
University of Alberta

Visualization of Course Requisites

by

Camilo Arango Moreno

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Camilo Arango Moreno
Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

Where the thesis is converted to, or otherwise made available in digital form, the University of
Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof

may be printed or otherwise reproduced in any material form whatsoever without the author’s prior
written permission.

Examining Committee

H. James Hoover, Computing Science

Stan Ruecker, Humanities Computing

Walter Bischof, Computing Science

Geoffrey Rockwell, Humanities Computing

Abstract

We present an interactive tool for browsing the requisites between courses in the

University of Alberta as a case study of dependency visualization. This tool

uses multiple interactive visualizations to allow the user to explore the courses’

dependencies. We performed a usability study that showed that students perform

planning tasks faster and more accurately using our tool compared to Bear Tracks,

the current registration system used at the university, which only provides textual

descriptions of the course requisites.

Acknowledgements

I would like to extend my thanks to Dr. James Hoover and Dr. Stan Ruecker
for their valuable supervision in this project, to Dr. Walter Bischof for sharing his
extensive knowledge in user studies, and to Business Objects and the ARC Program
for their support. Without their collaboration, completing this work would not have
been possible.

Table of Contents

1 Introduction 1
1.1 The dependency visualization problem 1
1.2 Rich prospect browsing of dependencies 2
1.3 Organization of the document . 3

2 Literature Review 4
2.1 User interface Design . 4

2.1.1 Principles, patterns and guidelines 4
2.1.2 Interaction Design . 5
2.1.3 Testing paradigms . 6

2.2 Information Visualization . 7
2.2.1 Graph drawing . 9

2.3 Related projects . 12

3 The Course Browser 16
3.1 Objectives . 16
3.2 Requisite description language . 16

3.2.1 Canonical Ordering . 19
3.3 Course Browser’s User Interface 20

3.3.1 Requisite box diagram . 21
3.3.2 Circular diagrams . 24

3.4 Early Prototypes . 27
3.4.1 Card Prototype . 27
3.4.2 Tiles Prototype . 29

4 Usability Study: Methodology 32
4.1 Bear Tracks . 32
4.2 Design of the usability study . 36

4.2.1 First interview . 36
4.2.2 Course Planning Tasks . 36
4.2.3 Second interview . 37

4.3 Pilot testing . 38
4.4 Target population and recruiting 40

5 Usability Study: Results 41
5.1 First interview . 41
5.2 Course-Planning Tasks . 42

5.2.1 Statistical Analysis . 42
5.2.2 Results . 44
5.2.3 Analysis and Discussion 45

5.3 Second interview . 50
5.3.1 Statistical Analysis . 51
5.3.2 Results . 51
5.3.3 Analysis and Discussion 54

5.4 Conclusions . 55

6 Insights and Future work 56
6.1 Insights about visualizing dependencies 56
6.2 Future Work . 57

6.2.1 Improvements to the Course Browser 57
6.2.2 Course Planner . 58
6.2.3 Dependency visualization framework 59

Bibliography 61

A Usability study questionnaire 64

B Usability study ethical review 82

List of Tables

2.1 Examples of drawing rules . 11

3.1 Elements of the course requisite language 19

4.1 User study questions formulated in parallel form for Bear Tracks
and the Course Browser . 38

4.2 User study questions formulated in individual form 39

5.1 Results for the question: “I have trouble understanding the prereq-
uisites and corequisites of courses” in the first interview 42

5.2 System used first by each participant during the task solving phase. . 46
5.3 Correctness of the results for each participant by task and system used 46
5.4 Time-to-complete, in seconds, taken by each participant to solve

the tasks. 47
5.5 Results for paired questions in the second interview 52
5.6 Results for non-paired questions in the second interview. 53

List of Figures

2.1 A Karnaugh map transforms the problem of reducing a Boolean
function into one of grouping shapes. 8

2.2 Classification of graphs[33]. 10
2.3 Different coordinate systems[33]. a) Free placement. b) Parallel

lines. c) Grid. d) Circular. e) Radial. f) Combination of circular
and radial (polar). 11

2.4 Graph drawing examples. a) Dot and lines. b) Circular layout using
straight lines as edges. c) Tree-map. 12

2.5 Email thread visualized using Thread Arcs using different highlight
schemes. 14

2.6 Random table visualization generated using the Circos table viewer. 15

3.1 Example of how courses are defined in the University of Alberta
calendar . 17

3.2 Example of a requisite encoding using the course requisite language 20
3.3 Example of a requisite encoding using the course requisite language 21
3.4 User interface of the Course Browser 22
3.5 Course Browser- course description view 22
3.6 Course Browser - course requisite graph 23
3.7 Four examples of the requisite box diagram 24
3.8 Example of the weight assignment in circular diagrams 25
3.9 Operations of the card UI metaphor 28
3.10 Course Browser card prototype . 29
3.11 Course Browser tiles prototype . 30

4.1 Bear Tracks’ course catalog navigation chart. 33
4.2 Bear Tracks course catalog search screen 33
4.3 Bear Tracks course catalog result screen 34
4.4 Bear Tracks detail page for CMPUT 304 35

5.1 Results for first interview with fifteen undergraduate students. a)
Number of students by year of enrollment in the university. b)
Number of courses taken. c) Understanding of the concepts
of prerequisite and corequisite. d) Resources used for course
planning. e) Planning horizon for students. 43

5.2 Time taken by each participant to complete each of the tasks with
Bear Tracks and the Course Browser 48

6.1 Concept drawing of a box diagram that allows the exploration of
indirect dependencies. 59

Chapter 1

Introduction

1.1 The dependency visualization problem
A dependency is a type of relationship between two objects, in which the first
requires the second to accomplish some action. A simple example of this situation
is a hierarchy, where the elements are associated with a single type of relationship,
namely, parent-child. The relationship is constrained so that each of the elements
has at most one parent but can have multiple children. Other problem domains
require a more expressive model to represent their dependencies. Dependency
problems appear in a variety of fields. In software development, for example, a
piece of software may depend on many libraries, which in turn may depend on
others. In project management, certain tasks of the project depend on other tasks to
complete or on events that must be executed simultaneously. In workflow modeling,
some decisions may require the approval of one or more executives in a certain
order, followed by approval by an oversight committee.

Some dependency problems may be modeled by adjacency relationships among
elements and, therefore, can be represented by a simple directed graph. Others
require a more complex model, as they contain different types of relationships or
dependencies may have rules associated with them. A good example of complex
dependency graphs can be found in course requisites. Requisites among courses
are formed by courses that must be taken before, called prerequisites, and courses
that may be taken before or simultaneously, called corequisites. Furthermore,
prerequisites and corequisites can have conditions associated to them; for example,
it is possible that, in order to take a given course A, a student has to choose between
taking courses B and C, or D, E and F. In turn, courses B, C, D, E and F can have
their own requisites and conditions. In consequence, the complex relationships
formed by these courses’ requisites cannot be modeled by a simple directed graph.

People working on problems that contain dependencies are often given just
the relationship information among elements, being forced to understand complex
dependency systems on their own. Using visual representations of dependency
graphs can provide a valuable tool to understand the relationships and extract

1

additional information from them.
In this work, we further explore the problem of complex dependency visualiza-

tions using the requisites of courses of the University of Alberta as our case study.
We present a tool to visualize the relationships among courses, called the Course
Browser, which can be used to assist course-planning tasks. We also present a
usability study that compares our tool against the current course registration system
of the University of Alberta. The study shows that participants performed planning
tasks significantly faster and more accurately using the Course Browser.

1.2 Rich prospect browsing of dependencies
In this work, we applied the principles of rich prospect browsing to visualize
the dependencies defined by the course requisites in the University of Alberta.
Rich prospect visualizations, defined by Ruecker in [28], are domain specific
visualizations of a collection where each item is represented in a meaningful way,
and emergent tools are available for manipulating the display of the items. A
browsing interface is intended to support the tasks of understanding, interpreting,
or systemizing the material in a domain. This kind of interfaces differ from retrieval
interfaces in that the objective of the latter is to search for an specific item from a
collection given a set of criteria.

The concept of prospect visualization comes from two notions borrowed from
habitat theory and landscape painting: first, that people have a predilection for
finding a prospect in a landscape, and, second, that people are capable of identifying
opportunities for action in the environment.

Rich prospect interfaces can include functions and affordances present in other
types of interfaces, such as search boxes. In addition, rich prospect interfaces may
include affordances to zoom, pan, sort, select, group, subset, rename, annotate,
open or structure items.

In order to create a rich prospect visualization of a dependency system, we
must create a domain specific visualization that gives a meaningful representation
of the dependencies of elements in addition to the representation of the elements
themselves. In many cases, a directed graph drawing can serve as an appropriate
visualization. Elements in the collection are represented by the nodes on the
graph, and the dependencies by the edges. However, some simplification of the
dependency model may be necessary to express complex dependencies with edges.

We also need new affordances for understanding the dependencies. In the
prototype presented in this work we employed two of them: navigation and
highlighting. Navigation enables the user to traverse the dependency relationships
in the same way hyperlinks enable users to navigate web documents. Highlighting
allows them to filter the connections to display only those that are relevant to the
user. This operation can be done by modifying different visual characteristics of the
connections, for example by changing the color, alignment or adding movement.

2

Each of the Course Browser prototypes, described in Chapter 3, adapt the
concept of rich prospect interfaces for solving the problem of visualizing course
dependencies. They, however, do not comply with all the characteristics of a rich
prospect visualization. In particular, not all the elements of the collection are
displayed in the visualization at all times. In some cases, some elements are omitted
or compressed into a single element to allow the handling of a large course catalog.

1.3 Organization of the document
This thesis is organized as follows:

Chapter 2 provides a literature review of the topics that form the background for
the development of interactive visualization of dependencies, referring to important
contributions in the literature. It is organized into three sections. First we present an
overview of user interface design. Second, we present an overview of information
visualization, putting special emphasis in graph drawing. Finally, we present related
projects.

Chapter 3 describes the design of the Course Browser, an interactive tool for
exploring the dependencies of courses using their requisite information. It discusses
the objectives of the Course Browser program, introduces the requisite description
language and describes the design of the Course Browser tool, showing its evolution
throughout different prototypes.

Chapter 4 describes the design and execution of the usability study we used to
evaluate the Course Browser. First, it provides a description of the course catalog
on Bear Tracks, the application we used as a benchmark. Then, it details the
methodology used in the usability test. Finally, it discusses the pilot tests performed
before the full-fledged testing. Chapter 5 presents the results of the study and
provides an analysis of them.

Finally, Chapter 6 provides insights about the problem of representing depen-
dencies and presents ideas about future work.

3

Chapter 2

Literature Review

2.1 User interface Design

2.1.1 Principles, patterns and guidelines
Good user interface design has been documented in different levels of granularity
by using design principles, design patterns and guideline documents.

Preece et al. defines design principles as “generalizable abstractions intended
to orient designers towards thinking about different aspects of their designs” [26].
The following design principles, presented by Norman in [24], are applicable to any
kind of user interface:

Visibility: the user should be able to understand the information presented by
the user interface and easily discover the actions available to control it. A good
example of this principle can be seen in most modern elevators. A panel on
top of the elevator’s door indicates the floor in which the cart is located. In
addition, the buttons for calling the elevator on each floor indicate the two
possible actions: “go up” and “go down”.

Feedback: Each action done must give some information back to the user.
Otherwise, the user cannot be sure whether or not the action was recognized
by the system. The feedback can be sent using stimuli for different senses:
vision, audio, and tact. For example, most elevators have lit buttons. When a
user presses a button, it illuminates to indicate that the action was recognized
by the system and the elevator is on the way. When the feedback is not present,
users tend to become confused and press the buttons multiple times.

Constraints: The number of actions available to the user at a given moment
must be restricted to prevent them from making mistakes. In the elevator
example, the buttons for opening and closing the doors should be restricted
from working while the cart is moving. This would prevent accidents caused by
users pressing the button by mistake.

4

Mapping: The way controls work must be consistent with their effects on the
world. For example, consider a car’s steering wheel. The car turns right when
the wheel is turned clockwise, and left when it is turned counter-clockwise.
This relationship is natural for the user as the whole car reacts consistently with
the action. Another example is the elevator’s calling panel. The button to go
up should be on top of the panel and the button to go down on the bottom. If
they were positioned otherwise (side by side, for example) the user is likely to
become confused.

Consistency: The interface elements that represent similar operations must be
similar. For example, imagine how strange it would be if some of the buttons
for the floors in the elevator needed to be pulled and others pushed. The same
principle applies for the representation of information. Imagine how confusing
it would be if the panel that shows the elevator’s location displayed roman
numerals for some floors and arabic numerals for others.

Affordances: The physical characteristics of an object should imply its use. For
example, a button affords pushing and a lever affords pulling. The appearance of
the controls in an interface should give clues to the user on how to use it. Some
of the affordances are social conventions. For example, today an underlined
text is generally associated with a hyperlink and users often know that they can
be selected. The interpretation of an underlined text was different before the
popularization of the Internet.

While design principles are general and abstract, good design practices for
software development have been documented in a more concrete way in the form
of design patterns. Design patterns are “best practice” solutions for well-known
design problems. Using patterns for software architecture was first done by Gamma
et al. (commonly known as the Gang of Four) in [10]. Tidwell [34] provides a
compilation of design patterns for user interface design. These patterns are divided
into the nine categories: user behavior, content organization, navigation, layout,
actions and commands, complex data presentation, input, builders and editors, and
visual style.

Good user interface design has also been fostered by guideline documents, such
as [23] and [1]. These documents are specific to particular software platforms and
seek to bring consistency to all applications written for them.

2.1.2 Interaction Design
The process of designing interactive products is called interaction design. Unlike
traditional software engineering practices that concentrate on functional require-
ments, interaction design follows a user-centered approach.

In [26], Preece et al. describes three key elements of Interaction design: focus
on users, specific usability and user experience goals and iteration. Focus on users

5

refers to the need of involving users in the design of a new product. Users are
consulted to validate the design during each of the different phases of the design
process. Specific usability and user experience goals are used to evaluate the design
according to measurable criteria. Usability goals fall into the following categories:

Effectiveness: can a task be performed successfully with the product?

Efficiency: is the product faster to use? Does the product requires less
resources?

Safety: does use of the product have undesirable side effects or increase the risk
of undesirable events? (Note an efficient product could reduce safety).

Utility: does the product help the user perform the tasks that they need to
perform?

Learnability: is the product easy to learn?

Memorability: can the user easily remember how to use the product?

Iteration refers to the development and refinement of prototypes based on testing
and feedback from the users. Prototypes may be developed in low fidelity or high
fidelity. Low fidelity prototypes are simple representations of a concept. They
may consist of a storyboard or a mock version of the product built, for example,
using cardboard or wood. These preliminary designs are presented to users to
identify problems before spending further time and effort on their development.
The major advantage of this type of prototypes is that they are simple and cheap to
produce, enabling the creative team to produce many of them in a short period of
time. Low fidelity prototypes need not be very defined or detailed. As mentioned
by Buxton in [5], gaps in prototypes are an important part of the creative process.
Voids in the prototype often lead to discussion and creation of new ideas. High
fidelity prototypes, on the other hand, are partially or fully functional versions
of the product. Their purpose is to provide an early view of the final product.
These prototypes require more time and effort to produce, but can identify problems
that can not be spotted with the low fidelity models. Eventually, the high fidelity
prototypes evolve into the finished product.

2.1.3 Testing paradigms
Testing a design is a fundamental factor to ensure that it meets the proposed
usability goals. The evaluation can be done for both the prototypes and the final
product following one or more of these evaluation paradigms: quick and dirty,
usability testing, field studies, predictive evaluation and expert review. The first four
of these approaches are described by Preece in [26], and the last one is described
by Shneiderman in [32]:

6

Quick and dirty refers to testing a product in an informal way. It does not require
any preparation or specific setting. It is a good way to validate the design and gather
new ideas and suggestions to improve it.

Usability testing is a technique that requires users to perform carefully designed
tasks in a lab setting. The main characteristic of this technique is that it is carefully
controlled by the researcher to produce measurable results. While the users perform
the tasks, several aspects of their performance are measured using metrics such
as time-to-complete and number of mistakes made. After solving the tasks, users
may be required to answer a questionnaire to gather more information about the
experience with the product.

Field studies aim to test the design in its natural setting. The product is
deployed into a realistic scenario and user activity is recorded using different means,
which may include automatic logging, videotaping, answering questionnaires, and
interviews. Field studies are a versatile tool that may be used for more than
just testing a design: according to Bly [3], field studies can be used to identify
opportunities for new technologies, determine requirements for design, facilitate
introduction of technology and evaluate design of technology. However, field
studies are more difficult to conduct and analyze than usability testing.

Predictive evaluation uses models of user behavior and heuristics to predict
usability problems. Unlike the previous approaches, this one does not require the
presence of the user. The accuracy of this approach is limited by the accuracy of the
models used and the level of experience of the evaluator. This type of approach is
recommended for situations were interaction with users is difficult or impractical.

Expert reviews are revisions of a model made by usability experts. An expert
review can be conducted in different ways: heuristic evaluation (checking that
the design conforms to design heuristics), guidelines review (ensure that the
design conforms with the guidelines established by the organization), consistency
inspection (ensure that all the controls in the interface are consistent), cognitive
walkthrough (follow the typical tasks performed by the user), and formal usability
inspection. The use of expert reviews can be very helpful for identifying flaws in
the design. However, experts must be knowledgeable in both interaction design and
the domain of the application in order to provide accurate feedback.

2.2 Information Visualization
The purpose of Information visualization is to exploit the natural abilities of the
human visual perception in order to understand data that is not necessarily visual
in nature. The human brain is permanently analyzing and interpreting the images
it receives from the senses and memory. Visual characteristics like color, shape
and alignment are processed much faster than textual descriptions. An example of
a visualization that solves a problem using perception is a Karnaugh map. These
types of maps are used in digital design to simplify Boolean algebra functions [17].
They solve the problem of finding a concise algebraic representation of a Boolean

7

F = AC' + AB'

0 0 10

0 10 0

0 0 11

1100

00 01 11 10

00

01

11

10

AB

CD

Figure 2.1: A Karnaugh map transforms the problem of reducing a Boolean function
into one of grouping shapes. The function F has value 1 exactly when a cell contains
a 1. Each cell is a term in the + (Boolean-or) equation for F. Complete rows, columns,
or squares, in the Karnaugh map allow terms to be merged, resulting in a more
compact representation of F.

function represented by a truth table. While the same task can be done by algebraic
manipulation, using the Karnaugh map does not require remembering theorems of
algebra. Instead, the problem is translated into one of grouping shapes together
(see Figure 2.1). Larkin explains that diagrammatic representations are effective
because the information needed to make inferences about the problem is present and
explicit at a particular location [20]. This unloads the brain from doing searching
and computing operations that are necessary in textual representations.

The use of visualization has the following advantages [36]: 1) It allows the
viewer to comprehend huge amounts of data. 2) It allows the viewer to identify
emerging properties that are not evident in textual representations. 3) It can reveal
problems with the data itself, for example, errors in measurement can become
obvious with the right representation. 4) It enables the understanding of both large -
scale and small-scale aspects of the data. 5) Visualization facilitates the formulation
of hypothesis.

Still, finding the right visualization can be a challenge. In [6], Chen et al.
identifies three research issues for information visualization. First, finding the
correct strategies and tools to visualize a set of data. Second, the need of generic
criteria to assess the value of a visualization. Third, the use of visualizations as
communication medium in multi-user environments.

Choosing the right representation is crucial for creating an effective visualiza-
tion. While an effective representation can greatly simplify a problem–think of the
Karnaugh map example–, others can make it even more confusing. As Tufte says,
“Confusion and clutter are failures of design, not attributes of infomation”[35].

8

Moreover, the best representation may be different for different people. It has been
demonstrated that some types are more effective for certain people based on some
of their cognitive attributes like perceptual speed [7].

No less important are the choices of layout, colors, and fonts in the visual-
ization. The right choice of visual attributes requires understanding of the human
perception. Gestalt psychologists have studied these phenomena by considering a
holistic approach, i.e. explaining a system by considering the relation of different
parts as a whole as opposed to each individual part in isolation. The four Gestalt
principles [8] used as a basis for graphic design are:

Proximity: elements that are close together are perceived as groups.

