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Abstract 
 

Medium and short term mine planning require models of mineral deposits that account 

for internal geological structures that permit scheduling of mine production at a weekly 

and monthly production periods. Modified kriging estimation techniques are used for 

accounting for such geologic structures. However, in the case of simulation, it is strongly 

linked to the use of sequential Gaussian simulation which has difficulties in reproducing 

internal geologic patterns. 

This thesis presents: (1) a set of tools to verify the impact of mean and variance trends 

in a domain; (2) a methodology for identifying highly variable sub-regions within 

domains; and (3) a simulation methodology that accounts for the internal structures in the 

domain required by medium and short term planning. Specifically, the simulation 

approach consists of: (1) moving the domain to a high dimensional space where the 

features of the internal structures in the domain are more stationary, (2) simulating the 

realizations via sequential Gaussian simulation, and (3) projecting the results to the initial 

dimensional space. 
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1.  Introduction 

Equation Chapter (Next) Section 1 
Geostatistics in the mining industry is used for modeling uncertainty of mineral deposits. 
A mineral deposit model consists of the characterization of many variables; in general, 
these variables are geologic properties used for economic evaluation, such as metal 
grades, metal contaminants, rock type, etc. The mineral deposit model is used differently 
at the different stages of a mine project. In the feasibility stage it is important to quantity 
the economic potential of the mineral deposit and different mining strategies are 
proposed. Once the mine project is of economic interest, three model types are built 
based on the mine planning requirements: (1) long term model, based on 3 to 5 years 
basis, (2) medium term model, based on 3 months to 1 year basis and (3) short term 
model, based on 1 week to 1 month basis. Usually, a mineral deposit model is either an 
estimated model that consists of the estimation of the uncertainty parameters such as 
mean and variance of the variables of interest at the unsampled locations, or a simulated 
model that is a set of many realizations that are possible scenarios of the mineral deposit. 

For the different types of use of the models, the target in their construction varies. 
That is, in the feasibility study it is important to get a global view of the mineral deposit 
and major geologic structures are of interest. Little detail can be added to the model 
because of the limited information available. Once in the mine project stage as more 
information is added, the detail of the mineral deposit is required in order to plan the 
location(s) of the major mining processing and auxiliary facilities during the life of the 
mine. This is of particular importance because after building a processing plant, 
deploying waste dumps, etc. it is extremely expensive to relocate them. It is possible that 
during operations, important mineral bodies of economic interest are found below these 
major facilities which were not identified before by the model. Not mining them would 
imply a lost opportunity. At this stage, the mine strategy has already been decided and the 
model is built at a long term mining scale of support called selective mining unit (SMU) 
which tries to mimic the mining selection during this 3 to 5 years period. 

The other model types are the medium term and the short term models. These two 
models are required to provide information for monthly and weekly mine planning, 
respectively. More exploratory information is added as well as production information 
such as blast-hole data. The two types of models can be compared to past production in 
order to verify the goodness of the modeling strategy and improving the understanding of 
the mineral deposit. For the medium term model the scale of support can be similar to or 
smaller than that used in the long term models.  However, for the short term model the 
scale of support is smaller, and is more evident in highly variable deposits such as skarn 
type. Notice the degree of accuracy increases as the mine planning time period is 
reduced. For these types of models, particularly the short term model, the geologic 
features have to be reproduced more accurately in order to be consistent with the 
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production rate. If these models are either over-estimated or under-estimated in terms of 
economic mineral quantity and quality, profit decreases.  Therefore, at these stages the 
models have to be as accurate as possible. 

 
1.1. Problem Setting 
 
This thesis is focused on building medium and short term models. Local reproduction of 
the geologic features is an important characteristic for such types of models. In practice, 
the mineral deposit is sub-divided in geologic domains. Each domain tends to share 
common characteristics in terms of the variables of interest. For example in a case of a 
skarn deposit, calcium carbonate, exoskarn, intrusive, post mineral, etc. rock types are 
grouped. Usually, one or two domains contain highly or regular concentrations of the 
variable of economic interest. A linear estimator is used either for estimation or 
simulation. It consists of calculating a set of weights for each available data sample in the 
domain. These weights represent the influence of the dataset for predicting at the 
unsampled location, the closer the data sample is to the unsampled location the larger is 
the magnitude of the calculated weight. 

In this thesis, reference to conventional geostatistics refers to the use of simple kriging 
for both estimation and simulation. There are also other types of kriging estimators such 
as ordinary kriging, universal kriging, and others; however, they are used only for 
estimation. With the use of simple kriging it is intended to minimize the global error 
variance in the domain. However, the reproduction of the spatial variability features is on 
average. Particular variability features in some regions tend to be averaged to the rest of 
the domain. It is because a unique pattern of spatial variability is used, this is the 
covariance/semivariogram model. One of the consequences is the local estimation 
variances are a function of the surrounding data configuration rather than of the 
variability of the data values. Some approaches have been proposed to fix this particular 
problem. (Pan & Arik, 1993) proposed restricted kriging for controlling the influence of 
the extreme values during the estimation, (Yamamoto, 2000) proposed an alternative way 
to calculate the kriging variance based on the sample values, among others. Even when 
small modifications to the kriging estimator are made, the benefits also involve 
drawbacks. For instance, the characteristic of minimizing the global error variance is less 
valid, and, simulation cannot guarantee covariance reproduction. 

In this thesis an approach for modeling using conventional geostatistics that accounts 
for the local features of the domain is presented. Even when the local estimation 
variances and local means in the proposed approach are a function of the variability of 
the surrounding data, the characteristics of the kriging estimator are not compromised. 
Therefore, both estimation and simulation can be carried out without any consistency 
problems. This is important for modeling medium and short term models, because 
conventional simulation was used for reproducing on average the global features of the 
domain, making it unsuitable for building medium and short term models.  

 
1.2. Objectives of the Research 
 
The goals of the research presented in this thesis are: (1) propose a set of tools that can be 
used for testing the stationary conditions in a domain which are a requisite for using 
conventional geostatistics for modeling and (2) provide a methodology for modeling 
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mineral geologic domains via estimation and simulation that account for the local 
geologic features in the domain. These models are intended to be used as an input of 
medium and short term mine planning processes. 

Modeling a non-stationary geologic domain using conventional geostatistics will lead 
to non-optimal results for many reasons. Mean trends make the range of the 
semivariogram to be unnecessarily large and anisotropic patterns can be incorrectly 
inferred, and the sill of the semivariogram of the domain is inflated. In presence of 
variance trends, the conditional variances are overestimated in some regions and 
underestimated in others. In presence of highly variable small sub-regions, the range of 
the semivariogram tends to be reduced, etc. With the use of the proposed tools, the 
stationary conditions of the domains can be verified, so that the domains can be pre-
processed for conventional geostatistics modeling. 

After removing mean and variance trends, even when regions with different 
variability patterns are identified in the domain they may be very difficult to separate 
them into sub-domains, due to the scale of the sub-structures or lack of information to 
support the sub-domaining decision. Geologically, the data samples in the sub-regions 
have different influence than those of the major part of the samples in the domain. 
Conventional geostatistics tends to average these local features making it unsuitable for 
medium and short term mine planning. The proposed approach is able to build estimated 
or simulated models that accounts for the local features in the domain, so that, these 
models can be used for mine planning at a medium and short term scale. 

 
1.3. Proposed Approach 
 
The mathematical condition that allows the use of conventional geostatistics is called 
stationarity. In practice, domaining is used for sub-dividing the mineral deposit into more 
stationary sub-regions so that it becomes suitable for modeling using conventional 
geostatistics. However, sub-domaining is usually based on geologic knowledge and non-
stationary features such as trends and others that are characteristic of a mathematical 
environment can be omitted during this process. A set of tools are presented for verifying 
the impact of the non-stationary conditions in the initially proposed geologic domains in 
order to improve the domain definition of the mineral deposit. 

In practice even when the impact of the non-stationary features has been minimized in 
the domains, conventional geostatistics still models uncertainty in global terms. In this 
thesis the local features of the domains are accounted for by using extra dimensions as 
required. That is, the domain is moved from its original dimensional space of usually up 
to three dimensions (e.g. east, north and elevation) to a higher dimensional space where 
the spatial variability can be described both locally and globally by a covariance model. 
Recall this is not the case in practice, where the covariance model describes the spatial 
variability only in global terms. Once the domain is in this high dimensional space, 
conventional geostatistics can be applied for modeling uncertainty without any 
modification to the simple kriging system. Finally, the resulting model in the high 
dimensional space are projected to the initial space with the benefits that after the 
projection the local features captured by the dataset are present in the model both in 
estimation and on each realization of simulation. The extra dimensions are the 
representation of the local variability that is not captured by the global spatial covariance 
model. 
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1.4. Dissertation Outline 
 

Chapter 2 describes the conditions of stationarity required for modeling a domain 
using conventional geostatistics. The concepts of regionalized variables, stationary 
random functions, estimation and simulation for modeling continuous variables are 
summarized and discussed. 

Chapter 3 presents a tool for calculating the impact of mean and variance trends in 
the domain. The experimental semivariogram is used to account for trends both in the 
mean and in the variance. Different artificial trend cases and two real examples are 
discussed. 

Chapter 4 introduces a methodology for calculating a representative experimental 
semivariogram that accounts for the spatial continuity of the major part of the domain. 
Because the experimental semivariogram averages the spatial continuity, small highly 
variable regions in the domain may tend to affect negatively the experimental 
semivariograms. These highly variable regions can be identified in the domain and 
considered for sub-domaining. Three styles of semivariogram model fitting are 
introduced and the impact of them in modeling is discussed. 

Chapter 5 discusses the process of moving the domain to a highly dimensional space 
where the semivariogram model defines the spatial continuity both for local and global 
estimation. An algorithm based on cross-validation is proposed. 

Chapter 6 proposes a methodology for modeling the domain in the high dimensional 
space and projecting the results to the initial space. Topics about irregular anisotropic 
patterns are presented; this is of particular importance because it gives flexibility for 
calculating conditional distributions. 

Chapter 7 contains the conclusions of this thesis and proposes new topics for future 
work. 
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2. Summary of Theory Related to Modeling 
Mineral Deposits 

Equation Chapter (Next) Section 1 
The present chapter is focused on the theoretical background related to conventional 
geostatistics for simulating mineral deposits. Theoretical aspects of random functions, 
decision of stationarity, estimation and simulation are presented. This thesis is focused on 
the problems in the implementation of simulation for building mineral deposit models for 
medium and short term mine planning purposes, where the decision of stationarity has a 
big impact in mine production. Topics such as models of coregionalization, indicator 
approaches for modeling continuous and categorical data, and multiple point geostatistics 
are not covered because they are considered beyond the scope of this thesis. However, the 
reader can review the following references (Goovaerts, 1997), (Deutsch & Journel, 
1998), (Chilés & Delfiner, 1999), and (Deutsch. 2002) among others. 
 
2.1. Random Variables and Random Functions 

 
A random variable (RV) is the representation of a range of values, discrete or continuous, 
that may occur at a particular location ܝ that follows a probability distribution. The 
discrete variable consists of a number of finite outcomes ݇. Its distribution consists of 
proportions of occurrence (2.1). When modeling discrete RVs, indicator variables may be 
used, they represent the probability of occurrence of a particular outcome in the RV (2.2). 
Continuous RVs values follow a distribution and are characterized by a probability 
݂ሺܝ;  to happen or a cumulative probability of the outcome is no ݖ ሻ of an outcomeݖ
greater than a certain threshold  ݖ଴ (2.3). This thesis is focused on the modeling of 
continuous RV. 

 ( ) ( ){ }; Probk kp z Z z= =u u   (2.1) 

 ( ) ( )1 if 
;

0 otherwise
k

k

Z z
I z

⎧ =
= ⎨
⎩

u
u   (2.2) 

 ( ) ( ){ }0 0; ProbF z Z z= ≤u u   (2.3) 

For simplicity the RV is usually denoted as ܼሺܝሻ and a realization as ݖሺܝሻ . A RF can 
be seen as a set of RVs, where each RV is located at ܝ. The domain ܦ where ܝ belongs is 
infinite, however, for implementation the domain ܦ can be assumed as finite and usually 
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it is referred to as field of interest. As part of nomenclature, when the number of 
dimensions of the location vector ܝ is one the RF is usually named as stochastic process 
and when there is more than one dimension involved in ܝ the RF is named random field 
(Chilés & Delfiner, 1999).  

In conventional geostatistics the variable of interest in a domain is assumed to be one 
realization of a RV. Any variable that is distributed in space is called regionalized. A 
regionalized variable is assumed to be representative of a certain process and the process 
that generates the regionalized variable is called regionalization (Journel & Huijbregts, 
1978). In mining applications the regionalized variables are any continuous variable of 
the mineral deposit that is required to be estimated for mine planning or economic 
evaluation and the regionalization process refers the geologic events that leaded to the 
formation of the mineral deposit. 

The RV ܼሺܝሻ is characterized by its cdf (2.3), whereas, the RF is characterized by the 
multivariate distribution of its RVs (2.4) (Deutsch, 2002). Expression (2.4) is the 
characterization of the joint distribution for the ܰ values ݖሺܝଵሻ, … ,  ேሻ. Theܝሺݖ
multivariate distribution constitutes the spatial law of the RF. However, in practice the 
analysis involves no more than two locations and their respective moments (Goovaerts, 
1997).  

 ( ) ( ) ( ){ }1 1 1 1,..., ; ,..., Pr ,...,N N N NF z z Z z Z z= ≤ ≤u u u u   (2.4) 

In mining applications only the first two moments of the spatial law are sufficient for 
solving the problems presented (Journel and Huijbregts, 1978). 

 
First order moment. It is also called expectation and is defined as the mean of the 
distribution of the RV at location vector (2.5) ܝ; therefore it is a function of the location 
 .and is assumed to exist ܝ
 ( ){ } ( )E Z m=u u   (2.5) 

Second order moments. There are three second order moments that are considered in 
geostatistics. They are: 

1. The variance of the RV (2.6). Similar to the first order moment, it is also a 
function of the location vector ܝ and is assumed to exist. It is defined as the 
second order moment about the expectation of the RV. 

 ( ){ } ( ) ( ){ }2
Var Z E Z m= −⎡ ⎤⎣ ⎦u u u   (2.6) 

2. The covariance between two RVs (2.7). Because of the use of one attribute in the 
RF it is also known as auto-covariance and for this case it is a function of two 
locations ܝଵ and ܝଶ of the RF. Notice that the variance is a case of the covariance 
when ܝଵ ൌ  ଶ. Both the covariance and the correlation coefficient are measuresܝ
of linear dependence, non-linear and non-monotonic relationships are not 
adequately represented by them (Deutsch, 2002). 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }1 2 1 1 2 2,C Z Z E Z m Z m= − −u u u u u u   (2.7) 
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3. The variogram between two RVs. It is defined as the variance of the increments 
between two RVs, for this case it is a function of two locations ܝଵ and ܝଶ of the 
RF (2.8). The nomenclature ߛ is referred to as the semivariogram. In this thesis 
semivariogram and variogram are used as two different terms, however, in many 
documents the term variogram refers to as the semivariogram. It is worth to 
mention in the Geostatistic Congress in Avignon 1988 it was agreed to use of 
variogram instead of semivariogram because is less pretentious and more 
descriptive. 

 ( ) ( )( ) ( ) ( ){ }1 2 1 22 ,Z Z Var Z Zγ = −u u u u   (2.8) 

In Figure 2-1 a sketch of a RF is presented. Assuming the expectation of the RVs 
exists, the local means are drawn as a continuous line along the RF. The variances of the 
RVs are assumed to be finite; they represent the dispersion of the outcomes on each RV. 
The two RVs at locations ܝଵ and ܝଶ show the shape distributions of the RVs can be 
different as well as their local means. Assuming reality as one realization of the RF 
means one outcome of each of the RVs is drawn while preserving the spatial law or in 
other words preserving the first and second order moments of the RF. The process of 
generating realizations is addressed later in Section 2.4. 
 

 
Figure 2-1: Sketch of a RF with to RVs at locations ܝଵ and ܝ૛, the local means ݉ሺܝሻ of 
the RVs are drawn as a continuous line and the pdfs of the two random variables. 

 

2.2. Decision of Stationarity 

In mining, only one outcome at each location ܝ is available. That is, there is no more than 
one metal grade at a certain borehole core sample location. Defining the spatial law of the 
RF under such conditions becomes a very difficult task. The spatial law of the RF has to 
be inferred with limited data in order to be able to model the deposit using conventional 
geostatistics approach. 

Second order stationarity assumption entails 1) the expectation of all the RVs is 
constant (2.9), and 2) the covariance of the RF is not a function of locations ܝଵ and ܝଶ 
but of a separation vector ܐ ൌ ଵܝ െ  ଶ along the domain, that is, the covariance of all theܝ
RVs separated by ܐ is constant  (2.10). Once a RF satisfies these two conditions it is said 
that the RF is stationary of order two (Goovaerts, 1997).  

u1 u

m(u)

u

Z

Sketch of a RF

2

Z(u )1

Z(u )2
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 ( ){ }E Z m=u , D∀ ∈u   (2.9) 

 ( ) ( ) ( ){ } 2C E Z Z m= + −h u u h , D∀ ∈u   (2.10) 

Stationarity in the covariance also implies 1) the variances of the RVs are 
constant (2.11) and 2) there is a direct relationship between the covariance and the 
semivariogram (2.12). 

 ( ){ } ( )0Var Z C=u   (2.11) 

 ( ) ( ) ( )0C Cγ = −h h   (2.12) 

A RF is stationary in the strict sense when the spatial law of all the RVs is invariant 
under translation: ௭݂భ,…,௭ಿ൫ܼሺܝଵሻ, … , ܼሺܝேሻ൯ ൌ ௭݂భ,…,௭ಿ൫ܼሺܝଵ ൅ ,ሻܐ … , ܼሺܝே ൅  ሻ൯  Inܐ
conventional geostatistics once any RF is stationary of order two, it can be referred to as 
a stationary random function SRF. The same nomenclature is used in this thesis. 

A RF is said to be intrinsic (IRF) when 1) the expectation of the RVs is constant (2.9) 
and 2) the variogram is constant for any pair of RVs separated by a separation 
vector (2.13) ܐ. A SRF implies an IRF, although, the converse is not correct (Journel & 
Huijbregts, 1978). The IRF is of particular importance in this thesis, especially in the next 
chapter for dealing with mean and variance trends in the RVs. 

 ( ) ( ) ( ){ }2 Var Z Zγ = − +h u u h   (2.13) 

In Figure 2-2 a sketch of SRF is presented. Even when the stationary condition of the 
covariance is not presented in the picture it is of particular importance to highlight that 
the local means and variances of the RVs are constant. It can be compared with Figure 
2-1 in order to see the big difference between them. In the picture, the confidence limits 
of the RVs are plotted as constant in order to show the variances of the RVs are also 
constant. However, this is not a characteristic that is always present in a SRF. In fact, the 
shape of the distributions of the RVs can be different to each other. Recall that nothing is 
established about the shape or confidence limits of the RVs distributions of a SRF. 
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Figure 2-2: Sketch of a SRF with two RVs at locations uଵ and uଶ, the constant 
confidence limits (gray dashed lines) of the RV distributions imply the local variances are 
constant, although this condition is not always true. 

