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Abstract

BACKGROUND: Achieving an appropriate gestational weight gain (GWG)

is important during pregnancy. Inadequate and excessive GWG have been

linked to various negative pregnancy outcomes and future health issues for

both the mother and fetus. One useful intervention is to provide individual-

ized assessment and counselling at the beginning of pregnancy and throughout

pregnancy as needed, to help women follow dietary and physical activity pat-

terns that support optimal weight gain. Currently, pregnant women receive

a personalized weight gain goal, usually a weight gain chart, that is based

on their pre-pregnancy body mass index (BMI). However, these weight gain

charts cannot be adjusted to account for individual weight measurements dur-

ing pregnancy. Interventions focused on the progress of weight gain throughout

pregnancy could thus benefit from a personalized weight growth trajectory.

A previous study used the functional principal component analysis (FPCA)

approach and successfully estimated individual weight trajectories in pregnant

women. However, the FPCA method borrows information from the whole co-

hort, and does not incorporate information on women’s pre-pregnancy BMI.

The objective of this thesis was to extend FPCA by incorporating additional

BMI category-specific principal components (PCs) in trajectory modelling of

gestational weight gain. The new proposed method, called JIVE–FPCA, ap-

plies the joint and individual variation explained (JIVE) algorithm to FPCA,

and can be used to estimate individual trajectories from any sparse, longitu-

dinal multi-block dataset.
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METHODS: Weight data during pregnancy and early postpartum were

collected from a large cohort (n = 1648) of pregnant and postpartum women.

Longitudinal weight measurements were irregularly spaced and obtained from

multiple data sources. Sparse, longitudinal multi-block data were simulated

according to the JIVE–FPCA model, and closely mimicked the real, gesta-

tional weight data. The FPCA and JIVE–FPCA methods were then applied

to both the simulated and real datasets. The performances of the two methods

were compared on the basis of the mean squared error and average confidence

bandwidth.

RESULTS: Studies with both simulated and real data showed that the

JIVE–FPCA method provides a significantly better fit to individual trajecto-

ries than the original FPCA approach. This was evident both visually and

numerically. The mean squared error and average confidence bandwidth were

appreciably lower for the JIVE–FPCA method than for FPCA. In the ap-

plication to gestational weight data, the JIVE–FPCA approach successfully

captured differences in GWG patterns among different pre-pregnancy BMI

categories. In particular, it was found that the weight trajectories for women

with pre-pregnancy obesity were more gradually rising than those for women

with lower pre-pregnancy BMI. The mean JIVE–FPCA weight trajectories

for overweight and obese women were similar, and exhibited a different pat-

tern than the trend displayed by the mean weight curves for underweight and

normal weight women.

CONCLUSIONS: This thesis presents the JIVE–FPCA approach, which is

an extension of the existing FPCA method. The advantage offered by JIVE–

FPCA is that it can simultaneously capture patterns that are shared across

multiple blocks of data and patterns that are specific to a particular block. Tra-

jectory modelling of gestational weight gain indicated that the JIVE–FPCA

method leads to a significant improvement in explaining the weight variation.
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The new method also highlights the differences in GWG patterns between

pre-pregnancy BMI classes.
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Chapter 1

Introduction

1.1 Motivation and Research Problem

Normal physiological adaptations favour weight gain and fat accretion during

pregnancy to support fetal growth, followed by postpartum weight loss and fat

mobilization to meet increased maternal energy demands during lactation [13,

38]. It is well-known that the risk of poor maternal and fetal health outcomes

increases when women gain either too little or too much weight during preg-

nancy [5, 8, 24, 25, 34] . Gaining too little weight is associated with low birth

weight and preterm birth, while gaining too much weight is associated with

complications such as gestational diabetes, hypertension, caesarean sections,

and macrosomia in infants [8, 27]. Recent studies indicate that, in developed

countries, the majority of pregnant women gain more weight than recom-

mended [2, 14, 23, 35, 43]. Excessive weight gain during pregnancy followed

by inadequate postpartum weight loss can contribute to maternal long-term

obesity and associated sequelae including cardiovascular disease, hypertension,

diabetes, and degenerative joint disease [27, 34, 36, 42].

Research has shown that customized counselling and education, together

with individual weight monitoring, improves adherence to gestational weight

gain (GWG) recommendations [28–30, 32, 40]. At present, women are com-

pared against a general weight gain trajectory chosen on the basis of pre-

pregnancy body mass index (BMI). These weight gain charts depend only on

pre-pregnancy BMI and cannot be adjusted to account for individual weight

measurements during pregnancy. Adherence rates could be further improved,
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however, if the weight trajectory could be individualized. The monitoring and

modelling of individual weight growth trajectories during pregnancy may be

useful for women and healthcare providers. In particular, gestational weight

gain trajectories can be used to predict weight changes during pregnancy and

thus may help identify women who are at high risk of suboptimal GWG.

A previous study used the functional principal component analysis (FPCA)

approach and successfully estimated individual weight trajectories in preg-

nant women [7]. The traditional FPCA method borrows information from the

entire cohort, and does not incorporate information on pre-pregnancy BMI.

However, women of different pre-pregnancy BMI categories tend to exhibit

different trends in gestational weight gain. For instance, women with lower

pre-pregnancy BMI typically have higher gestational weight gain and weight

growth trajectories that tend to be steeper than the mean weight growth tra-

jectory across all BMI categories [23, 31]. Gestational weight trajectories of

women with higher pre-pregnancy BMI exhibit the opposite trend: they tend

to be more gradually rising than the mean weight growth trajectory.

Trajectories that have a different pattern than the sample mean are likely

to have larger FPC scores on PCs which are not included in the estimation by

FPCA. As a result, these estimated trajectories are closer to the mean function

than they should be. This was observed in [7], where it was found that the

estimated total GWG from FPCA trajectories underestimated the weight gain

for underweight women, while overestimated the weight gain for women who

were overweight or obese before pregnancy. Thus, there is a need to account

for weight variation that is individual to each pre-pregnancy BMI category.

1.2 Background

1.2.1 Dimension Reduction

The analysis of high-dimensional data — datasets in which the dimensionality

of each observation is comparable to or even larger than the number of obser-

vations — has drawn increasing attention in the last several decades [12, 16].

Text mining, image analysis, e-commerce, and computational biology, for ex-
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ample, are fields of research that involve datasets where hundreds or thousands

of variables are measured for each object of interest. These datasets present

interesting challenges because they can be difficult to visualize and are of-

ten structurally complex. High-dimensional datasets are typically high-rank,

meaning they contain a large number of patterns. The complexity of such

datasets may be reduced by applying dimensionality reduction techniques,

which decompose large high-rank matrices into smaller, low-rank components.

Dimension reduction methods extract the features that explain most of the

variability in the data, thus making the data much simpler to analyze. There

are a number of matrix decomposition methods that can be used for dimension

reduction. Some examples include principal component analysis (PCA) [1, 39,

46], partial least squares (PLS) [4, 20, 26], and alternating least squares (ALS)

[9, 10, 18].

1.2.2 Multi-Block Data

Real-world data are often obtained as a collection of matrices rather than as a

single matrix. Such multi-block data are naturally connected and usually share

some common features while simultaneously exhibiting their own individual

features, reflecting the underlying data generation mechanisms. Multi-block

data frequently arise in biomedical studies, where multiple different types of

high-dimensional data (e.g., gene expression, microRNA, genotype, protein

abundance/activity) are commonly collected on the same set of organisms

or tissue samples. Datasets of this structure, in which multiple large and

fundamentally disparate sets of variables are available for a common set of

objects, are said to be vertically integrated. In vertically integrated multi-block

data, the columns of each matrix represent cases or objects, while the rows of

different matrices represent variables measured on different platforms. Thus,

each data matrix has the same number of columns, corresponding to a common

set of objects, but a potentially different number of rows. For example, the

rows of one matrix may contain gene expression measurements, while the rows

of another may contain miRNA measurements for the same set of biological

samples. In horizontally integrated multi-block data, disparate sets of samples
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(e.g., sick and healthy patients) are available on the same data type. The data

matrices thus have the same number of rows, each corresponding to a variable

in a given measurement technology that does not vary from matrix to matrix.

The number of columns in each data matrix may differ, however, since the

matrices represent different sets of samples.

Until recently, there was little statistical methodology for integrative anal-

yses of high-dimensional multi-block data. Two methods of treating such

datasets were common in the past: in one approach, each data block was an-

alyzed separately. In the second method, multi-block data were analyzed as a

single combined dataset. However, both of these approaches have limitations.

Individual analysis of each data block will not capture the critical associations

and potential causal relationships between data blocks. Moreover, the impor-

tant features that are unique to each data block may be missed when analyzing

multi-block data as a single combined dataset. These limitations have moti-

vated the need for new statistical methods that explore associations between

multiple data blocks while recognizing that each data block can provide unique

and important information. In recent years, a number of methods have been

developed for analyzing multi-block data, which simultaneously model fea-

tures that are shared across multiple blocks and features that are specific to

a particular block. These methods extend well-established techniques such as

partial least squares [22], canonical correlation analysis [47], non-parametric

Bayesian modelling [33], non-negative factorization [44], factor analysis [11],

and simultaneous components analysis [37, 41].

1.2.3 The JIVE Method

The joint and individual variation explained (JIVE) method was recently intro-

duced for the integrated unsupervised analysis of multi-block high-dimensional

data [21]. Developed as a multi-block extension of principal component anal-

ysis, JIVE quantifies the amount of joint (shared) variation between data

blocks as well as the amount of individual (unique) variation specific to each

data block. The JIVE method also reduces the dimensionality of the data and

allows for visual examination of joint and individual (block-specific) structure.
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JIVE was originally designed for the analysis of biomedical data from mul-

tiple technologies. The method has been successfully applied to the analysis of

gene expression and miRNA data on glioblastoma multiforme tumor samples,

providing better characterization of tumor types and better understanding of

gene–miRNA associations [21]. However, the JIVE model and algorithm are

very general and may be useful in other contexts. For example, the method has

been used to analyze data that were processed using different computational

pipelines [19], and in the analysis of rail commute patterns at different times

of day [15]. In finance, JIVE can potentially improve upon current models

that explain variation across and within disparate markets [3].