Similarity: elements that share the same shape, color, size or orientation are
associated. Each one of these aspects can be used as a different “channels”
to communicate information.

Continuity: the viewer tends to see lines and curves formed by the alignment
of elements.

Closure: the viewer tends to complete or close shapes formed by elements and
whitespace. Tufte calls this effect “1 + 1 = 3 or more” [35].

Multiple guides for good design have been published. To name a few, in [35],
Tufte explains correct and incorrect ways of representing information based on
extensive experience and examples from graphical design, cartography and art.
Likewise In [21], Lidwell et al. present a set of principles of design aimed for
multiple disciplines.

2.2.1 Graph drawing
A graph is an abstract representation of a set of objects that are connected together
by a set of edges. Graphs can be used to represent problems that have the notion of
adjacency among elements, as is the case of simple dependencies. Graph drawing
techniques are a powerful tool for analyzing problems representable by a graph.

The drawing of graph structures has been widely studied and documented by
graph theorists. Graph theory is described in [4, 12]. Different methods for drawing
graphs are described in [2] and [33].

In [2], Di Battista et al. describe a methodology for drawing general graphs
following a divide-and-conquer approach. This approach is motivated by the fact
that many graph drawing algorithms are restricted to operate on a particular class of
graph. Using this approach, if a graph does not fit into the requirements to apply a
particular layout algorithm, a transformation is applied before using it and reverted
at the end of the layout process.

Based on previous work on graph drawing, Sugiyama proposes a framework to
classify automatic graph drawing methods in [33]. His framework considers five

9

Graphs

Trees

Rooted
Trees

Free Trees

Binary
Trees

n-ary Trees

Directed
Graph

Acyclic
Directed
Graph

General
Directed
Graph

Undirected
Graph

Planar
Undirected

Graph

General
Undirected

Graph
Compound

Graph

Figure 2.2: Classification of graphs[33].

different aspects: the type of graph, drawing conventions, drawing rules, priority of
the relationships and feature of drawing algorithms.

Sugiyama’s graph classification is shown in Figure 2.2. He distinguishes four
main types of graph: trees, directed graphs, undirected graph and compound graphs.
Trees can contain a defined root (called rooted) or be free. Directed graphs are
divided in acyclic and general. Undirected graphs are classified in general and
planar (i.e. graphs that can be drawn in a plane with no crossing between the
edges). Finally, compound graphs have two different kinds of edges for expressing
adjacency and inclusion. Distinguishing among the different types of graph is
important as many drawing algorithms exploit the characteristics of each of them.

Drawing conventions refer to the way vertices and edges are represented and
positioned in the drawing. The position of the edges can be free, allowing them to
be located anywhere in the space, or constrained to a specific coordinate system.
Coordinate systems include parallel lines, concentric circles, circle radii, and
orthogonal grids (see Figure 2.3). Some coordinate systems can be obtained by
combining some of the above; for example, the radii and concentric circles form a
polar grid. The way Edges are represented is called routing conventions. The most
common convention is to use straight, polygonal or curved lines to represent edges.
However, other conventions, such as shape inclusion, can be used as well.

Drawing rules refer to specific criteria that aim to be met in the drawing
of the diagram. These rules try to capture the aspects that make the diagram
useful and esthetically pleasing. Some examples of drawing rules are shown in
Table 2.1. Some the drawing rules conflict with each other. For example, displaying
symmetries can cause the crossing of edges to be less than optimal. Therefore, a

10

a) b) c)

d) e) f)

Figure 2.3: Different coordinate systems[33]. a) Free placement. b) Parallel lines.
c) Grid. d) Circular. e) Radial. f) Combination of circular and radial (polar).

priority must be established among them.
Finally, a graph-drawing algorithm is a procedure that puts all these components

together. It defines a placement for vertices and edges of a particular type of graph,
following the drawing conventions and trying to respect the drawing rules as much
as possible, according to the established criteria.

Some representative examples of graph drawing are dots and lines diagrams,
circular diagrams, and tree-maps (see Figure 2.4).

Dots and lines is the most common way used to represent general directed
or undirected graphs. They represent vertices as dots and edges as lines on free
placement coordinate system. As routing convention, they may use straight lines,
polygonal lines, or curves. If the graph is directed, edges are drawn as arrows.

Circular diagrams show general graphs using dots and lines in a polar coordi-

Table 2.1: Examples of drawing rules

Drawing Rules

1. Vertices are drawn in a straight line.
2. Vertices are drawn in a circle.
3. The size of the vertices is 10.
4. The maximum number of allowed edge crossings is 10.
5. The maximum number of allowed edge bends is 2.
6. Vertices of high degree are positioned near the center.
7. Drawing area is minimized.
8. Angle between edges is maximized.
9. Isomorphic subgraphs are shown identically.

11

a) b) c)

Figure 2.4: Graph drawing examples. a) Dot and lines. b) Circular layout using
straight lines as edges. c) Tree-map.

nate system. In this type of diagrams, vertices are arranged around a circumference
and edges are drawn using straight or curved lines. Edges may be bundled together
to reduce clutter and allow to easily identifying their source and target. This
technique is inspired by the way cables are bundled together in data centers.
Algorithms for bundling edges are presented in [11], [14] and [15].

Tree-maps is a method for drawing n-ary trees, proposed by Shneiderman in
[31]. Unlike the previous examples, this method does not use lines as drawing
conventions for the edges of the tree. Instead, edges are represented by inclusion:
nodes are represented as boxes and children nodes are included inside their parent’s
boxes. Tree-maps partition the design space, and the area of the box can represent
an attribute of the node, for example, it’s size.

When a graph is visualized in a computer screen, the user experience can be
enhanced by adding interactivity. Interactive controls dynamically modify and
animate the visual features of the graph (position, color and saturation of nodes and
edges) to allow the user to easily understand and navigate it. A basic navigation
technique is pan and zoom. More sophisticated techniques like Fisheye view [29]
allow the user to zoom on a particular section of a diagram without loosing a global
view of the graph. Other techniques extend static layouts by animating transitions.
For example, in [41], Yee et al. explains an algorithm to add interactivity to a
graph displayed using a radial layout to animate the change of a focus node. Graph
drawing toolkits like Prefuse [13] and Flare [16] include support for interactive
features.

2.3 Related projects
The following are visualization projects related to the Course Browser in diverse
ways. Some of them tackle the same problem domain, while others provided
inspiration for the design and evaluation of the user interface of the prototypes.

12

Visualization of the education system in Alberta

In [9], Fuite presented a visualization of the provincial education system in Alberta
Canada. The purpose of this work is to study the education system using network
analysis techniques. This work uses a graph visualization where the nodes represent
courses and edges represent the prerequisites among them. To position the nodes, it
uses a force directed layout, where the length of the edges is bound to how related
the courses are to each other. The algorithm used by Fuite to calculate the weights of
the edges is similar to the one presented in section 3.3.2; however, both algorithms
were developed independently.

This work is similar to the Course Browser in that both visualize the prereq-
uisites of courses at the University of Alberta. However, the Course Browser was
designed as a tool for helping students to plan courses while Fuite’s project was
designed to perform high level analysis of the education system in the province.
Another difference is that the Course Browser stores the complete requisite tree of
each course while Fuite’s tool simplifies the structure to create the network. Having
the complete requisite tree is essential for performing course planning.

Thread arcs

The Thread Arcs project, presented by Kerr in [18], is a visualization technique
for describing the structure of email threads (see Figure 2.5). It displays the
messages as dots in a straight line, sorted by chronological order and then draws
arcs among them to represent the reply-to relationship. The visualization offer
some interactive features to allow the user to highlight the diagram according to
the characteristics of the message, and inspect the messages. The advantages of the
thread arcs visualization over other tree visualization are its compactness and its
emphasis in chronology, which is fundamental in following an email conversation.
One disadvantage is this visualization is that the diagram does not contain any text
information about the messages, forcing the user to use the interactive features to
discover this information. This also makes usefulness of the diagram limited when
it is printed.

The evaluation criteria used to test the Course Browser visualizations were
inspired in part by the one used by the Thread Arcs authors.

Circos

Circos[19] is a software tool that generates visualizations of genomic data and
general 2-dimensional data. In the visualizations produced by this tool, data is
displayed in a circular layout and the relationships among elements are drawn as
arcs. The project was conceived to visualize relationships between genomes. The
use of a circular layout was chosen to minimize the overlap among the lines that
represent relationships, making the relationships easier to visualize.

Circos provides great flexibility for generating graphs in circular layout. Several

13

!
!
!"#$%&'(#

!

"#$!%&'(!)&*!&+*!,-+./!0',!-&!($'*1!'2&+-!-#$!+,$)+(1$,,!'1.!

$))$3-45$1$,,! &)! $6'4(! -#*$'.! 54,+'(47'-4&1,! 41! +,$*,! &01!

$6'4(8!91!:'*-43+('*;!-#$!46:&*-'1-!<+'(4-4$,!-#'-!+,$*,!0'1-$.!

-#*$'.! 54,+'(47'-4&1,! -&! ,#&0;! ',! .$,3*42$.! 41! =>$/!

?+'(4-4$,@8!

!

A,! :'*-! &)! -#4,! ,-+./!0$! %'-#$*$.! ,-'-4,-43,! &)! -#$! ,47$! '1.!

,#':$! &)! -#*$'.,!)&+1.! 41! +,$*,B! $6'4(! -&! %45$! +,! '! 2$--$*!

+1.$*,-'1.41%!&)! -#$!)*$<+$13/!'1.!,-*+3-+*$!&)! -#*$'.,! -#'-!

-#*$'.!54,+'(47'-4&1,!1$$.!-&!'33&66&.'-$8!

! !

!")#*+%,-'#

!

C$! *$3*+4-$.! D! :'*-434:'1-,!)&*! &+*! ,-+./;! E! 6'($! '1.! E!

)$6'($8! "#$! :'*-434:'1-,! 0$*$! '((! ,&)-0'*$! F1&0($.%$!

0&*F$*,! GA.54,&*/! H&)-0'*$! I1%41$$*;! J+6'1!

K'3-&*,LM,'24(4-/! H:$34'(4,-;! H&)-0'*$! I1%41$$*;! H$14&*!

N5(&:6$1-!O'1'%$*;!M9!N$,4%1$*;!M9!N$,4%1LN$5$(&:$*;!

'1.!M,'24(4-/! H:$34'(4,-P! '1.!0$*$! *$3*+4-$.! 41-$*1'((/8! "#$!

:'*-434:'1-,! #'.! 41-$*6$.4'-$! -&! '.5'13$.! $Q:$*4$13$! +,41%!

R&-+,!S&-$,! $6'4(! 3(4$1-! '1.! #'.! 2$$1! +,41%! 4-!)&*! T! -&! UV!

/$'*,8! H&6$! #'.! :*$54&+,! $Q:$*4$13$! 04-#! ('*%$! $6'4(!

3&15$*,'-4&1,! '1.! .4,3+,,4&1,! .'-'2',$,8! S&1$! #'.! '1/!

:*$54&+,! F1&0($.%$! &)! -#$! "#*$'.! A*3! 54,+'(47'-4&18! I'3#!

-$,-!-&&F!U8W!#&+*,8!

!

!".#/0-1+'&0+#

!

"#$!,-+.4$,!3&1,4,-$.!&)!-#$!)&((&041%!,-'%$,8!!

!

U8! A,F41%! <+$,-4&1,! '2&+-! +,$*,B! 2'3F%*&+1.,! '1.! $6'4(!

#'24-,8!

X8! 91-*&.+341%! +,$*,! -&! -#$! 3&13$:-! &)! '! 3&15$*,'-4&1!

54,+'(47'-4&1! +,41%! :':$*! 46'%$,! &)!"#*$'.!A*3,;!"*$$!

N4'%*'6,!'1.!"*$$!"'2($,;!',!,#&0!41!K4%+*$!UY!2$(&08!

!

!

T8! Z&1.+3-41%! -0&! 3'*.[,&*-41%! Q*34,$,!)&*! -#$! F$/!

<+'(4-4$,!'1.!'--*42+-$!#4%#(4%#-41%8!

E8! 91-*&.+341%! ,+2\$3-,! -&! -#$! -#*$$! 54,+'(47'-4&1!

-$3#14<+$,! +,$.! 41! -#$! -$,-! 54'! 41-$*'3-45$! ,3*$$1!

Q*34,$,8!

W8! J'541%!+,$*,! $Q:(&*$! -#$!54,+'(47'-4&1,!04-#! -#$4*!&01!

$6'4(!3&15$*,'-4&1,!41!'!,46+('-$.!$6'4(!$Q:$*4$13$8!

Y8!]$:$'-41%!-#$!3'*.!,&*-41%!$Q$*34,$,8!

^8! A,F41%! -#$! ,+2\$3-,! -&! *'-$! -#$! -#*$$! 54,+'(47'-4&1,!

'%'41,-!-#$!F$/!<+'(4-4$,8!

D8! Z*$'-41%!'!,$*4$,!&)!('*%$!,3'($!:*41-$.!:&,-$*,!&)!'((!&)!

-#$!-#*$'.,!)&+1.!41!-#$!+,$*,!$6'4(!.'-'2',$8!

!

"#$! -$,-! 0',! 3&1.+3-$.! &1! '1! 9_O! "#41F`'.! (':-&:! "[TV!

04-#! '1! &:-43'(! 6&+,$8! M,$*,! 0$*$! ',F$.! -&! -#41F! '(&+.!

-#*&+%#&+-!-#$!-$,-8!A+.4&!0',!3':-+*$.!04-#!'!-':$!*$3&*.$*!

'1.! ,3*$$1! '1.! 6&+,$! 41:+-! 0',! *$3&*.$.! +,41%! Z'6-',4'!

,3*$$1!3':-+*$!,&)-0'*$8!!

!

A-! -#$! 2$%41141%! &)! $'3#! -$,-! 0$! +,$.! '! a'5'! :*&%*'6! -&!

-*'5$*,$!$'3#!+,$*B,!$6'4(!.'-'2',$;!3&(('-$!'((!&)!#4,!&*!#$*!

-#*$'.,;!'1.!&+-:+-!-#$6!',!'!,$-!&)!bOR!)4($,8!"#4,!,&)-0'*$!

46:($6$1-$.!'1!46:*&5$.!5$*,4&1!&)!-#$!3&6:($Q!c'041,F4B,!

-#*$'.41%! '(%&*4-#6! dUTe! .5(&:$.! &*4%41'((/!)&*! S$-,3':$!

O$,,$1%$*8!"#$!bOR!)4($,!3&1-'41$.!$'3#!-#*$'.B,!,-*+3-+*$;!

'(&1%!04-#! $'3#!6$,,'%$B,! 2',43! $6'4(! 3&1-$1-! ,+3#! ',! -#$!

=-&@;!=)*&6@;!=!,+2\$3-@;!=-46$@!'1.! -#$!)4*,-!UVV!3#'*'3-$*,!

&)! -#$!=2&./@8! !J&0$5$*!0$!.4.!1&-!3&(($3-! -#$!*$'.L+1*$'.!

,-'-+,!&)!6$,,'%$,8!C$!+,$.!-#4,!.'-'!',!-#$!3&1-$1-!)&*!,-'%$!

W! &)! -#$! -$,-;! 0#$*$! +,$*,! $Q:$*4$13$.! '! ,46+('-4&1! &)! '1!

$6'4(! 3(4$1-! $Q:$*4$13$! 04-#! -#$4*! &01! $6'4(! 3&1-$1-8! 91!

'..4-4&1!0$!3&+(.!+,$!-#4,!41)&*6'-4&1!-&!%$-!,-'-4,-43,!&1!-#$!

,47$!'1.!,-*+3-+*$!&)!-#$4*!$6'4(!-#*$'.,8!

!

A-! ,-'%$! T! 0$! ',F$.! +,$*,! -&! :$*)&*6! -0&! 3'*.! ,&*-41%!

Q*34,$,!-&!.4,3&5$*f!

!

U8! C#'-! F$/! <+'(4-4$,! +,$*,! -#&+%#-!0$*$! 46:&*-'1-!)&*! '!

3&15$*,'-4&1!54,+'(47'-4&18!

X8! C#'-!'--*42+-$,!&)!'!6$,,'%$!41!'!3&15$*,'-4&1'(!-#*$'.!

-#$/! 0&+(.! (4F$! -&! 2$! '2($! -&! #4%#(4%#-! -&! #$(:! +,$*,!

41-$*:*$-!-#$68!

!

C$! #'.! +,$*,! :$*)&*6! ,&*-,! &1! -#$! F$/! <+'(4-4$,! G',!

:*$54&+,(/! .$,3*42$.! 41! =>$/! ?+'(4-4$,@P! '1.! &1$! ,&*-!)&*!

'--*42+-$!#4%#(4%#-41%!,3#$6$,!!G',!.$,3*42$.!41!=91-$*'3-4&1@!

'2&5$P8!"#4,!0',!'!:*4641%!$Q$*34,$!0#43#!%'5$!-#$!,+2\$3-,!

'!2$--$*!+1.$*,-'1.41%!&)!0#'-!'!54,+'(47'-4&1!3&+(.!*$:*$,$1-!

'1.!'!3&66&1!5&3'2+('*/!)&*!+,! -&! -'(F!'2&+-!54,+'(47'-4&1!

3&13$:-,! ',! -#$! -$,-! 3&1-41+$.8! 9-! '(,&! %'5$! +,! '1!

+1.$*,-'1.41%! &)! -#$4*! :$*3$45$.! :*4&*4-4$,! 2$)&*$! -#$! -$,-8!

"#$!3'*.,!3&1-'41$.!-4-($,!'1.!'!2*4$)!-$Q-+'(!$Q:('1'-4&1!)&*!

*$)$*13!'1.!0$!41-*&.+3$.!-#$!3'*.,!41!*'1.&6!&*.$*!04-#!'!

,#&*-!5$*2'(!$Q:('1'-4&18!"#$!)4*,-!,$-!&)!3'*.,!3&1-'41$.!-#$!

)&((&041%!F$/!<+'(4-4$,f!

!! A--*42+-$!J4%#(4%#-41%!

!! Z#*&1&(&%/!

!! Z&6:'3-1$,,!

!!]$('-4&1,#4:,!

!! H3'('24(4-/!

!! H$1,$LH3'1'24(4-/!

!! H-'24(4-/!

!! g-#$*!G'..4-4&1'(!+,$*!,+%%$,-4&1,P8!

!

Figure 2.5: Email thread visualized using Thread Arcs using different highlight
schemes. Originally published by Kerr in [18]. c© 2003 IEEE. Reproduced under
permission.

types of plots, like histograms, scatter plots and text, to name a few, can be
embedded inside the circular graph. One disadvantage of the tool, however, is that
the images generated are static. Circos is distributed as a command line tool with
no graphical user interface for its operation, although the project offers an online
version of the tool, called Table Viewer1. Figure 2.6 shows a table generated by this
tool.

Flare

Flare[16] is a toolkit for creating interactive data visualizations that can be
published on the Internet using the Flash plugin. It is based on the Prefuse toolkit,
developed for the Java platform[13]. The Flare toolkit includes tools for performing
data management, visual encoding, animation, and interaction. The framework is
highly extensible and customizable. The visualizations for the Course Browser
were created using this toolkit.

1http://mkweb.bcgsc.ca/circos/tableviewer/

14

0

10
%

20
%

50
0

30
%

40
%

50
%

10
00

60
%

70
%

80
%

15
00

90
%

100%

0

10%

20%

30%

500
40%

50%

60%

1000 70%

80%

90%

100%
0

10%

20%

30%

500

40%

50%

60%

1000

70%

80%

90%

1500

100%

0

10%20%30%

500
40%50%

60%

70%
1000

80
%

90
%

10
0%

0

10
%20

%30
%

50
0

40
%

50
%

60
%

70
%

10
00

80
%

90%
100%

0

10%

20%

30%

500

40%

50%

60%

70%
1000

80%

90%

100%
0

10%

20%

30%

40%

500

50%

60%

70%

80%

1000

90%

100%

0

10%

20%

30%

500

40%

50%

60%

70%

1000
80%

90%

100%

A

G

D

H

B

C

F
E

Figure 2.6: Random table visualization generated using the Circos table viewer.

