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Abstract 
The original multiscale MRF texture model proposed 

by Paget (IEEE Transactions on Image Processing, 
1998, page 925-931) can be used to synthesize a broad 
range of textures but is limited to taking a single input 
texture and outputting a homogeneous texture similar to 
the input. This is insufficient for textures that have 
combined visual characteristics from several different 
sources. To address this problem, this paper presents a 
new method, called User Constrained multiscale MRF 
model, for synthesizing a new texture mixture from 
multiple input textures. Since the Gibbs sampler and 
exhaustive search are used in the original multiscale 
MRF model, a brute force implementation of the algo-
rithm is slow. To overcome this problem, an existing 
fast neighborhood search technique is adapted for our 
model, and the run time is decreased by a factor of 500-
1000. We also demonstrate that our method can be used 
in texture replacement. The experimental results show 
that our algorithm performs well in the quality of re-
sults. 
 
Key words: Texture synthesis, texture mixture, texture 
replacement, Markov random field, local conditional 
probability function. 

1 Introduction 
In this paper, a texture mixture is considered as a 

synthesized texture that has the appearance of two or 
more input textures. In the literature, there is not much 
research done related to texture mixtures, and only a 
handful of methods have been published. In Heeger and 
Bergen’s paper [14], they give a brief discussion at the 
end of their paper on how to generate texture mixtures 
using their histogram-matching method with steerable 
pyramids. Unfortunately, their approach fails to gener-
ate satisfactory results. In Bar-Joseph et al.’s work [2], 
a statistical learning tree is used to generate texture 
mixtures from multiple sources. The limitations of their 
approach include the substantial memory requirement 
for the learning trees and the blurring effects in the out-
put textures if the input textures are different from each 
other. In Portilla and Simoncelli’s work [27], a wavelet 

based statistical model is presented for texture analysis 
and synthesis. As an application of their model, they 
show that texture mixtures could be generated by sam-
pling linear combinations of global statistics measured 
at wavelet subbands of input textures. It is obvious that 
a texture mixture generated by their approach is a sim-
ple blend of input textures because linear interpolation 
between global parameters of the input textures is em-
ployed. Wei in his Ph.D. thesis [31] addresses the prob-
lem of texture mixtures within the framework of multi-
ple source texture synthesis, which is an extension of 
his texture synthesis approach for single input texture 
[30]. One problem of Wei’s approach is that the algo-
rithm generates blurred edges of structural textures (see 
Figure 2). The second problem of Wei’s approach, 
which is also a limitation of all the other approaches 
described before, is that it is difficult for the algorithm 
to incorporate user constraints which is crucial for mix-
ing textures because, otherwise the results are difficult 
to adjust according to user’s needs [1, 15, 23]. 

To address the above problems, in this paper, we pre-
sent a new user constrained multiscale MRF model for 
generating textures from multiple input sources, which 
is an extension of the original multiscale MRF texture 
model for single input texture synthesis proposed by 
Paget [25].  

Given two or more input textures, our algorithm gen-
erates a texture mixture by synthesizing each pixel of 
the output image with user-specified constraints, which 
is specified as a look-up table with the same size as the 
output texture, each entry of which specifies how the 
corresponding pixel in the output texture is sampled 
from the input textures. For each pixel in the output 
image, our algorithm first looks up the table to get the 
local constraint information on that pixel, then calcu-
lates the local conditional probability density function 
(LCPDF) from the input textures with the specified 
constraint, and finally samples a value of the pixel 
based on the calculated LCPDF using stochastic relaxa-
tion such as the Metropolis algorithm, the Iterative 
Conditional Modes (ICM) algorithm, or the Gibbs sam-
pler [12, 26].  

Because of the expensive calculation of the LCPDFs 
during sampling, a straightforward implementation of 
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the algorithm is slow. We demonstrate that the sam-
pling process based on the ICM algorithm can be ap-
proximated by a nearest neighborhood search process. 
Therefore, a fast neighborhood search algorithm, for 
example, the one described in Ashikhmin’s paper [1] 
can be adapted to speed up the algorithm. Finally, we 
demonstrate in the experimental section that our model 
can be used in the application to texture replacement. 

In summary, the contributions of this paper include: 
(1) a new user constrained MRF model for generating 
texture mixtures, which is an extension to the original 
multiscale MRF model by Paget [25], (2) a fast imple-
mentation of the algorithm, and (3) the application of 
our model to texture replacement. 

