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Abstract

Inclined plate sedimentation is driven by strong buovancy forces caused by the
discontinuous dispersed phase volume fraction profile at suspension interfaces. Accurate
shock capturing methods have been used successfully to model discontinuous flows in
transonic aerodynamics for several vears. A non-diffusive shock capturing method was

applied to the numerical modelling of inclined plate sedimentartion.

An efficient algorithm was developed to model sedimentation described by three
differential equations: a material transport equation for the dispersed phase concentration
plus a vorticity transport equation and a stream function equation for the homogenous
mixture. The slip velocity of the dispersed phase was modelled with a Richardson & Zaki

type of relation.

The simulation code was validated with a series of sedimentation examples. The
numerical results compared well with those obtained by other researchers and with
experimental results. The thickness of the clear fluid slit obtained with the simulation

agreed well with experimental data.

The non-diffusive numerical results were compared with first order accurate results
for several cases of batch sedimentation. The non-diffusive results captured several

features observed in sedimentation experiments including the the correct wave length



of the disturbance between the suspension and the ciear fluid slit. First order accurate
simulations suffered from excessive numerical diffusion and did not model inclined plate

sedimentation well with reasonable mesh sizes.

Results of the non-diffusive simulations were compared with experimental data for the
location of the inception point of the wavy suspension interface for a range of parameters:
liquid viscosities 18.8. 28.8 and 38.1 mPas: inclinations of 5 - 50°: dispersed phase volume
fractions of o = 0.01 - 0.15. This location is related to the growth rate of the wavy

disturbance. The numerical results agreed well with the experimental data.

A parameter study was carried out to determine the effect of uniform internal resistance
to motion on the flow in an inclined plate sedimentation vessel. The resistance was
modelled in the manner of porous media with constant permeability and linear with the
fluid velocity. The numerical results suggest that internal resistance stabilizes the wavy

suspension interface and reduces the entrainment of suspension in the clear fluid.
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Nomenclature

Scalar quantities are denoted by lightface miniscules and vectors by boldface
miniscules. Second order tensors are denoted by boldface majescules. The only exception
to this is the use of T for shear stress. Overbars on physical properties denote the property
of the material: the viscosity of the pure continuous phase is f f- Dimensionless quantities
are capped with a caret: for example the dimensional velocity is # and the dimensionless
velocity is u.

a wave speed or Rankine-Hugoniot velocity

b width of the settling vessel

c dispersed phase concentration from Acrivos & Herbolzheimer
dg particle diameter

D inflection of the solution surface

D symmetric rate of strain tensor

floy) hindering expression of Wallis for the drag force

Fr Froude number. Fr = V2__/(Lg)

g gravity vector

G growth rate of the Fourier mode

Gr Grashof number from Acrivos & Herbolzheimer, Gr = 18 R(L/ds)?oy
h(oy) hindering expression of Richardson & Zaki for the settling velocity
H height of the horizontal suspension interface

1,7 discrete coordinate number for the £-n or z-y meshes

k porous media permeability

L length of the sedimentation vessel

my; interphase momentum transfer for phase s.

n hindering exponent for the Richardson & Zaki model

N¢ Courant number, N¢ = |a|At/Az

Np diffusion number, Np = Af/(ReA?)

NI, NJ number of grid points in £ and n directions

D pressure
P dimensionless pressure from Acrivos & Herbolzheimer
q fitting parameter for the settling velocity data of Font



Re
Res oo

~'

k

VDE N

vessel Reynolds number from Acrivos & Herbolzheimer. R =
Lp f ";.ac/ 7y

vessel Reynolds number. Re = g7 LV oc/ptim

particle Reynolds number at infinite dilution for dispersed phase s.
Re; x = P_fds‘/'s,oo/ﬂf

Hele-Shaw equivalent wall separation for uniform internal resistance to
motion. s = V12k

flux of clear liquid produced in the sedimentation vessel

slope of the solution surface in the z and y directions

Stokes number

time

velocity vector

z and y components of velocity

settling velocity of dispersed phase s at the specified concentration
settling velocity of dispersed phase s at infinite dilution

width of the inlet port to the settling vessel

position in the real domain

wave inception distance

numerical and real diffusivities

grid clustering parameters

implicitness factor for the stress term (w) and the buoyancy driving force
(@)

truncation error of the discretization method

positions in the computational domain

mnaterial density of phase &

buoyancy ratio, (gs — ps)/py-

ratio of a sedimentation Grashof number to R, A\ = L2%g(p, —
51100/ (Vaoliy) = 18(L/ds 260

volume fraction of phase k

initial or inlet dispersed phase volume fraction

viscosity of phase k

viscosity of material &

angle of inclination from vertical

vector denoting the angle of inclination, @ = [siné cos 6]
shear stress on phase k

phase angle for the Fourier mode

stream function of the homogeneous mixture

vorticity of the homogeneous mixture

Fourier mode of w



Subscripts
tJ
il jl
k
f.s

m

.Yy

Superscripts
c

n.n+1

!

Operators

v

grid index on the regular mesh

grid index on the staggered mesh

arbitrary phase &

Huid phase (continuous). dispersed phase (solid)
volume averaged mixture

r and y components of direction

interpolated value at the control volume face for UNO2 differencing
current and next time step
slip relative to the mixture

gradient, ([£, £, Z])



Chapter 1

Introduction

Sedimentation is an important unit operation in the chemical and mineral processing
industries. For example. bitumen processing requires an efficient method to separate
mixtures of bitumen. water and sand. Primary wastewater treatment involves clarification
and thickening of raw efluent. Inclined plate or lamella settlers are used to increase the

sedimentation rates in wastewater treatment and mineral processing.

1.1 Historical background

Boycott [3] noted that

...if oxalated or defibrinated blood is put to stand in narrow tubes, the
corpuscles sediment a good deal faster if the tube is inclined than when it

is vertical.

A simple kinematic theory was developed by Ponder [37] and simultaneously by Nakamura
& Kuroda [32] (referred to as PNK theory) to correlate the rate of sedimentation with the
aspect ratio and the angle of inclination of the plates shown in Figure 1.1 [1]:

dH

. H .
-E = —"s (1 + Fsme)

For sedimentation in the continuous mode the flux S of clear fluid produced in the

vessel is )
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Figure 1.1: Geometry for batch sedimentation between inclined parallel plates.
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PNK theory does not predict the velocity profiles inside the vessel and cannot account
for the waves that resuspend the mixture and decrease the separation efficiency of the
inclined plate device. A good numerical model is needed to predict the velocity profiles

inside the vessel and to test new designs for settling devices.

Richardson & Zaki {38] performed a series of one dimensional sedimentation and
fluidization experiments with various suspensions. They correlated the settling velocity of
a suspension with

Vs
Vsoc
where V5 o is the settling velocity at infinite dilution and the exponent n depends only
on the particle Reynolds number. Wallis [51] used this correlation to obtain a general
expression for the drag force between the continuous and dispersed phase. Maslivah [30]
used the hindered drag force expression of Wallis to derive an expression for the settling
velocities of a bidispersed suspension. Good agreement was found with experimental data.

=(1-0)"

Kynch [24] proposed a simple model for one dimensional sedimentation. He assumed
the settling velocity is only a function of the local concentration and the concentration
profile is dictated by the solution to the dispersed phase continuity equation:

0o, 6(06‘;‘)

—_— =0

at dy

The product (¢415) is the vertical flux of the dispersed phase: an example of the flux curve
is shown in Figure 1.2. Kynch defined a wave speed to be the slope of the flux curve:

a(os) = 8(osV5) /0o,

Vertical sedimentation is described by the solution to the quasilinear wave equation

09s o
=0
5t "By

Kynch noted this equation permitted weak solutions and shock waves: this is consistent
with experimental observations of the compaction zone at the bottom of a settling vessel
and sharp clear fluid/suspension interfaces. Results of batch settling tests (interface
position vs. time) were represented well by this simple theory.

Experimental measurements are divided into two classes. The first class measured the
position of the horizontal suspension interface over time [23, 34, 25]. These measurements
give an overall picture of the process but do not provide details of the flow. The second
class provided more detailed measurements of the flow. Acrivos and co-workers (1,8, 18, 45]
measured the thickness of the clear fluid zone beneath the upper inclined wall and the
location of the inception point of the wavy interface. Herbolzheimer [18] notes the wave



CHAPTER 1. INTRODUCTION 1

0.08 T T T T T T

0.07 -

0.06

0.05

0.04

OsVi/Vsm

0.03

0.02

0.01

0 L 1 L L L .

0 0.1 0.2 0.3 04 05 0.6 0.7
9s

Figure 1.2: Dimensionless flux curve for V5/V; < = (1 — ¢,)> 1.

inception point is related to the growth rate of the unstable waves. Leung & Probstein
[29] and Leung [28] also measured the inception point of unstable waves.

Prior to the mid-1960’s most successful numerical simulations of incompressible single
phase flow were performed with the vorticity-stream function equations. The Marker
and Cell (MAC) method of Harlow & Welch [14] was the first widely accepted primitive
variable (velocity/pressure) algorithm for single phase incompressible flow. Hill et al. [19]
used a buoyancy driven single phase model and a variant of the MAC method to model
Stokes sedimentation of a very dilute suspension under an inclined surface. Their finite
difference scheme used a second order accurate central approximation for the convection
terms in the momentum equations. Grid scale oscillations were apparent in the shape of

the suspension interface.

Patankar & Spalding [35] developed the Semi-Implicit algorithm (SIMPLE) for the
simulation of single phase incompressible flow in complicated three dimensional geometries.
The driving force for multi-phase flow algorithms came in the mid 1970’s with the need to
model loss of coolant accidents (LOCA) in nuclear reactors. Spalding used the framework
behind SIMPLE to develop the InterPhase Slip Algorithm (IPSA) for multi-phase flow.

The development of compressible flow algorithms followed a much different path from
that of incompressible flow algorithms. Discontinuities are not valid solutions to the
equations that describe incompressible flow while the hyperbolic transport equations
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(Euler equations) for compressible flow do admit discontinuous solutions. Compressible
flow algorithms focus on the accurate representation without overshoot of discontinuous
solutions. The most desirable discretization methods admit solutions that satisfy the
requirement of Total Variation Decreasing (TVD) developed by Harten [15, 16]. This
concept ensures that local solution extrema do not grow over time and become errors. The
review article by Rizzi & Engquist [39] describes the historical development of accurate
methods in modelling discontinuous flows. Woodward & Colella [53] review the ability of

several discretization methods to capture strong shocks.

Yokota & Huynh [56] noted

The aerospace industry’s wide acceptance of computational fluid dynamics is
due mainly to the successful calculation of transonic flows. Shock capturing
schemes. both upwind and central differenced. have revolutionized the way

discontinuous flows are investigated.

Multiphase flows are discontinuous: the non-diffusive nature of the dispersed phase leads
to discontinuous dispersed phase concentration and velocity profiles.

1.2 Research goals

The goal of this research was to apply accurate shock capturing techniques from
computational aerodynamics to the numerical simulation of inclined plate sedimentation.
Numerical results were compared with detailed experimental data obtained by Acrivos &
Herbolzheimer [1], Herbolzheimer [18] and Shagfeh & Acrivos [45] for batch and continuous
sedimentation. Of primarv concern was the ability of the numerical simulation to capture

correctly the wavy suspension interface adjacent the upper inclined surface.

1.3 Thesis overview

Chapter 2. A homogeneous model is derived from a general two-fluid model.
The governing equations are written in dimensionless vorticity-stream function form.
Simplifications are made to enable rapid solution of the discrete equations.

Chapter 3. The dispersed phase material transport equation is discretized with the
uniformly second order accurate non-oscillatory UNO2 method of Harten & Osher [17].
The UNO2 scheme is applied to the convection terms in the vorticity transport equation
while the viscous terms are discretized with three point central finite difference expressions.
An efficient solution algorithm is developed.
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Chapter 4. A linear stability analysis and truncation error analysis are presented for
the algorithm developed in Chapter 3. While discretized vorticity transport equation is

first order accurate the dominant truncation error does not appear as numerical diffusion.

Chapter 5. The simulation code is validated with a series of examples. Numerical
results are compared with the numerical results of other researchers and experimental

data.

Chapter 6. Simulation results for batch inclined plate sedimentation are compared
between the non-diffusive UNO2 method and first order accurate upwinding. These results
demonstrate the superior accuracy of the non-diffusive shock capturing method.

Chapter 7. Simulation results for continuous inclined plate sedimentation are compared
with detailed experimental data for the inception point of unstable waves for a range of

viscosities. inclinations and dispersed phase concentrations.

Chapter 8. A parameter study of inclined plate sedimentation was performed where
there is a porous media type of resistance to motion. The permeability of the media was
the major parameter. The effect of internal resistance to motion flow patterns and the

inception point of the wavy interface are predicted.

Chapter 9. Numerical results obtained with an alternative discretization of the
buovancy term are compared with the results obtained in Chapter 7. While this alternative
discretization method is shown to be more accurate than that used in the previous chapters

the new numerical results follow the same trends as the previous resulits.



Chapter 2
Governing Equations

The governing equations presented by Ishii & Kocamustafaogullari [22] for a two fluid
model are simplified in the first section of this chapter. The two-phase suspensions
of interest in this work are laminar isothermal suspensions of rigid solid particles in a
continuous liquid phase. All materials are incompressible and there is no mass transfer
between phases. Particle Reynolds numbers are Res . < 0.1 (Stokes settling) and the
dispersed phase concentrations are small enough (& < 0.13) to prevent solid-like stresses

from occurring in the dispersed phases.

A homogenous model is then developed from the two fluid model. The behaviour of
the suspension is described by a momentum equation for the homogeneous mixture. the
slip velocity of the dispersed phase relative to the mixture and a transport equation for the
volume fraction of the dispersed phase. These equations are written in terms of vorticity

and stream function to eliminate pressure.

2.1 Two fluid model

For an isothermal two-phase suspension the two fluid equations presented by Ishii &

Kocamustafaogullari [22] are given below:

Continuity equation

K9P - (ouprams) = Ak @.1)

Momentum equation

O(Pkprur)
ot
— 0k NPk + ¥ - Oe(Th + T) + kg + Upidp + Mg — Vo - T, (2.2)

+ V- (PrpPrurui) =

-]
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The subscript k denotes the phase and i denotes the value at the interface between the
two phases. pj is the density of the material comprising phase k. of. ux and pi are the
volume fraction. velocity and pressure of phase k. .\y and my, are the mass generation
and interfacial drag force. T4. T} and T; are the laminar shear stress. turbulent shear

stress and interfacial shear stress.

The densities p, are constant since the phases are incompressible. .\; = 0 because
there is no generation of mass in either phase or mass transfer between phases. The
turbulent shear stress T4 is zero because the flow is laminar. The pressure field of each
phase is assumed to be identical. Nunziato [33] notes interfacial drag force contribution
Vo - T; can account for contact pressures in the dispersed phase at high concentrations
and the diffusive motion of small particles at low concentrations. This research is not
concerned with the behaviour of the concentrated sediment where contact pressures are

important or the motion of small diffusive particles. This term is neglected.

Equations 2.1 and 2.2 are simplified:

Continuity equation

d
S =T - (okux) =0 (2.3)

Momentum equation

_ (3(Okuk)
Pk o
-0k NP+ N - O Tr + Opprg + My (2.4)

+ Y\ - (okukuk)> =

The saturation constraint is added as an additional equation:

o5+ o =1 (2.5)

Several authors (for example Drew [9]. Soo [47. page 256] and Nunziato [33]) have
presented different constitutive equations for the shear stresses experienced by the
continuous and dispersed phases. These researchers require the mixture stress to be
recovered from the sum of the continuous and dispersed phase shear stresses:

Tm=Tf+Ts (2.6)

The interfacial drag force experienced by the continuous phase is the opposite of that

force experienced by the dispersed phase:

myp = —My,; (27)
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The dominant interfacial force hetween the continuous and dispersed phase is the drag
force. Other forces (such as Saffman lift. Faxén force. Ho & Leal lift. Basset force and

virtual mass effect) are neglected.

A general form of the drag force interaction is given by Wallis [51}]:
30y
4d;

f(#y) is an empirical function that relates the drag force to the concentration of the

suspension. The drag coefficient on a spherical particle. Cps. is a function of the

mg, = 05— f(o7)Cp.s | uy —us | (uy — us) (2.8)

sedimentation Reyvnolds number
dspyluy —us | oy
Af

Re, =

For the low Revnolds number asymptote (Cp s = 24/Re;) Equation 2.8 becomes.

- 18uy floy) _
Mg = Os 42 'o‘ f. (uf us) (29)

S

Richardson & Zaki [38] measured sedimentation and fluidization velocities with ¢, <

0.1. Thev correlated the settling velocity of the suspension with

- (D? (2.10)

where the exponent n is a function of the sedimentation Reynolds number: n = 1.65 for

Rep < 0.2 and n = 2.39 for Re, s > 500.

Wallis correlated the data of Richardson & Zaki to determine the empirical hindering

function f(@y). He suggested the hindering function
flop)=o;"" (2.11)

is a fair compromise to represent the settling velocity at the low Reynolds number
asymptote (Cps = 24/Re,) and the high Reynolds number asymptote with constant
drag coefficient. For Re; « 1 Garside & Al-Dibouni {12} recommends.

flor) = o7 %! (2.12)
Barnea & Mizrahi [3] proposed a more complicated hindering function:

fbr) =05 (1+ (1 - 0) P exp[5(1 - ¢7)/3¢7]) (2.13)

For a two dimensional model with two phases Equations 2.3. 2.4, 2.5 form six
coupled partial differential equations and one scalar constraint with the unknowns
by, &s,ug,vf, ug, Vg and p. Equations 2.9 and 2.12 describe the interfacial drag force.



CHAPTER 2. GOVERNING EQUATIONS 10

2.2 Homogeneous model

In this section the two fluid model equations (2.3. 2.4 and 2.5) are used to develop

equations for a homogeneous model.
The slip velocity of the dispersed phase relative to the continuous phase is assumed to
be a function of concentration only [30]:
- 2
— o
4(ps —by)_°; (2.14)
By  floy)

This assumption is justified by the order of magnitude analysis in Appendix 11.

Us—vy=g

2.2.1 Definition of the mixture velocity and dispersed phase slip velocity

The homogeneous model is based on the definition of the volume averaged velocity of
the two phase mixture:

Uy = Opuyf + OsUy (2.13)

This definition of the mixture velocity satisfies the incompressible continuity equation

V-u, = 0. This is demonstrated by summing the continuitv equations for the continuous

and dispersed phases:

d
J
% Y (oeuy) = 0 (2.17)
ot
The sum is: 3 5
Of Os
=7 . = 2.18
(at-i-at)-#V'umO (2.18)

The saturation constraint oy + o, = 1 is independent of time: the continuity equation for

the homogeneous mixture is
V-oun,=0 (219)

In the case of one dimensional batch sedimentation this definition of the mixture
velocity yields u,, = 0 over the length of the sedimentation vessel.

Equation 2.15 is written for the continuous phase velocity

Up — PsUs (2.20)
?f

This equation is substituted for v in Equation 2.14 and results in

u,:

9d%(ps — py) 9}
s —Um = = 2.21
TV 184y floy) ( )
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The velocity of the dispersed phase relative to the mixture is

3
- o .
us - um = ‘s‘xo‘f(—off) = ‘s‘.och-(of)g (2.2‘2)

where 15  is the settling velocity at infinite dilution and @ = [sin€ cos 8] denotes the

direction of the r and y axis relative to vertical. The function h(oy) = d)‘}/ flog) is
identical to the hindered settling function for batch sedimentation.

The slip velocities for the continuous and dispersed phases are defined by

u'f = uf—un (2.23)

! —_
U, = Us— Unp

The velocity of the dispersed phase relative to the continuous phase is then

!
u S

Uy —uyp = — (2.24)
2.2.2 Material transport equation
The transport equation for the dispersed phase volume fraction is
aa‘:S +Y - (o5us) =0 (2.25)
Equation 2.22 is substituted for u to produce
aa"; Y (Ostum) + ¥ - (0su)) = 0 (2.26)

The continuous phase concentration is obtained from the saturation constraint: @y =
1 — &;.

2.2.3 Momentum equation for the homogeneous mixture

The momentum equation for the homogeneous mixture is derived from the sum of the
continuous and dispersed phase momentum equations. The momentum equations for the

continuous and dispersed phase are:

doru i

2 [ ¢f§t F+T (‘”f"f"f)] = —oNp+ V. -Ty-0pppg+ms  (227)
_ [Odsus , i

Ps [ ast + V- (¢susus)} = —¢;Vp+ V. 15— 0sps9g — My (2.28)

The momentum equation for the mixture is the sum of equations 2.27 and 2.28:

_ [0dru _ [O¢su
oy [—ng- +V-(ofufu/)] + Ps [ q;t 24V (Qsusus)| = —=Vp+ VT —pmg (2.29)
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The mixture density is
Pm = Ofp-f + OsPs (230)
The shear stress T, experienced by the mixture is related to the velocity gradient of the
mixture:
Tm = pm(Vtm + (Vum)T) (2.31)
Tm. 4m and un, are the shear stress. viscosity and velocity of the mixture. The viscosity of
a mixture of neutrally buoyant rigid spheres is correlated well by the equation of Batchelor

& Green [4] for os < 0.2:
um

—= =1+ 2.50, + 7.60° (2.32)
Hf
s is the viscosity of the pure continuous phase.
The momentum equation for the two phase homogeneous mixture is derived in

Appendix A. The result is:

9
o [ﬁ +u,, - Vum] = NP+ Y T — pmg (2.33)

Equation 2.33 is a natural convection model of the homogeneous mixture. The driving
force is the variation in the mixture density p, caused by the distribution of the dispersed

phase concentration governed by Equation 2.26.