15

Chapter 3

The Course Browser

3.1 Objectives
The development of the Course Browser had two main objectives: 1) Explore
different ways to visualize the dependencies among courses in the University,
gathering useful knowledge that could be used for the visualization of dependencies
in other similar problem domains; 2) Implement a tool that students at the
University of Alberta could use to plan their program.

The central part of the project was the development of visualizations to represent
course requisites. To evaluate the different visualization designs, we used the
following criteria:

Stability: Adding and removing relationships should not modify the layout of
unaffected elements in the diagram.

Compactness: The diagram should be able to scale to thumbnails, if possible.

Attribute Highlighting: The nodes in the diagram should be able to display
additional information about the course.

Scalability: The readability of the diagram should decrease gracefully as the
complexity of the dependency tree increases.

Sense/Scanability: The user should be able to quickly understand the relation-
ships between elements on the diagram by scanning it.

3.2 Requisite description language
All the information about the courses in the University of Alberta, including
their prerequisites and corequisites are recorded in the university calendar. This
information is available in printed and electronic form as well as in the course
registration system of the university, called Bear Tracks. In all of these resources,

16

 557www.ualberta.ca U N I V E R S I T Y O F A L B E R T A

Course Listings
C

The most current Course Listing is available on Bear Tracks. https://www.beartracks.ualberta.ca

called Java. Students are introduced to objects and values, messages and methods,

control structures, and simple containers. Discussion of elementary algorithms and

software engineering techniques for constructing elegant and robust solutions to

problems. Prerequisites: Pure Math 30 and Computing Science 30 or equivalent

programming experience. See Note (1) above.

 O CMPUT 115 Programming with Data Structures

Œ3 (fi 6) (either term, 3-0-3). A study of dynamic data structures (e.g., sets,

lists, stacks, queues, dictionaries) and their associated algorithms (e.g., traversal,

sorting, searching, element addition and removal) using Java. An introduction to

recursive references and algorithms and to more advanced programming language

techniques including inheritance and exceptions. Prerequisite: CMPUT 114.

 O CMPUT 174 Introduction to the Foundations of Computation I

Œ3 (fi 6) (either term, 3-0-3). CMPUT 174 and 175 use a problem-driven

approach to introduce the fundamental ideas of Computing Science. Emphasis

is on the underlying process behind the solution, independent of programming

language or style. Basic notions of state, control flow, data structures, recursion,

modularization, and testing are introduced through solving simple problems in a

variety of domains such as text analysis, map navigation, game search, simulation,

and cryptography. Students learn to program by reading and modifying existing

programs as well as writing new ones. No prior programming experience is

necessary. See Note (1) above.

 O CMPUT 175 Introduction to the Foundations of Computation II

Œ3 (fi 6) (either term, 3-0-3). A continuation of CMPUT 174, revisiting topics

of greater depth and complexity. More sophisticated notions such as objects,

functional programming, time and memory consumption, and user interface

building are explored. Upon completion of this two course sequence, students

from any discipline should be able to build programs to solve basic problems

in their area, and will be prepared to take more advanced Computing Science

courses. Prerequisite: CMPUT 174 or SCI 100.

CMPUT 196 Topics in Computing Science

Œ3 (fi 6) (either term, 3-0-3). See Note (3) above.

CMPUT 197 Topics in Computing Science

Œ3 (fi 6) (either term, 3-0-3). See Note (3) above.

CMPUT 198 Topics in Computing Science

Œ3 (fi 6) (either term, 3-0-3). See Note (3) above.

CMPUT 199 Topics in Computing Science

Œ3 (fi 6) (either term, 3-0-3). See Note (3) above.

CMPUT 201 Practical Programming Methodology

Œ3 (fi 6) (either term, 3-0-3). Introduction to the principles, methods, tools, and

practices of the professional programmer. The lectures focus on the fundamental

principles of software engineering based on abstract data types and their

implementations. The laboratories offer an intensive apprenticeship to the aspiring

software developer. Students use C and C++ and software development tools of

the UNIX environment. Prerequisite: CMPUT 115 or 175.

CMPUT 204 Algorithms I

Œ3 (fi 6) (either term, 3-1s-0). The first of two courses on algorithm design

and analysis, with emphasis on fundamentals of searching, sorting, and graph

algorithms. Examples include divide and conquer, dynamic programming, greedy

methods, backtracking, and local search methods, together with analysis techniques

to estimate program efficiency. Prerequisites: CMPUT 115 or 175, CMPUT 272;

MATH 113, 114, or 117 or SCI 100.

CMPUT 206 Introduction to Digital Image Processing

Œ3 (fi 6) (either term, 3-0-3). An introduction to basic digital image processing

theory, and the tools that make advanced image manipulation possible for ordinary

users. Image processing is important in many applications: editing and processing

photographs, special effects for movies, drawing animated characters starting

with photographs, analyzing and enhancing images captured by the mars rover

or the Hubble telescope, an detecting suspects from surveillance cameras. Image

processing concepts are introduced using tools like Photoshop and GIMP. Exposure

to simple image processing programming with JAVA and Mathlab. This course is

preparation for more advanced courses in the Digital Media area. Prerequisites:

Any 100-level Computing Science course, plus knowledge of first-year level Math,

Stat; and introductory JAVA, C, or similar programming experience; or consent of

Instructor or SCI 100. Open to students in the Faculty of Arts, Engineering and

Sciences, others require permission of the instructor.

CMPUT 210 Codes, Codemakers, Codebreakers: An Introduction to

Cryptography

Œ3 (fi 6) (either term, 3-0-3). An historical introduction to cryptography intended

for a general audience. The development of codes and code-breaking from military

espionage in ancient Greece to deciphering hieroglyphics via the Rosetta stone

to modern computer ciphers. Includes frequency analysis, one-time-pad security,

and public key cryptography. Prerequisites: Any 100 level CMPUT course.

CMPUT 229 Computer Organization and Architecture I

Œ3 (fi 6) (either term, 3-0-3). General introduction to number representation,

architecture and organization concepts of von Neumann machines, assembly

level programming, exception handling, peripheral programming, floating point

computations and memory management. Prerequisite: CMPUT 115 or 175.

Corequisite: CMPUT 201. Credit may be obtained in only one of CMPUT 229,

285 or E E 380.

CMPUT 250 Computers and Games

Œ3 (fi 6) (either term, 3-0-3). An interdisciplinary course for students in Science,

Arts, and other faculties. The focus is on games as interactive entertainment,

their role in society, and how they are made. Teams composed of students with

diverse backgrounds (e.g., English, Art and Design, and Computing Science)

follow the entire creative process: from concept, through pitch, to delivery, of

a short narrative-based game using a commercial game engine. To achieve the

required mix of backgrounds and experience, students must apply for admission

to this course. Prerequisites: Second-year standing. See the Computing Science

web site for more details at www.cs.ualberta.ca/courses

 O CMPUT 272 Formal Systems and Logic in Computing Science

Œ3 (fi 6) (either term, 3-1s-1.5). An introduction to the tools of set theory, logic,

and induction, and their use in the practice of reasoning about algorithms and

programs. Basic set theory. The notion of a function. Counting. Propositional

and predicate logic and their proof systems. Inductive definitions and proofs

by induction. Program specification and correctness. Prerequisite: Any 100-level

CMPUT course or SCI 100.

CMPUT 291 Introduction to File and Database Management

Œ3 (fi 6) (either term, 3-0-3). Basic concepts in computer data organization

and information processing; entity-relationship model; relational model; SQL and

other relational query languages; storage architecture; physical organization of

data; access methods for relational data. The programming language used in the

course project is Java. Prerequisite: CMPUT 115 or 175.

CMPUT 296 Topics in Computing Science

Œ3 (fi 6) (either term, 3-0-3). See Note (3) above.

CMPUT 297 Topics in Computing Science

Œ3 (fi 6) (either term, 3-0-3). See Note (3) above.

CMPUT 298 Topics in Computing Science

Œ3 (fi 6) (either term, 3-0-3). See Note (3) above.

CMPUT 299 Topics in Computing Science

Œ3 (fi 6) (either term, 3-0-3). See Note (3) above.

CMPUT 300 Computers and Society

Œ3 (fi 6) (either term, 3-1s-0). Social, ethical, professional, economic, and legal

issues in the development and deployment of computer technology in society.

Prerequisites: CMPUT course or SCI 100 , and any 200-level course.

CMPUT 301 Introduction to Software Engineering

Œ3 (fi 6) (either term, 3-0-3). Object-oriented design and analysis, with interactive

applications as the primary example. Topics include: software process; revision

control; Unified Modeling Language (UML); requirements; software architecture,

design patterns, frameworks, design guidelines; unit testing; refactoring; software

tools. Prerequisite: CMPUT 201.

CMPUT 304 Algorithms II

Œ3 (fi 6) (either term, 3-0-0). The second course of a two-course sequence

on algorithm design. Emphasis on principles of algorithm design. Categories of

algorithms such as divide-and-conquer, greedy algorithms, dynamic programming;

analysis of algorithms; limits of algorithm design; NP-completeness; heuristic

algorithms. Prerequisites: CMPUT 204; one of STAT 151, 221, 235 or 265; one of

MATH 225, 228, 229, 328 or consent of Instructor.

CMPUT 306 Image Processing: Algorithms and Applications

Œ3 (fi 6) (either term, 3-0-3). Introduction, history, and applications; scanning

and quantization; visual perception; output devices; pattern recognition; feature

extraction, decision theory, classification rules; data representation and formats;

image enhancement and restoration; edge detection, segmentation and texture;

correlation and registration. Prerequisites: CMPUT 201; MATH 214 and one of

STAT 222, 252 or 366. Credit may be obtained in only one of CMPUT 306 or

EE BE 540.

CMPUT 307 3D Graphics and Animation with 3DS Max

Œ3 (fi 6) (either term, 3-0-3). Interdisciplinary introduction to Graphics and

Animation through the use of the 3D Studio Max package. Graphics and Animation

have industrial applications in advertising, movies, games and TV. Interdisciplinary

teams will work together on practical applications of graphics and animations.

For example, students can work on a project to enhance sculpting skills using a

database of 3D models. Prerequisite: Any second or higher-level undergraduate

student, with some math, computer programming and image processing background,

or permission of the instructor.

CMPUT 313 Computer Networks

Œ3 (fi 6) (either term, 3-0-3). Introduction to computer communication networks.

Protocols for error and flow control. Wired and wireless medium access protocols.

Routing and congestion control. Internet architecture and protocols. Multimedia

transmission. Recent advances in networking. Prerequisites: CMPUT 201, 204, 229

or E E 380; one of STAT 222, 252 or 366.

Figure 3.1: Example of how courses are defined in the University of Alberta
calendar[25]. The requisites of courses are contained in the description of the course
and expressed in natural language.

the course requisites are specified as part of the description of each course, as shown
in Figure 3.1.

Currently, there is no standard format for writing the course requisite descrip-
tions across the university. Some departments have some conventions for using
semi-colons and commas to separate the different elements, but no generalization
is possible. Hence, some of the descriptions are ambiguous, making it unfeasible to
build visualizations with this data right away. To solve this, the first step previous to
creating the Course Browser was to define a language capable of expressing course
requisites.

Expressing these requisites is not a trivial task. Some of them are formed with
complex logical expressions. For example, in order to take the course CMPUT 204:
Algorithms I–shown in Figure 3.1–the student must have taken “CMPUT 115 or
175, CMPUT 272; MATH 113, 114, or 117 or SCI 100” . Analyzing this expression
we see that we have to take 3 courses: the first is a choice between CMPUT 115
and CMPUT 175, the second is always CMPUT 272, and the third is the one of
MATH 113, MATH 114, MATH 117 and SCI 100. Thus, the language must be
able to handle multiple level of nesting of logical expressions, using AND and OR
operators.

Although the vast majority of course requisites are composed of expressions
similar to that, there are also a few that include additional elements. For instance,
some courses restrict two courses to be taken simultaneously, like GENET 420, that
states that it “may not be taken concurrently with BIOL 391”; some courses, like
PHYS 261 require the that the student had previously taken some credits in 100-
level courses from the same department; some of them, like CHEM 299, require
students to have “GPA of 2.5 or higher”; others allow requisites to be waived with
consent of the instructor.

In general, we identified three different types of information contained in the
requisites of courses as given in the calendar: requisites, equivalent courses and
restrictions. Requisites refer strictly to prerequisites and corequisites, i.e. courses
that must be taken before or at the same time as the course in question in order
to register for it. Equivalent courses are courses that cover similar content and
therefore are not intended to be taken by the same students. In the calendar, these
courses usually contain a sentence similar to this in their description: “this course

17

may not be taken for credit if credit has already been obtained in either MATH 115
or 118.” Restrictions are additional conditions that may prevent the student from
registering in the course; for example, requiring that the student hold a GPA greater
than 2.5.

For the purpose of visualization of course dependencies, only the course
requisite information is relevant. Therefore, we focused on defining a simple
language capable of expressing this information well, rather than creating a
complex language that tried to express all the information, including requisites,
equivalent courses and restrictions. The elements of the requisite information
are well defined, as they contain just courses and logical operators. In contrast,
encoding restrictions would require an extensible rule engine capable of encoding
restrictions according to different attributes of the student, course and program.
That would enable administrators to add new rules to cover each special case,
like requiring a minimum GPA, or restricting a course to a particular program of
study. This task is outside the scope of this project. Courses whose descriptions
contained equivalent courses and restrictions were flagged to inform the user to
read the description to obtain this information.

The elements of the requisite description language are described in Table 3.1.
The basic elements of the language are pre, co and sync. Each one of them must
have a course code as content. The pre element represents a prerequisite, i.e.
a course that must be taken before the course being described. The co element
represents a course that must be taken at the same time or before the given course.
The sync element is a strict version of the co element, as it represents a course that
most be taken simultaneously with the given course. The allOf, anyOf and atLeast
allow the construction of nested structures. Each one can contain one or more of
the former elements. Finally, the none element is used to express that the course
has no requisites.

Figures 3.2 and 3.3 show some examples of how to represent a course requisite
using the requisite description language. In the first example, the containing
element is of type anyOf, as the corse has two possible choices of requisites.
The first of this choices is represented by an allOf element that contains three
prerequisites, BIOCH 310, BIOCH 330 and BIOCH 330. The second choice is
another allOf containing two requisites, BIOCH 203 and BIOCH 205. In the
second example, the course requires the student to take three courses before and,
therefore, the outer element is of type allOf. Inside, there is a pre element for
the mandatory course and two anyOf elements containing the choices for two
remaining courses.

The course codes contained by the basic elements may contain wild cards,
expressed by the ’*’ symbol. The wild card may replace the course’s department or
any of the code digits. These syntactic elements are very practical for expressing
requisites that include all the courses in a particular department and/or level. For
example, “Any 200-level CMPUT course” is expressed as “CMPUT 2**”, “any
physics course” can be expressed as “PHYS ***”, and “Any 100-level course” can

18

Table 3.1: Elements of the course requisite language

Element Description Content

<none/> No requisites. –
<pre> code </pre> Prerequisite. A string containing a course

code.
<co> code </co> Corequisites. A string containing a course

code.
<sync> code
</sync>

Synchronized course. A string containing a course
code.

<allOf> ...
</allOf>

All of. Satisfied if all of the
sub-elements are satisfied.

[pre, co, sync, allOf, anyOf,
atLeast]+

<anyOf> ...
</anyOf>

Any of. Satisfied if at least
one of the sub-elements is
satisfied.

[pre, co, sync, allOf, anyOf,
atLeast]+

<atLeast n="..">
... </atLeast>

At least n of. Satisfied if at
least n of the sub-elements
are satisfied. n is a positive
integer.

[pre, co, sync, allOf, anyOf,
atLeast]+

expressed as “* 1**”.
The course requisite language presented is simple yet expressive enough

to encode the course requisite information. Having the requisites encoded in
a structured way enables the creation of graphical representations, automatic
dependency checkers and even the generation of text that describes the requisites in
natural language in a consistent and clear way.

3.2.1 Canonical Ordering
One characteristic the the requisite language is that all container elements are
commutative. For example, the expression allOf(1, 2, 3) has the same
meaning as the expression allOf(3, 2, 1). This can be a problem for
comparing and visualizing requisite trees, where, ideally, each possible requisite
tree should have a unique representation. To address this, we propose a canonical
order for the requisite nodes, defined by the following rules:

1. Operators must obey the following precedence: pre, co, sync, allOf, anyOf,
atLeast, none.

2. For leaf expressions of the same type, the order is lexicographical.

3. For non-leaf expressions of the same type, the ordering is done by comparing
the left-most leaf.

These rules guarantee that any tree has a unique canonical representation in the
requisite language.

19

BIOCH 455: Prerequisites: BIOCH
310, 320, and 330, or BIOCH 203
and 205, all with a minimum grade
of B- or consent of Department.

<anyOf>
<allOf>

<pre>BIOCH 310</pre>
<pre>BIOCH 320</pre>
<pre>BIOCH 330</pre>

</allOf>
<allOf>

<pre>BIOCH 203</pre>
<pre>BIOCH 205</pre>

</allOf>
</anyOf>

Figure 3.2: Example of a requisite encoding using the course requisite language.
On the left: the course description for BIOCH 455 as it appears in the University of
Alberta calendar. On the right: the representation of this requisites using the requisite
language.

3.3 Course Browser’s User Interface
The Course Browser is an interactive tool to explore a catalog of courses. It is
specially designed to allow an easy exploration of the course dependencies through
the use of multiple visualizations. A screen shot showing the main elements of the
course browser user interface can be seen in Figure 3.4.

The prototype described in this section was developed during the third iteration
of a prototyping process. Unlike previous prototypes, this version was intended to
be fully functional for students. In order to make the software easier to learn, user
interface elements in this version include a more familiar layout that resembles an
email client like Thunderbird1 or a music collection manager like iTunes2.

This prototype contained information about all the courses in the faculty of
Science at the University of Alberta, with approximately 1000 entries. However,
the design is scalable and capable of managing the entire catalog of the university,
which contains approximately 7500 courses.

To be able to browse a catalog of this magnitude, the Course Browser groups
courses into collections. A collection is a group of courses that share common
characteristics, for example, belonging to the same department. The prototype
includes predefined collections by department, number of credits and number of
requisites. Each collection is defined by a logical statement, allowing the support
of user-defined collections in future versions.

Once a collection is selected, the user can explore the courses that belong to it

1Thunderbird is an email application developed by the Mozilla Foundation. For more
information, visit http://www.mozillamessaging.com/en-US/thunderbird/

2iTunes is music collection manager and player developed by Apple Inc. For more information,
visit http://www.apple.com/itunes/

20

CMPUT 204: Prerequisites: CM-
PUT 115 or 175, CMPUT 272;
MATH 113, 114, or 117.

<allOf>
<anyOf>

<pre>CMPUT 115</pre>
<pre>CMPUT 175</pre>

</anyOf>
<pre>CMPUT 272</pre>
<anyOf>

<pre>MATH 113</pre>
<pre>MATH 114</pre>
<pre>MATH 117</pre>

</anyOf>
</allOf>

Figure 3.3: Example of a requisite encoding using the course requisite language.
On the left: the course description for CMPUT 204 as it appears in the University of
Alberta calendar. On the right: the representation of this requisites using the requisite
language.

using an overview diagram or a list view. The collection overview is an interactive
visualization of the courses in a collection. This diagram displays how courses
inside the collection relate to each other, according to their requisite information.
The course list uses a more conventional data grid to display the courses in a tabular
way. The grid contains columns for the code, title and number of credits of each
course. The columns are sortable, allowing the user to quickly organize and locate
courses.

When the user selects a course, either by using the collection overview diagram
or the course list, two more views become available to explore the details of the
selection. First, the course description view (see Figure 3.5) shows all the details
of the course available in the course calendar: course code, department, number
of credits, frequency and description. In addition, the requisite information is
displayed using a requisite box diagram. Second, a Course Requisite Graph (see
Figure 3.6) displays all the requisites of the course, including indirect dependencies.

All the diagrams are interactive and allow the user to navigate to the related
courses by clicking on their code. The navigation history is recorded to allow the
user to revisit previously consulted courses using the Back/Forward buttons, located
on the top-left corner of the screen.

