2369 R . | LI
T NATIONAL LIBRARY - Q BlBLlOTHEQUE NATlONALE
OTTAWA : L OTTAWA ~
5 o ' <
| NAME OF AUTHOR ...... {'Z‘ff/f‘f?‘.r.‘*.’f\/...ﬁ/fﬁl.c .................
TITLE OF mssrs ﬁ»&ol Sf«ém W 947 .....
o Ec}«m.&:.e, d«»&}mmpvj .......
. m L tedetsesendacntacaecenaene ,_'»_'.'.""‘""' .........
| mweasml&vwml}'zgwcyw .......... _
DEGREE FOR WHICH THESIS: WAS PRESENTED. . .. M. S G R
YEAR ‘l‘HIS DEGREE ammso ............. /9 Abheeiiiiiiil. .

Pernlssmn is hereby granted to THE NATI(NA IBRARY

g\ . OF CANADA to -j.crofu- th_1s the51s' and to le_nd or sell copies

S .
. of the fil-‘ 5 d
s The author reserves other pubhcatron nghts and
| neither the thesis nor extyﬂve extracts from it nay '\»;
printed or othervise reproduced w1thout the author s
. written pernssion. | v '
. . . &
. .
{ . . u - '.,‘ .
| %\ o ~— &JM/'(U,; Albertn.
L
amen. e 700 1973

NL-91 (10-68) »’




. ' \
$ ad
THE UNIVERSITY OF ALBERTA \%
»
4
qﬂf,f < \\\ CONTROL SYSTEM DESIGN BY ‘EIGENVALUE ASSIGNMENT
‘ o R
- =
47 TN

.' v “
o A THESIS ‘- |
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
"IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
| OF MASTER OF SCIENCE
.‘\ ’
4 DEPART;;;;ng,CHEMICAL ENGINEERING -
. . . ) . ' /r .
.r ) » - . . " . ,,u:» »
. g  EDMONTON, ALBERTA .
o . " SPRING, 1974 = =
. U ’ . ! . .\ .
s e )
\\ X :



' THE UNIVERSITY OF ALBERTA

FACULTY -OF GRADUATE STUDIES' AND RESEARCH

\

The undersigned ceftify that they have read, and

recommend to the Faculty of Graduate Studies and Research for:

acceptance, a thesis entitled CONTROL SYSTEM DESIGN BY
EIGENVALUE ASSIGNHENT subhivted by HAINGJUN PARK

/4§i partial fulfilment of the requirements for the degree of

Master Gf Science

"

B

. (SuperviSor)_
5 \.:; AN . \
;'c ;le“ e }/ ) .‘éi5:; f/jl
T £
Nor 27 7773

‘Date ', .”. R

184



v

CABSTRACT - | .

»
¢/

This_thesis presents thé'application of eigenvalue assigni'

'ment techniques to both proportional and proportional plus integral

control of muFtivariable 11near systems ‘using state feedback.

For proportional control ‘'system design,- recursive de31gd
methods based on the eigenstructure of _the open-loop system are
considered in order to gain insight into the effects of available

design freedom on the performance of the closed-loop system The

‘?tandard eigenvalue assignment techniques developed for proportion -

.control*systems are modified for the design of.proportionalvplus

integral controllers. A new theoretical result concerning a rank

r

condition for the integral control matrix is presented as a formal

proposition and proved

-

- Digital simulation studies of the eigenvalue assignment

,techniques applied‘to a double effect pilotbplant evaporator modele

are described Ihe simulation results using proportional eontrol
sé%emes demonstrate that manipulation of eigenvalues only is not
sufficient to ensure satisfactory performance of the closed~loopv
system' well distributed closed—loop eigenvectors in the gtate.

N . Ter

Space are also essential. The simulation reSults also reveal that

"available design options in recursive design methods have significant

effects on both the _closed=- “loop dynamics and the resulting feedback

matrices.
Two modified eigenvalueiassignmentvtechniquestfor propor~

tional plus integral cOntrol ayatem design are applied to the

~1iv =

s



‘evaporator system. - The simulation teaulta of the evaporator system

de-onstrate that offsets in the selected gtate variables can be
elininated for any congtant disturbanCe ‘using proportional plus

¢

iintegral controllera designed by eigenvalue assignment techniques.\; ‘ \
l.Houever, the simulation results shoﬁichat the transient behavior
of the closed-loop system depends highly on the type of disturbance

‘

"and the design method used.

)
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‘are linearized around norma operating conditlons./ The resulting

i

_state space representation'of the system is in general a set of linear,

- l

time-invariant, multi-input, multieoutput equations.'.It‘is'well—known

Ly

that the stability of such a system is exclusivély determined by its g”“

‘eigenvalues and that thefdynamic behaﬁéor of the system is governed

by -the modes_(eigenvectors and eigenvalues)'of the system 050].

In view of the important role of eigenvalues and eigenvectors

-

in determining system dynamics, an obvious~design approach is to

synthesize a control System which ensures that the eigenvalues of the .

closed—loop system have specifie@gvalues. For the class of’proportional

state feedback controllers, numerous design approaches for assigning .

closed~loop eigenvalues have been reported in the literature.s Of these,

«

*wo distinct approaches one of which is based on the phase variable

3

canonical representation of the systeﬁ [l] and. the other one based on

. the Jordan canonical representation (modal stats representation) [41

42] have received the most attention., Since«steady state errors (off-

sets) due J"unmeasured sustained disturbances are usually undesirable

in process control, a natural extension of the eigenvalue assignment
approach is the design of proportional plus integral controllers [7
17, 37, 43] The‘design of incomplete state feedback or output feed—

back control system%iis currently under active research ‘since not a11

4 -

o 1 __*‘

¢

(o]



thexstates are accessible for measurement in many«real brocesses s 6,
\

14]). However, the scope of this'thesis is restrictEd to state feedback ‘
v 4 o ot

control systems and de?ign approaches which are b&se%,on/mhd modal repre- g

Nsentation. In addition to conceptual simplici in, design and imﬁle—
'mentati7p~xfhis approach offers the s%gnificant advantage of giv1ng
more insight into system dynamics and providing moreSdesign freedom.
ot : a
An important reSult of linear system theory [49] 1s that 1f \
.a linear time—invariant system is state controllable ‘then state feed?5 - épe*
1 back control can be used to arbitrarily assign aﬁ[ of the eigenvalues
‘of the closed—loop system . Despite the many design techniques av il- kb :
able in the'literature reports of simulation or experimental §tudies
Qof eigenvalue assignment techniques applied to process control problems _
i . g

are few in- number. ‘In‘this thesis eigenvalue assignment'techniques~

.
\ 8 °

. vhich employ state feedback are applied to a pilot plant double

.effect evaporator in digital simulation studies. A R
r) . :

<

s

e »:%’1;1 OBJECTIVES OF HE Sty A . g

s ‘«%_'

1 rk "The- objectives of this study can be divided into two parts.}
’ . j ) .
The first part is intended to e luate several eigenvalue assignment

‘techniques for designing propor onal controllers using state feed— )

back. The methods of eigenvalue assignment consideréd in this study
' are variafions of the. approach of Simon [41,- 42) and will be referred -

v AN

to as “Eigenvalue Assignment via Modal Analysis" throughout this thes1s.

‘ ‘This method is distinguished from other methods by having a feedback';

.gain matrix of the form, K= 151 Bi i where 8 and gi are

- {

_column vectors of appropriate dimensions. Superscript T denotes .

the tranapose of a matrix and P is a positive integer which is o

=« . i N ) . - N -~
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selected a priori'by the,designer;l According tohéimon's approach, 'Y~/
for an arbitrary set of vectors' {gi} bhich*preserves certain o ﬁ&, .
properties of” tie system,’there exists a'set‘of vectors‘ {gi}‘ which

.enables the desired éigenvalue assignment. It.is important to’note.
that the feedback controller ‘which assigns the desired eigenvalues | :

- to the closed—loop system is 1n %e/Eral not unlque ‘ T
‘ It is the purpose of this first part to investigate the |

effects of the des1gn freedom available in the choice of the set- 6f/—\\\K\‘

?

”~

I , L

- arbitrary vectors {51} on the petformance of the closed-loop system.

More specifically, the following factors are evaluated via the

simulation study' o ‘ ' _—

A3

- The effects of the closed-100p system matrix on thiidynamicf‘ . i@

behavior of thevsystem,'e.g. if the eigenvalues of the

closedeloop systenz are the same, to what extent will the -
dynamic response ¢f the closed-loop’ system change fqr
p 'vdifferent feedback control matrices?

- "The effects of the desired closed-loop eigenvalues on the

fdynamic behavior of the systen..

RN . R 7
- vThe.effectS’of thejmagnitudehof feedback gains on the
“dynamic response of the system.' _
. e Ly :
- The effects of the set . of arbitrary vectors {511 on chc‘v

» dynamic response of the system and the resulting“feedback

/ ’
gain matrix.

C - Comparison oficontr'l laws derived by eigenvalue assignment'f
‘*and optimal control theory when both have the same’ closed-
loop eigenvalues.-

A fdrther objective isto establish practical guidelines for choosing



%

A

e

\

'the set of vectors {g } 'in sugh a way that design obJectives such

- as low feedback gains and satisfact

‘v

tare also included in thfs chapter.,a

B

sient and steady state

ibehavior of the system are satisfied" '

. In the second part of this study, - existing eigenvalue assign-
mehbttechniques are ex-ended to the design of multivarlable proportlonal
Plus integral contynllers which eliminate steady state errors in some

of ;}le States. 'I'he condition that  the integral controller matrix

of the system must have full rank for arbitrary eigenvalue 3551gnment

is g@gsented and. proved in the form of a proposltion. Based on this

proposition two practical algorithms are derived for designing

' proportional plus integral controllers. The performance of the

| resulting proport nal plus integral feedback controllers is then

conpared with that of optimal proportional plus 1ntegral feedback o
controllers. ey R .i ' ’ ,(/’\

In both of'these studies the control lavs are evaluated

N

in sinulation studies by applying them to a fifthlorder state space

model of pilot plant douhle effec . evapotator. ﬁ*

This thesis consists of five chapters includiug this

N

introductory cnapter. In Chapter Two, a literature survey of eigen—

jﬂ value assignment techniques for the design of proportional controllers

- is presented. Basic theorens and eqiations relevant to this study

..vv,Q

Chapter Thtee deals vith the extension of eigenvalue '

,asaign-ent techniquea to the design of proportional pPlus, integral

controllers. A neceasary and\sufficient condition for the realization

W~
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o b L . o
of proportional plus integral controllers<vhich assign arbitrary
eigenvalues to the system is presented in the form of a proposition.

Two different algorithms based on this proposition are. also included

~’ \1\
in xthis chapter together with their respective modifications to dis~.
crete{iime systems. 1,. : - '\i '

Chapter Four ésscribes the pilot plant double effect evapo—
rator in the Departiment of Chemical Engineering And presents the
'results of 51mu1ation studies for proportional and proportioual plus
’integral COntrollers.

. Finally, Chapter Five SUmmarizes the major results and

conclusions of this thesis.



CHAPTER 'TWO

MULTIVARIBLE PROPORTIONAL CONTROLLER‘DESIGN

A}

A.1 INT hUCTION
. Since Rosenbrock [40] first introduced modal control in 1962
as a possible design aid in the control of large chemical plants
' iconsiderable attentioh has been paid. to control system désign by
assigning eigenvalues to. the closed- loop system. Eigenvalue Ass1gn—
ment via Modal Analysis mainly due to Simon g41 42] is a powerful
~method in the sense that considerable design freedom exists -and
insight can be gained into the effect of moving eigenvalues‘on the
‘aystem dynamics. The design freedom enables the feedback controller
to be- designed in either a single calculation ({.e., "the simultaneous_
' approach") or in a recursive manner (i. e., the recursiveiapproach")
vh A brief survey of .Eigenvalue Assignment via Modal Analysis,
is presented in Section 2, 2 including both theory and ' applications to
process control systems Since eigenvalue assignability is closely
related to the concept of state controllability, the development of
the relationship is 8180 included in this section.» Other eigenvalue
assignment techniques are briefly reviewed for purposes of comparison.
In Section 2 3 basic equations and theory relevant to ‘the
:development of this work are presented for«both the simuhpaneous
and recursive design\ggproachea, However, major emphasis is put on
.the recursive design in view of :h>7fact that more insight into the .
‘.dynamic behavior of ‘a system can be obtained by mOving the eigenvalues

I

one by one.

LIS

QM.
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2.2 LITERATURE SURVEY

»The-conventional proportional feedback control of a single—

.loop first—order system can be interpreted as a special cade of eigen-

.~

value assignment since feedback control ‘tends to decr:zase the time
constant and hence shift the closed—loop eigenvalue. Actually;_if‘

a scalar is considere.’ as an pne—dimensional vector, this simple
. ; - ' . R

~ control scheme is an example of "ideal modal control" in the sense of

Rosenbrock. Howevgx,\eigenvalue assignment techniques are also
attractive for the design of multivariable control systems since the

stability of the system '1s guaranteed by assigning desired eigenvalues

to the system. @
' ‘uConsider a time—invariant linear state’ space model and N
proportional feedback control system described by
. ,/ o o - .
X(t) =4 x(0) +Bu®)  C =af) . (-1
u(®) = Ko x(e) e ;' (@

where §(t) is'an n x 1 state vector, u(t) 1s an m x 1 control

vector and matrices A, B and Ken ére‘real; constant matrices with-

3

appropriate dimensions.

Ideal modal control was proposed by Rosenbrock [40] and may .

be defined as an eigenvalue assignment technique.in which a certain

number. of eigenvalues of the open—loop system are- changed while the ”'
eigenvectors and the other ei ~nvalues remain unaltered. To. achieve

i

ideal modal control, the control. matrix B must consist of the eigen-

' vectors associated with eigenvslues to.be changed [40]. However,

'in many applications, matrix B is determined by the*proéess,model

r



.

A

and cannot be easily altered. Thus ths'degree to which ideal_modal

'control can be achieved depends on how well matrix B approximates

. I
the natrix of eigenvectors. Furthermore, there is no justification

for preserving the open-loop eigenvectors unless these eigenvectors
have»favorable properties to begin with. However, systematic methods
for synthe31zing desired closed-loop eigenVectors are not available
in the literature. |

Eliis and Hhite [8] modifieg:;osenbrock s modal control
and introduced an eigenvalue assignment technique based on a modal
analysis of the system. They abandoned the idea of keeping open-
loop eigenvectors unchanged and were only. concerned with shifting a
selected eigenvalue to a desired location without affecting the other -

eigenvalues. However their efforts vere mainly concerned with

shifting a single,eigenvalue in singha input systems. Intan analog

co-puter simulat n; they,applied‘their technique to steam pressure .

LY

what condition is it possible to assign an arbitrary set of eigen—

'.ansver this iuportant question and a historical Survey on this

) subject may be found in the paper by Villems ‘and Mitter [46] The

vlfunda-ental and i-portant result is that the

igenvalue assignability

of a systen is identical to the state con ollability of that system.

b.g .



_This 1mportant Property may be cited in the form of a theorem [49].

e

This propertyvis believed to.have been known‘for a long time for
single-input systems but for multi input systems,a complete prooQ‘

‘may be attributed to the independent work of Wonham [49] and Simon [4 ]

& . A\

" "The pair (A, B) is controllable if and only if,

forxevery choice of the set Ay’ there is a matrix

C  such that A + B C has A for its set of eigen3;>:
' L i S )

values." - . l K : A

] ’ : !
Although the final statement of the theorem is identical in Wonham' 8

and Simon s vork they employed different approaches in- the proof of
the above theorem and these different approaches provide the basis
of the two broad classes of eigenvalde assignment techniques that
wvere mentioned in Chapter One.

/-

[

2.2.1 Use of the Phase Variable Representation J '/
. Wonham s proof of the necessity part of the theorem was
based on the 1inear transformation of the original system into ‘the

generalized phase variable canonical form.- The transformed system d'

vmatrix is in pseudo lower triangular form with blocks of phase

Uy
variable canonical matrices (companion ~matrix forms)*along the

main diagonal. The generalized phase variable canonical form was

<

used by Anderson and Luenberger [1] in their method of eigenvalue

.assignment. Honham 8 major contribution can be interpreted as using

the conctpt of cyclic subspaces to establish the existence of n.

Rt

blinearly independent basis vectors vhich enable the system to be

transformed into a generalized phase variable canonical form, if and

: only if the syd&em is. completeiy state_ controllable.'