Although JIVE was primarily motivated by the analysis of vertically in-

tegrated multi-block data, where different types of data are measured on the

same set of samples, the method may also be useful for the analysis of hori-

zontally integrated data, in which a single data type is measured on different

sets of samples. This approach is referred to as horizontal JIVE, since it

involves integrating across samples (columns) rather than variables (rows).

Thus, while a standard JIVE analysis identifies structure in the samples that

is present across data types or individual to a data type, a horizontal JIVE

analysis identifies structure in the variables that is present across sample sets

or individual to a sample set. Some potential applications for such a hori-

zontal analysis include: (1) the analysis of treatment and control samples in

an experimental study, and (2) the analysis of samples for different species

(e.g., cats and dogs), for which measurements are available on a common set

of genes.

JIVE decomposes a multi-block dataset into three components: a low-

rank matrix capturing joint variation across data blocks, low-rank matrices for

structured variation individual to each block, and a residual matrix capturing

variability in the data unattributed to joint or individual structures. Joint

structure reveals patterns that explain substantial variability across multiple

data blocks, whereas individual structure reveals patterns that explain sub-

stantial variation in one block but not others. With specified ranks, the JIVE

algorithm iteratively estimates joint and individual structure to minimize the
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overall residual sum of squares. Simultaneous estimation of individual struc-

ture allows for more accurate estimation of the underlying joint structure, and

vice versa. Furthermore, the joint and individual structures are assumed to

be orthogonal in order for the matrix decomposition to be identifiable.

1.2.4 Extending JIVE: The JIVE–FPCA Method

Motivated by the desire to individualize women’s gestational weight gain tra-

jectories, this thesis proposes a new method, called JIVE–FPCA, that applies

the JIVE algorithm to FPCA for the analysis of irregularly spaced, sparse

longitudinal multi-block data. In the JIVE–FPCA method, a subject’s trajec-

tory is decomposed into joint and individual components. These components

account for the variation between and within grouped samples of functional

data, respectively, and are iteratively estimated. The joint component of a

given trajectory is calculated using the pooled data from all blocks, whereas

the individual components are based on data from particular blocks. The indi-

vidual components of a trajectory consist of principal components (PCs) that

are unique to a specific feature set (vertically integrated data) or sample set

(horizontally integrated data).

In this thesis, the JIVE–FPCA method is applied to simulated data and

real, longitudinal gestational weight data. A horizontal JIVE–FPCA analysis

is performed in both cases. This variation of JIVE–FPCA analyzes grouped

observations on the same functional data type; however, JIVE–FPCA is also

designed for analysis across disparate data types. The usefulness of the new

methodology is illustrated by comparing JIVE–FPCA estimated trajectories

with those estimated using the original FPCA approach.

1.3 Thesis Structure

Chapter 2 introduces the JIVE–FPCA model and notations used throughout

this thesis. This section also presents the JIVE–FPCA algorithm for estimat-

ing the joint and individual components of a set of trajectories. Chapter 2

concludes with derivations of the asymptotic pointwise and simultaneous con-
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fidence intervals for individual JIVE–FPCA trajectories. Chapter 3 discusses

the design and results of the simulation experiment. The JIVE–FPCA method

is applied to real, horizontally integrated, longitudinal gestational weight data

in Chapter 4. The resulting weight growth trajectories are then compared with

those obtained using the existing FPCA approach. A discussion and potential

future work follow in Chapter 5.
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Chapter 2

The JIVE–FPCA Method

2.1 Model

The FPCA method proposed by Yao et al. [45] was developed for sparse, irreg-

ularly measured longitudinal data, and is used as a basis for the JIVE–FPCA

approach. In this thesis, the notation developed in [45] is extended to in-

clude principal components that are unique to a specific feature set (vertically

integrated data) or sample set (horizontally integrated data).

Sparse functional data are modelled as noisy sampled points from a col-

lection of trajectories that are assumed to be independent realizations of a

smooth random function X(t). The domain of X(·) is some bounded and

closed time interval T . Suppose that X
(J)
i (t) is the joint component of the

ith random trajectory Xi(t), i = 1, . . . , n. Similarly, let X
(I,k)
i (t) be the kth

individual component of the random curve Xi(t), where k is used to denote

the kth feature set or sample set, with k = 1, . . . ,m for some m ∈ N. Let Yij

be the jth observation of the random function Xi(·), made at a random time

Tij ∈ T , j = 1, . . . , Ni, where Ni is the number of measurements made on the

ith subject and is considered random, reflecting sparse and irregular designs.

The random variables Ni are assumed to be iid and independent of all other

random variables. Furthermore, let ε̃ij be uncorrelated measurement errors

with mean zero and constant variance σ̃2. Thus, the JIVE–FPCA model is

given by

Yij = Xi(Tij) + ε̃ij = X
(J)
i (Tij) +

m∑
k=1

X
(I,k)
i (Tij) + ε̃ij
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= µ(Tij) +
∞∑
l=1

ξilφl(Tij)︸ ︷︷ ︸
Joint

+
m∑
k=1

(
µ(k)(Tij) +

∞∑
s=1

η
(k)
is φ

(k)
s (Tij)

)
︸ ︷︷ ︸

Individual

+ ε̃ij, (2.1)

where µ(t), ξil, and φl(t) represent the mean function, functional principal

component (FPC) scores, and eigenfunctions (PC functions), respectively, for

the joint component of the ith trajectory, which is calculated using the pooled

data from all m blocks. These same quantities are, accordingly, represented

by µ(k)(t), η
(k)
is , and φ

(k)
s (t) for the individual component that is based on data

from the kth feature set or sample set. Within each component of a given tra-

jectory, it is assumed that the eigenfunctions are orthogonal, and that the FPC

scores are uncorrelated random variables with mean zero. It is further assumed

that the ε̃ij are independent of the random coefficients ξil and η
(k)
is . Trajecto-

ries derived from vertically integrated datasets have a joint component and m

individual components, where the kth individual component is estimated from

the kth feature set. On the other hand, subjects from horizontally integrated

datasets have trajectories that consist of a joint component and a single in-

dividual component, where the individual component is estimated using only

the sample set data associated with that particular subject.

2.2 Estimation of the Model Components

The JIVE algorithm is applied to FPCA in order to estimate the joint and

individual components of a set of trajectories {Xi(t)}ni=1. The general steps

involved in the proposed JIVE–FPCA method are presented below, and may

be applied to vertically or horizontally integrated datasets.

1. To estimate the joint component of each trajectory, the FPCA procedure

in [45] is applied to all the data points from all m feature sets or sample

sets. The fraction of variance explained (FVE) method is used to select

the number of PC functions. With the FVE method, the smallest number

of eigenfunctions that explain a pre-defined fraction (threshold) of the

total variation in all the trajectories is chosen. Usually, the first few PCs

explain the largest fraction of the total variance, and thus represent the
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dominant modes of variation. Let L be the number of eigenfunctions

chosen by the FVE approach. Then, the joint component of the ith

subject’s trajectory is estimated by

X̂
(J)
i (t) = µ̂(t) +

L∑
l=1

ξ̂ilφ̂l(t), (2.2)

where the ξ̂il are estimated subject-specific FPC scores.

2. The residuals εij = Yij − X̂(J)
i (t) are computed next, using the estimate

for X
(J)
i (t) found in Step 1. This set of residuals may be represented as

{εij} = ε
(1)
ij ∪ ε

(2)
ij ∪ · · ·∪ ε

(m)
ij , where ε

(k)
ij are the residuals associated with

the kth feature set or sample set, k = 1, . . . ,m.

3. In Step 3, FPCA is applied to the residuals εij obtained in Step 2 so as

to estimate the individual component(s) of each trajectory. This process

is computationally simpler to carry out for horizontally integrated data,

since each trajectory is comprised of a single individual component.

(a) First, consider the case of horizontally integrated data. Suppose

that the ith subject belongs to the kth sample set. Thus, FPCA is

applied to the residuals associated with the kth sample set (denoted

by ε
(k)
ij ). Let S(k) be the number of eigenfunctions selected by the

FVE criterion. Then, the estimate for the individual component of

the ith subject’s trajectory is

X̂
(I,k)
i (t) = µ̂(k)(t) +

S(k)∑
s=1

η̂
(k)
is φ̂

(k)
s (t). (2.3)

(b) Estimation of the individual components proceeds in a similar fash-

ion for vertically integrated (multi-datatype) datasets. The process

begins with the application of FPCA to the residuals associated

with the first feature set (denoted by ε
(1)
ij ). Suppose that S(1) eigen-

functions are selected by the FVE method. Therefore, the first in-

dividual component of the ith subject’s trajectory is approximated
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by

X̂
(I,1)
i (t) = µ̂(1)(t) +

S(1)∑
s=1

η̂
(1)
is φ̂

(1)
s (t).

The residuals

Yij −
(
X̂

(J)
i (t) + X̂

(I,1)
i (t)

)
are then calculated using the estimates for X

(J)
i (t) and X

(I,1)
i (t)

found above. This set of residuals can be expressed as a union of m

sets, where the kth set represents the residuals associated with the

kth feature set, k = 1, . . . ,m. In general, to estimate the kth indi-

vidual component, for k ≥ 2, the following residuals are computed

Yij −
(
X̂

(J)
i (t) + X̂

(I,1)
i (t) + · · ·+ X̂

(I,k−1)
i (t)

)
using previously obtained estimates for X

(J)
i (t), X

(I,1)
i (t), . . . , X

(I,k−1)
i (t).

