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Abstract

The widespread adoption of mobile electronic devices and the advent of wearable 

computing have encouraged the development of compact alternatives to the key­

board and mouse. These include one-handed keyboards, digitizing tablets, and 

glove-based devices. This thesis describes a new wearable input device for ges­

ture recognition, pointer control, and 3D interaction. It uses miniature wrist-wom 

wireless video cameras that track finger position.

For gesture recognition and text input, rapid finger movements are detected as 

keystrokes, and a Hidden Markov Model is used to correlate finger movements to 

keystrokes during a brief training phase, after which the user can type in the air as 

if typing on a standard keyboard.

The device can also be used as input interface for virtual reality. A hand model 

is used to analyze finger-tracking data and determine finger position in three dimen­

sions, and a wrist-wom marker is used to track the hand within a virtual scene.
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Chapter 1 

Background and Motivation

1.1 Motivation

Mobile computing and wireless networking technology has advanced the integra­

tion of computing into everyday life. Globally, over 1 billion SMS messages are 

sent per day, and mobile phone use for messaging and Internet access continues to 

grow, motivating the need for simple and efficient portable input devices. Several 

technologies have been developed in order to meet this need. For example, hand­

writing recognition using pressure sensitive screens and a stylus has been success­

fully incorporated on many handheld computers. Onscreen keyboards and small 

’thumb-boards’ are another popular input method. However, input speed achieved 

with these devices is slow relative to standard keyboards [20]. The surface area 

available for input is even less on cellular phones, where 12 digit numerical key­

pads usually do double duty for text entry. Generally, when mobile phone keypads 

are used for text input, each key is mapped to three or four letters and predictive 

text entry algorithms are used to disambiguate key-presses. The application of pre­

dictive text entry methods to mobile phone text entry has significantly lowered the 

average number of keystrokes required per character (KSPC), from 3 KSPC to close 

to 1 KSPC. Nevertheless, key sequences for shorter words are often ambiguous, and 

the limited keypad size makes input speed slow relative to full-size keyboards. See 

[20] and [25] for a review of keypad based mobile input technologies.

An alternative to keypad-based input is based on virtual keyboards that do not 

rely on an input surface or physical keys to detect input. For example, the keyboard

1
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is projected onto a flat surface and key presses detected by infrared ranging sensors 

[32]. The increasing sophistication of mobile technology has also supported the 

emergence of multimedia, entertainment, and augmented reality applications for 

mobile computers. Augmented reality and wearable computers in particular require 

input interfaces that are lightweight and unobtrusive.

One barrier to the adoption of wearable computing devices is the absence of 

an input interface that allows the user to interact with the system while standing 

or moving. Typically, portable keyboards must be set or held in place to be used 

effectively. One approach to solving this problem is one-handed (split) keyboards. 

However, wearing a wrist-mounted split keyboard interferes with the use of the 

hands to do other tasks. Glove-based devices incorporating flex sensors within the 

glove fingers are less cumbersome, allowing free use of the hands. Another input 

method analyzes the data collected from tiny accelerometers worn on each finger 

to determine user input [9]. An even less obtrusive approach is virtual glove-based 

input devices, that use wrist mounted sensors to track hand and finger position. 

For example, the lightglove [16] uses infrared LEDs and sensors worn on the arm 

to track finger position and allows the control of electronic systems. The concept 

of using wrist mounted cameras as input devices is introduced in [40], where the 

fingers are tracked and used for input. Virtual glove-based devices enable the user 

to interact with a mobile computer while moving, and allow free use of the hands 

while not in use. However, the virtual glove devices mentioned above rely on a 

chorded input scheme to interpret finger movements. Since there are only 10 fingers 

available to represent all alphanumeric characters, several fingers must be moved 

simultaneously for each input. This requires the user to learn a new input method 

to use the devices.

The input system described in this paper can interpret non-chorded input, al­

lowing the user to type as if using a standard keyboard, as each finger can be used 

to type several different characters. Probabilistic models of finger movement and 

language are learned and used to resolve ambiguous inputs. The use of cameras al­

lows high-resolution tracking of the position of each finger at all times. In addition, 

environmental features can be tracked to determine the position of the hand itself.

2
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The incorporation of vision-based ego-motion estimation provides for an intuitive 

method of pointer control by translating hand movements to pointer movements.

1.2 Overview of this thesis

The thesis is organized as follows. Chapter 1 provides a background on human 

computer interaction, image processing, gesture recognition, wearable computing, 

and 3D interaction. Chapter 2 provides a description of the hardware components 

of the prototype system, and an overview of the system organization. Chapter 3 

describes the finger tracking, keystroke detection, and gesture recognition process. 

Chapter 4 introduces visual feature tracking for motion estimation and pointer con­

trol, and Chapter 5 describes how the device can be used for augmented reality 

interaction. In Chapter 6, experimental results obtained from the prototype system 

are discussed. Conclusions and possible extensions are explored in Chapter 7.

1.3 Background

This thesis describes an input device for text input, gesture recognition, and 3D in­

teraction, and can best be described as falling under the field of Human Computer 

Interaction (HCI). However, Human Computer Interaction draws from a wide spec­

trum of research, and the work described here is no exception. The wearable input 

device described in this thesis is based on wrist worn cameras, and is designed for 

gesture recognition and 3D interaction. Thus the fields of computer vision, natural 

language processing, wearable computing, and augmented reality are all touched 

upon in this thesis, and so the relevant details of each field are described in this 

chapter. First, the basics of digital image capture and image processing are de­

scribed. Since the field of computer vision is large, only the algorithms used in this 

thesis, including those used for object segmentation, edge detection, and feature 

tracking, are described. As hardware speed and image processing algorithms have 

progressed, much research has also been done towards higher-level recognition al­

gorithms, including vision-based recognition of human gestures as a means of hu­

man computer interaction. A summary of gesture recognition research is presented,

3
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with particular emphasis on probabilistic recognition of human hand gestures.

Alternative methods of input are becoming increasingly relevant due to the 

emergence of wearable computing systems whose form factor does not mesh well 

with standard keyboard and mouse input systems. So, the current state of input tech­

nology for mobile and wearable computers is described next in the background. As 

wearable hardware technology matures, new applications are being developed to 

take advantage of the new smaller form factors. For example, wearable displays 

make augmented reality (AR) applications possible, which is the integration of vir­

tual objects within a real scene. An overview of the field of AR is provided, as well 

as a review of current input devices for virtual and augmented reality applications.

1.3.1 Digital Image Processing

Digital image processing is a broad field of study that involves obtaining infor­

mation from images using a computer. Information extraction can be low level, 

for example to clean up an image using convolutional filters, or high level such as 

recognizing objects within an image or determining the 3D structure of the scene. 

Digital image processing can be categorized into several classes: image processing, 

image analysis, computer vision, and machine vision. Image processing refers to 

operations that are applied to two-dimensional input images, where the end result 

is also two-dimensional output images. Image analysis/understanding is the higher 

level processing of images to extract meaning, for example recognizing and clas­

sifying objects within a scene. The term ’’computer vision” usually refers to the 

extraction of 3D structure from one or more 2D images, and ’’machine vision” is 

centered on the industrial applications of image processing. Before delving into 

the specifics of image processing algorithms, a brief summary of the digital image 

formation process is described next.

1.3.2 Cameras and Image Formation

Image formation involves the mapping of the three-dimensional world to a two 

dimensional image. Several camera models exist to describe this mapping; the 

most basic camera model is the pinhole or perspective model, based on a box with

4
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Figure 1.1: The pinhole camera model. (Source: [10])

a small hole in it on one side of the box that lets in light to create an image on the 

opposite side. The model is shown in Figure 1.1.

The pinhole camera is described in terms of the optical centre C (the pinhole), 

the optical axis z, and the focal length f, which is the distance between the pinhole 

and the image plane. Light enters the camera through the pinhole and hits the 

image plane at the back of the camera. Thus, given the size of an object on the 

image plane, the focal length, and the distance to the object, similar triangles can 

be used to determine the real world size of the object.

In particular, a 3D point (x,y,z) in the world will be mapped to the point (fx/z, 

fy/z) on the image plane. The relationship between 3D points and their image 

position is called the perspective equation.

Using matrices, the perspective equation can be expressed in homogenous co­

ordinates as:

Or expressed simply as z m = pM,  where M  = (x, y, z, 1) are the homogenous 

coordinates of a 3D point, and m  =  ( f x / z ,  f y / z ,  1) are the homogenous coordi­

nates of the image point.

The General Projection Equation

In a more general case, world coordinates may not be exactly aligned with camera 

coordinates. Thus, the projection matrix will need to be multiplied by a matrix

/  0 0 0 1 
o / o o  y 
0 0 1 0  f

(1.1)
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describing the rotation and translation of world coordinates relative to the camera. 

Both rotation and translation can be expressed in a single 4 x 4  matrix G containing 

a 3 x 3 rotation matrix R,  and a 3 x 1 translation matrix t:

_  R  t 
0 1 ( 1.2)

In addition, camera parameters such as lens distortion and focal length will 

modify the appearance of objects within the image. The camera calibration matrix 

K describes the intrinsic camera parameters that determine how an image is pro­

jected onto the image plane. In general, the matrix will vary from camera to camera 

and will need to be calibrated for each one. Taking into consideration the camera 

reference frame relative to the world, G, and the intrinsic parameters, K, gives a 

more general form of the projection matrix P:

Thus the image formation process is fully described by the following equation:

1.4 Image Processing

Image processing is a subset of signal processing and is defined as any kind of 

operation in which the input and output are both images. Digital image processing 

involves the digitization of analog images into a discrete representation as a 2D 

array of real numbers. The image can thus be considered as a function over two 

variables, I ( x , y), where each element, or pixel, is a real valued number.

The exact digitization process that converts incoming light into a discrete rep­

resentation using Complementary metaloxidesemiconductor (CMOS) or charge- 

coupled device (CCD) sensors is not described here. This thesis places greater 

focus on methods of processing the image to extract information once digitization 

has already taken place. Image processing operations can be categorized into 1) 

pixel-based, in which each pixel is modified independently of the values of the sur­

rounding pixels; 2) local operations, in which pixel values are modified dependent

P  =  K[R\t] (1.3)

(1.4)

6
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Input Image a[m,n] Output Image c[m,n]

Figure 1.2: 2D image convolution

on the neighboring pixels and a weighted mask/window; and 3) global operations 

in which all pixel values in the image are taken into consideration. The operations 

that are most relevant to this thesis are local operations including 2D convolution 

and morphological operations, and they are described below.

1.4.1 Convolution

Convolution is a local operation that acts on a small part of an image at a time. The 

operator consists of a sliding window, called the support, kernel or mask, which 

is scanned across an image. The mask is simply a two dimensional matrix of real 

numbers. As the mask is moved across the image, each input image pixel that 

lies within the mask is multiplied by the window value at the corresponding loca­

tion. The output pixel value corresponds to the sum of these multiplications. The 

window, along with the associated weights, is called the convolution kernel. Con­

volution operators can be used to sharpen or blur an image, or find image features 

such as edges or comers.

The convolution process is illustrated in figure 1.2. In formal terms, the output 

image c[m, n ] of convolving input image a[m, n] with mask h[m, n] is described by 

equation 1.5.