1



3

10

K3
A\l

ro The phase variable canonical form has been widely used in

shifting open—loop eigenvalues in. single-input systems due to the fact
v .

thﬁt//he\characteristic polynomial of the system can be directly found -

.from this form. A major part of the computation involves transforming

. the original system into the phase variable canonical form [18, 19].

e

Anderson and Luenberger § approach [1] may be viewed as a generalization
of the single-input case to multi -input systems. However, in contrast
to the single-input case the representation of a multi input system

in the generalized phase variable canonical form is not unique, and

consequently different control laws Tesult depending on’ the canonical

»forms used. The non-uniqueness of the phase variable canonical form

in multi—input systems provides design freedom for objectives such

‘as regulation of the feedback gain elements [3@% and a881gn1ng complex

eigenvalues to the closed—loop system [3§J/f An extension of this

method to systems which are p\?tdally ceﬁtrollable vas also reported

[44] The advantage of this approach is the capability of handling

_ complex and/or repeated eigenvalues but th approach suffersifrom

:the lack of information about eigenvectors. This information might be

valuable in process. control problems

' 242.2 Use of the‘Jordan Canonical Form

In contrast with Wonham's approach Simon s proof of the

'above theorem was based on a Jordan canonical (modal state) repre-

sentation of the system and provides direct insight inte eigenvalue

.assignability. His proof of the necessity part of the theorem is/

also constructive. it first makes sure that the system has distincti

eigenvalues and then these eigenvalues are moved to the desired



e

11
locations, ASSuning that the eigenvalues of matrix A which are to

be shifted are distinct the postulated :form of the feedback -atrix

is the sum of p dyadic products:

Kep = ) g 5 ‘ ‘ (2‘3)”'

L\
o
L]
[

P

sk,

_where p . is the number of eigenvalues to be noved 8; is'an m x 1

vector, f_. is an n x 1 vector. The structure of the gain matrix

i

" in Equation (2—3) provides a poverful tool in designing control

system in such a way that eigenvalues are moved in a single step
(the simultaneous approach) ‘or recursively (the recursive approach)

by spec1fying the sets of vectors q } and {f } independently.
Ey

Simultaneous and Recursive Approaches

In the simultaneous design method, each vector g 1is

~

assumed to be a constant -ultiple of a predefined vector g, in

order to avoid having to solve a set of non-linear algebraic

. equations. This procedure has a net effect of converting a multi-

1nput system into an equivalent single—input systen. Theuvector :
g, " may be chosen arbitrarily subject only to preserving the
controllahility of the original sysce-. Although Power [35] f)

suggested a quite lengthy and co-plicated -ethod of choosing thek///

vector g , Ho systenatic way of selecting a, a&xisfactory go

is available. Gould et al [11] extended this si-ultanequs design
method to give an explicit gain for-ula forasyste-s uith repeated

eigenvalues. Retallack and HacFarlane [39f presented an alternative

approach vbich directly gives ‘a co-pact forn of the control law,




12

. using the property of the returnrdifference determinant of a system.
Other papers which adopted similar design approdches are also avail-
able [9 24 27 29]

M ~ The form of the-control law given in Equation (2-3) makes

, .

it possible to shift eigenvalues recursively in such a way that the

‘ p‘ eigenvalues to be altered are div1ded into r (< p) groups, and
each,group,of‘eigenvalues‘is moved to a desired location using the
 Same number of gi and f | as the number of eigenvaers in’that
group. At each stage of the recursive design, the Same procedure as
.was used in the simultaneous de51gn is employed Jand the 1ntermed1ate
closed-1loop matrix and eigenvectors are calculated in order for use's
in the’next stage.' The design is completed by adding the ind1v1dual . g
;= i’

control matrices, that are calculated at each stage. ‘\jggﬁ
v : : : _ 4

if only one'eigenvaluézi;\changed at a time, the eigen—

vectors of the intermediate closed-loop matrix can be updated fr

White's method for eigenvalue assignment in single—
" may be. regarded as a special case of this recursive design}.FJ'
-and Hicklethwaite.[Z? 30] also reported a special case of&
recursive design5 derived independently from Simon in which only
one eigenvalue is moved to a desired location in each step and each E?
eigenvalue is paired with a single control element at each’ step

alof the recursion. The ﬂgiring of eigenvalues and control variables :
can be achieved by specifying vector gi to have only one non—zero
element.

In addition. to the number of recursive steps involved the

. o .
basic difference between the simultaneous and recursive de91gn methods
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stems from the fact that 1inearly independent vector g; are- used in
the recursive‘design while only one independent vector ‘g is used
in the simultane“hs design. Recursive design is a powerful approach
due to its flexibility and. the extra \insight into the effect of
'feedback on the system dynamics which is gained by changing small
numbers of eigenvalues at a time. Furthermore, the following
corollaries prov1de the necessity for and the basis of, recursive 0
. design in handling a derogatory system, in which more than one
independent eigenvector is associated with a distinct eigenvalue.

By contrast,‘simultaneous design cannot change all of the repeated

eigenvalues in this situation due to the unity rank of the resulting

3 “
u

controller matrix.

"Corollary 3.8 [42] If the input is a scalar quantity,
i.e., .m =1, then a necessary condition for the
system to- be completely.state controllable (completely

state observable) is that no two Jordan blocks contain

the same mode._

'_.Corollary 3.14 [42] If the‘pair (é,_g)t_is cOmpletely

_ state controllable and KFB is any (m » n)‘ matrix,
then the pair (A + B KFB B) is completely state
oo
controllable.

4

The approach of. Siﬁn and other workers for assigning
eigenvalues using the Jordan canonical form of a system, was
termed “Eigenvalue Assignment via Modal Analysis" because the

eigenvalues are shifted by analyzing the modal structure (eigen-

-
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N
A

values,and-eigenveCtors) of the. open—loop system._ Applications of

modal analysis to other types of control pnﬂﬂems are alSO found in
the\literature [5 13, 23]. Levy et al [23] used modal analy51s to *
provide insight into the dynamic response of a binary distillatlon
vcolumn and to examine the validity of various column models In

their control system design," Davison and Chadha [5] ‘and Howarth

-et al [13] selected the controls and States to be measured using
‘modal information Other than Ellis and White s application in the
_preSSure control of a boiler, already mentioned, applications of.

ieigenvalue assignment for the purpose of controlling a realistic

system, using state f edback, are almost unavailable either in

simulation or experi ntal studies.h This.is believed to be mainly

L4

“due to,thé]diffi Y in getting all the state measurements How—

ever, in the shif“ of a single eigenvalue using modal analysis .an

interesting interpretation of the resulting gain—eigenvalue behav1or

-~

of the closed~loop system obtained by a root—locus.analysis was o

reported by Howarth et al [12]
" For the: class of incomplete State feedback control where_
~ only very small numbers of controls and states are available modifi—»

cations of Rosenbrock's modal control were successfully applied to

a

‘:ch"*'e a small number of eigenvalues [4, 5 13].

2.3 mEoRY N /\
As 1in the case of most controller design methods the theory

of eigenvalue assignment techniques has been developed using a linear '¢'
continuousttime model of a system. However, it is sometimes more;

’,

convenient to represent a continuous system by a discretized model
R : :



based on a sultable sampllng time, especially for purposes of digital—'
computer control. For’ this reason, theAtheory of Eigenvalue Assign-

ment via Modal Analysis is‘presented for both continudﬁs'and discrete
‘ P : : :
systems.

“;‘

:2.3.1 Continuous Systems

The dynamic behav1or of many ﬁrocesses can be adequately

”&n
‘ g§g¢0x1mated by the follow1ng linear time-invariant state. -Space
“mode¥, S ' - -
() =Ax() +Bu) +D ) - (2-4)

A
L . S , , : :
" where d(t) is a q x 1 disturbance’vector' D is a constant n x q

matrix and the ‘other symbols are defined below Equation (2 1)

. e .
The right eigenvector w. and left eigenvector v

i -1
associated with the fth' eigenvalue li of‘mattix A are.defined
by, |
: : N L .
. - ' ... S '(2_6) -

gives the following propetty,

» 'ﬁi."-!j”l[ e L

o arasp e

where <-> "denotes the'inner product of two vectors. Define matrices

g;,\_l and A such that W= [w ,wz,...,w ], . [v ,vz,...,v] and
l/'

'
AR

A = diag [A 2,...,A ] assuming that the eigenvaluea are - distinct.

Then it can be easily sbown that hv - A | N
L _ ‘ o | N



- .n o | | ‘rl.bnll . S ) , o

=

(2-8)

N - To investigate the effects of feedback control on(;héz%igen—

values of matrix A, a- linear transformation g(t) = g 2(25’ 1}

/
4

performed on the system of Equation (2-4). Then the resultlng
pi .

expre851on is given in terms of a new state vector y(t), (assuming

»..7'

_ ol / E
for ct nience; Q(t) =0), by : R
A & - . X : . o
) - 4 v : :
e : . y(t) = Ay(e) + H u(t)- , , (2-9)
‘with I s e
-y . . B R 1)

-]

9

!

. ‘From'Equation‘(2-95' it is clear that the new state varlables'of the
system are decoupled from'each othe™ and’ affected only by control
vector u(t). Hatrix H which is frequently called ""the mode

.,controllability matrix" of the system, shows the effect of. the‘
controls on the eigeuvalues of the system.’ It is important to;observe

- that if all the elements of the _ith‘brow of matrix H are zero, the
: ith, eigepvalue-of the system Ai, cannot be changed by any control
. ) - : A
scheme since the iFh mode (eigenvalue) is uot controllable [41, 42]
. o .-

In the absence of control, the dynamic response of the system
of Equation (2- 6) ‘can be expressed in terms of eigenvectors and
eigenvalues by [50]

R Af . t o A(e=D) .
“x(t) = § <v1.x(0)>e v+ Z f vy Rd(0)>e dww, .. (2-11) °
O il 6 7T - -
jsz gquationA(2-ll)iindicates that the stahility?of e system depends on '

S



the eigénvalues, but the shape of tranc:ent response is also closely

“

] _ related to the orientation of the eigenvectors in the state space.

-
[5d Al

- Heuce, if the control is mainly concerned with the regulation of some

states it is desira%le ‘to ma{ntain control over both eigenvalues

' &” - and e elgenvectors in such a way that the combined effects of the eigen-
‘ values and eigenvectors on these particular states are minimized

After applying the. control 1aw given by Equation (2- 2) to

_‘the system, the closed—loop system matrix C that results, is

3

NI

o+ Bky . 212

4

]

The‘eigenvalues_of matrix C are determinéd'by;soiving the character-
Y. istic equétion det-[Agn;— g]-f 0; where :;h denotes an identity.
-macrix of dimensiqn‘ n. 1f the first p eigenvalues'of matrix' A L

are assumed to be’ controllable and to be shifted to desired locations, te

53

v :,(i =] 2,...,p), then the characteristic polynomial C£(X), of

<
matrix C can be written as ‘
| £Q() =det AL -¢] o o (2-13)
fe . | ’ - n—p . R
. oo : =1 (A=p,) 1 (A=) “) . ‘ o '
: ' B i=1 1 =1 .P+j : S
_ However from the assumed form of the feedback matrix given by

;Equatiék (2—3) the characteristic polynomial :f(A), -becdmes,\
)

f(x) = det[AI -A- B Z 31 T B L (2-14)

"“
':iu,§eneral, after<£hoosing £, to.be equal to v, and eQUating
T e T f T

oot T : i . : ©



!

polynomial , £()), can be urltten as

.
£
[
®, .
N

Equations (2~l3) and (2~14), the desired‘feedback matrix ‘can be realized
' 4

4 by solving the regsulting non~linear equations ‘for t s [30, 41].
31 .

2.3.2 Siﬁultaneous Design

In order to avoid sqiving non-linear algebralc equations,

3

which results when one equates right hand sides of Equatlons (2-%3)

‘and (2~ ~14) [61 42], €ach vector 8y “is assumed to be of the form of

/

a gii- 6i§0 v (i-§‘l,2?.‘;,p) ? : ‘ e (2;15)

where g is a specified constant vector of dimension m and . 6

is a constant multipllet to be determined. Then the charactetistic

. €
CEQ) = 4 €I\l -<A - Bg 67 T (2-16)
’ - el =n Y= ggo_ =p ¢ »
where § isa p x 1 wvector, !p' is'an n x p matrlx and the i

i
"respect:ivel’y Applying the Schur fomula [10] and using the

- element of $ and the ithk‘eolumn of‘ Vp are denoted by §, and

1’1
relation given by Equation (2 8), the tight hand aide’ of Equat1on (2—16)_

can be factored into two determinants hence ' 4 .
f(r) = t{Arl =A] det[1~6 (XTI -A S 2-17
(X)) = de [’.n 4] det[ ,~,( L z,‘1,)95:] . (21
where ‘
o I , o . :
L diagl ,2y,e0h ]
' - B ¢ i
a= [ul,uz,..;,aé]T = Vrﬁg .

=p==o
The\tecond determinant inﬂEqmmtian(2-17)ican be expapded‘to
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L
' ' P § aw ~
T, | i ‘
det [‘1—§ (AL-8) ) la) =1 - 121 [E=wll (2-18)
.\ S e

-

. ) : ‘ ] . . :
~ Suppose’ 'that 6 are specified such that the following relation holds

i

\\ \ K P aiai P (A-;p.).
’ 1 ooy L ooy (2-19)
i:]: - ]’_\ izl i i X R
Then.from Equations (2-17) .and (2-18), the characteristic polynomial .
f(1), becomes identical to Eﬁuatibn (2-13), thus assigning deéired
i , . ;

eigenvalues to the‘c105ed—100p system‘ if a, ¥ 0 the-constant

coefficient 6;_ can_be determlned from Equation (2 -19) and is given

by | | . r-h" ‘ .
| jgl ey - o g
6y = - (1=1,2,...,p) .  (2-20)
1 j‘l j"i
J#i

»

‘It is”bbserved from Equation (2~20) that the underlying assumptions

e

°y (i,j = ] 2,...,p) and'_

that go is chosen such that vector a has non—zero elements.

made in ‘the derivation are that }A ¥p

2.3.3:.RecursiVe Design : o : R A

As mentioned in the previous section the form of the feed-

'back matrix given by Equation (2-3) suggests . the possibility of shift— .

4

ing eigenvalues recursively. Although, an arbitrary number of eigen-
values can be shifted at each step of the recursion, only the case -
where one eigenvalue is moved to a desired location,at each step, is

dealt vith\here. .FromvKuations (2-12) and (2-3), the closed-loop



matrix € can be written asg

o o -
‘c=a+B ¥ o ¢F . » (22D
= = o= gi.—i . . ‘

Again the first vpk eigenvalues of matrix A, Ai _(iv= 1,2,...,p),
-are asspmed to be shif ed to new 1ocat10ns pi (i = l 2,...,p)

sequentially The ify rmediate closed~loop matrix,, gi,~ after the ith

recursion, is defined by . , ' !

\g&- Si—l + Egi.f.i o (i = 1’2 e o )P) . . (2“22)
.and ‘
) S, = A . _ B (2-23) -

Clearly, Equation‘(2~22) shows that the closed—lobp'ﬁattii 51 after”

the ith recursive step’ becomea ‘the open~loop matrix for the (i~_f'l)ch

' seep,' Assuming that the 'iFh, eigenvalue Ai of»matrix A s moved

4

to, pi in the 1th' step, the desired objective can be achleved by

prespecifying vector 51 arbitrarily and Betting

-.n'

> o - o L ;, (1~l)

£ 8y v (2-~24)

where 6; 1s a constant to be determined and ’viifl) is defined by
./ ) ° . . " . - . .

the following relation,

e SEDREEE ¢ (i ") (ivl) , B SR
. &yt Ny oo @
‘VE@uéeieh"(Z-ZS)‘bhows that 3; —‘2 is the left eigenvector of Ei 1

i aBsociateq with the _iFh eigenvalue Afs which is to be moved at:

%

k4
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(i ")I

Ko : ' )
the iFh. step. By applying Equation (2-20), Gi can be calculated:

‘) .
(Difki)

i (i-D
Vi o 251>

x

=12, . (2-26)

. . : ’ EA
Observe that .each vector 8 should be chosen sych that

<*> in Equation (2- 26) is ot equal to zero and this is always pos31ble

'51nce the first ) -eigenvalues of matrix A are controll ble., The

s

rank of the reSulting feedback matrix is less than or equal to m, ‘_fs
depending on the number of independent vectors 8- By contrast,

in the simultaneous de51gn, the rank of the feedback control mstrix
<~’

is alwayc ur ity. It is interesting to observe that the elements of :
vectors, g » can be interpreted as the ratio of control efforts

employed in shifting the ' th eigenvalue [41]. If all the elements

v

o} vector- . are non-zero, all controls are used simultaneously and
Ei

1& only one element is specified to be non—zero, then a single controli
l

iT used individually to shift each eigenvalue A Actually, Porter s

sequential eigenvalue assignment algorithm (27, 30] is an example of

the latter case,

j2.3'4 Derivation of the UpdatedvRight and Left Eigenvectors
In the recursive _design. method it is necessary to calculate
left eigenvectors at each recursive step, but if a- small number of

eigenvalues are shifted at each step, right and left eigenvectors of

a

matrix Ci can be easily updated from those of C [41, 42]. Again

si-1

'only the case, where one eigenvalue is changed at a time, 18 described

here. Although it is not absolutely necessary, the eigenvalues of

matrix Ei-l are assumed to be distinct for convenience, and vectorsv'

