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Abstract

Hydraulic fracturing combined with horizontal drilling is the key to unlocking tight reservoirs.
However, understanding the relationship between reservoir characteristics, completion design and
well productivity remains challenging. In the past decade, over 40,000 multi-fractured horizontal
wells (MFHWs) have been completed in the Western Canadian Sedimentary Basin (WCSB). Despite
completion intensity surging by nearly 100%, hydrocarbon productivity only rose by 20%. Why
doesn't hydrocarbon production growth align with the increase in completion intensity? Is the
efficiency gap attributed to formation characteristics, injection fluid properties, or the fracturing

strategy?

The main objective here is to develop a comprehensive analytical and machine learning (ML)
workflow to evaluate and predict the recovery performance of MFHWSs as a function of reservoir
characteristics and completion design, and to optimize the completion design based on reservoir

characteristics to maximize the productivity of MFHWs.

While there have been advancements in the ML-based modelling approaches to predict well
performance in tight reservoirs, there are limited studies focus on the comprehensive development of
these resources considering both the reservoir characteristics and completion design. Therefore, this
study seeks to address two main questions: i) how can the optimal sweet spots for MFHWSs be
efficiently identified? And ii) how can the completion design be optimized based on the reservoir
quality and geomechanical properties? By addressing these questions, this thesis aims to provide a

more holistic and effective approach for optimizing well performance in tight reservoirs.

ii



Abstract

To achieve this objective, several new approaches are proposed to build this workflow. Initially, an
iterative method is proposed to estimate dynamic fracture volume, porosity, and compressibility
based on downhole pressure. Following this, a characteristic fracture closure rate is derived to
describe the rate at which the effective fracture volume decreases during flowback. Subsequently, a
water-oil-ratio model (WORM) is introduced to explain the observed log-linear relationship between
WOR and load recovery as an analogy to the log-linear relationship between the water/oil relative-
permeability ratio and water saturation. The coefficients from WORM are then coupled with key
petrophysical properties using a neural network to predict WOR as a function of load recovery,
forecast ultimate load recovery, and estimate effective fracture volume. Another data-driven model is
proposed to predict oil production as a function of load recovery during the matrix-dominated flow
regime. A support vector machine model is also developed to predict permeability from well log data,
which facilitates the creation of high-resolution 3D maps of different petrophysical properties across
the Montney formation, utilizing data from over 14,000 oil and gas wells. Similarly, sonic log data are
utilized to estimate formation fracability, which is then interpolated using 3D kriging across the
Montney formation. These developed petrophysical properties are incorporated to derive a Reservoir
Quality Index (RQI), serving as a unified measure of reservoir quality based on petrophysical
properties. Then, a series of ML-based proxy models are designed, trained, and proposed to correlate
the oil and gas productivities of more than 10,000 oil and gas MFHWSs with reservoir characteristics
and completion design, alongside their mathematical representation for broader applicability. Finally,
a supplementary study is proposed to explore the geothermal potential of suspended oil and gas
MFHWSs completed in WCSB. The aim is to identify the most suitable candidates for repurposing,

especially considering the substantial investment initially made to complete these wells.
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Abstract

The key results from this work show that the functional dependence of well productivity on
completion-design varies depending on reservoir quality. In low-quality reservoirs, the effect of
completion-design on productivity is less pronounced and the productivity follows reservoir quality.
However, in high-quality reservoirs, the effect of completion-design becomes more significant, and
the productivity can be reduced due to inefficient completion-design. Moreover, the productivity can
be maximized by less intense completion-design in low-quality reservoirs. However, in high-quality
reservoirs, intense completion significantly improves the productivity. Additionally, the application
of a completion design to achieve a similar effective fracture volume on child wells does not
necessarily lead to similar oil productivity compared to parent wells. It also depends on the quality of
the reservoir at which the parent/child wells are completed. Finally, completion design parameters
generally exhibit a greater influence compared to formation characteristics on both effective fracture

volume and well productivity.
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Chapter 1.

General Introduction

1.1 Overview

This section briefly outlines the key terminologies and field practices referenced in the subsequent

chapters, helping to position this work in the proper perspective.

1.1.1 Unconventional Reservoirs

Unconventional reservoirs are typically characterized as sedimentary formations that necessitate
stimulation for the economical extraction of hydrocarbons, primarily due to the rock’s low
permeability or the fluid’s high viscosity [11]. In the context of this research, the term
“unconventional” is used to denote the tightness of the rock matrix, characterized by low porosity and
permeability. More specifically, unconventional reservoirs in this research cover tight and shale
oil/gas reservoirs. Tight reservoirs are non-source rocks like sandstones and carbonates that have low
permeability but are capable of producing hydrocarbons [12]. On the other hand, shale reservoirs are

fine-grained, organic-rich formations that could produce hydrocarbons.
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Fig. 1.1 — Unconventional basins in North America [1]. The three studied basins in this research are highlighted
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Fig. 1.1 demonsrates the distribution of major unconventional basins across North America. A
significant portion of these resources are situated in the central and southern regions of the United
States, as well as Western Canada. This research primarily focuses on the Western Canadian
Sedimentary Basin (WCSB), with supplementary discussions on the Eagle Ford and Niobrara basins.

These specific basins are prominently highlighted on the map.

The permeability spectrum of various conventional and unconventional reservoirs is illustrated in Fig.
1.2. The defining characteristic of unconventional reservoirs is their ultra-low permeability, typically
less than 100 uD, as noted by [13]. This makes the development of these unconventional reservoirs a
significant challenge. However, the combination of hydraulic fracturing and horizontal drilling has
emerged as a pivotal strategy for unlocking the potential of these unconventional reservoirs.

Hydraulic Fracturing is Required for Development

> »
- L
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Fig. 1.2 — Permeability ranges of different reservoir types

1.1.2 Horizontal Well Technology and Multiwell Pad Drilling

Fig. 1.3 provides a comprehensive overview of the primary operational activities involved in the
development of unconventional reservoirs. The process commences with the drilling of a horizontal
well, followed by the initiation of the hydraulic fracturing operation, which involves the application
of multi-stage hydraulic fracturing. Subsequent to this, there may or may not be a shut-in period
before the fracturing fluid is returned to the surface in a procedure known as flowback. In certain
wells, the shut-in period could be extended up to several months to facilitate the preparation of

flowback and production equipment at the wellhead.

Horizontal wells play a key role in improving hydrocarbon production from unconventional
reservoirs. In comparison to vertical drilling, horizontal drilling augments the contact area between
the reservoir and the wellbore, thereby boosting well productivity. The process of drilling a horizontal
well commences with a vertical hole drilled to a predetermined depth, known as the kickoff point.

Subsequently, the well is drilled at an increasing angle until it reaches the target formation, followed
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Fig. 1.3 — General timeline of activities at multi-fractured horizontal wells, modified from [4].

by the drilling of a horizontal section to the designed lateral length. Horizontal drilling is particularly
crucial for the development of unconventional reservoirs with thin pay zones and natural fractures

[14].

Recently, oil and gas operators have been inclined towards drilling multiple wells from a single pad
to develop unconventional reservoirs efficiently while minimizing costs and mitigating
environmental impacts. Recent data shows that over 58% of the wells drilled in unconventional
reservoirs in the United States have been drilled on multiwell pads [15]. Multiwell pad drilling not
only maximizes reservoir penetration with minimal surface disturbance but also curtails costs
associated with drilling, fracturing, and production operations, thereby reducing environmental

impacts.

1.1.3 Multi-stage Hydraulic Fracturing

Even with the integration of horizontal well technology and multi-well pad drilling, many
unconventional reservoirs still do not produce hydrocarbons at economic flow rates. To attain higher
production rates, horizontal wells necessitate hydraulic fracturing at multiple stages. This not only
increases the contact area between the wellbore and the reservoir but also establishes additional
pathways for hydrocarbon flow, as shown in Fig. 1.4. Furthermore, hydraulic fractures facilitate a

connection between the well and existing natural fractures.

The fracturing process typically begins from the stages at the toe and progresses towards the stages at

the heel. Each fracturing stage primarily includes two crucial steps:

i. A section of the wellbore is perforated to create openings that connect the wellbore and
formation. These perforation holes permit the entry of fracturing fluid and proppants into the
formation, and subsequently allow hydrocarbons to flow into the wellbore.

ii.  Fracturing fluids carrying proppants and additives are pumped down the wellbore under

high pressure to create or reopen in-situ fractures. A frac plug is commonly utilized to isolate
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previous stages before fracturing the subsequent stage. Post-fracturing treatment, these frac

plugs are drilled out prior to flowback.

1.1.4 Hydraulic Fracturing Design

1.1.4.1 Fracturing and Stimulation Fluids Design

he primary roles of fracturing and stimulation fluids are to propagate fractures and transport
proppants into the formation. Typically, the fracturing fluid is a slurry composed of water and
chemical additives. In addition, gels, foams, and compressed gases such as nitrogen, carbon dioxide,
and air can also be injected. The conventional fracturing fluid used for unconventional wells is

predominantly composed of water (about 90%) and a small fraction of chemical additives (up to 1%).
1.1.4.2 Proppant Design

The primary function of proppants is to prevent the induced fractures from closing post-fracturing.
Proppants typically range in size from 8 to 140 mesh (106 um to 2.36 mm). Silica sand is the most
frequently used proppant. Other types of proppant materials include resin-coated sand and ceramic

proppants. Resin materials are applied to sands to smooth the surface and create a more uniform
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Fig. 1.4 — Schematic of the key concepts of multi-fractured horizontal wells, modified from [3].
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shape. Resin-coated sand also possesses higher strength, enabling it to resist fracture closure. Ceramic

proppants are considered the most effective due to their uniform shape and relatively high strength.
1.1.4.3 Stages and Clusters Design

Horizontal wells in unconventional reservoirs are typically fractured in multiple stages, sometimes
exceeding 50 stages. The average spacing between stages varies from less than 100 to 200 meters, and
each stage is perforated with anywhere from 1 to more than 5 clusters. The completed length of these
wells can range from 1000 to over 2500 meters. Recent studies have highlighted the significant role
that cluster spacing plays in the effectiveness of the hydraulic fracturing process [16, 17], emphasizing

the need for optimization to ensure efficient treatment.

1.1.5 Flowback

Following hydraulic fracturing, there is typically a soaking (or shut-in) period before the well is
opened for flowback operations. The duration of this soaking mainly depends on the understanding
of water leak-off rates into the reservoir matrix and the time required to prepare surface facilities for
production. Subsequently, wells undergo a flowback period to prepare them for hydrocarbon
production. Flowback is essentially a cleanup process aimed at recovering as much of the injected
fluid as possible from the well, thereby preparing it for optimal, long-term hydrocarbon production.
This process, usually of short duration, may involve some proppant production. The flow of these
recovered proppants through tubing can potentially damage control devices such as valves, chokes,
and probes. While optimal well management during flowback impacts long-term well performance,
best practices are dependent on geology, fracturing fluid, and completion. In unconventional
reservoirs, generally less than 30% of fracturing fluid is recovered to the surface during flowback [18,
19]. However, the flowback water tends to have a relatively high concentration of salts after coming
into contact with underlying shale and tight rocks. The salinity of flowback water can reach up to 80
kppm [19]. This flowback water is typically disposed to prevent contamination of freshwater resources

at the surface.
1.1.5.1 Flowback Data Analysis

In the past, flowback data were often overlooked following fracturing treatment. However, it has been
recognized that flowback data offer the earliest opportunity for fracture characterization, thereby
aiding in the evaluation of fracturing treatment and production forecasting. The salinity data derived
from flowback water have been utilized to characterize fracture complexity in shale reservoirs [20].
Furthermore, flowback tracer data have been employed to assess the effectiveness of completion and

fracturing, as well as to identify interwell connectivity of the fracture network [21].
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Thanks to recent advancements in probe technology, the frequency and quality of flowback data have
seen significant improvements. High-frequency rate and pressure data collected during flowback
have been interpreted using analytical techniques to estimate parameters such as fracture half-length,
fracture permeability, fracture conductivity, and effective fracture pore-volume. Numerical
simulation has been applied to flowback rate and pressure data to qualitatively characterize fractures
in unconventional reservoirs. Several studies have simulated the flowback process of shale gas wells
to investigate how fracture parameters impact flowback rate and pressure [17, 22]. However,
quantitatively characterizing fractures through numerical simulation of the flowback process remains
a challenge. This is due to the requirement of numerous uncertain inputs for numerical simulation,

leading to considerable non-uniqueness of fracture parameter estimates.

1.1.6 Flowback Data Recognition and Digitization

- DTSUM SAND
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tests. Our study aims to extract flowback data

Flowback data is typically found in the format of

pressure-test reports. In public databases, these

from over 10,000 multi-fractured horizontal wells

(MFHWs) in the Montney formation. To achieve

- OBACK

Fig. 1.5 - Flowback keywords’ frequency map

this, we initially identified 800 reports containing

flowback data within the pressure-test reports.

Following this, we digitized these PDF reports to extract keywords and their frequency, as shown in
the Fig. 1.5. We then constructed a dataset using the frequency of these keywords as input features
and the presence of flowback data as the output. This dataset was fed into a neural network, enabling
us to classify whether a pressure-test report contains flowback data based on the frequency of specific
keywords. Finally, we processed all the flagged flowback reports to extract the data into a tabulated

format.

1.1.7 Artificial Neural Network Modelling

Recently, Artificial Neural Networks (ANN) have emerged as one of the most effective techniques for
classifying and recognizing complex systems and patterns that even exceed human cognitive

capabilities. The concept of ANN was inspired by the biological neurons in the human brain[23].
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Neurons serve as the primary processing elements in the ANN technique. An ANN model comprises

three fundamental components: network architecture, training algorithm, and transfer function [24].

The ANN model typically consists of at least three layers: input, hidden, and output. Weights are used
to connect each layer with the others, and the adjustment of these weights governs the performance
of the ANN model [25]. The training of the ANN, which is the first step in modeling with ANN,
employs a backpropagation of errors. Data processing occurs from the input layer to hidden layer(s),
and then to the output layer. A comparison is then made between estimated and actual data in the
output layer. The individual weights between each connection and the biases of each layer are
updated based on the difference between estimated and actual data. The training process continues
for all data sets until a predefined improvement is achieved, and the error is reduced to a certain

predefined limit [26], or until the maximum number of iterations is met.

In addition to these fundamental components, hyperparameter optimization plays a crucial role in
enhancing the performance of an ANN model. Hyperparameters include learning rate, number of
hidden layers, number of neurons in each layer, etc., which are not learned during training but are set
prior to it. Techniques such as grid search or random search can be used to find optimal

hyperparameters.

Furthermore, cross-validation is an important technique used in machine learning, including ANN,
to assess how well a model will generalize to an independent data set. It involves partitioning a sample
of data into complementary subsets, performing the analysis on one subset (training set), and
validating the analysis on the other subset (validation set). This helps prevent overfitting and provides

an unbiased estimate of model generalization on unseen data.

1.2 Research Motivation

There is a significant demand for natural gas production in the western Canadian sedimentary basin
(WCSB). Canada Energy Regulator (CER) has recently approved several liquid natural gas (LNG)
plans that require boosting natural gas production [27]. In addition, a $1.3 billion investment was
announced in June 2021 for the first phase of a hydrogen project in Edmonton [28] to support Canada’s
position as one of the top 10 hydrogen producers in the world [29]. However, natural gas is still the
main methane source for hydrogen production. Therefore, the industry is expecting a boom in natural
gas production in WCSB especially from the unconventional resources developed by using horizontal

drilling and multi-stage hydraulic fracturing.
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In the last decade, more than 40,000 multi-fractured horizontal oil and gas wells were completed in
WCSB. These wells allowed Canada to play an important role in the global energy security and
become the 3™ largest exporter of oil in the world [30]. Fig. 1.6a shows that from 2010 to 2020, there is
a 20% increase in the hydrocarbon productivity of the multi-fractured horizontal wells (MFHWs).
However, the completion intensity has been increased by almost 100% during the same period. Here
the hydrocarbon productivity is represented by the average monthly barrel of oil equivalent? (BOE)
per well, and the completion intensity combines five completion-design parameters; total injected
water volume, number of stages, completed length, amount of proppant placed and fracture spacing.
It is also observed that more than 56 billion gallons of water — sourced from rivers, lakes and water

wells — was used to fracture these wells with more than 30 billion gallons of water unrecovered. This
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Fig. 1.6 — Normalized change in the hydrocarbon productivity and completion intensity of the MFHWs completed in WCSB from

2010 to 2020. (b) contour map demonstrating the distribution of unrecovered fracture water in WCSB. (c) MFHW's lifetime
unrecovered water volume is equivalent to more than the annual water consumption of the city of
Edmonton for almost 5 years [31]. Moreover, in the last 5 years, the percentage of recovered water has
been decreased while increasing the volume of water injection per each well as shown in the figure.
Fig. 1.6b demonstrates the high variation in the efficiency of fracturing-water recovery performance

of the MFHWSs completed in WCSB with an average 46%.
These observations raise two main questions that motivate this research:

1. Why the increase trend in hydrocarbon production from MFHWs does NOT follow the
increase trend in the completion intensity?
2. Is the current completion-design approach efficient enough to make use of each gallon of fresh
water injected?
Another concern related to the MFHWs is that despite spending tens of millions of dollars for drilling

and completing a multi-well pad, hydrocarbon production rate rapidly declines below the economic

2 Barrel of oil equivalent (BOE) = 6,000 {t3
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rate after few years and the operators have to shut in and suspend/abandon those wells. Fig. 1.6¢
demonstrates the short lifetime of MFHWSs completed in WCSB. On average, MFHWs are suspended
after less than 6 years of completion. 75% of the MFHWSs are suspended less than 10 years after
completion. Canada has more than 65,000 suspended oil and gas wells completed in WCSB with
reported bottomhole temperature. Among these wells, there are more than 3,000 suspended MFHW .
Can these wells be retrofitted to generate geothermal power? This question motivates us to investigate
the potential of producing geothermal energy from the suspended oil and gas wells completed in

WCSB.

1.3 Research Objectives

The main objective of this research is to develop a comprehensive analytical and machine learning
workflow to i) evaluate and predict the recovery performance of MFHWs as a function of reservoir
characteristics and completion design; and ii) optimize the completion design based on reservoir
characteristics to maximize the productivity of MFHWs. Therefore, this thesis seeks to address two
main questions: i) how can the optimal sweet spots for MFHWSs be efficiently identified? And ii) how
can the completion design be optimized based on the reservoir quality and geomechanical properties?
By addressing these questions, this thesis aims to link well productivity to the completion design,
reservoir characteristics and geomechanical properties and to provide a more holistic and effective
approach for optimizing well performance in tight reservoirs while improving the efficiency of
fracturing water to get the most out of each gallon of water injected. This leads to practical guidelines
for optimizing future fracturing operations and minimizing environmental footprints for the wells to
be completed in WCSB. Another complementary goal of this research is to investigate the potential of

producing geothermal energy from the suspended wells completed in WCSB.
The proposed research will address five technical objectives:

1. Develop ahybrid analytical and ML -based proxy models to link early-time flowback recovery
to long-term well productivity in terms of ultimate load recovery and cumulative oil
predictions.

2. Develop a reservoir quality index, serving as a unified measure of reservoir quality based on
petrophysical properties.

3. Develop data-driven proxy model for predicting well productivity as function of completion
design, reservoir characteristics and geomechanical properties.

4. Propose a workflow for evaluating geothermal energy production from suspended wells and

identifying the best candidate wells for repurposing.
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1.4 Organization of Thesis

Beside the introductory chapter, which provides a comprehensive overview and outlines the
motivation and objectives of this research, and the concluding chapter, which presents key findings
from this study and offers recommendations for future research, this research is structured into seven
chapters. All of these chapters have been published, with the exception of Chapter 7, which is
currently being prepared for submission to a peer-reviewed journal. While each chapter represents a
distinct unit of study complete with its own nomenclature, they are designed to be read sequentially

to maintain a coherent narrative throughout the research.

Chapter 2 analyzes the single-phase flowback data of 22 oil and gas MFHWSs completed in the Eagle
Ford basin to evaluate changes in effective fracture volume and its correlation with completion-design
parameters. This chapter introduces a novel iterative approach to estimate dynamic fracture volume,
porosity, and compressibility as functions of downhole pressure during flowback. It also presents a
new parameter to characterize the rate of fracture closure, providing insights into the rate at which

the effective fracture volume diminishes during flowback.

Chapter 3 presents a supervised fuzzy clustering algorithm to rank reservoir quality and completion
intensity of 1,784 oil and gas MFHWSs completed in the Western Canadian Sedimentary Basin (WCSB).
This chapter addresses the question of which parameters control well productivity in unconventional

reservoirs: reservoir quality or completion intensity.

Chapter 4 explores the nature of multi-phase flow regime in the stimulated volume by analyzing
flowback and post-flowback data of six black-oil MFHWSs completed in the Eagle Ford basin. It
investigates whether oil flow is coupled with water flow or if they are stratified under natural
drawdown conditions. It also examines the effect of oil breakthrough from matrix into fracture on the

water flow regime.

Chapter 5 introduces A water-oil-ratio model (WORM) that uses a combined analytical and data-
driven approach to explain the observed log-linear relationship between WOR and load recovery,
analogous to the log-linear relationship between the water/oil relative-permeability ratio and water
saturation. It also proposes a cumulative oil production model (COPM) which is a data-driven model

to predict oil production as a function of load recovery during the matrix-dominated flow regime.

Chapter 6 demonstrates the application of WORM as an early-time diagnostic tool to evaluate the
completion efficiency of 19 oil MFHWSs completed in Niobrara and Codell formations that are

classified into parent and child groups, comparing their productivity performance in terms of load
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and oil recovery. This chapter also investigates potential well interference between child and parent

wells.

Chapter 7 presents high-resolution 3D maps of different petrophysical properties across the Montney
formation utilizing more than 14,000 oil and gas wells. It proposes a ML-based model to predict
permeability from well log data and a workflow to estimate formation fracability from sonic log data.
This chapter introduces a Reservoir Quality Index, serving as a unified measure of reservoir quality
based on petrophysical properties. It also introduces new methodologies to evaluate the efficiency of
fracture stage positioning and the effective distances between MFHWSs, considering both 3D spatial
and directional distances. It further proposes a series of ANN-based proxy models to correlate well
productivity of more than 10,000 Montney MFHWSs with reservoir characteristics and completion

design.

Chapter 8 proposes a supplementary study to explore the geothermal potential of suspended oil and
gas MFHWs completed in WCSB. This chapter aims to identify the most suitable candidates for

repurposing, especially considering the substantial investment initially made to complete these wells.

Chapter 9 provides a brief summary of the principal conclusions derived from this research, while

also addressing the limitations encountered and offering recommendations for future investigations.

Following Chapter 9, a comprehensive collection of all references cited throughout the chapters is
presented. Subsequently, all appendices from each chapter are combined and displayed, providing

supplementary information relevant to this research.
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Chapter 2.

The Use of Flowback Data for Estimating
Dynamic Fracture Volume and Its
Correlation to Completion-Design

Parameters: Eagle Ford Cases

2.1 Introduction

Hydraulic fracturing (HF) process involves injecting a mixture of water, sand and chemical additives
under high pressure into tight reservoirs to create fractures and reactivate existing fractures. After HF,
part of the injected fracturing fluid is produced back to the surface through a process called flowback.

Although flowback is a short-time process, it carries important well and reservoir information.

Recent studies analyzed flowback data (rate and pressure) to characterize fracture network in
unconventional reservoirs. Ilk, Currie [32] qualitatively interpreted flowback data by constructing
diagnostic plots to investigate wellbore unloading and fracture clean-up trends. Abbasi, Dehghanpour
[33] developed a single-phase flowing material balance model (linear relationship between rate-
normalized pressure and material balance time) to estimate effective fracture volume (V) using
water flowback data. Ezulike and Dehghanpour [34] developed a flowback analysis model which
accounts for transient 2-phase flow in fractures. Alkouh, McKetta [35] estimated V., of shale-gas wells
by developing a tank model based on observations from simulation studies. They observed that gas
drive is the most significant production mechanism from fractures when water saturation is below
70%. However, their proposed model is not applicable to single-phase water flowback since it neglects
water expansion and fracture-closure mechanisms. Fu, Dehghanpour [36] and Ezulike, Dehghanpour
[9] analyzed single-phase water flowback data of oil and gas wells completed in the Woodford
Formation. They estimated ¥, and concluded that fracture closure is the primary drive mechanism
during single-phase water production. Zhang and Emami-Meybodi [37] presented a workflow
utilizing flowback and long-term production data to evaluate HF closure and changes in fracture

properties. Zhang and Emami-Meybodi [38] proposed two multiphase flowback models for gas and
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water phases under boundary dominated flow condition by considering gas influx from matrix into
the fractures. They also utilized water-phase and gas-phase flowback data to quantitively estimate

hydraulic fracture half-length, fracture permeability and fracture closure during flowback.

Optimizing HF operations requires understanding the relationships between HF efficiency and its
design parameters. Dahi-Taleghani and Olson [39] presented a HF propagation model based on an
extended finite-element method to optimize treatment parameters under complex fracture-
propagation conditions. Kazakov and Miskimins [40] used a multivariate analysis method to study
the effects of slickwater fracturing parameters on well productivity. They developed correlations
between 1) total injected water volume (TIV) and water recovery, and 2) injected proppant volume
with TIV and net pay. Bazan, Brinzer [41] outlined the key parameters necessary to design HF
operations in unconventional reservoirs, including number of fracture stages, stage length and
number of clusters. Fu, Dehghanpour [36] investigated the correlations between fracture volume and
several CDPs using Pearson correlation coefficient. They concluded that TIV and average cluster
spacing are the most significant design parameters for creating larger fracture volume. Zhou, Wang
[42] applied data analytics method to understand the relationship between gas production and
flowback water of shale gas wells completed in wet and dry gas regions of northwestern West
Virginia. The results indicated that the relationship between produced gas and flowback water in wet-
gas and dry-gas regions are positive and negative, respectively. Lin, Guo [43] applied back-
propagation neural network to correlate petrophysical properties and CDPs with flowback ratio (load
recovery) and first-month cumulative production, then correlate these two parameters with
stimulated reservoir volume (SRV) in shale gas reservoirs. The results showed no specific correlation

between SRV with flowback ratio or first-month cumulative production.

The previous studies focused on developing robust correlations among Ve, CDPs and well
productivity. The next challenge is understanding the effects of CDPs on the rate of fracture closure,
controlling the surface area available for matrix depletion. Therefore, this paper introduces a new
characteristic parameter to represent fracture closure rate (FCR) that describes how fast ¥ shrinks
during flowback. This enables us to understand the relative effects of CDPs on fracture closure profile.
In addition, we introduce an iterative approach to capture and consider the change in fracture porosity
(¢, ) and compressibility ( C, ) during flowback. We also use multiple linear regression (MLR)
approach to account for possible interdependency among CDPs and to develop data-driven
correlations between CDPs with V. and FCR. Such correlations are useful for evaluating well

performance and optimizing future fracturing operations.
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2.2 Methodology

This study uses flowback, post-flowback, and CDP data of 16 gas wells and 6 oil wells completed in
the Eagle Ford formation. Flowback data include hourly water rate and bottom-hole pressure
recorded after hydraulic fracturing while post-flowback data include daily pressure and rate recorded
after the increase of hydrocarbon-water ratio and installation of production tubing. The target CDPs
include number of stages, stage length, total injected water volume (TIV), total injected proppant mass
(M,

and choke-size. Our methodology consists of the following steps: 1) estimate V. using HD model; 2)

op ), Average treatment rate (i) in barrel per minute, total vertical depth (TVD), shut-in time (z,,),

develop an iterative approach to capture the change in ¢, and estimate V| during flowback; 3)
develop dimensionless type curves for determining FCR; and 4) develop correlations to model V;
and FCR as functions of CDPs by using MLR, and evaluate the relative effect of each CDP on V; and

FCR.

2.2.1 Flowback Water-Rate Decline Analysis

During flowback, the decline in water rate could be modeled by both the hyperbolic and harmonic
decline models with similar fitting accuracy as shown in Fig. 2.1a and b. This implies that, utilizing
only the short-term flowback data, both decline models give similar fitting results. Mohaghegh [44]
showed that, generally, for the early 3 months, various decline-curve analysis (DCA) models would
fit well with early production data of shale-gas wells. Fig. 2.1 shows that 1) exponential decline model
doesn’t match flowback data; and 2) statistically, both hyperbolic and harmonic decline models could

be used to forecast the ultimate water production. Although hyperbolic decline model has higher
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Fig. 2.1 - Comparison between hyperbolic, harmonic and exponential decline models on fitting flowback water rate. The hyperbolic
decline constant (b) giving the best match is 0.978.
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degree of freedom compared to HD model, the hyperbolic decline constant (b) that gives the best
match is 0.978 (very close to harmonic in which b = 1). Therefore, the HD model is used in this study
to predict the ultimate water recovery for statistical reasons; In HD model, there are fewer fitting
parameters to be tuned compared to hyperbolic model to match flowback data and forecast ultimate
water recovery. This overcomes the dilemma of non-uniqueness associated with matching production
data while tuning more than one control parameter. In addition, the objective of this step is to,
qualitatively, rank the studied wells depending on the created effective fracture volume, rather than
a quantitative analysis. Fu, Dehghanpour [10] observed that flowback water rate of shale gas wells,
completed in Eagle Ford and Montney formations, generally exhibits HD trend after hydrocarbon
breakthrough from matrix into fractures. They concluded that a HD model can be used to estimate an
ultimate water production (UWp). Thy argued that UWp may approximate Vefi assuming that effective
fractures are initially saturated completely with fracturing water and that formation water is

immobile. The HD model [45] relates water rate to cumulative volume of produced water by

—d. (2.1)
q,=4,-exp| —W,
taking the logarithm of both sides and rearranging Eq. results in
d (2.2)
log(q,)=log(q, )- (—] w,
where;
q, : instantaneous water rate, stb/day
q,, : initial water rate as flowback starts, stb/day
d, : initial decline rate, 1/day
w, : cumulative water production, stb

The y-axis intercept and line slope in the semi-log plot of ¢, versus W), in Eq. (2.1) are log(qW’ )

and (—dl. / q,, ) , respectively. Wy at a predefined critical water flow rate (g, ) is referred to as UWj.

Here, g, is assumed to be 1 stb/day and UW), can approximate ¥ as will be explained in the

following section.

2.2.2 Estimating Initial Effective Fracture Volume and Its Reduction
with Time

During hydraulic fracturing and early hours of flowback, the average fracture pressures ( p;) is

significantly higher than matrix pore pressure ( p_), referred to as pressure-supercharge conditions
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Fig. 2.2 — Schematic of (a) hydraulic fracturing process demonstrating the pressure-supercharge effect before flowback starts, and
(b) fracture volume loss during flowback modified from [9]. p» and pr are the average pressures in the matrix and effective fractures,
respectively.

as illustrated in Fig. 2.2a. Under these conditions, UWr estimated by the HD model can approximate
Vi assuming that 1) fluid influx from matrix to fractures is negligible; 2) fractures are completely
filled with water initially; and 3) water production is mainly from fractures. During flowback, p;
decreases and J, consequently shrinks due to fracture closure as shown in Fig. 2.2b. Here, we

propose an iterative approach to estimate V. during flowback as a function of downhole pressure (

Pt )

2.2.2.1 Fracture Compressibility Estimation

Fracture compressibility () is a key parameter in estimating fracture volume loss. Aguilera [8]
introduced a graphical method to estimate ; from Fig. 2.3 using net stress on fracture ( p, ) and
mineralization ratio (77). p, is the difference between in-situ minimum principal stress (o, ) and p;

Assuming insignificant difference between p, and p_ . (compared to o _ ), due to high fracture

min

conductivity at early flowback, p, can be estimated as p, =0, — p,, - Since o, is often unknown,

n

Do Can be used as a proxy to o, such that p becomes

P = Petosure = Py (2.3)
Here, p ... isequivalent to minimum in-situ stress, defined as fluid pressure required to initiate the
opening of a fracture (the fracture is open when fracture pressure is greater than p_  and vice versa)
[46]. p e Can be estimated by analyzing diagnostic fracturing injection test (DFIT) data [47]. Since
DFIT data are not available for all wells, Fu, Dehghanpour [36] introduced an approach to estimate
Petosure USING fracture gradient (G, ) and instantaneous shut-in pressure (ISIP). G, is calculated at each

fracturing stage by dividing ISIP by TVD. Then, closure pressure gradient (G ) is calculated by

closure

averaging G, from all stages:
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Fig. 2.3 — Chart for estimating fracture compressibility by using mineralization ratio and net stress on fracture. Miner in curves A to

F represents mineralization ratio, estimated as 1- fracture porosity. The ratio in curves G to L equals to fracture porosity divided by
the total secondary porosity including fractures, vugs and caverns [ modified from: [8]]

a (24)
Gclosure = Z Gﬂ
n o
Here, 7 is the total number of stages and & is the coefficient relating G, to G, .. which can be
obtained from nearby wells with available DFIT data. Finally, p_ is calculated by
pclosure = Gclosure x TVD (25)

The mineralization ratio (77) is the percentage of minerals in the fractures which can serve as a proxy

for total proppant volume in fractures Williams-Kovacs 2017. Here, 7 can be estimated as

1n=(1-¢)x100 (2.6)
where ¢, is fracture porosity, which is an unknown parameter that significantly affects C, . Fu,
Dehghanpour [36] assumed that ¢ is constant during flowback, but the proposed methodology
relaxes the assumption by introducing an iterative approach to estimate ¢, as a function of pressure.

Then, we conduct a comparative analysis to show the effects of considering variable ¢, on estimated

14

loss *

2.2.2.2 An Iterative Approach to Estimate Fracture Porosity and Volume

Fig. 2.4 illustrates a flowchart of the iterative method for estimating ¢ and V. The pseudo-code

algorithm is presented in Appendix A the summary of the method is given as follows:

1. Initialize V with V. estimated from the HD model, and estimate total proppant volume in

fractures as
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M (2.7)
V.. =0178—=
prop
pprop
where M, = is mass of total injected proppant, o, is proppant density and 0.178 is a unit
conversion constant. Then, estimate ¢f as
s V. (2.8)
= ’
Vor + Virop

2. Use estimated p and 7 from Egs. (2.3) and (2.6), respectively, to estimate C; from Fig. 2.3.
G is related to V,; by C; =(1/Vefl)-(dVef /dp;) . Then, we can estimate Vioss by assuming

insignificant difference between dp,and dp ; :

v 2.9)
Vloss = : = Cfdpwf
ef,
3. Update 7, by V; =(1-,, )V, , then update M, if proppant production (M, ) is
significant by M. ;rcov; =M prop M PrOPprog *
Collect data

flowback (qy, puy), pi» DFIT, (M, p)yrop

A 4 A 4
Calculate Vpp, from Construct semi-log plot of g,, vs W, then Is DFIT data .
Eq.(9) estimate V,; from Eq. (2) available? No—P Estimate G from Eq. (5)
Yes

4

Estimate ¢, from Eq. (10) [« Obtain Gy, Gelosures .
and G, from DFIT | ] | Fstimatea | =]
A 4
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o . o Estimate pgjosure from | o Estimate Gjour from
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Fig. 2.4 — Flowchart for estimating dynamic fracture volume while capturing and considering dynamic fracture porosity and
compressibility, and produced proppant during flowback
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4. Finally, V,,, and ¢, are updated by Eqs. (2.7) and (2.8), respectively, then steps 2 to 4 are

repeated until reaching the end of flowback.

2.2.3 Multivariate Data Analysis

Here, we follow these steps to correlate V; and FCR with CDPs: 1) eliminate CDPs with low
coefficient of variation (CV); 2) find the correlation coefficients (CCs) among CDPs using correlation
matrix. CC is a value between 0 to 1, where 0 means no correlation while 1 means perfect correlation
as defined in Appendix A. In order to have a stable correlation, the CC between CDPs shall not exceed
0.7 [48]; 3) model V; and FCR as function of CDPs using MLR with a stepwise forward selection
algorithm modified from Mundry and L Nunn [49] and Hocking [50].

The prediction accuracy of MLR is mainly controlled by the difference between the number of
observations (1) and number of variables (p). In this study, # is the number of wells and p is the number
of CDPs. To enhance the MLR'’s prediction accuracy, the ratio n/p should be very large [51]. The first
step in data preparation is to minimize the number of CDPs in the correlation without losing their
impacts on Vefi and FCR. Therefore, we introduce gross perforated interval (GPI) to combine the
number of stages and stage length. GPI is given by multiplying number of stages by stage length. So,
the new set of CDPs is Mprop, TIV, tsh, GPI, gi, TVD and choke-size. To enhance MLR’s performance,
we investigate the variation of each CDP using CV which is a measure of relative standard deviation
in a data set. Fig. 2.5 shows that choke size has the lowest CV among the CDPs. This is due to the low

choke size variation during flowback of the 22 wells. Hence, choke-size cannot be considered as input

0.60 [ T T T T T T

050 | .
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030 |
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Coefficient of variation (CV), ratio
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M TIV t GPI q. TVD Choke-Size
prop sh i

Fig. 2.5 — Coefficient of variation (CV) for each of the CDPs. Total proppant mass (Mprop) and choke size have the highest and lowest
variations, respectively.
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parameter in this study as it could not be taken as a representative sample. The updated set of CDPs
becomes Mprop, TIV, tsn, GPL gi and TVD.

