
 1

User Constrained Multiscale MRF Model for Texture Mixture Synthesis
and its Application to Texture Replacement

Xuejie Qin Yee-Hong Yang

{xuq, yang}@cs.ualberta.ca
Department of Computing Science

University of Alberta

Abstract
The original multiscale MRF texture model proposed

by Paget (IEEE Transactions on Image Processing,
1998, page 925-931) can be used to synthesize a broad
range of textures but is limited to taking a single input
texture and outputting a homogeneous texture similar to
the input. This is insufficient for textures that have
combined visual characteristics from several different
sources. To address this problem, this paper presents a
new method, called User Constrained multiscale MRF
model, for synthesizing a new texture mixture from
multiple input textures. Since the Gibbs sampler and
exhaustive search are used in the original multiscale
MRF model, a brute force implementation of the algo-
rithm is slow. To overcome this problem, an existing
fast neighborhood search technique is adapted for our
model, and the run time is decreased by a factor of 500-
1000. We also demonstrate that our method can be used
in texture replacement. The experimental results show
that our algorithm performs well in the quality of re-
sults.

Key words: Texture synthesis, texture mixture, texture
replacement, Markov random field, local conditional
probability function.

1 Introduction
In this paper, a texture mixture is considered as a

synthesized texture that has the appearance of two or
more input textures. In the literature, there is not much
research done related to texture mixtures, and only a
handful of methods have been published. In Heeger and
Bergen’s paper [14], they give a brief discussion at the
end of their paper on how to generate texture mixtures
using their histogram-matching method with steerable
pyramids. Unfortunately, their approach fails to gener-
ate satisfactory results. In Bar-Joseph et al.’s work [2],
a statistical learning tree is used to generate texture
mixtures from multiple sources. The limitations of their
approach include the substantial memory requirement
for the learning trees and the blurring effects in the out-
put textures if the input textures are different from each
other. In Portilla and Simoncelli’s work [27], a wavelet

based statistical model is presented for texture analysis
and synthesis. As an application of their model, they
show that texture mixtures could be generated by sam-
pling linear combinations of global statistics measured
at wavelet subbands of input textures. It is obvious that
a texture mixture generated by their approach is a sim-
ple blend of input textures because linear interpolation
between global parameters of the input textures is em-
ployed. Wei in his Ph.D. thesis [31] addresses the prob-
lem of texture mixtures within the framework of multi-
ple source texture synthesis, which is an extension of
his texture synthesis approach for single input texture
[30]. One problem of Wei’s approach is that the algo-
rithm generates blurred edges of structural textures (see
Figure 2). The second problem of Wei’s approach,
which is also a limitation of all the other approaches
described before, is that it is difficult for the algorithm
to incorporate user constraints which is crucial for mix-
ing textures because, otherwise the results are difficult
to adjust according to user’s needs [1, 15, 23].

To address the above problems, in this paper, we pre-
sent a new user constrained multiscale MRF model for
generating textures from multiple input sources, which
is an extension of the original multiscale MRF texture
model for single input texture synthesis proposed by
Paget [25].

Given two or more input textures, our algorithm gen-
erates a texture mixture by synthesizing each pixel of
the output image with user-specified constraints, which
is specified as a look-up table with the same size as the
output texture, each entry of which specifies how the
corresponding pixel in the output texture is sampled
from the input textures. For each pixel in the output
image, our algorithm first looks up the table to get the
local constraint information on that pixel, then calcu-
lates the local conditional probability density function
(LCPDF) from the input textures with the specified
constraint, and finally samples a value of the pixel
based on the calculated LCPDF using stochastic relaxa-
tion such as the Metropolis algorithm, the Iterative
Conditional Modes (ICM) algorithm, or the Gibbs sam-
pler [12, 26].

Because of the expensive calculation of the LCPDFs
during sampling, a straightforward implementation of

 2

the algorithm is slow. We demonstrate that the sam-
pling process based on the ICM algorithm can be ap-
proximated by a nearest neighborhood search process.
Therefore, a fast neighborhood search algorithm, for
example, the one described in Ashikhmin’s paper [1]
can be adapted to speed up the algorithm. Finally, we
demonstrate in the experimental section that our model
can be used in the application to texture replacement.

