (X3) to mean ‘construct
X, by applying the Gram-Schmidt orthonormalization process to the columns of X3,
from left to right’. The number of columns of X equals the rank of X, and JX, =

GramSchmidt (JX;) for J € Oy, the group of n x n orthogonal matrices. Put s =

rank [GB : Ao : A] and define the n X s matrix X and the n x ¢ matrix C by
X =[GB : *: C} = GramSchmidt[GB : Ag : A]. {1.2.9)

The columns of C are thus an orthonormal basis for the subspace obtained by pro-
jecting R(A) onto the orthogonal complement of R([GB : Ag]). Condition (1.2.6)

ensures that CTA is non-singular. Note from (1.2.9) that ' is a function of (+ and



G I results in the same C as G for any K € Pn(B). Thus C is a function of GK if
K € P.(13).
The least squares estimator of 3 can be written

B=(CTA)'CTY

and the conditional distribution of 3 given R(GB) is multivariate normal with mean

A and covariance matrix
o} (ATccT A (1.2.10)
Lct
57 = YT(I, ~ XXT)Y'

n—s

Tests and confidence regions can be based on the pivotal quantity
Q(G,GTY,B) = 671CT(Y — AB). (1.2.11)

“or example, if we are interested in testing the hypothesis H, : B = 0, then the F

statistic can be constructed from the pivotal quantity (1.2.11), i.e.

(1.2.12)

S G,GTY,0)* YTCCTY

F(('v, GT)/') — S T/(I = ”Q( ) Y7 )“ — »
SSg/(n =) q q5°
where §S7 = YTCCTY = ||CTY||? is the sum of squares for treatments and SSg =
YT(I- XXT)Y = ||(I — XXT)Y||? is the sum of squares for error. Here ||M|| denote
the Euclidean norm of the matrix M, i.e. ||M||> = tr(MMT). The conditional
distribution of the I statistic given R(GB) is the Fy,_, distribution. The Beta
statistic, defined by
SSt

Tyvy —
T(G.GTY) = g5 g5 (1.2.13)

is a one-to-one function of the F statistic.

In model (1.2.5), let W = U — B~ be the vector of random errors associated with
experimental units. Under the null hypothesis Hy : 8 = 0, we have Q(G,GTY,0) =

Q(G,1V,0) and we can replace GTY by W in all the above equations, for example,

7



é = (CTA)"'CTGW and SSt = ICTGW|2. Thus, the F and Beta statistics can be

denoted by F(G, W) and T(G, W) respectively.

If all the treatment contrasts in the model are of interest, then Ay = (1/y/n)1,,,

s=r+gqand
X = [GB : C] = GramSchmidt[GB : A] = GramSchmidt{[G B : Ay : A].
Moreover, we have under Hy

SSr+ SSg = ||(J -GBBTGTY|?
= (I - GBBTGT)GW|?

= ||(7 - BB)W|?,

so the denominator of the Beta statistic, under the null hypothesis, is invariant under
randomization. The Beta statistic (G, W) can be written

lcTawy?

1.3 Criteria

Based on model (1.2.5), we can evaluate randomized designs with regard to efficiency,
validity and relevance.

Our criterion of validity is concerned with the dependence of probabilities and
expectations on well-founded assumptions about the unit errors W. Let us consider
the problem of testing the null hypothesis £, : # = 0 against the alternative Iy - f3 #
0 under model (1.2.5). Suppose that Hy is rejected if F{Q(G,GTY,0)} > ¢, where f
is a continuous real-valued function. Under the null hypothesis, the test function can

be written

1 QG W,0)} >c

¢(G,W)={ (1.3.1)



:’.T

If f(z) = —‘—(1—74, we obtain the F test. We shall refer to E{¢(G, W)} as the model-
assisted probability since it involves the distributions of both the randomization G
and the random error W. This probability is uniquely determined under model
(1.2.5). By conditioning on R(GB), we can implement a uormal theory analysis
on B. E{$(G,W)|R(GB)} is referred to as the normal-theory probability, which
can be evaluated under normal theory and does not depend on R(GB) under the
null hypothesis. Thus E{#(G, W)} = E{¢(G,W)|R(GB)} under the null hypoth-
esis, i.e., the model-assisted significance level is the nnrmal theory significance level.
Under the alternative hypothesis we still have E{¢(G, W)} = E{¢(G, W) | R(GB)}
for classical randomized designs, however this equality does not hold for all random-
ization strategies. Our criteria for validity are based on a comparison of the random-
ization and model-assisted significance levels, i.e., E{¢(G, W) | W} and E{¢(G, W)}
under the null hypothesis. We shall refer to E{¢(G,W)|W?} and E{¢(G, W)} as
the probabilitics under the null hypothesis in the following context. Validity will be
described in terms of the extent of agreement between the randomization probability
E{#(G,W)| W} and the model-assisted probability E{é(G,W)}. Validity is thus a
matter of degree. Large experiments typically supply more validity than do small
experiments.

The validity can be evaluated by the variance of the randomization probability
E{¢(G,W)|W}. If under model (1.2.5) the variance of E{¢(G,W)| W} is small, the
randomization and model-assisted probabilities are then likely to be in close agree-
ment. The model-assisted probability is thus determined primarily by the physical
act of randomization, provided that the realized value of W is consistent with model
(1.2.5). Hooper (1989) defined the coefficient of variation of E{¢(G, W) [W} as a
measure of validity. In the next chapter we will consider two other measures of valid-

ity as well as this measure.



Efficiency is related to the precision of estimators of parameters of interest and
is usually defined in terms of a scalar function of the covariance matrix (1.2.10). Ef-
ficiency depends on both the design selected and the pararieterization used in the
model. In the treatment-effects model we adopted a convenient parameterization
such that the columns of [Aq : A] are orthonormal. Suppose that the natural pa-
rameterization is 8 = Aoy + A8, with & being the parameter vector of interest, and
that [Ao : A] = GramSchmidt[Ao : A]. We then have § = Rf3 for a known ¢ x ¢
non-singular matrix R. From expression (1.2.10), the conditional covariance matrix
of the leasi squares estimator for § is 02R(ATCCTA)'RT. The matrix R depends
on the selection of treatment combinations and the definition of the treatment-effects
model. For the D-optimality criterion, the selection of a design with high eflicicncy
does not depend on the parametcrization of the treatment effects model; iLe., we have
det[R(ATCCT A) ' RT] = det[(ATCCT A)~']det(RTR) and this can be minimized as
a function of G independently of R. More generally, the various efficiency criteria
suggest that G should be chosen to make (ATCCTA)™! small in some sense (perhaps
depending on R). By definition we have (ATCCTA)™! > ], i.c. (ATCCTAY ! — I,
is non-negative definite. If G' can be choscn so that the subspace R([G'B : Ay]) is
orthogonal to R(A) then C = A and (ATCCTA)~! = I,. If exact orthogonality is not
possible then, for efficiency, G shoulua be chosen to make the subspace R([(Z13 : Ay))
nearly orthogonal to R(A) in some sense. Many classical randomized designs achieve
full efficiency.

Relevance concerns the interpretation of probabilities after the randomization has
been carried out. At that time it may seem more appropriate to use the model-based
probability E{¢(G,W)|G}. However, under model (1.2.5) this probability depends
on unknown nuisance parameters. The model-assisted probability can be viewed as an
estimate of the unknown model-based probability provided the randomization scheme

is restricted to a homogeneous family of designs. Homogeneity implies that we have
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approximately the same opinion about E{¢(G, W) | G} for all possible designs G.
The width of the non-parametric predicticn intervals for an efficiency measure can be

used to evaluate the relevance of a randomized design.
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Chapter 2

Evaluating the Validity Supplied

by Randomization

2.1 Introduction

One of the benefits attributed to experimental randomization is its tendency to vali-
date the usual normal theory analysis. How much validity does a randomized design
provide? To answer this question, we must have some guantity to measure the degree
of ralidity supplied by a randomized design.

The present chapter deals with quantitative measures of validity. In Section 2.2,
we review the two validity measures in Hooper (1989) and Hooper (1993). The two
measures are discussed with regard to interpretation and computation. We propose a
validity measure in Section 2.3, which is easier to interpret than the measure of Hooper
(1993) and easier to compute than the measurc of Hooper (1989). A relationship
between the new measure and the measnre in Hooper (1993) is given in Section
2.4. Theorems in Section 2.4 are proved in Section 2.5. An asymptotic analytic
expression is derived for the validity measure of Hooper (1989) in Section 2.6 and 2.7.
In Section 2.8, some simulation results are presented for comparison of these three

validity measures and some suggestions and comments are provided.
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All the discussions in this chapter are based on the model (1.2.5) with Ao =
{1/\/7)1,, i.c. all the treatment contrasts in the model are of interest. The assump-

tions about model (1.2.5) in Section 1.2 are adopted here.

2.% Two Validity Measures in Hooper (1989 and
1993)

The model-assisted significance level E{¢(G, W)} is a good predictor of the random-
izasion rignificance level E{¢(G, W) | W} if the variance of E{¢(G,W)| W} is small.
Under model [1.2.5), the model-assisted significance level E{¢(G, W)} is the normal
theory significance level E{¢(G,W)|R(GB)}. In this situation, randomization pro-
vides high validity for the normal theory analysis of the experimental data under the
model (1.2.5). Given a test function (1.3.1), Hooper (1989) suggested the coefficient
of variation of E{e(G, W) |W}

_ varz{E[¢(G, W)
V(®) = T F{4(G, W)}

Wi} (2.2.1)

as a validity measure. Let o denote the normal theory size E{¢(G,W)}. cv(9) is the
relative measure of the variability of the conditional size E{¢(G,W)| W} about its

mean a. An approximate 95% prediction interval for E{¢(G, W) |1V} is given by
a—2acv(d) < E{¢(G,W)|W} < a+2acv(e) (2.2.2)

Thus, if @ = .05 and cv(¢$) = .10, then the randomization significance level of the
test will usually be between .04 and .06 under model (1.2.5).

The validity measure cv(¢) in (2.2.1) can be used to compare the validity of
randomized designs for different unit-effects models and different numbers of units.
Usually, cv(¢) must be estimated by simulation methods.

Hooper (1993) proposed another validity measure to aid in the selection of a tun-

ing constant for Nearly Orthogonal Randomized Designs (NORDs). This measure
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is also motivated by the variance of E{$(G,W)|W}. The following result is im-
plicit in Hoeffding (1952): if /7 and G, are independent replicates of (7, distributed

independently of W, then
var{E[$(G, W) [ W]} = cov{¢(G1, V), (G2, 1¥)}.

Let (G,,C)) and (G, C;) be independent replicates of (G,C). U QG 11,0) and
Q(G,, W,0) are nearly uncorrelated then var{ E[¢(G, W) | W]} will be small. Since
62 —, otas n—s — oo, where —, denotes convergence in probability, we consider the
covariance between CTG, W and CTG,W. The conditional joint distribution of these
two vectors, given (Gi N, G2 K), is multivariate normal with mean 0 and covariance

matrix

cre,w I cra,cre,
cov 1 |G1K,G2K } = o? ! pe .
cTG,Ww CrG,GTC, I,

If ||CTGIGEC,||* —, 0 as n — oo then CTG\W and CTG,W are asymptotically
independent and var{E[¢(G,W)|W]} — 0; sce Section 6 in Hooper (1993) for a
proof. Note that ||[CTG1GTC,j? takes values in the interval [0, ¢]. For validity, the
distribution of |[CT G,G7 C,||? should be concentrated close to 0. To aid interpretation

Hooper (1993) introduced a standardized variable:

, CTG,GTC,||2 = E|| DT D,|l?
val(G,, G,) = €y {lV;(”z]ﬂTD, “2”)}:_1 2]
e 1 2

(2.2.3)

where D, is uniformly distributed in the set W = {M :nx ¢, M*M = I, MTI =0}
and D; is an independent replicate of D;. Consequently, he defined a validity measure
as the mean and standard deviation of val(Gy,G?), denoted by jivy and oy, which
are equivalent to the first two moments of [|CT 1G] Co||?. The following expressions

were derived in Hooper (1993):

({2

n-—r

E|| D} Do|* =
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and
2¢3(n -7 —q)°
n—r—1)n-r)}(n-r+2)

Hooper (1993) also proved that, for all randomization strategies,

var(|| D] Da||*) =

E{||ICTG1GTC,||*} = E{|| D] D]} for k=2 and k=4.

Thus ftym > 0 and if v = 0 then ova 2 1. Optimal validity for given (n,q,7)
occurs when (ftyal, ovat) = (0,1). It was shown in Hooper (1993) that pya = 0 for
the CRD, randomized blocks design and Latin square design. As the distribution
of ||C;TG1 GTC,|* becomes more spread out, both piva and oy, tend to increase. If
randomization is severely restricted then g can be large and oy, small. A non-
randomized design has oy, = 0.

By (2.2.2), the validity measure cv(@) tells us in which range the randomization
significance level E{¢(G, W) | W} should be. If two randomized designs with different
unit-effects models and different numbers of units have the same value of cv(4),
then we say that these two randomized designs provide the same degree of validity.
However, this interpretation can not apply to the validity measure (fival, Oval), since
the same value of (jtval, Oval) for two randomized designs with different unit-effects
models and different numbers of units does not imply the same value of cv(4).

For NORDs and Truncated Completely Randomized Designs (TCRDs) (Cox 1982)
under model (1.2.5) with given unit-effects model or given (n,q,7), both validity
measures monotonically vary as the tuning constant ¢ or the truncation constant
increases. Then both measures can be used to aid in the selection of the tuning
constant ¢ in NORDs or the truncation constant & in TCRDs. But the measure
(ftvals Oval) 18 preferred since it 1s more easil;” estimated than is the measure cv(e).

The following U-statistics were suggested by Hooper (1993) to estimate fival and
oval based on m replicates (G:, C;) of (G, C):

R 2
Hyal = m—_l—);jval(Gi,Gj) (2.2.4)
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and

1 .
6, = val(G;, G;) — val(Gx, G Y 2.2.5
AT m(m — 1)(m —2)(m — 3) (i.j.k.l)ze:r‘(m,4){ ( i) (G, G} (2.2.5)

where P(m, 4) is the set of permutations of four numbers from {1,...,m}.
Hooper (1989) used the following method to estimate cv(4). Let Wi and Gy;(7 =
1,...,h;7 =1,...,m) beindependent replicates of W and Gi. Put X; = 327, ¢((7;1V%)

and Z; = Xi(X; — 1)/m(m — 1) = 2a X;/m + o®. For k large, an approximate 95%
confidence interval for var{ E[¢(G, W) |V]} is given by

max{0, Z — 2 Sz/Vh} < var{ E[¢(G, W) | W]} < max{0,Z + 2Sz/Vh}, (2.2.6)

where Z = ™10, Z; and S = (b — 1) T (Zi — Z)% A confidence interval for
cv(¢) is obtained by transforming the bounds in (2.2.6). Hooper (1989) showed that
when var{E[¢(G, W) | W]} is small it is desirable to take 717—‘1 small for more precise
estimation of cv(¢).

For classical randomized designs, we can generate a replicate of (i at a little cost of
computational time. However, it is much more expensive to generate a replicate of (4
for NORDs and TCRDs so that the above method will be not practical. Alternatively,
a more efficient method is to employ the generalized U statistics to estimate cv(e)
based on m replicates G; of G and h replicates W; of W. Using a result in Hoellding

(1952), we have
var{ E[$(G, W) | W]} = cov[$(G1, W), $(G1, W)).

Thus, var{ E{¢(G, W) | W]} can be estimated by the unbiased generalized -statistic:

9 m h

m22¢(0nwk)¢(0j,wk) — o’ (2.2.7)

1<) k=1
We use square root of (2.2.7) divided by a to estimate cv(¢). The variance of the

estimator (2.2.7) is expressed as

2

- — Y { 2(m = 2)(h — )var{ E[¢(G1, W)$(G2, W) | Gh]}
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+ (h — 1)var{E[¢(G1, W)$(G2, W) | G1, Go]}

+ (m — 2)2(m — 3)var{E[¢(G1, W)(Ga, W) | W]}

+2(m — 2)var{ E[¢(G1, W)$(G2, W) | G1, W]}

+ var[¢(Gy, W)@(G2, W)] } (2.2.8)

and can also be estimated by a generalized U-statistic (see Lee 1990).

The method in (2.2.6) and the generalized U-statistic method for cv(¢) require
generating replicates of both G and W whereas (2.2.4) and (2.2.5) for (ftval, 7va1) only
need replicates of G. Thus the validity measure (jtval, Oval) is more easily estimated
using simulation methods than is the validity measure cv(@).