For implementation, the covariance of the SRF is inferred from the available data by 
fitting the experimental semivariogram (2.14) with a licit function. Notice that the 
experimental covariance can be calculated instead and fitted also with a licit function. 
The historical preference in the use of the semivariogram by geostatisticians is because 
the semivariogram is less demanding than the covariance, that is, only the stationarity of 
the increments is required  (2.13) (Deutsch and Journel, 1998). 

 ( ) ( ) ( ) ( )
( )

2

1

1ˆ
2

n

i i
i

z z
n

γ
=

= − +⎡ ⎤⎣ ⎦∑
h

h u u h
h

  (2.14) 

The experimental semivariogram is plotted for different lengths of the separation 
vector ܐ (see Figure 2-3). In practice the lengths of the separation vector are usually 
picked using regular increments called lag distances ܐܔ, that is, ܐ௜ ൌ ݅ ൈ ,ܐܔ ݅ ׊ ൐ 0. If the 
existing data is distributed in a sparse configuration the use of angular and distance 
tolerances are required. The combinations of tolerances act as search volumes for 
selecting the cloud semivariogram points, ሺ1 2⁄ ሻൣݖሺܝ௜ሻ െ ௜ܝ൫ݖ ൅ ௝൯൧ଶܐ

 at ܐ௝ (Deutsch 
and Journel, 1998). However, it would be more convenient to select the cloud 
semivariogram points based on clusters in the cloud semivariogram configuration. The 
clusters need not be aligned in any particular directions unless ܝ א Թଵ, in Թଶ the 
representative clusters define the semivariogram model as a surface and in Թଷ as a 
volume. A semivariogram model is required because the experimental semivariogram 
only shows the semivariogram at the calculated ܐ௝ vectors, for estimation/simulation the 
semivariogram has to be known for any ܐ. Finally, the process of fitting a licit 
semivariogram function to an experimental semivariogram is a subjective task. 

u

Z

u1 u2

m(u)

Z(u )1 Z(u )2

Sketch of a SRF
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Figure 2-3: Example of an experimental semivariogram (black dots) fitted by a spherical 
semivariogram model (solid line) 

Not just any function or semivariogram model can be used for fitting an experimental 
semivariogram. This semivariogram model should not allow for negative variances. 
Recall under the decision of stationarity the covariance can be linked to the 
semivariogram (2.12). The variance of any linear combination of RVs can be also 
expressed in terms of the covariances between the locations of such RVs (2.15). In order 
for the variance to be a non-negative value, the covariance model has to be positive semi-
definite (Goovaerts, 1997). 

 ( ) ( )
1 1 1

,
n n n

i i i j i j
i i j

Var Y Cλ λ λ
= = =

⎧ ⎫ =⎨ ⎬
⎩ ⎭
∑ ∑∑u u u   (2.15) 

Expression (2.15) can be rewritten in terms of the semivariogram considering (2.12). 

 ( ) ( ) ( )
1 1 1 1 1

0 ,
n n n n n

i i i j i j i j
i i j i j

Var Y Cλ λ λ λ λ γ
= = = = =

⎧ ⎫ = −⎨ ⎬
⎩ ⎭
∑ ∑ ∑ ∑∑u u u   (2.16) 

There are semivariogram models such as the power model which does not have 
covariance counterpart. For these semivariograms expression (2.16) can still be expressed 
in terms of the semivariogram by making ∑ ௜ߣ ൌ 0௡

௜ୀଵ  in order to filter the ܥሺ0ሻ term. 
Then expression (2.16) becomes (2.17). To ensure the non-negativity of the variance of 
ܻሺܝሻ the semivariogram has to be negative definite, the condition being ∑ ௜ߣ ൌ 0௡

௜ୀଵ  
(Goovaerts, 1997). 

 ( ) ( )
1 1 1

,
n n n

i i i j i j
i i j

Var Yλ λ λ γ
= = =

⎧ ⎫ = −⎨ ⎬
⎩ ⎭
∑ ∑∑u u u   (2.17) 

A list of common licit semivariogram models are the nugget effect, spherical, 
exponential and the Gaussian model. It is recommended to use the combinations of them 
to model more complex structures. From these four models the spherical model is licit up 
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to Թଷ; the rest of them have no dimensional limitations. The following semivariogram 
models are presented with a scaled sill to one. 

• Nugget effect. 

 ( )
0 if 0
1 if 0

γ
=⎧

= ⎨ >⎩

h
h

h
 

• Spherical 

 ( ) ( )
31.5 0.5 if 0

1 if 0
Sphγ

⎧⎡ ⎤− ≤⎪⎣ ⎦= = ⎨
>⎪⎩

h h h
h h

h
 

• Exponential 

 ( ) ( ) 1Exp eγ −= = − hh h  

• Gaussian Model 

 ( ) ( ) 2

1Gau eγ −= = − hh h  

The presented semivariogram models are presented in its isotropic form, in presence 
of anisotropic preferential directions the separation vector ܐ is scaled by a rotation and 
anisotropic matrices (see Chapter 6). 

2.3. Estimation 

In estimation the main goal is to calculate the local distributions at unsampled locations 
in the domain. In conventional geostatistic, a SRF environment is assumed to the access 
to the spatial law of it, from which estimates can be inferred using the existing data. The 
existing data is considered as a regionalized variable or part of one realization of the SRF. 
This assumption limits the set of possible realizations to the ones that honour the existing 
data at their respective locations. The set of possible realizations is variable at the 
unsampled locations and such variability is then described by the conditional 
distributions calculated using a least square optimization method known as kriging. 

Kriging is least square regression method and was named after the pioneering work of 
Danie Krige (1951). It calculates the mean of the estimates at the unsampled location 
based on a linear estimator form (2.18).  

 ( ) ( ) ( ) ( )*

1

n

i i i
i

z m z mλ
=

− = −⎡ ⎤⎣ ⎦∑u u u u   (2.18) 

The vector ܝ represents the location to estimate. This location can be anywhere in the 
domain, even at the locations of the existing data. In that case, the kriging estimate of the 
mean כݖሺܝ௜ሻ results in the exact value of the existing data at location ܝ௜,. It is a property 
that makes kriging an exact estimator. The local means ݉ሺܝሻ and ݉ሺܝ௜ሻ are the 
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expectations of the RVs of the RF at the estimation and existing sample locations 
respectively. Recall that under assumption of stationarity all the local means are constant, 
that is  ݉ሺܝሻ ൌ ݉ሺܝ௜ሻ ൌ ݉. The indices ݅ represent the order of the existing data, 
݅ א ሼ1, … , ݊ሽ, for the ݊ existing sampled values ݖሺܝ௜ሻ. The ߣ௜ሺܝሻ variable acts as weights 
for each of the existing data. They define the influence of each sample ݖሺܝ௜ሻ based on the 
spatial law of the RF with respect to location ܝ. The ߣ௜ weights are the ones calculated 
using the kriging approach. 

In the kriging approach for simplicity the estimates are based on its residuals, it is, 
ሻܝሺݕ ൌ ሻܝሺݖ െ ݉. Then expression (2.18) is rewritten as (2.19). 

 ( ) ( )*

1

n

i i
i

y yλ
=

=∑u u   (2.19) 

The ߣ௜ weights are calculated by minimizing the variance of the errors in estimation 
under a condition of unbiasedness (2.20). The variance of the errors in estimation or error 
variance is defined as the variance of the difference between the residual of the true value 
at location ܝ and its respective estimate (2.21). Because the true values ݕሺܝሻ are 
unknown the optimization problem is solved in terms of expectation. 

 ( ) ( ){ }* 0E y y− =u u   (2.20) 

 ( ) ( ) ( ){ }2 *
e Var y yσ = −u u u   (2.21) 

The error variance that accounts for the condition of unbiasedness is then (2.22). 

 ( ) ( ) ( ){ }22 *
e E y yσ ⎡ ⎤= −⎣ ⎦u u u   (2.22) 

A discussion about the interpretation of error variance can be found in (Deutsch, 
2002). For calculating the ߣ௜ weights that minimize the error variance and account for the 
unbiasedness condition the partial derivatives of  (2.22) are calculated with respect to the 
  .௜ weightsߣ

 
( ) ( ) ( )

2

1
0 2 , 2 , ,  1,...,

n
e

j i j i
ji

C C i n
σ

λ
λ =

⎡ ⎤∂ ⎣ ⎦ = = − =
∂ ∑

u
u u u u  

 ( ) ( )
1

, , ,  1,...,
n

j i j i
j

C C i nλ
=

= =∑ u u u u   (2.23) 

Notice that in expression (2.23) there are ݊ variables and ݊ equations. For 
implementation (2.23) can be expressed in matrix form (2.24). 
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( ) ( )

( ) ( )

( )

( )

1 2 1 1 1

1

, , ,

, , ,

n

n n n n n

C C C

C C C

λ

λ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

u u u u u u

u u u u u u
 

 11 10C Cλ =   (2.24) 

In expression (2.24) ܥଵଵ is the covariance matrix between the existing data, ߣ is the 
vector of simple kriging weights and ܥଵ଴ the vector of covariances of the existing data 
and the location to estimate. The ߣ௜ elements are then used in the linear estimator 
expression (2.19) to calculate the estimated mean of the RV at location ܝ. The variance of 
the RV at location ܝ or the local kriging error variance (2.25) is calculated by 
replacing (2.23) in (2.22). 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

1 1 1

expression (2.23)

1 1

, 2 , 0

, 2 , 0

n n n

e i j i j i i
i j i

n n

i i i i
i i

C C C

C C C

σ λ λ λ

λ λ

= = =

= =

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦

= − +⎡ ⎤⎣ ⎦

∑ ∑ ∑

∑ ∑

u u u u u

u u u u

 

 ( ) ( ) ( )2

1
0 ,

n

e i i
i

C Cσ λ
=

= −∑u u u   (2.25) 

Estimating at the locations of the domain using the kriging approach gives two 
parameters of the distributions of the realizations; they are the mean (2.19) and 
variance (2.25) at location ܝ. The kriging approach presented is also known as simple 
kriging (SK). There are other variants of kriging such as: ordinary kriging (OK), 
universal kriging (UK), kriging with an external drift (KED), etc. However, they are 
beyond the scope of this thesis because only the simple kriging approach is used in 
sequential Gaussian simulation (SGS). Interestingly, OK approach is widely used in 
mining industry because it is not necessary to know the value of the mean of the RVs, 
OK can be found in many commercial packages used in the mining industry. One 
important difference between SK and OK is the minimization of the error variance. OK 
does not give global minimal solution to the error variance. OK is used only for getting 
estimated models as well as the other kriging variants. The other kriging approaches or 
kriging flavours can be found in classic geostatistical literature such as Journel & 
Huijbregts, (1978), Goovaerts, (1997), Deutsch and Journel, (1998), Chilés & Delfiner, 
(1999), Deutsch, (2002), among others. 

2.4. Simulation 
Models of estimates give two uncertainty parameters, estimation mean and estimation 
variance for each location ܝ in the domain. However, when proposing a mine plan, 
uncertainty information about alternative scenarios can be of special importance. For 
instance, for medium and short term mine planning processes where the time period to 
make decisions about production is very limited, analyzing different case scenarios is 
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much more informative than analyzing only estimates. In simulation, realizations of the 
SRF that honour the existing data at their respective locations are produced. 

Drawing one realization from a SRF is equivalent to sampling from the joint 
multivariate distribution of ܰ RVs variables. Such a large joint distribution can be 
decomposed into small pieces by using the Bayes’ theorem recursively (2.26) 
(Leuangthong, 2009). 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 1

1 1 1 1 2 1 2

1 1 1 1 2 2 1 1

,..., ,..., ,...,

,..., ,..., ,...,

,..., ,...,

N N N N

N N N N N

N N N N

P A A P A A A P A A

P A A A P A A A P A A

P A A A P A A A P A A P A

− −

− − − −

− − −

= ⋅

= ⋅ ⋅

= ⋅ ⋅

  (2.26) 

After decomposing the ܰ multivariate joint distribution it is possible to proceed to 
sample sequentially, that is: 

• Draw one sample ܣଵ from the marginal distribution of ܲሺܣଵሻ, then 
• Draw one sample ܣଶ from the conditional distribution ܲሺܣଶ|ܣଵ ൌ ܽଵሻ, then 
• Draw one sample ܣଷ from the conditional distribution ܲሺܣଷ|ܣଵ ൌ ܽଵ, ଶܣ ൌ ܽଶሻ, 

then 
 ڮ •
• Draw one sample ܣଷ from the conditional distribution 

ܲሺܣே|ܣଵ ൌ ܽଵ, ଶܣ ൌ ܽଶ, … , ேିଵܣ ൌ ܽேିଵሻ 

For implementation, under assumption of multi-gaussianity of the RF the conditional 
distributions can be estimated using the SK approach and Monte Carlo simulation. In 
fact, the multi-gaussian assumption is of special importance because all the conditional 
distributions are Gaussian and can be fully parameterized by the SK mean and SK 
variance. 

Notice that as sampling proceeds, the number of data samples for estimating the 
conditional distribution parameters increases. The SK system becomes more cumbersome 
to solve in practice because it requires the inversion of larger and larger matrices. To 
overcome this problem, search radius, search strategies, limits in the number of 
conditioning samples, etc. are implemented at the cost of compromising other features 
such as the semivariogram model reproduction, fair reproduction of conditional means 
and variances, etc. It is of special importance to properly set up the sequential simulation 
algorithm in order to balance cost in time and benefit in quality of the results. One of the 
most widely used software packages for simulation is SGSIM which is part of GsLib 
(Deutsch and Journel, 1998), because of the optimization in the programming code this 
program performs well for relatively large grid definitions of the domain. Implementation 
algorithms are discussed in Goovaerts, (1997), Deutsch and Journel, (1998), Zanon, 
(2007), Chilés & Delfiner, (1999) discuss a methodology for conditioning, via SK, 
unconditional realizations of a SRF. This way unconditional realizations generated by 
any technique can be conditioned by the SK estimates of mean and variance in order to 
get conditioned realizations. 

Because the attribute ݕሺܝሻ of the SRF is assumed to be a regionalized variable, each 
of the realizations is considered as one plausible representation of reality. They have to 
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reproduce the second order moments of the SRF, that is, the semivariogram and 
consequently the covariance model. In the case of a multi-gaussian RF the global 
distribution is Gaussian ~ܰሺ0,1ሻ. On average, the realizations at the location ܝ in the 
domain have to reproduce the simple kriging estimates of mean and variance.  

In the next chapter an approach for identifying non-stationary features in a domain is 
presented. Variations in the local means and in the local variances are verified and 
discussed. Other aspects such as stationarity of the increments or intrinsic hypothesis are 
covered in Chapter 4. 
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3. Detection of Mean and Variance Trends 

Equation Chapter (Next) Section 1 
In Chapter 2 the conditions of stationarity are discussed. Ideally, a domain should satisfy 
those conditions in order to model uncertainty if using conventional geostatistics. 
Unfortunately, in real cases, domains may be influenced by physical conditions that make 
difficult to assume stationarity in the domain. In this chapter the stationary conditions of 
constant local mean and constant local variance are verified from the available dataset of 
the domain. Centered variograms and non-centered variograms are calculated and 
compared in order to measure and address the consequences of assuming constant mean 
and variance trends when calculating the spatial continuity in the domain. Trends in the 
mean and/or variance are a longstanding challenge in mineral resource modeling. 
Geologic modeling and/or grade domaining are often employed to account for 
heterogeneities in mineral grades; however, this is only practical up to a certain point 
since the number of data available for reliable model construction can be severely 
reduced. In such cases, trends remain present in certain geologic/grade domains and 
directly impact the modeling methodology; the trend must either be handled explicitly or 
a suitable approach is adopted to implicitly account for it. This is highly dependent on 
understanding the source of the trend. Modeling uncertainty in such conditions, using 
conventional geostatistics leads to wrong results such as inflation of local variances and 
an incorrect definition of the corresponding semivariogram model among others. In this 
chapter it is proposed an approach to identify the source of a trend by simply 
decomposing the semivariogram and quantifying the impact of the local mean and local 
variance on the semivariogram.  This useful assessment can then be accounted for by the 
choice of modeling methodology. For instance, a trend in the local mean can be mitigated 
by removing it from the domain while a trend in the variance can be handled by re-
scaling the data. 

3.1. Sub-Domaining for Mineral Deposits Modeling 

In conventional geostatistics, the semivariogram model is used to define the spatial 
continuity of the domain. This measure is then used to infer metal or mineral grades at 
unsampled locations via kriging or simulation.  A fundamental component of this 
framework is a decision of stationarity that permits the modeler to extract relevant 
statistics about the domain using only the available sampled data.  Often, an assumption 
of a SRF, where the mean and covariance are considered constant, is sufficient for 
inference. In reality, drifts or trends in the domain are common and result in a non-
stationary domain. Spatial variations in the local mean are captured by a semivariogram 
which increases rapidly (Chilés & Delfiner, 1999). However, domains without an 
apparent drift can still be non-stationary if the local variance is not constant. This 
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condition is widely seen in practice when two domains are combined; one of them highly 
variable and the other less variable, both with almost the same local mean.  

Consider two different stationary sub-domains with different local variances and same 
local means. Estimating using conventional geostatistics within the combined domain 
would lead to wrong results in terms of conditional variances, because the stationary 
assumption of order two entails the variance of all the RVs in a SRF domain are constant, 
ሺ0ሻܥ ൌ  ଶ, (see Chapter 2). The local uncertainty would tend to be underestimated in theߪ
highly variable sub-domain and overestimated in the sub-domain with smaller variability. 
Similarly, consider two stationary sub-domains with constant global variance and 
different local means, ݉ଵሺܝሻ ൏ 0 and ݉ଶሺܝሻ ൐ 0, and a combined global mean, 
݉ሺܝሻ ൌ 0. For the two sub-domains the estimated local means will tend to the global 
mean ݉ሺܝሻ ൌ ݉, that is, the local means for the first sub-domain are overestimated and 
underestimated for the second sub-domain. Further, in a scenario where both the local 
means and local variances of the RVs are a function of its position vector, the 
consequences of modeling uncertainty using conventional geostatistics are much more 
unrealistic.  

In practice sub-domaining is carried out without taking into account geologic 
information which in some cases is so general that it prohibits making any further 
separation, e.g. exoskarn, when metal grade variability varies for the different types of 
skarn such as magnetite or garnet among others. That makes some of the resulting 
domains unsuitable for modeling using conventional geostatistics. Even when the 
resulting domain is assumed stationary, the estimated uncertainty parameters are 
inadequate for short and medium term mine planning which require a more accurate 
prediction or estimation of local uncertainty parameters. 

