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Abstract

With the progress of computer graphics and computer vision technologies, 3D/multiview

video applications such as 3D-TV and tele-immersive conference become more and more

popular and are very likely to emerge as a prime application in the near future. A successful

3D/multiview video system needs synergistic integration of various technologies such as

3D/multiview video acquisition, compression, transmission and rendering. In this thesis,

we focus on addressing the challenges for multiview video compression. In particular,

we have made 5 major contributions: (1) We propose a novel neighbor-based multiview

video compression system which helps remove the inter-view redundancies among multiple

video streams and improve the performance. An optimal stream encoding order algorithm

is designed to enable the encoder to automatically decide the stream encoding order and

find the best reference streams. (2) A novel multiview video transcoder is designed and

implemented. The proposed multiview video transcoder can be used to encode multiple

compressed video streams and reduce the cost of multiview video acquisition system. (3)

A learning-based multiview video compression scheme is invented. The novel multiview

video compression algorithms are built on the recent advances on semi-supervised learning

algorithms and achieve compression by finding a sparse representation of images. (4) Two

novel distributed source coding algorithms, EETG and SNS-SWC, are put forward. Both

EETG and SNS-SWC are capable to achieve the whole Slepian-Wolf rate region and are

syndrome-based schemes. EETG simplifies the code construction algorithm for distributed

source coding schemes using extended Tanner graph and is able to handle mismatched

bits at the encoder. SNS-SWC has two independent decoders and thus can simplify the

decoding process. (5) We propose a novel distributed multiview video coding scheme which

allows flexible rate allocation between two distributed multiview video encoders. SNS-

SWC is used as the underlying Slepian-Wolf coding scheme. It is the first work to realize

simultaneous Slepian-Wolf coding of stereo videos with the help of a distributed source

code that achieves the whole Slepian-Wolf rate region. The proposed scheme has a better

rate-distortion performance than the separate H.264 coding scheme in the high-rate case.
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Chapter 1

Introduction

With the advance of computer graphics and vision technologies, free viewpoint video or 3D

video [1, 2, 3, 4, 5, 6, 7, 8, 9] will become a reality in the near future. Traditional videos

such as those shown on TV or viewed on the Internet are a two-dimensional medium in

nature. Namely, viewers can only passively observe the event captured by the cameraman

and have no ability to actively change the viewpoint once the video is recorded. On the

contrary, 3D video will allow the viewer to select an arbitrary viewpoint to a dynamic scene

and thus enjoy a feeling of immersion into events such as an Olympic competition or a

popular theater show. In other words, 3D video has the desirable feature of “interactivity”,

which is absent in the traditional 2D video. 3D video applications such as 3D TV and

virtual theater [10, 11] will likely become very popular and emerge as a prime application.

A 3D video system is composed of various components: scene acquisition and represen-

tation, compression, transmission, rendering and display. To make 3D video applications

become a reality in the future and foster a mass consumer market, significant technical chal-

lenges in all components of the processing chain need to be tackled. 3D video applications

can be classified into two categories based on the 3D video distribution channel: (i) 3D

video applications using a network, either a dedicated broadcast network or Internet, as a

distribution channel. (ii) 3D video applications using a non-network channel, such as mag-

netic disks or CD-ROMs. In this thesis, we are mainly interested in 3D video applications

that use networks as a distribution channel. For easy exposition, we call these system 3D

video system over networks. In the following sections, we will give an overview of vari-

ous components that composes a 3D video system over networks: video acquisition, video

preprocessing, video compression, video transmission and rendering.
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1.1 Image-based Rendering

Image-based rendering (IBR) [12, 13] is a common technique used to generate 3D videos.

Unlike a conventional 3D rendering pipeline that generates photo-realistic images using ge-

ometric models, IBR creates images at an arbitrary viewpoint from a set of images captured

from a real-world scene. The advantage of IBR is to use images rather than geometric mod-

els to represent the scene. Images are easier to obtain, simpler to handle and more realistic

to render.

The key challenge of IBR is to how to perform a good scene description. Traditional

computer graphics uses geometric models to represent the shapes of the objects, describes

the properties of object surfaces by texture maps and reflection models, and creates images

through the interaction between light sources and objects. Although the model-based scene

representation works well to describe the synthetic world, it is not very good at accurately

representing real-world dynamic scenes due to the lack of robust technology to reconstruct

the geometric models of real-world scenes. An alternative scene representation technique

is to use the pattern of light rays filling the space. These light rays can be described through

a plenoptic function coined by Adelson and Bergen [14].

The original plenoptic function is defined as a seven-dimensional (7D) function that

models a 3D dynamic environment by recording the intensity of light rays at every space

location (Vx, Vy, Vz), towards every possible direction (θ, φ), for every wavelength λ and

at any time t, i.e.,

P7 = P (Vx, Vy, Vz, θ, φ, λ, t).

IBR can be characterized as a set of techniques to reconstruct a continuous representa-

tion of the plenoptic function from observed discrete samples. IBR is a two-stage process:

sampling and rendering. In the sampling stage, samples of all possible light rays in the real-

world dynamic scene are sensed and stored. Note that sufficient samples need to be taken

so that the continuous plenoptic function can be reconstructed. In the rendering stage, the

continuous plenoptic function is reconstructed from the captured samples.

Although the 7D plenoptic function is powerful and general to describe a real-world

dynamic scene, it demands a tremendous amount of samples to reconstruct the continuous

function, which is impossible to achieve in practice . Therefore, previous research have

focused on how to make reasonable assumptions to reduce the sample size while achieving

the acceptable rendering quality. The common assumptions are simplifying the wavelength
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space into three channels such as red, green and blue channels to remove λ, imposing a static

environment to remove t, assuming constant radiance of any light ray in the space to remove

one dimension in viewpoints, restraining the viewing space to reduce other dimensions. For

example, McMillan and Bishop [15] proposed the notion of plenoptic modeling with a five-

dimensional (5D) plenoptic function, P5 = P (Vx, Vy, Vz , θ, φ), by removing wavelength λ

and time t. Light field rendering [16] and Lumigraph [17] use a four-dimensional plenoptic

function, P4 = P (u, v, s, t), by removing wavelength λ, time t, and assuming constant

light radiance and imposing that viewers always stay outside the convex hull of an object.

Concentric Mosaics [18] and panoramic video [19] adopt a three-dimensional (3D) plenop-

tic function by removing wavelength λ or time t, assuming the constant light radiance and

constraining the viewer along a path or in a fixed location. The detailed taxonomy of IBR

can be found in the recent surveys [13, 12, 20].

The ultimate goal of IBR is to create a 3D video that users can view at an arbitrary

viewpoint. However, in practice, only a limited number of viewpoints can be generated from

video streams captured by multiple cameras. Some researchers use “light field video” [21,

22] to describe the case. In this thesis, multiview video is used as the term to describe

the video created by IBR based on multiple video streams captured by multiple cameras.

Specifically, multiview video is defined as the reconstruction of five-dimensional plenoptic

function by removing the wavelength λ and assuming constant light radiance. The system

that distributes multiview video over networks is thus called multiview video system over

networks (MVSN).

1.2 System Architecture of MVSN

MVSN aims at efficiently realizing the image-based rendering by appropriately dividing the

system functions and assigning them to different subsystems. MVSN generally includes

five subsystems, video acquisition, video preprocessing, video compression, transmission

and rendering. Fig. 1.1 shows an architecture of a multiview video system over the Internet.

Although it is a good design philosophy to keep subsystems independent from each other

from a software engineering perspective, no subsystem can be totally independent in real-

ity. The success of the system depends on the synergistic interaction of all subsystems. The

goal of the system is to make perceived quality of experience adapt to the users’ hardware

capacity. All subsystems are indispensable and strive to make the rendering result as per-

fect as possible. We will briefly discuss the functions of each subsystem in the following
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sections.

Cameras
 Servers


Internet


Display (2D or 3D)


Capture System


Figure 1.1: Multiview Video System over Internet

1.2.1 Video Acquisition

The function of the video acquisition system is to obtain multiple synchronized video

streams through a camera array. Video acquisition is essentially a plenoptic function sam-

pling process. Each camera represents a sample point in the space. Given the assumption of

constant radiance along a light ray, samples can be taken from an arbitrary surface surround-

ing the convex hull of a scene of interest. Namely, cameras can be placed on any arbitrary

surface that encloses the scene. Light field [16] and Lumigraph [17] choose the surface to

be a box. A spherical surface is used in the spherical light field [23, 24]. The number of

samples is directly related to the rendering quality. An interesting question is how many

samples are needed for anti-aliasing reconstruction. The normal practical solution is to

use oversampling to counter the undesirable aliasing effect in the output display since the

sampling rate is affected by numerous factors such as scene geometry, textures on the scene
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surface, reflection property of scene objects, motion of the objects, etc., which makes it hard

to determine the exact sample size. Chai et. al. [25] give a theoretical analysis on plenoptic

sampling. They found that the spectral support of a light field signal is bounded only by

the minimum and maximum depth of scene objects. Zhang and Chen [26] proposed a gen-

eralized sampling strategy to extend the plenoptic sampling analysis. Some approximate

knowledge on the scene geometry could help reduce the sample size. The video acquisition

subsystem includes functions such as camera calibration, hardware or software-based video

synchronization.

1.2.2 Video Preprocessing

The multiple synchronized video streams might need to be preprocessed before compres-

sion and rendering to reduce the amount of data, to accelerate the rendering speed, and to

improve the rendering quality. Implicit or explicit geometry information about the scene

such as per-pixel depth map or 3D scene mesh model can be obtained in the video prepro-

cessing stage and used in the rendering subsystem.

1.2.3 Video Compression

A practical multiview video system might need hundreds, if not thousands, of cameras to

capture the real-world dynamic scene to reconstruct the image at an arbitrary viewpoint.

Hundreds of video cameras will generate a tremendous amount of video data for storage

and transmission. Video compression is indispensable to reduce the size of video data

since there exist temporal and inter-view redundancies among multiple synchronized video

streams [27, 28].

1.2.4 Video Transmission

The objective of MVSN is to deliver the multiview video to millions of users so that they

can enjoy the feeling of immersion. Different users might experience different network

environments and use different hardwares. The challenge of video transmission is how

to design good mechanisms so that the perceived quality of experience is proportional to

the capability of users’ hardware and network environment. The simplest case is to deliver

multiview videos over a dedicated network where every user has the same capable hardware

like today’s TV networks. The ideal case is to deliver multiview videos over a QoS (Quality

of Service) capable network [29, 30, 31] where the perceived quality of experience can be

guaranteed by the inherent mechanisms built into the networks. The interesting case is how
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to design sub-optimal and effective schemes so that the system can be successfully deployed

in the current best-effort Internet.

1.2.5 Rendering

The rendering subsystem reconstructs the image at an arbitrary viewpoint from the available

texture and geometry information based on the user inputs and outputs the rendered images

in different types of displays. The rendering subsystem might be deemed as the core subsys-

tem of MVSN since it determines the actual realization of other subsystems. Users directly

interact with the rendering subsystem. Rendering methods can be grouped into three main

categories: rendering without geometry, rendering with implicit geometry, and rendering

with explicit geometry [13]. Rendering without geometry such as light field rendering [16]

reconstructs the image at a new viewpoint directly from captured videos without the help

of geometry. Rendering without geometry does not need a video preprocessing subsystem

to obtain the geometry information. Rendering with implicit geometry calculates the 3D

geometry information based on projection and positional correspondence and then uses the

geometry to help improve the rendering quality. View interpolation [32] and view morph-

ing [33] are rendering methods using implicit geometry. Rendering with explicit geometry

normally uses direct 3D geometry information such as a mesh model or volume model to

help reduce the video data size and improve the rendering quality. Rendering without ge-

ometry normally needs more cameras to capture real-world dynamic scenes than rendering

with implicit or explicit geometry, and thus generates a larger amount of video data to store

and transmit. In this thesis, we assume that rendering without geometry or rendering with

implicit geometry is used in the rendering subsystem.

1.2.6 Non-realtime vs. Realtime

MVSN can be further grouped into two classes, realtime MVSN and non-realtime MVSN.

Non-realtime MVSN first performs computationally intensive tasks such as depth estima-

tion and compression offline, while making transmission and decompression and rendering

as the online tasks. Realtime MVSN requires that acquisition, preprocessing, compression,

transmission, and rendering should all be done online. The essential difference between

realtime and non-realtime MVSN is how to make a tradeoff among computational capabil-

ity, processing time and rendering quality. To achieve the same rendering quality, realtime

MVSN normally demands more computational power, more stringent transmission latency,

and less processing time than the non-realtime one. Given enough computational power and
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abundant network capacity, all non-realtime MVSN can arguably be converted to realtime

MVSN. From the other perspective, all the technologies that enable realtime MVSN can be

used in non-realtime MVSN while the opposite might not work. Therefore, realtime is one

of design objectives for MVSN.

1.3 Multiview Video Compression

In this thesis, we focus our work on solving issues related to multiview video compres-

sion subsystems. The scene representation format is assumed to be image and depth map.

Namely, real world scenes are captured by multiple synchronized cameras and the resulting

image and depth sequences are the input to the multiview video compression subsystem.

Fig. 1.2 illustrates the generic architecture of the multiview video compression subsystem.

As with most compression schemes, multiview video compression is composed of an en-

coder and a decoder. The input to the multiview video encoder is the image and depth

sequences {Si}, i = 1, · · · , n and the output is compressed multiview video streams. The

multiview video decoder takes the compressed multiview video streams as its input and

outputs the approximate multiple video and depth streams {Ŝi}, i = 1, · · · , n.

Multiview
Video

Encoder

Multiview
Video

Decoder

S1

S2

S
n−1

S
n

Ŝ1

Ŝ2

ˆS
n−1

Ŝ
n

Figure 1.2: The Generic Architecture of Multiview Video Compression Subsystem

The challenge of the multiview video compression subsystem is mainly how to achieve

a better tradeoff between the compression ratio and computational complexity by exploiting

the intra-stream and inter-stream redundancies among multiple synchronized video and its

associated depth streams.
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1.4 Thesis Contributions

In this thesis, we concentrate on the design of novel joint multiview video compression

and distributed multiview video compression algorithms to improve the performance of

multiview video compression subsystem. The thesis makes the following contributions.

• We propose a novel neighbor-based joint multiview video compression scheme. In

particular, a new stream encoding order algorithm is designed to help automatically

decide the video stream encoding order and enable each stream to find its best refer-

ence streams and thus improve the performance.