2.2.3.1 Correlation Matrix

Multicollinearity between input variables is core statistical problem in MLR which results in unstable
solutions [48]. It occurs when variables are highly correlated (linearly dependent) that can be
represented by CC. To have a stable correlation, CC among input variables should not exceed 0.7 [48].
The CCs among the target CDPs, presented in Fig. 2.6a, suggest strong bivariate correlations between
GPI and TIV, GPI and Mprop, and TIV and Mprop. Since none of these parameters is redundant, one
possible solution to reduce multicollinearity is parameter reformulation. Therefore, we combine Mprop

and TIV to form a new parameter called proppant concentration as C, = M, /TIV . Similarly, we

prop
combine TIV and GPI to form a new parameter called total injected water volume per foot as
TIV, =TIV/GPI. Fig. 2.6b shows that after parameter reformulation, all bivariate correlations fall

below the threshold value of 0.7. The final set of CDPs is Cp, TIV¥, tsh, GPI, gi and TVD.
2.2.3.2 Multiple Linear Regression

MLR is one of the common regression methods for correlating independent features with target(s).
We use MLR to obtain correlations between CDPs as features, and V; and FCR as targets, expressed

as

d (2.10)
f(x)=2wx,
Jj=0
where WI(WO,WI,WZ,...,WQ,) is a set of unknown weights, Xz(x0 =1,xl,x2,...,xd) is a set of

known features (CDPs), f (X) is a set of known targets (Vefi and FCR), and d is the problem

M (o
- o[ 028
] 08
g, [ 0386 018 3 q,F 051 039 g
0s § 06 2
& 3
t, b 010 0.07 0.10 2 ht 023 0.08 0.10 z
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Fig. 2.6 — Correlation matrices showing correlation coefficients (CC) among completion-design parameters, (a) before parameters’
reformulation, and (b) after parameters’ reformulation.
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dimension (number of CDPs). Finding the best coefficients (maximum likelihood), w ,,, , is the goal

of this MLR problem. The closed form solution of w ,,, derived in Appendix A can be expressed as

W, = X(XTX)_l X"y (2.11)

Here, the predicted target can be expressed as

y=Xw,, (2.12)
where,
X= {xi }:':1 : matrix of input data sets
d
X, = {x ; }./:l : vector of CDPs (inputs)

n : number of wells.
d : number of CDPs
y : real target vector ( Vefi and FCR)

y : predicted target vector.

We solve Eq. (2.12) using stepwise forward selection to understand the relative contribution of each

CDP to the outputs of MLR correlations (7, and FCR). This involves the following steps:

Solve Eq. (2.12) while considering each of the CDPs individually to predict V; and FCR.

1.
2. Select the CDP which gives the highest R? estimated from individual correlations.
3. Test the effect of incrementally adding each remaining CDP by recalculating R2.
4. Add the CDP whose inclusion gives the highest R?.
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Fig. 2.7 — Semi-log plot of (a) flowback water rate versus cumulative water production volume for the 22 wells completed in the
Eagle Ford generally shows a straight-line trend, and (b) water rate during flowback and post-flowback versus cumulative water
production volume. The dashed line, representing harmonic decline model resulted by fitting the flowback data, reasonably fits the
post-flowback data
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5. Repeat steps 1 to 4 until no further addition of CDP(s) improves the correlation to a statistically

significant extent.

2.3 Results and Discussions

2.3.1 Estimating Initial Effective Fracture Volume using HD Model

2.3.1.1 Estimating Ultimate Water Recovery

Fig. 2.7a shows a semi-log plot of flowback water rate versus cumulative water production from the
22 wells completed in Eagle Ford Formation. All wells show straight-line trend representing harmonic
decline. The slopes and y-axis intercepts are used in Eq. (2.2) to estimate WV, (at q, =1stb/ day) . Fig.
2.7b shows a semi-log plot of water rate versus cumulative water production during flowback and
post-flowback periods. It demonstrates that the HD model for flowback data can reasonably predict
post-flowback water production rate and ultimate water recovery that is assumed to approximate Vefi

in this study.
2.3.1.2 Uncertainty in Estimated Ultimate Water Recovery

We calculate the average absolute percentage error (AAPE), which measures the fitting error between
the measured post-flowback data and the predicted values using the HD model. AAPE is defined in
Appendix A. Fig. 2.8 shows the histogram of fitting errors between measured and predicted water
production rate using the HD model during post-flowback of the 22 wells. It shows that the HD model
can predict the post-flowback water rate with an estimated average error of 8%. The histogram is

right-skewed which represents good fitness of the HD model as the majority of the fitting errors are

=3
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T
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Fig. 2.8 — Histogram of fitting error between measured and predicted post-flowback water rate by the harmonic-decline model of
the 22 Eagle Ford wells. The minimum, average and maximum error is 2, 8 and 20%, respectively.
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stacked toward zero. Assuming that ultimate water recovery approximates ¥V, the prediction error

of V; follows the same error distribution.

2.3.2 Estimating the Loss in Effective Fracture Volume

During flowback, ¥, and C, decrease as bottom-hole pressure decreases. Fig. 2.10 shows the change
in bottom-hole pressure, ¢., C,, and ¥V, . Fig. 2.10b and 7c demonstrate that the decline profiles of
¢, and C, are similar to the profile of bottom hole pressure drop during flowback (Fig. 2.10a). This
highlights the significance of chock-size management during flowback and its effect on fracture
volume loss. Fig. 2.9 shows the profiles of fracture volume loss during flowback time for 16 studied
wells (6 wells are excluded from this analysis due to high uncertainty in their bottom hole pressure
data). The figure demonstrates that the maximum percentage of fracture volume loss by the end of
flowback varies from 5 to 25% of V. . Fig. 2.11 shows the effects of considering the reduction in ¢,

i

during flowback on estimated . The figure displays Ag,, Ap,, and AV,  for each well; where,

Ag¢,and Ap, . are the difference beween initial and final ¢, and pwr during flowback, respectively.
AV, is the difference between estimated J,  considering dynamic ¢ and the estimated value
when considering constant ¢, (average ¢, during flowback). The figure shows that AV,  varies
between 0.2 to 7.3%. For wells 5 and 6, the estimated V| does not significantly change when
considering dynamic ¢, compared with the case with constant ¢ . However, Wells 7, 8, 11 and 14
show considerable change in ¥, between the two cases. The figure also shows that the variations in
AV, are corelated to the variations in A g, and Ap, . This suggests that when A ¢, and/or Ap,, is
large, it is crucial to consider the reduction in ¢, for estimating ¥V,  during flowback. This could be
further explained by the dependence of C, on p, and mineralization ratio (1- ¢, ), asillustrated in Fig.
2.3. Therefore, a significant change in ¢, and/or p.r during flowback leads to a significant change in

C, and hence the estimated ¥

loss *

2.3.2.1 Uncertainty in Estimated Fracture Volume Loss

Fig. 2.12a shows a crossplot between estimated V| . and measured Wy during flowback for the wells

in this study. It shows a good positive correlation between estimated V, . and measured W, which

0SS

indicates that more fracture closure will cause more water production during flowback process. The

figure demonstrates that, generally, the estimated V/

loss

is slightly less than W; for all wells. This
insignificant difference is due to hydrocarbon expansion, specially, at late flowback time when there
is a sufficient hydrocarbon influx from the matrix into the fracture. This could be depicted by Fig.
2.12b as it shows that at late flowback time, the difference between CDI and HDI decreases which

indicates that with time the hydrocarbon expansion dominates the fracture closure.
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Fig. 2.10 - Percentage fracture volume loss profiles during flowback time. The maximum percentage of fracture volume loss varies
from 5 to 25% by the end of flowback for the studied wells.
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Fig. 2.12 - (a) Estimated fracture volume loss ( 7/

loss

) versus cumulative water production (Wp,) measured during flowback for the

studied wells. (b) Driving mechanisms during flowback time. CDI is the dominating driving mechanism due to fracture closure
during flowback period, modified from [10]

2.3.2.2 Characteristic Fracture Closure Rate (FCR)

Here, we introduce a new parameter called characteristic fracture closure rate (FCR) to represent how
fast the effective fractures close. Since the wells have different flowback durations, we normalize the

fracture volume loss as V, =(V]05s Ve ) / (Vloss Ve ) and flowback time as

loss,

ty, = (tﬂ) —t, ) / (fn, —ty ) . Fig. 2.14a shows that V10SS versus f; can be described by a power-law
model:
1-FCR 2.13
I/vloss“ = (l‘fbn ) ( )
where,
le : flowback time, hrs
le : initial flowback time, hrs
tﬂaf : final flowback time on record, hrs
loss, . 7 Viess. . : minimum and maximum ¥, estimated during flowback, %

This approach is applied on the target 16 wells and the results are shown in Fig. 2.14b. The average,
minimum and maximum values of R? among the 16 wells profiles are 0.962, 0.873, and 0.995,
respectively, which denotes good fitness of the proposed power-law model. The curvature of the type
curves is controlled by FCR. Higher FCR represents faster fracture closure. This is further revealed by

Fig. 2.13 comparing V, . and V]

loss,,

profiles for 4 wells. The figure shows that wells with higher FCR

values have higher fracture volume loss at a fixed flowback time (200 hours).
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Fig. 2.13 - (a) Estimated fracture volume loss during flowback of 4 Eagle Ford wells. (b) Normalized fracture volume loss profiles of
the same wells. FCR values of wells 3, 6, 9 and 16 are 0.186, 0.417, 0.503 and 0.686, respectively. The wells with higher FCR show
more fracture volume loss after 200 hrs.

2.3.3 Data-Driven Correlations Using Multiple Linear Regression
2.3.3.1 Initial Effective Fracture Volume and Completion-Design Parameters
To correlate V; to CDPs, we solve Eq. (2.12) using stepwise forward selection approach as mentioned

in the Multiple Linear Regression section. First, we applied linear regression between V; and each

CDP separately. The first row in Fig. 2.15 shows the estimated R? between each CDP and Vefi . GPI has
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Fig. 2.15 - Workflow of stepwise multiple linear regression (MLR) with forward selection.

the highest correlation with V. . Then, we incrementally added each of the remaining parameters (g;,
Cp, TVD, TIVE and t:h) to the previous correlation and re-estimated R2 The results show that TVD has
the second highest correlation with V; . This incremental process is repeated to consider all CDPs one-

by-one.

The final correlation between V.. and CDPs is given by

V, =0.750GPL, - 0.096 TVD,+0.552 C, +02327TIV, + 0.116¢, +0.1357, — 0.159 (2.14)

efi,
The independent parameters in Eq. (2.14) are normalized CDPs defined as

X, :(x—xmjn)/(xmax—xm), where X, x , x_.

min /

and x_, _represent real parameter, normalized
parameter, minimum and maximum values, respectively. The values of x . and x_  are listed in
Table 2.1. The normalization step is necessary before applying MLR for 1) having a common scale for
all design parameters without distorting differences in the ranges of values, and 2) having consistent
units on both sides of Eq. (13). Therefore, the real value of Vefi is given by

Vi, =Ver, (Vefim“ Ve, )+ Ve, @15)

Imin

where V;,  and V,;  are the minimum and maximum values of initial effective fracture volume
Imin Imax

estimated by the HD model, as listed in Table 2.1.

Fig. 2.16a shows the V. values predicted by MLR [Eq. (2.12)] versus the values estimated from the
HD model for the 22 wells. The results show a good match with R? of 0.91 and AAPE of 11%. More
than 80% of the V. values are accurately predicted using the MLR correlation that is good

considering the limited data points (22 wells) available.
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Table 2.1 — Minimum and maximum values of CDPs, v, and FCR

Parameter Minimum value (x_, ) Maximum value (x__ )
Cp, 1b/bbl 33.13 82.96

GPI, ft 4,074 10,176

¢i, bpm 66.70 90.66

TVD, ft 9,436 11,015

tsh, days 1 77

TIVF, bbl/ft 22.65 63.74

y, ,m’ 7,121 36,171

FCR, fraction 0.106 0.686

Fig. 2.16b shows the sensitivity of Vefi to CDPs. GPT has the highest positive effect on Vefi ; increasing
GPI by 10% increases Vefi by 8.82%. GPI can be increased by increasing number of stages or the stage
length depending on operational constrains. gi has the second highest positive effect on Vefi .
Increasing gi by 10% increases Vefi by 1.24%. This suggests that assuming constant injection pressure,
increasing gi during fracturing operation slightly increases the created Vefi . TVD has negative effect
on Vefi which can be explained by the higher values of in-situ stresses in deeper wells [52]. Increasing
TIVr or Cp by 10% increases V; by less than 1%. tsh has positive-but-insignificant effect on V. ,

suggesting that soaking time after fracturing has insignificant effect on the created initial effective

fracture volume.

2.3.3.2 Correlation Between Characteristic Fracture Closure Rate and Completion-
Design Parameters

After calculating FCR for each well, solving Eq. (2.12) using the stepwise forward selection approach,

gives the following correlation between FCR and CDPs:

FCR, = —0.675 C, +0.073 TVD, -0.367 TIV, —0.051 GPI, —0.4054, —-0.660 ¢, +1.490 (2.16)
The absolute value of FCR is given by

FCR =FCR, (FCR,,, —~FCR,, )+FCR, (2.17)

Table 2.1 lists the values of FCRmin and FCRmax. As mentioned before, only 16 wells are considered in
this case due to uncertainties in bottom-hole pressure data of the other 6 wells. Fig. 2.16c compares
the values of FCR predicted by MLR [Eq. (2.16)] and Eq. (2.13). The prediction accuracy is 80%, which
is a reasonable considering the limited number data points (16 wells). The good match is confirmed

by an AAPE of 12% and R? of 0.88.

Fig. 2.16d shows sensitivity of FCR to CDPs. Cp has the most significant effect on FCR. Increasing Cp
by 10% reduces FCR by 10.53%, suggesting that increasing Cp decelerates fracture closure. fsh has the
second highest effect on FCR. Increasing tsh by 10% reduces FCR by 1.78%. Increasing gi or GPI
decreases FCR by less than 1%. Increasing TVD increases FCR by 0.58%. This means in deeper wells
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(higher TVD), the effective fractures are exposed to faster closure rate. TIVr has insignificant effect on

FCR.
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Fig. 2.16 — (a) Crossplot of initial effective fracture volume estimated using the HD model and MLR. (b) Sensitivity of initial
effective fracture volume () to completion design parameters. (c) Crossplot of estimated values of FCR using Eq. (2.13) and

o,

predicted values using MLR. (d) Sensitivity of characteristic fracture closure rate (FCR) to completion design parameters.

2.4 Summary

This paper proposes; 1) an iterative approach to estimate effective fracture volume as a function of

pressure and time. The proposed approach showed that capturing dynamic fracture porosity is crucial

when estimating fracture volume loss during flowback; 2) a dimensionless type curve to describe how

fast effective fracture volume reduces during flowback. The reduction in fracture volume can be

modelled by a power-function of characteristic fracture closure rate (FCR) as ¢

IFER . 3) two empirical

correlations using multiple linear regression (MLR) to correlate completion-design parameters with

initial effective fracture (V,; ) volume and FCR. The results suggest that the gross perforated interval
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has the most significant positive effect on ¥, , and that proppant concentration is a key parameter

that controls FCR and dimishes fracture closure during flowback.

2.5 Nomenclature

AAPE : average absolute percentage error

CC : correlation coefficient

FCR :fracture characteristic-closure rate, ratio
DFIT :diagnostic fracturing injection test

GPI  :gross perforated interval, ft

HD  :harmonic decline

ISIP  :instantons shut-in pressure, psi

MLR  :multiple linear regression

TIV  :total injected water volume, stb

TIVF  :total injected water volume per foot, stb/ft
TVD :total vertical depth, ft

tsh : shut-in time, days
C, : fracture compressibility, 1/psi
d, : initial decline rate, 1/day

mop - total injected proppant mass, 1b

D, : net stress on fracture, psi

D.;  :bottom hole pressure, psi

Petoanre - ClOsure pressure, psi

gi : pumping rate, bpm

q, : water production rate, stb/day

q., : initial water production rate, stb/day
te : flowback time, hrs

tfbn : normalized flowback time, ratio

V., : effective fracture volume, stb

VCi : initial effective fracture volume, stb
V.. . effective fracture volume loss, ratio
VloSSn : normalized fracture volume loss, ratio
Viep  :Proppant volume, bbl

w, : cumulative water production, stb

¢f : fracture porosity, ratio

n : mineralization ratio, %

o, :in-situ minimum principal stress, psi

Ppop  : Proppant density, 1b/tt?
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Chapter 3.
Reservoir Quality Versus Completion
Intensity: An Application of Supervised

Fuzzy Clustering on Western Canadian
Well Data

3.1 Introduction

Tight oil and gas reservoirs have been rapidly developed in North America due to the advances in
horizontal well drilling technology combined with multi-stage hydraulic fracturing. Recently, large
amounts of data have been gathered as more wells have been drilled and fractured [53]. The
accumulated data of reservoir characteristics and well-completion design can be analyzed to evaluate
their relative impacts on hydrocarbon productivity of the wells. Such evaluations are essential for
optimizing future drilling and completion operations. This is made more critical by the recent
downturn in oil prices which introduces a big challenge to the oil and gas industry to effectively
develop tight reservoirs. Recently, field-data mining has been the most growing tool in the oil and gas

industry [54].

Olaoye and Zakhour [55] introduced a workflow based on multivariate statistics on 1,114 wells
completed in the Midland and Delaware basins of West Texas to optimize completion design and
enhance wells’ productivity. The critical completion-design parameters considered in this study are
lateral length and proppant loading. The results show that, generally, increasing proppant loading

improves well performance by a nonlinear relationship.

Mohaghegh [56] developed a workflow for data-driven analytics to evaluate the parameters
controlling production of 800 wells in different shale plays in Texas. The results show that Frac-Hit
has the dominant effect on wells’ productivity, followed by cross-linked gel concentration and

proppant loading, choke setting, formation characteristics and finally completion-design.

Moussa, Dehghanpour [57] quantitively analyzed the effect of completion-design parameters on

dynamic fracture volume for 22 oil and gas wells completed in the Eagle Ford formation. The results
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show that gross perforated interval has the most significant effect on the initial effective fracture
volume and that proppant concentration has the highest effect on fracture closure rate. However, in

this study the effect of reservoir characteristics was not considered.

Al-Alwani, Britt [58] analyzed completion design of 80,000 wells completed in different
unconventional resources in the United States in terms of the amounts of injected water and proppant,
and lateral well length between 2011 and 2018. The results show a significant increasing trend in the
volume of water and proppant consumed over the explored period. Another study done on 2,000
wells completed in the Marcellus shale found that the long-term cumulative hydrocarbon production
is increased by increasing the volumes of pumped water and proppant per foot up to a threshold
value, after which it shows a negative trend [59]. Therefore, there is one critical question: Is it really
necessary to inject such high volumes of water and proppant to improve wells’ productivity? In this
study, we analyze the effects of completion design as a function of reservoir characteristics. We try to
answer the following key questions: Does intensive completion design assist in improving
hydrocarbon productivity of wells completed in low-quality reservoirs? Can completion-design

negatively affect the formation productivity in high-quality reservoirs?

In this paper, we first introduce the difference between fuzzy- and crisp-set theories, and the
application of fuzzy-set theory to classify each of the studied reservoir characteristics and completion-
design parameters. Next, we develop SFC algorithm in which we use fuzzy rules to correlate these
parameters to reservoir quality and completion intensity for each well. Subsequently, we investigate
the relative impacts of reservoir quality and completion intensity on wells’ productivity. Finally, we

discuss the results from SFC analyses and present the conclusions.

3.2 Methodology

To understand the relative impacts of reservoir quality and completion-design parameters on wells’
productivity, we collected the related data for 1,784 multi-fractured horizontal oil and gas wells
completed in different tight formations in the Western Canadian Basin. The reservoir characteristics
are represented by average formation porosity (¢gyg), initial reservoir pressure (p;), hydrocarbon
saturation (Sp.) and net pay thickness (h,.;). The completion-design is represented by number of
fracture stages (N;), average injected water volume per stage (g; s) and proppant concentration (C,) in
the injection fluid. The well’s productivity is represented by first year cumulative barrel of oil

equivalent (BOE) because both oil and gas wells are included in this study.

Fig. 3.1 shows the variation of reservoir characteristics among the studied wells and it demonstrates

that the contour maps do not overlap. The part of a reservoir with high ¢4 (Fig. 3.1a) does not
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necessarily have high Sy, p; and h,.; (Fig. 3.1b, ¢ and d, respectively). This conveys the importance
of applying multivariate analysis in this study, compared to single-variable analysis, to combine these

characteristics in one term as reservoir quality, and to investigate its correlation with BOE.

In this study, we develop a supervised fuzzy clustering (SFC) algorithm as a multivariate analysis tool
to 1) classify reservoir quality and completion intensity for each well; and 2) correlate them with wells’
productivity in terms of BOE. Reservoir quality refers to the quality of the part of the formation where
each well is completed. Good reservoir quality refers to relatively higher p;, Spc, $avg and hye., while
poor reservoir quality refers to the opposite. Completion intensity represents how intense the

completion-design is by considering the combined effects of N, q;5 and C,. Higher completion
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intensity refers to more stages, higher proppant concentration and larger volume of injected water per

stage.

3.2.1 Fuzzy Set Theory

In this study, fuzzy classification method is used instead of other pure statistical classification
methods (such as k-means) for a physics-based data analysis. In crisp sets, in pure statistical
classification techniques, a value either belongs to a specific cluster or not [60]. For example, assume
that poor-quality reservoirs can be defined as those with S, < 60% and that good-quality reservoirs
are those with S, 2 60%. Therefore, if Sp,. of a reservoir is 59.9%, it will be classified as a poor-quality
reservoir and if Sp, = 60.1% it will be classified as a good-quality reservoir. However, from the

petroleum engineering prospective, 0.1% difference in S, does not change the reservoir quality.

In fuzzy classification, we have M, (x) = m, meaning that the membership of value x in fuzzy set 4 is
m, where m is between 0 to 1. Fig. 3.2 shows hydrocarbon saturation profiles using three membership
functions (Low, Medium and High) as an application of fuzzy set theory. The figure demonstrates
that if S,,=58%, it is not considered 100% a low-, medium- or high-saturation. Instead, it has 12%
membership in the fuzzy set Medium (Myeqiym(58) = 0.12) and 88% membership in the fuzzy set
Low (My,,(58) = 0.88). In fuzzy set theory, every value is a member in each set but with different
membership-degree. In this study, fuzzy-set profiles are generated for a) reservoir characteristics: p;,
®avg She and hye.; b) completion-design parameters: N, q;s and Cp,; and ¢) reservoir quality and

completion intensity.
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Fig. 3.2 — Hydrocarbon saturation profiles as membership functions of low, medium and high in the fuzzy theory. Hydrocarbon
saturation of 58% is considered to have 12% membership in fuzzy set Medium and 88% membership in fuzzy set Low
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Fig. 3.3 — Example of fired fuzzy rules based on input reservoir characteristics [¢ayg, hnet, Pis Shcl = [11%, 3m, 20Mpa, 90%] to

estimate reservoir quality.

3.2.2 Approximate Reasoning

We use approximate reasoning (fuzzy rules) to connect the fuzzy-sets of reservoir characteristics to

reservoir quality, and those of completion-design parameters to completion intensity. In fuzzy rules,

linguistic variables (low, high, poor, good, etc.) and operators (and, or) are used for connecting fuzzy

sets. The correlation between inputs and output is achieved through SFC algorithm in three steps:

I.  Activation of input membership function: Fig. 3.3 shows an example of the four activated

(fired) rules when the input is a well completed in a part of a reservoir with [¢g,g, Anet, Dis Shel

= [11%, 3m, 20Mpa, 90%]. As per the defined fuzzy sets, ¢,  of 11% is considered between

low and medium fuzzy sets. Therefore, their two membership functions are activated, and the
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IL

II1.

same for hy,, as shown in the figure. p; of 20Mpa and Sj. of 90% are considered medium and
high, respectively. Therefore, only the medium and high membership functions are activated
for p; and Sy, respectively.

Activation of output membership function: This is done by fuzzy rules. Rule #1 shown in Fig.
3.3 states that “IF ¢, is Medium AND h,,; is Medium AND p; is Medium AND §;,. is High
THEN Reservoir Quality is Good”. In this case, the membership function of Good for reservoir
quality is activated as shown in right-top corner of the figure. As the operator AND is used,
the minimum value of the input membership functions is assigned to the output membership
function. In Rule #3, ¢4,y becomes Low, while other characteristics are the same, therefore,
the reservoir quality is considered Average instead of Good.

Defuzzification: After applying all the fuzzy rules to connect p;, ¢ayg, Spe and hye; to reservoir
quality for each rule, we combine the output fuzzy sets together. Then, we defuzzify the final
set as shown in the right-bottom corner of the figure to obtain one value representing the
reservoir quality. There are several defuzzification methods but the most common one is the

centroid method [61].

The main challenge for applying fuzzy clustering approach is the curse of dimensionality [62] which

means that the number of fuzzy rules increases significantly with increasing the number of variables

and/or membership functions. The number of fuzzy rules is estimated as [[;'m;, where n is the

number of input variables and m is the number of membership functions of each variable. In the case

of reservoir quality classification, there are four input variables (p;, ¢qvg, Spc and hy.¢) and each

parameter has three membership functions (Low, Medium and High). Therefore, the total number of

fuzzy rules is 81. Similarly, for the completion intensity, the number of fuzzy rules is 27 as there are

three input variables (Ns, q; s and C,) and each variable has three membership functions. In this study,

we generate the fuzzy rules by first digitalizing linguistic variables to create digital rules, then convert

the rules back to linguistic format as valid inputs for the SFC algorithm.
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Fig. 3.4 —Classification results of 1,784 oil and gas wells in terms of (a) two clusters of poor and good quality reservoirs versus
(QBOE 1 and (b) associated average reservoir properties in each cluster. (c) Three clusters of poor, average and good quality

reservoirs versus (JBOE,1 and (d) associated average reservoir properties in each cluster

3.3 Results and Discussion

3.3.1 Does Productivity Follow Reservoir Quality?

For a comprehensive analysis, we classify the studied 1,784 wells into two categories of poor and good
in terms of reservoir quality. Fig. 3.4 shows the results of this analysis based on the reservoir
characteristics. Fig. 3.4a demonstrates that wells completed in good-quality reservoirs (GQR) have
higher productivity, in terms of average first year cumulative BOE production of each well (Qsor1),
compared to wells completed in poor-quality reservoirs (PQR). Almost 40% of the studied wells are
completed in PQR and around 60% of the wells are completed in GQR. Fig. 3.4b shows that GOR has
average Sy, Pi, Pavg and hpee of 78%, 18,623 kPa, 14% and 5m, respectively. Therefore, GQR
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consists of Extremely poor-, very poor- and poor-quality reservoir. High quality reservoir consists of good, very good and excellent
quality reservoir

represents thicker reservoirs with higher hydrocarbon saturation and initial reservoir pressure,

validating the results of SFC.

Fig. 3.4c shows the classification results when the granularity increases from two clusters to three
clusters of poor, average and good in terms of reservoir quality. The figure shows that more than 50%
of the wells are completed in average-quality reservoirs (AQR) and that these wells show more
productivity than the wells completed in GQR. In this case, the productivity does not follow reservoir
quality. Qsok1 of each of the 970 wells completed in AQR is almost 80,000 bbl compared to 50,000 bbl
for each of the 393 wells completed in GQR. Yet, GOR still represents better reservoir characteristics
in terms of higher Sy, p;, and hy,, compared to AQR as shown in Fig. 3.4d.

To understand why the productivity does not strictly follow reservoir quality, we increase the
classification granularity of the 1,784 wells from three clusters to six clusters as shown in Fig. 3.5. The
figure shows that almost 50% of the wells are completed in extremely poor-, very poor- and poor-
quality reservoirs and we combine these three clusters as low-quality reservoirs (LQR). The other 50%
of the wells are completed in high-quality reservoirs (HQR), representing good-, very good-, and
excellent-quality reservoirs. In LQR, the productivity follows reservoir quality. Therefore, wells
completed in poor-quality parts of the reservoir have more BOE productivity than wells completed in
very poor and extremely poor parts, respectively. However, in HQR, wells productivity shows
negative correlation with reservoir quality. Wells completed in excellent parts of the reservoirs show

less BOE productivity than wells completed in
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Fig. 3.6 —(a) Increasing the reservoir quality classification granularity to 100 clusters between poor and good reservoir quality
versus average first-year cumulative BOE production. (b) contour map of the estimated reservoir quality of 1,561 wells completed
in Alberta.

very good and good parts of the reservoirs. To verify this trend, we increase the classification
granularity to 100 clusters from poor- to good-quality reservoirs as shown in Fig. 3.6a. This higher-
resolution classification confirms our previous observation that in LQR, productivity follows reservoir
quality, while it does not show the same trend in HQR. Therefore, unlike the common concept that
the quality of conventional reservoirs is the key parameter controlling well’s productivity, in tight
reservoirs this concept is not always valid [63]. This is an interesting observation, particularly as the
standard practice in the oil and gas industry is to complete as many wells as possible in good parts of
the reservoir. This is demonstrated in Fig. 3.6b, where the majority of wells completed in Alberta are
in good-quality parts of the reservoirs. However, this standard practice, alone, does not guarantee
higher productivity for the wells completed in HQR compared to the wells with more efficient
completion-design completed in AQR. Therefore, it is important to understand the effect of

completion-design parameters on productivity of the wells completed in HQR.

3.3.2 Effect of Completion Design on Wells’ Productivity
3.3.2.1 Completion Design in High-Quality Reservoirs

Fig. 3.7 demonstrates the average value of C,, N; and q; s for each reservoir-quality cluster in HQR
(893 wells). The wells in excellent-quality reservoirs are completed with less q; ; and C, than the wells
in GQR. Therefore, this might be the reason for relatively low productivity of excellent-quality
reservoirs compared with that of GQR. However, Ny does not follow this trend. Therefore, single-

variable analysis cannot explain the negative correlation between wells’ productivity and reservoir
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quality in HQR. In the next section, multivariate analysis is applied using SFC to clarify the effect of

completion-design parameters on wells productivity.
3.3.2.2 Completion Intensity Controls Wells’ Productivity

In order to understand the combined effects of C,, N; and gq; ; on wells’ productivity, we apply SFC to
classify the 1,784 wells based on completion intensity. Higher completion intensity represents more
stages, larger volume of water injection per stage and higher proppant concentration. Fig. 3.8a shows
classification of the studied wells into three clusters of low, moderate and high completion intensity

versus Qpor1. The figure indicates positive correlation between completion intensity and wells’

91 22 1,570
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69
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875
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Fig. 3.7 —(a) Average completion-design parameters of each cluster of reservoir quality. (a) proppant concentration, 1b/bbl. (b)
number of stages. (c) injected water volume per stage, bbl
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wells with different regions highlighted; A — H.

productivity regardless of reservoir quality. Wells completed intensively with more stages, larger

water volume injection per stage and more proppant concentration, generally, produce more BOE
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than wells with less completion intensity. This outcome still holds when the classification granularity

increases to one hundred clusters, as shown in Fig. 3.8b.

Fig. 3.9 shows normalized first-year cumulative BOE, reservoir quality and completion intensity
estimated for all the studied wells calculated using x,, = (x — X;in)/ (Xmax — Xmin)- Here, x,, is the
normalized value of x based on minimum and maximum values, X,,;;, and X4, respectively.
Therefore, a value of zero for normalized first year cumulative BOE, reservoir quality or completions
intensity refers to the lowest productivity, quality or intensity among the studied wells, respectively,

while a value of one refers to the highest. There are several observations from this figure:

a) Inlow-quality reservoirs, the effect of completion design on well productivity is not significant
as shown in Region A in the figure. Although the completion intensity is medium, the wells’
productivity is low due to low reservoir quality. This observation emphasizes that in low-
quality reservoirs, well productivity follows reservoir quality.

b) In medium- to high-quality reservoirs, the effect of completion design becomes more
significant. Regions B and C show more than average well productivity and more than average
completion intensity, although reservoir quality is below the average. Region G shows high
well productivity, intense completion, and average reservoir quality. On the other hand,
Regions D, E and F show less than average well productivity, less intense completion, and
good reservoir quality.

¢) In high-quality reservoirs, the well productivity could be limited as a result of non-intense
completion design as shown in Region H. Although the wells of these regions are completed
in the highest-quality parts of the reservoirs, the wells’ productivity is below average. It should
be mentioned that in this region, the completion intensity is above average, but it is not as
intense as that in Region G which shows more productivity despite its average reservoir

quality.

3.4 Summary

We classified 1,784 oil and gas wells completed in different formations in the Western Canadian Basin
Sedimentary using a supervised fuzzy clustering approach, and arrived at the following conclusions:
a) Almost 50% of the studied wells are completed in poor-to-average (low quality) parts of the

reservoirs and the other 50% are completed in average-to-good (high-quality) parts of the reservoirs;
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b) In low-quality reservoirs, the effect of completion-design on productivity is less pronounced and
the productivity follows reservoir quality; c) In high-quality reservoirs, the effect of completion-design
becomes more significant and the productivity can be reduced due to inefficient completion-design;
and d) The productivity can be maximized by less intense completion-design in low-quality
reservoirs. However, in high-quality reservoirs, intense completion significantly improves the

productivity.

This case study shows how the functional dependence of well productivity on completion-design
varies depending on reservoir quality. Outcomes of this study can assist oil and gas operators to
optimize completion-design parameters as a function of reservoir quality to maximize the economic

return.

3.5 Nomenclature
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Chapter 4.
Coupled Versus Stratified Flow of Water
and Hydrocarbon During Flowback And

Post-flowback Processes

4.1 Introduction

Multi-fractured horizontal well (MFHW) is a proven technology to produce oil and gas from tight
formations. Hydraulic fractures increase wells’ productivity by increasing the surface area in contact
with formation and providing highly-conductive paths to the wellbore. The use of diagnostic plots to
identify water and hydrocarbon flow regimes is an important step to evaluate and optimize the

performance of MFHW.

Song, Economides [64] analyzed field data from several shale gas formations. They observed that the
typical flow regimes during production include fracture storage, linear flow normal to transverse
fractures and pseudo-steady state. Compound linear flow and infinite-acting regimes have been
added for completeness, but typically an economic rate limit is reached before these flow regimes can
be observed. Recent studies reported pseudo-steady state (PSS) behavior of water flow at early
production time in the presence of hydrocarbon influx from matrix into fractures. This PSS behavior
of water is indicated by a unit-slope in the RNP diagnostic plots. Alkouh, McKetta [35] introduced a
field case of MFHW completed in the Barnett Formation. Early production data showed PSS of water
in the presence of gas flow in fractures (two-phase flow). Similar observations were reported by Jia,
Cheng [65]. Hossain, Ezulike [66] analyzed post-flowback production data of six shale-oil wells
completed in the Eagleford Formation and showed that at early flowback period, wells did not show
PSS behavior. However, during post-flowback period, the authors observed prolonged unit-slope
signature on water RNP plots. Clarkson, Yuan [67] analyzed early production data of MFHW
completed in a Canadian tight oil reservoir and reported PSS behavior of water before and after oil
breakthrough into fractures. Zhang and Emami-Meybodi [68] showed that two-phase boundary-
dominated flow in fractures is the most dominant regime for water flow during the early production

period.
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Semi-log plots of WOR versus cumulative oil production has been utilized as a simple technique to
predict oil recovery in reservoirs undergoing waterfloods. Bush and Helander [69] studied 86
successful waterfloods in Oklahoma and observed the hyperbolic decline trend in oil production rate
(go) as WOR increases during water flooding. Ambastha and Wong [70] conducted a detailed
investigation of production decline data from 78 oil pools under waterflooding in the Western
Canadian Sedimentary Basin. They showed that g, generally follows a hyperbolic decline trend when
the reservoir is under waterflood condition. Yang [71] proposed a production-decline analysis method
to forecast waterflood performance from historical production data. This method is derived on the
basis of the Buckley Leverett’s 1D displacement theory, assuming a semi-log relationship between the
ratio of oil and water permeabilities and water saturation. The author presented field cases that

showed that his method could be utilized to predict ultimate oil recovery.

In this paper, we 1) investigate the relationship between water and oil production from six fractured
horizontal wells before and after installing jet pumps showing that the general observation of PSS
water flow indicates water production from the stimulated part of the reservoir, which is acting like a
pseudo-closed tank, in the presence of simultaneous hydrocarbon production; 2) extend the diagnostic
analysis of water and oil flow regimes and presenting a novel observation, from field production data,
that both oil and water can flow independently with different flow regimes at early production time;
and 3) extend the concept of WOR decline from waterflood systems to forecast recovery performance

of MFHW s completed in tight formations.

4.2 Methodology

This paper hypothesizes that 1) oil and water can flow independently with different drive mechanisms
at early production time, and 2) semi-log plot of WOR versus cumulative water production can be
used as a relatively more robust diagnostic tool to evaluate well performance. We analyze early
production data of six multi-fractured horizontal black-oil wells completed in Eagleford Formation to
qualitatively test our hypotheses by analyzing various diagnostic plots in the following steps:

Table 4.1 - Summary of drilling and fracturing parameters of the six target wells

Measure Gross Total

VNv.aerlllle d Depth, Erel;eth \f/tertlcal Perforated g::;z;re ‘Eg]t al Fluid, Proppant, 10° ZOSI;;IZ
ft ’ Interval, ft Ibs
Well-1 12,577 5,609 6,507 26 359,817 10.67 69
Well-2 12,533 5,564 6,443 25 362,690 10.68 69
Well-3 12,695 5,531 6,611 27 352,939 10.96 69
Well-4 12,411 6,715 6,481 26 386,322 10.23 55
Well-5 12,442 5,455 6,577 26 369,887 10.66 54
Well-6 12,502 5,427 6,526 26 368,851 10.39 54
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1- Prepare field data by cleaning and validating surface data measurements and converting them to
bottomhole conditions.

