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ABSTRACT 

Logistic models are a useful way of analyzing dichotomous data by 

including relevant covariates to explain the variability in binary responses. 

However, to account for spatial-temporal variability, markov random field and 

markov chain models can be used to improve the accuracy of the fit. For binary 

spatial-temporal data spatial dependence can be accounted for via neighboring 

information, while temporal dependence can be modeled via information from the 

previous year(s). The use of such models is central in many applications such as 

pine beetle infestation situations. The infestation is currently placing heavy 

burdens on the timber and forest industry in British Columbia and throughout 

North America. The aggressive use of preventive measures in infested areas is 

thus of utter importance and limiting the costs associated with such measures 

relies on the existence of good models. This paper examines such models, which 

can be used to tackle the spread of the infestation. 
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Chapter 1: Introduction 

The pine beetle is one of the most devastating predators of pine forests 

throughout North America, causing millions of dollars in damages each year to 

the forestry and lumber industry. Whether we are talking about the Southern Pine 

Beetle (Dendroctonus frontalis), which decimates pine populations throughout the 

Southern United States and Central America (from Pennsylvania to Texas, from 

New Mexico to Honduras - Thatcher and Barry, 1982), or the Mountain Pine 

Beetle (Dendroctonus pondoresae) present in areas as far north as British 

Columbia and Alberta, and as far south as California, Arizona and even Northern 

Mexico, the spread and intensity of the infestation constitutes a heavy burden for 

the private forestry sector, as well as the government. 

According to the BC Ministry of Forests and Range (2008 update), out of 

the 1.35 billion cubic meters of merchantable pine in British Columbia about half, 

or 710 million cubic meters of timber, has been affected by the mountain pine 

beetle (MPB). It is projected that 76 per cent of the entire pine volume will be 

destroyed by 2015. In the United States, low levels of MPB infestation were 

registered throughout the 90s, but the infestation has accelerated and has grown 

10 fold from 1996 to 2002 (i.e. from a low of 21,570 ha in 1996 to a 209,465 ha 

in 2002). The utmost peak was registered in 1981 when almost 2 million hectares 

were infested throughout 11 states (Gibson, 2004). Although the infestation seems 

to come in cycles, the consequences of it are long-lasting and complex. Aside 

from the heavy losses endured by the forestry industry, the impact of the 

infestation can alter the forest ecosystem by changing the wildlife species 

composition of the habitat. The depleted pine forests are sometimes replaced by 

other tree species, or the terrain can be completely replaced by grass and shrubs 

which can lead to an increase in water yield following the infestation (Amman, 

McGregor, & Dolph 1990). Attacked and dead trees also constitute a fire hazard 

over time and can lead to forest fires unless removed. 
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For these and other reasons, it becomes imperative that appropriate 

prediction tools be created to assist with the monitoring and control of the 

affected areas. A number of factors have been considered when trying to explain 

the underlying processes that impact infestation. Some have suggested that 

climate variation is an important element in beetle dynamics and can act as a 

catalyst of the spread of infestation (Caroll 2006). Prolonged periods of extreme 

cold temperatures during the early stages of beetle development can greatly deter 

the expansion of the beetle population, by killing the over wintering beetle larvae 

(Regniere & Bentz, 2007). Warm temperatures as well as precipitation are also 

thought to impact infestation. In addition, the forest and tree characteristics are 

assumed to play an important role. Trees with large diameters seem to be the 

preferred choice of beetles (Geizler 1980), despite the fact that they are better 

equipped to produce resin and fend off the invasion. Tree vigor was found to be 

only marginally significant (Mitchell & Preisler, 1991) partly because the size of 

the invasion usually overwhelms the tree's defense mechanisms. Also, variables 

as tree age and proximity of trees in thinned respectively unthinned stands have 

been considered. Elevation and terrain factors have been used in explaining 

propagation of infestation, these elements being tied in with climatic variations. 

In terms of modeling strategies used to predict outbreaks, logistic 

regression is a common feature of many analyses. Covariate information can 

easily be incorporated to account for the uncertainty in the response and the 

results are easily interpretable either as odds ratios or probabilities of infestation. 

Mitchell and Preisler (1991) use such a model taking into account tree 

characteristics, tree age, leaf area index, tree vigor and a distance measure that 

combines the proximity to adjacent trees as well as the diameter at breast height 

of the trees, from thinned and unthinned plots. 

Although the inclusion of such variables can improve the quality of 

predictions, spatial correlation between adjacent sites cannot be fully accounted 

for in these models. Outbreaks for the Southern Pine Beetle in the United States 

present visible spatial patterns and due to the cyclical nature of the infestation 

temporal patterns also exist (Gumpertz 2000). Spatial dependence can be 
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accounted for via the use of autoregressive models, or Markov Random Field 

(MRF) models, while the temporal dependence component can be accounted for 

by using Markov Chain (MC) models. The paper at hand makes use of logistic, 

MRF and MC models to compare the accuracy of prediction and to assess the 

significance of the covariates involved. Operating characteristic curves (ROCs) 

and their corresponding AUCs are assessed to establish the accuracy of the 

predictions and the results are compared with results from similar papers 

(Camino-Beck 2008; Zhu, Huang, & Wu, 2005). 

Chapter 2 contains theoretical considerations for binary spatial and spatial-

temporal models, together with corresponding parameter estimation methods, 

parameter selection procedures and accuracy assessment procedures. Chapters 3 

and 4 make use of Chapter 2 models that are applied to two different data sets: a 

North Carolina data set in Chapter 3, and a British Columbia data set in Chapter 

4. A detailed description of the data together with some references to the biology 

of the infestation will be provided with the analyses. Chapter 5 concludes the 

paper by offering suggestions as to how the models can be improved upon. 
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Chapter 2: Models for Binary Data 

/. Various Models 

a) Spatial Data - The Logistic Regression Model 

a.l) General Description, Parameter Interpretation and Model Dependencies 

Binary data arise in many fields and disciplines such as agriculture and 

forestry, computing science, demography, and ecology. Whether we look at the 

presence or absence of bird species throughout various counties in the United 

States, the HIV status of young females in the Sub-Saharan African region, or the 

pine beetle infestation status of forest populations in British Columbia or North 

Carolina, the binary nature of various response variables becomes apparent. Due 

to the wide range of applications in which binary data is involved, the need for 

statistical tools to model and analyze binary information has lead to the creation 

of particular classes of models that can handle the task. 

One such class of models is the class of generalized linear models (GLM), 

and in particular the logistic regression models. Since binary data is a particular 

type of discrete data, linear regression analysis is not appropriate for modeling 

purposes. What is modeled, given that the response can only take the values 0 and 

1, is the probability associated with these two values. Regression models for such 

responses are thus used to describe probabilities as functions of the response 

variable, and do not directly model the response. The usefulness of logistic 

regression lies in that the covariates it uses can be of any nature, that is continuous 

or categorical and, in that it uses less stringent assumptions than linear regression. 

As a member of the GLM class, the logistic regression model is 

characterized by a systematic component (which includes the explanatory 

variables), a random component (the response variable) and a link function (in 

this case, the logit function) (Agresti 2000). A general form for such a model is 

given on the next page. 
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P(Z = l | X n , . . . , X i k ) 
^ = lQg P ,V n Y v ' = Po + Pi * Xi;1 +...+ pi * Xi,k, i=l,.. . ,n 

(1) 

Equivalently, 

pi = P(Y i=l|Xu ,„„XU t) = J e A + A ^ , . , A ^ , i= l , - , n (2) 

The interpretation of the Pi parameter estimates is given in terms of the 

multiplicative effect on the log odds of infestation and the coefficient estimates 

are calculated via maximum likelihood. Unlike ordinary least squares linear 

regression, the logistic model does not assume homoskedasticity, normality, or a 

linear relationship between the dependent and independent variables. However, 

the observations ought to be independent and the covariates must be linearly 

related to the logit (i.e. log odds ratio) of the response. 

Logistic regression is useful in that a wide range of covariates can be 

included in the model to account for the variability in the response variable. When 

it comes to beetle infestation, the variability in the infestation can be explained by 

a wide a range of factors such as: beetle biology, terrain information, climate 

variables and tree and forest characteristics. Despite the usefulness of logistic 

regression with modeling binary data, one of its major drawbacks when 

examining spatial binary data, is that it cannot take into account the spatial 

correlation present in the data. Although some of the spatial variability is 

accounted for by the covariates themselves, in many cases most of it remains 

unexplained and is, in effect, passed on to the residuals. As a consequence, the 

residuals are spatially correlated and the logistic model which uses the 

independence assumption is unsuitable. However, more complex models have 

been created to handle with this problem. 
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b) Spatial Data - The Markov Random Field Model 

b.l) General Description 

Markov Random Field Models (MRP), provide parametric ways of 

describing the spatial interactions between random variables that are spatially 

related. They are, in fact, an extension of the Markov Chain class in which the 

time component is replaced by its spatial analog and for which the Markovian 

property holds. To appropriately define a MRF one has to first introduce the 

concept of neighborhood. Following the notation of Cressie and Lele (1992) one 

can assume that the response variable, as a function of sites, is given by: 

Y(S) = (Y(sO,Y(s2),...,Y(sn)), (3) 

where S = {si, S2,..., sn}, is the set of locations at which the response is recorded. 

As Besag (1974) notes, the actual location of the sites is not important for 

modeling purposes. However, the spatial relationship between locations, which 

describes the neighboring structure of the data, does matter. Let us denote the 

neighborhood of the site Sj as N;, where: 

N; = {si | Sj e S, j * i, s; & Sj neighbours} (4) 

With this in mind, one can define the Markovian property for MRFs as: 

Prob(Y(Si) | Y(S \{Si})) = Prob(Y(Si) | {Y(Sj): Sj e Nt }) (5) 

That is, the probability of Y(s;) is conditional only on the information at 

neighboring locations of s,. Assuming that the data have a joint probability of the 

response at all sites as given below, 

Prob(Y(S)) = Prob((Y(si), Y(s2),..., Y(sn)), (6) 

one is interested in expressing it in terms of conditional probabilities, as given by 

the Markovian property. The Hammersley-Clifford theorem comes to help, 

providing the form that the joint probability density of a Markov random field 

must take. The density function is written as a sum of functions, where each 

function is expressed in terms of only those variables whose sites form a clique (a 

"clique" is every site or set of sites where each element is a neighbor of every 
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other element in the set). It has also been shown (Besag, 1974; Cressie & Lele, 

1992) that under sufficient conditional probability specifications Markov random 

fields can be obtained. MRF random fields have been derived from many 

members of the exponential family of conditional distributions, among which one 

can count beta, gamma and auto-logistic random fields. 

Although conditional models often provide a simpler and more intuitive 

understanding of reality, Besag (1974) argues that the specification of processes 

in some applications is more natural in terms of joint distributions rather than 

conditional ones and thus the motivation of deriving the joint probability from 

conditional ones. However, this is a contentious remark and the use of conditional 

probabilities can often be the preferred choice. 

b.2) Neighboring Structure 

Markov Random Fields' usefulness is driven from their ability to account 

for the spatial correlation present in the data by using the neighboring structure of 

the observations. Since this is an essential element of MRFs, the way in which 

neighbors are selected has a major impact on the effectiveness of the model. 

Depending on the structure of the map, the individual locations (i.e geographical 

areas, specific locations etc.) and the random variables used a number of spatial 

situations can be encountered. Some examples of such scenarios are: 

• regular structures at specific sites with binary variables - such as 

presence and absence of tree infestation in a thinned pine plot 

(Note: the BC data analyzed in Chapter 4 fits this structure) 

• regular structures of regions with continuous variables - such as 

orchard plots, where the total fruit yield is measured for the 

combined number of trees existing in each component of the plot 

• irregular structures of regions with discrete variables - such as the 

number of species of birds present within each county of a 

particular state 
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In the context of binary data, one is mainly concerned with dichotomous 

outcomes on regular or irregular lattice structures. Assuming that the data was 

collected on a rectangular lattice structure, one could define the neighbors of a site 

in a number of ways. In a first order scheme on a rectangular structure, the 

neighbors of a site are defined as the four immediate sites adjacent to the given 

sight. A second order scheme, on the other hand, also takes into account the four 

diagonally adjacent neighbors of the site. Higher order schemes can be 

implemented, but first and second order schemes are the most frequently used in 

order to explain the spatial correlation present in the responses. 

Irregular structures, on the other hand, require different methods of 

specifying the neighbors of a site. For geographical data, one could consider a 

county whose neighbors are the bordering counties. In other cases, neighbors 

could also be defined in terms of the proximity to the current location, or in terms 

of all sites located within a certain area. Unlike regular lattices, the sites on 

irregular structures can have varying numbers of neighbors and thus, require 

somewhat different models and ways of estimating the spatial correlation. 

b.3) Auto-logistic Models and Model Dependencies 

In his 1974 paper, Besag showed that the exponential family of 

conditional probabilities together with the neighboring structure can be used to 

generate Markov Random Fields. He named this class of models, which include 

gamma, poisson, exponential and normal MRFs as the auto model class. 

For binary response data, the coined term corresponding to the auto model 

class is auto-logistic model and the expression for its conditional probability 

resembles the one for logistic regression. The major difference is that, in the case 

of auto-logistic models, the response variable rather than the covariates is directly 

involved in the model where they appear as individual observations. The full 

conditional probability of 2nd order auto-logistic model is given on the next page: 
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exp{Y(sl)[0o+Yi0IJ*Y(sJ)]} 

Prob(Y(Si) | Y(SJ), s; e tf,) = — g " (7) 

\<,j<n 

The capacity to model spatial dependence is one of the reasons why MRP 

models are widely used. As seen in section b.2), they can be applied to wide 

variety of spatial situations and offer a lot of flexibility in defining the 

neighboring structure of the sites. Also, the spatial dependence can be divided into 

orientations of dependence (i.e. into directional spatial components) and each of 

them can be estimated individually. For example, in a viticulture experiment, one 

could study whether the spatial pattern of infestation within neighboring orange 

trees located in the same row in an orchard is stronger than the spatial pattern of 

infestation amongst neighboring orange trees in adjacent rows. Similarly first and 

second order neighbor spatial effects could be compared. 

One problem with the auto-logistic model defined in (7) is that it does not 

allow for useful covariates to be introduced in the model. However, the auto-

logistic regressive model comes to help. With the specification of covariates, the 

auto-logistic regression model is able to better model the relationship between the 

binary response and the explanatory variables while also taking into account the 

spatial dependence of the responses. Greig, Porteous and Seheult (1989) described 

such a model whose conditional probability is as derived by Zhu, Hunag and Wu 

(2005) is given below: 

f(Y(sl)\Y(sj),XSjk,sjeNi) = 

exp{y(s,)[JX *X,iJc + 5 X ( 2 7 ( ^ ) - 1 ) ] } 
_ ^ i HJ~" (%} 

l + exp{£<9t *XtiJ[ + 2 X ( 2 7 ( s , ) - l ) } 

The Pij's in model (8) are the auto-regression coefficients with Py = p^ = p, and p 

= 0 if Sj and Sj are not neighbors, while 9i,.. .,0P are the p covariate coefficients. 

The above model provides a better attempt at explaining the variability in 

the response values by using additional covariate information. However, a 
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problem that arises is that covariates themselves can sometimes contain spatial 

correlation and it becomes difficult to distinguish between the spatial dependence 

accounted for by covariates and the one explained by neighboring dependence. 

c) The Markov Chain Model for spatial-temporal data 

c.l) General Description and Dependencies Modeled 

In many situations spatial data are gathered throughout time, with 

observations being taken at each location on a regular basis. This is precisely the 

case in beetle infestation problems, where the infestation status together with 

covariate information is recorded yearly for each location within the area of 

interest. Due to the cyclical and cluster-like nature of the infestation, spatial and 

temporal dependence is induced in the response variable. Spatial-temporal 

Markov Chain models can be employed to capture both the spatial and temporal 

dependence among the observations. 

