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ABSTRACT

It is shown that solutions to the plane, radial, steady, quasi-
static flow of a Bingham solid in a converging channel, and to the axially
symmetric, radial, steady, quasi-static, converging flow in a circular
cone do not exist, at least if the material is incompressible, and there
are no body forces.

The velocity and stress fields for the corresponding power law
pseudo-plastic flow problems are obtained. A new numerical technique is
developed to solve the non-linear boundary value problem that arises in
the determination of these fields.

The results are applied to hydraulic extrusions and wire drawing

processes.
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CHAPTER I
INTRODUCTION

Analysis of the deformation and flow of matter is facilitated
by the assumption that matter is a continuum and by further introducing
the broad classification of matter as being either a fluid or a solid.

A continuum is a hypothetical representation of matter-as a
continuous medium; a study based upon the assumption of a continuum is-
termed a phenomenological approach. A fluid, according to the classical.
definition, is a substance that flows under the action of any anisotropic
stress system, no matter how small (1)*. A material is said to flow if it
deforms continuously with time (1). A solid, according to the classical
definition, is a substance that requires a definite non-zero anisotropic
stress level to produce flow; a stress below this level produces defor-
mation, which may be reversible or irreversible, but no flow.

The classification of a "real" substance as a solid is to some
extent an idealization; .this becomes more evident as experiments, employing
more refined measuring techniques, show that the application of an aniso-
tropic stress system to a "real" solid results in continuous deformation.
Indeed the motto of the Society of .Rheology is "Everything‘flows"f* and

this is termed by Reiner (1) as "the second axiom of rheology". The state-

*Numbers without decimal enclosed by brackets designate the references
listed in the Bibliography.

- **The motto of the Society of Rheology had'kts‘origin in the strictly
philosophical deduction by Hericlitus (3), that "Everything flows".
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ment "Everything flows" is justified since the essential difference between
the tendency to flow of a fluid and a solid is quantitative and not quali-
tative. Thus, according to Reiner (2), it is equally as justifiable to
claim that "Everything is solid".

The analysis of the deformation and flow, resulting from the
application of forces to a material in bulk, is based on the following

equations:

%3, + ofy = pay (1.1)
O4y = 944 » (1.2)
%%+ vy =0 (1.3)

and equations resulting from the first and second law of thermodynamics,
which are not included since thermodynamic effects are neglected in the
analysis presented in this thesis. Equation (1.2) is valid since the body
ﬁbments per unit mass and coqple stresses are assumed to be zero. The
relations (1.1), (1.2), and (1?5;_;;;;;5;’;even equations for the thirteen
unknowns °1J' Vi and p, if the disteibution of the body force per unit
mass, fi' i{s known. The problem, therefore, remains six degrees inde-
terminate. To proceed further, the material response has to be considered;
consequently what are known as constitutive equations are introduced.

Eringen (4) notes that "The character of the material is brought into the

formulation through appropriate constitutive equations for each material



with the constitutive variables being restricted in their regions of.defi-
nitions."

Constitutive equations cannot be formulated arbitrarily, but.
must satisfy certain physical and mathematical requirements based on the
axioms of constitutive theory as described by Eringen (4). The constitutive
equations are relations between the stress and strain tensors and their
time derivatives. For an arbitrary element these equations must be inde-
pendent of-any superimposed rigid body motion. In the constitutive_equations
certain rheological properties appear as parameters; these are elasticity,
viscosity, and plasticity. These properties are termed by Reiner (5) as
fundamental and other properties, which are combinations of the fundamental
properties, as complex properties. Some examples of complex properties
are retardation, relaxation, delayed elasticity, visco-plasticity, visco-
elasticity, and anelasticity.

A "real" material exhibits all of the fundamental rheological
properties to some extent (6). The inclusion of certain specific rheological
properties in the constitutive equation of a "real" material is justified
if it is observed experimentally that these properties dominate. This
thesis considers visco-plastic and pseudo-plastic materials. These are
inelastic materials for which plastic and viscous properties dominate.
According to the classical definitions, the visco-plastic material con-
sidered in this thesis is an example of a solid, and the pseudo-plastic
material is an example of a fluid. The relationships between shearing stress,
T,,s and shearing strain rate, d

Xy Xy
indicated in FIG. 1.1, where, for the purpose of comparison, the Newtonian

» in simple shear for these materials are



viscous liquid is also shown.

Shear Stress
rxy

Bingham

Pseudo-Plastic
Newtonian

Dilatant

Shearing Strain Rate dxy
FIGURE 1.1

Stress-Strain Rate Relationships for Simple Shear

The remainder of this chapter presents a brief discussion of the Bingham

solid and the pseudo-plastic material, respectively.

1.1 The Bingham Solid

In FIG. 1.1 the flow curve for a Newtonian viscous liquid is
shown. The Newtonian liquid is a viscous material and its constitutive

equation in simple shear is



The coefficient u, which depends only on temperature and pressuresand not
on rate of deformation, is called the Newtonian coefficient of viscosity,
and it completely characterizes the fluid if the fluid can be considered
incompressible.

The fundamental rheological properties may be associated with
the manner in which mechanical energy is dissipated by the material. A
material which is classified as perfectly elastic does not dissipate energy*;
the Newtonian viscous 1iquid dissipates energy by the transfer of momentum
on a molecular scale. Gases and 1iquids of Tow molecular weight are con-
tained 1in the viscous category (7).

An inelastic dissipative material, whose behavior is not even
approximately described by the Newtonian constitutive equation, is paint (8).
Paint 1s required to possess the following practical properties:

(1) 1t must brush without too much effort,
(i1) 1t must flow in order that brushmarks disappear, i.e. it must
possess "leveling" properties, and
(¥41) 1t must not run when applied to a vertical wall.

Reiner (8) points out-that a low viscosity is required for the first two
properties, and a high viscosity for the third; the viscosity requirements
seem to be in conflict. The solution to this problem was found by Bingham
.and Green (9) and was presented by them in a paper entitled: '"Paint. a
Plastic Material and not a Viscous Liquid". The basis of the solution rested
upon the experimentally determined fact that the viscosity of paint is not

a constant for different rates of flow.

*At least if thermal effects are neglected.



The one-dimensional model, which Bingham and Green (9) suggested
to describe the behavior of paint, has as.its rheological equation in

simple shear (10)

T,., = 2ud

Xy + T, S9N d

Xy xy® if ITxyl > Ty

dy = 0 SIALWIES.

0

This two-parameter model is now termed the Bingham solid. - A generalization
of this model to three dimensions was suggested by Hohenemser and Prager (11).
In three dimensions Prager (12) has characterized the mechanical behavior

as follows: "Let a Newtonian viscous -liquid, a perfectly plastic Mises

solid, and a visco-plastic Bingham solid be subjected to the same velocity
strain. The stress -in.the Bingham solid is then obtained by adding the
stresses in the Newtonian liquid and the Mises solid". The constitutive

equations for this generalization are

s34 = 2(u * %o dyy » 1F 140, (1.4)

where

a e,

I=(2q, d,

Clearly the Newtonian viscous 1iquid and the perfectly plastic von Mises
solid are special cases of the Bingham solid; this is consistent with the

third axiom of rheology, which states that the constitutive equation of-a



more -simple body -can be derived from that of a less simple body (13).
The constitutive equation (1.4) may be inverted as follows.

Squaring both sides of (1.4) gives

0 L, ifd <k,
.J-k’ Jlk’

where

_ 41 ' 1/2
J = (i'smn smn) .

Substituting in the original equation (1.4) gives

=¢ 0 s 1 J <Kk,

Few non-trivial problems have been solved for the Bingham solid.
0ldroyd (14) considered some two-dimensional boundary layer and rectilinear
flow problems. Carlson (15) has treated the axial compression of a disc.
Carlson used a piecewise linearized yield criterion introduced by Prager (16)
in 1961. Haddow (17) extended Carlson's solution to include inertia effects.
The 1inearization theory was extended by Haddow (18) and was applied by
Haddow and Hrudey (19) to solve the flow problem of a thin circular plate
subjected to a uniformly distributed transverse load. Prager (20) derived
extremum principles for the Bingham solid; these extremum principles were

extended by Haddow and Luming (21).



1.2 The Pseudo-Plastic Material

Comparison of the Bingham constitutive equation,

K
$;: = 2(y + ————) d;. ,
i3 /2 a. W

mn mn

with that of a Newtonian viscous liquid,

suggests that the Bingham solid can be considered to be a material with a
variable coefficient of viscosity that depends on the strain rate invari-
ant I,

k
Ut ==

v 2dmn dmn

which can be termed the “apparent" viscosity. Other examples of materials
with a variable coefficient of viscosity are the pseudo-plastic model,

which describes a material for which viscosity decreases with an increasing
shear rate, and the dilatant fluid, for which the viscosity increases with

an increasing rate of shear (7). These effects were originally noted in
colloidal solutions and their explanation is due to Ostwald (22). Ostwald
hypothesized that a "structure" in the fluid altered with flow and introduced
the term “Strukturviskositit" or "Structural viscosity" to denote this
phenomenom. Fluids exhibiting this kind of variable viscosity have been

designated by Reiner (23) as "Non-Newtonian fluids"; this "Non-Newtonian"



classification includes the Bingham solid, pseudo-plastics and dilatant
fluids* (7).

Ostwald (10) suggested a two-parameter power law model as a
means of characterizing the pseudo-plastic or the dilatant fluid; this
power law is commonly written in simple shear as

n-1
' Txy = “Ideyl dxy . (1.5)

For this constitutive equation the apparent viscosity is

n-1
uIdeyl

Thus, n < 1 characterizes a pseudo-plastic, and n > 1 characterizes the
dilatant fluid. Reiner (24) has raised three major objections to the use
of the power law and concludes that equation (1.5) 1s not a physical law
but rather only an empirical formula. An obvious defect in this formula
i{s that the physical dimension of u depends on the value n.

Other empirical equations, which describe pseudo-plastic behavior

in simple shear, are

2d
Prandtl Tay A s1n'] (—551) ,
2d T
Eyring Tyy = _§§¥.+ C sin (.%!g ,

*0ften the terminology "Non-Newtonian" fluids includes a broader class of
materials such as. elastico-viscous materials and models which show a
cross viscosity.
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Powell-Eyring T, =-2Ad, +B sinh™) (2 ¢ dyy)

Williamson: Txy.='2Adxy/(B + Zde) +u, dxy ..

where A, B, and C are constants characterizing the particular fluid be-

havior (7).

1.3 Aim of the Thesis -

The purpose of this thesis is to consider the plane flow of an
incompressible visco-plastic and a pseudo-plastic material in a converging
chaﬁnel..and also axially symmetric converging fiow in a circular cone..

The visco-plastic material considered is the Bingham solid and the pseudo- .
plastic material is based on the power law model. The constitutive equation
for the Bingham solid, which is applied, is the Hohenemser-Prager gener-

alization

S S I
/2o W

mn mn

s,l\1 = 2(u +

The constitutive equation which is used for the pseudo-plastic material,

is the power law representation (25)

n-1
=z
sij = 2u(dmn dmn) dij . (1.6)
The special case of -equation (1.6)with n = 0 is the perfectly plastic von

Mises solid, whose yield criterion is



N

1 -
2 Sun Smn =K
where k is the yield stress in pure shear. When n = 1, equation (1.6)
is that for a Newtonian viscous liquid.

The visco-plastic material as typified by the Bingham solid
possesses a yield 1imit; this is to be contrasted with the pseudo-plastic

material which does not possess a yield 1imit for values of n in the range
0<ng<l.

However, the 1imiting case n = 0, the perfectly plastic von Mises solid,
does possess a yield limit.

The rheological problems considered in this thesis may be .appli-
cable to hydraulic extrusion and wire drawing technologies which involve
rate dependent materials. .

Calcu]ations.are‘performed:for values of n.between 0 and 1;
thus it is possible to study, both quantitatively and qualitatively, the
transition from a Newtonian viscous liquid to a perfectly plastic von

Mises solid.

1.4 Consideration of Related Problems

Various solutions have been presented for the plane flow of
Newtonian viscous liquids and rigid perfectly p1ést1c materials in a con-
verging channel, and also axially symmetric converging flow in a circular

cone. These flow problems shall now be considered briefly.
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Plane -Viscous Flow - Hamel's Problem

In a classic paper, and using the prior assumption of:radial
flow, Rosenhead (26) obtained closed form solutions for the plane, steady
flow of an incompressible Newtonian viscous liquid between two inclined
walls, separated by an angle of 20.. Rosenhead included inertia terms
and made a thorough investigation of the change in flow characteristics
due to increasing Reynold's number,

The mathematical solution is extremely complex and is obtained
in terms of Weierstrassian elliptic functions. A principal result of
Rosenhead's investigation is that for every pair of values o and Reynold's.
number, the number of mathematically possible velocity profiles is in-
finite. The profiies may or-may not be symmetrical with respect to the
central line of .the channel. Further, Rosenhead found that both inflow
and outflow could occur simultaneously. A solution not assuming radial

flow has not been obtained as yet.

Axially Symmetric Analog to Hamel's Problem

It has been shown by Hamel (27) and others that for axially
symmetric converging flow of an incompressible Newtonian viscous 1iquid
in a circular cone, without body forces, no purely radial flow can exist,
if inertia effects are considered.

The assumption of non-radial flow leads to an intractable problem.
It is interesting to note that a radial flow solution is obtained upon the
neglect of inertia terms. This solution has been employed by Ramacharyulu (28)
as a first order approximation to the elastico-viscous flow problem in a

circular cone. The second order solution yielded a non-radial flow pattern.
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Plane Rigid Perfectly Plastic Flow

In 1924 Nadai (29) considered the plane, steady, quasi-static
flow of an incompressible rigid perfectly plastic solid in a converging
channel, of semi-angle a, with perfectly rough* walls. Nadai assumed
that the stresses are a function of -6, but not of r, and this implies
that the streamlines of the associated velocity field must be radial
straight 1ines directed through the virtual apex of the channel. Further-
more, assuming that the channel is very long, and’ thus neglecting end
effects, enabled Nadai to obtain the stress field for this flow problem.
Hi11 (30) obtained the associated velocity field of the form

') =gﬂ.
r r

It may be shown that g'(6) at 6 = a is 1nfiﬁitef This derivative cannot

be infinite in the Bingham solid since this would imply that the shearing
stresses at the wall are also infinite. Hi11 (30) has extended Nadai's
solution to cover the cases of rough walls with a constant shearing traction

mk at the walls, where
0O<mg<1.

Axially Symmetric Rigid Perfectly Plastic Flow
In 1955 Shield (31) obtained the stress field for the axially

*The coefficient of friction between a perfectly rough surface and the
deforming rigid perfectly plastic material is large enough that the
shearing yield stress can be developed at the surface.
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symmetric converging flow of an incompressible rigid perfectly plastic
material in a circular cone of semi-angle a. The wall friction is as-

sumed to be constant at the value of mk, where
0<m<1,

and k is the yield stress in pure shear. The velocity field is radial,

and consequently of the form.

or

Shield did not obtain a closed:form solution to the governing
differential equation, which is in terms of the shearing stress Tpg? but
solved it numerically. Shield applied the results of the stress field to
wire drawing in a manner to be discussed in Chapter IV,

As mentioned previously in this chapter, it is desired to study
wire drawing and hydraulic extrusion. Most materialsvused in this process
exhibit both plastic and viscous effects.

The remaining chapters are concerned with the application of
the Bingham solid and the pseudo-plastic material to the above mentioned

plane and axially symmetric flow problems.



CHAPTER 11
VISCO-PLASTIC FLOW

This chapter considers plane flow of an incompressible homo-
geneous isotropic rigid visco-plastic material, the Bingham solid, in a
converging channel, and axially symmetric converging flow in a circular
cone. .

