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ABSTRACT

Pork quality and carcass characteristics are now being integrated into swine breeding objectives
because of their economic value. Understanding the genetic basis for these traits is necessary for
this to be accomplished@he main objective of this study wdo improve pork quality traits in

two Canadian swine populations. Data frépd08 commercial crossbred pigs with performance
traits recorded in production systems with 2,100 of them having meat quatityaanass
measurementd.hese pigs were progenyfm 139 Duroc boars bred to 429 F1 hybrid Landrace

x Large White sowsln the first studyphenotypic and genetic parametéys meat quality and
carcass traits were estimatdderitability estimates{ SE) for carcass traits were moderate to

high and rang# from 0.22+ 0.08 forlongissimus dorsmuscle area to 0.68 0.04 for trimmed

ham weight, except for firmness that was low. Heritability estimateSH) for meat quality

traits varied from 0.1@& 0.04 to 0.39+ 0.06, for the Minolta b* of hanguadricepsfemoris

muscle and shear force, respectively. There were high negative genetic correlations between drip
loss with pH and shear force and a positive correlation with cooking loss. Genetlatmorre
between carcass weightith carcass marblingvas highly positive. It was concluded that
selection for increasing primal and subprimal cut weights with better pork quality may be
possible. Furthermore, the use of pH is confirmed as an indicator for porkheéderg capacity

and cooking losdn the seond study heritability, phenotypic, and genetic correlations between
performance traits (n=9) with meat quality (n=25) and carcass (n=19) wrarts estimated
Performance traits had lete-moderate heritabilities (+SE), ranged from @043 to 0.4%0.07

for weaning weight, and ultrasound backfat depth, respectively. The results indicate that: (a)

selection for birth weight may increase drip loss, lightnesbmgissimus dorsiand gluteus



mediusmuscles but may reduce fat depth; (b) selection for nusseight can be valuable for
increasing both quantity and quality traits; (c) selection for increased daily gain may increase the
carcass weight and most of the primal cuts. These findings suggest that deterioration of pork
quality may have occurred ovenany generations through the selection for less backfat
thickness, and feed efficiency, but selection for growth had no adverse effects on pork quality.
The heritabilities of carcass and pork quality traits indicated that theye improvedhrough
traditional selectionand genomic selection, respectively. The estimated genetic parameters for
performance, carcass and meat quality ticatsbe incorporated into the breeding programs that
emphasize product quality in these Canadian swine populatiotise third study, agenomic
selectionwas performed for meat qualitgnd carcasgraits in 2,200 commercial pigsand 107

Duroc purebredpigs si ng | |1 1l umi nads P osinglestep BNP(6sBLUB)e ad Ch i
It was concluded that genomic predictions modiggeloped using ssBLUP could predict the
parentalpurebredswithout substantial loss of prediction accuracy compared to their crossbred
progenies to improve carcass and pork quality traie prediction accuracies for the purebred
parental resulted frorthe ssBLUP evaluation were also compared with the accuracies from the
traditional parental average. The results showed that the prediction accuracies resulted from the
ssBLUP had average improvements of 17% and 16% for pork quality ands;aespectivg.

In conclusion this study confirmed that genomics could improve pork quality through genomic
selection from commercial crossbred pigs to meet the demands by consumers, packers

andprocessors.



Allah says in his glorious book:
NWe desired to bestow a favor upon those who were deemed weak in the

land, and to make them tleadersand to make them the heirs

Quran, Al-Qasas, Verse 5
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CHAPTER 1. General Introduction

1.1.INTRODUCTION

The major focus of traditional swine breedipgogramshas beerproduction efficiency
with traits of interestsuch asreproductve, growth, backat thickness and feed efficiency
performance. More recentlythe swine industry has focused on pork quality due to the
pr oc e pxkendandc,o n s u demandsdor food with better qualitylartinezandZering,

2004 van Wijk et al., 200p Consequentlymany researchersave focused on the genetics
underlying pork quality traits during the last 20 years (Cameron, 13@&nieret al., 1993a;
Hovenier et al., 1993b; Sellier, 1998; De Vries et al., 1998; Verbeke et al., 1999; Knap et al.,
2002; RosenvoléndAnderson, 2003van Wik et al., 200p Meat quality traits are recognized

as quantitative traits, whiclre affected bygeneticand environmental factarscluding muscle
physiology andcharacteristics,environmental conditios (nutrition, growth rate, age, pre
slaughter conditions, slaughter practices and post mortem conditions), chilling, storage
conditions and the genetics of the pi§slfaferet al., 2002; RosenvolahdAnderson, 2003).

Meat quality traits are loo-moderaely heritable while carcass composition traits are
highly heritable (Ciobanu et al., 201Marious factors may influence the variance component
estimates including the efmbint adjustment, population size, sampling and available pedigree
(Miar et al., D14a) Genetic improvement of meat and carcass quality in swine breeding
prograns requires estimating the genetic and phenotypic parameters of these traits. Estimates of
heritabilities for meat quality and carcass characteristics and genetic correl&tivesr these

economically important traits are limited but have received attention recently (Newcom et al.,



2002; van Wijk et al., 2005However to the best of my knowledge, there is no comprehensive
parameter estimation for most of pork and carcpesdty traits. Therefore, in the first studgf
this thesis the genetic parameters including heritabilities, genetic and phenotypic correlations
among pork quality and carcass traits were investigatednmmercial crossbred pigsloreover,
the second studgf this thesiswasa further investigation focusing on genetic and phenotypic
correlations between performance traits with pork and carcass quality Tiatse studiesre
neededor Canadian swine populatiomsorderto implement selection progrartigat emphasize
product quality