FPCA is then applied to the residuals associated with the kth fea-

ture set. The estimate for the kth individual component of the

ith subject’s trajectory is given by Equation (2.3). This process is

repeated until all m individual components have been estimated.

4. Combining the estimates for the joint and individual components ob-

tained in Steps 1–3, we obtain the following estimate for the ith subject’s

trajectory:

X̂i(t) = X̂
(J)
i (t) +

m∑
k=1

X̂
(I,k)
i (t)

= µ̂(t) +
L∑
l=1

ξ̂ilφ̂l(t)︸ ︷︷ ︸
Joint

+
m∑
k=1

µ̂(k)(t) +
S(k)∑
s=1

η̂
(k)
is φ̂

(k)
s (t)


︸ ︷︷ ︸

Individual

. (2.4)

Note that for horizontally integrated data, Equation (2.4) simplifies to

X̂i(t) = µ̂(t) +
L∑
l=1

ξ̂ilφ̂l(t) + µ̂(k)(t) +
S(k)∑
s=1

η̂
(k)
is φ̂

(k)
s (t), (2.5)

where k represents the sample set to which the ith subject belongs.
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Once the individual trajectories have been estimated, further steps may

be taken to improve the fit of each trajectory and thus minimize the residual

sum of squares (RSS). This may be achieved by iteratively estimating the joint

and individual components. The JIVE–FPCA algorithm is an extension of the

iterative method outlined in [21] for estimating joint and individual structures.

Pseudocode for the JIVE–FPCA iterative estimation procedure is given below.

The algorithm is written under the assumption that vertically integrated data

are used, but can easily be modified for a horizontal JIVE–FPCA analysis.

JIVE–FPCA algorithm

• Obtain initial estimates for Xi(t) by performing Steps 1–4 above.

• Compute the residuals ε̃ij = Yij − X̂i(t) and the RSS =
∑n

i=1

∑Ni

j=1 ε̃
2
ij.

• Loop:

∗ Calculate r
(J)
ij = Yij −

∑m
k=1 X̂

(I,k)
i (t) using estimates for X

(I,k)
i (t)

found in the previous iteration.

∗ Apply FPCA to the residuals r
(J)
ij to obtain new estimates for the

joint component of each trajectory.

∗ Perform Steps 2–4 to obtain new estimates for the individual com-
ponents and for Xi(t).

∗ Update the RSS

• Repeat until some convergence criterion is satisfied.

The JIVE–FPCA algorithm is much simpler to implement when working

with horizontally integrated data, since for every trajectory there is only one

individual component that needs to be reestimated in each iteration. In terms

of the above algorithm, the summation
∑m

k=1 X̂
(I,k)
i (t) reduces to a single term

X̂
(I,k)
i (t).

The time needed to compute JIVE–FPCA curves depends primarily on the

dimensions of the data and the number of PCs used to estimate the joint and

individual components of each trajectory. A JIVE–FPCA analysis of the sim-

ulation described in Chapter 3 takes 15 minutes for 5 iterations on a 2.7 GHz

CPU with 8GB RAM. The analysis of larger multi-block datasets, such as the
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gestational weight data described in Chapter 4, takes longer (with 5 iterations

requiring 23 minutes, for comparison). The difference in computing time be-

tween these particular analyses is attributed to the difference in the number

of blocks (sample sets) associated with each dataset (2 for the simulated data

versus 4 for gestational weight).

The application of JIVE–FPCA to simulated and real data (see Chapters

3 and 4, respectively) has shown that the iterative method is not monotone

in the sense that the RSS does not necessarily decrease at each step. For

example, in some experiments the RSS suddenly increased sharply after many

iterations of steady decrease, and then decreased again for a long period of

time. As a result, it is difficult to determine when the minimum RSS has been

found. The JIVE–FPCA algorithm has shown to exhibit stable behavior (i.e.,

steadily decreasing RSS) for at least several iterations. The following stopping

criteria are proposed in order to obtain optimal results:

• Run JIVE–FPCA until RSSJIVE–FPCA < RSSFPCA and the percent change

in RSS between two successive iterations is less than 1%.

• If RSSJIVE–FPCA < RSSFPCA but the percent change in RSS between two

successive iterations is greater than 1% after the 5th iteration, stop after

round 5 to prevent overfitting.

These stopping criteria are used in this thesis for both the simulated and

gestational weight data, and are recommended for any general multi-block

dataset.

2.3 Confidence Bands of Individual Trajecto-

ries

Pointwise and simultaneous confidence bands for individual JIVE–FPCA tra-

jectories may be derived. The details on the construction of these bands are

provided below.

This section extends the notation used by Yao et al. [45] in deriving the

asymptotic pointwise and simultaneous confidence bands for FPCA predicted

13



individual trajectories. The notational conventions established throughout this

thesis continue to be used here: for example, the subscripts l and s are used

to associate quantities with the joint and individual components of a given

trajectory, respectively. Some new notation is also introduced to distinguish

between finite and infinite-dimensional processes.

In a finite-dimensional process, it is assumed that each component of a

given trajectory can be approximated sufficiently well by a certain number of

eigenfunctions. For such a process, the assumption is that the joint component

has been truncated at the first L principal component functions of its expan-

sion, and that the kth individual component has been truncated at the first

S(k) eigenfunctions, where k = 1, . . . ,m. In this section, the superscript (∞)

is used to represent infinite-dimensional processes, so that the joint compo-

nent of the ith subject’s trajectory is given by X
(J,∞)
i (t) = µ(t) +

∑∞
l=1 ξilφl(t),

and the kth individual component by X
(I,k,∞)
i (t) = µ(k)(t)+

∑∞
s=1 η

(k)
is φ

(k)
s (t). In

general, {Xi(t)}ni=1 and {X(∞)
i (t)}ni=1 are used to represent the set of truncated

and untruncated trajectories, respectively.

2.3.1 Asymptotic Pointwise Confidence Bands

The construction of asymptotic pointwise confidence intervals for individual

JIVE–FPCA trajectories is first described. Let ξil be uncorrelated random

variables with mean zero and variance E(ξ2il) = λl, where ξil are FPC scores,

and λl are eigenvalues used in the orthogonal expansion of the covariance

function of X(t). Suppose that
∑

l λl < ∞, λ1 ≥ λ2 ≥ . . . . Similarly, as-

sume that η
(k)
is are uncorrelated random variables with mean zero and variance

E

[(
η
(k)
is

)2]
= λ

(k)
s , where η

(k)
is and λ

(k)
s are, respectively, FPC scores and

eigenvalues corresponding to the individual component that is based on data

from the kth feature set or sample set, k = 1, . . . ,m. Once again, suppose that∑
s λ

(k)
s <∞, λ

(k)
1 ≥ λ

(k)
2 ≥ . . . for all k.

Let YYY i = (Yi1, . . . , YiNi
)T be an Ni × 1 column vector containing measure-

ments for the ith subject, i = 1, . . . , n. Suppose that for horizontally inte-

grated data, the ith subject belongs to the kth sample set, k ∈ {1, . . . ,m}. Let
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rrr
(k)
i =

(
r
(k)
i1 , . . . , r

(k)
iNi

)T
be an Ni×1 vector of residuals obtained by calculating

Yij − X̂(J)
i (t), where X̂

(J)
i (t) is an estimate for the joint component of the ith

subject’s trajectory. For vertically integrated data, let rrr
(k)
i be a column vector

of length N
(k)
i whose elements are residuals corresponding to the kth feature

set. Note that for vertically integrated data, N
(k)
i is less than the number of

measurements Ni made on the ith subject, since the elements of rrr
(k)
i are a sub-

set of the residuals obtained by subtracting joint component predicted values

from subject i observations.

For arbitrary integers L, S(k) ≥ 1, let ξL,i = (ξi1, . . . , ξiL)T , ξ̃L,i = (ξ̃i1, . . . , ξ̃iL)T ,

ηS(k),i =
(
η
(k)
i1 , . . . , η

(k)

iS(k)

)T
, and η̃S(k),i =

(
η̃
(k)
i1 , . . . , η̃

(k)

iS(k)

)T
. The FPC scores

for the joint component of the ith subject’s trajectory are given in [45] to be

ξ̃il = E [ξil|Y i] = λlφ
T
ilΣ
−1
Yi

(Yi − µi), (2.6)

where φil = (φl(Ti1), . . . , φl(TiNi
))T , ΣYi

= Cov(Yi,Yi), and µi = (µ(Ti1), . . . , µ(TiNi
))T .

For vertically integrated data, the FPC scores for the kth individual component

of the ith subject’s trajectory have the following form:

η̃
(k)
is = E

[
η
(k)
is |r

(k)
i

]
= λ(k)s (φ

(k)
is )TΣ−1

r
(k)
i

(r
(k)
i − µ

(k)
i ), (2.7)

where φ
(k)
is =

(
φ
(k)
s (Ti1), . . . , φ

(k)
s (T

iN
(k)
i

)
)T

, Σ
r
(k)
i

= Cov(r
(k)
i , r

(k)
i ), and µ

(k)
i =(

µ(k)(Ti1), . . . , µ
(k)(T

iN
(k)
i

)
)T

. Note that Equation (2.7) also holds when work-

ing with horizontally integrated data. The only differences are that for a

horizontal JIVE–FPCA analysis: (a) there is only one individual component,

so the superscript (k) represents the sample set to which subject i belongs;

and (b) N
(k)
i is replaced with Ni in the definitions of the φ

(k)
is and µ

(k)
i vectors.

Following the notation of Yao et al. [45], the covariance matrix of ξ̃L,i is

V ar(ξ̃L,i) = HΣ−1Yi
HT , whereH is the L×Ni matrix given by Cov(ξL,i,Y i) =

(λ1φi1, . . . , λLφiL)T . Similarly, for vertically integrated data, it follows that

V ar(η̃S(k),i) = H (k)Σ−1
r
(k)
i

(H(k))T for the S(k)×N (k)
i matrixH(k) = Cov(ηS(k),i, r

(k)
i ) =(

λ
(k)
1 φ

(k)
i1 , . . . , λ

(k)

S(k)φ
(k)

iS(k)

)T
. Note that H(k) is an S(k)×Ni matrix for the case

of horizontally integrated data.