It will be shown that the only possible radial flow solution
is the trivial solution, with zero radial velocity, unless it is assumed
that slip occurs at the walls and axially symmetric flow results for the
plane problem and spherically symmetric flow for the axially symmetric
problem.

The assumption of a more general velocity field, which includes
both radial and tangential components, leads to extensive and cumbersome

equations, which cannot be integrated analytically.

2.1 Plane Visco-Plastic Flow

The plane flow of an incompressible Bingham solid in a converging
channel is considered. . Polar coordinates, (r,8), which are taken relative
to the axis of symmetry, are used to describe the flow, and the channel
is bounded by the lines 6 = + a. It is assumed that the flow is steady,
quasi-static, and directed radially through the virtual apex of the channel,
0, see FIG. 2.1, and that the channel is long enough so that the velocity

and stress fields are independent of conditions at the ends.

15
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Axis of
" Symmetry

FIGURE 2.1

Visco-Plastic Flow in a Converging Channel

The components of the velocity strain tensor, defined by

2]
are
ov
=t
d =3v >

(2.2)
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v,

I
deg = 27 36
The condition of incompressibility is
d

V440>

which using equations (2.2) is
r,.r. .
-t =0, (2.3)

Equation (2.3) requires that the velocity field Ve be of the form

v, = Sé,-e-)- : (2.4)

Substitution of equation (2.4) in equations (2.2) yields

r
dg = - d. = ﬂigl , (2.5)
dre N gﬁ%ﬂl ’

where ' denotes differentiation with respect to 6.
The components of the stress tensor, which do not vanish identi-

cally, are o,.» gg» and Tp,. Assuming steady, quasi-static flow, and neg-
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lecting body forces, the equilibrium equations are

aor atre

r 30 r=09g =0,

3Tre aoe

r—ar +'3T+2Tre=0 .

Also
where
o

is the hydrostatic part of the stress tensor, and 51‘1 is the deviatoric

part. Using equation (2.6), the equilibrium equations reduce to

which, upon noting that

become
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S 2s 9s
P __r,.r 116
T T Yy 9o
(2.7)
9s 9s
P __r e
8- "3 ‘TSt

In terms of the strain rates, given by equations (2.5), the invariant:I

becomes

172

1/2
1=[ad 244021 =lprag+ (@021 . (2.8)
r

Substitution of the relation (2.8) and the strain rates (2.5) in the
constitutive equations (1.4) gives for the components of the stress

deviators

172
Sp = - 3%3 - 2kg/Tag? + (981,

' (2.9)
2

. 1/
s = M-+ kg'/[4g% + (9')%]
r

The hydrostatic pressure p can be eliminated from equations (2.7), and

the final result is

2 2 2
'S, . g-asr . l.a sre,_ ] 3°S1g 3
g rae o r .2 ar?

3s
e - . (2.10)

2 or

Upon substitution of the stress deviators (2.9) in equation (2.10), an

ordinary differential equation is obtained for g(6); the differential
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equation is
[Ill+4l]+k[{ : }“_4{ 9 }I]BO.
g e R e

(2.11)
Clearly g = const, satisfies equation (2.11), consequently this

solution cannot depend on u or k and the corresponding flow 1s axially
symmetric. Alternatively in order that the differential equation (2.11)
be satisfied, 1t is therefore necessary that g(e) satisfies both

g'''"+4g"' =0, (2.12a)

and

{
L4g° + (g')

2]1/2}" - Ay} = 0. (2.12b)

[4g" + (g")"]

It is noted that g(8) is governed by two ordinary differential equations,
whereas for the velocity field obtained by Hi11 (30) for the plane rigid
perfectly plastic solution, there 1s no r dependence, and g(8) is defined
by one equation,

Further constraints on g(8) are obtained from the boundary
conditions at 6 = 0, 6 = o, and from a specification of the volume flow
per unit length.

From symmetry

g'(0) = 0. (2.13)

Further, since the Bingham solid may be regarded as a viscous medium with

a variable coefficient of viscosity, it appears reasonable to impose the
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no-slip boundary condition, usually assumed for viscous flow, that is
g(a) = 0.

If . .the volume flow per unit length is Q, then

o
Q=2 J g(s) ds.
0

The solution to the differential equation (2.12a) is readily
found to be

g(e) = A+ B cos 20 + C sin 20,

where A, B, and C are arbitrary constants of integration. The symmetry

condition (2.13) requires that

consequently
g(e) = A + B cos 26. (2.14)

Substitution of equation (2.14) in the differential equation (2.12b)
ylelds

48 sin2e[-3A%8% cos?2q - 2(A%8 + 4AB%)cos20 - (A% + 28%)] = 0. (2.15)
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Equation (2.15) possesses the real and trivial solution
B =0.

Further, imposition of the boundary condition at 8 = o implies that
A =0,

Thus the assumption of radial flow, subject to the no-slip boundary

condition at 8 = a, has yielded the trivial solution.
Alternatively, one might attempt to employ the solution

g(e) = D,
in the region
8]<igl<jal ,
where D is a constant, and the solution
g(e) = A+ B cos 20 + C sgné sin 26
in the region

|8l<le|<|a| ,
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subject to the constraints noted, plus the requirements that g(e) and

g'(e) be continuous at 6 = = B.
Continuity of g'(e) at 6 = B, therefore, requires that

g'() = 0.
This condition requires that
C = Bsgn Btan 28. (2.16)

In order to retain continuity in the velocity, and hence in g(e), at

8 = B, it is required that
D=A+B cos2B + Csgn Bsin 28,
or using relation (2.16)
D=A+%ﬁ ,
consequently

g(8) = A + B [cos2 + tan28sin2e]. (2.17)

The expression, which is obtained by substitution of equation (2.17)

in the differential equation (2.12b), is very complex and is not reproduced
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here. It can be shown that the non-trivial solution to this expression

results in

This case, however, has been considered before and gives rise to the
trivial solution, with zero radial velocity. Hence a solution of the as-

sumed form does not exist.

2.2 Axially Symmetric Visco-Plastic Flow

This section deals with the axially symmetric converging flow of
an incompressible Bingham solid in a circular cone. The z-axis is taken
along the axis of symmetry and spherical polar coordinates, (r,¢$,8), are
used in considering the flow. The flow 1s'assumed to be radial, steady,
and quasi-static. It is further assumed that the cone is long enough to
neglect any end effects. The cone may be described as the part bounded
by ¢ = a and ¢ = - o, where o is the semi-angle of the cone, see FIG. 2.2.

Denoting the outward radial velocity by Vir then by the velocity

strain tensor (2.1), the only non-vanishing strain rates are given by

d, =d, = r—" (2.18)
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Rigid Die

FIGURE 2.2

Visco-Plastic Flow in a Circular Cone

The continuity equation,

requires that

v = 88 (2.19)

Substitution of this velocity field (2.19) in the strain rate relationships
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(2.18) gives
dp=-2 sigl ’
d¢ = de f SL%L ’ (2.20)

= '=d
dr¢ o » Where ' = ik

The non-vanishing components of the stress tensor are Ops Oys Tgs and Tr¢'

Neglecting inertia terms and body forces, the equations of.equilibrium are

RQ 9T .
el r 1o L4 - =
or r 3 ty (2 % = % " % r¢c°t¢) 0,
(2.21)
g, 1%% , 1
T -?‘-3¢ +F[(¢’-0)C0t¢+31’ ]=0
Substitution of relation (2.6) in the equations (2.21) yields
3s 3s
8p_ _r 1 °rp 1 -5 -
or r * r 3 * r (Zsr s¢ So * sr¢ cot ¢),
(2.22)
. e, B
56 = " By + 55 + (s¢ - se) coto + 3sr¢ ,

and upon noting that

S, = = (sr + s¢)
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equation (2.22) becomes

3s 9s
p B, B 1%, 1
3F - T T ae T Y SreCotes

(2.23)
9s 9s
ap _ r
o r gt gt t Iy

In terms of the strain rates, as given by equations (2.20), the invariant
I becomes -

/2. 1/2
2 2 2 2 o 2 2
I ='[2dr +2d," +2dg +~4dr¢ ] = ;3{129 + (g')"] . (2.24)

¢

Substitution of the relation (2.24) and the strain rates (2.20) in the

constitutive equations (1.4) gives for the components of the stress deviators.

1/2
s, = - 3L - ag/l2g® + (a2,
r

172
s = 5o = 2+ 2kg/l12g% + (g%, (2.25)
r
| 1/2
Sp = M-+ kg'/D12g + (9971
rs

The hydrostatic pressure p may be eliminated from equations
(2.23), and the resulting partial differential equation in terms of the

stress deviators is

2 2 2 2
9 sr 3 9S ] sd> .

r 1
736 T r 3% Coree T r 2 T
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9S

cote] - 4 =2 = 0, (2.26)

1393
Y% ar

[sr¢

Substitution of the stress deviator components (2.25) in the equation

(2.26) results in the following ordinary differential equation for g(¢):

Ex[g''' + (g'cots)’ + 69'] +
r

+ k[{ }“ + { ‘cot ¢ ]'l - 12{—-2—2—2—17'2?}'] =
n:eTa (@172 neg? + (g)21° [12g% + (g')%]

)
g +

Again g = const. satisfies this equation and the flow corresponding to this

solution is spherically symmetric. Alternatively it follows that
g''' + (g'cots)' + 6g' = 0,
which upon integration gives
g'' + g'coty + 6g = const , (2.27a)

and

'
' X | '
{[12923 @7 +{[12§g f°tg‘.°)z]1/z} BT +g(g')21”2} -
(2.27b)
Again, as is the case for the plane flow problem, g(¢)must obey two
ordinary differential equations.
The condition that the flow be symmetric with respect to the

$» = 0 axis gives

g'(0) = 0. (2.28)

0,
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As was pointed out-in the previous secfion, a logical boundary condition

to assume at ¢ = a is
g(a) =0 . (2.29)
Furthermore, the volume flow condition is
Q=2nm r g(¢) sing do. (2.30)
0
The problem of finding the unknown function g(¢) then reduces to solving
the ordinary differential equation (2.27a), subject to the differential
equation (2.27b), and boundary conditions (2.28) and (2.29), and volume
flow condition (2.30). The solution to the differential equation (2.27a)
is made up of two parts, the particular solution
gp(¢)'= constant,
and the homogeneous solution, gH(¢), which satisfies
gy'' t gH' coty + 6g, = O. (2.31)

Under the substitution

X = C0Sé,
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equation (2.31) becomes
(1 - xB)g,'" - 2xgy" + 2(2 + gy = 0, (2.32)

where ' = %; , and 1s recognized as Legendre's 6rd1nany differential

equation. The solution to equation (2.32) may be written in the form
.QH(X) =-A Pz(x) + B Qz(x)o
where Pz(x) and Qz(x) are the Legendre's functions of degree 2, of the

first and second k1hds, respectively, and A and B are arbitrary constants

of integration. Returning to the ¢ variable, this solution reduces to
gy(4) = A Py(cos¢) + B Qy(cose) ,
where
Pz(cos¢) = %{3c052¢ -1,

and

1+ cosp 3

Qz(cos¢) = %{3cos2¢ - 1) log T o5t - 5 cos¢ .

The general solution to the differential equation (2.27a),

g(e) = 9p(¢) + gH(¢) ’
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then reduces to

g(¢) = A(3cos? - 1) + B[(3cosz¢ - 1)lo0g %‘é'%%§$" 6cos¢] + C,

where A, B, and C are to be determined such that the boundary conditions
(2.28) and (2.29), and the differential equation (2.27b) are satisfied,
and further that g(¢) be finite.

The latter condition requires that B = 0. The symmetry condition
is satisfied automatically. There remains the problem to find A and C
such that the differential equation (2.2?b) is satisfied along with the
boundary condition (2.29). Substitution of

g(¢) = A(3c052¢ -1)+¢C
in the differential equation (2.27b) gives
6ansingcosol (68A%C - 228%)cosSs + (348a%2 + 7a% + 111A%C)cos™s
(2.33)

+ (A% + 318A¢3 + 1538%¢2)cos%p + (108 + 18422 + 111Ac%)] = o.

The real and non-trivial solution to equation (2.33) gives

The solution common to both differential equations therefore reduces to
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9(¢) =C,

and the boundary condition (2.29) requires that C be zero. Consequently
the assumption of radial flow subject to the no-s1ip boundary condition
at ¢ = o has yielded the trivial solution in both the plane and axially
symmetric problems.

It can be shown that an attempt to treat the flow as composed
of two regions, as was discussed in the plane flow case, again leads to
the trivial solution.

The solution of both visco-plastic problems clearly involves
curved streamlines, and to obtain a solution it is probable that the inlet
(or exit) velocity profile must be known. A numerical approach, using a
relaxation procedure,was attempted but was abandoned since the solution

rapidly diverged.



CHAPTER III
PSEUDO-PLASTIC FLOW

In CHAPTER II the plane radial flow of an incompressible Bingham
solid in a converging channel, and the axially symmetric converging flow
in a circular cone were introduced. It is recalled that g(6) in both
cases was constrained by two ordinary differential equations. It was shown
that under the no-slip boundary condition only the trivial solutions, with
zero radial velocities, were obtained. It was then suggested thaf a more
general formulation assuming non-radial flow is intractable.

An alternative model, the pseudo-plastic material, is now con-
sidered. This model exhibits rate effects and under the assumption of
radial flow removes the r-dependence in the governing equations and yields
one ordinary differential equation for the required function. The absence
of the r-dependence is similar to that obtained by Nadai (29) and Shield (31)
for the rigid perfectly plastic materials.

It is shown in the body of this chapter that the boundary value
problem for the required function can be reformulated as an initial value
problem for a third order non-linear ordinary differential equation in g(8).
This problem is readily solved numerically by employing Gill's variation of

the Runge-Kutta fourth order method.

3.1 Plane Pseudo-Plastic Flow

The plane, radial, steady, quasi-static flow of an incompressible
pseudo-plastic material in a converging channel is considered. FIGURE 3.1

shows some necessary notation. As previously discussed, the channel is as-

33
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sumed to be sufficiently long, so that the velocity field and the state
of stress are independent of the conditions occurring at the entry and

exit sections.

Rigid Die

Axis-of
Symméiny

FIGURE 3.1

Pseudo-Plastic Flow in a Converging Channel

The constitutive equation for the pseudo-plastic material is

n-1

$43 ° 2uld, dmn)-z-hij ’
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which upon applying equations (2.5),

dg = - dr =,ﬂigl , (2.5)

yields
sp= - sp = - Gtaalag? + (9021 73,
r
' n-]
S0 Gt {g' [4g2 + (9121 2 .
r

Let
g(e) = Am(e) , (3.1)

where m(8) is a non-dimensional function of 8, and A is a constant to be

determined by the volume flow per unit length condition

(o
Q=A {ZJ m(e) de} .
0

Using equation (3.1), the stress deviator components become
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1-n (3.2)

where
n-1
6=+ (m)212 .

The differential equation governing m(8) is obtained by substitution of-
equations (3.2) in equation (2.10), and is

(m'G)'* + 4n(1-n)m'G + 4(2n-1)(mG)' = 0 . (3.3)

It is significant that there is no r-dependence in equation (3.3), unlike
the governing differential equations for the problems considering the
Bingham so]id.' Upon replacement of the stress deviator components in
equations (2.7) by the relations given by equations (3.2), the expression

for the hydrostatic pressure p is found to be

1-n
"2 a0
p = Lt [R01-n) 6 - g (n'e)'] +

where the constant C depends on the prescribed pressure at some point in

the flow field.