J - 1 K - 1

c[m, n] =  a[m, n] * h[m, n] = ^  h\j, k\a[m — j , n  — k ] (1 .5 )
j=0 k=0

An example of a convolution-based operation is Gaussian smoothing. The 

Gaussian kernel approximates a two dimensional Gaussian curve centered at the 

kernel center. Typical kernel sizes are 3x3, 5x5 or 7x7. The operator is applied to

7
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Figure 1.3: Masks for dilation(left) and erosion(right)

each pixel by multiplying the value of the surrounding pixels by the kernel values, 

and normalizing the result. In effect, each pixel takes on the values of nearby pixels, 

with the nearest pixel having the greatest effect. The result is an image where all 

edges are smoothed, and detailed features are blurred.

1.4.2 Image Morphology: Dilation and Erosion

Morphological operations are functions applied to images to aid segmentation and 

classification of objects within the image. A two dimensional structuring element 

is applied to a small region of the image at a time, analogous to the kernel used in 

convolution. In contrast to convolution however, set operations such as intersection 

and complement are applied to the input image and structuring element rather than 

sums of multiplications. The two principle morphological operations are dilation 

and erosion. They are typically applied to binary images.

Dilation is used to expand the boundaries of objects, and filling small holes 

within an objects interior. A mask is swept over the image, and the value of each 

output pixel is defined by the intersection of the mask with the input pixel and pixels 

surrounding it. For example, a 3x3 dilation mask is show on the left of figure 1.3. 

For a pixel to be set to 0, each pixel in the neighborhood of the pixel must be 0.

In contrast to dilation, erosion is used to shrink objects by eroding their bound­

aries. A 3x3 erosion mask is shown on the right of figure 1.3. For a pixel in the 

output image to be 1, the pixel and every one of the surrounding pixels must be 1. 

Otherwise, the output is 0.

More complex operations may also be created by combining dilation and ero­

sion. The ’’’opening’” operation consists of erosion followed by dilation, and is 

used to filter out small specks in an image. ’’’Closing’” consists of dilation fol­

lowed by erosion and is used to eliminate small holes or gaps within larger image

8
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blobs.

1.4.3 Feature Detection

The goal of many image processing applications is to detect, segment, and recog­

nize meaningful parts of an image. Often the first stage in object segmentation and 

recognition involves detecting features in the image that aid in classification. For 

example, image features such as edges, lines, and comers can be used for recogni­

tion and tracking tasks.

Edge Detection

Edge detection is used to mark areas in an image where a large change in luminosity 

is present. Generally, edges demarcate the boundaries of objects that appear within 

an image, although edges will also appear within objects themselves. Thus edges 

provide a compact representation of scene structure, filtering out less relevant data. 

Several edge detection algorithms exist; the simplest method of edge detection is 

to find the image gradient using the first derivative of the image intensity. Taking 

a pixel value and subtracting the value of a neighboring pixel gives a rough esti­

mate of the first derivative of the image at that point. Given a grayscale intensity 

image, horizontal edges and vertical edges are found in two passes; For horizontal 

edges each output pixel I’(x,y) corresponds to the intensity I(x,  y) — I (x  — 1, y), 

and for vertical edges I ' (x , y) = I(x,  y) — I(x,  y  — 1). This is equivalent to con-
T

- 1  1 Pixels involving the input image with the mask —1 1 , and then 

the image derivative that are above a certain threshold are considered edge pixels. 

However, determining the correct threshold value will depend on the illumination 

and composition of objects in the scene.

Comer Detection

A common problem in computer vision is object tracking and camera motion esti­

mation in an image sequence. In order to determine the motion of the camera rela­

tive to objects in the scene, visual features must be tracked robustly across frames. 

Comer features are an attractive image feature for tracking as they can be found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



quickly, and tracked robustly in two dimensions. The most commonly used cor­

ner detection algorithm is the Harris comer detector. The Harris comer detector is 

described in more detail in Chapter 4.

1.5 Gesture Recognition: Data Collection and Anal­
ysis

The goal of gesture recognition is to identify and classify human gestures and use 

them as a method for human computer interaction. It involves the process of con­

verting a continuous signal into a set of discrete symbols, and shares much in com­

mon with handwriting and speech recognition. For example, speech recognition 

involves taking an acoustic signal, splitting it into words, and recognizing each of 

the words. Similarly, handwriting recognition and optical character recognition in­

volves splitting an image into meaningful segments such as letters and words, and 

determining what each portion represents. In gesture recognition, the input signal 

is created by the continuous movement of one or more human body parts,

The principle elements of a gesture recognition system are the interface used 

for data input and the recognition algorithm used to classify the data.

•  The interface describes what is measured and how the data is collected. For 

example the system may use full body tracking, head tracking, hand tracking, 

or the tracking of any other body part. Similarly, the sensors used may be 

mechanical, inertial, magnetic, ultrasonic, or vision based.

•  Algorithms for gesture recognition can be based on simple heuristics, neural 

networks, or other machine learning techniques. The most successful ones 

are often based on learned probabilistic models, but there is a wide variation 

in model structure and how they are learned.

1.5.1 Interfaces for Human Motion Tracking 
Mechanical, Inertial, Magnetic, and Ultrasonic Tracking

The oldest method of tracking human motion is to use mechanical trackers based 

on flexible goniometers. The goniometers are worn on each limb and measure joint

10
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bend angles, which are analyzed by kinematic algorithms to determine body posi­

tion. A less obtrusive method of tracking human motion is to use small wireless 

accelerometers worn on the body parts to be tracked. Miniature accelerometers 

can provide 3D acceleration measurements at a high frequency, typically around 

100Hz. The accelerometer data can then be integrated to determine position, but 

accelerometers are prone to drift, making accurate position determination difficult. 

Other systems use body worn ultrasonic transmitters with multiple receivers that 

analyze the time of flight of the sound to each receiver to determine position. Ultra­

sonic systems provide absolute position measurement, but the accuracy is limited 

by the speed of sound and measurement error due to signal variation. Finally, mag­

netic motion capture systems use sensors worn on the body to detect magnetic fields 

generated by three perpendicular magnetic field sources. Sensing accuracy is good, 

but such systems are expensive, and the magnetic field measurement is susceptible 

to interference from ferromagnetic materials.

Vision Based Marker Tracking

The most popular method of human motion determination is vision based tracking 

that tracks several markers worn on the body using one or more cameras. Markers 

may be active, for example blinking LED lights, or passive markers that are simply 

reflective balls or tape worn on several points on the body. In professional motion 

capture systems, around 40 markers are embedded in a body suit that is worn by an 

actor. Two or more cameras track the actor, and software is used to determine the 3D 

position of each marker and determine the most likely human body motion using 

kinematic constraints. Marker based systems are very accurate, giving ±  1mm 

accuracy, and the large number of markers overcomes any information missing due 

to marker occlusion. Marker based tracking systems, however, are expensive, need 

to be precisely calibrated in controlled illumination conditions and are typically 

used in a studio setting with fixed equipment.

11
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Marker-less Tracking

Recent research focuses on determining body position without the need for special 

markers. Markerless motion capture involves segmenting the user from the back­

ground and determining body position using kinematic constraints.

1.5.2 Hand Tracking

While full body motion capture systems provide accurate position measurements, 

their cost and set up requirements make them unsuitable for routine human com­

puter interaction. Instead, gesture recognition systems generally rely on tracking 

a few key body parts, such as the hand, head, or eyes. Hand tracking allows for 

the most expressive gestures, and requires less effort on behalf of the user than full 

body tracking. This makes it the most popular modality for gesture recognition. 

Hand tracking systems traditionally fall into one of two categories; 1) glove-based 

systems that rely on gloves instrumented with flex sensors to measure finger bend 

angles, and accelerometer or ultrasonic sensors for measurement of hand position; 

and 2) Vision based systems that either use one or more static cameras positioned 

in front of the user.

More recently wearable cameras have begun to be used for HCI. For example, 

the tinmith project [28] uses head mounted displays with integrated cameras to track 

gloves embedded with markers, and the gesture pendant [11] relies on a camera 

worn around the neck to track the hands.

Glove-Based

Glove-based hand motion capture utilizes gloves with embedded fiber optic sen­

sors that measure the flexion and adduction of the fingers. Several companies offer 

gloves with embedded flex sensors. The least expensive models, such as the 5DT 

Dataglove, use one flex sensor for each finger, providing approximate bend angle 

measurements but no adduction measurements. Other models embed up to 24 sen­

sors per hand, measuring two bend angles per finger, plus inter-finger adduction 

angles and wrist flexion. Generally, the gloves are meant to be used with 3D posi­

tion sensors in order to measure the absolute position of the hand.

12
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Vision Based

Vision based hand trackers generally rely on one or more fixed cameras observing 

the user. As long as the users hand is within the field of view of the camera, it can 

be tracked. While hand position can be tracked robustly, the accuracy is generally 

poor and precise tracking the pose of each finger is difficult. Such systems are prone 

to errors due to occlusion of part of the hand or fingers.

1.5.3 Gesture Recognition

As the gesture data is collected using one of the methods described above, it must be 

interpreted and translated into meaningful units. Gesture recognition can be divided 

into two phases;

1. splitting continuous gestures into meaningful units; and

2. recognition of the units and determining their symbolic value

The two steps can occur in two separate stages, with discretization followed by 

recognition, or the recognition system can be used to aid the segmentation stage. 

Early research into speech recognition typically approached the two tasks sepa­

rately. For example, by splitting the acoustic signal where the amplitude dips, and 

then attempting to match each segment to a word. This required the utterance of 

each word to be separated by a pause. More recent research involves considering 

several possible segmentations, and performing segmentation and recognition in 

parallel using probabilistic algorithms.

Many processes can be modeled as a set of states, with an associated set of prob­

abilities that describes the chances of transition from one state to another. Indeed, 

most speech and gesture recognition systems are based on probabilistic models. In 

particular, Hidden Markov models (HMM) find abundant use in speech and gesture 

recognition.

Hidden Markov Models for Gesture Recognition

A stochastic process in which future states are dependent only on the present state, 

that is, they are conditionally independent of states preceding the current state, are

13
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said to have the Markov property. This property is formally described by the equa­

tion:

Pr[X(t  + h) =  yl-X’(s) =  x(s),Vs  <  f] =  Pr[X( t  + h) =  y\X{t)  =  x(t)\,Vh > 0

(1.6)

Where X ( t  + h) is the state at time t + h, independent of the state at any pre­

ceding time s.

In a Markov chain, the current state is observable; in this case the system can 

be described in terms of the states and the transition probabilities between them. 

However, in some processes, the current state is not directly observable. In this 

case, observable parameters may provide probabilistic clues as to which state the 

process is in. This kind of process can be modeled as a Hidden Markov Model 

(HMM).

Hidden Markov Models are described in terms of:

1. N,  the number of states of the model

2. M,  the number of distinct observation symbols per state

3. the set of observation probabilities B  =  {bj(k)} describing the probability 

of each kind of observation vk within each state j  where Bj(k)  =  P[vk\qt =  

Sj], 1 < =  j  < =  N,  1 < =  k <— M

4. the set of transition probabilities A that describe the probability of moving 

from one state to any other state. A is a matrix whose elements ai3 correspond 

to the probability P[qt+1 =  Sj\qt =  S)], 1 < =  I , j  <= N

In general, pattern recognition tasks that can be solved using hidden Markov 

models fall into three categories:

1) Computing the probability of a particular output sequence given the model 

parameters. Given a prior model of weather probabilities, for example, one may 

wish to determine the probability of having 10 sunny days in a row. This problem 

is easily solves using the forward algorithm [30].