The rest of the paper is organized as follows. The re-
lated work is described in the next section. In Section 3, 
we describe some background knowledge on MRF tex-
ture models.  In Section 4, we present our general user 
constrained multiscale MRF model for texture mix-
tures. In Section 5, we discuss about the implementa-
tion and acceleration of our algorithm. In Section 6, we 
present the experimental results on both texture mix-
tures and texture replacement. The limitations of our 
current implementation are also discussed. Finally, the 
conclusion and discussion are presented in Section 7. 

2 Related Work 
Our work is closely related to texture synthesis. The 

earliest technique for generating synthetic textures is 
texture mapping [13], which is still an active research 
topic (e.g. [28, 33], etc). However, texture mapping 
suffers the problems of distortion, discontinuity, and 
unwanted seams. To solve those problems, procedural 
texturing (i.e. solid texturing) [8, 20] can be used, in 
which procedures are developed to generate synthetic 
textures without requiring input textures. By calling a 
compact procedure, textures are generated directly on 
surfaces of 3D objects without seams and without dis-
continuity.  

Another important technique is called texture analy-
sis and synthesis using statistical approaches. Followed 
Julesz’s pioneer work [17], several statistical texture 
models have been proposed such as, to name a few, the 
MRF model [6, 12], the FRAME model [35], the para-
metric texture model based on joint statistics of com-
plex wavelet coefficients [27], and the cooccurrence-
based texture models [24]. Other well known statistical 
approaches includes the multiresolution histogram-
matching [14], the feature pyramid sampling procedure 
[4], the non-parametric sampling [9], the fast texture 
synthesis [31], and etc. 

In the above approaches, the synthesis process is per-
formed at the pixel level of images, thus, in general, 
they are slow. For real time applications, there are 

patch-based texture synthesis approaches (e.g. [10, 19, 
22], etc), in which synthesized textures are generated by 
sampling small patches of input textures. It is noted that 
image-based rendering techniques can also be used for 
texture synthesis such as, to name a few, Bernardini et 
al.’s image-based registration technique [3] for generat-
ing high-quality textures from multiple scans, Veryovka 
et al.’s and Fung et al’s techniques for generating artis-
tic style textures [11, 29]. There are also recent works 
(e.g. [21, 32, 34], etc) on synthesizing textures onto 3D 
surfaces, and we shall not review them in this paper 
because of page limitations. 

Although our work has some resemblance to that of 
Ashikhmin’s [1], Hertzmann’s [15], Kim and Pel-
lacini’s [18], and Liu et al.’s [23], ours is different from 
theirs in some significant points. In both Ashikhmin’s 
and Hertzmann’s work, different types of textures in the 
output image are essentially the component textures 
from the same single input source image; while in our 
work, different types of textures in the output image are 
from different input texture images. In Kim and Pel-
lacini’s work [18], instead of using multiple input tex-
tures, they use a set of image tiles (image of objects) to 
fill a user specified container image. Thus their ap-
proach is best for image mosaics. In Liu et al.’s work 
[23], user selected patterns in the source image are used 
to replace all similar target patterns in a given image. In 
essence, their approach is more appropriate for texture 
editing [5].  

3 MRF Models 
The MRF models are important techniques in com-

puter vision, graphics, and image processing. The un-
derlying theory of MRF texture models is that the in-
formation at a pixel location is dependent on the infor-
mation of its neighboring pixels [6, 12, 25].  

In MRF models, an image is modeled as a random 
field X defined on a finite rectangular lattice S. Let sX  
be a random variable at site s . The random field X on S 
is the set of all random variables sX , i.e. 

}|{ SsX s ∈=X . The set of all possible values of sX  
is called the state space of s, which is denoted by sΛ . In 
this paper, we assume a common discrete state space 
for all s, i.e. }255,...,1,0{== ΛΛs  for all Ss ∈ . The 
configuration space on X is denoted by Ω , which is 
defined as ∏ ∈=Ω Ss sΛ . A joint probability on Ω  is 
denoted by P  and the Local Conditional Probability 
Density Function (LCPDF) at site Ss ∈  is given by 

),|()( srxXxXPsLCPDF rrss ≠=== , which im-
plies that the probability of site s  having pixel value 
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ss Λx ∈  depends on the pixel values of its neighboring 
pixels. 