In order to seck a compromise between computation and interpretation, we will
introduce a new validity measure in the next section. This new measure allows an
indirect approximate interpretation and can be estimated at the same cost as the

validity measure (jtval, Oval)-

2.3 A Validity Measure Related to the Beta Statis-
tic

The F test is used for testing the hypothesis Ho : f = 0 in normal theory analy-
sis. In this section, we consider the I test and the test function #(G, W) defined
under the null hypothesis by (1.3.1) with f(z) = m_:;_g; For validity, we seek agree-
ment between the randomization probability E{#¢(G, W) | W} and the model-assisted
probability E{¢(G,W)}. Under model (1.2.5), the model-assisted distribution of
the F statistic (1.2.12) is the F distribution. If the randomization distribution of
the F statistic is close to the F distribution then the randomization probability

E{é(G, W) | W} should be close to the nominal size a, which is the model-assisted

probability E{¢(G,W)}.
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It is difficult to work with the randomization distribution of the F' statistic be-
cause its denominator is a function of the randomization. The denominator of the
Beta statistic (1.2.13), however, is invariant under randomization, so the random-
ization distribution of the Beta statistic is determined by the numerator. Since the
Beta statistic is equivalent to the F statistic, we consider agreement between the ran-
domization and model-assisted distributions of the Beta statistic. In earlier papers,
Welch (1937) and Pitman (1938) calculated the randomization moments of the Beta
statistic and found close agreement with the corresponding normal theory moments
for the randomized blocks design and the Latin square design.

It was shown in Section 1.2 that SSy = ||CTGW||?* and SS; + SSi = ||(I -

BBT)W|? under Ho. Thus the Beta statistic (1.2.13) can be written:

Icrew]?® .
T(G,W) = , 2.3.1
W) =7 —BEnWTE (23
Since W = KV and K € P,(B) under model (1.2.5), we have
T 2
TG, Kv) = N GR Vi (2.3.2)

(I = BBT)V|]?

In Section 1.2, we showed that C is also a function of GK. Thus, from (2.3.2),

T(G, KV)is afunction of GK and V. T(G, W) has the Beta distribution with param-

eters (%, 7_1_:77‘_;‘1) and is independent of GA'. Thus the model-assisted distribution
no—

of the Beta statistic T(G, W) is the Beta distribution with parameters (%, LT,

so the first two moments of model-assisted distribution of T(G, W) are given by:

E[T(G,W)] = —* (2.3.3)

n-—r

and
q(q + 2)
(n—r)(n—r1+2)

Since the randomization moments of T(G, W) are unbiased estimates of the cor-

E[T¥G,W)] = (2.3.4)

responding model-assisted moments, the coeflicients of variation of the first two ran-

domization moments of T(G,W) can be used to measure the extent of agreement
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between the randomization and model-assisted distributions of T'(G, W). Therefore

we define
varH {E[T(G, W) | W ]}

E(T(G,W)] (2.3.5)

cv(T) =

and
varz { E[T*G,W)|W ]}
E[T*G,W)] :

Based on the Beta-related validity measure (2.3.5) and (2.3.6), approximate 95%

ov(T?) = (2.3.6)

prediction intervals for the first two randomization moments E [T(G,W)|W] and

E[T*G,W)|W] are given by
E(T) = 2E(T)cev(T) < E[T(G,W)|W] < E(T) + 2E(T) cv(T) (2.3.7)
and
E(T?) — 2B(T?) cv(T?) < E[THG,W)|W] < E(T?) + 2E(T*) cv(T?)  (2:3.8)

respectively.

The randomization distribution of T(G, W) is discrete on the interval [C,1] and
cannot be explicitly determined for most randomization strategies. In order to com-
pare the randomization distribution of T(G, W) with the model-assisted one, we may

approximate it by the Beta density curve:
p(t) = const. x t™ (1 — )™z (2.3.9)

Here m; and my are chosen so that the first two moments of this curve agree with
the true moments of T(G, W). We may find a confidence region for (m;, m;) through
the validity measure [cv(T), cv(T?)] by converting the prediction intervals (2.3.7) and
(2.3.8).

The Beta-related measure [cv(T),cv(T?)] can be estimated by simulation. The
generalized U-statistic method used to estimate cv(¢) in Section 2.2 can be adopted

for the Beta-related measure [cv(T),cv(T?)].
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However, that method requires replicates of both W and G. In the next section,
we will derive a relation between the measures [cv(T), cv(T?)] and (jtvar, ova). From

this relation, we can estimate [cv(T'), cv(T?)] without generating the replicates of 1.

2.4 A Relationship Between measures [cv(7), cv(77)]
and (l"vala Uval)

The validity measure (ftyal, Oval) introduced by Hooper (1993) is equivalent to the first
two moments of the random variable ||C¥ G1GI C;||?. The following theorem expresses
the Beta-related validity measure (2.3.5) and (2.3.6) in terms of the first two moments

of random variable ||CTGyGTC,||? and the first moment of ||CT Gy G5 CoCF GG O]

Theorem 2.4.1 Under model (1.2.5) and the assumptions given in Secclion 1.2, we

have

2 _ 2(n — r)
{CV(T)} - qg(n —r 4+ 2)

n-—r

2
{E||C,TGIG2TC’2||2— g } (2.4.1)
and

8(n—r)(n—r+2)
?(q +2)*(n —r +4)(n — 7 +6)
+ E||CTG\GIC|1* + 2E|CTG\GTC,CT GG Ch||
7*(q+2)*

_ (n_r)(n_r+2)} (2.4.2)

Y T T v |15 (/2
[T = {a+orimiciGic - )

where (G1,C1) and (G2, C,) are independent replicates of (G, C').

The proof of Theorem 2.4.1 will be given in the next section since it requires some
results on calculating moments of the distribution of two correlated quadratic forms
of independent normal variables.

From Theorem 2.4.1, it follows that cv(T) only depends on iy, and cv(T?) is
related to El[C?GlG{Cgcg'GZGTCII|2 as well as (fiyal, Oval). We can estimate the

validity measure (cv(T'), cv(7T?)) through estimating E|CTC GTC,CTGLGT Ch||* and
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(fiva, Tvat) using simulation methods. Thus the cost of computation for [ev(T), cv(T?)]
is almost the same as that for (gyal, Oval).

Optimal validity occurs when [ev(T), cv(T?)] = (0,0). A randomized design with
[ev(T'), cv(T"?)] close to (0,0) has a high degree of validity. From (2.4.1) and (2.4.2),
we have that cv(T) — 0 and cv(T?) — 0 if E||CTG1G]Co||* = 0 as (n — 1) — oo,

Let Ay > --+ > A, be the ordered eigenvalues of Cf'Gng'CgchgGlTCl. We have
M <14 >0,

ICTG\GE G| = zq; Ai

and

9
ICT G GIC,CTG.GICh|IP =3 AL
1=1
It follows that

E[ICTG1GIC,07 G:GT G| < EIICTGiGL Gu?

and

E||CT GG} C:CF G GT G|l < E|CTGiG Gl
Thus, the convergence rate of cv(T?) is the same as that of E||CTG\GIC,|)? as
(n —r) — oo. If ¢ = 1, then ICIG\GICLCTGLGTCH|? = |CTG,GE Cyl|*, so the
Beta-related measure [cv(T), cv(T?)] is equivalent to the measure (Lval, Oval)-

For the classical randomized designs, explicit expressions can be derived for the
first two moments of ||CTG1GTC,||? and E||CTG1GE C2CT G, GT C1||*. Hooper (1993)
showed that E||CTG\GIC.|* = 7—1—(1_3-7: for the classical randomization strategies, such
as CRD, randomized blocks design and Latin square design. Thus, E [T(G, W) | Wi=
E[T(G,W)], that is, the first randomization moment of T(G, W) does not de-
pend on the uncontrolled random errors W, for classical randomized designs. In
the following thecorem, we give the explicit expressions for E||CTG\GICo||* and

E|\CTG\GTC,CTG.GTC4|? for the CRD. Explicit expressions for randomized blocks
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design and Latin square design can also be derived but more tedious calculations are

required.
Under model (1.2.5), B = (1/y/n)1,,7 = 1 and C = A for the CRD. We then
have that C; = C3,G,GY ~ G and CrGe,GIc, ~ CcTGC.

Theorem 2.4.2 For the CRD, we have

T 4 _ q 2 2, 2 o 4.
E||lctGae|? = T = =2 = 3){71 (n+ 1)¢%a® — 2n(n — 1)¢(q + 2)a
+ (g+2)%+ n(n—-3)(¢* +2)} (2.4.3)
and
E||cTGCCTGTC|? = 1 {n?(n + 1)q%a?

n(n —1)(n —2)(n —3)
—2n(n — g(q + 2)a+ (g + 2)* + n(n — 3)(2q + 1)},

(2.4.4)

where A = (a;;) and a = ¢~ Sy iy Tioy bl

The proof of Theorem 2.4.2 will be given in the next section. The equation (2.4.3)
is implicit in Hooper (1993). (2.4.4) is derived by the same method as in Hooper
(1993).

By (2.4.3) and (2.4.4), (2.4.2) is simplified for CRD:

2n(n + 1)’ B <,_—_1><_/_+_1)}

IOl = 9 =D = 8)(n + ) + 5) (- 8

(2.4.5)

From (2.4.5), an appropriate choice of the matrix A can make ev(T?) equal to 0.

2.5 Proof of Theorems

Before giving the proof of Theorem 2.4.1, I state some results on caleulating the

moments of the distribution of two correlated gquadratic forms of independent normal
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variables. The notation used before the proof of Theorem 2.4.1 in this section differs
from that used elsewhere in this thesis. Let A ® B be the Kronecker product of
matrices A and B. Denote by E;; the n x n matrix taking value 1 at the (z,7)th entry

and 0 otherwise. Define H;; = Ei; + Ej;.
Lemma 2.5.1 Let V ~ N(0,1,). We have
1
E[VVT ® VVT] =1+ 52'.1.11.'1' ® H;; (2.5.1)
and

EvvTovvTavvieVvV =L LeL®l,

+ %Z,j{ﬂu OH; @I, @I+ H; @L@H; @ I + Hi; © In © I, ® H;

4 LOH;®H,;®@ .+, H; ® [, @ Hij + I, ® I, ® H;; ® Hij}

+ Zijk{llij QHwQHj @I+ H; @ Hy @ I @ Hjp + Hi; ® In ® Hiy @ Hjx
+ 1,0 I, © Ha® Ha} + 350, A5 © Hu ® Hy; © Hy

+ Hi; @ Hy® Hu® Hi; + H;; @ Hi; @ Hu ® Hu}

+ ZUH{H;'J' OHw® Hy @ Hjy + Hi; @ Hie @ Hu @ Hji

+ 1[.’\,‘ QHiy® f]j( & fl’kl} (2.5.2)

where 33;; denotes the summation over the indices i and j, ;1 and 35 are defined

in a similar manner.

The expression (2.5.1) was derived by Magnus and Neudecker (1979). Using the
same method, 1 derived expression (2.5.2) by a straightforward calculation. From

Lemma 2.5.1, the following results are immediately obtained.

Lemma 2.5.2 Let V ~ N(0,1,) and let A, B, C and D be symmetric matrices of

order n. Then

E{VTAV .-VTBV} = trAtrB + 2trAB
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and

E{VTAV -VTBV .VTCV - VTDV} = trAttBtrC t:D + 2{trABtrC trD
+trAC trBtrD + trAD trBtrC + ttBC trAtrD + trBD tr A trC
+trCDtrAtrB} + 8{trAtrBCD + trBtrACD + trCtrABD + tr D tr ABC'}
+4{trABtrCD + trAC trBD + trAD tr BC}

+ 16{trABCD + trACBD + ttABDC}.
Proof: We observe that
E{VTAV -VTBV} =tr{[A® B E[VVT o VV']}
and
E{VTAV-VTBV-VTCV-VT DV} = tr{[A@BaCeD] E[VVTavViaviioy VY.

the proof is completed by applying Lemma 2.5.1 and simplifying. ]

The results in Lemma 2.5.2 can also be found in Rao and Kleffe (1938).

Lemma 2.5.3 Under the assumptions of Lemma 2.5.2 , we have

(1) cov(VTAV,VTBV) = 2trAB,
(7)) cov{(VTAV)?, (VTBV)?} = 8{trAtrBtrAB + 2tr AtrAB*

+2trA2BtrB + (trAB)? + 4tr A2 B? + 2tr(AB)*},
(iid) if further A and B are idempotent with rank q, then
cov{(VTAV)?, (VT BV)?} = 8{(q + 2)2trAB + (trAB)* + 2t (A3)*}

On the covariance of two correlated Beta random variables, we have the following

result.
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Lemma 2.5.4 Let V ~ N(0,021,). Let A and B be symmelric matrices of order n

and let C be a symmelric idempotent matriz of order n. IfCA= A and CB = B,

then (%—;—é—“—;, %;LC}T‘;) is independent of vicy.

Proof: Consider inference on o? based on CV. Since CV ~ N(0,0%C), VICV is
complete sufficient for 02. From CA = A and CB = B, we obtain that VT AV and
T s VTAV VTBV) o Aot 2
VT BV are functions of C'V. Moreover, (T/“TZ*V’ VTev ) 8 dlstrlbute;l free of:' and
r 7
so is an ancillary statistic. By Basu’s theorem (Lehmann, 1983), (ngb, {/T‘g“;)

is independent of VICV. .

Lemma 2.5.5 Let z,y and z be random variables. If (z,y) is independent of z, then

we have that

cov(zz,yz) = E(z%) cov(z,y) + var(z) E(z) E(y). (2.5.3)
Proof:
cov(rz,yz) = E{[rz ~ E(zz)|lyz — E(y2)]}
— B{jez - 2E(e) + 2E(x) — E@)E)lyz — zE@) + =E(w) — B@)E(=)]}
= E{r — E(@)ly — E()) + E() E@)[z - E(2)]}

= E(:%) cov(,y) + var(z) E(r) E(y).

=
Lemma 2.5.6 Under the assumptions of Lemma 2.5.4, we have that
cov (vTav): (WVTBv)y| _ cov[(VTAV)', (VT BV)]
(VITCY )y (VICcv): - E[(VTCV)¥]
T q v T RUY

ey EWTAVIEVIBV)]

[E(VICV)PE[(VTCV)?]
1=1,2,.... (2.5.4)

o
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'T IaY1 T 7\ ipe .
Proof: By Lemma 2.5.4, [(: g:.;,, (t, g:,;,] is independent of (VICV), for

t=1,2,.... Applying Lemma 2.5.5, we have

; ; (V7 AV)'. ; (VTBV)i T ;
. 7 1 T V) _ , Try2ye FTevyrys
coV [(V AV (V!B )] = cov {—_("'TC")‘(V CVvYy, __-——_(VTCV)"(‘ V) }

(VTAV)i (VTBV)i
(VICV) (VTCVY
(VTAV)'] P [(v?’m')-‘]

= E[(VTCV)*]cov {

+var[(VICV)] E [

(VICV): (VTevys
1=1,2,.... (2.5.5)
: - | (VTAV)Y' | _ E[(VTAV)] S (VTBVY L E[(VTBVY]
Noting that F {(VTCV)‘ = B(VTCV)] and F VTOVY| T EVTOTY)” we
T AV TRV
obtain (2.5.4) by solving for cov [Etirg“:;" 8/7-5:;;,] in (2.5.5). =

Proof of Theorem 2.4.1 :

By a result in Hoeffding (1952), we have
var{ E[TH(G, W) | W]} = cov{T" (G, W), T (G, W)}, i=1,2,...

where G and G, are independent replicates of GG. Note that

ICTGR V|2

TG RV) = = BBV

and C depends on GRK. Thus T(G, K'V) is also a function of (A and V. By condi-
tioning and noting that E[T* (G . W) |G K] (1 = 1,2,...) are constant, we obtain
cov{TH{(Gy, W), TGy, W)} = E{cov[T(Gy, KV), T (s, KV) |G K, G K]}

ol (TG RV e GaR VI
(I — BBT)V|2 (I — BBT)V||%

|G’1I\',Gzl\']}, 1= 1,2,....

(2.5.6)

Furthermore, it follows from Lemma 2.5.4 that

ICTG RVIE  |CTG KV |
(1 = BBTYWV|2 (I = BBT)V||%
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is independent of ||(J — BBT)V||* for given (G1K,G:K). By Lemma 2.5.6, we have

that

Tt 1~ 2 T < 2
. { ICTG KV C; G2 KV || |GIK,G2K}

[~ BBV (7 - BBV
_ cov[|ICTG K V|F, ICTGa K V¥ | Gi K, G K]
B~ BBTYV]
ZECIG. KV[* |G K| E[|C] G2 KV ||* | G, K]
. _ T 2 2 2
el = BBV I 7 BETYVIRF BT - BETVI)
i=1,2,.... (2.5.7)

Since VT (I — BBT)V is distributed with x*(n — r), then we have that
ENI-BBOYV|*=(n—-r)n—1+2)---[n—r+2(i —1)], i=1,2,....

