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Abstract

Approximate adders have been considered as a potential alternative for error-tolerant applications

to trade off some accuracy for gains in other circuit-based metrics, such as power, area and delay.

Existing approximate adder designs have shown substantial advantages in improving many of these

operational features. However, the error characteristics of the approximate adders still remain an

issue that is not very well understood. A simulation-based method requires both programming

effort and time-consuming simulations for evaluating the effect of errors. This method becomes

particularly expensive when dealing with various sizes and types of approximate adders. As the

first contribution of this thesis, a framework based on analytical models is proposed for evaluating

the error characteristics of approximate adders. Error features such as the error rate and the

mean error distance are obtained using this framework without developing functional models of the

approximate adders for time-consuming simulation. As an example, the estimate of peak signal-

to-noise ratios (PSNRs) in image processing is considered to show the potential application of

the proposed analysis. This analytical framework provides an efficient method to evaluate various

designs of approximate adders for meeting different figures of merit in error-tolerant applications.

In addition to adders, multipliers are also key arithmetic circuits in many error-tolerant applica-

tions such as digital signal processing (DSP). As the second contribution of this dissertation, a novel

approximate multiplier with a lower power consumption and a shorter critical path than traditional

(accurate) multipliers is proposed for high-performance DSP applications. This multiplier leverages

a newly designed approximate adder that limits its carry propagation to the nearest neighbors for

fast partial product accumulation. Different levels of accuracy can be achieved through a config-

urable error recovery by using different error reduction strategies. These designs use OR gates and

the proposed approximate adder for two configurations of the multiplier: approximate multiplier 1

(AM1) and approximate multiplier 2 (AM2). Both AM1 and AM2 have a low mean error distance,

i.e., most of the errors are not significant in magnitude. Compared to the Wallace multiplier, a

16× 16 bit AM1 implemented in a 28-nm CMOS process shows a reduction in delay and power of

20% and up to 69%, respectively. AM2 has a better accuracy compared to AM1 but with a longer

delay and higher power. Image processing applications such as image sharpening and smoothing are
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used to show the quality of the approximate multipliers in error-tolerant applications. It is shown

that by utilizing an appropriate error recovery, the proposed approximate multipliers achieve sim-

ilar processing accuracy as traditional accurate multipliers, but with significant improvements in

power and performance.

A comparative evaluation of existing approximate multipliers, including the proposed ones,

is also presented in this thesis. Monte Carlo simulations are performed to evaluate the error

characteristics of these multipliers. Circuit simulations are further run to compare the delay, area

and power consumption of these multipliers. The proposed approximate multipliers have high

accuracies and lowest power-delay-products among all the designs, while the other designs have at

least one major shortcoming in terms of error and/or circuit characteristics. Therefore the proposed

designs achieve the best tradeoff between accuracy, delay and power.
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Chapter 1

Introduction

1.1 Background and Motivation

As the physical dimensions of CMOS circuits are scaled down to a few tens of nanometers, it

has been increasingly difficult to improve circuit performance and/or to enhance power efficiency.

Considering the explosive growth of portable devices such as smart phones, improving the power

efficiency of digital circuits becomes increasingly important. Approximate computing, in both

software and hardware, has been considered as a new approach to saving area and power, as well

as increasing performance, however at the cost of a certain loss in accuracy.

While computation errors are not desirable, applications such as multi-media (image, audio and

video) processing, wireless communications, recognition, and mining are tolerant to certain errors.

Due to perceptual limitations of human beings, some errors do not make an obvious difference in

applications such as video that are dedicated for human sensing. In many digital signal process-

ing (DSP) systems, inputs from the real world are noisy, so there is no strict correctness in these

systems. There are also many applications that are based on statistical/probabilistic computation,

such as some clustering and recognition algorithms used in processing data. Due to the statisti-

cal/probabilistic nature of these applications, small errors in the computation will not impose a

noticeable performance degradation. Therefore, approximate computing is applicable in various

applications that can tolerate the loss of certain accuracy [37].

Research on approximate computing has been pursued in primarily two directions: software

and hardware. Sampson et al. developed the EnerJ language, an extension to Java, that supports

approximate data types for low-power computation [36]. In [5], an approximate squaring circuit is

proposed. A new logic synthesis approach is proposed to maximally reduce the area of a synthesized

circuit for a given error rate threshold in [9]. In [4], the so-called “scalable effort hardware design”

approach is proposed to implement high efficiency hardware solutions for error resilient applications.

There lie huge opportunities for digital computing systems to embrace a significant improvement

in computing speed and power efficiency by exploiting approximate computing methodologies in

both software and hardware. To effectively implement an approximate computing system, hardware

that supports approximate operation is in urgent need. Hence, research on basic but key arithmetic

circuits is essential toward building an approximate computing hardware platform or a general
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purpose processor that supports approximate operations. This dissertation is focused on the design

and analysis of two such arithmetic circuits, namely, adders and multipliers.

1.2 Current Research on Approximate Arithmetic Circuits

Logic circuits for binary arithmetic (referred to as arithmetic circuits throughout this thesis) have

been studied for many decades [32]. By encoding a number into a binary format, arithmetic circuits

perform arithmetic operations on the binary numbers, such as addition/subtraction, multiplication

and division. Arithmetic circuits such as adders and multipliers are key components in an arithmetic

logic unit (ALU), which is a fundamental building block in microprocessors. The speed and power

consumption of the arithmetic circuits highly influence the performance of a processor. High-

performance arithmetic circuits such as carry look ahead adders (CLAs) andWallace tree multipliers

have been proposed. However, there are theoretical bounds for the complexity of the critical

path delay of arithmetic operations [6]. Limited by these bounds, traditional arithmetic circuits

that perform exact operations can hardly be improved. Approximate arithmetic, which allows a

certain loss of accuracy, is able to further reduce the critical path delay. Since most approximate

designs leverage simplified logic, they tend to have less power consumption and area overhead as

well. Approximate computing has thus become promising for overcoming power, area and delay

constraints in VLSI design, albeit at the expense of a loss in computational accuracy [11].

Generally, there are two methodologies for reducing accuracy by approximations. The first

methodology uses a voltage-over-scaling (VOS) technique for CMOS circuits to save power, while

it also introduces errors into the circuit [12,24,29]. The second methodology is based on redesigning

a logic circuit into an approximate version. While the VOS technique is applicable to most circuits

for error-tolerant applications, an approximate redesign requires us to consider the functionalities

of different logic circuits.

As one of the simplest, but key components of arithmetic circuits, adders have attracted ex-

tensive interest for redesign and implementation as approximate schemes. Approximate adders

have been proposed by using a reduced number of transistors [10, 41] and by truncating the carry

propagation chain for a speculation-based operation [6,16,25,38,43]. The approximate speculative

designs achieve a better performance in terms of area, power and delay compared to conventional

adders. New metrics and simulation-based approaches have been proposed to model and evaluate

approximate adders [15,20,28,37]. Monte Carlo or an exhaustive simulation has been employed to

acquire data for analysis. This class of approaches are however time-consuming and require building

functional models of the approximate designs. To improve efficiency, a mathematical characteriza-

tion of the arithmetic accuracy of approximate adders is then required for a better understanding of

the design prior to a simulation-based evaluation. In addition to generic metrics (such as the error

rate), application specific measures (ASMs) such as the peak signal-to-noise ratio (PSNR) for image

processing are well suited in practice. Without an approach to modeling the relationship between

the generic metrics and the ASMs, extensive programming and simulation efforts are required to

obtain the ASMs for assessing the impact and the potential of approximate computing in different
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applications. Therefore, an effective approach to obtain or estimate the ASMs from generic error

metrics is needed; however, there appear to be no formal methodologies or analytical approaches

for these purposes in the technical literature.

Compared to approximate adders, there has been relatively less effort in the design of approxi-

mate multipliers. A multiplier usually consists of three stages: partial product generation, partial

product accumulation and a carry propagation adder (CPA) at the final stage [7]. [25] considers

using approximate adders to generate the radix-8 Booth encoding 3X with error reduction. In

[17], approximate partial products are computed using inaccurate 2 × 2 multiplier blocks, while

accurate adders are used in an adder tree to accumulate the approximate partial products. [15]

briefly discusses the use of approximate speculative adders for the final stage addition in a multi-

plier. The error tolerant multiplier (ETM) of [18] is based on the partition of a multiplier into an

accurate multiplication part for the Most-Significant-Bits (MSBs) and a non-multiplication part

for the Least-Significant-Bits (LSBs).

1.3 Contributions of this Thesis

In this thesis, an analytical framework for evaluating approximate adders, a novel approximate

multiplier design and a comparison of approximate multipliers are presented.

• A mathematical characterization of the arithmetic accuracy (i.e., the error rate (ER) and

mean error distance (MED)) of approximate adders is first presented. The revealed error

characteristics provide insights into the quality of an appropriate adder for achieving a desired

operational accuracy. In addition to analyzing generic metrics such as error rate, the peak

signal to noise ratio (PSNR), as an example of application specific metrics (ASMs), is also

analyzed as another important contribution of this framework. A model is presented for

estimating the PSNR from the MED obtained from the proposed framework. Experimental

results show that the estimated PSNRs are very close to the PSNRs obtained by simulation.

The utilization of the proposed framework to PSNR estimate provides an analytical approach

for assessing and designing an image processing system based on approximate adders.

• This thesis also contributes to the design of approximate arithmetic circuits by proposing

a novel low-power high-speed approximate multiplier. This novel approximate multiplier

design is based on a simple, yet fast approximate adder. This newly designed adder can

process data in parallel by cutting the carry propagation chain (and thus, introducing an

error). It has a critical path delay that is even shorter than a conventional one-bit full

adder. Albeit having a high error rate, this adder simultaneously computes the sum and

generates an error signal; this feature is employed to reduce the error in the final result of

the multiplier. In the proposed approximate multiplier, a simple tree of the approximate

adders is used for partial product accumulation and the error signals are used to compensate

the error to obtain better accuracy as well as a reduced circuit complexity. The proposed

multiplier can operate in either an approximate or accurate mode; in the approximate mode,
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it can be configured to be Approximate Multiplier 1 (AM1) and Approximate Multiplier 2

(AM2) based on different error recovery methods. Different levels of error recovery can also

be achieved by using a different number of MSBs for error recovery in both AM1 and AM2.

Compared to the traditional (exact) Wallace tree, the proposed multipliers have significantly

lower power and shorter critical paths. Functional and circuit simulations are performed to

evaluate the performance of the multipliers. Image sharpening and smoothing are considered

as approximate multiplication-based DSP applications; experimental results indicate that the

proposed approximate multipliers achieve a high performance in these error-tolerant image

processing applications.

• As an increasing number of approximate multiplier designs are found in the literature, a com-

parative study is performed to evaluate these designs, including the proposed ones. Functional

models of these designs are developed and Monte Carlo simulations using these models are

performed to evaluate the error characteristics. Gate level models were also developed in

VHDL and circuit measures (delay, area and power) are obtained using Synopsys Design Vi-

sion based on a 65-nm process. Comparisons of the error and circuit characteristics provide

unique insights into the specific features of each multiplier design.

1.4 Outline of this Thesis

The outline of the remainder of the thesis is as follows. Chapter 2 presents the related work in both

approximate adder and multiplier design. In chapter 3, an analytical framework that analyzes the

error characteristics of three typical approximate adder designs is discussed. Chapter 4 presents

the low-power and high-performance multiplier designs. A comparison of existing approximate

multiplier designs is presented in chapter 5. Chapter 6 concludes the dissertation.
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Chapter 2

Review of Approximate Adders and
Multipliers

Arithmetic circuits (e.g., adders) are basic components of a digital processor. This chapter reviews

existing approximate adder and multiplier designs.

2.1 Approximate Adders

The Speculative and Almost Correct Adder (ACA)

The so-called almost correct adder (ACA) [38] is based on the speculative adder design in [25]. The

ACA utilizes insufficient information, i.e., k LSBs for predicting the sum of each bit in an n-bit

adder (n > k). The same illustration (Fig. 2.1) as in [28] is used for ACA (and ESA in the following

subsection). In Fig. 2.1, four bits (i.e., k = 4) are used to calculate each bit in the sum of an n-bit

adder. The identical vertical rectangular blocks on the top denote the inputs, while the horizontal

rectangles under them show the carry propagation paths for each sum bit. This design is based

on the observation that the carry propagation chain is usually shorter than n, i.e., in practice, the

truncation of the chain up to some length has a very low probability to be erroneous.

The Equal Segmentation Adder (ESA)

A dynamic segmentation and error compensation (DSEC) scheme is presented in [29] for an ap-

proximate adder design. This approximate adder consists of several sub-adders of different sizes

divided from an n-bit adder; each of the sub-adders operates in parallel and has a truncated carry

input. For convenience, but with no loss in correctness, sub-adders of equal size are considered in

this thesis. Moreover the error compensation part [29] is neglected because the focus of this thesis

is on analyzing the approximate operation. Thus, a simplified DSEC adder referred to as an equal

segmentation adder (ESA) is analyzed in this thesis (Fig. 2.2).
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Figure 2.1: The almost correct adder. n: the adder size; k: the maximum carry chain length.

Figure 2.2: The equal segmentation adder. n: the adder size; k: the maximum carry chain length;
l: size of the first sub-adder (l ≤ k).