One common natural process that is difficult to model under stationary assumptions is 
the soft transition of rock types, e.g. mineralized and non-mineralized. The transitions can 
be hard or soft. A soft transition can be seen as a gradual change in the local mean and/or 
in the local variance of a RF. On the other hand, a hard transition is an abrupt change 
usually present when the two sub-domains are independent of each other. A sketch of 
some possible transitions in a domain that is assumed to be multi-Gaussian is shown in 
Figure 3-1.  In case (1), the different rock types share the same local means and 
variances, that makes the resulting domain be suitable to be modeled using conventional 
geostatistics. In case (2), it is shown a case of soft transition between rock types (a) to (c) 
through (b). Notice that in this case the local mean is constant. In some cases this case is 
not considered as stationary, only variability in the local means is considered as a unique 
condition for non-stationarity. In case (3) the local means and variances are assumed as 
variable with an abrupt change in them. Geologically this case occurs when the two rock 
types that are assumed to be part of the domain are of independent geologic events e.g. 
thin post-mineral dikes that cross a mineralized rock type. And case (4) soft transitions of 
local means and local variances. Case (1) is the only one that can be considered as 
appropriate enough to be assumed as multi-Gaussian, however, it is the most uncommon 
in practice. The rest of the cases are simplistic approximations of reality but fairly 
practical for modeling after re-scaling local mean and variances. Some approaches were 
presented for dealing with soft boundaries (McLennan, 2007), whereas, for the hard 
boundary case there is no other solution than sub-domaining because the two sub-
domains involved are independent.  
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Figure 3-1: schematic 1D Gaussian environments: (1) constant local mean and local 
variance; (2) two regions of constant local mean but different local variance with a 
transition zone; (3) two different sub-regions of constant local mean and local variance; 
(4) two different regions of constant local mean and local variance with a transition zone, 
the dashed lines represent some confidence limits of a normal distribution. 

3.2. Semivariogram in Non-Stationary Environments 

The variogram is a second order moment that measures the variability between two 
locations separated by a vector ܐ. It is expressed as the variance of the increment of two 
random variables (RV) at locations ܝ and ܝ ൅  .(see Chapter 2) (3.1) ,ܐ

 

 ( ) ( ) ( ){ }2 , Var Z Zγ + = − +⎡ ⎤⎣ ⎦u u h u u h    (3.1) 

Experimentally, this is calculated by assuming the variogram of the RF is stationary 
(see Chapter 2). For this, the calculation is based on the data pairs, ݖሺܝ௜ሻ െ ௜ܝሺݖ ൅  ,ሻܐ
found at the two extremes of each particular separation vector, ܐ௝ (3.2). This is often 
referred to as the method-of-moments approach (Matheron, 1962). However, in practice 
it is very difficult to find a dataset where data points are separated exactly by ܐ. For 
solving this problem, angular and distance tolerances are used for approximating the 
experimental semivariogram (Deutsch and Journel, 1998), (Deutsch, 2002). The 
tolerances define a ݊-dimensional region for each ܐ௝ for a domain in Թ௡ in order to 
capture a representative amount of experimental variogram pairs 0.5ሾݖሺܝ௜ሻ െ zሺܝ௜ ൅  ሻሿଶܐ
from a cloud semivariogram. 
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semivariogram over covariance is because the former does not require the previous 
knowledge of the mean of the RVs (Deutsch and Journel, 1998). In the case of an 
intrinsic random function (IRF), a linear drift is characteristic of it with second order 
stationary increments (Chilés & Delfiner, 1999). In this case two types of variograms can 
be obtained, the non-centered (3.3) and the centered (3.4) variograms (Gneiting, Sasvári, 
& Schlater, 2001). Notice in the absence of a drift, both the centered and non-centered 
variograms are equal.

 

 ( ) ( ) ( ){ }2
2 NC E Z Zγ = − +⎡ ⎤⎣ ⎦h u u h   (3.3) 
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3.3. Impact of non-stationarity in experimental semivariogram 
calculation 

During the calculation of the experimental semivariogram the available dataset is split in 
two parts. The first part corresponds to the sub-dataset at the head of the separation vector 
and the second at the tail of the separation vector. When the separation distance is zero, 
both sub-groups consist of all the conditioning data. Since real data are non-exhaustive, 
an increase in the separation vector is usually accompanied by a reduction in data pairs to 
reliably calculate the semivariogram. Ideally, under a decision of second order 
stationarity, the two sub-datasets at location ܝ and  ܝ ൅  are expected to have the same ܐ
experimental mean (݉ܝ ൎ ܝߪ) and variance (ܐାܝ݉

ଶ ൎ ܐାܝߪ
ଶ ). Both the means and 

variances of the two sub-groups are calculated without using any declustering weights. 
The influences of the means and variances of the two sub-groups at the two extremes 

of the separation vector ܐ can be obtained by expanding expression (3.2). Notice the 
experimental semivariogram is used instead of the experimental variogram; this is 
consistent with industry practice. 
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Under stationarity, we know that  ߛሺܐሻ ൌ ሺ0ሻܥ െ  ሻ; a comparison of this to (3.5)ܐሺܥ
shows that in presence of a drift the global variance of the domain, assuming the 
available dataset is fully representative of the domain, is modified to  0.5൫ܝߪ

ଶ ൅ ܐିܝߪ
ଶ ൯ ൅

0.5ሺ݉ܝ െ  ሻଶ. If the mean is stationary, then the variance of the domain is expressedܐାܝ݉
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as the average of the respective variances of the two sub-groups, that is, 0.5൫ܝߪ
ଶ ൅ ܐିܝߪ

ଶ ൯. 
Notice that the half squared difference of the means of the sub-groups, 0.5ሺ݉ܝ െ
 ሻଶ, makes the variance of the dataset larger in presence of a trend in the mean. If theܐାܝ݉
discrete form of the centered semivariogram (3.4) is used instead of the stationary non-
centered (3.3) this component is canceled out in (3.5). (Gneiting, Sasvári, & Schlater, 
2001) showed that the influence of a trend in the mean in a quadratic form can be filtered 
using the centered semivariogram. 

 ( ) ( ) ( )NC CQγ γ= +h h h   (3.6) 

where, ܳሺܐሻ ൌ ∑ ܽ௜݄௜
ଶௗ

௜ୀଵ ܐ , ൌ ሾ݄ଵ, … , ݄ௗሿT א Թௗ and ܽ௜ ൒ 0 for ݅ ൌ 1, … , ݀. 
From expression (3.5) the semivariogram can be re-written as a function of the 

differences of the standard deviations and difference of the means of the sub-groups at 
locations ܝ and ܝ ൅ ܝߪThe global variance 0.5൫ .(3.7)  ܐ

ଶ ൅ ܐିܝߪ
ଶ ൯ is now expressed 

as 0.5ሺܝߪ െ  As discussed previously, the only increment to the variance .ܐାܝߪܝߪሻଶ൅ܐାܝߪ
comes from the mean trend component; therefore, the trend in the variance cannot make 
the experimental semivariogram be greater than the sill.  

 ( ) [ ] [ ] ( )2 21 1ˆ
2 2

m m Cγ σ σ σ σ+ + += − + − + −u u h u u h u u hh h   (3.7) 

Assuming multi-gaussianity, expression (3.7) can be re-written so that the correlation 
coefficient is introduced to the experimental semivariogram expression (3.8). 

 ( ) [ ] [ ] ( )( )2 21 1ˆ 1
2 2

m mγ σ σ σ σ ρ+ + += − + − + −u u h u u h u u hh h   (3.8) 

From expression (3.7) the experimental semivariogram can be separated into four 
components: (a) Half of the squared difference of the standard deviations of the two sub-
groups, 0.5ሾܝߪ െ -ሿଶ; (b) half of the squared difference of the means of the two subܐାܝߪ
groups, 0.5ሾ݉ܝ െ -ሿଶ; (c) the product of the two standard deviations of the two subܐାܝ݉
groups, ܝߪܝߪାܐ; and (d) the covariance between the two sub-groups, ܥሺܐሻ. Notice when 
the means and variances of the two sub-groups are similar (i.e. ܝߪ ൎ ܐାܝߪ ൎ ܝ݉ and ߪ ൎ
ܐାܝ݉ ൎ ݉), the experimental semivariogram expression (3.7) relies only on components 
(c) and (d) which is close to the stationary form of the semivariogram. 

Under stationary conditions for all the h-scatter plots of the available dataset, the 
means and variances of the marginal distributions are expected to be very similar. 
Systematic differences in them as a function of the separation vector would imply a 
presence of mean or variance trends in the domain which is captured by the sampled data 
and from it by the experimental semivariogram (3.7). 

The experimental semivariogram is above the variance of the dataset or sill when the 
correlation between two RV of a SRF is negative (Gringarten & Deutsch, 2001), 
(Deutsch, 2002). However, from expression (3.7), we can directly quantify the 
contributions of the trends in the mean of the two sub-groups separated by ܐ to the 
centered experimental semivariogram as well as to capture trends in the variance. Recall 
that the centered semivariogram is able to filter the effects of mean trends based on 
differences at   ܐ. These mean trend contribution can make the experimental 
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semivariogram be larger than the sill, while still obtaining a positive correlation between 
the two sub-groups. Expression (3.7) deals with non-stationary RFs which local means 
and variances exist and vary as a function of the position of their RVs, therefore, the 
comparison of the semivariograms under the stationary framework is not fair. However, 
the proposed non-stationary analysis is much more informative in the sense that more 
information about the nature of the domain can be obtained from the available dataset. 

3.4. Case Studies 
Three case studies are presented to show the practical applications of the proposed 
approach. The first case is a synthetic controlled 1D example and the second and third 
cases are real data applications with mean and variance trends. The first case study 
presents each trend case isolated from other trend cases. The impact of the presented 
trends in the experimental semivariogram can be seen in a more practical scenario 
through the interpretation in the shape of the experimental semivariograms and their 
respective h-scatter plots.  
 
Case Study 1 

Consider a 1D unconditionally simulated dataset of 1000 regularly spaced data points, 
separated by 1 unit of distance (uod). A spherical semivariogram model of 25 uod is 
considered (3.9). Three different trend cases are added to this initial dataset (see Figure 
3-2): 

 ( ) ( )25Sphγ =h h   (3.9) 

1. A linear trend in the form ݕ ൌ ݔܽ ൅ ܾ with a negative slope ܽ along the entire 
domain. This case accounts for a large variability in the local means. 

2. A symmetrically concave-shaped trend case. This mean trend is presented in 
order to show the weakness of this approach for accounting for this type of 
symmetric trends. The limitation of a two point statistics arise as problems for 
dealing with particular structures.  

3. No trends in the mean component, but the variances of the two halves of the 
domain are re-scaled. The trend in the local variances is usually assumed as not 
present in a semivariogram analysis. 

The experimental semivariograms are calculated using expression (3.7). The 
semivariogram plots for each case are calculated within a range of one half the size of the 
domain and the contributions of each component of the experimental semivariogram are 
color coded for visualization (see Figure 3-3).  
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Figure 3-2: Initial dataset (top left) influenced by linear trend (top right), parabolic trend 
(bottom left) and local variability in variances (bottom right). 

 
Figure 3-3: experimental variograms for initial dataset (unconditional simulated 
realization) (top left) and influenced by linear trend (top right), parabolic trend (bottom 



23 

 

left) and locally variable variance (bottom right); in the four plots the blue region 
represents the variation of the mean trend component, the red region the variation of the 
variance trend component and the green region the stationary component of the 
experimental semivariogram. 

In the first case (see Figure 3-3 top left) there is no mean or variance trend and the 
experimental semivariogram reaches the variance of the domain and is relatively constant 
with some ergodic fluctuations beyond the semivariogram range. The green region 
represents the stationary part of the experimental semivariogram, ܝߪܝߪାܐ െ ሻ, in (3.7)ܐሺܥ
. This is considered as the ideal case of a stationary domain. At each lag separation ܐ the 
h-scatter plots the cloud of data pairs are centered along the 45 degree bisector, this 
implies the local means of the sub-datasets at ܝ and ܝ ൅  are similar, as well as the local ܐ
variances (see Figure 3-4). Some small fluctuations in the correlation coefficients can be 
seen due to the ergodic fluctuations. 

 

 
Figure 3-4: h-scatter plots for no mean trend case for lag distances 5 uod (left) and 10 
uod (right) 

In the second case (see Figure 3-3 top right) the linear mean trend makes the 
experimental semivariogram increase and at a certain point makes it larger than the 
variance of the domain. Notice the stationary part remains invariant (green region) and is 
the mean trend (blue region) the only source of the increment in the experimental 
semivariogram. When the centered semivariogram is calculated the mean trend 
contribution is cancelled and only the stationary region remains. The differences in the 
local means make the data pairs in the h-scatter plots are not centered and they are more 
distant from the 45 degree bisector as the lag distance increases. The experimental 
semivariogram can be larger than the variance of the domain while the correlation 
coefficient of the h-scatter plot is still positive (see Figure 3-5), however, this is no longer 
a measure of spatial continuity of a SRF environment. 
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Figure 3-5: h-scatter plots for linear mean trend case for lag distances 250 uod (left) and 
500 uod (right) 
 

The third trend scenario (see Figure 3-3 bottom left) results in a very particular case 
where the contribution of the mean trend component cannot be seen in the experimental 
plots. Recall that, the mean trend component is captured when differences in the means of 
the sub-groups appear as the separation distance increases. For this case, this component 
in the experimental semivariogram is cancelled, ݉ܝ െ ܝ݉ ,therefore ,ܐାܝ݉ െ ܐାܝ݉ ൌ 0, 
and the trend curve is considered as part of random fluctuation. With this type of trend 
the semivariograms above the sill have negative correlation coefficients as expected for a 
SRF (see Figure 3-6). 

 

 
Figure 3-6: h-scatter plots for the parabolic shaped trend case for lag distances 10 uod 
(left) and 400 uod (right). 
 

In the fourth case the experimental semivariogram does not show any tendency to 
grow above the sill. This is because the trend in the variance does not contribute to the 
semivariogram (see Figure 3-3 bottom right). In the h-scatter plots this type of trend is 
present as the difference in the variances of the two sub-groups at the two extremes of the 
separation vector ܐ (see Figure 3-7). Notice the differences in the variances of the two 
sub-datasets shrink the cloud of data pairs in the horizontal direction because the sub-
group at ܝ is the one with smaller local variance (see Figure 3-3 bottom right). If the 
trend variance goes in the opposite direction, the cloud of data pairs will tend to shrink in 
the opposite direction. 
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Figure 3-7: h-scatter plots for the parabolic variance trend case for lag distances 10 uod 
(left) and 500 uod (right) 

 

Case Study 2 

The second case consists of a topographic surface where elevations have been 
transformed to normal score units (see Figure 3-8). In the map, a trend in the mean can be 
observed in the north direction; there is a low level region in the south west part of the 
map, thus elevation increases from south to north. 
 

  
Figure 3-8: Elevations of a topographic map in original units (left) and normal score 
scale (right) 

Two experimental semivariograms are calculated both in the north and west direction 
(see Figure 3-9). The mean trend in the north direction makes the experimental 
semivariogram increase above the sill (see Figure 3-9 left) and the increment in the global 
variance because of the mean trend makes the experimental semivariogram in the west 
direction not to reach the sill (see Figure 3-9 right). As a consequence, an apparent zonal 
anisotropy scenario is presented. 
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Figure 3-9: Experimental semivariograms for north-south direction (left) and east-west 
direction (right) 

Decomposing the experimental semivariograms in terms of its trend components the 
mean trend is presented as a blue region in both directions (see Figure 3-10). Also a small 
variance trend is present in the north direction as a red region, however, this can be 
considered as negligible because when compared to the mean trend is very small. 

 

 
Figure 3-10: Decomposed experimental semivariogram from topography samples in 
normal score units for north-south (left) and east-west (right) directions 

The presence of a mean trend in the topographic map makes it an unsuitable 
environment for doing conventional geostatistics. If the topographic map is assumed as 
stationary no reliable semivariogram model can be obtained from fitting the experimental 
semivariogram. Notice that any fitting of the two experimental semivariograms will result 
on a semivariogram model with zonal anisotropy while the stationary green region 
suggest that such anisotropy is not present in the topographic map after removing the 
trend. 

 
Case Study 3 

The second case study considers real data from an east Texas reservoir data set consisting 
of 62 vertical wells (see Figure 3-11) with 53 samples per well on average (minimum 35 
and maximum 66 samples). There are a total of 3303 available data points in the dataset. 
In the vertical direction the separation distance between the samples is one unit of 
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distance.  Only the vertical direction is considered here as sparsity of wells makes the 
horizontal direction a poor candidate for reliable variogram inference. 

 

 
Figure 3-11: View of 62 Wells an East Texas reservoir 

A vertical semivariogram plot of porosity, in normal score units, is calculated (see 
Figure 3-12). The lag interval used is one unit of distance. Traditionally it could be 
inferred that there is a presence of a mean trend because the experimental semivariogram 
plot goes above the sill of one beyond 40 distance units. However, the proposed approach 
reveals that a trend in the mean and variance contribute to the experimental 
semivariogram. 

 

 
Figure 3-12: Experimental semivariogram (left) and with trend components (right) of 
vertical direction for porosity in normal score units 

3.5. Discussion 
It is important to keep in mind the semivariogram is a two point statistic and as such it is 
limited for capturing complex trend features in the IRF. As a consequence, for 
determining the influence of the local mean and/or variance on the semivariogram it 
requires representative sampling of the field. Therefore, in presence of large unsampled 
regions in the domain or blank spots, this approach would lead to a poor interpretation of 
the results.  

Non-stationary features such as mean and variance trends of the dataset can be 
captured by analyzing the experimental semivariogram. Differences in the local means 
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and local variances are identified by comparing the means and variances of the sub-
groups of datasets at the two extremes of the separation vector. 

The proposed approach for calculating experimental semivariograms can be used to 
verify the influence of the mean and variance trends in the domain. Decisions of 
accepting or rejecting a certain domain prior to geostatistical modeling can be made by 
using the proposed tool. 

So far the conditions of constant mean and constant variance of the RF have been 
addressed. In the next two chapters the so-called “weaker assumption” or intrinsic 
hypothesis is discussed. This condition is also verified in the dataset for the necessary 
stationary conditions for using conventional geostatistics when modeling a domain. 
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4. Experimental Semivariogram Cleaning 

Equation Chapter (Next) Section 1 
A semivariogram is used to characterize the spatial continuity of a variable of interest. In 
mining, this variable is assumed to be a realization of a SRF, since there is only one value 
for each sampled location (e.g. metal grade, contaminant concentration, oxidation ratio). 
In other applications, such as hydrology, many measurements can be taken from the same 
monitoring location. In order to transfer the spatial continuity information into a 
geostatistical model, the experimental semivariogram is fitted by a licit semivariogram 
model (see Chapter 2). However, semivariogram modeling is a subjective task; even 
when semi-automatic fitting algorithms are used there is still a certain degree of 
subjectivity. The true semivariogram of a SRF is modeled by comparing and combining a 
set of available licit semivariogram models. While this technique does not guarantee an 
exact representation of the semivariogram, it provides a good approximation. Section 4.1 
discusses fitting an experimental semivariogram under stationary assumptions. 

