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ABSTRACT 

 

Pork quality and carcass characteristics are now being integrated into swine breeding objectives 

because of their economic value. Understanding the genetic basis for these traits is necessary for 

this to be accomplished. The main objective of this study was to improve pork quality traits in 

two Canadian swine populations. Data from 6,408 commercial crossbred pigs with performance 

traits recorded in production systems with 2,100 of them having meat quality and carcass 

measurements. These pigs were progeny from 139 Duroc boars bred to 429 F1 hybrid Landrace 

× Large White sows. In the first study, phenotypic and genetic parameters for meat quality and 

carcass traits were estimated. Heritability estimates (± SE) for carcass traits were moderate to 

high and ranged from 0.22 ± 0.08 for longissimus dorsi muscle area to 0.63 ± 0.04 for trimmed 

ham weight, except for firmness that was low. Heritability estimates (± SE) for meat quality 

traits varied from 0.10 ± 0.04 to 0.39 ± 0.06, for the Minolta b* of ham quadriceps femoris 

muscle and shear force, respectively. There were high negative genetic correlations between drip 

loss with pH and shear force and a positive correlation with cooking loss. Genetic correlation 

between carcass weight with carcass marbling was highly positive. It was concluded that 

selection for increasing primal and subprimal cut weights with better pork quality may be 

possible. Furthermore, the use of pH is confirmed as an indicator for pork water-holding capacity 

and cooking loss. In the second study, heritability, phenotypic, and genetic correlations between 

performance traits (n=9) with meat quality (n=25) and carcass (n=19) traits were estimated. 

Performance traits had low-to-moderate heritabilities (±SE), ranged from 0.07±0.13 to 0.45±0.07 

for weaning weight, and ultrasound backfat depth, respectively. The results indicate that: (a) 

selection for birth weight may increase drip loss, lightness of longissimus dorsi, and gluteus 
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medius muscles but may reduce fat depth; (b) selection for nursery weight can be valuable for 

increasing both quantity and quality traits; (c) selection for increased daily gain may increase the 

carcass weight and most of the primal cuts. These findings suggest that deterioration of pork 

quality may have occurred over many generations through the selection for less backfat 

thickness, and feed efficiency, but selection for growth had no adverse effects on pork quality. 

The heritabilities of carcass and pork quality traits indicated that they can be improved through 

traditional selection and genomic selection, respectively. The estimated genetic parameters for 

performance, carcass and meat quality traits can be incorporated into the breeding programs that 

emphasize product quality in these Canadian swine populations. In the third study, a genomic 

selection was performed for meat quality and carcass traits in 2,100 commercial pigs and 107 

Duroc purebred pigs using Illuminaôs PorcineSNP60 BeadChip and single-step BLUP (ssBLUP). 

It was concluded that genomic predictions models developed using ssBLUP could predict the 

parental purebreds without substantial loss of prediction accuracy compared to their crossbred 

progenies to improve carcass and pork quality traits. The prediction accuracies for the purebred 

parental resulted from the ssBLUP evaluation were also compared with the accuracies from the 

traditional parental average. The results showed that the prediction accuracies resulted from the 

ssBLUP had average improvements of 17% and 16% for pork quality and carcass, respectively. 

In conclusion, this study confirmed that genomics could improve pork quality through genomic 

selection from commercial crossbred pigs to meet the demands by consumers, packers 

and processors. 
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Allah says in his glorious book:  

ñWe desired to bestow a favor upon those who were deemed weak in the 

land, and to make them the leaders, and to make them the heirsò 

 

Quran, Al -Qasas, Verse 5 
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CHAPTER 1. General Introduction 

 

1.1. INTRODUCTION 

 

The major focus of traditional swine breeding programs has been production efficiency 

with traits of interest such as reproductive, growth, backfat thickness and feed efficiency 

performance. More recently, the swine industry has focused on pork quality due to the 

processorsô, packersô and consumersô demands for food with better quality (Martinez and Zering, 

2004; van Wijk et al., 2005). Consequently, many researchers have focused on the genetics 

underlying pork quality traits during the last 20 years (Cameron, 1993; Hovenier et al., 1993a; 

Hovenier et al., 1993b; Sellier, 1998; De Vries et al., 1998; Verbeke et al., 1999; Knap et al., 

2002; Rosenvold and Anderson, 2003; van Wijk et al., 2005). Meat quality traits are recognized 

as quantitative traits, which are affected by genetic and environmental factors, including muscle 

physiology and characteristics, environmental conditions (nutrition, growth rate, age, pre-

slaughter conditions, slaughter practices and post mortem conditions), chilling, storage 

conditions and the genetics of the pigs (Schafer et al., 2002; Rosenvold and Anderson, 2003).  

Meat quality traits are low-to-moderately heritable while carcass composition traits are 

highly heritable (Ciobanu et al., 2011). Various factors may influence the variance component 

estimates including the end-point adjustment, population size, sampling and available pedigree 

(Miar et al., 2014a). Genetic improvement of meat and carcass quality in swine breeding 

programs requires estimating the genetic and phenotypic parameters of these traits. Estimates of 

heritabilities for meat quality and carcass characteristics and genetic correlations between these 

economically important traits are limited but have received attention recently (Newcom et al., 
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2002; van Wijk et al., 2005). However, to the best of my knowledge, there is no comprehensive 

parameter estimation for most of pork and carcass quality traits. Therefore, in the first study of 

this thesis, the genetic parameters including heritabilities, genetic and phenotypic correlations 

among pork quality and carcass traits were investigated in commercial crossbred pigs. Moreover, 

the second study of this thesis was a further investigation focusing on genetic and phenotypic 

correlations between performance traits with pork and carcass quality traits. These studies are 

needed for Canadian swine populations in order to implement selection programs that emphasize 

product quality. 