!
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- (1-1) (1 -1)
¥, %  and vi denote the right and left eigenvectors of Ll 1
assoeiated vith the it‘h eigenvalue. Let the set of eigenvalues of
. th (1) ,
-atrix Ci’ after tbe‘ i reCursive step, be- {A } (j = l,Z,...,n);
then Agi) ;i b. (if j # i) From the definitions of an eigen-
vector and matrix €;» 1t is easily verified that,
PR ISR C b P 2 D (2-27)
| (1-1) A
—~ 4w : if i=3) .
/"“ ~j - ( - 3)

By theﬁgssuuption of distinct eigenvalues of C the set of vectors{ :

=i-1* .
(1 -1) ‘}\p
{w j } TJ -/1 2,. ..,n) spans the n~dimen81onal VECtor space, and

hence it is. possible to write

PO ) .
- NEY) - ] @ 0D (-28)

Fro- the definition of an eigenvector and using the property glven

by Equation (2-7) it can be shown that [41]

1) (1 -1) W, 1 NES PN g
ﬂi Y5 -h>-qj (A Ay UT';J”'VM . (;am
However, cousidering the fact that A(i) -_pj i(if' J <1) and
§i) j (if j > i)\ g§ ) can be’ determined from Equation (2- 29)
' vithin a comstant multiplier. The scale _can be fixed by |
<~ qg?) =1 y o= 1) - o - (2-30)
- (1-1) (if 3 f i)..
ey

The same analysis can; be applied to ~Jupdate left eigenvec§7rs,'but by

.,n:w“l..: --i‘§£§%%¢
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a

using the property given by Equation»(2~7); it can be readily verified

. that )
RN CV N (1 DT e ey @
o T S
I CES VN ¢ AN e S DR L

2.3.5 Controller Gain Minimization . g - - ', s
In many ptactlcal problems, 1t is desirable to put conscraints
on the magnitude of the controller gain elements because of limitations-

due to: physical control variables measurement noise, etc. In both

simultaneous and recursive. design methods, design freedom is provided
: 2
by an arbitrary vector g or a set of arbitrary vectors {g } wich-

\

.out affecting the eigenvalues of the final elosed—loop matrix...If'
regulating the magnitude of the gain elements is a prime concern, theae
vectors can be chosen so as to minimizeé the magnitude of the largest

'gain element. In general this will require the solution: of a non~

linear optimization problem.? However 1f only one. eigenvalue is

shifted, Simon 141, 42] showed that the largest gain element can he
l

minimized by selecting vector ga to be'

go‘l‘] 'vv sign <‘!i’}—)j>' (j - ;-’2»‘ <. sm) : (2‘32)
'where' 8, is the jth element of vector' go-' vy is the left eigen~
. j '
vector, associated with the eigenvalue to be shifted and b, is the

; =3
jt'h column of matrix B Simon derived the relation of Equation (2e32)

41by defining "a measure of controllability" for the eigenvalue to be
changed and proving that & chosen by Equation (2 32) maximizes

this “measure of controllability"

Py



2.3.6 Discrete Systens

. - _ . ‘ 2

e eliAAmﬁélghough»Equation (2932) is only valid when a single eigen-

\

value ia shifted, this policy can. be\used in a recursive design to

preserve the controllability of the syste;\hnd to prevent excessively

‘high gain magnitudes

I

uf

In many cases, the actual implementation of a control scheme

L

can be more conveniently achieyed on a discrete-time'basis rather

S % [ IS

than on a concinuOus—time basis, especially~in.modern'digital»computer

- control systemsl In such dtcase the continuous model given by

" Equation (2~4) can be discretlzed into an equivalent discrete model

51,
AOADT] = YDXED + pDukD + gDaan  (2-33)
yhere
AT
Q(T) = @

T ér
D = ([ e doB

- T At -
oM =¢f ¢ doup
’ o .

’and T 4{a the sampling time of the system..f

It can be easily shown that if the original continuous

S

"system is canpletely state controllable, then the discrete system

given by Equation (2-33) is also completely state- controllable [46].

3 o
Furtheruore,-che rigbtvand left eigenvectors are the,same»as the

correspondiung Quantities of the continuous'system‘and the ‘iFh ‘eigen-



i

. ’ . : . T ,."' . N r l‘
- AT

§ Sa RSN Yo s
value of the digcrete system £8 e » . If the conﬁcol is based or. B

discrete control law of the form of o ".l"Qf

applied withOut any modification. Hawevet, to insure the stability
it

of the reSultlng closed-loop system, che elgenvalues of this dlscreCe

system should be Shlftad in51de of the unit circle in the conplex plane.

€
"




CHAPTER THREE

: . | o /
7 MULTIVARIABLE PROPORTIONAL PLUS INTEGRAL CONTROLLER DESIGN:

3 1 INTRODUCTION

The presence of sustained external disturbances is a common.

foccurenqa in many practical control problems. It is well known that
'proportional control alone cannot eliminate undesirable steady—state
errors (offsets) arising from sustained disturbances Consequently,
it is commen practice to use integral feedback control in conjunction
with proportional control for this purpose.‘

It is the objective of this chapter to consider the design

of a class of multivariable proportional plus integral controllers

(vhich will be referred to as PI controllers by applying eigenvalue w~

ﬁassignment techniques A survey of the relevant literature is presented

'.in Section 3.2 with emphasis on the application of eigenvalue assign-/fc

? ’

: ment techniques. The relationship between eigenvalue assignability
"and the state’ controllability is also reviewed{in this. section. ,Ih

Section 3. 3 a neceasary and sufficient condition for realizing a

“Pf-controi—iaw~which enables arbitrary assignment of\gll system eigen—‘b

. values is presented and proved. Iwo practical algorithms for assigning.
"2
}arbitrary closed-loop eigenvalues are’ salso summarized in th § s ctﬁon;
S

| In Section 3.3.2, these algorithms for continuOus systems are modifi d.

for application to discrete systems

.. 3. _25 mmm SURVEY

¢

For the class of state»feedback control system, Johnson [15-

reﬁ&adding integral ‘

.- 26 ~
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control to proportional control to regulate states. He first considered
the case of constant’ disturbances [15, 16] and excluded disturbance

I
term from the state equation by adding an- auxiliary state variable

which represents the combined effect of control and disturbance terms.

An essential assumption in this- approach is that the range of ‘the

coefficient matrix, D, of the disturbance vector 1i€§onta1ned in

“the range of the coefficient matrix, B, of the control vector. If

b}
the state equation satisfies this condition he showed that offsets

‘ can be eliminated in n state variables by applying optimal control

theory to the _augmented system equation. In a later paper [17]

Johnson extended his previ0us -approach to the class of arbitrary

: vector disturbances which satisfy a linear differential equation

and described controller design methods usigg both optimal control

“and stabilization (eigenvalue assignment) theory. Johnson's design

\‘napproach using eigenvalue assignment technijze guarantees the regu~

lation of all state variables in the presency of a broader class of
unmeaSurable difturbances. However in order for the essential
asgumption employed in his: developments to. be applicable to an arhi~

trary system, it is required that the number of controls be equal to -

B ek

the number of scates. In many applications, this condition 1is. dif~

ficult to meet because available controls are usually 1imited in

number. e : A . : jf

‘A different approach to this regulation problem using
optimal control theory is given by Porter {25) and Newell and Fisher
[21] Their approach is different from Johnson's in that only as wmany

integrated states, as. pregerve the controllability of the augmented

system, ‘are fed back, hence eliminating the range condition imposed 2




on the coefficient matrices of the control and disturbance/vectSFE\\\\
\

However, this approach will eliminate offsets in only r states
where_'r <m iand is valid for impulee or constant disturbances,
‘Newell experimentally applied his approach to the double effect evap~ '
orator in the Department of Chemical Engineering and observed 1mprove~
ment-over a proportional control scheme.

Before, proceeding further, it is convenient to deflnebthe .
problem mathematically. Consider the system described by Equation (2~4)
if it is desired_to eliminate offsets in r (< n) state variables,
‘then a simple trea?ment is possible by defining a r'3 1 vector,

l}ll
. z(t), by ‘

e

I N
. A
VL

- T x(t) R & 553

where Ir is a r x n matrix whichﬁconeists of r appropriate rows

of the n xn identity matrix I . Combining'Equations (2-4) aund

(3 -1) gives the augmented system°

'é(t) - é §<t) + ﬁ u(t) + é d(e) *,_. - '(3;2)v
where
L x(t) o ' iy
.‘_ - x(t) = —gzzyf. : . s (3-3)
- et e
& = | - | L (3%8)
o T 1 O c :
r @ =
. [ B . -
2 - PR '1'-"'. B (3“5)

P
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.29, -

p o= || e (3-6)
R | . dAf\\? ~ 4
. . M J »
and the 0's _are. null matrices with appropriate dimensions.
The effect of augmenting the state vector is the introduction
of r repeated zero eigenvalues to the system in Equation (3-2)

These r zero. eigenvalues should be moved to the left half of the -

complex plane in order to stabilize the system. The problem of regu— '

- lation of r states is now converted to assigning at least * -eigen—
'values of the (n+r) x (n+r) system matrix, A « In view of the ,

'relation between state controllability and eigenvalue assignability

-

of a system [41 49], it is necessary to examine the controllability

'of the augmented system. The conditions for_.the controllability of

?w{

the pair (A B) have been extensively investigated and necessary and

‘ Ric,
fsufficient conditions in termBJof matrices A B and T vere reported

by Porter and Power [31,. 32 38] and Davison and Smith (7, 43]. ,in'

their first paper [31], Porter and Power showed that r cannot exceed
m, the maximum rank of matrix B and that a necessary condition for

(A B) to be a controllable pair is that the pair (A‘ B) must be

'controllable._ They later prove that necessary and sufficient conditions‘

for the controllability .of ‘the augmented system are that (1) the pair '

A, B) s controllable and .(i1) the rank of matrix ‘gr(Aﬂsx) 5 s

r, where matrix K must be chosen to*@nsure the invertability of

'

.matrix A [32, 38]. -

Davison and Smith have investigated the controllsbility of

the augmented system with extension to the general case where matrix

_,Ir 18 arbitrary. They'premnted ‘the same conditions given by Porter

[ !
i '

Y

™
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and Power but in a more genera1 form, and proved that if all the zero
and positive eigenvalues of matrix A are moved to the left half af
the complex plane, offsets in ’r states are eliminated for constant
or impulse type disturbances. Hovever, to cope with other types of
disturbance such as/a ramp or a parabolic dlsturbanee etcr,‘a prof

portional plus multiple—integral control System should beﬁionsidered

[7 17] The necessary and sufficient conditions for the q"trollability

of the augmented syste? of Equation (3~2), which enables’ arbitrary

Ll . _ ' ‘ !
‘eigenvalue assignment, are given by [7] Co :

1) (A, B) is a controllable pair and

Once the controllability of the augmented system of’ Equation
(3-2) is ensured, then it is possible to shift an arbitrary ‘number of _b

eigenvalues of matrix- A (< nﬂr)by designing a proportional controller,

u= K x, for the system in Equation Qz:g) Hovever, if the Simulta~' ‘ e

neous design approach described~in Seetion 248.2 is applied to this

v
augmented system, atimost only one of the r repeatdd zero eigen-

=

’; values can be shifted due to the unity rank of the resulting feedback

I3

matrix [33]. This restriction is an obvious result of Coroliary 3. 8 T

cited in Section 2 2 and implies that at most only one state _.'
“

variable can. be guaranteed ‘to have zero. steady state error. On the

“other hand the recursive design approach described in Section 2 3.3

!

- can be applied to shift an arbitrary number of eigenvalues of matrix

_A to the desired locations [29]. Howovar, it should be kept in

.mind that a minimu- of T steps of recursion are necessary to eliminate L
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~ plant of 41 states and 8 controls,
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‘/ offsets In r state variables‘and that the (n+r) dimensional elgen—

: vectors of matrix A must be updated or recalculated at each recuraive

¢

step even when shifting the eigenvalues of matrix A Another possible

approach is to apply Anderson and Luenberger s method of eigenvalue:

'_assignment to the system of Equatlon (3 2) .

" The special structures of matrix é, B and D make it
possiblevto decouple the task of assigning eigenvalues of the h
‘(n+r) x (n+r) system into two successive eigenvalue a831gnments for
(n xin) and (r x r) systems. This approach was adopted by Power

and Porter [37] in that after firSt shifting the eigenvalues of . the

<

"original system matrix A, the Y ‘zero eigenvalues of A ‘are moved

R
to desired locatfons simultaneously by: inverting a suitably chosenl

(rex r) non—siugular matrix. A similar design technique is derived

in Section 3 3.1 from a condition concerning the rank of the
1nte8ra1 feedback mat:&x. ’ B . : ‘_b o

}

to the design of PI controllers have been reported in the literature

. Only a fev applications of eigenvalue assignment approach

' ‘[4 5]. Davison 14] applied an eigenvalue aasignment technique to

design the integral controller in the PI control of a boiler system

'll states and 3 controls. His Bimulation results showe 'that offsets

v«,

Were eliminated in those states subjected ‘to 1ntegra1 sction. Another

';"/‘

application prcvided by Davison and Chadha [5] was(o chrned with the

<regulation of a single state variable of a 1arge : osite chemical

gt

W :

-

S



32

3.3 NEW RESULTS
The main new result is presented in Section 3.3. l in the

‘ fotm of a proposition two eigenvalue assignment algorithms are

described based on this Proposition. In Section 3. 3 1, continuous—

» time systems are considered and the two - algorithms are modifled for

-

,'application to discrete models in Section 3.3. 2

> ) . v - \ -
. v y
V-

'3.3.1 Continuous Systems - i ; ’
Consider the system described by Equation (3~2) The
following oroposition provides a statement of the restrlctlon on'the_g
integral feedback matrix which guarantees the arbitrary aSS1gnment
“‘of all n+r eigenvalues. ' | S »w-' _ J
~Progosition‘ Syppose that the system represented by
Equation k3-2) is completely state controllable Then a linear feed-
back control law of ‘the form of Equation (3-72) which shifts all. otr
‘eigenvalues of’ matrix A to arbitrary non-zero values vhich are’

either real numbers or complex conjugate pairs, ‘can be realiZed'if

and only if the rank of the matrix ‘51,’ is equal.to r.

u(e) = [5?3 ] 511§(c> - (3-7)
) L S

Proof. Combining Equations (3-7) and (3—2)‘give,the closed-

_loop system matrix ‘C -as
A+BKFB|"

- | ' L (3-8)

0,
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(NeCessitx) It will be shown that'if the rank of matrix 51

is less than r,‘ the closed~loop system matrix ‘g retains at least

-

one zero eigenvalue even though the system of Equation (3-2) is com-

pletely state contrc .lable. Matrix € can be expressed as the product

of an (ntr) x (ntm) ‘watrix and an (ntm) x (o+r) matrix as_foilows,

">

il
10

-~

o RN
[

- (3-9)

..
.5’1

No
Nx )
Er

T
=r

Since the system of Equationf(3~2)‘iS'completely state.controliable
the first partitioned matrix in Equation (3-9) will have a rank of
(n+r) However, from the second partitioned matrix in Equation (3—9);
it is clear that if matrix KI has a rank less than r, then the,
rank of matrix C becomes 1ess than (n+r) because the rank of the '
second matrix is less than . (n+r) This implies that at least one

zero eigenvalue is retained .Thus the necessity part of the pro- |

position-is proved.:

LSufficiency)( This part of the proof ia constructive since

a linear feedback control law of the form of Equation (3- 7) is derived
T

, Assume that KI has raok r. Denote the spectrum of eigenvalues of-

: A by {Al,AZ,...,A +05...,0} - and the spectrum of desired non—zero o
"eigenvaiues.by {pl,pz,...,p P l,...,p }

It is convenient to write the control vector u(t) as

S w(® -’gl.(t_~>’+g'2<c) G

!

where Fu (t) _will be uagg to ehift the n eigenvalues of uatrix é

and u, (t) to shift the ‘r . zero eigeuvaluea of 5 Next gl(t) .is
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specified to be of the form
w( = Kiglx(e) LT apy

where K is-an m x n matrix., Combining Equations (3- 10) (3*11)‘and

(3-2) and assuming d(t) =0 for convenience gives cheﬁfollowing

_ expression
HORE ¥ ORS THE S (3-12)
‘where SRR o e
- [iatE! o LR |
S R oo ne o IR (3-13)
CoErogg = : : '

The‘eigenyalnes-of the above system arevthe_rooxs_of the
equation
I

det [AI = (A*BK)] * det L1=07. S Gemw

+ e
v

‘ Equation (3-14) indicetesvthat only the' n 'eigenvalues-pf matrixf A

) . - N 4
are affected by u (t) Since the pair (A B) is controllable, a

s

’proportional feedback matrix K can be designed to assign the. de31red

~

eigenvalue spectrum, {D .92,...,9 } ‘to manrix (A+BK) ’ A
1, Afcer K is specified the. modal matrix ‘!v of éi vhas?f
the form [32],_ o o ‘fv co- R = P ‘ d~ﬂ' ,
X v .
1 vt
-—T (A+BK) ! If R R It T

where V 18 the modal matrix'of .(§+§§)T. éecferminé the iineaé,
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~transformation, i(t) = XTg(t), Equation (3-12) is'transformed-into.