2.3 Simplifying assumptions

Three major assumptions are used to simplifv the governing equations. First the
hindering function chosen for this research was a compromise between Equation 2.11 of
Wallis and Equation 2.12 of Garside & Al-Dibouni:

(@) =(1—¢5)72 (2.34)

For a 10% suspension the settling velocities from this correlation are within 3% and
1 % of the velocities obtained from the correlations of Wallis and Garside & Al-Dibouni,
respectively. Simulations with the hindering function 2.34 required one third of the CPU
time of those required by simulations with the hindering function of Garside & Al-Dibouni.

Second the Boussinesq approximation is used. The mixture density Pm appearing
on the left hand side of the momentum Equation 2.33 is taken to be the density of the
initial suspension (batch sedimentation) or the density of the feed suspension (continuous

sedimentation).

Third the viscosity of the suspension is assumed to be constant. The viscosity is
taken to be that of the initial suspension (batch sedimentation) or the feed suspension
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(continuous sedimentation). These last two assumptions permitted an efficient algorithm
to be developed for solving the vorticity transport equation described in Chapter 3.

2.4 Comparison with the homogeneous model of Hill et al.

The homogeneous model of Hill. Rothfus & Li {19] assumes a dilute suspension of
particles in fluid and rests on governing equations for the continuous and dispersed phases.

Their model is:

Fluid momentum equation

du o=
pr a_tf+u,-\-u, =-Vp+ Y -7, — pmg (2.35)

Fluid continuity equation

Veour=0 (2.36)
Particle continuity equation
daot’ +(uy+ul) Vo, =0 (2.37)
Particle velocity equation
us = u;+ ug (2.38)

where the slip velocity u/, is the settling velocity at infinite dilution.

The equations of Hill et al. reduce to the homogeneous model presented in this chapter
in the limit of infinite dilution. Two differences arise for ¢s > 0. First the dispersed phase
slip velocity and the viscosity of the mixture are functions of concentration. Second the
fluid continuity equation 2.36 is only valid for ¢s; = 0: for non-zero concentrations it is

09
th-+v-(¢fu,)=0

In a batch sedimentation experiment this equation is responsible for the upwards
displacement of fluid in the bulk of the suspension. This balances the downwards

volumetric flux of particles.

The equations 2.35 - 2.38 of Hill et al. are analogous to the simplified model Equations
2.22. 2.26 and 2.33 if the fluid velocity u; in their equations is replaced with the mixture

velocity u,,.



CHAPTER 2. GOVERNING EQUATIONS 14

2.5 Governing equations in dimensionless form

The subscript m denoting the mixture is dropped where it is not ambiguous: the
mixture velocity is . the mixture density is p and the mixture viscosity is u. The subscript

s is dropped from the dispersed phase volume fraction o.

The density gy of the continuous phase. the length L of the sedimentation vessel and
the settling velocity at infinite dilution 1§ o are used to define the dimensionless variables:

F o= I
I
i = 2
; 3
: tls.0c
t = -
3
o = ©
. _
P = =
by
0 = u
Vox
i, = =
R P
i
@, = =
Vi

The dimensionless material transport equation is

9o

ot

+V - (ots) =0 (2.39)

The dimensionless momentum equation is

p‘[%+ﬁ‘€'ﬁ] =-\“p+é\‘-2a—(5r+1)% (2.40)
where the Froude number, Reynolds number and buovancy ratio are defined by
12
Fr = 2;
Re = PrLlsec
- IJ‘_
r = Ps—pi
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2.6 Comparison with the governing equations of Acrivos

et al.

Acrivos & Herbolzheimer [1] determined the fully developed velocity profile near the
clear fluid zone for sedimentation in an inclined vessel. Their analysis was the basis for

subsequent work by other researchers [18. 43. 44. 45].

Acrivos & Herbolzheimer write the dimensionless ensemble-averaged momentum

equation for a uniform particle concentration:
N < > ; - V22

Rp(o) 5 +u-Va|=-VP—-(1—-0)A0 +ia(0)V 0 (2.41)
The dimensionless density is p(o) =1 + coé(ﬁs/ﬁf — 1) and the dimensionless viscosity is
(@) where cq is the initial volume fraction of the dispersed phase. Their dimensionless
volume fraction o is scaled with the initial concentration cg: o= ©fc¢p- In this section ¢ is
used to denote the concentration of the suspension: it is equivalent to o or o used in this
work.

The Revnolds number R and \. the ratio of a sedimentation Grashof number to R.

are
- ‘; ) d‘.’- Ds — P |
g = Loftix L sp;(p._z Prlg (2.42)
iy 1847%
v = Bdecia g (L), (2.43)
‘s.xﬂf dy

The sedimentation Grashof number is then a product of the Reynolds number and

dispersed phase concentration:

L 2
Gr=18R (d_) co (2.44)

L]

Acrivos & Herbolzheimer use the same definitions of the average mixture velocity # =
ctts + (1 — c)uy and the dispersed phase slip velocity ' = @i, — 1 as those used in this

research.

The variable A used by Acrivos & Herbolzheimer is related to the dimensionless

variables used in this work:
ng([’s - Prla
‘:s,ooﬁf
ﬁfLVs.oo Lg ps - Pr
— 72 —=Cg
Hf s.c Pf
= EFC()

Fr

A =
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Acrivos & Herbolzheimer define P to be the dimensionless pressure minus the

dimensionless hvdrostatic head due to the suspension of concentration cg.

VP= Up— = g[, {cops + (1 — CO)ﬁf)a =\p-A\ (1 + L_P—f_) 6 (2.43)
il Cops — Pf

The sum of the pressure gradient and gravity terms in Equation 2.41 is then

-'\-P—(l-i);\a=-v;3+.\<1+-1-_ Pr_ )a-<1—i).\a (2.46)
&) CoPs — Pf Co

The right-hand-side of Equation 2.46 simplifies to

A 7
~ Y+ = <—— hr_ . c) 6 (2.47)
€ \Ps — Py
or
P /. (1+c”5_‘—”f)9 (2-48)
CopPs —Pf Pf

In terms of the dimensionless groups used in this work the pressure gradient and buoyancy
terms in Equation 2.48 are
R
-\p+ F—:(l-!-cf)ﬂ (2.49)

The buoyancy term used by Acrivos & Herbolzheimer reduces to the same expression as

that used in this work.

Acrivos & Herbolzheimer [1] present a two-part boundary layer solution for Equation
2.41. The first part gives the thickness and the velocity profile in the clear fluid zone as a
function of distance along the vessel. The suspension interface is treated as a discontinuity
in the dispersed phase volume fraction. The second part gives the motion of the suspension
and matches the no-slip and continuous stress conditions at the suspension/clear fluid
interface. This two part solution allows the Boussinesq and constant viscosity assumptions
to be relaxed: the suspension is treated as a single phase fluid with constant density and

viscosity in each part.

The analysis of Acrivos & Herbolzheimer [1] was modified in the subsequent work of
Shaqfeh & Acrivos [43, 44, 45]. It was also used in the stability analysis of Herbolzheimer
(18] described in the next section.

2.7 Linear stability analysis of Herbolzheimer

Herbolzheimer 18] used the base velocity profile obtained by Acrivos & Herbolzheimer
(1] to perform a linear stability analysis of the flow in the vicinity of the interface between
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the clear fluid slit and the suspension. This analysis is similar to that used by Yih [54] for
the stability of viscous film flow down an inclined plate. The disturbances are assumed
to grow spatially rather than temporally. The analysis of Herbolzheimer is restricted to
disturbances whose wavelength is large compared to the thickness of the clear fluid layer

but small compared to the width of the sedimentation vessel.

Herbolzheimer presents theoretical results for the imaginary part of the wavenumber
(growth rate) and the real part of the wavenumber (inverse wavelength). The parameters
chosen are the vessel Revnolds number. initial concentration and inclination. This stability
analysis demonstrated that flows with higher vessel Reynolds number (lower viscosityv) are

unstable to disturbances of higher wavenumber (shorter wavelength).

2.8 Vorticity-stream function formulation

The dimensionless momentum equation 2.40 and the continuity equation V-4 = 0 are

replaced by the two-dimensional vorticity transport and stream function equations.

The vorticity of the mixture is defined by

. or Oou .
« = 8_1- - d-y (2.00)

for a two-dimensional field. The stream function ¥ of the mixture is defined through

N . -

a r= ~ 37 (2.31)

u=

The stream function equation is obtained from Equation 2.50 and the definition of the
stream function: 5 - )
& v
—_——t = —_ 2.52
012  9y? - (2.52)

The momentum equation 2.33 becomes the vorticity transport equation

(0 Bla) (@) T (8d, 0 1 (%0 0% _
p(E’L oz 83 )" ﬁ(é%o” ag0’)+§<aiz2+ag2 (2:53)

The material transport equation is

86  8(ois) | A(oEs) -
6f+ Er + 5% =0 (2.534)
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2.9 Summary

Sedimentation is modelled with four simple equations. The motion of the homogeneous
mixture is described by two PDEs: a vorticity transport equation and a stream function
equation. The motion of the dispersed phase is described by an algebraic equation
for the slip velocity of the dispersed phase and a material transport equation for the
volume fraction of the dispersed phase. These governing equations are analogous to a
vorticity-stream function formulation of the equations used by Hill et al. {19] except the
slip velocity of the dispersed phase is a function of concentration and the viscosity of
the bulk suspension is used rather than that of the continuous phase. The order of
magnitude analysis of the two-fluid model in Appendix 11 and the derivation of the mixture
momentum equation in Appendix A demonstrates this simple homogeneous mixture model
is valid for low particle Revnolds numbers (Re; o« < O(0.1)) and for &(ps — py) < p.

An accurate and efficient finite difference algorithm for solving these four equations is

presented in the next chapter.



Chapter 3

Discretization and solution

algorithm

The material transport Equation 2.26 is a nonlinear hyperbolic equation and admits
shocks (discontinuities) as solutions. These properties are similar to those of the Euler
equations used to model transonic flow [46]. Colella & Woodward [7] demonstrate the
capabilities of several discretization methods to capture strong and weak shocks for

transonic flow past several geometries.

The volume fraction discontinuity at the suspension/clear fluid interface provides the
buovancy driving force for the motion of the suspension. It is necessary for the miumerical
simulation to approximate this discontinuity sharply and without oscillatory behaviour to
obtain an accurate model of sedimentation. Excessive smearing of the interface reduces
the buoyancy driving force. Oscillatory behaviour introduces local pockets of low and high

density suspension and causes abnormal buovancy forces near the interface.

Harten & Osher [17] present the non-oscillatory second order accurate UNO2 scheme

for the hyperbolic conservation equation

Gu  9(f(u)) _
E'*' Iz =0 (3.1)

They demonstrate the UNO2 scheme is total variation diminishing (TVD) and retains

second order accuracy at local extrema.

The volume fraction equation is updated explicitly with the non-oscillatory second
order accurate UNO2 scheme of Harten & Osher. The vorticity transport equation is
coupled with the stream function equation and is solved implicitly. The convection term
in the vorticity transport equation is calculated with the UNO2 scheme while the viscous
terms are discretized with three point central finite difference expressions. The formulation

19
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Figure 3.1: Staggered mesh for @. 7. o.Z. v

of the UNO2 scheme used in this work is based on the description presented by Yokota
[55].

3.1 Mesh description

The variables w. 1,/) ¢. @ and © were discretized on the staggered mesh shown in Figure
3.1. The vorticity transport and stream function equations were regarded as finite
difference equations while the material transport equation was a cell centered finite volume

equation.

The grid lines for the non-staggered and staggered meshes were indexed by ¢ and 7',
respectively. The grid line 7 is at the same location as i'—1/2 and denotes the left boundary

of the control volume at 7’.

The vorticity transport and stream function equations were discretized in generalized
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orthogonal coordinates (£.n) as described by Thompson [49]. The second derivative
8%%/0+?% was transformed to the generalized coordinates with

2 -, 92 -, N2 13c2 3,
912 (82/9¢)?

02 91/9E O
where 9z /9€ and 3% /9€? are the first and second order metric transformation coefficients.

A similar equation can be written for 92&/83? in terms of the generalized coordinate 7.

The grid clustering equations of Hoffmann [21] was used to cluster the # direction

mesh uniformly near the lateral walls:
(2a -8, + (g;g) (2a + 3:))

r=u =y
(1+2a) (1+(j:j{)"°)

fze

9 . 23, (4= {)3—4 In(221)
o " —
(1—a) (1+2a) ((% (%)o—l)
aZ_,i./dE'.? _ ((é:—j) - (g:_:{) _‘_> ln(J;

or/0E 3e+1 Je-1) Tt
(a=1) ((aﬁ) e (EE)7T
where w is the width of the vessel. J; is the grid clustering parameter (J; > 1) and
a = 0.5. The grid spacing is given by

ot
Ar = B-E—Af

3.2 Material transport equation

The discretized form of the volume fraction transport equation
0, aisd) , o5
ot oz a9y

is interpreted as a cell-centered finite volume expression. Data on the solution surface

=0 (3.3)

propagates with the characteristic velocities a* and a¥ where

A(is0) A

gt = Q@) _y, SU10)0) (3.4)
do 8¢

) 9o
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The characteristic velocities are sumn of the mixture velocity and the wave speed given by

the slope of the flux curve.

A one-dimensional interpolation for o across the control volume is
0= 0y + Sy (L —Iyy) (3.6)

where 57 , is the slope across the control volume. The slope for the UNO2 scheme of
Harten & Osher is

median(o- 05’-‘-1/2.}" - o‘i’.j’f @fl-]l - 0,-:_1/2'_71)

ST ., = _ 3.7
v Az/2 (38-7)

where c;f,ﬂ /2.4 is obtained from the nonoscillatory quadratic interpolation
Oy v1y2y0 = 03(0r yy + 0v 1) = 025Dy 1y (3.8)

and the inflection Dy o is
Dy 12 5 = minmod((0y 1 — 204 5o + Oy 1y ) (O 2 — 201y +0p y))  (3.9)
and the minmod function is

minmod(a. b) = sign(a) max(0. sign(ab) min(|a|. |b])) (3.10)

Equation 3.9 was modified near the walls. At i’ = 1. éi:_l_]: was assumed to be equal
to oy jr. Ati' = NI'~1. é,-r-l.j: was assumed to be equal to a.)i:,_,v. At = NI, c.),-r‘l_j: was
assumed to be equal to a-),v,]: and the minmod calculation was not performed. Equation
3.8 was modified at i = NI": <:.>,-:+Lj: was assumed to be equal to é:,-',_,:.

The volume fraction surface is evaluated at the intermediate time level n + 1/2 by

following the solution characteristics to their positions at time level n. The characteristic

. .y )
velocity at the cell face aj, /2.5 18

4 -
(@7 4125+

~1 42 5 - It 7 . " -
U (QF 11,50 )0F 1150 — Us(PF )87 5o if &F o # Oy p

d!.?'+l/2,j' = ‘:}_*_l‘il - ¢3|J' (3‘11)
B(iy (®F ;1)B% ;1) . :
- J'H g e _
(@) 12,50 + EX if o7 =iy j

Equation 3.11 gives the Rankine-Hugoniot velocity for the propagation of a shock wave.
The slip velocity at i"+1/2 is evaluated with q?)f,+l 2.5 The solution surface is constructed
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on the cell face at the n + 1/2 time level:

(

I

23

PO T ¢ O ASVE S et
II.JI - II.JI 2 Aj- o
-y ; if a0, 20
PPN M
D e = 2 (3.12)
=172 T - s n -
t /2.7 “n - A_r 1 a-ﬁ‘l/?.JlAt
or’-—l._;’ v+l Ty +—_—
2 Ar cpoar
A . if a% , <0
Yy Af V+1/2,;
_sy Qi s1y2.5
\ ' +1.j 2
N Y ;
( on sy Y[ _ Gy ya1/a=t
.y .y 9 A7
y e oy
) if a, ie12 20
sr Af g
5z @y 3 ~1/2
n-1,2 0 Yy 2
Oy y-1/2 = § . .y KV (3.13)
- Ay Ty oyt
n —-SY ., 14 d=e
@,/J/+I l'.]l+l 2 A"}
z ifa¥ , .. <0
-y Af .y +1/2
Sz al’.]’-l/?
The volume fractions are updated with the midpoint rule
. s\n+1/2 .~ \n=1/2 - Ty\n+1/2 - \n+1/2
én.‘l _ n _Af (Usd))l:__l/«2‘.]1 - (u‘o)x’—l/'z.f + (Lﬁo)z"]"—l/Q - (7.5 )i',j'—l/2 (3 14)
vt T Oy A7 Y7 '
where
. \n+1/2 _ - -7, °n+1/2 9 1=
(Gs)piijay = (@isrje,+ us(oi':l/Z,j’) (3.15)
A \n+1/2 _ - .7 n+1/2
(vs)i’-:-l/zj' - (1)3+1/2.J + L‘s(»oiq.l/z,j') (3-16)

The mixture velocities & and ¢ at the cell faces are obtained with central differencing of

the stream function field at the n time level:

(@) 41725
(@) _1/2,5
(D)i jr+1/2

(07 jr—1/2

n nn
Vic1+1 ~ Vitly
Az

S
Vijg+1 — Vij
A7f
n -
iclg+1 ~ Vg4l
-y
N _ n
Vit — Vi
—A7

(3.17)
(3.18)

(3.19)

(3.20)
(3.21)
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Zero flux was specified through faces that lay on walls. Inlets were modelled with
constant flux of volume fraction. Qutlets convected the concentration of the adjacent cell

at the velocity of the outlet face.

The stability analysis presented in Chapter 4 demonstrates the UNO2 scheme requires

the time step to satisfv the CFL condition

a| At
Ne = lalat (3.22)

Ar T

in both the I and y directions. The absolute value of the wave speed |a| was taken to be
the largest values of |u| + [4}] and |9| + |t} in the problem domain. The actual limit on
the time step was more conservative than Equation 3.22: the Courant number was limited

to 0.5.

3.3 Vorticity transport equation

The convection term was modelled with the UNO2 scheme and the buovancy terms
were discretized explicitly as a source term. The diffusion terms were discretized semi-
implicitly with the Crank-Nicolson method. The stability analysis presented in Chapter 4
demonstrates the semi-implicit treatment of the viscous terms removes the stability limit

on Af required by an explicit discretization [21]):

Y

Np = g5 <05 (3.23)

The time step is limited onlv by Equation 3.22.

The conservative first order convection terms d(4w)/d% + 8(0w)/0y were evaluated
explicitly with the UNO2 scheme. Modifications were necessary for grid points adjacent

the walls. The slope at i = 2 was assumed to be

,C —_ .
Worl/2,j T W2,j

%= Az

The &° value at i =1 + 1/2 was extrapolated from &» ; and &§ +1/2; With this slope:
@lirya; =Wy +2(Q2; —Doyyyn;)

The slope at i = 1 was

,%C _— .
r _ Y4125 T YLy
Ly AE/2

Similar extrapolations were used for the slopes near the other walls.
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The discretized vorticity transport equation is

-n+1 - - - nrl/2 .. n~1/2 - ayn+l/2 .. n+1/2
p—(“’:_} - <y, + (@)l g, = (@) 2y 5 4 (b )J+1/'> (7’“’):‘.]—1/2) _

Af Ar Ay (3.24)

g L [(H5, D200 Ol (9%/0€% SO, -9 1
““Re Ag2 01 /0€ 2A¢ (04 /0€)?

;?;jl - 2—n+l +‘:Jlrl_7-:l _ a2y/a77 “sz+1 - zn]+—ll 1
24An (0y/0m)?

An"* dy/on

+(1 _ [j_;,)—l—— [(“}In—l.] 2“'1 +wz-&]_] _ (621'/662) ;4.1] Wl lJ) 1
—0

Re ._\52 ot [0 2.\¢ (01 /9€)?

(*13—1 247, + <62y/3n “Crger — 1]—1) 1 J
ay/on ZAU (09/0m)?
+,do-£%[c333,' (ﬁey - Aiye ) +O5T1 ( <50 - _\ )
+op) (ﬁey + ALQGI) +opTl (—ﬁﬁy + A%&)]
+(1 - Jé)FL% [ ! (éoy - Aige,) +0p_y (—éey - ALQGI)

1 1 - 1 1
+O, g1 (Eey + 31561-) + o?’—l.]'—l (—an + 3—001)]

The implicitness factors are 3. = 1/2 for the viscous term and J 5 = 0 for the buoyancy

Anz

driving force term. A stability and truncation error analysis is presented in Chapter 4 for
arbitrary choices of the implicitness factors. The truncation error analysis in Chapter 4
demonstrates the discretized vorticity transport equation 3.24 is first order accurate but
does not suffer from numerical diffusion.