• A novel multiview video transcoder is designed and implemented. The proposed mul-

tiview video transcoder can be used to encode multiple compressed video streams and

reduce the cost of video acquisition subsystem.

• A learning-based multiview video compression scheme is proposed. The novel mul-

tiview video compression algorithms take advantage of recent advances on semi-

supervised learning algorithms and achieve the compression by finding a sparse rep-

resentation of images.

• We propose two novel symmetric distributed source coding algorithms: EETG and

SNS-SWC. Both EETG and SNS-SWC are syndrome-based schemes and able to

achieve the whole Slepian-Wolf rate region. EETG is able to handle mismatched bits

at encoders and realizes the benefits of simplified code construction for distributed

source coding schemes using extended Tanner graph. SNS-SWC has two indepen-

dent decoders and simplifies the decoding process of the symmetric distributed source

coding schemes.

• A novel symmetric distributed multiview video coding scheme is proposed. The

scheme is based on the symmetric distributed source coding scheme SNS-SWC. It

enables flexible rate allocation between distributed multiview video encoders. It can

achieve significant performance improvement from separate H.264 coding schemes

at high rate.

1.5 Thesis Organization

The rest of thesis is organized as follows. We first present some background knowledge

on information theory and give an overview of previous multiview video coding schemes
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in Chapter 2. In Chapter 3, we elaborate on the details of the neighbor-based multiview

video compression algorithm. The multiview video transcoder is discussed in Chapter 4.

Learning-based multiview video coding scheme is presented in Chapter 5. In Chapter 6, we

present two syndrome-based symmetric distributed source coding schemes. The design and

implementation of the distributed multiview video coding scheme is elaborated in Chap-

ter 7. We conclude the thesis and propose some future directions of research in Chapter 8.
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Chapter 2

Background

Shannon’s information theory [34] lays the foundation for data compression and commu-

nication. This thesis focuses on multiview video compression which is underpinned by

information theory. In this chapter, we provide some background knowledge on informa-

tion theory and give an overview of previous multiview video coding schemes. A more

complete discussion on these subjects can be found in standard textbooks and popular tuto-

rials [34, 35, 36, 37, 38, 28, 39, 27].

2.1 Source Coding

In this section, we review the basic theory of source coding. Source coding theory specifies

the minimum amount of bits needed to represent the source information without redun-

dancy. Given multiple random sources X1, X2, · · · , Xn, there are three general approaches

to compress them: separate source coding, joint source coding and distributed source cod-

ing. Each method will be described in the following sections. We will illustrate the idea

using two sources, X and Y .

2.1.1 Separate Source Coding

Source X


Source Y


Encoder X


Communication

Channel


X


Y


R
x

X


Y

Encoder Y
 R
y


Decoder X


Decoder Y


Figure 2.1: Separate Source Coding Architecture

Separate source coding (SSC) encodes and decodes each source X and Y separately.

The encoders and decoders of two sources are totally independent as shown in Fig. 2.1. The
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achievable compression rate, RX and RY , is greater than or equal to the source entropy

which measures the uncertainty of a random variable. Namely,

RX ≥ H(X) (2.1)

RY ≥ H(Y ) (2.2)

where H(X) and H(Y ) are the entropy of the source X and Y .

2.1.2 Joint Source Coding

Source X


Source Y


Joint Encoder
 Joint Decoder
Communication

Channel


X


Y


R
xy


X


Y


Figure 2.2: Joint Source Coding Architecture

Joint source coding (JSC) encodes and decodes two sources X and Y jointly. Fig. 2.2

illustrates its architecture. The essence of joint source coding is to exploit the correlation

between two sources at the encoder for efficient compression. Joint source coding can only

be done centrally. Namely two sources X and Y must both be available at the encoder to

make compression possible. If two sources X and Y are collected at physically separate

nodes, for examples, two sensors in sensor networks, extra communication cost is needed to

jointly encode them. JSC normally demands a computationally complicated encoder. The

achievable rate of joint source coding, RXY , is equal to or greater than the joint entropy of

two sources to achieve lossless compression. In other words,

RXY ≥ H(X,Y ) (2.3)

where H(X,Y ) is the joint entropy of the source X and Y .

2.1.3 Distributed Source Coding

Distributed source coding (DSC) separately encodes and jointly decodes two sources X and

Y . Fig. 2.3 shows its architecture. The correlation between two source, X and Y , can be

modeled as a virtual channel. Unlike JSC, the essence of DSC is to exploit the source cor-

relation at the decoder for efficient compression. The information-theoretic bound proved

by Slepian and Wolf [40] in the 1970s shows that efficient lossless distributed compres-

sion can be achieved. Wyner and Ziv [41] extended the result to the case of lossy coding
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Figure 2.3: Distributed Source Coding Architecture

with side information. Therefore, DSC is further grouped into two categories: lossless dis-

tributed source coding and lossy distributed source coding. When two sources are captured

by physically isolated nodes, DSC does not incur extra communication cost to achieve a

similar compression ratio to JSC. Normally DSC has a simple encoder and a complicated

decoder.

Lossless Distributed Source Coding

Lossless distributed source coding aims at lossless compression of two sources, X and Y .

Slepian and Wolf [40] established the rate region to achieve the lossless compression of two

sources. Fig. 2.4 shows the Slepian-Wolf rate region, which is the set of all achievable rate

pairs (RX , RY ). Namely, the achievable rate RX and RY needs to satisfy the following

equations:

RX ≥ H(X|Y ) (2.4)

RY ≥ H(Y |X) (2.5)

RX + RY ≥ H(X,Y ) (2.6)

where H(X|Y ) and H(Y |X) are the conditional entropy, H(X,Y ) is the joint entropy.

A special case for distributed source coding is to compress one source X when the other

source Y is available as side information at the decoder. This scheme is called asymmetric

distributed source coding (ADSC) as illustrated in Fig. 2.5. Asymmetric lossless distributed

source coding can be achieved with rate RX ≥ H(X|Y ) while the side information Y

is losslessly compressed by using separate source coding with rate RY = H(Y ). This

case corresponds to the corner point in the rate region of Slepian-Wolf theorem shown in

Fig. 2.4. Distributed source coding is dual to channel coding [42]. The distributed source

coding schemes that can achieve an arbitrary point in Slepian-Wolf rate region is normally

referred to as symmetric distributed source coding (SDSC).
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Figure 2.4: Rate Region for Slepian-Wolf Coding (Two Sources)

Source X
 Lossless

Encoder
 Joint Decoder
Communication


Channel

X


Y


R
X
 >= H(X|Y)


X


Figure 2.5: Asymmetric Lossless Slepian-Wolf Coding Scheme (Two Sources)
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Lossy Distributed Source Coding

Lossy distributed source coding performs the compression with respect to a distortion mea-

sure. Wyner and Ziv [41] extend the Slepian-Wolf Theorem for lossless compression to

establish information-theoretic bounds for lossy compression with side information at the

decoder. For two correlated i.i.d random sequences, X and Y , the source X is encoded

without access to the side information Y ; while the decoder, with access to Y , decom-

presses X subject to a distortion D = E[d(X, X̂)], where X̂ is the reconstruction of X at

decoder. The Wyner-Ziv rate-distortion function RWZ
X|Y specifies the achievable lower bound

for the bit-rate with a distortion D. However, unlike Slepian-Wolf coding which achieves

lossless compression with the same bit-rate as conventional joint source coding, there is a

rate loss between Wyner-Ziv coding compared with the lossy joint source coding. Namely,

RWZ
X|Y (D) − RX|Y (D) ≥ 0, where RX|Y is the rate when the encoder has access to the

side information. Zero rate loss can only be achieved in the case of Gaussian memoryless

sources and mean-square error distortion.

Quantizer
 Slepian-Wolf

Encoder


Slepian-Wolf

Decoder
Channel
 Reconstruction
X
 Q


Y
 Y


Q
 X�


Wyner-Ziv Encoder
 Wyner-Ziv Decoder


Figure 2.6: Practical Wyner-Ziv Coding Architecture

A practical Wyner-Ziv coder is generally composed of a quantizer followed by a Slepian-

Wolf coder, as illustrated in Fig. 2.6. Previous research on Wyner-Ziv coder mainly focus

on Gaussian sources.

Multiterminal Source Coding

Multiterminal source coding [43] addresses the problem of separate encoding and joint

decoding of multiple correlated sources under a distortion constraint. It can be viewed as

the lossy version of Slepian-Wolf coding. Multiterminal source coding is more general

than Wyner-Ziv coding. Berger and Tung [43, 44] gave an inner rate region which is now

called Berger-Tung inner rate region. For joint Gaussian sources and mean square error

distortion measure, it is referred as the quadratic Gaussian multiterminal source coding

problem. The rate region of the quadratic Gaussian two-terminal source coding problem is

recently completely characterized [45, 46]. The rate region for quadratic Gaussian source
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coding with more than two terminals is still unknown.

Given two sources X and Y which are joint Gaussian random variables with variances

σ2
X and σ2

Y and correlation coefficient ρ = E(XY )
σXσY

and corresponding distortion DX and

DY , the Berger-Tung inner rate region [43, 44] is

R̂BT (DX , DY ) = R̂BT
X (DX , DY ) ∩ R̂BT

Y (DX , DY ) ∩ R̂BT
XY (DX , DY ) (2.7)

where

R̂BT
X (DX , DY ) =

{

(RX , RY ) : RX ≥
1

2
log+

2

(

(1 − ρ2 + ρ22−2RY )
σ2

X

DX

)}

(2.8)

R̂BT
Y (DX , DY ) =

{

(RX , RY ) : RY ≥
1

2
log+

2

(

(1 − ρ2 + ρ22−2RX )
σ2

Y

DY

)}

(2.9)

R̂BT
XY (DX , DY ) =

{

(RX , RY ) : RX + RY ≥
1

2
log+

2

(

(1 − ρ2)
βmaxσ2

Xσ2
Y

2DXDY

)}

(2.10)

with βmax = 1 +
√

1 + 4ρ2DXDY

(1−ρ2)σ2

X
σ2

Y

and log+
2 x = max{log2x, 0}.

Yang et al. [47] propose a framework for practical multiterminal source coding based

on Slepian-Wolf coded quantization, which is the combination of vector quantization and

Slepian-Wolf coding. Algorithms using TCQ [48] and Turbo/LDPC codes for Slepian-Wolf

coding can almost achieve the sum rate bound of quadratic Gaussian multiterminal source

coding.

2.2 Channel Coding

M
M̂

Encoder
Channel

P (Y n|Xn)
Decoder

X
n

Y
n

Figure 2.7: Channel Model

Channel coding addresses the problem of how a data source can be efficiently and reli-

ably communicated over a noisy channel. Namely, channel capacity decides the maximum

number of distinguishable signals that can be used for reliable communication. Channel

coding theory designs particular code and specific encoding and decoding algorithm to

achieve the channel capacity. Fig. 2.7 gives a block diagram of communication system. In

the figure, M is a set of source messages. Xn is a set of channel code and Y n is a set of

received signals. M̂ is a set of recovered source messages. The communication channel
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is modeled as a probability transition function P (Y |X). The encoder maps a source word

m to a channel code xn which is transmitted through the channel and received by the de-

coder as yn. The decoder recovers the original message m̂ from yn. To achieve the reliable

communication, the challenge is to design good channel code and encoding and decoding

algorithm so that m̂ is equal to m with high probability.

It is well known that channel capacity is represented as the maximum mutual informa-

tion between channel input alphabet and output alphabet. Formally,

C = max
p(x)

I(x; y) (2.11)

where the maximum is taken over all possible input distribution p(x).

A channel is normally denoted as (X , P (y|x), Y), where X and Y are a finite set of

input alphabets and output alphabets, and P (y|x) is probability transition functions. Let M

denote a set of possible source messages {1, 2, · · · ,M}. An (n,M) code C for channel

(X , P (y|x), Y) consists of a set of source messages, an encoding function and a decoding

function. The encoding function, E(·), is the mapping from a message to a codeword.

E : 1, 2, · · · ,M → X n

The decoding function, D(·), recovers the mostly likely source message sent by the

encoder from yn, the estimated value of xn.

D : yn → {1, 2, · · · ,M}

The maximal probability of error for an (n,M) code is defined as

P (n)
e = max

i∈{1,2,··· ,M}
P (D(yn) 6= i|xn = E(i)) (2.12)

The goal is to find a channel code C so that P
(n)
e approaches 0 as the codeword length

n approaches ∞. The rate R of an (n,M) code C is defined as R = log2M
n

bits per

transmission. Information theory shows that with proper design of E(·) and D(·), P (n)
e → 0

as n → ∞ if the rate R is less than or equal to the channel capacity C , R ≤ C .

In the past 60 years, significant research effort has been invested in finding good channel

codes. Most practical channel codes are binary linear channel codes. Binary linear channel

codes are a subclass of channel codes. Gallager [35] proves that linear channel codes can

achieve channel capacity for some practical channels such as discrete memoryless channels.

Linear channel codes have two classes: linear block codes and convolutional codes. Let
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k = log2M, an (n,M) code is normally referred as an (n, k) channel code which maps k

input source bits into n bits for transmission over a noise channel. An (n, k) linear channel

code can be defined by its generator matrix, G. The null space of G is called the parity

check matrix, H . H is orthogonal to G; namely H · GT = 0, where GT is the transpose

of G. The parity check matrix is normally used at a decoder to check whether the decoded

codeword yn is a valid codeword of C or not.

2.3 Low Density Parity Check Codes

Low density parity check (LDPC) code is a linear block channel code. LDPC codes are

a class of capacity-approaching channel codes. They are originally introduced by Gal-

lager [49] and then ignored for nearly 40 years and rediscovered by MacKay and Neal [50]

and has since attracted considerable interest. In this section, we will give a brief overview

on LDPC codes and its decoding algorithm.

Any linear block codes can be defined by its parity check matrix H . Each parity check

matrix has a bipartite graph representation. The bipartite graph is commonly referred to

as Tanner graph [51]. Given an m × n parity check matrix H , m rows are mapped to

m check nodes and n columns are mapped to n variable nodes. Variable nodes represent

bits and check nodes represent the constraints among bits. Table 2.1 and Fig. 2.8 shows

a parity check matrix and its corresponding Tanner graph. LDPC codes are linear block

codes obtained from a sparse parity check matrix. Formally, a sequence of m × n matrices

is called sparse if mn approaches ∞ and the number of nonzero elements in the matrices is

always less than cmax(m,n).