Increased understanding of the genes affecting pork quality could better satisfy consumer
demands for excellent eating quallty applying genetic selection for pork quality with better
eating quality Traditional breeding @proaches apply sophisticated statisticethodssuch as
best linear unbiased prediction (BLUP) to evaluate the genetic potential of animals for
economically important traits using phenotype and pedigree information observed on the animal.
However, the geetic gain achieved is relatively slow for traits of lwvmoderate heritability
(Miar et al.,201%), or expensive to measure, such as those determinednpdsim e.g. pork
quality. Therefore, selection of purebreds based on crossbred progeny perfrfoaribese
traits would be useful in improving pure line parents to produce improved pork quality for their
crossbred progenieRecently,the lllumina PorcineSNP60 BeadChip was developtah{os et
al., 2009 and has been used in genewide association studies to identify genes that explain
variation in meat quality traitdNowadays, the availabilitpf dense panels of DNA markers
covering the whole genome along with powerful new statistical tools have gerdsmic
selection (GS) feasible in pig¥he large number ofingle nucleotide polymorphisn{SNPSs)

generated byigh throughput technologiesan be used inGS to select superior animals with



better meaguality. Many quantitative trait loci (QTL) affectgymeat quality traits have been
detected in pigsdemonstrating the potential for this improvemeébaénomic selectiomsesthe
linkage disequilibriumbetween DNA markers and QTL affecting economically important traits
in livestock {Toosi et al, 2010. Genomic selection sums the effects of markers covering the
whole genome so that potentially all of the genetic variance associated with the traits and
explained by the markers are considefdte effect of all markers associated with the trait in the
wholegenome is used to predict the genomic estimated breeding value (GEBV) of each animal.
Various statistical methods have been developedoredict GEBV such asridge
regressionyariousBayesian approacheSgnomicBLUP (GBLUP), selection index and single
step BLUP(Meuwissen et al.2001; Gianola et al.2006; Habier et al.2007;VanRaden edl.,
2009; Misztal et al., 2009; Legarra et al., 20@alus 2010; Habier et gl.2011; Erbe et al.
2012; Brondum et gl2012. Singlestep methodology can be simpler, faster, more accurate and
applicable to complicated models compared to nstép methods such as GBLRguilar et
al., 2010) and also campredict genomic breeding values for either with genotypes or without
genoty@s This approach has been successfully implemented for pigs (Forni, &04l,;
Christensen et al2012), chickes (Chen et aJ.2011) and dairy cattle (Aguilar et aR011,
Tsuruta et a).2011; VanRader2012).
By implementing GS, prediction of the genetic potential of animals becomes possible at
an early stage of their lifeeforether phenotypic recordare availablelt will increase the rate
of genetic gain by reduajngeneration interval. Althouggeneratio interval in swine is not as
long as in cattle it can still play a role for meat quality traits that are measuredhpdsm.
However, the largest benefit of GS will be from an increase in the accuracy of selection for pork

guality by selecting animalsabed on their genomic potential rather than phenotypic information



from their relatives using traditional BLUP (Meuwissen et 2001; Hayes et al2009). This

can greatlymprove selection accuracy to accelerate genetic gain for pork quality traits.
Meuwissen et al. (2001) showed that genomic selection could lead to increases in the rate

of genetic gain especially for traits that are not easy to measdrbavdow heritability such as

meat quality.Christenseret al. (2012 showed that GS produzenore accurate predictions for

feed conversion ratio comparéal traditional breeding resulting in extra genetic geirpigs

Improved reliability of @nomic prediction has result&d an increased rate of genetic gain in

pigs and dairy cattléVanRaden eal., 2009 Forni et al, 2011; Christensen et al2012).

Therefore thethird studyin this thesisvas performed tamprovepork quality and carcass traits

from a Duroc parental purBne using their commercial crossbreaisdsinglestep methodology

1.2.OBJECTIVES

The major objective of this study wasitoprove meat quality and carcass traitem
Duroc parental pulweds using their commercial crossbredssulting from understanding
genetic parameters fdhesetraits, their correlations with performance traits, amgbroving
selection accuracy to accelerate genetic gapigs.

The specific objectives included:

a) Estimatingphenotypic and genetic parameters includiegtabilities phenotypic and
geneticcorrelationsamong pork quality, among carcass traits and between them i
commercial crossbred pigs.

b) Estimating phenotypic and genetic parameters includiregitabilities for various

growth, and performance traitgphenotypic and genetic correlations between



performance traits with pork quality and carcass traits in commercial crossbred pigs.
c) Applying genomicselectionfor variouspork quality and carcass traits usisiggle
step BLUP usingcommercial crossbred anitsaand their pure parental lines for

genomic selectionf the parental Duroc purebreds
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CHAPTER 2. Literature Review®

2.1.INTRODUCTION

Pig breeders havkeecome increasingly aware ofeat quality to meet the demands of
processors, packers, and consumers for better pork quatiygfield et al.2005. However,
measurement of meat quality traits on a routine basis is expensive and relatively difficult.
Ultrasound technology has beased very effectively to reduce the fat content of pork and is
now being used to predict marbling, an important aspect of quality, on live animals with
relatively low cost. However, many meat quality traits (e.g. pork water holding capacity) need to
be meaured postmortem, which make them difficult and expensive to measure. Therefore,
genetic improvement of pork quality requires an understanding of the genetic basis of these traits

to implement selection programs that emphasize product quality.