The neighborhood of s  with order d , denoted by 
d
sN , is given by }||0|{ 2 dsrSrN d

s ≤−<∈= . The set 

of all neighborhoods d
sN  is called a neighborhood sys-

tem of order d on S, which is denoted by 
}|{ SsN d

s ∈=N . The neighborhood system has two 

important properties: for any Sts ∈, , (1) d
sNs ∉ , and  

(2) d
tNs ∈  if and only if d

sNt ∈ . 
Mathematically, an MRF is defined as a random field 

}|{ SsX s ∈=X  with a joint probability function P 
defined on it, which has the following three properties: 
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    Properties (i) and (ii) ensure that P is a probability 
distribution with a positive value for any configuration 

Ω∈x . Property (iii) is defined on a neighborhood sys-
tem, which ensures that the random field is an MRF, i.e. 
the LCPDF of a given site s in a given image x  can be 
calculated using the information of its neighboring pix-
els.  
    Based on the equivalence between the MRF and 
Gibbs distribution established by the Hammersley-
Clifford Theorem [12], many MRF models have been 
proposed in the literature (see [26] for a complete sur-
vey). In the next section, we describe our new user con-
strained multiscale MRF model for texture mixtures. 

4 Proposed Model 
    The simplest and commonly used MRF models are 
the auto-models based on clique structures. Since clique 
structures cannot efficiently capture texture features, 
the auto-models can only model very limited types of 
textures [26, 35]. To model a wide range of textures, a 
multiscale representation can be incorporated into MRF 
models, which is described in the next subsection. 

4.1 Multiscale MRF Texture Model 
Given an image X of size NM × , let S be the rectan-

gular lattice on which the image X is defined, i.e.: 
}0,0|),({ NjMijisS <≤<≤== .                 (1) 

    The multiscale representation of image X, is defined 
as a set of images lX , where 0≥l  is the level index of 
image lX . For a given value of l , image lX  is de-
fined on a lattice SS l ⊂ , where, 

}20,20|)2,2({ lllll NjMijisS <≤<≤== . (2) 

For each level lX  of the multiscale representation of X, 
the neighborhood l

sN  of lll Sjis ∈= )2,2(  is defined 
as: 

})()(0|)2,2({ 22 djqipqprN lll
s ≤−+−<== , (3) 

where d  is  the order of the neighborhood system. 
It is noted that the image at level 0, i.e. 0X  is the 

original image X since SS =0 , and that 1+lS  is a subset 
of lS , i.e. ll SS ⊂+1 . To infer the intensity value of 
each pixel from the current level to the next level, we 
use a local decimation scheme [26]. For image 1+lX ,  
let 1+l

sx  be  the intensity value of the pixel at site 
111 )2,2( +++ ∈= lll Sjis . By local decimation, we mean 

that the value of 1+l
sx  is directly copied from l

sx  - the 

value of pixel s  at  level l  in the image lX , i.e., 
l
s

l
s xx =+1 .                             (4) 

Consider the case of synthesis using a single input 
texture. Let Y be the sample input image, and X the 
synthesized output image, which is initialized as ran-
dom noise at the beginning. The multiscale MRF syn-
thesis algorithm first constructs a multiscale representa-
tion for each of X and Y using Eq. 1 - 4. Starting from 
the lowest resolution image lX , the algorithm employs 
stochastic relaxation (SR) to iteratively update each 
pixel value in lX  based on the LCPDF calculated from 
sample input image lY  until an equilibrium state is 
reached. After lX  is synthesized, the algorithm goes to 
the next higher resolution image 1−lX , applies SR on 
that level with the constraint that all pixel information 
from the previous level must be maintained at that level 
through the SR process. By the advantage of local 
decimation used in the multiscale representation de-
scribed before, the constraint can be imposed by fixing 
the value of each pixel from the previous level, i.e. by 
setting l

r
l
r xx =−1  for lSr ∈∀ , and the rest of pixels at 

1−lX  undergo a non-constraint SR. 
The SR process uses the LCPDF to sample pixel 

value at each level. Let l
xS  be the lattice for output im-

age lX , and  l
yS  for input image lY .  Let lN  be a 

neighborhood system at level l. Note that for simplicity 
reasons we use the same neighborhood system configu-
ration for both X and Y. For each pixel site l

xSs ∈ , let 

sx  be its pixel value, the LCPDF at s is calculated by: 