Only the time advancement and viscous terms of Equation 3.24 contain coefficients for
&"*!. The Boussinesq approximation and the constant viscosity assumption ensure these
coefficients depend only on the time step At for any grid point (3, ).

The boundary values for &@™*! were calculated with the second order accurate equation.

an+l / nn41 ~n+l1
~n+1 (¢w+l ) “w+1 -2 =
wy = - + 0(An 3.25

The subscripts w and w + 1 refer to the values at the wall and one node away from the

wall. An is the grid spacing in the direction normal to the wall. This vorticity boundary
condition coupled the solution of the vorticity transport equation with the stream function
equation.

For continuous sedimentation the inlet was assumed to be irrotational (&"*! = 0) and

n+l n+1 -n+1 ~n+1
the vorticity at the outlets were taken to be O = &3 " and &7'%; = Wi NI-1-
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3.4 Stream function equation

Equation 2.52 was discretized with second order accurate three point central difference
to produce the finite difference equation for stream function at the n + 1 time level:

GO 20 A, (PH/R) LSV L
Ag? 92/ 0¢€ 22¢ (01/9€)? '

Gt WA (Pyen\ i O
An? 3y/0n 2An (99/0m)? "’

The term u,,"J’l couplies the stream function equation with the vorticity transport equation.

Stream function is constant along walls. Plug flow was assumed at the inlet and outlets:

a linear profile was prescribed for v'.

3.5 Direct solution of the discretized vorticity and stream

function equations

The discretized vorticity transport equation 3.24. stream function equation 3.26 and
the boundary conditions for vorticitv and stream function vield a set of linear equations
for 2™*! and ¥™*!. This matrix equation was solved by sparse LU decomposition with
subroutines in the SPARSPAK library [13].

Sparse LU decomposition is much more time consuming than matrix multiplication.
The Boussinesq approximation and constant viscosity assumption ensured the coefficients
in the matrix equation remained constant provided the time step remained constant.
Experience showed the maximum velocity fluctuated typically by +30% over short time
intervals. Allowing the maximum courant number to float in the range 0.2 - 0.5 avoided
excessive LU factorizations over the short term fluctuations in the maximum velocity.
A new time step corresponding to max(.V¢) = 0.35 was selected if the largest Courant
number fell outside this range. The matrix coefficients were recalculated and the matrix
was factored again. Subsequent solutions to the matrix equation were obtained quickly by
matrix multiplications with different right hand side vectors. Simulations with this direct
method required one tenth of the time needed by simulations where the sparse matrix

equation was factored at each time step.

3.6 Summary

The uniformly second order accurate UNO2 method of Harten & Osher was applied
to the convection terms in the material transport and vorticity transport equations.
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The three simplifving assumptions made in the previous chapter (integer power for
the hindering function. Boussinesq approximation and constant viscosity) permitted an
efficient solution algorithm. The application of shock-capturing TVD methods (usually
found in computational aerodvnamics) to the numerical simulation of sedimentation is

new.



Chapter 4

Linear stability and truncation

error analysis

A von Neumann stability analysis and a truncation error (consistency) analysis are
presented for the model one-dimensional convection-diffusion equation. The convection
term of this equation is discretized with the UNO2 scheme presented in the previous
chapter and the diffusion term is discretized with three point central differencing.
Numerical results from first order upwinding and the UNQ2 scheme are compared for one-
dimensional vertical sedimentation. Results from the UNO2 method are used to determine
the order of magnitude of the truncation error associated with the buoyancy driving force
in the vorticity transport equation. The effect of a smeared suspension interface on the

velocity profile is determined with two limiting cases for a model problem.

Algebraic simplifications and substitutions were performed with the svmbolic
mathematics package Mathematica {52]. Details of the analysis are presented for the
simple case of first order upwinding. Only the results are presented for the more lengthy
analysis of the UNQO2 discretization method.

4.1 Linear stability analysis

A linear stability analysis is performed on the one dimensional convection-diffusion
equation where the convection and diffusion terms are discretized in the manner presented
for the vorticity transport equation:

oy .oz _ 168
dt = 8i Redi?

28
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The convection velocity & is assumed to be positive and constant. The buovancy source
term is neglected. This equation is analogous to the material transport equation for
Re — oc and the velocity u is the velocity of the dispersed phase. The stability analysis
is demonstrated with first order upwind differencing of the convection term are presented
first. This is followed by the stability results for UNO2 discretization of the convection

term.

4.1.1 First order upwind differencing

The finite difference expression for first order upwind differencing is

e I S
= — 4+ Uu — =
At A7
~n-l ~n-+1 A n+l1 N _ 9-n -n
g Lo —207 +e T _3‘)L‘Ui+l i + Wiy
“Re Ai2 “’Re Az2

The Courant number is defined by N¢ = 2At/Az and the diffusion number is defined by
Np = At/(ReA#2). The finite difference expression becomes

P =L - Nl -2 )) (4.1)

+3Np(@PH =22+ L) 4+ (1= 3 Np(Lh, — 227 + L)

The solution L' at the time level n and grid point i is represented by the Fourier

component
of = Qreld (4.2)

where ( is the phase angle (0 < ¢ < #) and I = /—1. The Fourier components for grid
points to the left and right of 7 are

“L‘znj:l — QnelC(i:l)
The Fourier component for the solution at the time level n +1 is

djln-H = Qnel(x

These expressions for the Fourier components are substituted for &7 in the finite difference
Equation 4.1 and e/$* is factored out.

Qn+l (1 — BaNp(e¢ —2+e—’<) = (4.3)
Q" (1 —~Ne(l—e ') + (1 = Ba)Np(e¢ -2 + e*’<)

The growth rate G is defined by Q™! = GQ™. The stability requirement is |G|? < 1 where
|GI? = GG and G is the conjugate of G.
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A few relations between trigonometric and complex functions are required in the

analvsis:
elf 4 016
cosf = 3
- el _ o180
sinf = 2
cosd — Isin = e '°

These trigonometric identities were applied and simplified with the symbolic mathematics

package Mathematica.
The growth rate for the Equation 4.3 is

1= 2Ncsin? /2 — 4(1 — 3;)Np sin?¢{/2 ~ IN¢sin¢ 1.4)
- 1+ 43,.Vpsin? (/2 e

G

In the limit of infinite diffusion Np — oc the growth rate is G =1 —1/3;: the scheme is
unconditionally stable for all diffusion numbers.

Figure 4.1 shows the phase angle ( = 7 gives the most restrictive condition for the
Courant number. Figure 4.2 shows the numerical scheme is stable with large diffusion

numbers (Np = 10) for N~ < 1.



CHAPTER 4. LINEAR STABILITY AND TRUNCATION ERROR ANALYSIS

iGP*
o
o))
——
\
-
——r——

<
sedl

Figure 4.1: Modulus of the growth rate for first order upwind differencing with
3. =1/2 and Np = 10: Ne =0.5. 0.9, 1.1.
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Figure 4.2: Modulus of the growth rate for first order upwind differencing with
B8, =1/2and ( =m: Np=0, 10.
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4.1.2 UNO2 scheme

The stability analysis of the UNO2 scheme is more involved than the analysis for first
order upwind differencing. For the positive constant convection speed i the convection

term is
s aan=1/2 . )n+l/2
(UL)ipy g — (W0) 0y )y
Ar

The one-dimensional convection-diffusion equation is discretized with the UNO?2 scheme

for the convection term and implicit central difference for the diffusion term:

. - - n-1/2 - - \n+1/2
J;,"’l - ( “‘)i+l/2 _(u“’)i+1/2 _
At Ar
~n-1 -n+l | ~n+l - . .
j;vi“"’zn-é-l ‘2“-?_ +o0 +(1- JQ)L“‘{LI —2‘-‘{? e
Re Az? Re A?
or
P — o Nper - 2ot o) = (1.5)

R - - \n=+1/2 -yn=+1/2 g - N - .
S = Ne((@)! e = @) + (1= 82)Np(afy — 207 +20 )

The cell face values for the convection term are calculated at the n + 1/2 time level
with i
-n+1/2 _ .n =T 0\
“rerjz =% TS5 (1= Ne)

&

The slope S, may have three values:
S; = median(0.w{, | 5 — Li.wy — Wi_y2)/(AL/2)
Each value of &¢ can have three possible values through the minmod function:
Ciarpp = (g +47)/2 — (1/4)minmod (& — 207% + O 8, — 230 + &1 ).)
The minmod function selects the inflection closest to zero or zero if the two inflections

have opposite signs.

The growth rates were calculated for five of the ten possible calculation methods of
the slope S;. In each example it is assumed that the calculation method of the slope is
applied to all grid points and time steps. The first case considers two types of grid scale
oscillations. The next four cases consider different choices for the slope and inflection
calculations of the solution surface.
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Grid scale oscillation Two types of grid scale oscillations are considered. both of which
are characterized by the inflection changing sign at each grid point. The inflection returned

by the minmod function is zero and

Diiye = (D +37)/2

The first type of oscillation considered has the slope changing sign at each grid point
and the value oscillates evenly about an average value: the function looks like a triangle
wave pattern. The slope returned by the median function is S; = 0 for all points i. The

finite difference expression is

T -
EY; AF
1ap! =2t o) , Sy =] +a
R A2 + (1= 8)ge Az

The UNO2 scheme reduces to first order upwind differencing in this case. This scheme

was shown to be stable for all diffusion numbers and N¢ < 1.

The second type of oscillation considered has alternating high and low slopes in a
staircase manner. This function is taken to increase with increasing r. The point

¢ considered is at the base of a step upwards. The values of &y.1/p are the average

of & and &M The slope returned by the median function for the point i is §; =

1 11"

(wff —wi_) )/ (AZ/2) or S§; = (W /2—~&P 1 /2)/(A1/2). The slope returned by the median

function for i — 1 is §,_; = (Wi_yjp —wim1)/(AZ/2) or Siy = (&7/2 — 27, /2)/(A2/2):
this is the same slope as S;. The finite difference expression is

~n+l . -, -
*‘?*A'{-w? L g :\:?-1 _
_LJJ?:J — 227 o +(1 _J,)L“-*ﬁl -2l 4ol
"“Re Az? “"Re Az?

This case also reduces to first order upwind differencing: it is stable for all diffusion

numbers and Ne < 1.

Slope becomes more positive and inflection becomes more positive In this case
the function value increases, the slope becomes more positive and inflection becomes more
positive in the positive z direction. The slopes returned by the minmod function for i and
1-—1 are

Si = (@ - &y 0)/(A2/2)
Sic1 = (W) —O_3/9)/(A2/2)
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The values of L€ are

Siotjz = (e & )/2 = (1/4)dmy 0
Wiogp = (@l +wiy)/2 ~ (1/4)di_g)s
The inflections d are
dicyjp = (& =2, +21,)
di_zp = (&i) — 205 + Di-3)

The Fourier components of the inflections d simplify to

di_1/2 (sin® (/2)(~4cos ¢ + 4 sin()
di_3;p = (sin? ¢/2)(~4 cos 2¢ + 41 sin 2()

I

The Fourier components of £°¢ simplify to
iy = (cos(/2 = (I/2)sin()(2 + Isin()
di—zpp = (2+Isin¢)((1/2)cos2¢ — (1/2)sin2()
The slopes are
S, = (4sin*¢/2)/A% + (2I(sin¢ ~ sin2¢/4))/ A7

S;-1 = (=2+2cos(+ Isin()(cos2(/As — (Isin2¢)/Ar)

The Fourier terms for the cell face values simplifv to

SIS = 14201 = No)sin® (/2 + I(1 - Ne)(sin€ - sin2(/4)
ST = (=24+2N¢ +4cos ¢ — 2Ne cos ¢ + 31 sin¢ ~ INcsin ()

((1/2)cos 2¢ — (I/2)sin 2()

The amplification factor G for the finite difference expression becomes

G =
1 —4(1 — B;)Npsin® (/2 + No(=2 + 3 cos ¢ — 3N¢ cos( — cos 2¢ + Nc cos 2¢)sin? ¢ /2

1 +48;Npsin®¢/2
_(I/2)Ne(6 — 4N — 5cos { + 5N cos ¢ + cos 2( — N¢ cos 2¢) sin ¢
1+ 48;Npsin? (/2

Figure 4.3 suggests this scheme is unstable for 1/2 < N¢ < 1 and for N¢ > 1.5 with
zero diffusion. However the analysis assumes this particular choice of discretization scheme
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Figure 4.3: Modulus of the growth rate for UNO2 differencing (slope becomes more
positive and inflection becomes more positive) with 3; = 1/2 and ( = =:
Np =0. 10.

is applied over the entire domain for all time. The UNQO2 method uses the shape of the
solution to choose which discretization scheme is applied. An instability associated with
1/2 < Ne < 1 will alter the smoothness of the solution by a small amount: both the slope
and inflection of the solution will be effected. The UNO2 method will choose a different
discretization method at the next time step to eliminate the grid scale oscillation and to
capture the solution accurately. This different discretization method may smear the grid

scale oscillation with numerical diffusion.

Slope becomes less positive and inflection becomes less negative In this case
the function value increases. the slope becomes less positive and inflection becomes less

negative in the positive r direction.
The slopes returned by the minmod function for ¢ and ¢ — 1 are
Si = (Wip1yp —@i)/(A2/2)
Si-1 = (&f_yp — @im1)/(AL/2)
The values of & are
Gty = (Wit +@4)/2 = (1/4)dizy 2
Wiy = (Wi +@io1)/2 = (1/4)di_y /2
The inflections d are

divij2 = (Wiv2 = 2041 + @)
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Figure 1.4: Modulus of the growth rate for UNO2 differencing (slope becomes less
positive and inflection becomes less negative) with 3. = 1/2 and ¢ = =:
Np =0. 10.

disvpp = (Gl = 2 + &)

Figure 4.4 shows that |G|?> > 1 for pure convection with 0 < Ng < 1/2 and N¢ > 1.
For 0 < N¢ < 1/2 any small grid scale oscillations present at the next time step will
be suppressed with numerical diffusion. With diffusion (Np = 10) this choice of the
discretization method is unstable for No > 1.

Slope becomes more positive and inflection becomes less positive In this case
the function value increases. the slope becomes more positive and inflection becomes less

positive in the positive z direction.
The slopes returned by the minmod function for points 7 and i — 1 are
Si = (wi— @y )/(AL/2)
Si-t = (@ic1 — df_5/)/(A2/2)

The values of &€ are

i—i2 = (@ +@)/2—(1/4)dimy e
Wiz = (Diny FO79)/2 = (1/4)d,~3/9
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Figure 4.5: Modulus of the growth rate for UNO2 differencing (slope becomes more
positive and inflection becomes less positive) with 3. = 1/2 and ¢ = 7
Np =0. 10.

The inflections d are

- a - -n
dicyyp = (L - 247 + 47

d1—3/2 = (“;'1"'—2;,"_1 '-L'b;'z—'z)

In this example Figure 4.5 shows that |G|? > 1 for V¢ > 1 with no diffusion and with
Np=10.

Slope becomes less positive and inflection becomes more negative In this case
the function value increases. the slope becomes less positive and inflection becomes more
negative in the positive r direction.

The slopes returned by the minmod function for points i and i — 1 are

Si = (Wfy)p —wi)/(A2/2)
Si-1 = (&0 —@im1)/(AZ/2)

The values of &° are

Wiie = (@it +@)/2 = (1/4)dig 0
“ioyg = (@i+@i1)/2-(1/4)d;_y)n
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The inflections d are

div1/a = (Die1 — 20 + @)

dicip = (wi—2&io1 + wi-2)

The growth rate for this example was identical to that calculated for the previous
example: |G|? > 1 for N¢ > 1 with no diffusion and with Np = 10.

Any grid scale oscillation (or instability) consistent with 0 < V¢ < 1 will be suppressed
with UNO2 because the scheme will select first order upwinding at the next time step.
This damps grid scale oscillations locally before they become large errors. A sharp but

cousistent change in the solution is not damped.

4.2 Truncation error analysis

The one-dimensional convection-diffusion equation is
o +i oL 1 9%&

T tUuUoT - 535

ot 0r Re 312

A truncation error analvsis was performed to determine the dominant error term in the
discrete forms of Equation 4.6. The process is illustrated for first order upwinding. Results

for the UNO2 discretization are presented afterwards. The truncation error associated

with the buovancy driving force is considered separately. Series expansions. algebraic

=0 (4.6)

substitutions and simplifications were performed with the software Mathematica.

4.2.1 First order upwinding of the convection-diffusion equation

The first order upwind difference equation for the one-dimensional convection-diffusion

equation is

an+1 -n ~n y

wy — Wy Lol —wiy -
- + 4.

At ¢ Az (4.7)
- 1, ~n+l
5 1 2<.u +w, L (1 —B-)Lw?:ll 2wn+ +& n+ —0
Re A:z:2 “’Re Az2

where &; = Zg, Zi+1 = &g + AZ. t* = {5 and {"*! = {5 + Af. The variable & is expanded
as a third order Taylor series about (Zg.%g):

o(E.§) = (4.8)
a..u

&(&o. o) + (f — to) e .
Ig. to
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(f — £0)? 3% | (t—ty)3 & ;i
: 342 3
2 ot (Zo.ly) 6 i(Zg.to)
N N
+ (l‘—l‘o)(% o +(t—t0)a-a-
(Zo.to) L0 (34.60)
(t—t0)? P (t— )% 3% | .o
' - - +O((t -t
T2 eror, 6 0zo3|, . (£ = to)")
o.to) (Zo.to)
1 92| (f —to) Fw
+ (2—%9)° | = =—= AL LSl
(T — zg) (2 Er A + 5 9720i| . .
(Zo.ta) (Zo.Lo)
(t —to)? o'w (f —1p)3 o< .- g
- + - +0((t -t
T 37ar,. 12 aztgp|, . T Ot
(Zo.to) (Zo.to)
1 3] (t —to) 'L
- _ 2~ 13 fldiiind 0
+ (T — Ig) (6 353 + 5 Frrrii
(£a.ta) (Zo.ta)
(t—19)2 &= (t-—t)3 0% s g
+ : : +O((i — fo)*)
3372 239373 .
12 or3ot (200 36 o13ot (0.0o)
+ O((& = &0))
The Taylor series expansion 4.8 for « was substituted for &, = (& + AL.f).
oMY = O(&.f + Af) ... in Equation 4.7. This results in
-, -, 2,
‘?—* i ‘,)—“‘ -1 3—1“2- (4.9)
ot (Fo.f0) or (Zo0.f0) Re 6:1? (0.00)
At o N A2 B
) 6 93
2 ot (Z0.00) 6 ot (£o.i0)
[ oc Ar d*w A2 P
T\ B liy T 2 22|, . T 6 o
(Zo.fo) (Zo.fo) (Zo.fo)
1 A3 A 52 - N
"Re (3@'“ e R S e =0
T {Zo.t0) T (Zo.fa) T {Z0.f0)
Equation 4.9 is subtracted from the PDE 4.6 to give the truncation error:
e(Zo,to) = (4.10)
Af 020 Af? P
i2 6 543
2 ot (£0.40) 6 ot (£0.0)
i (gg_ _A# B Ad? P )
). . - _2 - = _.3
Olzod) 2 02 4, 6 0P, 4
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1 . P A2 9L A 9L |
TRe \ B omar), TS Bmen|, . T awew
l(£0.E0) = 9T 204 T2 N(20.40)
+HOT

where HOT are the higher order terms in the Taylor expansion.

The time derivatives in Equation 4.10 are written in terms of the spatial derivatives
to make Equation 4.10 more compact. The partial derivatives of Equation 4.6 are taken
with respect to t and #:

ow 8% 1
— A+ — — -

at? 0z0t Re 92zt
% . ﬂa%:» 1 3@
0t 972 Re &z

= 0 (4.11)

=0 (4.12)

Equations 4.11 and 4.12 are combined to remove the term 92%/89%0t:

e 1 8 ,(-a%.- 163,;)

Ow _1 0w [0« 10« 11
ot2 Re 3210t . "ax2 Re 913 (4.13)

The term §3./8%rdt is written in terms of spatial derivatives by taking the partial

derivarive of Equation 4.12 with respect to r:

P _BL 1 8's

P A 1147
9520 043 ' Re 0f (14
Second partial derivatives of Equation 4.6 are taken with respect to t2 and rt:

P L 1 9L

— + 1 = — = = = 0 1.15

o5 9102  Re 02101 (2.13)
3 - 3 -, 47

a’w . Fw 1 d'e -0 (4.16)

—= t+Uu : — T ——

orot? 91?0t Red3zoi

Equation 4.14 is used to eliminate §3%/8%z8t from Equation 4.16. This result is combined
with Equation 4.15 to eliminate 830 /9%6%t:

Fo 1 #e s ﬁ233¢;;+1 o 19w (4.17)
88 _ Re 022072 973 " Re0i39i "Re 07° ‘
The discretization error becomes:
HEIRES (4.18)

uAT . 0%
—p =N oz

{z0.t0)
2t wAz? @BAR) 8%
+((1"B") Re 6 ' 6 ) &

(Zo.fo)
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Af @2AR)N &
'((I'Q“ji)me2+ 6Re ) EEI
(fo.to)
(g2 A2 o L g P &
“2Re 6Re/ 97282 . . ~ "“6Re 9z28t3| . ;.
(£g.to) (To.to)
+HOT

The first three terms of discretization error in Equation 4.18 demonstrate this finite
difference scheme has a first order truncation error in Af# and Af. The first term
#A#(1 — N¢)8%5/812? is the numerical diffusion term associated with first order upwind
differencing. The terms (1—3;)2At/Re 835/813 and (1-23;)At/(2Re?)3 % /0! confirm
that truncation errors in the diffusion term will be present for any choice of the implicitness
factor ;3;. Choosing 3; = 1 removes the error proportional to the third derivative of
vorticity at the expense of a truncation error with a fourth derivative of vorticity. This
fourth derivative error is large for low Reynolds numbers. With 3; = 1/2 the fourth

derivative term (proportional to 1 /Re?) is eliminated.