It follows that
var(||(I = BBT)V|]’| = 2(n — 1) (2.5.8)

and

var[[|(] = BBT)V|Y| =8(n —r)(n — 7 + 2)(n — r + 3). (2.5.9)

Also ||CTGKV|)? is distributed with x*(q) for given GK, so we have
E|CTGRV||* = q(q+2)---[g+2(i —1)], i=1,2,.... (2.5.10)

Applying Lemma 2.5.3, we can obtain the conditional covariances in (2.5.7) for ¢ =

1,2:

cov{||CTG KV ICTG, K V|? |G K, G2 K]

= 2tr(KTGTC,CTG K KT G C,CT G, K)

= 2||CTG,GL Cy|)? (2.5.11)
and

cov[Jl TG RV ICTGL R V|2 | GL K, G K]
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= 8{(q +2)%tr(KTGTC\CTG, KKTGIC,CT G K)
+ [tr(KTGTC,CT G K KTGIC,CT G )]
+ 2tr(KTGTC,CTG K KTG] C,CT G, K)?*}
= 8{(g +2)?ICTG\GTCH||* + |CTGIGI Ca||* + 2||CT G1 G C2CT G GT 1P}
(2.5.12)
Substituting (2.5.8), (2.5.9), (2.5.10), (2.5.11) and (2.5.12) back into (2.5.7) and using
(2.5.6), we obtain that

cov[T(Gy, W), T(G,, W))
ICTGIKV|?  ||CTG RV el
- F , , ni, G
E{cm [”(1_ BBV’ (T — BBV [GV\K, G K

_ 2IICITG1G302II2 —9n — 7 q9-9 }
B E{(n—r)(n—r+2) X )(n—r)'l(n—r)(n—r—i-f!)

= 2 EICTG,GIC, | — —L
(n—=7r)(n—-r+2) D n—r

——
e
o

5.13)
and

cov[THGh, W), T*(G,, W)
_ plo  [ICTGEY  CIGRY ]!
(7= BETWVIW T — BBV

|Gh K, GZI\’] }

E 8
(n=7)n—-r+2)(n—r+4)(n—r+06)

+ [CTGiGTCall* + 2110 GLGF CoCT GrG G ]

_ (n—r)(n—r+2)(n—r+3)¢*(q+2)° }
(n=r2n—-r+22(n—r)(n—r+2)(n—r+4)(n—r7+06)

[(a + 2PICTGh G Col?

— 8 2 , It T 1 2 _ (/2
S e =r D r s (=7 +0) {(”2) [E”Cl GG Cll” =
¢*(q +2)*
n—r)(n—r+2)
(2.5.14)

+ E||CT GG C:||* 4 2E||CT GG CoCT GuGT Gh* — (

Therefore, combining (2.5.13) and (2.5.14) with (2.3.3) and (2.3.4) yiclds at once
(2.4.1) and (2.4.2). This completes the proof.
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Proof of Theorem 2.4.2:

Since B = (1/y/7)1n,7 = 1 and C = A for CRD, we then have C, = C; and
G,GT ~ G. Thus CTG,GICy ~ CTGC and G is uniformly distributed on the group
P,.. Part of the following derivation can be found in Hooper (1993).

We wish to calculate
E(ICTGC|") = oS3 E{ (a7 Gb)* (T Gd)? (2.5.15)
and
E(ICTGecTaTeP) = S5 E{a"GebTGea? G b Gd}, (2.5.16)
where the summations are over columns a,b,c and d of C. Let S; denote the set
of P,-orbits on {1,...,n}4, i.e. each § € &4 has the form S = P.(4,7, k1) =

{(gi,97,9k,gl) : g € Pn}. Let a = (a1,...,a,)T, b = (bry...,02)T e = (c1y.--yen)T

and d = (dy,...,d,)7. For every g € Pn, a simple calculation leads to

(a gb)¥(c Tgd)? = ZZZEGGJCkClb —1;bg-1dg-1pdg—1;

and

aTgcbTgcaTgdbT gd = Z Z 2 Z a;bjarbicg-1ic4-1;dg-11dg~1y.
[

ik
Let #S denote number of elements in S. Noting that G has the uniform distribution

on the group P,, we then have

1
E{((I,TG’))Q(CTG(I)Q} = #P = {Zsz:;a;ajckczbg—l,-bg—xjdg_lkdg_ll}
n gEPn i g
1
T %P - {Z Z;;aiaickclbgibgjdgkdgl}
ng n i F
)
1
= Zz; #P ZP anckc’bgtngdgkdgl}
1 J n QE n

Z bgt ng dyk dgl}
gE'Pn

= Z Z a;ajCkC({#P

SES, (i.,kJ)ES
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1 #P,
a; — bbidid,
JkI)ES } {#P" #5 (f.j.%;)es ’ }

k
1
= -—§ a;a;CrCy E b,‘bj(]kd( . (2517)
des 5.3k 1)ES (i.ikd)eS
Similarly, we can obtain

B{aGel GeaT GV G} = 3 #L{ > c‘-cjdk(lz}{ > a,-bjakb,}.

SES ik l)€ES (i..k1)es
(2.5.1%8)

I
——
=

=

=~}

e

)

-

0

For § € §; and two columns a and b of C, define
u(S)= Y aia;bb
(i,5.k0)ES

and

’LU(S) == Z a,'bj(lkbz.

(ihikD)ES
There are 15 P,-orbits on {1,...,n}*

Sl = Pn(la]-slal))#sl = n,u(sl) = u"(Sl) = ? 1 ?b121
S21 = Pn(2, 17 lv 1):522 = Pn(172, 1a l)a 523 = Pn(’”l 1a21 1) and S'“ = P"(l’ l’ 1’2)’

S =nln—1)k=1,...,4,u(Sw) = w(Ss) = — S0, a2 k=1,...,4;

Sar = Pa(1,1,2,2), Saz = Pa(1,2,1,2) and Szz = Pu(1,2,2,1), #Sak = n(n ~ 1),
k=123 ifa=>bu(Su) = w(Su) =1=-Yr, ek =123, if a # bu(Sy) =
w(S32) =1 — X, afbf, u(S32) = w(Sn) = “(533) = w(Sa3) = — XL, afbf;

Syu = Pa(1,1,2,3), S = Pu(1,2,1,3), S43 = 7>,1(1,2,."5,1),544 = Pu2,1,1,3),
Sis = Pn(2,1,3,1) and Sye = Pn(2,3,1,1),#Ssx = n(n —1)(n = 2),k = 1,...,6, il
@ = bu(Su) = w(Sw) = 250, @ — 1Lk = 1,...,6,if @ # bu(Ss) = w(Sw) =
u(S4s) = w(Ss5) = 230, a?b? — 1, the remaining u(Su) = w(Su) = 231L, afb¥;

Ss = Pn(1,2,3,4),#Ss = n(n = 1)(n — 2)(n — 3), if a = b,u(Ss) = w(S) =
1 — 657, a2l if a # b, u(Ss) = w(Ss) = 3(1 — 25, af

Substituting the above u(S)’s and w(S)’s into (2.5.17) and (2.5.18), we obtain
(2.4.3) and (2.4.4). (2.4.5) comes out immediately from the substitution of (2.5.17)

and (2.5.18) into (2.4.2) and after simplification. This completes the proof.
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2.6 An Analytical Approximation to cv(e)

The validity measures cv(¢) and (jtval, Oval) Were reviewed and discussed with regard
to interpretation and computation in Section 2.2. In this section, we will develop an
analytical approximation to cv(¢), where ¢ is the F-test, to study the relationship
hetween the two measures under the null hypothesis.

In the following development, we approximate a joint distribution of two correlated
J™-ratios of normal vectors by joint distribution of two correlated quadratic forms of
normal vectors. In fact, this means that we approximate cv(¢) by cv(¢y), where
¢, is the x?-test used when the standard error o of the error term V in model
(1.2.5) is assumed known. But an empirical study in Hooper (1989) shows that
cv(é, ) decreases very slowly as the experiment size n increases. This means that the
approximation of cv(¢y) to cv(¢) is very poor for small and even moderate size n. [
also conducted an empirical study comparing the joint distribution of two correlated
J-ratios of normal vectors with the joint distribution oi two correlated quadratic
forms of normal vectors. The result shows that a large value of n is required to
obtain a good approximation. Consequently, I do not recommend using ths analytical
approximation in practice. However, it does provide some insight on the relationship
between cv(¢) and (fival, Oval)-

The I statistic (1.2.12) can be written:

(ror—q)  ICTGW|? __(n=r—q) _C'CKVI’
7 N-XXNGWE~ g U -XXNGKVI®

F(G,W) =

The F test is then defined by
1 F(G,W) >
$r(G, W) = (G, W) >c (2.6.1)
0 F(G,W)<c

where ¢ is a constant such that the normal theory significance level of (2.6.1) is a,

i.e. E[¢r(G,W)] = a. Hence, the coefficient of variation validity measure is
cv(ép) = a~Wvart {E[¢r(G, W) | W]} (2.6.2)
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By conditioning, we have

var{E[¢r(G,W)[W]} = cov{¢r(Gi, W), dr(G2, W)}
= E{cov[$r(G1, W), $r(G2, W) | Gi K, G2 K]}

= E{PIF(G,,W)> ¢, F(G2,W) > c|GiN,G: K]} — o,

Here, the second equality comes from the fact that El[¢r(G1, W) G K] and
El¢r(G2,W)| G, K] are constant and then
cov{ E[¢r(G1, W)| G1 K], E[¢F(G2, W) G K]} = 0.

(I = XXT)GKV|?

n—r—gq

Since converges in probability to o2 under some mild conditions

(see Hooper 1989), we approximate
P[F(G1,W) > ¢, F(G, W) > ¢| G\ K, G K] (2.6.3)

by
P{[CTGiKV|?* > ¢qo?,||CT G2 KV||* > eqo® | Gi K, G2 K] (2.6.4)

when 7 is sufficiently large (an empirical result shows this approximation is poor for
small and even moderate n).

Quantity (2.6.4) involves the joint distribution of two correlated quadratic forms of
normal vectors. A series expansion is derived for this probability in the next section.

For a > —1, the Laguerre polynomial of degree k is defined by

@ z”%e” dk o —r
Li(z) = —k‘,“‘m(x them%)
s T(a+k+1) (—z)
S T(a+7+1) (k- 5)

see Szegd (1975) for more details. Let

I'(k)
I'(k+ 1)

(%)%e-%“l,f_l(f;—’). (2.6.5)

ajp =
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Moreover, we define

& G\ N fim\ Im 1
=3 X HMENTLL (M N (2.6.6)
24 2tm Jilg2! e gm!

m=1 |'1j1+"'+imjm=k

with 4 < ++- < i, for k > 1, where M = Cg'GgGTCHClTGIG{C; We have from
results in the next section that
PUICTG KV|? > ¢qo?, ||CTGLK V| > eqo? | G1K, G2 K] = o® + %
k=1

Hence, we approximate var{ E[¢r(G, W)|W1} by
E " k), (2.6.7)

For the case ¢ = 1, (2.6.7) has the following simple form:

I'(k +
Z IE,F( 2) a E||CTG,GEC, )% . (2.6.8)

From (2.6.5), we see that a; depends solely on the critical value of the normal
theory significance level and the number of treatments. In (2.6.6), pj is a combinato-
rial function of the random matrix M, so the expectation E(y}) is determined solely
by the randomization strategy. The first two terms in (2.6.7) involve tri, (trM)?,
and tr(A?). The measure (fival, Oval) is equivalent to [E(trM), E(trM)?]. Usually,
the convergence of series (2.6.7) is determined by both of the term %2"{ and the ex-
pectation E(u}). If the randomized design is such that E(trM) is small, the series
(2.6.7) converges quickly and then only the first few terms need to be calculated to
approximate var{ E[¢r(G, W)|W1}.

Since E||CTG,GT(C,)|** < 1 in the case q = 1, then the series (2.6.8) is controlled

by
= Tk
> ,V,F“) . (2:6.9)

"able 2.1 lists the numerical values of first 15 terms and their partial sums in the
series (2.6.9) for ¢ = 2.706,3.841 and 6.635, which are the 90,95 and 99 percentiles of

\? respectively. From Table 2.1, we find that the series (2.6.8) converges very quickly.
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Table 2.1: The numerical values for the series (2.6.9)

Order c = 2.706 c=3.841 c = 6.635
k term partial sum term partial sum termn partial sum
1 .0287705  .0287705 | .0131262  .0131262 | .0013871  .001387!
2 .0001036  .0288741 | .0003868  .0135130 | .0007637  .0021508
3 .0004484  .0293225 | .0006831  .0141961 | .0000517  .0022025
4 .0003640  .0296865 | .0001659  .0143621 | .0000143  .0022168
5 .0001259  .0298124 | .0000089  .0143710 | .0000201  .00223G9
6 .0000245  .0298369 | .0000022  .0143731 | .0000047  .00224106
7 .0000016  .0298386 | .0000064  .0143796 | .0000001  .0022416
8 .0000002  .0298387 |.0000045 .0143841 |.0000003  .0022419
9 .0000010  .0298397 | .0000018  .01438G0 | .0000004  .0022424
10 .0000010  .0298407 | .0000005 .0143864 | .0000002  .0022426
11 .0000006  .0298413 | .0000001  .0143865 | .0000000  .0022426
12 .0000003  .0298415 | .0000000 .01438G5 | .0000000  .0022426
13 .0000001  .0298416 | .0000000  .0143865 | .0000000  .0022426
14 .0000000  .0298417 | .0000000  .014386G5 | .0000000  .0022426
15 .0000000  .0298417 | .0000000  .01438G5 | .0000000  .00224206
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2.7 Joint Probability of Two Correlated Quadratic
Forms

The notation in this section is self-contained though I try to avoid inconsistency with
the remainder of the thesis.

Kibble (1941) expressed the joint density function of two correlated chi-square
variates as a series of the products of Laguerre polynomials. Krishnamoorthy and
Parthasarathy (1951) generalized Kibble’s result to the multivariate correlated chi-
square distribution. Jensen (1970) derived the joint density function for the gen-
eralized multivariate correlated chi-square distribution. The Laguerre series expan-
sion for the joint density function of the correlated quadratic forms was derived by
Khatri, Krishnaiah and Sen (1977). The results of Kibble (1941), Krishnamoorthy
and Parthasarathy (1951) and Jensen (1970) are the special cases of Khatri, Krish-
naiah and Sen (1977).

Without loss of generality, we assume ? = 1 in this section so that V ~ N(0, I,).
Define Y; = VIC,CTV and V2 = VTC,CTV where C; and C; are two fixed n X q
matrices with orthonormal columns. Applying the result of Khatri, Krishnaiah and
Sen (1977) we can find the joint density function for ¥; and Y;. However much sim-
plification is required to obtain a clear expression. It is easier to derive the joint
density function for ¥; and ¥; by adapting the methods used in Kibble (1941), Krish-
namoorthy and Parthasarathy (1951) and Jensen (1970). Furthermore, we find the
Laguerre series expansion for the joint distribution function of Y1 and Y>. Following
is the detailed procedure of derivation.

The following Lemma is well known; see Rao (1973).

T

U Ty O
Lemma 2.7.1 Assume that U= | ' | ~ N(0,%), whereS = | " 7" |. Let
U2 221 Z22

W, = U, U, and Wy = UpTU,. Then the joint characteristic function of Wy and W,
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is given by
1

E {exp(itiW; + it,Ws)} = [I — 2iTE|" %

ta O
where T = .
0 7

Applying Lemma 2.7.1, we have that the joint c.f. of Y1 and ¥; is given by

2it\2it,
(1= 2it,)(1 — 2ity)

o(ts,t2) = (1 — 2ity) ¥ (1 — 2itz) " ¥| I, - CTCOTCy™% (2.7.2)

[ [ 2)!12(!1
In order to expand (2.7.2) as a power series of the variable =2 (1 = 2)

we need the following lemma, which can be found in Jensen (1970).

Lemma 2.7.2 Assume thal M is a symmelric matriz with the largest eigenvalue less
than 1. Let y(t) = |I — tM|—%, where t can be a real or complex variable. Then we
have

log ¥(t) = D trM? =
i=1 2

and

oo tk
P(t) = E /‘LF7
k=0 *

where py =1 and

k { 7 ] Jm
' tr M trAL*™ k! o
= > 7.3
i ( 24 2t .71'./2‘ tr 'jru! (2 7 )

m=1i;j1++imim=k

with i, < -+ < iy fork > 1.

By Lemma 2.7.2, we can obtain the power series expansion for the characteristic

function of the two correlated quadratic forms.

Theorem 2.7.3 Assume that V ~ N(0,1,). Define V), = VIC,CTV and Yy, =
VTC"202TV where C; and C are two fized n » q matrices with orthonormal columns.
Then the joint c.f. of Y, and Y: is given by

= (2it)2it)*
tits) =Y : :
eltnte) = 2 B T2+ 51 — 2itg)

(2.7.4)
where y is given in (2.7.3) with M = CTC\CTCx.
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Lemma 2.7.4 Let W be distributed with x? and L;(z) be the Laguerre polynomial

of degree n. Then

(—1)*k!IT(%)
I'(k+4%)

(2it)*

— 2.7.5
(1 — 24t)k+3 ( )

E{LI7 () exp(itW)} =

Proof: From the definition of Laguerre polynomial, we know that

~oer g7

n! dz»

($a+n e—z)

L3(z) =

MNa+n+1) (—z)* _ .
- ZF(a+k+l)k!(n—k)!’ n=0,1,2,

Thus,

L - —w
wz te 2 dw

s 1y W . w 1
E{L} 1(-—?-—)exp(thV)} = / Lk X exp(ztw,2 T(3)

_ 1 I (2it-1)y, -1
= F(—%)'/o L “(y)e Yy~ dy

T(k+ ) & (= 1)" it E=1,-(1-2i)y
_ $ v g
Z s TG+ )ik - ) /0 Y ’ !