2- Analyze diagnostic plots of early production rates and pressure of the target wells. Key output of
this step is estimating initial reservoir pressure utilizing the approach proposed by Jones, Pownall
[72].

3- Construct diagnostic water and oil rate-normalized pressure (RNP) plots to identify water and oil
flow regimes.

4- Quantify and compare the drive mechanisms of fracture closure, water expansion and
hydrocarbon expansion during early production time to identify the dominant drive mechanisms
during this period and the effect of hydrocarbon breakthrough.

5- Derive HD model of water production rate to estimate ultimate water recovery and analyze the
effects of aggressive drawdown on water and oil recovery.

6- Examine the HD behavior of WOR data versus cumulative water production volume and how it
could be utilized to compare load recovery performance of the target wells.

7- Analyze the effects of completion-design parameters on oil and water productivity.

4.2.1 Reservoir and Well Information

Fig. B.1a shows the location of the six multi-fractured horizontal black-oil wells completed in the oil
window of the Eagleford Formation. Fig. B.1b shows the layout of Wells 1-3 and Wells 4-6 in Pads A
and B, respectively. The lateral spacing between these wells varies from 732 to 764 ft. The wells were
drilled with true vertical depth (TVD) varying from 5,426 to 6,715 ft as listed in Table 4.1. Well-4 is
almost 1,200 ft deeper than the other wells. The wells were completed with 25 to 27 fracture stages,
total injected water volume (TIV) of 360 to 386 x 103 bbl, and proppant mass of 10.23 to 10.96 x 10° Ibs.

The shut-in period, between the completion date and first production date, varies from 54 to 69 days.

4.2.2 Early Production Rate and Pressure Analysis

Fig. 4.1a shows semi-log plots of the early 3-months daily rates (water, oil and gas) and surface
pressure (casing and tubing) data for Well 2. Fig. B.2 shows the plots of the other wells. The sudden
increase in tubing pressure after 1,500 — 1,800 hours of production is due to jet-pump installation. The
choke-size is kept at 28/64” until jet-pump installation, then it is increased to 64/64". The casing

pressure initially decreases then increases during early period of production before jet-pump
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installation. The decrease in casing pressure indicates the wellbore and fracture storage, while the
increase suggests wellbore unloading. After jet-pump installation, the surface casing pressure remains

almost constant as the wells are produced through tubing.
4.2.2.1 Low Initial Reservoir Pressure

Wells 5 and 6 are the only wells that demonstrate early single-phase flowing period as shown in Fig.
B.2d and e. During this period, the casing pressure declines until reaching a minimum value of 350 to
375 psi. Following the procedure proposed by Jones, Pownall [72], we approximate the initial reservoir
pressure by the bottomhole pressure when the minimum casing pressure is reached. By considering
the hydrostatic pressure, the estimated reservoir pressure gradient for wells 5 and 6 is in the range of
0.491 — 0.515 psi/ft. that is relatively low compared with Eagleford wells [66], explaining their
relatively low oil rates. In addition, this relatively low reservoir energy could explain the significant
decrease in water production before jet-pump installation which suggests consistent pressure

depletion in fractures without sufficient pressure support from matrix.
4.2.2.2 Single- and Multi-Phase Flow

Fig. B.2d and e demonstrate 4 days of single-phase water flow for wells 5 and 6. However, the other
wells show immediate multiphase production. Although the six wells are located in the same area of
the reservoir and they also have similar completion designs, there are two possible reasons for the
immediate multiphase production: 1) Relatively-longer shut-in periods for wells 1, 2 and 3 as listed in
Table 4.1 compared to wells 5 and 6. Therefore, during long shut-in time, fracture pressure might be
dropped below reservoir pressure allowing oil influx into fractures. 2) For well 4, the immediate
multiphase production is possibly due to a relatively higher initial reservoir pressure compared to the
other wells as it is almost 1,200 ft deeper than the other wells as listed in Table 4.1. Therefore, the
fracture pressure may drop below reservoir pressure during shut-in period, leading to immediate

multiphase production.
4.3 Results and Discussion

4.3.1 Behavior of Oil Production Rate

Fig. 4.1a shows that, in general, q, increases, stabilizes and then declines; in the early 500 hours, the
q, increases, then reaches to a plateau until the jet-pump installation when it increases sharply and
then declines. The gas rate also shows similar variations. Therefore, the produced gas is expected to
be sourced from the dissolved gas in produced oil. However, the figure shows that water production

rate (q,,) exhibits an independent decline trend before the jet-pump installation, then it is coupled with
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oil production decline after the pump installation. This observation suggests that before the pump
installation, oil and water production rates are controlled by two different drive mechanisms.
However, after pump installation and aggressive drawdown, both oil and water are apparently

produced under similar drive mechanisms.

The choke-size remains constant before installing the jet-pumps, and thus, it is not the reason of
increasing oil production in the early 500 hours. According to Darcy’s law, q, is proportional to
fracture permeability (kf), oil relative permeability (k,,) and pressure differential in fractures which
could be approximated by the difference between average pressure in fracture (ps qyg) and bottom

hole pressure (py):

qo X krokf(pf,avg - pwf) (4.1)

So, in general, the observed three trends of g, could be explained as follows:

a) The early increase in g, is due to consistent oil influx from the matrix into fractures, increasing oil
saturation (S, ) and relative permeability.

b) The plateau of g, can be possibly explained by the balance between increasing S, and pressure
depletion in fractures. In other words, the drawdown decreases with time since the fracture
pressure decreases. In addition to the reduction in absolute fracture permeability due to fracture
closure. However, the reduction in driving force is masked by the increase in average oil relative
permeability in fractures.

c) The significant decline in oil production after the jet-pump installation suggests the dominance of
pressure depletion mechanism over the increase in S, in fractures. It also suggests that oil is
drained from a limited effective stimulated reservoir volume as illustrated by Hossain, Ezulike

[66].

4.3.2 Independent Flow Regimes for Water and Oil

In order to diagnose flow regimes of water and oil during early production period before jet-pump
installation, we use plots of rate-normalized pressure for water and oil (RNPwand RNPo) versus time.
RNPw and RNPo are defined as (pl- — pwf) /qw and (pl- — pwf) /q, for water and oil respectively. p; is
initial pressure in the stimulated region around wellbore (psi), p,,f is the flowing bottomhole pressure
(psi), and q,, and q,, are the production flow rate (bbl/day) of water and oil at bottom hole conditions

respectively.
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Fig. 4.1 —(a) Semi-log plot of water/oil/gas rates and tubing/casing pressure for Well 2. Sudden increase in rates and tubing pressure
is due to jet-pump installation after 1,500 hours. (b) Log-Log plot of water/oil rate-normalized pressure (RNP) before jet-pump
installation for Well 2.

Fig. 4.1b shows the diagnostic plots of RNPw and RNPo under bottomhole conditions for Well 2 before
jet-pump installation. Fig. B.3 shows the plots of the other wells. Generally, plots of RNPw for all the
wells show a pronounced unit slope during early production time indicating PSS flow regime or
boundary-dominated flow. This suggests depletion of water from a closed tank with no-flow outer
boundaries. In other words, the stimulated region acts like a tank for water with no water influx from
matrix. The stimulated region here represents induced fractures and the surrounding stimulated

matrix.

The plots of RNPo of all the wells reveal a steady state flow of oil phase. The flat (zero-slope) period
suggests that there is oil influx from matrix into fractures and that it is equivalent to the produced oil.
So, the pressure depletion in the fracture system is compensated by the increase in oil relative
permeability due to the increase of S, in fractures as oil expands due to reduction in average fracture

pressure.

The early negative slope (noticeable in Wells 1, 2, 4 and 6) suggests the domination of oil relative
permeability effect over pressure depletion in fractures. So, although these wells show continuous
decrease in p,,r which means an increase in Ap = (pi - pwf), RNPo decreases with time. This could be
explained by the increase of q, during this time, which suggests a significant increase in oil relative
permeability due to substantial increase of S, in fractures that overcomes the effect of pressure
depletion on q,. RNPo of Well 4 does not exhibit a clear zero-slope due to the instability/noise in the

estimated p,,r as shown in Fig. B.3c.
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4.3.3 Quantification of Drive Mechanisms

As mentioned earlier, Wells 5 and 6 show single-phase water flow at early time before oil
breakthrough. However, Fig. B.3d and e demonstrate PSS flow of water (unit slope) before and after
oil breakthrough for Wells 5 and 6, respectively. This may brace the concept of independency between
water and oil flow regimes. So, in this section, we quantify the drive mechanisms to understand the

reason of insignificant effect of oil breakthrough on the PSS flow of water.

The possible drive mechanisms during this stage include fracture closure and expansion of
hydrocarbon and water. As illustrated by Ezulike, Dehghanpour [9], these drive mechanisms could
be quantified by compaction-drive index (CDI), hydrocarbon-drive index (HDI) and water-drive
index (WDI):

CDI = g (4.2)
Ct

HDI = SoCo + Sgcq (4.3)
Ce

WDJ = Swew (4.4)
Ce

CDI+ HDI+WDI =1 4.5)

1. Plot the unit-slope data of PSS duration of water on Cartesian plot and estimate the slope (m).

A 4
2. Estimate effective fracture volume and fracture compressibility profiles as functions of bottom hole

pressure as demonstrated by Moussa, Dehghanpour [57].

A

3. Estimate total compressibility (c;) where ¢, = # as explained by Ezulike, Dehghanpour [9].
of

v
4. Estimate average water saturation in fracture from Eq. (4.7)

v
5. Estimate CDI, WDI and HDI from Egs. (4.2), (4.4) and (4.5) respectively.

Fig. 4.2 — Flow diagram of estimating compaction, water and hydrocarbon drive indices.
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Fig. 4.3 - Ternary diagram of average compaction-, hydrocarbon- and water-drive indices (CDI, HDI and WD, respectively) for the
six target wells during early production period before installing jet-pump.
In this paper, we complement the approach proposed by Ezulike, Dehghanpour [9] to estimate the
three drive indices by considering dynamic effective fracture volume [57]. Fig. 4.2 demonstrates the
procedure to estimate CDI, HDI and WDI profiles as functions of bottom hole pressure. Fig. B.4 shows
the profiles of CDI, HDI and WDI during this stage. Due to the relatively low bottom hole pressure,
which is lower than the closure pressure, fracture closure comes into effect from the beginning of
production. The figure demonstrates that fracture closure is the dominant drive mechanism during
early production. It also shows that with time 1) CDI decreases due to the decrease in fracture pressure
and hence the fracture compressibility, 2) HDI increases due to the increase in hydrocarbon saturation
in fractures, and 3) WDI decreases due to the combined effects of decreasing water saturation and
pressure in the fractures. The change in the driving indices is not significant due to the slight decrease
(10%) in bottom hole pressure during this period. However, it obviously shows the dominance of
fracture closure over hydrocarbon and water expansion during this period, as demonstrated by the
ternary diagram presented in Fig. 4.3 showing the average CDI, HDI and WDI of each well during
this stage. The dominance of fracture closure could explain the insignificant effect of hydrocarbon
breakthrough on PSS flow regime of water (unit-slope) observed before and after the breakthrough.
Fig. B.4d and e show that after hydrocarbon breakthrough for Wells 5 and 6, fracture closure is still
the dominant driving mechanism and that CDI accounts for 80 to 90% of the early water production
before and after hydrocarbon breakthrough. Therefore, the water flow regime is not significantly

affected by the hydrocarbon breakthrough in these two wells.

One may argue about the insignificant effect of wellbore storage in these wells. The reason for not

detecting the wellbore storage effect is the large volume of water recovered in the first day (= 1,400
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bbl) compared to the wellbore volume (= 380 bbl), suggesting that the wellbore storage comes to an

end after the first day of production.
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Fig. 4.4 —(a) Semi-log plot of water and oil rates versus cumulative water production volume for Well 2. Sudden increase in rates is
due to jet-pump installation. The inset plot zooms the early water and oil rates. (b) Ultimate load recovery estimated based on the
water-rate decline trend before and after jet-pump installation for the six target wells

4.3.4 Harmonic Decline Analysis Before and After Pump Installation

Fig. 4.5a shows the semi-log plots of water and oil rates versus cumulative water production volume
for Well 4, and the plots of remaining wells are shown in Fig. B.5. The q,, can be fitted by the HD
model with a relatively good match, represented by average coefficient of determination (R?) of 0.83
and 0.82 before and after jet-pump installation, respectively. Generally, after installing the jet-pump,
the water rate declines faster. The figure shows a slight increase in water-rate decline trend in Well-1
and a relatively small increase in Wells 3 and 4. Wells 2, 5 and 6 show relatively bigger increase in
water-rate decline after pump installation. Consequently, and assuming that the HD trend continues
and that it can be used to estimate ultimate water recovery [57], less fracturing water is expected to be
recovered due to jet-pump installation. In other words, an aggressive production strategy may lead
to more significant loss in load recovery with more fracturing water remaining unrecoverable as
shown in Fig. 4.5b. The ULR estimated from the water-decline trend after pump installation is less
than the value estimated before aggressive production. The figure also shows that the highest ULR
(0.36) is for Well 5, while the lowest (0.13) is for Well 4. The relatively low ULR may also suggest that
the early oil breakthrough increases S, in fractures, reducing water relative permeability which allows
bypassing of water by oil in fractures and consequently less ULR. Well 4 that shows the lowest ULR
is 1,200 ft deeper than the other wells and has the highest average tubing pressure before pump-

installation. The higher reservoir pressure suggests stronger oil influx from matrix into fractures
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during early production period. However, early oil breakthrough results in bypassing of water in

fractures and thus lower ULR.

4.3.5 Water Oil Ratio

Fig. B.6 shows the semi-log plots of WOR versus cumulative water production for the six wells. The
results highlight two key observations: 1) a general straight-line behavior in WOR data suggesting a
HD; and 2) the effect of operational changes such as jet-pump installation and choke-size adjustment
have less pronounced effect on shifting HD trend compared to water rate-decline as demonstrated in
Fig. B.5. The average R? between WOR data and the fitted HD model is 0.90 compared to 0.83 for the

case of water-rate data.

Our interpretation for the first observation is that the plot of WOR versus cumulative water
production can be used as a proxy to the change in the ratio between water and oil relative
permeabilities with water saturation. So that 1) WOR is equivalent to the ratio between water and oil
relative permeabilities according to Darcy’s law, as WOR is mainly a function of mobility ratio, which

depends on relative permeability assuming a relatively constant oil/water viscosity as expressed by

WOR = M Krw (4.6)

[ kTO

Therefore, WOR is not expected to be sensitive to the operational changes, especially choke-size

change and it could be treated as a reservoir response. This also interprets our second observation;
and 2) the change in water production could be considered proportional to the change in average
water saturation in fractures. Ezulike and Dehghanpour [34] showed that assuming negligible mobile

formation water, average water saturation (S,,) in fractures could be estimated as a function of
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Fig. 4.5 — Semi-log plots of (a) water/oil relative permeability ratio estimated by Purcell model shows approximate linear section in
the middle portion of water saturation range. (b) water-oil ratio versus load recovery generally shows straight-line decline behavior
for the six target wells.
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cumulative water production (Q), effective fracture volume (V,f) and initial water saturation (S,,,) in

the fractures:

Sw = Sw, — 5—“; (4.7)
e

Fig. 4.5a shows ’:—W calculated from Purcell [73]'s model:

r0

k

- 2
o1 (sp)rt
Here, Sy, is normalized water saturation and A is the pore-size distribution index. An approximate
semi-log linear segment can be observed in the intermediate range of water-saturation (0.35 — 0.80).
This

section can be fitted by using the exponential model [74, 75] expressed by Eq. (4.9), where a and b are

obtained by regression of the linear segment.

Krw _ aeb1=Sw) 4.9)

ro

Similar to the observations of Yang [71], this result shows that exponential model can be used to
approximate Purcell model for a wide range of water saturation. This explains the HD trend observed

in the semi-log plots of WOR versus cumulative water production.

Fig. 4.5b compares the semi-log plots of WOR versus load recovery for the six wells, confirming the
HD behavior. Wells 4 and 5 have the highest and lowest decline slopes. Assuming that WOR can be
approximated by Eq. (4.9), the results suggest that a slight change in water saturation in fractures

contributes to a significant change in k., /k,, for Well 4 and less significant change for Well 5. This

103

X
0T o Wl r
— L ol 120 +
2 [ B Well2 C 110.8 110.6
4 8T +  Well-3 L
£t Well-4 100 4
ERE A . | pam 8.6 916
3 - *  Well5 < r ; 84.9
20T & Wels 2 80T
= F gt
=t X £ f
2 4T ** 5 60 T
= - < -
£ r > T
E Ot CRPIES
S 27T < C
C 20t
0 | T N
0 10 20 30 40 oL
Cumulative water production, bbl x10? Well-1 Well-2 Well-3 Well-4 Well-5 Well-6

(a) (b)

Fig. 4.6 — Comparison of early-production behaviour of the target wells in terms of (a) cumulative oil production versus cumulative
water production and (b) average oil production rate in the early 3 months of production.
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demonstrates that multiphase effect plays an important role in water and oil production of the target
wells. Fig. 4.5b also shows that Well 4 has the lowest load recovery followed by Wells 1, 6, 3, 2, and 5,
qualitatively similar to the trend observed in Fig. 4.4b. So, considering that WOR decline trend versus
load recovery is less sensitive to operational changes compared to water rate-decline, it might be

utilized as a more accurate tool to compare load recovery of different wells.

4.3.6 Completion-Design Effects on Wells’ Productivity

Fig. 4.6a shows the cumulative oil production versus cumulative water production for the six
candidate wells. There are two main observations: 1) the asymptotic behavior of the oil production
suggests that a negligible amount of formation water is being produced. 2) the mobility ratio tends to
favor oil production for Well 3 and 4, whereas it tends to favor the water production for Well 5.
Generally, Well-4 shows the highest slope while Well 5 shows the lowest slope. This means that
recovering the same volume of water leads to more oil production in Well 4 compared to Well 5. The
figure also shows that Wells 3 and 4 produce the largest volume of oil during the first 3 months of
production, while Well 5 produces the least oil volume during the same period. Similar behavior could
be noticed in Fig. 4.6b which shows the average daily oil production (BOPD) for the early 3 months
of production (excluding down times) for the six wells. Again, Wells 3 and 4 show the maximum
BOPD while Well 5 shows the lowest rate.

To understand the possible reason(s) for the observed variations in oil and water productivity of the
six wells, we estimated the correlation coefficient (CC) between completion-design parameters with
the estimated BOPD and ultimate load recovery (ULR) as shown in Fig. 4.7. The completion-design
parameters considered in this study are number of fracture stages, injected water volume per stage

(IVPS), proppant concentration (PC) and total vertical depth (TVD). The figure shows that both BOPD
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Fig. 4.7 — Correlation coefficient of completion-design parameters with average oil production rate (BOPD) and ultimate load
recovery (ULR). TVD: true vertical depth, IVPS: injected water volume per stage, and PC: proppant concentration.
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and ULR values are positively correlated to TVD and number of stages. So, deeper wells with more
fracture stages produce more than shallower wells with less stages. Deeper wells are expected to have
more reservoir energy (higher pressure), and increasing the number of stages leads to larger contact
area between the wellbore and formation. However, both parameters have negative effects on ULR,
suggesting more water leak-ff and trapping in deeper wells with higher number of fracture stages.
IVPS has negative effects on both the early oil production and ULR. So, more water injection per stage
leads to more unrecovered water and consequently less oil productivity due to the relative
permeability effects. Although PC has a positive effect on ULR, it negatively affects the early oil
productivity. Increasing PC enhances fracture conductivity and reduces the chance for fracture closure
and leak-off, both leading to more water recovery. The negative correlation between PC and BOPD
could be due to two reasons: 1) The reduction in fracture closure and water leak-off reduces the
counter-current production of hydrocarbon from matrix during the shut-in period. 2) Increasing PC
leads to less complex fracture network as more viscosifier agents are needed to enhance proppant
carrying capacity of the fracturing fluid. Increasing the viscosity leads to simpler induced fracture
network and consequently less interface for oil production. Although the negative correlation between
PC and BOPD is less pronounced (-0.43), the results illustrated in Fig. 4.6 support this observation.
Wells 1, 3 and 4, which show the best early oil-productivity (i.e. highest BOPD and cumulative oil
production), have the lowest PC values among the target wells, while Well 5, with lowest oil

productivity, has the highest PC.

4.4 Summary

We analyzed multiphase production data of six multi-fractured horizontal black-oil wells completed

in the Eagleford Formation. Below is a summary of the key results of this study:

1. During early production time, oil flows under steady-state conditions due to the oil influx from
the matrix, but water flows under pseudo steady state conditions. After installing the jet pump
and maximizing the choke size, oil-flow becomes coupled with water-flow, indicating similar
production drive mechanisms due to the additional drawdown provided by the pump.

2. Oil breakthrough shows insignificant effect on water flow regime, as the dominant drive
mechanism of water production is the fracture closure, and oil tends to flow independently
through its own network.

3. Rate decline analysis demonstrates that water production rate follows harmonic decline trend and

that aggressive production could lead to less ultimate load recovery.
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4. Semi-log plot of water-oil ratio versus cumulative water production volume obeys a harmonic
decline behavior that is less sensitive to operational changes compared with the water rate-decline
plots, and it can be utilized to compare load recovery performance of different wells.

5. The comparative analyses suggest that increasing the injected water volume per stage leads to less
load recovery due to water trapping and leak-off, and consequently, less oil productivity at early
time as a result of the relative permeability effects. However, increasing proppant concentration
leads to less fracture closure and fracture-network complexity that could lead to more load

recovery but less oil productivity.

The results of this study are significant for: i) developing next-generation rate-transient models for
characterizing wells completed in Eagleford and other similar unconventional formation; and ii)
representative analysis of early production data to come up with best practices for future enhanced

oil recovery operations.
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Chapter 5.

A Hybrid Analytical and Data-Driven
Approach for Improved Prediction of
Recovery Performance in Tight Oil

Reservoirs

5.1 Introduction

The evaluation and prediction of load and oil recovery performances of MFHWs in tight oil reservoirs
is a complex challenge. This challenge arises in how to characterize two-phase (oil-water) flow
performance using analytical solutions due to the heterogeneity of tight reservoirs, along with their
complex geologic characteristics and the completion practices used [76]. Furthermore, the requirement
of prolonged production observations after post-frac flowback for rate-transient analysis (RTA) to
identify underlying driving mechanisms for evaluating and predicting MFHWs performance adds to
the complexity [77]. Despite these difficulties, the evaluation and prediction of load and oil recovery
performances of MFHWs in tight oil reservoirs remains a crucial aspect of reservoir management and

evaluation.

In conventional reservoirs, a semi-log plot of WOR versus cumulative oil production (Q,) is commonly
used as a diagnostic tool to evaluate and predict waterflood performance [78]. This simple method is
applicable for the analysis of late-time production behavior only when a straight line can approximate
the WOR function. This log-linear relationship of WOR and cumulative oil production enables the
extrapolation of the observed straight line to a threshold WOR value for determining the expected
ultimate recovery. Several theoretical approaches have been proposed to establish a correlation
between the WOR performance in waterflooding reservoirs and relative permeability ratio. Ershaghi
and Omorigie [74] and Ershaghi and Abdassah [75] developed the X-Plot waterflood-analysis
technique based on the semilog linear oil/water relative permeability ratio for intermediate water
saturation (S,,) values. Utilizing this linearity feature and the Buckley-Leverett frontal displacement
theory, a linear relationship between In(1/f,, — 1) — 1/f,, and oil recovery factor was developed,

where f,, is water fractional flow. This linear model can be calibrated on production data to predict
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waterflood performance if the swept volume is known. Lijek [79] utilized the semi-log-linearity
feature of the relative permeability ratio to develop a relationship between WOR and cumulative
water injection for waterflood performance analysis. This was further extended by Yortsos, Choi [80]
to derive a model that describes WOR as a function of displacement time, which is defined as the ratio
of cumulative liquid production to the total swept volume of the formation. On the basis of
the assumption of log-linear relationship between oil/water relative permeability ratio and S, and
considering the Buckley-Leverett equation, Yang [71] developed an analytical solution that
characterizes the oil fractional flow (f;) as a function of the fraction of cumulative liquid production
to the related formation volume (tp), relative permeability ratio parameter (B) and the volumetric
sweep efficiency (Ey). This diagnostic involves two linear plots which can be utilized for waterflood
reservoir analysis; i) a log-log plot of f,(1 — f,) and ¢t that has a slope of -1 and intercept of Ey, /B; and
ii) a Cartesian plot of f,(1 — f;) and 1/¢t;, that has a slope of E},/B and an intercept value of zero. Both
plots can be applied for the diagnostic analysis of waterflood reservoirs. Yang [71] showed field case
studies to demonstrate the benefits of this diagnostic as a production-decline analysis tool in

waterflood performance analysis.

Could similar diagnostics be extended to evaluate the recovery performance of MFHWs in tight oil
reservoirs? To the best of our knowledge, no such studies have been published that specifically
analyze the WOR performance of MFHW: s in tight oil reservoirs and to predict their late-time load
and oil recoveries. However, several studies have investigated the gas-oil-ratio (GOR) behavior of
MFHWSs completed in tight oil reservoirs and how it is different from conventional reservoirs.
Chaudhary, Ehlig-Economides [81] demonstrated that the GOR and depletion performances of
MFHWs in tight oil reservoirs are not uniquely dependent on reservoir properties but also the
completion design applied. They proposed a sensitive analysis based on a numerical simulation study
of the Eagle Ford formation to show how the recovery performance varies with both reservoir and
completion parameters. Lei and Cheng [82] highlighted the differences in the depletion performance
of MFHW s in tight oil reservoirs as compared to conventional reservoirs. They concluded that
conventional depletion performance modelling techniques, such as material balance and decline curve
analysis, are not generally recommended for tight oil reservoirs. The primary reason for this is the
highly sensitive dependence of MFHWSs depletion performance in tight reservoirs on completion
design and the more heterogeneity and complex geology present in tight reservoirs compared to
conventional reservoirs. Shahamat and Clarkson [83] supported this conclusion, showing that in tight
reservoirs, complexities such as significant water production/injection, geomechanical effects, and
multiwell-production effects may further restrict the use of flowing-material-balance analysis in tight
reservoirs. Jones [84] analyzed the producing GOR behavior of MFHWs in tight oil reservoirs by using

numerical simulations and field examples from the Anadarko Basin in central Oklahoma. The study
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concluded that i) during boundary-dominated flow regime, GOR is more a function of Q, than of
calendar time; and ii) GOR can decline at later stages of production if late-linear transient flow
develops. However, this analysis relied on numerical simulations and utilized a single-layer ideal
planar-fracture model, which may not accurately represent real-field fractures with associated
complex and heterogenous patterns. The production from a MFHW is the sum of many individual-
stimulated volumes with varying characteristics, which can alter the GOR patterns described in this

study.

On the other side, there are several studies showing the potential of utilizing the early time flowback
data for well performance analysis and fracture characterization. Clarkson and Williams-Kovacs [85]
presented two-phase flowback models for estimating key fracture parameters such as fracture
permeability and total-fracture half-length for MFHWSs completed in shale-gas reservoirs. The models
were developed by analyzing two-phase (gas and water) flowback data and were based on the
analogy of the flowback process to the simultaneous production of gas and water in coalbed methane
reservoirs. However, the lack of fracture relative permeability and porosity data resulted in some
challenges in achieving a unique match. Fu, Dehghanpour [36] and Moussa, Dehghanpour [57]
attempted to determine the effective fracture volume by analyzing single-phase water flowback data
of MFHWs in the Woodford and Eagleford Formations. They utilized harmonic decline curve analysis
to relate water flowback and cumulative water production volume. Their method relied on the
assumption that the harmonic decline in the water production rate would continue until all the
fracturing water was produced. However, long-term production data has shown a deviation from this
trend as ultimate load recovery approaches, resulting in an overestimation of the effective fracture
volume. Recently, Zeinabady, Clarkson [86] integrated flowback analysis with diagnostic fracture
injection tests to develop a diagnostic tool for identifying reservoir heterogeneities prior to main-stage

hydraulic fracturing.

Despite the extensive use of reservoir simulation to study tight oil reservoirs, there remains a need for
simpler, data-driven models to diagnose and predict the recovery performance of MFHWSs. The
conventional WOR forecasting theory, commonly used to analyze waterflood performance in
conventional reservoirs, may be adaptable to tight oil reservoirs. This adaptation would allow
petroleum engineers to forecast load and oil recoveries and diagnose production performance using

historical field data.

In this paper, we show that the observed field 2-phase flowback and post-flowback data exhibit a log-
linear relationship between WOR and load recovery (l,). Load recovery refers to the amount of
fracturing water produced back after hydraulic fracturing operations. We find that this relationship is

similar to the log-linear relationship of water/oil relative-permeability ratio (k;,/k,,) and S, reported
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by Honarpour and Mahmood [7]. Based on this analogy, we propose a novel WOR model (WORM)
that predicts WOR performance as function of [.. The WORM model is analytical in nature and has
been validated through comparison with reservoir simulation results and application to field cases.
The model relates WOR to [, rather than the calendar time directly. [, implicitly incorporates the
operational and completion aspects of fracturing water recovery. This aspect of the WORM model is
of critical significance, since the WOR performance of multi-fractured horizontal oil wells depends on
the oil and water saturations in fractures that rely on the volume of fracturing water injection and the
fracture network complexity. Then, we use a neural network to link WORM’s coefficients to matrix
and fracture petrophysical properties. This enables us to history-match WORM on 2-phase flowback
and post-flowback data allowing for the prediction of late-time WOR performance and ultimate load
recovery (L ). Furthermore, this comprehensive approach also facilitates the estimation of the initial
effective fracture volume (V,,). In addition, we propose a cumulative oil production model (COPM)
that describes the observed log-linear relationship between Q, and [, during matrix-dominated flow
regime. Both WORM and COPM are developed specifically for tight oil reservoirs that exhibit
negligible water influx from matrix into fractures and are targeted at MFHWSs that do not exhibit
interference with other wells. To further demonstrate their field-applicability, these models have been
successfully employed to evaluate the productivity of 19 MFHWSs completed in the Niobrara and

Codell formations.

5.2 Methodology

This paper presents a holistic workflow for predicting long-term well productivity and fracture
characteristics from early-time 2-phase flowback data. The well productivity is represented by WOR
and Q, performances, as well as [,. . The fracture characteristics are represented by initial effective
fracture volume (Vy,), average fracture porosity (¢s) and initial water saturation in fracture (S,,; £)-
This workflow is developed based on two novel models to forecast the WOR and @, performances as

functions of [,.

The first model, WORM, is a hybrid analytical and data-driven model that describes the log-linear
relationship of WOR and [, as an analogy to the log-linear relationship of water/oil relative-
permeability ratio (k. /k,,) and S,, proposed by Honarpour and Mahmood [7]. WORM has three
control parameters, 1, B, and f3, that describe the early-, mid- and late-time WOR behavior with
respect to [,.. Then, an artificial neural network (ANN) is constructed to link those parameters to the
key petrophysical properties, namely, ¢, fracture and matrix permeabilities ( kf and k, ,
respectively), residual oil saturation (S,,) and irreducible water saturation (S,,,). The impact of

fracture-face damage skin, represented by a transmissibility multiplier (T,), is also considered in this
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model. A positive skin indicating a flow restriction between matrix and fracture is represented by

T, < 1 while a negative skin indicating a stimulation is represented by T, > 1.

The second model, COPM, is a data-driven model based on the log-linear relationship between Q,
and [, observed during the matrix-dominated flow regime. This relationship is analogous to the logit
function that is commonly used in data transformations in machine learning [87]. COPM is derived

from both field and simulation flowback data during the matrix-dominated flow regime.

In the following subsections, the detailed methodology is proposed, Fig. 5.1 summarizes the coupled
approach for predicting well productivity and fracture characteristics from flowback recovery. This

approach involves the following steps:

1. Process 2-phase flowback data obtained from multi-fractured horizontal oil wells and plot
WOR versus [, on a semi-log plot. This data typically includes measurements of water and oil
production rates over time in 30 minutes intervals.

2. If the petrophysical data (¢, k¢, Sy ” km, Swr and S,,) are available, apply WORM to history
match the WOR profile versus [, and determine the WORM fit parameters (f;, f, and f3). By
adjusting the model's parameters (f;, f5,, and f53), we can obtain a fit that accurately represents
the observed WOR behavior during the flowback process.

3. If the petrophysical data is not available, i) curve fit WORM to obtain f;; ii) estimate S,,;.; and

i
iii) apply the proposed statistical approach to estimate 8, and f;.

4. Utilize the developed WORM model with the tunedf;, ff, and B; to forecast the WOR
performance as a function of ..

5. Estimate [, assuming a critical WOR of 0.01 stb/stb.

Warkflow Nomenclature: I, :load recovery Iy, initial boad recovery Sty - initial water saturation in fracture (average in space)

~ . ;
Lo PS5 :pecudo-steady state WOR  : water ofl ratio Iy, ultimate load recovery Wy, ¢ initial effective fracture volume
Process 2-phase flowback data J RNP - ratepormulized pressure WORM ¢ water-oil-ratio model 1. B3, By : WORM coclficients Qu,, - cumulative oil production at 0% I,
i ANN - artificial neural network COPM : cumulative oil production model aay COPM coefficients @ ¢ fracture parosity {average in space)
i 3 e - — - = ———
Plot WOR versus I, on a semi-log plot ‘ L ; X,
_ Apply RNF diagnostics to assess // R
| PSS flow regime o Bl
! - matrix- e
X < dominated
// \\\ \\ flow regime -~
D A “.pbserved?
(’ Petrophysical > NO Curve fit WORM to obtain the o . \,v,z’
. data > fit parameter fi; = - : IF \\\ = |
. available? 7 unitslope e
~ - —< AND D =
< ~ } > e
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YES | Estimate 5,,,, TTT I \“‘-\,,-", # IF \\"\ i
r — = L _— - I -’ proppant N ¥
Apply the ANN-based WORM to history match YES e data o /," Curve fit COPM [@,(L,)] to
2-phase flowback data '\_\.lv.lllnblc. = obtain fit parameters @, and a;
| Statistical Approach: N : - I S
L J 1. Estimate the fit parameters —_— | - .
Wi - o 3 i B as function of §, YES Forecast (, performance as
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Fig. 5.1 - Flowchart for analyzing 2-phase flowback data to predict water-oil-ratio, load recovery and cumulative oil production
performances, and fracture characteristics by utilizing WORM and COPM
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6. Apply rate-normalized pressure (RNP) diagnostics to assess the pseudo-steady-state (PSS)
flow regime of flowback water. If the RNP analysis concludes a closed-tank system for
flowback water and S,,;, ~ 1 (from Step 2), estimate V., then use the proppant data [injected
proppant mass (M,) and density (p,)] to estimate ¢.

7. If the flowback data is long enough to observe the matrix-dominated flow regime, apply

COPM to forecast Q, performance as a function of [,..

5.2.1 Development of the WOR model as an analogy to relative-
permeability ratio

We first introduce a flowback WOR diagnostic analysis for oil wells in tight reservoirs in which we
plot flowback and post-flowback WOR versus [,. on a semi-log plot as shown in Fig. 5.2a. We observe
that during the early two-phase flowback period WOR drops significantly then it declines
exponentially (following a straight-line trend) until it declines sharply at late-time production. To

confirm this observation, we construct a 3D numerical simulation model that presumes a singular
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Fig. 5.2 — Developing water-oil ratio as an analogy to relative permeability ratio for oil wells in tight reservoirs. (a) Field WOR data
versus load recovery. (b) Simulation WOR versus load recovery demonstrating intermediate straight-line trend. (c) Relative
permeability ratio (k,.,/k,,) versus oil saturation model by Honarpour and Mahmood [7]. (d) Simulation WOR versus load

recovery fitted with the developed WOR model as function of normalized load recovery.
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hydraulic fracture in an oil well completed in a tight formation, where the formation water is
immobile, as demonstrated in Appendix C. Then, we apply a Monte Carlo sampling method
developed by Hastings [88] to generate four thousand realizations considering different kg, ¢g, Swi .,
km, Sor, Swr and T,,, with ranges listed in Appendix C. The main objective of this numerical simulation
is to evaluate our proposed analogy between the performance of WOR as a function of load recovery,
and the performance of water/oil relative permeability as a function of hydrocarbon saturation
introduced by Honarpour and Mahmood [7]. an increase in hydrocarbon saturation within the
fracture/matrix typically results in a decrease in both the water/oil relative permeability ratio and the
WOR. Here, we assume that these Monte Carlo simulation cases encompass an exhaustive spectrum
of potential WOR profiles in relation to load recovery in tight oil reservoirs. This assertion is supported
by the broad scope of initial WORs, varying from as low as 1 stb/stb to as high as 100 stb/stb, and
ultimate load recovery ranging from 0.2 to 1. Considering no formation water influx from matrix into
fracture, we do not anticipate [, higher than 1. Fig. 5.2b shows that all the simulation cases
demonstrate similar behavior to the field data. To study this WOR behavior during load recovery, we
consider the power-law model expressing the relative-permeability ratio (k;,/ky,) as a function of S,,,
introduced by Honarpour and Mahmood [7], represented in Fig. 5.2c and defined as

krw _ Swp)™ (5.1)

kro (1 —=Syp)te
where n,, and n, are Corey exponents for wetting and nonwetting phases, respectively. S,,p is

normalized water saturation and defined as

S — Sw - Swr (52)
WP 1- Sor - Swr
where S, and S, are residual water and oil saturations, respectively. From Darcy’s law, surface WOR

is mainly a function of mobility ratio and can be expressed as

WOR = 1 « Krw Ho (5.3)

qO kTO nuW
where q,, and q, are water and oil surface-flowrates, respectively. u, and u,, are oil and water

viscosities, respectively. We use surface WOR derived from surface water and oil production rates
during both flowback and post-flowback periods. Consequently, we don't incorporate the formation
volume factor. Assuming constant y, and p,, throughout a well's production life, Eq. (5.3) can be
approximated as

Ky (5.4)
kTO

WOR x<
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Ezulike and Dehghanpour [34] showed that assuming negligible mobile formation water, space-
average water saturation in fractures (S,,s) could be estimated as a function of cumulative water
production (Qy,), Ves, and Sy; ,as

Qw (5.5)

Swf = Swif _W
efi

Assuming V,f, is positively proportional to the total injected water volume (TIV), [, can be

approximated as

L= O (5.6)
TIV Ve,

combining Egs. (5.5) and (5.6), [, can be expressed as

by & Swi, = Sw, (5.7)
assuming that the effective fracture volume is initially (at the instantaneous shut-in time after

fracturing) filled with water (i.e., Sy;, = 1), I, can be expressed as
Locl-5,, (5:8)

Egs. (5.1) to (5.8) show that WOR and [, are equivalent to k,,/k,, and (1—3S, ), respectively.