In summary, the contributions of this paper include:
(1) a new user constrained MRF model for generating
texture mixtures, which is an extension to the original
multiscale MRF model by Paget [25], (2) a fast imple-
mentation of the algorithm, and (3) the application of
our model to texture replacement.

The rest of the paper is organized as follows. The re-
lated work is described in the next section. In Section 3,
we describe some background knowledge on MRF tex-
ture models. In Section 4, we present our general user
constrained multiscale MRF model for texture mix-
tures. In Section 5, we discuss about the implementa-
tion and acceleration of our algorithm. In Section 6, we
present the experimental results on both texture mix-
tures and texture replacement. The limitations of our
current implementation are also discussed. Finally, the
conclusion and discussion are presented in Section 7.

2 Related Work
Our work is closely related to texture synthesis. The

earliest technique for generating synthetic textures is
texture mapping [13], which is still an active research
topic (e.g. [28, 33], etc). However, texture mapping
suffers the problems of distortion, discontinuity, and
unwanted seams. To solve those problems, procedural
texturing (i.e. solid texturing) [8, 20] can be used, in
which procedures are developed to generate synthetic
textures without requiring input textures. By calling a
compact procedure, textures are generated directly on
surfaces of 3D objects without seams and without dis-
continuity.

Another important technique is called texture analy-
sis and synthesis using statistical approaches. Followed
Julesz’s pioneer work [17], several statistical texture
models have been proposed such as, to name a few, the
MRF model [6, 12], the FRAME model [35], the para-
metric texture model based on joint statistics of com-
plex wavelet coefficients [27], and the cooccurrence-
based texture models [24]. Other well known statistical
approaches includes the multiresolution histogram-
matching [14], the feature pyramid sampling procedure
[4], the non-parametric sampling [9], the fast texture
synthesis [31], and etc.

In the above approaches, the synthesis process is per-
formed at the pixel level of images, thus, in general,
they are slow. For real time applications, there are

patch-based texture synthesis approaches (e.g. [10, 19,
22], etc), in which synthesized textures are generated by
sampling small patches of input textures. It is noted that
image-based rendering techniques can also be used for
texture synthesis such as, to name a few, Bernardini et
al.’s image-based registration technique [3] for generat-
ing high-quality textures from multiple scans, Veryovka
et al.’s and Fung et al’s techniques for generating artis-
tic style textures [11, 29]. There are also recent works
(e.g. [21, 32, 34], etc) on synthesizing textures onto 3D
surfaces, and we shall not review them in this paper
because of page limitations.

Although our work has some resemblance to that of
Ashikhmin’s [1], Hertzmann’s [15], Kim and Pel-
lacini’s [18], and Liu et al.’s [23], ours is different from
theirs in some significant points. In both Ashikhmin’s
and Hertzmann’s work, different types of textures in the
output image are essentially the component textures
from the same single input source image; while in our
work, different types of textures in the output image are
from different input texture images. In Kim and Pel-
lacini’s work [18], instead of using multiple input tex-
tures, they use a set of image tiles (image of objects) to
fill a user specified container image. Thus their ap-
proach is best for image mosaics. In Liu et al.’s work
[23], user selected patterns in the source image are used
to replace all similar target patterns in a given image. In
essence, their approach is more appropriate for texture
editing [5].

3 MRF Models
The MRF models are important techniques in com-

puter vision, graphics, and image processing. The un-
derlying theory of MRF texture models is that the in-
formation at a pixel location is dependent on the infor-
mation of its neighboring pixels [6, 12, 25].

In MRF models, an image is modeled as a random
field X defined on a finite rectangular lattice S. Let sX
be a random variable at site s . The random field X on S
is the set of all random variables sX , i.e.