Generally Markov Chains are processes where the current state of the 

process is dependent on a few previous states and are primarily utilized to capture 

time dependencies in the data. An extensive number of applications varying from 

weather forecasting, to gambling problems, to random walks can all be modeled 

as Markov Chain processes. Depending on the nature of the response measured at 

various times this processes can be discrete or continuous in nature. 

In the case of binary data, Markov Chains can be used to model 

dependencies of current dichotomous response values on their immediate past 

values. In its most simplistic form a model that captures the time dependence 

from the previous time unit has the form: 

logit[P(7(=l|7 ;_1)] = ^ 0 + A * ^ _ 1 (9) 

However, in many situations covariate information is available and it can 

be included in the model via logistic regression. Assuming the covariates Xi, 

X2,.. .,XP are available, the one step Markov Chain model becomes: 
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lo&t[P(Yl=\\Yl_l)] = /30+/]x*X1+j32*X2+... + j3p*Xp+a*Yt_x(\0) 

It often happens that temporal dependence is already present in the 

covariates themselves, especially when the covariates are time dependent. 

However, the temporal term in the above model captures the time unit to time unit 

variability present in the data that was not explained by the covariates included. 

Despite the fact that model (10), in its current form, cannot account for spatial 

dependence in the response variable, it is possible to incorporate neighboring 

information from previous or current time units to explain the spatial dependence. 

An example of such a spatial-temporal model is used by Zhu, Huang, and Wu 

(2005). The full conditional distribution of their model at location i and time t is 

given below: 

p(Y„\{Y„:U,t)eN„) = 

e x p g > ^ i ; , +Y*~J0P^A2YU -l) + <W,(2Vi +2Y^ -2)> 
= *** (11) 

1 + e x p g X x ^ + y .^+1(2r,„ -\) + ep+2(2Yu_, +2Y.t+x -2)} 

The neighborhood of location i at time t, considered in model (11) is defined as 

Njj = (OV) : J ~ i} ^ {(i,t -l),(i,t + l)}and consists of all pairs (j,t) of 

neighboring locations of site i and time t, as well as the points corresponding to 

location i and previous time t-1, respectively future time t+1. 0i,...,9p are the 

covariate coefficients, 0p+i is the coefficient of the spatial covariate, while 9p+2 is 

the coefficient of the temporal covariate. 

The above model contains covariate information, as well as spatial and 

temporal terms. The spatial component is based on neighboring information from 

the present, while the temporal component includes information from the current 

location recorded during the previous and immediately following one lag time 

units. The spatial-temporal MC model used later differs from this model, in that it 

only employs information from the previous time state, for both the temporal and 
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the spatial covariate. The spatial covariate becomes thus a spatial-temporal 

covariate, but the nomenclature has been kept to emphasize the fact that 

neighboring information is used in its computation. 

II. Inference Procedures 

a) Inference Procedures for Logistic Regression 

In the case of logistic regression, the estimation of the model parameters is 

done via maximum likelihood. Conditional on covariate information the responses 

at each location and time are considered to be independent of each other and the 

joint probability is expressed as a product of conditional distributions. The log 

likelihood is computed together with the score equations and the MLEs that 

optimize the likelihood function are found in an iterative fashion. That is the 

gradient and the log likelihood are evaluated at the current estimates and the 

numerical algorithm iteratively improves the parameter estimates until the 

gradient is sufficiently close to zero. Various numerical approximation methods 

(such Newton-Raphson) can be employed to compute the MLEs since there are no 

closed form expressions for these estimates. The covariance matrix is the inverse 

of the matrix of second derivatives (i.e inverse Fisher information matrix) and its 

computation gives the standard errors of the parameters. 

b) Inference Procedures for Markov Random Field Models (and 
for the spatial-temporal MC Model) 

Upon deciding on a MRF model to be fit to the data at hand, the question 

of interest becomes how to estimate the model parameters. A large number of 

academic articles exist in the literature regarding parameter estimation for MRFs. 

Among the proposed methods of estimation one can count pseudo-likelihood 

(PL), generalized PL and Monte Carlo Maximum Likelihood (MCML). 

When dealing with ordinary logistic regression, maximum likelihood 

estimation is the method of choice. However, in the case of auto-logistic models 

where spatial correlation exists among the observations, the independence 

12 



assumption which is necessary for conducting maximum likelihood estimation is 

invalid, and no closed expression for the likelihood function can be specified. 

One way to approximate the likelihood function is by using MCML. The method 

uses Monte Carlo re-sampling and it provides consistent and asymptotically 

normal estimates. However, the method is computationally inefficient. Pseudo-

likelihood (Besag, 1975) and coding (Besag, 1974a) were the common estimation 

methods before MCML was introduced and before the technological advances 

that have made computations easier. 

In order to examine the way PL works let us assume that we are dealing 

with a model with conditional probability defined in terms of neighboring 

locations. Provided that once we condition on the values at neighboring locations 

the observations are independent, the PL is but the product of full conditional 

likelihood functions. 

exp{7(s ; ) [ / ? 0 +X/?*^ 7 ) ]} 

P L ( 8 , p | Y ( S ) ) = n - j fn vl*w ^ ( 1 2 ) 

f/s l + exp(/?0 + 2JP*Y(SJ)) 
SjeN, 

where P=0 if Sj,Sj are not neighbors. 

Thus, MPL estimators are the parameter values that maximize PL(8, P | 

Y(S)). Although in the case of large data sets, the consistency and asymptotic 

normality of these estimators holds, because Y(s0 and {Y(SJ)J Sje Ni} are not 

independent, the pseudo-likelihood is not the true likelihood function, except in 

the simple case of independence between observations. For this and other reasons 

MCML is sometimes a better method of estimation, especially when the spatial 

correlation is significant. 

Another problem one is faced with when using PL, is that the standard 

errors of the estimates do not have a closed form. Numerous re-sampling 

techniques of estimating standard errors such as parametric bootstrap exist 

throughout the literature, but they rely heavily on generating data under the 

updated parametric models and with the underlying dependence structure of the 

MRF. This is not always an easy task. One way to overcome this difficulty is to 
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estimate the standard errors via jackknife estimation. Lele (1991) describes a way 

to come up with proper estimates and standard errors using a jackknife procedure. 

In the usual jackknife, one observation is deleted from the data at a time, and the 

remaining observations are used to obtain the needed estimates. Yet, removing 

observations from serially correlated datasets causes problems with the jackknife. 

To overcome this problem a component of the pseudo likelihood is deleted 

instead and the formulae from below are used to estimate the model coefficients 

and their standard errors. This method will be used in the applied sections of 

chapters 3 and 4 for both the MRF model and the spatial-temporal MC model. 

JK&u=SH-^*ZtVH,_j-Sm), BnJ=Sn>_J-S„ 
n j 

s.e.(JK5n)= (»-1)*XM Zi^-Tj^-Tj (13) 

where 8n are the original pseudo likelihood estimates, 8n,-j are the estimates from 

removing the j-th component of the pseudo likelihood, the Bs are the biases and 

the N(i) is the neighborhood of location i. 

///. Model Selection and Adequacy 

a) Model Selection 

Model selection is important in making sure that only the relevant 

covariates are kept in the model. Knowing which factors are relevant in 

explaining the variability in the response is an important question for researchers. 

In general, a candidate model may generate an improved likelihood while at the 

same time leading to an over fitted system. If model selection is solely based on 

ML (or least squares), the higher the number of variables present in the model the 

better the fit. However, the superiority of various models is ranked according to 

goodness of fit as well as other criteria: the principle of parsimony, complexity of 

the model parameters etc. The AIC or Akaike Information Criterion is a method 

14 



of selecting the model with the best likelihood while penalizing for model 

complexity according to the formula: 

AIC = -2 * logL(9i,..., 6k| data) + 2 * k (14) 

where 0i,..., 9k are the MLE parameter estimates. 

While this is a useful way of selecting the appropriate covariates in a 

logistic model, the ML cannot be computed when using a MRF (or a spatial-

temporal MC model). However, one can repeatedly apply the Jackknife method of 

estimation described in section Il.b), to come up with consistent estimates of the 

parameter standard error. The p-values can be computed thereafter and the 

method of backward substitution can be used to remove covariates with large p-

values from the model, until all covariates left are significant at the significance 

level of choice (usually a = .05). This method will be applied for the MRF and 

spatial-temporal MC models in chapters 3 and 4. 

b) Model Adequacy 

While each model has advantages and limitations, some models are better 

than others. To decide which models are better, one has to establish what qualifies 

as better and come up with a common measure of assessing it. The receiver 

operating curve (ROC) is a measure used to determine the adequacy of the fit 

when using a binary model. The ROC is a graphical portrayal of the tradeoffs 

between sensitivity (Sn) and specificity (Sp) (where sensitivity is the probability 

of detecting the true positives and specificity is the probability of detecting the 

true negatives). The formulae for sensitivity and specificity are given below: 

_ # true positives 

# true positives + # false negatives 

_ # true negatives 
op (,t-5) 

# true negatives + # false positives 
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In its traditional form the ROC consists of plotting sensitivity (Sn) on the 

Y axis and 1-specificity (1-Sp) on the X axis, and thus, is a measure that relates 

the rate of true positives and the one of false positives. The curve itself cannot be 

deemed good or bad, but rather the diagnostic test associated with the model can 

be evaluated. The plot given below displays a number of such ROC curves: 

Figure 1 - ROC Curves and Cutoff Values 

A cutoff value is a value between 0 and 1 on the ROC, which allows us to 

classify the infestation status of a location, based on the probability predicted (by 

the model) for that location. For example, a cutoff value of .1 means that based on 

it, areas with predicted values higher than . 1 would be classified as infested, 

whereas areas with associated probabilities less than .1 would be seen as non-

infested. One has to remember that each such cutoff value has an associated 

pairing of sensitivity/specificity which tells us how well the model is fairing in 

terms of its fit and based on this testing cutoff value. What one wants to see is a 

model under which few mistakes are made in detecting infestation or lack of it, 

across a relatively wide range of cutoff values. That is, one wants an ROC, which 

climbs quickly towards the top left corner of the plot with a large area under the 

curve. The diagonal line in the Figure 1, corresponds to a random test, where any 
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cutoff value (i.e. any point on the curve) has equal Sn and 1-Sp. That is, tests 

based on cutoff values on this curve fare the same as if we were to decide the 

infestation status of a particular location by tossing a coin. Points A and D 

represent cutoff values on ROCs that fare much better than the random test (D 

more so than A). The ROCs corresponding to these points, are also characterized 

by areas under the curve (AUCs) that are closer to 1 than the .5 AUC value of the 

random test. 

The values for the AUC range from 0 to 1, with 1 corresponding to a 

perfect test. Values between .75 and .9 are considered good, while AUCs between 

.9 and 1 are seen as excellent. However, these qualify as rough guidelines rather 

than the absolute standard. 

Although the AUC is one of the most commonly used measures when 

comparing different ROC curves, the Youden Index (Youden, 1950) is frequently 

used in practice and it is computed as a function of sensitivity and specificity. The 

Youden Index (i.e. {Sn(cutoff) + Sp(cutoff) -1}) is a way of summarizing the test 

accuracy into a single value and the cutoff value that maximizes it can be an 

indicator of the accuracy of the predictions. This optimal cutoff is provided on all 

the ROC plots that appear in the following sections and the different ROC plots 

can be compared with one another in terms of their Youden Index values 

corresponding to the same cutoff value. However, the Youden Index is not the 

only criteria of choosing the optimal cutoff value, other measures such as 

efficiency and misclassification-cost existing throughout the literature (Greiner, 

2000). 

Although each of the models used with the data throughout this paper can 

be assessed in terms of ROCs, one has to be careful about their interpretation. 

While logistic the regression model and the spatio-temporal MC model can be 

used to make predictions for the immediate future, the MRF model which 

depends on conditioning on current response values does not have this capability. 

This has to be taken into account when comparing the various models by this 

measure. 

17 



Chapter 3: The North Carolina Data and Analysis 

/. Putting things in Context 

a) The Biology of the Southern Pine Beetle and the Nature of 
the Infestation 

Dendoctr onus frontalis, or the southern pine beetle (SPB), is one of the 

most devastating pests of pine forests in southern United States. According to 

Meeker, Wayne, Foltz, and Fasulo (2008) more than sixteen southern states are or 

have been affected by SPB from 1960 until now. It is estimated that over a span 

of thirty years the SPB has caused more than $900 million of damage to pine 

forests in the US. The infestations come in cycles which occur every six to twelve 

years and last for a few years. During endemic periods (low levels of infestation) 

the attacks are limited to weakened trees that cannot produce a large amount of 

resin. However, when infestations reach their peak the large number of beetles 

can overwhelm a tree's defense mechanisms even for the healthiest of trees. 

The adult female beetles bore through the bark of pine trees into the 

phloem and release pheromones which attract large numbers of other pine beetles, 

both male and female. While the tree is somewhat capable to protect itself by 

producing resin, the overwhelming number of beetles that attack it during 

epidemics makes it impossible for the tree to repel the invasion. Not long after the 

original attacks, the blue-stain fungus carried by the beetles blocks the water 

conducting tissues of the tree eventually leading to the tree's death. Once a tree is 

overcrowded with pine beetles new pheromones are emitted by the beetles, 

causing the attacks to switch off to adjacent trees. Mating takes place soon after 

the initial attacks and eggs are laid in S-shaped galleries (Thatcher, 1980). The 

maturation cycle lasts 26 to 54 days, depending on the season, and several 

generations of beetles are born within each year. The reproductive cycle begins 

early in the spring when, after a period of inactivity, the beetles emerge from the 

bark. They then continue their mating and dispersal well into the summer months 
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and early fall. According to Meeker, Wayne, Foltz, and Fasulo (2008) during high 

infestation years the beetles can increase their population ten-fold. 

b) The NC data 

The North Carolina SPB data set has been looked at before by Zhu, 

Huang, and Wu (2005) and contains infestation as well as covariate data gathered 

for each of the 100 counties of North Carolina over a period of thirty seven years 

(from 1960 to 1996). Among the covariates thought to impact infestation, one 

counts climate variables (precipitation and temperature), geographical variables 

(elevation, county area), as well as soil and forest characteristics such as hydric 

and xeric proportion, saw volume, and size of the natural forest. 