Table 2.1: The parity check matrix corresponding to the bipartite graph shown in Fig. 2.8.
If the element in row i and column j is 1, an edge is connected from the corresponding
variable node to the check node. A 0 means no edge between corresponding nodes.





1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1





Each LDPC code belongs to a code ensemble. A code ensemble is represented by a

degree distribution pair (λ(x), ρ(x)), where λ(x) is the variable node degree distribution

and ρ(x) is check node degree distribution. λ(x) and ρ(x) are polynomial functions and

are defined by
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Figure 2.8: The Tanner graph corresponding to the parity check matrix in Table 2.1. Check
nodes represent constraints of the code and correspond to the rows of the parity check
matrix. Variable nodes represent bits and correspond to the columns of the parity check
matrix.

λ(x) =

dv
∑

i≥2

λix
i−1, ρ(x) =

dc
∑

i≥2

ρix
i−1

where i is the node degree, and dv (dc) is the maximal variable (check) node degree, and λi

(ρi) represents the fraction of edges emanating from variable (check) nodes of degree i. In

addition, the sum value of λi and ρi must be equal to 1.

dv
∑

i

λi = 1,

dc
∑

i

ρi = 1.

Given the node degree distribution pair (λ(x), ρ(x)) of a code ensemble, we can easily

calculate its rate based on the fact that the total number of edges emanating from variable

nodes are equal to the total number of edges emanating from the check nodes. Namely,

r(λ, ρ) = 1 −

∫ 1
0 ρ(x)dx

∫ 1
0 λ(x)dx

.

Richardson and Urbanke [52, 53] show that almost all codes in a code ensemble have

similar error correction capability. Therefore, the individual behavior of a specific code can

be determined by studying the average behavior of the ensemble. They propose a density

evolution algorithm to analyze the performance of a code ensemble and put forward a spe-

cific procedure to construct capacity-approaching codes [53]. Sum-product algorithm [54]

is used to decode LDPC codes. Sum-product algorithm is also called message-passing

algorithm or belief propagation algorithms [55] which achieve successful decoding by iter-

atively passing messages including probabilities on bits between variable nodes and check

nodes. The detailed analysis on LDPC codes and the performance of decoding algorithm

can be found in [36].
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2.3.1 Sum-product Decoding Algorithm

The sum-product decoding algorithm is an iterative soft decision message-passing algo-

rithm. The algorithm takes the a priori probabilities of each bit as input and iteratively

refines the estimation of the marginal probability of each bit. The output probability by

the decoder is called the a posteriori probability and is used to decide the bit value. The

probabilities used in the sum-product algorithm are normally represented as log-likelihood

ratios (LLR).

Given a binary variable x and its respective probability p(x = 0) and p(x = 1), its

log-likelihood ratio is L(x) = log
(

p(x=0)
p(x=1)

)

. L(x) is positive if p(x = 0) > p(x = 1) and

the greater the ratio between p(x = 0) and p(x = 1), the larger the positive value of L(x)

and the more confident we are that x = 0. Conversely, if p(x = 0) < p(x = 1), L(x) is

negative and the smaller the ratio between p(x = 0) and p(x = 1), the larger the negative

value for L(x) and the more sure we are that x = 1. Thus the sign of L(x) provides the

value of x and the magnitude |L(x)| gives the reliability of the decision.

The aim of the sum-product algorithm is to compute the maximum a posteriori prob-

ability (MAP) for each codeword bit, Pi = P (ci = 1|N), which is the probability that

i-th codeword bit is 1 conditional on the event N that all the parity-check constraints are

satisfied. The sum-product algorithm iteratively computes an approximation of the MAP

value for each code bit. Each iteration is comprised of two message-passing processes over

the Tanner graph representing the corresponding LDPC parity-check matrix. One is mes-

sage passing from variable nodes to check nodes. The other is message passing from check

nodes to variable nodes. The message is the extrinsic information estimated at correspond-

ing variable and check nodes.

The extrinsic message from check node j to variable node i, uj,i, is the LLR of the

probability that bit i causes parity-check j to be satisfied. It can be computed using the

following equation:

uj,i = 2tanh−1





∏

i′∈N (j),i′ 6=i

tanh
(vi′,j

2

)



 (2.13)

where N (j) is the set of variable nodes that connect the check node j and vi′,j is the

extrinsic message from variable node i′ to check node j.

The extrinsic message from variable node i to check node j, vi,j , is the sum of its initial

LLR, ri = log p(ci=0)
p(ci=1) , and the LLRs from every connected check nodes excluding the check
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node j. Namely,

vi,j = ri +
∑

j′∈N (i),j′ 6=j

uj′,i (2.14)

where N (i) is the set of check nodes that connects variable node i.

The sum-product algorithm repeatedly updates uj,i and vi,j at each iteration. The value

of coded bit i is estimated based on the sign of total LLRs of the variable node i, which is

the sum of initial a priori probability and all the LLRs from connected check nodes.

Li = ri +
∑

j∈N (i)

uj,i (2.15)

The sum-product algorithm stops if the product of the parity check matrix and the estimated

codeword is 0 or the maximum number of iteration is reached. Algorithm 1 gives the pseudo

code of the sum-product algorithm.

2.4 Network Coding

Network coding [37, 38] is a recent breakthrough in information theory. Network coding

characterizes the maximum rate at which the information at a source node can be multi-

cast to multiple nodes. It stipulates that the maximal achievable multicast throughput is less

than or equal to the maximum flow capacity dictated by the Max-flow Min-cut theorem [56].

The idea of network coding was initially introduced by Yeung and Zhang [57] and fully

developed by Ahlswede et al. [56]. The network code construction algorithm to achieve the

Max-flow Min-cut bound is devised in [58, 59]. Network coding theory shows that cod-

ing at intermediate network nodes is more efficient than the traditional routing mechanism

which only performs the function of replication and forwarding. Fig. 2.9 illustrates a simple

example to show that network coding can achieve better throughput than routing. Source S

multicasts two bits b1 and b2 to terminal nodes T1 and T2. All edges have the same delay.

Each edge in the network can only carry one data unit per unit time. In Fig. 2.9(a), node

v3 only has the routing capacity and can only replicate and forward. Thus edge (v3, v4)

can only carry b1 or b2 in a time unit. The capacity is 1.5 bits/unit time. In Fig. 2.9(b),

node v3 can do network coding such as bit xor ⊕ operation in this example. b1 ⊕ b2 can be

transmitted in Edge (v3, v4). The terminal node T1 can recover b2 by b2 = b1 ⊕ (b1 ⊕ b2)

since it receives b1 from the edge (v1, T1). Similarly T2 can recover b1. The capacity is 2

bits/unit time.

Formally, a communication network can be represented by a finite directed acyclic

graph, G = (V, E), where V is the set of nodes in the network and E is the set of edges
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Algorithm 1 Sum-product Decoding Algorithm
1: H : parity-check matrix;
2: n : number of variable nodes;
3: m : number of check nodes;
4: Imax : maximum number of allowed iterations;
5: ri : the initial LLR of i-th coded bit;
6: Li : the total LLRs of i-th coded bit;
7: uj,i : message from check node j to variable node i;
8: vi,j : message from variable node i to check node j;
9: zi : the i-th estimated coded bit;

10: for i = 1 to n do
11: for j = 1 to m do
12: vi,j = ri;
13: end for
14: end for
15: k = 0
16: Finished = FALSE
17: repeat
18: update the message uj,i based on Eqn. 2.13;
19: for i = 1 to n do
20: compute Li based on Eqn. 2.15;
21:

zi =

{

1 Li ≤ 0
0 Li > 0.

(2.16)

22: end for
23: if k == Imax or HzT = 0 then
24: Finished = TRUE;
25: else
26: update the message vi,j based on Eqn. 2.14;
27: k = k + 1;
28: end if
29: until Finished
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Figure 2.9: Routing vs. Network Coding

in the network. Edges in E are assumed to be ordered based on the partial order induced

by the acyclicity of the network. A directed edge eij = (vi, vj) represents a channel from

node vi to node vj . Node vi is called the tail of edge eij and node vj is called the head of

edge eij . Let In(vi) = {(vj , vi) : (vj , vi) ∈ E} and Out(vi) = {(vi, vj) : (vi, vj) ∈ E}.

Namely, In(vi) is the set of incoming edges to node vi and Out(vi) is the set of outgoing

edges from node vi. Multiple edges between two nodes are allowed, and each edge can

carry one symbol in field F = GF (q), where GF denotes Galois field.

Let s ∈ V be a source node, and T ⊂ V be a subset of nodes of V whose members

are called sink nodes. A multicast on G disseminates information from the source s to sink

nodes in T . The source messages are defined as a row vector, x = (xi : i = 1, · · · , ω),

where x ∈ Fω and ω = |Out(s)|. When messages are multicast, the ω symbols in the

vector x are mapped onto edges in Out(s) and transmitted over the corresponding channels

in one use of the network. Define an ω × |E| matrix A = [Ai,j ] where Ai,j = 1 if the edge

ej is the ith edge in Out(s) and Ai,j = 0 if otherwise.

A network code of network G is specified by a set of local encoding kernels {keu,ev :

eu ∈ In(v), ev ∈ Out(v),∀v ∈ V} and the message set C. Suppose that the message

transmitted in edge eu is mu, the message transmitted on the edge ev is computed by the
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following formula.

mv =
∑

u∈In(vi)

keu,evmu.

Each edge e has a global coding kernel, fe, which is a ω-dimensional column vector

in field F . The message transmitted on the edge ev can also be calculated from its global

coding kernel. Namely,

mv = xfev .

The global encoding kernels are determined by local encoding kernels. Define the |E|×

|E| transformation matrix K = [Ku,v] in network G as

Ku,v =

{

keu,ev eu ∈ In(v), ev ∈ Out(v),∀v ∈ V;
0 otherwise.

From [59], we know that for an acyclic network, KN = 0, for some positive integer

N . We can then get the transfer matrix of the network F = (I − K)−1 [59]. For a sink

node t ∈ T , let nt = |In(t)|, and define an E × nt matrix B = [Bi,j] where Bi,j = 1 if the

edge ei is the jth edge in In(t) and Bi,j = 0 if otherwise. Therefore, the received message

vector at the sink node t is yt = xAFB.

The task of network code construction is to assign appropriate local encoding kernels so

that at every sink node the original source message x can be losslessly recovered from the

received message y. Namely the matrix M = AFB should be invertible at every sink node.

Given the known network topology, Jaggi et al. [60] put forward a deterministic algorithm

for multicast network code construction. Ho et al. [61] prove that successful decoding can

be achieved with high probability when local encoding kernels are randomly assigned to a

value in field GF (q) if q is large enough. Chou et al. [62] propose a practical scheme to use

network codes in real network environments.

Inspired by network coding, Yeung and Cai [63, 64] introduce the concept of network

error correction which is the network generalization of classical point-to-point error correc-

tion. Specifically, an |E|-tuple error vector z is defined to represent the error occurred on an

edge. Therefore, the received vector at a sink node t can now be denoted as

yt = (xA + z)FB (2.17)

= xFs,t + zFt. (2.18)
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where Fs,t = AFB is transfer matrix of message transmission and Ft = FB is the

transfer matrix of error transmission. The classical error correction is a special case of net-

work error correction when Fs,t and Ft are both identity matrices. A more comprehensive

discussion of network code can be found in [37, 38].

2.5 Multiview Video Coding

Multiview video coding is the application of source coding theory on multiview video data.

The objective of multiview video coding is to achieve the joint entropy of the multiple

correlated video streams. Multiview video coding aims at reducing the amount of video

data for storage and transmission while maintaining enough fidelity to not negatively affect

the rendered image quality. Multiview video coding addresses the problem of compressing

the videos captured on a dynamic scene. Multiview image coding is the term used for the

problem of compressing images captured on a static scene. Based on the underlying source

coding scheme, multiview video coding schemes can be classified into two categories: Joint

Multiview Video Coding (JMVC) and Distributed Multiview Video Coding (DMVC).

2.5.1 Joint Multiview Video Coding

Joint multiview video coding exploits the joint statistics of multiple video streams at the

encoder and uses the joint source coding as the underlying entropy coding scheme to re-

duce the redundancies among multiple video streams. JMVC schemes normally have a

computationally complicated encoder and relatively simple decoder.

Multiview image compression has been widely investigated since light field rendering

[16, 17] was invented. Early research predominantly focus on joint multiview image cod-

ing schemes. Multiview images used in image-based rendering are usually taken around

a static object and thus have significant spatial coherence. Multiview image compression

mainly aims at exploiting the spatial redundancy among image data to improve the com-

pression efficiency without sacrificing the rendering quality. Levoy and Hanrahan [16] put

forward a vector quantization approach to compress the light field arrays. Zhang and Li [65]

use a multiple reference frame structure to compress the light field images. With multiple

reference frame prediction, just-in-time rendering can be achieved. Luo et al. [66] adopt

a wavelet transform and rebinning approach to compress concentric mosaics. Chang et

al. [67, 68] incorporate disparity compensation and 2-D shape information into the discrete

wavelet coder to improve the compression performance. Li et al. [69] do a performance

evaluation on vector quantization block coder, reference block coder and wavelet coder.
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Results show that a vector quantization block coder is computationally simple but has low

compression ratio. A wavelet coder can achieve the best compression performance. How-

ever, it is the most complex. The reference block coder has good compression ratio with

medium computational complexity. Magnor et al. [70] propose a new multiview image cod-

ing approach that employs the knowledge of 3-D scene geometry. Maitre et al. [71] propose

a wavelet-based joint estimation and encoding approach for texture image and depth maps.

Joint multiview video compression needs to simultaneously reduce temporal and inter-

view redundancy among multiple synchronized video streams taken at different viewpoints.

The challenge is how to remove the inter-view redundancies. There are two general ap-

proaches: block-based approach and nonblock-based approach. Block-based approaches

use blocks as a basic unit to estimate disparity in neighbor frames and remove redundancies

using methods adopted by hybrid MPEG/H.26x video coding standard. MPEG2 Multiview

Profile (MVP) [72] proposes a block-based stereoscopic coding (BBSC) approach to com-

press stereo video. Motion-compensated prediction (MCP) is used to reduce the temporal

redundancies and disparity-compensated prediction (DCP) is used to reduce the inter-view

redundancies. MVP first compresses, say, the left view, with a MCP-based monoview cod-

ing algorithm and then encodes the right view using both DCP from the left view and

MCP. Chan et al. [73] and Lim et al. [74] extend MVP to compress multiview video se-

quences. Multiple video streams are classified into two types of streams: main stream and

secondary stream. The main stream is like the left stream in MVP and is encoded only

by a MCP-based MPEG2-like algorithm. Secondary streams are like the right stream in

MVP and are compressed with algorithms based on both MCP and DCP. In MVP-like ap-

proaches [72, 73, 74], a frame in secondary streams can only choose reference frames from

one reference view. A virtual view synthesis prediction approach is used to remove redun-

dancies among video streams and is integrated into H.264/AVC standard in [75, 76, 77, 78].