The Error-Tolerant Adder Type II (ETAII)

ETAII is also based on the truncation of the carry propagation chain and the segmentation of a

full-sized adder [43]. Compared to ESA, the predicted carry input for each segmented k-bit sub-

adder (or the sum generator in Fig. 2.3) is generated by k LSBs. ETAII has an improved accuracy

compared to ESA because it uses more information to predict the carry when the same k is used.

In addition to ETAII, several other Error Tolerant Adders (ETAs) were proposed by Zhu et al.

[42, 44, 45].

The Speculative Carry Select Adder (SCSA)

A theoretical bound for the complexity of the critical path delay of an adder is O log(n), where

n is the word length of the adder [6]. However, the so-called speculative carry selection addition
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Figure 2.3: Block Diagram of error-tolerant adder type II. n: the adder size; k: half of the maximum
carry chain length

Figure 2.4: The speculative carry selection adder. n: the adder size; k: the maximum carry chain
length.

(SCSA) [6] is able to achieve a sub-logarithmic delay by neglecting rare inputs that activate the

critical path. In SCSA, an n-bit adder is first divided into
⌈
n
k

⌉
sub-adders (also known as “window

adders”); each sub-adder consists of two k-bit adders: adder0 and adder1 (Fig. 2.4). The only

difference between the two k-bit adders is the carry input; the carry of adder0 is “0” while it is “1”

for adder1. The output of the ith sub-adder is selected from adder0 and adder1 based on the carry

out signal generated by the (i−1)th sub-adder. The carry out of each sub-adder is generated based

on the k-bit in the sub-adder rather than all previous bits. Therefore, the carry selection process

is still approximate and faster than a traditional carry selection scheme. Even though SCSA and

ETAII have different circuit implementations, they share a similar functionality if their sub-adders

have the same length. SCSA and ETAII generate the same carry signal for each sub-adder (or the

Sum Generator in ETAII) but they use different circuit implementations.
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Figure 2.5: Lower-Part-OR Adder (LOA) [27]

The Lower-Part-OR Adder (LOA)

LOA [27] divides an n-bit adder to an (n − l)-bit more significant sub-adder and an l-bit less

significant sub-adder. Since the l-bit sub-adder is less significant, its inputs are simply processed

by applying OR gates to each bit, while the (n − l)-bit more significant sub-adder is an accurate

adder. An extra AND gate is used to generate the carry-in signal for the more significant sub-adder

by ANDing the most significant bits in the inputs of the less significant sub-adder.

Accuracy-Configurable Approximate Adder

Kahng and Kang [16] proposes an accuracy-configurable approximate adder. As accuracy can be

configured during runtime by changing the circuit structure, a better tradeoff of accuracy versus

performance and power can be achieved.

The Dithering Adder

The dithering adder [28] starts by dividing a multiple-bit adder into two sub-adders, and then uses

a “Dither Control” signal to configure an upper or lower bound of the sum, resulting in a smaller

overall error variance.

2.2 Approximate Multipliers

Approximate multiplier designs mainly use three approximation approaches: i) approximation in

generating the partial products, ii) applying truncation in the partial product tree, and iii) using

approximate adders and/or compressors to accumulate the partial products.
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(a) (b)

Figure 2.6: (a) K-Map for the 2x2 underdesigned multiplier block and (b) a 4x4 multiplier built on
2x2 blocks [17]

2.2.1 Approximation in Generating Partial Products

The Underdesigned Multiplier (UDM)

[17] proposes an approximate 2x2 multiplier block by altering one entry in the K-Map of a 2x2

multiplier. Based on the 2x2 block, larger underdesigned multipliers (UDMs) can be built (Fig.

2.6). This multiplier design introduces error in generating partial products while the adder tree

remains accurate.

2.2.2 Approximation in the Partial Product Tree

Fixed-Width Multipliers

[34] presented an error compensation method for a modified Booth fixed-width multiplier, where

quantization error is compensated using Booth encoder outputs. Another high-accuracy error

compensation circuit for the fixed-width modified Booth multiplier was presented in [39]. This

error compensation method significantly reduces the mean and mean-square errors by making the

errors symmetric as well as centralizing error distribution in zero errors. Even though the authors

did not explicitly name their designs as “approximate,” these two fixed-width multipliers can be

considered as approximate designs.

Brocken-Array Multiplier (BAM) and Broken-Booth Multiplier (BBM)

A bio-inspired imprecise multiplier referred to as the Broken-Array Multiplier (BAM) is proposed

in [27]. BAM operates by omitting certain lines of carry-save adder cells in the carry-save adder

tree both horizontally and vertically (Fig. 2.7).

Based on BAM, a Broken-Booth Multiplier (BBM) was presented in [8]. Compared to BAM,

BBM uses modified Booth algorithm to generate partial products and only omits carry-save adders

to the right of a vertical line. According to [8], BBM has a smaller power-delay-product (PDP)

than BAM when they have the same mean squared error (MSE).
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Figure 2.7: Structure of the Broken-Array Multiplier (BAM) with 4 vertical lines and 2 horizontal
lines omitted [27]

Figure 2.8: Architecture of a 16-bit Error-Tolerant Multiplier (ETM) [18]

Error-Tolerant Multiplier (ETM)

The Error-Tolerant Multiplier (ETM) [18] is divided into a multiplication part for the MSBs and

a non-multiplication part for the LSBs, a control block is used to deal with two cases: i) if the

product of the MSBs is zero, then a standard (accurate) multiplier is used to process the LSBs,

and ii) if the product of the MSBs is non-zero, a standard multiplier is used to multiply the MSBs

while a simple approximate multiplier is used to process the LSBs.

Approximate Wallace Tree Multiplier (AWTM)

A power and area-efficient AWTM is based on a bit-width aware approximate multiplication algo-

rithm and a carry-in prediction method [1]. The architecture of this design is shown in Fig. 2.9,

where the multiplier AHXH is made accurate while the other three multipliers are approximate.
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Figure 2.9: Architecture of an Approximate Wallace Tree Multiplier (AWTM) [1]

2.2.3 Using Approximate Compressors in the Partial Product Tree

In [26], a new approximate (4:2) compressor is used in a bottom-up tree topology to implement

a high-speed, area-efficient and power-aware approximate multiplier. [21] proposed an inaccurate

4-bit Wallace multiplier based on a newly designed (4:2) approximate compressor. The inaccurate

4-bit multiplier is then used to build larger multipliers with error detection and correction circuits.

This multiplier is referred to as Inaccurate Compressor based Multiplier (ICM) in this thesis. Two

approximate (4:2) compressor designs are presented in [30] and then these compressors are used in

a Dadda multiplier with four different schemes.
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Chapter 3

An Analytical Framework for
Evaluating the Error Characteristics
of Approximate Adders

In this chapter, an analytical framework is presented for assessing the arithmetic accuracy, i.e., the

error rate (ER) and mean error distance (MED), of approximate adders. These results are then

used to estimate the PSNR in image processing. Three types of approximate adders are considered

and their error features are compared using the proposed analysis.

The results of this chapter have been published in [22]. The organization of this chapter is as

follows. Section 3.1 describes the analysis for modeling the error characteristics of the approximate

adders. Discussion follows in Section 3.2. Section 3.3 investigates the PSNR estimate in image

processing. Conclusions are given in section 3.4.

3.1 Error Analysis

The adders to be analyzed in this chapter are ESA, ACA, and ETAII, which have been introduced

in section 2.1. For establishing the error characteristics, adders with the same functionality are

considered to be the same type. For example, an ETAII and a SCSA with the same k and n values

generate the same output for the same inputs. The accuracy-configurable approximate adder

proposed in [16] can adjust the accuracy during runtime. For a given accuracy, the approximate

configuration of the adder performs a similar function as ETAII. Thus, they have the same error

characteristics. However, characteristics related to a circuit implementation such as delay and

power are not necessarily the same. Some of the approximate adders also have an error correction

circuit that permits an additional accurate operation mode; only the approximate operation of each

adder is considered in this chapter.
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3.1.1 Preliminaries

Metrics

The error distance (ED) and the mean error distance (MED) are proposed in [20] to evaluate the

arithmetic performance of approximate circuits. For an n-bit approximate adder, the ED is defined

as the absolute value of the difference between the approximate and accurate sums, i.e.,

ED = |S′ − S|, (3.1)

where S
′
is the sum of the approximate adder and S is the sum of an accurate adder for a given

input combination. The MED is defined as the average ED for a given set of input vectors, i.e.,

MED = E[ED] =

SMAX∑
i=0

iP (i), (3.2)

where SMAX is the maximum output of an n-bit adder (i.e., 2n+1−1) and P (i) is the probability of

ED = i. The error rate (ER) is defined as the percentage of erroneous outputs among all outputs

[3], i.e.,

ER =

SMAX∑
i=1

P (i). (3.3)

The above metrics (ER and MED) are of interest for evaluating the arithmetic performance of

approximate adders. In the following section, an analytical method is presented to calculate these

metrics for different types of adders.

Notation

The notation used in the error analysis throughout this chapter is introduced next. We consider an

n-bit approximate adder with inputs A,B and C0, and an output S. Ai, Bi, Si are the corresponding

input and output bits at the ith position. Ci is the carry to be added to the ith bit. Let pi =

P (Ci = 1) = P (Ai−1Bi−1 = 1) + P (Ai−1 ⊕ Bi−1 = 1, Ci−1 = 1), for uniformly-distributed inputs,

pi =
1
4 + 1

2pi−1, which leads to

pi =
1

2
+

1

2i
(p0 − 1

2
), (3.4)

where p0 is the probability that the initial carry in bit is 1. Assume p0 = 0, then

pi =
1

2
(1− 1

2i
). (3.5)

Let X̄i and X̃i denote the events that the ith approximate sum bit is the same as or different

from the ith exact sum bit, respectively, i.e., X̄i = {Si = S
′
i}, X̃i = {Si �= S

′
i}. An X vector

consisting of X̄i’s or X̃i’s is used to denote a set of outputs of the approximate adder compared to

the accurate one. For example, for a 4-bit approximate adder, {X̄3X̄2X̃1} denotes a set of outputs

in which S1 is incorrect, both S2 and S3 are correct and S0 could be either correct or incorrect.
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Figure 3.1: Sub error set Πi in ACA

3.1.2 Error Characteristics of the Almost Correct Adder (ACA)

A universal error set is said to be formed by all possible errors of the ACA. To calculate the

MED of an n-bit ACA, this error set is divided into n disjoint subsets and then the MED is

calculated for each subset. The universal error set, denoted by Π, is divided into the subsets of

Πi(i = 0, 1, ..., n− 1), i.e.,

Π = ∪Πi, (3.6)

where Πi = {X̄n−1, X̄n−2, ..., X̃i}. The errors in Πi are those whose ith bit is erroneous, while the

more significant bits are correct and the less significant bits are “don’t cares”, i.e., they can be

either correct or erroneous, as shown in Fig. 3.1. Based on the error set division, the mean error

distance of the approximate adder is calculated as:

MED =
n−1∑
i=0

E[|ei|], (3.7)

where E[|ei|] is the mean error distance of the subset Πi.

In the subset Πi, the errors in the ith bit (i.e., ±2i) are dominant. Moreover, some of the errors

in the lower bits can cancel each other. Therefore, the errors in Πi have on average a magnitude

of approximately 2i; so the MED of Πi is calculated as

E[|ei|] ≈ 2iqi, (3.8)

where qi is the probability that the error fall in Πi. The total mean error distance is then given by

MED =

n−1∑
i=0

2iqi. (3.9)

The error rate of the ACA is given by

ER =

n−1∑
i=0

qi. (3.10)

Next the calculation of qi is presented. Let P̄l be the probability that l consecutive bits in the

approximate sum are correct (Fig. 3.2(a)) and P̃l be the probability that l − 1 consecutive bits in

the approximate sum are correct, but the next lower bit is erroneous (Fig. 3.2(b)), i.e.,

P̄l = P (X̄N , X̄N−1, ..., X̄N−l+2, X̄N−l+1), (3.11)
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(a)

(b)

Figure 3.2: (a) P̄l, (b) P̃l.

P̃l = P (X̄N , X̄N−1, ..., X̄N−l+2, X̃N−l+1), (3.12)

Furthermore, let Q̄l denote the conditional probability that one approximate sum bit is correct

given that l − 1 consecutive lower bits in the approximate sum are correct, and let Q̃l denote the

conditional probability that one approximate sum bit is correct given that l − 2 consecutive lower

bits in the approximate sum are correct but the next lower bit is erroneous, i.e.,

Q̄l = P (X̄N |X̄N−1, ..., X̄N−l+2, X̄N−l+1), (3.13)

Q̃l = P (X̄N |X̄N−1, ..., X̄N−l+2, X̃N−l+1), (3.14)

Note that in these probabilities, only the length of the error is important, i.e., the exact index of

each error, N , is less important.

Let the truncated carry propagation length be k; P̃l(l ≤ k) is calculated first. Further denote

the accurate sum as S and the inaccurate sum as S
′
. As S

′
N−l+1 is the most significant erroneous

bit, i.e., all higher bits in the sum are correct, the input carry, C
′
N−l+1−k, to calculate S

′
N−l+1, must

propagate all the way to S
′
N−l+1, i.e., Pi = Ai⊕Bi = 1, for i = N − l−k+2, N − l−k+3, ..., N − l.