The stationary assumption is less valid where there is a dense sampling pattern over 
the domain. If the variable of interest is known at all the locations of the domain, the 
influence of the geologic structures is determinable. However, geologic processes are 
non-stationary. Therefore, even when the local means and variances are considered 
constant along the domain, the intrinsic stationary assumption becomes less valid. This is 
sufficient to make the domain non-stationary. 

The semivariogram model does not, therefore, characterize the spatial continuity of a 
non-stationary domain in the same way as a stationary domain. The spatial continuity of 
the domain represented in the semivariogram model, which should be characteristic at all 
the locations, is now an averaged representation of it. Therefore, the spatial variability 
characterized by the semivariogram model is misrepresented locally. It is underestimated 
in some regions and overestimated in others. 

Section 4.2 discusses the use of moment-of-inertia to calculate experimental 
semivariograms. The ideal conditions and characteristics of real data for SGS are 
discussed in Section 4.3. Section 4.4 describes the impact of non-stationary environments 
on the semivariogram and explains how to employ a semivariogram model under such 
conditions. Section 4.5 outlines an iterative approach for dealing with patterns in a 
domain. It involves removing the influence of outlier data pairs and recalculating the 
semivariogram model until it describes the spatial continuity of the majority of the 
dataset. A case study is provided in Section 4.6. 

4.1. Fitting Experimental Semivariograms 
This section describes the impact of experimental semivariograms on 
estimation/simulation. In order to avoid any external non-stationary influence, a 
stationary environment is assumed. 
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The conventional process of semivariogram modeling consists of fitting an 
experimental semivariogram using licit semivariogram models (see Chapter 2). In a 
stationary environment, the available dataset is assumed to be a realization of a SRF. 
Based on this assumption, the experimental semivariogram calculated from one 
realization is a fair representation of the spatial continuity of the SRF. The use of a set of 
licit models makes the semivariogram model an approximation and not necessarily an 
exact representation of the spatial continuity of the SRF. It is exact when the true 
semivariogram of the SRF is the same as the model used for fitting. Alternatively, it is 
still an approximation when the true semivariogram is not present as any combination of 
the set of licit models used for fitting (see Figure 4-8). 

Even under optimal stationary conditions, the process of semivariogram modeling is 
subjective and dependent on the user's experience and knowledge. To limit the resultant 
variability in outcome, several semi-automatic algorithms have been developed for use 
during the modeling process (Larrondo & Neufeld, 2003), (Sinclair & Blackwell, 2004). 
Even then, the way a user inputs parameters may have a discernable effect on the 
outcome. Because of this inherent subjectivity, the resulting semivariogram model may 
be classified as follows (see Figure 4-1): 

• Pessimistic: when the model is above the experimental semivariogram. As a 
result, the ensuing conditional variances at the estimated locations are larger than 
expected. The uncertainty assessed in the estimated domain is inflated; therefore, 
simulated maps are much more variable. 

• Fair: when the model closely follows the experimental semivariogram. The 
estimated conditional variances at unsampled locations are a good approximation 
of the theoretical variances of the corresponding SRF. 

• Optimistic: when the model is below the experimental semivariogram. In this 
case, the spatial continuity is exaggerated; data locations that should not have a 
significant influence are forced to contribute information. The conditional 
variances are smaller than they should be and the uncertainty associated with the 
model is underestimated. 

 
Figure 4-1: Experimental semivariogram (black dots), and three possible cases of 
semivariogram modeling (black dots) 

With a simple configuration of experimental semivariogram points, the 
semivariogram model should be easy to fit. However, the experimental semivariogram 
could describe structures that would be difficult to fit using a common set of 
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semivariogram models (see Figure 4-8). In such a situation, the semivariogram modeling 
is used to fit a representative portion rather than the whole experimental semivariogram. 
By doing this, various regions of the experimental semivariogram become: optimistic, 
pessimistic and fair. The semivariogram model is expected to be globally representative. 
Since the simulated maps tend to reproduce the semivariogram models, such features of 
the modeling process are transferred to the simulated model. 

4.2. Aspects on the Moment-of-Inertia Experimental 
Semivariogram Calculation 

The experimental semivariogram points can be represented as h-scattergrams. In the h-
scattergram the data values at the two extremes of the separation vector are presented in 
the form of a scatterplot. The experimental semivariogram can be interpreted as the 
moment of inertia of the h-scattergram about its first bisector. The moment of inertia is 
the average of the squared orthogonal distances (4.1) of the data pairs to the first 
bisector (4.2) (Goovaerts, 1997). Under the assumption of multi-gaussianity, the bivariate 
distribution of the data pairs of any h-scattergram is bivariate normal. A multi-gaussian 
RF is assumed for conventional implementation of SGS. 

During the exploratory data analysis stage, the h-scattergrams can be used to verify 
particular features that could correspond to sub-populations. The decision to separate 
them into small domains is based on the availability of sample points that support such a 
decision (Goovaerts, 1997). According to (Genton, 1998) this practice is informal and 
cannot supersede a robust estimation technique of the experimental semivariogram. 
However, from an engineering perspective, identifying patterns in the dataset improves 
the knowledge of the natural phenomena under study. The semivariogram is a tool that 
works well under stationary conditions but not as satisfactorily in real-case scenarios. 
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4.3. Real versus Ideal Environments 

In conventional practice of SGS, the attribute of interest is transformed from original 
units to normal score units and assumed to be multi-gaussian. This transformation is 
referred to as a normal score transformation and, by construction, will transform any 
distribution to a univariate standard normal distribution (Deutsch and Journel, 1998). In 
practice, it is not a requirement for a dataset that is assumed to be sampled from a multi-
gaussian process to follow exactly a univariate normal distribution. 

Mineral deposits are the result of the interaction of many different previous geologic 
events over time. The dataset collected from it captures such geologic features, based on 
processes that obey physical and chemical laws. Ideally, the variable of interest should be 
modeled in such a manner that accounts for these laws, which in many cases are 
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extremely complex to define. The normal score transformation of a dataset sampled from 
a mineral deposit preserves the geologic features captured by the original scale data 
values (see Figure 4-2). The geologic structures are represented in the datasets as patterns 
that are analyzed and interpreted by earth scientists. This condition makes the assumption 
of multi-gaussianity of the domain inappropriate in the presence of dense sampling over 
the domain. 

 

 
Figure 4-2: Ddh-81sample values for 162 regularly spaced locations in original units 
(left) and normal score scale (right), two patterns are highlighted in the dataset that are 
present both in original and normal score scale units. 

Conventional geostatistics uses linear estimation to infer a value for variable of 
interest at an unsampled location based on the same variable or secondary variables. One 
necessary condition is the assumption of stationarity of the domain. Geologic features 
cannot be represented by a SRF. Discrepancies in the use of such models arise when 
estimated/simulated maps are compared against real information, such as geologic 
mapping of mined faces and mined production. Two sets of 162 data values from an 
unconditional realization are shown in Figure 4-3. When comparing these two datasets 
with the normal score values of the real case (Figure 4-2 right) it can be seen the local 
geologic patterns cannot be reproduced. The unconditional realization was simulated 
using a semivariogram model fitted of the real dataset. 

 

 
Figure 4-3: Two sub-datasets of 162 data points from an unconditional realization of 
1000 data points 
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In a non-stationary environment (assuming the local mean and local variance are 
constant), the semivariogram is very sensitive to the structural geologic patterns. If a 
small portion of the domain presents a different variability than the rest of the domain the 
semivariogram captures it as a summary of all the structures (Journel & Huijbregts, 
1978). Because of the stationary assumption, the information of spatial continuity is 
generalized to the entire domain. 

An exercise is presented that mimics the interaction between two geologic processes 
in a domain. This is present not because domaining was poorly performed, but spatial 
structures are inherent to natural processes. Consider one dataset that is the combination 
of two unconditional realizations, A (80%) and B (20%) with different semivariograms 
(see Figure 4-4). The semivariogram model of dataset A is ߛ஺ሺܐሻ ൌ  ሻ and ofܐଷ଴ሺ݌ݔܧ
dataset B is  ߛ஻ሺܐሻ ൌ 0.4 ൅ -ሻ. The resulting combined dataset is nonܐଵହሺ݌ݔܧ0.6
stationary, despite the local mean and local variance are constant. The absence of the 
intrinsic hypothesis condition is what makes the dataset non-stationary. As a 
consequence, the experimental semivariogram is no longer representative of the dataset. 
Some features of the small region are transferred to the entire domain. The nugget effect 
of the small sub-dataset B is scaled and assumed present in the entire dataset. A better 
description of the spatial continuity could be obtained by: (1) separating the domain into 
two parts, that is, the sub-dataset A and B, (2) calculating and fitting an experimental 
semivariogram that accounts for the majority of the domain and correct the conditional 
distributions of the rest of the domain accordingly. The next section proposes an 
approach to identify minor structures that affect the experimental semivariogram. The 
cost of working directly in a SRF environment is the generalization of the spatial 
variability, thereby making it difficult to reproduce local features. 

 

 
Figure 4-4: Experimental semivariogram of a unconditional realization using an 
exponential semivariogram model with range 30 uod and C0=0 (top left), with range 15 
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uod and C0=0.4 (top right), combined dataset of 80% of dataset A and 20% of dataset B 
(bottom left), and its experimental semivariogram (bottom right) 

4.4. Experimental Semivariogram Outlier Data Pairs 
Outliers are unusual observations that do not appear to belong to a nearby pattern of 
variability. However, not all the outlier values are wrong numbers; they can be 
considered as information that could lead to a better understanding of the phenomena 
being studied (Johnson & Wichern, 2007). The experimental semivariogram of a non-
stationary domain presents anomalies when compared to the analytical distributions in a 
multi-gaussian environment. Such anomalies or outliers can be used to identify patterns 
in the domain that affect the non-stationary features of the experimental semivariogram. 

This approach aims to identify outliers in the experimental semivariogram by defining 
outlier limits based on the proposed semivariogram model and a probability interval. The 
outliers are considered to belong to another type of spatial behaviour that affects the 
experimental semivariogram of the majority of the domain. Once identified, the decision 
to model them separately or to correct their variability can be made. Two approaches for 
identifying outliers are discussed in this section. 

4.4.1. Control Limit Ellipses 

In a multivariate gaussian framework, control limits are used to verify the stability of 
processes and identify occurrences of special cases of variation that are unlikely part of 
the process. They make the special variations visible and allow distinguishing them from 
the common ones in the process (Johnson & Wichern, 2007). Because of dimensionality, 
control limits are used in the form of charts for multivariate datasets. However, in a two 
dimensional case a control limit ellipse can be used. The control limit ellipse is defined as 
a contour of constant density of the bivariate standard normal distribution for a given 
confidence control value. It can be expressed using the generalized form of the ellipsoid 
of constant density of p-dimensions (4.3) (Johnson & Wichern, 2007). 
 

 ( ) ( ) ( )1 2T
pχ α−− − =x μ C x μ   (4.3) 

 
where ܠ is a vector of observations on different variables, ૄ is the vector of means 

of ۱ ,ܠ is the covariance matrix, ݌ is the number of dimensions or elements in ܠ, and 
χ௣

ଶሺߙሻ is the upper ሺ100ߙሻ-th percentile of a chi-square distribution with ݌ degrees of 
freedom. Expression (4.3) gives the contour for the multivariate case that represents ሺ1 െ
 .ሻ100% of the probabilityߙ

The experimental semivariogram is analyzed on an h-scattergram basis. Analytically 
the distribution of data pairs on each h-scattergram is bivariate normal. Therefore, the 
control limits are set up to the two dimensional case. Making ݔଵ be the data values at 
location ܝ and ݔଶ the data values at location ܝ ൅  and for simplicity, assuming both ,ܐ
distributions are standard normal. Then the expression of the control limit ellipse is (4.4).  
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However, an analytical model is required that provides the parameters of such 
bivariate distributions. That information is supplied by the semivariogram model fitted to 
the experimental semivariogram. The control limit ellipses are used to identify outlier 
data pair(s) according to the fitted semivariogram model on an h-scattergram basis. For a 
probability of ሺ1 െ  ሻ100% , the proportion of data pairs that are expected to fall outsideߙ
each control limit ellipse of the h-scattergrams is ሺߙሻ100%. In the same way, the 
proportion of the outlier data pairs for the entire semivariogram model is also ሺߙሻ100%. 

For the case presented, the geometry of the control limit ellipse is a function of the 
correlation coefficient and the probability confidence limit. The control limit ellipse is 
rotated so that the major axis is in the direction of the first bisector of the h-scattergram. 
The length of the major and minor ratios is (4.5), (4.6) (Johnson & Wichern, 2007).  

 ( )2 2
2 1mjrt χ α ρ= +   (4.5) 

 ( )2 2
2 1mnrt χ α ρ= −   (4.6) 

Notice that for the same probability interval, the length of the major ratio is 
proportional to the correlation coefficient (see Figure 4-5). This is a problem for 
analyzing the spatial continuity, since data pairs placed close to the first bisector that are 
considered as good observations for high correlation coefficients would become outliers 
for small correlation coefficients. It is contradictory to the definition of the 
semivariogram which is a measure of dissimilarity. The smaller the correlation 
coefficient, the more tolerant the semivariogram to outlier values is expected to be. In 
Figure 4-5, consider the data pair ܲ with ݔଵ ൌ ଶݔ ൌ 2.2. Notice that the data pair ܲ lies 
within the acceptable region of three out of four control limit ellipses shown in the 
example. Even when the values of the data pair ܲ are equal some control limit ellipses 
will identify it as an outlier.  An alternative approach is required that identifies outlier 
limits based on the increments of the data pair values ݖሺܝሻ െ ܝሺݖ ൅  ሻ rather than itsܐ
position on the h-scattergram.  

 

 
Figure 4-5: Control limit ellipses for 99% of bivariate standard normal distribution for 
four different values of correlation coefficient; the data point P is placed over the first 
bisector and is evaluated in the four cases. 
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4.4.2. Confidence Limits of the Distribution of Experimental 
Semivariogram Data Pairs 

Under the assumption of multi-gaussianity the data pair increments, ݖሺܝሻ െ ܝሺݖ ൅  ,ሻܐ
follow a univariate normal distribution and the square of the increments ሾݖሺܝሻ െ
ܝሺݖ ൅ ሻχଵܐሺߛሻሿଶ a scaled chi-square distribution with one degree of freedom 2ܐ

ଶ (Cressie 
& Hawkins, 1980). The previous statement can be re-expressed as 
ሾݖሺܝሻ െ ܝሺݖ ൅ ሻሿଶܐ 2⁄ ሻχଵܐሺߛ~

ଶ or in terms of the orthogonal distance of the data pair to 
the first bisector ݀ଶሺܐሻ~ߛሺܐሻχଵ

ଶ (see Figure 4-6). Recall the mean of a chi-square 
distribution is the number of degrees of freedom, in this case 1, so the expected value of 
the orthogonal distances is the semivariogram ܧሼ݀ଶሺܐሻሽ ൌ  ሻ. Similar to the controlܐሺߛ
limit ellipses approach, extreme values of ݀ଶሺܐሻ can be discriminated using confidence 
limits. This way the increments of the data pairs are accounted for directly.  
 

 
Figure 4-6: χଵ

ଶ Distribution of the orthogonal distances from data pairs to the first 
bisector for a separation vector h. 

4.5. Experimental Semivariogram Calculation with Confidence 
Limits 

The experimental semivariogram is analyzed in the form of a cloud semivariogram using 
confidence limits. The semivariogram model defines the ideal conditions of how the 
conditioning data should be. By comparing the ideal conditions to the dataset that is 
sampled from the real domain, the patterns that are produced by the geologic features can 
be identified. 

Each data pair consists of two data values separated by a vector. Therefore, there is a 
reference value of semivariogram model. Then, each data pair can be evaluated 
independently by its corresponding outlier limit regardless of the tolerances used to 
calculate the experimental semivariogram. The outlier limit is the maximum squared 
orthogonal distance for a confidence limit (4.7), where the probability of the chi-square 
distribution ߙ defines the ሺ1 െ  :ሻ100% probability of occurrence of the data pairsߙ

 ( ) ( ) ( )2 2
1MAXd χ α γ=h h   (4.7) 
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The data pairs that are outside of the limit, that is ݀௜
ଶሺܐሻ ൐ ݀ெ஺௑

ଶ ሺܐሻ, are marked as 
outliers for the given parameters of confidence limits ߙ and semivariogram model ߛሺܐሻ. 
Even when a data pair is marked as an outlier, it does not imply that the corresponding 
head and tail values are outliers too. Particular patterns of data pairs in the cloud 
semivariogram provide evidence of the geologic structures present in the available 
dataset due to the nature of the domain. This makes it possible to assess whether 
additional sub-domaining is required or find a way to reproduce these local patterns in the 
geostatistical model.  For instance, an abrupt change in metal grades at a short distance 
could be an indicative of the presence of veins or some other type of small structures in 
the domain. In mining such structures are of special importance because they can define 
whether some regions are of economic interest or not. Therefore, they impact directly the 
economic potential of the mineral deposit.  

Once the outlier data pairs are identified, the experimental semivariograms with and 
without the outlier data pairs should be compared to verify their impact in the 
semivariogram analysis. If there is a notorious impact in the experimental semivariogram 
after removing the outlier data pairs, it is recommended to be fitted by a new 
semivariogram model; otherwise, that would mean the initial proposed semivariogram 
model is fairly representative of the dataset. 

The continuous form of the outlier limits can easily be shown for a 1D dataset in a 
cloud semivariogram plot. Recall that each data pair is plotted as 0.5ሾܼሺܝ௜ሻ െ
ܼሺܝ௜ ൅ ሻሿଶ, that is ݀௜ܐ

ଶሺܐሻ. Since ݀ெ஺௑
ଶ ሺܐሻ is a continuous function it can be plotted with 

respect to the semivariogram model for the different confidence limits and for any lag 
distance (see Figure 4-7). For a multi-gaussian dataset the density of data pairs outside 
each control limit is uniformly distributed. However, for real dataset particular patterns or 
clusters of data pairs are present. 