If n = 0, equation (3.3) reduces to the equation for Nadai's
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| problem*, and n = 1 yields the governing differential equation for the
creeping flow of a Newtonian viscous 1iquid.
The equation (3.3) appears -to be in general analytically in-

tractable, but the case n = %-can be integrated and becomes

*Substituting

reduces equation (3.3) to

[ =" =0,

/ng + (m')2 4m“z + (m.)Z

and with the change in the dependent variable

h'm.
this becomes

h 11 'l ]
C ] - 2[ ] =0.
/1 + n /1 + n?
With the substitution
h = - tan 2¢,
the differential equation for y becomes
v'=csec2y -1,

where ¢ 1s a constant of integration, and the corresponding differential
equation for m is

ml
- tan 2y .

It is readily verified that the two ordinary differential equations for Y
and m are the same as those obtained by Nadai (29) and Hi11 (30) respectively,
thus i1lustrating the third axiom of Rheology.



38

m'G = Bcosd + Csind, (3.4)

where B and C are constants of integration. Since

ml(o) =0,
equation (3.4) reduces to
m'G = Csind,
and the shear stress becomes
L
- 2UA-
Spg v C sin® .

This expression for Syo is used to estimate the accuracy of. the numerical
procedure used to integrate equation (3.3) for arbitrary n.

The boundary value problem now involves the determination of m(8)
e‘c3, satisfying equat1op (3.3) in the region bounded by 6 = £ a, and

subject to the symmetry condition
m'(0) =0,
and the assumed no-s1ip boundary condition

m(a) = 0 ,
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and
m(0) = 1,
where A is obtained from the volume flow per unit length condition

Q = A{2| m(8) de} .
[

Considerable effort was expended on unseccessful attempts to
solve this boundary value problem directly. The boundary value problem
was therefore reformulated as the following initial value problem.

Solve equation (3.3) subject to the initial conditions:

m(0) = 1,

m'(0) = 0
from symmetry, and

m''(0) = 8,

where B is determined by the requirement that

m(a) = 0,

which is the assumed no-slip boundary condition. It is known that such a
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problem may be reduced to a system of three first order differential
equations, which must be satisfied subject to the prescribed initial
conditions. Reducing equation (3.3) to a system of first order ordinary

differential equations gives
vy (8) = y,(0) ,
]
y, (8) = ys(0) ,

v5 (8) = FLy;(8), y,(8), y(0)] ,

where
y;(8) = m(e) ,
y,(8) =m'(e) ,
y4(0) =m''(e) ,
and

{(4n2-12n+4)m'M

) 1
FLy;(0)y,(8),y4(8)] PEETYY:

- [(4n2-6n+2)m + (n=1)m'*IM' = (n=1)(n-3)m* (M*)2/aM

- (n-1)m'[a(m")2 + am' + (m' )21,
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“where
M= 4m2 + (m')2 .

The initial values become

y](O) =1,
y2(0) = 0,
y3(0) = g8,

This formulation is readily amendable to numerical treatment using Gi11's
variation of the Runge-Kutta fourth order method.

The method of solution 1s similar to that used for the axially
symmetric converging flow in a circular cone, and the details are included
in the discussion of‘that probiem.

The stress and flow fields obtained for the plane flow case are
applicable to the compression of a pseudo-plastic material between two
inclined plates. Letting U be the velocity of the plates normal to their:
lengths, see FIG. 3.2, then the velocity field is obtained by superimposing
a velocity U/sina to the diverging flow field obtained above. The corres-
ponding stress field is that obtained for diverging flow. This solution
will be valid if the plates are large, and the flow is considered far

enough away from the ends, so that end effects do not influence the solution.
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Axis £_f
\\\U/sina Symmetry
\\
—
U
R
FIGURE 3.2

Compression of a Pseudo-Plastic Material

Between Inclined Plates

3.2 Axially Symmetric Pseudo-Plastic Flow

The problem, now considered, is that of the axially symmetric,
radial, steady, quasi-static, converging flow of an incompressible pseudo-
plastic material in a circular cone. Some pertinent notation is shown in
FIG. 3.2. As in the previously discussed flow problems, the cone {s as-
sumed to be Tong enough so that the end effects may be neglected. The

non-vanishing strain rates, for radial flow, are
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Rigid Die

- - 2
o
FIGURE 3.3
Pseudo-Plastic Flow in a Circular Cone
_ 2
dr = - _&éﬁl .
dy = dg = 9{‘%1 , (2.20)

d -M.where'i-d—

re op3 d¢ °

Substitution of equations (2.20) in the constitutive equations (1.6) results



in

- 1
20
ZTNE{QUZQ +(g") ] s

n

—3—E{9[]29 +(g") ]T} :

l n

Sro -3—1{9[129 Ce T,

Substituting in equations (3.5)

g(¢) = Am(e) ,

where m(¢) is a non-dimensional function of ¢:
- "
Sr“—pﬁ&"‘ﬁ'

3-n
2'7?' n

1-n
S = Q_EPA_n m'G
ré r3" *

where
n-1

nl
6 = [1an® + (m)?]

and A is a constant to be determined from the volume flow condition

a4

(3.5)

(3.6)
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04
Q= A{an m(¢) sing do} .
0
Substitution of equations (3.6) in equation (2.26) gives
(m'6) " + (m'Geotd) + 9n(1-n)(m'G) + 6(3n-2)(m6)' = 0 . (3.7)

Again the governing differential equation has no r-dependence.
After substitution of equations (3.6), the integration of
equations (2.23) results in
1-n

"2 N
P L G (enine - 7 (('6) 4 miGcomt] + €, (3.0)

where the constant C depends on the prescribed pressure at some point in
the flow field..

As a check, it is noted that the substitution n = 0 in equation
(3.7) yields the equation obtained by Shield (31) for the perfectly
plastic von Mises solid*, and the substitution n = 1 reduces equation (3.7)

to that for the creeping flow of a Newtonian viscous liquid.

*Substituting n = 0 in equation (3.7) gives

[— 1+ [— cots] - 12[ m__1" =0,(3.9)

S + (m')2 Jon® + (m')2 J12nl + (m')2

and with the change in the dependent variable
ml

/12m2 + m'2

T =
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equation (3.9) becomes

o 1/2
' + tcotd £.2/3 (1-1°) = ¢,

where ¢ is -an arbitrary constant of integration. Integrating the above
expression for m in terms of T gives

2.
m=Bexp {x2/3 [ (1-1%) dé}.

The differential equat1oh for t, and the expression for m in terms of T
are consistent with those obtained by Shield (31), again 1llustrating the
third axiom of Rheology.

Returning to a consideration of equation (3.7); the boundary
conditions to which the solution to this differential equation shall be

subjected to, are

m(0) = 1,
m'(0) = 0

from symmetry, and
m(e:) = 0,

that is the no-slip boundary condition at the walls.
If n = 2/3, the differential equation reduces to

(m'G)" + (m'Gcot¢)' +2m'G=0,

which, under the substitution
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X = COS ¢, -
becomes
2 " 1 ]2
(1-x°)(m'G) - 2x(m'G) + [1(1+1) - ;"EJ mG=0, (3.10)
~X

which is Legendre's equation of degree 1 and order 1. The solution to

equation (3.10) is
e - 1 1
m'G = BPy'(x) + €Qy '(x) ,

where P]] and Q]] are the associated Legendre's functions of degree 1 and
order 1, of the first and second kinds, respectively, and B and C are

arbitrary constanté of integration. Analytically
m m
P m(x) = (]_XZ)Ed Png)() ,
n dxM

% d"q, (x)

m .

Q,"(x) = (1-)
dx

The general solution to the differential equation (3.10) therefore becomes
meG = BP]](cos¢) + CQ]](cos¢) .

The symmetry condition requires that m'G be zero at ¢ = 0; since 01](0)

is not bounded at ¢ = 0, it is necessary that
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consequently
m'G = Bsing . (3.11)

Applying equation (3.11), the shear stress becomes
12
6. 43

Spo = 21%#1_ Bsing . (3.12)

r

It was not possible to obtain a closed form solution for other

values -of .n in the range
0<n < 1,
and equation (3.12) was used to estimate the accuracy of the numerical
procedure used. The boundary value problem can be more readily solved by
transforming it -into an initial value problem.
This initial value problem requires the solution of equation
(3.7) subjected to the initial values
m(0) =1,

m'(0) =0

from symmetry, and



m'*(0) = g.
The parameter B8 is determined by the no-s1ip boundary condition
m(a) = 0.
Letting
¥1(¢) = m(s) ,
¥,(0) = m'(e) ,
y3(e) = m'' (o) ,
then equation (3.7) is equivalent to the system
y7 (8) = y,(0)
Yy (6) = ya(0)
¥3 (8) = FLo.y; ()5 v,(6), y5(0)1,

where

1

2
{[(9n"-27n+12)m"
- (n-l)(m‘)2 [(9n®-27n+12)m

F[¢t¥1(¢)a¥2(¢)t¥3(¢)] =

49
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- cotgm' ' + csc?om'IM - [(9n-15n+6)m +(n-1)m""
+ (Bl cotem' ] M - (n-1)(n-3)m (n')2/aM
- (n=1)m'[12(n")2 + Tz2m'* + ()23,
and
M= 12m® +-(m')? .

Gi11's variation of the Runge-Kutta fourth order .method is used
to solve the initial value problem. The precise procedure utilized is
considered briefly in.the next section.

After this work had been nearly completed, the author was shown
a paper by Tanner (32), in which equation (3.7) was presented. The nu-
merical method of solution is not indicated in this paper, and it does not

include the partial analytical solution for the special case with n = 2/3,

3.3 Integration Procedure

It has been shown that both the plane and the axially symmetric
boundary value problems are reducable to equivalent initial value problems
involving the solution of a system of.first order ordinary differential
equations, subjected to prescribed initial conditions.

The initial conditions to be imposed on m(8) and m'(8) are clear;
however, the initial value of m''(8) is not readily prescribed. Rather,

a trial and error method is adopted; various values of m''(0) are assumed



51

until the desired boundary condition of m(a) = 0 is obtained.

Gill's variation of the Runge-Kutta fourth order method is
employed as an integration procedure. An explanation of - this method,
and a brief discussion on its accuracy, is contained in the Appendix.
The Appendix also contains a copy of the DRKGS subroutine. This is the
IBM System/360 Scientific Subroutine Package for Gill's variation of the
fourth order Runge-Kutta method.

It has already been noted that possession of a closed form
solution for Spe? with n = 2/3, for the axially symmetric problem, and
for Spgs with n = 1/2, for the plane problem permits a direct comparison
of the numerical solution to the closed form solution, and hence an assess-
ment of the accuracy can be made for other values of n.

The values of n considered are
O<n«<l.

The value n = 0 corresponds to the perfectly plastic von Mises solid,
and n = 1 to the Newtonian viscous liquid; hence, it is possible to study
the transition from the perfectly plastic von Mises solid to the Newtonian
viscous liquid.

The results of the analysis performed in this chapter are presented
in FIGS. 6.I1I-1 to 6.11-13 for the plane problem, and in FIGS. 6.I1II-1 to
6.111-15 for the axially symmetric case, and a brief discussion of these

results is given in CHAPTER Vi.
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3.4 0On the Inclusion of Inertia Effects

The solutions presented in this chapter for the flow of pseudo-
plastic materials are based on the assumption that the non-linear term in
the equilibrium equation can be neglected.

The inclusion of the inertia term is now considered briefly.
Instead of the equilibrium equations (2.7), the equations of motion are

used, which for steady flow become

ov,, dS 2s 9s
R e = o
(3.13)
W Br, g e Zre
96 90 ro or °

where p is the density. Substitution of the stress deviators (3.2) in
equation (3.13), gives

1-n

"2 . .Nn DAzmz
e 2‘,.??5?‘ [4n(nG) - anG + ('G)'] + —-, (3.14)
n
%g - Z_;ﬁﬁﬂ_ [2(mG)' +2m'G - 2nm'G]. (3.15)

From equations (3.14) and (3.15) it follows that

1-n
7 n Y 2 2

p =2 21;]1A [4mG - 4n(mgr)] - (n'6)Y)y _ plz\ng +C, (3.16)
r r

where the constant C depends on the prescribed pressure at some point in
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the flow field, and further, from equation (3.16), that

=N

'2'

”5 [4ne)' - en(mg)' - (n'6)'; _ Lr (3.17)

Equating equations (3.15) and (3.17) gives

1-n
2 2,
2—-#2 [3= {(m'6)"" + 4n(1-n)(n'G) + &(2n-1)(n6)'}] + AT o o,
r r
(3.18)
Consequently, for n # 1
(m'G)'" + 4n(1-n)(m'G) + 4(2n-1)(mG)' = 0, (3.19)

and

pA"m_ _ o (3.20)

Equation (3.20), and the no-slip boundary condition, imply that
m=0.
Equation (3.19) is the same as that obtained if the inertia term is neglected,

see equation (3.3).

It is interesting to note that if



54

then equation (3.18) implies that

m"'+4m'+&?:"—'=0.

since

this is the governing equation for the plane, steady flow of a Newtonian
viscous liquid, without body forces, in a converging channel, which was
considered in detail by Rosenhead (26).

Similarly, the inclusion of the inertia term in the axially
symmetric problem shows that there is no radial flow solution, not even

forn=1,

3.5 On_the Neglect of Inertia Effects

It was shown above that, under the prior assumption of radial,
steady flow, the presence of the non-linear inertia term in the equation
of motion yielded the trivial solution with zero radial velocity, both
for the plane, if n # 1, and the axially symmetric pseudo-plastic flow,
at least if the material is assumed incompressible, and without body forces.
Solutions are obtained, both for the plane and the axially
symmetric flow, with the assumption that the flow is quasi-static. This

assumption is valid if certain conditions, which relate the inertia force
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to the dissipative forces, are satisfied.

A comparison of the relative magnitudes of the inertia term
with those of the terms retained in the equilibrium equation, leads to
inequalities which are of 1ittle value since numerical results make
physical interpretation of these conditions difficult. A better approach,
due to Batchelor (33), who considered the inertia effects for the steady,
quasi-static flow of a Newtonian viscous 1iquid in slowly-varying circular
cones, can be applied to the pseudo-plastic flow problems considered in
this thesis. This method, however, requires a knowledge of the solution
for the flow of the pseudo-plastic material in a circular tube, which is
considered first. This solution is then used to specify a condition, which,
if satisfied, justifies neglecting the inertia term for the axially symmetric
pseudo-plastic flow in slowly-varying circular cones.

Let polar coordinates, (r,8,z), describe the pseudo-plastic flow
in the circular tube of radius R; the z-axis is taken as the axis of-
symmetry, see FIG. 3.4. The flow is assumed to be steady and quasi-static;
furthermore, it is assumed that the velocity profile is independent of 6
and z. The incompressible pseudo-plastic material under consideration is
the same as that used previously in this thesis.

Let the velocity in the z-direction be denoted by w, which by the
prior assumption is a function of r only. Consequently, the only non-

vanishing component of the strain rate tensor becomes, from equation (2.1),

d; =7 d (3.21)
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A B

FIGURE 3.4

Pseudo-Plastic Flow in a Circular Tube

and hence the strain rate invariant I becomes

_/ _ aw
I= Zdij dij =g -
The only non-vanishing stress tensor component is Spzs which by substitution
of equation (3.21) in the constitutive equation (1.6) becomes

_ 1=n
s = ?.Tu(%‘})" . (3.22)

rz

Neglecting body forces, the equilibrium equations for steady, quasi-

static flow are
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o -
%=, (3.23)
9P _
56 0, (3.24)
3., S
p_rz Crz 13
=3t T v ar (M) (3.25)

Equations (3.23) and (3.24) imply that

= p(z).
Substitution of equation (3.22) in equation (3.25), with n # 0, results
in '
1-n

n
®.22 1o @

since the left hand side is a function of z alone, and the right hand
side of r alone, it follows that

d.,2 1?9_ [r(ﬂ."i)n] = C, (3.26)

where C is a constant. The constant C is associated with the pressure
difference between two distant sections, A and B, see FIG. 3.4, which

causes the flow. Substitution of:
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in equation (3.26) gives

n-1
n 2
G128y, (3.27)
Integrating equation (3.27) once, results in
ﬂil
" _2°ap A ¥
() = -;I;Jg -2, (3.28)

where A is a constant of integration. From symmetry,

it follows that

Consequently, from equation (3.28),

n-3 1 1

R ST LU (3.29)

Integrating equation (3.29) gives, for n # - 1,

n-3 1 Iin
n n n
[B - (1139 ro].
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The parameter B is a constant of integration, which is found from the

assumed no-s1ip boundary condition at the walls, and is

lin

_.n n
B_WR .