While some of these variables, such as temperature, are more directly 

related to the spread of the infestation in terms of their impact on the reproductive 

cycle of the beetles, others, such as elevation and county area, might indirectly 

influence the infestation process by their association with climate or forest 

characteristics. According to Thatcher and Barry (1982) persistent temperature 

drops of-18C or less during winter, or long periods in excess of 35C during 

spring and summer can kill large numbers of broods in the Gulf States. On the 

other hand, low precipitation rates (during spring and summer) can have a 

weakening effect on the tree population (later in the year) and can thus lead to 

increased and more successful beetle attacks. The larger county area and higher 

elevation can be associated with a greater presence of pine tree forests in the 

region, while saw volume is a measure of the vigor of the tree and could 

negatively impact the infestation. While one can come up with various 

explanations as to why each of these variables could impact infestation, statistical 

methods can be applied to decide upon their significance. 
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//. Applying the Models to the Data 

a) The Logistic Model 

In order to get a clearer picture of the importance of the covariates 

considered above, a logistic regression model was fit to the data. The model used 

appears below: 

n i t= logit(pit) = log l ^ l l ! ^ ' ' ' ' ' ^ ' ^ = Po+ Pi * X b i +...+ P14 * X U 4 , 
"\At - U | A;! '•••' A u 3 ) 

i=l,..., 100, t=l,...,36(i.e from 1961 to 1996) (16) 

Where: 

Xj = Saw Volume (volume of straight section of a certain length from 

stump height to top) (m3) = SAW 

X2 = Proportion of land area classified as XERIC = XERIC 

X3 = Proportion of land area classified as Hydric = HYDRIC 

X4 = Mean Daily Maximum Fall Temperature (F) = MAXTF 

X5 = Mean Fall Precipitation (cm) = PRCPF 

X6 = Mean Daily Maximum Winter Temperature (F) = MAXTW 

X7 = Mean Winter Precipitation (cm) = PRCPW 

X8 = Mean Daily Maximum Spring Temperature (F) = MAXTSP 

X9 = Mean Spring Precipitation (cm) = PRCPSP 

Xio = Mean Daily Maximum Summer Temperature (F) = MAXTSU 

Xn = Mean Summer Precipitation (cm) = PRCPSU 

X12 = Ln Elevation (m) = LNELEV 

Xn = Size of Natural Forest (thousand ha) = NATFOR 

X H = Land Size Area (hundreds of thousands of acres) 
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Table 1- Coefficient Table of the Full Logistic Model 

Coefficients 

(Intercept) 
SAW 
XERIC 
HYDRIC 
MAXTF 
PRCPF 
MAXTW 
PRCPW 
MAXTSU 
PRCPSU 
MAXTSP 
PRCPSP 
LNELEV 
NATFOR 
ACRES 

Null 
Residual 

Estimate 
-1.292e+01 
-6.428e-03 
-5.352e-03 
-5.282e-03 
1.215e-01 
3.017e-01 
-2.772e-01 
7.764e-01 
-1.018e-02 
-5.400e-01 
2.517e-01 
-1.110e-01 
-1.493e-01 
7.769e-04 
1.437e-01 

deviance: 3276 
deviance: 3132 

AIC: 3162.4 

Std. Error z 
3 
1 
2 
3 
1 
1 
1 
2 
1 
1 
1 
3 
6 
3 
6 
.0 
.4 

781e+00 
531e-03 
305e-03 
769e-03 
963e-01 
997e-01 
373e-01 
400e-01 
673e-01 
297e-01 
318e-01 
338e-01 
535e-02 
145e-03 
058e-02 
on 3599 
on 3585 

: value 
-3.418 
-4.198 
-2.322 
-1.401 
0.619 
1.511 

-2.020 
3.235 
-0.061 
-4.165 
1.910 

-0.332 
-2.285 
0.247 
2.372 

Pr(>|z|) 
0.00063 

2.69e-05 
0.02025 
0.16115 
0.53614 
0.13076 
0.04343 
0.00122 
0.95146 

3.12e-05 
0.05612 
0.73952 
0.02234 
0.80491 
0.01767 

*** 
*** 
* 

* 
** 

*** 

• 

* 
degrees of freedom 
degrees of freedom 

Only a few of the covariates in the above table (Table 1) are significant at a level 

of significance of 0.05; namely, the saw volume, the xeric proportion, the 

logarithm of the natural elevation, the county area, as well as some of the climate 

variables (the winter and summer mean precipitation rates, respectively, the mean 

daily maximum winter temperature). The mean daily maximum spring 

temperature appears to be borderline significant at 0.05. In order to eliminate the 

variables that appear unimportant, AIC selection was used. The coefficient table 

for the reduced logistic model is given below (Table 2). 

Table 2 - Backward AIC selection Coefficients of the Reduced Logistic Model 

Coefficients 

(Intercept) 
SAW 
XERIC 
MAXTW 
PRCPW 
PRCPSU 
MAXTSP 
LNELEV 
ACRES 

Null 
Residual 

: 
Estimate 

-1.027e+01 
-6.951e-03 
-5.755e-03 
-2.730e-01 
8.828e-01 

-5.557e-01 
3.293e-01 
-1.761e-01 
1.305e-01 

deviance: 3276 
deviance: 3137 

AIC: 3155.2 

Std. Error z 
1 
1 
1 
7 
1 
1 
6 
5 
5 
.0 
.2 

737e+00 
447e-03 
894e-03 
411e-02 
137e-01 
046e-01 
500e-02 
662e-02 
270e-02 
on 3599 
on 3591 

value 
-5.913 
-4.805 
-3.039 
-3.683 
7.765 
-5.313 
5.066 
-3.111 
2.477 

Pr(>|z|) 
3.37e-09 *** 
1.55e-06 *** 
0.002370 ** 
0.000230 *** 
8.17e-15 *** 
1.08e-07 *** 
4.05e-07 *** 
0.001867 ** 
0.013256 * 

degrees of freedom 
degrees of freedom 
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Other than the variables that were significant in the full model, the mean 

daily maximum temperature during spring is now significant at 0.05. Also, the 

AIC has been reduced from 3162.4 to 3155.2. The reduction in the AIC is not a 

surprise since the variables that were removed from the model did not have a 

significant contribution to the fit of the model and thus, did not help reduce the 

likelihood substantially. Note that the AIC is based on the likelihood (a measure 

of goodness of fit), but also penalizes for the increase in complexity of the model 

caused by the increase in the number of covariates used. 

The interpretation of the coefficients provided in Table 2, is tied in with 

the log odds of infestation. For example, an increase of one degree F in the mean 

daily spring maximum temperature (MAXTSP) while everything else is kept 

constant, translates into an increase in the odds of infestation of exp{0.3293} or 

1.3899. While this supports the belief that low spring temperatures can have a 

negative impact on the survival of the beetle, the sign of some of the other 

variables seems to contradict such hypotheses. According to the literature, one 

would expect that MAXTW would have a positive coefficient since sustained 

harsh winter conditions are thought to decimate the beetle population. However, 

the results from the logistic regression (i.e the negative sign of MAXTW) seem to 

indicate the opposite. This might be the result of confounding between MAXTW 

and some of the other covariates in the model such as LNELEV or MAXTSP. 

Also, being able to assess what the sign of a covariate should be 

beforehand is not always straightforward. SAW volume can be seen as an 

expression of tree vigor and higher values of it could be associated with a higher 

capacity of the pine tree to repel the invasion. On the other hand, during periods 

of high infestation the beetles are able to attack and overwhelm large healthy 

trees, which are often a preferred target. That would suggest that the coefficient of 

SAW volume could be negatively associated with infestation rates. This seeming 

contradiction also holds for other variables. While higher elevations are 

associated with lower temperatures and a harsher climate, the presence of pine 

forests might be higher at higher elevations (i.e. presence of mountains). 
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Nevertheless, both SAW volume and the log of elevation were found to have 

negative coefficients, higher values for these variables leading to lower odds of 

infestation. 

One cause of concern regarding the reduced logistic model is the fact that 

the reduction in the residual sum of squares between the null (overall mean) 

model and the current model is not considerable, which might indicate a certain 

lack of fit of the model and thus, lack of predictive power. To better assess the 

accuracy of the fit of the reduced logistic model the ROC of the reduced model 

was plotted (Figure 2) and is given below: 

Figure 2 - ROC curve for Reduced Logistic Model 

0.0 0.2 0.4 0.8 0.8 1.0 

1-Specificity 

As the above plot shows, the area under the ROC is .655. Ideally, a perfect 

test is one that reaches a specificity and sensitivity of one and has an area below 

the curve equal to one. The worst case scenario corresponds to a test with area .5, 

where specificity and sensitivity are 50% (i.e. a test with a predictive capability 

no better that that of tossing an unbiased coin). Although the guidelines for what 

represents a good ROC area are somewhat subjective a value of .75 to .90 is 
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considered good, while values above .9 are seen as excellent. Since the reduced 

logistic model has an ROC with area .66 it appears that the model is not a very 

good candidate when it comes to correctly identifying the pine beetle infestation 

status of the various counties in North Carolina. Also, the cutoff with the highest 

sensitivity/specificity pairing is at .217, where the sensitivity reaches 45.4% and 

specificity is 78.0%. While sensitivity and specificity vary quite a bit within the 

range of the cutoff value, the values of highest pairing for the current ROC are a 

sign that the predictive ability of the model is not great. However, this can be 

improved upon by considering the spatial dependence of the response among the 

counties. 

b) The MRF Spatial Model 

In order to improve the adequacy of the logistic model one has to take into 

account the presence of spatial dependence among the response values of 

different locations. However, to justify the inclusion of a spatial covariate, one 

should first examine the spatial dependence between the infestation statuses of the 

neighboring counties of North Carolina. 

Figure 3 - NC County Map - No. of Years of Southern Pine Beetle 
Infestation (during 1960-1996) 

The numbers in the above plot describe the number of times (in years) a 

county has been infested by southern pine beetle between 1960 and 1996. The 

graph shows that counties with higher infestation numbers seem to be surrounded 
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by similar counties. This is an indication of spatial dependence between adjacent 

counties, due to factors such as the geography of the place, forest and soil 

characteristics etc., which tend to be more alike for adjacent counties. As one 

might expect some of this dependence may as well be captured by the covariates 

used. However, the unexplained dependence could be accounted for by using the 

neighboring information. 

We can thus introduce a new spatial variable that combines the 

neighboring structure of the NC counties and the infestation status of counties 

within each year. That is one can count the number of infested neighbors that a 

county has within a particular year and assign that value to the spatial covariate, 

for that same year. The spatial covariate is thus time dependent. The MRF model 

given below contains such a covariate together with covariates already included in 

the logistic model, and in effect, adds a new layer of spatial complexity to the 

logistic model: 

log : — = (17) 
P(Ylt = 01X,, spatialCoV;,) 

= J30 + /?, ** , , +... + /?14 *XiU+P]5*spatialCovit 

Where: 

spatialCovi t = ^ a}• t* Y] t and Nj is the neighborhood of county i. 

The ay takes a value of 1 if (i,j) are neighbors and 0 otherwise. Since the 

NC state map has the structure of an irregular lattice, different counties have 

different numbers of neighbors. Also, by definition, two counties are considered 

neighbors of each other if they share a common border. On average, the counties 

cover a large enough area that second order neighbors need not be considered. 

The table of coefficients of the MRF model (17) appears on the following page. 
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Table 3 - Jackknife Coefficients and St. Errors for the MRF Model 

(Intercept) 
spatialCov 
SAW 
XERIC 
HYDRIC 
PRCPF 
MAXTW 
PRCPW 
MAXTSU 
PRCPSU 
MAXTSP 
PRCPSP 
LNELEV 
NATFOR 
ACRES 

Estimate 
-1.023e+01 
1.476e+00 

-7.362e-03 
7.969e-04 
1.887e-04 

-2.668e-01 
3.410e-01 
9.344e-01 
1.736e-01 

-3.858e-01 
-2.062e-01 
2.748e-01 

-1.294e-01 
-9.805e-03 
-5.539e-02 

Std. Error 
6.959 
0.100 

0.00830 
0.00766 
0.00839 
0.925 
0.436 
0.928 
0.544 
0.301 
0.324 
1.767 
0.144 

0.0125 
0.371 

z value 
-1.471 
14.731 
-0.887 
0.104 

0.0225 
-0.289 
0.781 
1.007 
0.319 

-1.280 
-0.637 
0.156 

-0.901 
-0.782 
-0.149 

Pr(>|z|) 
1.412e-01 
4.023e-49 *** 
3.749e-01 
9.172e-01 
9.821e-01 
7.730e-01 
4.345e-01 
3.138e-01 
7.496e-01 
2.006e-01 
5.240e-01 
8.764e-01 
3.674e-01 
4.341e-01 
8.814e-01 

Bias 
2.82081 
0.05298 
0.00103 

-0.00082 
0.00021 

-0.00884 
-0.01633 
0.27060 

-0.08613 
-0.07581 
-0.00211 
-0.23512 
0.00656 

-0.00063 
-0.07792 

While the parameter estimates for the MRP model can be computed by 

pseudo-likelihood (calculated as the product of independent conditional 

distributions at each location) and are asymptotically normal (Guyon, 1986), the 

standard errors provided by the glm function in R are not consistent. The 

jackknife estimating equation method described in section II. b) of chapter 2 was 

used to compute consistent standard error estimates and the results are displayed 

in Table 4. The table also contains the parameter bias, computed as the difference 

between the parameter estimates found by glm and the jackknife estimates. 

According to the p-values displayed in Table 3, the only significant covariate at 

a=0.05 is the spatial covariate, spatialCov. Backward selection together with 

jackknife estimation can be used sequentially to eliminate the uninformative 

covariates, until all variables left in the model are significant at 0.05. The 

coefficient table of the reduced model is given below. 

Table 4 - Jackknife Coefficients and St. Errors for the Reduced MRF Model 

(Intercept) 
spatialCov 
SAW 
MAXTW 
PRCPW 
PRCPSU 
LNELEV 

Estimate 
-9.317 
1.488 

-0.00845 
0.118 
0.862 

-0.444 
-0.216 

Std 
3 
0 
0 
0 
0 
0 
0 

Error 
714 
0907 
00282 
0578 
2164 
233 
0855 

z value 
-2.508 
16.415 
-2.992 
2.042 
3.981 

-1.907 
-2.529 

Pr(>|z|) 
1.213e-02 
1.487e-60 
2.771e-03 
4.111e-02 
6.853e-05 
5.646e-02 
1.143e-02 

* 
*** 
** 
* 
*** 

* 

1 
1 

-9 
-1 
2 

-3 
-1 

Bias 
556e-01 
876e-02 
502e-05 
229e-03 
383e-02 
265e-02 
180e-02 
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Unlike the full MRF model, the reduced MRF model contains a few 

significant covariates other than spatialCov. While the spatial covariate is by far 

the most significant variable (i.e. its p-value ~ 0), the log of natural elevation, the 

SAW volume, as well as the mean maximum temperature during winter, and the 

winter and summer precipitation rates are significant or marginally significant at 

0.05; One can also see that each and every single one of these covariates were 

also significant in the reduced logistic model. 

The bias of each of the parameter estimates is also very small, ranging 

from 1.1% for MAXTW to about 7.3% for PRCPSU. This is important because it 

is a reflection of the parameter stability of the model. 

In terms of the model coefficients, the spatial covariate has a positive 

coefficient. That is the more infested neighbors one country has the greater the 

odds of infestation. In terms of actual values, an additional infested neighbor for a 

particular county (provided everything else stays the same) increases the odds of 

infestation by a factor of exp{1.488}, or 4.428. While a positive relationship was 

to be expected between odds of infestation and infested neighbors, the strength of 

the relationship is noticeable. It is also interesting to note that the sign of 

MAXTW is now positive which from a biological standpoint makes a lot more 

sense. It is possible that the removal of MAXTSP from the model has lead to the 

change in the sign of MAXTW, since periods of sustained cold temperatures 

during winter and/or spring can have a devastating impact on the spread of the 

beetle population. 

In order to assess the usefulness of the MRF model the ROC curve was 

plotted and it appears on the next page. 
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Figure 4 - ROC Curve for Reduced MRF Model 
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Judging from the above plot there was a substantial increase in the AUC. 

While the AUC for the reduced logistic was 0.655, the AUC for the reduced MRF 

model is .953. At a cutoff level of .096, the pairing of sensitivity/specificity is 

92.1 %/87.5% (compared to 45.4%/78% at a cutoff of .211 for the logistic model), 

which is proof of a better fit of the new model. However, one has to be careful 

when comparing the AUCs of the two models, because the AUC of the reduced 

MRF model is based on conditioning on response values from neighboring 

locations from the current year. Thus, although the fit of the model is superior and 

the predictions based on it are excellent, one cannot think of the ROC as 

extremely informative when it comes to predicting things in the future because 

these predictions are reliant on future response values. 
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c) The Spatial-Temporal MC Model 

The MRP model from the previous section (Il.b) is superior to its reduced 

logistic counterpart from part (Il.a) both in terms of goodness of fit as well as 

dependencies modeled. However, the NC data contains information gathered from 

all locations throughout the years and is thus a spatial-temporal data set. In order 

to take into account both spatial and temporal dependencies, a spatial-temporal 

MC model can be fit to the data. The model considered is given below: 

, P(Yil^l\Xj,Yll_],spatialCovll,timeCovn) 
log ! : : — = (18) 

P(Yi t = 01 X_,•, Yj ,, spatialCov,,, timeCov,,) 

= 0O +ft*Xt] +... + /?14 *X,M + /?15 *spatialCovit +J3U *timeCovit 

Where: 
» 

spatialCovit = ^aJti *YJjt_l 

The above model makes use of information from the previous year and 

takes into account the infestation status of both neighboring locations and the 

current location. The spatial covariate is more appropriately thought of as a spatial 

temporal covariate and it basically amounts to describing the number of infested 

counties (adjacent to the county of interest) from the previous year. The temporal 

covariate has no spatial information due to the fact that it captures the infestation 

status of the location of interest from the previous year. One would expect both 

covariates to play an important role in explaining the variability of infestation 

since infestation occurs in cycles and previous year information can offer a clue 

as to where the infestation could spread. The spatial dependence of the infestation 

was depicted in Figure 3, while the temporal dependence can be seen by looking 

at the number of infested counties during each year. 
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As Figure 5 indicates, the infestation seems to go through cycles that span 

2-4 years. The highest peak seems to have occurred during 1974-1975, when 

more than 80 out of the 100 counties presented infestation problems. However, 

the infestation seemed to die off soon afterwards, no infestations being recorded 

during 1981 to 1985. 