∑
∈

∈




 −=∈

l
y

l
p

l
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l
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where )(sQ  is the normalizing function, h  the optimal 
Parzen window parameter [26], and spz  a d-
dimensional vector. The calculations of )(sQ , h, and 

spz  are given as follows: 

∑ ∑
∈ ⊂∈





−=

Λ SNSp
sp

s l
y

l
p

l
y h

sQ
λ ,

2
2 ||||

2
1exp)( z ,     (6) 

[ ]{ } )4(121(4 ddnh ++= σ ,       (7) 

Tl
srpsrrpssp Nrtyxyx ]),1)((,[ ∈−−−= −−z ,      (8) 

where in Eq. 7, n is the size of the input image lY , 
1|| += l

sNd , and 2σ  is the variance of the histogram of 

image lY .  
    In Eq. 8, rt  is the temperature at pixel r and is initial-
ized to 1 for all pixels in the output image X at the be-
ginning of the SR process. At the end of each iteration, 
the temperature st of a given target pixel lSs ∈  is up-
dated by the following temperature function: 

}||)0.1(,0max{ l
sNr rs Ntt l

s∑ ∈+−= ,                (9) 

where || l
sN  is equal to the total number of pixels in the 

neighborhood l
sN .  

    When the temperature value of a given pixel site s is 
equal to zero, then s is said to be in an equilibrium state. 
When all of the pixels in lX  are in the equilibrium 
state, image lX  is said to be in an equilibrium state, 
and the SR process stops for  lX  and proceeds to the 
next resolution image 1−lX . 

4.2 User Specified Constraints 
Given two or more input textures 1Y , 2Y , …, mY , we 

want to synthesis a texture X, which has the combined 
visual appearance of all the input textures. To enable 
multiple source texture synthesis, we incorporate user 
specified constraints into the multiscale MRF texture 
model described earlier. The purpose of incorporating 
user constraints is to tell the SR process which input 
textures to use, and in particular, how they are used to 
sample a given target pixel in the output texture.  

A user specified constraint is expressed as a look-up 
table T, which has the same size as the output texture 
image X. Each entry in T is an m-dimensional vector 
consisting of m non-negative weights with values in the 
range of ]1,0[ . Each weight specifies the contribution 
from each input texture iY  when calculating the 
LCPDF for a given target pixel using Eq. 5 during the 

SR process. Let ),( jis =  be a target pixel in X to be 
synthesized. Let misis w ≤≤= 1)(w  be the table entry at 
location ),( jis =  in the look-up table T. Let siP  be the 
LCPDF calculated from iY  using Eq. 5 - 8, then the 
weighted sum of siP , which is given by Eq. 10 below, 
is used by the SR process to sample a value of s: 

si
mi

sisrs PwNrxxP ∑
≤≤

=∈
1

),|( .   (10) 

4.3 Algorithm 
As a summary of our user constrained multiscale 

MRF model for multiple source texture synthesis, we 
present the complete algorithm in pseudo code shown 
in Figure 1 for easy reference. In the next section, we 
discuss some issues on the implementation and a new 
acceleration of the algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The user constrained multiscale MRF 
multiple source synthesis algorithm. 

User Constrained Multiscale MRF Multiple Source
Texture Synthesis

Input:
Y1, Y2, …, Ym ← training texture images.
T ← user constrained table.
Output:
X ← the synthesized texture mixture.

Begin
1. Initialize X as a random noise image, for each pixel 

s in X, set its initial temperature ts = 1.0.
2. L ← the number of levels of the multiscale.
3. Build the multiscale {Xl, Sx

l} for X using Eq. 1-4.
4. Build the multiscale {Yi

l, Siy
l} for each Yi using 

Eq. 1-4, 0 ≤ i ≤ m.
5.  For l = L – 1 to 0 do

While Xl is not in the equilibrium state do
5.1. Randomly choose any site s in Sx

l for which 
ts > 0.

5.2. For j = 0 to  m do
5.2.1.  Calculate the LCPDF  Psj for site s using 

sample image Yj by Eq. 5-8.
5.3. Calculate the user constrained LCTDF P for s

using Eq.10.
5.4. Choose new pixel value xs for s by sampling

the LCPDF calculated from 5.3 using Gibbs
sampler or ICM algorithm.