 

 
Figure 4-7: Control limits for different probabilities, from 90% to 99% (gray line) with 
respective semivariogram model (solid line) 

The style of semivariogram fitting (see Section 4.1) has an impact on the process of 
cleaning the experimental semivariogram. In practice, the style of fitting a semivariogram 
model is subjective. The style of fitting is not applied to the entire experimental 
semivariogram, but to segments of it. Overall, the experimental semivariogram is 
recommended to be fitted to the entire experimental semivariogram as close as possible. 
The consequences of the styles of fitting are: 
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• Pessimistic: The correlation coefficients of the h-scattergram are larger than 
expected, so outliers are more difficult to identify. The theoretical variability is 
larger than the experimental semivariogram. The limit ݀ெ஺௑ሺܐሻ tends to be 
larger. 

• Fair: The correlation coefficients of the h-scattergram try to reproduce the 
variability of the dataset. This is a good condition to identify outlier data pairs, 
since it directly compares the analytical to the experimental form of the spatial 
variability. The limit ݀ெ஺௑ሺܐሻ is representative. 

• Optimistic: The correlation coefficients of the h-scattergram are smaller. As a 
consequence, many data pairs are identified as outliers. The limit ݀ெ஺௑ሺܐሻ tends 
to be smaller. 

4.6. Case Study 
Consider the real case presented in the first part of this chapter. The dataset corresponds 
to a borehole of 162 samples regularly spaced in normal score units (see Figure 4-2 
right). Therefore, there is no influence of tolerances or clusters in the experimental 
semivariogram. The only source of influence comes from the structural patterns in the 
dataset. The semivariogram model used for the exercise is given in (4.8) and shown in 
Figure 4-8. 

 ( ) ( ) ( )12.5 35.00.15 0.35 0.50Exp Expγ = + +h h h   (4.8) 

 
Figure 4-8: Experimental semivariogram (black dots) and semivariogram model (solid 
line) of Ddh-81 dataset 

The selection of the probability limit is based on identifying the smallest number of 
data pairs as possible that significantly impact the experimental semivariogram. Several 
control limits were applied to the experimental semivariogram of the dataset Ddh-81 at 
different ranges in order to identify special patterns in the data pairs (see Figure 4-9). 
Figure 4-9 (A) considers a range of probabilities from 90% to 99%; based on this range, 
two patterns can be seen: the first one from lag distances 0 to 18 and the second one from 
35 to 38. The range of outliers is reduced to an interval from 97% to 99.5% in Figure 4-9 
(B). The first part from the lag distance 0 to 20 becomes more pronounced while the 
second part recedes. Reducing the range of outliers even more (Figure 4-9 (C)) from 
99.5% to 99.9%, the number of data pairs in the first part is still dominant, while the 
second part virtually disappears. Finally, the limit that identifies the outliers of the first 
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part is chosen (Figure 4-9 (D)) that corresponds to a 99.7% probability. This removes 
0.6% of data pairs (or one data pair) of the experimental semivariogram which is not a 
significant proportion of the information provided by the dataset. 

 

 
Figure 4-9: Proportions of data pairs identified as outliers for different ranges of control 
limits for the experimental semivariogram of the dataset Ddh-81 in normal score units. 

The data pairs removed from the cloud semivariogram clearly makes a particular 
pattern (see Figure 4-10 top left). Including the influence of this sub-region in the 
semivariogram model causes an inflation of the conditional variance to the rest of the 
domain. On the other hand ignoring such variability means the conditional variances of 
the small sub-region are unaccounted. Depending on the spatial configuration and size of 
the sub-region two decisions can be made: (1) split the domain so that two domains can 
better account for different patterns of variability, or (2) focus attention on the major part 
of the domain and ignore the variability of the sub-region and correct the pattern of 
variability locally. 

Notice that after removing the 0.6% of the outlier data pairs there are significant 
changes in the experimental semivariogram. The fixed experimental semivariogram is 
more continuous with fewer jumps (see Figure 4-10  bottom). Therefore, the fitting of the 
experimental semivariogram tends to be more straightforward (4.9). This can be seen in 
the reduction of the mean squared error (MSE) (see Figure 4-10 top right). This, of 
course, does not change the subjectivity of the fitting process; it merely reduces the trade-
offs that the geomodeler must consider while fitting a semivariogram model. 

 ( ) ( ) ( )20 380.12 0.37 0.51Exp Expγ = + +h h h   (4.9) 
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Figure 4-10: Cloud semivariogram with control limit at 99.7% (top left), semivariogram 
model fitting MSE for initial (dashed line) and fixed (solid line) experimental 
semivariograms (top right), initial experimental semivariogram (black dots) and 
semivariogram model (solid line) (bottom left) and fixed experimental semivariogram 
(black dots) and its respective semivariogram model (solid line), and initial 
semivariogram model (dotted line) (bottom right) 

 

The second part of the analysis consists of verifying whether the outlier data points are 
grouped in certain specific parts or are spread around the entire domain. If they are placed 
over particular regions or follow clear patterns, then this will increase our knowledge of 
the nature of the domain. A decision of sub-domaining can be considered here. On the 
other hand, if the data points are dispersed throughout the domain, then this could mean 
the identified variability is part of the domain and it can be modeled conventionally. For 
the data set Ddh-81, the data points that produce extra variability are located in a specific 
sub-region. They can be considered for sub-domaining in order to improve the 
estimation/simulation of the domain (see Figure 4-11). 
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Figure 4-11: Occurrences of data points of outlier data pairs (gray bars) compared with 
the input dataset Ddh-81 (black dots) in normal score units. 
 
4.7. Discussion 
The proposed methodology identifies anomalies in the outlier increments in the domain. 
However, one of the inputs is the semivariogram model. This makes this methodology to 
be subjective in the interpretation of the results. Moreover, the anomalies in the 
distribution of the data pairs has to be interpreted by the user as well as additional 
semivariogram fitting have to be carried out. Notwithstanding, in a sensitivity analysis 
this approach gives information about spatial configuration of the samples that produce 
the outlier increments. Also, the resulting semivariogram model tends to be more 
continuous due to the influence of the outlier data pairs are removed, this is called 
cleaned-semivariogram. 

In the next chapter the cleaned-semivariogram model is used for analyzing the domain 
and evaluating the high variable sub-regions. Because of the presence of those sub-
regions, the domain is moved to a high dimensional space where spatial variability can be 
fully defined by the semivariogram model. 
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5. Conditional Distribution Fitting 

Equation Chapter (Next) Section 1 
In Chapter 4 the semivariogram is used as a tool for identifying the non-stationary 
features in the domain related to the intrinsic assumption of the RF. Two scenarios 
remain from the semivariogram analysis: 1) the problematic locations are grouped in sub-
regions, so that they can be considered for sub-domaining and 2) the problematic 
locations are in small groups dispersed throughout the domain such that sub-domaining 
cannot be performed. This chapter focuses on the latter scenario and proposes an 
alternative method to account for the influence of these data in the domain so that the 
local uncertainty calculated using estimation/simulation can be used for a detailed mine 
plan strategy. 

Sequential Gaussian simulation (SGS) is recommended to be used for simulating the 
variable of interest in a domain due to its simplicity in the implementation and 
availability in many commercial mining software packages (e.g., Pangeos, Vulcan, 
MineSight, and Datamine, among others). The implementation of SGS is very similar to 
simple kriging; both use the same parameters such as the semivariogram model and 
search specifications. For implementation it is necessary to assume a multi-gaussian 
environment for SGS since all simulation is performed in Gaussian space. Although SGS 
generates multiple realizations of the attribute, it can be verified against an SK model 
since the local average from SGS, taken over many realizations, will tend to SK 
estimates. The problem with SGS and SK is that it assumes that the conditioning data is 
part of a SRF, that is, it assumes there are no outlier increments or the semivariogram 
model adequately defines both local and global uncertainty. For this reason and in these 
highly variable regions, SGS does not account for the local features of the domain and is 
not used for simulating medium/short term models. The goal of this chapter is to provide 
a methodology to prepare the dataset for performing SGS, so that it reproduces the non-
stationary features required for mine planning. 

In general, only high values are considered problematic because a more pessimistic 
estimation is preferred over an optimistic one. In some cases, outliers are the result of an 
erroneous characterization of the geology (e.g., presence of samples that belong to 
different geologic processes other than their tagged category). In Figure 5-1 a sketch of 
reality is compared to a tentative geologic interpretation; due to the scale of the 
interpretation some samples of the high metal grade region are classified as part of the 
low grade metal domain. Estimating such domains using kriging in a strict manner would 
smear the high grade value over a considerable region in the low grade domain. As a 
consequence, the geostatistical model of the low grade domain is neither realistic nor 
appropriate for proposing a detailed mine plan. In a more general context, the presence of 
sub-patterns in the domain makes the available dataset behave as a SRF with a spatial 
continuity cannot be adequately defined by one semivariogram model. 
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Figure 5-1: Impact of generalization of geology due to the scale of geologic 
interpretation; reality (left) is not fully characterized when models are built (right). 

In this chapter the influences of trends in the mean and in the variance are considered 
to be absent. However, non-stationarity in the domain occurs when the intrinsic 
hypothesis of the SRF is not satisfied. Because of this, the estimated model appears 
locally unrealistic. As shown in chapter 4, internal structures of the domain are present as 
patterns in the dataset which are not necessarily removed by normal score transformation. 
The presence of such patterns in the domain makes the decision of stationarity less 
appropriate. 

Proper estimation of the conditional distribution is important for simulation. The 
farther the true value falls from the confidence limits, the more difficult it is for the 
simulation to pick a realization that reproduces the true value at such a location and 
globally reproduces the sub-patterns in the domain. Ideally, a mine plan is based on the 
analysis of the geologic region to be mined; the impact of the geologic characteristics in 
the variable of interest is an important input in the process of decision making in mine 
planning. 

Depending on the semivariogram model fitted, the degree of accuracy of the 
conditional distributions changes (see Chapter 4). A good semivariogram model is one 
that accounts for the spatial variability of the major part of the domain. The remaining 
spatial variability that is not properly accounted for by the semivariogram model is 
under-estimated in some regions and over-estimated in others. In real situations, it is 
unrealistic to expect that any semivariogram can account for the geologic features of a 
domain like it may under theoretical conditions. The approach presented in this chapter 
aims to account for the variability of this minority of the domain, where the spatial 
variability is under-estimated by tuning the distances between the samples, so that the 
conditional distributions are consistent with the conditioning information. The distances 
are modified by adding an extra dimension to the dimensional space of the conditioning 
dataset. In this way, the influence of the semivariogram model on the estimated 
parameters of the conditional distributions is approximated until the parameters are 
consistent with the dataset within some confidence limits. The goodness of the 
conditional distributions is verified using cross validation and confidence limit 
parameters. 

High Grade Domain

Low Grade Domain

Sampled Data Locations

High Grade Domain

Low Grade Domain

True Geology Interpreted Geology

High value sampled
assigned as part of the
low grade domain.
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5.1. Measure of Accuracy 
Cross validation is used as a technique to test the quality of the estimated parameters of 
the conditional distribution with respect to the true values (Chilés & Delfiner, 1999). In 
this chapter, it is assumed that if the verified conditional distributions using cross 
validation properly account for their corresponding true values the conditional 
distributions of the rest of the unsampled locations will also do the same. 

For all the data locations, confidence limits are considered as a measure of whether 
the true value with respect to its estimated conditional distribution is predicted within 
some tolerance intervals or not (see Figure 5-2). If the true value falls outside the 
confidence limits, then the proposed semivariogram model is considered to be inadequate 
and this location is flagged for pre-processing. All the conditional distributions where 
true values are within the confidence limits are assumed to be consistent with the 
surrounding information. Theoretically, if 90% probability interval is chosen then 10% of 
the dataset is expected to fall outside the confidence limits. For this, one basic condition 
is the dataset is truly part of a SRF realization, recall that a real dataset is non-stationary. 
Contrary to the theoretical conditions, the proposed approach forces all the data point 
values to fall within the confidence interval in order to ensure the realizations reproduce 
the sub-patterns in the domain. 

 

 
Figure 5-2: Sketch of cross validation where the true value (black dot) falls outside of 
the confidence limits of the conditional distribution (gray lines) calculated using the rest 
of the information and the proposed semivariogram model. 

The accuracy of the estimates is measured by standardizing to one the distance from 
the estimated mean to any of the confidence limit values, therefore, if the true value falls 
outside the confidence limits the standardized distance is greater than one, and the 
conditional distribution is considered as improperly accounting for the data. Assuming 
the global univariate distribution of the domain is standard normal, then for the data 
values that are outside the confidence limits of the standard normal distribution, the 
standardized accuracy is re-scaled making the true values be the new confidence limits. 
This is done to ensure that for all values in the dataset there is a conditional distribution 
that includes the true values within reasonable confidence limits. 
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5.2. Dimensional Conditional Distribution Fitting 
The semivariogram model γሺܐሻ is a function of the separation vector ܐ that fully defines 
the spatial continuity of a SRF. The kriging estimated parameters of the conditional 
distribution at the unsampled location are functions of this semivariogram model. The 
semivariogram model is used to calculate the linear dependence between data values and 
the unsampled location in the kriging system. The smaller the distance from the 
conditioning data to the unsampled location, the smaller the conditional variance. 
Regardless of the values of the conditioning data the surrounding spatial configuration of 
the unsampled location is what really matters for calculating the conditional variance. 
The estimated mean tends to be similar in value to the closer surrounding data values. 

Since the spatial covariance ܥሺܐሻ is a function of the separation vector ܐ the 
estimated parameters of the conditional distribution can be manipulated by modifying the 
separation distances from the unsampled location to the conditioning data. The influence 
of the conditioning data for estimating the parameters of the conditional distribution at 
the unsampled location decreases proportionally as the unsampled location is separated 
further from the data. The unsampled location becomes gradually more uncertain until 
the parameters of the conditional distribution are equal to the global distribution 
parameters, which occur when the influence of the conditioning data is negligible. When 
there are no samples within the effective range of the semivariogram model the estimated 
mean will equal the global mean ௌܻ௄

כ ؆ ݉ and the estimated variance will equal global 
variance ߪௌ௄

ଶ ؆  .ଶ this is the state of local maximum uncertaintyߪ
A small example is shown in Figure 5-3 to illustrate the sensitivity of the conditional 
distribution with respect to the position of the unsampled location. Consider a four 
samples dataset ~ܰሺ0,1ሻ and a location to estimate in 1D (see Figure 5-3-bottom). When 
the unsampled location is separated gradually from its original position by adding a new 
dimension the conditional distribution changes as the influence of the conditioning data 
diminishes (see Figure 5-3-top right). The change is gradual until the conditional 
distribution equals to the global distribution of the dataset, in this case ~ܰሺ0,1ሻ. For the 
example presented a nested exponential model is used (see Figure 5-3-top left, 
equation (5.1)). In Figure 5-3-top right notice the SK mean reaches 0 for the effective 
semivariogram range and the SK variance to the sill value of 1.0 for the effective range. 
Both parameters approach the global values asymptotically because an exponential model 
is used. 

 ( ) ( ) ( )1.5 3.00.25 0.75Exp Expγ = +h h h   (5.1) 
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Figure 5-3: Nested exponential semivariogram model (top left), sensitivity of SK 
variance and SK mean to the inclusion of additional dimension to the original position of 
the unsampled location (top right) and a sketch of spatial configuration of conditioning 
data (black dots) and locations of the unsampled location (empty dots) to different 
lengths of the additional dimension (bottom). 

The condition that the separation distances ݀௨ି௨ᇱ between the unsampled location 
Ԣܝ ൌ ሾݔԢଵ, ,Ԣଶݔ … , ,Ԣ௡ݔ ௝ܝ Ԣ௞ሿ and the conditioning dataݕ  ൌ ,ଵ௝ݔൣ ,ଶ௝ݔ … , ,௡௝ݔ 0൧ do not 
decrease is guaranteed by the additional dimension ݕԢ௞ ݕ  ׊Ԣ௞ ് 0. This additional 
Cartesian component ݕԢ௞ at the unsampled location is always equal or greater than zero, 
so it is additive when the separation distance is calculated, ݀Ԣ௨ೕି௨ᇱ ൌ ቂ∑ ൫ݔ௜௝ െ Ԣ௜൯ଶ௡ݔ

௜ୀଵ ൅

ሺݕԢ௞ሻଶ൧ଵ/ଶ
 therefore ݀Ԣ௨௝ି௨ᇱ ൒ ݀௨ି௨ᇱ. 

The SK variance is said that it cannot be used as a measure of local variability or 
accuracy since it is based on a semivariogram model which is a global approximation of 
the spatial continuity (Journel A. , 1986) or because SK variances are independent of the 
data values and only provide a comparison of an alternative data configuration (Deutsch 
and Journel, 1998). The uncertainty assessment of SK fully relies on the assumption that 
the conditioning data is a realization of a SRF, with two requisites: (1) the distribution of 
errors is gaussian, and (2) the variance of errors can be predicted (Isaaks & Srivastava, 
1989). Let us consider 1000 data points of an unconditional simulation where each cross 
validation conditional distribution is evaluated using confidence limits with respect to the 
corresponding true values for different probability confidence intervals. The proportions 
of samples within the confidence limits are similar to the theoretical expected proportions 
since the dataset is a realization of a multi-gaussian SRF (see Figure 5-4). Under correct 
conditions the SK conditional distributions account for local uncertainty properly. These 
two conditions are (1) the semivariogram is known and (2) the conditional error 
distribution is calculated with no additional influence of any source of error, (Chilés & 
Delfiner, 1999). This is not the case of geologic processes where there is no true 



47 

 

semivariogram. In fact, in practice the semivariogram fitting is based on the experience 
of the person in charge and on the objective of the study (Goovaerts, 1997). 

 

 
Figure 5-4: Proportions of true values within the confidence intervals (empty dots) 
compared to the theoretical proportions (black dots) of their respective cross validation 
conditional distributions. The true values are from an unconditional realization. 

Under the assumption of multi-gaussianity the conditional distributions estimated by 
SK are univariate Gaussian ~ܰሺ ௌܻ௄

כ , ௌ௄ߪ
ଶ ሻ. All values are plausible outcomes to occur 

depending on their probability, even when they are very extreme values. Let us consider a 
value at a certain location has a probability of 1 ൈ 10ିଵ଴଴଴ to occur in a conditional 
distribution calculated using cross validation. Statistically the true value is a valid 
outcome of the conditional distribution. For a mineral deposit model used for economic 
decision, such an estimate could have serious consequences if it is considered as a valid 
result. For the small case presented the true value is smaller than the SK mean and when 
a realization is drawn at such location due to its very small probability the true value is 
very unlikely to be simulated. If the true value is unknown there is no way to verify the 
validity of the estimated conditional distribution. However, problems arise when the true 
value is known and its cross-validation conditional distribution does not account for it 
properly. Then when the surrounding locations are estimated, even though the SK means 
tend to average the big difference in values of the conditioning data, the conditional 
variances still remain smaller because the semivariogram model does not account for the 
true value properly. 