~ .

" Jordancanonical form, '

Y(E)= | mmmpemm  (0) FTeS () - (3-16)
0.* 0 # H " .
= u“ -?
where J is the Jordan canoni;al!form_of ~§+§5' and
o yE e
Hy = -I(MBOTR . S (3-18)
; ) = : : o
The. control vector uz(t)» is specified to be
S L - N
ERORN(EESHONE S G
or, in terms of  g(t),

. 'Coﬁbining qu?tions (3516) and‘(3-l9) givéa the closéd-loop mé;rix in

‘the modal domain, C, ,

e I HK | e
| ¢, = | -2 o (3-21)
i ; : . . Q v 221'(1 ‘

The (n+r) elgenvalues of El are the roots of the character?stic.

“
equation,

.a
I LN
4. .

detD ] * detD Skl =0 . BNk

‘ Fromqudéﬁion (3-22), it is evident‘thét; 51 does not affect the
N o oTE v » . »
3 . 7N , L _

- N



eigegxalues of -Js ‘which reduces the problem to assigning the eigen—‘

values of the rxr matrix HZKI
R Hatrix— 51 is specified to he of the form

K. Z . o (3-23)
T si' o o , |

* ia' i
4 .
. .

vhere 51 is an atbitrary w xl vecf

_subjec; only to the control-
< lability requirenent and f - isben T %<1 vectdr. Since it‘is '

assumed that natrix“ K, has rank c; beth* { } and {f } should

be specified so that linearly iudependent v&ctor sets result. A T xr

matrix 91 ‘1s defined recursively by
Gy =t f 1= 1,2 r »(3-24)‘
=1 =iy e28iny e X) e
“with .
S 2 - (3-25)

. . _ . . : :
Then, the recursive design method described in Section 2.3.3 can be

directly applied to shift the r. zéfq eigenvalues'of C~j~b?—//

=0
specifying |
e (1-1) _
£07 61“1 (3-26)
o @, ' ' th e o P
where !j " is defined as the j left-eigenvector associated with
the jth eigeuvalue of . Ci’ however, from the Equation (3~25), (o)

3
can be chosen arbitrarily but the set {vg )} should be linearly -

independent. g

By co.bining Equations (3-10), (3-11) and (3- 20)
S
‘resulting. coutrol law can be exptessed as

!

1
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- calculated from the equatiomi
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w(e) = KK T GEOT LK . (321

'This proposition serves as the basié'for two algorithms for -
assigning eigenvalues. In both algorithms, the first step is to shift
selacted eigenvalues of A to desired locationé'using prooortional

feedback'control. The two proposed: algorithms then differ in the

| design of the integral feedback matrix, K., which is used to. shift

=]°

the r- zero eigenvalues

Recursive Design' This algorithm closely follows the proof

v

‘of the sufficiency part of the proposition in that the r“zero eigen~

values are shifted to desired locations recursively. .The'algorithm
coosists of the following three steps..
Step' 1) Desigm the m x n. proportional control matrix.,g

sg that matrix, .(A+BK), has the desired eigemvalues. This can be

: achieved using the algorithms mentioned in Chapter Two.

Step- 2) The integral feedback matrix, EI’ isispecifiedl

to be of the form .

K = ) 6.gv DT (3-28)
175 81B1Yy" T .
Choose g, °so that $Z§i-l) H)g,> * 0 and the set, {gi} 1s linearly

independent.‘Since the augmented syetem of Equacion (3*2) is completely

I3

_state controllable, 1t is always possible to choose vectors ,51 which

Ty,
3 N § can be

satisfy these conditions. As ehown in~Sectioq4;%

, : nHi S . ,
1" D) @=Lz . 0 (329
) 1 251 e
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|

A@s?stematic vay. of specifying gi is to follow the/procedure desA

‘

cribed 1n Section 2. 3 5 which ensures the controllability of the
8)'8 tem- ) ‘ . . . ! ’ !
Step 3) Complete the design by constructing the feedback
/

control law glven by Equat1on (3- 27)
This algorithm retains the computational advantage of the

unity rank (dyadic) approach but ylelds a _51 matrix of rank r,

which shifts the Y zero elgenvalues The léft eigenvectors (lvl)

 which are required ac each stage, can be updated by the method des~

cribed in Section 2.3. a

Simultaneous Design: Steps 1) and 3) of this algorichm are
identical to those of Recursive Design.» Consequently, only Step 2)
is presented.

If the control law of Equation (3 27) is used it follows
_from Equation (3~22) that the (n+r) eigenvalues of ‘the closedvloop
»'aystem eonsisc»of the n roots of det[AI ~(A+BK)] = 0 and the T |
.roots of det(lgrAH ] = 0. This'lest equatlgn can be used te
design 51.‘ |

Step 2) Lgt ‘: o . - ’}

13251 o | o (3-30)

~where D 4a a ¢ ¥.r »matrix-whose'eigenvalues-are the rr‘deéired'

4 =1,2,...,1). ,Fu:thermore,‘aSSume that K

eigenvalues, p ' Kt

n+;

‘has the fprn>
(3~31)

wvhere G 18 a © X r unon-singular daifix,' From Equations (3-30) and
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(3-31), it follows that

[

' o - T , o
© oy Ezgzg b . o (3-32)
Since the r xm matrix (r < m), H -has rank r, then the (r x r)

2’
matrix HZHZ also has 'rank r. Hence,~Equation‘(3-32) cap be.rearrahged '

R

to give |

E : e-apb . (3-33)

COﬁbiningdzquaciqng (3-31) and (3-33), matrix K, is expressed by

/ , - o (3-30)
ﬁ‘\} . 1.’,’. N .. ‘ 1‘ . ."\L\ . ‘ ‘ . | v ' v
3,1ﬂg§gwparent difference'betveen two algorithms is Chat the
A [ ' o o : . . . :

Recursiveznesign requires the calculation of eigenvettors\ while'the

'Simultaneous Design employs -atrix inversion. This distinction is

characteristic of all eigenvalue assign-ent (‘rhniqnes in the

literature n that either'eigenvector calculation or matrix inversion
o
| However, the choice between the above two algorithms
k4 N
shoild be based on other factors such as -agnitude of controller gains or

i

.performahces of resulting systens rather than upon ‘the co-pntational

difficulties involved.A

K \ v
3 Comparison Hith Exist Vg»Hethods o

3

As nentioned in the last part of Section 3. 2 1f the

o

augmented systen of Equation (3-2) satisfies the controllabiliCy con-

dditions eigenvalue assign-ent techniques developed for proportional
\

;control systens such as Anderson and Luenberger 8 appgpach [l] and "

IR
recursive design based on -odal snalysis [26 41 42], ‘can be success—
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fully applied to assign all eigenvalues of the augmented system. This
explains why investigators in the field of eigenvalue assignment have
been mainly concerned with establishing controllability conditions for
the augmented systems. However the disadVantage in using those
‘existing techniques is that one has to deal with (o+r) dimensional
systems rather than' n dimensional systems Although r is ususlly
much less than n, the computational burden increases drastically as’
the number of states increases.‘ ‘Actually, if as many controls as
;states are available then probably Johnson's approach [17] is the
_moet useful approach since it can cope with a general class’ of
disturbances and the dimension of the augmented system is alwaysu
(o+l) 1if constant disturbancee are assumed.
The two-design’algOrithms'derived in thisvséction are baseF

-on, the strategy of decoupling the eigenvalue assignment problem for i.
the (n+r) (n+r) -system into two smaller problemg’ namely;’aSSign—
. ing the eigenvalues of an n x n ~system and of 2 r xr system. ~This
strategy is not new and has been used in the design of PI eontrollers
by Johnson [17] and Power and Porter [37]. Its,éhief'adVantagevis
that only eigenvectors of the swmaller Subsystems need be.calcuiated
\rather than the eigenvectors of the (n+r) x (n+r)nsystem.

>UV§]‘ The second method given in this section is similar to that

of Power and Porter [37] except a pseudo—inverse of matrix H is

=2
used in the former while the inverse of a matrix consisted of r

linearly independent columns of matrix H2 is ‘used in the latter,

for the design of the K. wmatrix. If m ia equal to r, ~'these

=1

two approaches will give identical results.

S

N
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A}

o

In the first method described in thls section, although the

‘basic design scheme is the same as. used in Power and Porter's approach

(371, r stages of recursion are used in designing the integral con~

troller based on Corollary 3.8 glven by Simon [41, 42].

3.3.2 Discrete Systems

If a discrete PI control law is preferredOover a contlnuOus

o &
.one, the discrete cpntroller may be derived by applying the eigen~

value assignment techniques to a diSCrete equivalent of Equation (3~2)
Different discrete representations can be derived by several approachest
For example, one can directly discretize Equation (3-2), folloving

standard procedures in the literature. [25], this gives the following

\

.eQuationS' ’ B .3;3¢~'
g((k-lil)'_Tl'<:= $ T);E‘(Er)ﬂ:é(r)E(LT)+§(I)g(kT) R (3-35),
vhere L h ' SR o :
Al x(kT) v :
A ¢l S G0

'Matrices.fé(T),'.é(T)f and '&(T)_ are defined in the same way as

-matrices Q(T), §(T) and é(T)v are defined in’Section 2.3;6. How-
& - . : . : :

ever, if ' A is non-singular;'matrices é(T),> 8(T) and é(T) can

- be expressed conpactly’by PR ' A

.,

$(T) o R
: o (393D

‘é(T)‘ = -1 — E
' Tré'_lg(T)’ln] : .E

1.The details of the derivations of Equations (3.37)-(3}39) are
presented in the Appendix.‘ : . ‘ S T

Cn
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, ~
4I S - pS)
. 8(T) ' |
8(T) = =3 (3-38)° ,
' I A "[g(T)-TD] j .
R | $
. &
b MD |
4(T) = | mmmmgmammeee - (3-39)
T A [8(D)~TE]

As an alternative strategy, the discrete representation of

'

the augmented system can be derived by combining Equation (2-33) with

the following equation which defines_‘aT x x 1 _vector, z(kT), by

e o ,
z2(kT) = T ) T x(iT)' ok =1,2,...) - (3-40)
. A =0 . . : o
or equivalently
2[(+DT] = T T, x[(kt1) T]+z(kT) R

é
ComEining Equatidns'(2—33) and (3 41) %ves the. augmented discrete
1

': version of the system, which has the 8 form of Equation (3 35)

\

However,‘matrices g(T), Q(T)» and é(T) are now modified to

o ‘ #(T) :.\Q" 2 :
©oH(T) = Ve ' (3-42)
AT T :
* ©
&) = "R h) - | S (3-43)
T A(T) ] P
B(T) = |~zz-g7zs- (3-44)
| LA .

o




"Newell and Fisher [21] used Equations (3-42) to (3-44) in their optimal
PI controller design and experimentally pfoved the utility of these

equations by applyihg the PI controllers to a pilot plant double effect

o

ﬁévaﬁbrato}.
. Another discrete,;epreseﬁtation of :the augmenvea system can

be found in Portér and Crdssley [é9]. Their altefnafive definition of

‘E(RT)Y is given by

>i

k-1

2D = T T x(D S (3-45)
1m0 °F ' . S

or equivalently

- 2[()T] = TL x(KD+2(kD) . (3-46)

-

Obviously, matrices i(T), §(T) . and é(T) 'ére;ﬁodifiéd and now‘given

. by
Y r ) l
o _ Q(T):Q : : Y
. $(T) = K aas - (3-47)
{ | ~r: =r '
- -
o - 8(d : » : - '
(1) = | - : ' . (3-48)
‘= PRl ] ¥
. am o _, |
é(T) = | f‘"_a"“,- _ oo ) (3-49)
SRR o .

It 1is obsetved,thaf_in these three alternative didcré%é._

‘representations of the augmented system;'the'augmented_system'matrix

¢$(T) bas the same set of.eigenvalues. 'Néwell and Pigher's and

~

. . B » e, 7 ..

\
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Porter and Crossley s expressions for z(kT) can be interpreted as
J‘difference approximationﬁ\of Equation (3-1). The-onldeifference in

i these,two representationaAis that a backward difference equatlon is
used by Newell and Fisher while Porter and Crossley used a forward
‘difference equation in dich “izing Equation (3-1) Obviously, the
waccutacy of these representations will depend upon the magnltud\\of
the sawpling time, T; used. For a sufficiently small sampling time, |
-.Porter and Corssley s representation will give the simplest version

.of the continuous augmented system However, in this study, Newell's

representation has been adopted since this approach was experimentally ;

tested

Discrete Pl Controller Design

satisfactory PI conttol the. r unity eigenvalues should be moved
to inside of the unit circle in the complex plane by’ employing a

‘discrete control law of the form:
g(kT)'-.[grhs EI]g(}" 5 o (3_50)‘

_ The complete state controllability of the system given by
'Equation (3»35) is a necessary and sufficient condltion for arbitrary
ceigendalue assigmment 12 view of the. relation between state control—
;labillty and eigenvalue assignabillty of a system [41, 42 49] These
controllability conditions for the augmented discrete system of |

, Equation (3-35) can be stated as: '

Al



\‘!v

BN

=~

R i | 4D-T,

i) the pair IQ(T), Q(T)] is a vontrollable pair,

!
i

| ' A(T) _
.o 11)  rank T T ——e | = n+r .
: ' i

T RN

o

B ey

This can be proved by using the argument given by Davison and Smith [7]

. > . . < N
for continuous sysxems. : S

If the augmented system of Equation (3- 35) satisfies these
tvo conditions the proposition and the two algorithms described'in

Section 3. 3 1 can be extended to shift as many of the n+r eigen-

values as desired, to arbitrary specified positions. Due to-the

<

o difference in the structure of: the augmented system matrices for

<

continuous and discrete systems, some modifications are necessary for
two. design algorithms to be applicable to .the augmented discrete ‘
system. - Only those modifications, other than simple substitution of
fé(T) and A(T) for A, B 'are describedibelow.’ |

’

For d18crete systems Equation‘(@-LS) should be modified to

ot

T

=~ e o Yy 0. . o
& STALHAMA®EL ™ g »- |

. By:performing'a‘linearvtransformation on Equatic (3-35), i(kT) -

e

. With ¢his modificarion of matrix H

‘GTQ(kT); a Jordan canonical form similar to Equ .ion (3&16)vis.
obtained with the identity matrix I . in the lower diagonal block '
and Equation (3- -18) becomes k : o >

o

-

- 1

23 Equation~(3-29)-becomes'

zo TT [Mwm-n m{\ s




-%iuen"explicitly bj .

46

yo® 5‘ = : . '_ (3-53)

oot “Eaky !(1_1?>

"J

.
’

:fhe location of'the r eigenvalues which are moved in ‘Step 2) of the

L3

Simultaneous Deslgn is determined by the roots of det’ [X£ -1 =2KI] = 0.

Hence the necessary modification of Equation (3—32) is given by
o . . “

Mk +I =D .- G @

.

Then,:cieariy the integralicontreilet matrix Ko is represented by
Equatien (3-34) becomes
S ST, Tl . / STy
L B TR TeI) . (3-55)
Finally, the Ciosed—form'of the'feedback.PI cottroller matrix is.
' T & :

Y
. \

' k- [5-1K I {1 +[9(T)+A(r)x—1 !

s - KI] . °(3~55)-

I

' Equation (3-50) is the discrete. equivalent of Equation (3-27) for the
: oo &

continuous augmented system
S § is emphasized that the general procedure vhich is des-

cribed in Section 3 3'1 is applicable to both continuous and discrete
s [‘uv

" systems subject only to controllability conditions on the resulting 'oﬂf-

augmented system. The difference between the continuous and discrete :

augmented systems arises from the fact that the r repeated zero

..eigenvalues in the continuous—time domain map into r';unity eigen-

values in the aiscrete-time domain. - o . : DA
» . N

S . .
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' eigenvalues of the original system are moved first and then the

3

}
\
1
i

© . CHAPTER YouR

SIMULATION RESULTS FOR A DOUBLE EFAECT EVAPORATOR

!
|

4.1 iurnonucrlon ,v.“l;,-” e . \ o
This ehapter presents simulation squdies of the eigenvalue
assignment techniques presented in Chapters Two and Three applied to

a model of the pilot plant double effect evaporator in this department.

A 5—state linear discrete model is used in the eimulation studies.
. The simulation results are divided into two main parts‘ proportional

“and PI control of the Process, and are presented in this order. Before

designing the controllers, a modal analysis of the evaporator model is

' performed to reveal the modal characteristics of\the process model.