4.2.2 UNO2 differencing of the convection-diffusion equation

The consistency analysis for the UNO2 discretization method was performed with a
fourth order Taylor series expansion for . This Taylor series was substituted for the
discrete values of . in the finite difference equations described in the stability analysis

section.

For the four calculation methods of the slope and inflection of the solution surface the

dominant error terms are:

Slope becomes more positive and inflection becomes more positive

e(Zo,to) = (4.19)
(- B_)a.&t‘ L8 @i @A) 8

“’ Re 12 4 6 ) 93|, ;

(£0.t0)

Af A2 AP @2AF2AT WPAP .
+<—(1—2ﬂm) + = +“AI _utAZCAt @ ./_\t)ai:,

2Re?  12Re 8 12 6Re

(£0.0o)

+HOT

Slope becomes less positive and inflection becomes less negative

E(.i?o, fo) = (4.20)
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aNf udF? 2AFRAN AR &L
(1-32) +

Re 12 4 6 o3| . .
(fo.tg)
Al A2 aArd @?A220F @2Af2) 9
+ | -1 -29))—=—= + + - - -
2Re~ 12Re 8 12 6Re | 01| . .
(zo.to)
+HOT
Slope becomes more positive and inflection becomes less positive
E(.’f?o.fo) = (4.21)
At ad#? a?AzAt | @A) 8
(1-23z) + - + =
Re 12 4 6 o3| .
(fo.to)
(=23 At . A2 a_xi3+a2A5c2Ai Ca2Af2\ gL
TR 2R T "8 6  6Re ) 81| ;
(%o.to)
+HOT
Slope becomes less positive and inflection becomes more negative
e(fo.to) = (4.22)
L A aAF? @?AFA | BPAP) &L
(1-38)=—+ - + .
Re 12 4 6 o3| .
(Zo.t0)
Af AR adAP A?APPAD W2AR) 8w
+ | —(1-23)— + - + - ——
2Re-  12Re 8 6 6Re ) ort| ..
(Zo.to]
+HOT

The UNO2 scheme is more accurate than first order upwind differencing of the model
convection-diffusion equation. The truncation error for the UNO2 discretization method
does not have the first order numerical diffusion term dominant in the first order upwind
discretization. The UNO2 discretization has the same first order truncation errors as the
first order upwind method in the third and fourth derivatives. Additional second order
truncation errors associated with the convection term have been introduced in the third
and fourth derivatives: these second order truncation errors have the same magnitude as
the truncation errors common between first order upwinding and UNQ2.

Setting £: = 1/2 eliminated the first order truncation error in the fourth derivative.
This error is large for diffusion dominated phenomena (Re — 0).
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4.3 Numerical results for vertical sedimentation

Numerical results from UNQO2 and first order upwind differencing were compared for
vertical 1-D sedimentation discretized with 100 points. The initial concentrations were
& = 0.01. 0.10 and 0.30. The material transport equation is approximately linear with
constant velocity for sedimentation with © = 0.01. A small cosine bump (height 0.001)
was added to the initial concentration to observe the characteristic wave speed (Rankine-
Hugoniot velocity) and to observe the effect of numerical diffusion on small perturbations.
The time step A¢ = 0.005 was used for all cases: this corresponded to a Courant number

of 0.5 for sedimentation at infinite dilution.

The concentration profiles after 100 time steps are shown in Figure 4.6 @ = 0.01. The
UNO2 scheme captured the suspension interface with seven grid points while first order
upwinding required 18 points. The volume fraction bump had 95 % of the initial amplitude
with the UNO2 scheme and 44.5 % of the amplitude with the first order method.

Volume fraction profiles shown in Figure 4.7 for the 10 % suspension show the UNO2
scheme captured the suspension interface with three nodes while the first order method
required six nodes. The volume fraction bump had 98.6 % of the original amplitude with
UNO2 and only 44.2% with first order differencing.

Both the UNO2 and first order discretization schemes capture the suspension interface
very well for the 30 % suspension. This is due to the large self-sharpening effect caused by
the solution characteristics running into the interface from both sides of the interface. The
weak solution at the bottom of the vessel was captured by both methods. The magnitude
of the cosine bump was 95.3 % of the original size with the UNO2 scheme and 56.7 % for

the first order discretization method.

The UNO2 discretization method is much more accurate than first order upwind
discretization for modelling 1-D vertical sedimentation. The suspension interface is
captured with fewer points and small perturbations in volume fraction are convected with

more accuracy compared to first order upwind differencing.
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Volume fraction profiles from UNO2 and first order upwind differencing
for 1-D vertical sedimentation of 1 % suspension.
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Figure 4.8: Volume fraction profiles from UNO2 and first order upwind differencing
for 1-D vertical sedimentation of 30 % suspension.
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Figure 1.9 shows the UNO2 method captures a shock with the same number of grid
points regardless of the grid spacing. For the region near a discontinuity there is very
little difference between the shapes of the suspension interfaces for grid resolutions of
Az = 1/20. 1/100 and 1/1000. The derivatives of the function are also independent of
the grid size because the shape of the function is independent of the grid size:

oo 1 96

8 Ain oin (4.23)

where 7 is the grid number. The term 8™ o/8i" is referred to as the grid scale derivative.
gr gr

Values of 8"0/di" for A% = 1/100 were calculated with finite difference expressions
for the second through fifth derivatives for the region near a discontinuity. Figure 4.10
shows that fourth and fifth grid scale derivatives are somewhat larger than the second and
third derivatives but they have the same magnitude. For the region near a discontinuity
this magnitude is denoted as A". The magnitude of the volume fraction derivatives near

the suspension interface is then

o K
—] = 1.24

o (61"" ) Arn ( )
Figure 1.10 shows that fourth and fifth derivatives are more oscillatory than second and

third derivatives over the region where the suspension interface is captured.

Equations 4.23 and 4.24 are not applicable to regions away from a discontinuity. In
these regions the solution is smooth and the higher (fourth and fifth) derivatives have a
smaller magnitude than the lower (second and third) derivatives. In this case the smooth
solution is independent of the grid spacing as Az — 0 and the higher derivatives have
smaller magnitudes than the lower derivatives: fewer derivatives are required to represent

the function with a Taylor series.
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Figure 4.9: Grid resolution of the suspension interface for AF = 1/20. 1/100 and
1/1000.
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Figure 4.10: Second through fifth order grid scale derivatives of the volume fraction
profile calculated with finite differences (A% = 1 /100).
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4.4 Truncation error of the buoyancy driving force

The truncation error for the buoyancy driving force (T /Fr)80/87 is now considered.

The model equation is )
oL 0w 1 0% T 8o
—til———a——-=—=—=0
ot dr Redz? Fror
The UNO2 scheme is used to evaluate the convection terms: the discrete equation is

(4.25)

) R .. \n+1/2 - .\n+1/2
, ;H'-l —n (u““')H-l/? - (U‘-U),'_l/z (4.26)
At A7 |
g, Lol ot Lo - 200 el
“Re Az? " Re Az
n+l in+1 4 5
PN v Rk oty SOPRP M SV ek STV B
OFr Az e Fr Az

where 3; is the implicitness factor for the buoyancy term. The implicitness factor for the
diffusion term is Bz = 1/2. The variable ¢ was expanded as an eighth order Taylor series
about (zg.tg) and substituted into the discrete Equation 4.26. Temporal derivatives of o
were written as spatial derivatives through the material transport equation and derivatives

of the material transport equation do/8f = —1do/d7.

The leading terms in the truncation error from the buovancy term are

£5(Zo.0) = (4.27)

: e T 8%
Ar <(1—30').’\Cﬁ:) a—jj o
(Zo.to)

2 NT 1T\ &o
A ((-g)e— -~ 22
Tt (( 2 24Fr) 5>

NAT Nc 1‘) o
FEn
oz (Zo0.io)

NAT 1 ') 8
Azt O L3 | ==
o (+ﬂ¢ 24 r + 61920 Fr) 575 , i
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(0.t0)

where N¢o = @Af/Az. It is clear that B; = 1 results in a second order accurate
discretization of the buoyancy term. The other UNO2 examples gave the same leading
terms in the truncation error.

For regions adjacent the suspension interface the magnitude of the spatial derivatives
is given by Equation 4.24. Near this discontinuity the magnitude of the truncation error
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is
Ol (0. t0)) = (4.29)

KT N1 NG Ne¢ N¢ 1
— 3V, —3)2C 4 +3.C 43 < 43—
XiFr ((1 Jo)Ne+ (L= 3=+ gy + I + degy e T iTam

For the Courant number N¢ = 1 Equation 4.29 evaluates to

. Il -
O(E’é(i'o.to)) =I\FT(I 04). 3‘5 =0
. s r1
O(e;4(Z0,ta)) = AF_A_(O 29).  3;=1

The total truncation error with 3; = 0 has the same magnitude as the error for .3; = 1.
However the dominant error terms for J; = 0 appear as second and third derivatives of
@ where the error terms for 3 , = 1 appear as fourth and fifth derivatives. Figure 4.10
shows that fourth and fifth derivatives of the volume fraction are more oscillatory and
have similar magnitudes compared to the second and third derivatives for the region near
the suspension interface. In this region the oscillatory truncation errors in the buoyancy
driving force appear as oscillatory source terms in the vorticity transport equation. The
vorticity field near the suspension interface at the next time step will have oscillations
that reflect the truncation error of the buovancy term. The fourth and fifth derivatives
associated with .3; = 1 will produce a more oscillatory vorticity field than the second and

third derivatives for J; = 0 near the suspension interface.

Equation 4.29 suggests the magnitude of these grid scale oscillations becomes very

small for V¢ < 1.

4.5 Effect of a smeared interface on the velocity profile

The suspension/clear fluid interface is, analytically, a discontinuity. However the
numerical solution represents this discontinuity as a continuous profile with a steep
gradient. The flow profiles for a model problem are compared for two limiting cases:
a) the density is discontinuous, b) the density varies smoothly across the flow.

The model problem chosen is the fully developed gravity driven flow of a density
stratified fluid shown in Figure 4.11. The lighter fluid has density p — dp/2 and travels
with the velocity vy, the heavier fluid has density p + dp/2 and travels with the velocity
vp. The viscosity of the two fluids are equal. Leung & Probstein [29]. Amberg & Dahlkid
[2] and Tripathi & Acrivos [50] used similar models to describe the mixture velocity field

for sedimentation between inclined parallel plates.
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Figure 4.11: Gravity driven flow of a density stratified fluid between inclined parallel

plates.

For fully developed flow the y-direction momentum equations for the two fluids are

8]) 821'[ -

0 ~— +pu——s—(p—0p/2)
9y THez P r/2)gy
8}) 621’;, -

0 = ——=+ 5 — (p+0p/2
gy THo P r/2)gy

The boundary conditions are no slip at the walls.
va(—1/2) = 0. v(l/2) =0
the velocity field is continuous at the interface z = 0.
vk (0) = u(0)

and the shear stress is continuous at the interface r = 0.

dvp(0) _ Ov(0)
dr =~ Or

The global material balance requires the net flow across the channel to be zero

0 )
0= / v dr +/ vidzr
-2 0

(4.30)

(4.31)

These momentum equations and boundary conditions were solved with Mathematica: the

details are in Appendix B.
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Figure 4.12: Velocity profiles for gravity driven flow of a density stratified fluid
between inclined parallel plates.

Typical flow profiles of the heavy and light fluids are shown in Figure 4.12. The
velocity profile of each flow is parabolic. For the example considered the velocity profile
varies between the values -8 and 8.

A similar problem is considered where the fluid density varies linearly across the width
of the channel. This is the limiting case suggested by a suspension interface that is
smeared over a finite distance and is represented by a continuous function. The y-direction

momentum equation is

_ Op v zép
0= =55+~ (04 1) 32
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Figure 4.13: Velocity profiles for gravity driven flow of a fluid with a linear density
variation between inclined parallel plates.

The boundary conditions are no slip at the walls.
v(=1/2) =0, v(l/2) =0

The net flow across the channel is zero

{/2
0= / vdr
—1/2

The details of the solution to this momentum equation and the boundary conditions are
in Appendix B.

The flow profile in Figure 4.13 is not parabolic for 0 < £ < [/2. With the same
viscosity and density difference used previously the fluid velocity ranges between -4 and
4: this is half of the range for the stratified flow.
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The discontinuity in the mixture density is the driving force for the longitudinal
velocity profile for inclined plate sedimentation. A numerical scheme that represents
this discontinuity as a smooth curve will yield a different velocity profile. Increased grid
resolution represents a discontinuity as a steeper gradient over a smaller distance. This
changes the driving force for the flow circulation in an inclined vessel. The examples given
suggest that increased grid resolution of a discontinuity will lead to higher velocities near

the suspension interface.

4.6 Summary

The linear stability of the UNO2 discretization method depends on which solution
values are used to evaluate the inflection and the slope of the solution at the n time level.
The von Neumann stability analysis has shown the UNO2 method is unstable with V¢ < 1
for two cases. For these two cases a small error develops and is suppressed at the next time
step because the UNO2 method resorts to first order upwinding to prevent the solution

from becoming oscillatory.

The consistency analysis demonstrated the explicit treatment of the convection term
with UNO2 and the semi-implicit treatment of the diffusion term vields a consistent
numerical scheme: the truncation error goes to zero as A7 — 0. However the discretization
method is first order accurate for mixed convection-diffusion problems. The implicitness
factor 3; = 1/2 for the diffusion term leads to a first order truncation error proportional to
(A#N¢/Re)d3 /8%, The UNO2-based discretization method presented for the vorticity
transport equation does not suffer from numerical diffusion Az(1 - N¢)8%0/8#2 in regions
where the solution is smooth. First order upwinding suffers from numerical diffusion in
all regions including areas where the solution is smooth. The UNQ2-based discretization
scheme developed in the previous chapter for the vorticity transport equation is referred
to as the non-diffusive method. The UNO2 scheme is second order accurate for pure

convection.

The consistency analysis of the buoyancy driving force suggests this term can be
discretized in a second order accurate manner by choosing the implicitness factor 3 , =1
This eliminates the first order truncation error proportional to Az8%2¢/8%2 but replaces
it with more oscillatory errors proportional to A#33%¢/92* and A248%¢/8&°. For regions
near the suspension interface these high order truncation errors have the same order of
magnitude as the first order truncation error even with A% — 0. The implicitness factor
for the buoyancy term B; = 0 eliminated truncation errors exhibiting grid scale oscillations
for regions near the suspension interface. This prevents the vorticity field from becoming

oscillatory at the next time step.



Chapter 5

Code validation

The two dimensional vorticity-stream function code was validated with a series of
examples in this chapter. Numerical results obtained with the simulation code are

compared with numerical results obtained by other researchers and experimental data.

The first example is the single phase lid driven square cavity problem. The rest of the

examples are for batch sedimentation with the geometry shown in Figure 5.1.

5.1 Driven cavity

Results for a lid driven cavity with Re = 0 and 400 were compared with the numerical
results (central difference) of Schreiber & Keller [42. 41]. For this example the Reynolds

number is defined as i
_ pLL,

u
where U; is the lid velocity and the characteristic length L is the cavity width. The

vorticity boundary condition at the driven lid was

Re (5.1)

A _3(d}n+l _ d}n+1) ‘:Jn-{v-l L“,vl i
n+l __ w+1 w _ w+1 2 -
wtl = VT 5o 335 + 0 (5.2)

where the lid velocity is U; = 1.
Transient simulations were performed and the final results were taken at { = 50.

Results for Re = 0 were obtained by turning off the convection terms in the vorticity
transport equation while retaining the viscous terms. The maximum and minimum values
of the stream function obtained with a uniform 140 x 140 mesh were 2.182 x 10~® and
-0.1009. Schreiber & Keller report values for Re = 1 with a 120 x 120 mesh: the maximum
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Figure 5.1: Sketch of the two dimensional geometry used in the simulations of batch
sedimentation.
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Figure 5.2: Streamlines for the driven cavity with Re = 400: ¥ = -0.11. -0.10. -
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and minimum values of the stream function were 2.47 x 10~8 and -0.1006. The discrepancy
between the two results was attributed to Schreiber & Keller's use of first order accurate

vorticity boundary conditions while second order approximations were used in this work.

Results were obtained for Re = 400 on a uniform 140 x 140 mesh with the non-diffusive
discretization method. The maximum and minimum values of the stream function were
6.6712 x 10~ and -0.1162. These values agree well with the results of Schreiber & Keller
(maximum 6.44 x 10™%, minimum -0.11297). The streamlines shown in Figure 5.2 are

identical to those reported by Schreiber & Keller.

The results obtained with this example demonstrated the validity of the vorticity-
stream function algorithm with the non-diffusive discretization method.

5.2 One dimensional batch sedimentation

The two dimensional sedimentation code was used to simulate batch one dimensional
sedimentation. This test verified the two dimensional simulation code reduced to the
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correct limits for one dimensional sedimentation. The vorticity and stream function fields
were both zero over the vessel: these fields represent the correct values for one dimensional

sedimentation.

The hindering function of Font [11] was used:
h(o) = (¢/5.924)713(1 - qo)*® (5.3)
where

g=>5924 for ¢ < 0.0631
q=T7.742 = 336 + 52.1966° for o > 0.0631

The immobility of the sediment was modelled by setting the hindering function to zero

for 0 > 0.4.

Figure 5.3 compares the position of the upper suspension interface obtained with the
simulation with the experimental data of Font. The simulation results for o = 0.0200
and 0.08838 match the experimental data verv well. The simulation captured correctly
the initial linear settling regime and the gradual decrease in the settling rate that follows.
This decrease in the settling rate is attributed to the weak solution that joins the solution
characteristics of the suspension with the characteristics of the concentrated sediment.

These numerical results match the experimental results obtained by Font.

The simulation results do not agree well with the experimental data for the o = 0.04417
suspension. The initial slope of the interface curve in Figure 5.3 gives a hindered
settling velocity of V5 = 129 x 10~®m/s. This is very similar to the settling velocity
V; = 128.4 x 1075 m/s obtained with Equation 5.3. The initial slope of batch settling
curve for the experimental data gives a hindered settling velocity of V5 = 152 x 10~ m/s.
It is concluded that the experimental data reported by Font for the ¢ = 0.04417 was for

a concentration lower than d) = 0.04417.
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Figure 5.3: Interface positions for batch sedimentation of suspensions with ¢ =
0.0200. 0.04417 and 0.08838. Lines denote the simulation results, points

denote the experimental data of Font [11].
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5.3 Batch inclined sedimentation: position of the

horizontal interface

Simulations were performed on a uniform 40 x 200 mesh where the physical properties
and geometry matched the experimental work of Acrivos & Herbolzheimer (1]. They
measured the position of the horizontal interface over time for batch sedimentation and
made qualitative observations about the flow inside the sedimentation vessel.

The physical properties of the suspension were vy = 992 kg/m?. ~, = 2420 kg/m".
py = 67.7mPas. d; = 137 x 107%m. The initial concentration was o9 = 0.10. The
apparatus in their experiments was 5cm wide and filled with suspension to a level of
40cm above the base when the vessel was inclined. The numerical simulations used a
slightly different geometry: a rectangular vessel with length (0.4/ cos §) m was filled with
the suspension. This geometry was required because the finite difference equations were
written for an orthogonal coordinate svstem. The interface height was estimated by finding

the location of © = 0.5¢y along the center of the sedimentation vessel.

The physical properties of the suspension vield 15« =213 x 107 m/s and a hindered
settling velocity of 126 x 10~%m/s. The experimental data of Acrivos & Herbolzheimer
vield a hindered settling velocity of 100 x 10~5 m/s for the o = 0.10 suspension:
Ts.x = 169 x 107% m/s as calculated with the hindering expression h(o) = (1 — 0)%. The
26 % discrepancy in the hindered settling velocity mayv be attributed to the accuracy of
the Richardson & Zaki correlation or the physical properties used to calculate the settling

velocity at infinite dilution.