2) Finding the most probable sequence of hidden states given a set of observa­

tions and the model observation and transition probabilities. In this problem, the

14
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HMM parameters are known, and a series of observations must be classified using 

the model. For example, in the context of sign language recognition, a prior model 

of the probabilities of observing each sign, and transitioning from one hand sign to 

another may be known. Then, given a series of observations of hand positions, the 

most likely word needs to be found. This problem is slightly more difficult to solve 

than 1, and is solved using the Viterbi Algorithm discussed in Chapter 2 [30].

3) Parameter learning: Given a set of observation sequences, determine the most 

likely set of observation and transition probabilities. This problem requires optimiz­

ing the model parameters with respect to observations, and is thus the most difficult 

to solve. This problem is solved using the Baum Welch algorithm [30].

The problem addressed in this thesis, namely recognition of finger gestures, 

involves solving the second and third types of problem and they are described in 

more detail in Chapter 2.

Evaluation of Gesture Recognition Systems

Gesture recognition systems can be evaluated using the following criteria

• Input speed

•  Usability and the learning curve required for new users

•  Vocabulary, the number of discrete symbols that can be accurately recog­

nized;

•  Accuracy - the percentage of input gestures that are correctly identified;

• Robustness to gesture variability for a single person and variability among 

different individuals, and to signal transmission errors;

•  Practical concerns such as size and cost

1.6 Mobile Computing

Since the invention of computers, their form factor has evolved at an amazing rate. 

The size and processing speed has developed rapidly, from large room sized com-

15
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puters of the sixties, to mini computers of the seventies, to portable computers that 

revolutionized the eighties and nineties, and most recently to smart phones and mo­

bile devices that can be carried in a pocket. The changing form factor of computers 

continues to expand their applications and inclusion into everyday life. Today, mo­

bile computers are pervasive, outnumbering their deskbound counterparts. While 

originally meant for voice communications, the role of mobile phones has expanded 

to data communications. Mobile phones are used for text messaging, games, surf­

ing the Internet, multimedia applications, and scheduling. However, the small form 

factor of mobile phones makes interaction difficult.

1.6.1 Mobile Computing Text Entry Methods

The principle input device for mobile phones is a small 10-button keypad. For 

text input, multiple letters are assigned to each key, and characters are disam­

biguated probabilistically. Other input methods include handwriting recognition 

using a touchpad, miniature QWERTY keyboards, laser projected keyboards and 

voice recognition. A summary of mobile input technologies and their relative ad­

vantages is described in Tables 1.6.1 and 1.6.1.

A review of current input technologies for mobile devices can be found in [5].

1.6.2 Relative Advantages of the UbiHand Input Interface

The advantages of the input device described in this thesis relative to the technolo­

gies described in Tables 1.6.1 and 1.6.1 are:

•  It is compact and portable; wearable cameras can be worn just like watches 

and turned on and off as needed;

•  Keystroke recognition system allows one-to-many finger-key mappings and 

doesn’t require chorded input;

•  Input speed is fast relative to other portable input technology;

•  Mouse pointer control is integrated into the same device; and

16
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Table 1.1: Current input technologies for mobile devices
Type Description/Exam] ^Advantages Disadvantages
1. Non touch-typing input
Digitizing
tablet/handwriting
recognition

PALM Graffiti Intuitive if reg­
ular handwriting 
can be used as in­
put

Slow relative to 
touch typing; 
non-standard 
alphabets require 
training time

Voice recognition Dragon Naturally 
Speaking; IBM 
Via Voice

Compact - micro­
phone is only re­
quired input de­
vice

Error prone and 
imprecise; no 
pointer control

Gesture recogni­
tion (static cam­
era)

Difficult to leam; 
slow; limited 
number of input 
symbols

2. Touch-typing in )ut with a physical keyboard
Full-size wire­
less QWERTY 
Keyboards and 
collapsible key­
boards

Fast; easy to use; 
no learning curve

Large and cum­
bersome; can’t be 
used while on the 
move

Wrist-worn Key­
boards

Symbol Tech­
nologies key­
board and 
barcode scanner

Shallow learning 
curve

Large and obtru­
sive; Must be op­
erated with one 
hand - slow input 
speed

PDA miniature 
QWERTY thumb 
keyboards

PocketPC, iPaq, 
Axim thumb 
keyboards

Compact; 
Learned quickly 
by experienced 
touch typers

Slow relative 
to standard 
keyboard; un­
comfortable

Numeric key­
pads on cellular 
phones with 
predictive text 
entry

All cellular 
phones that allow 
text messag­
ing; predictive 
text entry algo­
rithms include 
Tegic T9, Eatoni 
Letterwise.

Compact; Predic­
tive text entry can 
improve input 
speed

Slow relative to 
standard key­
board; multiple 
keypresses re­
quired per input 
letter
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Table 1.2: Current wearable and virtual keyboard based input technologies
3.1 Touch-typing input with virtual keyboards
Laser projected 
virtual keyboard

Image of a key­
board is projected 
onto a flat surface 
Canesta Elec­
tronic Perception; 
Vkey Virtual 
Keyboard

Compact relative 
to standard key­
board

Currently too 
large for cellular 
phones; poor ac­
curacy; requires a 
flat surface

3.2 Wearable input devices
Gloves with flex 
sensors

Fiber optic flex 
sensors in each 
finger record 
flex and interpret 
as input Vtype 
glove; Scurry 
Glove

Wearable Cumbersome; re­
quire chorded in­
put

LightGlove[4] Lightglove 
virtual keyboard

Hands-free;
wearable

Relatively large 
and obtrusive; 
Requires chorded 
input

FingeRings Rings on each 
finger contain 
accelerometers 
that communicate 
movement infor­
mation wirelessly 
FingeRings;

Wearable Cumbersome; 
require ac­
celerometers 
on each finger; 
requires chorded 
input
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Head Mounted Display

Wearable Computer •
4 ^ © Wearable Input Device

Figure 1.4: Components of a wearable computing system

• Use of CMOS camera technology allows cost, power and size savings as the 

industry advances. In addition, using a wrist worn camera allows high reso­

lution tracking of finger position that is required for accurate gesture recog­

nition and hand motion capture.

1.7 Wearable Computing

The shrinking size of modem computers has also facilitated the growth of wearable 

computing applications. In short, a wearable computer is an ultra portable computer 

system that consists of an input device, processor, and display that can be worn. The 

focus of wearable computing research is to make interacting with the computer as 

transparent and natural as possible. The elements of a complete wearable system 

are shown in figure 1.4.
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Chapter 2 

Hardware and Software Overview of 
the Prototype System

A prototype was built using an off-the-shelf miniature camera fastened to a watch 

strap, and is shown in figure 2.1. The wireless CMOS color camera is worn on the 

underside of the wrist, pointing towards the fingers, and is powered by a 9V rechar- 

gable battery that provides power for about 4 hours. The images are transmitted to a 

wireless receiver connected to a video capture card on a PC that processes the video 

stream in real-time. The fingertips are tracked continuously, and keystrokes are de­

tected when one or more fingers deviates from its rest position above a distance and 

speed threshold.

Figure 2.1: The prototype system
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2.1 Hardware Overview

2.1.1 Camera

The camera is a wireless CMOS color camera with 380 lines or resolution, weigh­

ing approximately 15g and the size is 1.5cm x 1.5cm x 1.5cm. It is powered by a 

9V battery, giving about 4 hours of use on one charge. The field of view is approxi­

mately 45 degrees, providing a clear view of four fingers, but excluding the thumb. 

A lens with a wider field of view could be used to include the thumb. In terms of 

wearability, the camera is much smaller and lighter than current glove-based sys­

tems. However, the camera is still quite large and not as natural as, for example, 

wearing a watch. Nevertheless, there are currently several CMOS camera sensors 

on the market that are much smaller than the one used. For example, the Supercir­

cuits PC208 measures 0.8 x 0.8 x 0.8cm, and is not very expensive ($129). The 

PC208 consumes 35mA at 12 V DC, giving a battery life of about 4 hours. The 

continued popularity of mobile camera phones continues to drive down the size and 

price of small CMOS camera sensors, so that the form factor is expected to improve.

2.1.2 Wireless Connection

In the prototype system, the video from the wrist-mounted cameras is sent wire­

lessly to a receiver connected to a PC. The video is sent at 2.4 GHz, with 380 

lines resolution NTSC video at 30 fps. However, signal noise often causes errors 

in finger recognition. It would be preferable to do all of the processing on an on­

board Digital Signal Processor (DSP), sending only the processed commands to a 

mobile or wearable computer. Several DSP chips specialized for video processing 

are available that could accomplish this task. For example, the Videocore DSP is 

a low power mobile DSP specialized for image processing that is able to do edge 

detection, segmentation, and tracking at 30fps on a mobile phone.

2.2 Software Overview

The system described in this thesis includes several components. The basic task 

performed by the software described here is to capture video from a wrist worn
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Pointer Control Gesture Recogni­
tion

Augmented Reality 
Interaction

Comer Detection 
Comer Tracking 
Robust Motion Esti­
mation

Finger Tracking 
Keystroke Detection 
Keystroke Recogni­
tion

Finger Pose Estima­
tion
Hand Tracking 
Virtual Hand and 
Object Video Over­
lay

Table 2.1: Major software components

camera, and analyse the video for keystroke recognition, pointer control, and 3D 

interaction. The application is composed of several components written in C and 

C++. The low level vision code that handles grabbing images from the video cap­

ture card, and color thresholding is written in C. The higher level code for finger 

tracking, gesture recognition, and pointer control is written in C++. The graphical 

user interface is also written in C++, using X I1 graphics primitives. Table 2.1 lists 

the major elements of each subsystem. These three tasks are more or less indepen­

dent, and are described in order below.

2.2.1 Finger Tracking and Gesture Recognition

At the heart of the system is the finger segmentation and tracking algorithm. Us­

ing skin color segmentation and several filters, four fingers are segmented from the 

background, and the position of the fingertips and interfinger joints are tracked. 

This information is used for keystroke detection, which involves detecting rapid 

movements of one or more fingers from the rest position. In turn, keystroke obser­

vations are interpreted by the gesture recognition system, that classifies the detected 

keystrokes as characters or commands. The major subcomponents are:

• Skin Segmentation and Filtering

• Finger Tracking

•  Keystroke Detection

•  Gesture Recognition
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Finger tracking and gesture recognition is detailed in Chapter 3.

2.2.2 Pointer Control

Features in the background (i.e., the non-finger component) are used for feature 

tracking for pointer control. Comer features are detected and tracked using a prob­

abilistic algorithm, allowing the user to move his or her hand in order to control a 

mouse pointer in two dimensions. The major subcomponents are

• Comer detection

•  Robust comer tracking

• Translating movement to pointer control

Pointer control is described in Chapter 4.