Figure 5 - Number of Infested Counties in NC during each Year (1960-1996) 
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The coefficients of the spatial-temporal reduced MC model are given on 

the next page. As with the MRF model, the glm function in R was used to obtain 

initial pseudo likelihood parameter estimates for the MC model; jackknifing of 

the estimating equations was performed afterwards and backward substitution was 

applied after each fit to eliminate the uninformative covariates from the model. 
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Table 5 - Jackknife Coefficients and St. Errors for the Reduced MC Model 

(Intercept) 
spatialCov 
timeCov 
SAW 
PRCPW 
PRCPSU 
MAXTSP 
LNELEV 

Estimate 
-6.515 
0.361 
1.471 

-0.00399 
0.520 

-0.459 
0.0731 

-0.111 

Std 
2 
0 
0 
0 
0 
0 
0 
0 

Error 
559 
0416 
147 
00154 
149 
154 
0316 
0588 

z value 
-2.546 
8.679 
10.038 
-2.592 
3.486 
-2.987 
2.313 
-1.893 

Pr(>|z|) 
1.089e-02 
3.999e-18 
1.042e-23 
9.542e-03 
4.901e-04 
2.817e-03 
2.074e-02 
5.838e-02 

* 
*** 
*** 
** 
*** 
** 
* 
. 

-2 
4 
-2 
-5 
1 

-2 
1 

-6 

Bias 
279e-02 
186e-03 
273e-02 
177e-05 
718e-02 
797e-02 
752e-03 
527e-03 

The two most significant covariates in the Table 5 are the spatial-temporal 

and the temporal covariates: spatialCov and timeCov. The sign of both variables 

is positive indicating that a higher value for each of these covariates increases the 

log odds of infestation. As such, a county that has been infested during the 

previous year has odds of infestation exp{ 1.471} = 4.354 times higher than if the 

country hadn't been infested. Also, having an additional infested neighbor 

increases the odds of infestation of a county by a factor of exp{0.361} = 1.435 

(provided everything else is kept constant). As for the remaining covariates they 

were also present in the reduced MRF model with the exception of MAXTSP 

which has replaced MAXTW (as noted before the two covariates are similar in 

terms of the impact they have on the beetle population). Last but not least, the 

biases of the parameter estimates are quite small ranging from 0.3% to a 6%, 

while the standard errors are consistent. 

In terms of the model fit and the accuracy of the predictions, a close 

examination of the ROC function (Figure 6) reveals that the model is quite useful. 

The AUC is .828, while the pairing of sensitivity/specificity (76.6%/76.7%) 

reaches its peak at a cutoff of .109. While the AUC is lower than it was for the 

reduced MRF model, the model at hand allows for predictions to be made for the 

immediate future (i.e the next year) since only past information is used when 

fitting the model. This is an important feature that the MRF model did not have. 
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Figure 6 - ROC for the Reduced MC Model 
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d) A brief look at the at the Zhu, Huang and Wu Model 

Zhu, Huang, and Wu (2005) have also analyzed the NC data set, using a 

spatial-temporal auto-logistic model. The model includes covariates as well as 

spatial and temporal components and its formula was given in chapter 2 (formula 

(11)). Unlike the models employed in the previous sections (i.e parts b) and c)) 

the spatial covariate is based on information from neighbors located within a 

radius of 30 miles of the current location. Different specifications for the spatial 

and temporal terms are also used. 

While the spatial-temporal MC model in part c) counts the number of 

infested neighbors from the previous year for a certain location, the Zhu, Huang, 

Wu model considers neighboring infestation information from the present when 

computing the spatial covariate, and both past and future infestation values from 

32 



the current location for the temporal covariate. The formulae for the spatial and 

temporal covariates at location i and time t are as follows: 

spatialCovij=YM~jYtA2Yu - 1 ) 

timeCovKt =Yl>t(2Y^ + 2TU+1 -2)] (19) 

As Zhu, Huang and Wu explain, the temporal covariate is related to the 

mean difference between consecutive time points at the same site with same 

values and those with opposite values. The infestation status at location i and time 

t, is multiplied by l(s) if the location was infested previously (at time t-1) or is 

infested the year after (at time t+1) and is multiplied by -l(s) if no infestation was 

present. Similarly, the spatial covariate, is a sum of ones or negative ones 

depending on whether the neighboring locations of location i at time t are infested 

or not. In addition, Zhu, Huang, and Wu make use of two interaction terms 

(SAW* *MAXTW, SAW*MAXTSU) and as well as transformed covariates 

(SAW, HYDRIC, XERIC and NATFOR are employed with their square root 

values). 

Estimation is done by pseudo likelihood, while consistent errors are 

computed via parametric bootstrap. The model reduction is achieved via 

backward substitution and optimal predictions are obtained by MCMC for the 

period between 1991 and 1996. The model estimates and standard errors are given 

in the table below. 

Table 6 - Coefficients and St. Errors for the Zhu, Huang Wu Reduced Model 

(Intercept) 
spatialCov 
timeCov 
Sqrt(SAW) 
Sqrt(HYDRIC) 
Sqrt(Xeric) 
MAXTF 
PRCPF 
MAXTSU 
Sqrt(SAW)* MAXTSU 

Estimate 
-23.848 

.807 

.813 
1.318 
-.068 
.040 

-.249 
.666 
.515 

-.015 

Std. Error 
8.093 
.088 
.121 
.772 
.056 
.033 
.153 
.250 
.193 
.009 
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Histograms of the predicted number of counties for each of the six years 

between 1991 and 1996 were obtained and, based on the mode and rounded 

means of these distributions, the prediction error rates were computed for each 

year. The yearly reported errors, calculated as the proportion of counties for 

which the infestation status was incorrectly predicted based on the mode of the 

Gibbs distributions were: .05, .15, .19, .06, .17 and .24 (for 1991 to 1996). Based 

on the coefficients given in Table 6 and a neighboring structure where neighbors 

are counties with centers located within 30 miles of each other, the ROC was 

plotted and is given below: 

Figure 7 - ROC curve for the Zhu, Huang Wu Reduced Model 
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At a cutoff probability of infestation of .54 the sensitivity/specificity 

pairing is 88.7%/91.4%, which is indicative of an excellent fit. The ROC is 

comparable to the one of the MRF model from section b) and is superior to the 

one of the MC model in part c). Given the relatively good prediction rates as well 

as the temporal and spatial dependencies it captures, model (11) is thus a good 

candidate for predicting the MPB infest status for the NC data. 
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///. Summary of Models and Results 

The four models considered above are options one is presented with when 

analyzing the NC data. The logistic model offers simplicity in modeling and is 

easily interpretable. Its parameters estimates and associated standard errors can be 

estimated by standard methods as glm in R. The model allows for covariates to be 

included and it therefore links the variability of different factors with the 

variability in the response. The logistic model offers thus a bridge to 

understanding the underlying factors that impact the MPB infestation. However, 

the fit of the model is not particularly striking (AUC .655) and the model fails to 

account for various dependencies in the response. 

The MRF model is far better than its logistic counterpart. It allows for the 

spatial dependence among responses to be modeled, thus greatly improving the 

accuracy of the predictions (AUC .954). However, the AUC is a conditional AUC 

in the sense that in order for future predictions to be made, the response values at 

the neighboring locations from the year of prediction have to be known. Also, the 

increased model complexity comes at the expense of estimation (the standard 

errors have to be computed by a jackknifing procedure to ensure their 

consistency). 

The MC model adds a new perspective to the analysis, allowing for 

temporal (as well as spatial) trends to be captured. This is often useful when data 

is gathered over time. Parameter estimates are obtained similarly to the MRP 

model. The AUC is significantly lower (.828) than the ROC of the MRF model, 

but large enough for the model to be considered good. Also, since only values 

from the previous year are used, predictions for the immediate future can be easily 

obtained; this is an important advantage of this model. 

Last but not least, the Zhu, Huang, Wu model is a melange between the 

MRF and MC models in that the spatial covariate depends on neighboring 

information from the current year, while the temporal covariate include past and 

current information. Both spatial and temporal dependencies can be captured with 
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it, and the ROC has an excellent AUC (.959). However, this model uses a slightly 

different definition for the neighboring structure which makes the comparisons 

with the other models somewhat problematic. Also, the reliance on future values 

when the temporal covariate is computed is counterproductive and speculative. 

The plot displayed below (Figure 8) shows the AUC values for most years 

during the study period (years with no infestation are excluded) for each of the 

models used. As expected the MRF and Zhu models have better AUC values for 

most years but their AUC values are conditional on current or future responses. 

The MC model performs worse than the aforementioned models but its 

predictions are still reasonable. 

Figure 8 - AUC values per Year for the logistic (squares), MRF (diamonds), 
MC (triangles) and Zhu (circles) Models 
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Chapter 4: The British Columbia Data and Analysis 

/. Putting things in Context 

a) The Biology of the Mountain Pine Beetle and the Nature of 
the Infestation 

Over the last decade or so, British Columbia has been confronted with a 

rapidly expanding Mountain Pine Beetle (MPB) infestation problem. According 

to the British Columbia Mountain Pine Beetle action plan for 2006-2011, the 

province is currently experiencing the largest MPB epidemic ever recorded in 

North America. The Ministry of Forests and Range estimates that at the current 

rate of spread more than 80% of the merchandisable pine resources in the central 

and southern interior parts of the province will be compromised by 2013. While in 

the short term some communities may benefit from the increased harvesting of 

trees (before their decay), the long term prospects look grim as the pine forest 

populations die off. The crisis is amplified by the fact that in some regions of the 

province pine forests make up to 50% of the harvestable timber. It is thus 

imperative that aggressive measures based on accurate predictions are taken, in 

order to reduce the extent of the infestation to controllable levels. 

The MPB (Dendoctronus ponderosae) has a lifespan of about a year. The 

biology of the MPB is similar to the one of the SPB. The adult female beetles 

bore through the bark of pine trees where they lay eggs that turn into larvae and 

feed off the tree throughout the winter and spring months. During the initial 

attacks the female beetle release pheromones which attract large numbers of other 

pine beetles overwhelming the tree's defense mechanisms. The blue-stain fungi 

carried by the beetles block the water nutriment conducting tissues of the tree 

leading to the tree's death. Eventually, the larvae develop into adult beetle and 

emerge from under the bark during mid summer and only to begin their 

reproductive cycle. 
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b) The BC data 

The original data were provided by Dr. Thomas de Camino-Beck and Dr. 

Mark A. Lewis (University of Alberta, the Department of Mathematical and 

Statistical Sciences) and were modified from their original form. The original data 

set contained the province-wide outbreak surveys, climatic data and topographic 

maps data for a large number of areas in British Columbia gathered over 40 years 

(between 1963 and 2003, except for 1996 and 1997). All maps were standardized 

to 100 ha pixel resolution raster maps, Albers (NAD83) projection. Canada 

Environment provided the Digital Elevation Map (DEM), and the terrain 

covariates, DEM, slope and aspect were computed using ArcGIS and rescaled to 

100 ha pixel raster maps. 

Outbreak regions presenting red top trees (in a 1:50000 map) were 

surveyed from the air. These surveys were digitized to vector maps, which were 

then converted to raster maps by superimposing a grid of 100 ha pixel units on top 

of the vector maps. Infestation status severity codes of 1, 2 or 3, which depict the 

degree of new infestations (1 for 1-10% stand killed, 2 for 11-29% of stand killed, 

and 3 for more than 30% of stand killed) were assigned to the 100 ha pixel units. 

However, the modified data contains only binary information, where only the 

presence of new infestations and lack thereof are represented. If an area presented 

any new infestations (1, 2 or 3) it was assigned a value of 1, while areas with no 

new infestations were given a value of 0. 

In addition, the original data set was given for a grid of 1371 by 1844 one 

hundred hectare (1km by 1km) areas, whereas the modified data has the form of a 

regular grid with 55 by 74 units, with each unit corresponding to a 25km by 25km 

area. The map of locations considered, together with the BC map, is given on the 

following page (Figure 9). The reduction in scale was necessary to reduce the 

computational difficulties in handling the data, but the data could nonetheless be 

analyzed in its primary form using the very same models. 

Covariate information corresponding to the new units was computed by 

averaging over the covariate values for the original 1km by 1km units. Among the 
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variables considered the data set included: the tree age class, the pine coverage 

(representing tree and forest characteristics), the slope, aspect and elevation (as 

related to the terrain properties), as well as climate information such as minimum 

temperature and degree days (calculated as the cumulative sum of days with 

temperatures higher than 5.5C). While, averaging over subunits does not radically 

alter the interpretation of the covariates, it can have an impact on the magnitude 

of the model coefficients. This is because the larger variability within the smaller 

subunits (e.g. substantial different climate or terrain conditions within small 

mountainous regions) is lost when averaging is applied. 

With regards to the infestation status, if any of the original units were 

infested, the new larger unit was deemed to be infested. However, useful 

information is lost by increasing the scale of the locations examined. The new 

grid of locations at which the infestation status is to be modeled has 4070 cells 

(i.e. 55*74), many of which correspond to ocean locations as well as Alaska and 

Alberta land areas. Of the 4070 such unit areas 1706 correspond to BC land mass 

areas and only these observations are used when various models are fit. 

Figure 9 - BC Map and Unit Area Approximation to BC Map 
(BC map as found at: http://gsc.nrcan.gc.ca/cogmaps/prov/bc_e.php) 
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Due to incomplete information during 1996 and 1997, the data set used 

was constrained to the period between 1964 and 1996. This was done in part 

because the Markov models rely on information from previous year(s) and 
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missing information would create problems in terms of modeling. However, the 

amount of information gathered over 33 years is more than enough to assess the 

importance of different covariates and modeling the infestation status. 

Before proceeding with the data analysis, one has to recognize the 

limitations of coding the infestation status in binary terms. While, binary 

responses can be modeled to determine the newly infested areas, they cannot be 

used to answer questions regarding the degree of infestation affecting the 

respective areas. This is an important aspect to reflect on when deciding which 

models should be considered, and a multinomial model might be preferred 

instead. Also, when modeling infestation one should be primarily focused on 

areas where pine forests exist since the MPBs rely heavily on them for their 

survival. One could inspect the map of pine forests in BC and select only those 

locations where pine forests exist. However, the current model contains the pine 

coverage covariate, which allows for pine forest presence (or lack thereof) to play 

a role in predicting infestations. 

//. Applying the Models to the Data 

a) The Logistic Model 

As with the NC data, in order to assess the usefulness of the covariates 

considered a logistic model was fit. The model used is given below. 