3.3.1 Requisite box diagram
The requisite box diagram is a graphical representation of the requisites of a course,
encoded using the language introduced at the beginning of the chapter. In the
Course Browser, it is used in both the course description and course requisite graph
views. Some examples of this diagrams are shown in Figure 3.7.

21

Figure 3.4: Screen shot of the user interface of the Course Browser.

Figure 3.5: The Course description view of the Course Browser.

22

Figure 3.6: The Course requisite graph view of the Course Browser.

In the diagram, a box labeled with the course code represents each leaf element
of the requisite tree, i.e. prerequisites and corequisites. Container elements, like
allOf, atLeast and anyOf, are also drawn as boxes, with their children elements
contained inside. The way that children are positioned inside the box depends on
the type of the language element. AllOf boxes arrange their children in an horizontal
way, while anyOf and atLeast boxes organize them in a vertical way. This way, the
user can easily identify choices from mandatory requirements. When the requisite
tree is composed of just allOf and anyOf elements, the number of columns in the
diagram indicates the number of mandatory courses that the user most take. This
way, courses that require few courses will have thin diagrams, and courses that
have lots of choices will have tall diagrams. These features make the diagram easy
to scan for basic information.

Each type of box in the diagram is drawn in a distinctive color. Thus,
elements can be distinguished using multiple perceptual channels: shape, color and
alignment. In addition, a title with the type of the element is drawn in the top left
corner of each box, to make it easier for users to understand the meaning of the
diagram and preserve all its semantics even when it is displayed in monochromatic
media, for example, if printed in black and white.

This type of diagram shares some similarities with the treemap layout [31]. Both
of them represent a node of the tree by a box that contains their children. Their
main difference is that treemaps are a general purpose diagram for representing
trees. In the treemap, there is no differentiation of the types of the nodes. The
requisite box diagram, on the other hand, was created specifically for representing
course requisites. It differentiates among different types of subtrees in the requisite
language and defines coloring and arrangement rules for each of them.

The requisite box diagram complies with the criteria presented at the beginning
of the chapter. It is compact, as it does not take a lot of space and it scales gracefully
as the complexity of the requisite tree increases. The canonical ordering of the
requisite language makes the diagram stable, as there is only one representation for
any given requisite tree. It provides good sense and scalability as it uses multiple

23

Figure 3.7: Four examples of the requisite box diagram.

cognitive channels to encode information. Finally, It is easy to be augment in order
to highlight attributes. For example, the codes of obsolete courses (courses that are
no longer part of the catalog, but still appear in requisites), are emphasized with a
strikethrough line.

3.3.2 Circular diagrams
The Course Browser prototype contains two diagrams designed to display direct
and indirect dependencies between courses: the collection overview and the course
requisite graph. Both of them share the same design principles, so we refer
to them as circular diagrams. Some examples of these diagrams are shown in
Figures 3.4 and 3.6.

The purpose of these diagrams is not to encode all the complete information
about the tree, but to give the user an overview of how courses are related. The arcs
hide part of the complexity of the tree, but in exchange offer a transitive view of the
course requisites.

Circular diagrams position the nodes along a circumference and display curved
arrows between them to express their relationship. This way, no overlapping
between the nodes and arrows is possible, as is the case with other graph layouts.
Nodes are sorted alphabetically along the circumference to allow the user to quickly
locate the desire course. Arrows show a relationship between two courses in the
dependency tree; more precisely, each arrow represents a path from the root of the
requisite tree to one of its leaves, which must contain a pre, co or sync element.
This path can traverse multiple nodes of type allOf, anyOf or atLeast.

In the diagram, choices and mandatory requirements are characterized by the
saturation of their arrows. This property is determined by a recursive weight
distribution algorithm. The alpha channel of the node is defined by interpolating
the weight of each target node in the interval [0.5, 1]. The weight assignment works
as follows: The root of the dependency tree is assigned a weight of 1; then, the
weight is distributed to each of their children following the following rules in a

24

Weight

<allOf> 1
<anyOf> 1
<pre>CMPUT 115</pre> 1/2
<pre>CMPUT 175</pre> 1/2

</anyOf>
<pre>CMPUT 272</pre> 1
<atLeast n="2"> 1
<pre>MATH 113</pre> 2/3
<pre>MATH 114</pre> 2/3
<pre>MATH 117</pre> 2/3

</anyOf>
</allOf>

Figure 3.8: Example of the weight assignment for calculating the saturation of the
arrows in the circular diagrams.

recursive way:

1. If the node is of type allOf and its weight is w, each of its immediate children
are given the weight w.

2. If the node is of type anyOf and its weight isw, each of its immediate children
are given the weight w/c, where c is the number of children of the node.

3. If the node is of type atLeast and its weight is w, each of its immediate
children are given the weight n ∗ w/c, where c is the number of children
of the node and n is the parameter of the node.

An example of the weight assignment is shown in Figure 3.8: The root node
gets assigned a value of 1. As the root node is of type allOf, each of its children
is assigned a value of 1 as well. The first children is of type anyOf, therefore, its
weight is distributed evenly among its children, giving each of them a weight of
1/2. The second child of the root is a leaf, so it has no children to assign weights
to. Finally, the third child of the root is an atLeast element with a parameter value
of 2, and 3 children. Thus, each of its children is given a weight of 2/3.

The design of the circular diagrams meets the design objectives proposed at
the beginning of the chapter. As the course titles are shown sorted at the edge
of the circle, the diagram remains stable as new nodes are added, and it is easy
to scan to locate a particular course. The size of the diagram is independent of
the number of nodes and it can be adjusted to fill the size of the screen. Its
complexity increases gracefully as more nodes are added. Finally, it allows the
user to distinguish courses with different characteristics by scanning the diagram:
fundamental courses have many arrows pointing to them; courses with no requisite

25

have arrows originating from them; courses that are not required by other courses
have no arrows pointing to them; finally, courses that require many courses have
many opaque arrows originating from them while courses that require a few courses
but have many choices have many translucent arrows.

Unfortunately, as the number of courses increases, the circular diagrams become
complex and difficult to read. To solve this, the number of nodes in each diagram
was limited to 150 elements and interactive features were implemented. For
example the user may highlight a course code by positioning the mouse pointer
on top of its code to consult basic information about it. Other interactive features
particular to each of the diagrams are described in the following sections.

Collection Overview

The Collection Overview diagram is a type of circular diagram that displays the
courses of a particular collection. Its objective is to show how the courses inside the
collection depend on each other. This diagram is useful to identify the fundamental
courses in a collection as well as courses with no requisites, and courses not
required by other courses.

In the diagram, all courses that belong to the given collection are shown in the
edge, and all the remaining courses in the library are represented by a single node
labeled “others”. This node is important as it allows the user to identify when a
course requires courses outside the collection.

The diagram has several interactive features. When the user hovers a course
code with the mouse pointer, a panel appears at the right of the diagram displaying
basic information about the course. In addition, the arrows are highlighted using
different colors for incoming and outgoing requisites. When the user selects a
course–by clicking its code on the diagram or using a different view–the diagram
filters the nodes that are related directly or indirectly to the selection and hides all
unrelated the arcs. This considerably enhances the readability of the diagram.

Course Requisite Graph

The Course Requisite Graph is a type of circular diagram that displays all the direct
and indirect requisites of the selected course. This type of diagram is useful in
course planning as it displays all the possible courses that must be taken before a
given course. A course must be selected in order to display this diagram.

This diagram shares some of interactive features of the Collection Overview
Diagram. When the course code is hovered by the mouse, the course information
is displayed and the arrows are highlighted. Clicking a node changes the selection
its respective course. In addition to this, an optional popup window displays the
Requisite box diagram of the highlighted course.

26

3.4 Early Prototypes
The Course Browser prototype presented in the last section was designed in the
third iteration of a prototyping process. The following sections describe the earlier
designs of the application, discussing their advantages and disadvantages.

3.4.1 Card Prototype
The first prototype of the Course Browser used playing cards as a metaphor for
displaying courses. In this metaphor, cards represent courses and stacks of cards
represent groupings of courses which share common characteristics, for example,
belonging to the same department.

The card metaphor supports the following operations (shown in Figures 3.9 and 3.10):

Move: both cards and stacks may be moved in the canvas.

Create card: creates a card to represent a piece of information.

Create stack : Creates new card stack. Stacks can be created in free style–
allowing any card to be added, or have a selection criteria, in which case all
the cards that comply with the criteria will be attracted to it.

Add card to stack : Adds a card to stack.

Bring card to top: brings a card from the middle of the stack to the top of the
stack.

Expand stack: opens the stack to allow the user to view a portion of each card,
named header. The header usually contains the identification of the element
that the card represents.

Expand stack with fish-eye effect: If the stack contains many items, the expand
view may overflow the screen. This version of the expand just expands just
a segment of the stack, but allows the user to navigate it.

Close stack: The stack is closed, meaning that each card is positioned on top of
each other. A small offset is left to give an illusion of depth.

Flip card: A card can be flipped to hide its contents. This can be used for a
variety of purposes: for example, while filtering a stack, all filtered cards
could be flipped, allowing the user to quickly identify the pertinent cards.
Another possible use is in lazy-loading systems: cards can be displayed
upside down and only when the user flips them would the system fetch their
content and reveal them to the user.

Mark card: The card is marked. A small red spot is shown in one of the corners.

27

Figure 3.9: Some operations of the card UI metaphor. 1) Card in Flipped state. 2)
Expanded stack with fisheye effect. 3) Closed stack.

Select card: The deck splits to reveal just the selected card. The rest of the
cards remain in their previous state (closed or expanded).

Wiggle card: A card wiggles to represent that it will be affected by an action.
This effect provides a sense of the impact of an action before it happens. In
our prototype, if the user positions the mouse pointer over a selected course,
all related courses would wiggle indicating its relationship with it.

In this prototype, each course was represented by a card. The front face of the
card contained key information about the course, distributed in different areas of
the card surface: code, department, title and credits. Stacks grouped courses by
department. A screenshot of this prototype is shown in Figure 3.10.

The user interface showed one stack per department. In this prototype we
only included information of two of the departments in the university: Computing
Science and Mathematics. When the user clicked on the title of the deck, it
will expand, showing all the titles of the courses. Whenever the mouse pointer
hovered a card, the dependencies of the respective course (directly and indirectly)
wiggled to indicate that those courses are related. Upon click, the card was
selected and all related cards moved to create a dependency diagram on top of the
deck. This diagram was an early version of the requisite box diagram described in
Section 3.3.1.

In addition, the interface provided back and forward controls to navigate
the selection history. This allowed the user to quickly revisit courses consulted
previously.

Discussion

The card metaphor is intuitive and provides a rich set of interactions. The different
operations are easily understood by the user. The wiggle animation provides an
effective way to show related courses.

However, this metaphor presents several limitations that make it unpractical
for representing course dependencies. In the first place, the cards have a small
fixed area to show information. To be readable, each card must be rendered at a
large scale, which limits the number of cards that can be shown in the screen at

28

Figure 3.10: The Course Browser Card Prototype. 1) A closed stack containing
courses from the Math department. 2) An expanded stack. 3) The selected card. 4)
A Dependency box diagram. 5) Buttons for navigating browsing history.

a given time. For collections of hundreds to thousands of elements, as is the case
of the course catalog, this is a big disadvantage. Opening a stack with the courses
of a department would always overflow the screen. Another caveat of the card
metaphor is that, to be consistent, each element should be represented by a single
card. In the course catalog, it is possible for a course to appear more than once in
the dependency diagram. Duplicating cards can cause confusion as it breaks the
normal rules of physical objects.

Another problem identified with the prototype, was that the wiggle animation
showed all related courses, direct and indirect, while the diagram could only show
direct dependencies. This made the interaction confusing as only a fraction of the
cards that wiggled would move to form the diagram. However, creating a diagram
that included indirect dependencies would contain too many elements and easily
overflow the screen.

3.4.2 Tiles Prototype
The tile browser prototype aimed to correct some of the problems with the previous
prototype, tweaking some of the characteristics of the cards metaphor. A screenshot
of this prototype is shown in Figure 3.11. In this version, instead of displaying all
the course information in cards, smaller tiles were used. A tile was essentially a
small version of the card, including only its header which, in this case, contained
the code and title of the course. The department name was identified by a distinctive
color. All the text was displayed horizontally to enhance readability. In addition,

29

Figure 3.11: The Course Browser Tiles Prototype. 1) Expanded tile. 2) Selected tile.
3) Inspector window displaying information of the selected course. 4) Zoom control.

the expansion of the deck was performed from top to bottom instead of left to right.
All the remaining information about a course was displayed in an inspector

window. This window was a semi-transparent panel floating on top of the canvas.
It displayed the title, number of credits, detailed description of the course and the
second version of the requisite box diagram. The inspector window displayed the
information of the currently selected course. It was possible to open extra inspector
windows for different courses to compare their characteristics.

A zoom control allowed the user to change the magnification of the display. In
addition, a layout effect was added to ease the identification of the selected course
at low magnification levels: all the cards in the vicinity of the selection were pulled
to the left a distance proportional to the distance between them and the selection.
This would create an arc, directing the user visual attention to the selection.

Finally, the wiggle animation was preserved to reveal related courses, but the
cards no longer moved to show the dependency diagram. This last step was
unnecessary as the diagram was already being displayed on the inspector window.

Discussion

This prototype solved some of the problems with the previous prototype. The space
was used more efficiently as more elements could be seen at the same time. The
zoom feature allowed the user to choose the granularity of the view.

Displaying the dependency diagram in the inspector window sacrificed some of
the interactivity, but eliminated the problem of having duplicate courses in the same
diagram. It also made the diagram more compact and easy to read.

30

Expanding the stacks vertically and displaying the header information hori-
zontally made the course title easier to read, but the expanded stacks overflowed
the screen faster, as most computer displays have a wide aspect ratio. A better
mechanism for browsing the courses inside a department was necessary.

The major limitation of this prototype was the lack of visualization of indirect
dependencies. The wiggle effect gave the user some clue of which courses are
related, but did not tell how. In particular, with courses that required just one course
but gave many choices (e.g. courses that required any 100-level course), many tiles
would wiggle, giving the wrong impression that the course required many courses.
Even worse, as the wiggling movement included indirect dependencies, this effect
propagated to any course that require a course with that characteristic.

Another aspect to improve was scalability. Loading all the courses in a
university would require up to a hundred stacks. This imposes the problem of how
to layout the stacks in the canvas. A horizontal layout, as done in the prototype,
avoids overlapping the tiles when the stacks expand, but would require the user to
scroll the view find a particular collection.

Both the cards and tile metaphors proposed an interesting paradigm suitable
for collections with the following characteristics: 1) each element should be
represented only once; 2) the total number of elements in the display must be
from tens to hundreds; 3) the amount of information to display about the element
may be fitted in a small area. These limitations made this metaphor inadequate
for displaying all the courses in the university and, therefore, the final prototype
of the course browser took a different approach for visualizing the course catalog.
Nevertheless, this prototype preserved some of the concepts introduced in the cards
and tiles prototype. In particular, the requisite diagram was further developed
and included. This diagram preserves the representation of courses as small tiles.
Likewise, the stacks evolved into the concept of collections.

31

Chapter 4

Usability Study: Methodology

We conducted a usability study to assess the Course Browser according to ease to
use, easiness to learn, effectiveness to perform course planning tasks and confidence
of the results. For comparison, we used the course catalog of Bear Tracks, a web-
based tool that students presently use to browse the course catalog at the university.
We asked students to perform equivalent tasks with both tools and measured the
time-to-solve and accuracy of their answers. Then we asked the students about
their experience and gathered their suggestions on how to improve the tool.

It is important to note that the Course Browser should not be considered
a replacement for Bear Tracks. It was designed to leverage and enhance the
functionality of only one of its modules, namely, the course catalog. We wanted to
test whether the Course Browser provides a better set of tools for course planning
than the current tools available. We believe that, ultimately, many of the features of
the Course Browser could be integrated into Bear Tracks itself.

4.1 Bear Tracks
Bear Tracks is the course information and registration system of the University of
Alberta. It hosts the course catalog, handles the registration of courses and keeps
record of the grades. It also provides services related to admissions, academics,
financial information for students, and payroll for employees.

For the usability study, we chose to compare the Course Browser against the
feature of Bear Tracks that allows the user to search the course catalog. Students
use this feature while planning their program to find which courses are available
and what are their requisites.

The navigation scheme for the browse course catalog feature is described by
Figure 4.1. It follows these steps: 1) the user inputs a search for a course; 2) the
system displays a list of the courses that matches the search criteria; 3) the user
accesses the detail information of the course; 4) the user may go back to the search
results or start a new search.

When the browse course catalog option is selected from the main menu, a

32

Search
results

Search
form

Course
detail

start end

Figure 4.1: Bear Tracks’ course catalog navigation chart.

Figure 4.2: Bear Tracks course catalog search screen

33

Camilo Arango Moreno

Browse Course Catalog

Catalog Search Results

Return to Search Legend

Computing Science
Department of Computing Science
Faculty of Science

Notes
(1) There are many routes to the study of Computing Science. Students should seek advice from a department
advisor or visit our website at www.cs.ualberta.ca/courses.
(2) The department of Computing Science does not allow audits in any of its laboratory courses.
(3) Special sections of CMPUT 196, 197, 198, 199, 296, 297, 298, 299, 396, 397, 398, 399, 496, 497, 498, 499
may have different prerequisites. Please check the specific course descriptions as posted by the Department of
Computing Science.

Undergraduate Courses

Entered

ADD TO PLANNER

Entered

CMPUT 300 - Computers and Society

*3 (fi 6) (either term,3-1s-0)

Social, ethical, professional, economic, and legal issues in the development and deployment of computer
technology in society. Prerequisites: CMPUT course or SCI 100 , and any 200-level course.

Entered

ADD TO PLANNER

Entered

CMPUT 301 - Introduction to Software Engineering

*3 (fi 6) (either term,3-0-3)

Object-oriented design and analysis, with interactive applications as the primary example. Topics include:
software process; revision control; Unified Modeling Language (UML); requirements; software architecture,
design patterns, frameworks, design guidelines; unit testing; refactoring; software tools. Prerequisite: CMPUT
201.

Entered

ADD TO PLANNER

Entered

CMPUT 304 - Algorithms II

*3 (fi 6) (either term,3-0-0)

The second course of a two-course sequence on algorithm design. Emphasis on principles of algorithm design.
Categories of algorithms such as divide-and-conquer, greedy algorithms, dynamic programming; analysis of
algorithms; limits of algorithm design; NP-completeness; heuristic algorithms. Prerequisites: CMPUT 204; one of
STAT 151, 221, 235 or 265; one of MATH 225, 228, 229, 328 or consent of Instructor.

Entered

ADD TO PLANNER

Entered

CMPUT 306 - Image Processing: Algorithms and Applications

*3 (fi 6) (either term,3-0-3)

Introduction, history, and applications; scanning and quantization; visual perception; output devices; pattern
recognition; feature extraction, decision theory, classification rules; data representation and formats; image
enhancement and restoration; edge detection, segmentation and texture; correlation and registration.
Prerequisites: CMPUT 201; MATH 214 and one of STAT 222, 252 or 366. Credit may be obtained in only one of
CMPUT 306 or EE BE 540.

Entered

ADD TO PLANNER

Entered

CMPUT 307 - 3D Graphics and Animation with 3DS Max

*3 (fi 6) (either term,3-0-3)

Interdisciplinary introduction to Graphics and Animation through the use of the 3D Studio Max package.
Graphics and Animation have industrial applications in advertising, movies, games and TV. Interdisciplinary
teams will work together on practical applications of graphics and animations. For example, students can work
on a project to enhance sculpting skills using a database of 3D models. Prerequisite: Any second or higher-
level undergraduate student, with some math, computer programming and image processing background, or
permission of the instructor.

LegendReturn to Search

Figure 4.3: Bear Tracks course catalog result screen. This shows the results for
courses in the Computing Science department with codes beginning with “30”.

search form is displayed. The search form is filled in two phases: Initially, the form
displays only a term selector that restricts the search to the courses taught during
the spring/summer terms or the fall/summer terms; once the desired term is chosen,
the system shows the rest of the search fields (see Figure 4.2). The system allows
the user to search using filters by department code and course number. The course
number filter is flexible, allowing the user to choose among different operators,
like begins with, greater than or equal to, exactly, and less or equal to. This
feature allows the user to search for an specific course as well as perform more
comprehensive queries like “search all the courses in the Physics department” or
“search for courses in the Computing Science department with codes beginning
with the number 30”.