To take into account the variation of ξL,i and ηS(k),i, the quantities V ar(ξ̃L,i−

ξL,i) and V ar(η̃S(k),i−ηS(k),i) are used to assess the estimation errors of ξ̃L,i and
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η̃S(k),i, respectively. Since ξ̃L,i = E [ξL,i|Y i] is the projection of ξL,i onto the

space spanned by linear functions of Yi, we have E[ξ̃L,iξ
T
L,i] = E[ξ̃L,iξ̃

T
L,i], that

is, V ar(ξ̃L,i−ξL,i) = V ar(ξL,i)−V ar(ξ̃L,i) = ΩL, where ΩL = Λ−HΣ−1Yi
HT

and Λ = diag(λ1, . . . , λL). By the same principles, V ar(η̃S(k),i − ηS(k),i) =

V ar(ηS(k),i) − V ar(η̃S(k),i) = ΩS(k) , where ΩS(k) = Λ(k) −H (k)Σ−1
r
(k)
i

(H(k))T

and Λ(k) = diag(λ
(k)
1 , . . . , λ

(k)

S(k)). Then, under Gaussian assumptions, it follows

that (ξ̃L,i − ξL,i) ∼ Normal(0,ΩL) and (η̃S(k),i − ηS(k),i) ∼ Normal(0,ΩS(k)).

Let Ω̂L = Λ̂−ĤΣ̂−1Yi
ĤT , where Λ̂ = diag(λ̂1, . . . , λ̂L) and Ĥ = (λ̂1φ̂i1, . . . , λ̂Lφ̂iL)T .

Furthermore, let φL,t = (φ1(t), . . . , φL(t))T , φ̂L,t = (φ̂1(t), . . . , φ̂L(t))T , and

X̂
(J)
i (t) = µ̂(t)+φ̂TL,tξ̂L,i for t ∈ T . Thus, Theorem 4 in [45] establishes that the

distribution of X̂
(J)
i (t) − X

(J,∞)
i (t) is asymptotically Normal(0, φ̂TL,tΩ̂Lφ̂L,t).

Let Ω̂S(k) = Λ̂(k) − Ĥ(k)Σ̂−1
r
(k)
i

(Ĥ(k))T , where Λ̂(k) = diag(λ̂
(k)
1 , . . . , λ̂

(k)

S(k)) and

Ĥ(k) =
(
λ̂
(k)
1 φ̂

(k)
i1 , . . . , λ̂

(k)

S(k)φ̂
(k)

iS(k)

)T
. Moreover, let φ

(k)

S(k),t
=
(
φ
(k)
1 (t), . . . , φ

(k)

S(k)(t)
)T

,

φ̂
(k)

S(k),t
=
(
φ̂
(k)
1 (t), . . . , φ̂

(k)

S(k)(t)
)T

, and X̂
(I,k)
i (t) = µ̂(k)(t) + (φ̂

(k)

S(k),t
)T η̂S(k),i.

Once again, by Theorem 4 in [45] it follows that X̂
(I,k)
i (t)−X(I,k,∞)

i (t) is asymp-

totically Normal
(

0, (φ̂
(k)

S(k),t
)T Ω̂S(k)φ̂

(k)

S(k),t

)
for all k = 1, . . . ,m.

To construct asymptotic pointwise confidence intervals for individual JIVE–

FPCA trajectories, it is necessary to assume that the joint and individual com-

ponents are independent of each other. For the case of horizontally integrated

data, this implies that for some given trajectory X
(∞)
i (t), the components

X
(J,∞)
i (t) and X

(I,k,∞)
i (t) are independent for k ∈ {1, . . . ,m}. For vertically

integrated data, the joint component is assumed to be independent of all m

individual components. Intuitively, this means that patterns responsible for

joint structure between data blocks are unrelated to patterns responsible for

individual structure. For vertically integrated data, it is further assumed that

all m individual components are independent of each other.

Having developed the necessary notation, asymptotic pointwise confidence

intervals for {X(∞)
i (t)}ni=1 are now constructed. First, consider the case of ver-

tically integrated data. By assumption, for some given trajectory X
(∞)
i (t),

the joint component X
(J,∞)
i (t) is independent of all m individual compo-

nents X
(I,k,∞)
i (t). Thus, it follows that X̂

(J)
i (t) − X

(J,∞)
i (t) and X̂

(I,k)
i (t) −
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X
(I,k,∞)
i (t) are independent for all k = 1, . . . ,m. Furthermore, since all m

individual components are assumed to be independent of each other, the{
X̂

(I,k)
i (t)−X(I,k,∞)

i (t)
}m
k=1

are independent as well. Therefore,

X =
{
X̂

(J)
i (t)−X(J,∞)

i (t), X̂
(I,1)
i (t)−X(I,1,∞)

i (t), . . . , X̂
(I,m)
i (t)−X(I,m,∞)

i (t)
}

is an independent set. From Theorem 4 in [45], the elements of X are asymp-

totically normally distributed, each with mean zero, and respective variances

φ̂TL,tΩ̂Lφ̂L,t, (φ̂
(1)

S(1),t
)T Ω̂S(1)φ̂

(1)

S(1),t
, . . . , (φ̂

(m)

S(m),t
)T Ω̂S(m)φ̂

(m)

S(m),t
. Using this result

and Slutsky’s theorem, it follows that the sum of these elements X̂
(J)
i (t) +∑m

k=1 X̂
(I,k)
i (t)−

(
X

(J,∞)
i (t) +

∑m
k=1X

(I,k,∞)
i (t)

)
= X̂i(t)−X(∞)

i (t) is asymptot-

ically normal with mean zero and variance φ̂TL,tΩ̂Lφ̂L,t+
∑m

k=1(φ̂
(k)

S(k),t
)T Ω̂S(k)φ̂

(k)

S(k),t
.

Finally, since the joint component X
(J,∞)
i (t) can be approximated sufficiently

well by the first L eigenfunctions, and the kth individual component X
(I,k,∞)
i (t)

is well-approximated by the first S(k) eigenfunctions, k = 1, . . . ,m, the (1−α)

asymptotic pointwise confidence intervals for X
(∞)
i (t) are as follows:

X̂i(t)± Φ−1
(

1− α

2

)√√√√φ̂TL,tΩ̂Lφ̂L,t +
m∑
k=1

(φ̂
(k)

S(k),t
)T Ω̂S(k)φ̂

(k)

S(k),t
, (2.8)

where Φ is the standard normal cumulative distribution function. Note that

these confidence intervals are constructed by ignoring the bias that results from

the truncation at L in X̂
(J)
i (t) and at S(k) in X̂

(I,k)
i (t), k = 1, . . . ,m. For hor-

izontally integrated data, each trajectory has only one individual component

and so Equation (2.8) is reduced to

X̂i(t)± Φ−1
(

1− α

2

)√
φ̂TL,tΩ̂Lφ̂L,t + (φ̂

(k)

S(k),t
)T Ω̂S(k)φ̂

(k)

S(k),t
, (2.9)

where the superscript (k) represents the sample set to which the ith subject

belongs, k ∈ {1, . . . ,m}.

2.3.2 Asymptotic Simultaneous Confidence Bands

The construction of asymptotic simultaneous confidence bands is described in

this section. This derivation continues to make use of the notation developed

in Section 2.3.1. It is further supposed that the assumptions of Theorem 5 in
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[45] hold for the joint and individual components of any given trajectory. The

bands are first derived for the case of vertically integrated data.

Let

Xi(t) = X
(J)
i (t)+

m∑
k=1

X
(I,k)
i (t) = µ(t)+

L∑
l=1

ξilφl(t)+
m∑
k=1

µ(k)(t) +
S(k)∑
s=1

η
(k)
is φ

(k)
s (t)


and

X̃i(t) = X̃
(J)
i (t)+

m∑
k=1

X̃
(I,k)
i (t) = µ(t)+

L∑
l=1

ξ̃ilφl(t)+
m∑
k=1

µ(k)(t) +
S(k)∑
s=1

η̃
(k)
is φ

(k)
s (t)

 ,

where ξ̃il and η̃
(k)
is are defined in Equations (2.6) and (2.7), respectively. It

follows that

X̃i(t)−Xi(t) =
(
X̃

(J)
i (t)−X(J)

i (t)
)

+
m∑
k=1

(
X̃

(I,k)
i (t)−X(I,k)

i (t)
)

= φTL,t(ξ̃L,i − ξL,i) +
m∑
k=1

(φ
(k)

S(k),t
)T (η̃S(k),i − ηS(k),i).