Increased understanding of the genes affecting pork quality could better satisfy consumer 

demands for excellent eating quality by applying genetic selection for pork quality with better 

eating quality. Traditional breeding approaches apply sophisticated statistical methods such as 

best linear unbiased prediction (BLUP) to evaluate the genetic potential of animals for 

economically important traits using phenotype and pedigree information observed on the animal. 

However, the genetic gain achieved is relatively slow for traits of low-to-moderate heritability 

(Miar et al., 2014b), or expensive to measure, such as those determined post-mortem e.g. pork 

quality. Therefore, selection of purebreds based on crossbred progeny performance for these 

traits would be useful in improving pure line parents to produce improved pork quality for their 

crossbred progenies. Recently, the Illumina PorcineSNP60 BeadChip was developed (Ramos et 

al., 2009) and has been used in genome-wide association studies to identify genes that explain 

variation in meat quality traits. Nowadays, the availability of dense panels of DNA markers 

covering the whole genome along with powerful new statistical tools have made genomic 

selection (GS) feasible in pigs. The large number of single nucleotide polymorphisms (SNPs) 

generated by high throughput technologies can be used in GS to select superior animals with 
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better meat quality. Many quantitative trait loci (QTL) affecting meat quality traits have been 

detected in pigs, demonstrating the potential for this improvement. Genomic selection uses the 

linkage disequilibrium between DNA markers and QTL affecting economically important traits 

in livestock (Toosi et al., 2010). Genomic selection sums the effects of markers covering the 

whole genome so that potentially all of the genetic variance associated with the traits and 

explained by the markers are considered. The effect of all markers associated with the trait in the 

whole genome is used to predict the genomic estimated breeding value (GEBV) of each animal.  

Various statistical methods have been developed to predict GEBV such as ridge 

regression, various Bayesian approaches, Genomic BLUP (GBLUP), selection index and single-

step BLUP (Meuwissen et al., 2001; Gianola et al., 2006; Habier et al., 2007; VanRaden et al., 

2009; Misztal et al., 2009; Legarra et al., 2009; Calus, 2010; Habier et al., 2011; Erbe et al., 

2012; Brondum et al., 2012). Single-step methodology can be simpler, faster, more accurate and 

applicable to complicated models compared to multi-step methods such as GBLUP (Aguilar et 

al., 2010) and also can predict genomic breeding values for either with genotypes or without 

genotypes. This approach has been successfully implemented for pigs (Forni et al., 2011; 

Christensen et al., 2012), chickens (Chen et al., 2011) and dairy cattle (Aguilar et al., 2011; 

Tsuruta et al., 2011; VanRaden, 2012).  

By implementing GS, prediction of the genetic potential of animals becomes possible at 

an early stage of their life before their phenotypic records are available. It will increase the rate 

of genetic gain by reducing generation interval. Although generation interval in swine is not as 

long as in cattle it can still play a role for meat quality traits that are measured post-mortem. 

However, the largest benefit of GS will be from an increase in the accuracy of selection for pork 

quality by selecting animals based on their genomic potential rather than phenotypic information 
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from their relatives using traditional BLUP (Meuwissen et al., 2001; Hayes et al., 2009). This 

can greatly improve selection accuracy to accelerate genetic gain for pork quality traits.  

Meuwissen et al. (2001) showed that genomic selection could lead to increases in the rate 

of genetic gain especially for traits that are not easy to measure and have low heritability such as 

meat quality. Christensen et al. (2012) showed that GS produces more accurate predictions for 

feed conversion ratio compared to traditional breeding resulting in extra genetic gain in pigs. 

Improved reliability of genomic prediction has resulted in an increased rate of genetic gain in 

pigs and dairy cattle (VanRaden et al., 2009; Forni et al., 2011; Christensen et al., 2012). 

Therefore, the third study in this thesis was performed to improve pork quality and carcass traits 

from a Duroc parental pure-line using their commercial crossbreds and single-step methodology.   

 

1.2. OBJECTIVES 

 

    The major objective of this study was to improve meat quality and carcass traits from 

Duroc parental purebreds using their commercial crossbreds resulting from understanding 

genetic parameters for these traits, their correlations with performance traits, and improving 

selection accuracy to accelerate genetic gain in pigs.   

The specific objectives included: 

a) Estimating phenotypic and genetic parameters including heritabilities, phenotypic and 

genetic correlations among pork quality, among carcass traits and between them in 

commercial crossbred pigs. 

b) Estimating phenotypic and genetic parameters including heritabilities for various 

growth, and performance traits, phenotypic and genetic correlations between 
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performance traits with pork quality and carcass traits in commercial crossbred pigs. 

c) Applying genomic selection for various pork quality and carcass traits using single-

step BLUP using commercial crossbred animals and their pure parental lines for 

genomic selection of the parental Duroc purebreds. 
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CHAPTER 2. Literature Review
1
 

 

2.1. INTRODUCTION 

 

Pig breeders have become increasingly aware of meat quality to meet the demands of 

processors, packers, and consumers for better pork quality (Dransfield et al., 2005). However, 

measurement of meat quality traits on a routine basis is expensive and relatively difficult. 

Ultrasound technology has been used very effectively to reduce the fat content of pork and is 

now being used to predict marbling, an important aspect of quality, on live animals with 

relatively low cost. However, many meat quality traits (e.g. pork water holding capacity) need to 

be measured post-mortem, which make them difficult and expensive to measure. Therefore, 

genetic improvement of pork quality requires an understanding of the genetic basis of these traits 

to implement selection programs that emphasize product quality.  

Most of the economically important traits including pork quality in livestock are 

quantitative, meaning they are regulated by multiple genes and part of their variation is 

influenced by the environment. Two models, the infinitesimal model and the finite loci model, 

have been used to explain the genetic variations observed in quantitative traits. The infinitesimal 

model assumes that traits are determined by an infinite number of unlinked additive loci, each 

with an infinitesimally small effect (Fischer, 1918). On the other hand, the finite loci model 

assumes the genome has a finite numbers of genes, after all there are around 20,000 loci in the 

human genome (Ewing and Green, 2000), with only a few associated with variation in each trait. 