P ( K = l | X i t l , . . . , X i 7 ) 
nit = logit(pit) = log ) ' ''u '-^- = Po + pi * XM,, +...+ p7 * Xi,7, 

F(Yt - U | A U 1 , . . . , A i 7 ) 

i=l,..., 1706,t=l,...,33 (i.efrom 1964 to 1996) (20) 

Where: 

Xi = Degree Days = DD (cumulative sum of days with temperature >5.5C) 

X2 = Minimum Temperature = Min (C) 

X3 = Age class = Age (forest average age measured in decades) 

X4 = Pine Coverage = Pine X5 = Digital Elevation = DEM (m) 

X6 = Slope X7 = Aspect (degrees) 
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Some of the variables in the above model are just spatially dependent 

(Age, Pine, Slope, DEM and Aspect), while others depend both on location and 

the year the observations were recorded (DD and Min). AIC selection was used to 

eliminate the insignificant covariates and the reduced logistic model coefficients 

are given in the table from below. 

Table 7 - Coefficient Table of the Reduced Logistic Model 

Coefficients 

(Intercept) 
dd 
min 
age 
pine 
dem 
slope 
aspect 

Null 
Residual 

: 
Estimate 

-7.688e+00 
2.835e-03 
9.192e-03 
4.941e-02 
7.589e-04 
4.011e-04 
7.079e-02 
-3.356e-03 

Std. Error 
2.594e-01 
1.081e-04 
3.813e-03 
1.536e-02 
4.541e-05 
6.938e-05 
7.749e-03 
9.306e-04 

deviance: 23181 on 56297 
deviance: 19416 on 56290 

AIC: 19432 

z value 
-29.637 
26.237 
2.411 
3.216 

16.711 
5.781 
9.135 

-3.607 

Pr(>|z|) 
< 2e-16 *** 
< 2e-16 *** 
0.01591 * 
0.00130 ** 
< 2e-16 *** 
7.42e-09 *** 
< 2e-16 *** 
0.00031 *** 

degrees of freedom 
degrees of freedom 

All the model covariates are significant at a level of significance of 

<x=0.05. Degree days, pine coverage and slope appear to be the most significant 

factors in the above model. Also, aspect is the only covariate with a negative 

coefficient. Given these results an additional unit increase in the degree days 

corresponds to an increase of exp{.00284}=1.0028 in the odds of infestation, 

provided everything else is kept constant. Similarly, one unit (i.e. one decade) 

increase in the age class classification of the pine trees translates into an increase 

of exp{.0494}= 1.051 in the odds of infestation. 

The sign of many of these coefficients has intuitive appeal. For example, 

more days with temperatures higher than 5.5C, translates into a more favorable 

overall environment for the beetle and thus, higher survival rates for the beetles; 

also the larger the pine coverage, the greater the probability of infestation. 

Minimum temperature is thought to have a detrimental effect on the life cycle of 

the MPB, which is exactly the case judging by the positive coefficient of the 

variable min in the above table. That is a decrease in the minimum temperature is 
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followed by a decrease in the log odds of infestation. However, the sign of other 

variables, such as age class, might not be easily guessed. While adult trees might 

be a preferred choice of habitat for MPBs, they are also better at defending 

themselves by producing resin. Thus, an increase in age class might not 

straightforwardly be thought to lead to an increase in the infestation rate. 

Nevertheless, in the above model, age class positively impacts infestation. 

Having looked at the significance of the model covariates, one can 

examine the fit of the model in terms of its predictive accuracy. The ROC curve 

for the logistic model is given below (Figure 10). 

Figure 10 - ROC Curve for Simple Logistic Model 
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The highest pairing of sensitivity (80.6%) and specificity (71.1%) at a 

cutoff of .047 indicates a relatively good fit of the model. The AUC (.816) 

reconfirms the usefulness of the logistic regression. Although other improvements 
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and complexities can be added, given its simplicity the model seems to behave 

quite well. However, one is to expect that some degree of spatial dependence 

exists between adjacent areas on the BC map and thus, one could try to account 

for such dependencies by introducing a spatial variable that taking into account 

neighboring information. 

b) The MRF Spatial Model 

Unlike the North Carolina data set, where the neighboring information 

was captured by using a matrix that describes the relationship between each of the 

100 counties of the state (i.e. weather two counties border each other or not), the 

BC data has the shape of a regular lattice and the neighbors of a particular 

location can be described in a more systematic way. That is, one can consider as 

neighbors of a spatial unit the four immediately adjacent locations next to it (ie. to 

the north, south, east and west). The neighboring structure can be further extended 

to include the immediate diagonal neighbors or the neighbors located within a 

certain distance, but the spatial covariate defined in the current MRF model is 

based on the first order neighbors. 

However, not all locations have four neighbors. Sites located on the edge 

of the BC land map, whose neighboring locations are part of the ocean, Alberta 

and Alaska land areas, or fall outside the considered grid, have fewer neighbors. 

While the focus of this paper is on using BC land covariate information and 

infestation status, the inclusion of AB information from locations adjacent to BC, 

could prove useful and should be investigated later on. That is because the two 

provinces share a mountainous border populated with pine forests and infestation 

easily can spread from one province to the other. Ocean locations, on the other 

hand, do not contain relevant information when it comes to modeling infestation. 

The MRF and MC models used in this paper discounted information from areas 

outside BC when computing the spatial covariate, counting only infested 

neighbors within the BC map. As such, sites located in corners or on lateral edges 

of the BC contour could have at most one, two, or three infested BC neighbors. 
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The MRF model for the BC data appears below: 

P{Y^=\\ X_t, spatialCov, t) 

° 8 P(Yit = 01 X„ spatialCov,,) 

= 0o+fr* Xi4tX +... + /?7 * XK1 +(3%* spatialCov lt (21) 

Where: 

spatialCovi t = ̂ J<*ji*Yjt and N; is the neighborhood of county i. 

The spatial covariate can only take as value a number from 0 to 4, and it 

denotes the number of neighbors (for a maximum of four) of location i that are 

infested at time t. One expects that the more infested neighbors a location has, the 

higher the odds of infestation at that location. The coefficient table for the above 

model is given below (Table 8). The parameter estimates for the MRF model 

were computed by pseudo-likelihood via the glm function and are asymptotically 

normal; consistent standard errors were obtained via jackknife. 

Table 8 - Jackknife Coefficients and St. Errors for the MRF Model 

(Intercept) 
dd 
min 
age 
pine 
dem 
slope 
aspect 
spatialCov 

Estimate 
-7.308 
0.00206 
0.00598 
0.0747 
0.000305 

-0.000339 
0.0963 

-0.00247 
2.0381 

Std. Error 
3.886e-01 
1.435e-04 
1.787e-03 
1.264e-02 
3.201e-05 
6.832e-05 
4.801e-03 
7.031e-04 
3.071e-02 

z value 
-18.806 
14.358 
3.347 
5.911 
9.529 

-4.968 
20.069 
-3.515 
66.368 

Pr(>|z|) 
6.723e-79 
9.556e-47 
8.176e-04 
3.398e-09 
1.588e-21 
6.757e-07 
1.379e-89 
4.399e-04 
0.000e+00 

*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 

-1 
-2 
-1 
-3 
6 
1 
1 
4 
-1 

Bias 
108e-01 
315e-04 
391e-02 
192e-03 
674e-05 
191e-05 
039e-03 
821e-04 
350e-01 

Of all covariates fitted, the spatial covariate (spatialCov) is the most 

significant. This is not all that surprising considering that the infestation seems to 

occur in clusters. As expected, the spatial covariate has a positive coefficient, an 

increase in the number of infested neighbors leading to an increase in the log odds 

of infestation. To be more precise, each additional infested neighbor of a 
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particular location increases the odds of infestation of that location by a factor of 

exp{2.038}, or 7.675. In addition, the other covariates are also significant at 0.05 

and only the elevation (dem) and the aspect have a negative impact on the log 

odds of infestation. 

The estimation bias for the jackknife coefficients is small to moderate 

ranging from 1% to 22%, the only exception being variable min that has a large 

bias. This might present a problem in terms of the parameter stability of the 

model. However, the most significant covariates (spatialCov, dd, slope) have 

small associated biases and the coefficient of the minimum temperature covariate 

is small enough that it does not have a large impact on the odds of infestation. 

In order to get a better sense of accuracy of the MRF model one can 

examine the ROC curve, which appears is given below (Figure 11). 

Figure 11 - ROC Curve for Reduced MRF Model 
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The AUC has improved significantly to a value of .954. This is an 

excellent value, which is 13.8% higher than the AUC of the logistic model. 

Although sensitivity and specificity for two different models should not be 
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directly compared at different cutoff values, the logistic and the MRF models 

have very similar cutoffs at their highest pairing combination of sensitivity and 

specificity (.047 and .041). Compared to the logistic model, the MRF sensitivity 

has gone up by almost 7% to 87.4%, while the specificity has increased by 21% to 

92.1%. That is, throughout the years, 87.4% of the true infestations are properly 

detected and 92.1% of the non-infested areas are correctly identified as not 

infested. The MRP model is thus much better at predicting the status of 

infestations. 

c) The Spatial-Temporal MC Model 

The MRF model is superior to the logistic model both in the dependencies 

it models as well as the quality of the predictions it makes. However, as in the 

case of the NC data, the BC data contains information gathered from all locations 

throughout the years and is therefore a spatial-temporal data set. One can expect 

that a certain degree of temporal dependence exists among the response values 

over time given that the infestation occurs in cycles. The plot of infestations over 

time (Figure 12), provided on the next page, depicts the positive correlation 

between the number of infestations of consecutive years. That is, periods of 

successive infestation increases, respectively decreases can be noticed (from 

1970-1980, from 1986 to 1990). 

The need for including time dependence terms is not just reflected by 

Figure 12, but makes sense from a biological standpoint. A model that takes into 

account past year neighboring infestation might be more useful in predicting 

whether infestation is currently present at a particular location due to the fact that 

the infestation takes time to spread to surrounding areas. The spatial MC model is 

thus a more intuitively appealing tool that better captures and uses the time lag 

between the original attacks and the final phase of at which infestation is detected. 

However, one has to be aware that the infestation status cannot always be 

properly assessed since it takes trees about a year time from the original attacks to 

turn red. This could in turn have an impact on the fit of the model, although less 

so for a binary model where any degree of infestation is coded with as infested. 
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Figure 12 - Number of Infested Locations throughout BC over Time 
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The spatial MC model used in conjunction with the BC data appears 

below: 

log 
P{Yij -11 X_,•, Yif_x, spatialCovi t, timeCovj t) 

P(Xit = 01X,•, Yu_{, spatialCovtl, timeCovll) 

= /?0 + /?, * DDtj +... + p& * Aspect) + P9 * spatialCovLl + /?10 * timeCovit 

Where: 

spatialCovit -^cij^ *Yjt_ 

timeCoV: 
(o, iyx-,=o 

(22) 

The spatial-temporal covariate (spatialCov) and the temporal covariate 

(timeCov) are almost identical to the once in the MC model from chapter 3, with 

the notable distinction that the ay values describe a regular lattice structure where 
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each location has at most four neighbors (the first order neighbors). The model 

coefficients are given in (Table 9) and were obtained similarly to the coefficients 

of the MRF model in part b). 

Table 9 - Jackknife Coefficients and St. Errors for the MC Model 

(Intercept) 
dd 
min 
age 
pine 
dem 
slope 
aspect 
spatialCov 
timeCov 

Estimate 
-6.716 
0.00199 
0.020 
0.034 

0.000372 
0.000194 
0.0605 

-0.00272 
0.968 
2.437 

Std. Error 
3.563e-01 
1.293e-04 
1.955e-03 
1.295e-02 
3.261e-05 
4.997e-05 
4.545e-03 
6.298e-04 
1.507e-02 
3.691e-02 

z value 
-18.846 
15.367 
10.236 
2.649 
11.394 
3.876 
13.309 
-4.321 
64.258 
66.035 

Pr(>|z|) 
3.162e-79 
2.734e-53 
1.369e-24 
8.076e-03 
4.458e-30 
1.059e-04 
2.040e-40 
1.554e-05 
0.000e+00 
0.000e+00 

-8 
-2 
-1 

H
 

5 
-3 
4 
5 
-7 
-9 

Bias 
628e-02 
856e-04 
551e-02 
556e-03 
597e-05 
986e-05 
743e-03 
864e-04 
038e-02 
042e-02 

All covariates present in the model are significant after the consistent 

standard errors are computed; therefore, there is no need for backward selection to 

be performed. The temporal and the spatial-temporal covariates are once again the 

most significant covariates of the model. They both have positive coefficients and 

a large impact on the odds of infestation. Previously infested locations have 

exp{2.437}=l 1.439 higher odds of infestation than previously non infested 

locations with identical covariates; also, having an additional infested neighbor 

during the previous year increases its odds of infestation by a factor of 

exp{0.968}, or 2.633. Except for covariate aspect, which has a negative 

coefficient, all other variables positively impact on the probability of infestation. 

As with the MRF model, the estimated bias of the model coefficients is 

small to moderate, ranging from 1% to 21%, with the exception of covariate min. 

Once again, this can be a sign of parameter instability and the removal of min 

could take care of this problem. However, the most highly significant covariates 

(spatialCov, timeCov) have small biases and their impact on the odds of 

infestation is much more pronounced. 

Also the ROC can help us get a better sense of the adequacy of the model. 

As seen in Figure 13, the ROC has an AUC .933, which is characteristic to an 
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excellent model. At the cutoff point of .032, the model has a sensitivity rate of 

86.5% and a specificity rate of 85.3%, numbers that indicate a very good fit. 

Based on both the ROC and the dependencies modeled the spatial-temporal MC 

model seems to be a good candidate for predicting infestation. 

Figure 13 - ROC for the spatial temporal MC model (for the BC data) 
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Although the overall results for the MC model do not differ considerably 

from the ones for the MRP model and the added complexity might seem 

inconsequential, one has to point out the fact that the main advantage of using the 

MC models is that one already has access to past information. Therefore, one can 

use these models to make predictions about the immediate future. This was not 

the case with the MRF models since the current state of infestation at neighboring 

locations was needed in order for predictions to be made. This is one reason why 

the MC model might constitute a better choice. 
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d) Variations on a theme - A brief look at Another Spatial-
Temporal MC Model 

The BC data set in its original form, as provided by Dr. de Camino-Beck 

and Dr. Lewis, divides the BC map into 1km by 1km unit areas. The model used 

in part c) was applied to a modified version of the BC data as described in Section 

Lb) of this chapter. However, a variety of models similar to model spatial-

temporal model in part c) have been applied by Dr. de Camino-Beck to the 

original data, and the model having the best prediction accuracy has been selected 

and appears on the next page. 

l o P{YIJ=l\XIJ,Xl,_1,YiJ_l,spatialCovIJI) _ 

° S P(Yit = 0\Xu,XiJ_],Yl^,spatialCoviJ) 

= /?0 + /?j * min, j + ft2 * ddi t + A * d^i <-i + Ao * spatialCov it, (23) 

where spatialCov is defined as the number of infested neighbors within a radius of 

two unit areas of location i, from the previous year (t-1). The only covariates 

present in the model were the minimum temperature from the current year as well 

as the degree days from both the present and the previous year. The table of 

coefficients is given below: 

Table 10 - Coefficients of the Model (23) 

( I n t e r c e p t ) 
m i n 
d d t 

ddt-i 
s p a t i a l C o v 

Coeff . E s t i m a t e 
- 1 . 7 2 0 9 

0 .1905 
0 .0044 

- 0 . 0 0 2 5 
0 .7092 

While different versions of the BC data were used with models (21) and 

(22), the coefficients provided in the above table have the same sign and have 

relatively similar values to the ones in Table 9. The spatial covariate (although 

somewhat different) has a similar coefficient to the one found in part c), and 

positively impacts the odds of infestation. Yet, given the differences in the 
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neighboring information used as well as the number of locations considered, 

direct comparisons can be somewhat misleading. The model was found to have an 

ROC with an AUC of .85 and was deemed as good for making predictions. 