Due to orthogonality, F = {φL,t : t ∈ T } is an L-dimensional compact

set and G(k) = {φ(k)

S(k),t
: t ∈ T } is an S(k)-dimensional compact set, for k =

1, . . . ,m. Since ΩL is positive definite, there exists an L×L nonsingular matrix

V such that V ΩLV
T = IL. Let θ = V ξL,i and θ̃ = V ξ̃L,i. Since it is assumed

that (ξ̃L,i − ξL,i) ∼ Normal(0,ΩL), it follows that (θ̃− θ) = V (ξ̃L,i − ξL,i) ∼

Normal(0, IL), and so (θ̃ − θ)T (θ̃ − θ) ∼ χ2
L. Similarly, since ΩS(k) is posi-

tive definite for k = 1, . . . ,m, there exists an S(k) × S(k) nonsingular matrix

W (k) such that W (k)ΩS(k)(W (k))T = IS(k) . Let ϑ(k) = W (k)ηS(k),i and ϑ̃(k) =

W (k)η̃S(k),i. Since (η̃S(k),i − ηS(k),i) ∼ Normal(0,ΩS(k)), then (ϑ̃(k) − ϑ(k)) =

W (k)(η̃S(k),i−ηS(k),i) ∼ Normal(0, IS(k)), so that (ϑ̃(k)−ϑ(k))T (ϑ̃(k)−ϑ(k)) ∼

χ2
S(k) for k = 1, . . . ,m. By assumption, all the components of any given trajec-

tory are independent. Thus, the FPC scores associated with the joint compo-

nent are independent of those associated with each of the individual compo-

nents. Furthermore, all m sets of individual component FPC scores are inde-

pendent as well. That is,
{
{ξil}Ll=1, {η

(1)
is }S

(1)

s=1 , . . . , {η
(m)
is }S

(m)

s=1

}
is a collection of

independent sets, for some i ∈ {1, . . . , n}. Therefore, Ψ = (θ̃ − θ)T (θ̃ − θ) +
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∑m
k=1(ϑ̃

(k)−ϑ(k))T (ϑ̃(k)−ϑ(k)) ∼ χ2
L+

∑m
k=1 S

(k) and P
(

Ψ ≤ χ2
L+

∑m
k=1 S

(k),1−α

)
=

1− α, where χ2
L+

∑m
k=1 S

(k),1−α is the 100(1− α)th percentile of the chi-squared

distribution with L+
∑m

k=1 S
(k) degrees of freedom.

Next, recall the following well-known result from linear algebra: For a fixed

p×1 vector y and a constant c > 0, yTy ≤ c2 if and only if |aTy| ≤ c
√
aTa, for

all a ∈ Rp. Applying this result with y =
(

(θ̃ − θ), (ϑ̃(1) − ϑ(1)), . . . , (ϑ̃(m) − ϑ(m))
)T
∈

RL+
∑m

k=1 S
(k)

and c2 = χ2
L+

∑m
k=1 S

(k),1−α, it follows that

P

(
|aTy| ≤

√
χ2
L+

∑m
k=1 S

(k),1−αa
Ta : for all a ∈ RL+

∑m
k=1 S

(k)

)
= 1− α.

Now, let

E = {a ∈ RL+
∑m

k=1 S
(k)

: φL,t = V Ta1,φ
(1)

S(1),t
= (W (1))Ta2, . . . ,φ

(m)

S(m),t
=

(W (m))Tam+1, t ∈ T },

where a = (a1|a2| . . . |am+1)
T and a1 ∈ RL,a2 ∈ RS(1)

, . . . ,am+1 ∈ RS(m)
.

Note that E is a compact subset of RL+
∑m

k=1 S
(k)

. Therefore,

P

(
|aTy| ≤

√
χ2
L+

∑m
k=1 S

(k),1−αa
Ta : for all a ∈ E

)
≥ 1− α.

Since

aTy =
(
φTL,tV

−1, (φ
(1)

S(1),t
)T (W (1))−1, . . . , (φ

(m)

S(m),t
)T (W (m))−1

)
(θ̃ − θ)

(ϑ̃(1) − ϑ(1))
...

(ϑ̃(m) − ϑ(m))



=
(
φTL,tV

−1, (φ
(1)

S(1),t
)T (W (1))−1, . . . , (φ

(m)

S(m),t
)T (W (m))−1

)
V (ξ̃L,i − ξL,i)

W (1)(η̃S(1),i − ηS(1),i)
...

W (m)(η̃S(m),i − ηS(m),i)


=
(
φTL,t(ξ̃L,i − ξL,i) + (φ

(1)

S(1),t
)T (η̃S(1),i − ηS(1),i) + · · ·+ (φ

(m)

S(m),t
)T (η̃S(m),i − ηS(m),i)

)
,

for some a ∈ E , it follows that

P

(∣∣∣φTL,t(ξ̃L,i − ξL,i) +
∑m

k=1(φ
(k)

S(k),t
)T (η̃S(k),i − ηS(k),i)

∣∣∣
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≤
√
χ2
L+

∑m
k=1 S

(k),1−α

[
φTL,tV

−1(V T )−1φL,t +
∑m

k=1(φ
(k)

S(k),t
)T (W (k))−1((W (k))T )−1φ

(k)

S(k),t

]
: for all t ∈ T

)
≥ 1− α, which implies that

P

(∣∣∣X̃i(t)−Xi(t)
∣∣∣

≤
√
χ2
L+

∑m
k=1 S

(k),1−α

[
φTL,tΩLφL,t +

∑m
k=1(φ

(k)

S(k),t
)TΩS(k)φ

(k)

S(k),t

]
: for all t ∈ T

)

≥ 1− α, since X̃i(t)−Xi(t) = φTL,t(ξ̃L,i − ξL,i) +
∑m

k=1(φ
(k)

S(k),t
)T (η̃S(k),i −

ηS(k),i),V ΩLV
T = IL, and W (k)ΩS(k)(W (k))T = IS(k) , for k = 1, . . . ,m.

This proves the following result:

P

sup
t∈T

|X̃i(t)−Xi(t)|√
φTL,tΩLφL,t +

∑m
k=1(φ

(k)

S(k),t
)TΩS(k)φ

(k)

S(k),t

≤
√
χ2
L+

∑m
k=1 S

(k),1−α

 ≥ 1−α.

(2.10)

Let ω(t) = φTL,tΩLφL,t +
∑m

k=1(φ
(k)

S(k),t
)TΩS(k)φ

(k)

S(k),t
for t ∈ T . By the

triangle inequality,

|X̂i(t)−Xi(t)| = |X̂i(t)−X̃i(t)+X̃i(t)−Xi(t)| ≤ |X̂i(t)−X̃i(t)|+|X̃i(t)−Xi(t)|.

Therefore, it follows that

sup
t∈T

|X̂i(t)−Xi(t)|√
ω(t)

≤

(
sup
t∈T

|X̂i(t)− X̃i(t)|√
ω(t)

+ sup
t∈T

|X̃i(t)−Xi(t)|√
ω(t)

)
sup
t∈T

√
ω(t)

ω̂(t)
.

Let A = supt∈T |X̂i(t)− X̃i(t)|/
√
ω(t), B = supt∈T |X̃i(t)−Xi(t)|/

√
ω(t),

and C = supt∈T
√
ω(t)/ω̂(t). Note that ω(t) may be expressed as

ω(t) = φTL,tΩLφL,t︸ ︷︷ ︸
ωL(t, t)

+ (φ
(1)

S(1),t
)TΩS(1)φ

(1)

S(1),t︸ ︷︷ ︸
ωS(1) (t, t)

+ · · ·+ (φ
(m)

S(m),t
)TΩS(m)φ

(m)

S(m),t︸ ︷︷ ︸
ωS(m) (t, t)
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= ωL(t, t) +
m∑
k=1

ωS(k)(t, t).

Now, since ωL(t, t) and ωS(1)(t, t), . . . , ωS(m)(t, t) are continuous, positive def-

inite functions on the bounded interval T , it follows that ω(t) = ωL(t, t) +∑m
k=1 ωS(k)(t, t) is also continuous and positive definite on T . Therefore, ω(t)

is bounded from above and below, say 0 < a ≤ ω(t) ≤ b < ∞. Observe that

X̂i(t)− X̃i(t) =
(
X̂

(J)
i (t)− X̃(J)

i (t)
)

+
∑m

k=1

(
X̂

(I,k)
i (t)− X̃(I,k)

i (t)
)

. According

to Equations (12), (17), and (20) in [45], it follows that

limn→∞ supt∈T |X̂
(J)
i (t)− X̃(J)

i (t)| p→ 0,

and that limn→∞ supt∈T |X̂
(I,k)
i (t)− X̃(I,k)

i (t)| p→ 0, for all k = 1, . . . ,m.

Thus, by Slutsky’s theorem,

limn→∞
∑m

k=1 supt∈T |X̂
(I,k)
i (t)− X̃(I,k)

i (t)| p→ 0.

Furthermore, since

0 ≤ supt∈T

∣∣∣∑m
k=1

(
X̂

(I,k)
i (t)− X̃(I,k)

i (t)
)∣∣∣

≤ supt∈T
∑m

k=1

∣∣∣X̂(I,k)
i (t)− X̃(I,k)

i (t)
∣∣∣ ≤∑m

k=1 supt∈T

∣∣∣X̂(I,k)
i (t)− X̃(I,k)

i (t)
∣∣∣ ,

it follows that

lim
n→∞

sup
t∈T

∣∣∣∣∣
m∑
k=1

(
X̂

(I,k)
i (t)− X̃(I,k)

i (t)
)∣∣∣∣∣ p→ 0.

Therefore, since

0 ≤ sup
t∈T
|X̂i(t)−X̃i(t)| = sup

t∈T

∣∣∣∣∣(X̂(J)
i (t)− X̃(J)

i (t)
)

+
m∑
k=1

(
X̂

(I,k)
i (t)− X̃(I,k)

i (t)
)∣∣∣∣∣

≤ sup
t∈T

∣∣∣(X̂(J)
i (t)− X̃(J)

i (t)
)∣∣∣+ sup

t∈T

∣∣∣∣∣
m∑
k=1

(
X̂

(I,k)
i (t)− X̃(I,k)

i (t)
)∣∣∣∣∣ ,

then

lim
n→∞

sup
t∈T
|X̂i(t)− X̃i(t)|

p→ 0,

which implies that limn→∞A
p→ 0.
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Now, the proof of Equation (22) in Yao et al. [45] establishes that limn→∞ ω̂L(t, t)
p→

ωL(t, t) and that limn→∞ ω̂S(k)(t, t)
p→ ωS(k)(t, t) for all k = 1, . . . ,m. There-

fore, applying Slutsky’s theorem, it follows that limn→∞
∑m

k=1 ω̂S(k)(t, t)
p→∑m

k=1 ωS(k)(t, t). Moreover, since ω̂(t) = ω̂L(t, t) +
∑m

k=1 ω̂S(k)(t, t), another

application of Slutsky’s theorem gives the following result:

lim
n→∞

ω̂(t)
p→ ωL(t, t) +

m∑
k=1

ωS(k)(t, t) = ω(t).