                                                           
1
 A version of this Chapter has been submitted to Journal of Springer Science Reviews. Miar et al., 2014.  Genomic 

selection, a new era for pork quality improvement. 
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Based on the latter model, it has been predicted that 50 to 100 genes, each with an unequal 

effect, determine genetic variation in quantitative traits that are called quantitative trait loci, or 

QTL (Hayes and Goddard, 2001). Of course the behavior of even 100 genes, taking into account 

the potential interactions among them, may be indistinguishable from the infinitesimal model. 

Genetic maps of livestock based on DNA markers provide new tools for detection and 

mapping of genes for economically important traits in livestock (Rohrer et al., 1996; Groenen et 

al., 2000; Maddox et al., 2001). Rohrer et al. (1996) reported a comprehensive map for the 

porcine genome, which was used very effectively to search for loci affecting traits of interest (Hu 

et al., 2007). Detection of QTL and their use in selection to increase accuracy of selection and 

improve the rate of genetic gain in livestock has occurred (Weller, 2001) although the impact has 

been relatively small (Dekkers, 2004). Over the past 30 years, two approaches have been used to 

uncover the polymorphisms underlying variation in economically important traits. One approach 

is that genes (QTL) affecting a trait of interest are mapped to a chromosomal location using 

genetic markers (Andersson and Georges, 2004), the other is to use candidate genes based on 

their role in the biology of the trait (Goddard and Hayes, 2009). These two methods have been 

used to detect genetic markers suitable for marker-assisted selection (MAS) in domestic animals 

(Rothschild et al., 2007).  

Meuwissen et al. (2001) conducted a simulation study and showed that it is theoretically 

possible to predict breeding values of animals more accurately than traditional methods if a high-

density of markers was used. Today, this method is called "genomic selection". Recently, the 

availability of dense panels of DNA markers covering the whole genomes of major domestic 

animal species including the pig (Ramos et al., 2009) and using appropriate statistical tools have 
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made genomic selection (GS) feasible in pigs (Nejati-Javaremi et al., 1997; Meuwissen et al., 

2001; Fernando et al., 2007).   

Genomic selection uses the linkage disequilibrium between DNA markers and QTL 

affecting economically important traits in livestock (Toosi et al., 2010). The effect of all markers 

associated with the trait in the whole genome is used to predict the genomic estimated breeding 

value (GEBV) of each animal. This approach, also termed genomic prediction or genomic 

evaluation, is used to improve selection accuracy for economically important traits (Meuwissen 

et al., 2001; Hayes et al., 2009). Meuwissen et al. (2001) showed that genomic selection could 

lead to increases in the rate of genetic gain especially for traits that are not easy to measure and 

have low heritability such as meat quality. Christensen et al. (2012) showed that GS produce 

more accurate predictions for feed conversion ratio compared to traditional breeding resulting in 

extra genetic gain. Various statistical methods have been developed to predict GEBV such as 

ridge regression, Bayesian approaches and GBLUP (Meuwissen et al., 2001; Gianola et al., 

2006; Habier et al., 2007; Calus, 2010; Habier et al., 2011; Erbe et al., 2012; Brondum et al., 

2012). 

The objective of this Chapter is to provide a summary of the successful approaches for 

genomic prediction in pigs to improve pork quality traits and present recent highlights of their 

applications
 
in swine breeding programs.  

 

2.2. NOVEL BREEDING OBJECTIVES  

 

Until recently pig breeders have mainly focused on production traits to increase the 

leanness of the carcass and reduce cost. More recently, the importance of meat quality is growing 
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for meat processors, packers and consumers because of its high economic value (Dransfield et 

al., 2005). Therefore, many pork producers are integrating marbling and quality grade as well as 

leanness to their breeding programs to meet these demands. This has led to the development of 

breeding objectives that include pork quality traits where increasing muscle tissue and decreasing 

backfat are two major objectives of swine breeding programs. 

Pork quality is affected by a large number of factors including breed, genotype, feeding, 

stunning, pre-slaughter handling, slaughter method, storage and chilling conditions (Rosenvold 

and Andersen, 2003). These factors are classified into two groups: genetic and non-genetic 

factors (de Vries et al., 2000). Sellier and Monin (1994) showed that the genetic factors affecting 

pork quality are important components of the variation because they are traits with low-to-

moderate heritability. It should be noted that the effect of genetics on pork quality include 

between breed and within breed differences resulting from major genes as well as polygenic 

effects.  

 

2.3. BREED DIFFERENCES  

 

Pork from different breeds shows variation in water holding capacity, colour, 

intramuscular fat and tenderness (Sellier and Monin, 1994). Pork from Chinese purebred or 

crossbred pigs was more tender than that from American and European breeds when assessed by 

a taste panel (Touraille et al., 1989; Suzuki et al., 1991). Hampshire pork was found to have 

decreased water holding capacity and increased cooking loss due to lower ultimate pH (Monin 

and Sellier, 1985). Meat from Hampshire was also determined to have increased tenderness 
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(Sellier and Monin, 1994). However, this breed effect can probably be completely explained 

through the high frequency of one single gene, called the RN gene (Milan et al., 1996).  

Some breeds such as Belgian Landrace and Pietrain had a high frequency of a single 

locus called Halothane (Fujii et al., 1991). This locus is likely responsible for developing pale, 

soft and exudative meat, which is less tender. Therefore, meat from other breeds such as Large 

White or French Landrace are of better quality in comparison with Belgian Landrace and Pietrain 

breeds (Touraille and Monin, 1989; Monin et al., 1986). On the other hand, Halothane positive 

pigs had a higher yield of processed ham. Thus, the mutations underlying the Halothane (Fujii et 

al., 1991) and RN (Milan et al., 1996) genes were used to remove these defects from pigs 

through marker assisted selection (Van der Steen et al., 2000). Consequently, the Landrace breed 

can produce high quality pork if the Halothane gene has been removed. Large White and 

Landrace pigs typically have half the amount of intramuscular fat of that found in Duroc meat 

(Armero et al., 1998), which contributes to the better eating quality of Duroc pork (de Vries et 

al., 2000). Therefore, there is high genetic variation for pork quality resulting from breed 

differences.  