Most of the economically important traits including pork quality in livestock are
guantitative, meaning they are regulated by multiple genes and part of their variation is
influenced by the environment. Two models, the infinitesimal model and the finite loci model,
have been used to explain the genetic variations observed in quantitative traits. The infinitesimal
modelassumes that traits are determined by an infinite number of unlinked additive loci, each
with an infinitesimally small effect (Fischet918). On the other hand, the finite loci model
assumes the genome has a finite numbers of genes, after all there are around 20,000 loci in the

human genome (Ewing and Gre@000), with only a few associated with variation in each trait.

L A version of this Gapter has been submitted to Journal of SpriSgéence ReviewsMiar et al., 2014 Genomic
selection, a new era for pork quality improvement
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Based on the l&r model, it has been predicted that 50 to 100 genes, each with an unequal
effect, determine genetic variation in quantitative traits that are called quantitative trait loci, or
QTL (Hayes and Goddar@001).0f course the behavior of ev&00 genes, takp into account
the potentialinteractionsamongthem, may be indistinguishable from the infinitesimal model.

Genetic maps of livestock based on DNA markers provide new tools for detection and
mapping of genes for economically important traits in lives{@hreretal., 1996 Groeneret
al., 2000 Maddox et al., 2001). Rohrer et al. (1996) reporteda comprehensivenap for the
porcinegenomewhich wasusedvery effectivelyto searchor loci affectingtraits of interest(Hu
et al.,, 2007).Detection of QTLand their use in selection to increase accuracy of selection and
improve the rate of genetic gain in livestock has occuieeller, 200]) although the impact has
been relatively smallljekkers 2004). Over the past 30 years, two approaches have beenoused
uncover the polymorphisms underlying variation in economically important traits. One approach
is that genes (QTL) affecting a trait of interest are mapped to a chromosomal location using
genetic markers (Andersson and Geoy@®@94), the other is to ascandidate genes based on
their role in the biology of the trait (Goddard and Hay&09). These two methodmve been
used to detect genetic markers suitable for maaksisted selection (MAS) in domestic animals
(Rothschild et a).2007).

Meuwissen eal. (2001) conducted a simulation study and showed that it is theoretically
possible to predict breeding values of animals more accurately than traditional methods-if a high
density of markers was used. Today, this method is called "genomic selectaehtly, the
availability of dense panels of DNA markers covering the whole gesahenajor domestic

animal species includintpe pig(Ramos et al.2009 andusingappropriate statistical tools have

11



made genomic selection (GS) feasible in pi§sjétiJavaremi et al. 1997; Meuwissen et al.
2001; Fernando et ak007).

Genomic selectiorusesthe linkage disequilibriunbetween DNA markers and QTL
affecting economically important traits in livestodkopsi et al. 2010. The effect of all markers
associated with the trait in the whole genome is used to predict the genomic estimated breeding
value (GEBV) of each animal. This approaelso termed genomic prediction or genomic
evaluationis used to improve selection accuracy for economically impbttaits (Meuwissen
et al, 2001; Hayes et al2009). Meuwissen et al. (2001) showed that genomic selection could
lead to increases in the rate of genetic gain especially for traits that are not easy to amehsure
havelow heritability such as meat qutgl Christensen et a[2012 showed that GS produce
more accurate predictions for feed conversion ratio compartedditional breeding resulting in
extra genetic gainvarious statistical methods have been develdpepdredict GEBVsuch as
ridge regresion, Bayesian approaches and GBLUMe{iwissen et al.2001; Gianola et al.
2006; Habier et al. 2007; Calus 2010; Habier et al.2011; Erbe et al.2012; Brondum et 3al.
2012)

The objective of thiChapteris to provide a summary of the successful approaches for
genomic prediction in pigs to improve pork quality traits and present recent highlights of their

applicationsn swine breeding programs.

2.2.NOVEL BREEDING OBJECTIVES

Until recently pig breeders have mainly focused on production traits to increase the

leanness of the carcass and reduce cost. More recently, the importance of meat quality is growing
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for meat processors, packers and consumers becaitsenmfh economic &lue Pransfield et

al., 2005. Therefore, many pork producers are integrating marbling and quality grade as well as
leanness to their breeding programs to meet these demands. This has led to the development of
breeding objectives that include pork quatiits where increasing muscle tissue and decreasing
backfat are two major objectives of swine breeding programs.

Pork quality is affected by a large number of factors including breed, genotype, feeding,
stunning, preslaughter handling, slaughter methathrage and chilling conditions (Rosenvold
and Andersen 2003). These factorsare classified into two groups: genetic and rgemetic
factors (de Vries et al2000). Sdler and Monin 1994 showed that the genetic factors affegt
pork quality are impdant componestof the variationbecausethey are traits with lowo-
moderate heritabilitylt should be noted thathé effect of genetics on pork quality include
between breed and within breed differencesulting frommajor genesas well aspolygenic

effects.

2.3.BREED DIFFERENCES

Pork from dfferent breedsshows variation in water holding capacity, colour,
intramuscular fat and tenderness (Sellier &ahin, 1994). Pork from Chinese purebred or
crossbred pigsvasmoretenderthanthat fromAmerican and European breedéienassessed by
a taste pang[Touraille et al, 1989; Suzuki et al.1991). Hampshirgork was found to have
decreasedavater holding capacity andcreasedccooking loss due to lower ultimate pH (Monin

and Sellier, 1985). Meat from Hampshireias also determined to havéncreasedtenderness
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(Sellier andMonin, 1994). However, this breed effect can probably be completely explained
throughthe high frequency of one single gemalled the RN gene (Milan et a1996).