Figure 5.4 shows the numerical simulation predicts the initial falling velocity of the
suspension interface is greater than the experimental data for all angles. This disagreement
is attributed to the discrepancy in the calculated and measured settling velocity of the
@ = 0.10 suspension. The interface heights obtained with the simulation level out near
h = 0.07 m while the experimental data for 35° and 50° appear to level out near h = 0.05 m.
This discrepancy is attributed to the point where the suspension height is measured from.
In this research the suspension height was measured from base of the vessel at the centerline
shown in Figure 5.1. Acrivos & Herbolzheimer measured the suspension height from the
bottom right corner of the vessel in F igure 5.1: this height is 0.5bsin 6 smaller than the
height measured from the centerline. For the 50° inclination this discrepancy is 0.019 m
and the corrected final suspension height agrees with the numerical simulation. In general
the simulation results capture the falling rate of the horizontal suspension interface well.

Figure 5.5 shows a fairly rapid motion throughout the settling vessel at f = 0.02. By
f = 0.1 this rapid motion has died in the top half of the core shown in Figure 5.6. A strong
circulation persists in the center of the suspension. Acrivos & Herbolzheimer (1] reported a
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Figure 5.4: Position of horizontal suspension interface for simulations of batch
sedimentation at inclinations § = 0°. 20°. 35° and 30°. Lines denote the
numerical simulations. points denote the experimental data of Acrivos

& Herbolzheimer [1].
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rapid circulation ar the start of most experiments. At later times Acrivos & Herbolzheimer

found the circulating motion was relatively slow in the bulk of the suspension.

Several comparisons were made with the qualitative observations of Acrivos &
Herbolzheimer regarding the flow patterns in the sedimentation vessel. First theyv
estimated the thickness of the fast moving zone adjacent the clear fluid slit to be
approximately five times that of the clear fluid layer. Theyv estimated the maximum
velocity near the top of the clear fluid slit was one to two orders of magnitude faster than
the settling velocity. The velocity and concentration profiles at y = 0.625 L in Figure 5.7
show the suspension interface (o = 0.05) is at r = 0.0482 m while the fast moving region
(v > 10) adjacent the clear fluid slit begins at £ = 0.0457 m. The thickness of the fast
moving region is 4.3 mm and the thickness of the clear fluid slit is 1.8 mm at this position:
the thickness of the fast moving zone is 2.4 times that of the clear fluid slit. The maximum
velocity at this position is ¢ = 96. The results of the numerical simulations reflected these

qualitative observations of the velocity profile in the experimental apparatus.

Secondly Acrivos & Herbolzheimer noted that “thin streams of rapidly moving
suspension were observed to break away from the main flow [near the top of the suspension’
and to descend rapidly into the bulk of the suspension.” Volume fraction profiles from the
numerical simulation at ¢ = 0.1 showed a “bump” on the horizontal suspension interface
adjacent the clear fluid slit. The high velocities in the clear fluid zone near the top of
the suspension carried the mixture ahove the level of the horizontal interface. This bump

indicated the thin stream of suspension reported by Acrivos & Herbolzheimer.

Finally they reported the suspension moved downwards rapidly in a thin laver adjacent
that where the clear fluid and suspension were rising rapidly. The numerical results shown
in Figure 5.6 display this phenomena. This phenomena is the consequence of a global
material balance of the dispersed phase. The region of high longitudinal velocity near
the clear fluid zone straddles the suspension interface and carries both clear fluid and
suspension upwards. This creates a large positive flux of particles into the region above
plane 4.4’ in Figure 5.6. However the net flux of particles into this region is negative
because particles settle out due to gravity. The large positive flux of particles is balanced
by a large negative flux elsewhere on plane 4.4’. It is likely that only a small fraction
of the upwards moving particles have sufficient momentum to overcome viscous stresses
and form a stream that is carried to the far wall. The majority of the particles at the
right-hand-side of the bump are carried to the top of the bump and then down the left-
hand-side of the bump by gravity. This closes the material balance on the dispersed phase
and places a large negative flux of particles adjacent the upwards moving stream.
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Figure 5.5: Velocity vectors and suspension interfaces at ¢ = 0.02 for 35° inclination
and 10 % initial concentration. Vector length is proportional to [u|1/2,
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Figure 5.6: Velocity vectors and suspension interfaces at ¢ = 0.1 for 35° inclination
and 10 % initial concentration. Vector length is proportional to |u('/2.

64
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Figure 5.7: Longitudinal velocity and concentration profile at y=0625L at f =0.1
for 35° inclination and 10 % initial concentration.
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5.4 Batch inclined sedimentation: interface positions for

large inclinations

Amberg & Dahlkid [2] used a method of characteristics to track the suspension and
sediment interfaces for batch sedimentation at large inclinations (6 =~ 80°). Thev assumed

the lateral velocity was zero and the longitudinal velocity profile across the width of the

vessel was modelled well by

a0t oo T =0 (5.4)

subject ro no-slip conditions at the vessel walls. Both - and /8% were continuous at the
clear fluid/suspension and suspension/sediment interfaces. The derivation of this velocity
profile is similar to that given by Leung & Probstein [29] and Tripathi & Acrivos [50].

Amberg & Dahlkid present the evolution of the suspension interface for barch
sedimentation with o = 0.01. They do not specifv the inclination and stare the aspect

ratio of the vessel was 1:100 typically.

The simulation code developed for this research was used to model sedimentation of
ao =001 suspension in a 3cm x 300 cm vessel tilted at 80°. The vessel was discretized
with a 40 x 200 mesh. The fluid and dispersed phase properties were taken to be those of
the 67.7 mPas suspension of Acrivos & Herbolzheimer described earlier. Figure 5.8 shows
the suspension interface and velocity profiles at £ = 0.002. 0.004. 0.006. 0.008 and 0.014.
These dimensionless times are similar to the non-dimensional times f = 0.4. 0.8. 1.2. 1.6

and 2.8 of Amberg & Dahlkid in their Figure 3.

The velocity profile at ¢ = 0.002 is uniform along the length of the vessel except near
the ends of the vessel. The suspension has fallen away from the upper wall in a uniform
manner and created a flow of clear fluid towards the top-left corner of the vessel. A sharp
interface is beginning to form at the left side of the vessel. By f = 0.004 the suspension
interface at the left side has extended to the bottom of the vessel. The suspension near
the right side of the vessel has not fallen away from the top wall as much as the suspension
in the middle of the vessel. This interface profile is similar to that given by Amberg &
Dahlkid except their profile is sharper. At £ = 0.006 an inflection in the interface position
is apparent approximately 1/4 of the distance from the right wall. This corresponds to the
shock apparent in the solution of Amberg & Dahlkid at their dimensionless time ¢ = 1.2.
By ¢ = 0.008 this inflection in the interface position has strengthened at the right side of
the vessel. The interface located 1/3 of the length from the left side has spread over a
large distance. At t = 0.014 there is very little suspension at the bottom and a wall of

suspension has formed near the right side of the vessel.
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Results in Figure 5.9 obtained with a finer (80 x 400) mesh were similar to the resuirs
in Figure 5.8 obtained on a 40 x 200 mesh. The suspension interface profiles in Figure 5.8
are similar to those obtained with the method of characteristics by Amberg & Dahlkid.
The suspension interface at ¢ = 0.008 obtained by Amberg & Dahlkid has a pronounced

step at the location where the inflection occurs in Figure 5.3.
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Figure 5.8: Interface and velocity profiles obtained with a 40 x 200 mesh for ¢ = 0.01,

6 = 80° and 1:100 aspect ratio for { = 0.002. 0.004, 0.006. 0.008 and
0.014.
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5.5 Batch inclined sedimentation: thickness of the clear
fluid slit

Shaqfeh & Acrivos [43] measured the clear fluid thicknesses § shown in Figure 3.1.
Experiments were performed for inclined plate sedimentation in the batch and continuous
bottom feed modes for five suspensions: gy = 1000 kg/m‘z.ﬁs = 2530 kg/ms.ﬁf =
3.6-9.3mPas.d; = 140 um. 0 =~ 0.01. Their experimental apparatus was 5cm x 4.5cm x
80cm in size and fitted with 3/8 inch ports for bringing in feed and withdrawing clear
fluid. The bottom feed and withdrawal ports were separated by a 5cm high baffle.

Numerical results were obtained for the thickness of the clear fluid slit during batch
sedimentation: there was considerable short circuiting from the feed to withdrawal port
in the continuous simulations. The location of the interface was defined by the isoline at
one half of the initial concentration. All simulations were performed on a 40 x 200 mesh
with even grid spacing along the length and grid clustering across the width towards the

vessel walls.

5.5.1 Development of the clear fluid zone

Figure 5.10 shows the suspension is still falling away from the upper wall at ¢ = 0.01.
By t = 0.02 a large wave is present at y = 0.3m and propagates upwards. By ¢ = 0.04
this initial disturbance has moved outside the range where Shagfeh & Acrivos collected
experimental data. The simulation predicts that waves remained near the top of the

suspension (y > 0.4m) at ¢t = 0.03.

The small waves apparent for { = 0.04 below y = 0.35m are artifacts of the
interpolation algorithm used for constructing the contour lines. The interpolation
algorithm assumes the volume fraction surface is continuous while the numerical simulation

admits discontinuous solutions.
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Figure 5.10: Development of the clear fluid laver (o = 0.008. 5 = 9.328mPas.§ =
45°): { = 0.01. 0.02. 0.03. 0.04. 0.05. Points denote the experimental

data of Shaqfeh & Acrivos [43].



=~
o

CHAPTER 5 CODE VALIDATION

9.5.2 Comparison with experimental and theoretical results

Interface positions were obtained at ¢ = 0.05 from the numerical simulation: the initial
wavy disturbance moved past the region where Shagfeh & Acrivos collected experimental
data. Shaqfeh & Acrivos did not measure the clear fluid thickness if the flow was too
unstable. They present several photographs of waves at the suspension/clear fluid interface

in Reference [43].

Figures 5.11 - 5.15 show the clear fluid layer thicknesses obtained from the simulations
were within 10-135 % of the experimental data and the analvtical expression of Shagfeh &
Acrivos [45. Equations 4, 5. 6]. Large waves were present for ¥ > 0.3m in the numerical
simulations with the 5.597 mPas suspension. Shaqfeh & Acrivos report that large waves

were present near the top of the suspension for these runs.



CHAPTER 5. CODE VALIDATION

0.0l
0.009
0.008
0.007
0.006

0.005

5 (m)

0.004
0.003
0.002

0.001

Figure 5.11:

1 1 1 1 1 1 1 1 1

005 01 0145 02 025 03 035 04 045 05
y (m)

Thickness of the clear fluid laver for (0 = 0.008. /1y = 9.328mPas.f =
145%): a is from the numerical simulation. b is from the analvtic expression
of Shaqgfeh & Acrivos. Points denote the experimental data of Shaqfeh

& Acrivos [43].
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Thickness of the clear fluid laver for (¢ = 0.005, 2y = 9.328mPas.0 =
35°): a is from the numerical simulation. b is from the analytic expression
of Shaqfeh & Acrivos. Points denote the experimental data of Shaqfeh
& Acrivos [43).
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Thickness of the clear fluid layer for (0 = 0.012.7; = 6.996 mPas.§ =
45°): a is from the numerical simulation. b is from the analytic expression
of Shagfeh & Acrivos. Points denote the experimental data of Shaqfeh
& Acrivos [45].
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Thickness of the clear fluid laver for (o = 0.010. 2y = 5.597mPas. 0 =
45°): a is from the numerical simulation. b is from the analytic expression
of Shaqfeh & Acrivos. Points denote the experimental data of Shagfeh
& Acrivos [43)].



CHAPTER 5 CODE VALIDATION

0.01
0.009
0.008
0.007

0.006

0.005

5 (m)

0.004
0.003
0.002

0.001

0 l 1 | 1 i l 1 1 1

0 005 01 015 02 025 03 035 04 045 05
y (m)

Figure 5.15: Thickness of the clear fluid laver for (o = 0.010, 4y = 5.5397 mPas.§ =
35°): a is from the numerical simulation. b is from the analytic expression
of Shaqfeh & Acrivos. Points denote the experimental data of Shaqfeh
& Acrivos [45].
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5.6 Summary

The simulation results agreed well with numerical results and experimental data
obtained by other researchers for a wide variety of problems. The results obtained
with these examples demonstrate the validity of the simulation code for modelling
sedimentation between inclined plates. The numerical simulation captured the wavy
suspension interfaces observed by Shaqgfeh & Acrivos for sedimentation with low viscosity

fluids. This phenomena is explored in greater detail in subsequent chapters.



Chapter 6

Comparison of non-diffusive and
first order results for inclined

plate sedimentation

The ability of the non-diffusive numerical scheme to capture fine flow details in inclined
plate sedimentation is demonstrated in this chapter. Qualitative comparisons are made
between results obtained with the non-diffusive and first order upwinding methods with
different grid resolutions. First order upwinding is often used in numerical simulations
to guarantee convergence. The results are compared with the phenomena observed in
sedimentation experiments of Acrivos & Herbolzheimer [1] and Shaqfeh & Acrivos [43].

The behaviour of four suspensions were studied for batch sedimentation. The dispersed
phase density and diameter were g; = 2530 kg/m3 and d; = 140 um. The most viscous
suspension was similar to that used in the experiments of Acrivos & Herbolzheimer:
py = 67.7mPas with @ = 0.01 and ¢ = 0.10. The suspensions of intermediate and low
viscosity were similar to materials used by Shaqfeh & Acrivos: iy = 9.328 and 2.678 mPas
and the concentration was ¢ = 0.01. The geometry for all cases was a rectangular vessel

5 x 80 cm inclined at 30° illustrated in Figure 5.1.
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Table 6.1:  Physical properties and characteristics of the suspensions for the
accuracy comparison.

fr.mPas | 67.7 | 67.7 |9.328 | 2.678
o 0.01 ! 0.10 | 0.01 | 0.01
T.x.mm/s | 0.241 | 0.241 | 1.752 | 6.10
Re, » 0.0005 | 0.0005 | 0.026 | 0.32
Re 278 | 215 | 146 | 1777

The velocity vectors and concentration isolines are plotted in a rectangular domain
with 1:4 aspect ratio while the aspect ratio of the real geometry is 1:16. This distorts the
shape of the suspension interface but allows one to see the details of the flow field. Most
of the suspensions had initial or feed concentrations of ¢ = 0.01. Three concentration
isolines are drawn to resolve the suspension interface (¢ = 0.003. 0.005.0.007) and two
are drawn to capture the behaviour near the concentrated sediment layer (o = 0.02.0.04).
The isolines for the 67.7 mPas simulations with 10 % were at o = 0.03. 0.05. 0.07. 0.2 and
0.4.

6.1 Batch sedimentation of 67.7 mPas suspension with 1 %

concentration

The upper suspension interface for the non-diffusive simulation shown in Figure 6.1
is much sharper than the interface from the first order simulation in Figure 6.3 for the
40 x 100 mesh. The non-diffusive results shown in Figure 6.2 for a fine (80 x 400) mesh
has a sharper suspension interface and more pronounced lateral velocity at the top of
the suspension than the results obtain on the 40 x 100 mesh. This is consistent with the
increased spatial resolution. The single vortex in the bulk of the suspension is analogous
to the unicellular convection patterns seen in experimental and numerical results for low
Grashof number natural convection in vertical enclosures [27, 6).

The upper suspension interface obtained with first order upwinding is twice as broad
as the interface obtained with the non-diffusive simulation for the same meshes. The
lateral velocity near the top of the suspension is not as strong as with the non-diffusive
results. The first order accurate simulation does capture the gross features of the flow.
This is because the flow does not contain fine details that need to be resolved with accurate
discretization methods.
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Figure 6.1: Velocity profile and concentration isolines for batch sedimentation (40 x
100 mesh. non-diffusive): { = 0.04, ¢ = 0.01, § = 30°, i; = 67.7mPas.
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Figure 6.2: Velocity profile and concentration isolines for batch sedimentation (80 x
400 mesh, non-diffusive): ¢ = 0.04, ¢ = 0.01. § = 30°. fif =67.7mPas.
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Figure 6.3: Velocity profile and concentration isolines for batch sedimentation (40 x
100 mesh. first order): £ = 0.04. ¢ = 0.01. § = 30°, iy = 67.7mPas.
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Figure 6.4: Velocity profile and concentration isolines for batch sedimentation (80 x
400 mesh, first order): { = 0.04, o = 0.01, € = 30°. fiy = 67.7TmPas.

84



CHAPTER 6 COMPARISON OF NON-DIFFUSIVE AND FIRST ORDER RESULTS 85

6.2 Batch sedimentation of 67.7 mPas suspension with

10 % concentration

Figure 6.5 shows a large single vortex is evident in the bulk of the suspension for the
coarse mesh (40 x 100) simulation. This large vortex did not appear in the fine 80 x 40 mesh
simulation shown Figure 6.6: there is series of smaller stacked vortices at this resolution.
These stacks of vortices were not present for simulations with shorter vessels. Similar
multicellular solutions have been obtained by Lee & Korpela [27] and Chikhaoui et al. [6]
for high Grashof number natural convection in vessels with the aspect ratio greater than
12.

The horizontal suspension interface for the first order accurate solution on the 40 x 100
mesh in Figure 6.7 is much broader than the non-diffusive solution on the same mesh.
Figure 6.8 shows the horizontal interface is sharper and the central vortex is larger with
the spatial resolution increased to 80 x 400. Further increase in the resolution (80 x 800)
shows the formation of a small stream of suspension at the top of the clear fluid slit
and a recirculation zone above the main vortex. These two features are similar to those
patterns in the non-diffusive simulation with the coarser 80 x 400 mesh. The non-diffusive
simulation required less mesh resolution to obtain results similar to those obtained with

first order upwinding.

The heights of the horizontal suspension interfaces are different between the results
obtained with the non-diffusive method on the 40 x 100 and 80 x 400 meshes. The
explanation of this discrepancy is provided by examining the volume fraction and velocity
profiles across the vessel at y = L/2. Figure 6.10 shows suspension interface at y = L /2 is
captured with three grid points on both the 40 x 100 and 80 x 400 meshes. It follows that
the thickness of this interface on the fine mesh is one half of the thickness on the coarse
mesh. At the suspension interface the lateral volume fraction gradient on the fine mesh is
twice that on the coarse mesh. Figure 6.11 shows the maximum velocity obtained with the
fine mesh is 30 % greater than that obtained with the coarse mesh. The peak velocities for
both meshes lie near the suspension interface. This increase in the peak velocity associated
with increased resolution of the suspension interface is consistent with the fow profiles
obtained in Section 4.5 for a model gravity driven flow of a density stratified fluid between

inclined parallel plates.

Define the normalized clear fluid concentration to be
c;=1-¢/d (6.1)

The longitudinal flux of clear fluid at any point along the cross section is given by vcy.
Figure 6.12 shows the flux of clear fluid is much larger for the 80 x 400 simulation than
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for the 40 x 100 simulation. The integrated or total upwards flux of clear fluid along the
section y = L/2 is [vcpdE: the total upwards fluxes obtained with the 40 x 100 and
80 x 400 meshes are 1.47 and 1.93. respectively. PNK relates the flux of clear fluid in the
clear fluid slit to the falling rate of the horizontal suspension interface. The discrepancy
in the horizontal interface position between the 40 x 100 and 80 x 400 meshes is due to

the difference in the mixture velocity near the clear fluid slit.
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Figure 6.5: Velocity profile and concentration isolines for batch sedimentation (40 x
100 mesh. non-diffusive): £ = 0.1, ¢ = 0.1. § = 30°. iy = 67.7mPas.



CHAPTER 6. COMPARISON OF NON-DIFFUSIVE AND FIRST ORDER RESULTS

Figure 6.6: Velocity profile and concentration isolines for batch sedimentation (80 x
400 mesh. non-diffusive): { = 0.1, ¢ = 0.1, § = 30°, /iy = 67.7mPas.
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Figure 6.7: Velocity profile and concentration isolines for batch sedimentation (40 x
100 mesh, first order): { = 0.1, ¢ = 0.1, 6 = 30°, fif =67.7TmPas.
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Figure 6.8: Velocity profile and concentration isolines for batch sedimentation (80 x

400 mesh. first order): { = 0.1, 0 =0.1. § = 30°, gy = 67.TmPas.
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Figure 6.9: Velocity profile and concentration isolines for batch sedimentation (80 x
800 mesh. first order): £ = 0.1, ¢ = 0.1, 4 = 30°. ity =67.7mPas.
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Figure 6.10: Dispersed phase volume fraction profile across y = L/2 for the 40 x 100
and 80 x 400 meshes: { =0.1. 0 =0.1. § = 30°, ji; = 67.7mPas.
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Figure 6.11: Longitudinal mixture velocity profile across y = L/2 for the 40 x 100
and 80 x 400 meshes: { = 0.1, ¢ = 0.1, 8 = 30°, /iy = 67.7mPas.
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Figure 6.12: Profile for the longitudinal clear fluid flux across y = L /2 for the 40 x 100
and 80 x 400 meshes: ¢ = 0.1. ¢ = 0.1. 8 = 30°. gf=67.7mPas.
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6.3 Batch sedimentation of 9.328 mPas suspension

Three noticeable features are visible with the non-diffusive solution at = 0.03 for the
40 x 100 mesh shown in Figure 6.13. First is the stream of suspension originating from the
top of the clear fluid slit and travelling towards the opposite wall. The vessel Revnolds
number for this flow is 53 times larger than that for the 1 % suspension in 67.7 mPas fluid

considered earlier.