}|{ SsX s ∈=X . The set of all possible values of sX
is called the state space of s, which is denoted by sΛ . In
this paper, we assume a common discrete state space
for all s, i.e. }255,...,1,0{== ΛΛs for all Ss ∈ . The
configuration space on X is denoted by Ω , which is
defined as ∏ ∈=Ω Ss sΛ . A joint probability on Ω is
denoted by P and the Local Conditional Probability
Density Function (LCPDF) at site Ss ∈ is given by

),|()(srxXxXPsLCPDF rrss ≠=== , which im-
plies that the probability of site s having pixel value

 3

ss Λx ∈ depends on the pixel values of its neighboring
pixels.

The neighborhood of s with order d , denoted by
d
sN , is given by }||0|{ 2 dsrSrN d

s ≤−<∈= . The set

of all neighborhoods d
sN is called a neighborhood sys-

tem of order d on S, which is denoted by
}|{ SsN d

s ∈=N . The neighborhood system has two

important properties: for any Sts ∈, , (1) d
sNs ∉ , and

(2) d
tNs ∈ if and only if d

sNt ∈ .
Mathematically, an MRF is defined as a random field

}|{ SsX s ∈=X with a joint probability function P
defined on it, which has the following three properties:

SsNrxxPsLCPDFiii

Pii
Pi

d
srs

x

∈∀Ω∈∀∈=

=
Ω∈∀>

∑ Ω∈

,),,|()()(

1)()(
,0)()(

x

x
xx

 Properties (i) and (ii) ensure that P is a probability
distribution with a positive value for any configuration

Ω∈x . Property (iii) is defined on a neighborhood sys-
tem, which ensures that the random field is an MRF, i.e.
the LCPDF of a given site s in a given image x can be
calculated using the information of its neighboring pix-
els.
 Based on the equivalence between the MRF and
Gibbs distribution established by the Hammersley-
Clifford Theorem [12], many MRF models have been
proposed in the literature (see [26] for a complete sur-
vey). In the next section, we describe our new user con-
strained multiscale MRF model for texture mixtures.

4 Proposed Model
 The simplest and commonly used MRF models are
the auto-models based on clique structures. Since clique
structures cannot efficiently capture texture features,
the auto-models can only model very limited types of
textures [26, 35]. To model a wide range of textures, a
multiscale representation can be incorporated into MRF
models, which is described in the next subsection.

4.1 Multiscale MRF Texture Model
Given an image X of size NM × , let S be the rectan-

gular lattice on which the image X is defined, i.e.:
}0,0|),({ NjMijisS <≤<≤== . (1)

 The multiscale representation of image X, is defined
as a set of images lX , where 0≥l is the level index of
image lX . For a given value of l , image lX is de-
fined on a lattice SS l ⊂ , where,

}20,20|)2,2({ lllll NjMijisS <≤<≤== . (2)

For each level lX of the multiscale representation of X,
the neighborhood l

sN of lll Sjis ∈=)2,2(is defined
as:

})()(0|)2,2({ 22 djqipqprN lll
s ≤−+−<== , (3)

where d is the order of the neighborhood system.
It is noted that the image at level 0, i.e. 0X is the

original image X since SS =0 , and that 1+lS is a subset
of lS , i.e. ll SS ⊂+1 . To infer the intensity value of
each pixel from the current level to the next level, we
use a local decimation scheme [26]. For image 1+lX ,
let 1+l

sx be the intensity value of the pixel at site
111)2,2(+++ ∈= lll Sjis . By local decimation, we mean

that the value of 1+l
sx is directly copied from l

sx - the

value of pixel s at level l in the image lX , i.e.,
l
s

l
s xx =+1 . (4)