Some breeds such as Belgian Landrace and Pidteala high frequency ok single
locuscalled HalothandFujii et al, 1991). Thislocusis likely responsiblefor developingpale,
soft and exudative meat, which is less tendéerefore,meat from othebreeds such as Large
White or French Landraaae ofbetter quality in comparison with Belgian Landrace and Pietrain
breeds (Touraillend Monin, 1989; Monin et al, 1986).0n the other hand, Halothane positive
pigs had a hilger yield of processed ham. ™themutations underlying the Halotharfeu(ii et
al, 1991 and RN (Milan et aJ.1996) genes were used to remove these defects from pigs
through marker assisted selection (Van der Steen, 208I0). Consequentlythe Landrace breed
can produce high uglity pork if the Halothane gene has been removed. Large White and
Landrace pigdypically have halfthe amounbf intramuscularfat of that foundin Duroc meat
(Armero et al. 1998), which contributeto the better eating quality of Duroc pork (de Vregs
al,, 2000). Therefore, there is high genetic variation for pork quality resulting from breed

differences.

2.4.GENOTYPE

The effects of genetics on pork quality includeoth betweenand within breed
differences.This within breed variation is explained by genetics and environmental factors. The
genetics6 portion of this wvariation is descri
shows the stronger influencd genetics factors. Miar et al. (2014cppided a comprehensive

report of heritabilities for most pork quality traits indicating that they arettemoderately (10
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39%) heritable Thesequality traits areexpected to beontrolled by a large number of genes
with small effect called polygenic effts and by some single genes with large effects called
major genes (Rosenvold and Anders@003). Thereare a small number of major genes
affecting pork quality such as HalothaaxedRN (mentionedabove, Calpastatin (Ciobanu et al.
2004) andnsulin-like growth factor 2 (IGF2)As anexample, it was estimated that-36% of
phenotypic variation in lean mass and2l in backfat thickness was explained by IGF2 (Jeon
et al, 1999; Nezer et al. 1999).

These traitsre hardand expensivéo measure in amsiple and unique manner (Cameron
1993)and are often measured posortem. Therefore, identifying and understanding @ie.
underlying pork quality traits is necessary to implement a successful swine breeding program

that emphasizes product quality.

2.5.APPLICATION OF MOLECULAR GENETICS FOR PORK QUALITY
IMPROVEMENT

Recent progress in molecular genetic technology enabled the genotyping of tens of
thousandsof single nucleotide polymorphisms (SNPs) covering the whole genommajor
species of livemck. SNPs are the most commonly used DNA markers in animal genetics studies
due to their amenability for high throughput platforms and their abundance in the genome
(Vignal et al, 2002). Single nucleotide polymorphisnere a single base change in the DNA
sequence. This single base pair change can occur within coding-oodiolg sequences. Those

residing in coding sequences may change the amino acid sequence of the protein and result in a
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change in phenotype. Those in pParding regions may still chang@e phenotype through

affecting gene expressioevel.

Today, high throughput technologies have been used to generate dense panels of SNPs
(Weller, 2010). Major species of livestock have high density SNP chips sutiie dtumina
porcine SNP60 Beadchimif pigs (Ramos et al2009), lllumina Bovine SNP50 BeadChip for
cattle Matukumalliet al, 2009 andlllumina Ovine SNP50 BeadChipr sheep (Cockett et al.
2009). Advancement of molecular genetics has led to identification of many QTL for
economically important traits in livestocks of October 2014, more than 6,621 QTL relevant to
meat and carcass quality traits have been deposited in the pig QTLdb
(http:/www.animalgenome.org/cgpin/QTLdb/SS/inde¥. These QTLs can besed to select

superior animals with better pork quality.

2.6.MARKER-ASSISTED SELECTION

Markerassisted selection (MAS) ithe selection of animals or plants based on the
combined informtion of traditional genetics and marker information. There are two types of
MAS: One is the candidate gene approach which uses causative nsutatiioa major effect on
a particular trait such as the halothane gene in pigs that conttdcle growth (Goddard and
Hayes 2009). Another useBnkage disequilibriumbetween markers with QTL. The breeding
value will be predicted based on the combined information of polygenic effects and significant
markers (Meuwissen and GoddartP96). Howeer, the genetic gain from this method of
selection was small (Dekkerd004) because genetic gain using MAS depends on the percentage
of genetic variance of the trait that was explained by the markers (Meuwissen and GGoddard
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1996). Markerassisted selectiorelies on using relatively small number of markers in the
breeding value prediction models. As many genes determine most of the quantitative traits, MAS
will therefore capture only a small proportion of genetic variance in the trait because of the low

number of markers (Goddard and Hgy2307; Goddard and Hayex009).

2.7.GENOMIC SELECTION

The limitations of MAS can be overcome by usmbigh-density of markers across the
genome to capture a larger percentage of the genetic variance of tbéitreatest (Meuwissen
et al, 2001). This alternative method is called genemige selection or genomic selection (GS).
Genomic selection uses high marker gsignand assumes each QTL islimkage disequilibrium
with at least one closely linked markéie assumption underlying GS is that the effects of
chromosome segments will be the same within the population because the markeliskagen
disequilibriumwith the QTL. Therefore, the density of markers must be high enough to ensure

that all QTL are idinkage disequilibriunwith at least one marker.