Joint Video Team (JVT) of MPEG and ITU-T [79] is currently developing a Joint Multiview

Video Model (JMVM) which is based on the H.264 hybrid video coding standard. Previous

block-based joint multiview video coding schemes are all designed to compress the multi-

ple uncompressed input video streams. Initially, research on block-based JMVC focuses on

how to efficiently compress the multiview video texture data. Recently some researchers

start developing methods to efficiently compress both multiview video texture and depth

data. Zitnick et al. [3] use MPEG-like scheme to exploit temporal and spatial redundancy

and to compress both texture and depth information. Na et al. [80] and Merkle et al. [81]

use H.264-based schemes to compress multiview videos represented by a Multiview-video-
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plus-depth (MVD) format. In Chapter 3, we propose a neighbor-based approach which

allows each stream to choose multiple reference views. In Chapter 4, we put forward a

multiview video transcoder which can process multiple compressed input video streams

and remove inter-view redundancies among multiple compressed video streams. In Chap-

ter 5, we propose a learning-based multiview video coding scheme to compress multiview

videos represented by a MVD format [82].

Nonblock-based approaches estimate more accurate disparity or reconstruct 3D mod-

els to remove inter-stream redundancies. Tseng and Anastassiou [83] propose a MPEG2-

compatible multiview video compression framework which combines the concept of 2D

image processing and 3D computer graphics to estimate the 3D model and encode the

multiview videos and construct the new views. Tzovaras et al. [84] and Malassiotis and

Strintzis [85] advocate an object-based stereo video coding approach by estimating 3D

motion and disparity. Wang et al. [86] and Chien et al. [87] use a mesh-based disparity

estimation method to reduce spatial redundancies among video streams. Park et al. [88]

propose an improved mesh-based disparity representation method optimized for view syn-

thesis and stereo image compression. Fehn et al. [89] reduces the data to a single view with

per-pixel depth map and then compresses and transmits it as an MPEG-2 enhancement.

Gross et al. [4] and Lamboray et al. [90] transfer multiview video into 3D video fragments

to exploit the spatio-temporal coherence. Ziegler et al. [91, 92] use a 3D scene model

to help transform the video images into textures and then employs two-level hierarchical

coder or 4D SPHIFT wavelet coder to exploit inter-frame spatio-temporal coherence. Kum

et al. [93] propose a stream partitioning algorithm to group 3D video streams and a realtime

compression algorithm for the grouped streams. Lamboray et al. [94] introduce a compres-

sion framework to encode time-varying 3D point samples and the approach allows arbitrary

spatio-temporal navigation throughout the entire 3D streams at constant time. Nath and

Dubois [95] propose a wavelet-based stereo video codec with SNR and spatial scalabil-

ity. Smolic et al. [27] and Flierl and Girod [28] recently give an extensive survey on joint

multiview video coding algorithms.

2.5.2 Distributed Multiview Video Coding

Distributed video coding is the application of multiterminal source coding theory on video

data. Distributed video coding exploits the joint statistics among video streams at the de-

coder. Based on the number of streams processed by the distributed video codec, dis-

tributed video coding can be grouped into two classes: distributed monoview video coding
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and distributed multiview video coding. Practical distributed video coding algorithms have

been pioneered by Witsenhausen and Wyner [96] and recently revived by A. Aaron et al.’s

work [97] and Puri et. al’s work [98]. Girod et al. [99] summarized recent advances on dis-

tributed monoview video coding. Distributed multiview video codec [100, 101, 102, 103,

104, 105, 106] have been recently proposed by several researchers.

Challenges of Distributed Video Coding

In general, there are two main challenges for a practical distributed video codec to tackle

: pixel mismatch and inaccurate correlation model. Pixel mismatch means that there is no

prior knowledge at the encoder on the correspondence between two correlated pixels and the

decoder likely make inaccurate estimations on matched pixels. The challenge is how to find

efficient and effective ways to accurately estimate the pixel correspondence between corre-

lated frames. An inaccurate correlation model means that there is no prior knowledge on

how two corresponding pixels are correlated even if two pixels are perfectly matched. The

challenge is how to estimate an accurate correlation model between the matched pixels and

design a capacity-approaching channel code to approach the correlation model. Previous

approaches estimate the correlation model through joint offline and online training. Pixel

correspondence is estimated through uncoded neighbor frames. The technique to estimate

pixel correspondence normally needs at least two uncoded neighbor frames.

Distributed Monoview Video Codec

Wyner-Ziv principles are first applied in distributed monoview video coding. Previous dis-

tributed monoview video coders are mostly designed by using an asymmetric distributed

source code. Namely, some video frames are used to estimate side information and oth-

ers are quantized and coded using Slepian-Wolf coding techniques. More explicitly, video

frames are grouped into two classes, Wyner-Ziv frames (WZF) and key frames (KF). Key

frames are encoded by using conventional joint video coding techniques and act as side

information at the decoder. Wyner-Ziv frames are coded by using a Wyner-Ziv coder. The

coding scheme is also referred to as “Wyner-Ziv monoview video codec”.

There are two types of Wyner-Ziv video codecs using asymmetric distributed source

codes: pixel-domain Wyner-Ziv video codec and transform-domain Wyner-Ziv video codec.

Fig. 2.10(a) shows the architecture of the pixel-domain Wyner-Ziv video codec and Fig. 2.10(b)

shows the architecture of the transform-domain Wyner-Ziv video codec. The main con-

ceptual difference between the pixel-domain Wyner-Ziv codec and the transform domain
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Figure 2.10: Distributed Monoview Video Coding Architectures
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Wyner-Ziv codec is that Wyner-Ziv frames in the pixel-domain codec are directly scalar

quantized and then coded using a Slepian-Wolf codec while Wyner-Ziv frames in the transform-

domain codec need to be first transformed by Discrete Cosine Transform (DCT) or wavelet

transform before scalar quantization and Slepian-Wolf coding. Therefore, the transform-

domain Wyner-Ziv codec generally is a little more complicated than the pixel-domain one.

However, the transform-domain Wyner-Ziv video coder normally has better rate-distortion

performance than the pixel-domain one due to the decorrelation function of the transforms.

Compared with the transform-domain Wyner-Ziv codec, the pixel-domain Wyner-Ziv codec

is easier to implement since an encoder need not worry about the bit-allocation problem

which is created by DCT or wavelet transform.

Pixel mismatch problem in a distributed monoview video coder is essentially how to

accurately estimate the side information of Wyner-Ziv frames. The Wyner-Ziv monoview

video codec uses motion search between neighbor key frames to find matched pixels and

generate the side frames through interpolation. The pixels in the estimated side frames are

assumed to have an exact correspondence based on the pixel coordinates. The correlation

model is assumed to be Gaussian or Laplacian. Parameters of Gaussian or Laplacian models

are estimated based on decoded frames.

Distributed Multiview Video Codec

The aim of a distributed multiview video codec is to achieve the joint entropy of multi-

view video by removing the temporal and inter-view redundancies among multiple video

streams and, at the same time, to have a better tradeoff between compression efficiency and

computational complexity. Distributed multiview video codec assumes no communication

between cameras. Wyner-Ziv principles are first used to compress multiview images. Zhu

et al. [107] put forward a distributed multiview image compression algorithm based on the

Wyner-Ziv coding. Distributed multiview video codecs have the similar structure as dis-

tributed monoview video codecs. Due to the better rate distortion performance, previous

distributed multiview video codecs are all transform domain Wyner-Ziv codecs. Fig. 2.11

illustrates a general structure of transform domain Wyner-Ziv multiview video codec.

Like distributed monoview video codecs, the design philosophy of distributed multiview

video codecs initially puts emphasis on reducing the computational complexity of an en-

coder as much as possible while at the same time improving the rate-distortion performance

as close to JMVC as possible [100, 101, 102, 103]. Slepian-Wolf codes are used to remove

both temporal and inter-view redundancies among multiple video streams. Because a de-
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coder needs to do motion search and disparity estimation to find corresponding pixels and

decode the channel code based on the estimated correlation model, the complexity of the de-

coder is significantly increased. Recently some researchers focus on designing distributed

multiview video codecs with the objective of at least outperforming the rate-distortion per-

formance achieved by MPEG and H.26x standardized monoview video codec [105, 106].

In this case, an encoder uses the standard hybrid coding algorithms to remove temporal

redundancies and then adopts distributed source codes to remove inter-view redundancies.

The complexity of the encoder and the decoder is higher than its traditional monoview

video counterpart. Distributed multiview video codecs use similar approaches to estimate

the correlation model as distributed monoview video codecs. Unlike distributed monoview

video codecs, distributed multiview video codecs tackle the pixel mismatch problem by us-

ing disparity estimation to find correspondent pixels between the frames in adjacent views

and create side frames based on matched pixels. Most previous distributed multiview video

codecs are based on asymmetric Slepian-Wolf coding scheme. In this thesis, we propose

a symmetric distributed multiview video codec that uses symmetric Slepian-Wolf codes as

the underlying entropy coding scheme in Chapter 7.
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Figure 2.11: Distributed Multiview Video Coding Architecture

2.5.3 Performance Metric

The objective of multiview video coding is to achieve a good trade-off between compression

performance and computational complexity. Similar to the traditional mono-view video

coding, the compression performance is normally evaluated by using a rate distortion curve.

Rate measures how many bits are needed to encode the multiview video and is typically

represented by bit per second (bps) or bit per pixel (bpp). Distortion measures the difference
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between the decoded image and the original image. Peak Signal to Noise Ratio (PSNR) is

normally used to evaluated the distortion. PSNR is defined by the following formula.

EMSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

|I(i, j) − Î(i, j)|2 (2.19)

PSNR = 20 · log10

(

255

EMSE

)

(2.20)

where EMSE is the mean square error between an original m × n image I and its decoded

image Î .

2.6 Summary

In this chapter, we introduce some background knowledge on source coding and channel

coding theory. We also review previous work in joint multiview video coding and dis-

tributed multiview video coding. Joint multiview video coding is based on joint source cod-

ing theory. Joint multiview video coding achieves compression by exploiting the temporal

and inter-view correlation at encoders. Joint multiview video coding schemes are classified

into two categories: block-based approaches and nonblock-based approaches. Distributed

multiview video coding is based on distributed source coding theory. Distributed multiview

video coding realizes compression by removing temporal redundancies at encoders and re-

move inter-view redundancies at decoders. Distributed multiview video coding needs to

address two special challenges: pixel mismatch and inaccurate correlation model.
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Chapter 3

Neighbor-based Multiview Video
Compression

3.1 Introduction

As we discussed in Section 1.2.5, multiview video can be created by three approaches:

rendering without geometry, rendering with implicit geometry and rendering with explicit

geometry. Rendering without geometry and with implicit geometry [1, 3, 4, 5, 17, 2, 21,

108] use densely arranged cameras to acquire high-resolution light fields and generate im-

ages at the new viewpoints from captured scene images. Rendering with explicit geome-

try [109, 110] acquires multiview video from sparsely-arranged cameras and extracts 3D

geometry models from the images , and then renders the new viewpoints with the help of

a 3D scene model. Rendering with explicit geometry has the advantage of reducing the

acquisition cost by using fewer cameras. However, it increases the algorithmic and com-

putational complexity. Namely, it is still a very difficult problem to extract accurate scene

models from general real-world scenes in real time. Though rendering without geometry or

with implicit geometry demands more storage and transmission bandwidth due to the large

amount of video data, we still believe that rendering without geometry or with implicit ge-

ometry will be the solution to multiview video in the near future. In this chapter, we propose

an efficient joint multiview video compression scheme to reduce the amount of video data

used for image-based rendering. Images are captured over a real-world dynamic scene by

multiple synchronized cameras and sent to a server for compression. Fig. 3.1 illustrates the

architecture.

Multiview video compression aims at achieving high compression efficiency by simul-

taneously reducing both temporal and inter-view correlation among multiple synchronized

video streams. The challenge is how to design efficient algorithms to remove the inter-
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Figure 3.1: Multiview Video Acquisition and Compression

view redundancies. As we discussed in Section 2.5.1, there are two general approaches:

block-based approach and nonblock-based approach. Block-based approaches are popular

approaches and have been adopted in traditional video coding standards such as MPEG2

and H.264. Blocks are used as basic units to estimate motion and disparity in neigh-

bor frames and remove temporal and inter-view redundancies. MPEG2 Multiview Profile

(MVP) [72] uses a block-based stereoscopic coding (BBSC) to compress the stereo video.

Motion-compensated prediction (MCP) is adopted to remove the temporal correlation and

disparity-compensated prediction (DCP) is adopted to remove the inter-view correlation.

The left view is first compressed by a MCP-based monoview coding algorithm and then

the right view is coded by using both DCP from the left view and MCP. [73, 74] extends

MVP to compress multiview video sequences. Multiple video streams are classified into

two types of streams: main stream and secondary stream. The main stream is the central

stream among all the streams and is encoded using only a MCP-based MPEG2-like algo-

rithm. Secondary streams are compressed with MCP and DCP based on the main stream

as illustrated in Fig. 3.3(a). We call this approach the center approach. In the center ap-

proach, each stream can have at most one stream as the reference stream used for removing

inter-view correlation. In this chapter, we propose a neighbor-based joint multiview com-

pression scheme. We call our approach the neighbor approach. It is published in [111].
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The neighbor approach is a MPEG2-like block-based method and allows each stream to

have multiple streams as reference streams for inter-view redundancy reduction. Since our

publication, many block-based schemes integrated with H.264/AVC standard have been

proposed [75, 76, 77, 78]. The Joint Video Team (JVT) of VCEG and MPEG is now devel-

oping a new standard for multiview video coding called the Joint Multiview Video Model

(JMVM). JMVM is also a block-based scheme and allows each streams to have multiple

reference streams to remove inter-view redundancy. JMVM uses a configuration file to

manually specify reference relationships between different views and the corresponding

stream encoding order. Unlike JMVM, an automatic algorithm is used to decide the refer-

ence relationships between multiple views and the stream encoding order in the thesis. The

algorithm can be integrated into the future version of JMVM to improve its performance.