Consider the case of synthesis using a single input
texture. Let Y be the sample input image, and X the
synthesized output image, which is initialized as ran-
dom noise at the beginning. The multiscale MRF syn-
thesis algorithm first constructs a multiscale representa-
tion for each of X and Y using Eq. 1 - 4. Starting from
the lowest resolution image lX , the algorithm employs
stochastic relaxation (SR) to iteratively update each
pixel value in lX based on the LCPDF calculated from
sample input image lY until an equilibrium state is
reached. After lX is synthesized, the algorithm goes to
the next higher resolution image 1−lX , applies SR on
that level with the constraint that all pixel information
from the previous level must be maintained at that level
through the SR process. By the advantage of local
decimation used in the multiscale representation de-
scribed before, the constraint can be imposed by fixing
the value of each pixel from the previous level, i.e. by
setting l

r
l
r xx =−1 for lSr ∈∀ , and the rest of pixels at

1−lX undergo a non-constraint SR.
The SR process uses the LCPDF to sample pixel

value at each level. Let l
xS be the lattice for output im-

age lX , and l
yS for input image lY . Let lN be a

neighborhood system at level l. Note that for simplicity
reasons we use the same neighborhood system configu-
ration for both X and Y. For each pixel site l

xSs ∈ , let

sx be its pixel value, the LCPDF at s is calculated by:

∑
∈

∈

 −=∈

l
y

l
p

l
y
SN

Sp
sp

l
srs z

hsQ
NrxxP 2

2 ||||
2

1exp
)(

1),|(,(5)

 4

where)(sQ is the normalizing function, h the optimal
Parzen window parameter [26], and spz a d-
dimensional vector. The calculations of)(sQ , h, and

spz are given as follows:

∑ ∑
∈ ⊂∈

−=

Λ SNSp
sp

s l
y

l
p

l
y h

sQ
λ ,

2
2 ||||

2
1exp)(z , (6)

[]{ })4(121(4 ddnh ++= σ , (7)

Tl
srpsrrpssp Nrtyxyx]),1)((,[∈−−−= −−z , (8)

where in Eq. 7, n is the size of the input image lY ,
1|| += l

sNd , and 2σ is the variance of the histogram of

image lY .
 In Eq. 8, rt is the temperature at pixel r and is initial-
ized to 1 for all pixels in the output image X at the be-
ginning of the SR process. At the end of each iteration,
the temperature st of a given target pixel lSs ∈ is up-
dated by the following temperature function:

}||)0.1(,0max{ l
sNr rs Ntt l

s∑ ∈+−= , (9)

where || l
sN is equal to the total number of pixels in the

neighborhood l
sN .

 When the temperature value of a given pixel site s is
equal to zero, then s is said to be in an equilibrium state.
When all of the pixels in lX are in the equilibrium
state, image lX is said to be in an equilibrium state,
and the SR process stops for lX and proceeds to the
next resolution image 1−lX .

4.2 User Specified Constraints
Given two or more input textures 1Y , 2Y , …, mY , we

want to synthesis a texture X, which has the combined
visual appearance of all the input textures. To enable
multiple source texture synthesis, we incorporate user
specified constraints into the multiscale MRF texture
model described earlier. The purpose of incorporating
user constraints is to tell the SR process which input
textures to use, and in particular, how they are used to
sample a given target pixel in the output texture.

A user specified constraint is expressed as a look-up
table T, which has the same size as the output texture
image X. Each entry in T is an m-dimensional vector
consisting of m non-negative weights with values in the
range of]1,0[. Each weight specifies the contribution
from each input texture iY when calculating the
LCPDF for a given target pixel using Eq. 5 during the

SR process. Let),(jis = be a target pixel in X to be
synthesized. Let misis w ≤≤= 1)(w be the table entry at
location),(jis = in the look-up table T. Let siP be the
LCPDF calculated from iY using Eq. 5 - 8, then the
weighted sum of siP , which is given by Eq. 10 below,
is used by the SR process to sample a value of s:

si
mi

sisrs PwNrxxP ∑
≤≤

=∈
1

),|(. (10)

4.3 Algorithm
As a summary of our user constrained multiscale

MRF model for multiple source texture synthesis, we
present the complete algorithm in pseudo code shown
in Figure 1 for easy reference. In the next section, we
discuss some issues on the implementation and a new
acceleration of the algorithm.