2.2.3 3D Interaction

An extension of the system allows it to be used for 3D interaction, and manipulation 

of virtual objects in augmented reality. For this purpose, a fiducial marker is worn 

on the wrist, and the system is used along with a second camera; a static or head 

worn camera is used to track the relative motion of the hand, and the wrist worn 

camera tracks the fingers. The major subcomponents are

•  6 degree-of-freedom (position and orientation) hand tracking using markers

• Finger pose estimation using inverse kinematics

•  An augmented reality display that integrates virtual objects into a video stream 

3D interaction is discussed in Chapter 5.

2.2.4 Feasibility

The feasibility of implementing the image processing algorithms on board a mobile 

processor is dependent on the computational complexity of the algorithms involved. 

Currently, all image processing takes place on a 1GHz Athlon PC in real time. How­

ever, the system is amenable to implementation on a low power mobile DSP; the
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Processing Stage Complexity
Skin Thresholding
Each pixel is assigned as either skin color 
or non-skin color, depending on whether 
the pixel values fall within threshold val­
ues.

O(NM)

Filter - run length
The skin segmentation is refined using a 
minimum run length threshold. Specifi­
cally, each column of the image is pro­
cessed from top to bottom to find the bot­
tommost skin pixel.

O(NM)

Filter - morphological operations 
Dilation and erosion are applied to the bi­
nary image to refine the skin segmenta­
tion. O(NM) - Due to the fact that there 
exists a simple algorithm for dilation and 
erosion with complexity independent of 
the size of the structuring element or ker­
nel [12].

O(NM)

Filter - Gaussian convolution of contour 
The extracted one finger contour is 
smoothing using one-dimensional Gaus­
sian convolution. The contour is N pix­
els long for any N*M image, so convolv­
ing the contour with a kernel of length K 
gives O(NK) complexity. A filter length 
of 5 is used in practice.

0(NK)

Table 2.2: Computational complexity for each stage of finger segmentation

computing requirements for finger tracking are described in Table 2.2.4. An image 

resolution of N  x M  pixels is assumed, where N  is the width of the image and M  

is height. In practice, a resolution of 320 x 240 pixels was found to be more than 

sufficient for accurate finger tracking.
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Chapter 3 

Keystroke Detection and Recognition

3.1 Overview

Keystroke movements are assigned to characters during a training stage, and a Hid­

den Markov Model (HMM) is used for character recognition. The three stages of 

detecting and identifying keystrokes are described below. The information in the 

next two chapters is substantially similar to that provided in [1].

1. Hand Extraction and Fingertip Recognition

•  The hand contour is extracted from the images by skin color discrimination;

•  The fingertips are detected as the minima of the extracted hand contour

2. Keystroke Detection

•  The finger rest position is recorded in an initialization stage;

• Fingertip position is tracked over time, and keystrokes are recognized as 

peaks in the deviation of the finger position from the observed rest position

3. Hidden Markov Model Based Character Recognition

• The correlation between finger movement and character/command input is 

observed during a brief training phase;

4. During operation, keystrokes are interpreted as characters and language statistics 

are used to disambiguate keystrokes.
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3.2 Hand Extraction and Fingertip Detection

The video camera worn on the underside of each wrist continuously records the 

hand and fingers. The contour corresponding to the edge of the hand is extracted 

from the image stream by means of color segmentation.

3.2.1 Review of Skin Color Segmentation Algorithms

The approach to skin color segmentation taken in this thesis is naive thresholding, 

followed by morphological filtering and filtering algorithms that exploit the near 

vertical alignment of the fingers relative to the wrist worn camera, described further 

in section 3.2.3. Accurate skin color segmentation is an issue central to human 

gesture recognition, and other approaches to unconstrained skin segmentation are 

described below.

Skin segmentation should be robust to variations in skin color among different 

individuals, as well as variation due to changes in illumination, and much research 

has been done into determining the optimal color spaces and thresholds for skin 

segmentation. Color spaces are abstract representations of color consisting of tuples 

of numbers, usually made of three or four color components. For example, in the 

RGB color space, all colors are expressed as a linear combination of red, green 

and blue. In HSV color space, colors are represented by their Hue H, the color 

type, saturation S, the vibrancy of the color, and the value V, or brightness of the 

color. Generally, skin color segmentation is done in HSV color space. However, 

in [3], it was shown that the color space has no influence on skin color detection 

performance as long as the optimal skin color detector for that space is chosen, and 

that an invertible transformation between the compared color spaces exists.

Rather than relying on predefined thresholds for skin segmentation, using Gaus­

sian mixture models of skin color generally provide better results. Skin color is 

described as one or more Gaussians in color space, where the parameters of the 

Gaussians are learned from examples using expectation maximization. Then, im­

age pixels are classified as skin or non-skin according to Bayes rule:

, , x _  P(c\skin)P(skin)
P(c\skin)P(skin)  +  P(c\ ~  sfcm )P(~ skin) ^
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Where P(c\skin) is the probability that a pixel is color c given that it is a skin pixel, 

and P(c\ ~  skin) is the probability that the pixel color is c given that it is not skin. 

Both are based on prior histograms of skin color. P(skin)  and P (~  skin ) are a 

priori probabilities that skin will be found in the image at a particular location, and 

can be learned from examples.

This provides reasonable skin color segmentation under constant illumination. 

In most settings, however, changes in illumination will result in changes skin color 

over time. Adaptive skin color segmentation addresses this by updating the skin 

color model at each time step. [42] gives a review of skin color extraction algo­

rithms.

3.2.2 Finger Tracking Overview

In this thesis, a naive algorithm is used to provide an approximate segmentation of 

skin color pixels, which was refined using several filters. The threshold based skin 

and non-skin discrimination is quite rough, and the known shape and position of 

the fingers is exploited to provide more accurate finger tracking.

Finger tracking proceeds in several stages, the result of which is the image co­

ordinates of the four fingertips and three interfinger joints that lie within the field of 

view of the wrist worn camera in each frame. The stages are as follows:

1. Thresholded skin segmentation

2. Application of morphological operators to the binary image

3. Spatial smoothing of the finger contours using one dimensional convolution

4. Finding contour maxima and minima

5. Time-domain filtering of fingertip position using a moving-average filter

3.2.3 Skin Color Thresholding

A rough first pass classifies each image pixel as either skin or non-skin depending 

on whether the pixel lies within an experimentally determined range in HSV color 

space. A maximum and minimum value are assigned to each color component, and

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



if each component of a pixel lies between the thresholds, the output pixel value is set 

to 1. Otherwise, it is set to zero, so the output of the operation is a binary image. The 

thresholds were determined by trial and error on a single user, and would need to be 

refined for users whose fingers were differently colored. However, the thresholds 

are set quite wide, and generally the palm side of most peoples hands fall within 

the same range of pixels. On the other hand, the high permissivity of the threshold 

results in several misclassified pixels, and often small groups of background pixels 

are mistakenly identified as skin color pixels. In addition, shading sometimes causes 

parts of the finger to appear very dark and outside of the threshold range, especially 

in the creases at each joint. Morphological filtering in the next stage helps eliminate 

most misclassified background and finger pixels.

3.2.4 Morphological filtering - Dilation and Erosion

After thresholding, the image generally consists of a large black blob corresponding 

to each finger, with small holes within, and some much smaller blobs and speckled 

noise surrounding them. The erosion operator is applied to the binary image to 

remove the smaller background blobs corresponding to objects in the environment 

that are similar to skin color. The erosion operator also opens up light pixels within 

the finger that are misclassified as non skin color pixels. However, the holes are 

not large enough to split the finger into disconnected components. Next, the holes 

are filled by the application of the dilation operator. After these two morphological 

operations, the output image is a relatively good segmentation of the fingers from 

background, with some extraneous pixels remaining. The process of finding the 

edge contours of each finger using this binary image is described below.

3.2.5 Finding the Finger Contour

The finger position relative to the camera is exploited to find the edges of each fin­

ger. Namely, the fingers always begin at the top and are aligned nearly vertically in 

each image. So, starting from the top of the image, a minimum run length threshold 

and maximum gap length threshold is applied to each column of pixels. That is, 

starting at the topmost pixel, the column is extended until a span of more than X
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Figure 3.1: Stages in image preprocessing. The figure shows l)the image after skin 
color detection, 2)after erosion and dilation, 3) the extracted edge contour and 4) 
the smoothed contour and extracted interest points

non-skin pixels is reached. A good value for X was determined experimentally as 

20 pixels at an image resolution of 320x240. The bottommost pixel in this column 

is recorded as the edge of the finger. The run length thresholds provide robustness 

to noise caused by similarly colored objects in the environment.

3.2.6 Detecting Contour Maxima and Minima

The extracted edge contour described above is generally jagged due to noise, with 

several outlier pixels on each finger. The edge contour is smoothed using a ID 

median filter to remove the discontinuities, so that the peaks and valleys of the ex­

tracted contours correspond to the fingertips and interfinger joints. The peaks and 

valleys are found by iterating through the contour and finding the alternating max­

imum and minimum Y coordinate values. The output is the image coordinates of 

the four fingertips and three interfinger joints. The preprocessing stages are shown 

in figure 3.1.

Four fingers and three phalanges are visible within the field of view of the cam­

era, giving seven interest points to describe the hand and finger position. Figure 3.2 

shows the fingertip and phalange detection, as well as the centroid of the interest 

points.
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Figure 3.2: The seven interest points and detected orientation of the hand

3.3 Keystroke Detection

3.3.1 Initialization and Normalization

Observations of the system consist of the position and velocity of the four fingertips 

that are visible in the cameras field of view. Initialization of the system involves 

recording the rest position of each of the interest points. The coordinate system 

used for all measurements is defined by the centroid of the seven interest points 

and the alignment of the hand. The centroid is used as the origin of the coordinate 

system, and the orientation of the axes is determined by the angle of the ring and 

middle fingers relative to the image plane. Normalizing the position of the fingertips 

relative to this coordinate system accounts for shifts in the position and alignment 

of the camera over time.

3.3.2 Peak Detection

After normalization, the position in polar coordinates, /•* and 8Z of each fingertip 

relative to its rest position,, and speed vit is tracked. Thus at any particular moment 

of time, each of the four fingertips Xi(* =  1..4) is defined by a 3 dimensional vector

< ri,Qi,Vi >.

Keystrokes are detected as maxima in fingertip distances relative to their rest 

positions. Generally, more than one finger will move for each keypress and the 

distance reading for all fingers will peak at approximately the same time. Peaks that 

occur within a five frame window, corresponding to a time window of 0.17 seconds
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at 30 frames per second, are clustered and interpreted as a single keystroke.

There is considerable noise in the position readings, which would lead to spu­

rious keystroke detections without smoothing the positions over time. A low-pass 

filter is applied to the fingertip positions to remove noise. For the system to be 

usable, keystrokes must be detected immediately and thus a causal filter with min­

imum lag is required. In addition, peak attenuation needs to be minimized in order 

to maintain accurate position measurements. A first order low-pass filter was used 

to attain the best compromise among noise reduction, peak attenuation, and delay 

characteristics.