5.5. Update site s’s temperature ts using Eq.9.
End of while

End of for
End of begin
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5 Implementation and Acceleration 
Using a straightforward implementation of our algo-

rithm shown in Figure 1, the run time performance is 
slow because of the expensive calculation of the 
LCPDF at each pixel site per iteration. To speed it up, 
we adopt the fast neighborhood search method as de-
scribed in Ashikmin’s paper [1] based on the following 
observations. A much better way to do this is discussed 
in the experimental section, which is inspired by 
Hertzmann’s work on image analogies [15]. 

When the ICM algorithm [26] is used in the sam-
pling process in step 5.4 (Figure 1), the pixel value at 
site s is updated by sx  with the largest LCPDF value. 
From Eq. 5 in the previous section, one can see that a 
pixel p in sample image Y with the closest neighbor-
hood match gives the smallest negative number in the 
exponential part of the right side of Eq. 5, and thus 
gives the largest LCPDF value. This implies that the 
ICM-based sampling can be replaced by a sampling 
process based on the closest-neighborhood-match 
search, which can be implemented efficiently using fast 
neighborhood search methods. In our implementation, a 
fast neighborhood search algorithm similar to the one 
used in Ashikhmin’s work on natural texture synthesis 
[1] is used. It is noted that the non-causal neighborhood 
is used in our algorithm instead of the causal neighbor-
hood used in the original Ashikhmin’s algorithm. 

With respect to the running time of our algorithm, 
for two grey scale input images of size 6464× , the 
straightforward implementation of the algorithm takes 
about 4 hours on average to generate an output texture 
of size 128128×  on a 1.7GHz Penntium 4 PC running 
Windows XP Professional, while with the faster im-
plementation, the algorithm takes less than one minute 
on average. 

6 Experimental Results 
In the first subsection, we present results for texture 

mixtures including comparison between that of ours 
with that of Wei’s [31]. In the second subsection, we 
present some results in the application of texture re-
placement using our approach. 

6.1 Texture Mixtures 
Figure 2 gives some comparison results between our 

approach and Wei’s approach [31]. In the figure, im-
ages in columns (a) and (b) are the input textures, im-
ages in (c) are the results from Wei’s algorithm, and 
images in (d) are generated using our algorithm with 
the order of neighborhood 17=d  and the user con-
strained table is )( ijwT =  with )0,1(=ijw  for all pix-

els in the left half of the images in (d), and )1,0(=ijw  
for pixels in the right half of the images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In other words, table T imposes a constraint such that 
the SR process samples only from image (a) for pixels 
in the left half of the output texture, and from image (b) 

(a) (b) (c) (d)
Figure 2: The results from Wei’s approach are 
shown in column (c) and our approach in column 
(d), where images in column (a) and (b) are the in-
put textures. The gray scale input images are taken 
from the Brodatz image set, and the color input im-
ages are taken from the Vistex image set. Images in 
column (c) are copied from Wei’s thesis [31] with 
permission. 

Figure 3: Results for different user constraints. In 
each row, the first two images are the inputs, the 
third image specifies the user constraint, and the 
last image is the synthesized texture mixture. 
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for pixels in the right half. One can see that the transi-
tion regions between two textures are blurred in results 
using Wei’s approach, while they are not in our ap-
proach. 

Figure 3 gives some texture mixture results with dif-
ferent user specified constraints. In each row of the 
figure, the first two images (from left to right) are the 
input textures, the last image is the texture mixture gen-
erated from the input textures with constraints specified 
by the third image. 

6.2 Application to Tetxure Replacement 
Tetxure replacement is usually considered as con-

strained texture synthesis [7, 9, 16]. We shall not con-
sider the complex situation as that described in Drori’s 
paper for image completion [7]. Instead, we consider 
texture images that contain flawed regions such as 
scratches, undesirable objects, or background textures 
to be replaced. Figure 4 gives some examples of texture 
replacement using our user constrained approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

In each of the first two rows in Figure 4, the first im-
age has a hole in it, which has to be filled by textures 
similar to the surrounding ones. This situation can be 
considered as a special case of our user constrained 
multiscale MRF texture mixture model. For example, to 
fill the hole in the flower image in the second row, we 
first take a flower patch in the flawed image. Then we 
synthesize the hole by starting at the boundary of the 
hole. We randomly choose a pixel on the boundary and 
synthesize it using our algorithm. After all pixels in the 
boundary have been processed, i.e. the old boundary is 
synthesized, we repeat the process on the new boundary 
until the hole is filled. Note that if one fills the hole in 
raster scan order or even randomly but without going 
outside to inside along the boundary of the hole, visible 
boundaries can be seen around the hole. 