The results of the query are presented as a list that contains the course’s code,
title, and description, as shown in Figure 4.3. To see the complete information of a
course, the student can click on the course title’s hyperlink.

The course view shows the full calendar description of the course (Figure 4.4).
The first section of the page displays basic course details including units, fee index,

34

Camilo Arango Moreno

Browse Course Catalog

Course Detail

Return to Browse Course Catalog Legend

Computing Science

Department of Computing Science
Faculty of Science

Notes
(1) There are many routes to the study of Computing Science. Students should seek advice from a department
advisor or visit our website at www.cs.ualberta.ca/courses.
(2) The department of Computing Science does not allow audits in any of its laboratory courses.
(3) Special sections of CMPUT 196, 197, 198, 199, 296, 297, 298, 299, 396, 397, 398, 399, 496, 497, 498, 499
may have different prerequisites. Please check the specific course descriptions as posted by the Department of
Computing Science.

Undergraduate Courses

CMPUT 304 - Algorithms II

Course Detail

Career Undergraduate

Units *3.00

Fee Index 6

Approved Hours 3-0-0

Calendar Term either term

Lecture RequiredCourse Components

add to planner

Description

The second course of a two-course sequence on algorithm design.
Emphasis on principles of algorithm design. Categories of algorithms such
as divide-and-conquer, greedy algorithms, dynamic programming;
analysis of algorithms; limits of algorithm design; NP-completeness;
heuristic algorithms. Prerequisites: CMPUT 204; one of STAT 151, 221,
235 or 265; one of MATH 225, 228, 229, 328 or consent of Instructor.

Fall Term 2009 / Winter Term 2010 Class Listings

Open Full Cancelled Closed (Contact Department)

Group Box Notes

Subject Notes All 100-level, 200-level, 300-level, and 400-level CMPUT courses are open to students in
any Faculty, with the exception of CMPUT 250 (this course requires an application by the
student; please consult the department), CMPUT 400 (IIP students only), CMPUT 412
(limited enrollment, 4th year CS students have priority), and CMPUT 495 (Honors CS
students only). If you have any questions as to whether your pre-requisite background is
sufficient to take a course, please contact the Department of Computing Science for
advice.

All 500-level courses are restricted to Graduate students in Computing Science and
Honors students in Computing Science. Honors students in Computing Science should
contact the Department for registration assistance in 500-level courses. All 600-level
courses are restricted to Graduate students in Computing Science.

Add selected section of CMPUT 304 to: SCHEDULE BUILDER

CMPUT 304 sections for Fall Term 2009

Class Course Section Location Days Times Instructor Open Seats Status

35751 CMPUT 304 LEC A1 CAB 273 T R 11:00AM - 12:20PM To Be Assigned 18 / 30

Class Notes: Computer Engineering and Computer Engineering Software Option students must register in sections beginning
with "E".

32632 CMPUT 304 LEC EA1 CAB 273 T R 11:00AM - 12:20PM To Be Assigned 5 / 5

Class Notes: Computer Engineering and Computer Engineering Software Option students must register in sections beginning
with "E".

Add selected section of CMPUT 304 to: SCHEDULE BUILDER

Return to Browse Course Catalog Legend

Figure 4.4: Bear Tracks detail page for CMPUT 304

approved hours, calendar terms, course components and a general description. The
rest of the page is dedicated to display the schedule of the course’s sections.

The course requisites are contained inside the course description, usually at the
end, and are written in natural language. Although some departments follow the
same format to express them, there are no consistent rules on how to express the
requisites among the entire university. Moreover, only immediate requisites are
included in the description of each course. That implies that in order to discover
indirect requisites, the user has to start with a search of the basic course, read
the requisites of that course, and repeat the process for each of them. It is not
uncommon having to run five or more individual searches in order to find the
complete requisites for a given course.

35

4.2 Design of the usability study
The usability study was divided into three parts: 1) we performed an interview
to gather information about the participants and how they conducted course
planning; 2) each participant was asked to perform a series of tasks with both the
Course Browser and Bear Tracks; 3) we performed a second interview to gather
impressions of the experience.

4.2.1 First interview
At the beginning of the session each participant was asked to sign a consent form
that explained the methodology of the experiment. Afterwards, we performed
a five-minute interview to gather information about the participant and their
experience with course planning. This interview was audiotaped for record keeping
and further analysis.

The interviewer asked the participant information about: 1) current year of study
and the number of courses they had taken at the university; 2) the participant’s
understanding of the terms prerequisite and corequisite in the context of course
registration; 3) methods used to find information about the courses and their
requisites and if they had experienced difficulties understanding the requisites of
courses; 5) participant’s current practices for planning his program. The complete
questionnaire of the interview is given in Appendix 1.

If the participant did not have a precise understanding of the terms, the
interviewer explained the meaning of them, as this knowledge was crucial for the
task-solving phase.

4.2.2 Course Planning Tasks
The second part of the session consisted of a series of typical course planning tasks
that the participant must solve using both the Course Browser and Bear Tracks.
With each tool, the participant was asked to answer seven questions. The questions
had increasing levels of difficulty, starting with a very simple task of counting
courses in certain department and ending with the planning of all the courses
required to take a fourth year course, term by term. The questionnaires for both
tools were analogous in the sense that both contained the same form of questions,
in the same order, but with different data.

The purpose of this part of the session was to objectively measure the
effectiveness of the user interface and give the users a scenario as close as possible
to reality to compare the tools. Therefore, we measured the time to complete each
of the tasks and, afterwards, each of the questions was verified to find out if the user
reached a correct answer.

Before solving the tasks with the Course Browser, each participant was given
five minutes for free exploration of the user interface. After that, a short tutorial
video was shown and they were given the chance to ask questions about the

36

application. All the participants had already being exposed to the use of Bear
Tracks in the past, so no introduction of this tool was necessary. Simply, they were
instructed to use just the browse course catalog feature to answer the questions.

To avoid biasing the results, the order of the tools was alternated, so for each
question, around half of the participants used Bear Tracks first, and the remaining
half used the Course Browser first. For the participants that used Bear Tracks first,
this phase was performed with the following steps:

1. Solve tasks 1 to 7 using the Bear Tracks.

2. Watch introductory video about the Course Browser.

3. Do a 5-minute exploration of the Course Browser.

4. Solve tasks 1 to 7 (with different data) using the Course Browser.

For the participants that used the Course Browser first, this phase was performed
with the following steps:

1. Watch introductory video about the Course Browser.

2. Do a 5-minute exploration of the Course Browser.

3. Solve tasks 1 to 7 using the Course Browser.

4. Solve tasks 1 to 7 (with different data) using the Bear Tracks.

Both the task solving and the free exploration phases were recorded using a
screen capture software called Screenflow1. This software recorded all the user
activity, including audio and video of the participant’s face. This information was
kept for further analysis and record keeping.

4.2.3 Second interview
After finishing the tasks, we conducted a post interview. Just like the first interview,
this part of the session was audiotaped. The questionnaire contained questions
to test the user experience about both of the applications used. Some of the
questions were formulated using a 5-level Likert scale [22] to facilitate the statistical
analysis and comparison. The remaining questions were open-ended to identify
elements that the participants liked and disliked about the user interface and gather
suggestions on how to improve the application.

The goal for this interview was to measure if the users perceived the application
as easy to use, easy to learn, and find out the level of confidence they had with the
answers they found. To enable us to compare the results effectively and avoid bias,
most of the questions that compared the applications were formulated in exactly the

1http://www.telestream.net/screen-flow/overview.htm

37

Table 4.1: User study questions formulated in parallel form for Bear Tracks and the
Course Browser. Answers were represented using a five-level Likert scale.

Question Identifier Question text

bt.easynd It is easy to find a course on Bear Tracks
cb.easynd It is easy to find a course on the Course Browser.

bt. enoughinfo The course catalog on Bear Tracks displays enough information
about the course for planning your program.

cb. enoughinfo The Course Description view displays enough information about
the course for planning your program.

bt.easyreq It was easy to identify the requisites of a course using Bear Tracks
cb.easyreq It was easy to identify the requisites of a course using the Course

Browser

bt.confident I felt very confident with the answers I got from Bear Tracks.
cb.confident I felt very confident with the answers I got from Course Browser

bt.clear The requisites of courses are presented in a clear way on Bear
Tracks

cb.clear The requisites of courses are presented in a clear way on the
Course Browser

bt.planning The course catalog on Bear Tracks is adequate for performing
course planning

cb.planning I would like to use a tool similar to the Course Browser for my
course planning.

Prefix “bt.” indicates questions that refer to Bear Tracks.

Prefix “cb.” indicates questions that refer to the Course Browser.

same way for both of the systems. These paired questions are shown in Table 4.1.
Some of the questions, however, were formulated to only one of the systems as
they made reference to a specific part of the application, for example a particular
visualization of the Course Browser. These questions are displayed in Table 4.2

4.3 Pilot testing
Before conducting the study, we performed four pilot trials. Three of the partic-
ipants for these pilot tests were graduate students from the Software Engineering
Research Lab and one was an undergraduate student in Computing Science. These
trials served two purposes: first, they helped us to identify problems with the
questionnairef or refinement and, second, they identifyed obvious problems with
the prototype that could be easily fixed before the study.

One problems identified during the pilot testing was that some of the par-
ticipants reached a wrong answer for some types of the questions when they

38

Table 4.2: User study questions formulated in individual form. Answers were
represented using a five-level Likert scale.

Question Identifier Question text

bt.easydesc The description of the courses on Bear Tracks is easy to
understand

cb.video My understanding of the Course Browser improved significantly
after watching the Quick Tour video

cb.box1 I understood the meaning of the Requisite Box Diagram
cb.box2 The Requisite Box Diagram is an effective way to visualize

course requisites.
cb.collections The Collections offer an effective way to group the courses in the

course catalog
cb.list The Course List offers an effective way to browse the courses
cb.reqgraph1 I understood the meaning of the Course Requisite Graph
cb.reqgraph2 The Course Requisite Graph offers an effective way to visualize

the relationships between courses
cb.overview1 I understood the meaning of the Collection Overview diagram
cb.overview2 The Collection Overview diagram offers an effective way to

visualize the relationships between courses
cb.better The Course Browser is better than Bear Tracks for performing

course-planning tasks

Prefix “bt.” indicates questions that refer to Bear Tracks.

Prefix “cb.” indicates questions that refer to the Course Browser.

chose to solve them using the collection overview diagram. This diagram was
designed to present only the requisites of courses that belong to a given collection,
and therefore, all dependencies to courses outside the collection were simply not
displayed. The participants, however, tried to use the diagram to find out whether
a course had dependencies in general. Therefore, by using this diagram, they
sometimes reached to the wrong conclusion that a course had no dependencies at all,
when the requisites of the course were outside the collection. While this problem
was partially due to a wrong interpretation of the diagram, it became clear that
the diagram could be improved to prevent the user from making that mistake. The
problem was not that the diagram was showing a subset of the requisite information,
but that this fact was not obvious to the user. To fix the problem, a new node
labeled “other” was introduced in the diagram to represent all the courses outside
the collection. Whenever a course had a dependency to another course outside the
collection, an arc was drawn to the other node. Furthermore, whenever the user
highlighted the other node, a text explicitly explained that the node represented
courses outside the collection.

Another issue identified during the pilot testing was that some the participants
often tried to double-click the items on the course list of the Course Browser to find

39

more information about the course. This is a very common user interface behavior
in other applications. As it was very simple to implement this feature as a shortcut
to open the course description tab and it was not intrusive to other features, it was
fixed before performing the actual study.

The pilot test also helped us to refine the questionnaire for the tests. The
questions that were identified as confusing were revised or replaced altogether.
Different styles were tried for the tasks, ranging from multiple selection questions
to open-ended ones, as we tried to make them simple to solve using the tools but
difficult to guess. Finally, times were recorded to ensure the length of the study was
no greater than two hours.

The pilot testing proved to be a very useful practice to refine both the prototype
and the questionnaire.

4.4 Target population and recruiting
The target population of the study consisted of undergraduate students at the
University of Alberta. To recruit the participants, we attached advertisement posters
in the university campus. We also sent e-mails to the mailing lists of different
departments in the faculty of Arts and Sciences. We offered to give a movie ticket
to each participant at the end of the session as an incentive for participating in the
study.

In addition to the tests with the students, we also organized a few sessions with
student advisors to gather their impressions about the Course Browser prototype.

40

Chapter 5

Usability Study: Results

5.1 First interview
The usability study was conducted with fifteen undergraduate students from the
University of Alberta. They were enrolled in a variety of programs, and had
different levels of experience with registration and course planning. As Figure 5.1
a shows, the years of enrollment for the participants ranged from 2005 to 2009, in
a uniform way. Since there is no fixed number of courses that a student has to take
per year, a better indication of their experience with course planning is the number
of courses taken. This information, displayed in Figure 5.1 b, shows a wide range
of courses taken, from 0 to 5 to more than 30.

Each participant was asked to define the concepts of prerequisites and coreq-
uisites. These concepts were central for performing the tasks in the following
phase of the study. The results for this question are shown Figure 5.1 c. All of
the participants had a good idea of what the term prerequisite means, as all but one
of them could give a precise definition of the concept. The notion of corequisite,
on the other hand, proved to be quite confusing: only four of the participants knew
precisely what it means; six of the participants knew that corequisites are meant to
be taken simultaneously with the course they refer to, but did not know that they
can be taken before; and one third of them gave completely erroneous definitions.

For the question “I have trouble understanding the prerequisites and corequi-
sites of courses” a significant number of participants disagreed [V = 6.5, p < .050]
(see Table 5.1).

Some of the questions were aimed at identifying the resources that students use
to perform course planning. There are a variety of ways in which the students can
access the catalog of courses of the university. One is them is by using the course
catalog feature on Bear Tracks. In addition, each year the university publishes
a printed calendar containing all courses and programs. A digital version of the
calendar is also available to all students on the university website. An alternative
to these resources is Bear Scat, a system originally developed by students to
complement the functionality of Bear Tracks. Bear Scat is now considered to be

41

Table 5.1: Results for the question: “I have trouble understanding the prerequisites
and corequisites of courses” in the first interview

Rating Wilcoxon Test

Question Identifier SD D N A SA median V p

pre.understand 2 11 1 1 0 2 6.5 < .050
SD=Strongly disagree, D=Disagree, N=Neutral, A=Agree, SA=Strongly Agree

obsolete, as Bear Tracks was recently updated to include most of its functionality.
In addition, some departments publish and maintain information about the courses
they offer. Finally, students often consult professors, advisors and their peers to find
information.

We asked the participants which resources they used to browse courses and find
out about course requisites. The results to this question, as seen on Figure 5.1
d, show that students use all of the printed and electronic resources to search for
courses, Bear Tracks and the printed version of the university calendar being the
most popular. For finding about the requisites about courses, however, Bear Tracks
was less popular, as only six of the participants claimed to use it. The same number
of participants mentioned the departments website as their source of information,
and calendar and seeking help from advisors were next in the ranking of preferred
method.

Finally, students were asked about their practices in performing course plan-
ning. Their answers are displayed in 5.1 e. Six of the students said that they perform
course planning on a yearly basis, choosing their courses for the two terms ahead.
Five of the students did not do planning and simply picked their courses at the
beginning of each term.

5.2 Course-Planning Tasks
During the task-solving phase, participants were asked to perform seven tasks
related to course planning. The time of completion and the correctness of the
answers were recorded for each of the tasks. Table 5.3 displays the results for
correctness of the tasks, separately for each system used. The time-to-solve is
presented on Table 5.4 and displayed in scatter plots, on Figure 5.2.

5.2.1 Statistical Analysis
To test the significance of the correctness results, we applied the McNemar’s
Chi-squared test [30]. In this case, the null hypothesis was that the number of
participants that obtained an incorrect answer to a given task using Bear Tracks,
but reached a correct answer with the Course Browser, is the same as the number

42

0

2

4

6

8

10

2004 2005 2006 2007 2008 2009

a)

#
 o

f
st

u
d
en

ts

Year of enrollment

0

2

4

6

8

10

0-5 11-15 21-25 31+

b)

#
 o

f
st

u
d
en

ts

Number of courses taken

0

3

6

9

12

15

N
on

e

Som
e

Pre
ci

se

c)

#
 o

f
st

u
d
en

ts

Prerequisites Correquisites

0

3

6

9

12

15

B
ea

r T
ra

ck
s

B
ea

r S
ca

t

D
ep

t w
eb

si
te

Pro
fe

ss
or

s

d)

#
 o

f
st

u
d
en

ts

Find courses Find Requisites

0

1

2

3

4

5

6

N
ex

t t
er

m

N
ex

t y
ea

r

Ent
ire

 p
ro

gr
am

e)

#
 o

f
st

u
d
en

ts

Figure 5.1: Results for first interview with fifteen undergraduate students. a)
Number of students by year of enrollment in the university. b) Number of courses
taken. c) Understanding of the concepts of prerequisite and corequisite. d) Resources
used for course planning. e) Planning horizon for students.

43

of participants that gave the correct answer with Bear Tracks, and a wrong answer
with the Course Browser. If the probability of the null hypothesis being true is
significantly small, we reject the null hypothesis and conclude that the increase or
decrease in correctness is related to the tool used.

With the time-to-solve data, we performed a mean and a variance test for each
of the tasks, comparing the results with Bear Tracks and the Course Browser. To
test the equality of means, we used the paired version of the Student’s t-test [39].
To drop the assumption that the variances of the samples are equal, we used the
Welch approximation. The alternative hypothesis used was that the means of the
two samples were different. The equality of the variances was tested using the F
test, with the alternative hypothesis being that the variance of the times with each
of the systems are different [30]. The results for these tests are shown in the bottom
row of Tables 5.3 and 5.4.

No statistical test was performed to assess order effects. It is reasonable to
assume that the ordering does not produce a signicant effect in this case, since all
the participants had prior experience with Bear Tracks, all of them received training
with the Course Browser before using it, and the tasks performed were the same
except for specific choices of courses involved. Table 5.2 shows the system each
participant used first to solve the tasks.

All the statistical computations were performed using the R statistical software
[27]. For the analysis, we considered any value of p greater than 0.05 to be not
significant (labeled n.s.).

5.2.2 Results
Task 1 required the participants to count the number of courses offered by a
certain department of the university. The average time taken by the participants
to complete this task was significantly lower with the Course Browser than with
Bear Tracks [t(14) = 3.03, p < .01] and had a significantly smaller spread
[F (14, 14) = 4.62, p < .01]. No significant improvements in correctness were
observed [χ2(1) = 0.5, n.s.].

Task 2 asked the participants to identify the courses with no requisites among
a list of four. The average time-to-complete times were significantly smaller with
the Course Browser [t(14) = 9.39, p < .001] and had a significantly higher spread
with Bear Tracks [F (14, 14) = 6.68, p < .001]. The improvement in correctness
with the Course Browser was significant [χ2(1) = 4.17, p < .05].

Task 3 had the purpose of testing the understanding of the concepts prerequisite
and corequisite. The participants were given a course and a list of courses. First,
they were asked to choose the ones that could be taken before in order to meet
the requirements of the course. Then, they were supposed to choose the ones that
could be taken simultaneously to meet its requirements. Some of the courses in
the list were part of the prerequisites, some of the corequisites, and some were not
related at all. The results showed no significant differences in time-to-complete

44

[t(14) = −0.52, n.s.], [F (14, 14) = 0.36, n.s.] or correctness among the systems
[χ2(1) = 0, n.s.]. With both tools, 13 out of 15 participants were able to identify
the correct answer.

In Task 4, participants were asked to create two different lists of courses that
could be taken in order to meet the requisites of a given course. The time-to-
complete for this task were not significantly different between the two applications
[t(13) = −0.26, n.s.], [F (13, 13) = 0.68, n.s.]. One of the participants did not
complete the exercise with Bear Tracks and marked the not possible box, hence the
lost of one degree of freedom in the analysis. The difference in correctness was not
significant either [χ2(1) = 2.25, n.s.]. In total, 3 of the participants were able to
complete the task successfully Bear Tracks.