3.3.3 Hidden Markov Model Based Character Recognition

Hidden Markov models are commonly used in speech recognition and have found 

growing application in vision research as well. HMMs are particularly well suited 

to tasks involving the interpretation of noisy, continuous observations into small 

symbol vocabularies, such as in hand-writing and gesture recognition. For example, 

HMMs have been used to recognize playback commands for a portable DVD player 

using embedded accelerometers [27]; head and hand gestures such as pointing, hand 

waving, and nodding [31], and American Sign Language gestures using a fixed 

camera [36]. Typically, in machine vision based gesture recognition, a static camera 

is placed in front of the user and records movement of the hands, arms and head. 

The recognition system then interprets the sequence of movements as a set of words 

or commands.

The input to a handwriting or gesture recognition system consists of a contin­

uous stream of data that must be quantified, segmented into meaningful units, and 

interpreted as a sequence of discrete states. States can represent gestures, letters, 

words, or commands. In the case that the states are not directly observable and must 

be deduced, a hidden Markov model can be used to determine the most probable 

underlying state sequence from a series of observations.

The states in an HMM are inferred on the basis of the transition model and ob­

servation model that are associated with each state. The transition model consists of 

a table of probabilities of moving from one state to any other state. The observation
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Figure 3.3: An HMM. For keystroke recognition, each state S is a character, the 
transition model is based on letter bigram probabilities, and the observation model 
contains finger position and speed vectors

model describes the relationship between system outputs and states, allowing the 

determination of the most probable state for any given output.

To summarize, HMMs require the following elements:

•  A finite number of states Q;

•  A set of output probabilities B, which may be discrete or continuous;

•  A set of state transition probabilities A.

For keystroke recognition, each state in the HMM corresponds to a single al­

phanumeric character. At each detected keystroke, the most likely character is 

determined using the observation and transition models. As described above, the 

observation model relates system observables (fingertip positions and speeds) with 

hidden states (the characters that the finger movements represent). The observa­

tion model is learned during training by correlating each character in the training 

set with the output vector observed during its corresponding keypress. Often, two 

or more keys, such as the ’a’ and ’z’ keys, have similar observation vectors. The 

state transition model is used to disambiguate keystrokes. It is based on a language 

model that is derived from the analysis of a large corpus of text. The observation 

and transition models are described in detail below.

3.3.4 Observation Model

Observations consist of a set of vectors that describe the position and speed of each 

fingertip during the instant of a keypress. Each observation is made up of four
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vectors, one for each finger, each containing three elements; the position of the 

finger relative to its rest position in polar coordinates, and the speed of the fingertip.

In the current implementation, the thumb is not consistently present in the cameras 

field of view, and is ignored.

Fingertip positions and speeds constitute a continuous observation space, so 

that the observation model must be expressed in terms of a probabilistic function.

In general, the observation symbol probability distribution B = {b j ( k )} is denoted 

by

bj ( k ) = P (o t = k| qt = j ) (3.2)

where 6 , - ( k )  is the probability of observation k  given that the current state is j. In

the case of keystroke recognition, each observation k  consists of 4  vectors, each 

containing the position and speed of a fingertip at the time of a keypress:

k  =  ( k i , . . . ,  k 4 )

where each k; = <  ri,6i,V{ > represents the fingertip position and speed relative to 

its rest position. Each state j  corresponds to an alphanumeric character.

A 3D Gaussian distribution describes the probability of observing k for each 

character j .

P{ot =  k | qt = j ) =  N{ k  -  a-j) (3.3)

where /rj —  <  f i r , j i v  > j ,  is the mean finger position and speed for character j;

<jj = <  o>, erg, av > , is the variance; and N  is the Gaussian function — !‘2af
J J (7jV  A lt

Thus given an observation vector k ,  the probability that it represents character 

j  is inversely proportional to the distance between k  and the vector corresponding 

to the character. The means and variances of the vectors associated with each char­

acter are learned during a short training stage, and continuously improved during 

operation. To shorten training time, the variances are set to uniform initial values 

for each finger.

During training, the user is asked to type a small paragraph of text. As the user 

types, keypress events are detected, and the current observation vector is associated 

with the next character in the training text. At the end of the training stage, each 

character has been typed several times and has several observations associated with
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Figure 3.4: The mean position and speed vectors for the middle and index fingers of 
the left hand. The outline of the middle finger is on the left, and the index finger is 
on the right. Circles indicate the rest position, and other symbols represent letters. 
The length of lines corresponds to the finger speed magnitude during a keystroke.

it. On completion of training, each character is defined by the mean and variance 

of the set of observation vectors that was assigned to it.

Finger movement vectors that have a strong association with a particular charac­

ter exhibit low variance, and are therefore most heavily weighted in the observation 

model described above. Similarly, finger movements that are not consistently ob­

served for a specific character have a higher variance, and do not factor as strongly 

towards identification of the character. For example, if the index finger consistently 

moves to the same position for a certain character, but the position of the ring finger 

varies widely, the observation model for that character relies more heavily on the 

index finger observation. Figure 3.4 shows the observation vectors for the middle 

and index fingers for a subset of keys.

3.3.5 Character Disambiguation

The statistical regularities of language have been exploited for many purposes in­

cluding spelling correction in word processors, automatic speech recognition, and 

predictive text entry in mobile phones. A language model can greatly aid in inter­

preting noisy or ambiguous text. For example, mobile phones are commonly used to 

send text messages and retrieve information from the internet. However, the limited
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number of keys on numerical keypads requires that several characters be mapped 

to one key, leading to ambiguous inputs. There are two main approaches to de­

termining the desired text: dictionary-based approaches and statistical approaches. 

Dictionary-based predictive text entry involves searching a dictionary for words that 

are consistent with an observed sequence of key presses. Often several allowable 

words are found, and the user must make additional keypresses to select the correct 

one. In addition, the desired keys are not known until the entire word is typed. Sta­

tistical approaches to predictive text entry have attempted to address these issues 

by taking advantage of the statistics of word and letter sequences. Certain com­

binations of letters and words are more probable than others. Thus a probabilistic 

language model can be created by extracting the relative frequencies of letter and 

word combinations from a large body of text. With the aid of the language model, 

ambiguous inputs can be resolved based on the preceding sequence of words and 

letters.

The statistical regularity of the English language has been studied extensively 

since Shannon’s seminal paper [34] describing a game that involves guessing the 

next letter of an incomplete selection of text. The predictability of the English lan­

guage can be described in terms of entropy, which is the number of bits of data 

required to prescribe the next letter if the previous letters are known. For example, 

if each letter (and the space character) in the alphabet were equally likely, the en­

tropy of the language would be log2(27)= 4.76 bits per character (bpc). Shannon 

estimated the actual entropy of the English language to be between 0.6 and 1.3 bits 

per character. Since each letter is highly dependent on previous letters, fewer bits 

are required to encode each character. The best automated prediction methods have 

given an upper bound of 1.22 bpc [33]. This means that on average, the next letter 

can be predicted correctly approximately 40% of the time.

For the device described in this device, the most probable word corresponding 

to a sequence of keystroke observations is determined in a two stage process us­

ing both word frequency and letter pair (bigram) frequency. While a word is being 

typed, individual keystrokes are disambiguated based on the previous characters us­

ing a letter bigram model (LBM). This model increases the accuracy of keystroke
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recognition substantially relative to a naive system that relies only on observations. 

However, the recognition rate can be even further improved by incorporating word 

frequencies into the probability model. This is accomplished by considering the 

most likely character sequences determined by the letter bigram model, and rescor­

ing them using a word frequency table. The two components of the language model 

are described below.

A first order hidden Markov model was used for letter disambiguation. The 

letter bigram transition model estimates the probability of observing each current 

input character ln based on the previously observed character ln-i .

P ( Q k - i )  =  ; (3-4>

where C(ln- i ln) is the number of times that the bigram ln- \ ln is observed.

A selection of English text containing 200,000 words [26] was used to deter­

mine the letter bigram probabilities. Witten bell discounting [44] was used to ac­

count for zero frequency bigrams. The generated model is a table A  =  of letter 

pairs and their corresponding probability. Each table entry atJ contains the proba­

bility the letter j  follows letter i.

After each detected keystroke, the Generalized Viterbi Algorithm [15] is used 

to determine the most likely character using the observation and transition models. 

The algorithm calculates the probability of each character by combining informa­

tion from the two models, and orders the characters by probability. The most likely 

character is displayed on the screen.

The possible letter sequences can be considered as a trellis with weighted links 

between the candidate characters for each keystroke. Part of a possible trellis struc­

ture is shown in figure 3.5. The strength of the observation probabilities are rep­

resented by circle thickness, while the transition probabilities correspond to line 

thickness. While characters in the top row of the trellis have the highest observa­

tion probabilities, the best path through the trellis relies on both the observation and 

transition models. In this case the best path is d-r-a-w. As each keystroke is de­

tected, the Viterbi algorithm identifies the most probable character by considering:

•  The probability of each previous character i
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•  The transition probability at] from each previous character to each current 

character j

•  bj(Ot) =  P (0 \ j ) ,  the probability of the current observation O, given that the 

current character is j

The above probabilities are used to determine the probabilities of every state 

sequence, or path of characters, at each time step. To do this, the quantity St(i) is 

defined as the highest probability along a single path, which accounts for the first 

t  observations and ends in state St . For the very first letter in a word, only the 

observation probability is considered and 8t (i) is initialized as follows:

<M*) =  1 < i < N

where =  P[qi = <%] is the initial state distribution. Each letter of the alphabet 

is set to have an equal probability of appearing as the first letter, so that the first 

keystroke observation vector alone determines the first letter of a word.

For the following observations, the quantity for each state j  is deter­

mined by the most probable path to that state, as well as the observation probability.

5t+i(j) = [max8t(i)aij]bj (Ot+1) (3.5)

An array is used to keep track of the actual state sequence path that maximized

3.5 for each t  and j:

$ t ( j )  =  a r g m a x l S f - !  ( i )a ,ij \

Finally, when a space token is observed, the sequence is terminated. The set 

of the m-most likely letter sequences, {wm}, is determined is determined by back­

tracking through the array <f>. The Viterbi algorithm is explained in depth in [30].

The letter bigram model provides a good statistical model of letter sequences 

within words. However, by incorporating a higher level model of word probabili­

ties the accuracy of the system can be further improved. So, each letter sequence 

wm = <  h —ln > generated by the generalized Viterbi algorithm is rescored ac­

cording to a word unigram model (WUM). The word model is a table of word 

frequencies derived from analyzing a large section of text. The probability of word
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Figure 3.5: A portion of a character trellis. Circle boundary thickness represents 
observation probability and line thickness represents transition probability

wm is defined as the number of times the word has been observed divided by the 

total number of tokens in a body of text.

\  _  ('('Wm)
P{Wm) jy (3.6)

where C(wm) is the count of word wrn, and N  is the total number of tokens. The 

British National Corpus is a 100 million word sample of written and spoken British 

English derived from a wide variety of sources. In [23] the BNC is tokenized 

and composed into a list of words ordered by frequency. The word frequency list 

contains 939,028 unique words, including many proper names and colloquialisms. 

However, the rapid evolution of language on the internet continuously introduces 

new words and names that are often not included in large compiled lexica. One 

method of keeping an up-to-date lexicon is to integrate search query logs into the 

word list. Live updates of search queries are readily accessible online1 and can be 

logged to generate a continuously evolving vocabulary.