In the neighbor approach, multiple video streams are also classified into two groups:

main stream and secondary stream. One stream is chosen as the main stream and is coded

using only a MCP-based MPEG2-like algorithm. Unlike the center approach, the secondary

stream is compressed using DCP from multiple nearest neighbor streams and MCP. Our

approach can have better inter-view redundancy reduction than the center approach and

thus improve the video quality under the same bit rate. In addition, a novel algorithm is

proposed to automatically decide the optimal stream encoding order and help each stream

find the best reference streams to remove inter-view correlation.

The rest of the chapter is organized as follows. Section 3.2 discusses in detail the

proposed multiview video compression scheme. In Section 3.3, we present the experimental

results. Conclusion is drawn in Section 3.4.

3.2 Details of The Neighbor Approach

The proposed neighbor-based multiview video compression is a MPEG2-like block codec.

Namely, a macroblock is used as a basic unit for motion and disparity estimation and pre-

diction. Similar to the center approach, each stream is one of two types: main stream and

secondary stream. There is only one main stream. The pictures are also classified into

three types: I, P, and B-frame. I, P, and B pictures in the main stream are encoded with

a MPEG-2 like algorithm. However, pictures in the secondary streams are encoded with

a different method. I pictures in the secondary streams are encoded with DCP based on

the I pictures in neighbor streams. P and B pictures are encoded with MPEG2-like MCP

and DCP of corresponding P and B pictures in neighbor streams. The scheme is illustrated
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in Fig. 3.3(b). Each stream uses the same group of picture (GOP) structure as MPEG2.

All the synchronized GOPs of a multiview video form a group of GOP (GGOP) similar to

the center approach. In this chapter, we assume that each camera position and its viewing

direction are known.

1 2 3

54

viewing direction

Figure 3.2: Camera Setup. 5 cameras are placed in two parallel lines and spaced uniformly
in both horizontal and vertical direction. Cameras have the same viewing direction. Namely
they are parallel cameras.

The basic idea of the neighbor approach is to use multiple nearest neighbor frames as

reference frames for disparity-compensated prediction. However, the synchronized frames

in multiview video are coded in a specific order and the early-coded frames may not find

optimal nearest neighbor frames as reference frames. For example, in Fig. 3.2, suppose that

a frame can have at most two neighbor frames as reference frames for DCP. The stream

encoding order is S2S3S1S4S5, where Si denotes stream i. The frames in S4 can only have

frames in stream S1 and S2 as reference frames though obviously its two nearest neighbor

streams are S1 and S5. The key challenge of the neighbor approach is to decide the optimal

stream encoding order so that the number of streams which have the optimal neighbor

streams as reference streams can be maximized and thus the maximal decorrelation of inter-

view coherence can be achieved.

Our basic idea to solve the problem is to first construct a weighted undirected graph

based on the geometric relation between cameras and then the optimal stream encoding

order problem is equivalent to find an optimal graph traversal order subject to an optimal

criteria. In the weighted graph, a node denotes a camera and an edge weight denotes the

Euclidean distance between two cameras or angle between the view directions of two cam-

eras. The smaller the weight between two nodes, the larger the overlapping region between

the images captured by two cameras. Formally, given a weighted graph G = (V, E), where

V is the set of nodes and E is the set of edges in the graph G, let w(vi, vj) denote the edge
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weight between two nodes vi and vj . Obviously, w(vi, vj) ≥ 0. Suppose that there are

n nodes in the graph. For a specific traversal order, vi1 , vi2 , . . . , vin , let a node vik have at

most m nodes as neighbors in the traversed node set {vi1 , vi2 , . . . , vik−1
}. Define the neigh-

bor distance of the node as dik =
1

mik

mik
∑

j=1

w(vik , vij ), where mik is the actual number of

neighbors in the traversed node set and 1 ≤ mik ≤ m, vij , i1 ≤ ij ≤ ik−1 is a neighbor

of the node vik . An optimal graph traversal order is defined as an order that minimizes sum

of the neighbor distance of all nodes in the order. Namely, an optimal graph traversal order

minimizes δ =

in
∑

k=i1

dik . We use Algorithm 2 to decide the optimal streaming order.

The algorithm is a greedy algorithm. To find an optimal traversal order of a graph, the

algorithm needs to decide which node is first traversed. The first traversed node represents

the main stream. Other nodes represent secondary streams. Since there is no prior knowl-

edge on which node should be first traversed, the algorithm iteratively lets each node be the

first traversed node and uses a greedy algorithm to make sure that the traverse order starting

with any node is an optimal traversal order in all the possible orders starting with the node.

After choosing the first node, the algorithm iteratively chooses the node with the smallest

neighbor distance to added the traversed node net. After an optimal traversal order starting

with every node is found, the one with the minimal total neighbor distance is chosen as

the final optimal traversal order. The algorithm can easily be proved to output an optimal

streaming encoding order by induction. Theorem 3.1 states the optimality of the algorithm.

Theorem 3.1. Algorithm 2 finds an optimal graph traversal order that minimize the sum of

neighbor distance among all possible traversal orders.

Proof. We first prove by induction that for a specific starting node, the algorithm gives an

optimal traversal order among all possible traversal orders starting with the node. Namely,

the code between Line 16 and Line 28 finds a traversal order starting with node vi that has

minimal δi.

The induction hypothesis is that δi is minimal in any iteration of the loop. The hypothe-

sis is obviously true at the beginning of the loop since initially δi = 0. Assume that the hy-

pothesis is true at the j-th iteration. At the beginning of the j+1-th iteration, a node vp with

neighbor distance dp is added into the coded node set. Since vp is the node with the mini-

mum neighbor distance among all candidate nodes in the set cur, 0 ≤ dp ≤ dk, vk ∈ cur.

For nodes are not in the set cur and coded, there is no adjacent edge between them with

nodes in traversed node set coded. Namely, du = ∞, vu 6∈ cur ∪ coded. Thus dp < du.
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Algorithm 2 Pseudo Code to Decide The Stream Encoding Order
1: n : the total number of nodes;
2: m : the maximal number of allowed neighbors for each node;
3: mj : the actual number of neighbors for node vj ;
4: vi : node i;
5: sall : the set of all the n nodes;
6: nbri : the set of neighbors of node i;
7: dj : the neighbor distance for node vj ;
8: δi : the total neighbor distance of a traversal order starting with node vi;
9: δ : the minimal total neighbor distance of a traversal order;

10: coded : the set of traversed nodes;
11: cur : the set of candidate nodes to be traversed;
12: i, j, k p : integer variables;

13: form a graph based on the geometric relation between cameras
14: δ = ∞;
15: for i = 1 to n do
16: δi = 0;
17: add node vi to the traversed node set coded
18: coded = coded ∪ vi;
19: cur = cur ∪ nbri − coded;
20: while coded 6= sall do
21: for each node vj in cur do

22: calculate dj =
1

mj

mj
∑

k=1

w(vj , vk), vk ∈ coded;

23: end for
24: choose the node vp with the minimum dp as the next traversed node;
25: coded = coded ∪ vp;
26: cur = cur ∪ nbrp − coded;
27: δi = δi + dp;
28: end while
29: if δi < δ then
30: δ = δi;
31: remember the traversal order start with node vi;
32: end if
33: end for
34: output the δ and the corresponding optimal stream encoding order;
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Therefore, δi = δi + dp is minimal at the end of the j + 1-th iteration. The hypothesis is

always true. The algorithm can find a traversal order with minimal total neighbor distance

starting with a node vi. Since the algorithm outputs a traversal order that has the minimal

total neighbor distance among all the minimal traversal orders starting with any node in the

graph, the final output traversal order minimizes the sum of neighbor distance among all

possible traversal orders.

After deciding the stream encoding order, frames in the main stream and secondary

streams can be predicted based on MCP and DCP. Thereafter, like MPEG2, discrete cosine

transform (DCT) is used to transform the prediction error and the coefficients are then

quantized and entropy coded using Huffman or arithmetic coding. The algorithm needs

2n + k buffers to do motion and disparity prediction, where m ≤ k ≤ n and n is the

number of video streams and m is the maximum number of neighbor streams.

3.3 Experimental Results

Both synthetic video and real video are used to evaluate the rate-distortion performance of

proposed multiview compression scheme. Synthetic video is rendered using POVRAY [112].

Cameras are placed in parallel lines and spaced uniformly in both the horizontal and verti-

cal direction. This is a parallel camera setup and the viewing direction is the same for every

camera. Fig. 3.4 shows part of the synthesized multiview video used in this research. Syn-

thetic video has 14 streams with 7 camera per line. Each stream is a 24−bit RGB video with

640×480 pixels and 25 frames per second. “Breakdance” and “Ballet” sequences [3], which

are wildly used as benchmark test video for multiview video compression, are adopted as

examples of real-world video. Fig. 3.5 and Fig. 3.6 shows part of Breakdance and Bal-

let sequence. Both sequences have 8 views. Each stream is a 24 − bit RGB video with

1024 × 768 pixels.

We first study the compression performance of the neighbor approach, center approach,

and MPEG2. Fig. 3.7(a), Fig. 3.8(a) and Fig. 3.9(a) present the rate-distortion compari-

son for Synthesis, Breakdance and Ballet video sequences. They show that the neighbor

approach typically has a better rate-distortion performance than both the center approach

and MPEG2. This is expected since the neighbor approach uses multiple nearest neighbor

frames as reference frames and can better exploit the inter-view coherence than the cen-

ter approach which uses only one reference frame for inter-view prediction and MPEG2

that uses only temporal prediction and no inter-view prediction. However, the neighbor
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Figure 3.4: Synthetic Multiview Video
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Figure 3.5: Breakdance Video
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Figure 3.6: Ballet Video
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approach cannot guarantee to have a better rate-distortion performance than the center ap-

proach and MPEG2. Fig. 3.9(a) indicates that the neighbor approach has an inferior rate-

distortion performance than the center approach and MPEG2 at high rate. The reason is that

macroblocks predicted by DCP need spend more overhead bits to encode neighbor index

and disparity vector. When DCP is only slightly better than MCP, the reduction on bits to

encode coefficients might be smaller than the increase in overhead bits.

We also study the number of neighbors on the performance of different multiview cod-

ing schemes. Fig. 3.7(a), Fig. 3.8(a) and Fig. 3.9(a) show that as the number of the neigh-

bor frames increases, the rate-distortion performance also gets better since more neighbor

frames lead to more inter-view redundancy reduction. However, PSNR improvement is lim-

ited as the number of neighbor frames increases. This is understandable since only a limited

number of macroblocks will be predicted by new added neighbor frames while most other

macroblocks already have a small prediction error and it is hard to further diminish the

prediction error with the added neighbor frames. The computational complexity increases

linearly as the number of neighbors increases since similar macroblocks need to be searched

in every reference neighbor frame.

The compression performance of multiview view coding scheme is greatly dependent

on how many macroblocks in secondary streams are predicted by DCP. Each macroblock

in the proposed compression scheme can be predicted using one of 6 modes: Forward

(F), Backward (B), Disparity (D), Forward and Backward interpolation (FB), Forward and

Disparity Interpolation (FD), Backward and Disparity Interpolation (BD). We quantify the

effect of DCP on multiview video compression by studying the percentage of macroblocks

predicted by disparity-related prediction modes, D, FD and BD. Fig. 3.7(b), Fig. 3.8(b) and

Fig. 3.9(b) give the average percentage of macroblocks using disparity prediction related

modes in both the center and the neighbor approach for Synthetic, Breakdance and Ballet

video sequence for different quantization parameters (QP). They indicate that disparity-

related prediction mode accounts for a significant portion of prediction types and plays a

significant role to reduce prediction error and improve the image quality. The results also

show that the neighbor approach has a higher percentage of macroblocks disparity predic-

tion related modes than the center approach. Thus the better rate-distortion performance

in the neighbor approach should obviously be attributed to the inter-view redundancy re-

duction. From the graphs, it is also evident that the benefits from increasing the number of

neighbor frames is limited and the gain becomes smaller and smaller as the the number of

neighbor frames continually increases since the percentage of macroblocks using disparity
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Figure 3.7: Rate Distortion Comparison and Percentage of Macroblocks Using Disparity
Prediction Related Modes for Synthetic Video
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Figure 3.8: Rate Distortion Comparison and Percentage of Macroblocks Using Disparity
Prediction Related Modes for Breakdance Video
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Figure 3.9: Rate Distortion Comparison and Percentage of Macroblocks Using Disparity
Prediction Related Modes for Ballet Video
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Figure 3.10: Rate Distortion Comparison and Percentage of Macroblocks Using Disparity
Prediction Related Modes for Different Inter-view Distance, Breakdance Video, 4 Cameras,
1 Neighbor
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Figure 3.11: Rate Distortion Comparison and Percentage of Macroblocks Using Disparity
Prediction Related Modes for Different Inter-view Distance, Ballet Video, 4 Cameras, 1
Neighbor
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prediction related mode only increases slightly as the number of neighbor frames increases.

The rate-distortion performance of the proposed multiview video compression schemes

is mainly decided by the inter-view redundancy between images captured by different cam-

eras. Inter-view redundancy is greatly affected by the inter-view distance between different

cameras. We study the effect of inter-view distance on rate-distortion performance of the

neighbor approach on “Breakdance” and “Ballet” video. 4 cameras are chosen from 8 cam-

eras based on inter-view distance. Fig. 3.10(a) and Fig. 3.11(a) give the rate-distortion

performance of the neighbor approach on Breakdance and Ballet video when the number

of neighbors is 1. They show that the performance degrades as the inter-view distance in-

creases. This is expected since the large inter-view distance normally leads to small overlap-

ping region between images captured by different cameras. The rate-distortion difference

in Breakdance video is less conspicuous than that in Ballet video because the difference

on overlapping region in Breakdance video is smaller than that in Ballet video as the inter-

view distance increases. Fig. 3.10(b) and Fig. 3.11(b) show the percentage of macroblocks

using disparity prediction related modes. The results confirm that large inter-view distance

leads to small overlapping region and thus a small portion of macroblocks are predicted by

disparity prediction related modes.