Task 5, consisted in completing the requisites for a course. Participants were
told to assume that they have taken some courses and were asked which courses
are they missing in order to meet the requisites of a given course. The average
time-to-complete was significantly lower with the Course Browser than with Bear
Tracks [t(14) = 2.25, p < .05] and had a significantly smaller spread [F (14, 14) =
3.13, p < .05]. In terms of correctness, we did not observe any significant difference
between the two tools [χ2(1) = .10, n.s.].

Task 6 required the participants to perform a reverse dependency lookup of the
course requisites. For this exercise, they were given a course and were asked to
find other courses within that department that directly required it. The average
time-to-complete was significantly lower with the Course Browser than with Bear
Tracks [t(10) = 2.80, p < .05] and had a significantly smaller spread [F (10, 10) =
11.80, p < .05]. Five of the participants did not complete the exercise with Bear
Tracks and marked the not possible box, hence the lost of degrees of freedom in
the analysis. The improvement in correctness with Course Browser was significant
[χ2(1) = 9.10, p < .05].

Finally, in Task 7 the participants were given the description of a program as
shown in the university calendar, and were asked to make a full planning, term by
term, of the courses they would take in order to register for a four level course as
soon as possible. The time-to-complete results for this task were not significantly
different among the two applications [t(14) = 0.16, n.s.], [F (14, 14) = 0.64, n.s.].
The improvement in correctness with the Course Browser was significant [χ2(1) =
5.10, p < .05].

5.2.3 Analysis and Discussion
The Course Browser proved to be superior to Bear Tracks for tasks that required
looking up indirect requisites and doing reverse requisite lookups. It also proved to
be significantly faster to navigate.

For simple tasks that did not require students to look for more than one course,
both tools performed in a similar way. In Task 3, which was meant to test the
understanding of the concepts prerequisite and corequisite no significant differences

45

Table 5.2: System used first by each participant during the task solving phase.

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

System BT CB BT CB BT CB BT CB BT CB BT BT CB BT CB
BT = Bear Tracks, CB = Course Browser

Table 5.3: Correctness of the results for each participant by task and system used.
The bottom row shows the results of the McNemar’s Chi-squared test for each task.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

Part. BT CB BT CB BT CB BT CB BT CB BT CB BT CB

1 C C C C C C I C C C I C C C
2 C C C C C I I I I C I C I C
3 C C C C C C I I C I I C I C
4 C C I C C C I I I I I I I I
5 C C C C C C I C I I I C I C
6 C C I C C C I C C C C C I I
7 C C I I C C I I I C C C I I
8 C C C C C C I I C I I C I I
9 C C I C I I C C C I I C C C
10 C C C C C C I I I C I C I C
11 C C I C C C C C C C I C I C
12 C C I C C C C C I C I C C C
13 C C C C I C I I C I I C C C
14 C I C C C C I I C I I C I C
15 C I I C C C I C C I I I I C

χ2 0.5 4.17 0 2.25 0.10 9.10 5.1
df 1 1 1 1 1 1 1
p n.s. < .05 n.s. n.s. n.s. < .01 < .05

BT = Bear Tracks, CB = Course Browser, C = Correct answer, I = Incorrect Answer

46

Ta
bl

e
5.

4:
Ti

m
e-

to
-c

om
pl

et
e,

in
se

co
nd

s,
ta

ke
n

by
ea

ch
pa

rt
ic

ip
an

tt
o

so
lv

e
th

e
ta

sk
s.

Ta
sk

1
Ta

sk
2

Ta
sk

3
Ta

sk
4

Ta
sk

5
Ta

sk
6

Ta
sk

7

Pa
rt

.
B

T
C

B
B

T
C

B
B

T
C

B
B

T
C

B
B

T
C

B
B

T
C

B
B

T
C

B

1
22

8
27

15
8

72
86

49
30

1
11

9
13

9
40

29
4

63
57

1
30

5
2

14
1

43
34

8
10

7
19

3
24

7
45

9
35

7
24

9
16

0
16

9
88

26
7

43
2

3
13

1
72

28
9

76
85

96
38

1
60

0
32

1
15

3
14

6
46

13
40

12
72

4
59

36
14

4
74

69
11

5
–

13
2

51
55

–
45

33
4

34
7

5
69

33
29

4
13

3
54

47
12

8
15

5
71

40
57

31
31

8
19

3
6

87
30

34
5

75
82

18
1

15
0

14
5

11
6

14
1

98
74

35
0

56
0

7
46

53
29

8
15

5
82

91
12

9
11

1
72

12
4

19
2

47
55

2
67

7
8

94
56

23
2

70
11

6
66

12
4

96
73

62
–

72
59

2
37

1
9

49
40

26
8

10
7

87
10

0
25

8
14

2
19

1
86

12
6

47
43

5
32

1
10

83
51

17
8

63
10

2
66

21
8

18
0

11
4

12
1

54
90

47
0

43
6

11
52

10
7

25
5

10
3

14
7

63
35

1
32

4
10

9
88

64
87

80
5

58
4

12
46

22
28

2
72

87
13

4
14

8
28

0
14

8
14

8
–

62
38

3
23

6
13

59
25

14
1

69
82

48
14

0
25

7
62

54
–

52
28

0
21

3
14

63
17

18
2

92
63

71
22

1
22

6
13

4
80

22
8

42
50

0
31

0
15

10
7

42
22

0
11

1
11

5
17

6
13

0
25

2
95

85
85

91
46

1
12

37

m
ea

n
87

.6
0

43
.6

0
24

2.
27

91
.9

3
96

.6
7

10
3.

33
22

4.
14

22
5.

07
12

9.
67

95
.8

0
13

7.
55

62
.4

7
51

0.
53

49
9.

60
st

d
de

v
49

.0
6

22
.8

2
69

.4
3

26
.8

7
35

.2
1

58
.4

9
11

0.
42

13
1.

57
74

.5
7

42
.1

7
77

.4
7

20
.0

4
26

9.
84

33
6.

20

t-
te

st
t(

14
)

=
3.

07
t(

14
)

=
9.

39
t(

14
)

=
−

0.
52

t(
13

)
=
−

0.
26

t(
14

)
=

2.
25

t(
10

)
=

2.
80

t(
14

)
=

0.
16

p
<
.0

1
p
<
.0

01
n.

s.
n.

s.
p
<
.0

5
p
<
.0

5
n.

s.

F-
te

st
F

(1
4,

14
)

=
4.

62
F

(1
4,

14
)

=
6.

68
F

(1
4,

14
)

=
0.

36
F

(1
3,

13
)

=
0.

68
F

(1
4,

14
)

=
3.

13
F

(1
0,

10
)

=
11
.8

0
F

(1
4,

14
)

=
0.

64
p
<
.0

1
p
<
.0

01
n.

s.
n.

s.
p
<
.0

5
p
<
.0

01
n.

s.
B

T
=

B
ea

rT
ra

ck
s,

C
B

=
C

ou
rs

e
B

ro
w

se
r

47

Time vs. Participant

Participant

Ti
m

e
(s

)

20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360

1 2 3 4 5 6 7 8 9 101112131415

Task 1

1 2 3 4 5 6 7 8 9 101112131415

Task 2

1 2 3 4 5 6 7 8 9 101112131415

Task 3

Bear Tracks
Course Browser

Time vs. Participant

Participant

Ti
m

e
(s

)

0

50

100

150

200

250

300

350

400

450

500

550

600

1 2 3 4 5 6 7 8 9 101112131415

Task 4

1 2 3 4 5 6 7 8 9 101112131415

Task 5

1 2 3 4 5 6 7 8 9 101112131415

Task 6

Bear Tracks
Course Browser

Time vs. Participant

Participant

Ti
m

e
(s

)

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1 2 3 4 5 6 7 8 9 101112131415

Task 7

Bear Tracks
Course Browser

Figure 5.2: Time taken by each participant to complete each of the tasks with Bear
Tracks and the Course Browser

48

were observed in terms of time-to-complete or correctness.
Using the Course Browser was faster than Bear Tracks for navigating and

finding courses. The representation of requisites in the former was easier to
understand. This was shown by the results of Task 2, where we asked the
participants to identify the courses with no requisites among a list of four. Task
solving with Course Browser were approximately 2.5 times faster than task solving
with Bear Tracks and significantly more accurate. The reason for this is that, with
Bear Tracks, the participants had to start a new search for each of the courses,
adding up the loading times of the search form and the result page. These operations
could take several seconds despite that fact that we where using a high-speed
connection to connect to the server. In addition, many of the participants did not
know where to find the information about the requisites once they reached the
calendar description of the course. In Bear Tracks, it is not mentioned explicitly
that a course has no requisites. Some of the users had to, first, find a course
with requisites to realize that this information was given as part of the description,
and, then, repeat the operation with the previous courses to verify their answer.
In contrast, the Course Browser offers participants multiple ways to find courses.
Most participants started by choosing the department from the collections view.
From there, they could either use the Collection Overview diagram and see if the
course had any connections or consult the Course description view and take a look
at the requisite diagram, which will inform them right away if the course had no
requisites. There is no network delay for any of these operations in our system.

For the reverse dependency lookup task, using the Course Browser was better
than Bear Tracks in both speed and correctness. This operation is key to answer the
question “If I have taken this course, what courses can I take next?”. In Task 6,
only two participants reached the correct answer; with the Course Browser thirteen
succeeded. The cause for these contrasting results is that Bear Tracks does not
offer any means to perform reverse requirement searches. Four of the participants
stated that the task was impossible; the rest tried to look for the answers manually,
missing some of the courses. One of the successful participants used the browser
integrated search feature to quickly look for matches of the course code in the
course descriptions. This ingenious solution, however was not obvious for other
participants. Conversely, the Course Browser was designed to simplify this type of
task. All of the participants identified that the Collection Overview diagram allowed
them to solve the question easily.

For tasks that required looking for indirect requisites, we observed better results
using the Course Browser than using Bear Tracks. In Task 4, participants were
ask to create two different lists of courses that could be taken in order to meet the
requisites of a given course. This is a basic task in course planning, as students
often have to adjust the courses as some of the courses may not be taught each
term and they may have conflicts in schedules. As these tasks required looking for
indirect dependencies of the courses and building a requisite tree, they were more
difficult than the previous ones. No significant differences in time-to-complete or

49

correctness were observed in this task. However, the rate of failure was particularly
high for Bear Tracks, as only 3 of the participants were able to complete the
task successfully. With the Course Browser, almost half of the participants were
successful. Solving this task with Bear Tracks required the participant to perform
several searches to discover the complete requisite tree for the course. In contrast,
the Course Browser, offers different tools for the job: both the box diagrams in the
Course description view, and the Course requisite graph could be used to solve the
question. We noted that some of the participants were confused by this task, as
they were not used to look for indirect requisites. The following tasks had better
results as the participants were more familiar with the concept and had improved
their knowledge of the tools offered by the Course Browser. A common mistake
for some participants was to assume that all the arrows in the circular diagrams
expressed allOf dependencies.

Task 5, consisted in completing the requisites for a course. Like in the previous
task, participants had to find out the indirect requisites of the course. In this case,
however, they had to match the courses that they supposedly had taken and complete
the path of courses using them. In terms of correctness, we did not observe any
significant difference between the two tools. In contrast, times were significantly
lower when using Course Browser.

Finally, in Task 7 the participants were given the description of a program as
shown in the university calendar, and were asked to make a full planning, term by
term, of the courses they would take in order to register for a four level course as
soon as possible. This task was the most difficult task of the session. Although
we did not observe significant differences in time to complete for this task, we did
see a significant improvement in correctness while using the Course Browser. In
this task, the participants could really take advantage of the information exposed by
our tool. Some of the participants chose to use the box diagrams and the back and
forward navigation, while others felt more comfortable with the course requisite
graph. Still, this task still involved a lot of effort to complete and shows the need
for a more complete tool for planning.

5.3 Second interview
The second interview captured the subjective impressions of each participant after
completing the tasks. This interview comprised questions asked using a five-level
Likert scale and some additional open-ended questions. Six of the questions were
asked in the same form for both the Course Browser and Bear Tracks to allow for
a comparison. The results for this set of questions are shown in Table 5.5. The
remaining eleven questions referred exclusively to one of the systems. The results
for this set of questions are shown in Table 5.6.

50

5.3.1 Statistical Analysis
To analyze the questions formulated in parallel form, we calculated the median and
performed a Mann-Witney U-Test [38]. Using this test, it is possible to determine
if the distributions of the answers in the Likert scale are significantly different. For
the non-paired questions, we used the Wilcoxon’s signed-rank test. With this test
we can determine if the median of the tests is significantly greater than the neutral
point of the scale [40]. These tests were chosen because we assumed the Likert
scale to be an ordered categorical data. In other words, we cannot tell whether the
distances between the adjacent units on the scale are the same, but we can define
an order; for example, we can tell that 5 is better than 3, but we don’t know if the
distance between 3 and 4 is the same as the one between 4 and 5 [37].

All the statistical computations were performed using the R statistical software
[27]. For the analysis, we considered any value of p greater than 0.05 to be not
significant (labeled n.s.).

5.3.2 Results
Paired Questions

For the question “It is easy to find a course on [Bear Tracks/Course Browser]”, we
obtained a significantly higher score for the Course Browser [W = 60.5, p < .05].

For the question, “The [course catalog on Bear Tracks / Course Description
view on the Course Browser] displays enough information about the course for
planning your program.” we had a significantly higher score for the Course Browser
[W = 40, p < .010].

For question “It was easy to identify the requisites of a course using [Bear
Tracks/Course Browser]” we had a significantly higher score for the Course
Browser [W = 9.5, p < .001].

The question “The requisites of courses are presented in a clear way on
[Bear Tracks/Course Browser]” we had a significantly higher score for the Course
Browser [W = 16, p < .001].

The question, “I felt very confident with the answers I got from [Bear
Tracks/Course Browser]” showed that participants felt more confident with the
information obtained with the Course Browser. We observed a significantly higher
score for the Course Browser [W = 31, p < .001].

The last paired question compared the adequacy of the systems for performing
course-planning tasks. For Bear Tracks, it was formulated as “The course catalog
on Bear Tracks is adequate for performing course planning”. In the case of the
Course Browser, we gave them the following sentence: “I would like to use a tool
similar to the Course Browser for my course planning”. Comparing the two, we
observed a significantly higher score for the Course Browser [W = 6, p < .001].

51

Table 5.5: Results for paired questions in the second interview

Rating U-Test

Question Identifier SD D N A SA median W p

bt.easyfind 0 1 1 13 0 4
60.5 < .050

cb.easyfind 0 1 1 5 8 5

bt.enoughinfo 1 6 4 4 0 3
40 < .010

cb.enoughinfo 0 2 0 9 4 4

bt.easyreq 0 8 4 3 0 2
9.5 < .001

cb.easyreq 0 0 1 3 11 5

bt.confident 0 4 7 4 0 3
31 < .001

cb.confident 0 1 0 9 5 4

bt.clear 1 9 2 3 0 2
16 < .001

cb.clear 0 0 1 8 6 4

bt.planning 2 11 0 2 0 2
6 < .001

cb.planning 0 0 0 6 9 5

SD=Strongly disagree, D=Disagree, N=Neutral, A=Agree, SA=Strongly Agree

Individual questions

Bear Tracks For the question “The description of the courses on Bear Tracks is
easy to understand” we observed no significant agreement [V = 45.5, n.s.].

Course Browser’s user interface In order to explain the user interface of
the Course Browser to the participants, we recorded a three-and-a-half-minute
screencast. This multimedia presentation about the application guided the user
through the most important features of the application. To check the user response
to this approach of training we asked the participants if they agreed with the
statement “My understanding of the Course Browser improved significantly after
watching the Quick Tour video”. A significant number of the participants agreed
with it [V = 80, p < .01].

Requisite Box diagrams A significant number of participants answered
agreed or strongly agreed with the statement “I understood the meaning of the
Requisite Box Diagram” [V = 105, p < .001]. Similarly, significant number of
participants answered agreed or strongly agreed with the statement “The Requisite
Box Diagram is an effective way to visualize course requisites.” [V = 120, p <
.001].

Navigations Features A significant number of participants agreed or strongly
agreed with the statement “The Collections offer an effective way to group the

52

Table 5.6: Results for non-paired questions in the second interview.

Rating Wilcoxon Test

Question Identifier SD D N A SA median V p

bt.easydesc 0 5 3 7 0 3 45.5 n.s.
cb.video 0 2 2 8 3 4 80 < .010
cb.box1 0 0 1 8 6 4 105 < .001
cb.box2 0 0 0 6 9 5 120 < .001
cb.collections 0 1 0 7 7 4 115.5 < .001
cb.list 1 0 1 6 7 4 94.5 < .010
cb.reqgraph1 0 0 1 13 1 4 105 < .001
cb.reqgraph2 0 0 0 9 6 4 120 < .001
cb.overview1 0 0 0 12 3 4 120 < .001
cb.overview2 0 0 1 11 3 4 105 < .001
cb.better 0 0 2 3 10 5 91 < .001

SD=Strongly disagree, D=Disagree, N=Neutral, A=Agree, SA=Strongly Agree

courses in the course catalog” [V = 115.5, p < .001].
A significant number of participants agreed or strongly agreed with the state-

ment “The Course List offers an effective way to browse the courses” [V =
94.5, p < .010].

Course requisite Graph A significant number of participants agreed or
strongly agreed with the statement “I understood the meaning of the Course
Requisite Graph” [V = 105, p < .001].

A significant number of participants agreed or strongly agreed with the state-
ment “The Course Requisite Graph offers an effective way to visualize the
relationships between courses” [V = 120, p < .001].

Collection overview Diagram A significant number of participants agreed
or strongly agreed with the statement “I understood the meaning of the Collection
Overview diagram” [V = 120, p < .001].

A significant number of participants agreed or strongly agreed with the state-
ment “The Collection Overview diagram offers an effective way to visualize the
relationships between courses” [V = 105, p < .001].

Overall We asked the participants if they agreed with the sentence “The
Course Browser is better than Bear Tracks for performing course-planning tasks”.
A significant number of participants answered agreed or strongly agreed with it
[V = 91, p < .001].

53

5.3.3 Analysis and Discussion
Participants expressed a strong acceptance of the Course Browser and considered
it superior to Bear Tracks for performing course-planning tasks. We obtained
significant results in favor of the Course Browser in all questions. We also identified
problems with the current prototype and gather important suggestions on how to
improve it.

When asked if it was easy to find courses with Bear Tracks and the Course
Browser, most of the participants expressed agreement for both of the systems.
However, they had stronger preference towards the Course Browser as it allowed
them to search for courses faster. Having said that, still some of the participants
suggested incorporating a search feature into the Course Browser. During the
development of the prototype we were aware of the value of this feature, but could
not implement it due to task constraints. Having a search could further improve the
navigability of the application.

Participants also found the way the of displaying information for courses in the
Course Browser adequate for performing course planning and consulting course
requisites. The requisite information was easier to understand using the Course
Browser. They also agreed that the visualization and navigation tools provided
in our system simplified the interpretation of results. Conversely, when we asked
the descriptions of the courses on Bear Tracks were easy to understand, we had
mixed responses (see question bt.easydesc on Table 5.6). About this, a participant
suggested that the requisite information of Bear Tracks should be separated from
description of the course and a larger font should be used. Several of them also
suggested the inclusion of diagrams on Bear Tracks to represent requisites in a
graphical form, using the box diagrams.

In terms of confidence, we had a higher level of agreement with the Course
Browser. Participants felt better about that the answers they got when working with
our system because it often displayed all the information they needed in one place.
They could see in a diagram the relations between courses.

The participants concurred with the usefulness and relevance of the different
elements of the Course Browser’s user interface. We had significant results
supporting the use of collections to group the courses in the course calendar.
Most participants used the collections that grouped courses by departments. Other
collections were only used by a small number of them. The course list also
demonstrated to be a useful feature among participants.

Users also expressed their approval of the circular diagrams: a significant
number of them agreed when asked if they understood their meaning of both the
collection overview and the course requisite graph. They also agreed that these
visualizations offered an effective way to visualize relationships. Nonetheless, a
few observations and comments revealed that there is still room for improvement.
Some of the participants were confused by the representation of anyOf relationships
in these diagrams and assumed that all the arrows expressed allOf dependencies.
Some of them also expressed that the different intensities of blue in the arrows were

54

difficult to distinguish and suggested to change them by dashed lines or different
colors. We also identified that the use of different intensities of a color were not
practical with some displays, namely projectors. Finally, for some of the courses,
the diagrams became too cluttered. To improve this, a filter feature could help focus
on the relevant elements.