Also, PN−l+1 = 0 because, otherwise, the wrongly estimated carry would propagate to S
′
N−l+2. As

PN−l+1 = 0, it is sufficient to show that S
′
N−l+2, S

′
N−l+3, ..., S

′
N are correct because PN−l+1 = 0

prevents the error from propagating to the higher k − 1 bits. Therefore ,

P̃l = P (PN−l−k+2, ..., PN−l = 1, PN−l+1 = 0, C
′
N−l−k+2 �= CN−l−k+2)

= 1
2k+1 , l ≥ 2.

(3.15)

Let P̃1 = P (X̃N ), then

P̃1 = P (PN−k+1, ..., PN−2 = 1, PN−1 = 0, C
′
N−k+1 �= CN−k+1) =

1

2k
. (3.16)
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Thus,

P̃l =

{
1

2k+1 , l ≥ 2.
1
2k
, l = 1.

(3.17)

Since P̄1 = P̃2 + P̄2 = P̃2 + P̃3 + P̄3 = ... = P̃2 + P̃3 + ...+ P̃l + P̄l, then

P̄l = P̄1 −
l∑

i=2

P̃i, (3.18)

where P̄1 = 1− P̃1. For l ≤ k,

Q̃l =
P̃l

P̃l−1
, l ≤ k. (3.19)

For l > k, since only k bits are used to calculate the current sum, the bits that are less significant

than these k bits, have no influence on Q̃l. Thus,

Q̃l = Q̄k =
P̄k

P̄k−1
, l > k. (3.20)

From all of the above, we obtain

Q̃l =

⎧⎪⎪⎨
⎪⎪⎩

P̃l

P̃l−1
= 1, k ≥ l > 2,

P̃2

P̃1
= 1

2 , l = 2,
P̄k

P̄k−1
= 2k+1−k−1

2k+1−k , l > k.

(3.21)

This leads to

qi ≈ P (X̄N , X̄N−1, ..., X̄i+1, X̃i)

= P (X̄N |X̄N−1, ..., X̄i+1, X̃i)P (X̄N−1, ..., X̄i+1, X̃i)

= P (X̄N |X̄N−1, ..., X̄i+1, X̃i)P (X̄N−1|X̄N−2, ..., X̄i+1, X̃i)P (X̄N−2, ..., X̄i+1, X̃i)

= P (X̄N |X̄N−1, ..., X̄i+1, X̃i)P (X̄N−1|X̄N−2, ..., X̄i+1, X̃i)...P (X̄i+1|X̃i)P (X̃i)

= Q̃N−i+1Q̃N−i...Q̃2P̃1.

(3.22)

Hence, (3.17), (3.21) and (3.22) can be used to calculate qi in ACA error analysis.

3.1.3 Error Characteristics of the Equal Segmentation Adder (ESA)

Consider an n-bit ESA divided into r (r =
⌈
n
k

⌉− 1) sub-adders of equal size k and 1 sub-adder of

size l = n−kr. Thus there are (r+1) sub-adders in total. Since the lowest sub-adder (i.e., the first

sub-adder) is always error-free, only the higher r sub-adders that can be erroneous are considered.

Initially the error in the (m+2)th sub-adder (m = 0, 1, ..., r−1) is considered; this is always 2mk+l,

as introduced by the wrong estimate of the input carry to this sub-adder.

When the speculative carry into each sub-adder is truncated to 0, the error rate of the (m+2)th

sub-adder is given by

P (error = −2mk+l) = P (C
′
mk+l < Cmk+l) = pmk+l ≈ 1

2 . (3.23)
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Figure 3.3: An example of the error in ESA dominated by the (m+ 2)th sub-adder.

The error rate of each sub-adder (except for the first one) is approximately 1
2 . All sub-adders

are independent because there is no connection between them; so, the error rate of the entire adder

is

ER = 1− (1− 1

2
)r = 1− (

1

2
)r. (3.24)

An approximate method is now introduced to calculate the mean error distance of ESA. Since

the errors in a lower sub-adder are significantly smaller than those in a higher sub-adder, the

error magnitude of the approximate adder is dominated by the highest erroneous sub-adder. For

example, for 8-bit sub-adders, the error in the third sub-adder is 256 times greater than the error

in the second sub-adder. Therefore, if a sub-adder is erroneous, the errors in the lower sub-adders

become insignificant and thus, they can be ignored. Hence, for an ESA with (r + 1) sub-adders,

the error magnitudes can be approximately divided into r levels, i.e., {2l, 2k+l, ..., 2(r−1)k+l}. Fig.

3.3 shows a case when the error is dominated by the (m+2)th sub-adder, and the error probability

is given by

P (error = −2mk+l) ≈ (12)
r−m−1 × 1

2 . (3.25)

The mean error distance is therefore given by

MED =
r−1∑
m=0

2mk+l(12)
r−m−1 × 1

2 = 2kr+r−1
2k+1−1 × 2l−r ≈ 2n−k−1. (3.26)

3.1.4 Error Characteristics of the Error-Tolerant Adder Type II (ETAII)

Similar to the analysis of ESA, ETAII uses the same partition scheme and its error analysis starts

with the evaluation of the error rate in the (m+2)th sub-adder. The (m+1)th sub-adder generates

the approximate carry, C
′
mk+l, to the (m+2)th sub-adder based on the assumption that the input

carry to itself, C
′
(m−1)k+l, is 0. Thus, when the exact carry C(m−1)k+l is 1 and propagates through

the (m + 1)th sub-adder, the carry generated by the (m + 1)th sub-adder is erroneous; thus, this

results in an error in the (m+ 2)th sub-adder. Hence, the error rate of the (m+ 2)th sub-adder is

given by
P (error = −2mk+l) = P (C

′
mk+l < Cmk+l) = (12)

kpmk+l

= (12)
k+1(1− 1

2mk+l ) ≈ 1
2k+1 .

(3.27)
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In ETAII, the first and second sub-adders are always error-free, so there are in total (r − 1)

sub-adders that can be erroneous. Hence, the ER of ETAII is given by

ER ≈ 1− (1− 1

2k+1
)r−1. (3.28)

Similarly as for ESA, the error in ETAII is approximately divided among the (r − 1) levels.

Hence

P (error = −2mk+l) = (1− 1

2k+1
)r−m−1 × 1

2k+1
, (3.29)

and

MED =
r−1∑
m=1

2mk+l(1− 1
2k+1 )

r−m−1 × 1
2k+1 =

2kr−k+l−2l(1− 1

2k+1 )
r−1

2k+1−2+2−k . (3.30)

(3.30) can be simplified by ignoring −2 + 2−k in the denominator and 2l(1 − 1
2k+1 )

r−1 in the

numerator, hence

MED ≈ 2n−2k−1. (3.31)

3.1.5 Error Analysis Using Different Carry Estimation Methods

ACA, ESA and ETAII use a fixed carry (with a value of 0) estimate such that the carry propagation

chain is truncated. For example, for k = 10 in ACA, an assumed input carry C
′
1 = 0 is used to

calculate S
′
10. This assumption may lead to under-estimated results and the average error is non-

zero. A straightforward solution to avoid the non-zero average error encountered in a method using

a fixed carry is to use a random carry. If the input operands are uniformly distributed, one of the

less significant input bits can be used as the random carry signal [15]. For example, C
′
1 = A0 or

C
′
1 = B0 can be used to estimate C1 in the previous ACA example. Hereafter, these two methods

are referred to as the fixed carry estimate and 1-LSB carry estimate, respectively.

In the previous section, the error characteristics of approximate adders with a fixed carry

estimate have been discussed. Next, the error characteristics under the 1-LSB carry estimate case

are considered.

ACA

A detailed solution under the 1-LSB carry estimate case is not provided because it can be obtained

in a manner similar to the fixed carry case. When 1-LSB is used to estimate the carry, (3.17) and

(3.21) are replaced by (3.32) and (3.33), respectively, while (3.22) remains the same.

P̃l = P (qN−l−k+2, ..., qN−l = 1, qN−l+1 = 0, C
′
N−l−k+2 �= CN−l−k+2)

= 1
3

1
2k
(1 + 1

22l−1 ), l ≤ k.
(3.32)

Q̃l =

⎧⎨
⎩

P̃l

P̃l−1
= 22l−1+1

4(22l−3+1)
, k ≥ l ≥ 2

P̄k

P̄k−1
= 1

4
9×23k−1−(6k+4)22k−2−1
9×23k−3−(6k−2)22k−4−1 , l > k.

(3.33)

After qi is calculated by (3.22), (3.9) and (3.10) can still be used to obtain the MED and ER in

the 1-LSB carry estimate case.
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ESA

The error rate of each sub-adder in the 1-LSB carry estimate case is half of the error rate in the

fixed carry case (as discussed later). Thus, the procedure in the previous section can be utilized

by changing the error rate of each sub-adder at the beginning. If 1-LSB is used to estimate the

truncated carry, (3.23) is changed to:

P (error = 2mk+l) = P (C
′
mk+l > Cmk+l)

= P (Amk+l−1 = 1, Bmk+l−1 = Cmk+l−1 = 0)
= 1

4(1− pmk+l) ≈ 1
8 ,

(3.34)

and

P (error = −2mk+l) = P (C
′
mk+l < Cmk+l) ≈ 1

8
. (3.35)

The mean error distance is then given by

MED =
r−1∑
m=0

2mk+l(34)
r−m−1 × 1

4 =
2kr−( 3

4
)r

2k+2−3 × 2l ≈ 2n−k−2. (3.36)

The ER is:

ER = 1− (1− 1

4
)r = 1− (

3

4
)r. (3.37)

ETAII

If 1-LSB is used to estimate the truncated carry, the analysis of ETAII is very similar to ESA, so

the ER and MED for ETAII are given as follows:

ER ≈ 1− (1− 1

2k+2
)r−1, (3.38)

and

MED =
r−1∑
m=1

2mk+l(1− 1
2k+2 )

r−m−1 × 1
2k+2 ≈ 2n−2k−2. (3.39)

3.1.6 Monte Carlo Simulation

Error Analysis for Monte Carlo Simulation

Assume the accurate MED is μ and μ̂T is an estimate for MED obtained by averaging EDs from T

iterations of Monte Carlo simulation. This can be modeled as a Monte Carlo integration approach

[35]. The variance of μ̂T is

var(μ̂T ) =
v

T
, (3.40)

where v is the variance of EDs given by

v =
∑
i

(EDi)
2P (EDi)− μ2. (3.41)

For large T , by the Law of Large Numbers,

μ̂T ∼ N(μ,
v

T
). (3.42)
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For a given confidence level, a parameter zc can be determined to show the corresponding

confidence interval. Therefore the error of μ̂T becomes

e =
zc
μ

√
v

T
. (3.43)

For a confidence level of 95%, zc = 1.96. Therefore, for T = 1, 000, 000, the error is

e =
0.00196

√
v

μ
= 0.00196CV, (3.44)

where CV =
√
v/μ, the coefficient of variation.

(3.44) will be used in the following to analyze the error for Monte Carlo simulations of three

approximate designs with a confidence level of 95%.

Considering (3.25), (3.26) and (3.41), the variance of the EDs of ESA for a fixed carry estimate

is given by

v =
r−1∑
m=0

(2mk+l)2(12)
r−m−1 × 1

2 − (2n−k−1)2

≈ 22n−2k−2.
(3.45)

By taking into consideration (3.26) and (3.45), the percentage error is 0.196% by (3.44), i.e., we are

95% confident that a simulated MED is within 0.196% of the true MED. Similarly, the variance of

EDs of ESA for the 1-LSB carry estimate is

v ≈ 3× 4n−k−2. (3.46)

The corresponding error is 0.34%.

For ETAII in the fixed carry estimate case, based on (3.29), (3.31) and (3.41), the variance of

EDs is

v =
r−1∑
m=1

(2mk+l)2(1− 1
2k+1 )

r−m−1 × 1
2k+1 − (2n−2k−1)2

≈ 22n−3k−1.
(3.47)

The corresponding error for a confidence level of 95% and 1,000,000 iterations of simulation is

e = 0.00196
√
2k+1. (3.48)

In the simulation, the smallest and largest k for ETAII is 4 and 10, thus the error is in the range

of 1.11%-8.87%. For ETAII in the 1-LSB carry estimate case, the variance can be obtained in a

similar way as in the fixed carry estimate case:

v ≈ 22n−3k−2. (3.49)

The corresponding error is

e = 0.00196
√
2k+2. (3.50)

The error is in the range of 1.57%-12.54% for k between 4 and 10.

Since it is difficult to get the theoretical variance for ACA, simulated variances are used. The

CVs (i.e.,
√
v/μ) for different k and different carry estimate methods are presented in Table 3.1.