3.4 Conclusion

In this chapter, we present a novel neighbor-based multiview video compression scheme. It

is a MPEG2-like block-based video compression scheme. In particular, we put forward an

efficient algorithm to find an optimal stream encoding order which helps maximize inter-

view redundancy reduction. We compare the proposed scheme with the center approach and

MPEG2. Experimental results show that the proposed compression scheme can achieve bet-

ter compression performance over the center approach and MPEG2. The performance of

the proposed multiview video coding scheme is greatly dependent on the size of overlap-

ping region between videos captured by different cameras. The large inter-view distance

normally leads to small overlapping region and thus degrades the rate-distortion perfor-

mance. The more the number of neighbor reference views, the better the rate-distortion

performance. The improvement on rate-distortion performance is limited as the number

of neighbor reference views is greater than a threshold. The computational complexity in

the encoder will increase linearly as the number of reference views increases. Both the

encoder and the decoder need more memories to store the reference frames as the number
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of neighbor reference views increases.
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Chapter 4

A Multiview Video Transcoder

4.1 Introduction

One of the challenges for rendering with no geometry or implicit geometry is to capture

and transmit dense light field data in a cost-effective way. Most previous prototype sys-

tems [2, 108] adopt an acquisition subsystem as illustrated in Fig. 3.1, where each PC con-

trols one or two cameras for synchronized video acquisition and then compresses the cap-

tured videos for transmission. Obviously, the acquisition approach is not an economical so-

lution for realtime multiview video applications which usually demand scores or hundreds

of cameras [113]. A practical approach for video acquisition should use a specialized light

field video camera such as the one proposed in [22], which can control over 100 cameras us-

ing one PC. Each video camera directly compresses the video using MPEG2 and then sends

the compressed video to the PC for further processing. Although the MPEG2-compressed

video can be directly transmitted to receivers for new view synthesis [2], this approach

will waste bandwidth since it does not compress the inter-view redundancies among video

streams. An economical solution should further remove the inter-view redundancies among

multiple compressed video streams before transmission over a network.

In this chapter, we propose a novel multiview video transcoder which efficiently en-

codes multiple compressed synchronized video streams. This work is published in [114].

Fig. 4.1 shows its architecture. A multiview transcoder can be deemed as a two-stage cod-

ing process: separate source coding and joint source coding. The first stage is done at the

camera and temporal correlation is removed. The second stage is used to remove inter-

view correlation. It is similar to the traditional video transcoder [115, 116] that converts a

video from one format to another format. While the traditional video transcoder normally

processes one compressed video stream or multiple uncorrelated compressed video streams

with little inter-stream redundancies, a multiview video transcoder processes two or more
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Figure 4.1: Two-stage Multiview Video Acquisition and Compression

compressed synchronized video streams with high inter-view redundancies among video

streams. Besides the change of coding parameters such as bit-rate, frame-rate, and spatial

resolution of traditional transcoders, a unique task of a multiview video transcoder is to effi-

ciently decorrelate the inter-view redundancies among input video streams. We put forward

a fast GOP-based algorithm to effectively limit the search window and efficiently estimate

disparity among video streams and thus speed up the inter-view redundancy reduction.

The rest of chapter is organized as follows. We discuss related work in video transcod-

ing in Section 4.2. Section 4.3 elaborates the details of the proposed multiview video

transcoder. Experimental results are presented in Section 4.4. The chapter concludes in

Section 4.5.

4.2 Video Transcoding

In the past decade, various video transcoding techniques have been invented to convert

the coded video from one format to another to accommodate different application sce-

narios [116, 115]. Each transcoder tries to achieve the highest possible video quality

while maintaining lowest computational complexity. These transcoding techniques can be

roughly classified into 4 categories: bit-rate transcoding, spatial/temporal transcoding, in-
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formation insertion transcoding, and standard transcoding [115].

Bit-rate transcoders aim at reducing the bit rate. Three general transcoding architectures

are proposed in the past : open-loop transcoders [117, 118, 119], Cascaded Pixel-Domain

Transcoders (CPDT) [118, 120] and DCT-Domain Transcoders (DDT) [121, 122]. Open-

loop transcoders are not suitable for practical use since they induces drift problem. In

general, DDT demands less computation and memory than CPDT while CPDT can achieve

a better video quality than DDT, in particular, when the Group of Pictures (GOP) size is

large.

Spatial and temporal transcoders aim at reducing spatial resolution and temporal res-

olution. The unique challenge in spatial/temporal transcoder is how to efficiently and ac-

curately map the input motion vectors to output motion vectors [123, 124, 125, 126, 127].

A CPDT architecture is preferred for spatial and temporal transcoder since it avoids drift

problem and improves the video quality though a DCT-domain architecture [128, 129] can

also be used with proper drift compensation mechanism.

Information insertion transcoders are able to add new information into input video

streams. Typically, two types of information are inserted : security features such as logo

and watermark and error-resilient features. Logo and watermark insertion mainly intend for

copyright protection [130, 131]. Error-resilient transcoders aim at achieving robust video

transmission over lossy channels such as wireless networks or congested Internet links by

inserting error-resilient features [132, 133, 134].

Standard transcoders are used to covert the video coded in one coding standard (MPEG2)

to another standard (H.264) [135, 136]. Normally, beside changes in bit-rate and spa-

tial/temporal resolution, standard transcoders need to change other structures such as the

frame type.

Although most previous transcoders intend to transcode only one video stream, they

are also used to transcode multiple video streams and are called joint transcoding [137,

138, 139]. However, joint transcoders normally assume that there exists no inter-stream

redundancies among multiple input video streams. A multiview video transcoder can be

deemed as a joint transcoder with the assumption that high inter-stream correlation exists

among multiple input video streams.
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4.3 Multiview Video Transcoder
4.3.1 Overview

A multiview video transcoder (MVT) converts multiple compressed synchronized video

streams into an encoded video stream by changing various coding parameters such as

bit-rate, frame-rate, spatial and temporal resolution. A MVT can be deemed as a joint

transcoder [137] that operates on multiple synchronized video streams with significant inter-

view coherence. Though a MVT can be used to change bit-rate, spatial/temporal resolution,

etc, in this thesis, we limit our discussion on bit-rate transcoding. In particular, we assume

that the input compressed video streams are produced by a MPEG2 encoder and have the

same GOP (group of picture) structure. A MVT needs to compress both temporal redun-

dancy and inter-view redundancy. Namely, motion-compensated prediction (MCP) and

disparity-compensated prediction are both indispensable. To remove the inter-view redun-

dancy among different video streams, we use the center approach [73, 74] to decorrelate

the inter-view correlation among input video streams shown in Fig. 3.3(a).

In the center approach, all video streams are classified into two categories: main stream

and secondary stream. The main stream is the center stream and encoded using only a

MCP-based algorithm. Secondary streams are encoded with both MCP and DCP based on

the main stream. The main stream can be chosen using the least square sum (LSS) technique

proposed in [93], which will be elaborated in the next section. The proposed MVT can also

use the neighbor approach discussed in Chapter 3 to remove inter-view redundancies. In

that case, the first coded stream is the main stream and encoded with only a MCP-based

algorithm. Other streams are secondary streams and encoded by using both MCP and DCP

algorithms. There is no essential difference for the MVT used in the center approach and

the neighbor approach. We use the MVT in the center approach to illustrate the key idea.

A MVT can be straightforwardly realized by fully decoding temporally compressed

video streams and then using a spatio-temporal multiview video compression algorithm to

re-encode the decoded video streams as shown in Fig. 4.2. We call this scheme the Cascaded

Pixel Domain Multiview Video Transcoder (CPDMVT). However, it is computationally

very expensive. Similar to traditional transcoders, the challenge for a MVT design is how

to reduce the computational complexity of a straight-forward implementation and achieve

the best possible video quality. Furthermore, unlike traditional transcoders, one unique

challenge of a MVT design is how to utilize the coding statistics and parameters of input

video streams to efficiently remove the inter-view redundancies.
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4.3.2 Main Stream Selection

The main stream is used as a reference stream to predict and reduce inter-view redundancies

among other streams. In this chapter, we assume that each camera location and its view

direction are known. The least square angle sum (LSAS) technique proposed in [93] is

used to choose the main stream. It is defined as

SASi =
m

∑

j=1

A(Si, Sj)
2

where SASi is squared sum, Si and Sj is the stream i and j. Basically, there are two

camera setups for multiview video acquisition, one is the parallel view and the other is the

convergent view. For the parallel view, SASi is the squared distance sum and A(•) is the

distance between the camera locations of Si and Sj . For the convergent view, SASi is the

squared angle sum and A(•) is the angle between the view directions of Si and Sj . In

either case, the stream with the least SAS is selected as the main stream. Other streams

are secondary streams. Every frame in the main stream is used to predict the corresponding

synchronized frames in secondary streams.

4.3.3 Simplified Pixel Domain Multiview Video Transcoder

The straightforward implementation of a CPDMVT is not desirable due to its high com-

plexity. From Fig. 4.3, it is possible to simplify the main stream transcoding since the

main stream is only temporally compressed. For the temporal only video transcoding, the

motion vector of the incoming stream is normally reused in the outgoing stream. Namely,

MV
m(1)
n = MV

m(2)
n = MV m

n , where MV m
n is the motion vector in the main stream.

Im(1)
n = Rm(1)

n + P m(1)
n (4.1)

Pm(1)
n = S(I

m(1)
n−1 ,MV m

n ) (4.2)

Pm(2)
n = S(I

m(2)
n−1 ,MV m

n ) (4.3)

= S(I
m(1)
n−1 + E

m(2)
n−1 ,MV m

n ) (4.4)

where P
m(i)
n is the predicted pixel values from the previous frame, R

m(i)
n is the residual

error and I
m(i)
n is the reconstructed frame. i can be “1” or “2” that represents the decoder

or encoder loop of the main stream. E
m(2)
n denotes the quantization error in the encoder

loop of the main stream. S(•, •) represents the motion compensation and is a shift op-

eration. The motion compensation (MC) can be deemed as a linear operation, namely
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S(X + Y,MV ) = S(X,MV ) + S(Y,MV ). Based on this linearity assumption and

Eq. 4.2, Eq. 4.4 can be rewritten as:

Pm(2)
n = S(I

m(1)
n−1 ,MV m

n ) + S(E
m(2)
n−1 ,MV m

n ) (4.5)

= P m(1)
n + S(E

m(2)
n−1 ,MV m

n ) (4.6)

From Fig. 4.3, Eq. 4.1 and 4.6,

Rm(2)
n = Im(1)

n − P m(2)
n = Rm(1)

n − S(E
m(2)
n−1 ,MV m

n ) (4.7)

R
m(2)
n is the prediction residual error in the encoder-loop of the main stream transcoder

and is sufficient to produce the output bit-stream for the main stream. From Eqn. 4.7,

R
m(2)
n can be obtained by subtracting the incoming residual error, R

m(1)
n , with the motion-

compensated previous quantization error. Eqn. 4.1- 4.7 are well known in the transcoding

literature [121, 122], and are presented here for completeness. Based on the Eq. 4.7 and the

DCT-domain motion compensation, a Simplified DCT-Domain Transcoder (SDDT) [122,

115] can be easily designed to obtain the transcoded main stream as shown in Fig. 4.4.

However, SDDT cannot be used unless the frame in the transcoded main stream can

be reconstructed and put into DF for redundancy elimination in secondary streams. In the

following, we will analyze how to generate the reconstructed frame, I
m(2)
n , for three types

of pictures: intra (I), predicted (P), and bidirectionally interpolated (B). Let DFn denote

the nth frame stored in DF.

For I frame, from Fig. 4.3,

f I
n = Im(2)

n = Rm(2)
n + Em(2)

n (4.8)

where f I
n is the reconstructed I frame in the encoder loop of the main stream transcoder.

The I frame will be directly stored into DF. Namely, DFn = f I
n.

For P frame,

fP
n = Im(2)

n (4.9)

= P m(2)
n + Rm(2)

n + Em(2)
n (4.10)

= S(I
m(2)
n−1 ,MV m

n ) + Rm(2)
n + Em(2)

n (4.11)

where fp
n is the reconstructed P frame in the encoder loop of the main stream transcoder.

From Fig. 4.3, I
m(2)
n−1 is the frame stored in MF. Observe that any frame in MF is the same

as one in DF. Namely, I
m(2)
n−1 = DFn−1. Thus, Eq. 4.11 can be denoted using DFn−1.

fP
n = S(DFn−1,MV m

n ) + Rm(2)
n + Em(2)

n (4.12)
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For B frame, we can get the similar derivation as the P frame.

fB
n = Im(2)

n (4.13)

= P m(2)
n + Rm(2)

n + Em(2)
n (4.14)

= αS(I
m(2)
n−1 ,MV m

n ) + (1 − α)S(I
m(2)
n−2 ,MV m

n ) + Rm(2)
n + Em(2)

n (4.15)

where α is interpolation constant in the range [0 1]. The difference between B frame and

P frame is that B frame needs two previous prediction frames, I
m(2)
n−1 and I

m(2)
n−2 . Similarly,

I
m(2)
n−1 = DFn−1 and I

m(2)
n−2 = DFn−2. Thus,

fB
n = αS(DFn−1,MV m

n ) + (1 − α)S(DFn−2,MV m
n ) + Rm(2)

n + Em(2)
n (4.16)

Note that the GOP of a MPEG2 bitstream always starts with I frame that is followed by

P and B frame. Thus the first frame stored in DF is always I frame.

DF0 = f I
0 (4.17)

From Eq. 4.17, Eq. 4.15 and Eq. 4.12, we can easily derive the following equation.

DFn = S(DFn−1,MV m
n ) + Rm(2)

n + Em(2)
n (4.18)

Thus we get a multiview video transcoder with simplified main stream transcoder de-

sign. This is called Simplified Pixel-Domain Multiview Video Transcoder (SPDMVT) as

shown in Fig. 4.5.

4.3.4 Motion and Disparity Compensated Prediction for Secondary Streams

To improve the compression ratio and reduce the distortion under the same bit-rate, each

frame in secondary streams is predicted by both MCP and DCP as shown in Fig. 3.3(a).

Specifically, I frames in secondary streams are encoded with DCP based on the I frame in

the main stream. P and B frames are encoded with MCP of the previous frame and DCP

of the synchronized P and B frame in the main stream. Each macroblock can be predicted

with one of 6 modes: Forward (F), Backward (B), Disparity (D), Forward and Backward

interpolation (FB), Forward and Disparity Interpolation (FD), Backward and Disparity In-

terpolation (BD). The mode that leads to the minimal Mean Absolute Difference (MAD) is

chosen as the encoding mode. Namely,

Rs(2)
n = min{RF , RB , RD, RFB , RFD, RBD} (4.19)
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Figure 4.6: Search Window for Disparity Vector. Di is the disparity vector for macroblock
i.

where RF , RB , RD, RFB , RFD and RBD are the residual error of the corresponding

macroblock mode.