Genomic selection needs a reference population that is a sample of individuals with
genotypic and phenotyprecords to develop a GEBV prediction equation (Goddard and Hayes
2009). The effect of each marker is estimated using appropriate statistical analysis, and hence a
prediction equation can be developed that combines all the estimated effects of martygegeno
to predict the GEBV for each animal. Subsequently this prediction equation is applied to the
candidate population with genotypic records but without phenotypic informasielection
population) to predict GEBV for each individual and this can bd tseelect the best animals
for breeding in the selection population (Meuwissen e8D1; Goddard and Haye2009) as
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indicated in Figur@.1. Using GS would be beneficial especially for the traits where traditional
genetic selection was not very effee in breeding programs. For example, meat quality traits

can only be recorded post mortem, they are expensive and hard to measure and fave low
moderate heritability (Goddard and Hay2809; Miar et al.2014b; Miar et aJ.2014c).

By implementingGS, prediction of the genetic potential of animals becomes possible at
an early stage of their life when they do not have phenotypic records. It will increase the rate of
genetic gain by reducinthe generation interval especially in species with a longegation
interval suchas bovine and equine. Althouge generation interval in swine is not as large as in
cattle it can stilbe applicanfor meat quality traits that are measured poettem. However, the
largest benefit of GS will be from an increasethe accuracy of selection for pork quality by
selecting animals based on their genomic potential rather than phenotypic information from their

relatives using traditional BLUP (Meuwissen ef 2001; Hayes et gl2009).

2.8.STATISTICAL METHODS FORGENOMIC EVALUATION

The main challenge for prediction of GEBV of each individual using high density
markers is that in most situations the number of SNPs (usually approximately 50,000 to 60,000)
is larger than the number of animals, which is normally a few thousands ,(2@1@y. Several
statistical approaches have been developed to solve the praiiflemdticollinearity between
markers and oveparameterization when using higensity markers as in the least squares
model. The statistical methods developed for prediction of GEBV include ridge regression,
GBLUP, and various Bayesian approaches (Hoad &ennargd 1970; NejatiJavaremi et al.

1997; Meuwissen et al2001; Xy 2003; Gianola et al2006; Fernando et ak007; Habier et
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al., 2007; Hayes et al2009; VanRaden et aR009; Friedman et al2010; Zhang et gl2010;

Habier et al.2011;Erbe et al. 2012; Brondum et gl2012) These methods consider different

assumptions about the distribution of QTL effects that affect the accuracy of genomic evaluation.
Generally, the prediction model for GEBV is defined as a linear mixed model for the

analysis of biallelic genotypes that can be obtained as shown in Equation 1.

yi= & jxihlEe, (Equation 1)

wherey; is the phenotypic observation of tifeanimal,¢ is the overalll mearx; can be 0, 1, or 2
depending on the SNP genotype at jfflemarker locus of thé™ individual, b is the allele
substitution effect of™ marker, U is an indicator variable which is equal to 1 or 0 for the
inclusion or exclusion gf" marker, ands is a random residual.

In this Chapter some of the statistical methods that have been used widely for genomic
prediction in livestock breeding progranssich as ridge regression, GBLUP and Bayesian

approaches are discussed briefly.

2.8.1.GBLUP method

The genomic best linear unbiased prediction (GBLUP) method was first proposed by
NejatrJavaremi et al(1997). They compared two methods of using total allelic relationship and
pedigreederived genetic relationship in mixed model equations to derive best linear unbiased
prediction (BLUP) of breeding values. They concluded that using the total alleliomskap

gives more accurate breeding values tlaapedigreederived genetic relationship because it

19



accounts for variation in average measures of relationship and identity by state alleles. Habier et
al. (2007) modified the method for implementing genoms&lection using the genomic
relationship matrix (G) instead of the allelic relationship matrix (Habier eP@0D7; Goddard
2009). Genetic markers could estimate the proportion of chromosome segments shared by
individuals including identical by state (8 loci. Therefore, GS can capture the Mendelian
segregation during gamete formation and hence selection basagenamic relationship matrix
can be more accurate thanadditive relationship matrigGoddard and Haye2007)

The statistical model for BLUP sums the individual marker effects to predict GEBV
with the assumption of normality for the marker effects as shown in Equation 2 (Hayes and

Goddard2010):

y=%ke + Zg + e , (Equation 2)

wherey is a phenotypic observation vector fomdividuals,e is the overall meari, is a vector
of ones,Z is the design matrix for the breeding valugs$s a vector of breeding values aads
the residual error vector with an assurf@, ) distribution. In this modely = Wy whereu; is
the effect ofj™ marker and variance W[ = WW@&l,. W matrix containsw; elements fori™
animal which shows the deviation of the number ofeslat thg™ marker from the g so that is
equal to Oi 2p for the homozygous AA, 1 2p for the heterozygous Aa andi22p for the

homozygous aa. The diagonal element8/a¥ dor m markers would be equal

== . IN GBLUP, thebreeding values will be predicted as shown in Equation 3.

-_—
=
I=

=

g

(Equation 3)
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This method has good properties to capture the genomic relationships between
individuals. VanRaden et al. (2009) showed that this method is at least as good as other methods

for many traits in dairy cattle.