Second is the isolated pocket of suspension above the stream of suspension. This
feature is a remnant of the first stream of suspension formed at the onset of sedimentation.
The low density clear fluid under this stream moves to the right and cuts off the stream
by means of a gravity instability. This leaves a pocket of rotating suspension near the
top of the vessel. The increase in grid resolution from Figure 6.13 to F igure 6.16 captures
these two features with more precision and demonstrate the discontinuous nature of the

volume fraction profile.

Third is the wavy suspension interface near the top of the clear fluid slit. Figures 6.14 -
6.16 resolve this wavy motion with finer meshes and show the wavelength is approximately
7cm. Shaqgfeh & Acrivos [45] photographed waves under similar conditions (23° inclination
and initial concentration 0.008): the wavelength in the photograph was approximatelv
dcm. The wavelength observed in the numerical simulation agrees well with that in the

experiment of Shaqfeh & Acrivos.

The concept of mesh independence is valid only for solutions with continuous second
derivatives: the volume fraction is discontinuous at the suspension interface. These
simulations are transient and the solutions on different meshes will evolve in different
manners. This evolution may cause the volume fraction and velocity profiles obtained
with different meshes to be different for any particular instance. The wavelength of the
suspension interface is an average property of the flow and did not change between the
40 x 200 and 80 x 400 meshes.

The interface profile obtained with the 40 x 400 mesh shown in F igure 6.15 has three
well developed waves while the profile obtained with the 80 x 400 mesh in Figure 6.16 has
only one well developed wave. The waves on the 40 x 400 and 80 x 400 mesh have the
same wavelength. Increased grid resolution changes the buoyancy driving force near the
suspension interface. The unstable waves evolve in a different manner because the flow
is highly nonlinear. Figures 6.15 and 6.16 are a snap-shot of the sedimentation process
at £ = 0.03. Figures 6.17 and 6.18 show the interface profile at £ = 0.032 on 40 x 400
and 80 x 400 meshes. Both of these results have a single well defined wave near the clear
fluid slit. They also have large wave that distorts the flow at the top of the clear fluid
slit and two isolated pockets of suspension. A thin stream of suspension is visible at the
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right-hand-side of the horizontal interface. The simulation on the 40 x 400 mesh captured
a wavy instability of the concentrated sediment flowing down the left surface. Similar
instabilities at the sediment /suspension interface were observed in the experimental work
of Leung [28]. Two small perturbations in the isolines for the concentrated sediment are
visible 1/4 and 1/3 down the length of the vessel in the 80 x 100 simulation.

First order upwinding was used to obtain the results in F igures 6.19 - 6.22. The
suspension interfaces in these results are much broader than the interfaces obtained with
the non-diffusive simulations on the same meshes. The thin stream of suspension at the
top of the clear fluid slit is not captured with the 40 x 100 mesh. A small amplitude
wave is visible on the 40 x 200 mesh. The solution on the finest mesh (80 x 400) does not
capture the thin stream of suspension seen in the non-diffusive results with the coarsest
mesh (40 x 100). The results obtained with first order upwinding are not as good as those

obtained with the non-diffusive simulatiomn.
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Figure 6.13: Velocity profile and concentration isolines for batch sedimentation (40 x
100 mesh. non-diffusive): £ = 0.03, 6 = 30°, iar =9.328mPas.
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Figure 6.14:

Velocity profile and concentration isolines for batch sedimentation (40 x
200 mesh, non-diffusive): f = 0.03, § = 30°, iy = 9.328 mPas.
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Figure 6.15: Velocity profile and concentration isolines for batch sedimentation (40 x
400 mesh, non-diffusive): { = 0.03. § = 30°. i = 9.328 mPas.
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Figure 6.16: Velocity profile and concentration isolines for batch sedimentation (80 x
400 mesh. non-diffusive): { = 0.03, § = 30°. ji; = 9.328 mPas.
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Figure 6.17: Velocity profile and concentration isolines for batch sedimentation (40 x
400 mesh. non-diffusive): ¢ = 0.032, 8 = 30°. iy =9.328mPas.
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Figure 6.18: Velocity profile and concentration isolines for batch sedimentation (80 x
400 mesh. non-diffusive): £ = 0.032, § = 30°, ji; = 9.328 mPas.
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Figure 6.19: Velocity profile and concentration isolines for batch sedimentation (40 x
100 mesh, first order): ¢ = 0.03, 4 = 30°. fif =9.328mPas.
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Figure 6.20: Velocity profile and concentration isolines for batch sedimentation (40 x
200 mesh, first order): f = 0.03. § = 30°, jif =9.328 mPas.
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Figure 6.21: Velocity profile and concentration isolines for batch sedimentation (40 x
400 mesh, first order): ¢ = 0.03. § = 30°, s = 9.328 mPas.
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Figure 6.22:

Velocity profile and concentration isolines for batch sedimentation (80 x
400 mesh, first order): ¢ = 0.03. 8 = 30°, gy =9.328mPas.
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6.4 Batch sedimentation of 2.678 mPas suspension

The most noticeable feature in the 40 x 100 mesh non-diffusive solution shown in Figure
6.23 is the wavy suspension interface at the clear fluid slit. This wavy instability causes
a gravity instability when the wave rolls over sufficiently for the more dense suspension
to reside above the less dense clear fluid. Three vortices are visible above the suspension
interface. These features are more visible with further mesh refinement show in Figures
6.24 - 6.26. On the 40 x 100 mesh the interface has a wavelength of 6 cm. With the
40 x 200 mesh this wavelength has dropped to 4.3 cm. On the 40 x 400 mesh the waves in
the lower half of the vessel have wavelength 4.3cm while there are smaller disturbances
in the upper half. The fine 80 x 400 mesh picks up 2.1 cm wavelengths in the lower half
and 2.9cm wavelengths in the upper half. Shaqfeh & Acrivos reported small (1 - 2cm)

as well as longer wavelengths under similar conditions.

The linear stability analysis of Herbolzheimer {18] demonstrates that sedimentation
flows of high Reynolds numbers are unstable to small wavelengths. The numerical
simulation can onlv capture disturbances with a wavelength larger than the grid size.
This is why only large waves were observed on the coarse 40 x 100 mesh. The fine mesh
solution has enough spatial resolution to capture small perturbations in the suspension

interface.

The first order accurate profile on the finest mesh (80 x 400) shown in Figure 6.27 does
not capture the sharp wavy patterns observed in the non-diffusive results with the same
mesh. The velocity field in the first order result does not reflect the chaotic nature of the
flow observed by Shaqfeh & Acrivos.
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Figure 6.23: Velocity profile and concentration isolines for batch sedimentation (40 x
100 mesh, non-diffusive): ¢ = 0.05. § = 30°, ff=2.678mPas.
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Figure 6.24: Velocity profile and concentration isolines for batch sedimentation (40 x
200 mesh, non-diffusive): { = 0.05, 8 = 30°, fif =2.678 mPas.
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Figure 6.25: Velocity profile and concentration isolines for batch sedimentation (40 x
400 mesh, non-diffusive): { = 0.03, § = 30°, iy = 2.678 mPas.
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Figure 6.26: Velocity profile and concentration isolines for batch sedimentation (80 x
400 mesh, non-diffusive): £ = 0.05, § = 30°, jif = 2.678 mPas.
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Figure 6.27: Velocity profile and concentration isolines for batch sedimentation (80 x
400 mesh. first order): £ =0.05. § = 30°, ji; = 2.678 mPas.
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6.5 Discussion

The non-diffusive solutions on coarse meshes (40 x 100) captured the formation of
interfacial waves. streams of suspension and the mixing inside an inclined sedimentation
vessel. Increased grid resolution clarified these features but did not change the overall

flow.

The first order solutions on the coarse 40 x 100 mesh compared well with the non-
diffusive results only for the 67.7 mPas sedimentation example. Excessive numerical
diffusion dominated the solution to the vorticity transport equation for the two other
examples. This is consistent with the amount of numerical diffusion associated with the

first order discretization of the convective terms in the vorticity transport equation:

ay = — (1 -2N¢) (6.2)
The real diffusivity in the vorticity transport equation is
1
ar = go (6.3)

The longitudinal velocity ¢ is O(10) or greater in much of the sedimentation vessel. The
numerical diffusion coefficients for problems with 100. 200 and 400 grid points in the
longitudinal direction are 0.05. 0.025 and 0.0125. respectively. From Table 6.1 it is clear
that numerical diffusion is smaller than real diffusion only for the 67.7 mPa s sedimentation
examples: numerical diffusion is much larger than real diffusion for the other sedimentation

exarnples.

Equation 6.2 also gives the amount of numerical diffusion for the first order accurate
discretization of the material transport equation. The dimensional numerical diffusion
coefficients for the 2.678 mPas suspension are 2.4x 10~%, 1.2x10™% and 6.1 x 10~% m?/s for
the simulations with 100. 200 and 400 vertical grid points. respectively. These numerical
diffusion coefficients are four to five orders of magnitude larger than typical physical
diffusion coefficients for chemicals dissolved in water (D = O(10~9 m?/s)) (36, pages 3-
258 - 3-259]. First order upwind differencing models non-diffusive dispersed particles as
being far more diffusive than most chemical species. The diffusive nature of the first order
discretization eliminates steep volume fraction gradients at the suspension interface and
reduces the driving force for the physical instability.

6.6 Summary

The non-diffusive discretization method provides accurate results for inclined plate
sedimentation on coarse meshes (40 x 200) for suspensions of moderate to high viscosity
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(i > 9mPas). Suspensions with lower viscosity are unstable to very small interface
wavelengths and require a much finer mesh (80 x 400) to capture the wave growth of the
unstable interface.

The non-diffusive results captured the correct wavelength of the suspension-clear fluid
interface for the 9.328 and 2.678 mPas suspensions. Numerical diffusion dominated the real

diffusion in the first order accurate simulations of sedimentation of 9.328 and 2.678 mPas
suspension: these first order accurate results did not reflect the sedimentation process.



Chapter 7

Inception of waves in inclined

plate sedimentation

Herbolzheimer [18. 8] measured the wave inception distance for inclined plate
sedimentation in the continuous mode with a point source feed in the middle of the
vessel. Three fluids were used for the continuous phase: the viscosities were 38.1. 28.8 and
18.8 mPas and the density was 1080kg/ m®. The particles were glass beads with diameter
132 um and density 2440 kg/m®. The apparatus was 5cm x 5cm x 100cm. Herbolzheimer
notes that ... within a few centimeters from the inception point their [wave] amplitudes
were comparable to the thickness of the clear-fluid laver.” Herbolzheimer points out the
inverse of the inception distance. 1/y;, is related to the growth rate of the unstable wavy
interface.

Numerical results were obtained to compare the predicted wave inception point with

the experimental data of Herbolzheimer [18]. This comparison tests the ability of the
numerical mode] to capture phenomena related to the growth rate of unstable waves.

7.1 Description of the runs

Numerical results were obtained for continuous sedimentation in the bottom feed mode
with 1cm ports in the 5cm x 100cm vessel shown in Figure 7.1. The clear outlet rates
were calculated to give suspension heights of 0.8 m according to PNK theory!:

. _h(¢)b H . .
vdear—cosea(lﬁ-gsmB) (7.1)

'The feed rates for the runs at 50° inclination were calculated with 0.7 m suspension height
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Table 7.1: Inlet feed rate and split ratio for simulations with o = 0.05.
@ | split ratio | fcjear | Uteed
5° 0.30 9.3 13.3
10° 0.30 148 | 21.2
15° 0.30 20.6 | 29.4
20¢ 0.30 26.6 | 38.1

30° 0.30 402 | 374
40° 0.30 37.0 | 81.4
50° 0.30 70.6 | 100.8

Table 7.2: Inlet feed rate and split ratio for simulations with 8 = 20°.
o split ratio | Tciear | Ufeed
0.01 0.10 32.8 | 36.4
0.02 0.20 31.1 | 38.9
0.05 0.30 26.6 | 38.0
0.10 0.40 20.3 | 33.9
0.15 0.40 15.3 | 25.5

The fraction of feed diverted to the sludge outlet was set according to the feed
concentration to prevent the accumulation of sediment in the bottom of the vessel. The
split ratios. clear outlet velocities and feed velocities are given in Table 7.1 for the runs
with @ = 0.05 and various angles and in Table 7.2 for the runs with § = 20° and various

inlet concentrations.

All simulations were performed on a 40 x 200 mesh with even grid spacing along the
length and grid clustering across the width towards the vessel walls. A 40 x 200 mesh
was considered to accurate enough to capture the wavy suspension interface for these

suspensions of moderate viscosity.

The initial flow development was complete by { = 1 and results were obtained at
t = 2. The wave inception point was determined by a statistical test. The location of the
interface was found at every time step over the sample interval Af = 0.1 (roughly 5000
points). The mean and standard deviation of the interface location was calculated for
each point along the length of the vessel. For each point along the length of the vessel the
wave amplitude was calculated as four standard deviations and a “comparable” thickness
of the clear fluid layer was set as 0.25 of the mean thickness. Figures 7.2 and 7.3 show
the onset of waves is quite sharp and the statistical test gives an accurate measure of the

wave inception point.
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Figure 7.1: Sketch of the two dimensional geometry used in the simulations of
continuous sedimentation.
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Figure 7.3: Statistical comparison of the wave amplitude with 25 % of the mean clear
fluid thickness (¢ = 0.05, § = 5°, iy = 18.8mPas).
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Figure 7.4: Inverse of the inception distance for ¢ = 0.03. iy = 38.1mPas: o
denotes the numerical simulation: + denotes the experimental data of
Herbolzheimer [18].

7.2 Effect of inclination angle on inception distance

Numerical simulations were carried out for suspensions with é = 0.05 and viscosities
of 38.1, 28.8 and 18.8 mPas. Figures 7.4 - 7.6 show the inverse of the inception distances
obtained by the numerical simulations were in general, smaller than those measured by
Herbolzheimer [18] but showed the same trends. The maximum value of L/y; occurred
near § = 10° and decreased with increasing angle. The inverse of the inception distance
(and hence the wave growth rate) increased with decreasing fluid viscosity.

Figures 7.7 - 7.16 show the flow patterns and the suspension interface with
concentration isolines at ¢ = 0.02,0.025 and 0.03. Two large well defined vortices
are visible in Figure 7.7 for the 38.1 mPas suspension tilted at 10°. This feature is
similar to the the multicellular patterns discussed in Chapter 6 with the ¢ = 0.10 and
Af = 67.7TmPas. There is thorough mixing in the upper clear zone and the suspension
interface is quite fuzzy indicated by the distances between the concentration isolines. The
flow pattern in Figure 7.8 shows the upper interface is sharper for 15° inclination than for
10° inclination. At 20° inclination the upper interface is sharper than for 15° and the two
vortices in the bulk of the suspension are weaker.

The suspension interface for the 28.8 mPas suspension is broader than that of the



CHAPTER 7. INCEPTION OF WAVES IN INCLINED PLATE SEDIMENTATION

4 1 L] I 1 ¥ Ll 1 1 ]
35 F ~
3 | +
+
25 F -
= 2+ .
S Simulation
[ o p
05 | -
o 1 L 1 L L 1 L L 1
0 5 10 15 20 25 30 35 40 45 50
6 (deg)
Figure 7.5: Inverse of the inception distance for o = 0.05. ity = 28.8mPas: o

denotes the numerical simulation: + denotes the experimental data of
Herbolzheimer [18].

6 T T || ] 4 T v 1 1
-+
= -
4+ -
2 3F Data .
+
2+ -
Simulation |
1 -
o 1 1 ] I 1 1 1 i I
0 5 10 15 20 25 30 35 40 45 50

0 (deg)

Figure 7.6: Inverse of the inception distance for ¢ = 0.05, j f = 18.8mPas: o
denotes the numerical simulation; + denotes the experimental data of
Herbolzheimer [18].

119



CHAPTER 7. INCEPTION OF WAVES IN INCLINED PLATE SEDIMENTATION 120

38.1 mPas suspension at 10° inclination seen in Figure 7.10. The well mixed zone at the
top of the vessel has extended into the bulk of the suspension. The two vortices in the
bottom half of the vessel are lower than their positions on the 38.1 mPas suspension. The
well mixed zone occupies smaller portions of the vessel as the inclination is increased to

10° and 15° shown in Figures 7.11 and 7.12.

Figure 7.13 shows the flow pattern for the 18.8 mPas suspension at 10° inclination is
much different than the previous patterns. The well mixed zone occupies the entire length
of the sedimentation vessel and there are no well defined vortices. The suspension interface
becomes wavy near the bottom of the vessel. Two different flow patterns were abserved
for 15° inclination. Figure 7.14 is well mixed and has a broad upper suspension interface
similar to Figure 7.13 for 10° inclination. The other flow pattern is more stable. The well
mixed zone in Figure 7.13 is confined to the upper portion of the sedimentation vessel and
there are two smooth vortices in the bulk of the suspension. The wave inception point is
near the top of the clear fluid slit. This flow profile is similar to that of 20° inclination
shown in Figure 7.16. The well mixed zone occupies the upper portion of the vessel and
two smooth vortices occupy the lower portion. The wave inception point is near the top

of the clear fluid slit.

The results for the 18.8 mPas suspension suggest there are two distinct flow patterns
for inclined plate sedimentation. One is uniform and is associated with the wave inception
point near the top of the clear fluid slit. The other is well-mixed and the wave inception
point is near the bottom of the vessel. The transition from the uniform to the well-mixed

flow pattern is associated with the increased wave growth rate near 10° inclination.
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Figure 7.9: Flow pattern for ¢ = 0.05, py = 38.1mPas, 6 = 20°.
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Figure 7.11: Flow pattern for ¢ = 0.0
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Figure 7.12: Flow pattern for ¢ = 0.03, ji; = 28.8 mPas. § = 20°.
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Figure 7.14: Well mixed flow pattern for ¢ = 0.05, fy=18.8mPas, § = 15°.
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Figure 7.15: Uniform flow pattern for = 0.05, jiy = 18.8 mPas, 6 = 15°.
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Figure 7.17: Inverse of the inception distance for § = 20°. iy = 38.1mPas: o

denotes the numerical simulation; + denotes the experimental data of
Herbolzheimer [18].

7.3 Effect of concentration on inception distance

Simulations were performed at various concentrations and 20° inclination. Figures
7.17 - 7.19 show the inverse of the inception point obtained from the numerical simulation
increases with concentration. The numerical results show the same general trend as
the experimental data of Herbolzheimer: the inverse inception distance increases with
the dispersed phase concentration and decreasing viscosity. The 38.1 mPas suspensions
showed the best agreement with experimental data except for the result at ¢ = 0.15. The
simulation results shown in Figure 7.19 for the 18.8 mPas suspensions did not agree with
the experimental data as well as those for the 38.1 mPas suspensions. The simulations with
the 18.8 mPa s suspensions under-predicted the inverse inception distances for ¢ < 0.05 and
over-predicted the inverse inception distances for ¢ = 0.10 and 0.15. The poor agreement
between the simulation results and experimental results for large concentrations suggests
the constant viscosity or Boussinesq approximations are not valid for these concentrations.

Figure 7.20 shows the well mixed region occupies the upper portion of the settling
device and two large vortices fill the bulk of the suspension for the 38.8 mPas suspension
with ¢ = 0.10. At é = 0.15 the well mixed region in Figure 7.21 occupies a larger portion
of the vessel and the two vortices at the bottom are noticeably smaller.
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The transition from the uniform to well mixed flow pattern with increased dispersed
phase concentration is depicted well in Figures 7.22 and 7.23 for the 28.8 mPa s suspension.

This transition moved to lower concentrations for the 18.8 mPas runs. The flow pattern
in Figure 7.16 is fairly uniform in the bulk of the 5% suspension while Figure 7.24 shows
the vessel is thoroughly mixed for ® = 0.10.

The experimental data of Herbolzheimer do not indicate the transition from the
uniform to the well mixed flow patterns with increased concentration as predicted by
the numerical simulation. One reason for the discrepancy may be the difference in the
geometry: the simulations used a bottom feed while the experiments of Herbolzheimer
used a point source feed in the center of the vessel. The flow surrounding the point source
feed is irrotational. This may suppress the formation of small vortices apparent in the
simulations where the bulk of the suspension is well mixed.
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Figure 7.20: Flow pattern for ¢ = 0.10, iy = 38.1mPas, § = 20°.
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Figure 7.21: Flow pattern for é = 0.15, fif = 38.1mPas, 6§ = 20°.