According to Table 3.1 and (3.44), the errors of ACA are in the ranges of 1.3%-10.5% and 1.5%-

12.5% for the fixed and 1-LSB carry estimates, as shown in Table 3.2.
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Table 3.1: Coefficient of Variation (CV) values for ACA
fixed carry estimate 1-LSB carry estimate

k=6 6.8 7.7

k=7 9.7 11.0

k=8 13.6 15.5

k=9 19.6 21.9

k=10 27.0 31.4

k=11 39.0 43.7

k=12 53.7 63.7

Table 3.2: Errors of Monte Carlo simulation for ACA
fixed carry estimate 1-LSB carry estimate

k=6 1.3% 1.5%

k=7 1.9% 2.2%

k=8 2.7% 3.0%

k=9 3.8% 4.3%

k=10 5.3% 6.1%

k=11 7.7% 8.6%

k=12 10.5% 12.5%

Simulation Results

Fig. 3.4 and Fig. 3.5 show the simulation results and the analytical results for ACA, ESA and

ETAII. The functional models of both the accurate and approximate adders were implemented in

Matlab. 1,000,000 random input combinations are used to find the MED and ER values.

The simulation and the analytical MEDs are well matched especially for ESA for which the

theoretical and simulated curves overlap. There are mainly two sources of discrepancy. The first

source is due to the simulation method, i.e., Monte Carlo simulation is not exhaustive. The second

source is caused by the approximation used in the analytical framework. As shown in the figures,

the MED drops exponentially as k is increased: the MED drops approximately to half of its previous

value when k is increased by 1 for all three approximate adders. The difference between MED values

with different k values for the same adder is very large; therefore, the small discrepancy between

the analytical and simulated results is rather negligible, i.e., the discrepancy will not result in an

incorrect assessment of k.

The simulation results for the error rate (ER) are shown in Fig. 3.5. For ACA, ER decreases

to half of its previous value when the value of k is increased by 1. For any k larger than 9, the

ER drops below 2% for both 1-LSB and fixed carry estimates. Due to the design, the ER of ESA

is nearly constant for a value of k in a range between 11 and 15; it starts to decrease significantly

when k is 16. In general, ESA has a very high error rate, even though it has a very small MED.

ETAII can significantly reduce ER. When k = 6, for example, the ER of ETAII with 1-LSB carry

estimate is below 2%.
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Figure 3.4: Simulated and theoretical MED for a 32-bit (a) ACA, (b) ESA, and (c) ETAII.
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Figure 3.5: Simulated and theoretical ER for a 32-bit (a) ACA, (b) ESA, and (c) ETAII.
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3.2 Discussion

In this section, different features as related to carry estimate are analyzed for the various approxi-

mate adders.

3.2.1 Generalizing Carry Estimation Methods

The 1-LSB carry estimate generates rather symmetrical and centralized errors, while a fixed carry

tends to generate biased errors. Another significant advantage of 1-LSB carry estimate is that it

reduces the MED. As shown in the simulation results (Fig. 3.4), the MED of 1-LSB carry estimate

is approximately half of the MED of a fixed carry for all three types of approximate adder. Consider

the carry estimate accuracy (EA), i.e., the probability that the estimated carry is equal to the exact

carry. If the carry is fixed to 0, then EA = P (Ci = 0) = 1− pi ≈ 1
2 . For the 1-LSB carry estimate,

EA = P (Ci = Ai−1) = P (Ci = 1|Ai−1 = 1)P (Ai−1 = 1) + P (Ci = 0|Ai−1 = 0)P (Ai−1 = 0) = 3
4 .

It is also intuitively true that the 1-LSB carry estimate method has a higher accuracy than a fixed

carry estimate because it uses more information (when Ai−1 = 1, Ci is more likely to be 1). It is

then evident that the use of the 1-LSB to estimate carry reduces the ER as well as the MED.

The estimate of the carry signals is a significant issue for an approximate adder design. Intu-

itively, the utilization of more less significant bits results in a better performance to predict the

carry signal. Hereinafter, “k-LSB carry estimate” refers to using the k bits in both A and B that

are less significant than the current index to estimate the current carry. The fixed carry approach

fails to use the LSBs in the estimate process, while the 1-LSB carry estimate method uses only 1

LSB. For ETAII and SCSA, if the Sum Generator is considered as a sub-adder, then the Carry

Generator (Fig. 2.3) is the circuitry for the k-LSB carry estimate. Thus, ETAII uses more LSBs

for the carry estimate than ESA and this increases the accuracy. Nevertheless, the use of more

LSBs incurs a larger area overhead and longer delay; a trade-off must be made between the number

of LSBs for carry prediction and circuit performance.

Table 3.3 shows the truth table of Ci+1 given 1-LSB, i.e., Ai and Bi, where “U” means “un-

known”. More LSBs must be used to determine the unknown values. Without the information

provided by the additional LSBs, the unknown values have approximately a probability of 0.5 to be

either 1 or 0. Therefore, the best EA using 1-LSB information is 2+2/2
4 = 3

4 . The 1-LSB estimated

carry, i.e., C
′
i+1 = Ai, uses a logic function based on 1-LSB information for achieving an EA of 3

4 .

Consider the case in which k LSBs are used to estimate the carry C
′
m. If the propagates in these

k positions are all 1’s, i.e., Pi = Ai ⊕ Bi = 1, i = m − 1,m − 2, ...,m − k, C
′
m−k is required to

determine C
′
m. Therefore, without the information of C

′
m−k, there are 2k unknown entries in the

truth table of Cm
′ based on previous k LSBs. In the k-LSB carry estimate method, these entries

are arbitrarily assigned with certain values (1 or 0), which on average can successfully estimate half

(i.e., 2k−1) of the unknown entries. There are totally 22k input combinations, with 2k unknown

entries and 22k − 2k known entries in the truth table. Thus, the highest EA based on k LSBs is
22k−2k−1

22k
= 1−2−k−1. However, the utilization of more LSBs for carry prediction increases both the

delay and the circuit complexity (i.e., the number of transistors). To reduce complexity, additional
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Table 3.3: Truth table of Ci+1 given AiBi

AiBi Ci+1

00 0

01 U

10 U

11 1

“approximate” carry estimates based on k LSBs can be derived by slightly changing some entries

in the truth table. Two examples are provided by using 2 LSBs, as given in (3.51) and (3.52), with

EA being 0.8125 and 0.875, respectively. Note that (3.52) achieves the highest EA of the 2-LSB

carry estimate while (3.51) has a lower EA with a simpler logic implementation compared to (3.52).

Ci+1 = AiBi +AiAi−1. (3.51)

Ci+1 = AiBi +Ai−1(Ai ⊕Bi). (3.52)

3.2.2 Comparison of the Different Approximate Adders

ACA has an area complexity of O(n log log n) ≈ O(n), and a delay complexity of O(log k) [38], where

n is the size of the adder and k is the maximum carry chain length. ESA has the same complexity as

ACA if a parallel adder structure, such as carry look-ahead (CLA), is used to implement each sub-

adder in ESA. However if real area and delay values are considered, ACA has a more complicated

structure than ESA for the same k, and thus, it has a larger area overhead and probably a longer

delay. As an example consider k = 10 and the 1-LSB carry estimate case. The simulated MEDs of

ACA and ESA are 1.54 × 106 and 1.05 × 106, respectively. In terms of MED, ESA is better than

ACA. If area and delay are taken into consideration, ESA is certainly a better scheme because it

has a smaller MED as well as smaller area and delay. However, ACA has a smaller ER: the ER of

ACA is 0.0074 while the ER of ESA is 0.5775, which is 78 times of the ER of ACA.

In ESA,
⌈
n
k

⌉
sub-adders have to be implemented. The area and delay complexities are

⌈
n
k

⌉
A(k)

and τ(k), respectively, where A(k) and τ(k) are the area and delay complexities of a k-bit adder.

In ETAII, the area complexity is (2
⌈
n
k

⌉− 2)A(k) because every sub-adder is duplicated except for

the first and last sub-adders. The delay complexity of ETAII is 2τ(k) because the critical path

contains two k-bit sub-adders in series. SCSA has the same error characteristics as ETAII, but it

has a different circuit implementation. The delay of SCSA is τ(k) with the delay of a multiplexer.

Compared to ETAII, the last k-bit sub-adder still needs duplication and (
⌈
n
k

⌉−1) k-bit multiplexers

are needed (they are not used in ETAII). Therefore, SCSA is approximately two times faster than

ETAII at the cost of an increased area overhead.

For comparison purposes, choose k = 10 for ESA and k = 5 for ETAII with a 1-LSB carry

estimate because these two implementations have roughly the same delay (even though ETAII

requires more area). The MED of ESA is 1.05 × 106, while the MED of ETAII is 1.07 × 106; the
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Table 3.4: Comparison between the adders
ACA ESA ETAII SCSA

k 10 10 5 10

Delay O(logk) O(logk) O(log2k) O(logk)

Area O(nlog(log(n))) O(n) O(n) O(n)

MED (×103) 1540 1050 1074 1.074

ER (%) 0.74 57.8 3.81 0.05

ERs are 0.5775 and 0.0381 for ESA and ETAII, respectively. Therefore for the compared schemes,

ESA and ETAII have roughly similar MED, but ETAII has a significantly smaller ER. Hence,

ETAII tends to generate large error magnitudes because it has a similar MED as ESA, but a very

small ER.

Consider k = 10 for ACA, ESA and SCSA, and k = 5 for ETAII as further examples. These

three adders have similar critical path delays. ESA has the least area overhead, but the largest ER.

ACA has the smallest ER, but it has the largest MED. According to [16], ACA occupies 36% more

area but it incurs in a 30% smaller delay compared to ETAIIM (a modified version of ETAII), with

both adders having the same carry propagation length. ETAII has a significantly reduced MED

compared to ACA and an acceptable ER of 3.81%. SCSA is faster than ETAII at the cost of an

increase in area (due to the additional multiplexers). If the design objective is an extremely fast

approximate adder, then SCSA is the best choice among these four approximate adders because it

achieves a similar MED to other approximate adders with a smaller k (i.e., a shorter critical path

delay). SCSA (k = 10) has approximately the same delay as ETAII (k = 5). However, SCSA with

k = 10 has an extremely small MED and ER: the ER is only 0.05%, while the MED is 10−3 of

ETAII (k = 5), as shown in Table 3.4.

3.3 Application: Image Quality Evaluation Using PSNRs

3.3.1 Peak Signal-to-Noise Ratio (PSNR)

PSNR is widely used in many DSP applications (such as image processing) as an important figure

of merit. In image processing, if I is the noise-free image and K is the noisy image, the PSNR is

defined as [13]:

PSNR = 20 log(MAXI/
√

MSEK), (3.53)

where MAXI is the maximum possible pixel value of image I and MSE is the mean squared error

defined as

MSEK =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2. (3.54)

When approximate circuits are used for image processing, I can be the resulting image using an

exact computation whileK is the image obtained by approximate computing. For a good agreement

with a precisely processed image, the PSNR of a noisy image should be very large - usually larger
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than a threshold P , i.e.,

PSNR > P,

or √
MSEK < C, (3.55)

where C = 10log(MAXI)− P
20 .

For (3.54), define an error matrix as E = K− I; then the MSE and MED of image K are

MSEK = E(E ◦E), (3.56)

MEDK = E(|E|). (3.57)

In (3.56) and (3.57), E(X) denotes the average value of all the elements in matrix X, the “◦”
operation obtains the element-wise product of two matrices, which is also known as the Hadamard

product [14], and |X| obtains the absolute value of each element in X.

Let d and μ denote the ED and MED of the approximate adder and σ2 represent the mean

squared error distance (MSED):

σ2 = MSED = E[d2]. (3.58)

The MED and MSED of the approximate adders are obtained under the assumption that the

inputs are uniformly distributed. In this analysis, the pixel values of an image are assumed to be

sufficiently random, i.e., if an image is processed by an approximate addition for each pixel, the

mean and mean squared value of the error matrix are considered to be the same as the MED and

the MSED of the approximate adder. Hereinafter, μ and σ2 denote the MED and MSED of the

approximate adder, as well as the mean and mean squared values of the error matrix if a resulting

image is obtained by one approximate addition of each pixel. If the image K is processed by a

approximate addition operations, the mean squared error, MSEK , is given by

MSEK = E[(
a∑

i=1

Ei) ◦ (
a∑

i=1

Ei)], (3.59)

where Ei is the error matrix of the ith addition. Assume each Ei is independent, then (3.59)

becomes:

MSEK = E[
a∑

i=1
Ei ◦Ei + 2

∑
1�i<j�a

Ei ◦Ej]

� aσ2 + 2
∑

1�i<j�a
E(|Ei|)E(|Ej|)

≈ aσ2 + a(a− 1)μ2.

(3.60)

Note that for adders whose error distribution is symmetrical (e.g., LOA), i.e., the mean error is

close to zero, E[
∑

1�i<j�a
Ei ◦Ej] ≈ 0, therefore (3.60) becomes

MSEK ≈ aσ2. (3.61)
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Assume the relationship between
√
MSE (i.e., σ) and MED (i.e., μ) is given by σ = f(μ)

(the function f(·) will be derived next), then (3.60) and (3.61) can be converted to the following

equations, respectively. √
MSEK ≈

√
af(μ)2 + a(a− 1)μ2 � C (3.62)√

MSEK ≈
√

af(μ)2 � C (3.63)

Based on (3.53), (3.62) and (3.63), the PSNR can be estimated by

PSNR ≈
⎧⎨
⎩ 20log(MAXI/

√
af(μ)2), for symmetrical error distribution.