It then follows that limn→∞C
p→ 1. Next, note that{

(A+B)C ≥
(
ε+

√
χ2
L+

∑m
k=1 S

(k),1−α

)
(1 + ε)

}
⊆
{

(A+B) ≥
(
ε+

√
χ2
L+

∑m
k=1 S

(k),1−α

)}
∪
{
C ≥ (1 + ε)

}
⊆
{
A ≥ ε

}
∪
{
B ≥

√
χ2
L+

∑m
k=1 S

(k),1−α

}
∪
{
C ≥ (1 + ε)

}
.

Now, since limn→∞A
p→ 0 and limn→∞C

p→ 1, it follows that P (A ≥ ε) ≤

δ/3 and P (C − 1 ≥ ε) ≤ δ/3, for sufficiently large n. It was shown that

P

(
B ≥

√
χ2
L+

∑m
k=1 S

(k),1−α

)
≤ α in Equation (2.10). This implies

lim
n→∞

P
(

(A+B)C ≥
(
ε+

√
χ2
L+

∑m
k=1 S

(k),1−α

)
(1 + ε)

)
≤ α, (2.11)

and then

lim
n→∞

P

(
sup
t∈T

|X̂i(t)−Xi(t)|√
φ̂TL,tΩ̂Lφ̂L,t +

∑m
k=1(φ̂

(k)

S(k),t
)T Ω̂S(k)φ̂

(k)

S(k),t

≤
√
χ2
L+

∑m
k=1 S

(k),1−α

)
≥ 1−α,

(2.12)

by letting ε→ 0.

Equation (2.12) provides the asymptotic simultaneous bands for X̂i(t) −

Xi(t), for given and fixed L and S(k), k = 1, . . . ,m. From the Karhunen-

Loève theorem, it follows that |X(J)
i (t)−X(J,∞)

i (t)| p→ 0 as L → ∞, and that

|X(I,k)
i (t) −X(I,k,∞)

i (t)| p→ 0 as S(k) → ∞, for all k = 1, . . . ,m. Therefore, by

Slutsky’s theorem,

m∑
k=1

|X(I,k)
i (t)−X(I,k,∞)

i (t)| p→ 0 as S(1), . . . , S(m) →∞.
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Now, note that

0 ≤

∣∣∣∣∣
m∑
k=1

(
X

(I,k)
i (t)−X(I,k,∞)

i (t)
)∣∣∣∣∣ ≤

m∑
k=1

∣∣∣X(I,k)
i (t)−X(I,k,∞)

i (t)
∣∣∣ ,

and so it follows that∣∣∣∣∣
m∑
k=1

(
X

(I,k)
i (t)−X(I,k,∞)

i (t)
)∣∣∣∣∣ p→ 0 as S(1), . . . , S(m) →∞.

Thus,

0 ≤

∣∣∣∣∣(X(J)
i (t)−X(J,∞)

i (t)
)

+
m∑
k=1

(
X

(I,k)
i (t)−X(I,k,∞)

i (t)
)∣∣∣∣∣

=

∣∣∣∣∣
(
X

(J)
i (t) +

m∑
k=1

X
(I,k)
i (t)

)
−

(
X

(J,∞)
i (t) +

m∑
k=1

X
(I,k,∞)
i (t)

)∣∣∣∣∣
= |Xi(t)−X(∞)

i (t)| ≤
∣∣∣X(J)

i (t)−X(J,∞)
i (t)

∣∣∣+

∣∣∣∣∣
m∑
k=1

(
X

(I,k)
i (t)−X(I,k,∞)

i (t)
)∣∣∣∣∣ ,

from which it follows that

|Xi(t)−X(∞)
i (t)| p→ 0 as L, S(1), . . . , S(m) →∞,

after applying Slutsky’s theorem. The Karhunen-Loève theorem implies that

supt∈T E[Xi(t)−X(∞)
i (t)]2 → 0 as L, S(1), . . . , S(m) →∞. Therefore, ignoring

a remaining approximation error that may be interpreted as bias, the (1 − α)

asymptotic simultaneous bands for X
(∞)
i (t) are given by

X̂i(t)±

√√√√χ2
L+

∑m
k=1 S

(k),1−α

[
φ̂TL,tΩ̂Lφ̂L,t +

m∑
k=1

(φ̂
(k)

S(k),t
)T Ω̂S(k)φ̂

(k)

S(k),t

]
. (2.13)

For a given trajectory, the asymptotic simultaneous confidence interval is al-

ways wider than the corresponding asymptotic pointwise confidence interval,

since
√
χ2
L+

∑m
k=1 S

(k),1−α > Φ−1(1− α
2
) for all L+

∑m
k=1 S

(k) ≥ 1. The derivation

of the asymptotic simultaneous confidence bands is very similar but less com-

plicated for horizontally integrated data, since each trajectory only consists of

a single individual component. In this case, Equation (2.13) simplifies to

X̂i(t)±
√
χ2
L+S(k),1−α

[
φ̂TL,tΩ̂Lφ̂L,t + (φ̂

(k)

S(k),t
)T Ω̂S(k)φ̂

(k)

S(k),t

]
, (2.14)

where the superscript (k) represents the sample set associated with the ith

subject, k ∈ {1, . . . ,m}.
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Chapter 3

Simulation Study

The simulation study performed in this thesis is described below. The study

illustrates the advantage of using JIVE–FPCA over the traditional FPCA

method in analyzing multi-block data. Horizontally integrated data were

specifically generated for the simulation study so as to mimic the gestational

weight dataset described in Chapter 4; however, similar studies may be carried

out with vertically integrated multi-block data.

3.1 Experimental Set-up and Design

The data for the simulation study were generated according to the model

given in Equation (2.1). A horizontally integrated dataset was constructed

in which a single data type was measured on two different sets (groups) of

samples (subjects). Each subject was either a member of Class 1 or Class

2. In total, n = 1000 iid normal samples were constructed, 500 from each

class. The joint component mean function µ(t) was set to zero, as were the

Class 1- and Class 2-specific (individual component) mean functions, µ(1)(t)

and µ(2)(t), respectively, 0 ≤ t ≤ 40. For simplicity, only one joint PC func-

tion, φ(t) = 4cos(2πt/40)/
√

20, was simulated. Similarly, a single PC func-

tion was generated for each class: φ(1)(t) = 4cos(πt/40)/
√

20 and φ(2)(t) =

−4cos(3πt/40)/
√

20 for Class 1 and Class 2, respectively. Taken together,

the joint and individual PC functions form an orthogonal set. The joint PC

function represents the joint structure between the two sample sets (groups of

subjects), whereas the class-specific PC functions represent structure individ-
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ual to a given class.

The joint FPC scores ξi were generated from a Normal(0, λ) distribu-

tion, where λ = 25. The class-specific FPC scores η
(k)
i were generated from

a Normal(0, λ(k)) distribution, where λ(1) = 10 and λ(2) = 8 for Class 1 and

Class 2, respectively. The measurement errors ε̃ij in Equation (2.1) were as-

sumed to be Normal(0, 0.2) and independent of the random coefficients ξi and

η
(k)
i , where k ∈ {1, 2}. Let S = {s1, . . . , s100} be an equally spaced grid on

[0, 40] with s1 = 0 and s100 = 40. Each curve was sampled at a random num-

ber of points, chosen from a discrete uniform distribution on {8, . . . , 12}, and

the locations of the measurements were randomly chosen from S without re-

placement. The sparsity of the simulated data reflected that of the gestational

weight dataset in Chapter 4. Likewise, the simulated time points ranged from

0 to 40 to match the duration of a typical pregnancy.

3.2 Methodology

3.2.1 FVE Threshold and Algorithm Stopping Point

The principal analysis by conditional expectation (PACE) [45] package in

MATLAB was used to implement FPCA. The original FPCA and JIVE–FPCA

methods were applied to the simulated data. The number of eigenfunctions

was chosen by the FVE method in each case. One purpose of the simula-

tion study was to compare how well the two methods could recover the true

PC functions. Careful selection of the FVE threshold was thus required so

that precisely three PC functions were obtained when each method was ap-

plied. An FVE threshold of 90% resulted in the selection of 3 PCs for the

FPCA method, with the first, second, and third PC functions accounting for

65.3%, 17.2%, and 10.1% of the total variation, respectively. Four iterations of

JIVE–FPCA were necessary to satisfy the stopping criteria outlined in Section

2.2. Different FVE thresholds were required for each application of FPCA in

the JIVE–FPCA algorithm in order to recover exactly one PC function for the

joint component and each individual component. These thresholds were found

through experimentation.
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3.2.2 Proportion of Variance Explained

Another objective of the simulation study was to examine how well the JIVE–

FPCA method could account for variation in the data unexplained by FPCA.