135



CHAPTER 7. INCEPTION OF WAVES IN INCLINED PLATE SEDIMENTATION 136

Figure 7.22: Flow pattern for ¢ = 0.10, /i; = 28.8mPas, 6 = 20°.
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Figure 7.23: Flow pattern for ¢ = 0.15, jiy = 28.8mPas, § = 20°.
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Figure 7.24: Flow pattern for ¢ = 0.10, i; = 18.8mPas, § = 20°.
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7.4 Comparison of the wave amplitude growth rates

Herbolzheimer [18] suggests the wave inception point is related to the amplitude growth

1/3
ot ) ()
Yi — Ye In ¥ h(d’o) tané d Ave

W is the factor by which a disturbance must grow to become visible. y, is the point at
which the wave becomes visible and is negligible compared to the inception distance y;.

rate a by

Equation 7.2 suggests
yia = constant (7.3)
The wave inception distances obtained from the experimental data and the numerical

simulations are then related by
(vi)E(@)E = (yi)n(a)n (7.4)

where the subscripts £ and NV denote the values from the experimental data and the
numerical simulations. The fractional deviation of the growth rate determined from the
numerical simulation and the experimental data is defined to be ¢ where (@)x = ag(l+e).
This fractional deviation is obtained from Equation 7.4

ez WE (7.5)
(i) v

Figure 7.25 shows the numerical simulation under-predicted most of the wave growth
rates by 10 - 40 % for suspensions with ¢ = 0.05 and various angles. The closest matches

were for the most viscous suspension.

Larger deviations between the numerical results and the experimental data are
apparent in Figure 7.26 for suspensions at 20° inclination and various concentrations. The
agreement between the simulation results and experimental data improved with increasing
viscosity for ¢ < 0.05. At larger concentrations the simulation over-predicts the growth
rate by 50 - 100 %. This corresponds to the transition from the uniform to the well mixed
flow patterns in the sedimentation vessel.
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Figure 7.25: Fractional deviation of the wave growth rate between the numerical
simulation and the experimental data for ¢ = 0.05: © is 18.8 mPas;
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Figure 7.26: Fractional deviation of the wave growth rate between the numerical
simulation and the experimental data for § = 20°: ¢ is 18.8 mPas;
+ is 28.8 mPas; O is 38.1 mPas.
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7.5 Summary

Quantitative comparisons were made between the numerical results and detailed
experimental data for the inception point of unstable waves. Good agreement with
the inverse inception distances measured by Herbolzheimer [18] for ¢ = 0.05 confirms
the numerical simulation captures the proper growth rate of the wavy interface. The
wave growth rates obtained by the numerical simulation were estimated to be within
50 % of the experimental values. Poorer agreement in the wave inception point at higher
concentrations may be attributed to the accuracy of the physical model (constant viscosity
and Boussinesq approximations) or differences in the geometry used in the numerical

simulations and the experimental apparatus.

Experimental data are required to confirm the transition from the uniform to
well-mixed flow patterns as predicted by the numerical simulation for inclined plate

sedimentation in the bottom feed mode.



Chapter 8

Sedimentation with a uniform

internal resistance to motion

A parameter study of inclined plate sedimentation was performed where the motion is
retarded by a uniform resistance proporticnal to the mixture velocity. Numerical results
for the wave inception point were compared with the results with no resistance obtained

in the previous chapters.

8.1 Uniform resistance term

The Darcy-Brinkman equation was used to model a uniform internal resistance that
is proportional to velocity:

p(%tzi+u-Vu) =—Vp+uV2u—pg—%u (8.1)

The permeability k is constant. The convection terms have been retained in Equation 8.1.

The permeability k is expressed in terms of an equivalent wall separation s: this
analogy is that used to relate flow through porous media to flow in a Hele-Shaw cell of

thickness s.
52

k

The uniform resistance term is incorporated in the dimensionless vorticity transport

equation:

~ e r 3 2 - 2~ 2
ﬁ<§u_1+6(uw)+3(vu,))= r (a% _a_%z)+ 1 (3w+3w> 12 (L) -

gt | 0z £ "F\9z ¥ &y Re\922 " 332 )  Re \s
(8.3)
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It is clear from Equation 8.3 that uniform internal resistance acts as a sink of vorticity:
this will tend to straighten the flow. It is hypothesized that internal resistance will suppress
the formation of wavy structures at the suspension/clear fluid interface. This should
increase the efficiency and throughput of an inclined plate sedimentation device.

The internal resistance term makes the discretized vorticity transport equation 8.3
stiff. A Crank-Nicolson discretization of the resistance term was used to discretized this

term.

A parameter study was carried out to compare the flow profiles and wave inception
points for equivalent wall separations of 50, 20. 15, 10. 7 and 5 mm to the numerical results
obtained earlier for infinite equivalent wall separation. Results were also obtained for a
10.0 mPas suspension to extend the parameter study to suspensions with more unstable

waves.

8.2 Dependance of batch sedimentation rate on equivalent

wall separation

The batch settling curves in Figures 8.1 and 8.2 for no internal resistance show a slow
initial falling rate followed by a higher rate. This trend was observed in the experimental
data of Oliver & Jenson [34]. The addition of internal resistance to motion increases the
sedimentation rate up to t = 0.25 for 10° inclination. Internal resistance has little influence
on the sedimentation rate for £ > 0.25. A similar trend is observed in Figure 8.2 for 30°
inclination: the initial sedimentation rate (f < 0.1) was increased by internal resistance to

motion.

The flow pattern for batch sedimentation at 10° inclination and infinite equivalent
wall separation shown in Figure 8.3 is well mixed in the entire vessel. The addition of
internal resistance to flow with 20 mm equivalent wall separation made the flow pattern
uniform in the lower part of the suspension seen in Figure 8.4. There is less mixing in the
upper portion of the suspension compared to the flow pattern with infinite equivalent wall
separation. This trend is repeated with batch sedimentation at 30° inclination shown in
Figures 8.5 and 8.6. At this inclination the addition of internal resistance to flow moved
the wave inception point from roughly one third of the vessel length to half of the vessel

length.
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Figure 8.5: Flow pattern for batch sedimentation at t = 0.05 with ¢ = 0.05,
Ay = 18.8 mPas, § = 30° and no internal resistance to motion.



CHAPTER 8. SEDIMENTATION WITH A UNIFORM INTERNAL RESISTANCE TO MOTION 148

Figure 8.6: Flow pattern for batch sedimentation at ¢ = 0.05 with ¢ = 0.03,
fif = 18.8 mPas, § = 30° and 20 mm equivalent wall separation.
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8.3 Dependance of inverse inception distance on internal

resistance and fluid viscosity

Figure 8.7 shows a large decrease in the inverse inception distance (or wave growth
rate) for the 18.8 mPas suspension with 50 mm equivalent wall separation (L/s = 20).
Equation 7.5 for the wave growth rate suggests the wave growth rate for the 50 mm
equivalent wall separation is 53 % of that for no internal resistance. The inverse inception
distance continues to decrease with decreasing equivalent wall separation (increasing
internal resistance) until waves are not detected along the length of the vessel (L/s =
200.L/y; = 1).

There was little change in the inception point for the 28.8 mPas suspension where the
equivalent wall spacing was changed from infinite to 50 mm and a noticeable change where
the equivalent wall separation was further reduced to 20 mm: the growth rate at this plate
separation was 69 % of that for no internal resistance to motion. The suspension interface
was stabilized completely with 7mm equivalent wall separation (L/s = 143).

Figure 8.7 suggests that 50 mm equivalent wall separation increased the wave growth
rate and destabilized the flow for the 38.1 mPas suspension. However there is some
scatter in the numerical results for the inverse inception distance: it is believed the inverse
inception distance for the case with no internal resistance should be similar to that with
50mm equivalent wall spacing. The inverse inception distances with L/s > 20 for the
38.1 mPas suspension followed the same trend as the data for the 28.8 and 18.8 mPas
suspensions.

Figures 8.8 - 8.13 show the effect of decreased equivalent wall separation (increased
internal resistance) on the velocity field in the sedimentation vessel. The well mixed
pattern seen with no internal resistance is replaced by a more uniform pattern of large
weak vortices in the bulk of the suspension for 20 mm equivalent wall separation. The
strength of the vortices is lower for s = 15mm. At 10mm equivalent wall spacing the
vortices in the bulk of the suspension have almost disappeared and are replaced by a
uniform velocity profile similar to that in porous media. A portion of the feed short-
circuits to the bottom outlet. Small vortices are visible near the top of the clear fluid
slit for 7mm equivalent wall separation. No waves are present where the equivalent wall
separation is reduced to 5 mm.
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Figure 8.7: Dependance of the inverse of the inception distance on equivalent wall
separation for ¢ = 0.05, 8§ = 10°: © is 18.8 mPas; + is 28.8 mPas; O is
38.1 mPas.
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Figure 8.10: Flow pattern for ¢ = 0.05, iy = 18.8mPas, § = 10° and 15mm
equivalent wall separation.
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Figure 8.11: Flow pattern for ¢ = 0.05, iy = 18.8mPas, § = 10° and 10mm
equivalent wall separation.
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Figure 8.12: Flow pattern for ¢ = 0.05, Ay = 18.8mPas, § = 10° and 7 mm equivalent
wall separation.
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wall separation.
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Figure 8.14 shows the 10 mPas suspension filled most of the vessel with zero internal
resistance to motion while the more viscous suspensions filled 70 — 80 % of the vessel.
Decreased equivalent wall separation caused the position of the horizontal suspension
interface to match more closely that given by PNK theory (y/H = 0.80 in these cases).
Acrivos & Herbolzheimer note that large deviations from PNK theory are due to the
formation of waves between the suspension and clear fluid zone and the subsequent
entrainment of particles in the clear fluid zone. Increased internal resistance to motion
suppresses the formation of waves and. hence, vields horizontal interfaces that match
closely with PNK theory.

The reduced entrainment associated with increased internal resistance to motion is
most apparent in Figure 8.15: the particle concentration in the top outlet was reduced
at least one order of magnitude where the equivalent wall separation was reduced from
infinite to 5mm. The most significant reduction in the outlet concentration was for the

38.1 mPas suspension.
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8.4 Dependance of inverse inception distance on internal

resistance and inclination angle

Figure 8.16 shows the stabilizing effect of increased internal resistance is largest at
low inclinations: the flow pattern is well mixed at low angles. The stabilizing influence
of internal resistance to motion with 10. 20 and 30° inclinations is better depicted in
Figure 8.17. The suspension interface is very unstable at 10° inclination with zero internal
resistance and is much more stable with 50 mm equivalent wall separation (L/s = 20). The
interfaces at 20° and 30° inclinations are already quite stable without internal resistance
to motion and increased resistance does little to improve the stability.

Figures 8.18 - 8.23 show the effect of increased internal resistance to motion on the
uniform velocity field in the sedimentation vessel at 20° inclination. The large smooth
vortex in the bulk of the suspension is replaced by a series of smaller vortices with weaker
circulation where the equivalent wall separation is reduced from infirite to 20 mm. There
is little effect on the wave inception point. The circulation rate of the small vortices in
the bulk of the suspension and the amount of mixing in the upper portion of the vessel
are reduced where the equivalent wall separation is decreased to 15 mm. The vortices in
the bulk of the suspension have almost disappeared with 10 mm equivalent spacing. The
wavy interface is eliminated with an equivalent wall separation of 7 mm.
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Figure 8.16: Dependance of the inverse of the inception distance on equivalent wall
separation for various angles and iy = 18.8.mPas, ¢ = 0.05.

5 T T Y T
) 10° -—
200 ——
30° -8--
4 -

Figure 8.17: Dependance of the inverse of the inception distance on equivalent wall
separation for ¢ = 0.05, iy = 18.8 mPas: © is 10°; + is 20°; O is 30°.
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Figure 8.18: Flow pattern for ¢ = 0.05, iy = 18.8mPas, § = 20° and no internal
resistance to motion.
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Figure 8.19: Flow pattern for & = 0.05, iy = 18.8mPas, § = 20° and 20 mm
equivalent wall separation.
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Figure 8.20: Flow pattern for ¢ = 0.05, iy = 18.8mPas, § = 20° and 15mm
equivalent wall separation.



CHAPTER 8. SEDIMENTATION WITH A UNIFORM INTERNAL RESISTANCE TO MOTION 164

Figure 8.21: Flow pattern for ¢ = 0.05. gy = 18.8mPas, # = 20° and 10mm
equivalent wall separation.
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Figure 8.22: Flow pattern for ¢ = 0.05, i2f = 18.8 mPas, 8 = 20° and 7 mm equivalent
wall separation.
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Figure 8.23: Flow pattern for ¢ = 0.05, iy = 18.8mPas, § = 20° and 5 mm equivalent
wall separation.
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Figure 8.24: Dependance of the inverse of the inception distance on equivalent wall
separation for @ = 0.05. 2y = 10.0mPas: < is 10°; + is 20°: O is 30°.

Waves formed near the bottom of the sedimentation vessel for the 10.0mPas
suspension at 10, 20 and 30° inclinations and no internal resistance to motion. The inverse
inception distance L/y; = 21 seen in Figure 8.25 corresponds to the starting position of

the search for waves.

Increased internal resistance had the strongest stabilizing effect at 10° inclination: this
was observed with the 18.8 mPas suspension. Very small equivalent wall separations (5
and 7mm) were required to stabilize the wavy interface for 20 and 30° inclinations.

Figure 8.25 shows the vessel is nearly filled with the 10.0 mPas suspension at 10, 20 and
30° inclinations and no internal resistance to motion. Increased internal resistance lowers
the position of the horizontal suspension interface. The outlet concentration is reduced by
more than an order of magnitude at 20 and 30° inclinations seen in Figure 8.26. This is
important because the simulations with larger angles also have higher inlet flow rates and
increased internal resistance to motion decreases substantially the contamination level of

the clear product.
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Figure 8.26: Dependance of the top outlet concentration on equivalent wall separation
for ¢ = 0.05, iy = 10.0mPas: © is 10°; + is 20°; O is 30°.
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8.5 Dependance of inverse inception distance on internal

resistance and feed concentration

Uniform internal resistance to flow suppresses the formation of unstable waves better
for more concentrated suspensions seen in Figure 8.27. The flow patterns for the
suspensions with ¢ = 0.10 and 0.15 and zero internal resistance are well mixed and are

sensitive to the amount of internal resistance.
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Figure 8.27: Dependance of the inverse of the inception distance on plate separation
for various feed concentrations and iy = 18.8, mPas, 6 = 20°.
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8.6 Summary

Uniform internal resistance to flow suppresses the formation of waves at the
suspension/clear fluid interface. The stabilizing effect is most effective where the bulk
of the suspension is well mixed for the case with no internal resistance. The particle
concentration of the top product was reduced with increased internal resistance.

Experimental sedimentation apparatus often have wall separations of 5 - 10 mm in the
depth dimension while commercial vessels are much deeper with wall Separations greater
than 100mm. The simulation results suggest that wall friction caused by 5 - 10mm
wall separations will stabilize the wavy suspension interface and suppress mixing. In this
case the sedimentation behaviour in the experimental apparatus may not represent the

behaviour in deeper larger vessel.

The addition of internal resistance to an industrial inclined plate sedimentation vessel
should reduce the amount of entrainment of the suspension in the clear fluid. This will
allow higher throughputs of feed without contaminating the clear product.

Experimental results for the batch settling rate. the wave inception point and the
velocity field are needed to verify the predictions made by the numerical simulation. In
particular the formation of large weak vortices where the equivalent wall separation is
decreased from infinite to 10 mm may serve as a definitive test of the numerical model.



Chapter 9

Comparison of results with
different buoyancy discretizations

The truncation error analysis in Chapter 4 showed the buoyancy driving force term
could be discretized in a second order accurate manner with the implicitness factor 3; = 1.
It was argued that second order accuracy was obtained at the expense of a large oscillatory
truncation error in the buovancy source term. This would lead to an oscillatory vorticity

field at the next time step.

Comparisons were made between the non-diffusive simulations with first order accurate
and second order accurate discretizations of the buoyancy driving force: §; = 0 and
Bé = 1. Results were obtained with maximum Courant numbers of N¢c ~ 0.08, 0.35
and 0.8 for both the first and second order accurate discretizations. The transient
simulations were carried to a dimensionless time of { = 4 instead of { = 2 used for the
results presented earlier. Simulations were performed for the 18.8 mPas suspensions with
@ = 0.05. These suspensions were the most prone to wave formation in the experimental
study of Herbolzheimer [18].

9.1 Horizontal interface position

The time series plot (Figure 9.1) of the horizontal suspension interface for the unstable
10° inclination shows very strong dynamics in the simulations with 8 ;=0 for N¢ ~ 0.08
and 0.35. Although the initial flow development has completed by ¢ = 1 the results show
a strong time periodic nature up to { = 4. The interface position for Nc ~ 0.08 displays
a periodic 15 cm variation over a period of Af ~ 0.4. Oscillations of a similar magnitude
are evident with the N¢ =~ 0.35 simulation with a period of 0.2 < A#l. This period is
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similar to that with the smaller time steps. The simulation with the largest time steps
(Ne =~ 0.8) predicted the vessel would fill with suspension.

The simulations with second order accurate discretization of the buoyancy driving
force show much less oscillation in the position of the horizontal suspension interface in
Figure 9.2. The run with N¢ =~ 0.08 did not show any oscillations in the interface position
until £ > 3. The results after this time suggest the variation in the interface position was
around 10 - 20cm with a period of 0.2 < Af < 1. The less accurate simulation with
Nc¢ =~ 0.35 showed 10 cm oscillations in the interface position with a period of At ~ 0.2.
The simulation with N¢ =~ 0.8 showed very little variation in the position of the horizontal
suspension interface.

Herbolzheimer [18] does not report the magnitude of the oscillations in the position of

the horizontal suspension interface. This type of observation would be a useful validation

of the numerical results.
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9.2 Velocity profiles

Two large vortices are present in the velocity profile for 3 ; = 0and N¢ =~ 0.08 show
in Figure 9.3. In contrast Figure 9.4 shows many smaller vortices and the bulk of the
suspension is well mixed where the Courant number is N ~ 0.35. The difference in
the interface heights between these two simulations will influence the number of vortices
present in the bulk of the suspension. This result has been demonstrated in thermally
driven natural convection in rectangular vessels [6, 27]. As well the results are periodic:
it was demonstrated in Chapter 7 that the flow changes from a uniform to a well-mixed
pattern. Herbolzheimer does not report the flow patterns inside the vessel. The flow
pattern in Figure 9.5 shows large changes in the velocity where the Courant number is
Nc =~ 0.8: this result is probably inaccurate.

The flow profiles in Figures 9.6 and 9.7 obtained with Ne =~ 0.08 and N¢c ~ 0.35
are virtually identical for the second order accurate discretization of the buoyancy term.
These results are also virtually identical to the profile for 3; = 0 and N¢ =~ 0.08 shown
in Figure 9.3. This suggests the results with N¢ =~ 0.35 from the second order accurate
discretization of the buovancy term are just as accurate as those with the first order
accurate discretization and N¢ ~ 0.08. The flow profile with Nc >~ 0.8 in Figure 9.8 is
different from the previous results obtained with 3; = 1. One cannot determine if this

result is invalid.
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9.3 Inverse of the wave inception distance

Figure 9.9 shows the simulations with Bé = 0 and N¢ =~ 0.08 predict inverse wave
inception distances to be lower than the experimental values but follow the same trend.
Compared to the simulations with N¢ =~ 0.08 the runs with N¢ =~ 0.35 over-predict the
inverse wave inception distance for the most unstable inclinations of 5°, 10° and 15°. The
simulation with V¢ =~ 0.8 predicts that waves occur very near the bottom of the vessel:
this is numerical result is probably inaccurate.

The inverse inception distances in Figure 9.10 obtained with the second order accurate
discretization of buoyancy term show the same trend as the experimental data for
Nc¢ = 0.08. 0.35 and 0.8. The close agreement between the simulations with Ne ~ 0.08
and 0.35 suggest the second order accurate simulations with N¢ ~ 0.35 are just as accurate
as the simulations with much smaller Courant numbers.

22 &1 T T T T T L LI ¥

20 \ Nc=0.08 —— |
\ Nc =035 —+-
18 Y §C=0.8 -8-- _
B Experimental data x
16 4
14 Lo -
&° '
— 12 " -
z\ \\
- .
w el a-- a -
[« SR o--"
8 I 4
6 F 4
4 =l x /,/+_—_‘;-\\ -t
*~ N X y

2 - A \l— ______ - -
° $ = ¥————— i

O 1 . | | 1 ] 1 1 1 1
0 5 10 I5 20 25 30 35 40 45 50

0 (deg)

Figure 9.9: Inverse of inception distance for By =0, ¢ = 0.05, iy = 18.8 mPas, 6 = 10°.
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9.4 Summary

The numerical results obtained with the second order accurate discretization of the
buoyvancy term are more accurate than those obtained with the first order accurate
discretization for moderate Courant numbers for suspensions with very unstable interfaces.
Both the first order accurate and second order accurate discretizations of the buoyancy
term predict the same behaviour for small Courant numbers. N¢ ~ 0.08. The numerical
results presented in the previous chapters with the first order buoyancy discretization may
exhibit a more unstable suspension interface than the results obtained with the second
order accurate buoyancy discretization. This chapter has shown the results obtained with
first order accurate discretization of the buoyvancy term follow the same trends as the

results obtained with the more accurate discretization.

It is not known how the results obtained with the first and second order accurate
discretization of the buovancy term will be affected by increased spatial resolution.