///. Summary of Models and Results 

As in the case of the NC data a few models were used to predict the 

infestation (MPB infestation) status of various locations. The logistic model is 

easy to fit and interpret and, unlike its NC counterpart, it offers a much better fit 

to the data (AUC .816). All covariates considered were significant at 0.05 and 

together they accounted for a large amount of the variability in the infestation. 

However, the model fell short when it comes to accounting for various 

dependencies. 

The MRF model used had an excellent fit. Spatial dependence among 

responses was modeled by including the neighboring infestation status at each 

location, thus greatly improving the accuracy of the predictions (AUC .954). 

However, its AUC is a conditional AUC in the sense that in order for future 

predictions to be made, the response values at the neighboring locations from the 

year of prediction have to be known. Once again, all covariates were significant at 

0.05, with the spatial covariate having the largest on the odds of infestation. 

Last but not least, the MC model allowed for temporal (as well as spatial) 

trends to be captured. This is often useful when data is gathered over time. Both 

the spatial-temporal and temporal covariates were found highly significant and 

they both positively impact the odds of infestation. Unlike the NC data, the AUC 

of the MC model (.933) was comparable to the AUC of the MRF model (.954). 

However, since the MC model relies only on previous information predictions 

into the near future are easy to make. Combined with the ability to model both 

temporal and spatial dependencies this is a better overall model than the MRF. 

The plot given on the following page (Figure 14) displays the year by year 

AUC fit of the logistic, MRF and MC models. While, the logistic model has the 
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worst AUCs of the three models for every single year, the MRF and MC models 

have similar AUC values for most years and outperform each other at times. 

Figure 14 - AUC values per Year for the logistic (squares), MRF (diamonds) 
and MC (triangles) Models 
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Chapter 5: Conclusions 

Good models for predicting the status of potentially MPB or SPB infested 

areas are of utter importance for the lumber and forestry sectors. The infestation is 

wide spread in many states and provinces throughout North America. Mountain 

pine beetle affected areas extend from BC and Alberta (Canada) to northern 

Mexico, while southern pine beetle infestation problems have been registered 

from Pennsylvania to Honduras. Due to the destructive nature of the infestation as 

well as the staggering economic costs associated with it, prevention measures 

(such as pheromone baiting, controlled burns, sanitation harvesting etc.) are of 

great consequence. However, to limit the cost of such interventions, accurate 

prediction and forecasts of infested areas play an important role. 

Among the models examined in this paper one counts logistic, markov 

random field and markov chain models. All these models present advantages, but 

also have important limitations and one has to decide upon which models are 

more useful. An important role in obtaining good models is the choice of the 

covariates used. Weather related covariates, geo-terrain variables, forests 

characteristics and pine beetle reproductive cycle factors should all be considered 

as a way of improving the accuracy of the fit and predictions. 

However, as it is apparent from the results provided throughout this paper 

the inclusion of spatial and/or temporal covariates can greatly improve the 

precision of simpler models. Taking into account neighboring information, as well 

as information from previous years can lead to much better predictions. This was 

evident from the superior fit of the Markov random field and Markov chain 

models, compared to the simple logistic models. However, while the fit of the 

MRF models was mostly excellent, their reliance on current neighboring response 

values was a clear disadvantage when making future predictions. The MC models 

did not have this problem and were more flexible in terms of modeling time 

dependencies. 

A number of changes could be made to these models in an attempt to 

improve their accuracy. One could consider new covariates, apply transformations 
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to existing covariates and make use of interactions. Also, one could alter the way 

the spatial covariate is used by using a neighboring structure that gives different 

weights to various neighbors depending on the distance from a location to its 

neighbor. The spatial dependence could also be split into directions of 

dependence. This is particularly useful if one thinks of the impact wind direction 

has on the spread of infestation. Directional dependence (anisotropy) can looked 

at by dividing neighbors into classes of neighbors, based on location (north, south 

etc.), and examining their individual effect on predicting the infestation status. 

As for the time covariate, one could take into account not just the 

information from the last year, but also from years before last year depending on 

the patterns that emerge from looking at the average length of the infestation 

cycle of the beetle population, as well as the periodicity of the infestations. 

However, there exist other ways of modeling spatial and temporal 

dependence that can be explored. Hierarchical models are one such example. 

Random effects can be quite useful in capturing unexplained variability among 

observations by assuming that within the various levels of the hierarchy 

observations are more alike. Also variance covariance structures can be used to 

describe the spatial interdependence of responses at various locations within each 

year. In addition, the parameter variability caused by unaccounted factors could 

be modeled by assigning informative and non-informative priors to these 

parameters. One such model could have the following form: 

Yj | rjj ~ Bernoulli 

f exp(n) ^ 
^J-MVN^JX) (24) 

l + exp(/^)y 

MlJ.=fi0+Pl*XtJil+... + fip*XiJ,p, where/?0, /?„...,/?„ ~ N(0,a2) 

and X has a Wishart or a more structured form. 

Improving the accuracy of predictions by using the abovementioned 

models together with their variants is somewhat of an art form. Each model offers 

benefits and has its own caveats. However, the guiding principles in choosing the 

right model are the quality of predictions and a better understanding of the 

underlying processes that impact infestation. It is based on these principles that 
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proper measures can be taken to address the economic burdens caused by the pine 

beetle on society. 

A multitude of actions can be taken to control and prevent the spread of 

infestation. Since the beetles spend a large part of their life under the bark of 

trees, control methods can focus on killing the developing beetles before they 

emerge as adults from under the bark. Currently infested trees can be cut and 

burned, can be buried under the soil until the beetles have been killed, or they can 

be debarked and chipped. Infested logs can also be transported to safe sites, 

located far away from any susceptible tree hosts. However, the implementation of 

such measures has associated economic costs and places a heavy burden on the 

limited resources that can be used to address the infestation problem. The models 

used throughout this paper allow for probabilities of infestation to be computed at 

all sites. These probability maps can then be used to address the spread of 

infestation, by removing all the trees located in areas adjacent to heavily infested 

sites, which have probabilities of infestation higher than a certain desired level of 

threshold. That is, the economic cost associated with the implemented control 

measures can be minimized by targeting areas of a specific size as determined 

based on the probability maps of infestation. 

On the other hand, the probability maps themselves can be impacted on by 

the control measures taken. The removal of infested trees from a particular area 

can change the future infestation status of that area even if infestation has been 

registered within the area at the time of the tree removal. This is important for 

modeling purposes because, in some models, the infestation status is used as 

neighboring information and it directly impacts the model outcome. Also, the 

removal of red top trees does not guarantee that the infestation is not still present 

since it takes trees about one year from the original attacks to change color. This 

can once again affect the future infestation status, as infested locations may be 

perceived as not being infested. It becomes thus clear that the control measures 

used in handling infestation have an impact on the data used. Combining effective 

models applied to reliable data and appropriate control measures is the key to 

addressing the infestation problem. 
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Appendix 

Section A: R code for the North Carolina data set 

1. Computing the Neighborhood Matrix 

Neighbors (creation of a matrix whose elements describe if two counties are 
neighbours (=1) or not (=0)) 

neighbors <- read.table("C:\\TDATAWNCN.txt") 
attach(neighbors) 

matNeigh <- matrix(0, nrow=100, ncol=100) 
for(j in 1:100) { 

for (i in 1:9) { 
if (neighbors[j,i+2] >0){ 

neigh <- ( neighbors[j,i+2] + 1) / 2 
matNeigh[neigh,j] <-1} 

} 
} 

2. Creating the spatial covariate (information neighbors at present time) and 
adding it to the data frame that contains all other response and independent 
covariates. 

library(MASS) 
infestData <- read.table("C:\\TDATA\\AHDatal .txt",header=TRUE) 
infestData$ ACRES = infestData$ ACRES/100000 
attach(infestData) 
ninfest <- dimnames(infestData)[2] 

noobs <- length(infestData[,l]) 
noyears <-37 
nocounties<-100 
prevyear <- c(rep(0,nocounties)) 
thisyear <- c(rep(0,nocounties)) 
spatialCov <- c(rep(0, noobs)) 
identVect <- c(rep(l, nocounties)) 

for (i in 1: (noyears-1)) { 
for (m in 1 :nocounties) { 
thisyear[m] <-InfestStat[noyears*(m-l)+i+l] } 
for (j in 1 :nocounties) { 
spatialCov[(j-l)*noyears+i+l] <- matNeigh[j,]%*%thisyear 
} 

} 
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infestData <- as.data.frame(cbind(infestData,spatialCov)) 
noobsNew <- (noyears-l)*nocounties 
infestDataNew <- infestData[l :noobsNew,] 

infDataNew <- subset(infestData, Year != "Y60") 

infestData <- infDataNew 
attach(infestData) 
spatialCov <- infestData$spatialCov 
timeCov <- infestData$timeCov 

3. Fitting the logistic regression and using AIC selection to eliminate 
uninformative covariates 

logitModel <- glm(InfestStat ~ SAW + XERIC + HYDRIC+ MAXTF+ PRCPF+ 
MAXTW+ PRCPW+ MAXTSU+ PRCPSU+ MAXTSP+ PRCPSP+ LNELEV+ 
NATFOR + ACRES, data = infestData,family-"binomial") 
summary(logitModel) 

logitModelRed <- stepAIC(logitModel, direction="backward") 
summary(logitModelRed) 

4. Ploting the overall ROC and retaining the AUC values for each year 

p = fits = fitted(logitModelRed) 
ROC( test =p, stat=InfestStat, plot="ROC",MI=FALSE) 
dat <- cbind(infestData,fits) 
dat <- dat[order(dat[,2]),] 
AUClog = rep(0,times=36) 
infestperyear = table(infestData[,2],infestData[,3])[2:37,2] 

for (i in 1:36) { 
if (infestperyear [i]!=0) { 

a = ROC(test=dat[(100*(i-i)+l):(100*i),20], stat=dat[(100*(i-
l)+l):(100*i),3],plot="ROC",MI=FALSE)$AUC 

AUClog[i] = round(a,3) 
} 

} 

plot(c(61:96),AUClog) 

5. Fitting the MRF model 

logitModelMRF <- glm(InfestStat ~ spatialCov + SAW + XERIC + HYDRIC+ 
MAXTF+ PRCPF+ MAXTW+ PRCPW+ MAXTSU+ PRCPSU+ MAXTSP+ 
PRCPSP+ LNELEV+ NATFOR +ACRES, family="binomial") 
summary(logitModelMRF) 
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6. Obtaining Jackknife Estimates of the MRF model repeatedly while using 
backward selection to eliminate insignificant covariates after each round of 
estimation 

logitModelMRF <- glm(InfestStat ~ spatialCov + SAW + MAXTW+ PRCPW+ 
PRCPSU+ LNELEV, family="binomial") 

jackBetaJs <- function(removedJ) { 
# the function removes county J from the data (analogous to removing component 
j and 
# its 36 obs from the log likelihood and refits the model to get new coefficients 

data <- infestData[infestData[,l]!=removedJ,] 
newlogit<- glm(data$InfestStat ~ data$spatialCov + data$SAW + 
data$MAXTW+ data$PRCPW+ data$PRCPSU+ data$LNELEV, 
family="binomiar') 
newCoeffs <- newlogit$coeff 

return(newCoeffs) 

} 

jackEstimates <- function() { 

origCoeffs <- logitModelMRF$coeff 
nEsts = length(origCoeffs) 
jackmatrix <- matrix(0, 100, nEsts) 
jackEsts <- rep(0, times = nEsts) 
Rn<-jackmatrix 
Rnbar <- rep(0, times = nEsts) 
jackVarEsts <- rep(0, times = nEsts) 

for (j in 1:100) { 
j ackmatrix [j,] = j ackBetaJs(j) 
} 

for (k in 1: nEsts) { 
Rn[,k] = jackmatrix[,k] - origCoeffs[k] 
Rnbar[k] = mean(Rn[,k]) 
} 

for (i in 1: nEsts) { 
jackEsts[i] = origCoeffs[i] - (100-1)/100 * sum(jackmatrix[,i]-origCoeffs[i]) 
} 

neigh = matNeigh +diag(100) #matrix of neighbours 
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for (k in 1: nEsts) { 
for (i in 1:100) { 

for (j in 1:100) { 
jackVarEsts[k] <-jackVarEsts[k] +(100-l)/100*neigh[ij]*(Rn[i,k]-

Rnbar[k])* (Rn[j,k]-Rnbar[k]) 
} 

} 
} 

m=0 
for(i in 1:100) { 

for Gin 1:100) { 
if (neigh[i,j]==l) m=m+l 
} 

} 
print(m) 

1 = list(diffs =Rnbar, ests = jackEsts, stdev = sqrt(jackVarEsts)) 
return(l) 
} 

ests = jackEstimates() 

ests 

7. Creating the table of coefficients, p-values, biases after jackknifing 

tablecoeff <- summary(logitModelMRF)$coeff 

tablecoeff[,l] = ests[[2]] 
tablecoeff[,2] = ests[[3]] 
tablecoeff[,3] = ests[[2]]/ests[[3]] 
tablecoeff[,4]=pnorm(abs(ests[[2]]/ests[[3]]),lower.tail=FALSE)*2 
bias = (summary(logitModelMRF)$coeff)[,l]-ests[[2]] 
tablec <- cbind(tablecoeffbias) 
dimnames(tablec)[[2]][5] = "Bias" 
8. Obtaining the fitted values and ROC for the reduced MRF model and 
retaining the AUC values for each year 

estims <- ests [[2]] 
estims = c(-9.31706391,1.48809808,-.00844693,.11815228,.86162541,-
.44434204,-.21619010) 
xcovvals <- cbind(c(rep(l,dim(infestData)[l])), infestData[,c( 19,5,10,11,15,16)]) 
p = fits = exp(as.matrix(xcovvals) %*% estims)/(l+exp(as.matrix(xcowals) %*% 
estims)) 
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ROC(test = p, stat=InfestStat, plot="ROC",MI=FALSE) 

dat <- cbind(infestData,fits) 
dat <- dat[order(dat[,2]),] 
AUCmrf = rep(0,times=36) 
infestperyear = table(infestData[,2],infestData[,3])[2:37,2] 

for(iinl:36){ 
if (infestperyear[i]!=0) { 

a = ROC(test=dat[(100*(i-l)+l):(100*i),20], stat=dat[(100*(i-
l)+l):(100*i),3],plot="ROC",MI=FALSE)$AUC 

AUCmrf[i] '= round(a,3) 
} 

} 
plot(c(61:96),AUemrf) 

9. Creating the spatial covariate (inf of neighbors at previous time), and 
temporal covariate - inf at the existing location at previous time)) - for the 
simple Markov Chain and fitting the model 

library(MASS) 
infestData <- read.table("C:\\TDATA\\AHDatal .txt",header=TRUE) 

infestData$ACRES = infestData$ACRES/l 00000 
attach(infestData) 
ninfest <- dimnames(infestData)[2] 

noobs <- length(infestData[,l]) 
noyears <-37 
nocounties<-100 
prevyear <- c(rep(0,nocounties)) 
thisyear <- c(rep(0,nocounties)) 

spatialCov <- c(rep(0, noobs)) 
identVect <- c(rep(l, nocounties)) 

for (i in 1: (noyears-1)) { 
for (m in 1 :nocounties) { 
prevyear[m] <- InfestStat[noyears*(m-l)+i] 
thisyear[m] <- InfestStat[noyears*(m-l)+i+l] } 
for (j in 1 -.nocounties) { 
spatialCov[(j-l)*noyears+i+l] <- matNeigh[j,]%*%prevyear 

} 
} 

timeCov <- c(rep(0, noobs)) 
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for (i in l:(noyears-l)) { 
for (m in 1 :nocounties) { 

prevyear[m] <- InfestStat[noyears*(m-l)+i] 
thisyear[m] <- InfestStat[noyears*(m-l)+i+l] } 

for (j in 1 :nocounties) { 
if (prevyear[j]==l) timeCov[(j-l)*noyears+i+l] = 1 

} 
} 
infestData<- as.data.frame(cbind(infestData,spatialCov,timeCov)) 
noobsNew <- (noyears-l)*nocounties 

infestDataNew <- infestData[l :noobsNew,] 
infDataNew <- subset(infestData, Year != "Y60") 

infestData <- infDataNew 
attach(infestData) 
spatialCov <- infestData$spatialCov 
timeCov <- infestData$timeCov 