The velocity profile in terms of the pressure difference, therefore, is

52 1 m I
LN (LRI

From the volume flow condition,

R
Q-= I 2rr wdr ,
0

the velocity profile may be written in terms of Q as

1+n

—qu (Jﬁ,—ﬁﬂ) D-@"71. (3.30)

It may be seen that with the substitution

equation (3.30) reduces to the case for the Newtonian viscous flow.
The solution obtained is now used to obtain a condition, which,
if satisfied, justifies neglecting inertia effects for the axially symmetric

pseudo-plastic flow in circular cones of small semi-angles. The stream-



60

lines for slowly-varying circular cones, however, are not uniaxial, that
is parallel to the z-axis, as is the case for the flow in a tube. Hence,
in addition to the uniaxial velocity w, there is a radial velocity u which

is of the order aw, where

o(z) = §

is the inclination of the streamline to the z-axis, see FIG. 3.5.

S~
-~ W
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]
------ ~—
| |~ ~streantine
| | ~—_
Ius-d;R-w l
R l dz l
| |
r l I
0
N | A S
z z + dz U
FIGURE 3.5

Velocity Components in a Circular Cone of Small

Semi-Angle o
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If the flow in a circular cone, of small semi-angle, is considered,
equation (3.30) is a valid approximation to the pseudo-plastic flow in
that cone, provided that the neglected inertia terms are small compared
to the term retained in the equilibrium equation (3.25).

The representative magnitude of each of the neglected inertia
terms,

ow
puHF ,andpw-,ﬁ-

is

po %;

The representative magnitude of the term retained is

n
H R%n+1
Hence equation (3.30) is consistent with the neglect of the inertia term
if

2 ]

Q

po. Sg << |

R5 R3n+ ’
where o is taken as its maximum value, that is the semi-angle of the circular
cone. The condition specifying the justification for neglecting the in-

ertia term therefore becomes
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2=n

“PQETn'« 1. (3.31)

uR

Upon introduction of the characteristic velocity U, defined by

T

nR

where R is the characteristic length of the tube, the jnequa11ty (3.31)
reduces to

2-nyNn
o E.U_u_.B_ <«< 1. (3.32)

It is noted that for n = 1, which corresponds to the Newtonian viscous
flow, equation (3.32) reduces to that obtained by Batchelor (33). Further--
more, it is observed that the quantity

in equation (3.32) is consistent with Reynold's number, as defined for
the power law model.

Since neglecting of inertia terms for the axially symmetric
pseudo-plastic flow problems is justified, if condition (3.32) is satis-
fied, the results should be applicable to technological processes such as

wire drawing and hydraulic extrusion.



CHAPTER IV
APPLICATION TO WIRE DRAWING AND HYDRAULIC EXTRUSION

In CHAPTER III the velocity and stress fields were obtained
for the plane pseudo-plastic flow in a converging channel, and axially
symmetric converging flow in a circular cone.

The purpose of the present chapter is to study the application
of the axially symmetric solution to wire drawing and hydraulic extrusion;
the working material shall be approximated by the pseudo-plastic model
with n close to zero.

FIGURE 4.1 indicates that the pseudo-plastic model,

n-1
)2 4

S5 = 2uldy, dpy ij

with n = 0.1 should be a suitable model for a rate dependent material.
This model 1s useful for application to extrusion processes; however, it
does not possess a yield 1imit. This makes it difficult to apply to wire
drawing problems. Since wire drawing involves uniaxial tension in the
drawn material, and possibly in the undrawn material, if there is back-
pull, it is difficult to consider this process if there is no yield limit.
It 1s usually assumed that the yield 1imit is not exceeded in the drawn
and undrawn material, but only in the deforming material passing through

the die.

The following procedure can be adopted to circumvent this diffi-
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. Flow Curves for the Power Law Model
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culty and to enable the pseudo-plastic model to be applied to the wire
drawing process. Consider the minimum value I0 of I in the region ABCD,
see FIG. 4.3, for the flow field obtained from equation (3.7); this

minimum occurs at point E, see FIG. 4.3. The fiow curve, see FIG. 4.1,
gives at the point I = Io the corresponding value for J/u, denoted by Jolu.
The assumption is now made that the material stays rigid until J reaches
its critical value J§ < J, . The mean drawing stress must be less than
the tensile yield stress, which, corresponding to the above assumption,

is
Y =V3 Jg <3 Jo. (4.1)

The assumed flow curve for the material in this drawing process, then, -
is as shown in FIG. 4.2.

Consider FIG. 4.3, which represents a cross-section of a conical
reducing die. It is clear that severe approximations are necessary in
order to analyse these processes. The method used in this thesis shall
follow that of Shield. Shield (31) presented an approximation which assumes
that the stress and velocity fields of the material in the region ABCD,
see FIG. 4.3, can be represented by those obtained in CHAPTER III; this
approximation is reasonably valid for small semi-angles and large reductions,
and neglects the inlet and exit effects, sections AB and CD respectively,
see FIG. 4.3, These and other approximations will become evident in the
body of this chapter.

Theoretical results are presented for both wire drawing with



66

1.5
Wu g
//
1.0
Jo/u P(I5s0q/H)
Jo*/u
] n=0.1
|
|
|
0.50
|
0
0 0.1 0.2 0.3 0.4
I
FIGURE 4.2

Flow Curve for the "Rigid" Pseudo-Plastic Material

back-pull, and hydraulic extrusion with zero drawing force. Numerical
results are presented for hydraulic extrusion and for wire drawing, with
n =0.1; only the case of no back-pull is presented, since computations
for the case including back-pull are excessively laborious.

The wire drawing analysis shall now be presented. FIGURE 4.3

serves to clarify the physical situation and to introduce the necessary



FIGURE 4.3

Cross-Section of a Conical Reducing Die

notation; it is further noted that
n# 2/3%*

in the following analysis.

67

*The case n = 2/3 {is excluded since the relation (4.20), which is used
extensively in the numerical procedure, does not hold if n = 2/3.
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4.1 Wire Drawing
The entry and exit sections, AB and CD respectively, as shown
in FIG. 4.3, are taken as plane sections, rather than circular arcs; this

requires a knowledge of 0y The tensor transformation rule from spherical

polars to cartesian coordinates gives

o to 0,.-0
0= (L) + (L5®) cos 26 - 7 4sin 26 . (4.2)

The polar components of the stress tensor are calculated from

013 = sij - p61j .

The deviatoric and isotropic components are given by equations (3.6) and

equation (3.8) respectively, for completeness these equations are reproduced

below

n
s¢ = sg = ———§EHA— mG , (3.6)
r

and

1

-N
22 A" 4 1
p=5— [H{1-n)mG - = {(m'G)' + m'Geote} 1+ C , (3.8)
r
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where
n=-1
5

6 = [12n + (n')2]

In expanded form the stress tensor components become

1-n
o, = ZTuA" [“lT {- %mG + %ﬁ- ((m'G)* + m'Geote)} - H] ,

r

Lo

0 = T = 2 LA [:‘33{ 213—:‘3%6. +-J3-ﬁ((m'G)' + m'Geots)} - H] ,
(4.3)
1-n

Ty ® 2 2 0 [;%ﬁ (m'6)] .

The constant C in equation (3.8) has been replaced by

the constant H is determined by the back-pull condition.
Substitution of equations (4.3) in equation (4.2) yields

1-n

o =22 w' (£l -w1, (4.4)
r
where

f(¢) = 3mG(1-cos2¢) - 5%§-+ %ﬁ-{(m'G)' + m'Gcotd} - m'Gsin2¢ . (4.5)
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If the mean tensile stress over the entry section AB is given by T° ,
where To must be less than the tensile yield stress, then the condition

of back-pull becomes

wD

4
T, =—= a,| d(area) ;
0 0 IB 2 at AB

whence

H= _—QHL'T f f(¢) COS d) tangd¢ - —T—-— . (4.6)
2, tana g 7 .n
In equation (4.6), z, is the distance from the virtual apex of the cone,

0, to the entry section AB, as shown in FIG. 4.3. Finally, from equations
(4.4) and (4.6), the expression for o, in terms of T, is

=N

0, = -7?- uA" [-§91- -1;--75- f £(6) cos"Zptaneds] + T, . (4.7)

tan o

The basic unknown of the problem is the drawing stress T, , which

must be less than the tensile yield stress. It is found from the relation

4
T, = o, | d(area)
1 nD,z lo Z'at €D '

which yields

"2 N 3n_ o
T e B 11 207 [ ) cos™ Botanads + T,
0



n

where Z4 is the distance from the virtual apex of the cone to the exit
section CD, as shown in FIG. 4.3. In terms of the diameters Do and D]

of the entry and exit sections respectively, the expression for T] becomes

3+5n
2 n,. 3n-2 Dy 3n_ o
T, = 2 D]g’,} tan__opy (oo ] | #0) cos™™Zptanpas + T, .

Upon the introduction of the reduction of the die, R, given by

R = Jnitial area - final area
initial area

D] 2
=[]-(-D:)]’

gives
3+5n
1 D 3n
1

3n
(s ]
1- (1-R)TJI £(6) cos " Zgtaneds + T, . (4.8)
o]

The drawing stress, T1. may not exceed the tensile yield stress, and its

maximum value will now be calculated.

As previously mentioned, the minimum value of I occurs at the

point E, see FIG. 4.3, and is

in terms of the diameter D], and the reduction R, this becomes
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3
_ 16v3 Atan“a 3/2
I = —— (]-R) .

(4.9)
0 D,

To obtain the critical value Jo. the equation 1inking the in-
variants J and I is required; this is obtained by squaring both sides of
equation (1.6), and yields

1-n
J=22 ul" . (4.10)

Substitution of equation (4.9) in equation (4.10) results in

n+l n
2 2 55

J =
0 3n
Dy

uA"tan3"a (1-R)3"/2 .

As previously noted in equation (4.1), the maximum tensile yield stress is
Y =v3 Jo R

which becomes

7n+1 n+l 3n
2 2 5-2_LA"tan3"a (1-R)
p. 3N
1

Y =

Since T] may not exceed Y, the following inequality

§%§E 3n
n,. 3n-2 5 (&
2t ey - (1-R)7 3 () cos®"Zotaneds + T
D] °
0
7n+1 n+l 3n
2 2 .n...3n 5

D
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determines the maximum reduction possible; apart from any negative normal
stresses at the walls, which may occur during the process. For zero
back-pull, from equation (4.11), for the maximum reduction:
n+l -2
R<1 - [Qn'] 3T)tan2a £1] n
g“ £(¢) cos"%otaneds

An expression for the die pressure, Pdie’ shall now be developed;
this expression could be useful in a stress analysis of the die proper.

By definition

Py = (-0g) |
die ¢ b=
The stress component T at an arbitrary point P is obtained by substitution
of equation (4.6) in the second of the set of equations (4.3), which re-
sults in

I
0 = g = 2 2 pA" [ B002) g 4 Lo ((n'6)" + m'Geots)
r

2 o 3n-2 (4.12)
- I f(¢) cos™ “¢tangds] + T, -
zo tan"a o

Upon substitution of ¢ = o in equation (4.12), and noting that
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6'(a) = (n-1)(m)™ %'t
=0

the die pressure becomes

1-n
=22 {%ﬁ-(n(m')"’] m'' + (m')cots) }

¢=0

nr 1
Pyie A [';in
(4.13)

Ia f(d) cos 3n-2 dtandde] - To
tan o

The parameter s is measured along OCA, as shown in Fig. 4.3, and is calcu-

lated from

5=y —0— , (4.14)

Under the substitution (4.14) the expression for Pdie’ in terms of the

reduction R, becomes

1+5n
"2 a0 3n n-1 n
Pyie = 2—th [ - SN2 (o (n(m' ) mt o+ (n') cots) )
D Y o=
1 (4.15)
3n o
+ 2(1-R)%  tan®"2 aJ £(¢) cos ™2 gtanods] - T,

0

Similarly, the expression for the shear stress at the boundary is given by
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145n
2 LN
Tr¢| = g——gﬁﬁﬂgi [(m')nsin3"¢] . (4.16)
¢=a D] Y ¢=

o

It is noted that the integral

{+)

l f(¢) cos3N-2 dtanddo
occurs in many of the preceeding expressions. It 1s not necessary to per-
form this integration numerically because the requirement of static equ111-
brium of the material between the entry and exit sections yields an ex-
pression for this integral in terms of o, m'(a) , and m''(a) . This ex-
pression is now obtained. The net axial component of the die force, Fdie’

is

zo/cosa

Fdie = 2wsin2a sds ,

Paie (4.17)

s=z]/cosa

which, upon substitution of equation (4.13), reduces to

5n-1 3n-2
= = o
Fdie =2 nuAn D]Z'3n {R[1-R] 2 tan3"'2af (o) cos3n'2¢tan¢d¢
0
in3n §%;g 1
sin” o n- n
- —— [(1-R) = 11In(m*)™" " m'' + (m')" cot¢] 1}
3n(2-3n) b=0
2
7D
™R
R, -

The net axial component of the shear force, F is

shear ?
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zo/cosa

F = 21sinacosa T

shear
s=z1/cosa
|  »reduces to
rd! en
5n-1 3n-2
3

which, upon substitution of t

3n-1
2 2 mlAn D]2-3n[(]_R) - ]][(m.)n sin -

F €0Se7  ,(4.18)

shear b=

The net drawing force, F is

drawing’

2
ﬂ01 T]

Farawing = — 7 °

which, upon substitution of the expression for T]. equation (4.8), reduces

to

5n-1 3n
5 o
Fdrawing =2% ma" D]Z 3n [1-(1-R)§-jtan3"'2af () c053"'2¢tan¢d¢
0
FD]ZT
+ 0
1
The condition of static equilibrium becomes
'nDOzTo
Fshear * Faie ¥ — 4 = Fdrawing = 0. (4.19)

Upon substitution of the above obtained expressions, there results from

equation (4.19)
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3n- | n-1 "
Jaf(¢)cos Zytangds = §l%%£%%7__11 fm')  m''sing
0
+ [(m')"cos¢][%ﬁ--1]} . (4.20)

d=a

It is sometimes useful to treat the boundary effects by the
introduction of a coefficient of friction as is done for Coulomb friction;
this has been done in various manners by Sachs (34), and also by Shield (31).

Proceeding in the fashion of Shield, an average coefficient of friction,

defined by
zo/cosa
TF¢| sds
s=z1/cosa $=a
faverage "z /cosa ’ (4.21)
Pdie sds
s=z]/cosa
which becomes in expanded form
3n-2
- n 2 2
faverage = (m')"| ) sin“a[(1-R) -1]
3n-2 o
{(2-3n)R(1-R) 2 cog23n, J (o) cos3n'2¢tan¢d¢
0
3n-2
s1n2a n-1 n 2
- [n(m")™ " 'm"" + (m*) cot¢]¢ [(1-r) & - 1]
(2-3n)RT D, *"sin* " -1
3+bn }

22 A" (1-R)
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Results for wire drawing are presented in FIGS. 6.A-1 and 6.A-2.
As previously mentioned, To was set equal to zero to facilitate the

numerical computations.