The information from the letter bigram model L B M  and word unigram model 

W U M  is combined to determine the most probable word. The log probabilities 

derived from each model are added to determine the final score, and the word with 

the maximum score is displayed.

W* =  argmaxn[log P(wn |L B M )  + a  log P(wn\WUM)\  (3.7)

a  is a weighting applied to the word model to determine its relative bearing on the 

score. W* is the most likely word as determined by combining the results of the 

Viterbi algorithm and word model.

The approach described above can be used to disambiguate continuous or dis­

crete inputs that represent symbols that are probabilistically dependent on previous

1 www.metaspy.com
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or future symbols. For example, a similar approach can be used to disambiguate 

finger movements for glove-based input, virtual glove-based devices, or other types 

of interaction systems.
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Chapter 4 

Motion Estimation

4.1 Background

Camera motion estimation is the task of estimating the camera’s motion relative 

to the viewed scene. Motion estimation can be used for motion dampening, video 

compression, and determination of 3D scene structure. A review of motion esti­

mation algorithms is given in [38]. Motion estimation generally proceeds in two 

stages:

1. Identify salient features that can be tracked from frame to frame

2. Determine the motion of each feature

The approach used in this thesis relies on finding comer features, determining 

feature correspondences using Sum-of-Squares Difference (SSD) similarity within 

a local neighborhood, and using the Random Sample Consensus (RANSAC) algo­

rithm to determine the most likely camera motion. Each stage is described in detail 

below.

4.2 Corner Detection and Clustering

The Harris comer detector is used to detect interest points in each frame. The 

detector scores pixels based on their ”comer-ness”, or having high gradients in two 

orthogonal directions. The derivation of the Harris detector is presented in [13] and

m .

Comer detection using the Harris Comer Detector proceeds as follows:
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1. Find the vertical and horizontal image gradients by convolving the grayscale 

intensity image with the following kernels ( —1 0 1 ) and ( —1 0 1 )T. 

This leaves us with the horizontal gradient image Ix and vertical gradient 

image Iy.

2. For each pixel in the intensity image, a local structure matrix Cstr is found 

using Ix and Iy:

3. The eigenvalues of Cstr are found by diagonalization of the symmetric matrix, 

which gives the following:

The eigenvalues li and l2 can be interpreted in terms of image geometry as follows:

•  For a perfectly uniform image, Cstr = 0 and l\ = l2 = 0.

•  For a perfectly black and white edge h > 0, l2 =  0, where the eigenvector 

associated with li is orthogonal to the edge

• For a comer of a black square in a white background, l\ >= l2 >= 0

Regions of higher contrast correspond to higher eigenvalues. A comer is identified 

by two strong edges, thus a comer has been detected when the lower eigenvalue is 

larger than a threshold value.

Since a comer feature in the real world will result in a cluster of several highly 

scored pixels, a distance constraint is used to separate distinct comer features. First, 

all pixels exceeding a threshold value are classified as candidate comer pixels. 

Then, comer pixels are clustered using a simple clustering algorithm, described 

below.

For each comer pixel:

1. Assign the first pixel to a cluster, and set the cluster centroid to the (x,y) 

coordinates of that pixel

(4.1)

(4.2)
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2. For every other pixel

•  If it is within distance d =  yj(xc — xp)2 +  (yc — yp)2 of any other clus­

ter, assign the pixel to the closest cluster, and update the centroid of the 

cluster C =

• Otherwise, start a new cluster

N  is the number of pixels belonging to a certain cluster, (xc, yc) are the coordinates 

of the centroid of the cluster, and the distance d was set to 30.

The pixel at the centroid of each cluster is assigned as the representative pixel 

for that cluster, and the surrounding 15x15 block of pixels is assigned as a feature 

point. The feature points are then ranked in order of minimum eigenvalue, which 

corresponds to comer strength as described in [35] and the forty best comers are 

chosen.

4.3 Corner Tracking

In each successive frame, the best forty comer features are chosen. Each of the 15 x 

15 pixel comer features from the previous frame is then matched to comers within 

a 50 by 50 pixel window using a SSD similarity measure. Finding the SSD involves 

aligning the two feature vectors, subtracting the pixel values of one from the other, 

and summing the squares of each pixel difference. Then, each feature from the 

current frame is matched to the most similar feature (i.e. minimum SSD) in the 

previous frame within a 50 x 50 window. Symmetric matches, pairs of features that 

match both forwards and backwards, are selected as correspondence pairs.

4.4 Motion Determination Algorithm

While the majority of correspondences detected and assigned using SSD within a 

local neighborhood will be correct, some matches will be incorrect. To filter out the 

spurious matches, the RANSAC algorithm is used to determine the most probable 

camera motion. In the current implementation, the image motion is fit to a two
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Figure 4.1: Comer tracking in pointer control mode

dimensional movement model; camera motion perpendicular to the image plane is 

ignored. The RANSAC algorithm determines the most likely movement as follows:

1. Select one of the feature movement vectors at random and use it as the move­

ment model.

2. Count K , the number of movement vectors that fit the model within a given 

tolerance.

3. If K  is bigger than the minimum desired consensus K min, exit successfully

4. Otherwise, repeat the above steps for I  iterations or until a correct model is 

found

In practice, the parameters K min and the number of iterations I  are set to attain a 

balance between accuracy and computation time. The higher K min and I  are set, 

the more likely the RANSAC algorithm will determine the correct motion. The 

relationship between parameter values and the probability of finding the true corre­

spondence is described in [14].

4.5 Pointer Movement and Button Presses

After determining the most probable magnitude and direction of motion, the move­

ment vector is scaled and applied to the pointer position. During training, the finger 

position corresponding to a mouse button click is recorded. As long as this finger 

position is maintained, the virtual button is held in the depressed position.
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Chapter 5 

3D Interaction

5.1 Background: Virtual and Augmented Reality In­
teraction

5.1.1 Virtual Reality

Virtual reality describes an immersive artificial environment that entirely replaces 

the visual and auditory sensations of the real world with a synthetic one. Generally, 

a head worn display provides slightly different images of a 3D scene to each eye, 

preserving stereo parallax, and head tracking allows the user to view the virtual 

world naturally by constantly updating the displays as the head moves. An alterna­

tive to head mounted displays is CAVE Automatic Virtual Environments (CAVE)

[5], in which four walls surrounding the user display a 3D scene that is updated 

according to the users movements.

5.1.2 Augmented Reality

In contrast to the complete immersion provided by virtual reality, augmented reality 

superimposes virtual objects within the real world. A camera is used to capture the 

environment, and the 3D structure of the scene and camera motion is determined in 

real-time. Using this information, synthetic objects can be inserted into the video 

stream and made to appear as part of the environment.
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Figure 5.1: The simplified hand model

5.1.3 Virtual and Augmented Reality Interaction

Currently, one of the principle methods of virtual reality interaction is by using a 

keyboard and mouse or joystick. These methods allow one to easily navigate within 

the environment, but complex manipulation tasks with virtual objects is difficult. 

For example, picking up an object, and moving, rotating, or deforming the object 

in three dimensions is difficult using traditional 2D input devices.

A more natural method of 3D interaction is to track the position of the hands and 

fingers, allowing the hands themselves to be used as input devices. Observations 

of the hand and fingertip position within the video stream are interpreted using a 

kinematic model to estimate the flexion and adduction of each finger, and the wrist. 

Some of the information in this chapter is also described in [2].

5.2 Hand Model

The human hand is a highly articulated structure, with 27 degrees of freedom. Ar­

ticulated objects are often modeled using linkages and joints, and described by the 

lengths of each link and degrees of freedom of each joint. Each finger contains the 

following joints: metacarpophalangeal (MCP), proximal interphalangeal (PIP) and 

distal interphalangeal(DIP). A simplified model of the hand joints and bones, that 

does not include the bones of the palm or wrists, is shown in Figure 5.1 below.

As described in [8], each of the four fingers has four degrees of freedom; the DIP
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and PIP each have one, and the MCP has two, including one for flexion and one for 

abduction. The thumb has five degrees of freedom; one for the interphalangeal (IP) 

joint, and the MCP and trapeziometacarpal (TM) joint each have two for flexion and 

abduction. The remaining six degrees of freedom are due to the position (3 DOF) 

and orientation (3 DOF) of the wrist. The high number of degrees of freedom 

makes tracking and visual pose estimation of the hand difficult. Like glove-based 

approaches, the device described in this paper separates the task into two subtasks; 

hand position estimation and finger pose estimation. Fortunately, human finger 

motion is highly constrained. A simplified hand motion model is described in the 

next section.

5.3 Simplified Finger Kinematic Model

As described above, each finger has three joints, with a total of four degrees of free­

dom. However, in the normal range of hand motion, each finger joint is not moved 

independently of the other joints. In [19], hand motion constraints are divided into 

two types: Type I Constraints refer to the limits of the range of finger motion due 

to hand anatomy.

0 < Qmcp—y < 90

0 < Qpip—y < 110

0 < Qdip—y < 90 

—15 < qmCp -x  < 1 5  (adduction/abduction)

The above comparisons describe the range of possible bend angles for the first 

(mcp), second (pip), and third (dip) joints of the fingers, and are approximately the 

same for each finger. For most people, the mcp joint can actually bend slightly 

backwards, to a minimum of approximately -30 ° relative to the top of the hand, not 

0 °. The subscript y refers to bending along the major axis of the hand, and x  refers 

to the side-to-side (adduction/abduction) motion possible at the mcp of each finger.
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Type II constraints are the limits imposed on joints during motion, reflecting 

the dependence of finger bend angles. They can be divided into interfinger con­

straints, those that relate the bend angles of one finger to the others, and intrafinger 

constraints between joints of the same finger. Interfinger constraints are not very 

strong, and thus only intrafinger constraints are considered here. In [19], the fol­

lowing commonly adopted constraint is used that relates DIP angle to PIP angle for 

each linger:
2

Q d i p  = g q p i p  (5.1)

In natural hand movements, the PIP bend angle remains approximately the same as 

the MCPx bend angle, allowing the adoption of an additional constraint:

Q p i p  =  Q m c p - v  (5.2)

A similar constraint is adopted by glove-based devices, which contain a single 

flex sensor per finger, and in several vision based hand trackers[8]. No type II finger 

adduction/abduction constraints are assumed.

Due to the position of the camera, additional constraints can be assumed regard­

ing wrist position relative to the camera. Since the camera is worn just under the

wrist, the camera remains aligned with the fingers regardless of wrist roll. However,

the wrist may pitch and yaw relative to the camera. Thus the number of degrees of 

freedom captured by the system is two for the adduction/abduction and bend angles 

of each finger (8DOF), plus wrist pitch and yaw for a total of 10 DOF.

5.4 Finger Position Estimation with Inverse Kinemat­
ics

As described in Chapter 3 and shown in figure 5.2 below, the observations of finger 

position include fingertip positions and inter finger joint position in two dimensional 

image coordinates.