Figure 1: The user constrained multiscale MRF
multiple source synthesis algorithm.

User Constrained Multiscale MRF Multiple Source
Texture Synthesis

Input:
Y1, Y2, …, Ym ← training texture images.
T ← user constrained table.
Output:
X ← the synthesized texture mixture.

Begin
1. Initialize X as a random noise image, for each pixel

s in X, set its initial temperature ts = 1.0.
2. L ← the number of levels of the multiscale.
3. Build the multiscale {Xl, Sx

l} for X using Eq. 1-4.
4. Build the multiscale {Yi

l, Siy
l} for each Yi using

Eq. 1-4, 0 ≤ i ≤ m.
5. For l = L – 1 to 0 do

While Xl is not in the equilibrium state do
5.1. Randomly choose any site s in Sx

l for which
ts > 0.

5.2. For j = 0 to m do
5.2.1. Calculate the LCPDF Psj for site s using

sample image Yj by Eq. 5-8.
5.3. Calculate the user constrained LCTDF P for s

using Eq.10.
5.4. Choose new pixel value xs for s by sampling

the LCPDF calculated from 5.3 using Gibbs
sampler or ICM algorithm.

5.5. Update site s’s temperature ts using Eq.9.
End of while

End of for
End of begin

 5

5 Implementation and Acceleration
Using a straightforward implementation of our algo-

rithm shown in Figure 1, the run time performance is
slow because of the expensive calculation of the
LCPDF at each pixel site per iteration. To speed it up,
we adopt the fast neighborhood search method as de-
scribed in Ashikmin’s paper [1] based on the following
observations. A much better way to do this is discussed
in the experimental section, which is inspired by
Hertzmann’s work on image analogies [15].

When the ICM algorithm [26] is used in the sam-
pling process in step 5.4 (Figure 1), the pixel value at
site s is updated by sx with the largest LCPDF value.
From Eq. 5 in the previous section, one can see that a
pixel p in sample image Y with the closest neighbor-
hood match gives the smallest negative number in the
exponential part of the right side of Eq. 5, and thus
gives the largest LCPDF value. This implies that the
ICM-based sampling can be replaced by a sampling
process based on the closest-neighborhood-match
search, which can be implemented efficiently using fast
neighborhood search methods. In our implementation, a
fast neighborhood search algorithm similar to the one
used in Ashikhmin’s work on natural texture synthesis
[1] is used. It is noted that the non-causal neighborhood
is used in our algorithm instead of the causal neighbor-
hood used in the original Ashikhmin’s algorithm.

With respect to the running time of our algorithm,
for two grey scale input images of size 6464× , the
straightforward implementation of the algorithm takes
about 4 hours on average to generate an output texture
of size 128128× on a 1.7GHz Penntium 4 PC running
Windows XP Professional, while with the faster im-
plementation, the algorithm takes less than one minute
on average.

6 Experimental Results
In the first subsection, we present results for texture

mixtures including comparison between that of ours
with that of Wei’s [31]. In the second subsection, we
present some results in the application of texture re-
placement using our approach.

6.1 Texture Mixtures
Figure 2 gives some comparison results between our

approach and Wei’s approach [31]. In the figure, im-
ages in columns (a) and (b) are the input textures, im-
ages in (c) are the results from Wei’s algorithm, and
images in (d) are generated using our algorithm with
the order of neighborhood 17=d and the user con-
strained table is)(ijwT = with)0,1(=ijw for all pix-

els in the left half of the images in (d), and)1,0(=ijw
for pixels in the right half of the images.

In other words, table T imposes a constraint such that
the SR process samples only from image (a) for pixels
in the left half of the output texture, and from image (b)

(a) (b) (c) (d)
Figure 2: The results from Wei’s approach are
shown in column (c) and our approach in column
(d), where images in column (a) and (b) are the in-
put textures. The gray scale input images are taken
from the Brodatz image set, and the color input im-
ages are taken from the Vistex image set. Images in
column (c) are copied from Wei’s thesis [31] with
permission.