Therefore, WOR can be estimated as a function of [, as

B2
l (5.9)
WOR = (Tn—)ﬁ
(1 - lrn) '
where [,. is normalized load recovery, defined as:
1-1,—
L= ere0<p, <1 (5.10)
1-ps

Egs. (5.9) and (5.10) are analogies to Egs. (5.1) and (5.2), where f;, 5, and f5; are tuning parameters
that could be estimated by using curve-fitting techniques. f5;, , and f3 control the early-, mid- and
late-time curvatures of the WOR profile, respectively. Fig. 5.2d shows that WORM demonstrates a
good fit with the simulated WOR data at early-, mid- and late-time load recovery. We calculate the
average absolute percentage error (AAPE), which measures the fitting error between the simulation
WOR data of the 4,000 realizations shown in Fig. 5.2b, and the estimated values using WORM
presented in Eq. (5.9). WORM can fit simulated WOR with an estimated AAPE of 3.5% as shown in
Fig. C.1 in Appendix C. The histogram exhibits a right-skewed distribution, indicative of the
goodness-of-fit of the WORM model. This skewness signifies that the majority of the fitting errors
gravitate towards zero, thereby underscoring the model's efficiency. Assuming a critical-minimum
WOR of 0.01 stb/stb, we can estimate [,, as shown in Fig. 5.2d which can be used to approximate V, fi
assuming that 1) fractures are completely filled with water initially; 2) formation water influx from

matrix to fracture is negligible; and 3) water production is mainly from fractures. Ve, is estimated as
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Vep, = lp, XTIV (5.11)
then, ¢ is estimated as
b = Ver (5.12)
=
Ver +1p

where V, is the total proppant volume in fracture that can determined by

_M, (5.13)
Pp
where M,, is mass of total injected proppant and p,, is proppant density.

p

5.2.2 Correlating the WOR model parameters to petrophysical properties
using a neural network

Here, we link the WORM parameters f;, 5, and 55 to formation and fracture properties. We develop
a feedforward artificial neural network (ANN) with one hidden layer and five neurons as illustrated
in Fig. C.2 to predict 3, B, and S5 as functions of k¢, ¢, S o Kms Sors Swr and T,. The dataset to train
and test the ANN is prepared utilizing 4,000 numerical simulation runs with different realizations of
the above-mentioned formation and fracture properties. The comprehensive design of experiment
(DoE), which elucidates our selection of the specific petrophysical properties, is presented the
Appendix C for detailed reference. The resulting WOR profile versus [, from each simulation run is
fitted by the developed WORM so that each datapoint in the dataset includes k¢, ¢y, Sy; o kms Sors Swr
and T,,, as input variables, as well as the WORM parameters (;, 5, and f3) as target variables. The
training and testing datasets have 3,000 (75%) and 1,000 (25%) datapoints, respectively. Then, we
apply different transferring (activation) functions to map the input variables (k¢, ¢y, Sy ” K, Sors Swr
and T;;,) to a new representation in the hidden layer of the neural network with 5 neurons. Each neuron
in the hidden layer (h;) is indexed by i € {1, ...,5}. Each h; consists of a transformation of a linear-

weighting of the input variables as: h; = f (Z?:l XjW; j) = f(xw;), where f is a transferring function, d
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Fig. 5.3 — Goodness of Fit of WORM as (a) ANN fitting error (APE) distribution of f8;, 5, and f53; (b) APE box plots and (c) ANN'’s
hidden layers weights distribution
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is the dimension of the input layer (ie., d =7), x is a 7-dimensional input vector where x =
[kf, ®f Swigr kms Sor» Swr and Tm], w;, € R? represents the weights in kth input layer utilized to generate
the ith neuron in the hidden layer. In this study, we test different transferring (activation) functions;
rectified linear unit (ReLU) where f(z) = z* = max(0, z); Sigmoid where f(z) = 1/(1 + e™%); and
Softplus where f(z) = log(1 + e?). The Sigmoid transfer function shows the best fitting performance
of the trained ANN on testing datasets for 8, and 3 with an AAPE of 2.74 and 4.28%, respectively.
Softplus transfer function leads to a trained ANN model for ; with an AAPE of 3.34%. Fig. 5.3
visualizes the fitting performance of the three developed ANN models predicting f;, f, and 5. More
than 75% of the datapoints are predicted with an absolute percentage error (APE) of less than 6%. Both
the histograms and box plots of Absolute Percentage Error (APE) exhibit right-skewness, signifying
the robust performance and strong goodness-of-fit of the trained ANN models. This skewness
towards zero effectively illustrates that the majority of the fitting errors are closely clustered around
zero, indicating highly accurate model predictions. Fig. 5.3c shows that the hidden layer’s weights in
the ANN models follow gaussian distributions with a mean (u) very close to zero; -0.06, -0.32 and -

0.16 for B3, B, and f35, respectively, indicating a generalized ANN model with no sign of overfitting.
5.2.2.1 Deriving{8,, f, and B3 empirical correlations from ANN (white-box models)

The extracted empirical correlation from the developed ANN shows that the ; could be estimated as

B = 0.8596;,, + 0.008 (5.14)
where g, is the normalized f; defined as
N (5.15)
Bi, = z wy, log(1 + e”t) + b,

=1

where b, is the bias in the output layer and estimated at -0.005, w,; is a coefficient (weight) connecting
the N neurons (N = 5) in the hidden layer to the output layer as shown in Table 5.1. y; is the linear

transformation of the input variables defined by

M (5.16)
yi = Z Wli’j xn]' + bli
j=1

where by, is the bias in each neuron (h;) in the hidden layer, wy,; is the weight of the jth input variable
in each neuron (h;), M is the number of input variables (M = 7). The trained values of b;; and w,, , are
listed in Table 5.1, x,,; is the jth normalized input variable (x;), calculated by

e A Y (5.17)

Xn: =
xjmax - xjmin

]

where x; . and x; _ are the minimum and maximum values of the input variables considered in this

study and listed in Table 5.2. The weights, biases, and coefficients formulated in the developed

67



Methodology

Table 5.1 - Weights and biases in the trained ANN model of ;. The values for 8, and f3; are listed in Appendix B

i Wi, Wy, Wi, Wy, Wy, Wi Wy, By, wa,
1 0.30 0.20 -0.94 0.06 -0.33 -0.97 0.81 0.35 0.51
2 0.12 -1.14 -0.09 -0.04 0.21 0.54 -0.70 0.02 -0.79
3 0.25 1.22 0.11 0.02 -0.18 0.12 -0.59 -0.06 -0.55
4 0.22 0.73 0.25 -0.02 0.03 0.76 0.54 -0.04 0.55
5 0.07 -1.28 -3.53 -0.05 -0.22 0.67 -0.11 -0.59 0.54

Table 5.2 — Range of input variables utilized to train the ANN models

J % Xjmin Xjimax unit
1 ks 1,000 2,000 md
2 oy 0.50 1.00 fraction
3 km 1.00 10.00 pd
4 So, 0.10 0.25 fraction
5 Sw,. 0.10 0.25 fraction
6 ™ 0.50 1.50 ratio
7 Swis 0.50 1.00 fraction

correlations are specifically tailored to the range of input variables outlined in the table. It is crucial to
note that if these input variables deviate from the specified training range, the predictive accuracy of
the model might be compromised, as articulated by Livshin [89]. Similarly, the empirical correlations

of 8, and 3 are derived in Appendix C.

5.2.3 WORM sensitivity to petrophysical properties

Here we analyze the sensitivity of WORM to k¢, ¢, Sy o Kms Sors Swr and T,, to; i) understand the
relative impacts of those petrophysical properties on the WOR and load recovery performances; and
ii) derive an empirical correlation to estimate S,,;. from the early 2-phase flowback data. Fig. 5.4a, b
and ¢ demonstrate the WORM parameters (f;, 5, and f3) sensitivity to +5% and +10% uncertainties
in ke, r, Swips kms Sors Swr and T,,. A comprehensive exploration into the effect of capillary pressure
on the WOR performance is thoroughly illustrated in Appendix C. As mentioned earlier, f;, 5, and
p3 control the early-, mid- and late-time WOR performance, respectively. The figure demonstrates that
the early-time WOR performance is mainly driven by the fracture properties; S,,;, and ¢;. Then, the
intermediate performance is mainly governed by the fracture properties; Sy, ¢; and k; as well as
k. Finally, the late-time WOR performance and ultimate load recovery are governed equivalently by
the fracture and formation properties. +10% uncertainy in kg, ¢¢, Sy, ” ki, Sor, Swr or T, leads to

4% to 8% changes in 5 that control the late-time WOR performance and estimated [,. .
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Fig. 5.4 - WORM parameters f3;, 5, and f3; sensitivity to petrophysical properties

The key observation here is that 5;, governing early-time WOR performance, is significantly sensitive
to Sy £10% change in S,,; . leads +30% proportional variation in $; as shown in Fig. 5.4a. This
demonstrates the high WOR sensitivity to relative permeability ratio in fracture at early 2-phase
flowback period. Therefore, we hypothesize that WORM could be employed to estimate S,,;, utilizing
the early-time flowback WOR data. First, we curve-fit WORM on early flowback WOR by tuning ;.
Second, we estimate f;, using Eq. (5.17). Then, Eq. (5.15) could be rearranged as a function of S,,

if/
defined as
N
. : (5.18)
f (SWifn) - z wa log(1 + €™t i ™ e¥i) 4+ by — 1 =0
i=1
where y; could be estimated as
(5.19)

M-1
;= Wy, X
Vi = 1i,j *nj
j=1

this equation is similar to Eq.(5.16), but it doesn't include the hidden layer bias b, the input variable

Swig s and its weights in the hidden layer. Then, S,,,; ; could be estimated as

SWif =5Wifn (SWifmax - SWifmin ) + SWifmin (5.20)
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Fig. 5.5 — Uncertainty in the initial water saturation in fracture (S,;,) inversely estimated from the developed ANN model [Eq. (5.14)
to (5.21)] considering the uncertainty in other petrophysical properties

where S, and S, are the minimum and maximum values of S,,,; f used to train WORM as

L fmin ! fmax

listed in Table 5.2. We solve the nonlinear Eq. (5.18) utilizing the iterative Powell's method introduced
by Powell [90] which combines Gauss-Newton algorithm with gradient descent to find the minimum
of the non-linear least squares objective function. Fig. 5.6 demonstrates the sensitivity of S, to the
uncertainties in other petrophysical properties. ¢ and k,, have the most significant impact on
estimating S,;,. Ignoring ¢y or ky, could lead to an error ranging from -7% to 22% in estimating Sy; .
This is due to the multicollinearity between those input parameters when estimating WOR using Eq.
(5.9). Fig. 5.4a demonstrates that ¢y and k,, have the second and third largest impacts on WOR
behavior at early flowback period. Similar to S, » ¢y has a positive effect on WOR. In other words,
the increase in either ;. or ¢y leads to an increase in WOR. Therefore, if ¢ is missing in Eq. (5.9),
the value of S,,;. proportionally reformed to compensate the missing ¢;. Therefore, a missing ¢
could lead to 22% error in estimating S,,,; ~ On the other side, k,,, and S,,; ; have contradictory impacts
on WOR. Unlike S,,; ” increasing k,, leads to more oil influx from the matrix into fractures, assuming
immobile formation water, and ultimately leads to a drop in WOR at early flowback period. Therefore,
ignoring k,, could result up to -7% error in estimating S,,,; ;- Ignoring, k¢, S, ., tm, Or Sy, could result
up to 2.8, 0.6, -2.3 and -1.1% error in estimating S,,,;, respectively. After determining the value of S,,,;,
it can be employed in conjunction with other petrophysical properties to estimate the remaining
WORM parameters 8, and 53 by using Egs. (58) and (62), respectively. This approach is valid only if
the petrophysical properties are available. If not, the statistical approach introduced in Appendix C is
used alternatively. In the proposed statistical approach, f; is estimated by curve-fitting WORM on the
early-time 2-phase flowback data. Then, §, is estimated as a function of f; by using Eq. (66). Finally,
B3 is estimated by Eq. (67) as a function of both 8; and f,.
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5.2.4 Predicting cumulative oil production performance from flowback

In this section we develop COPM that describes Q, performance as a function of .. We first construct
three diagnostic plots of 1) Q, versus Q,,; 2) Q, and Q,, versus time; and 3) water and oil flowback
rates versus time as shown in Fig. 5.5. Our observations indicate two distinct flow periods. So, we
hypothesize that the first period is dominated by fracture and the second one is dominated by the

matrix. The signature of the fracture- dominated flow regime is clear in the three diagnostic plots.

Fig. 5.5a shows that Q, demonstrates a linear increase versus the Q,, on a semi-log plot during the
fracture-dominated flow period. Then, in the matrix-dominated period, the trend is transformed to a
power-law model which is developed in this paper. During the fracture-dominated flow period,
fractures demonstrate a pressure-supercharge effect [91] as the bottomhole flowing pressure is higher
than the initial reservoir pressure as shown in the figure. The traces of oil observed during this period
is primarily sourced from the effective fracture volume, with little to no significant oil influx from the
matrix. Therefore, Q, follows a straight-line trend when plotted versus Q,,. Once the average fracture
pressure drops below the initial reservoir pressure, the matrix-dominated flow period starts and a
significant increase in the oil production rate is observed, suggesting oil influx from the matrix into
the fracture. Therefore, we hypothesize that if the flowback period is long enough to capture the
matrix-dominated flow period, the 2-phase flowback data could be utilized to predict the Q,

performance as a function of ..

To confirm the field observation and verify our hypothesis, we build a simulation data file to capture
the fracture- and matrix-dominated flow periods as shown in Fig. 5.8a. During the fracture-dominated
period, the fracture demonstrates a pressure-supercharge effect (ps > py, ), which is generally
observed at the beginning of flowback [91]. During this period, there is no oil influx from the matrix
into the fracture and the produced oil traces are due to the initial average oil saturation in the effective

fracture. This effect is simulated by constraining the lateral transmissibility between matrix and

v (4l Pre

Fig. 5.6 — Diagnostic plots of cumulative oil production during flowback and post-flowback. (a) cumulative oil production versus
cumulative water production. (b) cumulative water and oil production versus time. (¢) production rates, bottomhole pressure and
choke size versus time. The inset figure shows flowback rates and estimated initial reservoir pressure
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fracture during early-time flowback until p; approaches p,,. Fig. C.4 shows the pressure distribution
in fracture and matrix at the supercharge condition and at different timestamps until depletion. This
figure suggests a PSS flow regime during the pressure-supercharge period in the fracture network.
This PSS depletion continues until py approaches p,,, then the water blockage at the fracture interface
is decreased, so that the fluid support from the matrix to the fractures is activated. This effect is
simulated by increasing the transmissibility multiplier back to one to eliminate the water blockage
effect. Fig. 5.8a and b show the similarity between the simulated and field Q, profiles, respectively. In
the fracture-dominated flow period, the oil production is mainly due to the initial average oil
saturation in the effective fracture network with no influx from the matrix. Then, when p approaches
Pm, oil starts to flow from the matrix into fracture and @, trend deviates from the straight-line
behavior observed in the first period identifying an oil breakthrough. Fig. 5.8b demonstrates that
during the fracture-dominated flow period, the first thousand barrel of oil is produced after producing
35 kstb of water, while during the matrix-dominated flow period, the first 10 kstb of oil is produced
while producing 10 kstb of water. The simulated Q, profile in Fig. 5.8a shows that when approaching
ly.,» Qo is bended up due to the low S,,, and the relative-permeability end-points effect. This log-linear
relationship of Q, and [, is similar to the logit function that is commonly used in data transformations
in machine learning [87], but on a semi-log scale, where Q, increases significantly at the beginning of
oil breakthrough, then it stabilizes until approaching .. at which it surges up. According to Cramer
[92], Logit function maps the probability values from (0,1) to real numbers in (—o, +0). However, the
domain of Q, profile versus [, assuming immobile formation water, is (I, l,,,), where [, is the initial

load recovery at the start of the matrix-dominated flow regime. [,. is the ultimate load recovery which
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Fig. 5.7 — (a) Simulated cumulative oil production profile during the fractured- and matrix-dominated flow periods. (b) COPM and
its fitting performance on field production data
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could be estimated from the WORM developed earlier. Considering this analogy, Q, can be defined
as a function of [, as
a
o = 8;__—[;3“2 L, >l > 1 621

where @; and a, are model tuning parameters. a; controls the early curvature of @, profile at [, ,
while a, controls the late curvature of @, profile when approaching .. as shown in Fig. 5.7a and b,
respectively. The term curvature here represents the rate of change in oil production with respect to
load recovery (RoC,). Fig. 5.7a shows that RoC, is negatively correlated to ;. Increasing o, decreases
RoC, meaning that q, increases smoothly (with respect to ) after oil breakthrough into the fracture.
In contrast, decreasing a; results in a sharp increase in g, after oil breakthrough. Similarly, RoC, is
negatively correlated to a,. Increasing @, leads to a relatively smoother increase in RoC, when
approaching [, , but it also may suggest a higher oil/water relative-permeability ratio (]]:Tr:) as it leads

to a higher slope as shown in Fig. 5.7b. The intermediate period is mainly governed by both a; and

kry

a,. Low values of a; and a; lead to a low slope suggesting low while large values of both a; and

@, result in higher slope, suggesting high ;{%’J Ly, and [, control :}?:3 span of the Q, profile as shown in
Fig. 5.7c and d, respectively. In the proposed methodology, i) ., is measured from the flowback data,
if the flowback period is long enough to capture the matrix-dominated flow regime. In the proposed
case study, this regime is generally observed at [, < 0.2. Otherwise, post-flowback data could be
utilized to identify this value; ii) [, is estimated from WORM; and iii) a; and a, are estimated by
curve-fitting COPM on 2-phase flowback data after observing the matrix-dominated flow regime as
demonstrated in Fig. 5.8b. Since Q, (lr = lru) — oo, we choose to estimate the cumulative oil
production at 90% of the ultimate load recovery (Qogg) to assess and compare the oil productivity

performance of the studied wells Fig. 5.8b shows the estimated Qoq, at 90% of [, with the associated

uncertainty resulted from both the fitting error of COPM and [, estimation from WORM. The figure
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Fig. 5.8 — Sensitivity of Q, model to parameters a,, a,, initial load recovery (,,) and ultimate load recovery (I, )
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demonstrates that the uncertainties in the estimated [,, from WORM superimpose the fitting error of
COPM. In this case, [, is estimated from WORM at 0.55 while [, is measured at 0.18. the parameters
@, and a, that generate the best-fit COPM are 1.3 and 1.2, respectively. Therefore, Eq. (5.21) becomes
Qo = (I, — 0.18)*3/(0.55 — [,)'?, where 0.55 > [, > 0.18. At 90% of L. , Qo is estimated at 505 kstb
as illustrated in Fig. 5.8b.

5.3 Application of WORM and COPM

Here, we apply the proposed methodology to analyze the flowback and post-flowback data of a multi-
well pad with 19 oil MFHWSs completed in Niobrara and Codell formations with 3D trajectories shown
in Fig. 5.9. The true vertical depth of those wells varies from 6,975 to 7,261 ft as demonstrated in the
inset figure. There are 15 and 4 wells completed in Niobrara and Codell formations, respectively.
Those wells are categorized according to their producing formation, which is reflected in their well
names as illustrated in the inset schematic in Fig. 5.9. The main goal of this case study is to assess and
compare the productivity performance of those wells by utilizing our proposed holistic workflow.
Error! Reference source not found. provides further examples of WORM applications, showcasing an a
dditional 24 oil MFHWSs completed in Montney formation. It also shows how formation water

mobility and well interference could impact on the WOR profile versus load recovery.

Here, we propose three performance indicators: [, , Ver, and Q,,,. Both [, and V,f, require a prior
investigation of formation-water influx from matrix into effective fractures to formulate the required

assumptions for estimating those indicators. Therefore, we conduct the following analyses:

i) Analyze the flow regimes of water and oil during flowback and post-flowback periods by
investigating the rate-normalized pressure profiles for water and oil (RNP, and RNP,,
respectively) versus material-balance time (t;,;) for all the studied wells. t,;, is defined as the

ratio of cumulative water production (Q,,) to water production rate (g,,). We chose to use this
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7000+ 9N NA s ToNP # OINA & 12CB & 14NP
& 03N IR # O02NA & O08NB 4 15NP
5 7100 15NP # O03NA & O09NB  # 16NP
F o oiNA 8 # O04NA & 10NB & 17CP
7200 & # O07CA 13CB 18NP
2¢ i 05NA 11NB 19NP

7300 } 06NA

-500 0 500 1000 1500 2000 2500 3000

=

| Formation Name | /

Fig. 5.9 - 3D trajectories of the studied wells. The inset figure shows wells toes' true vertical depth. The well naming procedure is
illustrated in the bottom left of the figure.
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unified water-rate-based t,;;, for two reasons: firstly, to provide a consistent x-axis for both
water and oil RNP plots; and secondly, because our primary focus in this paper is on analyzing
RNP, to investigate formation-water mobility. RNP,, and RNF, are defined as (pl- — Pws/ qw)
and (pl- — Pwr/ qo), respectively. q,, and q, are the production flowrate of water and oil at
bottomhole conditions, respectively. p,,r is the flowing bottomhole pressure, and p; is the
initial average reservoir pressure in the stimulated region around wellbore.

Apply the proposed WORM to predict [, and estimate S,,;. by utilizing Eq. (5.20). Then, we
estimate V,r,, assuming a) that the effective fractures are initially filled with water; and b)
negligible water influx from the matrix into the fractures. The first assumption is validated by

the estimated S,,;,, while the second assumption is validated in the previous step (RNP

diagnostic analysis).

iii) Apply COPM to assess the oil productivity of the studied wells by predicting Q-

5.3.1 Rate-normalized-pressure diagnostic analysis

Fig. 5.10a shows the flowback and post-flowback RNP,, and RN P, versus t,,; for well 01N. The figure

demonstrates a pronounced unit slope for RNP, during flowback and post-flowback periods,

indicating a PSS flow regime. This suggests a close-tank system for water production with no-water-

flow outer boundary. A similar behavior is observed for all the studied wells as presented in Fig. C.5.

Therefore, the RNP diagnostic analysis indicates that there is no water influx from the matrix into

fracture during flowback and post-flowback, fulfilling the first assumption associated to WORM. This

argument is also confirmed by the S, log data calculated along the lateral section and presented in

Fig.5.10b. S,, data is based on open-hole log data provided by the operator of the studied wells. These

data were computed from resistivity logs and measured along the lateral section of the wellbore for
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Fig. 5.10 - (a) RNP plots of flowback and post-flowback water and oil for Well 0IN. (b) Water Saturation profile along the lateral

section with the reference TVD and perf. Locations. The inset figure shows the boxplot of water saturation statistics
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the given well. The figure shows 0.31> 5, = 0.06 along the wellbore in the lateral section with an
average S,, estimated at 0.16. The inset boxplot shows that 75% of the measured S,, data is less than
0.18, demonstrating relatively low §,, around wellbore. In addition, the figure demonstrates that the
operator avoids perforations in the intervals showing a relatively high S, to avoid any potential of
mobile formation water. These observations support the RNP diagnostics outcomes and support our
assumption of no water influx from matrix into fracture. On the other side, the half-slope for RNP,
suggests a transient linear behavior. This may be attributed to factors such as: i) production from
fractures that extend to reservoir boundaries [93]; ii) transient drainage of low-permeability matrix

into adjacent fractures; and iii) the linear shape of the reservoir [94].

5.3.2 WORM application to estimate fracture characteristics and well
performance

Here, we apply WORM to estimate S,,; , [, and V... Fig. 5.11a shows a semi-log plot of WOR versus

ifr
L, during flowback and post-flowback ;eriods. First, WORM is tuned to fit the flowback data and to
estimate S,,;,.. Second, WORM is further validated by post-flowback data to predict [, as shown in
the figure. B; resulted from fitting WORM on the early flowback data is estimated at 0.81. Then, we
use Eq. (5.20) to estimate Sy,;, at 0.98, verifying that initially the fracture is filled with water. This is
also supported by observing a single-phase-water flowback for 6 days before oil breakthrough as
illustrated in Fig. 5.10a. In addition, the first traces of oil production are observed after producing
more than 15 kstb of water. These observations support our second assumption of having the fracture
filled with water at early flowback time. Therefore, WORM can be utilized to predict [, and V.
Then, B, and f; are estimated by Egs. (66) and (67) at 1.24 and 0.64, respectively. Therefore, the profile
of WOR as a function of [, can be described as WOR = (lrn)l'“/(l - lrn)o'gl where [, =
(1 -1, —0.64)/(1 — 0.64) as shown in Fig. 5.11a, predicting [, at0.36 +0.04 assuming a critical WOR
of 0.001 stb/stb that represents the end of load recovery. The average [, of all the studied wells is
estimated at 0.44 as shown in Fig. 5.11b. This relatively low [, endorses the argument of negligible
formation water influx from the matrix into effective fractures as concluded from the RNP diagnostics.
The figure also demonstrates the measured 3-, 7- and 9-month [, for each well. Here are the main
observations: i) generally, Codell wells show higher measured [, and estimated [,, compared to the
Niobrara wells. On average, Codell and Niobrara wells show [,. of 0.69 and 0.37, respectively; ii) wells
with higher 3-, 7- and 9-month [, show higher [, ; and iii) more than 50% of the predicted [, is

produced back within the first 3 months of production.

From [, , we can estimate the ultimate water production volume by knowing the total injected water

volume (TIV), then it can approximate Vs, with the assumptions listed and justified earlier. Fig. 5.11c
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shows the estimated V,f, for each well. There are two main observations here: i) Generally, Codell
wells show a larger V, r, compared to Niobrara wells. Although Codell wells are completed with 10%
less TIV compared to Niobrara wells, Codell wells show more than 27% larger V,r, compared to the
Niobrara wells. This might be due to the relatively higher fracability of the Codell formation wells as
shown in Fig. 5.11d. The figure demonstrates the average fracability-index profile along the wellbore

for Codell and Niobrara wells.

10?

—
@
—
=]
5]

10" 4

—
o
L

Correlation Coefficient = 0.734 I

: T T
0.0 0.1 0.2 0.3 0.4 0.5 0 0 100 150 200 250
Load Recovery, fraction Stimulated Volume - Microseismic, 10%m?®

107 4

Flowback

® | Post-Flowback

veesl WOR=112/(1 =108
| 10 %Low
|10 %High

Water Qil Ratio, sth/stb

-
L=
1

T T T T T T T ITTm T T T

Effective Fracture Volume, 10%m?
=
fllll‘ff:l“llill‘
2
Z
g
=HE

02N
5
U‘S‘IM BEE Ultimate LR EEE 9-Months LR B8 7-Months LR 3 Month LR

0.0 Il L 1 Il 1 Il Il Il Il i 1 Il 1 Il L Il Il Il 1
g T T T T T T T T T T T T T T T T T T T

ISN 16N 15N 10N 04N 1IN 02N 1N 08N 09N 05N OIN 03N 19N 06N 17C 13C 12C 0O7C

=
=
1

=
.
"

Load Recovery, fraction
2
L

Effective Fracture Volume, 10%m?
B 2 = o ow oD
&n = en o in =]

o
=

w
=
L

iod
n

Fracability, #

== LI I N I B B |

10,000 12,000 14,000 16,000 18,000
Measured Depth, ft
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On average Codell show 26% more fracability compared to Niobrara which is almost the same
difference in the average V., estimated for both groups of wells (clustered by the formation name);
and ii) larger V, s, does not necessarily represent higher .. . Well 14N shows +16% above-than-average
Ver,, despite its -18% below-than-average [, , shedding the light on the effect of completion design on
both [, and V,f,. This well was completed by 32% more TIV and 7% less proppant concentration
compared to the other wells. Therefore, the larger TIV might lead to a relatively larger V., but it also
might result in more fracturing water losses and trapping which also could be emphasized by the

relatively low proppant concentration, leading to a relatively low [, .

Next, we compare the estimated Vs, from WORM to the volume estimated by microseismic events
(Vine) for each well. Fig. C.7 demonstrates the microseismic event dimensions grouped to each fracture
stage in terms of length, width and height for wells 01N, 02N, 04N, 09N and 12C. The figure shows
that the events count varies from less than 10 to 250 events per fracture stage. In this study, we use 70
events as a cut-off. Fracture stages with more than 70 counted microseismic events are utilized to
estimate their volume giving their microseismic dimensions (length, width, and height). Then, we
sum the estimated volumes of fracture stages for each well to estimate its V},,. Fig. 5.11e shows a
crossplot between Vs, and V. for the 5 wells. The figure demonstrates a positive correlation
coefficient of 0.734 between V,, and ;,,. Therefore, wells with larger ;.. generally demonstrate
larger Vr,, except for Well 09N that showed almost triple 1, of Well 04N, but with similar Ve, .
Further investigation is required to understand why this well shows such a dissimilar behavior and
remains to be studied in future. Another observation is that Codell well 12C exhibits the largest 1,
compared to the other Niobrara wells, supporting our previous observations of the relatively higher

L,- and V¢, of Codell compared to Niobrara wells.

5.3.3 Oil productivity performance

Here we assess and compare the oil productivity performance of the studied wells. Fig. 5.12a shows
the measured 3-, 7- and 9-month Q, as well as Q,,, estimated at 90% [, . The wells are sorted by Q.
The general statistics of Q,,, clustered by formation is displayed as boxplots in the inset figure. Here
are the main observations: 1) Generally, the parent wells show better oil recovery performance
compared to the child wells. Parent wells (14N, 15N, 16N, 17C, 18N and 19N) showed more than 53%
higher Q,,, compared to the child wells. 2) Well 14N'’s Q,, is estimated at 240 kstb, which is 75%
higher than the average Q,,, of the studied wells. In addition, its 3-, 7- and 9-month measured Q, are
37, 39 and 44% higher than the average 3-, 7- and 9-month Q, of the studied wells, respectively,
demonstrating its superior oil recovery performance. This well is among the three first Niobrara wells

that was drilled and completed in this pad. Therefore, probably this well has the best sweet spot
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Fig. 5.12 - (a) Cumulative oil production predicted by Qo-Model at 90% load recovery (Qoq,) and the measured cumulative oil
production at 3-, 7- and 9-month. The inset figure shows a boxplot statistic of Qoy, for Niobrara and Codell wells. (b) Comparing
cumulative oil production and V,, of parent and child wells.

among the other studied wells with the highest reservoir quality. Moreover, this well has the second
largest V., and thus a larger contact to a relatively higher quality reservoir, allowing this well to
outperform the other studied wells in oil recovery. 3) On average, both Codell and Niobrara wells
show similar oil recovery performance, despite the variation of load recovery performance, suggesting
stratified flow regimes for water and oil in the effective fracture as proposed by Moussa, Fu [6].
Niobrara and Codell wells show an average Q,,, of 137 and 139 kstb. In both formations, 75% of the
studied wells show @, value of less than 152 kstb. 4) Fig. 5.12b compares oil productivity relative to
the effective fracture volume for parent and child wells. On average, the parent wells show more than
50% higher @,,, compared to the child wells, although both have similar average V,,. In addition,
parent wells demonstrate 61%, 37% and 36% higher 3-, 7- and 9-month Q, compared to child wells,

exhibiting a relatively better oil recovery performance.

Hypothetically, the parent wells are generally completed in a better sweet spot compared to the child
wells. In addition, part of the child wells stimulated volume might have been already drained by the
parent well. Therefore, applying a completion design to develop a similar effective fracture volume
on child wells, does not necessarily lead to similar oil productivity compared to the parent wells. In
other words, it is not just Ve, that designate the productivity performance, it also depends on the

quality of the reservoir at which the parent/child wells are completed.

The successful application of WORM delivers a critical tool for predicting well performance and
determining initial water saturation in the fracture, contributing to an improved understanding of
fracturing efficiency. The insights on oil productivity between parent and child wells by utilizing
COPM offer valuable implications for multi-well pad drilling strategies. Furthermore, the correlation
between the initial effective fracture volume and microseismic events offers potential for developing
a data-driven method of estimating fracture volume, which can be beneficial for better reservoir

management and improved hydraulic fracturing designs.
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5.4 Summary

In this study, we introduce two novel models to predict water-oil-ratio and cumulative oil production
performances from early 2-phase flowback data as functions of load recovery in tight oil reservoirs.
The first model, WORM, is a hybrid analytical and data-driven model describing the observed log-
linear relationship of WOR and load recovery as an analogy to the log-linear relationship of water/oil
relative permeability ratio and water saturation. The parameters of WORM are coupled with key
petrophysical properties using a neural network, allowing us to analyze the impact of fracture and
formation properties on the WOR performance on different stages of load recovery. Beside forecasting
the WOR performance. WORM is also utilized to predict ultimate load recovery, initial effective
fracture volume and initial water saturation in fracture. The second model, COPM, is a data-driven
model describing the log-linear relationship of @, and load recovery during the matrix-dominated
flow regime. It can be coupled with WORM to predict Q, when approaching the ultimate load
recovery. Both WORM and COPM are derived for tight oil reservoirs based on the assumptions of
negligible water influx from matrix into fractures and that water production is mainly from fractures
with no observed interference between different MFHWSs. The application of WORM and COPM on
19 MFHWSs completed in Niobrara and Codell formations showed that:

1) The effective fracture volume estimated using WORM is positively correlated with the
estimated volume of microseismic events.

2) Generally, Codell wells exhibit better load recovery and larger effective fracture volume
compared to Niobrara wells, despite the similar completion-design practices applied to both
formations. This highlights the significance of selecting the completion-design as a function of
reservoir characteristics and geomechanical properties.

3) Both Codell and Niobrara wells display similar oil recovery performance, despite the variation
of load recovery performance, suggesting independent flow regimes for water and oil in the
effective fractures. This conclusion is also supported by the negligible effect of the oil
breakthrough on the water flow regime observed in RNP diagnostics.

4) The application of a completion design to achieve a similar effective fracture volume on child
wells does not necessarily lead to similar oil productivity compared to parent wells. It also
depends on the quality of the reservoir at which the parent/child wells are completed.

In conclusion, this study demonstrates the potential of WORM and COPM as early-time diagnostic
tools for evaluating and predicting load and oil recoveries of MFHWs in tight oil reservoirs. However,
the accuracy of these models is dependent on the availability of petrophysical properties and the
assumption of negligible water influx from matrix into fractures. Future research could investigate
the impact of mobile formation water on the WOR profile and the applicability of these models to

other reservoir types or under different conditions.
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5.5 Nomenclature

MFHW : multi-fractured horizontal well
WOR : water oil ratio

GOR : gas oil ratio

WORM: water oil ratio model

COPM : cumulative oil production model
PSS :pseudo steady state

APE  :absolute percentage error

AAPE : average absolute percentage error
ANN : artificial neural network

ReLU :rectified linear unit function
RNP  :rate normalized pressure

RNP, :water-rate-normalized pressure
RNP, :oil-rate-normalized pressure

tmb : material-balanced time

Qo : cumulative oil production

Qw : cumulative water production

Sw : water saturation

fw : water fractional flow

fo : oil fractional flow

kv : water relative permeability

ko : oil relative permeability

L : load recovery

L, : initial load recovery

L : ultimate load recovery

Swi,  :initial water saturation in fracture
Swr : average water saturation in fracture
Ver : effective fracture volume

Ve, : initial effective fracture volume

4 : total injected proppant volume

ol : fracture porosity

kg : fracture permeability

km : matrix permeability

Sor : residual oil saturation

Swr : irreducible water saturation

T : transmissibility multiplier

M, : proppant mass

Pp : proppant density

Ny, : Corey exponent for wetting phase

n, : Corey exponent for nonwetting phase
Swp : normalized water saturation

Swi : initial water saturation

Qw : water flowrate

9 : oil flowrate

Uy : water viscosity

Uo : oil viscosity

u : gaussian distribution mean

B1, B2, B3 WORM’s control/tuning
parameters

ay,a, : COPM’s control/tuning parameters

h; : ANN’s ith hidden layer

Wy : weights in kth input layer

RoC, : rate of change in oil production with
respect to load recovery

12 : initial reservoir pressure

pws  :bottomhole flowing pressure
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Chapter 6.