From these 7 observations, we can deduce a reasonably good 10 DOF estimate 

of hand position by applying human finger bend angle constraints. The simple 

inverse kinematic model is described below.
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Figure 5.2: Fingertip position observations

Using the distance v between the fingertip and MCP joint in the image (see fig­

ure 5.3), the MCP, PIP and DIP bend angles can be estimated for each finger. When 

the fingers are straightened, the distance v between the MCP and fingertip position 

will be near zero, as can be seen from figure 5.3. At the point of maximum fingertip 

MCP distance, the MCP angle is approximately 60 degrees. For all intermediate 

distances, the MCP angle, and consequently the PIP and DIP angles, vary linearly 

with distance. The relationship can be described with the following equation:

3
K \ V y  =  q M C P —y  = q p i p - y  =  D I P - y  (5.3)

Where K i =  [60° — 0°]/[240pixels — 0pixels\ = 4; and 240 pixels is the image 

height.

Finger Adduction/Abduction is described similarly as a proportion to horizontal 

image distance:

K 2v x =  Q m c p - x  (5.4)

Where K 2 = [30° — 0°]/[80pixels — 0pixels\, 30 ° is the range of maximum hor­

izontal MCP adduction/abduction, and 80 pixels is the corresponding change in 

fingertip movement in image coordinates. The model is illustrated in figure 5.3.

Of course, these parameters would need to be adjusted for varying camera field 

of views and image resolutions. Hand motion capture and the generated model is 

shown in figure 5.4.

Wrist pitch is estimated on the basis of average y coordinate value of the MCP 

position of all fingers; a pitch of 0 ° was found to correspond to an average MCP 

position of approximately 30 pixels from the top of the image, with positive pitch
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Figure 5.3: Finger pose estimation using a simple hand model

Figure 5.4: Finger motion capture and generated 3D model

corresponding to lower MCP positions and negative pitch corresponding to higher 

values. The field of view of the camera used limited wrist pitch measurements to a 

range of -15 0 to 15 °.

5.5 Hand Tracking using ARToolkit

For interacting with a virtual object, hand position must be tracked as well. The 

most popular method of tracking hand position in three dimensions is small mag­

netic sensors such as those sold by Polhemous or ascension. These types of sensors 

are commonly bundled with glove-based hand motion trackers. Another alternative 

is to use gloves embedded with reflective markers that can be tracked using multiple 

cameras. Such systems use two or more calibrated cameras to determine hand and 

finger pose in 3 dimensions. Ultrasonic sensors provide a less expensive option, 

but also less accurate, and generally provide position information but lack orien­

tation information. The approach used in this thesis involves tracking wristwom 

ARToolkit markers, whose position and orientation can be tracked using a camera. 

The concept of using handwom ARToolkit markers for hand tracking is discussed
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Figure 5.5: An ARToolkit marker

in [41] and [29]. In [41], users wear a glove that includes ARToolkit markers as 

well as a pressure sensitive foil worn within the thumb for input. Similarly in [29], 

gloves with metallic contacts on the fingers are worn along with ARToolkit mark­

ers that are tracked by a headwom camera. The gloves allow contact between the 

thumb and one of the fingers to be used as binary input buttons. This thesis follows 

a similar approach, except that rather than requiring pinch gloves, input is by means 

of high-resolution finger tracking based on wrist worn cameras.

5.6 3D Hand Position Estimation

The ARToolkit[21] is a marker-tracking library based on simple fiducial markers 

that are designed to be tracked in three dimensions. ARToolkit markers consist of a 

black square border, and a simple shape within the border that is used for template 

matching when several markers are visible at the same time. A sample ARToolkit 

marker is shown in figure 5.5.

A single camera is used to track the marker, and the ARToolkit returns a 6 DOF 

position and orientation matrix representing marker position relative to the camera. 

A complete description of the ARToolkit library can be found in [21]. ARToolkit 

can also handle the case when more than one marker is visible at the same time. In 

this case, each of the markers orientation and position is returned. Multiple markers 

provide a mechanism for interaction, allowing one marker to be used for the display 

of virtual objects, and the other to be worn or held as a gestural input device. For
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Figure 5.6: Augmented reality interaction overview

example, in [22], a set of virtual objects are overlaid over one marker, while a 

second marker can be used as a paddle to push virtual objects around. In this thesis, 

we extend the paradigm to infuse additional functionality into the second marker, 

by tying it to the UbiHand finger tracking system. When an ARToolkit marker 

is worn on the users wrist, a virtual hand is overlaid over the users hand. Finger 

tracking information from the wrist worn camera is used to align the virtual fingers 

with the users actual fingers as they move. In addition, the relative position of the 

wrist worn marker to another static marker is continuously tracked. This allows the 

user to interact with and manipulate virtual objects using their own hand.

5.7 Augmented Reality Interaction - Virtual Objects 
and Collision Detection

The hand and finger pose estimation is integrated to a complete model of hand and 

finger position. This information is used to display a virtual hand over the users 

hand in the field of view of the headwom camera as shown in figure 5.7.

Virtual objects are overlaid onto other static markers that are visible within the 

field of view of the head worn camera. The position of both the wrist worn marker 

as well as the static markers relative to the head worn camera is tracked in real time. 

Collision detection between virtual objects and the hand is determined by a simple 

proximity test; if a fingertip comes within a certain distance of the centroid of a vir­

tual object, a collision is registered, triggering the virtual object to respond in some 

way. For example, in figure 5.7, a fingertip can be used to push a virtual robot, that
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Figure 5.7: Augmented reality interaction

falls if it has been touched, and begins to walk faster when it gets up. An overview 

of the system organization is illustrated in Figure 5.6, and the experimental setup is 

described in more detail in Chapter 6.
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Chapter 6 

Experimental Results

A prototype system was implemented on a single wrist-worn color wireless camera. 

The camera captures images at a frame rate of 30 fps at a resolution of 320x240 

pixels. The receiver was connected to a PC equipped with a video capture card, and 

processing was done on a 1533 MHz AMD Athlon system. The prototype system 

is shown in figure 2.1. During the evaluation, the camera was worn on the left hand 

and the training data was displayed on a monitor. Testing of the keystroke input and 

pointer control modes was done in a well-lit indoor environment.

6.1 Typing

The letter bigram and word unigram models were derived from the British National 

Corpus as described in section 3.3.5. For the purposes of training and testing one- 

handed input, a selection of text that can be typed using only the left hand was 

extracted by selecting words consisting exclusively of characters from the following 

set

Q, W ; E, R, A, S, D, F, Z, X , C, V

A  touch-typist was trained on a 300 word test set over a period of one hour. Each 

character was typed approximately 25 times, and the mean and variance of each 

finger movement vector was calculated after the completion of the training stage.

After training, a 200 word test file was used to measure recognition accuracy 

and speed. In the testing stage, after each keystroke is detected, the most likely 

character was displayed on the screen. Finger movements incorrectly recognized as
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Table 6.1: Character recognition accuracy

Language
Model

No
Lan­
guage
Model

Letter
Bi­
gram

Letter
&
Word
Model

Accuracy
[%]

67 84 90

keystrokes (false positives) were classified as errors, while undetected keystrokes 

were retyped. The right hand was used to click a mousebutton to signal the comple­

tion of each word, at which time the most likely word was displayed on the screen.

6.1.1 Character Recognition Accuracy

Table 6.1 describes the character recognition accuracy with and without the help of 

the language models. As the table shows, the observation model alone provides a 

character recognition rate of 67%. Character recognition errors are a result of the 

ambiguity and high variance of keystroke movements. In general, sets of characters 

that are typed with the same finger on a qwerty keyboard, such as {e,d,c} exhibit 

similar observation vectors and are easily confused. Of the incorrectly recognized 

words, 16 were due to character substitution errors, and 6 were due to spurious 

keystrokes. Several methods could be used to improve the accuracy of the obser­

vation model. For example, including angular direction rather than just speed v in 

the observation model provides more information to help discern keystrokes. Nev­

ertheless, while the observation model alone does not always recognize the correct 

character, the letter bigram transition model improves the recognition rate substan­

tially to 84%. The word model further improves the character recognition rate. 

Thus in some cases, the character is misidentified immediately after a keystroke, 

but is corrected as soon as the word is completed. In the current implementation, 

the end of each word is indicated with a mouse button press. Another alternative 

is to assign a chorded finger movement to represent a space character, or a thumb 

movement if a camera with a wider field of view is used. In practice, usability can
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be improved by displaying the three most probable words and allowing the user to 

choose the correct one in very ambiguous cases. In addition, explicitly including 

the probability of misdetected keystrokes in the observation model is expected to 

further improve the accuracy of the system.

6.1.2 Input Speed

A typing speed of 14 words per minute was achieved on the prototype system. The 

smoothing filter described in section 3.3.2 is one source of lag, introducing a delay 

of approximately three frames (0.1s) between a keystroke and its detection. Missed 

keystrokes, which need to be retyped, are another source of delay. In the current 

implementation, a detected keypress is indicated by displaying the most likely char­

acter on the screen. The absence of the tactile feedback is another possible limita­

tion to input speed on virtual keyboard and glove-based devices. Nevertheless, the 

input speed for the reduced character set tested here is comparable to other input 

methods for portable devices. In [43], the input speed and accuracy for several mo­

bile phone text entry methods is compared. The addition of acoustic feedback after 

each detected keypress is expected to improve input speed.

6.2 Pointer control

The speed and control of pointer movement were tested qualitatively. The finger 

position assigned to pointer control mode was an open hand as shown in figure 4.1 

and was detected consistently. In each frame, 20 comer features were selected to 

be tracked. On average, 70% of the selected features are matched from one frame 

to another. Accurate control can be achieved with smooth hand movements. How­

ever, rapid hand movements hinder accurate feature tracking, resulting in pointer 

position lag. In addition, feature correspondence errors sometimes result in erratic 

pointer motion. Several improvements can be made to enhance performance. For 

example, using more unique feature descriptors will improve feature matching be­

tween frames. In addition, while comer features are appropriate for tracking in 

indoor environments, other feature descriptors are more suitable for less structured
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outdoor environments. Inertial measurements can also be used for ego-motion esti­

mation, as in [27]. Integrating vision and inertial sensor based methods can be used 

to further improve accuracy. An overview of sensor fusion techniques for motion 

estimation is given in [37].

6.3 Augmented reality interaction

When used as a tool for AR interaction, the system consists of two major compo­

nents: finger pose estimation and marker based hand tracking. Both components 

were first tested independently, and then as a unit using an AR based game.

6.3.1 Finger Pose Estimation

The accuracy and robustness of finger pose estimation was tested to determine the 

accuracy at varying bend angles. The fingers were tracked as described in Chapter 

3, and a 3D model of the fingers was displayed in a window. The constant multiplier 

K  in equation 5.3 that is used to obtain the bend angles of the virtual fingers was 

fine-tuned to minimize the discrepancy between actual and virtual bend angles. The 

maximum and minimum bend angles of the first joint of the index finger for accurate 

recreation are described in Table 6.3.1.

Minimum flexion occurs when the hand is fully opened. The fingers are able to 

bend backwards to the point where they are out of the field of view of the wrist worn 

camera. Maximum flexion occurs when the hand is in a fist. Maximum Abduction 

for the index finger occurs when the fingers are brought together, and maximum ad­

duction occurs when the fingers are spread apart so the horizontal distance between 

each finger is at a maximum.