A more complex and interesting texture replacement 
example is illustrated in the last row of Figure 4. In this 
case, for example, we want the surrounding area (back-
ground) of the upper lotus flowers to be texture-
replaced by one type of texture (e.g. the third texture 
image in the last row in Figure 4), while the surround-
ing area of the lower lotus flower to be texture-replaced 
by another type of textures (e.g. the fourth texture im-
age in the last row in Figure 4), and the transition be-
tween the two types of replaced textures to be kept 
smooth with no visible seams. This can be done by per-
forming our user constrained texture synthesis at two 
boundaries: the one surrounding the upper two lotus 
flowers and the other one surrounding the lower lotus 
flower, which is specified by the grey scale image in 
Figure 4. Like the hole-filling process described before, 
the constrained synthesis is performed on boundaries. 
However, instead of going from the outside to the in-
side, the direction of the synthesis process is going 
away from the object (the lotus flowers in Figure 4). 
The smooth transition between regions of different 
types of background textures are handled by specifying 
a smooth user constrained probability table.  

6.3 Limitations of Current Implementation 
All of the color images presented in this paper are 

generated by the fast version of our algorithm described 
in Section 5. In our current implementation, we have 
some limitations as follows.  

The first one is due to the limitation of Ashikmin’s 
algorithm [1]. For the fast neighborhood search, it is 
possible that there is no best neighborhood match found 
in the input texture for a given pixel in the synthesized 
texture. This is due to the following observation: during 
the synthesis process a pixel in the output image is cho-
sen randomly (see step 5.1 in Figure 1), therefore, it is 
possible that none of its neighboring pixel has been 
synthesized (processed), and this causes an empty can-
didate list for the best neighborhood match searching 
[1]. In this case, our algorithm randomly choose a pixel 
in the input texture and copy its color to that of the tar-
get pixel. This introduces some random noises in the 
output textures (see Figure 3).  

The second limitation is that some of our output tex-
tures presented in this paper have sharp edges (again 
see Figure 3). This is because the heuristic edge han-
dling method as described in Ashikmin’s paper [1] has 
not been implemented in our fast neighborhood search 
algorithm.  

We are now investigating a better way to overcome 
the above two problems such as using the approximate 
nearest neighborhood (ANN) search method described 
in Hertzmann’s paper on image analogies [15], which 
can be used to overcome problems in both Wei’s fast 

Figure 4: Results for texture replacements. 
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TSVQ searching algorithm [30] and in Ashikmin’s fast 
searching algorithm [1]. 

7 Conclusion and Discussion 
In the literature, the problem of texture mixtures is 

not well understood or solved, and only a few published 
methods are related to it. In this paper, we address the 
problem of texture mixtures with constraints. We pre-
sent a user constrained multiscale MRF model for tex-
ture mixtures based on stochastic relaxation, which is 
an extension to the original multiscale MRF model 
[25]. In the model, a texture image is represented as a 
Markov random field defined on a multiscale lattice 
system. The multiscale representation of an image is 
constructed based on local decimation to make sure that 
the texture information can transfer from higher levels 
to lower levels without loss of information. 

Given two or more input textures, a texture mixture 
is synthesized by statistically sampling the LCPDFs 
calculated from the input textures with user specified 
constraint, which is expressed as a look-up table with 
the same size as the output texture. Each entry of the 
user constrained table is a vector of weights in the range 
of ]1,0[ , each of which is used to calculate a weighted 
sum of the LCPDFs for a given target pixel. Then the 
SR algorithm is used to generate a value for the pixel 
by sampling the weighted sum of LCPDFs. 

A straightforward implementation of our algorithm is 
slow. A faster version is proposed by incorporating the 
idea of Ashikmin’s fast neighborhood searching algo-
rithm [1], and the running time is decreased by a factor 
of 500 - 1000. The experimental results show that our 
algorithm performs well in the quality of results and 
outperforms Wei’s algorithm [31] in the quality of the 
synthesized textures. 

We have also demonstrated that our user constrained 
MRF texture model can be used in the application to 
texture replacement. It is, however, noted that the cur-
rent implementation of our algorithm has some limita-
tions as discussed in Section 6.3, which can be ad-
dressed by the ANN search method described in 
Hertzmann’s paper [15]. 
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