Since the secondary stream transcoder can reuse the incoming motion vector, MV
s(1)
n ,

it is easy to calculate RF , RB and RFB using Eq. 4.20.

Rt = f s
n − S(f s

n−1,MV s
n ) (4.20)

where f s
n denotes the nth frame in the secondary stream and S(•, •) represents the motion

compensation and is a shift operation.

The challenge is how to efficiently calculate RD, RFD and RBD. Namely, the main dif-

ficulty is how to accurately and efficiently estimate the disparity vector. A simple motion-

assisted block matching approach is proposed to estimate the disparity in a GOP (Group of

Pictures). The basic idea is to use the disparity information in the adjacent frames to ac-

celerate the estimation of disparity information in the current frame by reducing the search

range. The pseudo code of the algorithm is shown in Algorithm 3.

The algorithm first finds the disparity vector of the I frame in a GOP using the full

search window. Based on the assumption that the disparity vectors of the corresponding

macroblocks between two adjacent frames only have small changes, the search window for
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a macroblock in the current frame can be estimated by disparity vectors of 4 intersection

macroblocks of the corresponding macroblock in the adjacent frame which can be found

using the known motion vector. Fig. 4.6 illustrates a macroblock and its four intersection

macroblocks in the neighbor frame. For P frame, the adjacent frame is the previous frame in

the encoding order. For B frame, the adjacent frame is either of the previous two frames in

the encoding order. ∆d is used to account for the possible displacement of disparity vectors

due to the movement between two adjacent frames.

Algorithm 3 Pseudo Code for GOP-based Disparity Estimation
1: dj

i : disparity vector for macroblock i in jth frame;
2: mbj

i : macroblock i in jth frame;
3: mvj

i : motion vector of macroblock i in jth frame;
4: dmin: minimal disparity vector;
5: dmax: maximal disparity vector;
6: ∆d: the empirical bound of disparity vector displacement in two adjacent frames;
7: Ic(P ), Is(P ): pixel intensity in the main stream and the secondary stream

8: compute the disparity vector for each macroblock in a I frame using full search window;
9: for each remaining frame j in a GOP do

10: for each macroblock i in the frame j do
11: find the corresponding macroblock mbj−1

i based on the motion vector mvj
i in

frame j − 1;
12: find the disparity vector dj−1

i of the four surrounding macroblocks;
13: dmin = min{dj−1

i };
14: dmax = max{dj−1

i };
15: search the disparity vector dj

i based on dj
i = argmin

D

∑

P∈MB
j
i

|Is(P )−Ic(P +D)|,

where D ∈ [dmin − ∆d, dmax + ∆d];
16: end for
17: end for

4.4 Experimental Results

We use both synthetic video and real video to evaluate the performance of the proposed

multiview video transcoder. Synthetic video is rendered using POVRAY [112]. Cameras

are placed in parallel lines and spaced uniformly in horizontal and vertical direction. This

is a parallel camera setup. Seven views shown in Fig. 3.4 are used in the evaluation. Each

input video stream is 24-bit RGB video with 640 × 480 pixels and 25 frames per second,

and compressed using MPEG2 encoder at each camera. “Breakdance” and “Ballet” se-

quences [3] shown in Fig. 3.5 and Fig. 3.6 are used as real video examples. Both sequences
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Figure 4.7: Rate-Distortion and Disparity Search Time Comparison for Synthetic Video
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Figure 4.8: Per-Frame Comparison on PSNR, Rate and Disparity Search Time for Synthetic
Video. QI
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Figure 4.9: Rate-Distortion and Disparity Search Time Comparison for Breakdance Video
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Figure 4.10: Per-Frame Comparison on PSNR, Rate and Disparity Search Time for Break-
dance Video. QI
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Figure 4.11: Rate-Distortion and Disparity Search Time Comparison for Ballet Video
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Figure 4.12: Per-Frame Comparison on PSNR, Rate and Disparity Search Time for Ballet
Video. QI
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have 8 views and are 24-bit RGB video with 1024 × 768 pixels.

We first study the performance of CPDT, SPDMVT with the full search window, and

SPDMVT with GOP-based fast search window. CPDT does not use disparity search to re-

move the inter-view redundancy. The maximum disparity search window used in SPDMVT

is 60 pixels. The only difference between SPDMVT with the full search window and

SPDMVT with GOP-based fast search window is whether the GOP-based fast disparity

estimation algorithm is used or not. The input compressed video streams to the multi-

view video transcoder is encoded by MPEG2 and the quantization step size in MPEG2 is

QI
1 = 4 for I frame, QP

1 = 6 for P frame, and QB
1 = 6 for B frame. Fig. 4.7 and Fig. 4.9 and

Fig. 4.11 present the comparison on rate-distortion performance and disparity search time

of CPDT, SPDMVT with the full search window, SPDMVT with GOP-based fast search

window over Synthesis, Breakdance and Ballet sequence. They show that MVT has a bet-

ter rate-distortion performance than CPDT since disparity search helps reduce inter-view

redundancies. In addition, compared with disparity search using full window, the proposed

GOP-based fast disparity search algorithm can significantly reduce the search time while

at the same time having a similar rate-distortion performance. The fast disparity search

algorithm can save around 68% time for Synthetic video, 65% time for Breakdance video,

and 80% time for Ballet video. The time used for disparity search in CPDT is 0 since there

is no DCP in CPDT.

We also examine the sensitiveness of the parameter ∆d. Fig. 4.7, Fig. 4.9 and Fig. 4.11

indicate that the GOP-based fast disparity search algorithm can accurately estimate the

disparity range and a small ∆d is enough to achieve similar performance as the disparity

search using full window. Fig 4.8, Fig. 4.10 and Fig. 4.12 give a per-frame comparison on

PSNR, rate, and disparity search time between CPDT and MVT for Synthetic, Breakdance

and Ballet sequence when the quantization step size in CPDT and MVT is QI
2 = 20 for I

frame, QP
2 = 22 for P frame and QB

2 = 22 for B frame. PSNR is defined in Eqn. 2.20. Rate

is measured by number of bits. Disparity search time is measured by number of seconds.

They show that PSNR has slight variation based on video sequences. Compared with CPDT

without disparity search, SPDMVT has a greater bit saving in I frame than in P and B frame

since there is no motion compensation for I frames in CPDT and DCP can greatly reduce the

inter-view redundancies in I frames. On the other hand, compared with SPDMVT with full

disparity search, SPDMVT with GOP-based fast disparity search has no saving on search

time in I frames since there is no motion prediction for I frames and thus no motion vector

can be used to help estimate the disparity search window. Results on other quantization
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parameters are similar.

4.5 Conclusion

In this chapter, we propose a novel multiview video transcoder and discuss its design chal-

lenges. In particular, a simple heuristic for fast disparity estimation is elaborated and evalu-

ated. The results show that the proposed algorithm can effectively and efficiently compress

the multiple compressed synchronized video streams. The GOP-based fast disparity esti-

mation algorithm is able to reduce the computational complexity of disparity estimation and

at the same time maintain the similar video quality as the one using exhaustive search.
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Chapter 5

Multiview Video Coding Using
Semi-Supervised Learning
Algorithm

5.1 Introduction

Research on joint multiview video coding initially focuses on how to efficiently compress

multiview video texture data based on conventional block-based prediction and transform

coding approach by taking advantage of both temporal and inter-view similarity among

multiple video streams [28]. Algorithms based on hierarchical B pictures [27] have been

found to achieve the best performance. Recently some researchers start developing methods

to efficiently compress both multiview video texture and depth data [80, 81]. Multiview-

video-plus-depth (MVD) format is a popular data representation format for multiview video

applications. The MVD format makes it easy to synthesize virtual views in client machines.

In the past decade, machine learning techniques such as clustering and classification

have made significant progress [140]. Video coding techniques such as vector quanti-

zation based methods have inherent connection with clustering techniques [141]. Cheng

and Vishwanathan [142] recently propose a new method based on semi-supervised learn-

ing [143, 140] to compress image and video chrominance data. Inspired by their work,

we propose a learning-based multiview video coding (LMVC) scheme to compress multi-

view videos represented by the MVD format. This work is published in [82]. LMVC is

also a joint multiview coding scheme. The basic idea of our scheme is to model the mul-

tiview video compression problem as a semi-supervised learning problem and achieve the

compression by finding a sparse representation of multiview video. Depth data are com-

pressed by H.264-based schemes. Luminance and chrominance data are compressed by

semi-supervised learning algorithms.
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The rest of the chapter is organized as follows. Section 5.2 gives an overview of semi-

supervised learning techniques. Section 5.3 elaborates on the details of the proposed en-

coder and decoder. Experimental results are presented in Section 5.4. The chapter con-

cludes in Section 5.5.

5.2 Semi-Supervised Learning

Semi-supervised learning refers to a set of classification techniques that use both labeled and

unlabeled data for training. Formally, let X be the space of observations and Y the space

of labels. Y is assumed to be a finite subset of R. The semi-supervised learning [143, 140]

is formulated as follows: Given a sequence {(xi,yi)}
m
i=1 of labeled observations drawn

from X × Y , {xi}
n
i=m+1 of unlabeled observations drawn from X , and a loss function

l : X × Y × H → R, learn a function f ∈ H which minimizes the loss on the labeled

observations and also generalizes well to new observations. In general, semi-supervised

learning techniques can be classified into two categories: transductive learning and induc-

tive learning. Transductive learning techniques can only work on the labeled and unlabeled

data and cannot handle new data. Inductive learning techniques are able to learn a model

and output a predictive function that is defined on the whole space. Namely, inductive

learner can handle the new data. In the past decade, lots of semi-supervised learning meth-

ods such as transductive support vector machines, self-training, co-training and graph-based

methods have been developed. Detailed taxonomy can be found in the recent survey [143]

and book [140]. In this section, we will elaborate on graph-based semi-supervised learning

techniques since our compression scheme is based on them.

5.2.1 Graph-based Semi-supervised Learning

Graph-based semi-supervised learning methods construct a graph, G, whose nodes are the

observations, and edges encode nearest neighbor relationships. These methods usually as-

sume label smoothness over the graph which means that label values between adjacent

nodes are similar. The semi-supervised learning problem is typically modeled as estimat-

ing a smooth function that respects neighborhood relations on the graph. Different functions

can be estimated based on different choices of the loss function and the regularizer.

Let G = 〈V, E〉 where V is a finite set of n vertices denoted by {v1, v2, · · · , vn} and

E is a finite set of edges, E ⊂ V × V . The adjacency matrix of G is an n × n real matrix

W where wij is the weight on the edge (vi, vj) and can be any non-negative value, namely,

wij ∈ [0,∞). The degree matrix, D, is defined as an n × n diagonal matrix with entries
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dii =
∑

j

wij . The graph Laplacian is the matrix L = D − W while the normalized graph

Laplacian is 4 = D− 1

2 LD− 1

2 . The function can be estimated by minimizing the following

regularized risk:

J(f) = c‖f‖2
H +

λ

n2
‖f‖2

G +
1

m

m
∑

i=1

l(xi, yi, f). (5.1)

where l is a loss function and H is a Reproducing Kernel Hilbert Space (RKHS) of functions

f : X → R, and ‖f‖2
H imposes the smoothness conditions on possible solutions in RKHS,

and ‖f‖2
G regularizes the solution to be smooth with respect to the graph, c and f are

trade-off parameters for the regularizer, ‖f‖2
H and ‖f‖2

G . The defining kernel is denoted by

K : X × X → R, which satisfies 〈f,K(x, •)〉H = f(x). The regularizer ‖f‖2
G is defined

as

‖f‖2
G = f> 5G f (5.2)

where f is the vector [f(xi), · · · , f(xm), · · · , f(xn)], and 5G denotes a specific regular-

ization function over G. The graph Laplacian L and 4 are typical choices. Namely,

‖f‖2
G = f> 4 f (5.3)

or

‖f‖2
G = f>L2f = ‖Lf‖2. (5.4)

The loss function l is assumed to be piecewise differentiable and only depend on f via

its evaluation at f(xi). The square loss function is normally chosen.

l(xi, yi, f) = (f(xi) − yi)
2 (5.5)

Laplacian Regularized Least Square (LapRLS) algorithm [144] is used in [142] to solve

equation 5.1. The solution f can be expressed as

f(·) =

n
∑

i=1

αik(xi, •) (5.6)

where α denotes the vector [αi, . . . , αm, . . . , αn] and has a following closed form solution,

α = (ImK + cmI +
λm

n2
5G K)−1y. (5.7)

where Im ∈ Rn×n includes the m×m identity matrix on the top left hand corner and zeros

elsewhere, I is the identity matrix, K is the Gram matrix Kij = k(xi, xj), and y denotes

the label vector [yi, . . . , ym, 0, . . . , 0].
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Cheng and Vishwanathan [142] drop the regularization term ‖f‖2
H from the objection

function 5.1 and learn the function f by minimizing

J(f) =
λ

n2
‖f‖2

G +
1

m

m
∑

i=1

l(xi, yi, f). (5.8)

The resulting algorithm is still an inductive algorithm and the learned predictive function

f is required to be smooth only on the observed data. It is sufficient for image and video

compression applications since f is only used to predict unseen examples that are similar

to the observed examples.

5.3 Learning-based Multiview Video Coding
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Decoding 
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P = warp(Îk, D̂k)

Figure 5.1: The Architecture of the Learning-based Multiview Video Coding Scheme

The proposed learning-based multiview video coding scheme aims at efficiently com-

pressing multiview videos represented with MVD format. The basic idea is to first compress

the depth map by the H.264-based schemes and then use an active semi-supervised learn-

ing method to compress texture data. LMVC compresses the texture image by choosing

a small number of representative pixels (RP) at the encoder and uses the semi-supervised

learning to reconstruct the original image based on the representative pixels at the decoder.