The proposed approach tunes the conditional distributions to the conditioning data 
within some confidence limits under the assumption the conditioning dataset is 
representative of the domain. Using cross validation, once the conditional distributions 
account properly for their respective true values the resulting models is assumed to 
account for local and global uncertainty properly. Since the local conditional distributions 
are tuned to the dataset using additional dimensions the new spatial configuration of the 
conditioning information is called proper stationary state of the dataset. Some geologic 
features present in the dataset that were not captured by the semivariogram model 
initially are now explained by the additional dimensions. The additional geological 
information is added to the dataset in the form of position vectors. 
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5.3. Cost and Benefit of the Conditional Distribution Fitting 
As mentioned before, the main goal of this chapter is to make the conditional 
distributions account properly for the local uncertainty of the realizations. Modeling 
conditional distributions is considered an ambitious goal and sometimes unrealistic to 
achieve without a specified theoretical model (Chilés & Delfiner, 1999). By adding extra 
dimensions there are many possible solutions to this problem. Many different 
configurations could give different degrees of fitting of the conditional distributions with 
respect to their true values. There would be some negative impact on the accuracy of the 
surrounding data locations of the fixed data location. This problem can be solved 
considering additional restrictions in the algorithm such as reducing the negative impact 
on the accuracy of the rest of the samples, reducing the negative impact on the SK means 
or by trying to use a small number of additional dimensions, etc. 

Using small probability intervals could be very restrictive for this approach. The 
smaller the probability interval the more extra dimensions are necessary to fit the 
conditional distributions. By making all the data values fall within the confidence limits 
the sense of probability loses meaning because it does not comply with the theoretical 
conditions. Theoretically for a 95% confidence interval 5% of the true values is expected 
to fall outside their respective conditional distributions (see Figure 5-4), while the 
approach tries to eliminate such proportion of data values. Setting up the confidence 
interval is a subjective part of this approach. In mining a 95% probability is commonly 
used (Journel & Huijbregts, 1978). A real example of a Chilean copper mine 
(Chuquicamata) is presented in (Journel & Huijbregts, 1978) where 96% of the observed 
errors of mean block grades fall within the 95% interval. On other types of deposits such 
as skarn type where the grade variability is high and more geologic structures are present 
such result would be very difficult to obtain because of the complexity of the geologic 
environment. When the distribution of errors is non-gaussian but continuous and 
unimodal a confidence interval of േ3ߪௌ௄

ଶ  which correspond to 99.73% probability 
interval is preferable, see discussion in (Chilés & Delfiner, 1999). The distribution of 
errors is assumed gaussian for this approach. 

There is a set of widely used semivariogram models which are present in many 
mining commercial packages, such as spherical, exponential, gaussian, etc. which are licit 
models considering dimensional spaces up to Թଷ. In mining it is very unlikely to deal 
with data in higher dimensions than Թଷ. By adding extra dimensions to the conditioning 
dataset it is highly probable the dimensional space increases to Թ௡ with ݊ ൐ 3 and 
therefore some of the semivariogram models valid in  Թଷ would end up not being licit 
models in such higher dimensions. The problem of using a non licit model is the 
possibility of get negative conditional variances (see chapter 2). The conditional variance 
is a linear combination of the covariances ܸܽݎሼܻכሺܝ଴ሻሽ ൌ ∑ ∑ ఈܝ൫ܥఉߣఈߣ െ௡

ఉୀ଴
௡
ఈୀ଴

ఉሻܝ ൒ 0 and must be non negative (Goovaerts, 1997). To ensure this the covariance must 
be positive semi-definite and/or the semivariogram negative semi-definite (Goovaerts, 
1997). The number of dimensions of the space is important for choosing a semivariogram 
model, a positive definite covariance function in Թ௠ is also positive definite in Թ௡ 
if ݉ ൒ ݊, however it is not necessarily valid for ݉ ൏ ݊ (Chilés & Delfiner, 1999). Two 
examples are presented in (Armstrong & Jabin, 1981) where it is shown that a 
semivariogram model would lead to negative conditional variances. The set of covariance 
models that can be used for the proposed approach are reduced to the ones that are 
positive-definite in any dimensions. There is a variety of semivariogram models that are 
proved are licit in any dimensions, some of them are: 
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• Spherical models based on a sphere of Թ௡. The spherical semivariogram model 
without any specification of the dimension ݊ is commonly referred to as the 
spherical model in Թଷ, also there are other well known covariance models such 
as spherical in  Թଶ is known as the circular model, and in  Թଵ the triangle model 
(Chilés & Delfiner, 1999). 

• Exponential models are positive definite in Թ௡. Also Radon transforms of the 
exponential covariance provide differentiable covariances that are also valid in 
(Chilés & Delfiner, 1999). 

• Gaussian model with a scale parameter greater than zero (Chilés & Delfiner, 
1999). 

• Generalized Cauchi model (Chilés & Delfiner, 1999). 
• K-Bessel model (Chilés & Delfiner, 1999). 
• Logarithmic or de Wijsian model (Chilés & Delfiner, 1999). 
• Stable model. The exponential and gaussian models belong to this family (Chilés 

& Delfiner, 1999). 
• Matérn model (Rasmussen & Williams, 2008). 

5.4. Algorithm for Conditional Distribution Fitting 
The only additional parameter different from conventional practice is the definition of a 
confidence interval. However, the intrinsic hypothesis is not assumed in this approach 
even when a semivariogram model is proposed. The semivariogram model has to account 
for the spatial continuity of the major part of the domain, not an average as in 
conventional practice (see chapter 4). The part of the dataset which spatial variability is 
under-estimated by the semivariogram model is corrected by the conditional distribution 
fitting so that the semivariogram model accounts for the entire domain in the fitted higher 
dimension. However, the region where the spatial variability is over-estimated still 
remains the same. This is equivalent to a pessimistic fitting of the semivariogram model 
that makes the conditional distributions be properly accounted but overestimated. And a 
consequence is the geostatistical model is more uncertain than it should be, see discussion 
in Chapter 4. 

The proposed algorithm can be considered as a prototype of a non-conventional 
geostatistical modeling which is aimed for the requirements of mining industry. Many 
different additional strategies of fitting the conditional distributions can be added 
according to other requirements in the model, such as maximizing the accuracies or 
maximizing the fitting of the conditional means, etc. The algorithm is presented as a 
workflow and each of the steps are discussed: 

1) Cross validation and verification of the input parameters. The goodness of 
the reproduction of the conditional distributions is verified when compared to 
their respective true values. The data locations where the true values fall outside 
the confidence limit parameters are marked for conditional distribution fitting. If 
the semivariogram model is fitted in a pessimistic manner a very small amount of 
the conditional distributions will require to be fitted; conversely, when the 
semivariogram model is fitted in an optimistic manner a very large amount of 
conditional distributions will require fitting. This is why it is important for the 
semivariogram model to account for the spatial continuity of the major part of the 
domain, so that, only an optimal number of locations require fitting. Also, the 
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selection of the confidence interval influences in the proportion of samples to be 
fitted, it has to account fairly for the data values of the conditioning data. 

2) Verification of spatial relationship among the marked samples. It would the 
case a group of the marked samples are part of secondary populations. The 
verification is based on a cross validation analysis using only the marked 
samples. The mutual samples that estimate the parameters of conditional 
distributions that account for the true values within the given confidence intervals 
are grouped. Finally for each group of samples and independent samples different 
dimensions are assigned. It can be interpreted as each identified pattern is 
assigned to a particular dimension. This is the number of required dimensions. 

3) Tuning the extra dimensions. The distances on each the additional dimensions 
are calibrated until the conditional distributions at the marked locations account 
properly for their respective true values. The calibration process is: 

a. The samples at the marked locations are separated and the linear 
dependences between them are calculated using cross-validation. 
Samples that are mutually dependent are grouped and the number of 
groups becomes the number of extra dimensions to solve the dataset. 
Each group of samples shares only one extra dimension. This is done for 
simplicity, otherwise the problem might become intractable to solve. 

b. Small lengths are added to each respective extra dimension at the marked 
locations. Using cross-validation it is verified if the conditional 
distribution accounts for the true value within the confidence limits. The 
same dimension length is added to the non-marked locations where the 
accuracy of the prediction was affected negatively. 

c. Go to step b and repeat until all the marked locations account for the true 
values within the specified confidence limits. 

d. Once the marked locations account for the true values the state of the 
extra dimensions is saved as a solution of the problem. It is worth to 
mention that there is a negative impact in the some of the surrounding 
conditional distributions that are minimized in step b. 

4) Save Results. Store the conditioning dataset including the information of the 
additional fitted dimensions as the new conditioning dataset. 

The goal in the use of extra dimensions is to find sub stationary sub-regions in the 
domain that are suitable for modeling using conventional techniques. Each sub-region is 
assigned to a particular extra dimension so that the behaviour of the conditioning data on 
each dimension is more stable in terms of increments, |ݖሺܝሻ െ ܝሺݖ ൅  ሻ|, in the originalܐ
dimensional space (see Figure 5-5). These sub-regions vanish in the high dimensional 
space and the whole dataset is considered as stationary and any conventional technique 
can be used for modeling uncertainty both in local and global terms. In the proposed 
algorithm step 3-a calculates the number of extra dimensions required for solving the 
problem according to the confidence interval parameters. 
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Figure 5-5: Sketch of classification of sub-domains by using extra dimensions 

5.5. Case Study 
Consider the borehole Ddh-81 dataset in normal score units presented in chapter 4 and 
the cleaned semivariogram model (4.9) for 99.7% probability as input information for 
building a geostatistical model. The confidence interval probability parameter chosen for 
this example is 95%.  

The algorithm solves the dataset using three additional dimensions at twenty data 
point locations. From the three additional extra dimensions the first one consists of eleven 
data locations, the second one of five data locations and the third one of four data 
locations. The presence of outlier data points in the semivariogram cleaning exercise in 
chapter 4 showed that some data pairs are not accounted for by the semivariogram model 
(4.9) due to their large increments in the data pairs. The same locations are also identified 
in this approach. The initial accuracy of the conditional distributions using the 
conventional approach show some locations which true values fall outside their 
confidence limits (see Figure 5-6-top left). Even when the algorithm approaches the 
conditional distributions to the accuracy targets, there might be some locations that 
cannot solved completely. However, they will tend to be close to the fitting conditions 
and are accepted as solutions using small tolerances in the approximation. That is not the 
case in this example, the accuracy of all the locations are solved successfully (see Figure 
5-6-top right). The improvement in the calculation of the conditional distributions is 
evident, however the accuracy of a small proportion of locations is slightly negatively 
affected at very few locations but they are still within the fitting target limits (see Figure 
5-6-bottom). 
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Figure 5-6: Initial status of the accuracy of the conditional distributions calculated using 
the conventional approach (top left), conditional distribution fitting (top –right) and 
comparison of them (initial - fitted) (bottom) 

The fitting of the conditional distributions have an inevitable impact in the estimation 
of the SK means. For the locations where the conditional distributions are fitted there are 
negligible improvements in the prediction of the SK means. Because, what the approach 
does is to make them locally more uncertain. However, the influence of fitted data values 
(outliers) on the surrounding data locations is reduced. This makes the surrounding 
samples to be influenced mostly by the non-outlier data values when their conditional 
distributions are calculated. The improvement of the SK means can be seen when the 
conventional approach is compared to the conditional distribution fitting approach (see 
Figure 5-7). The correlation coefficients of the SK means compared to their true values 
show a small improvement, that is, 0.8253 for the conventional approach and 0.8671 for 
the proposed approach. Graphically the SK means of the proposed approach (right side) 
show a better local fitting than in the conventional case (see Figure 5-7-left side). 
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Figure 5-7: Cross validation SK means calculated using conventional approach (top –
left), conditional distributions fitting (top right), and scatter plots of cross validation SK 
mean versus true values using conventional approach (bottom left), conditional 
distributions fitting (bottom right) 

As well as the SK means the conditional variances are also affected. At the fitted 
locations the conditional variances tend to increase until the true values fit within the 
confidence limits of the conditional distribution (see Figure 5-8). The conditional 
variances can be considered as data dependent in the original dimensional space, since 
the tuning of the conditional distribution is based on the occurrence of the true values 
within their respective conditional distributions. While they still remain stationary and 
configuration dependent in the fitted higher dimensional space. 

௙௜௫௘ௗߩ ൌ ௖௢௡௩ߩ 0.8671 ൌ 0.8253 



54 

 

 
Figure 5-8: Conditional variances of conventional approach (left) and conditional 
distribution fitting (right) 

The number of additional dimensions and locations that require conditional 
distribution fitting tend to decrease as the confidence limits of the conditional 
distributions increases, that is because fitting to larger probability intervals is less 
demanding for the proposed algorithm (see Figure 5-9). For the probability intervals of 
97% and 99% the number of required dimension are three and two respectively and the 
outlier sample locations fifteen and twelve.  
 

 
Figure 5-9: Improvements in the accuracy of conditional distributions for 97% 
confidence interval (left) and 99% confidence interval (right) 

5.6. Discussion 
The extra dimensions capture the information of patterns in the domain that are 
unaccounted for by the proposed semivariogram model. Patterns in the domain are 
present due to the different geologic processes that deposit the concentrations of metal 
grades or any other element of interest in the domain. Modeling the domain without 
taking into account such patterns may result in a non-realistic representation of the 
domain. Consider the same domain as in Figure 5-5 which consists of three stationary 
sub-domains A, B and C (see Figure 5-10-top). The resulting domain becomes non-
stationary even when the local mean and variance are assumed to be constant. This can be 
seen in a cross section of the values of the domain. Notice that in Figure 5-10-bottom, for 



55 

 

calculating the conditional distributions in the regions of sub-domain A the SK weights 
of the data points of the sub-domains B and C should be less relevant than of the sub-
domain A. In the proposed approach, the degree of relevance in the estimation of the 
conditional distributions at any location of the domain is tuned by the extra dimensions. 
When estimating at any location of the sub-domain A the samples of sub-domain B and C 
become less relevant because the extra dimensions tend to move the samples from 
domain B and C away the domain A or in another words make other sub-domains 
samples much more different. The effect of the additional dimensions for fitting the 
conditional distributions along the domain can be considered as an enhanced form of 
anisotropy since the directions of preferential continuity are defined more precisely and 
are shaped by the existing data, that is, data dependent. 
 

 
Figure 5-10: Sketch of combination o three stationary sub-domains A, B and C into a 
bigger one that mimic a geologic process (top), section of the resulting non-stationary 
domain which shows the patterns in data values (bottom) 

In this proposed approach, cross validation is used in the process of fitting the 
conditional distributions. For each data location the best condition to analyze the 
estimation of the parameters of its conditional distribution is by using as much 
information as possible, because for modeling the unsampled locations in the domain the 
entire dataset is used. The larger the dataset, the better the understanding of the domain. 
Other testing techniques such as jackknife are not considered because the analysis has to 
be done locally, that is, sample by sample. Jackknife tends to be more global and that is 
not the purpose of this approach. 

The over-estimation of the spatial variability in some regions of the domain cannot be 
identified by using the experimental semivariogram and the semivariogram model only. 
The solution of these sub-regions would require the reduction of the distances between 
the existing data locations and perhaps the definition of a new more continuous 
semivariogram model. There is no easy way to find out the conditions when the 
conditional distributions have to be narrowed. Finally, for identifying the conditional 
distributions which are over-estimated the analysis has to be made in groups of data 
locations rather than individual samples. 

In this chapter the high-dimensional configuration of the conditional dataset is 
assumed to behave more stationary in the sense that the conditional distributions 
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calculated via cross-validation account properly for the true data. This condition is 
extrapolated to the rest of the domain, that is, the estimated conditional distributions of 
the domain at the unsampled locations in the same dimensional space also accounts for 
reality as the conditional data does, both local and global. In the next chapter, a 
methodology for simulating in the domain accounting for the high-dimensional space of 
the conditional dataset is presented. The features of the non-regular shape anisotropic 
patterns are also discussed. 
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6. Sequential Gaussian Simulation of High 
Dimensional Stationary Data 

Equation Chapter (Next) Section 1 
In Chapter 4 the influence in the experimental semivariogram of highly variable sub-
regions in the domain was identified and removed. The resulting cleaned experimental 
semivariogram is fitted to get a semivariogram model and this represents the spatial 
continuity of the rest of the domain without the influence of the highly variable sub-
regions. Therefore, the variability of the highly variable sub-regions is not accounted for 
by the cleaned semivariogram model. Consequently, this semivariogram may tend to be 
more continuous in presence of highly variable sub-regions. The conditional distributions 
of the data locations in these sub-regions are not properly represented by the conventional 
semivariogram model, and even less so by the cleaned semivariogram model.  
Chapter 5 proposed a method to fix the conditional distributions at these locations by 
separating them from the rest of the conditioning data, and then adding extra dimensions 
to the initial Euclidean space in order to inject more uncertainty to the conditional 
distributions. The resulting spatial configuration is a high dimensional version of the 
initial conditional data or alternative conditioning data (ACD), that behaves more 
stationary than in the initial space or of the original conditioning data (OCD) in that the 
conditional distributions properly account for local uncertainty.  

In this chapter, this new, high dimensional dataset is used to simulate geostatistical 
realizations of the domain. Transferring the highly dimensional information to the 
domain and an alternative representation of anisotropy that does not rely on the 
conventional elliptic pattern are discussed. After getting a high dimensional state of the 
conditioning dataset and transferring that information to the domain, virtually any 
conventional approach can be applied to reproduce the non-stationary features related to 
the intrinsic assumption of the RF. 

6.1. Proposed spatial analysis and approximation of additional 
dimensions 

To show and compare the proposed approach, a real dataset is used. Specifically, the Jura 
dataset (Goovaerts, 1997) consists of 100 data points placed over a fairly regular grid 
configuration (see Figure 6-1). This particular data configuration helps to get a better 
experimental semivariogram without using large tolerances and also to highlight the 
differences between the conventional and the proposed dimensional modeling 
approaches. The element analyzed is Cobalt (Co). The data values are transformed to 
normal scores for sequential Gaussian simulation and it is assumed there is no presence 
of trends in either the mean or the variance. 
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Figure 6-1: Configuration of the Jura dataset of Co variable in normal score units 

The direction of major continuity is calculated at 45 degrees azimuth based on contour 
lines plotted from a semivariogram map (see Figure 6-2). The proposed semivariogram 
model consists of two anisotropic structures, both can be fit as exponential structures (see 
Figure 6-3). The first structure is isotropic with range equal to 0.6 distance units and the 
second one is anisotropic with the major axis equal to 5.0 units and minor axis is equal to 
0.6 units (6.1). 

 

 
Figure 6-2: Semivariogram map of NS Co 
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Figure 6-3: Semivariogram model (solid lines) and experimental semivariograms (black 
dots) of major (left) and minor direction (right) 

The experimental semivariogram of the OCD is cleaned using a 99% probability cut-
off. For the 2D case, both the control limit and the semivariogram model are surfaces. 
The control limit splits the cloud semivariogram in two parts. The first part contains the 
valid increments of the experimental semivariogram and the second part the outlier 
increments. The latter represents the impact of the variability of the high variable sub-
regions in the domain. The cleaned experimental semivariogram is calculated using the 
valid increments in order to eliminate the influence of the highly variable sub-regions if 
they exist (see Figure 6-4). 
 