Linking Flowback Recovery to
Completion Efficiency: Niobrara-DJ Basin
Case Study

6.1 Introduction

Load recovery refers to the amount of fracturing water produced back after hydraulic fracturing
operations. Unrecovered fracturing water either a) leaks off into the formation during fracturing
treatment and the following shut-in period; or/and b) is trapped in the fractures. This unrecovered
fracturing water inside the formation and fractures may also affect hydrocarbon recovery due to
relative permeability effects. Therefore, maximizing load recovery is an important target to enhance
hydrocarbon productivity of MFHWSs. Several numerical and analytical techniques have been
implemented to analyze the flowback process [91, 95-100]. Generally, these studies demonstrated that
load recovery is affected by reservoir properties and completion-design parameters. One common
issue in these studies is the assumption that fracture properties and dimensions are constant during
well production. However, hydraulic fracture characteristics are also affected by geomechanical
properties around the wellbore, leak-off rate, pumping schedule, operational parameters such as
choke-size changes and shut-in periods, making modeling and prediction of load recovery very
challenging with lots of uncertainties. Another challenge encountered in the previous studies is the
requirement of determining fracturing-water saturation within and around the hydraulic fractures.
Therefore, we present an application for water-oil-ratio (WOR) diagnostic analysis to model load
recovery during flowback and predict ultimate load recovery by utilizing flowback and post-flowback

data.

Another parameter that is used in this paper to assess the completion efficiency is the effective fracture
volume (V,f). However, direct measurement of V,r is challenging. Alkouh, McKetta [35] utilized
water-flowback and production data to estimate V. of shale-gas MFHWSs by introducing a tank model
based on simulation results. The main concern in this model is that it neglects fracture closure effect
and water expansion mechanism which makes it not applicable to single-phase water flowback. Fu,

Dehghanpour [36] and Moussa, Dehghanpour [57] analyzed single-phase water flowback data of oil
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and gas wells completed in Woodford and Eagleford Formations to estimate V,; using harmonic
decline (HD) curve analysis of water flowback versus cumulative water production volume. They
assume negligible water influx from matrix into fracture and that HD in water production rate
continues until producing all the fracturing water. However, long-term production data generally
shows late-time deviation from that pattern when approaching ultimate load recovery, leading to an
overestimation of V,r. Therefore, in this study, we estimate initial effective fracture volume by
applying a WOR model that accounts for the relative permeability effects particularly when

approaching saturation endpoints [6].

In the last decade, understanding the impact of completion-design parameters on the recovery
performance of oil and gas MFHWSs completed in unconventional resources has gained the attention
of many researchers [101-108]. However, the parent-child fracture interference becomes the recent key
factor in determining the completion-design parameters for infill wells [109-112]. In this paper, we
show a field-case study in which the operator applied a less intense completion-designed strategy to
child wells to mitigate their communication with the parent wells. Does it work? In case of avoiding
parent-child fracture interreference, does parent-wells depletion affect the hydrocarbon recovery of
child wells? Does larger effective fracture volume result in better oil recovery? If the same set of
completion-design parameters are applied to parent and child wells, will the recovery performance

be similar?

6.2 Methodology

In this study, we analyze flowback, post-flowback and completion-design data of a pad composed of
19 MFHWSs completed in Niobrara and Codell formations with 3D trajectories displayed in Fig. 6.1.
The true vertical depth (TVD) of these wells varies from 6,975 to 7,261 ft. From these wells, 15 are

completed in Niobrara formation and the remaining are completed in Codell formation. The studied
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wells are categorized according to their producing formation and completion group as listed in Table
6.1. Parent wells were completed in 2018 with similar completion design. Then, in 2020, Zipper-1 wells
were completed first with variable design parameters with the intention to mitigate their
communication with the Parent wells. Therefore, in Zipper-1 wells, different completion strategies

were tested. This includes applying different cluster spacing, cluster density, proppant and fracturing

Table 6.1 - Completion-design summary of the studied wells which are categorized into Parent, Zipper 1 and Zipper 2

i Designed
3 4
Well - Completion Proppant Cluster Clusters ;Ieu::uet; designed gal / Total EHD pump
ID* Group? Ibs. / Ft Spacing / stage (Ft) Ft Perfs (inch) (l::)tr:)

01NA ZIPPER 1 500-750-1000  150-200-250 4,8,10 22,33 variable by stage  26,16,20  0.38,0.36,0.36  50,60,70
02NA ZIPPER 1 500-750-1000  150-200-250 4,8,10 22,33 variable by stage  26,16,20  0.38,0.36,0.36  50,60,70
03NA ZIPPER 1 500-750-1000  150-200-250 4,8,10 22,33 variable by stage  26,16,20  0.38,0.36,0.36  50,60,70
04NA ZIPPER 1 500-750-1000  150-200-250 4,8,10 22,33 variable by stage  26,16,20  0.38,0.36,0.36  50,60,70
OSNA ZIPPER 1 500-750-1000  150-200-250 4,8,10 22,33 variable by stage  26,16,20  0.38,0.36,0.36  50,60,70
06NA ZIPPER 1 500-750-1000  150-200-250 4,8,10 22,33 variable by stage  26,16,20  0.38,0.36,0.36  50,60,70

07CA ZIPPER 1 500-750-1000  200-250-300 5911 38,25 variable by stage  30,18,22  0.38,0.36,0.37  50,60,70

08NB ZIPPER 2 750 350 14 23 708 14 0.36 50
09NB ZIPPER 2 750 350 14 23 708 14 0.36 50
10NB ZIPPER 2 750 350 14 23 708 14 0.36 50
11INB ZIPPER 2 750 350 14 23 708 14 0.36 50
12CB ZIPPER 2 750 350 14 23 708 14 0.36 50
13CB ZIPPER 2 750 350 14 23 708 14 0.36 50
14NP PARENT 1000 150 4 33 980 26 0.38 50
15NP PARENT 1000 150 4 33 980 26 0.38 50
16NP PARENT 1000 150 4 33 980 26 0.38 50
17Cp PARENT 1000 150 4 33 688 26 0.38 50
18NP PARENT 1000 150 4 33 980 26 0.38 50
19NP PARENT 1000 150 4 33 980 26 0.38 50

! Formation Abbreviation: N= Niobrara, C=Codell
2 Completion Groups: A= Zipper 1, B= Zipper 2, P= Parent
3 Proppant Type Used: 100 mesh & 20/40 for all wells

“EHD: Entrance Hole Diameter
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fluid amounts, number of perforations, entrance hole diameter (EHD), number of clusters per stage
and pumping rate as listed in Table 6.1. Then, Zipper-2 wells were completed with a relatively smaller
number of perforations, cluster density, injected fluid and proppant per feet, but with larger cluster
spacing and more cluster per each stage compared to the Parent wells. Well name reflects the
completion group and producing formation of each well as illustrated in the inset schematic in Fig.
6.1. The first 2 digits in well name represent well number, the third letter denotes producing formation
(N=Niobrara and C=Codell), and the fourth letter represents the completion group (A=Zipper 1,
B=Zipper 2, P=Parent).

The main objective of this study is to investigate the effects of completion design on well productivity
performance. Here, we propose three performance indicators: ultimate load recovery (ULR), initial
effective fracture volume (V,y,), and ultimate cumulative oil production (UQo) assuming a critical oil
rate of 1 stbd. For the first two indicators, former investigation of formation-water influx to effective
fractures shall be done to formulate the required assumptions for estimating ULR and V. In this
paper, we utilize rate-normalized pressure (RNP) diagnostic plots to investigate the flow regimes
during flowback and post-flowback periods for both the parent and child wells. RNP analysis requires

estimating initial reservoir pressure (p;). Therefore, the following methodology is approached in this
paper:

1. Apply qualitative analysis of early-time flowback and post-flowback rate and pressure data
of the studied wells to a) differentiate between single- and multi-phase flow periods; b)
identify if wells show pressure supercharge behavior at early flowback period; and c)
calculate average p; by applying the approach proposed by Jones, Pownall [113] on early
flowback data. This method is based on estimating p,, s and its flattening comportment when
approaching hydrocarbon breakthrough while the well is flowing back its fracturing fluid.

2. Assess the calculated p; against DFIT data available for five Zipper-1 wells out of which four
wells are completed in Niobrara formation (02NA, 04NA, 05NA and 06NA) and one well
(07CA) is completed in Codell formation.

3. Investigate the flow regimes of water and oil during flowback and post-flowback periods by
plotting rate-normalized pressure for water (RNF,) and oil (RNF,) versus material-balance
time (typ) for all the studied wells. RNP,, and RNP, are defined as (p; — pys)/qw and (p; —
Pwr)/q, for water and oil, respectively. q,, and q, are the production flow rate of water and

oil at bottomhole conditions, respectively. p,( is the flowing bottomhole pressure, p; is the
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initial average reservoir pressure in the stimulated region around wellbore and is
estimated/validated in the previous step. RNP-diagnostic analysis is also applied to
investigate the communication between child and parent wells.

4. Apply WOR-diagnostic analysis [6] to predict ULR and estimate V,, assuming that fracture
is initially filled with water, and negligible formation water production. These assumptions
are validated in steps 1 and 3, respectively.

5. Construct diagnostic plots of oil production rate (q,) versus cumulative oil production (Q,)
on semi-log plots and apply hyperbolic decline analysis to estimate UQo of each of the studied
wells assuming a minimum daily oil production rate of 1 stbd.

6. Analyze the effect of completion-design strategies applied to parent and child wells on their
recovery performance in terms of a) 3-, 7- and 9-month measured LR; b) estimated ULR and

Veg,; © 3-, 7- and 9-month measured Qo; and d) predicted UQo.

6.3 Results and Discussion

6.3.1 Initial reservoir pressure estimation from flowback data

Fig. 6.2a shows the hourly flowback water, oil and gas rates and calculated p,, s during flowback
process of Well 01NA. The figure demonstrates an initial single-phase water flowback for 6 days with
a slight decrease in p,,¢. The initial hydrocarbon traces are observed after flowing back more than 15
kstb of fracturing water (more than 25 times of the wellbore volume) which suggests an initial
supercharge effect. The sudden increase in the estimated p,,f as hydrocarbon production starts might
be due to gas influx into the wellbore and lighting the fluid column. Then, p,, becomes flat for almost
3 days before declining while the oil production rate increases significantly. Therefore, the stabilized
value of p,, ¢ is approximated to be the estimated average reservoir pressure [113]. Fig. C.11 shows the
early flowback data for all the studied 19 wells and the estimated p;. For the parent wells, the flowback
period is not long enough to observe a continuous decline in p,,; after a flatten period. Therefore, the
estimated p; for those wells are not reliable. The p; of the studied wells is estimated to be between
3,700 and 4,350 psi with an average p; of 4,094 psi. Niobrara and Codell wells show an average p; of
4,110 and 4,037 psi, respectively. This leads to a pore pressure gradient of 0.582 and 0.560 psi/ft for
Niobrara and Codell wells, respectively. DFIT analysis gives a pore pressure of 3,880 psi for well 06NA
which is 2% higher than the estimated p; for this well as shown in Fig. C.11. Although the DFIT data
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is also available for wells 02NA, 04NA, 05NA, and 07CA, the pore pressure could not be estimated
due to the poor falloff pressure data quality. However, the bottomhole instantaneous shut-in pressure
(ISIP) for those wells are reported as 7,009, 6,783, 6,448 and 5,931 psi, respectively. Fig. 6.2b shows that
the pore pressure gradient (estimated from flatten p,, s period) has a pronounced positive correlation
with ISIP gradient resulted from DFIT. Wells with higher ISIP gradient show higher pore pressure
gradient. The figure also shows that generally the pore pressure gradient is 35-40% less than ISIP

gradient reported for those wells.

6.3.2 Rate-normalized-pressure diagnostic analysis

Fig. 6.3 shows flowback and post-flowback water and oil RNP versus material-balance time for a
child-Zipper-1 well (0INA) and a parent well (17CP). RNP plots for the other wells are presented in
Fig. C.5. RNPB, for all wells follow a pronounced unit slope during flowback and post-flowback
periods indicating a boundary-dominated or a pseudo-steady-state (PSS) flow regime. This indicates
a closed-tank system for water production with no-flow outer boundary. In other words, RN R, plots
indicate that there is no water influx from the matrix during flowback and post-flowback. Even for
the parent wells with more than 2 years of production, the closed-tank system of water is not
interrupted while completing the child wells (Zipper 1 and Zipper 2 wells). On the other side, RNF,
shows half-slope suggesting a transient linear behavior which might be as a result of a) producing
from fractures that extend to reservoir boundaries [93]; b) transient drainage of low permeability
matrix into adjacent fractures; and c) linear shape of reservoir [94]. It should be mentioned here that
the parent wells were pre-loaded with water and shut-in during fracturing the child wells. After

putting back the parent wells on production, RNP, still follows a pronounced unit-slope, although
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Fig. 6.3 — Rate-normalized pressure plots of flowback and production water and oil for (a) child-well 0INA and (b) P-well 17CP

RNP, indicates a sharp decline in the oil production rate. This is mainly due to the water pre-loading
process which increases the water saturation in the stimulated region around wellbore and hence
reduces the oil relative permeability and consequently the oil production rate at this period. The
pronounced unit-slope displayed by RNP,, of parent wells before and after completing the child wells
and the fact that the decrease in oil rate is due to the pre-loading effect, indicate no significant
interference between the stimulated volumes of child and parent wells. In addition, the obvious unit-
slope of RNR, for both the child and parent wells in Niobrara and Codell formation indicates
insignificant formation water influx from the matrix into the stimulated region around the wellbore
of the studied wells. This is an important conclusion as it solidifies our assumption when estimating

the initial effective fracture volume of the studied wells.

6.3.3 Initial effective fracture volume estimation

Fig. 6.4a shows that WOR during flowback and post-flowback periods follows a logit trend when
plotted on a semi-log plot versus load recovery [6]. A WOR model can fit the flowback data and further
validated by post-flowback data to predict ULR. The figure shows £10% uncertainty when applying
WOR model on only the early-time flowback WOR to predict ULR. However, this uncertainty is
significantly reduced when the post-flowback WOR becomes available and utilized to tune the model
parameters. Therefore, assuming a critical WOR of 0.001 stb/stb that represents the end of load
recovery, the ULR in this case is estimated to be around 34%. The average ULR of all the studied wells
is estimated at 44% as shown in Fig. 6.4b. This relatively low ULR endorses the outcome of negligible
formation water influx from the matrix into effective fracture concluded from RNP diagnostic plots

presented in the previous section. In this figure, the wells in each completion group are sorted based
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on their ULR. Measured 3-,7- and 9-month load recovery are also demonstrated for each well. There
are five main observations from this figure: a) generally Codell wells show the highest measured LRs
and estimated ULRs in each completion group; b) wells with higher LR at 3-, 7- and 9-month show
higher ULR; ¢) if only Niobrara wells are considered, Zipper-1 wells show the highest average ULR,
then Zipper-2 and Parent wells, respectively; d) more than 50% of the predicted ULR is produced back
within the first 3 months of production; and e) on average, the child wells show 32% more load

recovery compared to the parent wells.

The estimated ultimate water production volume can approximate the initial effective fracture volume
(Ver,) assuming a) fractures are completely filled with water initially (supported by the initial single-
phase water flowback); b) pressure-supercharge conditions at early days of flowback as illustrated in

Fig. 6.2a; and c) water production is mainly from fractures. Fig. 6.4c shows the estimated V., sorted
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Fig. 6.4 — (a) Estimated ultimate load recovery using WOR model [6]. (b) Ultimate load recovery and measured ones for the studied
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stimulated volume from
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for each completion group. It could be noticed that Codell wells show larger V,r, compared to
Niobrara wells in each group. Zipper-1 wells show the largest average V, s, with the least variations.

The effects of completion-design on V,, will be discussed in the next section.
6.3.3.1 Comparing effective fracture volume against microseismic dimensions

Fig. C.7 demonstrates the microseismic event dimensions grouped to each fracture stage in terms of
Length, Width and Height for wells 01NA, 02NA, 04NA, 09NB and 12CB. The figure shows that the
events count varies from less than 10 to 250 events per fracture stage. In this study, we use 70 events
as a cut-off. Fracture stages with more than 70 counted microseismic events are utilized to calculate
their volume giving their microseismic dimensions (length, width, and height). Then, we sum those
estimated fracture-stage volumes to estimate the microseismic-events volume (Vy,g) for each well. Fig.
6.4d presents a crossplot of estimated V¢, versus Vyg. The figure demonstrates a positive correlation
coefficient of 0.734 between V., and Vyg for the 5 wells. So, generally wells with Vy,; demonstrate
largerV,,. In addition, this positive correlation allows us to utilize V., as a performance indicator in

this study.

6.3.4 Completion-design effect on well productivity performance

The results presented in Fig. 6.5a suggest that Zipper-1 wells have the largest average V,, then Parent
and Zipper-2 wells, respectively. This difference even increases when only the Niobrara wells in each
group are considered. As illustrated in Table 6.1, unlike Parent and Zipper-2 wells, the completion-
design parameters for Zipper-1 wells vary per stage. Therefore, the polar chart in Fig. 6.5b illustrates

the difference in completion design between Zipper-2 and Parent wells. For Zipper-2 wells, the
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Fig. 6.5 — (a) Average initial effective fracture volume per well in each completion group. (b) average completion-design parameters
of Parent and Zipper 2 wells
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objective was to mitigate the interreference between the wells, compared with the parent wells, the
operator decided to reduce the cluster density, injected fluid volume and proppant per feet, total
number of perforations and the entrance hole diameter of each perforation for the child wells. On the
other side, the operator increased the number of clusters per stage and cluster spacing as shown in
Fig. 6.5b. The RNP diagnostic analysis discussed previously shows that this adapted completion
design for Zipper-2 wells is successful in mitigating the inter-well communication with the Parent
wells while fracturing the Zipper-2 wells. However, it led to a relatively smaller effective fracture
volume compared to the Parent wells as shown in Fig. 6.5a. This difference is even emphasized in

Niobrara wells.
6.3.4.1 Injected water volume and effective fracture volume

For a single-variable analysis, Fig. 6.6 gives deeper insight on the relationship between V,f, and
injected water volume per feet (IWV;). Generally, more IWVf results in larger V., regardless of the
completion group of the target well. A Lower-level analysis also confirms this trend. However, V,,
for Zipper-2 wells becomes more sensitive to IWV; as shown in the figure. Therefore, a larger V.,
could have been achieved if more IWV; was applied to Zipper-2 wells. Zipper-2 wells were completed
by IWV; between 380 to 400 bbl/ft. Zipper-1 wells were completed by IWV; more than 420 bbl/ft and
yet did not cause significant communication with the Parent wells, although wells 04NA, 05NA and
06NA (with IWVf of 442, 432 and 437 bbl/ft) in Zipper-1 are the laterally closest wells to the Parent

wells as shown in Fig. 6.1.

PRLE S5 . '/ Codell Wells

o :’ ’/(

S 14 fWiLse o e

—

o] r H

g BT *

G ‘ O

> I ] &

v 2T -

2 - .

e 111

I s

210+

= o

g -

5ot

P 8 | & Zipper 1-N Zipper 1-C

£ L@ ® Zipper 2-N Zipper 2-C

I L 1 1 L 1 1 L 1 1 1 1 1 L 1 1 1 1 L
T T T T T

380 400 420 440 460

Injected water volume per feet, bbl/ft
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6.3.5 Oil productivity performance

The previous discussions showed that Zipper-1 wells performed the best in terms of ultimate load
recovery and initial effective fracture volume. Zipper-2 wells showed more load recovery compared
to the Parent wells, but with less effective fracture volume. Here we compare the oil productivity
performance of the wells the three groups. Fig. C.12 shows that the oil production rate of child and
parent wells (with more than 2 years of daily production data) follows a hyperbolic decline trend
when plotted versus cumulative oil production (Qo) on a semi-log plot. Therefore, in this paper, we
use hyperbolic decline model to predict Qo when the oil production rate drops to a critical value of 1
stbd, and we define it as ultimate cumulative oil production (UQo). we use it as a performance
indicator for oil productivity among the studied wells. In addition to the estimated UQo, Fig.
6.7displays the measured 3-, 7- and 9-month Qo. The wells in each group are sorted by UQo. There
are several outcomes observed from this figure: a) Parent wells show higher measured 3-, 7- and 9-
month Qo compared to the child wells; b) average UQo predicted for Parent wells is 50% more than
what is predicted for the child wells; c) Child wells exhibit an average hyperbolic decline constant (b)
of 0.01 which is very low (very close to exponential) compared to parent wells with average b of 0.31;

and d) despite the intense completion-design strategy applied to Zipper-2 compared to Zipper-1 wells,
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Fig. 6.7 — Ultimate cumulative oil production predicted by the hyperbolic decline model (considering critical oil production rate of 1
stbd) and the measured cumulative oil production at 3, 7 and 9 months

6.4 Summary

We analyzed the early production and completion data of 19 MFHWSs completed in Niobrara and

Codell formations that led to the following results:
1. Flowback data of the studied wells show an average 6-day period of single-phase water
production. This period increased by 25% on average for Zipper-1 wells which were

completed with a relatively more intense design strategy.
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2.

Estimated pore pressure gradient of 0.587 and 0.546 psi/ft from flowback pressure profiles for
Niobrara and Codell wells, respectively, show an acceptable match with the DFIT results.
RNP diagnostics plots suggest a) negligible water flow between matrix and effective fractures
during flowback and post-flowback periods; and b) that effective fracture networks for both
the parent and child wells behave as closed tanks during flowback and post-flowback periods
Generally, Niobrara wells show less load recovery and effective fracture volume compared to
Codell wells in each completion group.

Zipper-2 wells showed 35% smaller effective fracture volume and less capability to recovery
fracturing water compared to Zipper-1 wells due to altering the design strategy by reducing
injected water volume and proppant per feet, cluster density and total number of perforations
while increasing cluster spacing and number of clusters per stage. However, both groups
showed similar oil recovery performance. In other words, although Zipper-1 wells showed
larger effective fracture volume compared to Zipper-2 wells, both groups showed similar oil
recovery performance. This suggests that the completion intensity for child wells does not
help much to recover more oil.

Although the child wells demonstrated better load recovery performance in terms of
measured LR and 32% more predicted ULR, parent wells showed 38% and 50% more 9-month
Qo and UQo, respectively. This is mainly affected by the quality of the formation where each
group is completed.

For both the parent and child wells, more than 50% of the predicted ULR is produced back

within the first three months of production.
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Chapter 7.
Proxy Model Development for
Completion Design Optimization as

Function of Reservoir Quality

7.1 Introduction

Optimizing the completion design of multi-fractured horizontal wells (MFHWs) in tight reservoirs is
a complex task. This complexity arises from factors such as: 1) identifying the optimal sweet spots for
positioning a MFHW within a heterogeneous tight reservoir, while mitigating potential interference
with existing parent wells; 2) defining the wellbore trajectory and direction to align with the minimum
horizontal stress, and choosing between a flat, upward, or downward toe orientation, is critical to
ensure efficient proppant transportation to the toe section while minimizing significant proppant
settlement within the wellbore; 3) choosing between open- or cased-hole completion to balance
between matrix-to-wellbore connectivity and potential formation damage; 4) selecting a fracturing
fluid that minimizes the risk of skin or formation damage during fracturing while effectively carrying
the proppant away from the wellbore; 5) determining the type and amount of proppant that maintains
the developed fractures open without excessive packing that might reduce fracture conductivity; 6)
deciding on a pumping design to efficiently propagate fractures without introducing water blockage
within the reservoir; and 7) selecting the optimal completion design concerning the number of stages,
stage lengths, fracture spacing, number of clusters within each stage, perforation density, and
deciding whether to allow the well to soak post-fracturing or to directly flowback the fracturing fluid
to the surface. Each of these factors requires careful consideration to achieve a well-balanced, effective
fracturing design, demonstrating the multifaceted nature of optimizing MFHWs in tight reservoir

scenarios.

Many operators have employed different techniques to analyze and optimize the completion design
of MFHWs in tight formations, yielding different results. Usually, these methods address individual
aspects of this complex process, consequently not leveraging all available data concurrently. Typically,
an integrated workflow is employed using commercial software to optimize field development
planning, leading to business decisions. The initial step in this workflow involves constructing a

comprehensive 3D geological model for reservoir characterization, utilizing available core, well-log
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and seismic data. Next, hydraulic fracture modeling is conducted using numerical simulators,
integrating DFIT and microseismic data to estimate fracture geometries and conductivities. Then,
analytical and numerical flow modeling, which utilize outputs from the geological and completion
models, PVT analysis, and downhole/surface pressure and rate data to forecast the expected drainage
for each well. These calibrated fracture and reservoir models serve as the foundation for optimization
studies for well and fracture spacing. However, each model was developed independently. This
independence posed challenges in seamlessly transitioning from one model to the next step of the

workflow.

Generally, the success of tight reservoir development depends heavily on the effectiveness of the
completion design. However, the reservoir characteristics shall be understood before optimizing well
completion. Holderby, Dahl [114] showcases three wells completed in the Barnett Shale to
demonstrate the benefit of improved reservoir understanding before optimizing completion design.
It was observed that the average Estimated Ultimate Recovery (EUR) of the three wells improved by
nearly 30% with a completion design optimized based on reservoir characteristics. In addition,
Considering the geomechanical properties and specifically the presence of natural fractures while in
completion design optimization might signigicanly enhance the hydrocarbon recovery from MFHWs
[115] . This improvement is likely due to the reopening or interconnection of the existing natural-
fracture system in a reservoir through a completions design. The design aims to generate a complex-
fracture network, creating conductive flow paths that expose more surface area compared to planar

fractures [116].

Jaripatke, Samandarli [117] presented a workflow for optimizing completion design in the Eagle Ford
Shale, including thorough reservoir and economic analyses associated with each tested completion
parameter. It was illustrated that different completion parameters significantly influence well
performance and economics. The study concluded that optimum completion practices could vary

with different reservoir characteristics.

Furui, Zhu [118] investigated how to determine well configurations based on formation properties,
employing skin-factor models to evaluate different completion types for cased- and open-hole
completions. A proposed workflow utilizes different skin factor models to identify optimal
completions for horizontal wells. It highlights key parameters impacting completion performance
including reservoir permeability, permeability anisotropy, fluid properties, formation damage effects,
and geomechanical properties. They concluded that a cased and perforated well completion is

preferable in formations with significant permeability damage.
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In a seven-well study aimed at optimizing completion design and well spacings in the Wolfcamp
Formation, a 3D geological and wellbore fracture-propagation model was initially developed then
transitioned into a reservoir simulation model and calibrated with production history [119]. The
results indicated that well spacings and respective completion designs significantly influenced
fracture hits/well interference and drainage volume. The study concluded that tighter cluster spacing
and higher fluid and proppant intensity in the southern Midland Basin's Wolfcamp Formation could

enhance the initial production rate and ultimate recovery.

In the last decade, numerous studies have been conducted to optimize the performance of well
production utilizing ML techniques. Wang and Chen [120] developed a machine learning based
predictive model to assess the performance of MFHWSs in the Montney formation, using 6-month
cumulative production data as an output. They utilized 11 well completion parameters as input
parameter to their model, including the number of stages, fracture spacing, and proppant per stage.
By integrating cluster data mining techniques with neural network, they introduced a predictive
model to optimize the well productivity. Similarly, Bowie [121] employed machine learning modelling
to optimize the completion designs of MFHWs completed in the Duvernay Formation. Their model
yielded solutions with the potential to enhance well production performance by over 50% by
optimizing different completion design parameters, including the volume of fluid pumped and
proppant concentration. However, these models are not coupled with reservoir properties or/and

geomechanical properties so that they are not applicable for sweet spots identification.

Mohaghegh, Gaskari [122] incorporated reservoir characteristics such as porosity, Total Organic
Content, and water saturation alongside completion-design parameters like proppant loading and
injection rate in their data analytics and predictive ML modeling. Focusing on the 30-day cumulative
production in Marcellus formation. They developed type curves for completion-design optimization.
The analytical findings revealed that among the reservoir parameters, only net thickness exhibited a

limited influence on the 30-day cumulative production in the Marcellus shale.

Tandon [123] explored the use of integrated ML-techniques for identifying sweet spots in
unconventional reservoirs. Utilizing eight primary geomechanical parameters such as stiffness,
geostress, and fracture toughness as predictors, predictive ML modeling was conducted based on the
numerical results from 200 hydraulic fracturing simulations. The study focused on impacts of the

geomechanical parameters on identifying the sweet spots.

Recently, a thorough methodology involving data analytics and predictive machine learning
modelling was proposed, employing techniques like Random Forest (RF), Generalized Additive
Model (GAM), and Deep Neural Network (DNN) [124]. The objective was to identify the sweet spots
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in the Montney formation and optimize completion designs by leveraging reservoir and completion
properties, aiming to enhance the MFHWSs’ productivity. The approach utilized over 30 reservoir and
completion parameters as input features. For measuring productivity, 3- and 12-month cumulative
production data were employed as target metrics. However, the model was trained on a relatively
modest dataset of only 77 MFHWs in the Montney formation, which might hinder its generalizability
across the formation. The validation tests displayed reasonable predictive accuracy with RF and GAM
techniques, while the DNN model seemed to necessitate further refinement and hyperparameter

optimization, potentially due to the limited number of data points available for training.

While there are many ML-based predictive modeling approaches to forecast well performance in tight
reservoirs, there are limited studies focused on the comprehensive development of the Montney
formation considering both reservoir characteristics and completion design. Specifically, this study
seeks to answer two main questions: 1) How can sweet spots for MFHWs in the upper, middle and
lower Montney formation be accurately identified? and 2) How can the completion design be
optimized based on the reservoir quality and geomechanical properties? By addressing these
questions, we aim to provide a more holistic and effective approach to optimizing well performance

in the Montney formation.

In this study, data from over 14,000 oil and gas wells completed in the Montney formation are
analyzed. Utilizing core analysis and well log data, a support vector machine (SVM) model is
developed to predict formation permeability as function of porosity, bulk density, gamma ray (GR),
and short and deep resistivities. Employing hierarchical clustering, the lithology of each sub-
formation is categorized using key well log data. The application of 3D kriging interpolation aids in
filling the missing data points, subsequently leading to the creation of high-resolution petrophysical
maps for the upper, middle, and lower Montney formations. From these maps, a Reservoir Quality

Index (RQI) map is derived, facilitating the identification of optimal sweet spots.

Following this, a methodology is introduced to estimate a formation's fracability, as represented by
the brittleness index, from sonic log data. A novel metric termed Stage Positioning Efficiency (SPE) is
also proposed. SPE serves as a valuable gauge for evaluating the effectiveness of fracture stage
placements in alighment with the RQI along the wellbore. Additionally, a new term, effective distance
to nearby wells, is proposed to estimate the minimum effective distance between a well and its

surrounding wells based on both 3D spatial distance and directional difference.

Finally, all gathered petrophysical, geomechanical, and completion design data are coupled with

historical production data. This incorporated data serves as the foundation for developing a neural
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network-based proxy to predict well performance as function of both reservoir quality and completion

design.

7.2 Methodology

7.2.1 Lithology-Based Sub-Clustering of Montney Formation

Here, we classify the Montney Formation into sub-clusters based on its varied lithologies. For
identifying lithologies, we use ¢, GR, p;,, and PE well log data, finding over 4,000 Montney wells with
these four well log data sets available. A semi-supervised clustering method is employed for lithology
identification. Initially, hierarchical clustering is applied, which is a method that groups similar data
points together based on the given parameters, with a visual representation known as a dendrogram
shown in Fig. 7.1a. This helps to understand our dataset better, assisting in choosing an appropriate
number of clusters for the next step. The chosen approach is essential as we don't have prior
knowledge regarding the number of lithology clusters expected for Montney based on the given input
data of ¢, GR, p,, and PE. The dendrogram provides a preliminary insight into the likely number of
clusters, which is then used as input for a more advanced supervised clustering algorithm known as
Agglomerative clustering. Agglomerative clustering is a method where each data point starts as an
individual cluster, and pairs of clusters are merged as one moves up the hierarchy, aiming for a final
classification [125]. This is demonstrated in Fig. 7.1b, which identifies three distinct lithology clusters
within Montney. Cluster 3 is noted to be the deepest and hosts the majority of Montney wells (75%),
followed by Cluster 1 (20%) and then Cluster 2 (5%). In the discussion section, we explore why most
Montney operators opt to complete their wells in Cluster 3, then Cluster 1. Lastly, Fig. 7.1c shows that
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Fig. 7.1 — Hierarchical clustering approach for lithology identification in the Montney Formation, (a) dendrogram of the potential
clusters, (b) clusters mapped on the Montney formation, (c), Montney lithofacies [5]
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our lithology-based clustering aligns well with the distribution of Montney lithofacies as presented

by Edwards, Barclay [5].

7.2.2 3D Kriging Interpolation

For each identified cluster, we applied 3D kriging to interpolate the petrophysical properties in wells
with incomplete well log data. The choice of 3D kriging was motivated by its geostatistical
interpolation capability, utilizing longitude, latitude, and elevation as a three-dimensional framework
to interpolate missing petrophysical properties based on the observed ones. A grid search was
conducted to fine-tune the parameters and select the optimal model. This search explored a predefined
parameter grid, encompassing three variogram models (linear, spherical, exponential) to capture the
spatial correlation among data points, three distinct numbers of averaging bins for the semi-variogram
(4, 6, 8), and a boolean flag weighting semi-variance at shorter lags, concluding in a comprehensive

examination of 18 unique configurations.

Fig. 7.2 illustrates the application of 3D kriging to interpolate missing values of ¢ in Cluster 1 within
the upper Montney formation. Fig. 7.2a shows the wells with available ¢ data alongside those with
missing values. Subsequently, in Fig. 7.2b, 3D kriging is employed to interpolate porosity values to
wells missing this data, by utilizing their respective longitude, latitude, and elevation coordinates.
Fig. 7.2c presents a porosity contour map interpolated for Cluster 1. This methodology is extended to
all other clusters, as well as to the middle and lower Montney formations, to generate high-resolution

3D maps of the studied petrophysical properties.

7.2.3 Permeability Estimation from Well Logs
In this section, we demonstrate the method of correlating well log data, specifically, ¢, pp, GR, shallow

resistivity (R;) and deep resistivity (Ry), with reservoir permeability (k) using a Support Vector
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Fig. 7.2 - 3D kriging application to interpolate missing ¢ in Cluster 1 in the upper Montney Formation, (a) before interpolation, (b)
after interpolation for the existing wells and (c) contour map of interpolated ¢
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Machine (SVM) modeling approach. The rationale behind selecting these particular input parameters
stems from the general expectation that rocks with higher ¢ and lower p,, which are relatively cleaner
as suggested by GR, are likely to exhibit higher permeability. Additionally, the ratio between R, to Rg
can signify fluid/mud invasion, providing a direct indication of rock permeability [126]. Therefore, R,
and R; are restructured into a new term (rz = log Ry /Ry), to better capture its relationship to k in our

analysis.
7.2.3.1 Well-log Data Validation Utilizing Core Data

A critical step in this process is the validation of well log data against core data, given that the output
in the SVM model is derived from core permeability. Therefore, a crossplot is constructed comparing
bulk densities as estimated by well log versus core analysis, as shown in Fig. 7.3. For each core sample,
both the p;, from core analysis and well log are available. The equality line in the crossplot is then
shifted upward by 3% to account for rock compaction and reduced pore volume, a consequence of the
difference in rock compressibility between downhole and laboratory conditions. This 3% correction is
computed based on an average reservoir pressure of 3,000 psi and an average formation
compressibility of 1x107 psi, resulting in a 3% change in pore volume (AV,, = c¢V,Ap). This change in
pore volume is considered approximately equivalent to the change in p;, from downhole to surface

conditions. Additionally, a margin of +/-5% is established around this line to accommodate
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Fig. 7.3 — Crossplot of bulk densities estimated from well log versus core analysis
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measurement accuracy, and data points within this region are flagged as valid. Through this

validation step, a total of 1,022 Montney wells with 3,067 valid core samples are identified.
7.2.3.2 SVM model development for permeability prediction

In this study, we employ the Support Vector Machine (SVM) modelling to predict k utilizing ¢, pp,
GR, R; and R, as input parameters. SVM operates by mapping the input data into a higher-
dimensional space and optimizes a hyperplane to minimize the error between the predicted
permeability k and k. The optimization of this hyperplane is governed by hyperparameters, namely
the kernel type, regularization parameter (C), and €. The kernel type was considered as a categorical
parameter with four potential selections: Linear, Poly, RBF and Sigmoid. On the other hand, C and €
were treated as continuous parameters with ranges of (0.1, 100) and (0.01, 1) respectively. The selection
of appropriate hyperparameters is crucial as it significantly influences the model's performance and
its capability to generalize well on unseen data. To systematically and efficiently navigate through the
hyperparameter space, we employed Bayesian Optimization. This probabilistic model-based
optimization technique iteratively evaluates the performance of selected hyperparameters, learning

from previous evaluations to identify the optimal set.