Chapter 10
Summary

Non-diffusive shock capturing techniques provide accurate simulations of inclined plate
sedimentation. The results capture well the important features of the flow inside the vessel.
These features include the formation of the wavy suspension interface and the subsequent

mixing that leads to the poor performance of a sedimentation vessel.

10.1 Conclusions

The application of accurate shock capturing techniques from computational
aerodynamics to inclined plate sedimentation is new. The use of non-diffusive TVD based
methods (such as UNQ2) is necessary to obtain an accurate representation of the dispersed
phase volume fraction profile in two-phase flow. First order accurate upwinding is too
diffusive in both the vorticity transport and material transport equations to provide a

valid numerical model of sedimentation.

The non-diffusive numerical model captures the wavy suspension interface and the
mixing in the bulk of the suspension. Numerical results of this sort have not been
published. Agreement with the wave inception distance demonstrates the accuracy of
the numerical simulation: these experimental results of Herbolzheimer [18] are the most
delicate measurements available.

The effect of internal resistance on the flow stability in sedimentation vessels has
not been addressed in the literature. Numerical simulations showed internal resistance
to motion reduced the growth rate of unstable waves between the suspension and clear
fluid. This has two implications. One is in the design of laboratory scale settling devices:
experimental results with laboratory scale apparatus may be stabilized by wall friction
while the flow is very unstable in the industrial scale apparatus. The other implication is
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in the design of enhanced sedimentation vessels. The reduction of unstable waves results
in less mixing of the suspension with clear fluid and allows higher feed throughput. The
use of internal resistance to stabilize the flow is a new design for enhanced inclined plate

sedimentation vessels.

A small change in the discretization of the buoyancy term led to an approximation
with second order accurate truncation errors. Solutions obtained with this method were
more accurate than the solutions obtained with the first order method with moderate
Courant numbers. The first order accurate discretization was associated with more
unstable behaviour at the suspension interface. This does not invalidate the previous
results: the first order accurate results follow the same trend as the more accurate second
order results. This result demonstrates that accurate discretization methods must be
used to approximate the buoyancy term for the modelling of sedimentation. Accurate
numerical techniques must be developed before one examines more complicated physical

models (such as turbulence models).

10.2 Recommendations for future work

The most immediate extension of this work is to determine if the second order
discretization of the buoyancy term remains accurate for finer meshes and different
suspension concentrations. The oscillatory high order derivative in the leading truncation
error may cause numerical problems on finer meshes. A dilute suspension produces an
interface that is smeared over several grid points while the interface is much sharper for
a concentrated suspension. It is not known if the oscillatory truncation error will be

acceptable with moderate Courant numbers in these cases.

The Boussinesq approximation and constant viscosity assumption should be relaxed
in future modelling work. This will extend the applicable range of the numerical model
to higher dispersed phase concentrations. Different numerical techniques are required for
rapid solution of the coupled vorticity transport/streamn function equations because the
matrix coefficients will change with time. An iterative technique (such as ADI) with
multigrid acceleration may be a feasible solution method.

An implicit TVD method may be devised for the material transport and vorticity
transport equations. There are two advantages to an implicit shock capturing method
over the explicit treatment used for the convection terms used in this work. First the
stability limit imposed by the Courant number is eliminated and allows for larger time
steps and faster simulations. Second the implicit scheme can be formulated with a second
order accurate truncation error. The coupling between the material transport and stream
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function equation suggests the vorticity transport. stream function and material transport

equations can be solved simultaneously.

A primitive variable (velocity/pressure) formulation of the homogeneous model is more
general than the vorticity/stream function formulation used in this research. This will
allow the modelling of sedimentation in more complicated geometries than those possible
with the vorticity/stream function approach. Continuous sedimentation could be modelled
with a point source feed in the middle of the vessel or with baffles between the feed and
sludge withdrawal points. A primitive variable formulation can be extended to three
dimensional problems easier than the vorticity/stream function approach.

Accurate numerical solutions of the general two-fluid model equations (where there is
a velocity for each phase) will be difficult to obtain. The velocity fields for each phase are
discontinuous and the flow is much more viscous than the flows studied in computational
aerodynamics. This approach may tax the current state-of-the-art in shock capturing
techniques for the Navier-Stokes equations.

More detailed experimental results are required to validate the predictions made by
the numerical model. Quantitative measurements of the flow pattern in the vessel and
the shape of the wavy suspension interface are required. Optical techniques may not
work for measuring the suspension velocity and concentration due to the opaqueness of
the suspension. Nuclear magnetic resonance imaging has been used in sedimentation

experiments [26] but is expensive.

Experimental results are required for inclined plate sedimentation where there is a
porous media type of resistance: this work is needed to validate the predictions made
with the numerical simulation. The resistance to flow may be caused by a loose porous
media such as a wire mesh or by close spaced walls in the manner of a Hele-Shaw cell.
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Appendix A

Order of magnitude analysis of
the two fluid momentum

equations

An order of magnitude analysis is performed on the momentum equations for the
two fluid model. The results of this analysis justify the simplifications made with the
homogeneous model: the slip velocity of the dispersed phase is independent of the Auid

velocity.

A.1 Momentum interactions

The general momentum interaction between the continuous and a dilute dispersed

phase is given by McTigue et al. (31]:

mg = ¢, 13‘2_” (uy — uy) Stokes drag (A.1)
S
3(6.46) [ p3a3 \ '/ ,
+s ;M ) (21:{'152) Dy(uy — u,) Saffman lift
S !
+26, 7;" V.-D; Faxén force
(tr D})l/z )
+2¢; W—‘Df—lgl (y) — 92(y) Df -V- Dj Ho & Leal lift

where D = 0.5(Vu+(Vu)7T) is the symmetric rate of deformation tensor, d; is the particle
diameter and /i is the viscosity of the continuous phase material. Ho & Leal tabulate g,
and g, for simple shear flow and Poiseuille flow.
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Stokes drag [48] is the most familiar interaction between dispersed and continuous
phases. Faxén force {10] accounts for residual viscous effects exerted by a deforming fluid
on particles. Saffman lift [40] is caused by the interaction of slip velocity with the mean
shearing of the continuous phase and is responsible for the Segre Silberberg effect. Ho &
Leal lift [20] accounts for wall effects causing lift.

Ho & Leal lift is ignored because the fluid velocity field is not simple shear flow or
Poiseuille flow.

Particle diameter d;, continuous phase density 5; and the settling velocity at infinite
dilution 1} o are used to nondimensionalize Equation A.1:

- 18

Mg = ¢3R (ay — ) Stokes drag (A.2)
e 1/4
+¢333(6'46) L b f 1_ 3 (G5 — @,) Saffman lift
2@ Re""c 2tr Df
- 7T 1 . .
+052 éRes'x V-Dy Faxen force

Re; o is the particle Reynolds number at infinite dilution.

The slip velocity (#; — 45) is O(1). The largest velocity gradient associated
with inclined plate sedimentation occurs near the top of the clear fluid slit. For the
suspensions used in the experimental work of Shagfeh & Acrivos the maximum velocity
was O(100 V; ) and the distance was O(5 mm) or O(40ds). The dimensionless velocity

gradients are O(D) = 100/40 and O(V - D) = 100/40%2. The contributions to the

momentum interaction has the following orders of magnitude:

O(mg) = @, Ris Stokes drag (A.3)
§.0C
+¢s 4.1 P Saffman lift
§,00
+s 0.2 Faxeén force
Res o

Faxén force is ignored because it is two orders of magnitude smaller than Stokes drag
force. The suspensions of interest have Res oo < O(0.1). Stokes drag force is of order
O(180¢s) in the vertical direction and Saffman lift is of order O(13 ¢,) normal to the
inclined surface. Saffman lift is negligible for Re, oo < 0.1 and for inclined vessels.

A.2 Slip velocity

An order of magnitude analysis is performed on the simplified two fluid momentum
equations 2.4 to demonstrate the dispersed phase slip velocity (u; — u #) is independent of
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the fluid motion. The momentum equations 2.4 for the continuous and dispersed phases

are written in nonconservative form and divided by volume fraction:

T
pf (‘a;tf' tus- \““f) = —Vp+—L 15y (A1)
_ 64 18/ £(¢)
of & o T
_ [ Ou, , _ : - 18iis f(oy) =
Ps ( ot + U V.us) = Vp+5sg + Ts—qf‘—(uf us) (A.5)

Shear stress was neglected from the dispersed phase momentum equation A.5. Equation
A.5 is subtracted from Equation A.4 to eliminate the pressure gradient:

ps <%‘t—f— +uy- Vuf) — Ps (6(9:;3 + 1, Vus) (A.6)
_NVeopTe o o 18af(ey),
== ¥ (Br ~ Ps)g £ o (uy — )

Equation A.6 is the force balance that governs the slip velocity of the dispersed phase.
The slip velocity (u; — u,) is independent of the fluid motion if the gravitational force
(Py — Ps)g is much greater than the shear stress contribution (% - orTs)/os and the
convection terms gruy- Vuy and p,u, - Vu,. The shear stress contribution is assumed to

be ,
\vl -<pf‘rf

or

Equation A.6 is nondimensionalized with the particle diameter d,. continuous phase

~ g,V (A.7)

density gy and the settling velocity at infinite dilution V; :

aﬁf . - ) Ps (6&3 . .. )
— +up-V - — — + us - Vi, A.8
(at YR ) T 5 \ar TV (4.-8)
. He)
=t g0 18 JOnN 4

- Res,oc Res Res,oc 0}

The nondimensional gravitational force is 18/Re; .

The previous order of magnitude analysis shows the shear stress contribution is
O((100/40%)/Re; o) and is much smaller than the gravitational term 18/Re; oo

The ratio gs/py is O(1). Both of the convection terms UTE @ﬁ, and 1, - Vi, have the
same order of magnitude: the largest value is 9;87/8j in the y momentum equation. The
vertical velocity varies from zero to O(100 V, ) over the length of the vessel (O(0.8 m)
or O(5700d,)). This convection term is O(100 100/5700) = O(1.8). The suspensions have
Res o0 < O(0.1): the gravitational term is O(18/Re) > O(180). The convection terms are
negligible compared to the gravitational term.

The slip velocity of the dispersed phase is independent of the fluid motion for the
suspensions considered in this work.



Appendix B

Derivation of the momentum
equations for the homogeneous

model

The momentum equation is derived for the homogeneous mixture model from the

two-fluid momentum equations

a -
ps [—%-&V-(dyu,u;)] = —¢;Np+V-1;—0sprg+m! (B.1)
Os [aoastus + V- (¢susus)] = —Osz A ®sPsg — m‘{ (BQ)

The momentum equation for the mixture is the sum of equations B.1 and B.2:
. [0dsu _ [0¢su
pr | 2L+ 9 orugup)] + 5. [222 4V (gugus)] = VP4 ¥ 7~ pmg (B3

The mixture density is p, = ¢5pf + @sps and the shear stress on the mixture is
Tm The objective is to write Equation B.3 in terms of the volume average mixture
velocity wm = éjuy + ¢su, and the velocity of the dispersed phase relative to the
mixture u; = u; — U,. The velocity of the continuous phase relative to the mixture

lsu}=uf—um.

Equation B.3 is rearranged to

6 m - S S
51 |G+ Y )]+ 21 [V Gruru) + - (@yuus)] (B.4)
0dsu,
+ (o= 0p) [P 4V (Geust)] = ~Vp+ V7~ pug
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The first term in Equation B.4 is

_ [Oum
[—gt— +V- (umum)}

The continuity equation V - u,, = 0 is imposed on this expression: the first term in

Equation B.4 becomes
_ [Ou -
pf [—Bt +u- V’u} (B.3)

The second term of equation B.4 is
prv - [q')fufu'f + d),usu's]
Since uy = upy + u’f and us = un, + u, the above equation becomes
prv - [d)f(um + uf)u; + ¢s(um + u;)u's]
The above equation is expanded and terms with u,, are collected
ey - [um(qpfu'f + osul) + ¢fu}u'f + a')su’su's]
The definitions of the wu’ [ and u} are substituted in the u,;(¢su’ Tt osu ') term:
AN [um(d)fuf — Oftm + GsUm — OsUs) + Opulu; + a’)su'su;]
Terms with u,, are collected
ﬁfv : ['um((¢fuf + Qsus) — um(¢f +0s)) + ¢fuf{u,f + ¢sulsu:~]
Since oy + ¢s = 1 and um = ¢juy + @dsus the above equation is
pry - [@'fu}uf, + (bsu’su;] (B.6)
The continuous phase slip velocity u'f is related to u through the definitions of the slip

velocities:

uy = u;—unp

uy — (us — uy)

= u;—u;+u;

But uy — u, = —u /(1 — ¢;) so
1 —¢3u{v
- 1- ¢s
This expression is substituted into Equation B.6:

Psu, PDsug

¢31—¢,+¢’“"]

psV - [d)
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The second term of Equation B.4 is

The third term of Equation B.4 is

R
(Bs — Py) [ <Patus +V. (osusus)J

The dispersed phase continuity equation %’- + V- (ésu;) = 0 is imposed on the above

expression to produce 5
u
os(Ps — ﬁf) [—at—s +u - vus} (B.8)

The definition of the dispersed phase slip velocity us = u,, + u, is substituted for u, in
B.8:

i
du;

o
®s(Ps — pf) [%+um-Vum+ 5 + Um - Vug +u) - Vug, +ul - Cul (B.9)

Equations B.5. B.7 and B.9 are substituted for the first. second and third terms in
equation B.4. The definition of the mixture density p, = pr + os(ps — pyf) is used to
combine expressions in Equations B.5 and B.9

Ju _ ¢s [
Pm [E + Uy, - Vum} +ps\ - [1 sy usus} (B.10)

. ou'’
+  o4(ps — py) [7’ +Um - VUl +u - Vu, +ul - Vu;]

= ~Vp+Y T~ pmg

The second and third terms on the left hand side of Equation B.10 contain gradients of
the dispersed phase slip velocity. The slip velocity is a discontinuous function across the
suspension interface and results in these gradient terms being undefined. The expression
&s(Ps — pr)uy - Vu in the third term is much smaller than the expression pmu - Vu in the
first term of Equation B.10 because ¢,(5, — Ps) € pm and u, < u,,. The second and
third terms of Equation B.10 are negligible.

The momentum equation for the homogeneous mixture is

du
Pm [Ttm"’rum‘vum} =“Vp+v'7'm—pmg (B.11)



Appendix C

Flow of a stratified fluid between
inclined parallel plates

Analytic solutions for two density stratified flows between inclined parallel plates are
presented. These examples are limiting cases where the suspension/clear fluid interface is
represented as a discontinuity and the interface is smeared over a large distance.

In the first case two fluids of density p~dp/2 and p+4dp/2 occupy equal portions of the
inclined vessel shown in Figure C.1 For fully developed flow the y-direction momentum

equations for the two fluids are

5/ 0%

0 = —% ﬂaz:—2é—(P—5P/2)gy (C.1)
a 8%

0 = —5;-) + #ax—zg —(p+4p/2)g, (C.2)

The boundary conditions are no slip at the walls,
w(=1/2) =0, u(l/2)=0
the velocity field is continuous at the interface z = 0,
va(0) = vy(0)

and the shear stress is continuous at the interface r = 0,

dup(0) _ Bv(0)
dr Oz

The global material balance requires the net flow across the channel to be zero

0 /2
0 =/ vy dz +/ v dz
-1/2 0
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Figure C.1: Gravity driven flow of a density stratified fluid between inclined parallel
plates.

The second case is for a fluid where the density varies linearly across the vessel. The

y-direction momentum equation is

21
0=—-a—p+u2—1—-—- (p+ ITJp)gy (C.3)

The boundary conditions are no slip at the walls.
v(-1/2) = 0. v(l/2) =0

The net flow across the channel is zero

/2
0= / vdr
~1/2

The Mathematica script for solving these two problems follows.
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Infl]:=
/*
Solution for fully developed gravity driven flow of two
superposed fluids between inclined parallel plates.

Fluid on the left is ‘g’, that on the right is ‘a’.
Density difference is ’‘dr’ and the interface is at x=0.

Boundary conditions:
no slip at the walls (x = +- 1/2)
continuous velocity and first derivative at x = 0
total volumetric flow is zero.

*/

Syntax::sntxb: Expression cannot begin with "/*".

vgrule = DSolve([{vg’’ [x]==(dp - (rho+dr/2)*gy)/mu,

vgl-1/21 == 0,
vg[0] == wvint},
vg, x]
Outf1]=
{{vg -> (((1 + 2 #1) (8 mu vint + 2 dp 1 #1 -
dr gy 1 #1 - 2 gy 1 rho #1)) / (8 1 mu) & )}}
nf2]:=
varule = DSolve[{va’’[x]==(dp - (rho-dr/2)*gy) /mu,
val[0] == wvint,
val[l/2] == 0},
va, xJ]

General::spelll:
Possible spelling error: new symbol name "“varule"
is similar to existing symbol “vgrule".

Outf2]=
{{va -> (((1 - 2 #1) (8 mu vint - 2 dp 1 #1 -
dr gy 1 #1 + 2 gy 1 rho #1)) / (8 1 mu) & )}}
In[3]:=
vintrule = Solve[(vg’[0] /. vgrule) == (va’[0] /.varule),
vint]
Out(3]=

2 2
{{vint -> -(dp 1 g gy 1 rho)}}
mu
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Inf4]:=
totalflow = Simplify[Integratel[(vg[x] /. vgrule),
{x, -1/2, 0}] +
Integrate[(va[x] /. varule), {x, 0, 1/2}]1 /. vintrule]

Out{4]=

({13 (-dp + gy rhO)}}

12 mu

Inf5]:=

dprule = Solve(totalflow == 0, dp]
Out[5]=

{{dp -> gy rho}}
Inf6]:=

vgeqn = Simplify[{{vg[x] /. vgrule} /. vintrule}/.dprule:
Oui[6]=

{{{{{—(dr gy x (1 + 2 x))

8 mu

PHih}

In[7]:=
vaeqn = Simplify([{{va(x] /. varule} /. vintrule}/.dprule:
General: :spelll:

Possible spelling error: new symbol name "vaegn"
is similar to existing symbol *"vgegn".

Out[7]=

{{{{{—(dr gy (1 - 2 x) x)

8 mu

P11}

In[8]:=
Plot [(mu=0.001;
rho=1000;dr=10;
1=0.1;del=0.05;
gy=-0.5*9.81;vgeqn, vaeqn}, {x, -0.05, 0.05},
AxesLabel -> {x, v}l
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v
30¢
20+
10t
04 -0.02 0.02 0.04 x
..lo L
-20}
-30}
Out[8]=
-Graphics-
Inf{9]:=
Plot [{mu=0.001;
rho=1000;dr=10;
1=0.1;del=0.05;
gy=-0.5*9.81;vaeqn}, {x, 0, 0.05},
AxesLabel -> (x,
v
6
4 }
2
0.01 0.02 04 0.05
Out[9]=

-Graphics-
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In{10]:=
/*
Solution for fully developed gravity driven flow of a
£fluid with a uniform density gradient between inclined
parallel plates.

Density gradient is ‘drf/l1f’.

Boundary conditions:
no slip at the walls (xx = +- 1/2)
total volumetric flow is zero.

*/

Syntax: :sntxb: Expression cannot begin with "/**".

vrule = DSolve[{v’’([x]==(dpf-(rhof-(drf/1lf) *x)*gfy)/muf,

v[(-1£/2] == 0,
v[1£/2] == 0},
v, x]

General: :spell:
Possible spelling error: new symbol name “"vrule”
is similar to existing symbols {varule, vgrule}.

General::spelll:
Possible spelling error: new symbol name "rhof"
is similar to existing symbol "rho".

Out[10]=
{{v -> (((3 dpf 1f - 3 gfy 1f rhof + drf gfy #1)
(-1£% + 4 #1%)) / (24 1f muf) & )})
Infll]:=

totalflow2 = Simplify[Integrate[(v([x] /. vrule),
{x, -1f£/2, 1£/2}] 1]

OMI[I 1]=
{lf3 (-dpf + gfy rhof)}
12 muf
Infi12]:=
dprule2 = Solvel[totalflow2 == 0, dpf]
Out{12]=

{{dpf -> gfy rhof}}

In[13]:=
vegqn = Simplify{{vix] /. vrule} /. dprule2]
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General::spell:

Possible spelling error: new symbol name “vegn"

is similar to existing symbols {vaeqn., vgeqn}.

Quif13]=

drf gfy x (-1£° + 4 x%)
24 1f muf

{{{ 11}
In[14]:=
Plot [{muf=0.001;
rhof=1000;dr£=10;
1£=0.1;

gfy=-0.5*9.81;veqn}, {x, -0.05, 0.05},
Axeslabel -> {3, v}]
v
4.
2.
X
-0.04 -0.02 0.02 0.04
_2.
-4t

Out(14]=
-Graphics-

In[15]:=
Plot [{muf=0.001;
rhof=1000;dr£f=10;
1£=0.1;

gfy=-0.5*9.81;veqgqn}, {(x, 0, 0.05},

AxesLabel -> (x, v}]
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Out(15]=
-Graphics-
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