2.8.2.Ridge regression

Ridge regression wafirst proposed by Hoerl and Kennard (1970). They used ridge
regression instead of the least squares method to estimate the coefficients of the linear model.
Meuwissen et al. (2001) modified the method for implementation in the analysis of genetic
markers.Ridge regression assumes that all marker effects are normally distributed with equal
variance. One of the best properties of this method is that it can overcome multicollinearity
between markers because the regression coefficients are shrunk towardsinge shrinkage
par amet eDereny anl Rashivan (2011) showed that ridge regression is more accurate
than the ordinary least squares method when multicollinearity exists. It uses the same linear

model as the least squares method, but the only differés that it includes a shrinkage

parameter (&) to the diagonal el ements of | ea
L] L L] A a é:{ « _
Lj L oAy =|L L ﬁ=£4 ; (Equation 4)
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wherey is a phenotypic observation vector foindividuals, X is the design matrix of the fixed
effects,Z is the design matrix for the random effects &id ann x n covariance matrix for the
residual errors anbis an identity matrix with the same dimensiorla$ <

The shrinkage parameter controls the amount of shrinkage on the regression coefficients.
The | evel of shrinkage increases as @& 1increas:s
zero (Xu and Hy 2010). Ridge regression can fit a large number of markers into the model but
this is not the optimal shrinkage because all the regression coefficients become so small leading
to the assumption of equality of variance of markers effects thattis wesirable property.
Desirable shrinkage should not shrink the markers with large effects and should penalize the
markers with small or no effects. More desirable methods can select the markers based on their
effects,andthese methods will be discussacsubsequent sections.

In comparison to other methods, ridge regression is a simple and fast method to predict
GEBV. Sargolzaei et al. (2009) introduced free software, GEBV, a genomic breeding value
estimator for livestock, to implement ridge regressmngenomic evaluation that can deal with

large datasets.

2.8.3.Bayesian methods

There are three methods of Bayesian approach that have been used frequently in animal
genetic evaluations. Two of them, BayesA and BayesB, were proposed by Meuwisden et
(2001) and BayesC was proposed by Kizilkaya et al. (2010). Recently, new Bayesian approaches
are emerging with different letters includiBgyesC, Baye®  PBayesD(Habier et al.2011),

BayesR(Erbe et al.2012)and BayesR$Brondum et al.2012) In Bayesian statistics, the data
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are modeled at two levels; first is the data level and second is the variances of genomic segments.
The difference between Bayesian and ridge regression at the data level is the variance of the
markers. In Bayesian staits, it is assumed that the variance for each marker loci comes from a
prior distribution and the data, whereas in ridge regression it is assumed that the variance of all
the markers is equal. It seems that the Bayesian approach is more realistic thathtus that
assume equal variance for each locus due to the assumption that not all markers contribute to the
genetic variation.

Meuwissen et al. (2001) described the BayesA approach such that the markers are
assumed to have different variances as thégviathe scaled inversecsiquar e di?str i bu
(v, ), whereSis a scale parameter ands the degrees of freedom. Furthermdhes BayesA
approach considers all markers in the model. Therefore, it needs more computations than other
Bayesian apprades because large numbers of effects are included simultaneously in the model
and no marker effect was assumed with zero variance.

Another variation, BayesB, wadso proposed by Meuwissen et al. (2001). This method
assumes that there are many marketh wero genetic variance and a few with a@no genetic
variance. It considers a high density, “, for
chi-square distribution for loci with genetic variance larger than zero. This method can exclude
those loci with no effect on the quantitative trait of interest. Therefore, BayesB needs less
computational time than BayesA because many loci have no effect and thus do not enter the
equations.

Another Bayesian method is called BayesC, which was propogdSizilkaya et al.

(2010). BayesC uses common variance for all markers that is estimated from the marker data so

that it is not influenced by the prior as much as BayesB. Onteru et al. (2011; 2012) mentioned
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that BayesB is more sensitive to the prior tiBayesC. Bayesian methods such as BayesB and
BayesC that use a prior distribution of the markers variance increase the accuracy of genomic
selection in comparison with the ridge regression method (Meuwissen 20@Gl; Smaragdqv
2009). A further approacis BayesD where the estimated scale parameter of the scaled inverse
chi-square distribution is used instead of specified scale param&ayesC and
BayesD (Habier et al.2011) are modifications of BayesC and BayesD where the probability of
having a zero SNP is estimated. Other Bayesian approaches, BayesR (Erbe 201H) and
BayesRC (Brondum et al012) haveemergé even more recently. BayesR usesiixture of
normal distributions as the prior for SNP effects, including a distribution #tatSNP effects to
zero. BayesRGwas developed for multpopulation genomic predictiorand usesa location
genetic variance achieved from one populatibat will be then used aspriors for another
population.

These various statistical methods can be applied to predict GEBV of pigs and

consequently select superior animals with better pork quality based on their GEBV.

2.9.ALTERNATIVE METHODS FOR GENOMIC SELECTION

Combining thegenomic information and polygenic information sedmbe a necessity
for accurate selectionf superior animals for breeding. One of the first proposed methods for
combining both sources of information wassalection index bending approach, which was
proposed by VanRaden et al. (2009). The selection index prediction includes genomic breeding
value and EBV estimated using a subset of the population used for genomic prediction and

traditional BLUP from the whole populatio©onsequently, these alternativeethods would

24



utilize genomic information from genotyped animals and their relatives, which are not
genotyped; phenotypic information of relatives could also enrich the genomic prediction of
young boars; these methods can reduce the bias in either gepoadiction or classical
evaluations. One of the most used alternative methods for combining genomic and classical

information is singlestep BLUP (ssBLUP) proposed by Misztal et al. (2009).

2.10.SINGLE- VERSUS MULTI-STEP BLUP FOR GS

Combining genomi@and traditional information can improve the accuracy of predictions.
Singlestep BLUP is a modification of BLUP and integrates the pedigree relationship matrix and
genomic relationship matrix into a single matrix, catleelH matrix. This method was proped
by Misztal et al. (2009) and Legarra et al. (2009). The inverse of the H matrix is a simple form
and can substitute for the inverse of the additive relationship matrix in existing soffgark
et al, 2010).