-t

The first part‘of the simulation study concerns the design

P

of the proportional controllers and also discusses the performance

e

i

‘ of the resulting closed-loop systems The recursive design technique
o deScribed in Chapter Two is used and the‘ penvloop eigenvalues ‘are
moved one by one. This control technigue was selected for three

"? reasons. 1) the evaporator model is "derogatory" as shown in

. . pym/

: Section 4. 3, 2) eigenvectors at each recursive stage can be easily

‘ updated folloving the procednreéhutlined in Chapter Two, and 3) a

better insight into the rgsulting process dynamics and controller
gains can be attained by changing eigenvalues in a sequential manner.‘

In the seeond ‘part, PI controllers are designed such that

~

) repeated unity eigenvalues introduced by integral action are shifted

using the methods presented in Chapter Three. ‘

LN
o
Ry , BRI

. . 2 ’ - .
O LR . =&~ L
e S R
S o | el .
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The performance of the controllers derived from the- eigen—

value assignment technique is compared with that obtained from optlmal‘

control theory to reveal the characteristics of the eigenvalue assign—

4 ‘ L wy

ment techniques. Applications of optimai cdntrol theo%y to the
evaporator ‘were investigated extensively by Newell [22] using the
five State linear model The optimal feedback control laws used by
Newell were derived using dynamic programming and. minimizing a suitably
chosen quadratic performance index. The discrete optimal‘feedback
control laws used in. this chapter wereacaiculated in a similar fashioh
using the computer program, GEMSCOPE [47] h

Since ‘the eigenvalue assignment techniques dealt ‘with 1n
‘this thesis use the modal information of the system, it was necesSary
to accurately calculate the- eigenvalues and eigenvectors of’ the open— |
'loop system. At the present time the QR double iterative method seems
to give the most accurate eigenvalues and eigenvectors of a general

“square matrix [45] A program, CS201A- [20], based on this QR double-

iterative method was used in this 1nvestigation.

4.2 MATHEMATICAL MODEL
A simplified schematic diagram of the pilot plant double

- effect evaporator is shown in Figuse 4. 1. The first effect is a

natural circulation calandria type unit with a nominal feed rate of
5 1b/min of three percent triethylene glycol by weight.v This feed

is heated by a nominal 2 1b/min of fresh steam. The second effect

>

is an externally forced—circulation long~tube vertical unit with

three l" X 6" tubes and it utilized the - vapor ﬁtom the first effect

[

'as its heating medium. The vapor from the second effect is totally ‘

-
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condensed and the - final product ﬁﬁ@about 1.5 1b/min of ten percenc
' glycol. Tight vdcuum control on the second -effect maintains the
) necessaty tempetature differential across the tube wall. A more
detaifed desctiption of the evaporator can be found in the thesis _
by Newell [221.

Hodels of the evaporator have been extensively 1nvestigated
, by Andre {2], Newell [22] and Wilson [48]. The wodel- used in this
‘thesis was der%§§d by Wilson [48] by linearlzing the nonlxnear model.
The process variables are employed in normalized perturbation form

‘ and the reSulting model is a 5~state linegr,_time~1nvariant model

in the forn of Equation (2-4).

x(t) ~;gg(t)+§g(t)+gg(c) - L @)

~Nunerical values of matricesuﬁ;u B and D can be found in Wilson [48] -
and thé’state vector x(t), control vector g(t),',and disturbance’

vectér d(t) ‘are defined as:

{. xi(t) | .(' Vi(t} !
e | R@ | qo
LSRR GO I I ST75
) x,(© | . wé(c)_\
I 3 ' :
%ﬁ | .xs(t) | | C(v) |
v - _" o . '» .. . ‘
[ ul(t) : ,( _S'(v)". .
‘u(r) = u,(t) 1 Bj(x) v | (4-1)
Ln© | e |



d, (t) ( F'(t)
N o= ! v - N .
d(e) = dz(t’ : CF(t)_
d (t) J hé(t)
i L g

where W' c!

e.g. W

and the symbols are defifled in the Nomenclature section.

For the digitéi algorithms used in this: study,‘the continuous
model of the evaporator was discretized using the analytical ‘8olution

to g%ve the discrete model . of the form of Equation (2- 33), e.g.,

x[(+1)T] = Q(T):_:(k'r) + A(Dulke) + g(:r)g(k'r) "(2—33)
vThe.numerical ualues of matrices $(T), A(T) andi a(m re given
1n Tablé 4.1 for a sampling time T'.éf‘ea seconds. '
To deslgn a PI controller for the evaporator using‘eigen_
value assignment technlquesl,the matrix ‘Iv,in!Equation (3—1) nustA
be selected properly. At ‘most 3 states can be selected for integral
control due to the rank condition given in Section 3.3. Although
arbitrary selection of the three variables is possible from among the -
’ five.state variables, the holdups of the first and aecond-effeCts
j Hl and wz, and - the product concentration, 2, were chosen based |

on- the physical 1mportance of regulating these three variables._

Consequently, the numerical value of matrix T ‘ ~defined in Equation



$(1) =

»

A(T)

AT -

=l

ce TABLE 4.1

Numerical Values of Matrices Q(T) A(?///and

0.0
0.0
“0.0

0.0

0.1181

'—7.0136

- -0.0119

-'40;0351

.=0.0019

+

. ~0.0008 .

- 0:9223

~0.0042

-0.0009

?.0012'

0.0391

 -0.0817"

0.0
0.0
:“-0.0847

~0.0432

0.0

0.0785

-0.0002

0.0

0.0016

T = 64 aecouds E

/
yq.oéiz 0.0 0.0
'gi9871 0.0 0.0

' 0.4377 0.0

~0.1051 Lo
0.1048 0.0

‘0;0 ]
0.0
0.0
~0.0406‘ | 1(
0.0 : -
.U J »
;0,6050“ .
0.0049
0.0662 '
~0.0058
0.0058

(M)
¥
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The continuous~tine augnended system can be formulated
i

_ .
dlrectly by combinlng Equations (2—4)¥and (4—1) and results in a eight-~

m,_

I

state variable nodel. As shown in Section 3. 3 2, the discrete augnented

A ]
0

model of the evaporator 1s expressed iqsthe form of Equation (3—35)

gukﬂ)r] = §(Dx(KT). + A(Tu(kT) + 8(MA(kT) . (3-35)
R .-9 ,. . 'Vr . ' . - : . i
E Although several approaches can be enployed for the calculation ef'
\numerical values of matrices Q(T) A(I) and Q(T), Newell and

Fisher\s\agzroadh was used in this study. »Nu-eriCal values of

matrices g(T)Q‘VA(T) and B(T) ‘are given Ain Table 4.2, Ly

‘1;.3‘ MODAL caARAcrEmsncs OF THE EVAPORATOR MODEL - | -
o | The first: step ‘in the application of eigenvalue assignnent
technidues presented in Chapters Tbo and Three to the process control
is to calculate eigenvalues and eigenvectors of the open—loop system
'model. For the discrete evaporator -odel a modal. analysis of the

< ,
'open-loez/éystem gives:
'Eigenvalues:.

{A } = {x

1,...,)\:}?{1;0, 0.9215, 0.4385, 1.0, 0.9603} \

o
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zﬁ{Left Eigenvector Matrix:

( 0.9871 0.0 o.oL ~0.6866 0.0 ]
~0.0014. 0.9842 0.0087 -0.0006 0.6804
,'Y = [yj,--->v ) = | -0.1602  0.1771 0.9999°0.2393 0.2514
o 0.0 0.0 0.0  0.6866 0.0
0.0 0.0 0.0 0.0023 0.6884 |

5

Right Eigenvector Matrix:

- . Ty » : . -
©1.013 Q.0 0.1623 0.0 . 0.0
0.0~ 1.0176 -0.1802 0.0 0.0
W= lw,..ow]= | .00  -0.0088 1.0015 0.0 0.0

© | €1.0137 0.0012 0.1872 1.4565 -0.0043.

_~1.0026 0.1876 0.0  1.4553

The above numbering of eigenvalues and eigenvectors is- arbltrary, but

»v‘- -,D" . .

. ,
convenient for the treatment that follows.\'However vectors vy and
. .{»' -~
PR . i { N . )

LA in matrices 'V and . W are.the_;eft‘and right eigenvectors.

associateg?with the ith eigenvakﬁe"AAb respectively. The elements

i i

are normalized such that syi,vi>b= 1, <v,w.,> =1

of vectOr v
> ~i~i

i
and ?y Wy 0 (i.# j).

il "It is clear that ‘the evaporator model has- two repeated
F%

‘ﬁigenvalues of unity, which result in unstable’ open—loop responses
l .

for step changes in some of the inputs. Furthermore the eigenvectors .

¢

associated with these unity eigenvalues are linearly independent thusg

. the nature of the system is derogatory. It should be noted that eigen-

//) vectors associated with the repeated eigenvalues are not unique, since -

Y

" )
o
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any vector reauhdng from avlinear %%mbination of these two eigenvectors
also satisfies.the definition of the eigenvector. however; the |
resulting two eigenvectors must be linearly 1ndeoendent.
| 'The diagonal elements of matrices v and W are much
llarger in magnltude than the off~diagonal elements except for two “
: columns, where one other element is comparable to the dlagonal element.
"Since matr1ces‘ Q(T) and W are diagonally dominant, 1t is possible d<v _—

. . . 2
o .

to associate each eigenvalue A{ with a single state variable. of the

system, 1 e., the first eigenvalue Al is associated with the first

state Xy, etcH The st;ucture of the " right eigenvectors reveals an

1nteresting fact thatithe‘threeustates corresponding to the stable

LY

eigenvalueshof the system ire completely.decoupled from the two
unstable eigenvalues, hence these three states will be stabilized

e
"~ in the presenc@'/%%sustained disturbance. The two unatable eigenvaluesv
: Arg, .
interact in sudh ag;ay that in the presence of sustained disturbances,
. HP(
' the first state j’l ﬁiﬁl exhibit an unbounded responae independent

s VA

of the fourth st"ate "2’ , but the effect of a disturbance on the

latter may be compensated partially by the interaction from the

X

"ﬁeigenvalue_associated with the first state.” This intetaetibn of the

v two unstable eigenvalues on the fourth state will depend upon the»

type of disturbance

' Figure b. 2 shows . the simuiated open~loop geaponse of four
state variables to a step disturbancewof ZCZ in feed flow rate. The
!{reasoning mentioned above explains the slow increase in the second ‘

effect level in contrast with the. rapid, unstable response of the

first effect level. The~other two states, %he_first effect con- .

%
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centration and product concentration” eventually settle out to new
. > N

steady state values, ashexpected

'

" In order to stablilize the process the two unity eiéen— i

values must be moved to locations inside the uniE/circle in the

complex plane. The mode controllability matrix H defined by

Equation (2-10) was calculated to be,

- : | -06.0369
P £ 0.0392

' R
H = 0.1569

a < .

~

IR

—D.OSSI P

0.0567

© ~0.0806

0.0

0.0

0.0020

~0.0%98

' ;vector upon»the ith eigenvalue of the system.

0.0
0.0
0.0.

~0.0279

0.0

system is derogatory with tw0 repeated eigenvalues

However,

‘i -
4 v

the first and

\GTheiiFh row of matrix H represents the influence‘gf‘the control -

»

Eince the“l

fourth rows of matrix H must be 1inear1y independent for the system

'to be controllable [41] The linear independence of the first and

‘fourth rqws is evident and the other rows have at least one non-zero

e

aelement'-thus the system is completely sta

i ML

‘

in mind that these tvo repeated eigenvalues cannot be changed by

the simultaneous design mentioned in Section 2.3.2 and thus, at

L

least, two stages of recursion are required [41].

Y

o

A

AN

4,4 PROPORTIONAL CONTROL OF THE EVAPORATOR

R

«

controllable and-all’the‘

. eigenvalues can be shifted to arbitrary locatfons K'Tt should be kept

" The sinulation results presentedvin-this.section'include‘the
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proportional controllers designed by assigning selected eigenvalues

2
to ‘the closed-loop system and also include the responses of the closed-

3 N l

Ioop system. Several responses are shown in the Same . figure in order

o

to illustrate thg%effect of a particular design option upon the

dynamics of the closed—-loop system Comparison of the performance of

i

the controllers is mainly based on the magnitude of the gain elements '

and the dynamic responses of the closed -loop systems to typical step

disturbances. Iﬁﬁview of their physical 1mportance in malntaingng

:satisfagtory control of the evaporator ‘the dynamic behavior of the

emphasized.

first and second effect 1evels and the product concentration .are

4.4.1 Separate Use of the Controls’ -

-
~

"+ As mentioned in Section 2. 3 3, the controls can be used

~

. separately to shift eigenvalues by specifying only one non—zero element

‘.pairing of open-loop eigenvalues‘

TR

in the vector 51 at each recursive stage.' This results in the

1 -

ﬁ eh the controls

e

For a multi—input system, the control matrix vhich assigns

’

the desired eigenvalues to the closed—loop system is not unique and,

in general, depends on:’ ' S

1) the pairing of open-loop eigenvalues with:the controls,
ég) the-sequenje in which open-loop eigenvalues are changed,
b
& s B ' = l.’ : \ :
111) the pairing of open-~loop eigenvaluyes with the desired

'closgagﬁoop eigenvalues

@ The effect of each of these deeign options is considered below.

Since all five eigenvalues of Q(T) are controllable,

o



. ‘.in matrix H A, is'most‘influenCed_by u

&

- [}
_rattempts were made to assign the set of deSired eigenvalyes,

{pil = {O.l. 0.2, 0.3, O.AL O.S}, to.-the closed—loop system..

[+)

Effect of Pairing Open-Loop Eigenvalues with Controls

In erder to isolate the effect of pairing open—loop eigen-

-

values with controls the pairing of open—loop eigenvalues with desired

closed~loop eigenvalues and the sequence in which open—loop eigen—
valuesﬂwere shifted, were fix%d 'Thus ‘the iFh element of the set:
{AB Q’Al AS Az} was moved to the i® element of the set_

{0.3, 0.2, o. 1 0 5 0. 4} ~at the i th recursive stage.

In Table 4. 3, the feedback matrices from Runs 1 3 show the »

effect of pairing eigenvalues with controls on the magnitude of the
. «% :
controller gain elements. The gain elements depend upon the pairing

gl‘
employed and change drastically from one run to another.' In Fiéﬁres

4. 3a and 4. 3b, closéd-loop responses to a step distrubance of 20% -

o increase in’ feed flow rate are shown using the three controllers fr

[

: Runs.l—3. (The symbols used in the figure.captions are defined in

~ the Nomenclature section.)

The pairing of eigenvalues with controls ‘used’ in’Run l was

, selected by inspecting the mode controllability matrix H and

H
deciding which control has the 1argest ‘influence on a particular

eigenvalue. For example, from the numerical values of the elements

Bl

by u., and.

= M ¢ 2° 1’
3‘x3 by u, - The. other. two eigenvalues,f‘la and . A, were paired ,
with uy and uz to avoid excessive use of u. These pairings

o agreed with physical intuition except ‘for pairing A with u,. :

5 2

However, the resulting feedback matrix is not-satisfactoryfsince

61
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some gaim elemeuts are excessively large and a'highly undesirable
f:wtransieﬁt results with large steady state errors (cf., Figure 4.3a).
"dehe paiding of open-1loop eigenvalues with controls used in Runs 2 :
and 3 ﬂas obtained by trial and error in order to’ensure that the
magnituﬂe of th:;;ain elements was reduced. A drastic reduction in
the magnitudm of gain elements was achieved in ‘Run 3. The pairings
used successfully in Run 3 Seem to contradict the influence of controls
o on the Jpen—loop eigenvalues shown by the numer1ca1 values of matrix

O

- H. For,example, configuration used in Run 3 shows that Al which is

associated vith qhe first effect holdup was moved by manipulatlng

l

the product fl w rate. This phenomenon can be explained by the -

changes in th left eigenvectors assocrated with the unchanged eigen—

\

»values at eac recursive step.: Hence the- numerical value of matrix

.~

H also changes at each stage of recursion. In extreme cases,_a_
Jcontrollableleiécnvalue~control pair at the previous recursion could
#no longer be controllable at the next Stage of recursion.;" ‘
Figures 4 33 and 4 3b show that if the closed loop system
has the same set of eigenvalues, then a better dynamic response to
a feed flou disturbance 15 obtained aj“the magnftude of the galn
.elements decreases. Comparison‘of the feedback gain matrices for
Runs l 3 reveals the tendency that control ‘effect 1s mainly achieved

,by *h 1n Run 1 and’ u3 in Run 2 while the control efforts are

»'more uniformly distributed over all cdhtrols in’ Run 3.

o ‘Effect of the Se uence of Changing Eigenvalues L i.ﬂﬁ‘; o 7:
. In order to study the effect of the Sequence uSed 1n

‘changing open~loop eigenvalues, the pairing of controls with open-3}Vj

T
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loop elgenvalues and the pairing of closed—loop and open—loop eigen~ .

values were fixed. These pairings were the same as used in Run 3.
The configurations of Runs 3-5 in Table 4. 3 show the effect of the .

sequence of changing open~loop eigenvalues -The resulting feedback

matrices are included to shov their structnre and the magnitude of

the gain elements The correspouding closed—loop responses to the

20% step increase in feed flov rate are shown in Figure 4. 4

i
iThe response/of the closedeloop systems in Figure 4. 4 shows

that if the clo§Ed 1oop eigenvalues dre:. the same, better dynamic N
behav1or will result for a controller wvith smaller gain elements.
Steady state errors in/ the atate varlables due to three different

disturb ces ‘are shown in Table 44 for Runs 3—5 Although, the

M 1

magnitud 'of steady state errors varies remafkably from one distur—

bance t another the same rrend that the Smaller the gain magnitude

the bet er the dynamic behavior, seems to hold for other disturbances.