4.2 Hydraulic Extrusion

The hydraulic extrusion of the pseudo-plastic material, under

conditions of zero drawing force,that is

l 0, d(area) = 0 ,. (4.22)
D at CD :

is now considered. From the above expression (4.22) the constant H in

equation (4.6) is found to be

(o
H e —gem—y f () c053"'2¢tan¢d¢. (4.23)

z1 tan o s

In terms of H,

1
uA“ [—§ﬂ Wr £(6) cos>"Zotaneds] ,

tan o

where f(¢) is defined by equation (4.5).

The basic unknown for the hydraulic extrusion is the ram pressure
Pram; this compares to T1 of the drawing process.

The equilibrium condition at the entry section AB is
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from which there is obtained in terms of the reduction R

3+6n

2 aN,..3n-2 n o
P, = - B8 g7 . 1] ] £(6) cos®"2ptangds.
D] A

Consequently, the ram force, defined by

2

F o a ™o Pram
ram 1 ’
becomes
5n-1 3n-2
Froam = 2 2 mua"0, 2" 3"tan®"Za[ (1-R) 2. - f £(0) cos"Zotansds.

0

From the second of the set of equations (4.3) and using equation

(4.23), and evaluating at ¢ = a, there results

1+5n 3
_2 uAn sin n =11, i\n
P,. = [-  fam)" 'm' + (m') 'coted
die D]3n 3n Y3n =0
+ 2tand"2g f f(4) cos® ¢tan¢d¢] (4.24)
0

The net axial component of the die force, obtained by substituting equation

(4.24) in equation (4.17) is

5n-1
- o
Fdie =2 2 nuAn D]2 3n {T§§ tan3n'2a I f(o) cos ¢tan¢d¢

0
3n-2

2 ' -1 t '
'S':nnlz =y [O-R) © - 1][n(m )"+ (m )nc°t¢]¢=a}'
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The expression for rr¢|¢=a is as previously obtained in equation
(4.16), and is
145n
22 A" o nes 3n
Tr¢|¢___a= 0. [(m')7sin ¢]¢=a : (4.16)

The net axial component of the shear force, therefore, remains unchanged
and is given by equation (4.18), which for completeness is reproduced;

thus,

5n-1 3n-2

3n-1
2-7-%uAn D12-3n [(1-R)-§__: 10 ()" &1 f - cosby . (4.18)

¢=a

Fehear °
It is noted that the overall statical equilibrium condition given by
equation (4.19) 1s essentially independent of T° and T1. and therefore

of P hence the integral

ram?

o
I f(9) c053"'2¢tan¢d¢
0

is defined in terms of boundary values by equation (4.20).

The average coefficient of friction, f » as defined by

average
equation (4.21) becomes in expanded form
3n-2
= 1\n . 2 2
faverage = (m') |¢=a sin“a[(1-R) - 1]

o
{(2-3n)(T¥§-cosz'3"a I f(9) cos3n'2¢tan¢d¢
0

3n-2

. 2 2°¢
- S;: g[(1'R) 2 - 1][n(m')n-]m" + (m')ncot¢] }
$=a

-1
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FIG. 6.A<3shows the relationship between Pram and semi-angle o for various
reductions.

It is important to note that all calculations for both wire
drawing and hydraulic extrusion are based on a constant diameter at the

exit section.



CHAPTER V
EXPERIMENTAL INVESTIGATION

The experimental investigation of the axially symmetric con-
verging flow of certain non-Newtonian materials in a circular cone is
presented in this chapter.

The purpose of this experimental work is to investigate the
kinematic behavior of creeping flow of non-Newtonian materials. This
investigation is concerned mainly with

(1) determining if the creeping flow of non-Newtonian materails in

a circular cone yields a radial flow pattern, and

(11) observing whether or not the material adheres to the walls of

the die during the extrusion process.

The assumption that the relative motion of a non-Newtonian material
in contact with a solid body is zero, may not always be Jjustified; this
becomes more evident if pure lead is considered.

Often pure lead is used in experiments whose purpose is to
examine the validity of solutions for a rigid plastic solid. At a perfectly
rough boundary the solutions for flow of a rigid perfectly plastic solid
indicate that there can be slip at the boundary, that is the relative
motion is non-zero. The problem of flow in a converging channel (30) is
an example of this. In this solution, as in other rigid p]aftic solutions
where there is relative motion between a perfectly rough boundary and the

material, the shear strain rate is infinite. This is permissible in an
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inviscid material but is not permissible for a material such as a Bingham
material that exhibits viscous effects. The classical perfectly plastic
solid is not rate dependent. It has been shown by Luming (35) that at
room temperature the behavior of pure lead can closely be approximated
by that of a Bingham solid, with a Tow coefficient of viscosity. Conse-
quently pure lead may be regarded as a non-Newtonian material. Possibly,
the amount of slippage at the boundary should be considered as a function
of the Bingham number*; this function would be of such a nature that the
amount of slippage at the walls increases with 1npreasing Bingham number.
In this thesis these considerations have not been taken into account, and
the classical assumption of no-slip at a boundary is used. Further experi-
mental work is needed to study the behavior of non-Newtonian materials

in contact with solid boundaries.

5.1 Experimental Apparatus

The experimental investigation consisted essentially of extruding
lead and wax specimens. A rigid conical die, of circular cross-section,
was designed to perform these experiments. The extruding apparatus con-
sisted of three main parts:

(i) The Rigid Die and Separation Plate- the die was designed so that

(a) removal of the specimens was possible, and

(b) it could be used to prepare the specimens, so that the

specimens were in two halves with a grid showing on the

*The Bingham number is defined as B = kL/uU, where k,L,u, and U are the
yield stress in pure shear, the characteristic length, the Newtonian

coefficient of viscosity, and the characteristic velocity, respectively (36).

The Bingham number is a measure of the ratio of the relative magnitudes
of the plastic forces to the viscous forces.
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face of one of the halves, thus facilitating in-

vestigation of the flow behavior.
In order to facilitate the removal of the specimens, the die, approxi-
mately 8" long, was of the split type, bolted together with ten 7/16"
N.C., and two 3/8" N.C. bolts, as shown in FIG. 5.1. To ensure perfect
alignment of the two halves, the halves were provided with some 1/4"
aligning pins. The semi-angle of the circular cone was 5°, with an exit
diameter of 1/4". Due to the small exit diameter, the machining of the
cone had to be done in two stages; therefore, the die had to be built up
out of two parts as is shown in FIG. 5.1.

To prepare the specimens, a 1/4" plate was prepared to be clamped
between the halves of the die; this way two molds were formed, so that the
specimen halves could be poured with 1{qu1d lead or wax. Furthermore, the
plate, provided with the appropriate holes for the aligning pins, was pre-
pared with a grid on one of its sides; the grid consisted of radial lines
at intervals of 1° - 40', and with circular arcs about the virtual apex
of the cone at 1" intervals, see FIG. 5.2. A circular ring, of semi-
circular cross-section, was made in the top of the die; this provided the
location for the oil ring, which was clamped between the die and the piston
housing, see FIG. 5.1.

(ii) The Piston Housing - the piston housing consisted essentially
of a thick cylinder, approximately 3" long, see FIG. 5.3. The end of the
piston housing, which is to be bolted to the die with six 7/16" N.C. bolts,
was provided with a groove similar to the one on the top of the die. The

outside diameter was the same as that of the die, that is 5". Theé inside
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The Separation Plate

diameter, for the piston to be fitted in, was machined at 1 7/16".

(iii) The Piston - the piston consisted mainly of a piece of shaft,
5" long, of circular cross-section with a diameter of 1 3/8". At one end
of the piston four grooves were provided to house the oil rings, as shown
in FIG. 5.3. A hole was bored in the piston, and a hydraulic pump was at-

tached; this enabled the extrusions to take place continuously without the
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disadvantage of removing the piston in order to fill up the oil level

during the extrusion.

5.2 Results of Experiments

As previously mentioned, the materials used in this investi-
gation were lead and wax. The lead used was that as supplied by Canada
Metals Ltd. Its assay is 0.02% antimony, 0.015% arsenic, and 99.965% lead.
The material constants were found experimentally by Luming (35) as
u = 1372 psi-sec., and k = 1170 psi., where u is the Newtonian coefficient
of viscosity, and k is the yield stress in pure shear. The waxes used
were

(1) Parowax - made by the Imperial Esso 0il Company - of which
the material constants were not known, and |
(ii) Bee's wax, similarly without a knowledge of its properties.
Before discussing the actual extrusions, the preparation of the specimens

is considered briefly.

The Specimens

The material, lead or wax, was melted and poured into the molds;
as previously discussed, these molds were obtained by the insertion of the
separation plate between the two die halves. The formation of pipes,
longitudinal cavities due to shrinkage toward the side of the mold during
solidification, was minimized by adding molten material into the cavities
during the cooling process. This technique was used throughout, both for
the wax and the lead. After removing the die halves from the separation

plate, some specimens had to be abandoned, in particular the waxes, since
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sticking of the material to the separation plate caused some specimens to

crumble,

Lead Extrusions

After the die was assembled, the two halves of the specimen were
tapped in simultaneously, so that a proper fit could be ensured. The
apparatus was completed by the mounting of the piston housing, with the
appropriate oi1 ring inserted. With the insertion of the piston, extru-
sion could now take place. The applied load increased to approximately
4500 1bs., at which point the oil ring, separating the die and the piston
housing, could not support a further increase in load, consequently the
011 was seeping from the sides and extrusion of the specimen did not take
place. A few more attempts were made, but all with the same result. Before
attempting any more extrusions,the piston housing was milled down 0.003"
so that the piston housing could be bolted to the die at a higher torque,
thus providing a tighter fit for the o0il ring. Extrusions were attempted
again, but the problem of 0il seepage remained. Before abandoning the lead
extrusions completely, a lead plug was machined to fit between the specimen
and the piston; this plug was used instead of the hydraulic fluid, thus re-
moving the sealing problems of the previous extrusions. After the apparatus
was assembled, extrusion could take place again. The applied load increased
to approximately 45,000 1bs. before plastic flow occurred. Although some
minor flashing occurred, due to a small separation of the die halves, the

specimen was kept for investigation of the flow behavior.
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Wax Extrusions

The hydraulic extrusions using Parowax were attempted first.
Before extrusion, some coloring, using a felt pen, was applied to the grid
on the specimen so that after extrusion the grid would be more distinct,
thus providing easier evaluation of the flow behavior. The applied load
increased to approximately 4000 - 5000 1bs., and plastic flow did indeed
occur, however, the extrusion was not as expected. Due to the contraction
of the specimen halves on cooling, the flat sides in contact with each
other during extrusion did not seal properly, consequently the oil was
forced through this opening, and extruded the bottom portion of one of the
halves of the specimen. Further attempts were made, but all with the
same result.

In order to overcome this difficulty, the specimens were poured
to approximately 1/2" from the top, and after the two halves were fitted
in the die, a wax plug was poured on top of the specimen, thus sealing any
imperfections which caused oil seepage problems during the previous ex-
trusions. Extrusions took place again with only a few useful results. It
appeared that somehow the oil bypassed the plug causing either the failures
as described above, or due to the uneven pressure on the specimen halves,
parts of the specimen "cork-screwed" out leaving the other half crumbled
in the die.

Most of the few extrusions which did indeed give good plastic
flow were of no value, since the two-specimen halves were fused together,
and due to its brittle nature could not be separated wholly. A few speci-

mens were kept, however, and investigated.
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The extrusions using bee's wax gave the same difficulties as
the ones with Parowax, except not to such a great extent. Numerous ex-
trusions were attempted, all without success. Another complication, which
was not the case with the Parowax, was that the coloring of the specimen
with a felt pen was not effective. The coloring of the specimen was
changed to the application of graphite in the grid on the separation plate
before pouring the specimens; this indeed resulted in a good grid. More
attempts were made to obtain good plastic flow of the whole specimen, most
without good results; however one of such extrusions did result in a speci-

men which was used for the investigation of the flow behavior.

5.3 Conclusions

The lead specimen, which was retained for investigation, was
obtained from the extrusion during which some minor flashing occurred. The
specimen was investigated, and it was observed that the radial lines re-
mained radial. Also the presence of relative motion between the speéi;en
die were degreased before extrusion.

The specimens obtained using Parowax were investigated, and it
was found that radial lines did indeed remain radial, thus predicting a
radial flow pattern, at Teast for creeping flow. Furthermore, it was ob-
served that the material did adhere to the walls of the die, as is the
classical assumption for Newtonian viscous flow. The same flow behavior
was observed with the specimen obtained from the bee's wax extrusion.

Since the specimens of the Parowax were obtained during the

earlier stages of the experimental period, no photographs were taken since
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it was assumed that more and better specimens would be obtained once the
technique was ironed out. Furthermore, used specimens were melted and
used over again. Since no other successful extrusions were attained
during the many experiments performed thereafter, no photographs are
available to include in this chapter. The extrusions using bee's wax,
which were performed during the final stages of the experimental period,
did yield one specimen which extruded rather well. However, the two
halves fused together, therefore, one of the halves was cut off, taking
care not to damage the grid. The grid was clear enough for investigation,
and showed both radial flow and adhesion to the walls of the die. Al-
though the visibility of the grid was good, the photographing of the
same was not clear at all, and the photographs obtained do not merit in-
clusion in this chapter.

It may be concluded from this experimental investigation, there-
fore, that the flow pattern for the creeping flow of the non-Newtonian
materials tested is radial, at least for small semi-angles. This con-
clusion is not necessarily valid for larger semi-angles; more extensive
experimental work is required to investigate any possible deviations from
radial flow, which may result from larger semi-angles.

Further experimental investigations of the creeping flow of.
lead, which may be assumed to behave as a Bingham solid for a certain
range of strain rates, would be a significant contribution, especially

if the theoretical investigation is considered in greater detail.



CHAPTER VI
CONCLUDING REMARKS

The main purpose of this chapter is to consider further the
pseudo-plastic flow problems, which were discussed previously in this
thesis.

The numerical results of these flow problems are incorporated
in the first section of this chapter, while the results of wire drawing
and hydraulic extrusion are presented in the section dealing with those
processes. A discussion on how closely these results approximate the
correct solution is given. Furthermore, the usefulness of these results
is inVestigated by consideration of the objections, raised by Reiner (24),
to the use of the power law model, which is used in this thesis. The
results of the appiication of the axially symmetric pseudo-plastic flow
to wire drawing and hydraulic extrusion are then briefly considered. In
conclusion, a method due to Sutterby (37), which could possibly give an
approximate solution to the axially symmetric flow of a Bingham solid
in a circular cone of small semi-angle, and of finite length, is briefly

discussed.

6.1 Results

Various results of the numerical procedure have been presented
at the end of this section. The results for the velocity profiles, with
semi-angles 15°, 30°, 45°, and 60°, and for various values of n, are pre-

sented in FIGS. 6.I1-2 to 6.1I-5 and in FIGS. 6.11I-2 to 6.III-5 for the
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plane and axially symmetric flow, respectively. It is recalled that a
knowledge of m''(0) was required to solve the boundary value problems.
The relationships between this parameter and n for various semi-angles a
are presented, therefore, in FIG. 6.1II-1 for the plane flow, and for the
axially symmetric flow in FIG. 6.III-1.