Multi-step prediction methods involdg estimating EBV of each individual baseditm
pedigreeusing BLUP; 2) adjusting the phenotype (calculatingetgessed EBV); 3) estimating
the allelic effects for each SNP; and 4) combining genomic prediction (GEBV) and BLUP
evaluations (EBV) (VanRade2008). However, ssBLUP utilizes just phenotypic records, which
are not dependent on other estimated effects and accuracy of EBV (MisztaRefid). Using
approximations for adjusting phenotype can inflate the GEBV and reduce the adouradsi-
step approached~urthermorethe multi-step approach isore proneto errorsbecauseof its

complexity.
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Singlestep methodology can be simpler, faster, more accurate and applicable to
complicated models compared to mugliep methods such as GBL&guilar et al, 2010). This
approach has been successfully implemented for pigs (Forni, &0all; Christensen et al.
2012), chickea (Chen et al.2011) and dairy cattle (Aguilar et @2011; Tsuruta et gl2011;
VanRaden2012).These studies showed tistiglestep is generally at least as accurate as multi

step methods, the process is simpler, and the inflation of GEBV is smaller thaistemsti

2.11.ACCURACIES OF GEBVs

Accuracy of prediction of GEBV is the correlation between true breeding vahoks
estimated breeding values. The accuracy of prediction has been investigated by using both
simulation studies and real data. Different accuracies have been achieved by using different
statistical methods for different heritabilities. The accuraciegobmic evaluations ranged from
0.460.88, 0.590.96 and 0.5®.98 for ridge regression, GBLUP and Bayesian approaches in
simulation studies, respectively. (Meuwissen et 2001; Habier et al.2007; Fernando et al.

2007; VanRaderk2008; Habier et gl2009; Christensen and Lun2010; Kizilkaya et a].2010).

In real data, the accuracies of genomic prediction have different ranges using different
statistical methods (TabR1). These studies showed that different methods are similar in their
expectedaccuracy of genomic prediction. In addition to the statistical methods of genomic
prediction, there are several factors affecting their@oy of genomic breeding valypeediction
such as reference population size, number of SNPs, heritability of thestfagtive population
size (Ng) and number of loci affecting the traits (MW2007; Daetwyler et 312008; Goddard and

Hayes 2009).
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One of the most important factors affecting accuracy of GEBV is the number of SNPs to
be analyzed (Hayes and Godd&@d10). This depends on the extentiokage disequilibriumn
the species of interest. If there is not sufficiBnkage disequilibriunbetween SNPs and QTL,
more SNPs are needed in the genotyping panel to increase the power of QTL detection. The
accuracyof genomic predictions is high if the melamkage disequilibriunbetween two adjacent
markers is greater than 0.2 (Calus et 2008). Sved et al. (1971) showed that the expected
linkage disequilibriundepends on the effective population size and distance between markers.
Meuwissen et al. (2001) demonstrated that 1 cM of-migrker spacing is needed to have a high
accuracy of prediction given aN.=100. The effective population size for Holst&inesian
cattle is approximately 100. Therefore it is estimated that Holfw@sian cattle needs
approximately 30,000 markers based on the 30 Morgan length of genome (Hayes and,Goddard
2010) and hence GS can increase the accuracy using a density of 30F¥h Slidiry cattleln
a similar manner, the effective population f@uroc breed in USAvas estimated to b#13
(Welsh et al., 201Q) Therdore, it is estimated that Duroc pig needs approxima®&y00
markers based on tf#3 Morgan length of genomdRphrer et al., 1996and hence GS needs a
density 0f26,000 SNPs in pigs to improve the accuracy.

The other factor affecting the genomic prediction is the size of reference population. It is
suggested that large reference population size is needed to predict GEBV accurately for low
heritability traits (pork quality traits). The number of animals needdhle reference population
increases as the heritability declinesMyof the population increases (Goddard and Hayes
2009).

Another factor affecting the accuracy is the number of loci affecting the trait. Although

the number of QTLs affecting pork gjity traits has not been defined yet, Goddard (2009)
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showed that the number of QTLs affecting any trait can be calculated a8.L, where q is the
number of QTLs affecting the trait and L is the length of the genome in Morgans. Then, the

accuracy ofSEBV can be calculated as shown by Equation 5:

> (r A wme £ T+ (Equation 5)

where a = 1+2/N, and} =qK/h?, with K=1/log(N.), where Ris theheritability of the trait and N

is the number of individuals with phenotypic record in the reference population (Go2I0R®J!.

2.12.APPLICATION OF GS IN PORK QUALITY

The ability to select animals based on their GEBV or GS would allow the oppottiinity
redesign livestock breeding programs to select animals at an early stage of their life and increase
the accuracy of prediction. Consequently, this would increase the genetic gain by decreasing
generation interval, increasing the selection accuracy,tledrequency offavorable alleles
(FalconerandMackay, 1996 GoddardandHayes 2009. In dairy cattle, reducing the generation
interval using GS was predicted to increase the genetic gain by twice compared to traditional
evaluation and this results neducing costs for proving bulls by more than 90% (Schaeffer
2006). In practicegenomic selectionvas successful imcreasng the accuracyn youngdairy
bulls, averagin@3% across traits with a range from 8 to 43%ar(Raden et gl2009) Genomic
selection explaing greater proportion of genetic variance than MAS and it is not limited to

within families.
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The commercial production system in pig breeding is pyramidal. Nucleus herds supply
genetics to multipliers and later to commercialsstreds. The main limitation of this system is
that purebred performance can be a poor indicator of crossbred performance (DEXKEYs
Using GS for some traits such as lowly heritable traits, difficult and expensive to megaggre
sex limitedtraits, traits that are expresséate in ife and after slaughter traits, would enathle
rate of genetic gaito be greatestMeasurement of carcass and meat quality traitsfi€ult,
expensiveandcan only be performed pestortem. Therefore, genomiclsetion of purebred
pigs based on crossbred performance for these traits would be udedlp tmprovepure lines
to produce superior commercial crossbred animals wittimiheed fomeasurements on pure
lines. Miar et al. (2014a3howed the potentialf genomic selection for pork pH in the pure
parental lines using the prediction models developed from their crossbred prbgféengnt
models were proposed to select purebreds for aredgberformance. Althoughmost studies
used additive gene action,etldominance model is the likely genetic basis of heterosis. In a
simulation study, Zeng et al. (2013) suggested that GS with a dominance model is suparior
dominance effectare present allowing the opportuntty maximize the crossbred performance
through purebred selection.