20log(MAXI/
√

af(μ)2 + a(a− 1)μ2), for biased error distribution.
(3.64)

The solutions of (3.62) and (3.63) give the maximum value of MED for deriving the parameter

k in ESA and ETAII using the corresponding equations (i.e., (3.26) and (3.30)) given in section

3.1. Hence, this analytical framework can be used to select the proper approximate adder type and

parameter (i.e., carry propagation length k) for image processing applications, instead of building

functional models of the approximate adder and running time-consuming simulations with different

parameters.

3.3.2 Relationship between μ and σ

ESA

The relationship between μ and σ is analyzed for the fixed carry case. Similar to the MED calcu-

lation in (3.26), the MSE of ESA is calculated as:

σ2 =
r−1∑
m=0

(2mk+l)2(12)
r−m−1 × 1

2 ≈ 22n−2k−1. (3.65)

Based on (3.26) and (3.65), the relationship between μ and σ for ESA is given by:

σ =
√
2μ. (3.66)

ETAII

Similar to the analysis for ESA, the MED and MSE for ETAII are found as μ ≈ 2n−2k−1, σ2 ≈
22n−3k−1. The relationship between μ and σ is:

σ = (2n+1μ3)
1
4 . (3.67)

The simulated relationship between μ and σ and the analytical functions in (3.66) and (3.67)

are plotted as in Fig. 3.6 for n = 16. For ESA, the simulated curve and the analytical results

match very closely, as shown by the nearly perfect overlapping curves. For ETAII, there is a slight

discrepancy in the simulated and analytical plots. This discrepancy is due to the approximation

when calculating MED and MSE, as outlined previously.
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Figure 3.6: Simulated and analytical σ − μ relationships for (a) ESA, and (b) ETAII.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Image sharpening: (a) original image, (b) using exact adders, (c) using ESA with k=6
and PSNR=18.1dB, (d) using ESA with k=10 and PSNR=41.4dB, (e) using ETAII with k=4 and
PSNR=27.4dB and (f) using ETAII with k=7 and PSNR=56.8dB.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Point detection: (a) original image, (b) using exact adders, (c) using ESA with k=7
and PSNR=4.4dB, (d) using ESA with k=10 and PSNR=24.6dB, (e) using ETAII with k=4 and
PSNR=10.5dB and (f) using ETAII with k=5 and PSNR=19.9dB.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Arithmetic mean filter: (a) original image with noise, (b) using exact adders, (c) using
ESA with k=5 and PSNR=10.5dB, (d) using ESA with k=8 and PSNR=27.2dB, (e) using ETAII
with k=3 and PSNR=16.9dB and (f) using ETAII with k=5 and PSNR=36.3dB.
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Figure 3.10: Simulated and estimated PSNR (dB).
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3.3.3 Estimate of the PSNR for Image Processing

Three image processing algorithms are evaluated next: image sharpening, point detection and

arithmetic mean filter.

If I is the original image and S is the processed image, the sharpening algorithm [19] is performed

as

S(x, y) = 2I(x, y)− 1
273

2∑
i=−2

2∑
j=−2

G(i+ 3, j + 3)I(x− i)(y − j), (3.68)

where G is a matrix given by:

G =

⎡
⎢⎢⎢⎢⎣
1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

⎤
⎥⎥⎥⎥⎦ . (3.69)

The point detector operation [31] is given by

S(x, y) = 8I(x, y)− I(x− 1, y − 1)− I(x− 1, y)− I(x− 1, y + 1)
−I(x, y − 1)− I(x, y + 1)− I(x+ 1, y − 1)− I(x+ 1, y)− I(x+ 1, y + 1).

(3.70)

A 3× 3 arithmetic mean filter [31] is also implemented as

S(x, y) =
1

9

1∑
i=−1

1∑
j=−1

I(x+ i, y + j). (3.71)

For all three algorithms, the exact additions are replaced by approximate additions using ESA

and ETAII. All other operations (i.e., multiplication, division and subtraction) are performed ac-

curately. The mean squared error is estimated using (3.62), in which the number of approximate

additions, a, is 25, 8 and 9, respectively for image sharpening, point detection and arithmetic mean

filter applications. The PSNR is then given by (3.53).

In the sharpening algorithm, 16-bit approximate adders are used because the maximum possible

sum is 255 × 273, i.e., approximately 216 − 1. 12-bit approximate adders are used for the point

detection and arithmetic filer computations. The analytical σ− μ plots shown in Fig. 3.6 are used

for the PSNR.

Six images are selected for the three algorithms and the corresponding PSNR values are ob-

tained; three of them are shown in Figs. 3.7, 3.8 and 3.9. The images are selected such that they

are quite “typical” images to be processed, i.e., they show features commonly found in multimedia

applications. For the same algorithm and approximate adder, the six images have PSNR values

that are very close; this indicates that the PSNR is not strongly correlated to an image, hence

the estimated PSNR can be readily applied to them. For further analyzing this feature, define the

relative discrepancy (RD) as the maximum difference between the PSNR values of the six images

divided by their mean PSNR value. The RD values are shown in Table 3.5; the largest RD is 13.2%,

however in most cases the RD is below 5%, i.e., at an acceptable level for this type of applications.
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Table 3.5: Relative discrepancy.

The simulated and estimated PSNR values are shown in Fig. 3.10. The best match between

simulated and estimated PSNR values is achieved by ESA-based point detection application, while

the worst occurs for ETAII-based point detection. In the worst case, the maximum PSNR is

about 20dB that is generally considered to be low. For most cases, the estimate tends to be less

accurate when the PSNR values are too small (< 20dB). The interesting cases are the ones whose

PSNR values are larger than 20dB, otherwise the approximate results are not acceptable. For these

cases, the estimate is shown to be accurate in this PSNR range. Moreover, the difference between

estimated and simulated results is within a 3dB margin; so for a given image processing application

and approximate adder, the error in the estimate appears to be almost constant. Hence, the

simulation results show that with the proposed methodology, the MED is a good indicator for the

PSNR. The estimate procedure proposed in this chapter can be used to evaluate the performance

of approximate adders in image processing applications.

3.4 Conclusion

In this chapter, an analytical framework has been proposed for characterizing approximate adder

designs. This framework consists of models for the evaluation of different types of approximate

adders targeting several error metrics. Time-consuming simulation can then be avoided by using

the proposed analytical models. Design criteria with respect to error characteristics in the opera-

tions of these approximate adders have been provided based on the analysis. As an example of the

application of the framework, the PSNR in image processing has been evaluated. The estimated

PSNR can then be utilized for selecting the proper scheme of an approximate adder. Extensive

simulation results show that there is a good agreement between the analytical outcomes of the pro-

posed framework and the simulation results for three different computational algorithms commonly

used in image processing. The PSNR estimate method proposed in this chapter shows that there

is a close relationship between the MED and PSNR, while the ER is less important. This may

provide insights into the design of approximate arithmetic circuits for error-tolerant applications.
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Chapter 4

A Novel Approximate Multiplier
Design with Configurable Error
Recovery for Low-Power and
High-Performance Operation

This chapter presents the design of a novel approximate multiplier. This novel design leverages a

fast parallel approximate adder to accumulate the partial products and an error reduction scheme to

configure the accuracy level of the multiplier. An optimal tradeoff of accuracy for performance and

power can be achieved by configuring the error reduction circuit. Compared to existing approximate

multiplier designs, the proposed design achieves the best tradeoff in terms of power-delay-error

metric (PDEM).

Part of the results in this chapter has been published in [23]. The chapter is organized as follows.

Section 4.1 presents the proposed approximate adder and the design of the multiplier. Section 4.2

discusses the error reduction schemes for AM1 and AM2, and introduces the accurate operation

mode. Section 4.3 shows the accuracy analysis and in section 4.4, delay and power consumption

are obtained. Section 4.5 discusses the application oif the proposed multiplier to image processing.

Section 4.6 concludes the chapter.

4.1 The Approximate Multiplier

4.1.1 The Approximate Adder

In this section, the design of a new approximate adder is presented. This adder operates on a set

of pre-processed inputs. The input pre-processing (IPP) is based on the interchangeability of bits

with the same weights in different addends. For example, consider two sets of inputs to a 4-bit

adder: i) A = 1010, B = 0101 and ii) A = 1111, B = 0000. Clearly, the additions in i) and ii)

produce the same result. In this process, the two input bits AiBi = 01 are equivalent to AiBi = 10

(with i being the bit index) because of the interchangeability of the corresponding bits in the two

operands.
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The basic rule for the IPP is to switch Ai and Bi if Ai = 0 and Bi = 1 (for any i), while keeping

the other combinations (i.e., AiBi = 00, 10 and 11) unchanged. By doing so, more 1’s are expected

in A and more 0’s are expected in B. If ȦiḂi are the ith bits in the pre-processed inputs, the IPP

functions are given by:

Ȧi = Ai +Bi, (4.1)

Ḃi = AiBi. (4.2)

(4.1) and (4.2) compute the propagate and generate signals used in a parallel adder such as the carry

look-ahead (CLA). The proposed adder can process data in parallel by cutting the carry propagation

chain. A carry propagation chain starts at the ith bit when Ḃi = 1, Ȧi+1 = 1, Ḃi+1 = 0. In an

accurate adder, Si+1 is 0 and the carry propagates to the higher bit. However, in the proposed

approximate adder, Si+1 is set to 1 and an error signal is generated as Ei+1 = 1. This prevents

the carry signal from propagating to the higher bits. Hence, a carry signal is produced only by

the generate signal, i.e., Ci = 1 only when Ḃi = 1, and it only propagates to the next higher bit,

i.e., the (i+1)th position. Table 4.1 shows the truth table of the approximate adder, where Ȧi, Ḃi

and Ḃi−1 are the inputs after IPP, Ci−1 is the carry signal, Si and Ei are the sum and error bits,

respectively. The error signal is utilized for error compensation purposes as discussed in a later

section. In this case, the approximate adder is similar to a redundant number system [33] and the

logical functions of Table 4.1 are given by

Si = Ḃi−1 + ḂiȦi, (4.3)

Ei = ḂiḂi−1Ȧi. (4.4)

By replacing Ȧ, Ḃ using (4.1) and (4.2), the logic functions with respect to the original inputs are

given by

Si = (Ai ⊕Bi) +Ai−1Bi−1, (4.5)

Ei = (Ai ⊕Bi)Ai−1Bi−1. (4.6)

Consider as an example a 6-bit adder with two inputs given by A = 001111 and B = 000110. The

correct (exact) sum S is 010101; however, the approximate adder produces the sum S
′
= 001101

and an error E = 001000. It is easy to show that

S = S
′
+ E. (4.7)

Note that in (4.7) ‘+’ means the addition of two binary numbers rather than the ‘OR’ function.

The error E is always non-negative and the approximate sum is always equal to or smaller than

the accurate sum. This is an important feature of this adder because an additional adder can be

used to add the error to the approximate sum as a compensation step. While this is intuitive in an

adder design, it is particularly a useful feature in a multiplier design as only one additional adder

is needed to reduce the error in the final product.
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Table 4.1: Truth table of an approximate adder cell.
ḂiḂi−1 00 01 10 11

Ȧi Ȧi Ȧi 1 1

Ci−1/Ḃi−1 0 1 0 1

Si Ȧi 1 0 1

Ei 0 Ȧi 0 0

(a) (b) (c)

Figure 4.1: Symbols for (a) an OR gate, (b) an FA/HA and (c) an approximate adder cell.

Figure 4.2: An approximate multiplier with OR-gate based partial error recovery using 4 MSBs of
the error vector.
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4.1.2 Proposed Approximate Multiplier

A significant feature of the proposed approximate multiplier is simply using approximate adders

in the partial product accumulation. [17] has shown that this may lead to poor performance

because errors may accumulate and it is difficult to correct errors using existing approximate adders.

However, the use of the newly proposed approximate adder overcomes this problem by utilizing

the error signal. The resulting design has a critical path delay that is shorter than a conventional

one-bit full adder because the new n-bit adder can process data in parallel. The approximate adder

has a rather high error rate but the feature of generating both the sum and error signals at the same

time reduces errors in the final product. An adder tree is utilized for partial product accumulation.

The error signals in the tree are then used to compensate the error in the output to generate a

product with a better accuracy.

In the proposed approximate multiplier (Fig. 4.2), the simplification of the partial product

accumulation stage is accomplished by using an adder tree in which the number of partial products

is reduced by a factor of 2 at each stage of the tree. The newly proposed approximate adder is

suitable for implementing an adder tree because it is less complex than a conventional adder and

has a much shorter critical path delay.

Exact fast multipliers often include a Wallace or Dadda tree using full adders (FAs) and half

adders (HAs); compressors are also utilized in the Wallace or Dadda tree to further reduce the

critical path with an increase in circuit area. These designs require a proper selection of different

circuit modules; for example, 4:2 compressors, FAs and HAs are commonly used in a Wallace tree

and a judicious connection of these modules must be considered in a tree design. This increases

the design complexity, especially when multipliers of different sizes are considered. The proposed

design is simple for various multiplier sizes.