 

2.4. GENOTYPE 

 

The effects of genetics on pork quality include both between and within breed 

differences. This within breed variation is explained by genetics and environmental factors. The 

geneticsô portion of this variation is described by the degree of heritability. Higher heritability 

shows the stronger influence of genetics factors. Miar et al. (2014c) provided a comprehensive 

report of heritabilities for most pork quality traits indicating that they are low-to-moderately (10-
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39%) heritable. These quality traits are expected to be controlled by a large number of genes 

with small effect called polygenic effects and by some single genes with large effects called 

major genes (Rosenvold and Andersen, 2003). There are a small number of major genes 

affecting pork quality such as Halothane and RN (mentioned above), Calpastatin (Ciobanu et al., 

2004) and Insulin-like growth factor 2 (IGF2). As an example, it was estimated that 15-30% of 

phenotypic variation in lean mass and 10-20% in backfat thickness was explained by IGF2 (Jeon 

et al., 1999; Nezer et al. 1999). 

These traits are hard and expensive to measure in a simple and unique manner (Cameron, 

1993) and are often measured post-mortem. Therefore, identifying and understanding the QTL 

underlying pork quality traits is necessary to implement a successful swine breeding program 

that emphasizes product quality.   

 

2.5. APPLICATION OF MOLECULAR GENETICS FOR PORK QUALITY 

IMPROVEMENT  

 

Recent progress in molecular genetic technology enabled the genotyping of tens of 

thousands of single nucleotide polymorphisms (SNPs) covering the whole genomes of major 

species of livestock. SNPs are the most commonly used DNA markers in animal genetics studies 

due to their amenability for high throughput platforms and their abundance in the genome 

(Vignal et al., 2002). Single nucleotide polymorphisms are a single base change in the DNA 

sequence. This single base pair change can occur within coding or non-coding sequences. Those 

residing in coding sequences may change the amino acid sequence of the protein and result in a 
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change in phenotype. Those in non-coding regions may still change the phenotype through 

affecting gene expression level.  

Today, high throughput technologies have been used to generate dense panels of SNPs 

(Weller, 2010). Major species of livestock have high density SNP chips such as the Illumina 

porcine SNP60 Beadchip for pigs (Ramos et al., 2009), Illumina Bovine SNP50 BeadChip for 

cattle (Matukumalli
 
et al., 2009) and Illumina Ovine SNP50 BeadChip for sheep (Cockett et al., 

2009). Advancement of molecular genetics has led to identification of many QTL for 

economically important traits in livestock. As of October 2014, more than 6,621 QTL relevant to 

meat and carcass quality traits have been deposited in the pig QTLdb 

(http://www.animalgenome.org/cgi-bin/QTLdb/SS/index). These QTLs can be used to select 

superior animals with better pork quality. 

 

2.6. MARKER-ASSISTED SELECTION  

 

Marker-assisted selection (MAS) is the selection of animals or plants based on the 

combined information of traditional genetics and marker information. There are two types of 

MAS: One is the candidate gene approach which uses causative mutations with a major effect on 

a particular trait such as the halothane gene in pigs that controls muscle growth (Goddard and 

Hayes, 2009). Another uses linkage disequilibrium between markers with QTL. The breeding 

value will be predicted based on the combined information of polygenic effects and significant 

markers (Meuwissen and Goddard, 1996). However, the genetic gain from this method of 

selection was small (Dekkers, 2004) because genetic gain using MAS depends on the percentage 

of genetic variance of the trait that was explained by the markers (Meuwissen and Goddard, 
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1996). Marker-assisted selection relies on using a relatively small number of markers in the 

breeding value prediction models. As many genes determine most of the quantitative traits, MAS 

will therefore capture only a small proportion of genetic variance in the trait because of the low 

number of markers (Goddard and Hayes, 2007; Goddard and Hayes, 2009).  

 

2.7. GENOMIC SELECTION  

 

The limitations of MAS can be overcome by using a high-density of markers across the 

genome to capture a larger percentage of the genetic variance of the trait of interest (Meuwissen 

et al., 2001). This alternative method is called genome-wide selection or genomic selection (GS). 

Genomic selection uses high marker density and assumes each QTL is in linkage disequilibrium 

with at least one closely linked marker. The assumption underlying GS is that the effects of 

chromosome segments will be the same within the population because the markers are in linkage 

disequilibrium with the QTL. Therefore, the density of markers must be high enough to ensure 

that all QTL are in linkage disequilibrium with at least one marker.  

Genomic selection needs a reference population that is a sample of individuals with 

genotypic and phenotypic records to develop a GEBV prediction equation (Goddard and Hayes, 

2009). The effect of each marker is estimated using appropriate statistical analysis, and hence a 

prediction equation can be developed that combines all the estimated effects of marker genotypes 

to predict the GEBV for each animal. Subsequently this prediction equation is applied to the 

candidate population with genotypic records but without phenotypic information (selection 

population) to predict GEBV for each individual and this can be used to select the best animals 

for breeding in the selection population (Meuwissen et al., 2001; Goddard and Hayes, 2009) as 
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indicated in Figure 2.1. Using GS would be beneficial especially for the traits where traditional 

genetic selection was not very effective in breeding programs. For example, meat quality traits 

can only be recorded post mortem, they are expensive and hard to measure and have low-to-

moderate heritability (Goddard and Hayes, 2009; Miar et al., 2014b; Miar et al., 2014c). 