-

'Furthe ore, it is observed fron Table 4 4 that the feed concghtration

o

dlsturb nce has the most 81guif1cant effect in comparison with the

~on the open—loop resonse.v-T S \

The feedback' mattiees for 3—5 show that the matnitude
of gai elements also depends on “the seque ce in which open—loop
om Runs 1-5 that the control

eigenv lues are changed., It is observed fr

effort should be distributed over the availa le controls to obtain

lower gains and good . dynanic behevior, It should also be noted that

a particular eigenvalue»control pair in one sequence may not be -

: possible in a different seqnence of eigenvalue shifts due to a change

ey

in lefit eigenvector directionsr,

& . : . ’ . o
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TABLE 4.4
- - . : /f\
Steady State Errors for the Closed -Loop Systems ~ 1

.
v : L (*)
- . Steady State Errors to
Run No. = State g?riableS" -
~ | - . 420% F ~20% CF +20% TF
W ©1.28 0:.01 - 0.32
c. . 06l -19.97 0.0
. | R
h, | '5.68 0.19 ° 0.0
W, | 2.31 0.1 - 0.36
c, 120 -19.92 0.01
W 192 336 - 0.32
c, . 0.60 ~19.72 - 0.0
4 ohp - sier om 0.0
W, ©3.05 . 3.92 - 0.36
c, - 113 $19.05 0.01 |
A Z/j
W . -6.39  85.80 1;61,'
<, . ~0.98 ~52 025, . .
s ‘hy | " 4.72 0 9.08  0.15
W, 10.25  84.84 - 1.77
c, - 5.86 - 45,35 1.11
. 3
=
qag

Steady State Errors wvere taken at t = 60 min and are expressed as ﬁ%

P

a percent of the initial states.
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Effect of Pairing Open-Loop and Closed-Loop Eigenvalues

'rates while the bottom flow rate'.(u

The configurations in Runs 3, 6 and 7 are different only

v

in the pairings of open—loop and desired closed~1loop eigepvalues that

were used. Although the magnitude of gain elements changes with
variations in the open-loop and closed loop e1genvalue pairings, this
effect is small compared with the other factors prev{ously dlscussed
and the resulting feedback matrices have the Same general features
The effects of pairing open-loop and closed- 1oop eigenvalues on the
dynamic response are seen in Figure 4 5 for: a 20%Z step disturbance
in feed flow rate. 'The difference in dynamic behavior is very small.
| In conclusion, it is observed that the dynamlc behav1or |
of a closed- loop s&stem depends highly on the configuration used in
shifting open loop eigenvalues. of the three options discussed, the
sequence of changing eigenvalues and the pairing of open-loop eigen—

values with controls ‘have significant effects on both the gain magni-

tudes and the cloged- -loop dynamics. If the closed ~-loop eigenvalues are

‘the same, the closed loop response becomes more satisfactOry as” the

gain elements decrease in magnitude It is interesting that in

bthe reSulting feedback control systems the holdups of the first

and second effects’govern the‘steam_.(ul) and product (u3) flow
2) from the first effect is'

governed mainly by the first and second effect concentrations Further-

'more, the controls in general, are not significantly affected by

{

the enthalpy of the first effect, as indicated by. the relatlvely

small elements in the third column of in Table 4.3.
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4.4:2 Simultaneous Use of Contr;ls i'

, If all the EIements in vector 8 in chatioh (2-21) are
specified to be non-zero, then all controls are used to cﬁange an
eigenvalue at each recursive sgage. An arbitrary sélection of gi;

which giges non-zero elements and. preserves the.controllability of-vl

the eigenvalue to be changed, would -xesy

in a controller matrix
'vhich assigns a desiredvset of’eig~ the closed-~loop system.
Although Equation.(2—32)pis valid} "nimizatlon when a 51ngle

eigenvalue'is'changedi\vector 8.

-

'sen by Equation (2w32) at each

: recursive stage will guarantee the controllability of an eigenvalue
\ﬁu

£ L3
“ to be shifted but the resulting controller gains will not necessarlly

be minimal.

In this section, openeldbp eigenvalues are changed recur-

‘sively with gi specified at each stage by Equation (2~32) . The -

effects of

1) the sequence of changing cpen-loop eigenvalues and

K]

’ ii)“ the pairing of open—loop and closed-loop eigenvalues

on the feedback matrix and the dynamic response are 1nvest1gated.‘

.

Furthermore a. controller designed using an arbitrary set of vectors
i{ﬁi"t is compared wlth one of the controllers de51gned u91ng
Equation»(2—32). .
| ‘The set of desired closed-loopieigenvalues chosen in tbis
section is the same as was used in.pregious §pb$ections. The

configuratioh used in each design' and the resulting feedback matrices

are summarized in Table 4.5
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Effect of the,%Sﬂ“eUQS_QQ_EEﬂEBLE& Open—ldﬁg Eigenvnlucs
gy In Runs 8-10 in Table 4.5 and Flgure 4.6, the pairing of

open—loop eigenvalues ‘with desired eigenvalues was fixed and the
’
'sequence in which open~loop eigenvalues were changed was varied.

A

As in. the case of using controls separately to shift elgervalUES,

y |
' this effect is significant ﬁor both the controller gains and the

i

t

Effect of Pairin

dynamic behavior of the resulting closed-loop system. It can readily

be seen from Flgure L. 6 that the controller resulted from Run 10
ShOWS the best response with ‘the smallest offsets in, the four state
variables In Table 4. 6 steady state errors due to typical step

disturbances are glven for the closed-loop systems resulted from
Runs 8 10 The same. dependence of the closed—loop system performance
° on the type of dlsturbance as was observed in the separate use of - f

»”

controls can be seen from Table 4 6 Although individual states
exhibit different SCeady state errors depending on the type of
d:sturbance ‘in geneyral, the dynamic behaviar of the closed- loop

system is bétrer when\the magnitude of the gain elements is smaller,

for the ‘same closed loop eigenvalues

. . - - o . b e e .
. . . .- v - w e . . FEEN
1 . ”‘. . N K . 3 i .. N

eneLoo and Closed Loqgvﬁigenvaluescl'

The feedback mavrices obtained from Ryns 10»12 in Table 4. 5

'show that the pairing of open—loop and closed -loop eigenvalues can

effect -the magnitude of the gain elements.‘ Figure a 7'compares the
3

dynamic response of these three closed—loop systems.to the 207 increaae

in feed flaw rate In contrast with the case of using contro ¢

separately, the gain elements ‘change significantly dependin on ‘how ‘

‘ the open—loop and closed~loop eigenvaluea are paired Howe,er, the

o . Q- _\:
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TABLE 4.6

- 77

3

&

-Steady State Errors for the Cidged—toop Systems .- 11 °

Run No

‘

State Variables

————— o~

\

-

Steady State Errors to

+20% F

-20%Z CF - +20% TF

-1.80
0.10
5.37

4.17.

~1.09 .

)
g

'36.38

~15.62

T o2.81

-14.80

~0.71

-0.38

0.09"

0.05

-0.69

Py

0.39

~2.09

4

~0.08

“5.26

5.87

~1.89

45.81
-13.30

421

42752

9.57

0.58

‘ 0}i4

. 0.08.

- ~1.27

0.50

2
Cl |
9 ‘ hl
- W, o .
< :
I FO - .
»e ";‘; X yl ’ -, .
‘. v“».‘ ) C '
.- 4 e '1;
. ) |
v B c2

- 12.06""

e
Cor1811

-0.23 -
.o

0.01

~

5.58 0.99 o1 .
1.00 °  7.10  -0.14 :
0.46  -14.36"  0.05

} 4
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i

‘controller matrices are similar and ghe dynamic behavior of the three

closedﬂloop Systems is almost indist@nguishable. The effect of pair-

ing open~loop aud c¢losed- loop eigenvalues ids far less signifitant than

" a .

the affect,oﬁ changing the order in which operi-loop eigenvalue are shifted.

Vs

: Effact of the Choice of a Vector éet,_ {gi}

In Runs 13 of Table 4.5, the design configuration is identical
to that of Run 10 except that the vector set, {gi}, was specgfied
arbitrarily instead of using Equation (2—32), The reSulting set of

vectors, {gi}, ‘axe'as follows, o "

[ [
1 1 ’ 2
A il (R B S B AT LN S
1] | 1 1.
A vJ \ L
l\. ' i
1 C 1
B | 2] &=
""(,_ 1 w 2 -

Comparison of che controller matrices from Runs 10. and 13 and the
' - . C g ‘
transientrresponSe in Figure 4. 8 indicates that excessively hﬁﬁh gains

in' the feedback controller can be avoided by making use of Equation
‘:(2~32) in the selection of- gi S e

The results of this section;can‘he'sunmarized as follows:'
é-A i) 45’ in the case of using controls separately, better
) dynamlc response is expected -as the magnitude of gain elements is _::{

~

kraduced if the closed -loop system have the same eigenvalues

11) The 9equence of ehanging eigenvalues has a_more Bigéififj‘.

a.
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o

Y'.,cant effect than the pairing of open—loop and closed-loop eigenvalues

on both the controller gaina and the closed—loop dynamics.
iii) The pairing of open~loop and dﬂosed ~loop eigenvalues

has a significant 1nfluence on the controllefa' ins, but the dynamic

responses of the resulting closed~loop system@hére only slightly
affected
'\( iv) Equation (Z~32) can be utillzed in specifying'w“

/) X
of vegtor, {51} in order to av01d extremely large control‘

which might occur when a set of atbitrary vector {gi} are’
Although each vector 8 selected by Equatlon (2- -32) loc«ﬂ
mlnlmlzes the galn matrlx at the 1Ch stage, there is no guarantee ;

that the final gain matrix is minimized.

e
4 3 Effect of the Desired Closedeoop Eigenvalues

Another important question, independent of the design options
discussed in the previous two . subsections is how the magnitude of

v

the closed—loop eigenvalues affects the dynamics' of the closed-loop ;

system and the feedback gain matrixi4 As agagitempt to’ investigate |

’thls design d;oice two dlffarent sets of desired.eigenvaiues, namely
(0.2, 0.4 i-;( changed) , 0.5, 06} and {oa 05 0.6, 0.7, 08}

were assigned\\n the. closed«loop*systems in Runs 14 and 15 respectively.

_The design confi rations used in Runs 14 and 15 and the resulting

gain matrices are given in Teble 4.7 together vith those of Run’ 10

for comparison. The simulated reaponses of the resulting closed-

loop systems ‘are shovn in Figures 4. 9~4 11 for step disturbances in
feed flow rate (+29/) feed cvucentration (—ZOZ) and feed temperature

(+202). C®
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The feedback matrices in Table 4. 7 show that the largest
gain element decreases aignificantly as the magnitude of the closed-
; loop &igen:alues is increased. This is an expected result since less
jcontrol will be required as the open-loop ;Bgenvalues are moved smaller
discaneeS. The dynswic behavior of the closed- loop system to the dis-

turbance 1n feed flov rate, 'as ‘'shown in Figure 4.9, is not surprlslng

since the closed~loop eigenvalues and offsets are smallest in Run 10.

tn Figure 4.10 vhere a feed concentration dlsturbance is

c4l .
Qrﬁegbehavior obserged in Figure 4. 9 is completely reversed.

igenvalues. ?he effect of a feed temperature dis-

! !
'r . .

11, cumpared with the other two disturbances An 1nterest—"

‘ to the step disturbances.. Comparing these dynamic responses and the
magnicude of the gain elements,.the controller from Run l&»performs.

, better than that from'Run 10 However the new steady state is
reached faater as tha magnitude of the closed- -~koop eigenvalues is |
reduced, as would be expected. ; | ‘ { .

- From these observations, it'is clear that a set of smaller

closed loop eigenvalues does not uecessarily yieLd better performance .

of the closed -loop 5yatem.g It is observed that the dynamic. response

is highly disturbance dependent as was the case in the previous two

subsections This behavior can be- explained qualitatlvely in terms

of - the directions of the resulting closed loop eigenvectors ‘ If-

N

the réaulting closed loop left eigenvectors happen to be oriented in-

FTog obaervatlon 1s that Runs 14 and lO yield almost identical responses.

el '



: ““1" q . N . (,\
-uthéwsame direction, then from Equatiou (2-7), it can be shown that .

“
)

< .the componenta ‘of the right eigenvectors are very large. >Hence," &
of matrix B(T)) are relatively colinear to the left eigeqvectors '
‘will have significantweffectsgon the‘dynamic behavior of the state
variables -even for small eigenvalues. This p01nt will become more
< H. . ‘Av
giapparent in the next subsection uhere an optimal contngl law is

$A 1,

compared with control ‘Jaws derived eigenvalue assignment techniques.

Pl ' . . ‘U;' . ", , o

oy ;ggmparisoh With an Optimal'Controller ' -

£ e

: Since controllers ﬁeriyed £rom optimal control theory are
. not explicitly concerned with shifting eigenvalues and the controllers
derived from eigenvalue assignment techniques are not unique for a

multi input system, a meaningful comparison of Ehese two types of
k .
controllers is difficult.v However, if the closed 1oop systems
'\ R

derived from\optimal control theqry and eigenvalue assignment'

techniques have the Same set of eigenvalues &warison of closed— .

loop‘dynamics will reveal the effect of the eigenvector orientations
of the closed—loop systems
The optimal control law used in this study was calculated
from the GEMSCO omputer program [47], and isxidentical to\pne of
) the controllers used by Hilson [48] In view of the phy;ical
vimportance of the state variables to be controlled the state weight-
ing matrix, 'g = diag [10 1 1 10 lOO], used in previous studies
[22f 68]' vas chosen.- The control veighting matrix‘? R, was set

L
equal to the zero matrix. The eigenvalues of the closed‘l?op system

uégng this optimal control law véte calculated to be fb~9902 0. 2706,

A

2\
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e
: -6 - R -7 ) o o 3
5x10.7, 1 x10 7, 4 x10 '}, This spectrum of eigenvalues is quite

interesting since three eigenvalues aré extremely s-all one isf
relatively small and the other one is large in magnitude.\ This set 1
. of tlosed—loop eigenvalues was used as the desired set of eigénvalues
’/ .in designing cpntrollers by eigenvaluye assignment techniques. . ' -
' \\\‘ ) “ " In Table 4.8, feedback gain matrices derived from optimal -

§
control theory and two eigenvalue assignment techningg are shoun

A

along with the closed—loop eigenvalues and the design configurations
TN \_//’\ ,
that were employe//? Th ntrollers derived in Rnns 16 d 17 are
those with the smallestigain.magnitudes that vere'obtain d-by trial
o ‘ 2 . , %
and etror, the 1argest ga1 elements are significantly Smaller than
the comparable elemenﬁs in the ‘optimal controller. A pair of complex
o eigenvalues vas obtained in both Run 16 and Run 17. This creation of -
- a pair of complex eigenvalues always occured when more’ than two open-

loop eigenvalues were -to be moved to very s-all values (~0). During

this study, it was observed that the closed-loop: eigenvalues were

f v very sensitive to the numeri acy of the left eigenvector used v

a
" at each recursive 3tage. Ehi is especially true uhen some of the

desired eigenvalues are near the origin and the vord length of the

o

digital computer is limited., For this reason the creation of the
-*lex;eigenvalue %;i?;lould not be eliminated eveﬂ’by using "extended.
precision on the IBQ;360 co.puter. » v | -
Figureg (4 12)-(4.14) co-pare the closed-loop responses foz
the optimal cont§oller and controllers derived using two eigenvalue
N =% :

| assignment techniques for step disturbances in feed flow rate feed

coridentration and feed te-perature. The opt) controller effectively'
. ' S : : AR
. . _

~ E . . - N R

A\‘_ - _i "‘ - o o N | R \\\\ .w
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reduces the influence of three different types of disturbances on
the heavily weighted states while the performance of the other two

controllers is still'dependent on t@e type of disturbance present

a

Since the closed—loop eigenvalues are almost identiCal fér these .
4 three closed—loop systems, the different dynamic responses are entirely
e

due to the orientation of the closed-lo0p- eigenvectors. However,
direct comparison of the closed-loop eigenstructure 1is impossible
because of the pair of complex closed~loop eigenvalues resulting from
Runs«16 and 17. Instead the eigenstructure of the closed—loop

system obtained from Run 10 is compared with that of optimal controller

3

\

to ‘see the effect of the closed-loop eigenvector orientation. Although;'

: ‘a.‘
the reSulting closed—loop‘eigenvalues from Run 10 and the optimal

A

,ﬁi controller are quite’ different individually, the msgnitudes of gain

.',‘g‘

J elements are comparable and the closed-loop dynamics obtained from

Ui;Runs lO 16 and 17 show the Bame disturbance dependence. Furthermore,_

T

it will be ‘seen that the size of the closed~loop eigenvalues is less
important than the orientation of the closed-loop eigenvectors in
degermining the dynamic behavior of the closed-loop system.