  
Figure 6-4: Cloud semivariogram split in two parts by a control limit at 99% probability, 
valid increments (left) and outlier increments (right) 

In presence of highly variable regions in the domain some significant changes in the 
cloud semivariogram may result. Those changes might lead to differences in the main 
anisotropic orientations, the use of different semivariogram model for fitting the cleaned 
experimental semivariogram and larger ranges of the new semivariogram model.  For this 
dataset, the differences in the experimental semivariogram values are too minor to 
support the use of a different semivariogram model (see Figure 6-5) or a different 
anisotropic configuration (see Figure 6-6). 
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Figure 6-5: Semivariogram model (solid lines) and Experimental semivariograms (black 
dots) of major (left) and minor direction (right) after experimental semivariogram 
cleaning at 99% probability cut-off (black dots) and original experimental semivariogram 
points (empty gray dots) 

 
Figure 6-6: Semivariogram map after cleaning increment outliers at 99% probability 

The locations of the data grouped in the outlier data pairs are plotted in Figure 6-7. 
The size of the black dots in the map represents the proportions of the number of times 
each sample location participates in the outlier increments, the data locations with large 
occurrences can be considered as problematic locations during modeling because they 
make large increments occur in the experimental semivariogram. This information can be 
used to identify sub-patterns in the domain that may cause problems when modeling the 
variable of interest. The sample locations with small occurrences are not considered as 
indicators of potential sub-domains. In Figure 6-7 there is a group of problematic data 
locations on the west side that may be separated into a sub-domain, however, the 
frequency of those locations are relatively small compared to the two more problematic 
locations in the east and south-east region. For the present case study no sub-domaining 
is considered. 
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Figure 6-7: Occurrences of data locations that make outlier data pairs for a cut-off 
probability of 99% 

6.2. Transferring ACD high-dimensional information into the 
domain 

In order to be able to use the ACD in estimation/simulation, the domain of the geologic 
deposit has to be in the same dimensional space as the ACD. The process of moving the 
domain from Թ௡ to Թ௠, ݉ ׊ ൐ ݊ has to be bijective. This is important for two reasons: 
1) after estimating and/or simulating in Թ௠ the model of the domain is analysed and 
studied in the OCD space, that is, Թ௡; and 2) there has to be a unique correspondence 
between Թ௠ and Թ௡ because the OCD has to be exactly reproduced in the domain. The 
latter means the ACD projected in Թ௡ has to be the OCD and no other in order to ensure 
the exact reproduction of the conditioning data in the domain. 

The process of moving the domain from Թ௡ to Թ௠ consist of moving the nodes that 
represent the domain, each node has to have the same dimensions as the ACD. However, 
the values of the extra dimensions at the node locations are unknown and the process of 
transferring the extra dimension of the ACD can be subject to many interpretations. The 
extra dimensions can be seen as summarizing extra physical information about the 
domain (see Chapter 5) and would be more convenient if they are modeled as such. This 
results in an additional estimation/simulation problem to get the extra dimensions at the 
nodes of the domain. 

When modeling a mineral deposit, an outlier increment is the result of an abrupt 
change in the metal grade values of the data pair that is uncommon in the rest of the 
domain. If the problematic locations cannot be separated into another sub-domain, the 
outlier increments may occur because of the presence of a minor geologic structure 
within the domain, such as veins or faults that are difficult to separate into sub-domains 
because of their small scale (see Figure 6-8). For example, in a Cu skarn deposit, such an 
abrupt transition might be due to the presence of a boundary between chalcopyrite 
(CuFeSଶ) and bornite (CuହFeSସ) minerals. When the deposit is separated in domains, 
both are classified as exoskarn. 
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Figure 6-8: Sketch of a sub-structure (right) identified using outlier increments present in 
a large domain (left), samples with extra dimension (black dots) show the presence of an 
anomaly in Domain A when compared to the rest of the samples (empty dots) 

Consider two data points with values in normal score units at locations 1ܝ and ܝ૛ that 
make an outlier data pair (see Figure 6-9 top left). The outlier data pair implies that for 
this particular increment the averaged semivariogram model ߛሺ܌ሻ is not representative 
locally and the same is also assumed to be valid for the locations in between. The node 
locations of the domain have to be projected in the same higher dimensional space as the 
ACD prior to estimation/simulation. However, the only known locations in the high-
dimensional space are the ones that correspond to the ACD (see Figure 6-9 bottom left). 
They are taken as reference for the transformation. 

The technique proposed for transformation takes each of the extra dimensions of the 
ACD, one at a time, and consider them as additional variables to predict. That is, keeping 
the original dimensional space of the OCD make the dimensions the new variables to 
predict at the grid node locations. After all the dimensions are modeled in the domain as 
additional variables, it is assumed the domain is in the higher dimensional space. The 
transition of each extra dimension in the domain between sample locations in the original 
space can be modeled considering many different scenarios. For example, they can be 
modeled considering a linear transition, parabolic, convex, etc., also using geological 
interpretations of the extra dimension based on the fact they represent physical properties 
of the domain (see Figure 6-9 case1-4). Also, geostatistics can be used to model them. 
Therefore, the uncertainty associated to the extra dimensions can be introduced to the 
model. However, this might give unrealistic results because of the assumption of 
stationarity. The extra dimensions are the non-stationary part of the domain, and are only 
located in specific regions of the domain. Each extra dimension is not present throughout 
the domain because they would then become part of the random variability and can be 
captured by the nugget effect in the conventional experimental semivariogram.  

Assigning predefined shapes of transitions may introduce bias due to the subjectivity 
of the decision. The most simplistic way to transfer the extra dimensions is the linear 
transition which in 2D and 3D original spaces is triangulation (see Figure 6-9 top 
middle). The advantage of triangulation is simplicity in terms of parameters. This is 
suitable when knowledge of the physical characteristics of the extra dimensions in the 
domain is lacking. Many techniques are available for implementing triangulation such as 
Delaunay triangulation algorithm which can be used in 2D and 3D with no problems. 
However, it may still be necessary to define boundaries of influence for the triangulation 

Domain
A

Domain
B
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algorithm, which control the influence of the extra dimensions in the domain. These 
boundaries can be generated using nearest neighbour techniques. 

The previous approach only gives one scenario of the dimensions. However, modeling 
the uncertainty associated to the extra dimensions would also be required. The lack of 
knowledge of the physical properties may lead to an unsuitable modeling approach of the 
dimensions. As mentioned before conventional geostatistics is inappropriate for modeling 
the extra dimensions because the extra dimensions cannot be assumed as part of a SRF. 
Any modeling technique that accounts for physical parameters would be more 
appropriate. Finally, the decision between the simplistic and geologically more realistic 
approach involves a high price when the complexity of the domain is modeled. However, 
a mineral deposit is of such complexity and it becomes more important when locally 
consistent models are required. 

 

 
Figure 6-9: Sketches of cases of transferring extra dimension into grid nodes locations 
(empty dots), five transition cases are presented: linear (top middle), convex (top right), 
linear (bottom left), concave (bottom middle) and irregular (bottom right) 

For the case study the extra dimensions are calculated considering a 95% probability 
confidence interval of the conditional distributions. One solution of the ACD dataset is 
found using five extra dimensions, and a triangulation technique using influence 
boundaries is considered for modeling the dimensions in the domain. The boundary is 
used to limit the influence of the extra dimensions (see Figure 6-10).  

The new location vectors of the domain grid nodes are the combination of the initial 
location vectors and extra dimensions modeled in the five maps. Recall that the location 
vector of the ACD is the combination of the initial location vector and the extra 
dimensions. However, only one of the extra dimensions has a value greater than zero. In 
chapter 5 this condition was set up for simplicity. Since the new location vectors are the 
combination of the initial location vectors and the additional models of extra dimensions, 
the new location vectors of the nodes may end up having more than one extra 
dimensional component with values greater than zero. This is still valid and there is no 
problem associated to the consistency of the dimensional space. 
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Figure 6-10: ACD extra dimensions transferred to domain node locations using a 
triangulation algorithm 

After estimating/simulating in the high dimensional space the results have to be 
returned to the initial space to analyze the results. To do this, the estimated/simulated 
nodes of the domain are projected into the initial space by simply making all the extra 
dimensions equal to zero. There are no two node locations in the higher dimensional 
space that, after the projection in the initial space, fall in the same position because the 
components of the initial dimension remain the same. No matter the combination of the 
extra dimensions, the initial components will remain the same and that guarantees the 
bijective feature of the dimensional transformation of the domain. Consider a surface in a 
Euclidean Թଷ space, where ܺ and ܻ axes correspond to east and north respectively and ܼ 
to elevation. If the surface is sampled over a regular grid for projecting in a ܻܺ Թଶ plane, 
ܼ simply becomes zero and there is no problem in the projection because there are no two 
similar combinations of ܺ and ܻ in Թଷ. If the projection is made over the plane ܼܺ or ܻܼ 
the projection will result in non-unique projections because there are similar values of ܺ 
and ܻ for the projected planes respectively. In the case of the domains in hyper-
dimensional space the same logic is applied, as long as there is a unique vector of the 
initial space, the rest of the components will not make the projection problematic. 

6.3. Anisotropy in Original and Alternative Dimensional Spaces 
The Euclidean space is considered as an isotropic environment because the measure of 

the distances is not preferential in any direction. On the other hand, an anisotropic 
environment can be seen as a deformation of a Euclidean space in some particular 
directions. The distance between two points in this case becomes a function of these 
anisotropic directions. A simple form of anisotropy is the ellipsoidal pattern. In Թଷ the 
preferential directions are defined by the three axes of the ellipsoid. They are usually 
referred to as major, minor and vertical axes. This form of regular shape anisotropy is 
suitable to be used in conventional geostatistics because of the assumption second order 
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stationarity of the IRF  ߛሺܐሻ ൌ  ሻ. Assuming an ellipsoidal anisotropic environmentܐሺെߛ
the separation vector ܐ can be scaled by a square matrix  ۯ (Isaaks & Srivastava, 1989): 

 a = ×h A h   (6.2) 

The form of the anisotropic scaling matrix for any number of dimensions is (6.3): 
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The diagonal elements of the anisotropy matrix are the scaling factors for each 
dimension of the separation vector ܐ. The ݐ௜ factors in the anisotropy matrix ۯ scale the 
elements of the separation vector ܐ linearly, each anisotropic component of the 
separation vector ܐ௔ is  ݄௔௜ ൌ  ௜݄௜. In the case of conventional estimation/simulation theݐ
problem is finding the scaling factors of the elements of the location vectors ܝ that make 
the spatial continuity of the new scaled space be defined by the proposed semivariogram 
in its isotropic form for each of the nested structures. The anisotropic deformation of the 
distances is inversely proportional to the semivariogram anisotropic scheme. In the 
direction of major continuity the anisotropic distance has to be reduced in order to 
increase the covariance value and conversely in the direction of minor continuity. That 
is,  ݐ௜ ൌ  ௜ is the length of the anisotropic semivariogram ellipsoid axis thatݍ ௜, whereݍ/1
corresponds to dimension ݅. 

An anisotropic scheme defined in Թ௡ does not affect the extra elements of a 
separation vector ܐ in Թ௠, ݉ ׊ ൐ ݊. The anisotropic matrix can be expanded to a higher 
dimension ݉ by simply equalling the size of matrix ۯ to the new total number of 
dimensions and adding one in the diagonal extra elements. That makes the new extra 
components remain the same  ݄௔௜ ൌ 1݄௜. 

The anisotropic matrix ۯ deforms the original space in the directions of the elements 
of the ܐ vector. However, the anisotropic ellipsoid can also involve rotation in space. The 
vector ܐ can be rotated by multiplying it by a rotation matrix  (6.4) ܀. The form of the 
rotation matrix for any number of dimensions is (6.5); it rotates the plane of 
dimensions ܽ, ܾ (Aguilera & Pérez-Aguila, 2004). Notice the rotation directions are based 
on the order of the dimensions ܽ, ܾ. That is, ߠ is positive or counter-clockwise for plane 
ܽ, ܾ and negative or clockwise for plane ܾ, ܽ. The rotation matrix ܀ can be the resulting 
combination of different rotated planes. This is done by rotating vector ܐ by each of the 
different planar rotation matrices. 

 

 r = ×h R h   (6.4) 
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The rotation matrix ۯ rotates vector ܐ according to the specific rotation angles. 
However, the system is meant to be rotated rather than the vector. For rotating the system 
the vector ܐ is multiplied by the transpose of the rotation matrix (6.6). Finally, the spatial 
configuration of the anisotropic ellipsoid is integrated by multiplying the transpose of the 
rotation matrix ܀ and the anisotropic matrix (6.7) ۯ. Recall that ۯ܀ affects the vector, 
whereas ሺۯ܀ሻ் affects the system. This is consistent with the anisotropic effect in the 
separation vector ܐ in GsLib (Deutsch and Journel, 1998). There is no limit in the number 
of dimensions for accounting for anisotropy and it is easy to write programming code in 
the matrix form. 

 
 T

s = × = ×h S h R h   (6.6) 
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The following is a 2D example of accounting for anisotropy for a separation vector ܐ: 
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Notice that after rotating and deforming the system the new elements of the separation 
vector are a function of the scaling factors that correspond to each dimension ݄௔௫ ൌ
ߠ௫൫݄௫cosݐ ൅ ݄௬sinߠ൯ and  ݄௔௬ ൌ ߠ௬൫െ݄௫sinݐ ൅ ݄௬cosߠ൯. 

In practice, because of the different geologic events that formed the mineral deposit, 
the ideal scenario of linear estimator is one which accounts for locally different and of 
irregular-shape anisotropic patterns. Performing conventional estimation/simulation in 
such a complex environment would be virtually intractable. Even when a mineralized 
region has been exposed to a folding event it does not necessarily mean the anisotropic 
distances must be measured along the fold in order to get a better estimate. In such a 
situation, some approaches may consider unfolding the dimensional space of the domain. 
However, this may suggests that the unfolded domain is fairly stationary for 
estimation/simulation.  A stationary environment in a high dimensional space when 
projected in the initial dimensional space can account for these irregular anisotropic 
patterns. The extra dimensions provide the necessary customized deformations in the 
initial dimensional space and at the same time the estimated conditional distributions 
account properly for both global and local uncertainty. Let us consider nine data point 
locations placed over a regular grid (see Figure 6-11). An isotropic pattern is compared to 
three anisotropy cases that are the result of adding one extra dimension to some of the 
nine sample point locations (see Figure 6-11). The values of the maps represent the 
distances measured from the center of the map to the rest of the locations. For the first 
case the distances are measured in the 2D plane directly.  The second case corresponds to 
the sampling of data #6 which requires an extra dimension of length 5 units (see Figure 
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6-12-top right). For the third case, the previous configuration is kept and to sample data 
#1, we must assign an extra dimension of 2.5 units (see Figure 6-12-bottom left).  Finally, 
for the fourth case, the configuration of case 2 is kept and sampling data #7 requires an 
extra dimension of 1.75 (see Figure 6-12-bottom right). For the three anisotropic cases 
only one extra dimension is used to modify the initial 2D space and a triangulation 
scheme is used to transfer the influence of the extra dimensions in the domain. Notice, 
projecting from a 3D surface to a 2D plane is sufficient for getting irregular anisotropic 
patterns in 2D. Recall that the extra dimensions account for the variability that cannot be 
represented in the initial space. 

 

 
Figure 6-11: Initial configuration of nine data point locations in 2D for showing the 
effect of irregular shaped anisotropic patterns 

 
Figure 6-12: Comparison of an isotropic pattern (top left) against three cases of irregular 
shape anisotropic patterns with one sample with an extra dimension (top right), two 
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samples with extra dimension (bottom left) and three samples with extra dimension 
(bottom right) 

The irregular anisotropic patterns account for the locations in the domain where the 
local uncertainty is under-estimated. The irregular anisotropic patterns are more flexible 
than conventional regular ones. Even when they can vary locally there is still the problem 
related to the symmetry of the anisotropic pattern. Samples that are located in one side of 
the location to estimate have to have exactly the same influence as the samples on the 
opposite side. In the conventional approach the influence of the surrounding conditioning 
data cannot be customized even in presence of geologic information that supports such 
decision. The additional information that might support irregularities in the symmetric 
influence of conditioning data can be extra geologic information. Recall that considering 
the variable to model is a regionalized variable and that any additional information is 
disregarded from the modeling process unless a co-regionalization environment is 
considered. However, co-regionalization considers dependence between primary and 
secondary variables, the dependence of the variable of interest might not be direct with 
each of the secondary variables one-by-one but a relationship of the primary variable 
with a combination of the rest of the variables. In Figure 6-11 left, for 
estimating/simulating at location #5 the conventional approach considers the spatial 
continuity is only a function of the variable of interest, whereas the domain usually has 
additional features that control the continuity variable of interest. 

6.4. Comparison between Conventional and Proposed 
Approach. 

The conventional approach shares the same anisotropic pattern all along the domain as a 
result of assuming second order stationarity. As a result, the model may be unrealistic 
because the estimates capture a global uncertainty, whereas the local features remain 
averaged. However, both the conventional and the proposed approach rely on the 
assumption of multi-gaussianity and reproduces features, such as semivariogram and 
global distribution (see Figure 6-13). For comparing the experimental semivariogram 
reproduction between the conventional and the dimensional approach, in the case of the 
latter only part of the domain share the same dimensional locations, that is, the regions 
where the extra dimensions are zero. Recall that the location vectors of the nodes affected 
by the extra dimensions (see Figure 6-10) are not the same as in the original space ܻܺ. 
Therefore, the experimental semivariograms calculated in the plane ܻܺ do not consider 
such node locations. From the total of 75625 nodes in the original dimensional space 
without considering any boundaries 58331 are not affected by the dimensional approach. 
The experimental semivariograms of the realizations in the dimensional approach (see 
Figure 6-13 top-left) are supported by the 58331 node locations, whereas, the 
experimental semivariograms of the conventional approach by 75625 nodes, this is one of 
the reasons why the experimental semivariograms reproduction of the dimensional 
approach looks more variable. In the case of the verification of the global distribution 
reproduction (see Figure 6-13 bottom) all the 75625 nodes are considered because this 
verification is not dimensional dependent. 
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Figure 6-13: Experimental semivariogram and global distribution reproduction of 100 
realizations for conventional approach (left side) and dimensional approach (right side) 

The simulated nodes in the dimensional approach because of the deformation of the 
initial space reproduce non-stationary features of the semivariogram when projected in 
the initial dimension (see Figure 6-14-right). The conventional approach shows a constant 
anisotropic pattern along the domain (see Figure 6-14-left). In both cases the standard 
normal distribution is reproduced. In the conventional approach the semivariogram is 
reproduced in the initial space, however, as mentioned initially the semivariogram is not 
fully representative of the domain in the initial space and there is no reason for this. The 
approach relies on the domain being stationary in a hyper space; in that space the 
semivariogram is reproduced and the anisotropic patterns are constant. 