The total variability within the set of observations Yij is measured by the total

sum of squares (SST), which is given by

SST =
n∑
i=1

Ni∑
j=1

(Y (Tij)− Ȳ )2, (3.1)

where Y (Tij) is the jth measurement for the ith subject made at time Tij ∈ S,

and Ȳ = 1
n

∑n
i=1

∑Ni

j=1 Y (Tij) is the overall mean of all observations. For the

JIVE–FPCA model, the total sum of squares can be decomposed into two

parts, a sum of squares indicating how much of the total variation in the data

is explained by the joint component (SSRJoint), and a sum of squares indicating

what amount is unexplained by the joint component (SSEJoint):

SST = SSRJoint + SSEJoint

=
n∑
i=1

Ni∑
j=1

(Ŷ (J)(Tij)− Ȳ )2 +
n∑
i=1

Ni∑
j=1

(Y (Tij)− Ŷ (J)(Tij))
2, (3.2)

where Ŷ (J)(Tij) is the estimate for Y (Tij) given by the joint component of

the ith subject’s JIVE–FPCA trajectory. The joint residual sum of squares

SSEJoint may be further broken down into two terms, one for each class:

SSEJoint = SSEJoint,1 + SSEJoint,2, (3.3)

where SSEJoint,k is the joint residual sum of squares corresponding to the set

of Class k observations, k ∈ {1, 2}. More specifically,

SSEJoint,k =
n(k)∑
i=1

N
(k)
i∑
j=1

(Y (k)(Tij)− Ŷ (J,k)(Tij))
2, (3.4)

where the superscript (k) denotes the subject class, n(k) is the number of

subjects in Class k, and N
(k)
i is the number of measurements made on the

ith Class k subject. The sum of squares SSEJoint,k may be decomposed even

further into two components:

SSEJoint,k = SSRIndividual,k + SSEJoint + Individual,k, (3.5)
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where SSRIndividual,k is a sum of squares term indicating how much of the

variation unexplained by the Class k joint component is accounted for by the

Class k individual component. The sum of squared differences between the

observed values and their corresponding JIVE–FPCA estimates, for the set

of Class k subjects, is given by SSEJoint + Individual,k. In summary, the total

variability in the observations is partitioned as follows:

SST = SSRJoint+SSRIndividual,1 + SSEJoint + Individual,1︸ ︷︷ ︸
SSEJoint,1

+ SSRIndividual,2 + SSEJoint + Individual,2︸ ︷︷ ︸
SSEJoint,2︸ ︷︷ ︸

SSEJoint

= (SSRJoint + SSRIndividual,1 + SSRIndividual,2)︸ ︷︷ ︸
SSR

+ (SSEJoint + Individual,1 + SSEJoint + Individual,2)︸ ︷︷ ︸
SSE

.

(3.6)

The quantity

PVEIndividual,k =

(
SSRIndividual,k

SSEJoint,k

)
× 100% (3.7)

gives the percentage of the variation unexplained by the Class k joint compo-

nent that is explained by the Class k individual component. This value was

calculated for both classes in the simulation study to demonstrate the benefit

of including class-specific principal components in trajectory modelling.

3.2.3 Performance Measures: Mean Squared Error and
Average Bandwidth

After estimating the trajectory of each subject using the FPCA and JIVE–

FPCA procedures, the performance of the two methods was evaluated by

comparing the corresponding mean squared errors (MSEs) and average band-

widths (ABWs). The MSE was calculated using the following equation:

MSE =
1

n

n∑
i=1

Ni∑
j=1

(Y (Tij)− Ŷ (Tij))
2, (3.8)

where n is the total number of observations in the dataset, Ni is the number of

measurements made on the ith subject, Y (Tij) is the jth measurement for the

ith subject made at time Tij ∈ S, and Ŷ (Tij) is the corresponding model-based

estimate.
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The ABW measures the average width of the set of 95% pointwise confi-

dence intervals obtained from the FPCA and JIVE–FPCA methods. The 95%

simultaneous confidence bands were not computed in the simulation study.

The ABW is calculated by averaging the differences between the upper and

lower confidence bounds of each subject’s trajectory, and then taking the av-

erage of these means by summing them and dividing by the number of obser-

vations. That is,

ABW =
1

n

n∑
i=1

[
1

Ni

Ni∑
j=1

(UCB(Tij)− LCB(Tij))

]
, (3.9)

where UCB(Tij) and LCB(Tij) are, respectively, the upper and lower confi-

dence bounds of the ith subject’s trajectory at time Tij ∈ S. The distribution

of averaged differences was found to be symmetric and contained no outliers,

thus justifying the use of the mean as the measure of central tendency in

Equation (3.9).

3.3 Results and Discussion

In Figure 1, the true PC functions are overlaid with the FPCA and JIVE–

FPCA estimated PC functions. The graphs in this figure indicate that the

JIVE–FPCA method is better at recovering the true PC functions than the

original FPCA approach. This is particularly evident from the upper right

and lower panels, wherein the JIVE–FPCA estimates are smoother, and more

closely resemble the true Class 1- and Class 2-specific PC functions than the

corresponding FPCA estimates. The fact that the JIVE–FPCA estimated

class-specific PC functions are much closer to the ground-truth curves is ex-

pected, since this method is specifically designed to be able to uncover the

patterns that are unique to each class (sample set).
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Figure 1: True PC Functions Overlaid with the FPCA and JIVE–FPCA Es-
timated PC Functions. The JIVE–FPCA estimates are smoother, and more
closely resemble the ground-truth curves than the corresponding FPCA esti-
mates. This is especially evident in the upper right and lower panels depicting
the class-specific PC functions.

Figure 2 shows the FPCA and JIVE–FPCA estimated trajectories overlaid

with the true trajectories of two subjects, one from each class. The graphs

in this figure demonstrate that the JIVE–FPCA method provides a signifi-

cantly better fit to individual trajectories than the original FPCA approach.

Indeed, the JIVE–FPCA estimated trajectories are evidently smoother, and

visually seem to more closely approximate the true trajectories. The 95%

pointwise confidence intervals obtained from JIVE–FPCA also appear to be

smoother and narrower than the corresponding FPCA estimates. Observe that
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the JIVE–FPCA confidence interval is completely contained within the FPCA

confidence interval at several time points in each graph.

Figure 2: FPCA and JIVE–FPCA estimated trajectories overlaid with the true
trajectories of two subjects, one from each class. The JIVE–FPCA estimated
trajectories are evidently smoother, and visually seem to better approximate
the true trajectories. The 95% pointwise confidence intervals obtained from
JIVE–FPCA (shaded in blue) also appear to be smoother and narrower than
the corresponding FPCA estimates (shaded in red).

These observations are supported well by numerical calculations, which

show that after four iterations, the JIVE–FPCA method resulted in a 4.35%

reduction in the MSE and a 37.1% decrease in the ABW compared to FPCA.

To demonstrate the superior performance of the JIVE–FPCA method, Table

1 reports the MSE and ABW values obtained by both approaches.

Table 1: Performance comparison of the FPCA and JIVE–FPCA methods
applied to simulated data. The mean squared error and average bandwidth are
lower for the JIVE–FPCA method, thus illustrating the superior performance
of this method compared to the original FPCA approach.

Method Mean Squared Error (MSE) Average Bandwidth (ABW)
FPCA 2.30 1.43

JIVE–FPCA
(After 4 iterations)

2.20 0.90

Further calculations showed that the percentage of the total variation in

the data explained by the joint component was

PVEJoint =

(
SSRJoint

SST

)
× 100% = 70.6%. (3.10)
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Therefore, 29.4% of the total variation was unexplained by the joint compo-

nent. That is,

PVUEJoint =

(
SSEJoint

SST

)
× 100% = 29.4%. (3.11)

The percentage of this unexplained variation associated with Class k is defined

as

PVUEJoint,k =

(
SSEJoint,k

SSEJoint

)
× 100%. (3.12)

In the simulation study, it was found that 54.7% of the variation unexplained

by the joint component was associated with Class 1, while 45.3% was associ-

ated with Class 2. In other words,

PVUEJoint,1 = 54.7% and PVUEJoint,2 = 45.3%.

More interestingly, the Class 1 individual component explained 95.1% of the

variation unexplained by the Class 1 joint component. That is, PVEIndividual,1 =

95.1%. The value of PVEIndividual,2 was also very high at 94.0%, which indicates

that the Class 2 individual component accounted for nearly all of the variation

unexplained by the Class 2 joint component. These findings demonstrate the

usefulness of the JIVE–FPCA method: the class-specific PCs that are incor-

porated in trajectory modelling explain a significant amount of unexplained

variation in the data.
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Chapter 4

Application to Gestational
Weight Data

This chapter describes the application of JIVE–FPCA to real-world, horizon-

tally integrated gestational weight data. Each data block contained sparse,

longitudinal gestational weight measurements for subjects of a specific pre-

pregnancy BMI category. Since four pre-pregnancy BMI categories were con-

sidered, there were four blocks of data (groups of subjects) in total.

4.1 Materials: Data Collection and Inclusion

Criteria

Pregnant women less than 27 weeks gestation and greater than 16 years of

age were enrolled in a prospective longitudinal cohort, the Alberta Pregnancy

Outcomes and Nutrition (APrON) study, between 2009–2012 [17]. Detailed

descriptions of participants and the study are published elsewhere [2, 17].

Ethics approval for the APrON study was obtained from the Health Research

Ethics Boards at the University of Alberta (Pro 00002954) and the Univer-

sity of Calgary (E22101). Women provided written informed consent prior to

enrollment.

Data were collected at 2–3 study visits during pregnancy, spaced to coin-

cide with each trimester, and at one follow-up visit approximately 3 months

postpartum. Upon recruitment, each woman’s pre-pregnancy weight and due

date were self-reported. Women recruited before 13 weeks gestation were as-
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sessed in each trimester, whereas those recruited between 14 and 27 weeks

gestation were assessed in trimesters 2 and 3. Each assessment included a

weight and height measurement. The highest weight during pregnancy and

delivery date were self-reported during the postpartum visit. Women were

classified as underweight (< 18.5), normal (18.5–24.9), overweight (< 25.0–

29) or obese (≥ 30) according to their pre-pregnancy BMI [6]. Gestational age

(GA) was calculated based on due dates.

Subjects with a singleton live birth were included in the dataset. Clinical

weight measurements taken at regular prenatal visits were also obtained from

the included APrON study participants. The GAs corresponding to APrON

and clinical weight records ranged from 0 to 43 weeks, with the minimum

clinical weight GA being 4 weeks. For statistical modelling, the subjects were

required to have a known pre-pregnancy weight, a height measurement, and

at least one of each type of weight record (APrON and clinical) with corre-

sponding GAs.