The velocity profiles for the limiting cases, n =0, and n = 1,
are shown for comparison. The solution for the case n = 1, corresponding

to the Newtonian viscous liquid, may be written as

2 2
m(6) = cos"¢ 5 cos’a
sin“a

which is according to the expression originally obtained by Harrison(38)

and Bond (39). For the plane flow, it can be shown that the solution

2 2
m(e) = C0s 6 - COS o

s1n2 0.

satisfies the governing differential equation. The solution for the case
n = 0, corresponding to the perfectly plastic von Mises solid, for the

plane flow case may be written as

m(8) = o3 20

where ¢ is the angle between a radius and the direction of the algebraically

greatest principal stress, and the parameter ¢ is defined by
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-1+ 1 _
=T

c
ce - 1

tan %-n + o
for the case of perfectly rough walls; these equations are due to Hill (30).
For the axially symmetric case, with n = 0, the velocity field was ob-
tained only partially, since the derivatives at the walls are infinite.
The value used for m''(0), needed to start the integration procedure,
was that obtained by extrapolating the curves in FIG. 6.1II-1 ton = 0.
It 1s noted from the velocity profiles that there is a distinct
difference between the curves n = 0.1 and n = 0. This difference is more
pronounced than that between the curves n = 0.9 and n = 1. To illustrate

this further, the velocity profiles for the plane flow, with n = 0.04

and n = 0.07 have been presented for a channel with a semi-angle of 15°,
see FIG. 6.II-2. This marked difference can be attributed to the fact

that in the range

0<nx<l

the material is assumed to adhere to the walls, whereas for the case
n = 0, there is slippage.

In the solutions of the stress fields for the plane perfectly
plastic von Mises flow in a converging channei due to Nadai (29), and that
for the axially symmetric flow in a circular cone, due to Shield (31), it
was assumed that for perfectly rough walls, the shear stress at the walls
is k, where k is the yield stress in pure shear. This, however, is not

the case if a viscous medium is considered; the shear stress at the wall
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is determined by the velocity field. To illustrate this further, the
results presented in FIGS. 6.1I-6 and 6.1II-6 for the plane and axially
symmetric flow, respectively, show that for n =0 the shear stress at
the wall is independent of the semi-angle a, whereas for values of n

in the range
O<ng<l,

the shear stress at the wall is dependent on the semi-angle of the cone.
Furthermore, this dependence increases with increasing n. For complete-
ness, results of the relationships between the shear stress at the wall
and semi-angle o have been presented in FIGS. 6.1I-7 to 6.11-9 for the
plane flow, and in FIGS. 6.1II-7 to 6.III-9 for the axially symmetric
flow. It is noted that in FIGS. 6.I1-9 and 6.II1I-9 the non-dimensional
quantities Tre(a) rzn/uQn and Tr¢(“) r3n/uQ" have been replaced by
arre(a) rzn/uQn and a1r¢(a) r3n/uQn for the plane and axially symmetric
flow, respectively. This replacement is necessary, since the results
of Tre(d) rzn/uQn versus o for the plane flow, and those of tr¢(a) r3n/
uQ" versus o for the axially-symmetric flow yield curves which are of
such a nature that only a qualitative and not a quantitative study can
be made.

Since the solutions to the axially symmetric flow problems,
with n = 0.1, are applied to wire drawing and hydraulic extrusion, the
stress distributions in the material are presented only for that parti-

cular value of n. The semi-angles for this purpose were chosen to be
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15°, 30°, 45°, and 60°. Although large semi-angles are of no practical
consequence in the application to wire drawing, they are, nevertheless,
of academic interest, and thus merit presentation. These results are

presented in FIGS. 6.III-10 to 6.III-13. Similar results were obtained
for the plane flow case, and are presented in FIGS. 6.1I-10 to 6.1I-13.
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6.2 Error Analysis of the Numerical Results

An analysis of the errors involved in the numerical procedure
used is facilitated by the discussion presented in the Appendix.

It is shown in the Appendix that, if the solutions y; are known
at x = X, the accuracy of the step-by-step integration procedure for n
first order ordinary differential equations is controlled by means of a

test value §;

1

8t A A (6.1)

nes-313

4
where yi(1) are the function values at x = X + 2h, which are obtained
by using the increment Ax = h twice, and yi(z) are the function values
at x = X + 2h as calculated in one step with the increment Ax = 2h. The

coefficients a; are the error weights, which have to be chosen such that

The equations governing the pseudo-plastic flow problems were
shown to consist of three first order ordinary differential equations, both
for the plane and the axially symmetric flow. In order that the local
truncation errors in the function values y; are of equal weight, the

error weights were chosen to be
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The maximum truncation error, therefore, which could possibly occur in
the required function at x = X + 2h, as obtained in two steps with an

increment Ax = h for each step, becomes from equations (A.25) and (6.1)

This test value &, for the control of accuracy, was chosen to be 10'6

for the execution of the program. The maximum truncation error at each
station in the sequence of solution is therefore 10'6/2; consequently,
the total maximum error over the entire range, that is from ¢ = 0 to

¢ = a, is

-6
_Nx10
Erotal = — 2 ° (6.2)

where N is the number of stations needed to reach ¢ = a. As an example,
the solution to the axially symmetric converging flow problem with

o = 30°, and n = 2/3, required 128 stations, hence substitution of
N =128

in equation (6.2) yields for the total maximum error in the required

function, for this particular case,

- -5
ETota1 = 6.4 x 10
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over the entire range. The errors involved in the numerical procedure
indicate how closely the exact solution is approximated; however, no
matter how good this approximation may be, the errors do not indicate
the validity of the solution in a physical sense. The validity of a
solution, as applied to a physical problem, is dictated by the mathe-

matical model used, and the approximations made in order to obtain that.

solution.

6.3 Objections to the Power Law Model

The behavior of the pseudo-plastic material, which is the
mathematical model considered in this thesis, is based on the generali-

zation of the Ostwald's power law model, and is given by equation (1.6),

which is

mn mn ij * (1.6)

As mentioned previously in this thesis, Reiner (24) has raised major
objections to the use of this model. The objections, regarding the be-
havior of the apparent coefficient of viscosity, are

(i) for zero strain rates, the apparent coefficient of viscosity

is infinite, and
(ii) for infinite strain rates, this coefficient becomes zero.

This behavior of the coefficient of viscosity, in its limiting cases,
can be shown by consideration of FIG. 4.1. In this plot, the slope of
the flow curve is a measure of the apparent coefficient of viscosity, and

from equation (4.10) there obtains
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n-1
Y-2% m -]

1]
where, as previously mentioned, I and J are the strain rate and stress
invariants, respectively. The case n = 1, corresponding to the Newtonian

viscous liquid, reduces to

a'f'=l-l.

where u is the Newtonian coefficient of viscosity. However, for values

of n in the range
0<n<1,

this equation gives an infinite coefficient of viscosity for I = 0, and
for I = » this coefficient becomes zero. Therefore, it must be concluded
that for application of the solutions to any physical problem, the power
law model is useful only for a certain range of I; this range must be
chosen such that the limiting cases, and thus these objections, are ex-
cluded.

In the application of the axially symmetric solutions to wire
drawing processes, the objection of an infinite viscosity.is removed by
the assumption that the material does not yield until some critical point
oi. the flow curve is reached; this assumption has already been discussed
in CHAPTER IV. Furthermore, since the flow of materials in experimental

investigations is finite, the other objection is removed as well.
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The two objections dealt with so far are termed by Reiner (24) as the

nsaro" and “infinity" objections, respectively. As previously mentioned

in CHAPTER I, an obvious defect in the power law model is that the dimensions

of u depend on the value n. This defect, termed by Reiner as the "dimension"

objection, has no serious draw-backs if experiments, dealing with curve

fitting, are carried out for the particular material under consideration.
Although objections were raised to the use of the power law

model, this model is nevertheless of importance in certain physical appli-

cations, such as the extrusion of plastics.

6.4 Wire Drawing and Hydraulic Extrusion

In CHAPTER IV the velocity and stress fields, obtained in
CHAPTER III, for axially symmetric converging flow in a circular cone
were applied to wire drawing and hydraulic extrusion.

The application of solutions, based on the power law model, to
wire drawing seems to be unjustifiable, since this model describes a
material which flows under any anisotropic stress, no matter how small;
nevertheless, it is of academic interest and thus merits investigation.
Furthermore, since an assumption is made, stipulating a "yield Timit"
for this pseudo-plastic material, thus rendering the so obtained model
as a rate dependent material with a definite yield criterion, the results
of wire drawing become of physical interest. These results become even
more important if experimental investigations, involving the fitting of
flow curves for rate dependent materials, are carried out. The appli-
cation to hydraulic extrusion does not meet with this “"yielding" problem,

and should be of major importance in the extrusion of plastics.
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The assumption was made that yielding does not occur until the
stress invariant J reaches some value Jo’ which is point P on the flow
curve, see FIG. 4.2. The part of the flow curve from the origin, 0, to
this critical point P, with coordinates Io and Jo/u, could therefore
be considered as the behavior of the material before plastic flow of
the entire region ABCD, see FIG. 4.3, first becomes possible. Since
in this thesis these preliminary effects are not taken into consideration,
it is immaterial how the flow curve behaves until that critical point P
{s reached, and hence the assumed flow curve, as shown in FIG. 4.2, should
be acceptable.

Since the experimental investigation, dealing with hydraulic
extrusions, was carried out with a die with a semi-angle of 5°, the
velocity profile and stress distributions for the axially symmetric
converging flow for that semi-angle, with n = 0.1, are presented in
FIGS. 6.11I-14 and 6.1I1-15 respectively.

In the application of the pseudo-plastic flow fields to wire
drawing, the maximum reductions are dictated by the condition that yield-
ing does not occur in the drawn material. The results of the relation-
ships between the so obtained maximum reductions and semi-angle o are
shown in FIG. 6.A-1. This investigation of the maximum reductions alone
may not be conclusive however, the fact that the assumption is made that
the material adheres to the walls of the die may result in negative normal
stresses at the die, if the reductions become too large. The numerical
results show that for any reduction, and Z; fixed, the die pressure at A,

see FIG. 6.1, decreases as Z, increases; the die pressure remains positive
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there until z, =-7 is reached, for which the die pressure at A is zero.
A further increase in z, and hence in the reduction, causes the die
pressure at A to change sign, thus resulting in a negative normal stress
at that point. This condition is not physically tenable, and hence

another criterion for the maximum reduction is obtained.

Rigid Die ST ——~— -
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| | \|

: : N

o l ‘ '

// A | | ,’
- \

0 /”/ I | /

- - - - VI -2
N | ‘
' |
“

-1 l :
| |

—————— Zo | ________/I

z i
FIGURE 6.1

Possible Negative Normal Stresses at the Walls

The relation for the maximum reduction, based on the condition that

P. | =0,
die 2=z,
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is facilitated by equation (4.15), which, using equations (4.14) and
(4.20) gives

2
(2-3n){nm' 'sin¢ + m'cos¢}¢=a 3n
Ruax = 1 - DoTmrrsing + (T-3n)m"cos¢}

=0

as the maximum reduction which ensures that no negative normal stresses
occur at the die. The results of these maximum reductions are presented
for various semi-angles in FIG. 6.A-1. Clearly, from the numerical re-
sults presented in FIG. 6.A-1, the maximum reduction based on the condition
that no negative normal stresses occur at the die dictates the maxiﬁhm
reductions possible. It is interesting to note that the special case
n = 0, considered by Shield (31), gives a maximum reduction of 63% for
any semi-angle, if the shear stress Tr¢ is identically zero throughout
the entire flow region; this maximum reduction is based on the condition
that yielding does not occur in the drawn material. It can be shown that,
for this particular case, the die pressure is positive along the entire
length of the walls. However, Shield did not investigate the possibility
of negative normal stresses at the die, not even for the case where Tr¢
does not vanish identically in the region of flow.

The relationship between the ram pressure and semi-angle o
for various reductions is presented in FIG. 6.A-3 for the hydraulic ex-
trusion process. Similar results for the wire drawing process have been
presented in FIG. 6.A-2, where in this case the qrawing stress is con-
sidered; the maximum reductions based on the two criteria, discussed pre-

viously, are also shown in this figure. It is noted from FIGS. 6.A-2 and



136

6.A-3 that both the drawing stress and the ram pressure are monotonically
decreasing functions of the semi-angle o. However, Evans and Avitzur (40)
found that for a rigid perfectly plastic solid there exists a definite
minimum for both the drawing stress and the ram pressure as functions of
the semi-angle o. This minimum is denoted by the optimum semi-die

angle, and is that semi-angle for which both the drawing stress and the
ram pressure are a minimum. This distinct difference can probably be
attributed to the fact that the material under consideration in this
thesis is rate dependent to a significant extent. It would be of interest
to investigate the relationship between the ram pressure and semi-angle o

for extrusion of plastics, since these materials are rate dependent.
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6.5 Suggestions for Future Work

Various results have been presented for the pseudo-plastic
flow problems, considered in this thesis, however a solution for the
Bingham solid was not obtained. It is of importance, therefore, to
discuss a method which could possibly yield an approximate solution to
the flow of a Bingham solid in a circular cone. To this end this chapter
is concluded with a brief discussion of this method.

It was shown in CHAPTER II that no radial, steady, quasi-static
flow solutions exist for the plane flow of a Bingham solid, without body
forces, in a converging channel, or for the axially symmetric converging
flow in a circular cone, at least if the solid is assumed incompressible.

The limiting cases of the Bingham_so]id. however, the Newtonian
viscous 1iquid and the perfectly plastic von Mises solid, do indeed yield
radial flow solutions to the problems mentioned above. Furthermore, it
is clear that in a long channel or cone the velocity profile near the
entry section should closely approximate that of the perfectly plastic
von M1ses solid, whereas close to the exit section, the viscous terms
dominate and hence the solution there should be approximately that of the
Newtonian viscous liquid.

It is the purpose of this concluding section to outline briefly
a method which might yield an approximate solution for the flow of a
Bingham solid in a circular cone of small semi-angle and of finite length.
This method was successfully applied by Sutterby (37) to the axially
symmetric converging, steady, incompressible Newtonian viscous flow in a

circular cone of finite length, and of small semi-angle, with specified
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conditions at the inlet section.

Let the flow of a Bingham solid in a circular cone, of length
L, be described by spherical polar coordinates, (r,0,8); the z-axis is
taken along the axis of symmetry, see FIG. 6.2. Further necessary

notation is also shown in this figure.

Rigid Die

FIGURE 6.2
The Cone of Finite Length

Since no radial flow exist for the Bingham solid, the flow must
consist of a tangential component as well. The flow field, therefore,

consists of a radial velocity v = vr(r,¢), a tangential velocity

vV, = v¢(r,¢), and v, = 0. From equations (2.1), there obtains for the

¢
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components of the strain rate tensor

¢ ]
(6‘3) |
v v, cot
d :—r--l-i—-? .
6 r r
g =L e 1%
ré 2r 3¢ 2 93r °
The equation of continuity becomes
13 2 1 3 . _

Yo7 (r VY‘) + mw (v¢sm¢) = 0. (6.4)

The strain rate invariant,

I =vad d (6.5)

mn mn °

is obtained from the strain rate relations (6.3). Similarly, the stress

deviator components are found by substitution of equations (6.3) and (6.5)
in the constitutive equations (1.4). These expressions are very complex,
and will not be reproduced here. The equations of motion, assuming steady

flow, and without body forces, are

v vV, 9V oS 3s
3B tolvogr* 7 a¢r)= o+ +—(—-i+s¢cot¢).

or
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av ov 9s as
) - r
A I e s TR

Substitution of the stress deviators in equations (6.6), results in a
set of equations, which along with equation (6.4) constitute three equations
for the three unknowns p, V.., and v¢ .

If the circular cone under consideration is of small semi-angle
o, then it may be assumed that the streamlines are only slightly curved.
Consequently, V¢ is small compared to Vps and furthermore, sin¢ and cos¢
may be replaced by ¢ and 1, respectively. With these approximations, the
governing equations are simplified to some extent.