Using a screencast to show the functionality of the course browser was also
welcomed by the participants. Many of them agreed that they improve their
understanding of the application after watching the three-and-a-half-minute video.
We also included a number of help features inside the application. Each of the
diagrams had a button in the top left corner labeled “What is this diagram” that,
when pressed, would display a popup window with an explanation of the diagram.
This documentation consisted of an annotation version of a sample diagram. Even
though this feature was mentioned in the screencast and most of the participants
were aware of it, only a few of them read it. Despite the efforts to provide an easily
accessible and concise help, only a small fraction of the participants made use of it.

5.4 Conclusions
We performed a study in course planning with fifteen students of the University
of Alberta. The participants had diverse levels of experience with course planning
and registration. We found that course planning is not a widespread practice among
students. Most of them plan their courses on a year or term basis and only a small
fraction of them know which courses they want to take for their whole program.

Performing course planning is not a trivial task. The requisites of courses form
graphs that can be difficult to understand for students. Moreover, the calendar
browsing feature in Bear Tracks is not suited for performing course planning as
it does not offer an efficient way to see the indirect requisites of courses. Similarly,
performing reverse dependency lookups is not possible with this tool. This activity
is important to answer a key question in doing planning: “If I have taken these
courses, what courses can I take next?”.

Our prototype, the Course Browser, implements different visualization tech-
niques to display relationships between courses. During the user study, the
participants agreed that these techniques ease the process of performing course
planning. These results were in consonance with the empirical evidence. For
planning tasks we observed a significant improvement in time-to-complete and
correctness using the Course Browser, compared to Bear Tracks.

Still, there is room for improvement in our prototype. Performing complete
planning tasks is still a cumbersome operation. For the most difficult tasks in
the experiment we observed a high error rate. In particular, we identified that
the circular diagrams were subject to misinterpretation by the students for courses
that contained choices in their requisites. An improvement of this diagram is
recommended as a future work.

55

Chapter 6

Insights and Future work

6.1 Insights about visualizing dependencies
Dependency visualizations can be a powerful tool for understanding problems,
when they are well defined. In our experience with the Course Browser we learnt
valuable lessons on how to create useful visualization of dependency graphs:

A good starting point for creating a dependency visualization (and even any
kind of visualization) is to define a set of questions about the domain that the
visualization must help answer. These questions would serve as evaluation criteria
to compare different prototypes.

Take advantage of the particular characteristics of the problem domain. For
example, if the dependencies form a tree, use specific algorithms for trees; if
the dependencies form a graph, it would be relevant to check the particular
characteristics of it, e.g. if it is acyclic, connected, bi-connected or bipartite, and
choose algorithms suited for those types of graphs. Another aspect is the typical
number of elements to visualize. Dealing with hundreds of elements requires
different strategies than dealing with thousands or hundreds of thousands. If the
exact number can not be defined, at least the order of magnitude will be useful.

Let the user decide what view is the best. Different views will appeal to different
users. In the Course Browser study, we observed that some users preferred to use
the overview diagram while others preferred to navigate the requirements using
the hyperlinks in the requisite box diagram. Providing different ways to visualize
information and different affordances to manipulate the views will maximize the
utility of the user interface.

Make good use of the different perceptual channels, like shape, color, alignment
and movement. If possible, use more than one of these channels to encode the same
property. That will help preserve the semantics of your diagram even if transferred
to a different media, e.g. from screen to paper. It will also be helpful for people
with disabilities, like color blindness, to completely understand the diagram.

Take advantage of the media you are using to display a visualization. Each
medium has its advantage and limitations. For example, if you are using a computer

56

screen, you may be able to include interactive features to help the user navigate the
data, but your screen may be small. If you are using paper, you typically have
higher resolution than a screen, but your content must be static and you may not be
able to use color.

Exercise caution when you simplify the information. Removing some of the
complexity to provide an overview of the problem can help the user understand the
information better, as long as they are aware of the simplification. Therefore, it is
important to make the simplifications as explicit as possible; otherwise, the user
might take the simplified model for the real model.

Make diagrams self explanatory. Users are unenthusiastic about reading
documentation. Therefore, the diagram should provide the user clues on how to
interpret and manipulate it. One way to do this is to provide tooltips or rollover
messages. In addition, choosing a metaphor that is familiar to the user will help
them guess the possible actions.

6.2 Future Work

6.2.1 Improvements to the Course Browser
These are some possible improvements to the Course Browser:

Search: One of the features that many of the participants in the user study
suggested is a search box. This box would instantly filter the course information
by code and title.

Custom collections: The current prototype only supports predefined collec-
tions. With custom collections, the user would be capable of defining new
collections based on their needs. A custom collection would be defined by a
query string: for example, users can look for courses in Physics and Math with
3 credits and no requisites.

Reverse dependency lookup: The current prototype of the Course Browser only
allows the user to see reverse dependencies, i.e. courses that require a
given course, within a collection. Sometimes it is useful to see the reverse
dependencies across different collections. This can be done by extending the
Course Requisite graph to explore the dependency graph in reverse.

Improve readability of circular diagrams: Some of the participants were con-
fused by the use of different saturation levels to represent the strength of course
dependency in circular diagrams. The difference between mandatory requisites
and choices can be made more explicit by using different colors or combining
dashed and continuous lines.

Improve scalability of circular diagrams: Right now the circular diagrams are
limited to work with 150 elements or less. Beyond that point, the diagrams

57

become too cluttered to be useful. New techniques can be explored to allow the
visualization of up to thousands of elements. This may be done by dynamically
collapsing groups of courses into single nodes and expanding them as necessary.

Integration with Bear Tracks: The functionality of the Course Browser is com-
plementary to Bear Tracks in the sense that the former allows students to
efficiently explore the course catalog and the latter provides the ability to
register in courses. If the functionality of the Course Browser was integrated
into Bear Tracks, the users would be able to perform these tasks using a single
interface.

Extension of the box diagram to show indirect dependencies: Some of the par-
ticipants suggested that the box diagram be extended to show indirect depen-
dencies. Figure 6.1 shows a concept drawing of how this could be done. The
diagram is separated into layers. The first layer of the diagram shows the
selected course. Each subsequent level is used to show a step in the indirect
requisites tree. For simplicity, each of the elements of an All of dependency is
represented by an arrow, and Any of relationships are shown by stacking courses
one on top of the other; however, using boxes around them is also possible. A
blue arrow indicates a prerequisite, and an orange arrow a co-requisite.

In order to see the next level, the user must select one or more of the courses
in each of the choice stacks. All of the selected courses are then aggregated to
define the courses that can be taken in the next level. The choice is necessary
to aggregate the requisites of courses in the next level maintaining the same
semantics. In addition, this removes the clutter of showing multiple paths at
the same time. To display another path, the user can simply select a different
choice.

In addition, the nodes can be annotated to distinguish between different
characteristics. For example, the color of the nodes can show selected courses
and courses already taken, and the border of the nodes can be solid if the course
can be taken immediately (i.e., all its dependencies are satisfied), or dashed,
otherwise.

6.2.2 Course Planner
While the Course Browser proved to be a useful tool for performing basic course
planning, it is still insufficient to accomplish the most difficult planning tasks.
Therefore, we suggest the creation of a tool that extends the functionality of the
Course Browser for performing course planning. This section provides some hints
of how this could be accomplished.

The planning tool should have access to the student’s academic record and
desired program of study. With this information, it can suggest to the student
which courses to take next, taking into account the requisites of each of them,

58

CMPUT 201 CMPUT 204
CMPUT 229

E E 380

STAT 222

STAT 252

STAT 366

CMPUT 115

CMPUT 175
CMPUT 272

MATH 113

MATH 114

MATH 117

CMPUT 313

CMPUT 201

STAT 221

Level 1

Level 2

Level 3

Figure 6.1: Concept drawing of a box diagram that allows the exploration of indirect
dependencies.

courses already taken by the student, and the conditions of the program. The
information about each of the programs will be contained in templates, supplied
by each department. Each template will contain the requisites of graduation as well
as some sample paths to accomplish them.

We envision this tool to have a drag and drop user interface, where courses
would be represented with tiles and requisites by arrows, using the semantics
described in the previous section for the indirect requisite box diagram. Initially,
the tool will show the suggested template of the program along with all the courses
already taken by the student. Then, the user can modify the program, by adding,
removing or swapping courses. This would be done using the Course Browser’s
views. Once a course is added or swapped, the planner would immediately search
for unfulfilled dependencies and prompt the user to select required courses using
a box diagram. Courses that are not required by other courses, and courses with
unsatisfied requisites would be highlighted.

Finally, the user can group courses into terms and choose particular sections
using the scheduling information provided by Bear Tracks. At any time, the users
may save their work and even keep track of alternative plans for comparison.

6.2.3 Dependency visualization framework
Each dependency visualization domain has a variety of ways to visualize its
particular kinds of dependencies. Since each software tool in each of these domains
has to deal with dependencies, it is conceivable to define a common unified
visualization framework.

A dependency visualization framework would provide the ability to model and
visualize a wider range of relationships between elements. For example, in an
organizational chart, it is often useful to document the work relationships among
coworkers in teams. These relationships crosscut the tree hierarchy and, therefore,
do not fit into the simple hierarchy model. Furthermore, a given individual may
participate in a variety of projects, and how their relationship is visualized depends

59

on the particular view that is desired (e.g. project versus management reporting).
At this stage we do not fully understand how to visualize dependencies. The

work presented here, however, lays a basis to develop a framework that will support
both static and interactive diagrams and enable us to test out different visualization
ideas. Because dependencies, in general, and even supposedly simple hierarchies,
are challenging to lay out automatically, the visualization framework must allow for
interaction. This interaction would be implemented using a rich-prospect browsing
interface.

To create the visualization diagrams requires a layout engine capable of
rendering different styles of diagram. Since a purely algorithmic layout approach
rarely works to complete satisfaction, it is important to permit users to specify hints
and constraints. As this increases the complexity of the users’ interaction with the
visualization, the system must have the ability to remember past hints and layouts
from other users, possibly experts.

60

Bibliography

[1] APPLE INC, Introduction to apple human interface guidelines. http:
//developer.apple.com/documentation/userexperience/
Conceptual/AppleHIGuidelines/XHIGIntro/XHIGIntro.
html, 2009.

[2] G. D. BATTISTA, I. G. TOLLIS, P. EADES, AND R. TAMASSIA, Graph
Drawing: Algorithms for the Visualization of Graphs, Prentice Hall, 1998.

[3] S. BLY, Field work: is it product work?, interactions, 4 (1997), pp. 25–30.

[4] J. A. BONDY AND U. S. R. MURTY, Graph theory with applications, North
Holland, 1976.

[5] B. BUXTON, Sketching and experience design, in HCI Seminar on People,
Computers and Design, Stanford University, 2007. http://www.
youtube.com/watch?v=xx1WveKV7aE.

[6] C. CHEN, Information visualization: beyond the horizon, Springer, 2004.

[7] C. CONATI AND H. MACLAREN, Exploring the role of individual differences
in information visualization, in AVI ’08: Proceedings of the working
conference on Advanced visual interfaces, New York, NY, USA, 2008, ACM,
pp. 199–206.

[8] W. D. ELLIS, A source book of Gestalt psychology, Routledge, 2 ed., 1999.

[9] J. FUITE, A Large-scale Education System, K-16, Visualized and Navigated,
Journal of Education, Informatics and Cybernetics, 1 (2009), p. 7.

[10] E. GAMMA, R. HELM, R. JOHNSON, AND J. M. VLISSIDES, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, 1 ed., 1994.

[11] E. GANSNER AND Y. KOREN, Improved Circular Layouts, in Graph
Drawing: 14th International Symposium, GD 2006, Karlsruhe, Germany,
September 18-20, 2006: Revised Papers, Springer Verlag, 2007, p. 386.

[12] F. HARARY, Graph Theory, Perseus Books, 15 ed., 2001.

[13] J. HEER, S. K. CARD, AND J. A. LANDAY, prefuse: a toolkit for interactive
information visualization, in CHI ’05: Proceedings of the SIGCHI conference
on Human factors in computing systems, New York, NY, USA, 2005, ACM,
pp. 421–430.

61

http://developer.apple.com/documentation/userexperience/Conceptual/AppleHIGuidelines/XHIGIntro/XHIGIntro.html
http://developer.apple.com/documentation/userexperience/Conceptual/AppleHIGuidelines/XHIGIntro/XHIGIntro.html
http://developer.apple.com/documentation/userexperience/Conceptual/AppleHIGuidelines/XHIGIntro/XHIGIntro.html
http://developer.apple.com/documentation/userexperience/Conceptual/AppleHIGuidelines/XHIGIntro/XHIGIntro.html
http://www.youtube.com/watch?v=xx1WveKV7aE
http://www.youtube.com/watch?v=xx1WveKV7aE

[14] D. HOLTEN, Hierarchical Edge Bundles: Visualization of Adjacency Rela-
tions in Hierarchical Data, IEEE TRANSACTIONS ON VISUALIZATION
AND COMPUTER GRAPHICS, (2006), pp. 741–748.

[15] D. HOLTEN AND J. J. VAN WIJK, Force-directed edge bundling for graph
visualization, in Eurographics/ IEEE-VGTC Symposium on Visualization, H.-
C. Hege, I. Hotz, and T. Munzner, eds., vol. 28, IEEE, 2009.

[16] JEFFREY MICHAEL HEER, Flare: Data visualization for the web. http:
//flare.prefuse.org/, 2009.

[17] M. KARNAUGH, The map method for synthesis of combinational logic
circuits, AIEE Transactions Comm. Elec, 72 (1953), pp. 593–599.

[18] B. KERR, Thread Arcs: An Email Thread Visualization, Proceedings of the
2003 IEEE Symposium on Information Visualization, (2003), p. 27.

[19] M. KRZYWINSKI, Circos: circularly composited genomic data and
annotation imager. http://mkweb.bcgsc.ca/circos/, Visited June
15, 2009.

[20] J. LARKIN AND H. SIMON, Why a diagram is (sometimes) worth ten
thousand words, Cognitive Science, (1987).

[21] W. LIDWELL, J. BUTLER, AND K. HOLDEN, Universal Principles of Design:
A Cross Disciplinary Reference, Rockport Publishers, 2003.

[22] R. LIKERT, A technique for the measurement of attitudes, sn, 1932.

[23] S. MICROSYSTEMS, Java look and feel design guidelines: advanced topics,
vol. 2, Addison-Wesley, illustrated ed., 2001.

[24] D. A. NORMAN, The Design of Everyday Things, Basic Books, reprint,
illustrated ed., 2002, pp. 1–34.

[25] U. OF ALBERTA, ed., 2009-2010 University of Alberta Calendar, University
of Alberta, 2009.

[26] J. PREECE, Interaction Design, J. Wiley & Sons, New York, 2002.

[27] R DEVELOPMENT CORE TEAM, R: A language and environment for
statistical computing, R Foundation for Statistical Computing, Vienna,
Austria, 2005. ISBN 3-900051-07-0.

[28] S. RUECKER, Affordances of prospect for academic users of interpretively-
tagged text collections, PhD thesis, University of Alberta, 2003.

[29] M. SARKAR AND M. H. BROWN, Graphical fisheye views of graphs, in CHI
’92: Proceedings of the SIGCHI conference on Human factors in computing
systems, New York, NY, USA, 1992, ACM, pp. 83–91.

[30] D. J. SHESKIN, Handbook of Parametric and Nonparametric Statistical
Procedures, Third Edition, Chapman & Hall/CRC, 2003, pp. 382–384, 633–
638.

[31] B. SHNEIDERMAN, Tree visualization with tree-maps: 2-d space-filling
approach, ACM Trans. Graph., 11 (1992), pp. 92–99.

62

http://flare.prefuse.org/
http://flare.prefuse.org/
http://mkweb.bcgsc.ca/circos/

[32] B. SHNEIDERMAN, Designing the User Interface, Addison Wesley Longman,
1998.

[33] K. SUGIYAMA, Graph drawing and applications for software and knowledge
engineers, World Scientific, 2002.

[34] J. TIDWELL, Designing interfaces, O’Reilly, illustrated ed., 2005.

[35] E. R. TUFTE, Envisioning information, Graphics Press, 5, illustrated ed.,
1995.

[36] C. WARE, Information visualization: perception for design, Morgan
Kaufmann series in interactive technologies, Morgan Kaufman, 2004.

[37] WIKIPEDIA, Likert scale — wikipedia, the free encyclopedia, 2009. [Online;
accessed 4-May-2009; http://en.wikipedia.org/w/index.php?
title=Likert_scale&oldid=287068650].

[38] , Mann–whitney u — wikipedia, the free encyclopedia, 2009. [Online;
accessed 4-May-2009; http://en.wikipedia.org/w/index.php?
title=Mann%E2%80%93Whitney_U&oldid=286892139].

[39] , Student’s t-test — wikipedia, the free encyclopedia, 2009. [Online;
accessed 4-May-2009; http://en.wikipedia.org/w/index.php?
title=Student%27s_t-test&oldid=285704843].

[40] , Wilcoxon signed-rank test — wikipedia, the free encyclopedia, 2009.
[Online; accessed 4-May-2009; http://en.wikipedia.org/w/
index.php?title=Wilcoxon_signed-rank_test&oldid=
280116509].

[41] K.-P. YEE, D. FISHER, R. DHAMIJA, AND M. HEARST, Animated
exploration of dynamic graphs with radial layout, in INFOVIS ’01:
Proceedings of the IEEE Symposium on Information Visualization 2001
(INFOVIS’01), Washington, DC, USA, 2001, IEEE Computer Society, p. 43.

63

http://en.wikipedia.org/w/index.php?title=Likert_scale&oldid=287068650
http://en.wikipedia.org/w/index.php?title=Likert_scale&oldid=287068650
http://en.wikipedia.org/w/index.php?title=Mann%E2%80%93Whitney_U&oldid=286892139
http://en.wikipedia.org/w/index.php?title=Mann%E2%80%93Whitney_U&oldid=286892139
http://en.wikipedia.org/w/index.php?title=Student%27s_t-test&oldid=285704843
http://en.wikipedia.org/w/index.php?title=Student%27s_t-test&oldid=285704843
http://en.wikipedia.org/w/index.php?title=Wilcoxon_signed-rank_test&oldid=280116509
http://en.wikipedia.org/w/index.php?title=Wilcoxon_signed-rank_test&oldid=280116509
http://en.wikipedia.org/w/index.php?title=Wilcoxon_signed-rank_test&oldid=280116509

Appendix A

Usability study questionnaire

64

Course Browser Research Study

University of Alberta

 Conducted by Camilo Arango Moreno

M.Sc. Student in Computing Science

Course Browser Usability Study

Information and Consent form

!"#$%&'(#)%"*

You are invited to participate in a research project being conducted at the

University of Alberta. This project is intended to gain insight into a prototype

Course Browser user interface. It is hoped that this research will contribute to

the design of a course planner to help students plan which courses they are

going to take in their program.

This research is being conducted by Camilo Arango Moreno, M.Sc. student

supervised by Dr. H. James Hoover, Professor in Computing Science, and Dr.

Stan Ruecker, Associate Professor in Humanities Computing.

+,#-%&*

The session will take approximately 1! hours. We will ask you about how you

choose the courses you want to take for your program. This interview will be

recorded with audio, video and keyboard screen capture. During the session,

you will be asked some questions about how you chose the courses you have

taken in the past, and you will be asked to perform simple tasks using Bear

Tracks and the Course Browser prototype. While performing these tasks, we

encourage you to think aloud. Finally, a few feedback questions will be asked

regarding your experience while using both applications.

At the end of the session, you will be given a free cinema ticket as an

appreciation gesture for attending the study. You will receive this incentive

even if you decide to withdraw.

This project complies with the University of Alberta Standards for the

Protection of Human Research Participants.

.%'$*/)0-#1*

• You have the right not to participate in this study.

• You have the right to withdraw from this study at any time, without

penalty. If you withdraw, the data collected in your interview will not be

used in the study.