_ Dk+9 ¢ (1Y
= IO & FE-

7=0

F(k + 2) E( Ok k=]

1— Qit)—(j+§)

[(k + %) (~1)*(2it)*
(k! (1 — 2it)k+1

Combining Theorem 2.7.3 and Lemma 2.7.4 and using the inversion theorem, we
can obtain the Laguerre series expansion for the joint density function of ¥; and Y,
in the following theorem. The proof for the absolute convergence in the theorem is

similar to that in Krishnamoorthy and Parthasarathy (1951).
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Theorem 2.7.5 Using the same assumptions in Theorem 2.7.3 , we have that the

joint density function of Yy and Y, is given by

o) = S ) 35 | | ad

Ty, om0 >0

2
(2.7.6)

If the largest eigenvalue of M = CTC\CIC; is less than 1, then the series in (2.7.6)

)I

is absolutely convergent for y; > 0,y; > 0.

Proof: (2.7.6) comes immediately from Theorem 2.7.3 and Lemma 2.7.4. It is
trivial to show the absolute convergence of (2.7.6) for at least one of ¥, and 3, equal
to zero. Following is the proof of the absolute convergence of (2.7.6) for ¥, > 0 and
yz > 0. Let p be the largest eigenvalue of M = CTC,CTC,. Then trM* < gp', for all

integer :. Noting a combinatorial identity:

F(p) m=11;71 ++imim=k z-il "'7:.1’1'1” ]l!"'JHl!

we have

k i\ 1 im \ I
. trA te AL At
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I'(2)

Hille (1926) deduced that

1
VT

Ly (z) = efzmaletafile cos[2vk:c—7r{i+g)]+O(kz(“'"')) k — oco. (2.7.7)
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So, it follows that

Li 1(:"é) 2:.:;;)6‘J fa=Df - “‘)COS[\/E—"(q—l)]+0(1~‘(" D), k — oo.
(2.7.8)
It is well known that
_____1‘(’“;!-’ 1) g (2.7.9)

Combining (2.7.8) with (2.7.9), we conclude that

I P SO St
kotglTE 2

< 1,y Q"I k- oo,
Tk +3)

where 7, (y1,¥2, ¢) is a constant depending on y1, y2 and q. Hence, we obtain

2
a_ q_ T 1
L2 l(Jl)[k l(Jz) < z(yl"h’Q)pkk_%,

20— T

k — oo,

7 [ k!
KUIT(k+2)]
where 72(y1, Y2, q) is another constant depending on i, y2 and ¢. Therefore, if p < 1,

the series in (2.7.6) is absolutely convergent for y; > 0 and y2 > 0. ]

Lemma 2.7.6 Let f(y) be the density function of x* with q degrees of freedom. Then

for any positive constant ¢, we have

had g—l y., . 6—_;_(2)% % C .
L (3)1(1/)(111 = ——Iﬁzf Lk—-l('é') (2.7.10)
B 2 2

Proof: Transforming r = %, we rewrite the left hand side of (2.7.10) as follows:

[T Gy = [T LT @)

:[”

2

dr

(E+2) (—x) zile"
EF(J—FE .(L—-]).] D)

k

N r(ﬂ E k—])'ruu)

co L9
i e " dx




where Q(a,t) =

e T dr,t < 0, is the incomplete Gamma function.

1 o
T(a) i )
o— -t
Using the recursion formula Q(a,t) = il‘((:) +Q(a—1Lit), for a >0 and t >0, we

have .
QG+ 3.0 =1t -'ZF—,:L’—1+—1)+Q( f) (2.7.12)

=0

Letting t = 2, substituting (2.7.12) into (2.7.11) and using the combinatorial identity

k . k-1
Z (—1y = (=1)*! for k>1 and 7 =0,
J=i+l ?

we obtain

4.y 1 I'(k+12) & |k ‘
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Let ¢ be a constant such that [* f(y)dy = a. By Theorem 2.7.5 and Lemma

2.7.6, we have

PY1>c¢Yy>c) = [m /Cm S(1)f(y2) dndy2

o poo 2y [ TR 17 g-1,.31, 81, ¥
A Ap> Tf[r—(ﬁ:gj] LI )L I ) (w2) dyndus

_ +§;’—k[ P [ 1 s ]
= o« P2 ) Fk-}-l i Yi)ai

-

-~

P eys-s13 &)
[F——('Q‘) e Lk—l(z)}

= a2+i£—-
—_'lk k+%)

Therefore, we obtain the following power series expansion for the joint probability

of two correlated quadratic forms.
Theorem 2.7.7 Let ¢ be the (1 — a) quantile of the x? distribution. We have

P(Y; > ¢,Ys > ¢) = a? +3 ’Z‘; (2.7.13)

where gt is defined in (2.7.3) with M = C:,TCICITCz and

(k) (c
I'(k+2)°2

ay =
Furthermore, the series in (2.7.13) is absolutely convergent for ¢ 2 0.

Proof: (2.7.13) comes immediately from Theorem 2.7.5 and Lemma 2.7.6. It is
trivial to show the absolute convergence of (2.7.6) for ¢ equal to zero. Foliowing is
the proof of the absolute convergence of (2.7.13) for ¢ > 0. With the same argument

in the proof of Theorem 2.7.5, we can show that

where 73(c, ) is a constant depending or ¢ and ¢. Therefore, the series in (2.7.13) is

absolutely convergent for ¢ > 0. L
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For the case q = 1, y} has the simple form

, D(k+1
ﬂk=_(11—(l—)2)pkv

2

where p = ||CTC,||? = (CTC2)%.

2.8 The Simulation Study

Three validity measures were discussed in the previous sections. Hooper (1989) used
cv(@) to investigate validity in small experiments. (jival, ova) Was used in Hooper
(1993) to assist in the selection of the tuning constant A for NORD. Here, we provide
some simulation results to show the use of the Beta-related measure to evalnate the
validity of the two-sided t-test in completely randomized designs and randomized

block designs. In the empirical study the Beta-related measure is compared with

cv(@)-

2.8.1 Validity of the t-test in completely randomized de-
signs

We first consider the completely randomized design in experiments with zero, one,
or two covariates. The analysis of covariance model is adopted for the unit effects
if there are one or two covariates associated with units. Only two treatments arce
compared in the experiments. There are n = 2k units available and the general
additive linear model (1.2.5) is assumed for analysis. The two-sided #-test is used to
test the null hypothesis of no difference between the two treatment effects. We want
to investigate how the validity of the t-test depends on the experiment size and how
much the addition of covariates reduces validity. The data sets used in Bellhouse
(1986) are employed for values of covariates for n = 10 to 20. Several truncated data

sets are employed for n = 6 and 8.
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Table 2.2: Approximate 95% confidence intervals for cv(¢) for the ¢-test in a Com-

pletely Randomized Design for the data sets from Bellhouse (1986)

Size | Lvl No One covariate Two covariates
n e’ covariate Data 1 Data 2 Data 1 Data 2
10 | .553, .629 .633, .701 .593, .666 .720, .788 .614, .683
6 | .05 | .994, 1.004 |1.059,1.170 1.017,1.100 | 1.143, 1.283 1.006, 1.076
.01 | 2.722, 3.437 | 2.320, 3.037 2.572, 3.291 | 2.436, 3.598 2.644, 3.369
10 | .248, .289 277, 314 .295, .337 .328, .376 .306, .344
8 | .05 | .513,.575 476, .546 .504, .567 .547, .621 487, .549
.01 | 1.315, 1.452 | 1.315, 1.410 1.428, 1.658 | 1.452, 1.686 1.347, 1.525
10 | .144, .180 .146, .176 .148, .175 .150, .172 .153, .177
10 | .05 | .247, .296 .267, .307 .250, .294 .262, .303 242, .277
.01 | .750, .839 .730, .831 .722, .820 697, .794 .608, .691
10 | .072, .100 .077, .106 .079, .115 .086, .112 .084, .107
12 | .05 | .145, .185 .143, .181 162, .204 163, .206 163, .197
.01 | .448, .505 .443, .506 449, .505 494, .555 498, .558
.10 | .038, .058 .035, .054 .040, .052 .036, .061 .047, .060
14 |.05 | .089, .125 .085, .112 .092, .118 .085, .123 .100, .126
.01 | .335, .386 .300, .351 .302, .350 301, .343 .339, .389
.10 | .0l6, .032 .014, .030 .022, .037 .030, .049 .024, .038
16 | .05 | .048, .070 .054, .078 .060, .088 .068, .100 .064, .089
.01 205, .247 .215, .262 .227, .275 .236, .284 .233, .280
.10 | .014, .030 .013, .036 .016, .030 .011, .026 .013, .029
18 | .05 | .049, .075 .048, .076 .049, .068 .040, .058 .048, .071
01 [ .191, .236 194, .239 178, .221 .159, .197 178, .222
.10 | .002, .024 .009, .025 .000, .021 .000, .019 .002, .024
20 | .05 | .021, .042 .020, .040 .022, .054 .038, .066 .041, .064
01| .117, .159 121, .160 .146, .186 .170, .210 182, .227
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Table 2.3: Values of cv(7'?) for the CRD with no covariate

No. of Units n || cv(T?) | E(T) = ﬁ_-l—_f E(T?) = ;,—3;—1
4 .29096 3333 .20
6 15474 .20 .0857
8 .10578 .1428 0476
10 .07907 JA111 .0303
12 06223 .0909 .0210
14 .05073 0769 0154
16 .04242 .0666 0118
18 .03618 .0588 0093
20 .03134 .0526 0075
30 01787 0345 0033
50 .00865 .0204 0012

Table 2.4: Values of [cv(T),cv(T?)] for the CRD with one or two covariates

No. of One covariate Two covariates

Units n Data 1 Data 2 Data 1 Data 2
6 .02242, .15043 | .05010, .15512 | .07745, .17401 | .10343, .1643]
8 .03475, .09228 | .01727, .10731 | .05699, .12854 | .02748, .08709
10 .01409, .07451 | .01918, .07855 | .01960, .06836G | .02496, .06594
12 .00653, .05754 | .01395, .06203 | .00855, .06133 | .00956, .06082
14 .00366, .04711 | .01155, .05226 | .00000, .04138 | .01260, .05202
16 .00000, .03863 | .00560, .04067 | .01163, .04426 | .00595, .03784
18 .00000, .03334 | .00000, .03402 | .00455, .03412 | .00813, .03184
20 .00684, .03259 | .00000, .02724 | .006:10, .03189 | .00000, .02933
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Table 2.2 displays approximate 95% confidence intervals of cv(g) for the t-test in
the CRD. The method in Hooper (1989) is used here to obtain an approximate 95%
confidence interval of cv(¢) based on 500 replicates of W and 5000 replicates of G.
cv(¢) decreases rapidly as the experiment size increases. The addition of one or two
covariates in the experiment does not yield a substantial increase in cv(¢).

In the following, we use the Beta-related validity measure [cv(T),cv(T?)]. For

CRDs with no covariate the results in Section 2.4 yield cv(T) = 0 and, since a = TIE’
- 4,/2(n - 2)
cv = .
\/gn(n —3)(n+3)(n+5)
By (2.3.3) and (2.3.4), we obtain E[T(G,W)] = (n—1)"" and E[T*G,W)] = 3(n*—
1)~!. The values of cv(T?), E[T(G,W)] and E[T*(G,W)] are tabulated for some

values of n = 4 to 50 in Table 2.3.

For the CRDs with one or two covariates, we use the generalized U-statistics to
estimate the Beta-related validity measure [cv(T'), cv(T?)]. In order to compare these
estimates here with those confidence intervals of cv(¢), we also use here 500 replicates
of W and 5000 replicates of G. The method is similar to that for cv(¢) in Section
2.2. The estimated values of [cv(T'), cv(T?)] are listed in Table 2.4.

From Table 2.4 and Table 2.3, we also found that [cv(T), cv(T?)] decreases rapidly
as the experiment size increases and the addition of one or two covariates in the

experiment does not yield much increase in [ev(T), cv(T?)].

2.8.2 Validity of the t-test in randomized blocks designs

In this subsection, we consider the randomized blocks design in experiments for com-
parison of two treatments. The two-sided t-test is used to test the null hypothesis of
no difference between the two treatment effects. Table 2.5 lists the values of validity
mneasure cv(¢) for the t-test in randomized blocks designs. We see that cv(¢) increases

as the number of blocks increases with n fixed. The same can be seen in Table 2.6
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Table 2.5: Approximate 95% confidence intervals for cv(¢) for the ¢-test in randomized

blocks designs

No. of | No. of Level o
Units n | Blocks .10 .05 .01
0 .248, .289 513, .575 1.315, 1.452
8 2 4187, .4743 | .7682, .8576 | 1.7528, 2.0731
4 6479, 7322 | 1.2197, 1.2654 | 2.7878, 3.7381
0 .072, .100 .145, .185 448, .505
12 2 1244, 1517 | .2029, .2483 .6334, .7078
3 .1483, .1857 | .2766, .3258 .8918, .9891
6 .3067, .3670 | .5152, .5833 | 1.4123, 1.6086
0 .016, .032 .048, .070 205, .247
16 2 .0315, .0495 | .0782, .1157 2762, .3303
4 .0685, .0964 .1455, .1893 4461, .5000
8 1384, .1778 | .2701, .3174 .8080, .8984
0 .002, .024 .021, .042 17, 159
20 2 .0115, .0256 | .0358, .0468 1509, .1914
5 .0264, .0418 | .0724, .0955 2945, .3413
10 .0747, .1062 | .1547, .2044 4845, .H428

when we use cv(T2) to evaluate the validity. cv(7'?) in Table 2.6 is estimated by the
generalized U-statistics based on 500 replicates of W and 5000 replicates of (i. Notc

that cv(T) = 0 in randomized blocks designs.
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Table 2.6: Values of ¢cv(T?) for randomized blocks designs

No. of No. of Blocks
Units n 0 2 3 4 5 6 8 10
8 10578 | .14945 .15743
12 .06223 | .07518 | .09468 .11053
16 .04242 | .04542 .06816 .08313
20 03134 | .03763 l .04990 .06568

2.8.3 A single valued validity measure and its empirical re-
lationship to cv(¢)

In the next chapter, we will discuss several methods of randomization with respect
to validity and efficiency and will empirically investigate whether these randomized
designs mae the same trade-off between validity and efficiency. It is helpful to
use a single valued validity measure in this investigation. Under the general linear
model (1.2.5), Hooper (1993) described validity in terms of whether the distribution
of the random variable ||CTG1GI C;||? is concentrated close to 0 and defined validity
measure as the mean and the standard deviation of val(G,, G2); see Section 2.2 for

details. The second moment of val(G;, G;) can also be used to measure the closeness

of ||CTG G C,||? to 0. We define

12 = {Eval’(Gy, G2)}2 = \/p2, + o2, (2.8.1)

#12.4 can be estimated by

(2 = Vida+ &2, (2.8.2)

where (fiyal, 6val) 1s defined by (2.2.4) and (2.2.5) in Section 2.2. An unbiased estimate

of 2%, is the U-statistic:

— S wal¥(Gi, Gy). (2.8.3)

m(m —1)
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It can be shown that ;T?'fm, and (2.8.3) are asympotically equivalent as m tends to oo.
The standard error of ji2,, can thus be approximately determined by that of (2.8.3).

The measure cv(¢) provides a better interpretation than the other validity mea-
sures but is more expensive to estimate than (ftvaly Ovat) for TCRD and NORD, since
the cost of generating a G in these designs is very high. In the following, we consider
the empirical study in Section 3 of Chapter 3. For each data sct, we generate a se-
quence of TCRDs with a decreasing sequence of x. For each TCRD in the sequence,
we calculate z2,, by (2.8.2) and estimate three cv(¢) for @ = .1,.05 and .01 by the

generalized U-statistics in Section 2.2. Thus, we obtain a sequence of 2., and three

sequences of estimated cv(¢) for @ = .1,.05 and .01 respectively. For each data set,
we present superimposed plots of estimated cv(¢) against 12, for o = .1(-),.05(A)

and .01(+). Figures 2.1 - 2.6 give the superimposed plots for 24 data sets from Bell-
house (1986). All the Figures show a clear linear relationship between the estimated
cv(¢) and i2,,;. Note that the scale on the y-axis decreases as the number n of units
increases, which causes the plots for larger n to appear more random.