Each weight trajectory could have a maximum of 5 APrON body weight

data points (pre-pregnancy weight, highest weight during pregnancy, and one

for each trimester of pregnancy). Several APrON data points were often miss-

ing from the trajectories, however, due to skipped study visits. Clinical weight

measurements often occurred at irregularly spaced time points as well, due to

missing or incorrectly recorded data. On average, there were 7 clinical weight

data points per subject. The pre-pregnancy weight was assumed to be the

weight measured at time t = 0, and the highest weight during pregnancy was

the weight associated with the GA at birth.

4.2 Methods

As in Chapter 3, the FPCA and JIVE–FPCA methods were applied to the

gestational weight data (n = 1648), with the number of eigenfunctions chosen

by the FVE method. An FVE threshold of 99% was used for FPCA, which

resulted in the selection of 3 PCs. The first, second, and third PC functions

for the weight data accounted for 94.8%, 2.8%, and 1.6% of the total varia-
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tion, respectively. Four iterations of the JIVE–FPCA algorithm were required

to meet the stopping criteria defined in Section 2.2. Several experiments were

performed to determine how many PCs should be selected for the joint and in-

dividual components. Ultimately, the goal was to find the PCs that explained

the largest proportion of variation in the data. This objective was met by

extracting one PC function for the joint component; two PC functions for the

normal and overweight individual components, and 3 PCs for the underweight

and obese individual components. Higher principal components primarily de-

scribed noise and were thus not extracted. Different FVE thresholds were

required for each application of FPCA in the JIVE–FPCA algorithm in order

to obtain the number of PCs specified above. These thresholds were found

through trial and error.

Once the predicted trajectories and 95% pointwise confidence bands were

computed for each subject, the FPCA and JIVE–FPCA methods were com-

pared on the basis of their MSEs and ABWs. The estimated mean weight

trajectory from FPCA was then compared with the mean weight functions

obtained for each pre-pregnancy BMI category after four iterations of JIVE–

FPCA. For a given pre-pregnancy BMI class, the mean weight trajectory was

calculated by averaging the weight values predicted by JIVE–FPCA at each

time point.

4.3 Results and Discussion

Figure 3 displays the estimated weight trajectories of four subjects, one from

each pre-pregnancy BMI class. The FPCA and JIVE–FPCA estimated tra-

jectories are superimposed in each panel. Overall, this figure shows that for

each subject, the trajectory estimated by JIVE–FPCA gives much better esti-

mates for the observed weights. This is particularly evident for subjects with

normal and overweight pre-pregnancy BMI (Subjects B and C, respectively).

Observe that for Subject B, the JIVE–FPCA estimated trajectory is signifi-

cantly smoother at lower gestational age values than the trajectory predicted

by FPCA. Similarly, the FPCA fitted trajectory for Subject C gives a poor
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estimate for the first clinical weight observation, which yields a large residual.

Figure 3: Estimated weight trajectories of four subjects, one from each pre-
pregnancy BMI category. The estimated trajectories (solid lines) and corre-
sponding 95% pointwise confidence intervals (shaded areas) from the FPCA
(red) and JIVE–FPCA (blue) methods are superimposed in each panel. Dif-
ferent symbols are used to represent different types of weight observations, as
indicated by the legend.

The 95% pointwise confidence intervals estimated from JIVE–FPCA are

evidently smoother and narrower for each subject, and are largely contained

within the corresponding FPCA confidence intervals. The superior model fit

using the JIVE–FPCA method is confirmed numerically in Table 2, which

shows that the MSE and ABW after four iterations of JIVE–FPCA are, re-

spectively, 15.4% and 46.0% lower than the corresponding values obtained

from the original FPCA approach. These results are consistent with those

found in the simulation study.
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Table 2: Performance comparison of the FPCA and JIVE–FPCA methods
applied to gestational weight data.

Method Mean Squared Error (MSE) Average Bandwidth (ABW)
FPCA 16.34 5.59

JIVE–FPCA
(After 4 iterations)

13.83 3.02

The mean weight trajectory from FPCA is shown in Figure 4, along with

the mean weight functions for each pre-pregnancy BMI category, obtained

after four iterations of JIVE–FPCA. Together, Figures 3 and 4 illustrate that

the JIVE–FPCA method successfully captures differences in gestational weight

gain patterns among different pre-pregnancy BMI groups. For instance, Figure

3 shows that Subject D, with obese pre-pregnancy BMI, appears to exhibit an

overall slower rate of weight gain than Subjects A–C, and even lost weight at

the end of the third trimester.

Figure 4: Estimated mean function from FPCA alongside the mean weight
trajectories for each pre-pregnancy BMI group, obtained after four iterations
of JIVE–FPCA. The FPCA mean function was estimated based on all the
observations from all subjects, and was directly extracted. For a given pre-
pregnancy BMI category, the mean weight trajectory was computed by aver-
aging the weight values predicted by JIVE–FPCA at each time point.
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Figure 4 confirms that the mean weight trajectory for women with pre-

pregnancy obesity is more gradually rising than (a) the mean weight growth

trajectory estimated for all subjects using the FPCA method, and (b) the mean

JIVE–FPCA weight trajectories for women with lower pre-pregnancy BMI. In

general, the mean weight trajectories for overweight and obese women appear

to exhibit a similar trend that is different from the trend exhibited by the

mean weight curves for women with underweight and normal pre-pregnancy

BMI. The graph shows that on average, women with higher pre-pregnancy

BMI tend to exhibit weight loss at the end of the third trimester and experi-

ence a smaller total GWG. Underweight and normal weight women have mean

growth curves that are steeper than the mean weight trajectory estimated by

FPCA, and lack the dip at approximately 38 weeks gestation present in the

curves for overweight and obese women. The different trends displayed by the

different pre-pregnancy BMI classes in Figure 4 agree with those reported in

the literature [23, 31]. These results could be useful in developing targeted in-

terventions aimed at optimizing gestational weight gain for long-term maternal

and infant health.

As expected, the results also show that the JIVE–FPCA method leads to

a significant improvement in explaining the weight variation. Table 3 below

summarizes information on the percentage of variation explained by the joint

and individual components, using quantities previously defined in Equations

(3.7), (3.10)–(3.12). The subscripts 1, 2, 3, and 4 associated with some of

these quantities are used to represent the underweight, normal, overweight,

and obese subject classes, respectively.

Table 3: Percentage of weight variation explained by the joint and individual
components after four iterations of JIVE–FPCA.

PVEJoint 97.2% PVUEJoint 2.8%
PVEIndividual,1 83.6% PVUEJoint,1 3.0%
PVEIndividual,2 78.0% PVUEJoint,2 51.6%
PVEIndividual,3 81.3% PVUEJoint,3 27.3%
PVEIndividual,4 85.5% PVUEJoint,4 18.1%

The advantage offered by JIVE–FPCA is evident in the left column of Table
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3. Observe that the PVEIndividual,k values are large for all k ∈ {1, 2, 3, 4} (i.e.,

for all pre-pregnancy BMI classes). This implies that each BMI class-specific

individual component explains a large percentage of the weight variation un-

explained by the corresponding class-specific joint component. These results

agree with those obtained in the simulation study, where the PVEIndividual,k

values were also found to be high (i.e., in the mid-90s) for both simulated

classes.

4.4 Future Work: Vertical JIVE–FPCA

As a final point, it is worth noting that efforts were made to carry out a vertical

JIVE–FPCA analysis on the gestational weight dataset. The fact that the

longitudinal weight measurements were obtained from multiple data sources

made such an analysis viable. In this analysis, each data block consisted

of weight measurements of a particular type. The self-reported and APrON

weight measurements were pooled together in one block, while the clinical

weight measurements were included in another. Since the subjects in this

study were required to have at least one of each type of weight record, data

were included for every subject in each block. Each subject’s JIVE–FPCA

trajectory consisted of a joint component and two individual components, one

for each data type.

While it was anticipated that incorporating additional weight category-

specific principal components would result in an improved fit to individual

gestational weight gain trajectories, preliminary work showed the opposite

result. The application of JIVE–FPCA to vertically integrated gestational

weight data actually resulted in a larger MSE and ABW compared to the

FPCA method. Moreover, the model fit kept worsening with additional iter-

ations of the JIVE–FPCA algorithm (i.e., the MSE became larger with every

iteration). Further investigations showed that this was due to the bias inher-

ent in self-reported weight measurements, which tend to be under-reported. In

the future, it would be interesting to examine how the JIVE–FPCA algorithm

performs on a more suitable, vertically integrated multi-block dataset.
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Chapter 5

Conclusion

In summary, this thesis presents a new method, called JIVE–FPCA, which is

an extension of the traditional FPCA method. The JIVE–FPCA approach was

developed out of the desire to more accurately estimate individual gestational

weight gain trajectories; however, the method can be used with any sparse,

longitudinal multi-block dataset. This novel approach is useful because it

simultaneously captures patterns that are shared among multiple data blocks

and patterns that are unique to a particular block.

The JIVE–FPCA advantage was confirmed by the results obtained with

simulated and real, gestational weight data. Both studies showed that the

JIVE–FPCA method accounts for a significant proportion of the variation un-

explained by FPCA. Visually, the estimated JIVE–FPCA trajectories were

much smoother, and more closely fit the observed data points than the corre-

sponding FPCA estimates. The JIVE–FPCA pointwise confidence bands were

noticeably smoother and narrower as well. These findings were supported by

numerical calculations, which showed that the MSE and ABW were signifi-

cantly smaller for JIVE–FPCA compared to FPCA. The JIVE–FPCA results

with gestational weight data particularly emphasize the different trends in

GWG among different pre-pregnancy BMI categories, and can be used for

clinical counselling. As the studies in this thesis were primarily focused on

the application of JIVE–FPCA to horizontally integrated data, future work

could include investigating the performance of this new method on vertically

integrated multi-block datasets.
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