• Your name will be anonymized in all the data from the study.

• We will keep video clips of your face taken during the session. This

videos may be displayed at scholarly presentations, conferences or

other academic activities

• All data collected in this study will be kept in a safe, secure place.

• You will receive a copy of this consent form for your records.

65

Course Browser Research Study

University of Alberta

 Conducted by Camilo Arango Moreno

M.Sc. Student in Computing Science

!"#$%&'($(&

The data collected in the course of this research project will be used in

research articles, scholarly presentations, and in other academic activities.

Data for all uses will be handled in compliance with the University of Alberta

Standards for the Protection of Human Research Participants, which can be

read in full at:

http://www.uofaweb.ualberta.ca/GFCPOLICYMANUAL/content.cfm?ID_page=37738

The ethics board can be contacted in the following address:

Chair

Arts, Science, and Law Research Ethics Board

Faculty of Arts

University of Alberta

780-492-4224

ASLREBAdministrator@ualberta.ca

If you have any concerns about this research project, please contact:

Camilo Arango Moreno

M.Sc. Student

Department of Computing Science

arangomo@cs.ualberta.ca

Date:

Name:

Signature:

66

Course Browser Research Study

University of Alberta

 Conducted by Camilo Arango Moreno

M.Sc. Student in Computing Science

Pre-test Questionnaire (duration: 10 minutes)

We will ask you a few questions about how you choose the courses you take

for your program. This interview will be audio recorded.

1. When did you first enroll in the university?

2. How many courses have you taken in total?

3. Explain what the terms prerequisites and corequisites mean to you in the

context of course registration.

4. What resources do you use to decide which courses to take? (E.g. Bear

Tracks, printed calendar, online calendar, Bear Scat, department website,

friends, professors, advisors, other).

5. How do you find out about the prerequisites and corequisites of the

courses? (E.g. Bear Tracks, printed calendar, online calendar, Bear Scat,

department website, friends, professors, advisors, other).

6. What difficulties have you experienced understanding the course calendar?

7. I have trouble understanding the prerequisites and corequisites of courses.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

8. How far in advance do you plan your courses? (E.g. next term, next year,

entire program).

9. How did you find out about this study? (Posters, email, friend, other)

67

Course Browser Research Study

University of Alberta

 Conducted by Camilo Arango Moreno

M.Sc. Student in Computing Science

68

Course Browser Research Study

University of Alberta

 Conducted by Camilo Arango Moreno

M.Sc. Student in Computing Science

Course Browser tasks (Duration 30 minutes)

!"#$%&'()%*+,-.&'()%*/+0+1)*.(234+

Take some time and explore the Course Browser web application. Feel free to

think aloud and describe the task you are performing, along with your

impressions of the software.

While you browse the application try finding some courses that you have

taken. You can also check out courses with interesting requisites, like CMPUT

204.

5.(%&)'$+,-.&'()%*+0+1)*.(234+

Open the application tutorial and watch it carefully. It will teach you how to use

the Course Browser to find courses and explore their requisites.

5'363+,-.&'()%*+78+1)*.(234+

Perform each of the tasks given to you and write the answer in the given

space. Use just the Course Browser as a tool; do not open any other browser

windows, use a search engine such as Google, or any other resource. If you

are not sure about the answer, please write “Not sure”.

69

Course Browser Research Study

University of Alberta

 Conducted by Camilo Arango Moreno

M.Sc. Student in Computing Science

Bear Tracks tasks (Duration 20 minutes)

!"#$#%&'()"*+,-%./%0+-(*1#2%

Perform each of the tasks given to you and write the answer in the given

space. Use just the Bear Tracks as a tool; do not open any other browser

windows, use a search engine such as Google or any other resource. If you are

not sure about the answer, please write “Not sure”. If you think that the

question cannot be answered in a reasonable amount of time, please answer

“not possible” and continue with the next one.

70

Course Browser Research Study

University of Alberta

 Conducted by Camilo Arango Moreno

M.Sc. Student in Computing Science

Post Questionnaire (Duration: 20 minutes)

Rate each of the following items based on your experience. The rating is given

on a scale of 1-5, with 1 being Strongly Disagree and 5 being Strongly Agree.

Please circle the appropriate rating.

!"#$%&'()*&+*),-.&

1. It is easy to find a course on Bear Tracks

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

2. The description of the courses on Bear Tracks is easy to understand

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

3. The course catalog on Bear Tracks displays enough information about the

course for planning your program.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

4. What key information about the course is missing?

5. The requisites of courses are presented in a clear way on Bear Tracks

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

6. It was easy to identify the requisites of a course using Bear Tracks

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

7. I felt very confident with the answers I got from Bear Tracks.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

8. The course catalog on Bear Tracks is adequate for performing course

planning

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

71

Course Browser Research Study

University of Alberta

 Conducted by Camilo Arango Moreno

M.Sc. Student in Computing Science

9. How would you improve the Bear Tracks for performing course planning?

10. What other things do you like or dislike about the Bear Tracks? Why?

!

"#$%&!'$%()*!+($,)*(!-($&$&.-*!

11. My understanding of the Course Browser improved significantly after

watching the “Quick Tour” video.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

12. It is easy to find a course on the Course Browser

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

13. The Course Description view displays enough information about the course

for planning your program.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

14. What key information about the course is missing?

15. It was easy to identify the requisites of a course using the Course Browser

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

16. I felt very confident with the answers I got from Course Browser.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

72

Course Browser Research Study

University of Alberta

 Conducted by Camilo Arango Moreno

M.Sc. Student in Computing Science

17. The requisites of courses are presented in a clear way on the Course

Browser

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

18. I understood the meaning of the Requisite Box Diagram.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

19. The Requisite Box Diagram is an effective way to visualize course

requisites.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

20. How would you improve the Requisite Box Diagram?

21. The Collections offer an effective way to group the courses in the course

catalog

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

22. The Course List offers an effective way to browse the courses

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

23. I understood the meaning of the Course Requisite Graph.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

24. The Course Requisite Graph offers an effective way to visualize the

relationships between courses.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

25. How would you improve the Course Requisite Graph?

73

Course Browser Research Study

University of Alberta

 Conducted by Camilo Arango Moreno

M.Sc. Student in Computing Science

26. I understood the meaning of the Collection Overview diagram.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

27. The Collection Overview diagram offers an effective way to visualize the

relationships between courses.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

28. How would you improve the Collection Overview diagram?

29. I would like to use a tool similar to the Course Browser for my course

planning.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

30. The Course Browser is better than Bear Tracks for performing course-

planning tasks.

1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 –Agree 5 – Strongly Agree

31. What other things do you like or dislike about the Course Browser? Why?

32. By using the Course Browser, did you learn something about the courses in

your program that you did not already know?

74

TE01

How many 400-level courses does the physics department (PHYS) offer?

Answer:

! Not possible

TE02

How many 500-level courses does the chemistry department (CHEM) offer?

Answer:

! Not possible

75

TG01

Which of the following courses have no prerequisites or corequisites? Mark as

many courses as necessary.

! E E 239

! MA SC 412

! BIOL 333

! GENET 408

TG02

Which of the following courses have no prerequisites or corequisites? Mark as

many courses as necessary.

! MATH 115

! PSYCO 300

! ZOOL 342

! EAS 396

76

TI03

1. Which of the following courses can be taken before BIOL 392 to meet

its requirements?

! BIOL 201

! BIOL 207

! BIOL 208

! BIOL 380

! BIOL 592

2. Which of the following courses can be taken simultaneously with BIOL

392 to meet its requirements?

! BIOL 201

! BIOL 207

! BIOL 208

! BIOL 380

! BIOL 592

TI04

3. Which of the following courses can be taken before STAT 221 to meet

its requirements?

! MATH 115

! MATH 118

! MATH 120

! STAT 141

! STAT 151

4. Which of the following courses can be taken simultaneously with STAT

221 to meet its requirements?

! MATH 115

! MATH 118

! MATH 120

! STAT 141

! STAT 151

77

TH01

Find the calendar description of PHYS 211 and create two different lists of

courses can be taken before it in order to meet its requisites. Include indirect

requisites in your lists.

Answer:

! Not possible

TH02

Find the calendar description of BOT 303 and create two different lists of

courses can be taken before it in order to meet its requisites. Include indirect

requisites in your lists.

Answer:

! Not possible

78

TM01

Assume that you have taken the following courses:

! MATH 101

! MATH 100

Which required course(s) are you missing to register for CHEM 371? Include

indirect requisites in your list.

Answer:

" Not possible

TM02

Assume that you have taken the following courses:

! CMPUT 272

! CMPUT 115

! CMPUT 114

Which required course(s) are you missing to register for CMPUT 204? Include

indirect requisites in your list.

Answer:

" Not possible

79

TQ01

What courses in the MATH department require MATH 418?

Answer:

! Not possible

TQ02

What courses in the STAT department require STAT 512?

Answer:

! Not possible

80

TP01

Assume you are student in the Computing Science program. You are

interested in computer graphics. The University calendar provides the following

description for your program [1]

Year 1

! CMPUT (114 and 115) or (174 and 175)

! MATH 114, 115

! *6 junior English

! *12 in options (see Notes 1, 2)

Year 2

! *6 from CMPUT 201, 204, 229, 272, 291

! MATH 120 or 125

! *6 in Statistics (see Note 3)

! *15 in options (see Notes 1, 2)

Year 3

! *12 in CMPUT at the 300-level or 400- level (see Note 4)

! *18 in options (see Notes 1,2)

Year 4

! *12 in CMPUT at the 300-level or 400- level (see Note 4)

! *18 in options (see Notes 1, 2)

During your first year of studies, you took the following mandatory courses:

! CMPUT 174

! CMPUT 175

! MATH 114

! MATH 115

As you are starting your second year, you want to make sure you can take

courses on computer graphics as soon as possible. As you browse though the

course catalog, CMPUT 411: Introduction to Computer Graphics catches

your attention.

Elaborate a plan of courses that you would take, term by term, in order to take

CMPUT 411 as soon as possible. Use scratch paper as needed.

81

Appendix B

Usability study ethical review

82

Rev. 11-08 1 / 6

UNIVERSITY OF ALBERTA

FACULTIES OF ARTS, SCIENCE & LAW

RESEARCH ETHICS BOARD

Application for Ethical Review of

Research Involving Human Participants

Instructions:

1. Use this form to request ethics review for research involving human subjects that does not require the use of identifiable health information.

Human research that does involve identifiable health information should be submitted directly to the Health Research Ethics Board,

http://www.hreb.ualberta.ca . Once the HREB review is completed, two (2) copies of the application together with HREB approval letter

should be forwarded to the ASLREB in care of Ethics at the address listed in (2) below.

2. Submit two (2) hard copies of this form together with supporting materials (questionnaire instruments, interview questions, consent forms,

recruitment materials, debriefing forms, safety approvals, etc.) to Ethics, Department of Psychology, P-217 Biological Sciences Building.

An REB member will contact you for an electronic copy of your application form once your materials have been received

A. Project Information:

 Submission Date: 2008-11-26

 Project Title: Course Browser Prototype Useability Study

B. Applicant Information:

Name: Camilo Arango Moreno E-Mail: arangomo@ualberta.ca

Department: Computing Science Phone: (780) 709 4242

Mailing Address: 1-50 Athabasca Hall. University of Alberta. Edmonton, AB. T6G2E8

Are you: Faculty Staff Graduate Student Honors Student Undergraduate Student

If you are a student:

Academic Supervisor: Dr. H. James Hoover E-Mail: hoover@ualberta.ca

Department: Computing Science Phone: (780) 492 5290

If you are Not a member of the Department of Psychology

Name of Psychology

Department Sponsor

 E-Mail:

Intuitional Affiliation

 Phone:

Mailing Address:

 Other Investigators on this project

 Name Institutional Affiliation /Department E-mail address

1. Dr. Stan Ruecker Humanities Computing /
English and Film Studies /

Faculty of Arts

 sruecker@ualberta.ca

2.

3.

C. Project Type

For the items below, please check all that apply:

Project Type:

 Staff Student Class Project Grant Proposal Thesis In Class Research

 Quality Assurance Secondary Analysis of Data Mass Testing Subject Pool

Funding:

 AHFMR CIHR NSERC SSHRC UofA Internal

 Other (specify): Dept. of Computing Science Software Engineering Research Lab
internal funds (Hoover)

83

ASLREB

Rev. 11-08 2 / 6

D. Signatures

Your signature indicates that you agree to abide by all policies, procedures, regulations and laws governing the ethical

conduct of research involving humans as described in GFC 66, http://www.ualberta.ca/~unisecr/policy/sec66.html

Applicant: Date:

The signature of the Supervisor/Sponsor below indicates that thy have reviewed and approved the proposal.

 Academic Supervisor: Date:

Sponsor: Date:

E. Project Details

1. Please provide a short summary of the project that describes the research objectives, principal methods employed,

research participants, and hypotheses.

We have developed a software prototype for visualizing the dependencies between courses in the University. The tool

will help students perform the planning of courses they will take during their program. In order to validate the value

of the interface design of this software tool, we seek to perform a useability study involving a total of about 10

students, faculty members and other researchers at the University of Alberta.

The useability tests will provide the interface designers with valuable feedback on the usefulness of the design

concepts used in the course browser. It will also provide information on the current methods of course planning used

by the students at the university and it will show how the course browser software can help them to perform this task

more efficiently.

2. Describe the source of research participants. Indicate the manner in which participation will be solicited and the nature of

any inducements or promises offered for participation. For secondary analysis of data, please describe the source and

characteristics of the dataset.

Participants will consist of University of Alberta students and staff, and any other individuals associated with the

University with active research interests. They will be recruited through poster and flyers distributed in the

University of Alberta Computing Science Department and the Faculty of Arts (See appendix). We will purposively

select approximately 10 participants in total.

84

ASLREB

Rev. 11-08 3 / 6

3. Describe the procedures to be used including the tasks and procedures involved in participating.

The study consists of three parts. First, using a semi-structured interview, the participants will be asked general

information about the sources and methods they currently use to choose university courses.

Second, they will be shown three prototypes of the course browser. The researcher will provide them with a brief

video describing how to operate the user interface. Then, they will be asked to perform a series of tasks using the

Course Browser user interface. The user activity will be captured from the screen, and we will also videotape the

facial expressions of the user during this phase. We believe that the video of the face will provide additional

information about the level of satisfaction or dissatisfaction with the software interface in each particular task, as well

as the emotional impact that the interface causes on the user.

Third, a series of questions will be asked to the participants to gather their impressions about the planning exercise,

and suggestions on how to improve the Course Browser interface.

The participant will be given a free cinema ticket as an appreciation gesture for participating in the study. This

incentive will be given even if the participant chooses to withdraw from the study.

4. Describe how you will deal with the issues of informed consent and continuing voluntariness of participation in the

research. For minors, describe how you will obtain consent of guardians.

Each participant will be asked to read the concent form and express express their willingness to participate with a

signature. Participation will be voluntary and subjects may withdraw at any time. All personal information the

participants provide will be considered confidential. The participants’ names will be anonymized, although short

segments of video captures used for conference presentations will show their faces. Each participant will receive a

copy of the concent form for their personal records.

5. Describe how you will grant anonymity to participants and how responses will be kept confidential. If names or other

identifying information are coded with data, describe how access to data is limited and safeguarded. Indicate who will have

access. If appropriate, describe how consent is obtained from participants for exceptions to anonymity/confidentiality (e.g.,

focus groups). If data are to be taken from existing sources, discuss the implications of pre-existing (implicit or explicit)

guarantees of confidentiality/anonymity.

The participants’ names will be anonymized, although short segments of video captures used for conference

presentations will show their faces.

85

ASLREB

Rev. 11-08 4 / 6

6. Describe your plans for the retention and disposal of data.

All interview data, including tapes, transcripts, and written notes, will be retained as part of our responsibility to

provide open access to publicly funded research. It will be stored in a secure location for at least five years.

7. If concealment and/or deception is to be employed, provide explicit justification. Indicate how and when participants will

be informed of the concealment and/or deception.

No concealment or deception will be employed in the study.

8. Describe the nature of any risks to the physical or psychological well-being or integrity of participants that might arise

from your procedures, and discuss your justifications, safeguards, and resolutions for these risks where appropriate.

There is minimal risk associated with participation in this study. Participants will be ask to interact with a web

browser, an activity done by most of them on a daily basis.

9. Indicate when participants will be debriefed, and describe the nature and extent of debriefing. Indicate how participants

may follow-up with researchers to ask questions or obtain information about the study.

The participants will be debriefed immediately after the session. No follow-up will be necessary. However,

participants may contact Camilo Arango by email to obtain further information about the study.

86

ASLREB

Rev. 11-08 5 / 6

10. Describe any apparatus, element of the physical environment, substance or other materials that could cause harm to a

participant if a malfunction, misuse, accident, allergic reaction, or side-effect were to occur. If the participant comes into

contact with a potentially hazardous apparatus or material, who will be responsible for checking for defects/malfunctions, and

on what schedule will inspections be made? If participants come into contact with some substance that could cause harm,

please document your safeguards. Describe safety approvals that you have obtained or applied for (e.g., biohazards,

electromechanical, radiation, etc.)

No elements may cause harm to a participant in this study.

11. Describe qualifications of research personnel if special conditions exist within the research that could cause physical or

psychological harm or if participants require special attention because of physical or psychological characteristics, or if made

advisable by other exigencies.

Not applicable.

12. Describe any potentially hazardous duties that will be required of research personnel, including physical, mental, or legal

risks. Describe the safeguards you have implemented for your personnel.

Not applicable

Please submit (2) hard copies of your application together with supporting materials to Christine Boyle or Kathy Bischof in

the Psychology Office, or mail your application to Ethics, Department of Psychology, P-217 Biological Sciences Building.

87

ASLREB

Rev. 11-08 6 / 6

FOR ASLREB USE ONLY: File Number:

Received Date Review Type: Expedited Referred to Committee HREB

Meeting Date

Approval Date:

Reviewer Date:

88

Arts, Science & Law Research Ethics Board (ASL REB)
Certificate of REB Approval for Fully-Detailed Research Project

Applicant: Camilo Arango Moreno
Supervisor (if applicable): H. James Hoover
Department / Faculty: Department of Computer Science
Project Title: Course browser prototype usability study

Grant / Contract Agency (and number): N/A
Application number (ASL REB member) 1955 (CLG08-12-02)
Renewal? ☐ If yes, what was the previous number? _________
Approval Expiry Date: 2009-Dec-02

CERTIFICATION of ASL REB Approval

I have reviewed your application for ethics review of your human subjects research project and conclude
that your project meets the University of Alberta standards for research involving human participants
(GFC Policy Section 66). On behalf of the Arts, Science & Law Research Ethics Board (ASL REB), I am
providing expedited approval for your project.

Your application will be presented to the ASL REB board at its next meeting (December 15, 2008).

This research ethics approval is valid for one year. To request a renewal after December 2, 2009 please
contact me and explain the circumstances, making reference to the research ethics review number
assigned to this project. Also, if there are significant changes to the project that need to be reviewed, or if
any adverse effects to human participants are encountered in your research, please contact me
immediately.

ASL REB member (name & signature): Christina L. Gagné

Date: December 2, 2008

89

	Introduction
	The dependency visualization problem
	Rich prospect browsing of dependencies
	Organization of the document

	Literature Review
	User interface Design
	Principles, patterns and guidelines
	Interaction Design
	Testing paradigms

	Information Visualization
	Graph drawing

	Related projects

	The Course Browser
	Objectives
	Requisite description language
	Canonical Ordering

	Course Browser's User Interface
	Requisite box diagram
	Circular diagrams

	Early Prototypes
	Card Prototype
	Tiles Prototype

	Usability Study: Methodology
	Bear Tracks
	Design of the usability study
	First interview
	Course Planning Tasks
	Second interview

	Pilot testing
	Target population and recruiting

	Usability Study: Results
	First interview
	Course-Planning Tasks
	Statistical Analysis
	Results
	Analysis and Discussion

	Second interview
	Statistical Analysis
	Results
	Analysis and Discussion

	Conclusions

	Insights and Future work
	Insights about visualizing dependencies
	Future Work
	Improvements to the Course Browser
	Course Planner
	Dependency visualization framework

	Bibliography
	Usability study questionnaire
	Usability study ethical review