We also drew the plots of the estimated cv(¢) against fival and Gy and the linear
relationship was again found. The same result was obtained for the NORD. This
suggests that fiyal, oval, or £24a can be used as a surrogate for cv(¢) in determining

an appropriate value for the truncation constant «.
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Figure 2.1: Plots of estimated cv(¢) vs. fi2,, for a = .1(-),.05(A) and .01(+) in
analysis of covariance model with n = 10, one covariate for the upper two plots and

two covariates for the lower two plots
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Chapter 3

Methods of Randomization

3.1 Introduction

Randomized designs can be evaluated with regard to efficiency, validity and relevance.
These criteria were discussed in Section 1.3. Under simple models for unit effects,
classical randomization strategies usually achieve full efficiency and relevance as well
as a high degree of validity for the usual an.. < of variance. For example, the com-
pletely randomized design (CRD) is used when the unit effects are homogeneous; the
randomized blocks design or Latin square design is preferred if th: unit effects are
blocked in one direction or in two directions (of course, we assume that the two block
factors arc additive in Latin square design). Hoeffding (1952) and Robinson (1972)
showed the asymptotic validity for the classical randemized designs. Under asym-
metric models of the unit effects, such as analysis of covariance models and spatial
models, the CRD provides validity, however efficiency can be substantially reduced
due to non-orthogonality. Thus it is desirable to develop methods of randomization
with high efliciency and high validity under asymmetric models for the unit effects.
Cox (1982) and Bellhouse (1986) considered the efficient and valid use of covariate
information in design of experiments and recommended truncating classical methods

of randomization to ensure high levels of efficiency while maintaining validity. We
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refer to the truncated classical methods of randomization as Truncated Classical
Randomized Designs (TCRDs). Under a general linecar model for additive treatment
and unit effects, Hooper (1993) proposed the Nearly Orthogonal Randomized Designs
(NORD:s) to achieve acceptable levels of efficie:cy and validity.

This chapter is organized as follows. The TCRD is reviewed in Section 3.2. This
design requires the selection of a truncation constant to determine a trude-off between
efficiency and validity. In section 3.3, a sequential procedure is introduced to assist
in this selection and is illustrated by analysis of covariance models. We review the
NORD in section 3.4. A truncated NORD is proposed in Section 3.5 to nmprove
NORD with respect to efficiency and selection of tuning constant. The truncated
NORD is invariant under reparameterization of treatment-effects model and can be
generated by the sequential procedure. In Section 3.6, we derive some formulae used
in the computation of the truncated NORD. In Section 3.7, an empirical study is
presented for comparison of truncated NORDs with TCRDs and NORDs with regard
to statistical and computational properties.

Our discussions are all based on model (1.2.5) and the assumptions in Section 1.2

are adopted in this chapter.

3.2 Truncated Classical Randomized Designs

In comparative experiments with covariates (concomitant variables), the treatiment
effects are estimated by analysis of covariance. If classical methods of randomization
are used, there may be some inflation of variance. In order to limit the inflation of
variance, Cox (1982) suggested restricting the randomization to ensure a measure of
efficiency is small.

To illustrate his idea, Cox (1982) considered an experiment with n = 2k ex-
perimental units to compare two treatment eflects 7, and 72, each treatment being

assigned to k units. Let a p x 1 vector z of covariates be available on each unit.
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Assume that linear methods of analysis based on the method of least squares are
used. If #; —#, is the adjusted difference between treatments after allowing for linear

regression on z, we have under the usual second-order assumptions about error that
. s 2 - = -1/ =
var(#, — ) = o? {E + (5 - 2)TS57 (5 - 22)} . (3.2.1)

Here o2 is the residual variance per observation, Z, and Z; are the vector means of the
concomitant variables for 7, and 73 in the design chosen and S, is the matrix of sums
of squares and products of z within treatments, eliminating block differences where
appropriate. More generally, if there are ¢ treatments, each assigned to k experimental
units,

2 2

avevar(7; — 7j) = o? {— +

kT k(1)

where B, is the matrix of sums of squares and products between treatments, i.e., of

tr(B,s;l)} , (3.2.2)

k times the sum of squares and products of deviations of means.
The inflation of variance is %(2, — 2)T87Y(z, — %) in (3.2.1). Under classical
randomization,
k

Wy = gdu(?1 = £)7 57 (51— ) (3.2.3)

has asymptotically a chi-squared distribution with p degrees of freedom, where d,, is
the degrees of freedom within treatments, i.e., the d.f. for S, (dw = t(k — 1) when
there is no blocking).

Cox (1982) discussed the circumstances under which the chance of appreciable
inflation might be kept at a small number. He suggested that randomization be
repeated until the constraint % < b is achieved for some suitable b, e.g. b < 210, S0
that negligible inflation of variance occurs.

Bellhouse (1986) examined the validity aspect of TCRDs by an empirical study.
He selected 72 sets of data with one or two covariates in the experiment for comparing

two treatments, where the experiment size tk = 2k was taken to be 10,12,14,16,18

and 20. The truncated randomization with b = r)lo' was considered in that simulation.
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He investigated the fit of the distribution of W, to its asymptotically chi-squared dis-
tribution under classical randomization and compared the randomization significance
level with its nominal level. He concluded that approximate balance of covariates and
approximate validity of normal theory inference can be achieved through truncated
randomization and that larger sample sizes are needed as the number of covariates
increases.

The idea of Cox (1982) can be applied to general linear models for treatment and
unit effects. Under model (1.2.5), the normal theory inference can be implemented
by conditioning on R(GB). The least squares estimator of 8 has covariance matrix
o?(ATCCTA)~'. In Section 3.1, we concluded that (ATCCTA)~! > I,. For efficiency,
we should choose designs G to make the covariance matrix small in some sense. Let
eff(G) = h{(ATCCT A)~'} be a measure of efficiency for a particular design (v, where
h(M) is a real-valued function of symmetric matrix M such as the trace, determinant,
or largest eigenvalue. A design G is fully efficient if ATC' = I,,. For optimal efficicncy
one could adopt the uniform distribution of G on the subset {G' € P, : eff(() =
52%’2 eff(J)}. This subset may be too small to provide much validity. For validity,
we recommend uniform randomization over a subset {G € P, : efl(G) < k}, where
& is a constant. We will continue to call such a randomization strategy a truncated
classical randomized design (TCRD).

The algorithm for generating a TCRD is as follows. Generate a design (7 from the
uniform distribution on P,. Choose G if eff () < &, otherwise repeat the preceding
step.

Increasing the truncation constant & reduces efficiency but typically improves
validity, since the size of subset {G : eff(G) < &} increases with x. We would like
to determine the truncation constant s to achieve acceptable levels of efficiency and
validity for a given model. The measures of validity in Chapter 1 and the measures

of efficiency given above can be used to select the truncation constant k.
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With the aid of the measures of validity and efficiency, we propose a sequential
procedure in the next section to select an appropriate x which defines a TCRD with

a reasonable trade-off between efficiency and validity.

3.3 A Sequential Procedure for TCRD

The validity and efficiency of a TCRD usually must be estimated by a sample of
G using simulation. For a given model, the truncation constant is chosen so that
the corresponding TCRD achieves acceptable levels of efficiency and validity. Under
the general linear model (1.2.5), we introduce a sequential procedure for generating
TCRDs to assist in the selection of .

This sequential procedure starts with generating m G’s from the CRD and cal-
culating the order statistics of an efficiency measure based on the sample. Use the
(h + 1)th order statistic of the efficiency measure (say, —7% = %— or %—) as the truncation
constant  of the next TCRD. In the second step, we want to generate another m G’s
from the TCRD to estimate its efficiency and validity. Since there are h G’s generated
from the CRD whose efficiency measures are less than the chosen truncation constant,
we can keep the most efficient b G’s. Thus we only need to generate an additional
(m — k) G’s from the TCRD. Given the value of & determined in the previous step,
the combined m G’s approximate a random sample from the TCRD with this x and
can be used to obtain the (h + 1)th order statistic of the efficiency measure for the
truncation constant & of the next TCRD. We repeat the above procedure until some
stopping rule is satisfied.

Let m be the number of G’s generated for each TCRD. For convenience, we let m
be even and let 1 < h < m be an integer. The sequential procedure is described as
follows:

Step 1. Choose kg large enough so that P, = {G : eff(G) < xo}. Generate m

independent matrices G distributed uniformly on P, and compute the corresponding

59



efficiency measure value for each G. Let eg(1) < egz) < -+ < eg(m) denote the ordered
efficiencies and Goy, Goz, - - -, Gom be the corresponding permutation matrices.

Step 2. Let k; be the (A + 1)th order statistic of the efficiency measure in step
1, i.e., let Ky = eqas1). Keep Goi,Goz, . . - , Gon, the first h most efficient designs in
step 1. Generate m — h additional permutation matrices, each distributed uniformly
on {G : eff(G) < &}, and compute the corresponding efficiency measure value for
each design. For the combined set of m G’s, let ej1) < €12) < -+ = €y(m) denote
the ordered efficiencies and let Gy1,G12,. . -, G1m be the corresponding permutation
matrices.

Step 3. Repeat step 2 until |x; — £;_1] < € for a given small constant €.

This sequential procedure produces a sequence of TCRDs starting with the CRD.
For each TCRD in the sequence, we can compute the values of an efficiency measure
and a validity measure. Thus we obtain a sequence of efficiencies and a sequence of
validities and obtain a plot of validity versus efficiency. Examining the plot, we can
select the TCRD with an appropriate & to achieve acceptable levels of efficiency and
validity.

The following result is given in Reiss (1989). Let Xi,..., Xm be mrandom vectors
from a continuous distribution F(-) and let 1 be a real-valued function. The ¥-order
statistics X1y <y -+ Sy Xpm) are defined according to the ascending order of the
¥ function values of Xi,...,Xm, i.e.,, P( X)) < -+ < P(X(my). Given Pp(Xgipr)) =
¢, Xy <y ++- <y X are the 1-order statistics of h random vectors from the
distribution F'(-) truncated outside of {z : 9(z) < c}. In the sequential procedure,
the distribution of the random permutation matrix G is discrete. If n is not small,
then the distribution of eff(G) approximates a continuous distribution. Thus, we
keep in Step 2 the most efficient h permutation matrices from Step 1. Given egngay,
the A permutation matrices in the original order of their outcome are approximately

each distributed uniformly on {G : eff(G) < egn+1)}- Hence, given the value of k;

60



determined in Step 1, the m parmutation matrices in Step 2 approximate a random

sample on {G : eff (G) < ,}.

Generally, how large ’r’_:i is chosen depends on many aspects of the model. If the
experimental size n is small, the set P, contains a few elements. Thus % should
be chosen to be relatively large so that enough values of k are obtained to produce
a clear curve in the plot of the estimated validity against the estimated efficiency.
When n is large, however, a small value of % may be chosen to save computational
time. In our empirical study on analysis of covariance models, the size n is from 10
to 20 and an appropriate value of % is taken to be 2/3.

For small values of x, the validity measure of the TCRD may become too large
for the design to be of interest. The stopping rule in Step 3 can be modified to take
validity into account. Let valp be the value of the validity measure of the CRD and
val; be that of the TCRDs in the sequence. An alternative stopping rule can be that
if

val; — val
1 o ZC

valp ’

then we stop iteration, where c is a large positive constant. We can also combine this
alternative stopping rule with that in Step 3 for use in practice.
The following proposition asserts the convergence in probability of the sequence

{~;} to the optimum efficiency.

Proposition 3.3.1 Let o be the minimum value of the efficiency measure, i.e.,
o = Cr:rég}‘ eff (G).

Then k; — my in probability as 1 — oo.

The proof of Proposition 3.3.1 is based on the following Lemma about sequential

sampling from a truncated distribution:
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Lemma 3.3.2 Let X, X12,-.-,X1m be a random sample from a distribution F'(-)
and Xyn41) be the (h + 1)th order statistic of the sample, where m and h are fired
inlegers with 1 < h < m. Given Xyh41), we take another sample X3, Xga,..., X2,
from the distribution F(-) truncated on the right by Xyn41) and let Xyppyy be the
(h + 1)th order statistic of the sample. According to the above sequential sampling
procedure, we oblain a random process { Xin+n)}. Let o = inf{x : F(x) > 0}. Then

we have Xi(h41) — To in probability as k — oo.

Proof: Therandom process {Xg(s+1)} can be defined another way. Suppose we have
a double sequence {Y;;}(: = 1,2,...,7 = 1,2,...) which are independently distributed
with cdf F(-). Let X1, X12,..., X1m be the first random variables from the first row
sequence {Y1;}(j = 1,2,...). Thus Xju41) = Y41y where Yy is the (b + D)th
order statistic of {Yj1,Yi2,...,Yim}. Let X21, X5,..., Xom be the first m random
variables from the second row sequence {Y2;}(; = 1,2,...) such tuat Yy; < X4,
and take the corresponding hth order statistic X;(441). Continuing the procedure, we
obtain the random process {Xj+1)}. Let Yi(m) be the largest order statistic of the
first m random variables of the kth row sequence {Yi;}(7 = 1,2,...). It is casy to sce

Xk(h+1) < Yk(m) and then
Xirhtn) = min{Xy(at1), Xogia1ys - - > Xaer) b < min{Yimys Yo - o5 Yaou) }-
For any z such that F(z) > 0, we have that as k¥ — oo,
P {min{Yim), Yagmys - - - Yeem} > @} = P{Yigm) > &, Yagm) > @, -, Yiu) > 7}
= Pk{yl(m) > :I‘}
= [1-F™z)*—0.
Since min{Yi(m), Y2(m)s - - - » Ya(m)} = To, it follows that for all € > 0,
P {l min{)/l(m), )/Z(m)g teey )/k(m)} e -TOI > f}
= P {mln{}/l(m)a }/2(m)3 ey }/k(m)} > xo+ (}
1= o+ =0,
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as k — oo. Hence, Xgnt1) € min{Yi(m}, Ya(m)s -2 Yi(m)} — o in probability as

k — oo. ]

The mean time for generating a G from a TCRD with & is proportional to 7%’;,
where N and N, are the number of permutations in P, and {G € P, : eff (G) < «}
respectively. In the sequential procedure, &; is a random sequence. If m is large,
we can expect N, to be around p'~!N, where p = % Therefore, the mean time
for generating a G from the TCRD in each iteration of the sequential procedure
behaves like a power function -7 the number of iterations. Although it is very cheap
to generate a G from the CRD, the cost in the later iterations may be very high if
we need a large number of iterations to select an appropriate truncation constant «.
The number of iterations is not too large in cur empirical study, so the sequential
procedure is computationally cheap.

To illustrate how to select £ for TCRD by the sequential procedure, we consider
analysis of covariance models and employ data sets in Bellhouse (1986) for values of
covariates. Table 2.2 in Section 2.8 lists the approximate 95% confidence intervals of
cv(¢) for the CRDs and shows that the CRDs provide acceptable levels of validity
for the analysis of covariance models with one or two covariates when the number of
units are larger than 10. However, the CRDs have low efficiency under the analysis
of covariance models. Hence, we need to use a TCRD with appropriate « to improve
efliciency without reducing much validity.

In order to compare with the result of Cox (1982), we use %EE defined in (3.2.3) as
the efficiency measure eff (G') and use p2va = m to measure the validity of
a TCRD. It can be shown that 1(2‘% is equivalent to tr(ATCCT A)~! — q under model
(1.2.5). Here, only two treatments are compared in experiments, so the criterion
tr(ATCCTA)™! is equal to det{(ATCCTA)"'}. For each data set, we generate a

sequence of TCRDs with a decreasing sequence of x; by the sequential procedure.
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For each TCRD, we generate m = G0 replicates of G to estimate the validity and
efficiency. The 95 percentile of the distribution of eff (G) is used to measure the
efficiency of a TCRD an is estimated by eff57, the 57th order statistic of eff ((7) based
on 60 replicates of G. p2.a1 is estimated by }t’éw‘l = m, where (fival, Ovat) 18
defined by (2.2.4) and (2.2.5) in Section 2.2, or see Hooper (1993). We choose %; to
be % in the sequential procedure.

Tables 3.1 - 3.6 contain the values of &, ji2,,, and eff57 obtained by the sequential
procedure for each of 24 data sets from Bellhouse (1986). The corresponding plots of
12, against eff57 are displayed on Figures 3.1 - 3.6. We should note that the points
in each plot are correlated since at each iteration in the sequential procedure we keep
2

g of G’s at previous iteration to estimate the efficiency and validity. This yields a

smoother plot than without keeping any G' at each iteration.