Figure 3: Results for different user constraints. In
each row, the first two images are the inputs, the
third image specifies the user constraint, and the
last image is the synthesized texture mixture.

 6

for pixels in the right half. One can see that the transi-
tion regions between two textures are blurred in results
using Wei’s approach, while they are not in our ap-
proach.

Figure 3 gives some texture mixture results with dif-
ferent user specified constraints. In each row of the
figure, the first two images (from left to right) are the
input textures, the last image is the texture mixture gen-
erated from the input textures with constraints specified
by the third image.

6.2 Application to Tetxure Replacement
Tetxure replacement is usually considered as con-

strained texture synthesis [7, 9, 16]. We shall not con-
sider the complex situation as that described in Drori’s
paper for image completion [7]. Instead, we consider
texture images that contain flawed regions such as
scratches, undesirable objects, or background textures
to be replaced. Figure 4 gives some examples of texture
replacement using our user constrained approach.

In each of the first two rows in Figure 4, the first im-
age has a hole in it, which has to be filled by textures
similar to the surrounding ones. This situation can be
considered as a special case of our user constrained
multiscale MRF texture mixture model. For example, to
fill the hole in the flower image in the second row, we
first take a flower patch in the flawed image. Then we
synthesize the hole by starting at the boundary of the
hole. We randomly choose a pixel on the boundary and
synthesize it using our algorithm. After all pixels in the
boundary have been processed, i.e. the old boundary is
synthesized, we repeat the process on the new boundary
until the hole is filled. Note that if one fills the hole in
raster scan order or even randomly but without going
outside to inside along the boundary of the hole, visible
boundaries can be seen around the hole.

A more complex and interesting texture replacement
example is illustrated in the last row of Figure 4. In this
case, for example, we want the surrounding area (back-
ground) of the upper lotus flowers to be texture-
replaced by one type of texture (e.g. the third texture
image in the last row in Figure 4), while the surround-
ing area of the lower lotus flower to be texture-replaced
by another type of textures (e.g. the fourth texture im-
age in the last row in Figure 4), and the transition be-
tween the two types of replaced textures to be kept
smooth with no visible seams. This can be done by per-
forming our user constrained texture synthesis at two
boundaries: the one surrounding the upper two lotus
flowers and the other one surrounding the lower lotus
flower, which is specified by the grey scale image in
Figure 4. Like the hole-filling process described before,
the constrained synthesis is performed on boundaries.
However, instead of going from the outside to the in-
side, the direction of the synthesis process is going
away from the object (the lotus flowers in Figure 4).
The smooth transition between regions of different
types of background textures are handled by specifying
a smooth user constrained probability table.

6.3 Limitations of Current Implementation
All of the color images presented in this paper are

generated by the fast version of our algorithm described
in Section 5. In our current implementation, we have
some limitations as follows.

The first one is due to the limitation of Ashikmin’s
algorithm [1]. For the fast neighborhood search, it is
possible that there is no best neighborhood match found
in the input texture for a given pixel in the synthesized
texture. This is due to the following observation: during
the synthesis process a pixel in the output image is cho-
sen randomly (see step 5.1 in Figure 1), therefore, it is
possible that none of its neighboring pixel has been
synthesized (processed), and this causes an empty can-
didate list for the best neighborhood match searching
[1]. In this case, our algorithm randomly choose a pixel
in the input texture and copy its color to that of the tar-
get pixel. This introduces some random noises in the
output textures (see Figure 3).

The second limitation is that some of our output tex-
tures presented in this paper have sharp edges (again
see Figure 3). This is because the heuristic edge han-
dling method as described in Ashikmin’s paper [1] has
not been implemented in our fast neighborhood search
algorithm.

We are now investigating a better way to overcome
the above two problems such as using the approximate
nearest neighborhood (ANN) search method described
in Hertzmann’s paper on image analogies [15], which
can be used to overcome problems in both Wei’s fast

Figure 4: Results for texture replacements.

 7

TSVQ searching algorithm [30] and in Ashikmin’s fast
searching algorithm [1].