4.2 Error Reduction

The approximate adder generates two signals: the approximate sum S and the error E. The use of

the error signal is considered next to reduce the inaccuracy of the multiplier. As (4.7) is applicable

to the sum of every single approximate adder in the tree, an error reduction circuit is applied to

the final multiplication result rather than to the output of each adder. Two steps are required

to reduce errors: i) error accumulation and ii) error recovery by the addition of the accumulated

errors to the adder tree output using an adder. In the error accumulation step, error signals

are accumulated to be a single error vector, which is added to the output vector of the partial

product accumulation tree. Two approximate error accumulation methods are proposed, yielding

the approximate multiplier 1 (AM1) and approximate multiplier 2 (AM2). Two accurate error

accumulation methods are also presented for an accurate operation. Fig. 4.1 shows the symbols

for an OR gate, a full adder and half adder cell and an approximate adder cell used in the error

accumulation tree.
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Figure 4.3: Error accumulation tree for AM1

4.2.1 Error Accumulation for Approximate Multiplier 1

If the error signals are added using accurate adders, the accumulated error can fully compensate

the inaccurate product; however to reduce complexity, an approximate error accumulation is in-

troduced. Consider the observation that the error vector of each approximate adder tends to have

more 0’s than 1’s. Therefore, the probability that the error vectors have an error bit ‘1’ at the same

position is quite small. Hence, an OR gate is used to approximately compute the sum of the errors

for a single bit. If m error vectors (denoted by E1, E2, ..., Em) have to be accumulated, then the

sum of these vectors is obtained as

Ei = E1i OR E2i OR ... OR Emi. (4.8)

To reduce the error, an accumulated error vector is added to the adder tree output using a

conventional adder (e.g., a carry look-ahead adder). However, only several (e.g., k) MSBs of the

error signals are used to compensate the outputs and further reduce the overall complexity. The

number of MSBs is selected according to the extent that errors must be compensated. For example

in an 8 × 8 adder tree, there are a total of 7 error vectors generated by the 7 approximate adders

in the tree. However, not all the bits in the 7 vectors need to be added because the MSBs of some

vectors are less significant than the least significant bits of the k MSBs. In the example of Fig. 4.2,

4 MSBs (i.e., the 11-14th bits) are considered for error recovery and therefore, 4 error vectors are

considered (i.e., the error vector E3, E4, E6 and E7). Note that the error vectors of the other three

adders are less significant than the 11th bit, so they are not considered. The accumulated error E

is obtained using (4.8); then, the final result is found by adding E to S using a fast accurate adder.

The error accumulation scheme is shown in Fig. 4.3.
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Figure 4.4: Error accumulation tree for ER2 (including AM2)

4.2.2 Error Accumulation for Approximate Multiplier 2

The error accumulation scheme for AM2 is shown in the shaded area marked as “AM2” in Fig. 4.4.

Error Characteristics in the First Stage of the Partial Product Accumulation Tree

To introduce the design of AM2, consider an 8 × 8 multiplier with two inputs X and Y . For

simplicity, consider the first two partial products X0Y7, X0Y6, ..., X0Y0 and X1Y7, X1Y6, ..., X1Y0

accumulated by the first approximate adder (A1 in Fig. 4.2). Recall (4.6) for the approximate

adder, the condition for Ei = 1 is

Ai−1 = Bi−1 = 1 and Ai �= Bi. (4.9)

For the first approximate adder in the partial product accumulation tree, its input Ai is X0Yi and

Bi is X1Yi−1. If X0 or X1 is 0, there will be no error in this approximate adder because either

A or B is all-zero. To analyze the error, only X0X1 = 11 is considered. Under this condition,

Ai is reduced to Yi while Bi is reduced to Yi−1. Then to calculate Ei, Ai−1, Bi−1, Ai and Bi are

replaced by Yi−1, Yi−2, Yi and Yi−1, respectively. For Ei to be 1, YiYi−2Yi−1 = 011 according to

(4.9). Therefore, an error only occurs when the input has “011” as bit sequences. Based on this

observation, the “distance” (in bits) between two errors in an approximate multiplier is at least

3. Thus, two neighboring approximate adders in the first stage of the partial product tree cannot

have errors at the same bit because the errors in a lower approximate adder are those in the upper
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Figure 4.5: An example in which an error occurs when accumulating the errors using approximate
adders

adder shifted by 2. The errors in two neighboring approximate adders can then be accurately

accumulated by OR gates, e.g., an OR gate can be used for each bit to accumulate the two bits in

the error vectors E1 and E2 in Fig. 4.2. After applying the OR gates to accumulate E1 and E2 as

well as E3 and E4, the four error vectors are compressed into two.

The proposed approximate adders are then used to accumulate the remaining two error vectors

in the first stage of the partial product accumulation tree. Recall that the proposed approximate

adder is based on the assumption that the carry only propagates to one higher bit. We then

enumerate all the cases for which two errors occur at the same bit (and thus generate a carry) in the

two remaining error vectors, and find the cases when the carry propagates to more than 1 bit. The

feature that an error only occurs when the input has a bit sequence as “011” significantly simplifies

the enumeration. Finally, only 4 input combinations are found to generate a carry propagation

length longer than two bits. These input combinations are Y = (0)11011011, X = 11UU1111, where

‘U’ means ‘0’ or ‘1’. An example is shown in Fig. 4.5, where Y = (0)11011011, X = 11111111. In

Fig. 4.5, the shaded circles show the error bits in each approximate adder (i.e., A1-A4). When a

carry is generated and its higher bit has only one error, a carry propagation path longer than two

is created and thus it introduces an error in accumulating these errors. The accumulation results

by the approximate adder will always be correct except for these four inputs. Therefore the mean

error magnitude caused by the approximate adders is extremely small in the error accumulation

of the first stage. The error magnitude is 28 with 4 occurrences among 216 input combinations,

therefore the mean error magnitude is 4× 28/216 = 1/64.

Accumulation of Errors in Other Stages

First an interesting feature of the proposed approximate adder is introduced. Assume Ei = 1 in

(4.6), then Ai−1 = Bi−1 = 1 and Ai �= Bi. Since Ai−1 = Bi−1 = 1, i.e., Ai−1 ⊕Bi−1 = 0, it is easy

to show that Ei−1 = 0. Moreover as Ai �= Bi, i.e., AiBi = 0, then Ei+1 = 0. Thus, once there is

an error in one bit, its neighboring bits are error-free, i.e., there are no consecutive error bits in

one approximate adder. Consider next the two error vectors (i.e., E5 and E6) in the second stage.
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E5 and E6 are accumulated by one approximate adder. Assume a carry is generated in the ith

bit, i.e., E5i = E6i = 1, this carry only propagates to one higher bit because E5i+1 = E6i+1 = 0.

Therefore, there is no carry propagation path longer than two bits and the error accumulation using

the approximate adder is accurate. After the errors in the first and second stages are accumulated

to be two vectors, another two approximate adders are then used to accumulate these two vectors

as well as the error vector in the third stage. The errors introduced when accumulating these three

vectors have been found by simulation rather than analysis. Simulation results (found in later

sections) show that the modified error accumulation outperforms the OR-gate error accumulation

with certain overhead on delay and power.

Hereafter, the proposed n×n approximate multiplier with k-bits OR-gate based error reduction

will be referred to as a n/k AM1, while an n × n approximate multiplier with k-bit approximate

adder based error reduction will be referred to as a n/k AM2.

4.2.3 Accurate Operation Mode

For accuracy in critical applications (in which no error can be tolerated), the proposed multiplier

can operate in the accurate mode. In the approximate mode, either OR gates or approximate

adders are used to accumulate the errors. Intuitively, an accurate adder tree such as the Wallace

tree can be used to accumulate the errors; this can give an accurate accumulation of errors. The

accumulated error can then be added back to the multiplication result. If the approximate mode

uses AM2, then logic sharing is possible because the approximate adder calculates propagates and

generates signals that are also used in the full adders. This Wallace tree based error recovery is

referred to as “ER1”, as shown in Fig. 4.6.

Another full error recovery method, referred to as “ER2”, is also proposed for 8-bit approximate

multipliers in particular. When accumulating errors using approximate adders, new errors will also

be generated. These new errors are the 2nd level errors in Fig. 4.4. If the 2nd level errors are

accumulated and then added back to the result, then full error recovery is achieved. Interestingly,

for 8-bit approximate multipliers, three 2nd level error vectors introduced by three approximate

adders in AM2 can be simply accumulated by OR gates with no loss of accuracy. This phenomenon

was verified by exhaustive simulation. Thus, if every error bit in the first level errors is accumulated

by approximate adders, and second level errors are accumulated by OR gates, the final result is

accurate because both the accumulated first and second level errors are compensated.

The proposed multiplier can be configured to have both an approximate mode (either AM1

or AM2) and an accurate mode (either with ER1 or ER2). A multiplexer can be used to select

an approximate or full error recovery. In the approximate mode, the approximate error reduction

circuitry are activated, while the full error recovery circuitry are switched off to save power. The

design of this multiplier is shown in Fig. 4.7
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Figure 4.6: ER1: Accurate error accumulation using a Wallace tree

Figure 4.7: Block diagram of the proposed multiplier with four configurations: AM1, AM2, ER1,
ER2.
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4.2.4 Modifications for the 16× 16 bit Approximate Designs

Both AM1 and AM2 compress all the error vectors to one error vector and then add that error

vector to the approximate output of the partial product tree. Compared to 8 × 8 bit designs,

16×16 bit multipliers have more error vectors, therefore only one compressed error vector does not

make a good estimation to the overall error. In the modified designs, two final error vectors are

introduced. Let us take a 16× 16 bit AM1 as an example. The eight error vectors in the first stage

of the partial product accumulation tree are compressed to one error vector, EV1, using OR gates.

The remaining seven error vectors from the second, third and fourth stages are compressed to the

other error vector EV2. Then both EV1 and EV2 are added back to the output of the fourth stage

partial product. In 16 × 16 bit approximate designs, both AM1 and AM2 use this modified error

reduction method.

Inspired by ETM [18], BAM [27] and BBM [8], truncation can also be added to the proposed

designs if the input operands are “large” enough. In AM1 and AM2, 16 LSBs of the final product

are truncated, resulting in truncated AM1 (TAM1) and truncated AM2 (TAM2).

4.3 Accuracy Evaluation

Arithmetic accuracy in approximate circuits is compromised for improvements in other metrics

(such as reduced circuit complexity and delay). In [20], the error distance (ED) and mean error

distance (MED) are proposed to evaluate the performance of approximate arithmetic circuits. For

multipliers with a given input combination, ED is defined to be the arithmetic difference between

the accurate product (M) and the approximate product (M
′
), i.e.,

ED = |M ′ −M |. (4.10)

MED is the expectation of ED (similar to the definition in (3.2)). A metric applicable for comparing

multipliers of different sizes is the normalized MED (NMED), i.e.,

NMED =
MED

Mmax
, (4.11)

where Mmax is the maximum magnitude of the output of an (accurate) multiplier, i.e. (2n − 1)2

for an n× n multiplier. The relative error distance (RED) is defined as:

RED =
|M ′ −M |

M
=

ED

M
. (4.12)

The mean relative error distance (MRED) can be obtained by averaging all the REDs corresponding

to every input combination for an n× n multiplier:

MRED = E[RED] = 2−2n
2n−1∑
i=0

2n−1∑
j=0

|M ′
ij −Mij |
Mij

, (4.13)

where M
′
ij and Mij are the corresponding approximate and accurate products for inputs A = i

and B = j. Note that when either one of the inputs is zero, the MRED is defined to be zero
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if the approximate product is zero, and is otherwise undefined (in which case the corresponding

input combinations are avoided when calculating MRED). The error rate (ER) is defined as the

percentage of erroneous outputs among all outputs [3]. These three metrics (NMED, MRED and

ER) are used to evaluate the proposed multiplier. A functional model of the proposed multiplier is

implemented using Matlab; and an exhaustive simulation is performed for an 8×8 bit approximate

multiplier and a Monte Carlo simulation is performed for a 16× 16 bit design.

4.3.1 Accuracy Evaluation of an 8× 8 Bit Multiplier

Approximate multipliers with both the OR gate and the approximate adder based error reduction,

as well as the accurate adder based error reduction are evaluated using exhaustive simulations. Fig.

4.8 shows the three metrics (NMED, MRED and ER) when using different numbers of MSBs for

error reduction. Let m denote the number of MSBs used for error reduction. The NMED drops

drastically as m is increased from 6 to 10 and continues to drop as m increases, even though at

a slower rate. For the approximate multipliers, there is no error in the most significant bit of the

output, so the largest number of MSBs used is 15. The NMED finally drops to zero for the exact

error accumulation when 15 MSBs are used for error reduction, whereas there is still a non-zero

NMED for both AM1 and AM2. Both the MRED and ER also decrease as m is increased, and drop

to zero if 15 MSBs are used for an exact error reduction or non-zero if OR gates or the approximate

adders are used for approximate error accumulation.

AM2 has a better performance than AM1 in terms of NMED, MRED and ER, i.e., it has lower

values for these three metrics. For example, if 10 MSBs are used for error reduction, the NMED of

AM2 is 0.08% while it is 0.2% for AM1. Moreover, if 15 MSBs are used for error reduction, AM1

has an error rate of 17.6%, while the error rate of AM2 can be as low as 5.8%.

These three figures also indicate that the proposed approximate multiplier has a rather high

error rate, but the errors are usually very small compared to both the accurate and the largest

possible output of the approximate multiplier. For example, for m=7, the error rate of AM1 can

be as high as 62%, but the MRED is only 1.8%, i.e., most of the errors are not significant.