Development of composite lines and introgression of valuable alle&te/een
populationsare the other potential applications of GS in livestock breeding programs. Genomic
selection increases the efééincy of introgression davourableQTL alleles from a donor line to
a recipient line (@degard et a2009). Therefore, GS can improve composite lines, which are
often used irthe pig industry (Piyasatian et aR006). Genomic selection has introduced a new
paradigm for pig brestng and hence can be successfully applied to livestock breeding programs

in optimizing mating strategies and herd management
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2.13.CHALLENGES IN GENOMIC SELECTION FOR PORK QUALITY

Although GS is revolutionizing animal breeding, it also faces someedgasé including
the need for large reference populations, and further investigati@guiredto understand the
impact for longterm genetic gain, neadditive genetic effects, and selection involving multiple
breeds. One of the major challenges is tbguirement of large reference population size to
predict GEBV accurately. In most cases to date, small reference populations have been used for
genomic prediction while it is known that larger reference populations result in higher accuracy
of genomic preittion (Dalton 2009; Goddard and Haye8009). Another major challenge is
that longterm genetic gain could be less than phenotypic selection ,(R007; Goddarg2008).

There are two reasons for this issue including the effect of selection on the pétiekage
disequilibriumbetween marker and QTL resulting in changinglthkage disequilibriunwhich

is the criteria for genomic selection, atiet genomic selection uses only the markers that have
been detected to affect the trattile phenotypic selection uses all QTL automatically (Goddard
2008; Hayes et al2009). Even spimprovement is required over the shtatm and we are
confident that increased understanding and use of different populations will help address the risk
of a long-term decrease in gain.

Another major challenge in GS is the involvement of multiple breeds in livestock
industries. De Roos et al. (2008) showed that large reference population sizes and more than
300,000 SNPs are needed for divergent breeds. Anothéerge in using genomic selection is
using noradditive genetic effects. It might be beneficial to improve the accuracy of selection by
including noradditive genetic effects such as dominance and epistatic effects. There are some

methods for genomic pradion which allow us to estimate nauditive genetic effects e.g.
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estimation of interactions between high density of markers has been developed by Gianola et al.
(2006) and estimation of both dominance and epistatic effects by usingmsiadger Bayesia

approach (Xu and Jia007), and the dominance model developed by Zeng et al. (2013).

2.14.CONCLUSIONS

The objective of thisChapter was to provide a summary of strategies for
implementing genomic selectiam swine breeding programs to improve pork quality. In the
last decade, traditional BLUP and using indirect selection with correlated traits was used to
predict the genetic potential of animals for pork quality. Although it was succesifel
process was slow for pork quality as it is hard and expensive to measute;iwderately
heritable andmust bemeasured posnhortem. Recently, identification of genetic markers
underlying pork quality became possible, which were used in MAS pragriine effect of
each QTL on the trait of interest is small, limiting the value of MAS and confirming the need
for dense markers to capture more genetic variation in that trait (Hayes and Gaddajd
This has led to the development of GS.

Genomic seletion is one of the ultimate applications of genetic markers in animal
genetic improvementenomic selection usesdense panel of markers covering the whole
genome assuming all QTL are limkage disequilibriumwith at least one of the markers.
Genomic pediction can be applied based on matep approaches using various statistical
methods including Bayesian approaches, GBLUP and ridge regresssdBL&IP into the
reference population with known genotypes and phenotypes. The results of genomic

predicton are implemented to select animals in the selection population with known
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genotypes and unknown phenotypes to completely redesign livestock breeding programs.
Genomic selection enablggediction of breeding values of young selection candidates,
resultsin reducing the generation interval and increasing accuracy of selection. The accuracy
of genomic selection strongly relies on a number of factors such as size of the reference
population,number of SNPs, heritability of the trait, effective populatiore §{%e) and
number of loci affecting the traits (Myi2007; Daetwyler et g12008; Goddard and Hayes,
2009).In conclusion, GS opens the possibility of using high density of markers covering the
whole genome to increase the rate of genetic gain for poakty traits to help ensure that

demandor high quality and affordable pork is satisfied
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Table 21: Ranges of genomic prediction accuracies using real data with different statistical
methods

Statistical methods Accuracy References

Ridgeregression 0.150.73  Moser et al.2009; Hayes et al2009; Moser et al2010
GBLUP 0.130.82 Harris et al.2008; Berry et a).2009; Schenkel et al.
2009; VanRaden et aR009; Hayes et al2009; Luan
et al, 2009
BayesA 0.37-0.82 Moser et al.2009; Hayes et gal2009; de Roos et al.
2009; Cleveland et al2010
BayesB 0.130.70 Luan et al.2009; Hayes et gl2009

BayesC 0.330.6 Cleveland et a]2010
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Figure 2.1: Genomic selection for pork quality
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