7 Conclusion and Discussion
In the literature, the problem of texture mixtures is

not well understood or solved, and only a few published
methods are related to it. In this paper, we address the
problem of texture mixtures with constraints. We pre-
sent a user constrained multiscale MRF model for tex-
ture mixtures based on stochastic relaxation, which is
an extension to the original multiscale MRF model
[25]. In the model, a texture image is represented as a
Markov random field defined on a multiscale lattice
system. The multiscale representation of an image is
constructed based on local decimation to make sure that
the texture information can transfer from higher levels
to lower levels without loss of information.

Given two or more input textures, a texture mixture
is synthesized by statistically sampling the LCPDFs
calculated from the input textures with user specified
constraint, which is expressed as a look-up table with
the same size as the output texture. Each entry of the
user constrained table is a vector of weights in the range
of]1,0[, each of which is used to calculate a weighted
sum of the LCPDFs for a given target pixel. Then the
SR algorithm is used to generate a value for the pixel
by sampling the weighted sum of LCPDFs.

A straightforward implementation of our algorithm is
slow. A faster version is proposed by incorporating the
idea of Ashikmin’s fast neighborhood searching algo-
rithm [1], and the running time is decreased by a factor
of 500 - 1000. The experimental results show that our
algorithm performs well in the quality of results and
outperforms Wei’s algorithm [31] in the quality of the
synthesized textures.

We have also demonstrated that our user constrained
MRF texture model can be used in the application to
texture replacement. It is, however, noted that the cur-
rent implementation of our algorithm has some limita-
tions as discussed in Section 6.3, which can be ad-
dressed by the ANN search method described in
Hertzmann’s paper [15].

Acknowledgments
The authors would like to acknowledge the generous

funding from: NSERC, the Department of Computing
Science, the University of Alberta, and the ARC Schol-
arship. As well, they also would like to thank members
of the Computer Graphics Group for discussions. Fi-
nally, the authors would like to thank the anonymous
reviewers for their comments.

References
1. Ashikhmin, M., Synthesizing Natural Textures.

ACM Symposium on Interactive 3D Graphics,
2001: p. 217-226.

2. Bar-Joseph, Z., et al., Texture mixing and texture
movie synthesis using statistical learning. IEEE
TVCG, 2001. 7(2): p. 120-135.

3. Bernardini, F., I. Martin, and H. Rushmeier, High
Quality Texture Reconstruction from Multiple
Scans. IEEE TVCG, 2001. 7(4): p. 318-332.

4. Bonet, J.S.D., Multiresolution Sampling Procedure
for Analysis and Synthesis of Texture Images. ACM
SIGGRAPH, 1997: p. 361-368.

5. Brooks, S. and N. Dodgson, Self-Similarity Based
Texture Editing. ACM SIGGRAPH, 2002: p. 653-
656.

6. Cross, G.C. and A.K. Jain, Markov Random Field
Texture Models. IEEE PAMI, 1983. 5(2): p. 25-39.

7. Drori, I., D. Cohen-Or, and H. Yeshurun, Fragment-
Based Image Completion. ACM SIGGRAPH, 2003.
22(3): p. 303-312.

8. Ebert, D.S., et al., Texturing and Modeling: A Pro-
cedural Approach. Second Edition. 1998, Academic
Press.

9. Efros, A. and T. Leung, Texture Synthesis by Non-
Parametric Sampling. IEEE ICCV, 1999: p. 1033-
1038.

10. Efros, A.A. and W.T. Freeman, Image Quilting for
Texture Synthesis and Transfer. ACM SIGGRAPH,
2001: p. 341-346.

11. Fung, J. and O. Veryovka, Pen-and-ink textures for
real-time rendering. Graphics Interface, 2003: p.
131-138.

12. Geman, S. and D. Geman, Stochastic relaxation,
Gibbs distributions, and the Bayesian Restoration of
Images. IEEE PAMI, 1984. 6(6): p. 721-741.