The resulting equations of motion are of the following form

P =
T oF + kG + yH =0,
(6.7)
%+J+m+ﬂ=o.
and the equation of continuity becomes
av v v
_r b+ -0
“ar+2Vr+a¢+¢ 0, (6.8)

where the functions F, G, H, F, G, and i are functions of r and ¢, and
of the velocity components and their derivatives with respect to r and ¢
up to and including their second order. The volume flow condition, for

small semi-angles, becomes



145

)
Q= Zﬂrz I v, odd. (6.9)
0

The problem reduces to the solution of equations (6.7) and
(6.8) subject to the volume flow condition (6.9), and the following
boundary conditions:

from symmetry,

~r=0, v, =0, at ¢ =0,

and since there is no flow across the walls of the die,
v, =0 at ¢ = o,

and finally the assumed no-slip boundary condition
v, =0, at ¢ = o.

In this method the velocity profile at the entry section, that
isr= Ro’ is assumed to be that of the Bingham solid in a circular tube,
and the pressure is assumed to be constant there. Consequently, the in-
let conditions are

atr=R: v =0, p= Po ° and Ve is as given by the

Bingham solution in a circular tube. A finite difference analysis can
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now be applied to the region of deformation.

It is noted that the complexity of the system is more pronounced
than that for the Newtonian viscous flow. This may be a defect in this
method, as applied to flow of materials with a less simple constitutive
equation. A more thorough theoretical investigation is therefore re-
quired; if a solution is obtained, these results should be of major

importance for hydraulic extrusion and wire drawing processes.
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APPENDIX
NUMERICAL INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS

A.1 Introduction

The governing equations of CHAPTERS III and IV were integrated
by Gill's variation of the Runge-Kutta fourth order method (41). This
is a self starting integration procedure which is applicable to a system
of n first order ordinary differential equations. The following expla-
nation first considers a single differential equation, this is then
generalized to a system of ordinary differential equations, and finally

the accuracy of the method is indicated.

A.2 The First Order Ordinary Differential Equation

Consider the single first order ordinary differential equation

%% = f(x,y).

The initial condition is y = Y at x = X and suppose that y is required
at x = X + h, where h is small. One possible procedure is to consider

the Taylor series expansion about the point P, with coordinates (x,Y),

2 2
y-v=6y=h(‘—j{;)P+“7_r(d—%)

3 3

n Yy

+—( ) +..0’ (A-])
aép 3 ade

where the coefficients are calculated from
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%=ﬂhw,

Q.
N

L3, o of
TR

y ° etc.

o
x

The complexity of the coefficients renders this process impracticable.
An alternative procedure, introduced by Runge and modified by
Kutta, proceeds as follows:

Define, following Gill's notation,
Ko = hf(X,Y) ,
ky = hf(X + mh, Y + mko) ,
ky = hf(X + nh, Y + (n-r)k, + rk;) ,
kg = hf(X + ph, Y + (p-s-t)k0 + sk, + tk2) ’

and construct

8y = akg + bky + ck, + dky . (A.2)

FIGURE A.1 indicates the geometrical nature of this procedure. The six
constants m, n, p, r, s, t, and the four weighting factors a, b, ¢, and d
are chosen such that the terms up to and including 0(h4) in the Taylor
series expansion of equation (A.1) agree with the corresponding terms in

the expansion of equation (A.2).
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sh —te—— th ——d

(X,Y) P,

x=ph  x=X+h

FIGURE A.1

Geometrical Construction of &y

A.3 Equations Governing the Constants and Weighting Factors

The Taylor series expansion of equation (A.2) requires the ex-
pansions of the weighting functions ko’ k], kz, and k3. These expansions

are obtained by making use of the Taylor series expansion in two variables
(42)

5 Pl D
flx+p,y+a) = f(x,y) + DF(x,y) + > fx,y) + 37 fxy) + ..
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where the operator D is given by

= _ 9 ar

With the introduction of the notation

fo = f(X,Y),
the expression for k, becomes
ko = hf,
Letting p=2+¢ &
X ooy’
then
2 &_=mh (& ) =
mh == + mk 5 mh (ax + £, ay) mh D,
consequently
2,22 3,3n3
3 =h[f+thf+'“'2‘,Df+“‘g,Df+ .

To evaluate k2, then

) 3 9 _
nh ==+ [(n-r)k0 + rk1] 5 C nhD + r(k]-ko) i
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2. 223
nho + men? [of + ¥ L +BEDT. 7 &,
' P

consequently

2 2.2 3,3,3
= n"h™D°f ., n"h™D°f
ky = h[f + nhDf + ===+ ———+

2 mh 2 ‘
+ + + . A
mrh {fny 3T fy D°f + nhDf ny + }]P ’
_ of
where . f.y * %"

Similarly to evaluate k3 s

ph gy+ [(p-s-t)k tsky+tk,] = phD + [s(ky=k)) + t(k,-k )] g_y _

. phD + [hms {Df + “‘"gff + '“zhz?sf + ...}
+ hont {DF + “hgif + "2h§?3f + ...}
+ h3tmuj (£,Df + o f, D%f + nhDF « Oy + 1] %
consequently
ky = h[f + phDF + ngfuzf + 92'!‘3 D3F + ...

h3

2 2.2
+ h (mst+tan)fy *oT (sm“D

2.2
+ 2t +
f mrfny tn“Df) f‘y
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+ h3(pstf + ptnDf) ny + ...
P
The expansion of equation (A.1) becomes

R hd 2
6y = [hf + o7 Df + 37 (D°F + fny) +

h4

3 2
ar (0°f + £

2

f+ fy Df + 3Dfoy) + ... (A.3)

x=X

The equations connecting the constants and the weighting
factors are obtained by equating the eight terms in the expansion of 8y,
equation (A.3), to the corresponding terms in the expansion of 8y = ako +

bk] + ck2 + dk3 . There results the equations
a+t+b+c+d=1,

bm+ cn + dp = 1/2 ,

bm? + cn? + dp? = 1/3 ,
(A.4)
bmS + cnS + dp3 =1/4 ,
crm + dsm + dtn = 1/6 ,
crm2 + dsm2 + dtn2 = 1/12 ,
drmn + dsmp + dtnp = 1/8 ,
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dtrm = 1/24 .

The set of equations (A.4) represent eight constraints on the
ten unknowns a, b, ..., s,t, consequently two further consistent relations
may be imposed; this may be done in various ways, but first it is shown

that p = 1.

A.4 Determination of the Constants and Weighting Factors

Adding the second of the set of equations (A.4) multiplied by
mp and the third multiplied by - (m + p) to the fourth equation, gives

cn(m-n)(p-n) = ';i - -'-"-+3-E+ %— . (A.5)

Multiplying the fifth equation by p and subtracting from this the seventh

equation,

) =2_1
cmr(p-n) £E-% - (A.6)
Similarly from the fifth and sixth,
=l _m
dnt(n-m) = -I—z- 8 (A.7)

Eliminating d between equation (A.7) and the eighth of the set of equat%ons
(A.4),

UL A (A.8)
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Substituting equation (A.8) in equation (A.6),
en(p-n)(m-n) = (2n-1)(5 - ) . (A.9)

Comparing equation (A.9) with equation (A.5) gives

mp=m. (A.10)
From the eighth of the set of equations (A.4)

m#0,
hence the solution to equation (A.10) reduces to

p= 1..

The values of a, b, ¢, and d are determined from the first

four of the set of equations (A.4),

atb+c+d=1,

N —
-

bm+ cn + d

bm2 + cn2 +d

et
-

(A.11)

3 3

bm” + ¢cn” + d

>~
w
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since p = 1. This set of equations yields a unique solution for a, b,

c, and d, if the coefficient determinant is non-zero that is if
ma{m-n)(n-1)(1-m) # 0 . (A.12)
Solving the set of equations (A.11);

1.1 -2(mn
a =g+ Lofnl,

_ 2n-1
~ T2m{n-m)(T-m) °*

(A.13)

- 1-2m
12n{n-m){1-n) °*

-} B

Finally, the constants r, s, and t are determined from the

(]
|

fifth, sixth and seventh of the set of equations (A.4),

crm + dsm + dtn = %-,

2

crm” + dsm2

+ dtn2

=17 (A.14)

crmn + dsm + dtn = %-.

Once again a unique solution is obtained if the coefficient determinant

of the set of equations (A.14)
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cdzmzn(n-m)(n-l) #0. (A.15)

Consequently, the unique solution to r, s, and t is

_ n{n=-m
r= 2m{1-2m5 ’
s = gl-m){m+n-1-§2n-1$2}
2m(n-m){ébmn-4(mtn)+3 ’

_ _(1-2m)(1-m)(1-n)
n{n-m){6mn-4(m+n)+3}

The parameters m and n may be assigned in any manner consistent
with the previous equations. Let the interval h be divided into three

equal parts, then

(A.16)

=
1
wir

Substitution of equations (A.16) in the set of equations (A.13) yields

<)
u
o] —
L 4

o
n
o] w

L J
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Similarly the constants r, s, and t are

r=1,
s=-1,
t=1

The weighting functions obtained are
ko = hf(X,Y),

k
- h 0

k
2h 0,
3 IY - 3 k-l) 'Y

=~
1

9 = hf(X +

=~
n

3 = hE(X+h, Y+ k -k + k),
and the increment in y becomes

6y=%(ko+3k]+3k2+k3) .

The formulae for the k's and the increment in y thus obtained are those
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due to Kutta (42).
Another useful choice for the parameters m and n is facilitated
by setting the determinants (A.12) and (A.15) equal to zero. The case

of interest
me=n (A.17)

is considered. Substitution of equation (A.17) in equations (A.13)

further imposes the conditions

in order that b and ¢ remain finite. Substituting these values for m

and n into the first and fourth of the set of equations (A.11) yields

_ 1
a--é-,

Either b or ¢ is now arbitrary but not both, since the condition

at+b+c+d=1
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is to be satisfied. Assuming that

b=%,

c-1,
equations (A.14) give

el

s=0,

t=1.

The constants and weighting factors thus obtained give rise to a set of

formulae, originally due to Runge (42), for the k's and an increment in y;
ko = hf(X,Y) ,

k
= h 0
k.I = hf(X + > s Y + 7 )

k

. hoye Ll
ky = hf(X + 3, ¥ + ) ,

k3=hf(x+h,Y+k2) R
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and the increment in y becomes
_1 |

Two methods of evaluation of the constants have been considered,
namely those due to Kutta and Runge. Another approach, due to Gill (41),
is based on the number of storage registers needed in the calculation of
each step. Gill's variation will now be considered by application to a

system of ordinary differential equations.

A.5 The System of First Order Ordinary Differential Equations

The consideration of the system of equations is facilitated by
the preceeding discussion of a single first order ordinary differential

equation. The system of equations is

dy ; .
3x—= fi(x,.YJ) H 1’3 = ]oza T

with the initial values of Y], Y2""’Yn at x = X. The weighting functions

for the system are expressed as
k1.0 = hfi(X,Y1,Y2, R I

kiq = hfi(X +mh, ¥ + mkygs Yo * kg s vee) s

kip = hfi(X +nh, Y, 4 (n-r‘)k]0 +rkyps Yo F (n-19k20 * rkoys vl
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Kin = hfi(x + ph, Y + (p-s-t:)k]0 *+ skyq * thyys vee)

i3
and the fourth order approximation is

Gi11 has introduced a notation which simplifies the theory and is also

better adapted to computer programming techniques. Let
X =Yy s (A.18)
then the system of equations becomes

dy.
LI . =
-d—x—-fi(yj) ’ 1 -]’2’ cesy n,

e
|

= 0,1, «..yN,

where fo = 1. Under the transformation (A.18) the weighting functions

are obtained as
kil = hfi(Yj + mkjo) ,

kip = hf1(Yj + (n-r‘)k:]o + rkj]) .
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kig = hf,i(Yj + (p-s-t)kjo + skj] + tka) R

where i=1,2, ..., n ,and j = 0,1, ..., N,

The Taylor series expansion for

G.V-i = .V_.i(x +h) - .Y.i(x)

about the initial condition is now obtained. The manipulations are con-

siderably simplified by the introduction of the notation

f1 = fi(Yj) ,
and (A.19)
of
f.lj = '8—1 ’
yj(x.vj)
where
T = ]’2’ sy N,

The Taylor series expansion, as given by

2
dy. 2 d%y.
Sy; = y; (%) -y (X) = h(zD)  + B

" d
(x¥y) oy,
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becomes with the notation of (A.19)
_ 2 j

3
%T (fjfkfijk + fkfijfjk) + (A.20)

4 . L .
R AR Y R R AR R AR A £ D+
Taylor series expansions are also required for the weighting

functions kio’ kil’ k12’ and k13; the expression for kio simply reduces

to

kio = hf1 . (A.21)
The expansion of ki] is obtained from
2 2
f mk, k
jo po
fi(Yj + mkjo) f (Y ) + mkgo(dy )Y + — (dyjdyp)y. + e .
J J
(A.22)

Substituting equation (A.21) in the expansion (A.22) gives

2 3

- - 2 J jk
k hfi(Yj + mk ) hf1 + mh f fi0+ '1T" Jfkf

il

3.4
m”h k1,
+T- jfff v
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The substitutions and manipulations required to find the expansions for
k12 and k13 are complicated, and it serves no purpose to reproduce them
here. However, it can be shown that the equality of the eight terms in
equation (A.20) and the corresponding ones in the expansion of 8y; =

aky, * bkeq * ckyp + dk;, leads to the set of equations (A.4) previously

io
given for a single equation. Table A.1, extracted from Gill's paper (41),

indicates the typical terms as well as their coefficients.

TABLE A.1
Typical Terms and their Coefficients

Term Coefficient in
8y =y, (X+h)-y (X) | 8y,=ak, +bk, +ck, +dk, 5

hfi 1 a+b+c+d
hzfjfij 1/2 bm + cn + dp
hsfjfkfijk 1/6 1/2(bn? + cn® + dp®)
h3fjfkjfik 1/6 crm + d(sm + tn)
h4fjfkf1fijk] 1/24 1/6(bm> + cnd + dp)
h4fjfkf1kfij1 1/8 crm + d(sm + tn) p
h4fjfkf]jkf1] 1/24 1/2{crn® + d(sm + tn?)}
h4fjfkf]kf1] 1/24 dtrm

A.6 Gill's Variation of the Runge-Kutta Fourth Order Method

The procedure Gill used in removing the indeterminancy of the
constants is now discussed; the purpose of this procedure, as previously

noted, is to minimize the number of storage registers required for auto-
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matic machine computations. Further, Gi1l chose the parameters such
that the accuracy was the highest attainable.

In starting out the integration procedure n + 1 registers are
required to store the quantities YJ, J=0,1, ..., n. At the end of the
first stage an extra register is required to store the quantity kio'
During the second stage, the quantities Yj + mkjo and kj] are to be
stored. Before proceeding, however, the quantities Yj + (n-r)kjo,
Yj + (p-s-t)kjo and Yj + akjo should be stored as well since they are
needed in the following stages. These five quantities are linearly de-
pendent and can be represented by three. For the third stage the quantities
Yj + (n-r)kjo + rkj], Yj + (p-s-t)kJ.o + skj] R Yj + akjo + bkj], and ka
need to be stored, therefore, four registers are required. At the final

stage the quanties to be stored are three in number, namely
Yj + (p-s-t)kjo + skj] + tka, Yj + akjo + bkjl + cka, and kj3 .
So in general three storage registers are enough except at the third

stage, where four are needed. This draw-back can be overcome by making

the first three Tinearly dependent; this condition implies that

which reduces to
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[p - (s+t)J(b-r) + (n-r)(s-b) + a(r-s) = 0. (A.23)

The system of equations to be solved, therefore, reduces to the set of:
equations (A.4) and in addition equation (A.23).