10. Fitting the MC model 

logitModelMC <- glm(InfestStat ~ spatialCov + timeCov + SAW + XERIC + 
HYDRIC+ MAXTF+ PRCPF+ MAXTW+ PRCPW+ MAXTSU+ PRCPSU+ 
MAXTSP+ PRCPSP+ LNELEV+ NATFOR + ACRES, family=MbinomialM) 
summary(logitModelMC) 

11. Obtaining Jackknife Estimates of the MRF model repeatedly while using 
backward selection to eliminate insignificant covariates after each round of 
estimation 

logitModelMC <- glm(InfestStat ~ spatialCov + timeCov + SAW + PRCPW+ 
PRCPSU+ MAXTSP+ LNELEV, family="binomial") 

jackBetaJs <- function(removedJ) { 
# the function removes county J from the data (analogous to removing component 
jand 
# its 36 obs from the log likelihood and refits the model to get new coefficients 

data <- infestData[infestData[,l]!=removedJ,] 
newlogit<- glm(data$InfestStat ~ data$spatialCov + data$timeCov + data$SAW + 
data$PRCPW+ data$PRCPSU+ data$MAXTSP+ data$LNELEV , 
family="binomial") 
newCoeffs <- newlogit$coeff 

return(newCoeffs) 
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} 

jackEstimates <- function() { 

origCoeffs <- logitModelMC$coeff 
nEsts = length(origCoeffs) 
jackmatrix <- matrix(0, 100, nEsts) 
jackEsts <- rep(0, times = nEsts) 
Rn<-jackmatrix 
Rnbar <- rep(0, times = nEsts) 
jackVarEsts <- rep(0, times = nEsts) 

for (j in 1:100) { 
jackmatrix [j,] =jackBetaJs(j) 
} 

for (k in 1: nEsts) { 
Rn[,k] = jackmatrix[,k] - origCoeffs[k] 
Rnbar[k] = mean(Rn[,k]) 

} 

for (i in 1: nEsts) { 
jackEsts[i] = origCoeffs[i] - (100-1)/100 * sum(jackmatrix[,i]-origCoeffs[i]) 

} 

neigh = matNeigh +diag(100) #matrix of neighbours 

for (k in 1: nEsts) { 
for (i in 1:100) { 

for(j in 1:100) { 
jackVarEsts[k] <-jackVarEsts[k] +(100-l)/100*neigh[i,j]*(Rn[i,k]-

Rnbar[k])* (RnO,k]-Rnbar[k]) 

} 
} 

} 

m=0 
for (i in 1:100) { 

for(j in 1:100) { 
if (neigh[i,j]==l) m=m+l 
} 

} 
print(m) 

1 = list(diffs =Rnbar, ests = jackEsts, stdev = sqrt(jackVarEsts)) 
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return(l) 
} 

ests = jackEstimates() 
ests 

12. Creating the table of coefficients, p-values, biases of the MC model after 
jackknifing 

tablecoeff <- summary(logitModelMC)$coeff 
tablecoeff[,l] = ests[[2]] 
tablecoeff[,2] = ests[[3]] 
tablecoeff[,3] = ests[[2]]/ests[[3]] 
tablecoefft,4]=pnorai(abs(ests[[2]]/ests[[3]]),lower.tail=FALSE)!|c2 
bias = (summary(logitModelMC)$coeff)[,l]-ests[[2]] 
tablec <- cbind(tablecoeff,bias) 
dimnames(tablec)[[2]][5] = "Bias" 

13. Obtaining the fitted values and ROC for the reduced MC model and 
retaining the AUC values for each year 

estims <- ests[[2]] 
estims = c(-6.514676379,.360959885,1.471268377,-.003997193,.519654290,-
.458554532,.073069097,-.l 11390885) 
xcovvals <- cbind(c(rep(l,dim(infestData)[l])), 
infestData[,c(l 9,20,5,11,15,12,16)]) 
p = fits = exp(as.matrix(xcovvals) %*% estims)/(l+exp(as.matrix(xcovvals) %*% 
estims)) 
ROC(test = p, staMnfestStat, plot="ROC",MI=FALSE) 

dat <- cbind(infestData,fits) 
dat <- dat[order(dat[,2]),] 
AUCmc = rep(0,times=36) 
infestperyear = table(infestData[,2],infestData[,3])[2:37,2] 

for(iinl:36){ 
if (infestperyear [i]!=0) { 

a = ROC(test=dat[(100*(i-l)+l):(100*i),21], stat=dat[(100*(i-
l)+l):(100*i),3],plot="ROC",MI=FALSE)$AUC 

AUCmcfi] = round(a,3) 
} 

} 
plot(c(61:96), AUCmc) 
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14. Zhu model - redefining neighboring structure based on neighbors within 
30 miles 

#Find neighbours within 30 miles; 
#read latitudes: lat 
#red longitudes: long 

coords <- read.csv("m:\\new thesisWlatlongforNCdata.csv") 
lat = coords[,l] 
long = coords [,2] 

n=100 
dist = matrix(0,n,n) 
neighdist = matrix(0,n,n) 

for (i in 1 :n) { 
for (j in 1 :n) { 

R=6371 
torad = pi/180 
dlat = lat[i]-lat[j] 
dlong = long[i]-long[j] 
a = sin(dlat/2*torad)A2 + cos(lat[i]*torad)*cos(lat[j]*torad)* 

(sin(dlong/2 *torad)A2) 
c = 2*atan2(sqrt(a),sqrt(l-a)) 
d = R*c 

dist[ij] = d 
if (distpj] <= 30*1.6 & dist[ij]!=0) {neighdist[i,j]=l 
} 
} 

} 
matNeigh = neighdist 

15. Computing the spatial and temporal covariates for the Zhu model and 
fitting the model 

infestData <- read.table("m:\\new thesis\\AHDatal.txt",header=TRUE) 
infestData$ACRES = infestData$ACRES/100000 
attach(infestData) 
ninfest <- dimnames(infestData)[2] 

noobs <- length(infestData[,l]) 
noyears <-37 
nocounties <-100 
prevyear <- c(rep(0,nocounties)) 
nextyear <- c(rep(0,nocounties)) 
thisyear <- c(rep(0,nocounties)) 
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spatialCov <- c(rep(0, noobs)) 
identVect <- c(rep(l, nocounties)) 

for (i in l:(noyears-l)) { 
for (m in 1 :nocounties) { 
thisyear[m] <- InfestStat[noyears*(m-l)+i+l] } 
for (j in 1 :nocounties) { 
#if(thisyear[j]==l) spatialCov[(j-l)*noyears+i+l] <-

matNeigh[j , ] % * %(2 *thisyear-1) 
spatialCov[(j-l)*noyears+i+l] <-matNeigh[j,]%*%(2*thisyear-l) 

} 
} 

timeCov <- c(rep(0, noobs)) 
for (i in l:(noyears-l)) { 

for (m in 1 :nocounties) { 
prevyear[m] <- InfestStat[noyears*(m-l)+i] 
thisyear[m] <- InfestStat[noyears*(m-l)+i+l] 
if (i!=36) nextyear[m] <- InfestStat[noyears*(m-l)+i+2] } 

for (j in 1 :nocounties) { 
# timeCov[(j-l)*noyears+i+l] = thisyear[j]*(2*prevyear[j] + 

2*nextyear[j] -2 ) 
timeCov[(j-l)*noyears+i+l] = 2*prevyear[j] + 2*nextyear[j] -2 

} 
} 

infestData<- as.data.frame(cbind(infestData,spatialCov,timeCov)) 
noobsNew <- (noyears-l)*nocounties 
infestDataNew <- infestData[l:noobsNew,] 

infDataNew <- subset(infestData, Year != "Y60") 

infestData <- infDataNew 
attach(infestData) 
spatialCov <- infestData$spatialCov 
timeCov <- infestData$timeCov 

sqSAW =sqrt(SAW) 
sqXERIC =sqrt(XERIC) 
sqHYDRIC =sqrt(HYDRIC) 
sqNATFOR =sqrt(NATFOR) 

logitModelZhu <- glm(InfestStat ~ sqSAW + sqHYDRIC + sqXERIC 
+MAXTF+ PRCPF+ MAXTSU +sqSAW*MAXTSU+ spatialCov+ timeCov, 
family="binomial") 
summary(logitModelMC) 
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16. Ploting the ROC of the ZHU model and retaining the AUCs per year 

library(Epi) 
p <- exp(fitted(logitModelZhu))/(l+exp(fitted(logitModelZhu))) 
ROC( test-p, stat=infestStat, plot="ROC") 

dat <- cbind(infestData,p) 
dat <- dat[order(dat[,2]),] 

AUCzhu = rep(0,times=36) 
infestperyear = table(infestData[,2],infestData[,3])[2:37,2] 

for(iinl:36){ 
if (infestperyear[i]!=0) { 

a = ROC(test=dat[(100*(i-l)+l):(100*i),21], stat=dat[(100*(i-
l)+l):(100*i),3],plot="ROC",MI=FALSE)$AUC 

AUCzhu [i] = round(a,3) 
} 

} 
plot(c(61:96),AUCzhu) 

17. Plotting the AUCs by year of the logistic, MRF, MC and Zhu models 
(years with no infestations excluded ) 

AUClogl = AUClog[AUClog!=0] 
AUCmrfl = AUCmrf[AUCmrf!=0] 
AUCmcl = AUCmc[AUCmc!=0] 
AUCzhul = AUCzhu[AUCzhu!=0] 

windows() 
plot(c(61:77,79,80,86:96),rep(-l,30),main="AUCs per Year for the logistic (red), 
MRF(blue), MC(green) models", xlab="Year",ylab="AUC values", 
ylim=c(0.2,1.05))#tck=l, 

points(c(61:77,79,80,86:96),AUClogl,pch=15,col=2) 
points(c(61:77,79,80,86:96),AUCmrfl,pch=16,col=4) 
points(c(61:77,79,80,86:96),AUCmcl,pch=17,col=3) 
points(c(61:77,79,80,86:96),AUCzhul,pch=20,col=l) 
legend(86,.4,c("Logistic AUCs","MRF AUCs","MC AUCs","Zhu AUCs"), 
pch=c(15,16,17,20), col = c(2,4,3,l), text.col = c(2,4,3,l)) #,bg=8 
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Section B: R code for the British Columbia data set 

1. Reading in the data 

BCinfestdata <- read.table("C:\\BCdata.txt",header=TRUE) 
attach(BCinfestdata) 

2. Creating the spatial covariate (information neighbors at present time) and 
adding it to the data frame that contains all other response and independent 
covariates. 

BCdata <- BCinfestdata[order(BCinfestdata$year),] 
attach(BCdata) 
years <- 34 
n<-dim(BCdata)[l] 
nsquares <- n/years 
ncols <- 74 
nrows <- 55 

spatialCov <- rep(0,times=n) 

for (i in (nsquares+l):n) { 
if(dd[i] !=0){ 

if (blckl[i] != 1 && blckl[i] != nrows && blck2[i] != 1 && blck2[i] != 
ncols) { 

if (infest[i -1]==1) spatialCov[i]=spatialCov[i]+l 
if (infest[i+l] ==1) spatialCov[i]=spatialCov[i]+l 
if (infest[i-ncols] ==1) spatialCov[i]=spatialCov[i]+l 
if (infest[i+ncols] ==1) spatialCov[i]=spatialCov[i]+l 

} 
else if (blckl[i] == 1 && blckl [i] != nrows && blck2[i] != 1 && blck2[i] != 

ncols) { 
if (infest[i -1] ==1) spatialCov[i]=spatialCov[i]+l 
if (infest[i+l] ==1) spatialCov[i]=spatialCov[i]+l 
if (infest[i+ncols] ==1) spatialCov[i]=spatialCov[i]+l 

} 
else if (blckl [i] .!= 1 && blckl [i] == nrows && blck2[i] != 1 && blck2[i] != 

ncols) { 
if (infest[i -1] ==1) spatialCov[i]=spatialCov[i]+l 
if (infest[i+l] ==1) spatialCov[i]=spatialCov[i]+l 
if (infest[i-ncols] ==1) spatialCov[i]=spatialCov[i]+l 

} 
else if (blckl [i] != 1 && blckl [i] != nrows && blck2[i] != 1 && blck2[i] = 

ncols) { 
if (infest[i -1] ==1) spatialCov[i]=spatialCov[i]+l 
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if (infest[i-ncols] ==1) spatialCov[i]=spatialCov[i]+l 
if (infest[i+ncols] ==1) spatialCov[i]=spatialCov[i]+l 

} 

} 
} 

BCdata <- BCinfestdata[order(BCinfestdata$year),] 
BCdata <- cbind(BCdata, spatialCov) 
BCdata <- BCdata[4071:n,] 
BCdata <- subset(BCdata,dd!=0) 
attach(BCdata) 
spatialCov <- BCdata$spatialCov 

3. Fitting the logistic regression 

logitBC <- glm(infest ~ dd + min + age + pine + dem + slope + aspect, family = 
"binomial") 
summary(logitBC) 

4. Ploting the overall ROC and retaining the AUC values for each year 

p = fits = fitted(logitBC) 
ROC( test =p, stat=infest, plot="ROC",MI=FALSE) 

dat <- cbind(BCdata,fits) 
dat <- dat[order(dat[,12]),] 

AUClog = rep(0,times=33) 
infestperyear == table(BCdata[,12],BCdata[,4])[l:33,2] 

for (i in 1:33) { 
if (infestperyear[i]!=0) { 

a = ROC(test=dat[(1706*(i-l)+l):(1706*i),14], stat=dat[(1706*(i-
l)+l):(1706*i),4],plot="ROC",MI=FALSE)$AUC 

AUClog[i] = round(a,3) 
} 

} 

plot(c(64:96),AUClog) 

5. Fitting the MRF model 

logitBCMRF <- glm(infest ~ dd + min + age + pine + dem + slope + aspect + 
spatialCov, family = "binomial") 
summary(logitBCMRF) 
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6. Obtaining Jackknife Estimates of the MRF model repeatedly while using 
backward selection to eliminate insignificant covariates after each round of 
estimation 

matNeight <- matrix(0,1706,1706) 
colBlock = unique(BCdata[,l]) 
for (i in 1:1706) { 

print(colBlock[i]) 
neighsl = c(colBlock[i]-l, colBlock[i]+l, colBlock[i]-74,colBlock[i]+74) 
print(neighsl) 
#print(matNeight[i,is.element(colBlock, neighsl)]) 
#Print(colBlock[l:100]) 
#print(is.element(colBlock, neighsl)[ 1:100]) 
matNeight[i,is,element(colBlock, neighsl)] = 1 

} 
mn <- as.data.frame(matNeight) 
dimnames(mn)[2] = colBlock 

jackBetaJs <- function(removedJ) { 
# the function removes county J from the data (analogous to removing component 
jand 
# its 33 obs from the log likelihood) and refits the model to get new coefficients 

data <- BCdata[BCdata [,l]!=removedJ,] 
newlogit<- glm(data$infest ~ data$dd + data$min + data$age+ data$pine+ 
data$dem+ data$slope+ data$aspect + data$spatialCov, family="binomial") 
newCoeffs <- newlogit$coeff 

return(newCoeffs) 