13. Heckbert, P.S., Fundamentals of Texture Mapping
and Image Warping. Master's Thesis, in Dept. of
Elec. Eng. and Compt. Sci. 1989, Univ. of Califor-
nia: Berkeley.

14. Heeger, A.J. and J.R. Bergen, Pyramid-Based Tex-
ture Analysis/Synthesis. ACM SIGGRAPH, 1995: p.
229-238.

15. Hertzmann, A., et al., Image Analogies. ACM SIG-
GRAPH, 2001: p. 327-340.

16. Igehy, H. and L. Pereira, Image Replacement
Through Texture Synthesis. International Confer-
ence on Image Processing, 1997. 3: p. 186-189.

17. Julesz, B., Visual Pattern Discrimination. IEEE
Transactions on Information Theory, 1962: p. 84-92.

18. Kim, J. and F. Pellacini, Jigsaw Image Mosaics.
ACM SIGGRAPH, 2002: p. 657-664.

 8

19. Kwatra, V., et al., Graphcut Textures: Image and
Video Synthesis using Graph Cuts. ACM SIG-
GRAPH, 2003. 22(3): p. 227-286.

20. Lefebvre, L. and P. Poulin, Analysis and Synthesis
of Structural Textures. Graphics Interface, 2000: p.
77-86.

21. Lensch, H., W. Heidrich, and H. Seidel, A Silhou-
ette-Based Algorithm for Texture Registration and
Stitching. Graphical Models, 2001. 63(4): p. 245-
262.

22. Liang, L., et al., Real-Time Texture Synthesis by
Patch-Based Sampling. ACM SIGGRAPH, 2001.
20(3): p. 127-150.

23. Liu, Z., et al., Pattern-Based Texture Metamorpho-
sis. Pacific Graphics, 2002: p. 184-191.

24. Lohmann, G., Co-occurrence-Based Analysis and
Synthesis of Textures. ICPR, 1994. 1: p. 449-453.

25. Paget, R. and I.D. Longstaff, Texture Synthesis via a
Noncausal Nonparametric Multiscale Markov Ran-
dom Field. IEEE Transactions on Image Processing,
1998. 7(6): p. 925-931.

26. Paget, R., NonParametric Markov Random Field
Models for Natural Texture Images, in Dept. of
Computer Science & Electrical Engineering. 1999,
The Univ. of Queensland, Australia: Queensland.

27. Portilla, J. and E.P. Simoncelli, A Parametric Tex-
ture Model Based on Joint Statistics of Complex
Wavelet Coefficients. Int'l Journal of Computer Vi-
sion, 2000. 40(1): p. 49-71.

28. Soler, C., M. Cani, and A. Angelidis, Hierarchical
Pattern Mapping. ACM SIGGRAPH, 2002. 21(3):
p. 673-680.

29. Veryovka, O., Animation with Threshold Textures.
Graphics Interface, 2002: p. 9-16.

30. Wei, L. and M. Levoy, Texture Synthesis Using
Tree-Structured Vector Quantization. ACM SIG-
GRAPH, 2000: p. 479-488.

31. Wei, L., Texture Synthesis by Fixed Neighborhood
Searching, in The Dept. of Elec. Eng. 2001, Stanford
Univ.: Stanford.

32. Ying, L., et al., Texture and Shape Synthesis on Sur-
faces. Eurographics Workshop on Rendering, 2001:
p. 301-312.

33. Zelinka, S. and M. Garland, Interactive Texture Syn-
thesis on Surfaces using Jump Maps. Eurographics
Symposium on Rendering, 2003: p. 90-96.

34. Zhang, J., et al., Synthesis of Progressively-Variant
Textures on Arbitrary Surfaces. ACM SIGGRAPH,
2003. 22(3): p. 295-302.

35. Zhu, S.C., Y. Wu, and D. Mumford, Filters, Ran-
dom Fields and Maximum Entropy - Towards a Uni-
fied Theory for Texture Modeling. Int'l Journal of
Computer Vision, 1998. 27(2): p. 1-20.