It has been shown previously that p = 1; then, if m and n are
constrained to be equal to 1/2, a set of equations is obtained, which for

completeness is shown below

a+b+c+d=1,

b+c+2d=1,
b+c+4d = 4/3 ,
b+c+8=2,
(A.24)
cr+ds +dt = 1/3 ,
cr +ds +dt = 1/3 ,

cr + 2ds + 2dt = 1/2 ,
dtr = 1/12 ,

[1 - (s#t))(b-r) + (F - r)(s-b) + a(r-s) =0 .
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Solving the set of equations (A.24), gives

a=1/6,

d=1/6 ,
and
r=1%v %-,
s = 1'/-% .
t=11/%—,
with
m=n=1/2,
p=1

Gill has shown that in making the error in the term of 0(h5) in the Taylor
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series expansion the least, and thus obtaining maximum accuracy, the

upper sign of the square root should be used. The formulae, due to Gill,

then become
Ko = hFi(¥ogY10"Y2ge +++)
Ky = hf-](-Vo]»y]]».Yz]. cee) s
kip = hfi(yga¥12a¥gps o) s
k13_= hfi(y03s¥]3sy23. cee)
where

] 1 ]
Y1+[-?+ ,/?]k1.0+[1 -/-??]kﬂ .

yi3 = ¥y t [- /%—]kﬂ + [ +/%] Kip
and the accepted value of ¥; at the end of the step is

1 1 1 1 1 !
Yia = Vit Kiot 3 -Vl 301+ V5 Ik + g ki
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where

i=0,1, ..., n.

A subroutine based on Gi1l's variation of the Runge-Kutta fourth order
method (43) has been prepared, and is shown in the body of this Appendix.
Up to now no mention has been made about the errors encountered

in using this process; this is done in the next section.

A.7 Brief Discussion on the Accuracy of the Method

In order to discuss the results qualitatively, it is necessary
that some estimate is made of the errors due to rounding-off and truncation.
The latter are caused by the fact that terms of O(hs) and higher are ne-
glected in the Taylor series expansion about the initial values.

G111 has discussed the rounding-off errors of such quantities
as v %-and %-at length. However, since the program is written in double
precision, that is the calculations are performed carrying 16 significant
figures, it is reasonable to assume that the errors introduced due to
rounding-off are negligible.

Truncation errors or estimates thereof are not accounted for
in the program. In order to overcome this disadvantage, control of accuracy
is accomplished by adjusting the increment in x; a comparison is then made
between the function values obtained at x = X + 2h by firstly using the
increment Ax = h in two stages and secondly by using double the increment,
Ax = 2h, in a single stage.

Returning now to the single first order equation
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%" f(x,y) .

Suppose that the initial condition is y = Y at x = X, and that the
function value is required at x = X + 2h, where h is small. Let the
error, due to truncation, of the function value ét x = X + h be denoted

by €. Since terms 0(h5) are neglected in the Taylor series expansion,
€=Ch5

approximately, where c is some constant. The error in the function value

at x = X + 2h, as calculated in two stages, is then
2¢ = 2¢ch° .

Secondly, the increment Ax = 2h is used and consequently the error in the

function value at x = X + 2h, as obtained in a single stage, is given by

e = 32¢h° ,
consequently
_ 5 _ 1 .
2 = 2ch” = 15 (e 2e) . (A.25)

From the preceeding discussion, this may be written as
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2€e = ':|I'5'[.Y(2) -ym 1,

where y(]) (X +2h) 1is the function value obtained in two stages with the
increment Ax = h, and y(z) (X + 2h) is the function value calculated in
one stage with the increment Ax = 2h. This discussion of the truncation
errors may readily be extended to a system of ordinary differential
equations.

In the subroutine a test value § is generated for the control

of accuracy and is defined as

. lyi(]) . yi(2)| ,

ne~13

“’]I?”‘ %
where yi(]) and yi(z) have the same meaning as before, and the coefficients
a; are the error-weights. The test value & is an approximate measure of
the local truncatidn error at the point x = X + 2h, and may be specified
arbitrarily at the start of the program. The test value § is denoted by
DELT in the subroutine. For completeness the subroutine based on Gill's

variation of the Runge-Kutta fourth order method is now presented.



A.8 Subroutine DRKGS

SUBROUTINE DRKGS

PURPOSE

TO SOLVE A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL
EQUATIONS WITH GIVEN INITIAL VALUES.

USAGE

CALL DRKGS(PRMT,Y,DERY,NDIM,IHLF,FCT,0UTP,AUX)
PARAMETERS FCT AND OUTP REQUIRE AN EXTERNAL STATEMENT.

DESCRIPTION
PRMT -

PRMT?;-
PRMT(2)-
PRMT(3)-
PRMT (4)-

PRMT(5)-

DERY -

OF PARAMETERS

DOUBLE PRECISION INPUT AND OUTPUT VECTOR WITH

DIMENSION GREATER THAN OR EQUAL TO 5,WHICH

SPECIFIES YHE PARAMETERS OF THE INTERVAL AND OF

ACCURACY AND WHICH SERVES FOR COMMUNICATION BETWEEN

OUTPUT SUBROUTINE (FURNISHED BY THE USER) AND

SUBROUTINE DRKGS. EXCEPT PRMT(5) THE COMPONENTS

ARE NOT DESTROYED BY SUBROUTINE DRKGS AND THEY ARE

LOWER BOUND OF THE INTERVAL 2INPUT R

UPPER BOUND OF THE INTERVAL (INPUT),

%NTTIA% INCREMENT OF THE INDEPENDENT VARIABLE
INPUT),

UPPER ERROR BOUND (INPUT). IF ABSOLUTE ERROR IS

GREATER THAN PRMT(4), INCREMENT GETS HALVED.

IF INCREMENT IS LESS THAN PRMT(3) AND ABSOLUTE

ERROR LESS THAN PRMT(4)/50, INCREMENT GETS DOUBLED.

THE USER MAY CHANGE PRMT(4),BY MEANS OF HIS OUTPUT

SUBROUTINE.

NO INPUT PARAMETER. SUBROUTINE DRKGS INITIALIZES

PRMT(5)=0. IF THE USER WANTS TO TERMINATE

'SUBROUTINE DRKGS AT ANY OUTPUT POINT, HE HAS TO

CHANGE PRMT(5) TO NON-ZERO BY MEANS OF SUBROUTINE
OUTP. FURTHER COMPONENTS OF VECTOR PRMT ARE
FEASIBLE IF ITS DIMENSION IS DEFINED GREATER

THAN 5. HOWEVER SUBROUTINE DRKGS DOES NOT REQUIRE
AND CHANGE THEM. NEVERTHELESS THEY MAY BE USEFUL
FOR HANDING RESULT VALUES TO THE MAIN PROGRAM
(CALLING DRKGS) WHICH ARE OBTAINED BY SPECIAL
MANIPULATIONS WITH OUTPUT DATA IN SUBROUTINE OUTP.
DOUBLE PRECISION INPUT VECTOR OF INITIAL VALUES
(DESTROYED) .LATERON Y IS THE RESULTING VECTOR OF
DEPENDENT VARIABLES COMPUTED AT INTERMEDIATE
POINTS X.

DOUBLE PRECISION INPUT VECTOR OF ERROR WEIGHTS
(DESTROYED). THE SUM OF ITS COMPONENTS MUST BE
EQUAL TO 1. LATERON DERY IS THE VECTOR OF
DERIVATIVES, WHICH BELONG TO FUNCTION VALUES Y AT
INTERMEDIATE POINTS X.
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NDIM - AN INPUT VALUE, WHICH SPECIFIES THE NUMBER OF
EQUATIONS IN THE SYSTEM.

IHLF - AN OUTPUT VALUE, WHICH SPECIFIES THE NUMBER OF
BISECTIONS OF THE INITIAL INCREMENT. IF IHLF GETS
GREATER THAN 10, SUBROUTINE DRKGS RETURNS WITH
ERROR MESSAGE IHLF=11 INTO MAIN PROGRAM. ERROR
MESSAGE IHLF=12 OR IHLF=13 APPEARS IN CASE
PRMT(3)=0 OR IN CASE SIGN(PRMT(3)).NE.SIGN(PRMT(2)-
PRMT(1)) RESPECTIVELY.

FCT - THE NAME OF AN EXTERNAL SUBROUTINE USED. THIS
SUBROUTINE COMPUTES THE RIGHT HAND SIDES DERY OF
THE SYSTEM TO GIVEN VALUES X AND Y. ITS PARAMETER
LIST MUST BE X,Y,DERY. SUBROUTINE FCT SHOULD
NOT DESTROY X AND Y.

OUTP - THE NAME OF AN EXTERNAL OUTPUT SUBROUTINE USED.
ITS PARAMETER LIST MUST BE X,Y,DERY,IHLF,NDIM,PRMT.
NONE OF THESE PARAMETERS (EXCEPT, IF NECESSARY,
PRMT(4) ,PRMT(5),...) SHOULD BE CHANGED BY
SUBROUTINE OQUTP. IF PRMT(5) IS CHANGED TO NON-ZERO,
SUBROUTINE DRKGS IS TERMINATED.

AUX - DOUBLE PRECISION AUXIALIARY STORAGE ARRAY WITH 8

. ROWS AND NDIM COLUMNS.
REMARKS

THE PROCEDURE TERMINATES AND RETURNS TO CALLING PROGRAM,IF
(1) MORE THAN 10 BISECTIONS OF THE INITIAL INCREMENT ARE
NﬁCES???Y TO GET SATISFACTORY ACCURACY (ERROR MESSAGE
IH.F=11),
(2) INITIAL INCREMENT IS EQUAL TO O OR HAS WRONG SIGN
(ERROR MESSAGES IHLF=12 OR IHLF=13),
3) THE WHOLE INTEGRATION INTERVAL IS WORKED THROUGH,
4) SUBROUTINE OUTP HAS CHANGED PRMT(5) TO NON-ZERO.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
THE EXTERNAL SUBROUTINES FCT(X,Y,DERY) AND
OUTP(X,Y,DERY ,IHLF ,NDIM,PRMT) MUST BE FURNISHED BY THE USER.

METHOD
EVALUATION IS DONE BY MEANS OF FOURTH ORDER RUNGE-KUTTA
FORMULAE IN THE MODIFICATION DUE TO GILL. ACCURACY IS
TESTED COMPARING THE RESULTS OF THE PROCEDURE WITH SINGLE
AND DOUBLE INCREMENT.
SUBROUTINE DRKGS AUTOMATICALLY ADJUSTS THE INCREMENT DURING
THE WHOLE COMPUTATION BY HALVING OR DOUBLING. IF MORE THAN
10 BISECTIONS OF THE INCREMENT ARE NECESSARY TO GET
SATISFACTORY ACCURACY, THE SUBROUTINE RETURNS WITH
ERROR MESSAGE IHLF = 11 INTO MAIN PROGRAM.
T0 GET FULL FLEXIBILITY IN OUTPUT, AN OUTPUT SUBROUTINE
MUST BE FURNISHED BY THE USER.
FOR REFERENCE, SEE



RALSTON/WILF, MATHEMATICAL METHODS FOR DIGITAL COMPUTERS,
WILEY, NEW YORK/LONDON, 1960, PP. 110-120.

SUBROUTINE DRKGS(PRMT,Y,DERY ,NDIM,IHLF ,AUX)
DIMENSION Y(1),DERY(1),AUX(8,1),A(4),B(4),C(4),PRMT(1)
?OUB#E PRECISION PRMT,Y,DERY,AUX,A,B,C,X,XEND,H,AJ,BJ,CJ,RT,R2,
DEL
D0 1 I=1,NDIM
1 AUX(8,I)=.066666666666666667DO*DERY(I)
X=PRMT(1)
XEND=PRMT (2)
H=PRMT (3)
PRMT(5)=0.D0
CALL FCT(X,Y,DERY)
ERROR TEST
IF(H*(XEND-X))38,37,2

PREPARATIONS FOR RUNGE-KUTTA METHOD
2 A(1)=.5D0
.29289321881345248D0
1.7071067811865475D0
.16666666666666667D0
2.00
1.00
1.00
2.00
500
.29289321881345248D0
=1.7071067811865475D0
C(4)=.500

PREPARATIONS FOR FIRST RUNGE-KUTTA STEP
D0 3 I=1,NDIM
AUX(1,1)=Y(1)
AUX(2,I)=DERY(I)
AUX(3,1)=0.D0

3 Aux(6,1)=0.D0
IREC=0
H=H+H
IHLF=-1
ISTEP=0
IEND=0

START OF A RUNGE-KUTTA STEP
4 IF((X+H-XEND)*H)7,6,5
5 H=XEND-X
6 IEND=1

RECORDING OF INITIAL VALUES OF THIS STEP
7 CALL OUTP(X,Y,DERY,IREC,NDIM,PRMT)
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8
9

10

11
12

13
14

15

16

18

19

20
21

22

IF(PRMT(5))40,8,40
ITEST=0
ISTEP=ISTEP+1

STQRT OF INNERMOST RUNGE-KUTTA LOOP
J=

AJ=A§J;
BJ=B(J
cJ=C(J)

DO 11 I=1,NDIM

R1=H*DERY(I) |

R2=AJ* (R1-BJ*AUX(6,1))
Y(I)=Y(I)+R2

R2=R2+R2+R2
AUX(6,1)=AUX(6,I)+R2-CJ*R1
1F(J-4)12,15,15

J=J+1

1F(3-3)13,14,13

X=X+.500*H

CALL FCT(X,Y,DERY)

GO TO 10

END OF INNERMOST RUNGE-KUTTA LOOP

TEST OF ACCURACY
IF(ITEST)16,16,20

IN CASE ITEST=0 THERE IS NO POSSIBILITY FOR TESTING OF ACCURACY

D0 17 I=1,NDIM
AUX(4,1)=Y(1)
ITEST=1
ISTEP=ISTEP+ISTEP-2
IHLF=IHLF+1

Y(1)=AUX(1,I)
DERY(I)=AUX(2,I)
AUX(6,1)=AUX(3,I)
GO TO 9

IN CASE ITEST=1 TESTING OF ACCURACY IS POSSIBLE
IMOD=ISTEP/2 \

IF (ISTEP-IMOD-1MOD)21,23,21

CALL FCT(X,Y,DERY)

DO 22 I1=1,NDIM

AUX 5,1g=v(1)

AUX(7,1)=DERY(1)

GO TO 9
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COMPUTATION OF TEST VALUE DELT
23 DELT=0.D0
DO 24 I=1, NDIM
24 DELT=DELT+AUX(8,I)*DABS(AUX(4,I)-Y(I))
- IF(DELT-PRMT(4))28,28,25

ERROR IS TOO GREAT
25 IF(IHLF-10)26,36,36
26 DO 27 I=1,NDIM
27 AUX(4,1)=AUX(5,I)
ISTEP=ISTEP+ISTEP-4
X=X-H
IEND=0
GO TO 18

RESULT VALUES ARE GOOD
28 CALL FCT(X,Y,DERY)

DO 29 I=1,NDIM
AUX(1,1)=Y(I)
AUX(2,1)=DERY(I)

AUX(3,1)=AUX(6,I)

Y(1)=AUX(5,I)
29 DERY(I)=AUX(7,I)

CALL OUTP(X-H,Y,DERY,IHLF ,NDIM,PRMT)

IF(PRMT(5))40,30,40
30 DO 31 I=1,NDIM

Y(1)=AUX(1,I)

31 DERY(I)=AuX(2,I)

IREC=IHLF

IF(1END)32,32,39

INCREMENT GETS DOUBLED
32 IHLF=IHLF-1

ISTEP=ISTEP/2

H=H+H

IF(IHLF)4,33,33
33 IMOD=ISTEP/2

IF(ISTEP-IMOD-IMOD)4,34,4
34 IF(DELT-.02D0*PRMT(4))35,35,4
35 IHLF=IHLF-1

ISTEP=ISTEP/2

H=H+H

GO TO 4

RETURNS TO CALLING PROGRAM
36 IHLF=11
CALL FCT(X,Y,DERY)
GO TO 39
37 IHLF=12
GO TO 39
38 IHLF<13
39 CALL OUTP(X,Y,DERY,IHLF,NDIM,PRMT)
40 RETURN
END
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