By implementing GS, prediction of the genetic potential of animals becomes possible at 

an early stage of their life when they do not have phenotypic records. It will increase the rate of 

genetic gain by reducing the generation interval especially in species with a long generation 

interval such as bovine and equine. Although the generation interval in swine is not as large as in 

cattle it can still be applicant for meat quality traits that are measured post-mortem. However, the 

largest benefit of GS will be from an increase in the accuracy of selection for pork quality by 

selecting animals based on their genomic potential rather than phenotypic information from their 

relatives using traditional BLUP (Meuwissen et al., 2001; Hayes et al., 2009).  

 

2.8. STATISTICAL METHODS FOR GENOMIC EVALUATION 

 

The main challenge for prediction of GEBV of each individual using high density 

markers is that in most situations the number of SNPs (usually approximately 50,000 to 60,000) 

is larger than the number of animals, which is normally a few thousands (Calus, 2010). Several 

statistical approaches have been developed to solve the problems of multicollinearity between 

markers and over-parameterization when using high-density markers as in the least squares 

model. The statistical methods developed for prediction of GEBV include ridge regression, 

GBLUP, and various Bayesian approaches (Hoerl and Kennard, 1970; Nejati-Javaremi et al., 

1997; Meuwissen et al., 2001; Xu, 2003; Gianola et al., 2006; Fernando et al., 2007; Habier et 
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al., 2007; Hayes et al., 2009; VanRaden et al., 2009; Friedman et al., 2010; Zhang et al., 2010; 

Habier et al., 2011; Erbe et al., 2012; Brondum et al., 2012). These methods consider different 

assumptions about the distribution of QTL effects that affect the accuracy of genomic evaluation.  

Generally, the prediction model for GEBV is defined as a linear mixed model for the 

analysis of bi-allelic genotypes that can be obtained as shown in Equation 1. 

 

yi = ɛ + Ɇj xijɓjŭj + ei,                                                                                                    (Equation 1), 

 

where yi is the phenotypic observation of the i
th
 animal, ɛ is the overall mean, xij can be 0, 1, or 2 

depending on the SNP genotype at the j
th

 marker locus of the i
th
 individual, ɓj is the allele 

substitution effect of j
th
 marker, ŭj is an indicator variable which is equal to 1 or 0 for the 

inclusion or exclusion of j
th
 marker, and ei is a random residual. 

In this Chapter, some of the statistical methods that have been used widely for genomic 

prediction in livestock breeding programs such as ridge regression, GBLUP and Bayesian 

approaches are discussed briefly.  

 

2.8.1. GBLUP method 

 

 The genomic best linear unbiased prediction (GBLUP) method was first proposed by 

Nejati-Javaremi et al. (1997). They compared two methods of using total allelic relationship and 

pedigree-derived genetic relationship in mixed model equations to derive best linear unbiased 

prediction (BLUP) of breeding values. They concluded that using the total allelic relationship 

gives more accurate breeding values than a pedigree-derived genetic relationship because it 
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accounts for variation in average measures of relationship and identity by state alleles. Habier et 

al. (2007) modified the method for implementing genomic selection using the genomic 

relationship matrix (G) instead of the allelic relationship matrix (Habier et al., 2007; Goddard, 

2009). Genetic markers could estimate the proportion of chromosome segments shared by 

individuals including identical by state (IBS) loci. Therefore, GS can capture the Mendelian 

segregation during gamete formation and hence selection based on a genomic relationship matrix 

can be more accurate than an additive relationship matrix (Goddard and Hayes, 2007). 

The statistical model for GBLUP sums the individual marker effects to predict GEBV 

with the assumption of normality for the marker effects as shown in Equation 2 (Hayes and 

Goddard, 2010): 

 

y = 1nɛ + Zg + e ,                                                                                                       (Equation 2), 

 

where y is a phenotypic observation vector for n individuals, ɛ is the overall mean, 1n is a vector 

of ones, Z is the design matrix for the breeding values, g is a vector of breeding values and e is 

the residual error vector with an assumed N(0, ▄) distribution. In this model, g = Wuj where uj is 

the effect of j
th
 marker and variance V(g) = WWôⱭ◊. W matrix contains wij elements for i

th
 

animal which shows the deviation of the number of alleles at the j
th
 marker from the 2pj so that is 

equal to 0 ï 2pj for the homozygous AA, 1 ï 2pj for the heterozygous Aa and 2 ï 2pj for the 

homozygous aa. The diagonal elements of WWô for m markers would be equal to В ▬▒ 
□
▒

▬▒. In GBLUP, the breeding values will be predicted as shown in Equation 3. 

 

▌ ╩╩ ╖ ▄

▌
 ╩ᴂ◐                                                                                                (Equation 3) 
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This method has good properties to capture the genomic relationships between 

individuals. VanRaden et al. (2009) showed that this method is at least as good as other methods 

for many traits in dairy cattle.  

 

2.8.2. Ridge regression 

 

 Ridge regression was first proposed by Hoerl and Kennard (1970). They used ridge 

regression instead of the least squares method to estimate the coefficients of the linear model. 

Meuwissen et al. (2001) modified the method for implementation in the analysis of genetic 

markers. Ridge regression assumes that all marker effects are normally distributed with equal 

variance. One of the best properties of this method is that it can overcome multicollinearity 

between markers because the regression coefficients are shrunk towards zero using a shrinkage 

parameter (ɚ). El-Dereny and Rashwan (2011) showed that ridge regression is more accurate 

than the ordinary least squares method when multicollinearity exists. It uses the same linear 

model as the least squares method, but the only difference is that it includes a shrinkage 

parameter (ɚ) to the diagonal elements of least squares equation as shown in Equation 4. 

 

╧╡ ╧ ╧╡ ╩
╩╡ ╧ ╩╡ ╩ ╘

♫
♬

 = 
╧╡ ◐

╩╡ ◐
                                                                          (Equation 4), 
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where y is a phenotypic observation vector for n individuals, X is the design matrix of the fixed 

effects, Z is the design matrix for the random effects and R is an n × n covariance matrix for the 

residual errors and I  is an identity matrix with the same dimension as ╩╡ ╩.  