} 

jackEstimates <- function() { 

origCoeffs <- logitBCMRF$coeff 
nEsts = length(origCoeffs) 
jackmatrix <- matrix(0, 1706, nEsts) 
jackEsts <- rep(0, times = nEsts) 
Rn <- jackmatrix 
Rnbar <- rep(0, times = nEsts) 
jackVarEsts <- rep(0, times = nEsts) 

forG in 1:1706) { 
j ackmatrix [j,] = j ackBetaJs(j) 
print(j) 
} 
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for (k in 1: nEsts) { 
Rn[,k] = jackmatrix[,k] - origCoeffs[k] 
Rnbarfk] = mean(Rn[,k]) 
} 

for (i in 1: nEsts) { 
jackEsts[i] = origCoeffs[i] - (1706-1)/1706 * surn(jackmatrix[,i]-

origCoeffs[i]) 
} 

neigh = matNeight +diag(1706) #matrix of neighbours 

for (k in 1: nEsts) { 
print(k) 

for (i in 1:1706) { 
for(j in 1:1706) { 

if (neigh[i,j]==l) { 
jackVarEstsfk] <-jackVarEsts[k] +(1706-

l)/1706*neigh[i,j]*(Rn[i,k]-Rnbar[k])*(Rn[j,k]-Rnbar[k]) 
} 

} 
} 

} 

1 = list(matjack = jackmatrix, diffs =Rnbar, ests = jackEsts, stdev = 
sqrt(j ackVarEsts)) 
return(l) 
} 

ests = jackEstimates() 
ests 

7. Creating the table of coefficients, p-values, biases after jackknifing 

tablecoeff <- summary(logitBCMRF)$coeff 
tablecoeff[,l] = ests[[3]] 
tablecoeff[,2] = ests[[4]] 
tablecoeff[,3] = ests[[3]]/ests[[4]] 
tablecoeff[,4]=pnorm(abs(ests[[3]]/ests[[4]]),lower.tail=FALSE)*2 
bias = (summary(logitBCMRF)$coeff)[,l]-ests[[3]] 
tablec <- cbind(tablecoeff,bias) 
dimnames(tablec)[[2]][5] = "Bias" 
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8. Obtaining the fitted values and ROC for the reduced MRF model and 
retaining the AUC values for each year 

tab = tablec[,l] 
tab = c(-7.3076961507, 0.0020610115, 0.0059791199, 0.0746890109, 
0.0003050399, -0.0003394390, 0.0963487875, -0.0024714363, 2.0381429153) 
datBC<-cbind(rep(l,times=dim(BCdata)[l]),BCdata[,c(5,6,7,8,9,10,ll,13)]) 
fittedvals = rep(0, times =dim(datBC)[l]) 
fittedvals = as.matrix(datBC)%*%tab 
p = exp(fittedvals)/(l+exp(fittedvals)) 
ROC(test=p, stat = BCdata$infest, plot="ROC",MI=FALSE) 

dat <- cbind(BCdata,p) 
dat <- dat[order(dat[,12]),] 
AUCmrf = rep(0,times=33) 
infestperyear = table(BCdata[,12],BCdata[,4])[l:33,2] 

for (i in 1:33) { 
if (infestperyear[i]!=0) { 

a = ROC(test=dat[(1706*(i-l)+l):(1706*i),14], stat=dat[(1706*(i-
l)+l):(1706*i),4],plot="ROC",MI=FALSE)$AUC 

AUCmrf[i] = round(a,3) 
} 

} 

plot(c(64:96),AUCmrf) 

9. Creating the spatial covariate (inf of neighbors at previous time), and 
temporal covariate - inf at the existing location at previous time)) - for the 
simple Markov Chain and fitting the model 

BCinfestdata <- read.table("C:\\BCdata.txt",header=TRUE) 
attach(BCinfestdata) 

BCdata <- BCinfestdata[order(year),] 
attach(BCdata) 
years <- 34 
n<-dim(BCdata)[l] 
nsquares <- n/years 
ncols <- 74 
nrows <- 55 

spatialCov <- rep(0,times=n) 
timeCov <- rep(0,times=n) 

for (i in (nsquares+l):n) { 
if(dd[i] !=0){ 
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if (blckl[i] != 1 && blckl [i] != nrows && blck2[i] != 1 &&blck2[i] != 
ncols) { 

if (infest[i -l-nsquares]==l) spatialCov[i]=spatialCov[i]+l 
if (infest[i+l-nsquares]=l) spatialCov[i]=spatialCov[i]+l 
if (infest[i-ncols-nsquares]-=l) spatialCov[i]=spatialCov[i]+l 
if (infest[i+ncols-nsquares]==l) spatialCov[i]=spatialCov[i]+l 

} 
else if (blckl [i] = 1 && blckl [i] != nrows && blck2[i] != 1 && blck2[i] 

!= ncols) { 
if (infestfi -l-nsquares]==l) spatialCov[i]=spatialCov[i]+l 
if(infest[i+l-nsquares]==l) spatialCov[i]=spatialCov[i]+l 
if (infest[i+ncols-nsquares]==l) spatialCov[i]=spatialCov[i]+l 

} 
else if (blckl [i] != 1 && blckl [i] == nrows && blck2[i] != 1 && blck2[i] != 

ncols) { 
if (infest[i -l-nsquares]==l) spatialCov[i]=spatialCov[i]+l 
if (infest[i+l-nsquares]==l) spatialCov[i]=spatialCov[i]+l 
if (infest[i-ncols-nsquares]== 1) spatialCov[i]=spatialCov[i]+1 

} 
else if (blckl [i] != 1 && blckl [i] != nrows && blck2[i] != 1 && blck2[i] == 

ncols) { 
if (infest[i -l-nsquares]==l) spatialCov[i]=spatialCov[i]+l 
if (infest[i-ncols-nsquares]==l) spatialCov[i]=spatialCov[i]+l 
if(infest[i+ncols-nsquares]==l) spatialCov[i]=spatialCov[i]+l 

} 
} 

} 

for (i in (nsquares+l):n) { 
if(dd[i] !=0){ 

if (infest[i -nsquares]-=l) timeCov[i]=timeCov[i]+l 
} 

} 

BCdata <- cbind(BCdata, spatialCov, timeCov) 
BCdata <- BCdata[4071 :n,] 
BCdata <- subset(BCdata,dd!=0) 
attach(BCdata) 
spatialCov <- BCdata$spatialCov 
timeCov <- BCdata$timeCov 

10. Fitting the MC model 

logitModelMC <- glm(infest ~ dd + min + pine + slope + aspect + 
spatialCov+timeCov, family = "binomial") 
summary(logitModelMC) 
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11. Obtaining Jackknife Estimates of the MRF model repeatedly while using 
backward selection to eliminate insignificant covariates after each round of 
estimation 

logitBCMC<- glm(infest ~ dd + min + age + pine + dem + slope+ aspect + 
spatialCov +timeCov, family="binomial") 

jackBetaJs <- function(removedJ) { 
# the function removes county J from the data (analogous to removing component 
jand 
# its 33 obs from the log likelihood) and refits the model to get new coefficients 

data <- BCdata[BCdata [,l]!=removedJ,] 
newlogit<- glm(data$infest ~ data$dd + data$min + data$age + data$pine + 
data$dem + data$slope+ data$aspect + data$spatialCov +data$timeCov, 
family="binomial") 
newCoeffs <- newlogit$coeff 

return(newCoeffs) 

} 

jackEstimates <- function() { 

origCoeffs <- logitBCMC$coeff 
nEsts = length(origCoeffs) 
jackmatrix <- matrix(0, 1706, nEsts) 
jackEsts <- rep(0, times = nEsts) 
Rn <- jackmatrix 
Rnbar <- rep(0, times = nEsts) 
jackVarEsts <- rep(0, times = nEsts) 

for (j in 1:1706) { 
jackmatrix [j,] =jackBetaJs(j) 
print(j) 
} 

for (k in 1: nEsts) { 
Rn[,k] = jackmatrix[,k] - origCoeffs[k] 
Rnbar[k] = mean(Rn[,k]) 
} 

for (i in 1: nEsts) { 
jackEsts[i] = origCoeffs[i] - (1706-1)/1706 * sum(jackmatrix[,i]-

origCoeffs[i]) 
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} 

neigh = matNeight +diag(1706) #matrix of neighbours 

for (k in 1: nEsts) { 
print(k) 

for (i in 1:1706) { 
for(j in 1:1706) { 

if (neigh[i,j]==l) { 
jackVarEsts[k] <-jackVarEsts[k] +(1706-

l)/1706*neigh[ij]*(Rn[i,k]-Rnbar[k])*(RnO,k]-Rnbar[k]) 
} 

} 
} 

} 

1 = list(matjack = jackmatrix, diffs =Rnbar, ests = jackEsts, stdev = 
sqrt(j ackVarEsts)) 
return(l) 
} 

ests = jackEstimates() 
ests 

12. Creating the table of coefficients, p-values, biases of the MC model after 
jackknifing 

tablecoeff <- summary(logitBCMC)$coeff 
tablecoeff[,l] = ests[[3]] 
tablecoeff[,2] = ests[[4]] 
tablecoeff[,3] = ests[[3]]/ests[[4]] 
tablecoeff[,4]=pnorm(abs(ests[[3]]/ests[[4]]),lower.tail=FALSE)*2 
bias = (summary(logitBCMC)$coeff)[,l]-ests[[3]] 
tablec <- cbind(tablecoeff,bias) 
dimnames(tablec)[[2]][5] = "Bias" 

13. Obtaining the fitted values and ROC for the reduced MC model and 
retaining the AUC values for each year 

tab = tablec [,1] 
tab = c(-6.7157704658, 0.0019862001, 0.0200122613, 0.0342946031, 
0.0003715340, 0.0001936922, 0.0604973049, -0.0027210991, 0.9681973743, 
2.4370812889) 
datBC <-cbind(rep(l,times=dim(BCdata)[l]),BCdata[,c(5,6,7,8,9,10,11,13,14)]) 
fittedvals = rep(0, times =dim(datBC)[l]) 
fittedvals = as.matrix(datBC)%*%tab 
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p = exp(fittedvals)/(l+exp(fittedvals)) 
ROC(test=p, stat = BCdata$infest, plot="ROC",MI=FALSE) 

dat <- cbind(BCdata,p) 
dat <- dat[order(dat[,12]),] 
AUCmc = rep(0,times=33) 
infestperyear = table(BCdata[,12],BCdata[,4])[l :33,2] 

for (i in 1:33) { 
if (infestperyear[i]!=0) { 

a = ROC(test=dat[(1706*(i-l)+l):(1706*i),15], stat=dat[(1706*(i-
l)+l):(1706*i),4],plot="ROC",MI=FALSE)$AUC 

AUCmc [i] = round(a,3) 
} 

} 
plot(c(64:96),AUCmc) 

14. Plotting the AUCs by year of the logistic, MRF, and MC models (years 
with no infestations excluded ) 

AUClogl = AUClog[AUClog!=0] 
AUCmrfl = AUCmrf[AUCmrf!=0] 
AUCmcl = AUCmc[AUCmc!=0] 

windows() 
plot(c(64:96),rep(-l,33),main="AUCs per Year for the logistic (red), MRF(blue), 
MC(green) models", xlab="Year",ylab="AUC values",ylim=c(0.6,1.05)) #,tck=l 

points(c(64:96),AUClogl,pch=15,col=2) 
points(c(64:96),AUCmrfl,pch=16,col=4) 
points(c(64:96),AUCmcl ,pch=l 7,col=3) 
legend(86,.72,c("Logistic AUCs","MRF AUCs'V'MC AUCs"), pch=c(15,16,17), 
col = c(2,4,3), text.col = c(2,4,3)) #,bg=8 
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Section C: Table of Symbols Used Throughout the Thesis 

Symbol 
i, j , Si or Sj 

t 

Tli,TKt 

Pi,Pi,t 
Yi,Yi,t,Y(si),Y(sj) 

Xj, X;jt, Xijt,k 

s 
Nj 

Y(S) 
Pr(Y(S)) 

Po 
Pk 
PiJ 

P 

a 

ek 
eP+i 
6p+2 

1~J 

5n 
5n,-j 

Bnj 
JK5n 

a i j 

£ 

ol 

Description 
- locations on the map at which covariate information 
and response values are gathered, or where predictions 
are made (Si ,i are used interchangeably, with i used to 
simplify notation) 
- the time at which covariate information and response 
values are gathered, or where predictions are made 
- the logits of infestation at location i and/or time t 
- the probability of infestation at location i and/or time t 
- the infestation status at location xlsj..., and/or time t 
- covariate information for the km covariate at location i 
and/or time t 
- the set of all locations on the map 
- neighbourhood of location sj(or i) 
- the infestation status of the whole map 
- the probability of infestation of the entire map 
- model intercept 
- the coefficient of covariate Xk, k= 1,... ,p 
- the spatial dependence auto-regressive coefficient 
between locations i and j 
- the common spatial dependence auto-regressive 
coefficient for all pairs of locations i and j 
- coefficient of the temporal auto-regressive lag 1 
covariate 
- the coefficient of covariate Xk, k= 1,... ,p 
- the coefficient of the spatial covariate 
- the coefficient of the temporal covariate 
- denotes two neighbouring locations i and j 
- the original pseudo likelihood estimates 
- the estimates obtained from removing the j t h 

component of the pseudo-likelihood 
- the bias between 8n and 8n,.j 
- the modified jackknife model parameters 
- describes the relationship between two locations; 1 if 
i,j are neighbours of each other, 0 otherwise 
- the variance covariance matrix of the errors 

- the standard error of the parameter estimates 
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Section D: Summary of Models Used and Their Features 

The Logistic Model 

, P(Ylt=\\X_,nspalialCovn) 
rij t = log : : — = 

P(Ylt = 01X,,, spatialCovlt) 

Logistic Model Features 

• allows for inclusion of covariates (discrete and continuous) of various 
types (climate, terrain properties, forest characteristics) 

• estimation is done by maximum likelihood 
• parameter interpretation in terms of log odds 
• allows for future predictions to be made 

The MRF model (Autologistic Regression) 

P{Yu=\\X_inspatialCovtl) 
Tli t = log : : — = 

P{Yt._, = 01 X_if, spalialCov,,) 

= J3Q + A *Xlt, +... + /?,*X l lp + pp+x *spatialCovlt 
Where: 

„ fl, ifjeN, 
-> spatialCoV:, = > a.•, * Y.., -> a.-,, = \ 

''' h J J J 10, ifJ*N, 
MRF Model Features 

spatial dependence among responses accounted for via neighbouring 
response information 
flexibility in defining the neighbouring structure (regular, irregular lattice; 
first and second order neighbours, neighbours within a certain radius of 
current location) 
spatial dependence can be split into directions of dependence (e.g east 
neighbours separated from west neighbours etc.) 
covariate information can be included (as with the logistic regression) 
parameter estimates obtained by pseudo-likelihood; proper standard errors 
can be obtained by jackknifing the pseudo-likelihood 
parameter interpretation - log odds 
future predictions cannot be made due to the fact that the model relies on 
neighbouring response information from the very same year we are trying 
to predict 
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The Spatial MC Model 

P(Xi i =l\Kn> spatialCovi ,, timeCovi r) 
Tli t = log : : : '— = 

P(Yt t = 01 X_t^, spatialCoVj t, timeCovit) 

= /?0 + A * X,(>, + ... + / ? ,* Xhhp + /3p+l * spatialCovhl + 0p+2 * ttmeCov^ 

Where: 
n 

-> spatialCovit = ^ « y , * ^ / M - > timeCovit -
7=1 

,J jo, rjgiv, 
Spatial MC Model Features 

• temporal and spatial dependence can be accounted for 
• the neighbouring structure can be defined as with the MRF model 
• the model uses neighbouring response information from the previous time 

state(s) 
• information from the current location but from the previous year is used 
• the periodicity of infestations can offer clues regarding the temporal 

dependencies that could be used 
• covariates can be incorporated as with logistic regression and previous 

time state values for these covariates can be used 
• pseudo-likelihood and jackknifing of the pseudo-likelihood can be used to 

obtain parameter estimates and standard errors 
• model parameters are interpreted in terms of log odds 
• future predictions can be made since the model uses only the known past 

information 

10, i/^-,=0 
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