 

 
Figure 6-14: First realization using conventional simulation (left) and dimensional 
proposed approach (right) 
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After averaging many realizations the conditional estimated means for the 
dimensional approach also reproduce the non-stationary features as the realization maps 
and in the conventional approach the anisotropic pattern is constant (see Figure 6-15). 
Notice in the dimensional approach the data locations that were identified in the 
semivariogram analysis stage as problematic locations are not spread in the domain. The 
problematic data locations are extreme values either positive or negative. They become 
problematic when the samples that surround them are so different that the increments 
cannot be accounted by the semivariogram model, therefore the conditional distribution is 
under-estimated. 

 

 
Figure 6-15: E-type map of 100 realizations in normal score units of conventional 
approach (left) and dimensional proposed approach (right) 

The difference of the conditional means between the conventional and the 
dimensional approach for this exercise shows there is a preferential trend to constrain the 
higher values rather than lower values (see Figure 6-16). There is no condition that makes 
the mean of the distributions is centered to zero or the distribution is unbiased. It is a 
function of the occurrence of the problematic locations. The map of the differences shows 
that most of the regions constrain the high values and only in one region the influence of 
a low value sample is limited (see Figure 6-15 left).  

 

 
Figure 6-16: Map (left) and distribution (right) of difference between conventional and 
dimensional means. 
 

The conditional variances are data configuration dependent; they are almost similar 
for regular configuration patterns of the conditioning data. In the example presented the 
conditioning data is placed fairly over a regular grid, the conditional variances are also in 
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a regular pattern because of the data configuration. In the dimensional approach the 
conditional variances are larger around the problematic locations (see Figure 6-17) 

 
Figure 6-17: Local conditional variances map of 100 realizations in normal score units of 
conventional approach (left) and dimensional approach (right) 

6.5. Discussion 
The proposed approach accounts one second order non-stationary property of the domain, 
more specifically, the intrinsic hypothesis. Only the regions in the domain where the 
conditional variability are underestimated are targeted by this approach, which leaves the 
regions where the variability is over estimated invariant. The reason for this is the extra 
dimensions where they exist make the data locations more dissimilar than they are in the 
conventional approach, therefore, increasing the degree of local uncertainty. For reducing 
the variability there should exist a combination extra dimensions that when they are 
added makes the separation distances closer than in the original dimensional space, that is 
not possible using real numbers, however, the use of complex number can be considered 
which will end up making the problem almost intractable to solve. Moreover, for 
identifying locations where the local uncertainty is under-estimated it is only necessary to 
evaluate each data location using cross-validation technique. Whereas, for estimating 
locations where the local variability is over estimated not one location but many have to 
be evaluated in order to verify the same condition happens in all of them. From an 
engineering perspective, the resulting model can be seen as a pessimistic model where the 
local variability is overestimated. 

The non-stationary features are solved by using a stationary methodology. Recall that 
there is nothing special in the estimation/simulation technique. In the higher dimensional 
space the domain is assumed and solved as stationary, that is, using a 
semivariogram/covariance model and a global symmetric anisotropic pattern. The non-
stationary features are highlighted only after the higher dimensional domain is projected 
onto the original dimensional space. It is worth to mention, the assumption of 
regionalized variable tries to diminish the impact of additional physical information. 
Consider in a mineral deposit two data locations are remarkably different because some 
other geological variable or variables have also suffered also an abrupt change compared 
to the rest of the domain. In the proposed dimensional approach the extra dimensions try 
to account that ‘reason’ of outlier variability in terms of dimensions. That is, two 
locations are highly variable in the original dimensional space but not as much as variable 
in the higher dimensional space, the abrupt change in their extra dimensions tries to 
explain the high variability in the original space. The use of extra dimensions is also 
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another scenario to be modeled as the variable of interest is, there is uncertainty 
associated to the extra-dimensions. The proposed approach uses a simplistic approach 
when considers only one scenario of many. However, it is shown that the use of them 
helps to improve the prediction in terms of performance of the conditional distributions. 
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7. Conclusions 

Equation Section (Next) 
The use of conventional geostatistics in simulation is mostly aimed at long term models 
where the reproduction of global features is more important than of local features. Long 
term models are used for planning on a yearly basis. Therefore, compensating for the 
under-estimation of some regions with the over-estimation of others does not have a big 
impact in resource estimation over such a long period of time. The global assumption that 
the spatial continuity of the domain can be defined by a single semivariogram model and 
its corresponding anisotropic pattern may work properly. 

Modeling uncertainty for planning on a smaller period of time than large term mine 
plans requires making modifications to the kriging system so that it accounts for local 
patterns. Some approaches that constrain the influence of extreme values were proposed 
(Arik, 1992), (Pan & Arik, 1993), the influence of extreme values is modified so that they 
are not spread to the rest of the values that are close to the mean of the global 
distribution. The resulting model is a pessimistic version of the conventional model 
because the extreme values do not have the same effect of contributing information as the 
rest of the samples. These techniques are a modification of ordinary kriging and some of 
them are implemented in many of the mining software packages e.g. MineSight®, 
Vulcan®, etc. Because these models are conservative it is safer but not optimal to make 
mine production plans on a weekly or monthly basis. However, the restriction made to 
the extreme values may have a geologic support in practice; for instance, the high 
extreme values are usually linked to high concentrations of minerals in the form of veins, 
mineralized faults or small anomalies that are unusual in the domain. Only estimated 
models can be built using these types of approaches. 

The stationary conditions of the domain can be verified through the semivariogram. 
Trends in the mean and variance can be verified by expanding the experimental 
semivariogram expression. However, because the semivariogram is a two point statistic 
the available dataset has to be fairly representative of the domain. In presence of large 
unsampled regions in the domain the results may be misinterpreted. The condition of the 
intrinsic hypothesis of the semivariogram can be also verified by using the experimental 
semivariogram and the semivariogram model. It is necessary to assume multi-gaussianity 
if it is required to build a simulated model. Moreover, the semivariogram model is 
assumed to be a reasonable fit of the experimental semivariogram, neither optimistic nor 
pessimistic as discussed in Chapter 4. By using the semivariogram model, the analytical 
form of the distributions of the data pairs for each lag separation distance can be inferred. 
These analytical distributions are compared to the experimental distributions in order to 
find preferential patterns in the data pairs that are evidence of sub-regions with different 
spatial variability patterns. 
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In practice it is very difficult to find a valid situation where the stationarity of the 
semivariogram is valid, unless the domain was previously generated using an 
unconditional simulation. Real domains contain sub-regions with different spatial 
variability that is the result of different geologic processes. The sub-regions where spatial 
variability is under-estimated by the proposed semivariogram model can be identified in 
the domain. However, the decision to separate them into sub-domains lies with the 
geomodeler, because those sub-regions may be placed in specific areas or in the form of 
small internal sub-structures that are difficult to separate due to scale. 

When the internal highly variable structures in the domain cannot be separated they 
can be modeled with the use of extra dimensions. These extra dimensions correct the 
distances of the samples in the internal structures to the rest of the domain, so that, in the 
high dimensional space they are more dissimilar. This correction is based on the 
consistency of the covariance model. In the original dimensional space the sub-set of 
samples that belong to the internal structures inflate the experimental semivariogram 
because the increments with respect to the rest of the samples are noticeably larger than 
the increments of the samples that belong to the majority of the domain. Moreover, when 
the samples of the internal structures are used for estimation they tend to give erroneous 
estimates. In practice, the goodness of the estimates can be verified by using cross 
validation and confidence limits. The use of the samples of the internal structures in 
estimation may make the prediction of the true value with respect to its conditional 
distribution inaccurate; on the other hand, if the influence of those samples is reduced the 
accuracy increases. The influence is controlled by the extra dimensions. 

The proposed approach is based on the correction of the highly variable sub-regions 
that are not accounted by the conventional model. Recall the semivariogram model 
represents the average of the spatial variability of the domain. As an average there are 
sub-regions where spatial variability is underestimated as well as others that are 
overestimated. In the sub-regions where spatial variability is underestimated the 
dimensional approach corrects such variability. However, the sub-regions where spatial 
variability is overestimated are not modified. This makes the resulting model a sort of 
pessimistic model in terms of spatial variability. Reality may be expected to be less 
variable than the final model. This may be considered a good scenario from the economic 
analysis perspective, because the range of overestimated spatial variability gives a 
tolerance when the model is analyzed. 

The extra dimensions can be calculated in many different ways. In this thesis the 
proposed algorithm minimizes the negative impact in the accuracy of the conditional 
distributions when calculating the extra dimensions of the samples in the internal 
structures and at the same time to use the smallest number of extra dimensions as 
possible. Other targets can be implemented in the algorithm such as maximizing accuracy 
without taking care of the number of extra dimensions. There is no exact solution for 
getting the extra dimensions. However, the goal is to fix the influence of the sample 
locations that belong to internal structures in the domain. Even after getting a set of extra 
dimensions that improves the accuracy of the estimation in a cross-validation basis, 
transferring such information to the rest of the domain for modeling uncertainty ends up 
in additional modeling problems. In this thesis a unique scenario is considered for 
simplicity. 

In the proposed approach there are few problems for modeling in higher dimensional 
spaces and then projecting the results to the original dimensional space. The main item to 
take into account is to select a covariance model that is positive definite in such high 
dimensional space. In the high dimensional space the modeling is carried out under the 
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conventional approach, however, after projecting the results to the original space the 
regular shape anisotropic patterns are transformed to an irregular shape which may be 
geologically more realistic. 

7.1. Contributions 
A set of tools based on the experimental semivariogram that are used for verifying the 
impact of mean and variance trends in the domain are proposed in this thesis (see Chapter 
3). The assumption of multi-gaussianity is not a requisite. They can be used for 
evaluating the sub-domaining process and verifying whether the techniques for trend 
removal modeling account completely for the effect of trends in the domain. These set of 
tools can be considered as complementary in the data analysis stage prior to modeling the 
mineral deposit. However, it requires the available dataset to be fairly sampled over the 
domain. 

The stationary assumption of the semivariogram can be verified by using the 
methodology proposed in Chapter 4. The proposed approach requires setting up 
confidence limits and a proposed semivariogram model. This makes the approach a 
subjective interpretation of the results. Two examples are presented in Chapter 4 and 
Chapter 6 respectively where highly variable sub-regions are identified in the domain. 
Basically, this approach identifies groups of data samples that may be problematic during 
the modeling of the domain. 

Highly variable regions in a domain make the stationary assumption of the 
semivariogram not valid for the domain. In practice such condition is usually omitted. 
The proposed approach in Chapter 5 moves the dataset from its initial dimensional space 
to a high dimensional space where the semivariogram accounts for all the sampled 
locations in the domain. However, this approach requires the use of confidence limits 
which requires a subjective interpretation of the results.  

A novel approach for building a simulated model based on the pseudo-stationary high-
dimensional dataset is proposed in Chapter 6. The realizations are simulated in the same 
dimensional space of the input dataset and then they are projected to the initial 
dimensional space. Once the projection is carried out non-regular anisotropic patterns can 
be found. Local structural features captured by the dataset are reproduced in the domain 
without compromising the validity of the multi-gaussian assumption. For transferring the 
domain to the dimensional space of the conditioning dataset a triangulation approach is 
used for simplicity. Alternative techniques that account for uncertainty of the extra 
dimensions are recommended to be used instead. 

7.2. Future Work 
By adding one extra dimension to a sample location makes the influence of it in the 
modeling process decrease because the separation distance is incremented. At the sample 
location in a cross-validation analysis the conditional distribution is more uncertain. This 
way, the locations where the local uncertainty is underestimated by the conventional 
approach is fixed. On the other hand, in order to reduce the uncertainty of the conditional 
distribution, the distances after adding the extra dimension should be reduced. This 
happens when the extra dimension is a complex number. The use of complex number in 
the dimensional approach can be analyzed in order to be able to expand the spatial 
continuity of the covariance model. Aspects of positive definite conditions under such 
environments can be studied in order to ensure the consistency of the approach. It is 
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worth to mention that modifying the initial dimensions may end up being impossible to 
project the results into the original space. 

The proposed algorithm uses only one extra dimension per location of the 
conditioning data, this is done for simplicity. The use of more than one extra element in 
the position vector can be studied in order to make more flexible to deal with the negative 
impact in the accuracy of the surrounding samples. Solving the problem by using more 
than one extra element may increase significantly the complexity of the proposed 
algorithm. 

In this thesis the transference of the extra dimensions to the domain has been carried 
out using a triangulation algorithm and considering only one scenario. Uncertainty 
associated to the transference of the extra dimensions at the unsampled locations can be 
studied. However, it is not recommended any geostatistical method because the extra 
dimensions are located in the domain following particular structures, that is, the 
variability of the extra dimensions only happen at specific regions in the domain. The use 
of a geostatistical approach may transfer the localized variability of the elements all over 
the domain because of the assumption of stationarity that is required. It is recommended 
to study a object based methodology in order to give more geologic realism to the 
identified geologic structures in the domain. 
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Appendix A 

Program Details 

Equation Chapter (Next) Section 1 
Individual programs were written for Chapters 3, 4, 5 and 6. Visual Basic .net was used 
for writing programs in GsLib format for Chapters 3 and 5. The algorithm proposed in 
Chapter 4 was written in MATLAB and the GsLib program SGSim was modified for 
simulating the results in Chapter 6. 

 
A.1. Program for trend detection via experimental semivariogram 
calculation 

The program ExpVarM1 calculates directional experimental semivariograms in 
specified directions using expression (3.7). The output file is an ASCII file, formatted 
according to the output format option in its parameter file (see Figure A-1). The output 
file contains information of: 

• Lag distance 
• Mean of the sub-dataset at the head of the separation vector 
• Mean of the sub-dataset at the tail of the separation vector 
• Standard deviation of the sub-dataset at the head of the separation vector 
• Standard deviation of the sub-dataset at the tail of the separation vector 
• Covariance between the sub-datasets at the head and tail of the separation 

vector 
• Experimental semivariogram value 

 
Figure A-1: Parameters of ExpVarM1 

The parameter file consists of: 
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• outopt: output file formatting option. (1) GsLib format where each of the 
calculated fields correspond to a column, one extra column is added which 
corresponds to the experimental semivariogram number, (2) table format 
where the first row contains headers and each of the calculated fields are 
written in columns, one extra column is added to identify the experimental 
semivariogram number. 

• inpfile: input data file in GsLib format 
• outfile: output data file according to outopt option 
• rptfile: program execution report file 
• colx, coly, colz: column ids in the input data file for x, y and z coordinates 
• colv: column id for the variable to calculate the experimental semivariogram 
• ndir: number of directions to calculate the experimental semivariogram 
• azmt, hzag, hzbw, dipa, vtag, vtbw, lagh, lagt, nlag: azimuth, horizontal 

angular tolerance, horizontal bandwidth, dip angle, vertical angular tolerance, 
vertical bandwidth, lag separation distance, lag tolerance, and number of lags 
to calculate. It is the same format to define the directional semivariograms in 
GsLib format. 

 

A.2. MATLAB scripts for experimental semivariogram cleaning 

The experimental semivariogram cleaning algorithm was written in MATLAB code. 
The code was extracted from a larger script file in three parts (see Figure A-2, Figure A-3 
Figure A-4). The code uses the statistical toolbox of MATLAB to calculate the 
confidence limits of a chi-square distribution. However, it is not difficult to rewrite the 
code in a standalone GsLib format program, an extra module that calculates the 
probabilities and corresponding values from an analytical function of a chi-square 
distribution has to be added. The part of the code presented is for solving a 2D dataset. In 
Chapter 4 a 1D example is presented, it was solved using a simplified version of the 2D 
code. There is no problem to adapt the code for a 3D dataset. 

The first part of the code (see Figure A-2) consists of reading a GsLib format input 
file and setting up the upper confidence limit for a given probability (line 9). 

 

 
Figure A-2: First part of MATLAB experimental semivariogram cleaning script 
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In the second part (see Figure A-3) the parameters of the proposed semivariogram 
model are configured (lines 42 - 45). For optimizing the code, the maximum number of 
data pairs is calculated for initializing the data pair arrays (lines 48 - 58), after that the 
necessary arrays are initialized (lines 62 - 70). 

 

 
Figure A-3: Second part of MATLAB experimental semivariogram cleaning script 

In the third part of the code (see Figure A-4), the values of the semivariogram data 
pairs are calculated and stored (line 79), as well as the corresponding separation vector 
(lines 81 - 83). Each data pair is compared to the control limit surface calculated from the 
semivariogram model and the defined upper confidence limits (lines 98 - 103). The 
semivariogram data pairs that fall outside the control limit are flagged as 1 and the data 
pairs that do not as 0.  
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Figure A-4: Third part of MATLAB experimental semivariogram cleaning script 

 
A.3. Program for conditional distribution fitting 

The program for calculating the extra dimensions of a dataset in normal score units 
that behave more stationary is Covariance_FittingM1. The output file of the program 
consists of the initial data file plus the extra dimensions in GsLib format. In the program 
the extra dimension are approximated using intervals, they are specified in the parameter 
file (see Figure A-5). 

 

 
Figure A-5: Parameters of Covariance_FittingM1 

The parameter file is explained below: 
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• inpfile: input data file in GsLib format 
• outfile: output data file according to outopt option 
• rptfile: program execution report file 
• colx, coly, colz: column ids in the input data file for x, y and z coordinates 
• colv: column id for the variable in normal score units to calculate the 

experimental semivariogram 
• pint: is the confidence interval in decimal notation 
• dinc: extra dimensions distance increment. The extra dimension increases in 

these intervals. 
• nvar, neff: are the number of semivariogram structures and nugget effect of 

the semivariogram model 
• vrtp, incr, ang1, ang2, ang3: are semivariogram type, contribution and 

angular definitions of traditional GsLib programs 
• rng1, rng2, rng3: ranges of major, minor and vertical direction 

A.4. Program for sequential Gaussian simulation using high 
dimensional data 

The GsLib program SGSim has been modified in order to read the extra dimensional 
maps and the extra dimensions of the conditioning data. Four extra columns were added 
to the parameter file (see Figure A-6). The output file consists of a gridded configuration 
of nodes that represent the domain. 

The four extra lines in the parameter file (lines 7 - 10) are explained below: 

• nxtr: number of extra dimensions in the conditioning dataset calculated by 
Covariance_FittingM1 

• xtf(i): i-th extra dimension column id in the input data file 
• xtrfile: gridded map of the domain with the extra dimensions, there should 

be one column for each extra dimension 
• xtd(i): i-th extra dimension column id in the map with extra dimensions of 

the domain 
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Figure A-6: Parameters of SGSIM_MD 

 

 