The shrinkage parameter controls the amount of shrinkage on the regression coefficients. 

The level of shrinkage increases as ɚ increases which shrinks all the regression coefficients to 

zero (Xu and Hu, 2010). Ridge regression can fit a large number of markers into the model but 

this is not the optimal shrinkage because all the regression coefficients become so small leading 

to the assumption of equality of variance of markers effects that is not a desirable property. 

Desirable shrinkage should not shrink the markers with large effects and should penalize the 

markers with small or no effects. More desirable methods can select the markers based on their 

effects, and these methods will be discussed in subsequent sections. 

In comparison to other methods, ridge regression is a simple and fast method to predict 

GEBV. Sargolzaei et al. (2009) introduced free software, GEBV, a genomic breeding value 

estimator for livestock, to implement ridge regression for genomic evaluation that can deal with 

large datasets.  

 

2.8.3. Bayesian methods 

 

 There are three methods of Bayesian approach that have been used frequently in animal 

genetic evaluations. Two of them, BayesA and BayesB, were proposed by Meuwissen et al. 

(2001) and BayesC was proposed by Kizilkaya et al. (2010). Recently, new Bayesian approaches 

are emerging with different letters including BayesĆ , BayesDˊ, BayesD (Habier et al., 2011), 

BayesR (Erbe et al., 2012) and BayesRS (Brondum et al., 2012). In Bayesian statistics, the data 
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are modeled at two levels; first is the data level and second is the variances of genomic segments. 

The difference between Bayesian and ridge regression at the data level is the variance of the 

markers. In Bayesian statistics, it is assumed that the variance for each marker loci comes from a 

prior distribution and the data, whereas in ridge regression it is assumed that the variance of all 

the markers is equal. It seems that the Bayesian approach is more realistic than the methods that 

assume equal variance for each locus due to the assumption that not all markers contribute to the 

genetic variation. 

Meuwissen et al. (2001) described the BayesA approach such that the markers are 

assumed to have different variances as they follow the scaled inverse chi-square distribution, ɢ
-2
 

(v, S), where S is a scale parameter and v is the degrees of freedom. Furthermore, the BayesA 

approach considers all markers in the model. Therefore, it needs more computations than other 

Bayesian approaches because large numbers of effects are included simultaneously in the model 

and no marker effect was assumed with zero variance.  

Another variation, BayesB, was also proposed by Meuwissen et al. (2001). This method 

assumes that there are many markers with zero genetic variance and a few with non-zero genetic 

variance. It considers a high density, ˊ, for those loci with zero genetic variance and an inverted 

chi-square distribution for loci with genetic variance larger than zero. This method can exclude 

those loci with no effect on the quantitative trait of interest. Therefore, BayesB needs less 

computational time than BayesA because many loci have no effect and thus do not enter the 

equations.  

Another Bayesian method is called BayesC, which was proposed by Kizilkaya et al. 

(2010). BayesC uses common variance for all markers that is estimated from the marker data so 

that it is not influenced by the prior as much as BayesB. Onteru et al. (2011; 2012) mentioned 
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that BayesB is more sensitive to the prior than BayesC. Bayesian methods such as BayesB and 

BayesC that use a prior distribution of the markers variance increase the accuracy of genomic 

selection in comparison with the ridge regression method (Meuwissen et al., 2001; Smaragdov, 

2009). A further approach is BayesD where the estimated scale parameter of the scaled inverse 

chi-square distribution is used instead of specified scale parameter. BayesĆ  and 

BayesD́  (Habier et al., 2011) are modifications of BayesC and BayesD where the probability of 

having a zero SNP ́ is estimated. Other Bayesian approaches, BayesR (Erbe et al., 2012) and 

BayesRC (Brondum et al., 2012) have emerged even more recently. BayesR uses a mixture of 

normal distributions as the prior for SNP effects, including a distribution that sets SNP effects to 

zero. BayesRC was developed for multi-population genomic prediction and uses a location 

genetic variance achieved from one population that will be then used as priors for another 

population.  

These various statistical methods can be applied to predict GEBV of pigs and 

consequently select superior animals with better pork quality based on their GEBV. 

 

2.9. ALTERNATIVE METHODS FOR GENOMIC SELECTION  

 

Combining the genomic information and polygenic information seems to be a necessity 

for accurate selection of superior animals for breeding. One of the first proposed methods for 

combining both sources of information was a selection index bending approach, which was 

proposed by VanRaden et al. (2009). The selection index prediction includes genomic breeding 

value and EBV estimated using a subset of the population used for genomic prediction and 

traditional BLUP from the whole population. Consequently, these alternative methods would 
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utilize genomic information from genotyped animals and their relatives, which are not 

genotyped; phenotypic information of relatives could also enrich the genomic prediction of 

young boars; these methods can reduce the bias in either genomic prediction or classical 

evaluations. One of the most used alternative methods for combining genomic and classical 

information is single-step BLUP (ssBLUP) proposed by Misztal et al. (2009). 

 

2.10. SINGLE- VERSUS MULTI-STEP BLUP FOR GS 

 

Combining genomic and traditional information can improve the accuracy of predictions. 

Single-step BLUP is a modification of BLUP and integrates the pedigree relationship matrix and 

genomic relationship matrix into a single matrix, called the H matrix. This method was proposed 

by Misztal et al. (2009) and Legarra et al. (2009). The inverse of the H matrix is a simple form 

and can substitute for the inverse of the additive relationship matrix in existing software (Aguilar 

et al., 2010).  