I

! In Tables 4.9 and 4. 10, the eigenstructure of the closed- j
loop systems resulting from Run 10 and the optimal controller'are

presented along with the mode disturbance‘matrices. The eigenve;tors
'in Tables 4.9 and 4. 10 are normalized such that Equation (2-7) holds

and the Euclidean norm of each left eigenvector 18 unity Then the

determinant of the left eigenvector matrix'is ‘an indication of how

R
. >

well distributed the eigenvectors of the closed—loop syatems are in :
the state space. The effect of poorly distributedileft eigenvéEtors»u
is directly reflected in the magnitude of the. elements in the right o

N

7
'

5y



TABLE 4.9

Eigenattucture anc¢ -ode Disturbance Matrix of the -
o Closed-Loop System of Run 10

Eigenvalues, {pi}:

(012030005} = (0.5, 0.4,

-

Left‘Eigenvectbr Matrix, y:

10.7253

: [!1’!2’.'.. ,!5] ~ . "000110

: Determinént; lgl ~4.2 x 1

Right Eigenvector Matrix,

~

17704

{v '"2""?351 =.| -818.3

-~153.3

- | 173.6

R 0.2190

~0.0827

| ~0.6473
o

:

~158.8

0.3,

0.1936

0.6994

20.0118

-0.1097

~0.6790

382.1

- 451.8

2800.4

350.2 ..

-492.3

0;2;

0.1582

0.6702

-0.0110
~0.1449

-0.7105-

<227.0

386.0

31221

-638.2

490.4

0.1}

0.1035.

0.6264

-0.0061

-0.2014

-0.7458"

9.4

-113.7

1179.2

1275.5

-179.5

- -0.5637

-0.2005
0.2622

0.0435

-0.7559

N

77N



| . 96

y / } R

Vol

‘ \
Table 4.9 -~  continued ) '

. | .

isturbante Matrix, 8y: . _ R
% SO [ o.0019- ~0.0004 ~0.0035 -0.0085 -0.0327

" . 3 3 N ‘ . ' . ‘ . < .
CL8y8y,, 8w )= | 0.0559  0.0538 0.0514  0.0479 0.0194

J ~0.0015 -0.0016 ~0.0015 -0.0010 o.oole




> [4
. - TABLE 4.10.

. T ;o

R . ‘ Ja

ey

Eigenstructure and Mode Disturbance Matrix of CH§\C108ed—Loop

System from the 0ptimal£Controller..;

Eigenvalues, (pi}:'~ ‘ _ .
{pl,pz,-~-,p?l,f”%f\{0.9Q02, 10.2706, 5 x 10 s b X

‘,\,z/”, L & .
Left Eigenvector Matrix, v: . L /

¥ 4

r

-

0.2910  -0,4806 -0.1905 - <0.3158  0.3540

0.7978  0,0252  0.0232  0.0074 - =0.0127

[vy¥pse-esy 0= -0.0048  0.0876  0.0953 '0.0342 ~-0.0558.

3

0.0  0.0°  -0.0125 -0{1302 -0.6271 .
-05280.  0.8722 '0.9752‘ -0,9392  0.6914 ]
- . B v ,) .
: | U
N @ ) e
L | soaq0=2 - b o T
Determinant, lyl -2.3 x 10 . : - .

Right Eigenvector Matrix, W:

( 0.0161 -3.305 “~3;003 0.0 -0.0598
1.246 © 1.544  -1.156 -0.3904  0.1040

-0.2296  13.47.  19.47 6,578  -1.753

N ‘ o v
. 0.0 0.0 - -0.3091 -1.293 - <1.320

-0:0040 . 0.6337 ~0.2679 -0.6494  0.1401




T Sy
T ek

e

b

.‘ \‘h&'

1 T
i . Tab}e 4.10- ~ gontinued
. ¥ '-C“\ _
B L . -
% T
Mode Disturbance Matrix, 8y
[ : o
;. 0.0074 =-0.0605 -0.0265
[ngl,gTizs.‘.,gryslrﬂ £ 0.0617  0.0034  0.0034
- | ' ~0.0009  0.0134 0,0131

/s

98

~0.0364 0.0409
~0.0009  0.0002
~0.0008 0.0021

-\ S
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eigenvector matrix. Tﬁg\comparison of the QUmerical valuet of these

ya i)
S determinants of the closed loop systems denived from Run 10 and the .
? . LU
optimal controller with tbe value of O 45 for the open—loop system
. - 4, teoow v &
confirms the magnitudexéf elements shown in the re pactive right !

. La

eigenvector matrix. - C oot SR S

“n

If a zero initial stﬂfe, e. g ,"x(O) 0 and a constant

difA]rbance vector, e.g., d(k) = d is aSSumgd the state at the L

w v
o k sampling time is related to the eigenstructure of the closed~ .
} . 1Y

loop system (with distinct eigenvalues) in the following manner : ﬂﬁf
- x(kT) = WA(k)V ad - . _ : .
q_( et ﬂ \F/\ RERS
or : ) , B
- . o '3
. 45; N | , . A
o o -
v x(kT) = ) <t v, 'd>p (k)w oL (4-8)"
o, ‘." i=1 ’ /“
_ . g Lt w ° » : , e
vhere’ v » R ‘ : ' ‘
A B . . ) N P .
, Lo ' ! . - _
‘ Ak) = dtag [py (k) ,p,(K),... 0, (K)] | b
b o~ R 3 ﬁ ARSI o
- i . v 1
(1 = 1,2,...,n) . g
. : - : N . . th 8 . : » i
'Eﬁuation (4~4) shows that the 4 column of the mode disturbance
\ matrix OTV represents ‘the ianuence of the j (3 = l 2 3) dis-' RN
turbahce on the Ltates due to the orientation of the 1t th left eigen-
- vector relative to the k) h column vector of matrix 6 Hence if ' w
’ all the 1eft eigenvectors happen to be orienteg toward 4 direction vf S
: ' . . -~ ,_,‘ .1‘ - ; . . vv
Fa. hd -~ d
. S S S -t 1
. - /,/" s . 2 - .
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“on the states will be insignificant. But;jfdr other disturbances, the

o © 100

which has small components along some of the column . vectors of thew .+ -

v '._ A
disturbance matrix 8, then the effect of corresponding disturbancesJ/

-

<

_response of the closed—loop system will suffer from the large e%ementsv

S : . -

7 ) : , :
in the right eigenvector matrix.. 'For the closed-loop system of Run 10,

4

'Table 4.9 shows that the f rst four left éigenvectord are clustered

around a direction which has a significant component along the direction

of the second column vector of matrix 6 Only the last left eigen—

1

vector 1s fairly well separated from the other left eigenve . Con—

L
sequently, the elements of the last right eigenvector are very small

L. 4

compared with those of the other right eigenvectors. - This explains Coa

why the closed loop response of Run 10 is poor for the feed con- '

°
N

centration’ disturbance despite the small eigenvalues. T <

-
: On the other hand - the left eigenvectors 15 the clo d-loop

-

systém: re8ulting from the optimal control law are fairly well disé

tributed and prevent cessively large elements in the right ei en-
\fx 8 g

vt
vector matrix Considering the comparable magnitude of the elements

in matrix 9 V for the cases of Run 10 and optimal controller, the
/-\

difference in the closed—loop dynamics is’ mainly to the directional

effect of ‘the right eigenvectors in the .state space. Furthermhre

'_although the optimal controller was obtained without expli\it reference

‘to the closed—loop system,ythe resultimg qlosed— or eigenstructure
is such that the ‘effects of the disturbances un o ne Heavily weighted»
states are minimal This’,s achieved not only be the small closed-

loop eigenvalues but b eigenvector directions such that the combined

[y

) effect of eigenvalues : d the’ associated eigenvectors rejects the

L influence of the distu!bancea or non—zero initial state as much as

\

gl
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possible. Howeber, even the_optinal‘cpntroller seei%%?b\he unable-

i
R

“on the disturbance. In Figure£4 12

to regulate the heavily weighted states to the same extent depending

espite the same veighting on

N

-the first and second effect ,holdups” it is seen that the response

'v .
of the first effect level has a much larger offset than' that of the

second effect level. On the~bther hand the first effect concentratlon
which is ten times less weighted than the level, exhiblts smaller '_
offset than the level. This leads to the.conclusion that ‘the d1rect10n
of the clo;ed—loop eigenvectors cannot be co7trolled arbitrarlly,b4

even if the closed-loop eigenvalues are not prespec1fied ‘'when the

system is to be stabilized and the nuuber of controls is less than

\1

’the number of states.

The co-parison of the optimally c°ntrblled system with the -

closed-loop systems derived by the etgenvalue assignnent technlqueg

reveals the importance of eigenvector directions of the clo loop

system in %be regulation of the states. It ‘was shown that a closed—
loop systen with well distributed eigenvectors in the state space

N .
exhibits better dynamic performance than a closed—loop system with

-'poorly distributed eigenvv:tcrs. Unless the nunber of the controls

1s) equal to the nunber of states, there seems to be a linitatlon in

'controlling closed—loop eigenvectors vhen the system 18 to be

'stabiliaed.

»,

x

" 4. 5 PROPORTIONAL PLUS INTEGRAL CDNTROL OF THE EVAPORATOR

Ghe simulation studies of the evaporator presented in
2
Section 4 4 confir-ed the vell—knovn fact that in~the presence of

Z

: sustained disturbances ft is 1-possib1e to elininate offsets

.

4

N

- -
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completely in'any of the states using only a proportional controller.

~

Hence, it ds the purpose of this section to eliminate offsets in some

{
of the states by using a PI controller designed by the _elgenvalue

assignment techniques pPresented in Chapter Three.

~ f“ The state variabl%s chosen for the 1ntegra1 control action

Jéhd the resulting augmented open—loop system were presented in

3
Section 4.2. This section is concerned with the effects of the

following design fictors: .
s
i) étne effects of the two algorithms used in the design

of integral portion of the PI controllers

ii) the effects of the design configurations used in‘the ,

vfirst step of the PI controller design, and °

iii) .the effects of the different sets of the closed—loop

eigenvalues assigned in the first step of the PI controller design,

on the performance of the resulting systems

As a reference‘controller for co-paring the performance
of the resulting closed—loop systems an optimal PI controller was
designed using the augmented open—loop system. Due to-the-increased |

dimension of the augnented system, a state veighting matrix, g of

’ dimension (n+r) was specified in the performance index. Fnrther4 '

) P
more, to rednce the magnitude of the gain elements a non-zero control

weighting matrix, R, ‘was selected. The numerical values of the :

matrices, g _and R, used in the design:of »optimal\controller
. o . ) + o Lo .
are given by;

.

Q = diag [10, 1, 1, 10, 100, 1\1, 1]

“

R = diag [0.05, 0.05, 0.05] .

' .’l’, : B ) ' . !
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9. The reSulting optimal PI controller is given in Table 4.12. The

corresponding closed~loop eigenvalues are,

{o,} = {0.1299, 0.336640.12491, 0.6566, 0.7549, 0.7824, 0.8980, 0.9000} .

In the design of the PI controllers using eigenvalue assign—
J
/4‘. ment techniques these eigenvalues were spec1fied as the de51red closed-
iloop eigenvalues. However, since the optimal‘PI controller produced
a pair of complex conjugate eigenvalues the desired eigenvalue cor-
‘responding to these complex‘eigenvalues were replaced by tvo'real‘ .
eigenvalues.( This was done to avoid the difficulty of handling .

' |
complex eigenvectors.

The_design'configurations used in.the eigenvaluevassignment
techniques are sumnarized‘in_Table_4z11. The'corresponding PI
controllers are tabulated in Table 4.12. |
4.5.1 Comparigon. of"the‘\Recursive and Simultaneous llesigns _

| bjThe_design configurations used in huns 18 and 19 differ
— only in the second step, vhere thevthree unity'eigenvalues are shiifted
to the desired 1ocations using recursive and simultaneous approaches
respectively Controls were used simultaneously with the 8; vectors
| calculated from Equation (2- 32) at each stage of the first design
:step.. The design chnfigurations of Runs 20 and 21 are analogous to
those of Runs 18 and 19, except that in the first step, controls
‘,were used separately to shift the five eigenvaluesbof m;trix Q(T)
The pairing of controls ‘and eigenvalues that wvere ;med in’ Runs 20 and
. . _ _

., 21 are shown in Table 4.1

Although the same 'design configurations were used inithe
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in these two runs. o |

Figures 4 15 and 6 19 1ndicates that the new steady states are

N o . : 108

first steps of Rnns 18 and 19, significantlj different proportional‘
feedback.gainsidere obtained. Similarily, the proportional feedback
matrices'resulting from Runs 20 and 21 are quite different. However,
the general features of the integral feedback matrix, including the
signs of the galn elements seem to be preserved if the same design
policy.is used in the second step ofAthe design. This can be seen

. i . N
from a comﬂhrison of the K. matrices resulting from Runs 18 and 20,

=1
and Runs. 19 and 21.

The transient responses of the closed—loop systens using

the PI controllers of Runs 18 and 19 are shown in Figures 4.15 to
4.17 for step disturbances of +20Z in F, CF and TF, respectively .
The transient response for the optimal PI controllet was also plotted %?gél
for purposes of comparison. As in the . -case of proportional control |
a disturbance in feed concentration has the most significant effect

and a disturbance in feed temperature has only a negligible effect

on the dynamic behavior of the closed—loop system, In Figures.&.lS

: and'4.19, the closed-loop responsejnsing the fI controllers5derived_b

in Runs 20 and 21 were plotted for'step disturbances in F and CF

only,-sincevthe effect ofvthe disturbance in TF was also negligiole

+

'AThevtransient’resbonse varies depending on not only. the

disturbance but also on the design method used.in the second step

4

of PI controller design.' The . comparison of ttansient responses in

" reached faster when the sinultaneous design is used 1n the second

' step of PI contro&ler design than when the tecursive design is uaed. " §5

'
u
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difference/betveen the closed~loop systems reflects the effect of

114

This trend i® apparent in all the responses regardless of which
disturbance is present. For both the design methods, a feed flow
disturbance produces the Same -ype of transient response but the

response to the feed concentration disturbance changed significantly

‘depending on the design method used in the second step. However,

for the product concentration CZ’ which is the most important :

variable in this parEicular application, the simultaneous design

‘approach provides better transient responses (i e., smaller deviations

- from steady state) than the recursive approach (cf., Figures 4.16

N

. and 4_19)

4. 3.2 Effect of the Design Policy Used in the Fir8t Step
4
The design configurations of Runs 18 and 20 differ only in -

the first design step and similarily for Runs 19 and 21 : Hence, the

the design approach used in the first step of the design. However,

ic Iy difficult to generalize about the effects on the feedback

) control matrices and the closed-loop transient responses.

From Equation (3&56), the final expression for the propor-‘

 tional feedback matrix is given as, Kep = [K-TK, T RERELNSS h

&z

‘ 'Since this expression snows the explicit relationship between the -E
& .

and KI controllerlnstrﬁxs designed in the first and second step, the

structure of KFB and tbe transient response of the closed-loop system g

,depend significantly on the magnitude of the gain elements of matrix KI

A

4 5.3 Effect of the Desired Closed-Loop Eigenvalues

P f :
) In Run 22 only four eigenvalues of matrix| Q(T) were ,i:>_»
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l ' - S :
:shifted to tke locations given 1n Table 4. 10 The other.design options

are the same as in Ruﬂ‘l\

A couparison of the. resulting feedback ma§rices for Runs 19

and 22 does not reveal any common features between controllers The
— . .
structure of the controller natrices is quite different when a dif—

‘ferent set of eigenvaluﬁs are specified in the first step, even if

the design configurations are identical in the second step,
The transient response of the closed—loop system of Run 22
is quite disturbance—dependent as wvas the case r other closed loop

systems. - A disturbance in F results in a responfe similar to the

. one in Figure 4.15 and the response to the TF disturbance is very

r to Figure 6.17.. For this reason only the response to thej

" CF disturbance is shown, in Figure 6 20 It is apparent from -

o

' systems vhichvvere‘presented-in this section.

Figure 4 20 that the closej;loop eigenvalues assigned in the first

’design step have a significant effect on the shape of the transient

- response of the resulting closed—loop systeu.

4.5.4 Summary and Interpretation
This summary is based on the perfornance of the closed-loop
l) As expected fron theoretical considerations, offsets
were elininated in three states nanely 1, H _ and C. . for-all
three coastant disturbances. The eli-ination of offsets can also

be shown analytically using the discrete representation of - the

<

' augnented system but a rather lengthy derivation is required..