4.3.2 Accuracy Evaluation of a 16× 16 Bit Multiplier

Fig. 4.9 shows the Monte Carlo simulation results for 16 × 16 bit designs of AM1, TAM1, AM2

and TAM2 with 108 random inputs. With a larger number of bits for error reduction, the error

decreases. However, it is still true that AM2/TAM2 has a better accuracy than AM1/TAM1.

Another observation is that AM1/AM2 has a better accuracy than TAM1/TAM2, as expected.

AM1/AM2 has a smaller NMED than TAM1/TAM2 however the difference is very small. This

is because truncation of several LSBs does not affect the overall NMED very much. Yet for MRED,

we can see that the difference between AM1/AM2 and TAM1/TAM2 becomes more significant

because the relative error is more easily affected by truncation. All these four approximate designs

have high ERs (98%-100%), and TAM1/TAM2 results in nearly an ER of 100%. This is not

surprising since 16× 16 bit designs generate more error bits than 8× 8 designs, and the truncation
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Figure 4.8: Accuracy comparison of the approximate multiplier using approximate and exact error
accumulation: (a) NMED, (b) MRED and (c) ER, vs. the number of bits used for error reduction.
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Figure 4.9: Accuracy comparison of the approximate multipliers : (a) NMED, (b) MRED and (c)
ER, vs. the number of bits used for error reduction.
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(a) (b)

Figure 4.10: (a) An exact full adder and (b) the approximate adder cell.

even generates more errors. However the NMED and MRED are still kept very small.

4.4 Delay and Power Evaluation

4.4.1 Delay Estimation

Based on the linear model of [40], the delays of a full adder (Fig. 4.10 (a)) and the approximate

adder cell (Fig. 4.10 (b)) are derived to be approximately 3τg and 2τg, respectively, where τg is an

approximate “gate delay”. For an n-bit approximate multiplier, there are log2 n stages in the adder

tree. A stage with 2m rows of partial products are compressed to 2m−1 rows of partial products and
2m−1 error vectors. These error vectors are then compressed (i.e., accumulated) using OR gates

or approximate adders in a similar tree structure. Since the numbers of rows in the new partial

product stage and the generated error stage are the same, it takes m − 1 steps for both stages to

be compressed to 1. Thus, when an n-row partial product tree is compressed to 1 row, errors from

log2 n stages are also compressed to log2 n error vectors. Then it takes �log2 log2 n stages to finally

compress these log2 n error vectors. Therefore, the delay of the proposed approximate multiplier is

considered to be the delay of compressing the partial product tree and the delay to compress the

remaining log2 n error vectors, i.e.,

DAMi = (log2 n)× 2τg + �log2 log2 n × τi, (4.14)

where τi = τg (the delay of an OR gate for AM1) for i = 1 and τi = 2τg (the delay of an approximate

adder for AM2) for i = 2.

There are �log1.5n� stages in the Wallace tree and the delay is given by [2]

DW = 3 �log1.5n� τg. (4.15)

Table 4.2 shows the delay of the partial product accumulation tree in both the proposed and

Wallace multipliers. For a 16-bit multiplier, the delay of an exact multiplier tree is twice as large

as the delay of the proposed multiplier tree; as the size of the multiplier increases, this factor is

approximately 2.5. Since the approximate adder cell is simpler than a full adder, the approximate

multiplier has no additional area overhead to achieve the shorter delay.
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Table 4.2: Delay of partial product accumulation tree of the proposed and conventional multipliers
of different sizes.

n 8 16 32 64 2k

DAM1(τg) 8 10 13 15 2k + log2 k

DAM2(τg) 10 12 16 18 2k + 2 log2 k

DW,D(τg) 12 18 24 30 ≈ 5k

Figure 4.11: Two neighboring approximate adder cells for ASIC implementation.

For the UDM in [17], only the partial product generation stage is simplified, so the delay

reduction is quite limited. The ETM in [18] can reduce the n×n partial product tree to n
2 × n

2 . By

(4.15), the difference between the delays of n×n and n
2×n

2 trees is approximately 3log1.52τg ≈ 5.13τg.

In summary, the other two multipliers reduce the critical path delay by almost a constant value.

In contrast, the proposed multiplier can reduce the delay of the partial product accumulation tree

by nearly 60% , which scales with the size of the multiplier.

4.4.2 Simulation Results of Implementations in a 28-nm Process

ASIC designs for n × n (n = 8, 16) AM1 with n-bit OR-gate based error reduction, a 8 × 8 AM2

with 8-bit approximate adder based error reduction, and n×n (n = 8, 16) Wallace multipliers have

been implemented in STM 28-nm CMOS process. The approximate adder cell in Fig. 4.10 (b) is

implemented using shared logic between two neighboring approximate adder cells, thereby saving

additional area, as shown in Fig. 4.11. In Fig. 4.11, the signal Ci is given by Ci = AiBi and shared

between two cells. The corresponding FA and HA cells in the Wallace multiplier are taken from

the 28-nm library as C12T32 LR FA1×8 and C12T32 LR HA1×8, respectively.

The delays for an 8 × 8 AM1, AM2 and Wallace multiplier are 0.51ns, 0.54ns and 0.58ns,

respectively. Thus the delay improvements of AM1 and AM2 compared to the conventional Wallace

multiplier are 12% and 7%. When considering a larger size, the critical path delays of a 16 × 16

AM1 and the Wallace multiplier are 0.48ns and 0.6ns, respectively, resulting a delay reduction of

20%. A larger delay reduction can be expected if the multiplier size is larger.

The power consumption for image multiplication is obtained by applying three frequencies (0.1
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(a) (b)

Figure 4.12: Power vs. frequency for (a) 8-bit and (b) 16-bit approximate and Wallace multipliers.

GHz, 0.25 GHz and 1 GHz) to all these multiplier circuits. For the 8×8 multipliers, both AM1 and

AM2 have lower power consumption compared to a Wallace multiplier at these three frequencies,

and AM2 consumes more power than AM1. The power savings for AM1 and AM2 at these three

frequencies are in the ranges of 37%-53% and 16%-29%. For 16 × 16 multipliers, AM1 achieves

power saving of 48%-69% compared to an accurate Wallace multipliers at the three frequencies.

The power savings also increase with the multiplier size, as shown in Fig. 4.12 for both the 8 × 8

and 16× 16 bit multipliers.

4.4.3 Simulation Results from Synopsys Design Vision in a 65-nm Process

16 × 16 bit AM1, AM2, TAM1 and TAM2 are implemented in VHDL and their delay, area and

power reports are obtained from Synopsys Design Vision based on STM 65-nm libraries (Table

4.3). The delay, area and power values of four designs are plotted separately in Fig. 4.13 as well.

As shown in the table and figures, AM2/TAM2 has larger delay, area and power than AM1/TAM1

at the same number of bits for error reduction. Another observation is that TAM1/TAM2 has s-

maller delay, area and power compared to AM1/AM2. TAM1/TAM2 has significantly reduced area

and power compared to AM1/AM2, however the reduction in delay is rather limited for most of the

cases. It is also shown in Table 4.3 that AM1 (TAM1) with 10-13 bits for error reduction have the

same delay, area and power values. Therefore AM1 (TAM1) with 10-12 bits for error reduction are

not interesting because their errors are larger than AM1 (TAM1) with 13 bits for error reduction

but with no advantage in delay, area and power. Thus they are crossed out in Table 4.3 and not

shown in Fig. 4.13.
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Figure 4.13: Delay, area and power simulation results for AM1, AM2, TAM1 and TAM2
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Table 4.3: Delay, area and power of proposed approximate multipliers obtained from Synopsys
Design Vision

4.5 Image Processing Applications

4.5.1 Image Processing with Proposed Multipliers

Approximate circuits can be used in error-tolerant applications such as image processing; image

sharpening and smoothing applications are studied next. Since multiplication is the arithmetic

operation under investigation, an accurate multiplier is replaced by the proposed approximate

multipliers (i.e., AM1 and AM2). All other processing steps (such as addition) are kept accurate.

The sharpening algorithm of [19] is simulated using both exact and approximate multipliers

(i.e., AM1 and AM2). In the results shown in Fig. 4.14, approximate multipliers with different

numbers of bits for error reduction are evaluated and an improvement in performance is achieved

when the number of bits for error reduction is increased. The degradation in image quality is

evident when 4 bits are used for error reduction for both AM1 and AM2. However, for a 8-bit

error reduction in AM1 and AM2, there is no visually distinguishable difference with the exact

sharpening result.

The image smoothing algorithm is given by [31]:

Y (x, y) =
1

60

2∑
m=−2

2∑
n=−2

X(x−m,x− n)Mask(m,n), (4.16)

where X is the input image and Y is the output smoothed image, and Mask is a 5×5 matrix given
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: Image sharpening (a) original blurred image (b) using an accurate multiplier (c) using
an 8/4 AM1 (d) using an 8/8 AM1 (e) using an 8/4 AM2 and (f) using an 8/8 AM2.

by:

Mask =

⎡
⎢⎢⎢⎢⎣
1 1 1 1 1
1 4 4 4 1
1 4 12 4 1
1 4 4 4 1
1 4 7 4 1

⎤
⎥⎥⎥⎥⎦ .

The smoothing results are shown in Fig. 4.15. Similar to the sharpening application, an AM1 or

AM2 with 8-bit error reduction has a visually equivalent performance to an accurate multiplier.

The peak signal-to-noise ratio (PSNR) is used to compare the difference between the images

obtained by the accurate and approximate multiplications. Table 4.4 shows the PSNR values with

respect to different numbers of bits for error reduction in the proposed multiplier. For example,

the resulting image by an 8/8 AM1 has a PSNR of 49.37 dB for image sharpening and 51.56 dB

for image smoothing; this is generally considered to be a good match with the accurately processed
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Image smoothing (a) original image (b) using an accurate multiplier (c) using an 8/4
AM1 (d) using an 8/8 AM1 (e) using an 8/4 AM2 and (f) using an 8/8 AM2.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Image multiplication. (a) original image 1, (b) original image 2, (c) result by an
8/8 AM1, (d) result by an 8/8 AM2, (e) result by UDM and (f) result by ETM with 4 MSBs as
multiplication part.
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Table 4.4: PSNR (dB) of image processing applications for AM1 and AM2.
Image Sharpening Image Smoothing

# of bits for error reduction 4 6 8 4 6 8

AM1 29.08 37.13 49.37 30.64 40.39 51.56

AM2 29.08 37.13 50.56 30.64 40.39 51.56

Table 4.5: PSNR (dB) of image multiplication of 4 different approximate multipliers
8/8 AM2 8/8 AM1 UDM [17] ETM [18]

46.48 41.93 32.99 30.67

image. Since the result of an approximate multiplication is then processed by an accurate division

for both image sharpening and smoothing applications, the error in the approximate multiplication

is attenuated. Therefore, the differences in the PSNRs for AM1 and AM2 are very small and, thus,

difficult to be observed by the 2-digit accuracy. However, there is a 1dB difference between the

PSNRs for AM1 and AM2 with 8-bit error reductions for the image sharpening application.

4.5.2 Comparison with Existing Approximate Multipliers

To evaluate the performance of each approximate multiplier, image multiplication is selected be-

cause it directly employs multiplication without any other operations. The multipliers used in

image multiplication use exactly the same configuration as those ASIC implementations described

previously, i.e., AM1 and AM2 with 8-bit error reduction and ETM with 4 MSB multiplication

part. The resulting images are shown in Fig. 4.16 while the corresponding PSNRs are shown in

Table 4.5. AM2 achieves the highest PSNR, while ETM has the lowest. This is consistent with

the NMED and MRED trends. The PSNRs of AM2 and AM1 are significantly higher than those

of both UDM and ETM. As shown in Fig. 4.16, the resulting images by ETM and UDM show a

reduction in quality, while there is no visible flaw for both images processed by AM2 and AM1.

4.6 Conclusion

This chapter has proposed a novel approximate partial product accumulation tree for a multiplier

design using a newly designed approximate adder. OR-gate based and approximate adder based

error reduction schemes are used, yielding two different approximate multiplier designs: AM1 and

AM2. Both AM1 and AM2 have been shown to be faster with a lower power dissipation than the

exact Wallace multiplier. Functional analysis has shown that on a statistical basis, the proposed

multipliers have very small error distances and thus, they achieve a high accuracy. Simulation

has also shown that AM2 has a higher accuracy compared to AM1 at the cost of a longer delay

and a higher power consumption. The application of the proposed multipliers to image sharpening

and smoothing has shown that the proposed designs are very competitive in performance with the

accurate counterpart.
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Chapter 5

A Comparative Evaluation of
Approximate Multiplier Designs

In this chapter, the proposed designs are compared with approximate multiplier designs from the

literature in terms of error metrics (NMED, MRED and ER) and circuit metrics (delay, power and

area). Both the 8× 8 and 16× 16 bit multipliers are considered in this comparison.

5.1 Comparison of 8× 8 Bit Approximate Multipliers

5.1.1 Error Characteristics

Both an 8× 8 AM1 and AM2 are compared with two other approximate multipliers with the same

size: the ETM in [18] and the underdesigned multiplier (UDM) in [17], as illustrated in Fig. 5.1.