Multi -step prediction methods involve 1) estimating EBV of each individual based on its 

pedigree using BLUP; 2) adjusting the phenotype (calculating de-regressed EBV); 3) estimating 

the allelic effects for each SNP; and 4) combining genomic prediction (GEBV) and BLUP 

evaluations (EBV) (VanRaden, 2008). However, ssBLUP utilizes just phenotypic records, which 

are not dependent on other estimated effects and accuracy of EBV (Misztal et al., 2013). Using 

approximations for adjusting phenotype can inflate the GEBV and reduce the accuracy in multi-

step approaches. Furthermore, the multi-step approach is more prone to errors because of its 

complexity.  
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Single-step methodology can be simpler, faster, more accurate and applicable to 

complicated models compared to multi-step methods such as GBLUP (Aguilar et al., 2010). This 

approach has been successfully implemented for pigs (Forni et al., 2011; Christensen et al., 

2012), chickens (Chen et al., 2011) and dairy cattle (Aguilar et al., 2011; Tsuruta et al., 2011; 

VanRaden, 2012). These studies showed that single-step is generally at least as accurate as multi-

step methods, the process is simpler, and the inflation of GEBV is smaller than multi-steps. 

 

2.11. ACCURACIES OF GEBVs  

 

Accuracy of prediction of GEBV is the correlation between true breeding values and 

estimated breeding values. The accuracy of prediction has been investigated by using both 

simulation studies and real data. Different accuracies have been achieved by using different 

statistical methods for different heritabilities. The accuracies of genomic evaluations ranged from 

0.46-0.88, 0.59-0.96 and 0.56-0.98 for ridge regression, GBLUP and Bayesian approaches in 

simulation studies, respectively. (Meuwissen et al., 2001; Habier et al., 2007; Fernando et al., 

2007; VanRaden, 2008; Habier et al., 2009; Christensen and Lund, 2010; Kizilkaya et al., 2010). 

In real data, the accuracies of genomic prediction have different ranges using different 

statistical methods (Table 2.1). These studies showed that different methods are similar in their 

expected accuracy of genomic prediction. In addition to the statistical methods of genomic 

prediction, there are several factors affecting the accuracy of genomic breeding value prediction 

such as reference population size, number of SNPs, heritability of the trait, effective population 

size (Ne) and number of loci affecting the traits (Muir, 2007; Daetwyler et al., 2008; Goddard and 

Hayes, 2009).  
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One of the most important factors affecting accuracy of GEBV is the number of SNPs to 

be analyzed (Hayes and Goddard, 2010). This depends on the extent of linkage disequilibrium in 

the species of interest. If there is not sufficient linkage disequilibrium between SNPs and QTL, 

more SNPs are needed in the genotyping panel to increase the power of QTL detection. The 

accuracy of genomic predictions is high if the mean linkage disequilibrium between two adjacent 

markers is greater than 0.2 (Calus et al., 2008). Sved et al. (1971) showed that the expected 

linkage disequilibrium depends on the effective population size and distance between markers. 

Meuwissen et al. (2001) demonstrated that 1 cM of inter-marker spacing is needed to have a high 

accuracy of prediction given an Ne=100. The effective population size for Holstein-Friesian 

cattle is approximately 100. Therefore it is estimated that Holstein-Friesian cattle needs 

approximately 30,000 markers based on the 30 Morgan length of genome (Hayes and Goddard, 

2010) and hence GS can increase the accuracy using a density of 30,000 SNPs in dairy cattle. In 

a similar manner, the effective population for Duroc breed in USA was estimated to be 113 

(Welsh et al., 2010). Therefore, it is estimated that Duroc pig needs approximately 26,000 

markers based on the 23 Morgan length of genome (Rohrer et al., 1996) and hence GS needs a 

density of 26,000 SNPs in pigs to improve the accuracy.  

The other factor affecting the genomic prediction is the size of reference population. It is 

suggested that large reference population size is needed to predict GEBV accurately for low 

heritability traits (pork quality traits). The number of animals needed in the reference population 

increases as the heritability declines or Ne of the population increases (Goddard and Hayes, 

2009). 

 Another factor affecting the accuracy is the number of loci affecting the trait. Although 

the number of QTLs affecting pork quality traits has not been defined yet, Goddard (2009) 
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showed that the number of QTLs affecting any trait can be calculated as q = 2NeL, where q is the 

number of QTLs affecting the trait and L is the length of the genome in Morgans. Then, the 

accuracy of GEBV can be calculated as shown by Equation 5: 

 

► ⱦȾ ╝Ѝ╪ ■▪ ╪ Ѝ╪Ⱦ ╪ Ѝ╪                           (Equation 5),                                            

 

where a = 1+2ʇ/N, and ʇ=qK/h
2
, with K=1/log(2Ne), where h

2 
is the heritability of the trait and N 

is the number of individuals with phenotypic record in the reference population (Goddard, 2009).  

 

2.12. APPLICATION OF GS IN PORK QUALITY  

 

The ability to select animals based on their GEBV or GS would allow the opportunity to 

redesign livestock breeding programs to select animals at an early stage of their life and increase 

the accuracy of prediction. Consequently, this would increase the genetic gain by decreasing 

generation interval, increasing the selection accuracy, and the frequency of favorable alleles 

(Falconer and Mackay, 1996; Goddard and Hayes, 2009). In dairy cattle, reducing the generation 

interval using GS was predicted to increase the genetic gain by twice compared to traditional 

evaluation and this results in reducing costs for proving bulls by more than 90% (Schaeffer, 

2006). In practice genomic selection was successful in increasing the accuracy in young dairy 

bulls, averaging 23% across traits with a range from 8 to 43% (VanRaden et al., 2009). Genomic 

selection explains a greater proportion of genetic variance than MAS and it is not limited to 

within families.  
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The commercial production system in pig breeding is pyramidal. Nucleus herds supply 

genetics to multipliers and later to commercial crossbreds. The main limitation of this system is 

that purebred performance can be a poor indicator of crossbred performance (Dekkers, 2007). 