The limitations on minimum flexion are due to the fact that once the knuckle 

angle dips below zero °, the fingertip position is out of range of the cameras field 

of view. Similarly, there are limitations on maximum measurable adduction since 

finger adduction greater than 25 ° for the index finger moves the tip of the finger 

past the horizontal edge of the image. In this case, however, a camera with a wider 

field of view, or worn further back on the wrist would eliminate this limitation.
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Physiological
Maximum
(Degrees)

Maximum Mea­
surable
(Degrees)

Minimum Flex­
ion (Hand 
Opening)

-30 0

Maximum Flex­
ion (Hand Clos­
ing)

90 60

Maximum Ab­
duction

-15 -10

Maximum Ad­
duction (Fingers 
Outstretched)

35 25

Table 6.2: Minimum and maximum measurable bend angles for the first joint of the 
index finger

The limitations on finger abduction are due to the fingertip recognition algorithm 

itself; when abduction is at a minimum amount, all fingers are touching one another, 

and detecting the maxima of the finger contours becomes inaccurate. Finally, the 

limitation on flexion measurement is due to ambiguity in the fingertip position when 

the hand is in a fist. Once the finger is bent past a certain angle, fingertip position 

begins to move back up in the image, which the algorithm interprets as decreasing 

flexion rather than increasing flexion. Resolving this ambiguity would require a 

more specific finger tracking algorithm that could differentiate between views of 

the front and back of each fingertip.

Within the bend angle limits prescribed above, however, finger position esti­

mation is quite accurate for natural finger bend angles. That is, when comfortably 

opening and closing the hands, the flexion and adduction of each finger can be 

determined from the observations of fingertip and phalange positions.

6.3.2 Tool Selection and Usage

Simple gestures were used to switch between various virtual tools, such as pen­

cil, eraser, and scissors. For example, quickly moving the index finger upwards 

and back down turned on pencil mode, and a downards pinky keystroke started
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Figure 6.1: Augmented reality pencil and eraser

Pf
V<P

Figure 6.2: Augmented scissors tool. There is a one frame delay between finger 
movement and model update

eraser mode. Pencil and eraser mode simply changed the appearance of the index 

finger of the virtual hand. In scissors mode, a pair of scissors was overlaid over 

the index and middle fingers, and opened in closed in response to their angles of 

adduction/abduction.

3D drawing functions were not implemented so it is difficult to determine the 

usability of the augmented reality tools for 3D design. However, from a qualitative 

perspective, controlling the pencil and eraser using the index finger seemed quite 

natural, as did moving the fingers in a cutting motion to emulate scissors.

6.3.3 Marker tracking for hand position tracking

A single 3x3 cm ARToolkit marker was worn on the wrist and used for tracking 

hand position. The relative lengths of each part of the hand were set based on 

measurements of the users hand. Then, the size of the virtual hand with respect 

to marker size was calibrated manually, until the position and size of the overlaid 

virtual hand matched the users hand.
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Figure 6.3: Interacting with an augmented reality character

6.3.4 Interaction with Virtual Objects

A simple augmented reality game was created to test the system. Figure 6.3 il­

lustrates the setup. Since an HMD was not available, a webcam was worn as a 

pendant, and the user viewed the scene in a monitor. A set of markers printed on 

a single letter-sized sheet of paper was used as the game platform upon which a 

virtual robot was overlaid. The robot walks randomly across the platform, turning 

whenever it reaches an edge of the piece of paper. The wrist worn marker is used to 

determine hand position and orientation, and a virtual hand is drawn over the users 

hand. The object of the game is to knock over the robot by pushing it over with 

a finger. Whenever the robot is knocked over, it gets back up and starts walking 

at a faster pace. Some screenshots of the game that show the virtual robot being 

knocked down are shown in figure 6.3.

Using the device for augmented reality interaction is quite intuitive. Virtual 

tools overlaid over images of the actual environment and the users own hands make 

spatial navigation much simpler than within a completely virtual environment. The 

main difficulties include errors in marker tracking, and properly maintaining align­

ment of the virtual hand with the users hand.
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Chapter 7 

Conclusions

The field of wearable computing is in its infancy. The natural integration of com­

puting power into body-wom articles allows constant, immediate access to infor­

mation and communication. The implications of continually available computing 

are not obvious, but may revolutionize information sharing and communication in 

a similar fashion as the Internet. Indeed, the technology of wearable computing is a 

natural extension to the Internet, allowing always-on access to information that will 

complement our human memories. However, there are still several technological 

hurdles that must be overcome before wearable computers will be accepted on a 

large scale.

The first requirement for an acceptably unobtrusive wearable computer system 

is a compact wearable display. Recent progress in small head mounted displays and 

optical see through displays indicates that the technology is nearing fruition.

Performance requirements include sufficient network speeds to provide location 

based information to mobile users in real time, and mobile computers with the abil­

ity to quickly process and display context sensitive information. Current wireless 

networking speed and mobile computer processing power is sufficient for the task.

The next requirement is an unobtrusive and easy-to-use method of input that 

can be used on the move. So far, mobile human-computer interaction research has 

focused on methods of inputting text into mobile computers that require the users 

focused attention. Natural methods of input, that allow seamless interaction with a 

wearable computer are still scarce, and it is this third requirement that is addressed 

in this thesis.
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7.1 Contributions of this thesis

This thesis presents a new method of interacting with wearable computers, based 

on hand gesture recognition. The input device is multi-modal; the algorithms de­

scribed in this thesis describe input methods for text input, pointer control and 3D 

interaction. Further more, wrist worn cameras provide for a compact and unobtru­

sive method of hand gesture recognition. The main contributions of this thesis are 

as follows:

• Development of algorithms for robust finger segmentation and keystroke de­

tection

• Application of a Hidden Markov Model for recognizing and disambiguating 

hand gestures to allow non-chorded keystroke input

• Proof-of-concept development of vision based feature tracking as a method 

for hand motion estimation and pointer control

• Development of a prototype system that demonstrates the wrist worn camera 

as a feasible input device for multi-modal wearable HCI

•  Description of how such a device can be used for 3D hand motion capture 

and augmented reality interaction.

The concept of using wrist worn finger trackers for input has been described in 

two main research papers; The first is Andrew Vardy’s paper [40], that introduced 

the idea of wearing a camera under the wrist to track the fingers. His system could 

recognize seven possible gestures based on the relative height of each finger in the 

camera image. Bruce Howard’s Lightglove[16] takes a similar approach, but re­

lies on several infrared range sensors worn under the wrist rather than a camera. 

Prototypes of the Lightglove have been created, and the company is near to com­

mercializing the product.

The main requirements that will enable a wrist worn input device to gain popu­

larity are size, comfort, cost, functionality, accuracy, and ease-of-use. The require­

ments are discussed below, along with how this work has addressed these concerns.
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7.1.1 Size, Comfort and Cost

Given that most mobile computers cost a few hundred dollars, it is reasonable to 

assume that cost for an input peripheral should not exceed $100. Given the de­

creasing costs of CMOS image sensors and mobile DSPs, it is realistic to assume 

that a commercial version of the system described in this thesis can be developed 

and sold in this price range.

In addition, for users to accept and use a new input device, it should be as small 

as possible and as close in appearance as possible to currently worn accessories. 

Once wearable displays are indiscernible from sunglasses, they are more likely to 

be worn. Similarly, once wearable input looks and feels like a normal wristwatch, 

it is more likely to be accepted.

The prototype developed meets this requirement, demonstrates a great improve­

ment in wearability relative to glove based devices, and could be further miniatur­

ized with newer technology. CMOS image sensors that meet the size requirements 

are available on the market today, and the algorithms used for finger segmentation 

and gesture recognition have been designed to be amenable to implementation on a 

mobile DSP.

7.1.2 Functionality

There is a pressing need for an input device that provides fast text input and accurate 

pointer control for mobile computers. The main requirement for a wearable input 

device is the ability to input text quickly and accurately.

The finger gesture recognition and disambiguation system described in this the­

sis provides a method for input that allows rapid input of text at close to 1 keystroke 

per character. This feature removes the requirement of using slow and hard-to-leam 

chorded input schemes, and represents a significant extension to glove-based and 

virtual-glove based input devices which generally limit input to a small vocabulary 

of gestures. While the text input speed of the system currently lags that possible 

with a standard keyboard, the performance is comparable to other portable input 

methods.
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An intuitive method of pointer control based on hand movement has been inte­

grated into the device as well, which allows for fast switching between typing and 

pointer control. Using inertial sensors for improved motion estimation is the most 

likely approach for a practical implementation.

7.1.3 Accuracy and Robustness

Consumers are resistant to adopt any input technology that is not 100% predictable. 

For example, open vocabulary speech recognition systems have not been widely 

adopted even though recognition accuracy rates for continuous speech has sur­

passed 98% for some commercial systems. Attaining perfect accuracy is the most 

challenging aspect of non-tactile human computer interaction. Another shortcom­

ing of current speech recognition systems that prevents widespread consumer ac­

ceptance is the difficulty of correcting mistakes. For gesture recognition systems to 

succeed, a fast method of correcting recognition mistakes is vital.

This thesis has put forward the idea of using a probabilistic language model to 

allow a larger vocabulary of understood gestures, as well as increasing recognition 

accuracy for smaller vocabularies. Refinements to the recognition algorithms, such 

as using higher level language models, would further improve performance.

7.1.4 Ease of Use, Training Time

One significant barrier to the adoption of gestures or speech for HCI is the time 

required to train the recognition system. The device described in this thesis min­

imizes the learning curve by allowing QWERTY finger-to-key assignments rather 

than requiring chorded input. Another usability improvement is that it allows text 

input while on the move; the hands do not have to be held in a specific position 

during typing, so that input can be entered while the user is standing or walking 

with their hands at their sides. This makes it a natural fit for a wearable computer 

system.
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7.2 Future Work

Several improvements can be made to each element of the system. For example, 

hand and finger recognition can be made more robust by implementing adaptive 

skin color classification. Work has been done to accurately detect varying ranges 

of skin color and perform accurate skin color extraction in all illumination con­

ditions. Furthermore, contour tracking algorithms using deformable templates or 

dynamic contours [17] could be applied to more accurately track the edges of each 

finger. The Condensation (Conditional Density Propagation) algorithm [18] is a 

probabilistic algorithm that can be used to track contours in cluttered environments. 

Alternately, in [39], the circular Hough transform is used to track fingertip position 

for a virtual drawing application. Incorporating an infrared light, and using an in­

frared filtered camera lens is another approach to finger segmentation that would be 

robust to illumination changes. For example, in [4], a flashing infrared LED is used 

to segment objects based on distance from the light, and a similar approach could 

be used here by integrating a flashing IR LED beside the wrist worn camera.

Many improvements to pointer control are also possible. The feature tracking 

approach described in this thesis uses a two dimensional model of camera move­

ment. Structure-from-motion techniques can be used to extend motion tracking to 

three dimensions. In [6], real-time structure-from-motion is achieved by tracking 

comer features and determining 3D position using a Kalman filter. Using more dis­

tinctive features rather than comers, as in [24], could enable more accurate tracking, 

and smoother pointer control. A less computationally expensive approach is to use 

inertial sensors such as accelerometers to aid motion estimation. This approach also 

has the advantage of working in low light conditions.

Overall, the approach of using wrist worn cameras as a wearable input device 

is promising, and could be developed into a practical realization by incorporating 

some of the suggestions discussed.
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