7.2.4 Brittleness Estimation from Sonic Log

Here, we illustrate the methodology of utilizing sonic log data to estimate the formation's fracability,
as indicated by the brittleness index (B;). First, we collect the sonic-log data available for Montney
wells. Then, we extract both the compression and shear transient times (DT, and DT, respectively).
Second, estimate compression velocity (V) and shear velocity (V;) by simply inverse the wave transient
time (1/DT,, and 1/DTyy, respectively). Third, we use the correlation provided by E. Fjeer [127] to

estimate the dynamic Young’s modulus (E;) and Dynamic Poisson’s ratio (v,) as follows:
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Then, we use E; and v, to estimate the brittleness index according to the hypothesize proposed by
Grieser and Bray [128] as they showed that ductile rocks, generally, exhibit a low Young modulus (E)
and high Poisson’s ratio (v), whereas brittle rocks, generally, exhibit a moderate to high E and low v.
Next, we apply the fuzzy set theory introduced by Zadeh [129] to convert the crisp classification of
brittleness resulted from the previous step to fuzzy classification as shown in Fig. 7.4. Finally, we

apply this workflow to all Montney wells with available sonic log data, followed by employing 3D
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kriging to interpolate the B; for wells missing this log, thereby creating a comprehensive 3D map of

B; across the Montney formation.
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Fig. 7.4 —- Workflow to estimate brittleness index from sonic-log data

7.2.5 Reservoir Quality Indexing using Fuzzy Logics

Here, we utilize the supervised fuzzy clustering (SFC) algorithm, detailed in Chapter 3, as a
multivariate analysis tool to combine p;, Sy¢, ¢, k, hyer and B; and develop a reservoir quality index
(RQI). RQI serves as a classifier of the reservoir quality for each studied well. The term reservoir
quality refers to the quality of the part of the formation where each well is completed. A higher RQI
refers to relatively higher p;, Syc, ¢, k, hyer and B; while a lower RQI refers to the opposite. The
outcome of this step is an estimated RQI for each Montney well. Then, we create a 3D spatial

representation of the RQI, generating a comprehensive map across the Montney formation.
7.2.5.1 Stage Positioning Efficiency Determination

In a practical extension of the RQI, we propose a characteristic term known as Stage Positioning
Efficiency (SPE). SPE serves as an innovative metric for gauging the effectiveness of fracture stage
placements in alignment with the RQI along the wellbore, while also incorporating a global
normalization of RQI across the entire Montney formation. Initially, we assess the overlap of each
fracture stage with intervals of high RQI. A greater overlap with high RQI intervals signifies a higher
placement efficiency for a fracture stage. Following this, we compute the average placement
efficiencies of all fracture stages within each well to derive its SPE, thereby indicating the degree of

effectiveness in stage positioning relative to the reservoir quality.

Fig. 7.5 illustrates the estimation of SPE for two scenarios with differing distributions of fracture
stages, although having an identical number of stages and the same minimum fracture spacing. This
illustration highlights the significance of aligning the fracture stages as function of RQI. In scenarios

where fracture stages are uniformly distributed along the completed length in the lateral section, the
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Fig. 7.5 — Stage positioning efficiency (SPE) in (a) evenly distributed fracture stages, and (b) fracture stages placed as function of
RQI

SPE is found to be suboptimal (at only 30%). In such a scenario, it's observed that the average RQI of
the stages aligns with the average RQI of the well. However, when RQI is factored into the positioning
of the fracture stages, a substantial enhancement in SPE to 90% is achieved. This indicates that the
average RQI of the fracture stages surpasses the average RQI of the well, showcasing the potential for

optimized stage positioning.

7.2.6 Completion-Design Parameters Formulation

In the developed proxy, we categorize different completion parameters into six individual groups: 1)
Completion Technology, 2) Completion Fluid, 3) Proppant Design, 4) Pumping Design, 5) Well Profile,
and 6) Completion Design, as illustrated in Fig. 7.6. Under Completion Technology, we take into
account the technological groupings such as Ball and Seat, Plug and Perf, Sliding Sleeve, etc.... We also
evaluate whether it's an open or cased hole, the type of ball used (conventional, dissolvable, or

combination), and similarly, the type of bridge plug utilized.

For Completion Fluid, considerations include the volume of fluid pumped per stage (Viy;), fluid type,
energizer type (if any), the use of foam and its quality, and the utilization of acid for pre-flush, along
with the quantity of acid injected. In Proppant Design, we consider the proppant concentration (Cprop)

within the injected fluid and the type of proppant.

Under Pumping Design, the average injection pressure (pj,j) and rate (gj,;) are considered. For the
Well Profile, we consider the formation (upper, middle, or lower Montney), the location of the well,

its lateral length (L;) and Total Vertical Depth (TVD), wellbore direction, and toe direction (up, down,
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or flat). A new characteristic, the minimum effective distance to nearby wells (d, ), has been introduced
to measure the effective distance among the studied wells, with the following section detailing how

d. is estimated.
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Fig. 7.6 — Completion-design parameters utilized to develop the ANN-based proxy

Finally, in Completion Design, we evaluate the number of stages (N;), stage length (Ly), number of
clusters/intervals per stage (Cs), perforation density (dperf), average fracture spacing (ds), and the

soaking period or shut-in time (tsj,) from the end of fracturing until flowback.
7.2.6.1 Effective Distance to Nearby Wells

In this section, a new term as effective distance to nearby wells (d,) is introduced. d, estimates the
minimum effective distance between a well and surrounding wells based on a) 3D spatial distance
and b) their directional difference. The spatial distance between two wells is calculated using the
Euclidean distance formula between their midpoints in 3D space. The midpoints are determined by
averaging the start and end coordinates of the lateral section of each well. The formula for 3D

Euclidean distance between two points, Py (xq, y1,21) and Py, y, 7y, is:

dspatial = \/(xz —x1)? + (2 —y1)? + (2, — 21)? (7.3)
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Fig. 7.7 — Effective distance estimation between MFHWSs

where x, y and z refer to longitude, latitude and elevation, respectively. Next, the directional

difference between two wells is calculated as the angle between their direction vectors. The direction

vectors are determined based on the cardinal direction of each well. The formula for the angle 8

between vectors v; and v, is:

cos(f) = Vi %2
Vi llve] 74
then, d, is estimated as
de = dspatial +6 (7.5)

Fig. 7.7 illustrates an application of the effective distance (d,) metric among MFHWs in a 3D space.
It's evident from the figure that while Well 1 and Well 2 share the same surface location, Well 3 is
identified as the closest to Well 1. This observation aligns with the expectations in the MFHW domain,
where communication between Well 1 and Well 3 is anticipated if their fracture networks intersect.
Similarly, Well 4 is closest to Well 2, and Well 5 is closest to Well 4, not Well 3. This example highlights
the integration of both 3D spatial and directional distances in computing the effective distance

between MFHWSs.

7.2.7 ANN-Based Proxy Model Development

In this section, we consolidate all the extracted, estimated, and interpolated petrophysical properties

along with completion-design parameters to serve as input features for a neural network aimed at
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Fig. 7.8 — Montney MFHWs statistics and the associated developed proxies

predicting well productivity. As previously mentioned, our dataset includes data from over 14,299 oil
and gas wells completed in the Montney formation. The well log data from these wells were utilized
to develop high-resolution 3D maps of petrophysical properties and RQI. Out of these wells, nearly
10,093 are MFHWSs with available completion design data. A subset of 3,348 are oil MFHWSs, and
among them, 1,356 oil wells exhibit negligible formation water mobility, and 1,992 oil have non-

negligible formation water mobility. These statistics are illustrated in Fig. 7.8.

In this research, we aim to develop four different neural networks to correlate reservoir characteristics
and completion-design parameters with: initial effective fracture volume (V,), cumulative oil
production at 90% of ultimate recovery (Qogp), ultimate cumulative oil production assuming a
hyperbolic decline of g, in a semi-log plot relationship with Qo, and Ultimate Barrel of Oil Equivalent
(UBo,) also assuming a hyperbolic decline. The developed proxies are termed as: 1) ANN-V,, trained
on the 1,359 oil MFHW s with negligible formation water mobility; 2) ANN- Qoy, trained on the same
oil MFHWs as in the previous development; 3) ANN-UQoyy, trained on the 1,992 oil MFHWSs with
non-negligible formation water mobility; and 4) ANN-UBo, , trained on the 6,745 gas MFHWs.

7.2.71 ANN Modeling

In this study, the application of ANN is explored for correlating well productivity with completion
design and reservoir characteristics. The ANN, inspired by the biological neurons of the human brain,
is known for its effectiveness in classifying and recognizing complex patterns in data [23]. The ANN
model comprises three main components: the network architecture, the training algorithm, and the

activation function [24]. It is structured with a minimum of three layers: input, hidden, and output
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layers. These layers are interconnected through weights, and the adjustment of these weights is critical

for the model's performance [25].

The training of the ANN model is initiated using a backpropagation of errors algorithm. The data is
processed from the input layer through to the hidden layer(s), and then to the output layer. At the
output layer, a comparison is made between the estimated and actual data. The difference between
the estimated and actual data triggers an update in the weights and biases across each layer. This
training process continues iteratively across the entire dataset until the error reduces to a predefined
limit (or until the maximum iterations number is met), ensuring the model's performance meets the

desired criteria [26].

For optimizing the hyperparameters of the ANN model, a self-adaptive differential evolution (SaDE)
method is employed [130]. This optimization seeks to find the best configuration of hyperparameters
including the number of layers, neurons, and the type of activation functions to ensure high predictive
accuracy while avoiding overfitting. In addition, a cross-validation framework is utilized to partition
the dataset into training, validation, and testing subsets. This ensures a robust training and an
unbiased evaluation of the model's performance. Through this approach, the ANN model is trained
and validated for correlating reservoir characteristics and completion design parameters to well
productivity, providing a reliable tool for optimizing completion designs in unconventional

reservoirs.
7.2.7.2 ANN interpretation using SHAP

For practical application, beyond the statistical validation of machine learning models, it's crucial to
have a physics-based interpretation to comprehend the underlying physics driving the predictions.
Understanding why a particular well exhibits a certain level of productivity, or why its productivity
is lower or higher compared to others, is vital for making informed decisions. In addressing these
demands, we utilize SHapley Additive exPlanations (SHAP) method to interpret our ANN-based
proxies. SHAP provides a robust method for interpreting model predictions by allocating each feature
an importance value for a particular prediction [131]. It quantifies the contribution of each feature to
the prediction for a specific data point in relation to the average prediction of the dataset. This method
not only highlights the significance of each feature but also provides insights into complex
relationships between features and the target variable, enabling a clearer understanding of the well

productivity predictions from both a machine learning and physics-based standpoint.
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7.3 Sweet-Spot Identification Results and Discussion

Here we present the high-resolution petrophysical maps constructed based on the log data of more
than fourteen thousand wells completed in the upper, middle, and lower Montney formations. Then,
we show how could these maps are combined to develop a reservoir quality index (RQI) that represent

the reservoir quality of the Montney formation.

7.3.1 3D Maps of Montney Petrophysical Properties

Fig. 7.9 resents the developed 3D maps of the upper, middle, and lower Montney formation,
highlighting different petrophysical properties, specifically; ¢, GR, pp,, p;, Spe, and hye.. These high-
resolution maps are segmented by the upper, middle, and lower Montney formation. At every
geographic map point defined by its longitude and latitude, three sets of data could be extracted: 1)
the elevation at that point; 2) the thickness of the upper, middle, and lower Montney formation; and

3) the values of ¢, GR, py,, pi, She, and hy,,; for each sub-formation.

These maps are developed for three primary reasons: 1) to interpolate missing petrophysical
properties of the studied wells; 2) to aid in predicting reservoir permeability on a formation-wide scale
utilizing these petrophysical properties; and 3) to be combined together to formulate an RQI, which
can identify the reservoir quality at each location within the Montney formation. A prominent
observation is found in Cluster 3, situated at the center of the Montney formation, which holds the
highest initial reservoir pressure and hydrocarbon saturation levels, explaining why a majority of the
Montney MFHWs are located in this region. In fact, over 75% of the Montney MFHWs are completed
in this area. On the other hand, only 20% of Montney wells are located in areas with higher porosity
and lower gamma ray, indicating a preference by Montney operators for initial reservoir conditions
over others. Another point of interest is the distinct variation in formation characteristics, as these
maps do not overlap. A section of the reservoir with high ¢ does not necessarily have high Sy, hye;
or and p;. This highlights the importance of applying multivariate analysis to integrate these

characteristics into a single term as RQI, and to investigate its correlation with well productivity.
7.3.1.1 3D Map of Montney Fracability

Fig. 7.10a presents a 3D map of the estimated brittleness index, serving as an indicator of formation
permeability for the upper, middle, and lower segments of Montney. As previously explained, B; is
derived from sonic log data, utilizing the transient times of shear and compression waves. The
illustration reveals a notably higher fracture fracability in Cluster 3, while Cluster 1 exhibits the least
fracability potential. This observation may further explain why over 75% of Montney MFHWSs are

completed in Cluster 3. Another observation is that within each sub-formation, deeper zones generally
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Fig. 7.9 — 3D petrophysical maps of upper, middle and lower Montney formation. (a) porosity, (b) gamma ray, (c) bulk density, (d)
initial reservoir pressure, (e) hydrocarbon saturation and (f) net-pay thickness

exhibit higher B; values. This may be attributable to the likelihood that deeper zones experience

greater overburden stresses, potentially leading to a plastic-brittle strain [132], thereby increasing B;.
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Fig. 7.10b displays the distribution of B; for the upper, middle, and lower segments of the Montney
formation. It indicates that there is no significant variation in B; across the sub-formations. However,
the middle Montney exhibits the broadest range of B;, potentially reflecting a greater heterogeneity in
geomechanical properties. Despite the narrow range of B;, the upper Montney presents the most
outliers. These outliers may be attributable to the higher number of wells completed in the upper

Montney compared to the other sub-formations.
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Fig. 7.10 — Brittleness index as (a) 3D map and (b) distribution for upper, middle and lower Montney formation

7.3.2 Permeability Prediction from well log data

The optimized SVM-K model exhibits a specific architecture characterized by the utilization of a
Radial Basis Function (RBF) kernel. The model’s training performance, determined by R?, over 1000
iterations is shown in Fig. 7.11a. SVM-K's regularization parameter is established at 2.149, ensuring a
balance between margin maximization and error minimization. The width of the e-insensitive zone,
which determines the allowable error range without incurring any penalty, is established at 0.193.
Furthermore, the model's RBF coefficient (y), which plays a pivotal role in shaping the decision

boundary, is optimized to a value of 0.986. Here is the mathematical representation of SVM-K:
N 2
k = exp [Z a;e(~0986 llxn=Sill) 0.005] (7.6)
i=1
where;

llx — S;11% is the squared Euclidean distance between the input x and each support vector s;. The sum

is over all the support vectors (i = 1 to N), where (N=50) is the total number of support vectors.
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Se;
[SGRi]

s; is the support vector Sp, | 35 shown in Table D.1
i
l STRl- J

; is the dual coefficient of each support vector and listed in Table D.1

Pn
R
X, is the normalized input vector [ = "
Tr,
where;
o ¢ —0.122
" 0.046
o  GR—84573
" 37315
Py — 2,374.02
Pon = "174.106
13— 0.296
"Rn = 70,249

where, 13, is the logarithmic of the ratio between deep and short resistivities [log(R,/R;)].

Fig. 7.11b presents a crossplot, correlating the predicted k,, generated by the SVM-K model with the
core permeability across both the training and testing datasets. The figure highlights the strong

predictive capability of the SVM-K model, as evidenced by impressive R"2 values of 0.97 and 0.95,

along with AAPE of 7.1% and 9.7% for the training and testing datasets respectively. Considering the

simplistic yet potent nature of the SVM-K model, these metrics signify satisfactory predictive
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Fig. 7.11 - (a) SVM-K improvement during the optimization process. (b) crossplot between predicted permeability from SVM-K and
core permeability. (¢) 3D permeability map for upper, middle and lower Montney predicted by SVM-K model
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performance. In addition, the figure further reveals that the model's prediction confidence is
predominantly higher for k,, values less than 1mD. This heightened confidence can be attributed to
the fact that over three-quarters of the wells utilized to construct this model exhibit k,, values under
1mD. Therefore, in regions of Montney with relatively higher permeability, the SVM-K model's

predictions are anticipated to exhibit higher uncertainty.

Fig. 7.11c presents the developed 3D map of permeability for the upper, middle, and lower Montney,
achieved by employing the available GR, porosity, bulk density, and resistivity log data to predict
missing k,, values for wells lacking core data, followed by interpolation to construct this map. Now,
for each well (or for each location) in Montney, we can estimate its formation permeability using the
five logs; porosity, bulk density, GR, shallow and deep resistivities. This also explains why nearly 20%
of the Montney wells are completed in this Cluster 1 region, even though it has relatively low p; and
Spe- It's probable that the operators in this region prioritized formation permeability when selecting

the sweet spots to complete their wells.

7.3.3 Reservoir Quality Index to Identify Sweet Spots

The developed maps of ¢, p;, Sne, hner, Bi and k are combined to formulate the RQI a singular index
that encapsulates the reservoir quality at each location in the Montney formation as shown in Fig.
7.12. is the variation in RQI across different clusters; Cluster 2 (located on the north-east side) exhibits
the lowest RQ), followed by Cluster 1, and then Cluster 3. Explaining why the majority of MFHWs

are completed in Cluster 3.

When outliers are excluded, a majority of RQIs, about 90%, fall between 0.25 and 0.85, and this

distribution remains fairly consistent across the upper, middle, and lower Montney. However, the

U-Montney 1t + -+ | Il -— 1

M-Montney o i | -
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Reservoir Quality Index (RQI)
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Fig. 7.12 - Reservoir quality index (RQI) as (a) 3D map and (b) distribution for upper, middle and lower Montney formation
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Upper Montney displays more homogeneity as the interquartile range (25th to 75th percentile) of RQIs
is narrowly confined between 0.48 to 0.58. In contrast, the Middle and Lower Montney exhibit a
broader range by 23% and 48% respectively, indicating a higher level of heterogeneity. This
methodology offers operators a straightforward approach to identify the sweet spots based on the

petrophysical properties, enhancing the efficiency in well completions across the formation.

7.4 Proxy Modelling Results and Discussion

This section presents the key results obtained from training different neural networks on different
datasets to predict the performance indicators: Ve, Qogg, UQoyy and UByy of Montney oil and gas
MFHWs as functions of reservoir characteristics, geomechanical properties and completion-design
parameters. For each indicator, a neural network is trained, cross-validated and tested. Subsequent
sections will elaborate on the mathematical representation and the physics-based interpretation of

each developed neural network.

7.4.1 Proxy Model for Initial Effective Fracture Volume

Utilizing SaDE for hyperparameter optimization resulted in an effectively trained ANN with a distinct
architecture: two hidden layers with 64 and 32 neurons respectively. A dropout ratio of 0.2 was
adopted to mitigate overfitting, while both hidden layers utilized a Rectified Linear Unit (ReLU)
activation function to introduce non-linearity. The training process leveraged Adaptive Moment
Estimation [133] as a stochastic optimization method across 1000 epochs, with Mean Squared Error
(MSE) serving as the loss function, which facilitated a robust and effective learning mechanism. Here

is the mathematical representation of the trained ANN-V, and the associated weights and coefficients:
V, = e11988Ve, 7.7)

where V, is the normalized V, and is estimated as

32
]/en = W3k.a2k + 0.703 (78)
k=1

where the sum is over the 32 neurons in the second hidden layer. w;, is the weight connecting the k-
th neuron in the second hidden layer to the output neuron, Ve,r and listed in Table D.2. a, . 18 the

activation of neuron k in the second hidden layer and is estimated as

64

a3, = ReLU Z Wa, a1, + by, (7.9)
=
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where ReLU is the rectified linear unit activation function. The sum is over the 64 neurons in the first
hidden layer. w,, . is the weight connecting the j-th neuron in the first hidden layer to the k-th neuron
in the second hidden layer. b,, is the bias of the k-th neuron in the second hidden layer. The values
of Wy, and b,, are listed in Table D.2. ay; is the activation of neuron j in the first hidden layer and is

estimated as

155
a; = ReLU <Z Wy, Xy, + b1j> (7.10)

=1
where the sum is over the 155 vectorized input features. wy ; is the weight connecting the i-th input
neuron to the j-th neuron in the first hidden layer. by, is the bias of the j-th neuron in the first hidden
layer. The values of wy ;, and b, are listed in Table D.3. x,,. is the normalized input parameter, x;
Jt J i
estimated as

X W
Xp, = p
L

(7.11)

where y; and o; are the mean and standard deviation of the input features as listed in Table D.4.

The crossplot illustrated in Fig. 7.13a reveals the correlation between the predicted and targeted
normalized V, across both training and testing datasets. The figure exhibits a strong match between
the predicted and targeted values for both datasets, as evidenced by R? values of 0.96 and 0.93 for
training and testing, respectively, alongside the average absolute percentage error (AAPE) of 2.5 and
2.7% for training and testing, respectively. Furthermore, the figure highlights an elevated confidence
in I, prediction around intermediate values, attributable to the higher sample density in this region.
This implies a diminished uncertainty in predicting V, within the range of 5,000 to 15,000 m3,
compared to other data points, establishing this range as the advisable domain for implementing the

proposed ANN-V, proxy.

Fig. 7.13b showcases the marginal contribution of each input parameter (as reflected by SHAP values)
to the predicted V,, visualized through a BeesWarm plot. Displayed are the top eleven features with
the highest contribution/impact on V,. Here, Vi, ds, N, Ginj, TVD, L;, Cs represent the completion
design of a MFHW, while B;, ¢, , and k,, represent the matrix properties of the formation in which

the well is completed. Several observations emerge from this figure:

1) Predominantly, the completion design parameters exhibit a more substantial impact on 1,
compared to the formation characteristics.
2) Among formation parameters, formation fracability, represented by B;, is the most crucial

determinant of ,. A higher degree of formation brittleness generally corresponds to a larger
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3)

4)

= Confidence

0.8

0.4

Predicted V.j, (normalized)

0.2

0.6 4

V,. However, intermediate values could yield either large or small V, contingent on the
completion design practice.
The volume of fluid injected per stage, the number of stages, and the spacing between stages
are pivotal factors in determining V,. A larger fluid injection volume per stage typically results
in a larger I, but a smaller V;,; does not necessarily translate to a significantly smaller V%,
denoting a non-linear relationship. Increased fracture spacing notably constrains V,, likely
because larger ds; might result in isolated fracture stages, thus reducing the effective
stimulated volume. However, reducing the fracture spacing doesn’t necessarily yield a larger
. as depicted by the limited impact of lower dg on V,. This may be attributed to the counter
effect of stress shadowing that occurs with t1ght fracture spacing, limiting fracture
propagation and consequently resulting in restricted V,. Notably, increasing Ny significantly
contributes to a larger I, but nonlinearly, as demonstrated by the asymmetry in the figure,
indicating that Ny predominantly has a positive impact on V.
Both injection rate and pressure, as well as lateral length and the number of clusters per stage,
positively influence V,, although g;,; has a more significant impact. TVD exhibits a negative
correlation with V,, suggesting that higher TVD typically represent higher overburden stresses
and greater resistance to fracture propagation. Lastly, formations with higher porosity and

permeability emerge as better candidates for achieving a larger V,
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Fig. 7.13 — ANN-V, model performance as (a) crossplot between ANN-predicted V, and the targeted V, for both training and testing

datasets (b) Beeswarm plot of the marginal contribution of top 11 features to the predicted V.
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7.4.2 Proxy Model for Oil Recovery Performance

Here we introduce two proxy models to predict ultimate oil recovery as functions of reservoir
characteristics and completion design. The first model, ANN-Qoq, is an ANN-based model applicable
for cases where the formation water mobility is negligible. This model is developed to predict the
cumulative oil production when approaching 90% of the ultimate load recovery. The second model,
ANN-UQoyy, is another ANN-based model that is applicable when the formation water mobility is
significant, rendering both WORM and COPM inapplicable for describing the recovery performance.
As highlighted earlier, this model assumes that q, follows a hyperbolic decline in a semi-log

relationship between g, and Q,.
7.4.2.1 ANN-Based Qogy Model

The trained ANN-Qoyq by utilizing SaDE for hyperparameter optimization yields a neural network
with the following architecture: two hidden layers with 64 and 16 neurons, respectively. A 0.2 dropout
ratio is applied for both the hidden layers to minimize overfitting. Both hidden layers used a
hyperbolic tangent (Tanh) activation function to introduce non-linearity to the neural network. We
utilized the adaptive moment estimation as a stochastic optimization method over 1000 epochs with
32 batch size. Again, MSE is utilized as the loss function while learning. Here is the mathematical

representation of the developed ANN-Qoq:
Qog = 1013 Q0o0n (7.12)

where Qogg, is the normalized Qoy, and is estimated as

16
QOgOn = W3k. hzk + 0805 (713)
k=1

where the sum is over the 16 neurons in the second hidden layer. w;, is the weight connecting the k-
th neuron in the second hidden layer to the output neuron, Qog, , and listed in Table D.5. h is the
activation of neuron k in the second hidden layer and is estimated as

eZ(Z?i1Wzk’jh1j+bzk) -1

h, = (7.14)
2k z(Z?ilwzk’jh1j+bzk) +1

e
where the sum is over the 64 neurons in the first hidden layer. w,, . is the weight connecting the j-th
neuron in the first hidden layer to the k-th neuron in the second hidden layer. b, , is the bias of the k-
th neuron in the second hidden layer. The values of Wa, and b,,, are listed in Table D.5. hy; is the

activation of neuron j in the first hidden layer and is estimated as
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2(21125 wq ',ix"i+b1') _
¢ ’ i (7.15)

hl L=
j 155
ez(zl=1wlj,ixni+b1j) +1

where the sum is over the 155 vectorized input features. w, ; is the weight connecting the i-th input
neuron to the j-th neuron in the first hidden layer. by, is the bias of the j-th neuron in the first hidden
layer. The values of Wy, and b11- are listed in Table D.6. x,,, is the normalized input parameter, x;
estimated as

X
Xng = ——
13

(7.16)

where y; and o; are the mean and standard deviation of the input features as listed in Table D.4.

Fig. 7.14a shows a crossplot between the predicted Qog, obtained using the aforementioned ANN-
based model and the target Qoq,. The correlation is strongly evidenced by R? values of 0.98 and 0.93
on the training and testing datasets, respectively. The AAPE for the training and testing datasets is
calculated at 0.75% and 3.68%, respectively. Furthermore, the figure illustrates an increased level of
confidence towards the higher Qoy, values. This is because Qoq is estimated by the WORM model
using early production data, assuming a matrix-dominated regime. Wells with higher oil productivity
indicate greater reservoir energy and earlier matrix contribution, reducing Qoq, estimation

uncertainty. Therefore, the ANN- Qogy, model is less uncertain for higher energy reservoirs. i.e., those
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Fig. 7.14 - ANN-Qo4, performance as (a) crossplot between ANN-predicted and targeted Qoy, for both training and testing
datasets. (b) Relative importance of different input features to the predicted Qogo
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with earlier matrix contribution. Additionally, ANN- Qog, predictions are generally biased-high,
possibly because the WORM model’s Qoy, estimates are relatively underestimated and may not be

precisely captured by the input petrophysical properties and completion design features.

Fig. 7.14b highlights the relative importance of formation characteristics, completion design, and well
profile on the oil recovery performance, specifically in terms of Qogy. The figure lists the top fifteen
parameters that significantly contribute to predicting Qogy. Several observations can be made from

this analysis:

1. Generally, the completion design and well profile have a more pronounced impact on
determining the oil recovery performance of MFHWSs. Among the fifteen key parameters
governing Qog, ten are unrelated to reservoir characteristics.

2. The lateral length of the well, its effective distance from nearby wells, and the hydrocarbon
saturation are the main parameters that determine oil recovery.

3. Among the reservoir characteristics, hydrocarbon saturation and formation permeability are
the most influential in determining oil recovery.

4. Regarding the completion design, Ns, Cs, Pinj, Cprop, and Viy; are identified as the most
significant parameters affecting oil recovery.

5. The shut-in period also ranks among the top fifteen parameters controlling oil recovery.

These insights offer a clearer understanding, supporting more informed decision-making for
optimizing the oil recovery performance of MFHWs. However, this relative importance does not

elucidate how each parameter contributes to Qog,.

Therefore, Fig. 7.15 illustrates the marginal contribution of these design and formation parameters on

oil recovery performance. Fig. 7.15a shows the marginal contribution of reservoir characteristics to
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Fig. 7.15 — Marginal contribution of (a) formation characteristics, (b) completion design and (c) well profile to the predicted Qoq,

118



Proxy Modelling Results and Discussion

Qogy. Higher Sy, and k,, significantly increase Qogy. However, lower k;,, does not necessarily lead to
much lower oil recovery. The asymmetric contribution of h,, indicates that a lower formation
thickness tends to limit the oil recovery, while a considerably higher formation thickness doesn't
contribute much to enhancing it. Similarly, lower reservoir energy (p;) may significantly reduce Qoq,,

but a very high p; does not necessary lead to a relative-equivalent increase in oil recovery.

Fig. 7.15b illustrates the relative impact of the completion design parameter on oil recovery. Among
these, N; exhibits the highest positive impact on Qogy, indicating that an increase in the number of
stages is expected to result in higher Qogy values. Interestingly, the number of clusters per stage
correlates negatively with Qogy. This could be due to an increase in C; potentially leading to a more
complex fracture network, which was demonstrated to positively impact V, (as previously explained
in Fig. 7.13). However, it might also contribute to significant water blockage, especially in water-wet
formations, resulting in higher capillarity and a relatively lower relative permeability for oil, leading
to lower Qoqo. Similarly, a higher p;,; might be detrimental to Qogg, as it could push more water into
the formation interface instead of assisting in fracture propagation. Conversely, Cyrop and Vip; are
observed to have a positive impact on Qogg. A higher proppant concentration can reduce effective
fracture volume loss post-production, thereby maintaining larger fracture porosity [134] leading to
higher Qog,. Both gjp; and tg, do not exhibit a clear correlation with Qogy and will be explored

individually in the subsequent section.

Fig. 7.15c shows the marginal contribution of well profile on Qogo. Both the well’s lateral length and
its minimum effective distance to nearby wells significantly affect oil recovery. Generally, larger L,

results in more contact area with the formation, which in turn leads to increased oil recovery.
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Fig. 7.16 — Individual dependence of the predicted Qoq, on (a) average injection rate (gjy;) of fracturing fluid, (b) proppant
concentration (Cpyop) and (c) shut-in time (tgp)
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Similarly, a larger d, translates to reduced well interference, thereby promoting higher oil recovery.
Finally, TVD exhibits the same negative impact on Qoq as it did for V,. Deeper wells tend to encounter
higher overburden stresses and increased resistance to fracture propagation, resulting in less

stimulated volume and, consequently, lower Qogo.

The marginal contribution analysis previously discussed did not address the effects of gj,; and tgp.
Therefore, Fig. 7.16 presents the individual dependence of Qog, on these parameters, along with Cp,qp.
Fig. 7.16a illustrates the variation in Qogy with changes in gj,;. The figure reveals that increasing gin;
initially enhances Qoq, up to a certain point, after which further increases in g;,; adversely affect oil
recovery. This is likely because a very high injection rate could lead to increased water imbibition and
elevated water blockage, thereby reducing oil relative permeability and limiting Qogo. Similarly, an

increase in C,

prop initially boosts oil recovery by minimizing fracture volume loss. However, an

exceedingly high C

prop Might result in denser proppant packing within fractures, thereby reducing

fracture porosity and connectivity. The shut-in time exhibits a similar trend. An increase in tg,
enhances oil recovery, possibly due to factors like skin removal, water blockage removal, and/or
counter current imbibition. Some studies also suggest that shut-in might aid in propagating the
fracture tip, thereby increasing the stimulated volume. However, a significantly longer t;, might be
detrimental as it could lead to increased water trapping, which reduces oil relative permeability and
ultimately lowers Qogy. These observations are intriguing as they demonstrate how the proposed
model could be leveraged to optimize the completion design, aiming to maximize oil recovery in

MFHWs .
7.4.2.2 ANN-Based UQOHY Model

For the oil MFHWs that show significant formation water mobility (i.e., WORM and COPM become
not applicable), we develop another proxy named ANN-UQoyy to predict their oil recovery
performance. The trained neural network with hyperparameter optimization leads to the following
architecture: two hidden layers with 64 and 16 neurons respectively. A dropout ration of 0.2 was
applied to the two hidden layers to avoid overfitting. ReLU activation function is applied to the two
hidden layers as well. MSE is utilized as the loss function across 1000 epochs with 32 batch size. Here
is the mathematical representation of the developed ANN-UQoyy.

UQOHY — 612'750 UQony, (717)

where UQoyy, is the normalized UQoyy and is estimated as

16 64 155
UQoyy, = Z W3, . max O,Z Wy, ;- Max (O,Z wy, - X+ b1j> + b,, | +0.806 (7.18)

k=1 j=1 i=1
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where;
ws, is the weight connecting the k-th neuron in the second hidden layer to the output neuron, UQoyy, -

Wy, is the weight connecting the j-th neuron in the first hidden layer to the k-th neuron in the second

hidden layer.
b, is the bias of the k-th neuron in the second hidden layer.
wy,, is the weight connecting the i-th input neuron to the j-th neuron in the first hidden layer.
by, is the bias of the j-th neuron in the first hidden layer.

Xn, is the normalized input parameter, x; estimated as

Xi — W

Xy, = ———
n; P (7.19)
where y; and o; are the mean and standard deviation of the input features. The values of w;, w, k) and

by,
u; and o; are listed in Table D.9.

are listed in Table D.7, while the values of Wi, and b1j are listed in Table D.8, and the values of
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Fig. 7.17 - Prediction performance of ANN-UQoyy in terms of (a) crossplot between predicted and target UQoyy and (b) Average
absolute percentage error (AAPE) distribution on all the dataset
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Fig. 7.17a presents a crossplot between the predicted and targeted Qoyy. The figure exhibits a good
fit, as evidenced by R? values of 0.96 and 0.80 for the training and testing data respectively. It's notable
that a discrepancy exists between the fitting performance on the training and testing data. This
discrepancy may arise from the uncertainty inherent in estimating Qoyy, as it presupposes that g,
adheres to a hyperbolic decline trend in a semi-log plot relationship with Qo. However, the AAPE
distribution across the entire dataset, depicted in Fig. 7.17b, highlights the general good fit of the
developed ANN-UQoyuy model. The figure reveals that the distribution is right-skewed, indicating
that for most wells, the model accurately predicts Qogy using the input parameters. Nevertheless, the
relatively higher error, compared to the previous models, stems from the uncertainty associated with
the hyperbolic decline assumption. Therefore, in regions where mature MFHW:s exhibit a hyperbolic
decline, this model could be deployed on new wells to forecast their ultimate oil recovery based on

reservoir characteristics and completion design, albeit with moderate accuracy.

7.4.3 Proxy Model for Ultimate BOE Recovery

Here we present the ANN-based model that predicts the ultimate BOE production for gas MFHWs .
The trained ANN with optimized hyperparameter is found to have two hidden layers that consist of
64 and 32 neurons respectively. A 0.2 dropout ratio is applied only to the first hidden layer with no
dropout for the second layer. A logistic (Sigmoid) activation function is applied for both hidden layers
to introduce nonlinearity to the neural network. MSE is utilized as a loss function over 1000 epochs at

a batch size of 64. Here is the mathematical representation of the developed ANN-UBO,:

UBO, = e'***5UB0en (7.20)

where UBO,, is the normalized UBO, and is estimated as

32
UBO,, = » ws,.hy, +0.043 (7.21)
k=1

where wj, is the weight connecting the k-th neuron in the second hidden layer to the output neuron,
UBO,, , and listed in Table D.10. h,, is the activation of neuron k in the second hidden layer and is

estimated as

1
hy, = 7.22
¥ 1+ e_(ZJB'LWZk.jhlj“Lbzk) 7.22)

where w,, . is the weight connecting the j-th neuron in the first hidden layer to the k-th neuron in the
second hidden layer. b, is the bias of the k-th neuron in the second hidden layer. The values of w;, ;
and b,, are listed in Table D.10. hy; is the activation of neuron j in the first hidden layer and is

estimated as
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1

155
—(Zz=1 lelixni"'blj)

hy; = (7.23)

1+e
where w, , is the weight connecting the i-th input neuron to the j-th neuron in the first hidden layer.
b1j is the bias of the j-th neuron in the first hidden layer. The values of w1, and b1j are listed in Table
D.11. x,, is the normalized input parameter, x; estimated as

X W
Xn;, = .
L

(7.24)
where y; and o; are the mean and standard deviation of the input features as listed in Table D.12.

This model demonstrates a good fitting performance as shown in the crossplot in Fig. 7.18a, with an
R? value of 0.94 and 0.90 for the training and testing datasets respectively. Additionally, both datasets
exhibit an AAPE of less than 2.5%. The model provides more confidence in predicting intermediate
UBO, values due to the relatively higher data points in this region. Thus, lower uncertainty is
anticipated when predicting an UBO, between 150 to 350 kstb. Fig. 7.18b illustrates the relative
importance of key formation characteristics, completion design, and well profile input parameters on

the predicted UBO,. Several observations can be made:

1. Similar to oil recovery, the completion design and well profile play a significant role in
determining the gas recovery performance of gas MFHWs. Of the sixteen key parameters
governing UBO,, eleven are unrelated to reservoir characteristics.

2. The lateral length and number of stages emerge as key determinants of gas productivity
performance. Unlike oil MFHWs, hydrocarbon saturation holds relatively low significance in
determining the gas productivity of MFHWS.

3. Regarding reservoir characteristics, formation thickness and brittleness are identified as key
parameters in controlling gas recovery. k,,, Sp., and p; are ranked lower in significance.

4. Unlike oil MFHWS, fracture spacing proves to be an important parameter in gas MFHWSs
productivity.

5. In contrast to oil MFHWSs, proppant concentration has minimal impact on the gas MFHWSs
recovery performance, possibly due to the lesser sensitivity of gas recovery to fracture volume

loss compared to oil reservoirs.

As previously mentioned, this relative importance plot doesn’t illustrate the exact effect of each input
parameter on well productivity. Therefore, Fig. 7.18c displays the marginal contribution of the key
input parameters to predict UBO,. This figure showcases how each input parameter contributes to
predicting UBO, for a well that displays 3% more UBO, compared to the average value among the
studied wells. The figure indicates that C;, d,, and B; negatively impact the predicted gas recovery

and drive UBO, for this particular well below the average UBO,. On the other hand, L;, N, h,,,, TVD,
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qinj, and k,, exhibit a positive impact on gas recovery, not only compensating for the negative impact
of Cs, d,, and B;, but also enhancing the overall gas recovery of this well by 3%. Another observation
is that the driving parameters here are not the formation characteristics. L;, N;, and C; dominate in
controlling how a gas MFHW could perform compared to the average. Also, the main formation
characteristic that controls gas recovery here is the formation thickness, which was shown previously

to have limited impact on the productivity of oil MFHWs.