In this comparison, ETM with 5, 4 and 3 MSBs as the accurate multiplication part is considered,

as shown in each of the figures in Fig. 5.1, from left to right. The three points from left to right

in these figures for both AM2 and AM1 show the corresponding data for 8-bit, 10-bit and 12-bit

MSBs for error reduction. There is only one configuration for UDM, so the values for it are all

constant.

Among these four multipliers, ETM has the worst accuracy in terms of NMED, MRED and ER.

This is not surprising because ETM uses a simple partition scheme. However, it is a straightforward

design and as reported in [18], it saves nearly 90% of the power. The proposed multipliers, AM1

and AM2, have significantly smaller NMED and MRED compared to the other two multipliers. The

ERs of AM1 and AM2 are slightly higher than UDM for the 8-bit error reduction case. However,

the proposed multipliers start to show better performance in all three metrics when at least a 10-bit

error reduction is employed.

As an example, a more detailed comparison is shown in Table 5.1. In this comparison, the ETM

is divided equally into multiplication and non-multiplication parts, while the proposed multipliers

use 8 MSBs for error reduction. AM2 has the lowest NMED and MRED, while AM1 is the next.

The proposed multipliers have a slightly higher error rate than UDM, but the error rates can be

reduced using more MSBs for error reduction.
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Figure 5.1: Comparison of accuracy among four approximate multipliers (x axis has no definition
for UDM since it has only one type of configuration).
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Table 5.1: Arithmetic accuracy comparison between three approximate multipliers.
8/8 AM1 8/8 AM2 ETM [18] UDM [17]

NMED (%) 0.24 0.12 2.85 1.39

MRED (%) 1.16 0.82 25.21 3.25

ER (%) 51.40 48.00 98.88 46.73

(a) (b)

Figure 5.2: Delays and power consumptions of different multipliers (@1GHz)

5.1.2 Circuit Characteristics

An 8×8 bit Wallace multiplier, AM1 and AM2 with 8-bit error reduction, UDM and ETM with a 4

MSB multiplication part are implemented in STM 28-nm CMOS process. By applying 20 random

input combinations to every circuit, the largest delays of the multipliers are reported in Fig. 5.2

(a). UDM is the fastest while the accurate Wallace multiplier has the longest delay. AM1 has a

slightly longer delay than ETM, and AM2 is slightly slower than AM1.

The input data extracted from the two images are applied to each multiplier at a 1GHz frequency

and image multiplication is performed. The power consumption for image multiplication is shown

in Fig. 5.2 (b). The Wallace multiplier consumes the most power while ETM the least. Both the

two proposed approximate multipliers, AM1 and AM2, require less power than UDM. In terms

of arithmetic accuracy, both AM1 and AM2 have smaller NMED and MRED, and almost similar

ER compared to UDM. ETM consumes the least power among the four approximate multipliers.

However, its accuracy is the worst. Due to its limited accuracy, ETM may not be acceptable in

many applications, as shown in the following section.

5.1.3 Discussion

The proposed approximate multipliers show significant and competitive accuracy compared to the

other two approximate designs. Therefore, image multiplication by the proposed multipliers show a

visually equivalent result to accurate processing with excellent PSNR values. The images obtained

by the other two approximate multipliers show a lower good quality with lower PSNRs.
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Table 5.2: Power-delay product (PDP) and power-delay-error metric (PDEM) of different approx-
imate multipliers

8/8 AM1 8/8 AM2 ETM [18] UDM [17]

PDP 3.15 3.78 1 3.23

PDEM 1.67 1 6.29 9.90

The proposed designs reduce power and delay compared to Wallace multiplier. They also

require less power consumption compared to UDM. The proposed designs are slightly slower than

the other two multipliers; however, they achieve a very competitive accuracy compared to a precise

multiplier.

To better compare the four different approximate multipliers, the power-delay product (PDP)

and the power-delay-error metric (PDEM) are evaluated. The PDEM is defined to be PDP ×
NMED. Table 5.2 shows the relative PDP and PDEM (i.e., the smallest PDP or PDEM is

converted to 1 as a comparison base) of four approximate multipliers with the same configuration

as those used in delay and power comparison. In terms of PDP (that does not consider accuracy),

ETM is the best since it has an extremely small power consumption while the other three designs

have similar PDPs. However, if accuracy is considered for a more comprehensive comparison, the

proposed approximate multipliers show significant advantage. AM2 is the best in terms of PDEP

while AM1 is the second. Both ETM and UDM have large PDEMs compared to the proposed

ones. Therefore, the proposed approximate multipliers achieve the best trade-off between accuracy,

power consumption and circuit performance.

5.2 Comparison of 16× 16 Bit Approximate Multipliers

5.2.1 Error Characteristics

The proposed multipliers as well as several existing approximate multipliers have been simulated

with 108 random input combinations and the error measures in NMED, MRED and ER have been

obtained. Table 5.3 shows the results from Monte Carlo simulations.

Among these multipliers, UDM has the largest NMED while BBM has the smallest. Since BBM

uses the Booth algorithm before applying the truncation strategy, the number of truncated partial

products is very small and therefore it achieves a high accuracy in terms of NMED.

AWTM has low accuracy for small operands, and it even generates non-zero product when the

accurate product is zero. In order to calculate the MRED, both input operands are selected to

be non-zero. Table 5.4 shows the NMED and MRED of AM2 with 15 bits for error reduction

(AM2-15), ICM and BAM with a truncation of 18 LSBs (BAM-18). All the three multipliers have

close NMED values, however ICM has the smallest MRED while BAM has the largest. Therefore

ICM has the best accuracy in terms of MRED, while BAM is the worst among these three. In fact,

multipliers with simple truncation tend to have larger MREDs when NMEDs are similar. It can be

seen that ETM, BBM and BAM have relatively larger MREDs due to truncation. AWTM also has

very large MREDs especially when one of the input is zero, in which case it has an infinite RED
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Table 5.3: Comparison of Error Characteristics

Table 5.4: Comparing MREDs of Three Multipliers
NMED (%) MRED (%)

AM2-15 0.028 0.17

ICM 0.029 0.06

BAM-18 0.022 0.63
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(a)

(b)

Figure 5.3: A comparison of NMED and MRED of approximate multipliers with data sorted on
(a) NMED and (b) MRED, where the MREDs of AWTM-1 and AWTM-2 are smaller than their
real values for better display.
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(since its output is non-zero).

Most of the designs, especially those with truncation, have large ERs. For example, ETM

and BAM result in nearly 100% error rates. However, there is one exception: ICM. ICM has an

extremely low ER of 5.45% because it uses only one approximate compressor in a 4 × 4 bit sub-

multiplier. The error rate for this sub-multiplier is only 1/256, so a 16× 16 bit multiplier using the

4× 4 bit sub-multipliers has a low error rate too. Take ICM and TAM2 with 15-bit error reduction

as an example. Both multipliers have similar NMEDs, however ICM has an extremely low ER.

This indicates that ICM tends to generate errors with large magnitudes.

To give a whole picture, the NMED and MRED of approximate multipliers are shown in Fig.

5.3, with ascending NMED values from left to right in Fig. 5.3 (a) and ascending MRED values in

Fig. 5.3 (b). Since the MRED values for AWTM-1 and AWTM-2 are too large compared to the

other designs, these values are made smaller than their real values to fit in the figure. Based on

NMED, these approximate multipliers can be classified into three categories: Low-Error Multiplier

(LEM), Medium-Error Multiplier (MEM) and High-Error Multiplier (HEM). From AWTM-4 up to

ICM in Fig. 5.3 is the LEM region, BAM-20 up tp TAM1-13 is the MEM region and the others are

HEMs. Two configurations of the proposed designs (TAM2-16 and AM2-15) fall in the LEM region

and the others are classified to be MEMs. Therefore, the proposed designs are low and medium

error multipliers. In MRED, AWTM-3 has a very high MRED (2.51%) in the LEM category, while

the other LEMs have very small MREDs. In the MEM category, the proposed multipliers have

smaller MREDs compared to the other designs.

In conclusion, the proposed designs have relatively low NMEDs, as well as MREDs, among all

the considered multipliers. Some designs may have a low NMED (e.g., BAM-18 and AWTM-3),

however their MREDs are relatively high. It is shown in the next section that the proposed designs

achieve the best overall trade-off when circuit characteristics are considered.

5.2.2 Circuit Characteristics

16 × 16 bit approximate multipliers have been implemented in VHDL and their delay, area and

power were obtained using Synopsys Design Vision based on STM 65-nm process. Table 5.5 shows

the simulation results from Synopsys Design Vision.

AM1/TAM1 has a smaller delay even with a 16-bit error reduction compared to the other types

of designs. For example, AM1-13 has a very short delay of only 0.88ns, while AM2-10 has a delay

of 1.40ns, and the next fastest design is ETM-7 with 1.48ns. Although AM2 results in a larger

delay than AM1, it is faster than the other designs except for ETM. As analyzed in Chapter 4, the

proposed approximate multipliers can significantly reduce the critical path delay.

In terms of area and power efficiency, ETM, TAM1/TAM2 and BAM are among the best designs.

One similarity of these designs is that they all use truncation. As discussed before, truncation can

significantly affect MRED while NMED is not changed much. If most of the inputs are large values,

the error introduced by truncation can be tolerated; thus truncation is a useful scheme to save area

and power. Otherwise, truncation-based designs may yield unacceptably inaccurate results.

64



Table 5.5: Comparison of Circuit Characteristics
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(a)

(b)

Figure 5.4: A comparison of delay and power of approximate multipliers with data sorted on (a)
delay and (b) power.
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Figure 5.5: MRED and PDP of approximate multipliers

In conclusion, the proposed designs have shorter critical paths than the other designs, with

competitive power efficiencies. When truncation is applied, however, the proposed designs are

among the most power-efficient designs.

5.2.3 Discussion

For an overall evaluation of different approximate multiplier designs, both error and circuit char-

acteristics should be considered. In this discussion, MRED and power-delay-product (PDP) of the

approximate multipliers are used to show the tradeoff between error and circuit measures (Fig.

5.5).

According to Fig. 5.5, the proposed designs have both small PDPs and MREDs, which makes

them stand out. Most of the other designs have at least one major shortcoming. For example, ICM

incurs an extremely low error, but its PDP is very high. Even though most BAM configurations

have small PDPs, their delays are generally large (Fig. 5.4). Moreover, some BAM configurations

have low accuracies. AWTMs have large PDPs and only AWTM-4 has a high accuracy.

Those designs that fall in the ellipse in Fig. 5.5 are considered to be desired designs, among

which there are four proposed designs. Therefore, some of the proposed designs achieve the best

tradeoff between error and circuit measures. Furthermore, the proposed designs have more degrees

of freedom to configure, including the number of MSBs for error reduction, the number of LSBs for

truncation and the error reduction circuit (either AM1 or AM2). Therefore, the proposed designs

are flexible to use for achieving different tradeoffs in approximate circuit design.
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Chapter 6

Conclusion

In this thesis, an analytical framework has been proposed to analyze both the generic and application-

specific error characteristics of approximate adders. A novel approximate multiplier with low power

and high performance has also been presented. A comparative evaluation of various approximate

multipliers has been performed.

In the analytical framework, several representative approximate adder designs are considered

and generic error metrics such as the error rate are computed. This analysis provides new insights

into different approximate adder architectures. For example, the almost-correct adder (ACA) has

an extremely low error rate, however its mean error distance is very high, i.e., the magnitudes of

the errors are, on average, very large. This framework is further extended to analyze application-

specific metrics such as the peak-signal-to-noise ratio (PSNR). The analytical results show that the

mean error distance is more relevant to application-specific metrics that is sensitive to accumulated

errors, while error rate is less important. The derived mathematical relationships between the

generic metrics and PSNR are in fact independent of the analysis of generic metrics. As a result,

the analysis of PSNR can be applied to adder designs that have not been considered in this thesis.

A different analytical or simulation method can be used to analyze the generic metrics, and then

PSNR can further be evaluated using the proposed relationships. Hence, this framework can be

divided into two relatively independent parts: the analysis of generic metrics of several types of

adder designs and analysis of the PSNR for given generic metrics. While the first part of this

framework is only applicable to the adders similar to those considered in the thesis, the second part

can be applicable to many adders and even other types of approximate circuits.

A new approximate multiplier design is also proposed in this thesis. This multiplier leverages a

newly proposed adder, which generates an approximate result and an error signal. The error signals

are then used in the configurable error reduction stage. There are two ways to implement the error

reduction: 1) by configuring the number of MSBs for error reduction and 2) by configuring the

circuit (either one of the two approximate modes) for error reduction. This configurable feature

provides design flexibility in trading off accuracy for a reduced power and delay. With an appro-

priate configuration of the error reduction, the proposed multiplier can have extremely low power

consumption, short critical paths and very high accuracy. When applied in image processing, the
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multiplier achieves a competitive result with no perceivable loss of quality. Simulations have also

been performed for image processing applications. Power savings up to 69% have been obtained,

compared to a traditional accurate multiplier.

A comprehensive comparison of the proposed and existing approximate multipliers has been

performed on 16 × 16 bit designs. The proposed multipliers are the fastest in terms of delay, and

very competitive in terms of both accuracy and power, while the other designs have at least one

major shortcoming in accuracy, delay or power. The proposed design with certain configuration

achieves the best tradeoff in accuracy, delay and power.
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