Table 3.1: The estimated p2,, and eff57 in analysis of covariance model with n = 10

One Covariate Two Covariates
Data 1 Data 2 Data 1 Data 2
I3 ;:2“1 efl57 I3 ;;2“| eff57 3 ;72“, eff57 [ ;?2“, eff57
oo 1.062 3745 co 1.079 .6133 oo 1.043 .9981 oo 1.023 1.964

.0984° 1.122 .0795 | .0939° 1.192 .0834 | .2878° 1.155 .2598 | .3126G* 1.16 L2864
0263 1.207 .0218 | .0539* 1.173 .0488 | .176G° 1.266  .1620 411 1.288 1369
.0143 1.277 .0142 .0196 1.321 .0182 .1188 1.308 .1090 L0995 1.218  .OUL8
.0083 1.413 .0059 .0086 1.570 .0086 0556 1.408 .0521 0534 1.438  .0494
0024 1.599 .0024 .0240 1.687 .0235 .0334 1.510  .0334
.0158 1.956  .0157 L0284 1.774 0283
0068 2.244  .00G8 0194 1.983 .0I8Y
.0084 2.240 0076

For those plots with n = 10, 12 and 14, the relationship between 112, and eff 57 can
be well fitted by a curve. We can select the asterisked & as a truncation constant which
determines a TCRD with substantial improvement in efficiency and little reduction
in validity. Smaller values of x yield substantial improvement in efficiency but also

substantial reduction in validity. Plots for larger values of n show a more random
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Table 3.2: The estimated p2,, and eff57 in analysis of covariance model with n = 12

One Covariate Two Covariates
Data 1 Data 2 Data 1 Data 2
x (2, 57 x I 14 x B2, efI57 % B2 5T
a0 1.671 6063 oo 1.032 6971 ©o 0.998 6244 oo 1.046 6503

.1237*  1.077 .1006 | .0788°* 1.101 .060S .2665 1.060 .2512 2212 1.159 .1949
.0438 1.174 .0438 0450 1.104 .0421 | .1615° 1.100 .1577 | .1344°* 1.202 .1304
0116 1.193 .0116 .0233 1.144 .0160 .1089 1.165 .1028 0974 1.225 .0940
0047 1.293 .0047 0102 1.196 .0102 .0809 1.268 .0779 .0823 1.342 .0814
0024 1.346  .0024 0040 1.277 .0040 .0603 1.418 .0564 0576 1.375 .0557
.0009 1.488 .0009 .0014 1.451 .0014 .0508 1.675 .0508 0511 1.574 .0503
.0397 1.781 .0390 .0336 1.805 .0324
.0312 1.931 .0304 .0282 2.141  .0281
.0156 2.370 .0156

"able 3.3: The estimated ;2,4 and eff57 in analysis of covariance model with n = 14

One Covariate Two Covariates
Data 1 Data 2 Data 1 Data 2
3 ;T?ul efl57 [ ;72“1 eff57 ® ;T2ul eff 57 5 ;:\2“1 eff 57
o 1.055 4592 [=3) 1.068 .2564 oo 1.016 .8010 =] 1.164 .6662

.0846 1.040 .0682 0714 1.107 .0614 | .2238* 1.056 .1943 2466 1.086  .2269
0318° 1.065 .0288 | .0229* 1.145 .0185 .0990 1.244 .0901 .1263 1.113  .1122
0130 1.008 .0115 0078 1.114  .0073 0453 1.165 .0436 | .0752* 1.086 .0679
.0065 1.120 .0057 .0029 1.216 .0025 .0343 1.176  .0319 .0503 1.306 .0451
.0018 1.223 .0016 .0010 1.247 .0009 .0228 1.171  .0216 .0302 1.220 .0271
0007 1.302 .0007 .0004 1.405 .0004 0161 1.278 .0149 0175 1.240 .0172
.0108 1.214 .0105 .0098 1.327 .0089
.0079 1.363 .0077 .0069 1.435 .006G8
.0058 1.424 .0054 .0051 1.522 .0048
.0038 1.707 .0033 .0036 1.831 .0034
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Table 3.4: The estimated p2,4 and eff 57 in analysis of covariance model with n = 16

One Covariate | Two Covariates ]
Data 1 Data 2 Data 1 Data 2

x  p2 efiST | x 2 5T | ok g2y eMST | K 2y effST
oo 1.076 .2222 oo 1.036 3561 oo 1.055 6419 oo 1.078 HETR
0690 1.163 .0454 .100% 1.067 .0689 | .1936 1.035 L1853 | 1781 .17 L1606
.0208 1.300 0179 | .0273 1.056 .0225 1100  1.028 0942 1038 1.081 084
0077 1.290 .0068 | .0146 1.199 0123 | .0544 1.079 .0517 | .0T66  1.046  .06O7
.0050 1.222 .0045 .0084 1.0909 .0067 .0389 1.076 0372 0367 1112 0328
.0024 1.357 .0022 .0039 1.110 0039 L0278 1.121 0266 | 0234 1.063 0220
.0009 1.497 .0006 .0019 1.189 .0019 0211 1.171 0199 | 0152 1.090 0147
.0011 1.1265 .0011 .0139 1.181 0125 L0096 1.039 LOURY
.0006 1.1568 .0006 .0088 1.401 0085 0065 1.167 0063
.0002 1.2140 .0002 0059  1.555 0057 | 0044 1.215 L0040
0032 1.240 L0032
0021 1.372 L0021

Table 3.5: The estimated p2,, and eff57 in analysis of covariance model with = 18

One Co'/ar_iate Two Covariates

Data 1l Data 2 Data 1 Data 2
Kk G2y effs7 x n2,.  ef57 x f2ya €57 Kk p2,y 57
oo 0.977 .3392 [e ] 1.001 2809 oo 1.041 5709 oG 1.G622 3NKR
0646 0.972 .0533 | .0501 1.171 .0390 | 1753 1.084 1526 | L1588 1.063 L1450
0198 0.950 .0198 | .0137 1.104 .0121 0008 1.118 OBG7 | .0724 1.054 0704
L0094 1.053 .0094 .0078 1.141 0066 | 0484 1.086 0427 | .0496 1.086 0473
0056 1.124 .0056 | .0036 1.144 .0036 | .0284 1.113 0278 | 0319 1.108 L0280
0029 1.131 .0029 | .0021 1.066 L0021 0166 1.148 L0151 0169 1.066 0161
.0011 1.166 .0010 | .0013 1.081 .0010 | .0106 1.167 0104 0107 1.062 L0105
.0006 1.083 0006 | .0074 1.127 0073 | L0067 1.000 L0064
.0001 1.1684 .0001 .0050  1.157 0048 | 0052 1.144 L0045
.0035 1.255 0034 L0036 1.130 033
.0026 1.288 0025 L0021 1.090 020
0018 1.362 0017 | .0018 1.218 0017
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Table 3.6: The estimated y2,a an-l eff 57 in analysis of covariance model with n = 20

One Covariate Two Covariates

Data 1 Data 2 Data 1 Data 2

”® ;72", efl57 [ ;2"1 eff57 x ;72,,‘, efl57 3 /T2,,,l eff57

o 1.037 1704 ~ 1.121 .2788 oo 1.039 4592 oo 1.033 .4836
.0581 1.074 .0453 | 0767 1.040 .0576 | .1289 1.047 1159 | .1471 1.095 .1381
0223 1.071 0196 | .0234 0.986 .0181 | .07T33 1.063 .0685 | .0903 1.057 .0818
0076  1.102 0076 | .0101 1.032 .0101 .0394 1.036 .0371 .0541 1.064 .0521
.0027 1.046 0027 | .0045 1.015 .0045 | .0257 1.002 .0246 | .0289 1.034 .0278
.0012 1.078 0012 | .0011 1.035 .0011 .0154 0.986 .0148 | .0219 1.045 .0202
0099 1.026 .0093 | .0153 1.132 .0148
L0067 1.106 .0065 | .0116 1.172 .0105
.0051 1.099 .0048 | .0079 1.142 .0077
.0034 1.119 .0029 | .0056 1.215 .0054
.0022 1.128 0022 | .0034 1.228 .0032
.0014 1.034 .0013 | .0025 1.292 .0022
.0010 1.104 .0010 | .0016 1.399 .0015
0006 1.228 .0006

pattern. Here 2, is nearly constant over a wide range of values of  and the variation
in ji2,, is due in large part to random variation in the estimation. Note that the scale
on the validity axis decreases as the number n of units increases. This is why plots
for larger n appear more random. In this situation, we can select a small value of &
so that the corresponding TCRD has very high degree of efficiency and validity.
Tables 3.1 - 3.6 and Figures 3.1 - 3.6 suggest that, for n = 10,12 and n = 14 with
two covariates, the truncation constant x might be chosen larger than the value 0.05
suggested by Cox (1982), in order to provide greater validity. For n = 14 with one
covariate, n = 16,18 and 20, it appears that & can be chosen to be less than 0.05

without substantially reducing validity.
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Figure 3.1: Plots of validity vs. efficiency for TCRD in analysis of covariance model
with n = 10, 2 treatments, one covariate for the first two plots and two covariates for

the last two plots
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Figure 3.5: Plots of validity vs. efficiency for TCRD in analysis of covariance model
with n = 18, 2 treatments, one covariate for the first two plots and two covariates for
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3.4 Nearly Orthogonal Randomized Designs

The NORD is motivated by the criteria of validity and efficiency. The two criteria
are partially in conflict with each other. Restricting G to a class of designs that are
optimal in some sense may leave too few designs to provide much validity. In seeking a
compromise between efficiency and validity, Hooper (1993) considered distributions on
the n x n orthogonal matrix group O, as an extension of the notion of randomization,
and found an optimal distribution on O, that achieves full efficiency and full validity.
The NORD is defined as a distribution on P, that approximates the optimal one on
On.

An optimal distribution on O, can be defined as follows. Let J/; be a non-random
orthogonal matrix such that ATH,B = 0. Let I, be distributed uniformly on the
subgroup On(B) = {J € O, : R(JB) = R(B)} and independently of W = KV.
If we replace G by H = H,H, in definition (1.2.9) then we obtain C = A. Thus
H is fully efficient. Hooper (1993} also proved that the conditional distribution of
Q(H,W,0) given W is the same for all vectors W with (I, — BBT)W # 0. Henee I
provides full validity.

Let H be a random orthogonal matrix with distribution defined in the above way.
Hooper (1993) defined NORD as a random permutation matrix G which minimizes a
measure of distance between G and H. The measure of distance involves only R(G7 A)
and R(HT A). 1t is shown in Hooper (1993) that HT A has the same distribution as
D where [B : D] = GramSchmidt[B : Z] with Z ~ Ny, (0,1, @ 1,). Thus we can
generate a NORD by generating D and then finding 2 G such that R(GT A) is closest,
to R(D).

The NORD Algorithm is described as follows:

(a) Generate an n x ¢ matrix Z of independent, standard normal random variables.

(b) Construct D via [B : D] = GramSchmidt [B : Z]. Choose (i € Py, to minimize
dis(G) = q — [ATGD|* + AMlATG B2 (3.4.1)
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(c) If condition (1.2.6) fails then repeat the preceding steps.

Distance function (3.4.1) was defined on an ad hoc basis taking into consideration
efficiency, validity and tractability. The first term ¢q — [|ATGDJ|* addresses both
efficiency and validity and the second term A ||ATGB||? permits greater emphasis on
efficiency. A is a tuning constant to determine a trade-off between efficiency and
validity. Increasing A forces R(GB) to be more nearly orthogonal to R(A), which
improves efficiency and reduces validity. Hooper (1993) used a simulated annealing

algorithm to carry out the minimization in step (b).

3.5 Truncated Nearly Orthogonal Randomized De-
signs

The main idea of the NORD is to define a distribution on P, to approximate the
optimal one on O,. This is carried out by minimizing the distance function (3.4.1)
in which a constant A needs to be selected appropriately to achieve acceptable levels
of validity and efficiency. However, the tuning constant A in NORD does not directly
relate to any efficiency measure so that we cannot use a sequential procedure to assist
in the selection of A as we did with the TCRD. If we instead minimize a distance
between R(GTA) and R(HT A) subject to an efliciency measure being small, the
sequential procedure for TCRD can be adopted here.

In this section, our discussion is based on the general linear model (1.2.5). In the
treatment-effects model (1.2.3), we used a convenient canonical parameterization such
that the columns of [Ay : A] are orthonormal. It is desirable to adopt a randomization
strategy that is invariant under reparameterization of the treatment-effects model.
Following Hooper (1993}, we choose dis(G) = ¢ — I|ATGDJ|? as the distance function.
Minimizing dis(G) makes the random subspace R(GT A) close to R(D) ~ R(HTA).

Recall that R(A) is the subspace of R" corresponding to the treatment-effects of

=1
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interest after removal of nuisance parameters. Thus R(A) does not depend on the
parameterization of the treatment-effects model. Since dis((7) is a distance between
the column spaces R(GTA) and R(D), the minimization of dis((7) is invariant un-
der reparameterization of the treatment-effects model. In Section 1.3, we discussed
the efficiency of a randomized design and showed that the D-optimality criterion is
invariant under reparameterization, i.e., the minimization of det[(ATCCT A)~!] does
not depend on the parameterization of the model for treatment effects. Thus we
use eff(G) = det[(ATCCT A)!] as the efliciency measure in the following modificd
NORD. Because we truncate the efficiency measure and then minimize the distance
function, we call the new randomization strategy a truncated NORD (TNORD).

The TNORD algorithm is described as follows.

(a) Generate an n x ¢ matrix Z of independent standard normal random variables.

(b) Construct D via [B : D] = GramSchmidt {B : Z]. Choose (¢ € Py to
minimize dis(G) = ¢— || ATGD||? subject to the constraint eff ((7) < x, where el ((7) =
det[(ATCCTA)™.

The constrained minimization problem in (b) can be approximated by minimizing

the unrestricted distance function:
dis,(G) = ¢ — |ATGD||? + v [eff(G) — k]*, (3.5.1)

where v is large positive constant and

effl () — x il eff(G) > £k

[eff(G) — k]t =
0 if efl(G) < k.

When v — oo, the solution to minimizing the unrestricted distance (3.5.1) converges
to that of the constrained minimization problemn. The unrestricted minimization
can be carried out with the simulated annealing algorithm in Hooper (1993). The
simulated annealing algoritlin to minimize (3.5.1) and some formulac used in this

algorithm are described in the next section.
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Like the truncation constant in TCRD, the selection of x makes a trade-off between
validity and efficiency. A larger « determines a TNORD with higher validity and lower
efficiency. As with TCRD, a sequential procedure can be used to select an appropriate

truncation constant x so that the TNORD achieves acceptable levels of efficiency and

validity.

3.6 The Algorithm to Minimize dis,(G) and Some
Formulae

The solution G to (3.5.1) is approximated by a product of transpositions. We adopt
the simulated annealing algorithm in Hooper (1993) to minimize (3.5.1). This algo-

rithm is based on an algorithm given by Press et al. (1986).
Algorithm to Minimize dis,(G)

Generate an initial random permutation GG
Generate independent random transpositions Hy, ..., Hio
Set the initial temperature ¢ = max{dis,(H;G) — dis,(G),i =1,...,10}
Do 100 times (at most 100 temperature steps)
Set count = 0
Do 100n times (at 110st 100n transpositions per step)
Generate a random transposition H
Set A = dis,(HG) — dis.(G)
I A <0 then
Replace G by HG
Increment count by 1 (count number of successes)
Elsc

Generate a uniform (0, 1) random variable U
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If U < exp(—A/t) then replace G by HG
End if
If count > 10n then exit do loop (at most 10n successes per step)
Repeat
If count = 0 then exit do loop (stop when there are no successes)
Replace t by 0.9t Repeat

Return G as solution

In the simulated annealing algorithm, we need to compute the difference of the loss
(3.5.1) by a transposition. Before deriving a formula for this difference, we introduce
some general results about transpositions.

In the following, we will let G and II denote both permmtations of {1,2,...,n}
and n x n permutation matrices. Let /I be a transposition such that [I1Gi = G il
i # korl, HGk = Gl, and HG! = Gk. Let X be an n x n matrix and denote its (4, 7)
element by z;;. Write AT = (ay,-- -, a,), i.e., a; is the jth row vector of the cocflicient
matrix A in the treatment-effects model. We then have the following results.

Lemma 3.6.1
ATHGXGTHTA = ATGXGTA+ fg" +9f7,
where g = agk — agt and f = Tizp or t(Tit — Tik)ag + %(Iu — &)k + ac)-

Proof: Noting ATHG = (apci, - ,anaGn), we obtain

ATHGXGTHT A
n T
— T
- Z E TijCHGiAHG;
=1 j=1
— T T T
= Z E Ti;8Gilg; + Z TrjQGI0G; + E Ty 0G0,
i#kor!l j#korl j#korl j#korl

T T T T
+zrraciag + ThaGIOs, + TIkAGEAG + THOGK Ao

T T
+ E | Taagieg + E TiaGiley
ik or! i#Fkorl
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n n

S S zacal; + Y zilac — agr)al; + Y, zii(ack — aci)al;
i=1j=1 j#korl J#korl

T T
+zix(eqial, — acraly) + zu(agraly — agiagy)

+ Y ziacilac —aa)” + Y zaaci(ack — aai)T

i#k orl i#korl!
ATGXGTA+ Y (x4 — 7i)(aci — age)al;
J#korl
+(zrk — zu)acialy — agraly) + Y (zik — zi)aci(ac — aci)T
i#korl
ATGXGTA+ Y (=4 — wij)(ac — aGk)a'gj
j#korl
1 1
+5 (@ = zu)(ac = ack)(ack + aacr)” + 5 {(Tke — zu)(ack + aci)(act — age)”
+ Y (zi — za)agi(ac — acy)”
i#korl
1
ATGXGT A + (aci — acr) { 3" (xx; — zij)al; + E(zkk — zu)(agk + aal)T}
j#korl

1
+ { Z (:l'ik - Iil)aGi + é'(xkk - :l'll)(aGk + aGl)} (aGl - aGk)T
t#£k orl

. , 1 :
ATGXGT A + (agk — aai) { 3 (@ — zij)al; + §(wu (e acz)T}
jékorl

)T

[ 2

(zu — zwx)(aGk + acz)} (cor — aai

+ { 3 (za— zi)agi +

ik or !