Using GS for some traits such as lowly heritable traits, difficult and expensive to measure traits, 

sex limited traits, traits that are expressed late in life and after slaughter traits, would enable the 

rate of genetic gain to be greatest. Measurement of carcass and meat quality traits is difficult, 

expensive, and can only be performed post-mortem. Therefore, genomic selection of purebred 

pigs based on crossbred performance for these traits would be useful to help improve pure lines 

to produce superior commercial crossbred animals without the need for measurements on pure 

lines. Miar et al. (2014a) showed the potential of genomic selection for pork pH in the pure 

parental lines using the prediction models developed from their crossbred progeny. Different 

models were proposed to select purebreds for crossbred performance. Although most studies 

used additive gene action, the dominance model is the likely genetic basis of heterosis. In a 

simulation study, Zeng et al. (2013) suggested that GS with a dominance model is superior when 

dominance effects are present allowing the opportunity to maximize the crossbred performance 

through purebred selection.  

Development of composite lines and introgression of valuable alleles between 

populations are the other potential applications of GS in livestock breeding programs. Genomic 

selection increases the efficiency of introgression of favourable QTL alleles from a donor line to 

a recipient line (Ødegård et al., 2009). Therefore, GS can improve composite lines, which are 

often used in the pig industry (Piyasatian et al., 2006). Genomic selection has introduced a new 

paradigm for pig breeding and hence can be successfully applied to livestock breeding programs 

in optimizing mating strategies and herd management. 
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2.13. CHALLENGES IN GENOMIC SELECTION FOR PORK QUALITY  

 

Although GS is revolutionizing animal breeding, it also faces some challenges including 

the need for large reference populations, and further investigation is required to understand the 

impact for long-term genetic gain, non-additive genetic effects, and selection involving multiple 

breeds. One of the major challenges is the requirement of large reference population size to 

predict GEBV accurately. In most cases to date, small reference populations have been used for 

genomic prediction while it is known that larger reference populations result in higher accuracy 

of genomic prediction (Dalton, 2009; Goddard and Hayes, 2009). Another major challenge is 

that long-term genetic gain could be less than phenotypic selection (Muir, 2007; Goddard, 2008). 

There are two reasons for this issue including the effect of selection on the pattern of linkage 

disequilibrium between marker and QTL resulting in changing the linkage disequilibrium which 

is the criteria for genomic selection, and the genomic selection uses only the markers that have 

been detected to affect the trait while phenotypic selection uses all QTL automatically (Goddard, 

2008; Hayes et al., 2009). Even so, improvement is required over the short-term and we are 

confident that increased understanding and use of different populations will help address the risk 

of a long-term decrease in gain. 

Another major challenge in GS is the involvement of multiple breeds in livestock 

industries. De Roos et al. (2008) showed that large reference population sizes and more than 

300,000 SNPs are needed for divergent breeds. Another challenge in using genomic selection is 

using non-additive genetic effects. It might be beneficial to improve the accuracy of selection by 

including non-additive genetic effects such as dominance and epistatic effects. There are some 

methods for genomic prediction which allow us to estimate non-additive genetic effects e.g. 



 

 

31 

estimation of interactions between high density of markers has been developed by Gianola et al. 

(2006) and estimation of both dominance and epistatic effects by using single-marker Bayesian 

approach (Xu and Jia, 2007), and the dominance model developed by Zeng et al. (2013).  

 

2.14. CONCLUSIONS  

 

The objective of this Chapter was to provide a summary of strategies for 

implementing genomic selection
 
in swine breeding programs to improve pork quality. In the 

last decade, traditional BLUP and using indirect selection with correlated traits was used to 

predict the genetic potential of animals for pork quality. Although it was successful, the 

process was slow for pork quality as it is hard and expensive to measure, low-to-moderately 

heritable and must be measured post-mortem. Recently, identification of genetic markers 

underlying pork quality became possible, which were used in MAS programs. The effect of 

each QTL on the trait of interest is small, limiting the value of MAS and confirming the need 

for dense markers to capture more genetic variation in that trait (Hayes and Goddard, 2010). 

This has led to the development of GS.  

Genomic selection is one of the ultimate applications of genetic markers in animal 

genetic improvement. Genomic selection uses a dense panel of markers covering the whole 

genome assuming all QTL are in linkage disequilibrium with at least one of the markers. 

Genomic prediction can be applied based on multi-step approaches using various statistical 

methods including Bayesian approaches, GBLUP and ridge regression or ssBLUP into the 

reference population with known genotypes and phenotypes. The results of genomic 

prediction are implemented to select animals in the selection population with known 
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genotypes and unknown phenotypes to completely redesign livestock breeding programs. 

Genomic selection enables prediction of breeding values of young selection candidates, 

results in reducing the generation interval and increasing accuracy of selection. The accuracy 

of genomic selection strongly relies on a number of factors such as size of the reference 

population, number of SNPs, heritability of the trait, effective population size (Ne) and 

number of loci affecting the traits (Muir, 2007; Daetwyler et al., 2008; Goddard and Hayes, 

2009). In conclusion, GS opens the possibility of using high density of markers covering the 

whole genome to increase the rate of genetic gain for pork quality traits to help ensure that 

demand for high quality and affordable pork is satisfied. 
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Table 2.1: Ranges of genomic prediction accuracies using real data with different statistical 

methods 
 

Statistical methods Accuracy  References  

Ridge regression 0.15-0.73 Moser et al., 2009; Hayes et al., 2009; Moser et al., 2010 

GBLUP 0.13-0.82 Harris et al., 2008; Berry et al., 2009; Schenkel et al., 

2009; VanRaden et al., 2009; Hayes et al., 2009; Luan 

et al., 2009 

BayesA 0.37-0.82 Moser et al., 2009; Hayes et al., 2009; de Roos et al., 

2009; Cleveland et al., 2010 

BayesB 0.13-0.70 Luan et al., 2009; Hayes et al., 2009 

BayesC 0.33-0.6 Cleveland et al., 2010 
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Figure 2.1: Genomic selection for pork quality 

 

 

 

 

 

 