7.5 Summary

This chapter presents a series of ANN-based proxy models designed to correlate the oil and gas

productivities of over 10,000 Montney MFHWSs with reservoir characteristics and completion-design

g1 ' "

g [ N, —A

z

= VD

S0 )

1.0 — tm

L .’-’o C'h —

) © Training: R? = 0.94, AAPE = 1.33% o B
S [ Testing: R? = 0.90, AAPE = 2.20%
Zos e ing —
g i iy I
m‘:' 0.6 i liﬁ'm
8 ’ - I’"}nj T
& il Pinj =
g 044+ e She
B [ o* pi
E B ’?-]I H
% 024 e de
g C e Training
& B Testing Cprop

0.0 I } T VY T Y Y Y R N S T ! N N N

0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.02 0.04 0.06
Ultimate BOE (normalized) Relative importance to U B0,
(a) (b)
higher 2 lower
base value f(x)
0.87
0.840 0.845 0.850 0.845 0.860 0.865 0.870 0.875 0.880 0.885 0.890
”’1 ! | ‘ | | | R
k. Gini TVD I N, L | ¢ d, B,

(c)

Fig. 7.18 - ANN-UBO, prediction performance in terms of (a) crossplot between predicted and targeted UBO,, (b) relative
importance of each input parameter to the predicted UBO, and (c) marginal contribution of each input parameter to UBO,
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parameters. Utilizing diverse datasets that reflect reservoir characteristics and completion practices,
these proxies are trained to predict several key productivity metrics including initial effective fracture
volume, cumulative oil production at 90% ultimate load recovery, ultimate oil production following

a hyperbolic decline trend, and the ultimate barrel of oil equivalent (BOE) for gas MFHW .

To lay the foundation for this analysis, a comprehensive dataset is compiled, including the
petrophysical properties extracted from available well log data. These extracted data are then
interpolated using a 3D kriging technique to generate high-resolution 3D maps of porosity, GR, bulk
density, initial reservoir pressure, hydrocarbon saturation, and net-pay thickness across the Montney
formation. Subsequently, a Support Vector Machine model is deployed to predict reservoir
permeability utilizing well log data, specifically porosity, GR, bulk density, shallow and deep
resistivities. This model facilitates the interpolation of data for Montney wells missing well log data,
thus enabling the generation of an additional 3D permeability map across the upper, middle, and

lower Montney formation.

Further, this chapter outlines a workflow to estimate formation fracability from sonic log data and
introduces a brittleness index, which is then interpolated across the Montney formation. This
brittleness index, along with other petrophysical properties, contributes to the formulation of a
Reservoir Quality Index (RQI), serving as a unified measure of reservoir quality. Following this, a
methodology to evaluate the efficiency of fracture stage positioning is introduced, showcasing a
practical application of the developed RQI. Additionally, a new approach to estimate the effective
distances between MFHWs, considering both 3D spatial and directional distances, is introduced. This
newly derived parameter is incorporated as an input feature to train the proposed neural networks,
enriching the model's ability to accurately correlate well productivity with reservoir and completion

parameters. The results suggest the following;:

1. Over 75% of Montney MFHWs, are completed in zones exhibiting higher initial reservoir
pressure and hydrocarbon saturation. Conversely, around 20% are located in areas with
elevated porosity and permeability, coupled with lower gamma ray readings, indicating an
operator preference towards initial reservoir conditions.

2. The introduced SVM-K model demonstrates robust predictive ability in estimating reservoir
permeability from well log data, as reflected by R* values of 0.97 and 0.95 along with AAPE
of 7.1 and 9.7% for the training and testing datasets respectively. A mathematical formulation
of SVM-K is provided to enhance the model's applicability across varied contexts. Notably,
the model's prediction confidence is markedly higher for permeability values below 1 mD,
implying potential higher uncertainty in SVM-K predictions within Montney regions

possessing relatively higher permeability.
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3. RQI analysis reveals a better homogeneity in the upper Montney as opposed to the middle
and lower segments. Furthermore, the RQI mapping provides operators with a direct
approach to pinpoint sweet spots for future developmental endeavors within the Montney
formation.

4. The formulated ANN-based proxy aimed at predicting initial effective fracture volume (V)
showcases good predictive capabilities, as highlighted by R* values of 0.96 and 0.93 on the
training and testing datasets respectively. The model exhibits reduced uncertainty particularly
within V, range of 5,000 to 15,000 m?.

5. Overall, completion design parameters demonstrate a more significant effect compared to
formation characteristics. Among formation parameters, formation fracability emerges as a
vital determinant of V,. A higher brittleness index typically correlates with a larger V,. Critical
factors such as fluid volume injected per stage, number of stages, and stage spacing are
essential in determining V. The model also highlights that increased fracture spacing notably
restricts V,. Additional parameters like injection rate and pressure, lateral length, and number
of clusters per stage exhibit a positive correlation with 1, although gj,; holds a more
substantial impact. TVD displays a negative correlation with V,, suggesting that higher TVD
generally represents elevated overburden stresses and heightened resistance to fracture
propagation. Lastly, formations with higher porosity and permeability emerge as favorable
candidates for achieving a larger V.

6. Similarly, completion design and well profile significantly impact the oil recovery
performance of MFHWSs. Among reservoir characteristics, hydrocarbon saturation and
formation permeability are pivotal in determining oil recovery. For the completion design, N,
Cs, Dinj, Cprop, and Vip; are identified as significant parameters affecting oil recovery. The shut-
in period also ranks within the top fifteen parameters controlling oil recovery, and a marginal
contribution of each input parameter towards predicted oil recovery is proposed.

7. Similar to oil recovery, completion design and well profile significantly influence the gas
recovery performance of gas MFHWSs. Among the sixteen key parameters governing UBO,,
eleven are unrelated to reservoir characteristics. The lateral length and number of stages are
identified as crucial determinants of gas productivity performance.

8. Unlike oil MFHWS, hydrocarbon saturation holds relatively low significance in determining
the gas productivity of MFHWs. In terms of reservoir characteristics, formation thickness and
brittleness are key parameters in controlling gas recovery. Unlike oil MFHWs, fracture spacing
proves to be a significant parameter in gas MFHWSs productivity. In contrast to oil MFHWs,
proppant concentration has minimal impact on gas MFHWSs recovery performance, possibly

due to the lesser sensitivity of gas recovery to fracture volume loss compared to oil reservoirs.
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7.6 Nomenclature

TVD
L
latbh
lonyy,
de
Vinj
Qs
Vacid
prop

SRFED

Dinj
Ginj

Qoqg
UQouy
UBny
MFHW
SaDE
ReLU
MSE
AAPE

ANN
SHAP

RQI

True Vertical Depth, m

Lateral Length, m

Bottomhole Latitude, deg.

Bottomhole Latitude, deg.

Minimum Effective Distance

Average Fluid Pumped per Stage, m3
Foam quality, %

Injected acid volume, m?

Proppant concentration, kg/m?

Number of stages

Stage length, m

Average fracture spacing, m

Number of intervals/clusters per stage
Shut-in time, days

Average injection pressure per stage, MPa
Average injection rate per stage, m3/min
Matrix porosity, fraction

Matrix gamma ray, API

Matrix bulk density, kg/m?

Photoelectric absorption factor, b/e
Matrix permeability, md

Brittleness index

Formation thickness, m

Water saturation, fraction

Initial reservoir pressure, psi

Netpay thickness, m

Initial effective fracture volume, m?3
Cumulative oil production at 90% load recovery, bbl
Ultimate cumulative oil production (from hyperbolic decline analysis), bbl
Ultimate barrel of oil equivalent (from hyperbolic decline analysis), bbl
Multifracture horizontal well
Self-adaptive differential evolution
Rectified linear unit

Mean squared error

Average absolute percentage error

Mean

Standard deviation

Artificial neural netowrk

Shapely Additive explanation

Reservoir quality index
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Chapter 8.
Evaluating Geothermal Energy Production

from Suspended Oil and Gas wells

8.1 Introduction

Augustine, Tester [135] showed that the average cost to drill a geothermal well with a depth of 5,000
m is 5 million dollars. For enhanced geothermal system (EGS) power plants, drilling costs could
account for 42%-95% of the total project cost [136, 137]. Does retrofitting suspended oil and gas wells
can help advancing geothermal energy extraction and use across the world? Using suspended oil and
gas wells for geothermal applications was initially proposed for converting conventional vertical wells
to borehole heat exchangers (BHEs) where water is injected through the annulus between casing and

tubing, and the heated water is produced from the tubing [138].

Sliwa, Rosen [139] investigated the possibility of converting the abandoned oil and gas wells near
urban areas in the Carpathians in Poland for geothermal energy extraction. They proposed converting
the abandoned wells to BHEs by equipping the wellbore with a heat carrier circulation system

integrated with heat pumps on the surface to provide heat to the nearby residential areas.

Caulk and Tomac [140] investigated the feasibility of EGS and deep BHE installation in abandoned oil
and gas wells in Santa Clara, Monterey and Santa Barbara counties in California. They found that
wells’ BHT ranges from 40 to 70°C, with some wells reaching up to 90°C. These temperatures are
suitable for direct-use low-temperature EGS such as district or greenhouse heating. However, they
concluded that deep coaxial BHE is a feasible low-cost and low-risk alternative to EGS due to the
uncertainties associated with hydraulic fracturing of these wells that are completed in loosely to
moderately consolidated sedimentary rocks of various stress regimes. They concluded that BHE with
a diameter of 180 mm for wells deeper than 1,250 m could yield production temperature above 40°C

and flowrate ranging from 1.0 to 4.4 1/s.

Macenic and Kurevija [141] studied geothermal energy extraction of an abandoned deep well located
in the Drava subbasin in the Croatian part of the Pannonian Basin via closed circulation. They
forecasted the available geothermal energy and changes in fluid temperature for 20 years of operation
for two cases 1) with a constant base heat load throughout the year and 2) with a variable heat load

depending on the environment temperature. The results showed that the maximum potential heat
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extraction in a variable system (Case-2) is 1,750 MWh per year. The maximum theoretical stable heat
extraction for possible industrial direct heating could be 400 KW for the entire 20 years, with fluid

temperature reaching a steady state at 50°C.

Nian and Cheng [142] performed economic and energy analysis to assess the thermo-economic
performance of geothermal energy production from an abandoned oil well with a depth of 3,000 m.
The results showed that the well could keep a building with an area of 10,000 m? at around 26°C with

a water flowrate of 20 m3/h, and the maximum heating area could reach up to 11,000 m?.

One of the main constraints for EGS is creating sufficient exposure to the high-temperature reservoir
to allow for high production rates without reducing reservoir life by rapid cooling. Ideally, this could
be achieved by 1) having a horizontal well system as it has a larger contact area compared to a vertical
well [143]; and b) increasing the stimulated reservoir volume and heat exchange area by inducing
fractures along the horizontal wellbore [144]. Recently, Gong, Guo [145] proposed a 3D thermal-
hydraulic numerical model to describe heat and mass transfer and evaluate the effects of multiple
hydraulic fractures on the performance of geothermal energy extraction. The results showed that EGS
with multi-fractured horizontal wells (MFHWSs) has a higher cumulative thermal production and a
better heat extraction performance than the conventional vertical EGS. Based on their numerical
model, MFHW-EGS performs optimally with seven fracture stages, fracture length of 300 m, and
fracture conductivity of 350 um?.cm. However, due to the high directional drilling cost, these
techniques are not widely used for geothermal exploitation, limiting the commercial development of

EGS [146].

There are 65,535 suspended oil and gas wells completed in WCSB with reported BHT in the
geoSCOUT database with more than a thousand suspended MFHWs. These wells have been
suspended due to their uneconomic flowrate, but they might have the potential to produce heat.
Geothermal energy can be extracted from suspended oil and gas wells by employing either BHE
installation [142, 147-152] or EGS [153, 154]. In BHE, a working fluid is circulated through the wellbore.
In EGS, a working fluid is pumped through an injection well into an induced fracture network, where

it is heated by the formation rocks before being reproduced from a production well.

The general theme of the previously mentioned studies is that they are limited to few numbers of
wells in a specific area/county and focus on formation properties and completion data as the main
attributes defining the potential of geothermal power extraction from hydrocarbon wells. In this
research, a national large-scale study is introduced to analyze all the suspended oil and gas wells
completed in WCSB and have reported BHT in geoSCOUT database. A comprehensive framework is

developed to combine the big datasets of formation properties, well completion, well logs, operating
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conditions as well as the power grids and residential areas (including number of population and
building in each area) all over Canada. Another dataset representing the daily average surface
temperature nearby well location is extracted from Environment Canada [2] and integrated in this

study to calculate heat loss at wellhead and in surface pipelines.

Another challenge associated with the previous studies on retrofitting suspended oil and gas wells
into geothermal energy production is interpreting the uncertain BHT data reported for hydrocarbon
wells. Generally, BHT is a data point at the end of well completion, but it is usually not known whether
or not the wellbore is in equilibrium when BHT is measured [155]. Fig. E.1 shows the histogram of the
reported BHT for more than 400,000 oil and gas wells completed in WCSB. The figure shows that there
are thousands of wells with reported BHT above 150°C, and that there are 109 wells with BHT above
200°C. According to Huang, Gosnold [156] and Allan Gray, Majorowicz [157], these high BHT values

are uncertain to be utilized to evaluate the geothermal potential of these wells.

Therefore, the first objective of this study is to verify the reported BHT data of the suspended oil and
gas wells utilizing the available valid temperature logs. Second, the verified BHT data is used along
with other well data to evaluate the geothermal potential of the suspended wells utilizing a supervised
fuzzy clustering approach. Then, the geothermal power and production temperature are estimated
for each well, where higher power and temperatures support power generation utilizing EGS and

lower values support direct hot water use utilizing BHEs [158].

8.2 Methodology

In this paper, the geothermal potential of 65,535 suspended oil and gas wells completed in WCSB is
evaluated, indexed, and ranked to identify the possible candidate wells for retrofitting. The successful
candidates should satisfy the following conditions: 1) There must be either a power plant or direct
heat demand nearby. Unlike hydrocarbon, heat is not easily transportable to long distances as it
requires costly insulated flowlines. 2) The reservoir heat resource must be high enough in terms of the
bottomhole temperature and flowrate to match the demand. The flowrate depends on formation
petrophysical properties but can be enhanced by induced fractures. Other factors affecting the
flowrate are the well depth and diameter. For a well to successfully produce heat on a commercial
scale, its depth has to be less than 4,500 m [155]. In this paper, successful candidate wells with vertical-
large wellbore (d,, = 177 mm as proposed by Hu, Banks [159]) are considered for BHE utilization.
While successful MFHWSs candidates are considered for EGS; and 3) well integrity must be good
enough to prevent water leakage. To evaluate the geothermal potential of each suspended well, the
following attributes are considered: bottomhole temperature (BHT), temperature gradient (TG), true

vertical depth (TVD), wellbore diameter (d,,), completion year (y,), the distance to the nearest power
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‘ Collect well data of 65,535 suspended oil and gas wells completed in WCSB

Estimate distance between wellhead and power destination using great-circle
distance approach

Supervised Fuzzy Clustering Validate Reported Bottomhole Temperature
Apply fuzzy set theory to Use approximate reasoning to connect the Collect 23,160 temperature log data Data quality Estimate temperature
classify input variables defined fuzzy sets of input variables available in geoSCOUT database check gradient (TG)
. 5 Validate reported Estimate BHT from Interpolate TG utilizing
lassify/Index the th 1 potential of suspended wells
‘ e ‘ ‘ BHT against BHT e H TG (BHTrc) H Ordinary Kriging geostatistics
Wellbore Heat Transmission _l—b{ Estimate heat loss in surface pipelines from wellhead to nearest residential areas ‘
Calculate fluid temperature H Predict geothermal power and production ‘
distribution in wellbore temperature extracted from the suspended wells ‘ Predict geothermal power and production temperature at destination ‘
‘ Investigate the sensitivity of geothermal power extraction to the control parameters ¢
‘ Investigate production data for possible communication between MFHWSs ‘

Fig. 8.1 - Methodology workflow for indexing geothermal potential of the suspended oil and gas wells completed in WCSB

plant (Dw-ep), electrical grid (Dw-eL) and residential area (Dw-ra). For the suspended MFHWsS, the

number of fracture stages (N;) and lateral length (L;) are added to the well data in evaluating its

geothermal potential.

Well data of 65,535 suspended oil and gas wells completed in WCSB are exported from geoSCOUT

database to analyze their geothermal potential. The overall workflow approached in this study is

demonstrated in Fig. 8.1. The well data considered in this paper are BHT, TVD, d,, and y,. Fig. E.2

shows the histogram of these data and their distribution. BHT data has the highest uncertainty among

these data as it is only reported as a single value at the end of well completion. To validate BHT data,

the following tasks are conducted:

a)

b)

<)

d)

Collected 23,160 temperature logs available in geoSCOUT for the oil and gas wells completed
in WCSB.

Performed a data quality check to filter out the invalid and duplicated temperature logs. The
temperature logs with less than 1,000 datapoints, non-reported units, or decreasing trend with
depth were considered as invalid. 4,126 temperature logs resulted from this step.

Estimated the temperature gradient (TG) of these 4,126 wells by fitting a linear model to the
measured temperature data at the bottom 500 m of each well, then estimated both the slope
and corresponding fitting performance of this model in terms of average absolute percentage
error (AAPE) and coefficient of determination (R?). This fitting performance is utilized to
determine the uncertainty in the estimated TG.

Utilized the Ordinary Kriging geostatistical technique, developed by Wackernagel [160], to

interpolate TG at the suspended wells with unavailable or invalid temperature logs.
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a) Estimated bottomhole temperature from TG (BHTtc) as per Eq. (8.1) where Ty represents
surface temperature. According to Environment Canada [2], the daily average T; in western
Canada varies between -22 to 23 throughout the year as shown in Fig. E.3. These values are
used along with the fitting error resulted from estimating TG to determine the confidence level
when comparing the reported BHT against BHTrc.

TG
BHTpg = o5 X TVD X T 8.1

Then, the distance between the surface location of each suspended well to the nearest power plant
(Dw-rp), electrical grid (Dw-eL) and the center of the nearby residential area (Dw-ra) is estimated using

the great-circle distance approach:

Dw_y = rAc (8.2)

8.3)
A AL (
Ao =2 arcsin\/sin2 (7(1)) + cos¢,, cos, sin? (7>

Here, Dwx is the distance between well’s surface location and the nearest x-destination, where x
represents power plant, electrical grid or residential area, r is the Earth radius (6,378.137 km) and Ao
is the central angle between the well location and x-destination and is estimated in this study using

the Haversine formula [161]:

Ad = |y — Pl
AL = |2 — Ayl

Here, A,,, ¢, and 4, ¢, are the geographical surface longitude and latitude in radians of well and x-
destination, respectively. Fig. E.2c shows that there are 629 suspended wells that are less than 5 km
away from the nearest power plant and that more than 7,000 suspended wells are more than 100 km

away from the nearest power plant.

Finally, a supervised fuzzy clustering (SFC) algorithm is developed as a multivariate analysis tool to
classify the geothermal potential (GP) of each suspended well utilizing the estimated Dw-x and TG
along with the verified BHT, TVD, d,, and y,. Here, GP combines 1) the formation properties in terms
of BHT and TG; 2) the well completion in terms of TVD, d,, and y, ; and 3) the accessibility to the
nearest x-destination in terms of Dw-rr, Dw-kL and Dw-ra to represent the favorability index of the
candidate well. Therefore, a well with “Good” GP is relatively newer and closer to an existing x-

destination, has a relatively higher BHT and TG, shallower depth and larger wellbore, while a well
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with “Poor” GP is the opposite. SEC is setup for two geothermal applications: a) direct use of
geothermal power for heating purposes at the nearest residential areas; and b) geothermal electricity
production and transportation to the nearest power plant or electrical grid. In the first application, Dw-
x is represented by Dw-ra, and in the second one Dw-x is represented by Dw-rr or Dw-eL, whatever is the

shortest.

8.2.1 Fuzzy Set Theory for Input-Variables Classification

Here, a supersized fuzzy classification technique for a physics-based data analysis is used. Fig. 8.2
shows how we apply the fuzzy set theory to classify the input variables (BHT, TG, TVD, Dwx, d,,, and
Yc) into three different fuzzy sets (categories). For BHT, three fuzzy sets are defined as Low, Medium
and High. The fuzzy sets Low and High are defined by sigmoidal membership function represented
by

1
f(x: a, C) = m (84)
and the fuzzy set Medium is defined by generalized bell membership function represented by
1
f(x:a, b, C) =" _ .7 (85)
1+ |x C |
a

Here, a defines the width of the membership function, b defines the shape of the curve on either side
of the central plateau and c defines the center of the membership function. In the case of BHT, the
fuzzy sets are defined in a way that BHT above 100°C is classified as High, and BHT below 35°C is
classified as Low. For intermediate value, it is classified as M,(x) = m, meaning that the membership

of value x in fuzzy set A is m, where 0 < m < 1. The reason for defining these parameters in BHT

o 1.00
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Bottomhole Temperature, °C Distance to the Nearest Destination, km Temperature Gradient, °C/100m
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True Vertical Depth, m Completion Year, year Wellbore Diameter, mm

Fig. 8.2 — Fuzzy sets generated for each well parameter to define the distribution of each class
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fuzzy classification is that wells with High BHT (above 100°C) can be considered as potential
candidates for geothermal extraction depending on the other well data, and wells with Medium BHT
(35°C — 100°C) might be potential candidates for a direct heat use depending on the distance from
residential areas [140]. For defining the fuzzy sets of Dw-, Short Dw-x refers to the distance less than
10km away from the nearest x-destination while Long Dw-x refers to the distance more than 60 km
away. dy, = 177 mm is considered for large wellbore suitable for BHE utilization as proposed by Hu,
Banks [159]. For a well to successfully produce power and heat on a commercial scale, well's TVD
shall be less than 4,500 m [155]. Therefore, fuzzy set “Deep” of TVD is defined to consider wells with
TVD above 4,500 m as deep wells. Ingraffea, Wells [162] analyzed more than 41,000 oil and gas wells
completed after the year 2000. Less than 1.9% of the studied wells demonstrate a loss of structural
integrity. Therefore, for the completion year (well’s age), wells completed after the year 2000 are

considered as new wells as shown in Fig. 8.2.

8.2.2 Approximate Reasoning for Geothermal Potential Classification

In SFC, approximate reasoning (fuzzy if-then rule) is used to connect the defined fuzzy sets of BHT,
TVD, TG, Dw-rp, d,, and y, to GP of each well. This connection in fuzzy rules is done using linguistic
variables (poor, good, shallow, deep, low, high, etc.) and operators (and, or). Fuzzy if-then rules for a

c-class in a classification problem with n attributes can be written as:

R;: If x; is Ajy and ...and x,, is Ajn then Class ¢, j=12,..,N (8.6)
1T 1+ 1 1 _ 1 1 1T+
R1 [ | [ | - [} E ' [ bl -
0 4 o4 i1 0 AN { 0 I .V 0 A 04 4 04 -
0 1 1] 1 0 1 0 1 0 1 0 1 0 1
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Fig. 8.3 — Example of fired fuzzy rules based on input well data
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where x= (BHT, TG, TVD, y,, d,,, Dw-rr), 4j; is an antecedent linguistic value such as Low and High
(i = 1,2,...,n), C; is an output GP class (i.e., Poor, Average or Good GP), and N is the number of fuzzy

if-then rules. Fig. 8.3 shows an example of the three activation rules when classifying a well with High
BHT, Medium-to-High TG, Medium TVD, Medium-to-New y,, Small-to-Medium d,, and Medium
Dw-rr. So, Eq. (8.6) becomes

Rule Ry: If x, is A1, and X, is A,; and x5 is A3; and x, is A4, and x5 is As; and x4 is Agq then Class C;,

where (x4, X5, X3, X4, X5, %) = (BHT, TG, TVD, y., dy,, Dw-rp), (A11, A1, A31, A41, As1, A61) = (High,
Medium, Medium, Medium, Low, Low), and C; = Average GP. In R,, the same membership functions
in R, are activated except for y, and d,, where New and Medium membership functions are activated
respectively. Therefore, GP class becomes Good. R; is similar to R, except that TG and d,, become
High and Low respectively, and the GP class is still High. Then, the output fuzzy sets of the activated
fuzzy rules (Ry, R, and R3) are combined together to be defuzzified as shown in the right-bottom
corner of Fig. 8.3 to obtain one value representing the GP of the given well. There are several

defuzzification techniques, but the one we applied in this study is the centroid method [61].

8.2.3 Wellbore Heat Transmission

As mentioned earlier, a coaxial BHE (double-pipe BHE) is employed to extract geothermal power from
suspended wells as a direct use application of geothermal energy. The existing production casing of
the suspended well acts as the outside pipe of BHE. Another smaller thermally insulated pipe is to be
installed concentrically to the casing and is used as the inner-producing channel of BHE to produce
the continuously injected working fluid from the annulus space [163]. In this study, water is used as

Kusing = 0,006 /m.2C Etubing = 0.2W /m.2C
T45 45T 100
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Fig. 8.4 — (a) Effect of BHE's tubing insulation on geothermal heat loss. (b) Heat loss in surface insulated pipe based on flowing fluid
temperature and ambient temperature
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the working fluid for geothermal power extraction because of its high specific heat and thermal
stability [164].

The analytical model developed by Ramey [165] is utilized to estimate the temperature distribution of
the working fluid in wellbore. Ramey’s equation is widely used to describe fluid temperature
distribution in a wellbore as a function of well depth, geothermal gradient and injection time,

assuming single-phase flow inside wellbore [148, 165-168]:

T, =az+T;—aAd+ (Tinj - Ts + aA)e% (8.7)
here, T, ; is the fluid temperature in wellbore as function of depth (z, m) and injection time (t, days);
Ty is the injection temperature, °C; T is the average surface temperature in °C for each province [169]
and listed in Table E.1; a is the geothermal gradient, °C/m; and A is defined as:

A= Weyf(t) (8.8)
2k,

where W is mass flow rate, kg/s; c,, is specific heat of water, J/(kg.K); k, is thermal conductivity of

formation rock in W/(m.K); and f(t) is a dimensionless transient heat-conduction time function for

the target formation, defined as

F©) = —1In (2\;‘%) 029 (8.9)

here, 1, is wellbore radius, m; and «, is the thermal diffusivity of the formation rock, m?/s, defined as
k./(prc,) where p, is formation rock density in kg/m3 measured from well-log data for each
suspended well and its distribution is demonstrated in Fig. E.4 for the studied wells; ¢, and k, are the
specific heat in J/(kg.K) and thermal conductivity in W/(m.K) of formation rock, respectively. c, is a
linear function of the temperature (T) over a wide temperature interval and can be estimated by
¢, (T;) + B(T —T;) where T; is the initial temperature, °C; c,(T;) is specific heat at initial temperature;
and B is a coefficient, J/(kg.°C?) [170-172]. For the studied wells completed in WCSB, Eq. (8.10) derived
by Somerton [172] at T; = 21°C can be used to estimate ¢, of formation rock as a function of formation

temperature:

¢, (T) = 824.8 + 0.9343(T — 21) (8.10)
k, is also a temperature-dependent property of formation rock and could be estimated by Eq. (8.11)

developed statistically by Haenel, Stegena [173], and verified experimentally by Vosteen and
Schellschmidt [174]:

770 (8.11)
BGso+) T 07

here B is thermal conductivity coefficient of formation rock and is generally estimated as 0.929 for
WCSB [175, 176].

k; (T) =
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At TVD, Eq. (8.7) can be used to estimate the bottomhole temperature of circulating fluid (BHTF) at
time ¢ from the start of injection. To estimate the production temperature at wellhead, heat loss in the
BHE'’s inner tubing shall be considered. Toth and Bobok [177] demonstrated that the quality of the
heat insulation of BHE’s inner tubing significantly affects the heat loss in BHE. Fig. 8.4a shows that
when a 4.5” steel pipe tubing with poly-propylene heat insulation with heat conductivity (ksyping) of
0.2 W/m.°C is installed in a wellbore at depth of 2,000 m and casing size of 7", the heat loss becomes -
23, -10 and -5% at injection mass flowrate (g:) of 5, 10 and 15 kg/s, respectively. However, heat loss
becomes neglected when a vacuum-insulated tubing (VIT) with an extremely low heat conductivity
(ktubing=0.006 W/m.°C) is installed. In this study, we assume that BHE is applied to suspended wells
with inner VIT considering the relatively low overhead expenses of utilizing a suspended well with
its casing pipe. Therefore, heat loss in BHE’s inner tubing is ignored. Finally, the geothermal well

power (P) in Watt is estimated by Eq. (8.12) as a function of g;, ¢, T; and BHTE:

P = q;c,,(BHTg — T}) (8.12)
8.2.3.1 Production Temperature and Geothermal Power Sensitivity to Injection Mass
Flowrate and Injection Period

Fig. 8.5shows the effect of injection mass flowrate (from 0.1 to 5 kg/s) and injection time (from 1 to 25
years) on production temperature and geothermal power extracted from a suspended well with BHT
of 150°C. Generally, increasing injection rate decreases production temperature and increases
geothermal power. However, increasing the injection rate to 5 kg/s results in a 600% increase in the
geothermal power and a 300% decrease in the production temperature suggesting two different trends
as observed by Hu, Banks [159]. In addition, in the first five years of the injection period, the
production temperature and geothermal power decrease by 7.7% and 10.25%, respectively. However,

in the last five years, the production temperature and geothermal power decrease by 0.76% and 1.05%,
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respectively, demonstrating a quick drop of the geothermal power and production temperature at the
initial running time compared to late time. Therefore, the long-term (25 years) performance of the
geothermal power extraction from suspended wells are evaluated and predicted in this study.
Considering the direct-use application of geothermal power to heat buildings in the nearest residential
areas, the injection rate of 1 kg/s is selected to maintain adequate levels of production temperature

and geothermal power.

8.2.4 Heat Loss in Surface Insulated Pipeline

In this study, the geothermal power delivered to the nearest residential areas is estimated. Therefore,
heat loss in surface pipelines from wellhead to the center of nearest residential area is considered.
According to Frank P. Incropera [178], heat loss from an insulated surface pipeline is a function of
pipe’s inside- and outside-diameter, operating and ambient temperature, wind speed, insulation type
and properties in terms of surface emissivity, thickness and outside diameter. The specifications of
the pipeline and insulation are listed in Table E.1. Operating fluid temperature is BHT, and the
ambient temperature (T:) depends on the wellhead location and residential area. Average T« for each
province is collected from Canada [2] and listed in Table E.1. Fig. 8.4b demonstrates the heat loss in
surface pipeline per meter (with the given specifications) as a function of BHTr and T.. For example,

if BHTF is 40°C and Ta is 10°C, the heat loss per each meter of the pipeline is estimated at 13.2 W/m.
8.3 Results and Discussion

8.3.1 Bottomhole Temperature Validation Using Temperature Gradient

Fig. 8.6 shows the contour map of the estimated TG using the validated temperature logs of 4,126
hydrocarbon wells completed in WCSB. The northern area between Alberta and British Columbia has
the highest TG between 4 to 5.5°C/100m. Therefore, BHT at 1,500 m shall be around 60 to 80°C, which
matches the BHT data reported by CanGEA [179] as shown in Fig. 8.7a. Accordingly, a 100°C BHT
might be obtained in this area at 1,850 < depth < 2,500 m which is verified by the temperature reported
at 2,500 m as shown in Fig. 8.7a. This noticeable high TG makes this region in Alberta have the highest
favourability index for geothermal extraction as shown in Fig. 8.7b and reported by CanGEA [179].

The primary purpose of calculating TG in this study is to validate the BHT data reported for the 65,535
suspended oil and gas wells completed in WCSB. As mentioned earlier, the estimated TGs of the 4,126
wells are geostatistically interpolated to estimate TG for the remaining wells with unavailable or
invalid temperature logs. Fig. 8.8a shows the cross-plot of estimated bottomhole temperature using

Eqg. (8.1) and the ones reported in geoSCOUT (single measurement at the end of the completion) for
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Fig. 8.6 — Contour map of temperature gradient estimated from validated 4,126 oil and gas wells completed in WCSB

Temperature (C)
-
B

Temperature
at1,500m

Temperature
at 2,500m

(a)

Fig. 8.7 — (a) Bottomhole temperature reported at depths between 1,500 and 2,500m in Alberta. (b) Favourability index of
geothermal energy extraction in Alberta. Modified from [179].
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the 65,535 wells. The top- and bottom-dashed lines represent the uncertainties in both the surface
temperature and estimated temperature gradient from the temperature-log data. 10,784 (17%) wells
are shown to have invalid BHT measurements and are filtered out, while the remaining 54,751 wells
show BHT measurements that are within the expected range based on their estimated TG. Fig. 8.8b
shows the updated histogram of the validated BHT data reported for the 54,751 suspended wells and
that 412 wells are with reported BHT above 100°C. The maximum reported BHT, in this case, is
161.8°C.

The 412 wells with BHT > 100°C are located in the areas with average to high TG as shown in Fig. 8.9.
However, the northwest region of Alberta does not show any suspended wells with BHT above 100°C.
This region has only six suspended wells with a maximum TVD and BHT of 2,008 m and 80°C,
respectively. There are more than 1,250 suspended wells in regions with TG = 4.5°C/100m but with
depth < 1,500 m as shown in Fig. 8.9b. Therefore, one possible way to utilize these regions for
geothermal energy extraction is to deepen the existing suspended wells to reach hotter formations.
Another observation is that there are 137 suspended wells located at the highest TG regions, in the
northeast of British Columbia, with no nearby power plant. These wells have median and average
BHT of 115°C and 121°C, respectively. Among these wells, there are 25 suspended MFHWSs with
median BHT and N of 129°C and 14, respectively. Utilizing these wells for geothermal energy

extraction may need extending the nearest power grid.
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Fig. 8.9 — (a) The suspended wells with BHT above 100°C and nearby power plants. (b) Suspended wells with depth less than
1,500m in regions with temperature gradient above 4.5°C/100m

8.3.2 Supervised Fuzzy Clustering Results

Based on the BHT validation results, 54,751 suspended wells are found to have valid BHT data. Wells

with incomplete set of input parameters or those more than 50 km away from nearby residential areas
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are excluded. The remaining 50,192 suspended wells are considered for geothermal potential
evaluation. Fig. 8.10b shows the classification of these wells based on the geothermal potential index
resulted from the SFC algorithm assuming the relative weights of the input variable as shown in Fig.
8.10a. There are 10,724 (21.37%), 38,636 (76.97%), and 832 (1.66%) wells ranked with poor, average and
good geothermal potential, respectively. 84% of the wells classified with “Good” GP are suspended
gas wells suggesting that suspended gas wells have a relatively high potential for retrofitting. Two-
thirds of those wells (65.75%) are completed in the Horn River Formation. The wells with poor,
average and good geothermal potential have an average BHT of 36.5, 46.3 and 68.55°C, respectively,
as shown in Fig. 8.11. The figure shows that “Good” wells are relatively newer wells, closer to
residential areas, have higher TG and larger d,, compared to the “Poor” and “Average” wells. The 832
wells classified to have “Good” GP have an average Dw-ka, y., TG, TVD and d,, of 4,550 m, 2000,

2.9°C/100 m, 2,200 m and 163 mm, respectively. Among these wells, there are more than 300 wells
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Fig. 8.10 — (a) Relative weights of input variables to the supervised fuzzy clustering (SFC) algorithm. (b) Geothermal potential

results from SFC
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with d,, = 177.8 mm which makes them the best candidates for coaxial BHEs retrofitting, although
they do not have insulated casing. Hu, Banks [159] showed that BHE’s performance is marginally

affected by a thermally insulated casing.

8.3.3 Geothermal Power and Production Temperature from Suspended
Wells

Fig. 8.12 shows contour maps of the suspended wells' geothermal power and bottomhole flowing
temperature at water injection rate and temperature of 1kg/s (543.44 bbl/day) and 20°C, respectively.
Some suspended wells show the potential of producing more than 270 KW of geothermal power with
BHTr = 70°C with coaxial BHEs installation over one year. Fig. 8.12b shows the location of 30 wells

with BHT > 100°C and BHTg < 75°C.

Fig. 8.13 shows the statistics of generated geothermal power at the wellhead of suspended wells
classified with Poor, Average and Good geothermal potential. Good wells could generate an average
75 KW of geothermal power. Among these wells, there are 36 wells that could generate more than 200
KW of geothermal power individually. Average production temperature from Good suspended wells
can still reach to more than 46°C with an average geothermal power of 59 KW after 25 years. Fig. 8.13b
demonstrates the estimated geothermal power at the nearest residential area considering the heat loss
in surface pipelines with the specifications and operational parameters listed in Table E.1. Good wells
could deliver an average 34 KW of geothermal power to the nearest residential areas, and there are 13
wells that could generate more than 100 KW of geothermal power. On average, more than 50% of the
geothermal power is lost in surface pipelines (assuming Calcium Silicate insulation type) while

transferring to the residential areas from the suspended wells with an average heat loss of 16 W/m.