Letting g = agk — agi and f = Xy or (i — Zir)agi + %(ﬂfu — zik)(agr + agr), we

then have

This complete: the proof.

ATHGXGTHTA = ATGXGTA + fgT + gf~.

Lemma 3.6.2 Suppose that ATGXGT A and ATHGXGTHT A are nonsingular. Let

M=ATCXGTA and A = (1 + fTM1g)? — fTM-1fgTM~1g. We then have

(ATHGXGTHTA)™ = (M + fgT +gfT)?
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= M- -L-M‘l{(l + fTM ') (fg" +afT)
~gT M gffT — fTM ™ fgg"}M™!
Proof: By Lemma 3.6.1, we have
ATHGXGTHTA= M+ fgT + 957

Apply.: 2 twice the Sherman-Morrison formula for the inverse of the matrix, we have

after a simplification

(M + fg" +gfM)!
(M + fg") tgfT(M + fg7)!

— Ty-1 _
AR 1+ fT(M + f¢T)1g)
M- fgTM™?
= pmro2 S8R
14+gTM-1f

T]\/[_l
-17 _ 1
M (1 l—:if-%rm) 1+JT'LL1—') 1~
|4 fr(pm-r = Mg M7
LEAS s vy vy 2l

_ g MM
T+ gTM-1f
M-YgfT — {%1% .IL% fJ?lNI-{—i,%'fj\l[AllflfJ M-
B 14+ [TM-1g _ IML ;4%@1}
= M- M= fg"M' A1+ ¢TM T I M

1+g"M-1f
{Q+gTM Y gfT — "M g1 + "M ) ffT
~fTM7U (1 + g™ M fggT + 9" M g STMT S fgTIM !
1 .
= M7= M+ TN )T 4 9f)

—g"M g ffT = fTM7 fgg"}M ™!

This completes the proof. =
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Lemma 3.6.3 Suppose that ATGXGT A is nonsingular. Let M = ATGXGT A and
A=+ TMg)? - fTM-fg"M~'g. We then have

det(M + fg¥ + gfT) = A det(M)
and M + fg7 + gf7 is nonsingular if and only if A # 0.

Proof: It is well known that

rn T
det | "1 T | = det(Iy)det(Iy — T IS i)
1121 r22

= det(rzg) det(l"n - F12F2_21F21)v

where I'yy and g aie nonsingular square matrices (may be of different orders); see

page 23 of Rao (1973). Letting I'y =M, Iz =u, I'y1 = —vT and Ty, =1, we huve

—oT 1

M
det ( " ) = det(M)(1+ vT]W_lu)
= det(M + uwvT).

Ience, for any nonsingular p X p matrix A/ and two vectors u and v of dimension p,

we have

det(M + uw”) = det(M)(1 + v M), (3.6.1)

Applying twice (3.6.1), we obtain

det(M + fg" +gf") = det(M + fg")[1+ fT(1 + g" M~ f)g]
fIM-1fgTM g
T 7M-1f

= det(AD(1+gTM ) |1+ fTMYy

= A det(M).

This completes the proof.
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We are now in the place to derive some formulae for the difference of the distance
function (3.5.1) by a transposition in the simulated anncaling algorithm. We assume

Ag = 71-;1,, = -\—};(1, L,---,1)T, 50 ATCCTA = I, - ATGBETGTA. Thus we have

dis,(G) = ¢ — ||ATGD|]? + v [det(], — ATGBBTGT A)™! — x]*, (3.6.2)
where
[det(I, — ATGBBTGTA)™ — &]*

det(I, — ATGBBTGTA)™ — &, if det(l, — ATGRRTGTAY ! > &

0, if det(l, — ATGBBTGTA) <k
Let.

disy1(G) = g — ||ATGD|? = ¢ —tr(ATGDDT T A)

and

dis,2(G) = det(1, — ATGBBTGTA)™.
By Lemma 3.6.1, it follows that
disw(HG) — disu(G) = — te(fog” + gfT) = — 24",

where z;; = (X);; = (DDT),-j,fI = itk or (T — Tik )i + %(-’Ku — ) (a4 acy)
and g = agk — agi- Noting that dis,o(G) = [det(], - ATGBBTGTA)7! and applying

Lemma 3.6.3, we obtain
disuz(JIG) — diswg(G) = (A7 — 1) dis,((7),
where A, = (1 + fIM;1g)? — f;j\'[y_lfygTMy_l_(/) with
M, =1,—ATGBBTG"A = ATG{1, - V)T A,

yij = (Y)i; = (BBT)ij and [y = Tigk or iy — yir)rc + f}z(.’/kk - yu)(neik + ). Here

M1 can be revised by the formula in Lemma 3.6.2 at cach iteration.
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Hence, if dis,2(G) > & and A disy2(G) > &,

disu(HG) — disu(G) = = 207 fo + v (87" = 1) disua()

if disu2(G) > & and A diswe(G) < &,
dis,(HG) — dis,(G) = ~2¢7 f: — v {disw2(G) — #};

if disy2(G) < x and A;l disu(G) > &,

disy(HG) — disu(G) = — 207 [, + v {A; 1 dis,2(G) — v}
if disua(G) < & and A7 disw(G) < &,

diso(HG) — disy(Q) = — 247 f.

The time for generating a G from TNORD depends on the above simulated anncal-
ing algorithm to minimize distance function (3.6.2). The numbers of multiplications
required to compute g, f; and [, are all of order n. The nuinbers of multiplications
required to compute g7 f; and A, are of order ¢ and ¢® respectively, which are inde-
pendent of n. Thus, the number of multiplications required to compute the change
in the distance (3.6.2) by a transposition is of order n. Since the number of iterations

is also of order n, the algorithm is of the same order n? as that for NORD.

3.7 Comparison of TNORDs with TCRDs and
NORDs

The TNORD algorithm typically defines a weighted randomized design like the NORD
algorithm, while TCRDs are defined by the uniform distribution on a subset of Py,
The NORD requires the selection of a tuning constant A to determine a trade-off be-

tween validity and efficiency, as well the TCRD and the TNORD require the sclection
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of a truncation constant . Increasing A in NORD reduces validity and improves effi-
ciency; increasing & in TCRD and TNORD improves validity but reduces efficiency.
One may question whether the same levels of validity and efficiency can be achieved
by suitable choice of the tuning or truncation constant in these three methods. To in-
vestigate this question we conducted an empirical study under analysis of covariance
models.

Instead of taking the natural parameterization used by Cox (1982) and Bellhouse

(1986), we adopt the more general notation of Section 1.2. We write
Y = Ao + AB+ GBy + GRYV, (3.7.1)

where By is qo x 1 vector of nuisance parameters, 3 is the ¢ x 1 vector of parameters of
interest and v is the vector of regression coeflicients of responses on covariates. The
columns of [Ay : A] are orthonormal and R(Ap) contains 1, = (1,..., 1)T. Let z; be
a vector of values of the ith covariate, i = 1,...,r — 1. B is obtained by applying the
Gram-Schmidt orthonormalization procedure to the matrix [1, : zy : --- : z._1], i.e,,
B = GramSchmidt [1, : 2y : -+ : 7,-1]. In this empirical study we are interested in
comparison of two treatments, so go = 1, ¢ = 1 and Ag = 1,.

Values for covariates are taken from data sets in Bellhouse (1986). To see how A
and x tune the efficiency and validity for NORD, TCRD and TNORD, for each data
set we generate a sequence of TCRDs and a sequence of TNORDs with decreasing
values of & by the sequential procedure described in Section 3.3. We choose p to be
% in the sequential procedure. A sequence of NORDs with increasing values of A is
also generated. From each design, we generate m = 60 replicates of GG to estimate
the validity and efficiency.

Since the D-optimality criterion is invariant under reparameterization, we use
efl(G) = det{(ATCCTA)"'} —1 to measure the efficiency of the least squares estima-

tor of 3 for a particular design G. However, the D-optimality criterion is equivalent
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to the A-optimality criterion, tr{(ATCC7TA)™'}, in this empirical study for compar-
ison of two treatments. The 95 percentile of the distribution of eff(G7) is used to
measure the efficiency of a randomized design and is estimated by eff&7, the H7th
order statistic of eff(G) based on 60 replicates of (. To simplify our comparison, we
wee a real-valued validity measure p2., = \/m to evaluate the validity of a
randomized design. 2, is estimated by ;’tt?ml = Jjiia + 624, where (e, aya) is
defined by (2.2.4) and (2.2.5) in Section 2.2, or see Hooper (1993).

We examine how the estimated validity measure 2., varies with the estimated
efficiency measure eff57 in TCRD, NORD and TNORD as the tuning or truncation
constant increases. For each data set, we present superimposed plots of ;’/T.lm, against.
eff57 for NORD, TCRD and TNORD. Figures 3.7 to 3.12 give scatterplots for 21
data sets from Bellhouse (1986). In all figures, the scatterplots for NORD, TCRD
and TNORD are denoted by three symbols: -, A and + respectively. Trom these
figures, we can see that the scatterplots gradually change from a smooth type to a
random pattern type when the number n of units increases. However, we should
notice that the difference in appearance for these scatterplots also depends on the
scale used for the y-axis (validity). Based on this empirical study, it appears that,
for comparing two treatments with one or two covariates, the three methods achieve
the same trade-off between validity and efficiency.

We also point out that there is larger variation in the plots for NORDs than in
those for TCRDs and TNORDs. This is expected because we generate 60 independent,
G’s for each NORD so that the points in the plot are independent. However we use
40 G’s from the previous design and generate additional 20 (s for cach TCRD
or TNORD, so neighbouring points have positive correlation and the plots appear
smoother.

In the following, we consider % treatments in comparative experiments with oneor

two covariates. Model (3.7.1) is assumed here with go = 1,9 = %——1, and Ay = 1,.. We
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also use the data sets in Bellhouse (1986) for values of covariates. The superimposed
plots of ;:‘2‘,5, against eff 57 for NORD, TCRD and TNORD are displayed in Figures
3.13 to 3.18 for those 24 data sets.

All the plots in Figures 3.13 to 3.18 show a clear curvature. The curves for
TCRD and TNORD almost overlap and are below the curve for NORD. Hence, the
TCRD and the TNORD provide slightly higher validity than the NORD for analysis
of covariance models with more than two treatments. This is tc be expected fo. two
reasons. First, we use the 95 percentile of eff(G) to measure efficiency. The "TCRD
and TNORD both place an upper bound on eff(G), but the NORD does not. The
NORD might perform better with respect to a different functional of eff (G), such as
the median. Second, the term A||ATGB||* in the distance function for the NORD is
not directly related to the efficiency measure det{(ATCCTA)"'} when ¢ > 1.

The algorithm for TCRD is very simple and the time required to generate a G
from TCRD is much less than that for TNORD if & is not too small. The time for
generating a G from TNORD depends on the annealing algorithm to carry out the
minimization of distance function. The algorithm is of the same order n? as that for
NORD. In Section 3.3, we concluded that the mean time for generating a G from the

TCRD in the sequential procedure is a power function of the number of iterations.
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Chapter 4

Optimal Randomized Design

4.1 Introduction

In Chapter 3 we discussed several randomized designs intended to achieve acceptable
levels of efficiency and validity. The TCRD defines the uniform distribution on the
subset with efficiency bounded by a constant. A TNORD is defined to minimize a
distance function on that subset. The simulation results in the last chapter revealed
that the TCRD and TNORD had nearly the same levels of efficiency and validity, and
that both sometimes had a slightly higher level of validity than the NORD with the
same level of efficiency. Is it true that the TCRD always has higher level of validity
than the MORD? If not, in what situations will the TCRD be better for validity than
the NORD? This chapter will give some theoretical results and several examples to

clarify this issue.

4.2 Optimal Design for Validity

In this section we assume that the treatment effects matrix A in the general lincar
model (1.2.5) is orthogonal to the block effects matrix B. Let G be a subset of
{G € P, : ||ATGB||? = 0}. In the following discussion, we only consider randomized
designs defined on G. A randomized design on G is defined by its distribution on G.

We choose the expectation of the random variable NCTGGE Cy|? as our criterion for
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validity, where G; and G, are independent replicates of G. We have C; = C;, = A

here. We will say that a randomized design is optimal for validity if it minimizes
E[ATG,GF Al (4.2.1)

among all randomized designs on G.

In order to minimize (4.2.1), we only need to consider distributions of column
spaces R(G7 A). Let Ay,---, A; be k matrices whose column spaces list all R(GT A)
for G € G. For a randomized design G, put w; = P{R(GTA) = R(A:)}. We then

have

| .
EATG,GTA|? =Y. 3 waw; | AT A1 (4.2.2)

1=1 5=1

It follows from (4.2.2) that the criterion (4.2.1) only depends on the weights w; on the
column spaces R(A,),.. ., R(Ax), i.e., randomized designs on § with the same weights
w; must have the same validity. Our goal is to find the weights wT = (wy,we, ..., wk)
that minimize (4.2.2) subject to Zfﬂ w; = 1 and min{w;} > 0. The randomized
design on G with those weights is optimal for validity.

We have the following result abonut the coefficient matrix in (4.2.2).

Lemma 4.2.1 Let M = (d;;), where di; = ||ATA;||? for 1 < 4,5 < k,(di; is the
square of a similarity measure between column spaces R(A;) and R(A;)). We then

have that M is non-negative definite.
Proof: Note that
di; = ||ATA;|I? = tr(AT A, AT A) = te(A; AT A;AT) = {Vec(AiAT)}Y Vec(A; A).

Letting I' = [Vec(AAT) : --- : Vec(ArAT)], we have M = I''I’, so M is non-

negative definite. [
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By Lemma 4.2.1, quantity (4.2.2) has a minimum and its minimal point is defined

by the following equations:
Mw = A1, for some A and wll, =1, (4.2.3)

provided that the solution satisfies min{w,} > 0. Hence, we immediately have the

following basic theorem.

Theorem 4.2.2 The randomized design on G with the equal weights w = (%, %, R i)
is optimal for validity among all randomized designs on G under the cviterion (1.2.1)

if 1 is an eigenvector of M.
Applying the basic theorem, we obtain two results.

Theorem 4.2.3 If G is a subgroup of P, then the uniform distribution on G is opli-

mal for validity among all distributions on G under the criterion (4.2.1).

Proof: Since G is a group, for any pair (i,1) there exists a G € G such that
R(GT A;) = R(A;). Moreover, {R(GT A1), R(GT Az), . .. ,R(GT Ap)} is a permutation
of {R(A1),R(Az),...,R(Ak)} for any G € G. Hence, we have
E E k k k

Sodi; = S AT AP = Y GTANTGT AP = ZoNAT AN =22 dij,

j=1 i=1 Jj=1 i=1 =1
for any pair (¢,{). This means that 1, is an eigenvector of M. By Theorem 4.2.2,
a distribution on G with the equal weights w = (%—, 715, ce %) is optimal for validity
under the criterion (4.2.1).

Since G is a group, the subsets {G : R(GT A) = R{A;)} are cosets of the subgroup

{G : R(GTA) = R(A)} and hence are disjoint and have the same number of elements.

Therefore, the uniform distribution on G has the equal weights and is then optimal

for validity. w
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Theorem 4.2.4 Suppose G, is a subset of G where Gy is a group and for each G € G
there ezists Go € Go such that R(GT A) = R(GX A). The uniform distribution in Go

is then optimal for validity among all distributions on G under criterion (4.2.1).

Proof: Let G be a random permutation matrix taking values in G. By assumption
there exists a random G taking values in Gq satisfying R(G* A) = R(G} A). Now the
distribution of G and the distribution of Gy have the same validity under criterion

(4.2.1). The result follows from Theorem 4.2.3. ]

For an application of Theorem 4.2.4, consider a block design where, for each
treatment, the number of replicates within a block is the same for all blocks. Let
Go = P.(B), where B represents the block structure, and let G be a larger set of
permutations preserving orthogonality between treatments and blocks; i.e., permu-
tations such that, for each treatment, the number of replicates within a block is the
same for all blocks. Note that any such treatment assignment can be represented
by a Go € Go, so the condition of Theorem 4.2.4 is satisfied. The larger set G may
include permutations of units receiving the same treatment, i.e., permutations that
do not affect treatment assignments. Theorem 4.2.4 shows that the usual method for
randomizing a block design (randomly permute units within blocks and randomly per-
mute blocks) is optimal for validity among all randomization strategies that preserve
treatment-block orthogonality.

If the conditions of Theorem 4.2.4 hold and in addition we have G 2 GG, =
{3Go: G € G,Go € Go} then the uniform distribution on G has the same validity as
the uniform distribution on Go. This can be seen by partitioning G into left cosets of
Go. All cosets contain the same number of elements and all permutations in the same
coset determine the same treatment assignment.