&
N 2) For a given disturbance, each of the five state variables

3converged to the same steady-state value regardless of vhich PI con—,.

-
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trolle} was used?xﬁThis phenonenon can be exple}ned qualitatively
in terms of degrees of freedom orgén.termsvof the controllability
of tbe augmented system. For example, the controllability condition
indicates that only ~r_'(§_n) state vériables can be used in‘integrald
control. vThis'means that only T  state variables can be independently
driven to arbitrary salues and the remaining (n-r) state variables.
are then fixed since there are no more degrees eftreedom’available.

{ O I

3) The/transient responseslof the closed-loop Systems
‘ resulting from. "controllersfare higbly dependent upon the.distur—‘
* bance present. ‘As observed in the study'ofvpronortional controls,
‘the CF\\gisturbence has the most significant effect on the closed-
- loop dynamics and the‘ TF disturbance has a negligible effect; Since
‘the recursive design method used in the first design step was identical
, to that used in the proportional controller design, thlS sen81t1vity
to disturbances seems to be due to the recursive control policy used
in the first step; |
4) ifhe simultaneous designvnethod tends to givevbetter
.tranSient responses,‘namely,/snaller devistions from the desired
‘steady states and a faster recovery from’ disturbances - In this
"study, s diagonal matrix consisting of‘the desired eigenvalues sas
used as matrix D in Equation (3f55). ‘Clearly, ‘the eigenvectors
‘t:of'mstrix‘ D bsrelless colinear than those.of the'closedéloop
: I r.vmatrik designed by the recursive design.v Thus 2it is expected"
that.the res ting eigenvectors of the augmented system are also
< ‘ﬁzwell—distributed when e simultaneous design is used. In view of
'ehe discussion given i1'Section &44, this could be a possible f’

i -

explanation for the better’ transient responses.

-

e
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CHAPTER FIVE

CONCLUSIONS i
R .

The purpose of this work was to‘investigate the application
of.existing eigenvaluegassignment techniques based on state feedbsck
tobtne design of»multivariable control Systems. ‘In particularf an.’
evaluation of the design options available Qhen the etgenvalue assign;

ment was based on a modal analysis, was one of the ma objectives

of this study. The other objective was to extend eigenvalue aSsign— o

' -ment techniques to the design of multivariable PI controllers.\

A new theoretical result for PI control syshems is thst,
. i
the ir egral control matrix must have full rank in order to arbi-~

trarily assign”alliof the eigenvalues of the closed-loop systen.
The constructive proof of the proposition provided the basis for two
modified alogrithms for PI controller design by eigenvalue asaign-

ment techniques. ‘ "

»
4

Proportional controllers were designed for a double effect

evaporator using several recursive approaches and the reSulting closed-

loop dynamics were simulated In general, the sinulation fesults
revealed that the performance of the closed-loop evéporator syaten
iwas highly.disturbance—dependent and not slways‘satisfactorjtuhen-
_these proportional controllers were used; Te unsatisfsctorﬁsbehavior
of the closed-loop'aystem was‘mainly due_to the'orientation of.closed—
loop eigenvectorslin the state space; It Vasvsnoun in ainultation
studies that .the PI controllets designed by eigenvalue assignnent

Ly :
‘techniques were able to eliminate offsets in the state variables

-n8-. o
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_ suhjeeged‘to integral control. - 5

5.1 SUMMARY .

Since a rather detailed discussion of the simulation resulta

Q

for the evaporagor system wasigiven in each section of Chapter Four,
only the general conclusions frqm the simulation studies are summarized °

here.

E.

o

);%onclusions from the Proportional Control Studies

;tThe'design options available in the recursive deéign methoda
have significanzﬂeffects both on the dynamics of the closed—loop
eystems and the re8ulting controller matrices. In this regard the
,sequ%nce }n which the open—loop eigenvalues are changed to the

'vdesired closed—loop eigenvalues had the most significant influence
on the performance of the cloded loop,system. However,.effective
.utilization 6f these and the other design Optionsvyaa not' obvious-
a,priori and'vaa generalIY-achieved by trial and error.

| for'the same design.configuration_and desired closed-loop ™
e{genvaluea,jthe'tlosedvloop'dynamics hecame.more aatisfaCtory as the
largest.feedback gain'elementiuas reguced;

' The new steady state was reached faster vhen thewclosed~v
loop eigenvalues were small as: would be expected but the performance
of the closed—loop system did not necessarily improve as the magnitude

" of the closed—loop eigenvalues became smaller. Furthermore; changing
all the controllabie open—loop eligenvalues to smaller.valuesfdid‘not
necessarily result{in an improved dynamic response.of.the closed4. |

loop‘aystem in comparison with the case where only some of the con~



trollable open-loop eigenvalues.vere changed. Since the closed—loop
dynamic behavior is determined by both eigenvalues and eigenvectors,_ ;1.
manipulation of only eigenvalues 1s not always sufficient to improve
the dynamic response of the closed 1oop system. '
: The closed—loop'dynamics were very sensitive to the type
of disturbance Present. The feed concentration disturbance had the %
most significant effect on the dynamics of all the closed—loop systems
while a feed temperature disturbance had very little effect.‘ lhe
disturbance—dependence of the closed-loop systems wasidue to the
orientation of the closed—loop eigenvectors in. the state space.
_Furthermore the closed—loop eigenvectors tended to be oriented in
the same direction in ‘the state space., This could not be directly
controlled by the designer using eigenvalue assignment techniques.
In the evaporator simulation study, the closed-loop eigen-
'valuesyassigned at each recursive step\vere ‘very sensitive to the -
numerical accuracy of: the updated eigenvectors when ‘the, magnitude T
of the desired eigenvalues was small. Hence in some applications
the straightforward algorithm for updating eigenvectors ‘may not be.
'accurate enough to assign the - desired eigenvalues, unless the
o numerical techniques are carefully evaluated.
| ln,conclusion,vthe simulation results revealed-that‘in~

process control assigning eigenvalues of the’closed-loop system is
" not sufficient and the closed-logp eigenvectors are<also important..'
to the same eatent in ensuringlsatisfactory performance of the’
. closedfloop,system.‘ The eigenvalue assignment techniqués guarantee
only the shift Of-open-loop eigenvalues to the desired'locations but

does not assign the closed-loop efgenvectors unless the available
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t : . )
design freedon can be exploited in some systematic way. However,

the utilization of this design freedom will in general, result in__
a non-linear optinization problem Thus simplicity, which is the

_ main advantage of eigenvalue assignment techniques will be lost.

Couclusions from the Proportional Plus Integral Control Studles

The PI controllers: designed by eigenvalue assignment
techniques elininated offsets in the properly chosen state variables
of the evaporator aysten, regardless of the type of Sustained dis-
turbance. However, coyparison of an oﬁtimal PI controller with PI

(\_‘

controllers designed by eigenvalue assignment techniques’ showed that
although the same steady-state was reached, the transient response
of the closed-loop system was more satisfactory when the optimal PI -

controller was used. Furthernore - for the PI controller derived from

elgenvalue assignnent techniques, the transient responses of the

- closed-loop systens depended on the types of disturbances present

and the design configurations used In view of the important role .
7'of the eigenvectors in the dynamic behavior of a system, this
'variation in the closed—loop dynamics was due to the eigenvector
orientation, vhich depended on the design configurations used

~ For’ the tvo' algorithms presented in Chapter Three, all
_ the closed-loop syatau;showed.the same disturbance-dependence; Since
‘this reflects the Anitial design policy used 4in the first step, a
satisfactory proportional controller, g;‘ is more'important than _
Vthe integral control -atrix, 51, 1f the two step design Scheme is_
to be.used. Houever, the simultaneous design approach used in the

second step, in general, gave better transient responses of those. -



'

dynamic behavior of the closed—loop system. 4‘ﬁ f' “l

Q,;'a‘ B

B4 \3
In conclusion, the simplicity of e&gehvalsc

J.,, !
T.m v

techniques can be advantageously used in eliningﬁﬁﬁg' ffsets in

selected states. For the two step de51gn schem; 2 sé% in this study,.

more emphasxs should be directed to the design of the 1nitial pro-.
: U ‘
‘portional control’ matrix K, to get satisfactory transient
responses- Howevet if the standard eigenvalue assignment techniques
‘are applied directly to the augmented system, the relation between

eigenvectors and eigenvalues is expected to be more involved due to . °

the increased dimension of the system.
5.2 FUTURE WORK o B | »
'Although the eigenvalue assignment techuiQues are con~
‘ venient fromta(computational viewpoint, there are_serious‘dis-,
» advantages for process control applications. This is mainly due to '
the fact that no systematic vay of specifying the closed—loop eigen—
vectors is available at the present time. “The' manipulation'of
available design freedoms in a trial and error manner is’ not always
successful in a reasonable period of time and becomea ‘more tedious
as the nunber of states increase. .
In this respect future work ahould be directed to the J
establishment of desirable closed-loop eigenvector configurations
;in state space. Since the closed~loop eigenvectors depend on the -

closed—loop eigenvalues and the design freedom ia  mainly provided

by an arbitrary set of vectors -{gi} ‘the relationshiﬁi}&pong the

cffi B



. closedfloop eigenvectors; closed—loop eigenvalues and}the eet of
vectors‘ {gi}“should be determined for the successful application
of eigenvalue‘assignment techniqueslto.the process control‘problem.

- Another_importnat area where the future work is needed.

'is.the minimization of gain elements_in view of the possihle.limita~'

tions on'the magnitude of available controls_(ile., control’constreints)x l
o : o ‘ ‘ S
i §%§g2§7For multi-input systems, the'gain elements are related'to thé selection
| of Gn arbitrary‘vector-set '{gi}" and the relationship between the

overall controller matrix and this set of vectors {gi} -would be

- a valuable asset for the conttol system design.

“ - These two unresolved problems in state feedback control

are also important because the incomplete state or output feedback
. system design problem would profit from a fuller understanding of -
EE the state feedback problem.: ’ |
However, ‘the simulation reSults should be verified B
experimentally before proéeeding with a further investigation 0f-
'eigenvalue assignment techniques. Unfortunatel}, he-experimental
evaluation of the simulated results for the. evaporator system had

to be postpbned due to the ‘equipment difficulties. Hopefully, the

experimental studies will ‘be poesible in the near future.
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. | " NOMENCLATURE
\\ﬂ.

Alphabetic
A systemdmatrix of a contiﬁuquerime-model

. ¢ontrol cbefficient vedtdr
B | control coefficieptfmairii B
Bl ) _firse effect botﬁoms fiow . : ' o J
Bé second effectcbottoms flow &ﬁh
c ciosed—loop,system mé;rix‘ B
C, - first effect cbncentratiqn-v .
C, o preduct cogcentfétion' ] ’ .
CF.,» ) feed concen;ratien ‘ é : f
4y "; distufbanee element =
‘g‘ ' }disturbence vector . :v;%. .
'Q‘ .disturbanCe coefficient mairii or’a desired closedfloop‘-f

| matrix defined in (3-30) - SR
f( ) characteristic - Po_iynemiai of :‘a square natrix |
IE | column vector'defined'ip_(2‘3)
.8i 1e1emedc of vector‘ 8

" column vecter defined 1a (2-3)

squerebmatrix defined'iﬂ (3—33)‘fdw. .lﬁﬁ‘ ‘

;F feed flow reté | |
h1 | fif;t effect enthalpy
hF - '.feed enthalpy =~ = %
g ‘ mode controllability matrix defined in (2*10)
”gl mode controllability natrix defined in (3-17)
‘§2< mode controllability matrix defined in (3-18)

= _'&
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s

Lo |

o

increment counter N : e

identity matrix &——i -

. ~. : - .
Jordan canonical form of a square matrix

time counter _

A

LC

feedback coh;fol matrix or initial feg? ack control

matrix defined in (3-11) /

proportional feedback control matrix

integral feedback control matrix

number of controls

number of. states

‘null matrix

ﬁnﬁber of eigenvalues to be changed

Y

number ‘of disturbances v
eigenvector updating coefficient
number of integrated states

steam flow rate

discreiization interval .

first effect temperature
' feed temperature

coefficient matrix of integrated State vector

control element

control vector

"'controlxvector definéx”ta\(3~10)
«control Vector defined in (3-10)

lleft.eigenvectot

left eigenvector matrix

-
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Greek

> e KD H> 1o

g
3]

= >

©

‘m04é1 state vector
integrated state vector

 element of vector g

'discrete

“sum

right eigenvector

right eigenvector matrix

N

first gffecf holdup

second effect holdup

.

state variable

- . i

state ‘vector .

column vector defined in~(2~l7)

element of vector - §

 column beégor defined 4n (2-17),

2l

discrete_digghrbance coefficient matrix

O

discrete state coefficient matrix

_ open-loop éigenvarue

set of eigenvalues

N

. eigenvalue matrix

product

~deéired'eigenva1ue

N

time . ¥

"\t
cotitrol coefficient matrix
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Sugerécrigt -
s time derivative o S

vy perturbation variable

augmented vector or matrix
i .recursive step counter , o

T - -vector or matrix tanspose

-1~ matrix inversion - , o

Subscript _ L N : :
- vector . - ‘ . '

= _ matrix

i element counter or run counter - . e S
3 ‘element counter '

P . - size of matrix ﬁartition‘ , -i(

<> dot prddu£t4ﬂ~. a . S S
{1} .  set ) R . » ' \)'k,f
- Abbreviation PR N ' _ (#; ’ _ g /2 .

det determinant

diag = diagonal

P ~ proportional céntroll o -
' o -~ : S o ' '? -l
PI - . proportional plus integral control ' )

sign . signum . o o ' .



SS
+20X CF
-20Z CF
+20F

4+20% TF

steady state

201 step increase

20Z step decrease

202 step increase

20Z step increase

in feed concentration
in feed concentration
1in feed flow rate

in feed temperature
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APPENDIX

DERIVATION OF MATRICES §(T), A(T) and §(T)
Yoo . . ) .

~ FROM THE CONTINUOUS AUGMENTED SYSTEM
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If one directly discretizes the continouous augmented
system given by Equation (3-2) following étandard'procedures in the
, literature [25], the coefficient matrices, i(T), “§(T)_ éﬁd“ é(T)

aré~expressed'by:

-.\ .’ éT i ) ' .
$(M = e B . (A-1)

Aa 0 T é'l' R i . .
AT) = (f e duB (A-2)
; ) 0 ' .
A

v 8T = (f e 41D \ (A-3)

o |

(11~ - 5Y

- where matrices; A, and ‘D are defined by Equations (3-4),‘(3—5).

- and (3-6) respectively. If‘the matrix A in Equation»(3¥4)'is'non—
‘ o, o

singular,'the right and left eigén&ector mairices, W and g -of ﬁ

matrix A can be related to the corresponding matrices g and v

‘of matrix A ‘by [32]; o ) - ‘ : } N ] _ o
- N ;
S D BN N X
W= ~~=--- == - (A-4)
g TWAl o1 S
='r’--s ! :

. . ¥
- gT ' 0 o o - |
' L Rt e e S CL I
-T A" s I S ‘
et o s T

L . L
. .

vheteAvg 18 a diagonal matrixﬂﬁhose dié§§v ] eiemgnts are the eigen-
: : . S At v
values of matrix- A. Furthermore, the matrix exponential, e , .can
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be expressed by the foilowing felacion,

“

with

. pove | T

Q = ~_...=._:..‘.. . \ o (A-7)
g v O . o
‘; . =

*

Substituting Equationa (A-k), (A-5) and (Ar7) into Equation (A—S)

and reartanging the resulting exptession gives,

.
R Bt e R (a-8)
. - = } ‘ o . l. 4,
=ré (e zn) v L

Hence,vthe integral expressiun in Equation (A-2) can be readily

: evaluated and given by,

T A' i 1, AT : 1
! e-7 A (e -1) L0 o
M| v e e = o - e - - - =l L - ' -
‘o dr = | - S0 AT N : . (A‘9)
. . . - - - '
I late ~L)-TL )} | T .

,(/ v ’ . 'A . 'v‘.v;
Fron Equations (A>1) and (A-B) matrix $(T) 1s given by

[
o ééT o
g = | - S go oot T (A-10)
1, = 1 :
V : até . (e. £n) : £t
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After substituting Equation (A-9) into Equations (A—2) and (A-3) and
using Equations (3~5) and (3-6) matrices Q(T) and .g(T) are

expressed by:

A = [ -~ - -~ Pt (a-11)

8Ty = | -~ Z_CSl= T

f §?.

From the equations given below: Equation (2—33) it can be readily

seen'thgg

f 1) o : g(T) = e - ‘ , (A—i3)‘
: ! : -1 AT v o : : '
o am = a7 1o D)
\ .
S - L N -1 AT _ ‘
. | : - » Q(T) = A _(e —,I=n)]=) - - (A-15)

Subatitution of Equations (A?13) - (ArlS) into Equations (ArlO) -

(A—12) respectively gives the expressions given by Equations (3-37) -

(3 39) . R 3

'iu