Fig. 8.14a shows the sensitivity of geothermal power generated from suspended wells to formation
bulk density (pp). Formation rocks with higher p, demonstrate a higher potential to generate
geothermal power. This is mainly due to the relatively higher thermal conductivity generally
exhibited by dense rocks [180]. The studied suspended wells are completed in formation rocks with
pp that varies between 1,413 to 3,259 kg/cm? as shown in Fig. E.4. In this domain, ignoring p;, could
lead to more than 7.8% relative error in the estimated geothermal power extracted from suspended

wells.

Fig. 8.14b demonstrates a comparison of the geothermal power generated from suspended wells
considering constant and transient thermodynamic properties during the injection period of 25 years.
At the first year, the difference in estimated geothermal power between the two cases is 2.6%. At the

end of the injection period, this difference is magnified to 6.8%. Therefore, temperature dependence
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of rock thermal properties shall be considered in evaluating long-term performance of geothermal

power extraction from suspended wells.
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Fig. 8.12 — (a) Downhole geothermal power and (b) production temperature at water injection rate of 1kg/s (543.44 bbl/day)
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Fig. 8.15 — Potential residential areas to be served by the geothermal power extracted from nearby suspended wells with “Good”
geothermal potential

Fig. 8.15 demonstrates the 163 residential areas in Saskatchewan, Alberta and British Columbia that
could be served with the geothermal power generated from the nearest 832 suspended wells classified
with “Good” geothermal potential. These wells could deliver up to 29.83 MW of geothermal power to
directly heat more than 2,700 private dwellings with a total number of populations of 6,506 in those
nearby residential areas [181]. In 14 residential areas, the extracted geothermal power could serve
more than 25% of the power needed for heating while in 6 residential areas the geothermal power
could cover more than 50% of the heating power needed. Fig. 8.15b shows the total geothermal power
and average production temperature at wellhead and delivered to the nearest residential areas over
the operation time of coaxial BHEs in the suspended wells classified with “Good” geothermal
potential. The total geothermal power and average production temperature delivered at destination
are estimated at 29.83 MW and 41.82°C, respectively, in the first year and dropped to 22.54 MW and
39.78°C, respectively, after 25 years.

8.3.4 Suspended MFHWs with Good Potential for EGS

Among the studied wells, there are 42 suspended MFHWs classified with “Good” geothermal
potential. These wells have BHT > 100°C and are less than 500 m away from the nearest power grid
[min(Dw-re, Dw-eL)], and are relatively newer wells (y, = 2009). Average TVD, TG, d,, lateral length
(Lr) and number of stages (Ns) are 2,827 m, 3.3°C/100m, 141 mm, 1,704 m, and 15 stages, respectively.

Fig. 8.17 shows the normalized completion properties of the 10 MFHWSs wells with the highest
geothermal potential among the “Good” wells. Min-max scaling method is used to normalize (scale)
the range of each completion parameter in [0, 1]. So, for each variable, the normalized value (x,,) is

estimated as (x — Xmin)/ (Xmax — Xmin), Where x is the original value, and x,,;, and x4, are the
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Fig. 8.16 — Normalized completion properties of the 10 suspended MFHWSs with the highest geothermal potential

minimum and maximum values of x, respectively. Well-9993 is shown to have the highest geothermal
potential among the suspended MFHWs. This well has 27 fracture stages, BHT of 139°C, TVD of 2,492
m and 467 m distance from the nearest power grid and was completed in 2012 with lateral length of

2,456 m.

Fig. 8.16 shows four pairs of MFHWs with high potential of retrofitting into EGS. Fig. 8.16a shows
Well-56432 which was completed in 2016 with 27 fracture stages, then suspended in 2018. It has BHT
of 100°C and 300 m lateral distance from another suspended MFHW (Well-703685) that has 28 fracture
stages. Both wells have the same TVD of 2,206 with TG of 4.26°C/100m. Therefore, this well pair can
be considered as a potential candidate for EGS where one well is used as an injection well and the
second to produce heated water (or other working fluid). Fig. 8.16c shows another candidate for EGS.
Well-54938 was completed in 2012 with 9 fracture stages, and lateral and vertical distances of 773 m
and 84 m, respectively, from Well-686038 which has 13 fracture stages. Both wells were suspended in
2018 and 2017, respectively. The monthly production data shows a 60% increase of the water
production rate of well-686038 during the month when well-54938 was being hydraulically fractured.
This suggests a communication between the fracture networks of the two wells. Fig. 8.16d shows
another potential well pair for EGS. Although the lateral and vertical distance between the two wells

is 1,750 m and 66 m respectively, there was a 27% increase in the water production rate of Well-61970
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Fig. 8.17 — Examples of suspended MFHWs with the distance to the neighbour suspended well, showing the potential of retrofitting
these well pairs into enhanced geothermal systems
when Well-61977 was being fractured suggesting a communication between the wells’ fracture
networks. The two wells have BHT of 101°C and 104°C respectively. Fig. 8.16b shows MFHW-61971
which was completed in 2008 with 8 fracture stages, and lateral and vertical distances of 150 m and
101 m, respectively, from the vertical Well-61972. The vertical well produced 100% more water rate

when Well-61971was being fractured.

8.4 Summary

In this study, the bottomhole temperature data reported for 65,535 suspended oil and gas wells
completed in the Western Canadian Basin Sedimentary (WCSB) was verified utilizing the 4,126
validated temperature logs by developing a contour map of the temperature gradient distribution.
Then, the distance between each suspended well to the nearest power grid and residential area was
estimated using the great-circle distance technique. This parameter is then combined along with the
verified bottomhole temperature, temperature gradient, true vertical depth, wellbore diameter and
well's completion year to determine the geothermal potential index of the wells using a supervised

fuzzy clustering (SFC) method. Unlike pure statistical classification techniques, adding supervision to
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SFC algorithm allows physics-based indexing of the potential geothermal power of suspended oil and

gas wells. SFC allows to define the relative impact of formation and completion properties, and

geographic location in determining the geothermal power potential of a suspended hydrocarbon well.

The study led to the following conclusions:

1.

A bottom hole temperature of at least 85°C at depth 3,000 m or less with wellbore diameter of at
least 7” are required to deliver 130 KW of geothermal power at production temperature of 50°C to
a residential area 1 km away from wellhead assuming injection fluid temperature and ambient
temperature of 20 and 10°C, respectively, and surface pipeline with 3” diameter and Calcium
Silicate insulation. On average, more than 50% of the geothermal power is lost while transferring
to the

residential areas near to the suspended wells with an average heat loss of 16 W/m. Average
production temperature from Good suspended wells can still reach to more than 46°C with
average geothermal power of 59 KW after 25 years.

More than 800 (1.7%) suspended wells are classified with “Good” geothermal potential that could
deliver up to 29.83 MW of geothermal power to directly heat more than 2,700 private dwellings in
the nearest 163 residential areas. In 14 residential areas, the extracted geothermal power could
serve more than 25% of the power needed for heating while in 6 residential areas the geothermal
power could cover more than 50% of the heating power needed. After 25 years, the geothermal
power of those wells is estimated to drop by 23% assuming an injection flowrate of 1 kg/s. 84% of
those wells are suspended gas wells suggesting that suspended gas wells have a relatively high
potential for retrofitting. Almost 66% of those wells are completed in the Horn River Formation.
The geothermal power extraction’s performance can be controlled by varying the injection
temperature and injection flowrate. However, injection flowrate has the highest impact; a 10%
increase in the injection flowrate led to 3.5% increase in the produced geothermal power and 4.4%
drop in the production temperature while 10% increase in the injection temperature led to only
0.6% increase in the production temperature.

The studied suspended wells are completed in formation rocks with bulk density (p,) varies
between 1,413 to 3,259 kg/cm?. In this domain, ignoring p;, could lead to more than 7% relative

error in the estimated geothermal power extracted from the suspended wells.
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6. Assuming constant thermal properties of the formation rock led to 6.76% relative error in the
estimated geothermal power over the temperature-independent case during an injection period
of 25 years. Therefore, temperature dependence of rock thermal properties shall be considered in
evaluating long-term performance of geothermal power extraction from suspended wells.

7. 3.7% of the studied suspended wells are MFHWs where 63% of them have valid reported BHT
data. Less than 3% of those wells are ranked with “Good” geothermal potential and there are four
pairs of suspended MFHWs that are suitable for enhanced geothermal system (EGS) as the
production data of each well pair showed inter-connectivity of their fractured networks.

8. 2.6% of the suspended wells are located in regions with a temperature gradient > 4.5°C/100m but
with a limited potential for geothermal energy extraction either because they are not deep enough
(< 1,500 m) to reach hot formations, or far from nearby power grids and residential areas.
Extending the existing nearby power grids and/or deepening those wells could enhance their

geothermal potential.
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Chapter 9.

Conclusions and Recommendations

This thesis introduces a comprehensive workflow to i) identify optimal sweet spots based on

petrophysical properties, while proposing a new unified term to define the reservoir quality, and ii)

analyze, evaluate and optimize the completion design of MFHWSs, considering both reservoir

characteristics and geomechanical properties.

9.1 Conclusions

The key conclusions drawn from this thesis are outlined as follows:

1.

The fracture volume loss during flowback and post-flowback can be modelled by a power function
of the fracture characteristic rate (FCR) and that the proppant concentration is a key parameter
that controls FCR and dimishes fracture closure during flowback.

Generally, the functional dependence of well productivity on completion-design varies
depending on reservoir quality. In low-quality reservoirs, the effect of completion-design on
productivity is less pronounced and the productivity follows reservoir quality. However, in high-
quality reservoirs, the effect of completion-design becomes more significant, and the productivity
can be reduced due to inefficient completion-design. Moreover, the productivity can be
maximized by less intense completion-design in low-quality reservoirs. However, in high-quality
reservoirs, intense completion significantly improves the productivity.

In several studied black-oil wells, independent flow regimes (stratified flow) of water and oil are
observed during early production time, indicating their production under different drive
mechanisms. Water is produced from an apparently closed tank comprising induced fractures and
the surrounding stimulated matrix, and oil is produced independently at a significantly lower rate
due to oil influx from matrix into fractures. In these wells, oil breakthrough shows insignificant
effect on water flow regime, as the dominant drive mechanism of water production is the fracture

closure, and oil tends to flow independently through its own network.
Effective fracture volume, as determined through the WORM, showcases a positive correlation

with the estimated volume of microseismic events.
The application of a completion design to achieve a similar effective fracture volume on child wells
does not necessarily lead to similar oil productivity compared to parent wells. It also depends on

the quality of the reservoir at which the parent/child wells are completed.
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Conclusions

6.

10.

11.

12.

A majority of the studied parent and child wells yield over 50% of the estimated ultimate load
recovery within the initial three months of production.

Over 75% of Montney MFHWs, are completed in zones exhibiting higher initial reservoir pressure
and hydrocarbon saturation. Conversely, around 20% are completed in areas with elevated
porosity and permeability, coupled with lower gamma ray readings, indicating an operator
preference towards initial reservoir conditions.

RQI analysis reveals a better homogeneity in the upper Montney as opposed to the middle and
lower segments. Furthermore, the RQI mapping provides operators with a direct approach to
pinpoint sweet spots for future developmental endeavors within the Montney formation.
Completion design parameters generally exhibit a greater influence compared to formation
characteristics. Among formation parameters, formation fracability emerges as a vital determinant
of V. A higher brittleness index typically correlates with a larger V,. Critical factors such as fluid
volume injected per stage, number of stages, and stage spacing are essential in determining V,.
The model also highlights that increased fracture spacing notably restricts V, . Additional
parameters like injection rate and pressure, lateral length, and number of clusters per stage exhibit
a positive correlation with 1, although gj,; holds a more substantial impact. TVD displays a
negative correlation with V., suggesting that higher TVD generally represents elevated
overburden stresses and heightened resistance to fracture propagation. Lastly, formations with
higher porosity and permeability emerge as favorable candidates for achieving a larger V.
Similarly, completion design and well profile significantly impact the oil recovery performance of
MFHWSs. Among reservoir characteristics, hydrocarbon saturation and formation permeability are

pivotal in determining oil recovery. For the completion design, Ns, Cs, pinj, C,

prop, and Vip; are

identified as significant parameters affecting oil recovery. The shut-in period also ranks within the
top fifteen parameters controlling oil recovery, and a marginal contribution of each input
parameter towards predicted oil recovery is proposed.

Similar to oil recovery, completion design and well profile significantly influence the recovery
performance of gas MFHWs. The lateral length and number of stages are identified as crucial
determinants of gas productivity performance. However, unlike oil MFHWSs, hydrocarbon
saturation holds relatively low significance in determining the gas productivity of MFHWs. In
terms of reservoir characteristics, formation thickness and brittleness are key parameters in
controlling gas recovery. Unlike oil MFHWs, fracture spacing proves to be a significant parameter
in gas MFHWs productivity. In contrast to oil MFHWSs, proppant concentration has minimal
impact on gas MFHWs recovery performance, possibly due to the lesser sensitivity of gas recovery
to fracture volume loss compared to oil reservoirs.

A supplementary analysis exploring the geothermal potential of suspended MFHWSs completed

in WCSB demonstrates that a) a coaxial borehole heat exchanger with 7” diameter installed in a
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Contributions

suspended well with BHT > 85°C at depth < 3,000m can deliver up to 130KW of geothermal
power at production temperature of 50°C to a residential area 1km away; 2) 50% of the heating
power needed in some residential areas can be gained by retrofitting suspended wells; and c)

suspended gas wells have a relatively high potential for repurposing.

9.2 Contributions

We propose a hybrid workflow that integrates analytical methods and machine learning techniques.

This innovative approach introduces several new concepts and methodologies, such as:

1.

10.

11.

A ML-based model for recognizing, flagging and digitizing flowback data from general pressure-
test reports available in the public databases.

An iterative method to estimate dynamic effective fracture volume, porosity, and compressibility
as functions of pressure and time, aiming to measure the fracture volume loss during flowback
and post-flowback.

A characteristic fracture closure rate (FCR) to describe the rate at which effective fracture volume
reduces during flowback.

Supervised fuzzy clustering (SFC) algorithm to rank reservoir quality and completion intensity
and analyze their impacts on wells’ productivity.

A water-oil-ratio model (WORM) that uses a combined analytical and data-driven approach to
explain the observed log-linear relationship between WOR and load recovery, analogous to the
log-linear relationship between the water/oil relative-permeability ratio and water saturation.

A neural network that integrates WORM parameters with key petrophysical properties to analyze
the impact of fracture and formation properties on WOR performance, predict WOR as a function
of load recovery, forecast ultimate load recovery, and estimate effective fracture volume and initial
water saturation in fracture.

A cumulative oil production model (COPM) which is a data-driven model to predict oil
production as a function of load recovery during the matrix-dominated flow regime.

A Support Vector Machine model to predict reservoir permeability using well log data,
specifically porosity, GR, bulk density, shallow and deep resistivities.

High-resolution 3D maps of porosity, GR, bulk density, initial reservoir pressure, hydrocarbon
saturation, net-pay thickness, and formation permeability across the Montney formation.

A workflow to estimate formation fracability from sonic log data, introducing a brittleness index,
then interpolated across the Montney formation.

A Reservoir Quality Index (RQI), serving as a unified measure of reservoir quality based on

petrophysical properties.
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Limitations and Recommendations

12.

13.

14.

A methodology to evaluate the efficiency of fracture stage positioning as a practical application of
the developed RQI.

A new approach to estimate the effective distances between MFHWs, considering both 3D spatial
and directional distances.

A series of ANN-based proxy models designed to correlate the oil and gas productivities of over
10,000 Montney MFHWSs with reservoir characteristics and completion-design parameters,
utilizing diverse datasets reflecting reservoir characteristics and completion practices to predict

key productivity metrics.

9.3 Limitations and Recommendations

Several simplifying assumptions were made in this study such as:

One potential limitation of WORM and COPM is that they are based on the assumptions of
negligible water influx from matrix into fractures and that water production is mainly from
fractures with no observed interference between different wells, assuming that the stimulated
fracture volume acts as a closed-tank model for water production. These assumptions may not
hold true in all cases. Therefore, future research could investigate the impact of mobile formation
water on the WOR profile and the applicability of these models to other reservoir types or under
different conditions.

Moreover, the direct applicability of WORM and COPM to shale gas wells might be constrained
due to the fundamental differences in the fluid phase behavior and transport mechanisms.
However, the underlying conceptual framework could potentially be modified to evaluate Gas-
Water Ratio (GWR) performance versus load recovery. Therefore, exploring the applicability of
these models in other reservoir types and under different conditions could provide valuable
insights.

WORM is trained on 4,000 Monte Carlo simulation scenarios, assuming that these cases cover a
comprehensive range of all probable WOR profiles versus load recovery in tight oil reservoirs.
This assumption, however, may not hold. Given the availability of substantial real-field data—
consisting of hundreds of wells with high-resolution production data (at least on a daily basis)—are
available, the proposed workflow could effectively be applied to real-field datasets and generate
tailored ANN models and customized statistical analyses tailored to each production field, potentially
augmenting their productivity prediction capabilities.

The machine learning models proposed herein have been trained on the datasets explored within
this thesis. It is critical to validate these findings through domain expertise and supplementary

data to ascertain that they are not just artifacts of this particular dataset utilized in this thesis. This
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Limitations and Recommendations

extended validation is essential to confirm that the models are reliable and can be generalized to

provide accurate insights and interpretation.
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A. Dynamic Effective Fractur Volume

A1 Fracture Porosity Estimation
Algorithm of fracture porosity estimation as function of (p ., V.., M,

[/ prop / P pmp)

1: Veﬁ < estimate initial effective fracture volume from HD model

2 V= Veﬁ < dynamic fracture volume

3: for j=1,... number of p  valuesinp do

4 Vprop ; M prop / Prprop

5: ¢, = Vef/(Vef +Von, )

6: nj=(1—¢ﬁ)x100

7: C 7, <— estimate using (77 s pnj = Diiosure — p%)

8 Vs =€, (pl- ~ Py, )

9: V= (1 - mei ) V,; < update effective fracture volume
10: // If the mass of produced proppant ( M PIODyrog ) is significant
11: M =

prop prop Mproppmd
12: return ¢f , Cf , Vef

A.2 Finding Optimum Coefficients in MLR

Sum of squared errors between predicted values using multiple linear regression (MLR) and actual

values can be expressed as:

n

Brr(w) = (f(x)-»)

=1

d
where y. is the actual target, f (Xl.) = ijxij , d is the dimension of the problem (number of
CDPs). x,, =0to give the flexibility of sol{ition not to pass through the origin coordinates. Substituting

f (Xi) in the previous equation gives
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Dynamic Effective Fractur Volume

To find a stationary point, the gradient VEIT(X) is calculated and equated to zero. The objective,
Err(w), is convex with respect to W. Therefore, any stationary point is a global minimum. Hence,
the objective is to find W for which VEI‘I‘(X) =0. Now, set the partial derivatives to 0 and solve the

equations for each weight, w;:

This results in a system of d +1 linear equations with 4 +1 unknowns W = (WO’WI’WZ" co W, ) To

find the solution of this system of equations, it should be written in matrix notation as
VErr(w) =2X"Xw-2X"y
Equating this equation to zero, and solving for W, results in optimum weights (maximum likelihood)
W, as:
w,, = X(X'X)' X"y

This equation is then used to find the optimum coefficients that best correlate CDPs to initial effective

fracture volume and characteristic closure rate.

A.3 Error Metrics

Average absolute percentage error (AAPE) estimation: The average absolute percentage error AAPE

is the measure of the relative deviation from the experimental data and is defined as:

AAPElen:|EI.|
nis

where n is the number of data points and E, is the relative deviation of a predicted value from a
real value;

El. — [yreal - ypredict JX 100
yreal

Correlation coefficient (CC) estimation: Correlation confident (CC) represents the degree of success

in reducing the standard deviation by regression analysis, defined as:
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Zn: (y real — Y predict )12

cC=[1--

n

Z(yreal - y)

i=1

where 3 is the mean value of vector y _  and is calculated as:

— 1
y :;Z(yreal)i

i=1
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B. Production rates and pressure plots

B.1 Locations of target wells
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Fig. B.1 - Locations of target wells in (a) maturation map of Eagleford formation [modified from [182] and (b) a layout of target

wells in two pads. Approximate lateral spacing is 740 ft.
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Production rates and pressure plots

B.2 Semilog Plots of Water/Oil/Gas Rates
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Fig. B.2 — Semi-log plots of water/oil/gas rates and tubing/casing pressures for remaining 5 wells.
Sudden increase in rates and tubing pressure is due jet-pump installation after about 1,500 hours.
Insets zoom the early 200 hours water/oil/gas rates for wells 5 and 6.
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B.3 Water and Oil RNP Plots
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Fig. B.3 — Log-log plot of water/oil rate-normalized pressure (RNP) before jet-pump installation for
the remaining five wells. The five wells show unit slope for water RNP while they don’t for oil RNP.
Secondary axis of estimated bottom hole pressure during the same period.
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B.4 Driving indices profiles
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Fig. B.4 — Driving indices profiles during early production time before jet-pump installation for (a)
Well-1, (b) Well-2, (c) Well-3, (d) Well-4, (e) Well-5 and (d) Well-6. Wells-5 and 6 show that HDI
becomes in act after hydrocarbon breakthrough.
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B.5 HD Profiles Before and After Jet Pump Installation

10" 7
Eoo . 10* T
s\ "_ . o
i R N
E’ 3 . 2 | ®
—=- HD; Model 10 .,‘ . 15T aerrmsinber
..... HD, Model R § Y . *
- L
*==+ Jet-Pump Installation % X I . 100 |
. ~ 10§ . 0 10 20 30
e  water rate = g N E\\ x10°
+  oil rate ®) A D Y
= [+ . \\“
[} * °s
= 101 £ N
= E . \. R%p, =0.79
o - x. o
F K \ R¥p, = 0.76
L . N
100IIII:-llll:ll‘\JllllllllIII:IIII
0 25 50 75 100 125 150
Cumulative water production, bbl x103
(a) Well-1
10 ¢ 10—
F . 104 - E o 104
i ¥ oovnn P N B oo
s P Y e
o e ‘w N XY .
=5 10° ¢ o 10% . = 10° ¢ . 102 A . - 2%
~ E = e ] - ~ F P T -
I +* . r -
2 f . P 2 \ :
g I °° 10° A g I 10° t L ;
é 102 + B 72 0 10 20 30 40 Q:'id 102 + 2* 0 10 20 30 40
= g M‘ “_ ~ x10% = E 2 ., %103
&) A et SN S R B
S . N s ', £ Y
g o N g 0 N
= 10! + : N =10t 4+ : B
= 10 . : S R3p, = 0.87 = 10 : : ._‘\\ R3p, = 0.88
C R AN Rip, = 0.84 C : DN Rbp, = 0.82
L - \\ L - K \
||||||-||||||“|||||||||\|\;|||||| IIIII:IIIIIII‘JI\I\IIIIIIIIIIIII
100 T T T T T 100 T T T T T
0 75 100 125 150 0 25 50 75 100 125 150
Cumulative water production, bbl x10? Cumulative water production, bbl x10?
(b) Well-2 (c) Well-3
10% £ 0 10* & -
E . 10 - E .
r - . N b
Re ad . e :
> N . . o "% = g .
= 10° § : b B = 10° £ o
= p e i = F e
=) F ) = * 2 F
ey L e u
g r - " " " " o) r " " " "
g 5 t t t t at—é 5 10° t t t t
~ 102 ¢ 10 20 30 40 ~ 102 ¢ N 0 10 20 30 40
— F x10% — F . * \-\ x10°%
2 a 0 ~ Q u ., ?: N\
= L ' ~ P L * . =N\
3 + . N 38 ae . : \\
= 10t 4 : EANTILE T A
= 10 : : SN Rip, —om2| Y 3 : N R%p, = 088
F . \\R%w2 = 0.69 F . N R%p, = 0.88
- . \\ L . \\
10() |||||||-|||||||:||.r|:||||\|||| 100 ||||:|-|||:-'||||:||||:||||:||||
0 75 100 125 150 0 25 50 75 100 125 150
Cumulative water production, bbl %103 Cumulative water production, bbl x103

(d) Well-5

(e) Well-6

Fig. B.5 — Semi-log plots of water/oil rates versus cumulative water production volume for the remaining five wells. Sudden
increase in rates and tubing pressure is due jet-pump installation. Water production data are fitted by straight lines (HD-Model)
before and after pump installation. Insets zoom the early water/oil rates.
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Fig. B.6 — Semi-log plots of water-oil ratio versus cumulative water production generally shows a
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C.1 Numerical Simulation
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C.2 ANN Empirical Correlations (white box)

The extracted empirical correlation from the developed ANN shows that the parameter 8, could be

estimated as:
B, = 1.157p,  +0.408 (58)

where f,, is normalized 8, and represented as:

1
B, = Z Wo T o=, + 035 (14)

i=1
where w;; are the weights connecting the N neurons (N = 5) in the hidden layer to the output layer as

shown in Table C.1. y; is the linear transformation of input variables defined as:

Vi = Z Wli,j xn]’ + bli (15)
i=1

where by, is the bias in each neuron (h;) in the hidden layer, wy, is the weight of the jth input variable
in each neuron (h;), M is the number of input variables (M = 7). The trained values of b;; and w,, , are

listed in Table C.1, x,; is the jth normalized input variable (x;), calculated as:

xj — xjmin
X, = —L  Tmin_ (16)
J X; —X; .
Jmax Jmin

where x; . and x; _ are the minimum and maximum values of the input variables considered in this
study as listed in Table 5.2. Similarly, the control parameter f; is estimated by Egs. (62) to (20), and

the extracted weights and biases are listed in Table C.2.

Bs = 050185 +0.038 (62)
_ 1
'33n = Z W, m —0.019 (89)
=1
Vi= D Wiy X + b, (90)
i=1
Xj — Xj_.
Xy, = J Jmin (20)
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C.3 Estimating WORM parameters: statistical approach

Here, the early-time flowback WOR versus load recovery is fitted by WORM through tuning the

control parameter f3;. Then, the control parameter f, is estimated as a function of ; as:

This is the regression equation developed by applying a linear regression analysis between 5, and f5;
as shown in Fig. C.3a. Both the 95% confidence and prediction intervals (CI and PI, respectively) are
illustrated on the scatter plot. CI and PI are estimated as @ + te;, where @ is the predicted a value
where a € 8,, t is the t-multiplier (=2.16 for 95% CI and PI) and ey is the standard error of the fit,
estimated as Ve,, [l/n +(b- E)Z/Z(bi - 5)2] and Ve, [1 +1/n+(b-— E)Z/E(bi - 5)2] for CI and
PI, respectively. n is the number of observations (4,000 runs), b € f;, e, is the mean square error and
b = ¥ b; /n. The figure shows that more than 97% of the observed f, values are covered by the 95%
PI, demonstrating a well-specified regression model [183]. Then, we estimate the average absolute
percentage error (AAPE), which measures the fitting error between the observed b and predicted b.
AAPE is estimated as 1/n Z?=1|(E — b;)/b;| x 100. Therefore, the f, value estimated from Eq. (58), as
function of f;, has an uncertainty of = 7.2%. Fig. C.3b shows 3D crossplot between f;, 8, and f3. The
inset figures demonstrate the 2D crossplot of each pair. In this paper, we apply multiple linear

regression (MLR) approach to predict 3 as function of f; and f3,, illustrated as:

e t Observed
04 £4 By = 0.0588, +0.281f

; - B2 10 ;":;-'.; B
£ 1.00 m,*_.
é 0.75 -E Mt Iu!)‘. |r‘l‘le u“r‘. 1.00
o o i
< E == By =—1.13 + 14 N
= 0.50 2 + B 3
= "F + Observed * '}._‘_4- I | {{
E n.25 £ 95% Confidence Interval ¥ PRTY '
= - 95% Prediction Interval ! 5 ’ .

e S B S M

0.0 0.2 0.4 0.6 0.5 o0 .
WORNM Control Parameter 3, 00 05 10 LE 00
B2 L0
(@ (b)

Fig. C.3 - (a) 2D-Crossplot of the WORM control parameters 8, and f3;. (b) 3D-Crossplot of the WORM control parameters f;, 8,
and B3, and their regression models.
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Bs = 0.058B; + 0.2815, — 0.072 (67)

The coefficients of this correlation demonstrates the relatively higher dependency of 3 on f,
compared to B;. In other words, the ultimate recovery in terms of WOR is more related to the
intermediate recovery performance compared to the early recovery. Both the 95% CI and PI are
calculated for the MLR model presented in Eq.(67). The results show that more than 96% of the
observed f3; values are within the 95% PI, demonstrating a well-specified MLR model. In addition, the
AAPE of B3 in this case is estimated at + 14.8%. In other words, the value of 8; and the corresponding
ultimate load recovery estimated from this proposed statistical approach has an uncertainty of
14.8%. The main reason behind this high uncertainty is the embedded assumption of MLR that S5 is
linearly correlated to 5; and f5. In a future study, different nonlinear models will be tested. In the
proposed statistical approach, the WOR control parameter f8, is estimated by fitting the early-time
flowback data by utilizing the WORM represented by Eq (5.9). Then, 8, is estimated as a function of
p1 by using Eq. (66). Finally, f3 is estimated by Eq. (67) as a function of both ; and f,.

C.4 Uncertainty analysis for WORM parameter estimation

To integrate the fitting error of B, into the f, correlation presented in Eq. (66), we assume that the
uncertainty in estimating f; by utilizing the curve-fitting approach (e;) is independent from the

statistical uncertainty in estimating 5, (e, ) from Eq. (66). According to Taylor [184], the overall

e, = /elz +elg (94)

uncertainty in f, (e,) is estimated as:

Similarly, we assume that the statistical uncertainty in estimating f; (e3 ;) from MLR is independent
from uncertainties in estimating both f; (from curve fitting) and f, from Eq. (66). Therefore, the

overall uncertainty in 53 (e3) is estimated as:

e; = fef +es+el (95)
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Table C.1 - Weights and Biases of the ANN model of the control parameter £3,

i Wi, wy,, wy,, Wi, Wy, Wy, wy,, 31,- wa,
1 -0.78 0.48 1.45 0.12 -0.24 0.31 -2.36 -0.62 0.81
2 0.69 1.81 -0.40 -0.21 1.28 0.99 -2.31 0.33 -0.36
3 0.23 -0.95 -7.12 -0.12 -1.05 -0.89 0.43 0.87 -0.51
4 -0.26 -5.62 1.19 -0.52 2.73 3.04 -3.85 -1.84 0.22
5 0.27 -1.47 -0.69 -0.17 0.32 -0.38 -2.21 1.54 0.69
Table C.2 - Weights and Biases of the ANN model of the control parameter _3
i Wi, Wi, Wi, Wi, Wi, Wi, wi,, By, wa,
1 -1.02 -2.89 2.15 -0.63 0.66 0.40 -2.89 -1.18 0.70
2 0.84 -0.45 2.33 0.86 -1.08 -0.76 0.72 1.44 0.67
3 -0.42 -0.31 1.29 -0.93 0.18 -4.43 -0.88 -0.19 -0.32
4 0.29 1.62 -1.79 0.48 -1.51 -1.13 0.56 0.95 -0.57
5 -1.27 1.20 0.91 -1.10 1.54 0.82 -0.74 -2.25 0.43
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(d)

Fig. C.4 — Fracture and matrix pressures changes at different timestamps representing different stages of pressure supercharge until
it is ended.

180



WOR Modelling

- 01NA 02NA 03NA

10° + T: ¥ T 4 === Unit Slope

% ® RNP,-Flowback
® RNP,-Production
0 4 i + T + + i :
+ + RNP,-Production
° A 95% Confidence Interval
107 + 0 T T o
L4
4 2 ’
L

103 2 1 1 X rd ’ : L . L @ I 1

04NA O5NA 06NA 07CA

RNP, psifbpd

10°

103 4

10 4

RNP, psi/bpd

1071 -

1073

10°

10% 4

10! 4

RNP, psi/bpd

1071 -

1073

10°

107 -

10! 4

RNP, psi/bpd

1071 4

4

s

-+ +
.
+ + +
L]
-+ +4
&
e,
’

L £ |

10-3

10°

10% 4

10! 4

RNP, psi/bpd

i I ra L L i L
1072 109 10? 10* 10° 102 10° 10? 104 10° 1072 10° 10? 104 10° 1072 10° 10? 104 10°
tmg, days tug, days tmg, days tug, days

Fig. C.5 — Flowback and post-flowback RNP plots

L £ I

181



WOR Modelling

Water Qil Ratio, stb/stb Water Oil Ratio, stb/stb Water Oil Ratio, stb/stb Water Oil Ratio, stb/stb

Water Oil Ratio, stb/stb

it 01NA 02NA 03NA
10' 4
§ E E e Production Data
10° % + - WOR Model
§ - i 10% Low
1071 ¢ + + 10% High
1074 s
10—3 i i [ i L i
0.0 0.6 0.0 0.0
07CA
107 E - E 3
10°
107 4 .
10-3” i -|||:|| :: I -|||:|||:|I 'llln:llll:nlll:i
0.0 0.6 0.0 0.2 0.4 0.0 0.2 0.4 0.00 025 050 0.75
09NB 10NB 11NB
107 ¢ p E E
1004
107 T T T
10-3 E } .! L E L 4 .TI 1 - 1 1 £
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.0 0.0
- 12CB
10' 1
10° ¢ ’ E E
107§ 4 T
107§ : -
10-3 Faaigly P B M E L o P i
0.00 0.25 050 0.75 0.00 0.0 0.0
102 16NP
s h F
10" ¢ i T
1074
E ° F E
10—3_|||:|:1|:k|| [ } } TR I RO o _|||:|||:||:|
0.0 0.2 0.4 0.6 0.00 025 050 0.75 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Load Recovery, fraction

Load Recovery, fraction

Load Recovery, fraction

Load Recovery, fraction

Fig. C.6 — Production WOR modelling and ultimate load recovery prediction

182



WOR Modelling

01NA
1000 T -
- B length =% Width  EEE Height Event Count 130
& 5004 1 @
] N il 50%
o L 4
- e E ‘t)_'
& - +40 5
T £ 1 &z
= -so0¢ 120
-1000 L— =)
1000 T 3 100
€ 500 Teo
% ; 1e &
= g 1
e g ta0 &
. s e w
£ -so0f -
o B 3
-1000 [ FE ie i T | :" 0
5 10 15 20 25 45
1000 -
80
&€ 500 1 -
4 50§
o
= 0 3
& 40 €
© &
£ -500 20
-1000 0
1000 - J 250
& 500 200
a ; ] 5
s 5k E 150§
& - 3100 o
b E - ] @
= 4 : £ H c 3
B - N T T S S R §)
RPN AR ) S R N SR (O T S R TR N . A I
8 10 12 14 16 18 20 22 24
12CB
1000 T — 3
i 3 250
& 500 E
o B T 200 ¢
s B b g
SR S W R S— 150 O
& f B
z E o 100 3
£ -s00f
: =T 7 .07 T 50
1000 f——=T == H i i L L : H i i i : i i 0
10 15 20

Stage Number, #

Fig. C.7 — Microseismic event dimensions parallel, perpendicular and vertical to each well by stage

183



WOR Modelling

C.5 Design of Experiment for Petrophysical Properties
Selection

We conducted a sensitivity analysis to assess the influence of ten different petrophysical properties
on the observed simulated WOR trend during load recovery as shown in Fig. C.8. Initially, we
carefully selected these ten properties to represent fracture, formation, and fluid characteristics. The
chosen properties are Swiy, ¢f, kr, Ky, P, SWy, S0y, Dy, o , and Tp,. Subsequently, we examined the
sensitivity of the simulated WOR trend to these parameters during the load recovery, as demonstrated

in the figure.

Swif generally exhibits a significant impact on the early-time WOR performance, wherein higher
values of Swi; result in delayed oil breakthrough and consequently higher WOR during the initial
flowback period. A similar effect is observed with ¢,. Conversely, higher ¢ typically lead to
enhanced ultimate load recovery due to the increased fracture pore space, which improves load
recovery and restricts water trapping. Similarly, ks exerts a similar influence at late times, with higher
ks values corresponding to improved load recovery. However, k,, exhibits the opposite effect.
Increased ky,, typically facilitate faster oil influx from the matrix into the fracture, resulting in
accelerated oil breakthrough and lower WOR during the early flowback period. Nonetheless, higher
k., lead to reduced ultimate load recovery due to the enhanced support of oil influx into the fracture,

resulting in lower water relative permeability and subsequently reduced load recovery.
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Fig. C.8 — Simulated WOR trend sensitivity to different petrophysical properties
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While larger ¢, indicates a larger volume of oil in the matrix (assuming immobile formation water)
and slightly faster oil breakthrough, its impact on the WOR performance is negligible and can be
disregarded. Similarly, higher p; indicate more energy and may result in slightly faster oil
breakthrough, but their influence on the WOR trend is minimal. Sw,, So, and T;,, have noticeable
effects on the WOR performance as the ultimate load recovery is approached. Higher Sw, generally
indicate a larger amount of unrecoverable water, leading to reduced load recovery. Conversely, higher
So, values imply lower oil recovery and consequently higher WOR at late times. Additionally, higher
T, indicate reduced damage between the matrix and fracture, facilitating increased oil influx from the
matrix to the fracture (assuming immobile formation water) and resulting in lower ultimate load

recovery.

Finally, the effect of u,,/, on the WOR performance is monotonic. A relatively higher oil viscosity (i.e.
less py, /o) typically reduces oil mobility and causes the complete WOR curve to shift monotonically
towards the right. Furthermore, considering the well's lifetime, p,,/, is usually assumed constant;
hence, u,,/, is not considered in this study. Consequently, we concluded that Swif, ¢y, kg, k., Swy,

So, and T, are the key parameters to be considered during the development of WORM.

C.6 WORM Sensitivity to capillary pressure in the matrix

Here,