If the conditions above fail then the uniform distribution on the subset G may not

be optimal for validity. Some examples follow.
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Example 4.2.5 In some circumstances, it does happen that 1; is not an eigenvector

of M. Let

B = GramSchmidt

ok ek ek b pd pd
DO BD e
[ 3]
[#9)
o

Consider G = {G € Ps : a7GB = 0}. There are 30 different column spaces R(GTa)
for G € G and the linear system (4.2.3) results in unequal weights. The 30 column
spaces for R{(GTa) and their associated permutations are listed in Table 4.1. In this
thesis, we always refer to G as a permutation matrix. In Section 1.2, we pointed out
the one-to-one correspondence between the group of permutations of {1,...,n} and
the group of n x n permutation matrices. In Table 4.1, we use a permutation (i.c.,
an arrangement) of the index set {1,...,6} to denote its corresponding permutation
matrix G. The uniform distribution on G is not optimal for validity under the criterion

(4.2.1).

O

Example 4.2.6 In analysis of covariance models, the uniform distribution on G =
{G € P, : ||ATGB||? = 0} may not be optimal for validity among all distributions on

G under the criterion (4.2.1). Let

/1 1) (1)

1 2 1

1 4 1
B = GramSchmidt } g ; A:=a=2\1/§ _i ’

1 3 -1

17 -1

\1 2/ \ ~1)
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Table 4.1: 30 cclumn spaces for R(G” a) and their associated permutations

2V3G"a G(1,2,3,4,5,6)T | Optimal Weights
1,-1,1,-1,2,-2)T [ (1,2,3,4,5,6)" 4/144
(1,-1,1,-1, —2,2)T (1,2,3,4,6 5)T 4/144
1,-1,-1,1,2,-2)7 | (1,2,4,3,5,6)T 4/144
(1,-1,-1,1,-2,2)T | (1,2,4,3,6,5)7 4/144
(1,1,-1,-1,2,-2)T | (1,3,2,4,5,6)7 4/144
(1,1, 1, -1,-2,2)7 | (1,3,2,4,6,5)T 4/144
(1,-1,2, 2,1,—1)T 1,2,5,6,3,4)T 5/144
(1,-1,-2,2,1,-1)7 | (1,2,6,5,3,4)7 5/144
(1,-1,2,—-2,-1,1)T | (1,2,5,6,4,3)T 5/144
(1, —1, -2,2,-1,1)T | (1,2,6,5,4,3)T 5/144
(1,2, - 2,1,—1)T (1,5,2,6,3,4)7 5/144
(1,-2, 1,2,1,—1)T 1,6,2,5,3,4)7 5/144
(1,2,-1,-2,-1,1)T | (1,5,2,6,4,3)7 5/144
(1,-2,-1,2,-1,1)T | (1,6,2,5,4,3)7 5/144
(1,2,-2,— 1,1,—1)T (1,5,6,2,3,4)7 5/144
(1,-2,2,-1,1,-1)T | (1,6,5,2,3,4)7 5/144
1,2,-2,-1,-1, 1)T 1,5,6,2,4,3)7 5/144
(1,-2,2,-1,-1,1)T | (1,6,5,2,4,3)7 5/144
2,1,-1,-2,1,-1)7 | (5,1,2,6,3, 4)T 5/144
(— 2,1, 1,2,1,-1)T | (6,1,2,5,3,4)7 5/144
2,1,-1,-2,-1,1)7 | (5,1,2,6,4,3)7 5/144
(— 2,1, 1,2, 11)T (6,1,2,5,4,3)T 5/144
(2,1,-2,-1,1,-1)T | (5,1,6,2,3,4)7 5/144
(-2,1,2,-1,1,-1)T | (6,1,5,2,3,4)7 5/144
(2,1,-2,-1,-1,1)7 | (5,1,6,2,4,3)T 5/144
(-2,1,2,-1,-1,1)7 | (6,1,5,2,4,3)7 5/144
(2,-2,1,-1,1,-1)T | (5,6,1,2,3,4)T 5/144
(-2,2,1,-1,1, 1)F (6,5,1,2,3,4)T 5/144
2,-2,1,-1,-1,1)T | (5,6,1,2,4,3)7 5/144
(-2,2,1,-1,-1,1)7 | (6,5,1,2,4,3)T 5/144
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and G = {G : aTGB = 0}. Define

1 1 1 1
1 1 -1 -1
1 -1 1 1
[a:al'ag'(l;;}:—l—— 1 -1 -1 1
Paz oz | -1 -1 1 -1
-1 -1 -1 -1
-1 1 1 -1
-1 1 -1 1]

It is easy to show that ¢ = {G : a”GB = 0} = U}_, Gi, where Go = {G : ‘Ta = 4:a}
and G; = {G : GTa = +a;},i = 1,2,3. The coefficient matrix in linear system (4.2.3)

is
.25

1 0
0 0
M= 0 1
0

SO -=O

0

0 b
.25 1
and the optimal weight is w? = ('f4'1', 1%’ 15_8’ 148) The TCRD with £ = 0 (the uniform
distribution on G) is not optimal for validity among all distributions on G. In fact, by

(4.2.2) the design with the optimal weight and the TCRD with x =0 have validity

of 27778 and .28125 respectively.

Remarks 4.2.7 If A is no longer assumed to be orthogonal to BB and G is an arbitrary
subset of P,, we may still consider the problem of finding an optimal distribution on
G under the criterion E||CTG,GTC,|j*. A randomized design may be defined to he

optimal for validity if it minimizes
E|CTG\GYCy %, (4.2.4)

among all randomized designs on G. We can also consider distributions of column

spaces R(GTC) and let Ay, - -, Ax be k matrices whose column spaces list, all R(GTC)
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for G € G. For a randomized design G, put w; = P{R(GTC) = R(A:)}. We again

have

k k
EICTGGICH| = 3. Y- wiw; | AT A5 (4.2.5)

=1 j5=1

By the same argument as above we can obtain a similar sufficient and necessary
condition for the uniform distribution on G to be optimal for validity. If G is a group,
then the uniform distribution on G has optimal validity among all distributions on
G. 1 G = {G € P, : eff(G) < «} then it is not true in general that the uniform
distribution on G is optimal for validity under the criterion (4.2.4). Optimal validity

is difficult to investigate analytically when C depends on G.

Remark 4.2.8 More generally, we may define that a randomized design is optimal
for validity if it minimizes

E|CTGGICI, (4.2.6)
where i is a positive integer. We can make the same discussions and obtain the same

results as in Remarks 4.2.7.

4.3 Some Relationships Among NORDs, TCRDs
and TNORDs in Special Cases

In general, the NORD with A = 0 is equal to the TNORD with & = co. Usually, the
TCRD with & = 0 is not equal to the TNORD with « = 0. The first example gives
a situation where the NORD with A = 0 is equal to the TCRD with £ = 0 and the

TNORD with x = 0.
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Example 4.3.1 Consider an experiment to compare two treatments in & blocks with
_each treatment applied once in each block. Representing the data set by the additive

linear model (1.2.5), we have

Y =aofo+aB + GBy+ GRYV,

where
/1 (1) (10 0
1 -1 1 0 0 \
1 1 1 1 01 0
ag = 7—.—2; 1 , 4= 72—Z —:1 , and B = GramSchmidt | 0 1 (:)
1 1 00 --- 1
\ 1/ \ -1/ \o 0 - 1
In this experiment, we have n = 2k,q0 = 1,9 = 1, and r = k. Let [B :d] =

GramSchmidt [B : z], where z is a N(0, Jox) random vector. Thus d is uniformly

distributed with d7d = 1 over the column space R(B)* and is of the forn

((11\

—d,
(12
(l = _d2
(lk

\ —d; /

The random variables sgn(d;),i = 1, ..., k, are independent and uniformly distributed
on {—1,1}.
Consider the NORD generated by minimizing the distance function:
dis(G) = 1— (a"Gd)?
= 1—(aci1d; — ag2dy + - + ag(n-1)dx — acmds)? (4.3.1)

For given di,...,dx, the distance function (4.3.1) is minimized when aggi-y) and

ag(2i) have different signs fori =1,...,k and agi-1)d; — agEydi,t=1,..., k, have
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the same sign. Thus, this G must be in § = {G € P, : aTGB = 0}. Moreover,
the minimization of (4.3.1) only depends on the signs of d;,...,di. The NORD
defined by minimizing (4.3.1), the TNORD defined by minimizing (4.3.1) over G,
and the TCRD with « = 0 (the uniform distribution on G) all determine the same
distribution of the column space R(GTa); i.e., all determine the same distribution of
treatment assignments.

]

In the NORD and TNORD algorithms, the matrix D is uniformly distributed in
the space R(B)*. The NORD and TNORD algorithms are trying to select design
G such that R(GT A) is close to R(D). In Example 1, the TNGRD with & = 0 is
equivalent to the TCRD with & = 0, i.e., the TNORD algorithm with k = 0 defines
the same distribution on P, as the TCRD with & == 0. In the next examples, we
consider the TNORD and the TCRD both with x« = 0. In general, the TNORD
algorithm defines a different distribution on {G : ||ATGBJ|> = 0} than does the
TCRD. The question is in what situations are the two equivalent, i.e., when does the
TNORD algorithm result in the uniform distribution on {G : |[ATGB|> = 0}. The
following are several examples to investigate this question. Example 4.3.2 describes
a situation where the two methods lead to the same result. Example 4.3.3 describes

a situation where the two methods produce different results and the TNORD has

higher validity than the TCRD.

Example 4.3.2 Let

-1 3 —;?{g 10

1 2 1 i~z ) 11

a = sl -1 ,B=[§14:b]= i \/— = GramSchmidt 1 2
| P g

: L3

It is casy to check that [514:b: a : c] is an orthonormal basis of R*, where

1

6 i

Cc = g g
_i
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Let vector d be uniformly distributed on {d : d¥B = 0,d"d = 1}. Then
d = dl(l + dzc,

with d? + d% = 1.

Denoting a permutation by G, we have

1 3
2
P4(B) = s |-
4 /)
Let
(/1 3\ 3
T 2 2
Pi(a) =G ={G : G a = %a} = { s 1]
L\ 4 4
We find
1 3 2 4
T . 2 2 3 3
g:{G:a GB:O}:{GUGZ’GIMG‘%}: 3 ] 1 ) 4 ) 9
4 4 1 |

To generate TNORD with x = 0, we need to minimize over ¢
dis(G) = 1 — (da"Ga + dza” Ge)?.

For G, and G, 1 —dis(G) = d3; for G5 and Gs, 1 —dis(G) = (——%(/, + 3‘4'5(12)2. By a

simple symmetry argument or direct calculation we obtain

2 5 2 9 . 1
P{d? S (—5 ll + %(12)2} = P{(l? Z (—'g(]l + %:—;(12)2} = ‘—2

Hence, the TNORD with & = 0 is defined by the uniform distribution on G, i.c., the

TNORD with & = 0 is equivalent to the TCRD with « = 0.
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Example 4.3.3 (continued Example 4.2.6). Let the columns of the matrix
[B:a:cy:c2:c3:¢4 : ¢s] = GramSchmidt[B : a : a; 1ay:az:ag; as)

constitutec an orthonormalized basis of RS, where

[ 1 1]
-1 -1
-1 -1
[ag: as) = 1 1 1
4 22| 1 -1
-1 1
-1 1

1 -1

The TNORD with x = 0 is defined by minimizing the following distance function
dis(G) =1 —(d1a"Ga+d2a" G +d3aTGe; +diaTGes+dsaT Gey +dga’Ges)? (4.3.2)

on G, where (dy, s, ..., ds)7 is uniformly distributed with constraint 3%, d? =1. In
order to estimate the weights in four subsets G;(: = 0,1,2,3) of G for the TNORD, we
generated 1000 random vectors each uniformly distributed with constraint ¥°%_, d? =
1. The estimated weight for the TNORD is wT = (.239,.270,.263,.228), which is
closer to the optimal weight (.2222,.2778,.2778,.2222) than the equal weight (i.e.,
the TCRD with & = 0). By (4.2.2) the TNORD has an estimated validity of .27842
and has slightly higher validity than the TCRD.
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Chapter 5

Conclusion and Future Research

5.1 Summary and Conclusion

There are several purposes for randomization in experimental design. An important
purpose is its validation of the usual normal theory analysis. In this thesis, we have
investigated how randomization validates the usual statistical analysis for treatment
effects.

In Chapter 2, we discussed the validity measures cv(¢) in Hooper (1989) and
(ftval, Oval) in Hooper (1993) with regard to interpretation and computation. The mea-
sure cv(¢) describes the variation in the conditional significance level E{¢(G,W)|W}
about its mean E{¢(G, W)} and can be used to compare randomized designs of dif-
ferent sizes. To estimate cv(¢) we need to generate replicates ¢f both G and W.
The measure {ftyal, Oval) Was proposed in Hooper (1993) to assist in the sclection of a
tuning constant for NORD. It is appropriate for comparison of different randornized
designs under a given model, for example, for given (n,g,7) under the general linear
model (1.2.5). In this thesis, we suggested a single valued measure ;2 based on
(#2val, 7va1) and used it to assist in the selection of a truncation constant for TCRD
and TNORD. Compared with cv(é), (val, Oval) is €asier to estimate since only repli-

cates of G are required. In order to seek a compromise between computation and
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interpretation, we introduced the Beta-related validity measure [cv(T),cv(T?)), i.e.,
the cocflicients of variation of the first two randomization moments of the Beta statis-
tic. This measure was motivated by comparing the first two randomization moments
of the Beta statistic with corresponding normal-theory moments to evaluate agree-
ment between the randomization probability E{¢(G, W)| W} and the model-assisted
probability E{¢(G,W)}. The Beta-related measure allows an indirect approximate
interpretation. We derived a relation between [cv(T),cv(7?)] and (#£val, Ova1), so the
Beta-related measure can be estimated at the same cost as (#val, Oval)- In the last
part of Chapter 2, we presented a simulation study showing that the addition of one
or two covariates reduces little validity using cv(#) and [cv(T'), cv(T?)]. Another sim-
ulation study showed that cv(¢) varies monotonically with pyal, oval and p2,,, which
suggests that (jival, 0val) OF the single valued measure 2, can be used as a surrogate
for cv(4) in determining an appropriate value for the tuning constant A in NORD
and the truncation constant « in TCRD and TNORD.

In Chapter 3, we investigated methods of randomization for asymmetric models
of the unit effects. Cox (1982) and Bellhouse (1986) considered the efficient and valid
use of covariate information in design of experiments and recommended truncating
classical methods of randomization to ensure high levels of efficiency while maintain-
ing validity. This idea can be applied to general linear models for treatment and unit
effects. We called such a randomization strategy a truncated classical randomized
design (TCRD). A sequential procedure was proposed for generating a sequence of
TCRDs to assist in the selection of an appropriate truncation constant «. A sim-
ulation study was presented to illustrate the use of this sequential procedure under
analysis of covariance models. Under the general linear model (1.2.5), Hooper (1993)
proposed NORDs to achieve acceptable levels of validity and efficiency. In order to
improve NORD with respect to efficiency and the selection of tuning constant we
introduced the truncated NORD (TNORD). The TNORD is invariant under repa-

rameterization of the treatment effects model and can be generated by the same
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sequential procedure as the TCRD. We derived some formulae for the minimization
of the distance function for the TNORD. A simulation study was presented showing
that the same levels of validity and efficiency can be achieved by suitable choice of
the tuning or truncation constant in these three methods.

In Chapter 4, we introduced the concept of optimal randomized design. A ran-
domized design is defined to be optimal for validity if it minimizes a validity criterion.
A general sufficient condition was obtained for an uniform distribution in a subset of
P,. to be optimal for validity. Using the general sufficient condition, we obtained that
some classical randomized designs, such as CRD and randomized blocks design, are
optimal for validity among all distributions on a certain subsct of P,. Under analysis
of covariance models, however, the uniform distribution on a certain subset of P,
may not be optimal for validity. Therefore, under asymmetric models for unit effects,
NORD or TNORD may have higher validity than TCRD in some circumstances,

although TCRD is more easily generated.

5.2 Future Research

The Beta-related validity measure [cv(T), cv(T'?)] was proposed in Chapter 2 and was
used to determine cv(#). A question of interest is whether cv(¢) can be approximated
by [cv(T),cv(T?)], i.e., what is the relationship between the two measures, at least
for the F test. This is a problem for future research.

We made a first attempt by developing an analytical approximation to cv(¢) in
Chapter 2. By approximating cv(¢) by cv(4,) where ¢, is the x?-test, we derived a
Laguerre series expansion for cv(¢), with leading terms related to (jival, ovar). Ran-
domization does not provide the same level of validity for the x*-test as the F test,
however. It is more useful to develop a series expansion for cv(¢) without approxi-

mating cv(4) by cv(¢y) such that the series has some relation to (stval, Oval)-
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A sequential procedure was proposed to assist in the selection of an appropriate
truncation constant for TCRD. The theoretical aspects of this procedure have not
been fully developed. Some theory concerning order statistics for discrete distribution
is needed for this development.

In Chapter 4, we developed some theory for optimal randomized designs under
the validity criterion E||CTG1G}G,||* with G restricted to a particular subset of P,.
It is helpful to study the theory of optimal randomized designs under other validity
criteria in more general subsets of P,. We also showed in this thesis that the CRD
and randomized blocks design are optimal for validity among all randomized designs
on a certain subset of P,. One may ask how to characterize the optimality of the

Latin square design for validity in the above sense. This is another problem for future

rescarch.
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