Fig. 5.1 illustrates the architecture of the proposed learning-based multiview video coding

scheme. A texture image includes both luminance and chrominance frames. The generic ar-

chitecture of LMVC shown in Fig. 5.1 can be used to compress both luminance and chromi-

nance frames. However, there is a slight difference to compress luminance and chrominance
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frames. To compress a luminance frame, LMVC needs to first obtain an approximate frame

through temporal/inter-view prediction. The approximate frame aims to construct the adja-

cency graph used in the graph-based semi-supervised learning algorithm. To compress the

chrominance frames, LMVC uses the luminance frames to construct the adjacency graph

like [142]. A depth map is used in LMVC to help generate approximate frames and reuse

the representative pixels. Though LMVC can be used to compress both key pictures and

non-key pictures [145], we focus on studying its performance on key pictures. Namely,

only inter-view prediction is used to generate approximate frames and decide representa-

tive pixel reuse. Specifically, we concentrate on the inter-view prediction structure similar

to the prediction structure for key pictures such as KS-IPP in [145]. Fig. 5.2 shows the pre-

diction structure, KS-IPP, where each video stream is predicted by a neighbor video stream.

I P P P P P P P

S8S7S6S5S4S3S2S1

Figure 5.2: The Prediction Structure of the Learning-based Multiview Video Coding
Scheme. Si is the i-th video stream.

Since the eventual bit rate is proportional to the total number of representative pixels

transmitted to the decoder, the challenge of LMVC is how to choose the minimum num-

ber of representative pixels to reach the target PSNR. Formally, let {Iij = 〈Yij, Uij , Vij〉},

i = 1, 2, · · · , z and j = 1, 2, · · · , u denote a multiview video sequence where Y is the

luminance frames, U and V are chrominance frames, u is the number of video sequences

captured by u different cameras, and z is the number of images in each video sequence. Let

{Dij}, i = 1, 2, · · · , z and j = 1, 2, · · · , u denote the disparity map for image i in video

stream j. For a specific image k in the video stream s, to compress the luminance frame,

LMVC needs to first get the approximate frame Y p
ks = warp(Ŷk1, · · · , ˆYk,s−1, D̂k1, · · · , D̂k,s),

where Ŷkj and D̂kj, j = 1, · · · , s − 1 are reconstructed luminance and depth frames in

the video stream j. The approximate frame Y p
ks is used in the semi-supervised learning

algorithm to construct the adjacency graph. To compress the chrominance frames, lumi-

nance frames are first compressed using H.264-based schemes. The reconstructed lumi-

nance frame Ŷks is then used to construct the adjacency graph. In this chapter, we are

interested in using the semi-supervised learning approach as illustrated in Fig 5.1 to com-

press Iks, s = 1, 2, · · · , u. Given a target distortion level denoted by the target PSNR,

SNRt, and the realized PSNR, SNRr, the goal of our algorithms is trying to achieve

77



|SNRr − SNRt| ≤ ε, where ε is a preset threshold value, by minimizing the total bit rate.

We will elaborate on the details of the algorithm in the following sections.

5.3.1 Transductive Learning

Similar to [142], we use graph-based semi-supervised learning to choose representative

pixels (RPs). The learning objective is to minimize the generalized risk denoted by Equa-

tion 5.8. However, unlike the inductive learning approach in [142], we use the transductive

learning approach since inductive learning is computationally expensive to inverse an n×n

dense matrix in Equation 5.7 to solve the semi-supervised learning problem. In our cur-

rent implementation, the transductive learning actually minimizes the following objective

functions:
n

∑

i=1



f(xi) −
∑

i∼j

wijf(xj)





2

+

m
∑

i=1

δ(f(xi), yi). (5.9)

where wij is the weight between the pixel xi and its neighbor pixels xj and δ(f(xi), yi) is

a loss function which is 0 if f(xi) = yi and ∞ otherwise. The similar objective function

is used in [146] to perform colorization on a video sequence. The difference between the

Equation 5.9 and the objective function used in [142] is that we use δ loss function rather

than the square loss function in [142]. The δ loss function enforces that the predicted

values of the learned function at representative pixels are the same as the original ones.

Minimizing Equation 5.9 actually is an optimization problem with quadratic cost function

and linear constraints. It can be solved efficiently by using a large sparse system of linear

equations [146].

To use the graph-based semi-supervised learning method, we need first to build an adja-

cency graph to denote the adjacency relationship between all labeled and unlabeled pixels.

Each pixel has a feature map that includes the pixel value information of a 3 × 3 local

window around each pixel in the predicted frame Pks. Similar to [142, 146], a 4-nearest

neighbor adjacency graph is constructed in the feature space based on the weight wij be-

tween any two pixels xi and xj . The weight wij is a normalized correlation function over

the feature maps of two pixels [146].

wij ∝ 1 +
1

σ2
i

(η(i) − ui)(η(j) − ui) (5.10)

where ui and σi are the mean and variance of the pixel values in the local window around

xi, η(i) and η(j) are the pixel values of xi and xj .
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Figure 5.3: Representative Pixel Selection

5.3.2 Representative Pixel Selection

The key challenge of the LMVC scheme is how to choose as few representative pixels (RPs)

as possible to achieve the target PSNR. Our basic strategy is to group pixels into clusters

and choose representative pixels from each pixel cluster and reuse as many representative

pixels in the neighbor frames as possible to reduce total bits used to encode the repre-

sentative pixels. The representative pixel selection process is an active learning process.

The semi-supervised learning algorithm actively chooses the best representative pixels to

reach the target PSNR. The algorithm first encodes Ik1 by using H.264 I frame. Denote

the reconstructed frame as ˆIk1. We use a mean-shift based segmentation algorithm [147]

to process the frame ˆIk1 and obtain an over-segmented image. A deterministic algorithm is

used to choose q RPs from each segment and total mk1 RPs are selected. Represent each

representative pixels, {RP k1
i }, i = 1, · · · ,mk1, as ([xk1

iv , xk1
iu ], ˆvk1

i ), where [xk1
iv , xk1

iu ] is the

coordinates of RP k1
i and ˆvk1

i is the quantized value of RP k1
i in the frame Ik1. To encode the

frame Ik2, each representative pixel in the frame Ik1, RP k1
i , is warped into the frame Ik2 to

get a representative pixel, RP k2
j . Namely, RP k2

j = ([xk2
jv , xk2

ju], ˆvk2
j ) = warp(RP k1

i , D̂k1).

Note that ˆvk2
j = ˆvk1

i . The function warp transforms a pixel in a frame captured by a camera

X to a pixel in the frame captured by a camera Y . It is defined in the following equation:

warpX→Y (x, y, d) = KY R
T
Y RXK−1

X (x, y, 1)T + dKY R
T
Y (TX − TY ) (5.11)

where KX and KY is the intrinsic calibration matrix for camera X and Y , RX and RY

are the rotation matrix that describes the orientation of the camera X and Y in a world

coordinate system, TX and TY are the transition vectors that specify the position for camera

X and Y in a world coordinate system, (x, y) is the coordinate of the pixel in the image X

and d is the depth.

If the coordinate of RP k2
j is within the boundary of the frame Ik2, RP k2

j is used as
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a representative pixel. If the signal to noise ratio (SNR), SNRk2
pj

, for RP k2
j is greater

than the target PSNR, SNRt, namely, SNRk2
pj

≥ SNRt, the predicted pixel value, ˆvk2
j ,

of RP k2
j is kept as the quantized pixel value. Otherwise, ˆvk2

j is assigned a new quantized

value which guarantees that its signal to noise ratio is greater than the target PSNR. A flag,

fk2
p , is set for each predicted representative pixel to indicate whether the predicted pixel

value is used as the pixel label. In this way, we ensure that every predicted representative

pixel has correct label and helps the transductive learning algorithm find right labels for

unlabeled pixels. By reusing the representative pixels, total mp
k2 representative pixels can

be used as initial representative pixels to train the semi-supervised learner for the frame Ik2.

If the semi-supervised learning algorithm cannot learn a good model based on the predicted

representative pixels to make the predicted frame reach the target PSNR, the predicted pixel

value of every unlabeled pixel based on the current model is evaluated and pixels in high

error areas are identified and clustered. The algorithm then chooses q representative pixels

from each cluster and assigns those RPs correct labels which ensure that their signal to

noise ratios are greater than the target PSNR. The newly chosen representative pixels are

added into the labeled pixel set and the semi-supervised learner starts to train a new model.

The process repeats iteratively until the realized PSNR, SNRr, is within a threshold, ε,

of the target PSNR, SNRt. Fig. 5.3 illustrates the representative pixel selection process.

Finally, mn
k2 new representative pixels are selected. Therefore, total mk2 = mp

k2 + mn
k2

representative pixels are needed to compress the frame Ik2. To encode the frame Ik3, mk2

representative pixels in the frame Ik2 are first warped to mp
k3 RPs in the frame Ik3. This

process goes on until all u frames are encoded.

5.3.3 Residual Calculation

After choosing the right number of representative pixels to reach the target PSNR, residuals

need to be computed so that the entropy encoding can achieve a high compression effi-

ciency. Given a frame Ikj and its predicted frame Pkj , the straightforward way to calculate

the residual is to directly subtract the corresponding pixel value, pkj
i , in Pkj from the quan-

tized pixel value of a representative pixel, ˆ
vkj
i . Namely, Rkj

i =
ˆ

vkj
i − pkj

i . However, the

method might not be able to get good compression performance since the best prediction

for each representative pixel might be its neighbor representative pixels in the frame Ikj . In

this section, we propose a neighbor-graph based residual calculation scheme.

Given mkj representative pixels and their coordinates and quantized pixel value, our al-

gorithm first constructs a t-nearest neighbor graph based on the Manhattan distance between
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Figure 5.4: The Illustration of Neighbor Graph of RPs and Residual Calculation Process

coordinates of different representative pixels, which is defined in the following equation.

d(RPi, RPj) = |xi − xj | + |yi − yj| (5.12)

where RPi and RPj are two represent pixels with coordinates (xi, yi) and (xj , yj).

Each representative pixel in the graph has at least t neighbors and its degree is greater

than or equal to t. Fig. 5.4 shows a 2-nearest neighbor graph. Each representative pixel

maintains an ascending order list of its neighbors based on the Manhattan distance and co-

ordinates. The neighbors are first ordered by Manhattan distance. When two neighbors have

the same Manhattan distance, the neighbor with smaller coordinates is in front of the one

with larger coordinates. Based on the neighbor graph, the algorithm can decide a unique

encoding order to calculate the residual of each representative pixel after the first coded rep-

resentative pixel is determined. The first coded representative pixel can be randomly chosen

or follow some guidelines such that the representative pixel with the smallest coordinate is

always coded first as the case shown in Fig 5.4 or the representative pixel with the smallest

absolute residual value in the predicted frame is always coded first. The residual of the first

coded representative pixel is always calculated by deducting its corresponding pixel value

in the predicted frame Pkj .

The algorithm maintains three set of representative pixels: coded RP set, SC, candidate

RP set, SN, uncoded RP set, SU. SC includes the representative pixels whose residual is
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already calculated. SN includes the representative pixels from which the next coded repre-

sentative pixel will be selected. SU is composed of representative pixels whose residuals are

not yet computed. For each representative pixel, the algorithm also maintains a variable,

fm, to indicate from which representative pixel its residual is calculated. For a t-nearest

neighbor graph, fm has t + 1 values to indicate t + 1 possible mode. fm = 0 means

that the residual is calculated from the corresponding pixel in the predicted frame Pkj .

fm = 1, · · · , w, · · · , t means that the residual is computed from the wth-nearest neighbor

representative pixel. Once the residual of the first representative pixel is coded, it is added

into the set SC. Then all its uncoded neighbor representative pixels are added into the set

SN. The next coded representative pixel is chosen from the set SN and has the property that

its shortest Manhattan distance with one of representative pixels in the set SC is smallest

among all the representative pixels in the set SN. When two or more representative pixels

have the same shortest Manhattan distance from the representative pixels in the set SC, the

representative pixel with the smallest coordinate is chosen to be coded next. The chosen

representative pixel calculates its residual with all its neighbor representative pixels in the

coded set SC and then selects the residual whose absolute value is the smallest as its final

residual and sets fm to indicate the neighbor representative pixel that leads to the smallest

residual. The process continues until the residuals of all the representative pixels are calcu-

lated or the set SN becomes empty. When SN is empty, it means that the neighbor graph is

disconnected as the case shown in Fig. 5.4 and then the representative pixel with the small-

est coordinate in the uncoded set SU is chosen to be the next coded representative pixel.

Experiments show that the neighbor graph approach has a better compression efficiency

than the straightforward one.

5.3.4 Entropy Coding

After calculating the residual for all representative pixels, the coordinates and residuals

of representative pixels are encoded by using arithmetic coding. Coordinates are coded

first. Only coordinates of new representative pixels in the frame {Ikj}, j = 2, · · · , u are

coded. The coordinates of representative pixels in the frame Ik1 that are chosen by the de-

terministic representative pixel selection algorithm need not be coded since the decoder can

use the same segmentation algorithm and deterministic representative pixel selection algo-

rithm to find them. The flag, fp, which indicates whether the pixel values of the predicted

representative pixels are reused or not, are then coded. Finally, the residuals of unreused

representative pixels and new representative pixels and their prediction mode fm are coded.
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Note that the coding order of residuals must follow the same order from which residuals

are computed. A zero-order word-based arithmetic coding algorithm [148] is used in our

implementation.

5.3.5 Decoding

As shown in Fig. 5.1, the decoder first computes the representative pixels based on the re-

constructed frame ˆIk1 by using the same algorithm as the encoder. Then it decodes the

coordinates of new representative pixels in the frame Ik2 and then builds the same neighbor

graph based on the coordinates of all representative pixels. Following the algorithm that

computes the residuals at the encoder, the decoder can recover pixel values of all represen-

tative pixels in the frame Ik2. Lastly, based on the representative pixels and the predicted

frame, the transductive learning algorithm can reconstruct the original frame ˆIk2. The pro-

cess continues until all the frames are decoded.

5.4 Experiments

We evaluate the performance of LMVC on compressing luminance frames and chrominance

frames and compare its performance with JMVM. The 624×464 “Santa Claus” and 1072×

768 “Breakdance” [3] multiview video sequence are used to study the performance of our

algorithm. The “Santa Claus” sequence has 9 views and the “Breakdance” sequence has 8

views.

LMVC is first used to compress the luminance frames. The Y components of multiview

video sequences are compressed. We first examine whether representative pixel selection

algorithm works properly and selects right pixels to compress multiview videos. Fig. 5.5

shows some decoded images and distribution of representative pixels over the Y frame for

“Santa Claus” sequence during the training phase. The PSNR threshold, ε, used in this

experiment is 0.1dB and the target PSNR, SNRt, is 43.11dB. This shows that represen-

tative pixel selection algorithm works well and the algorithm could automatically choose

representative pixels along boundaries and around occlusion regions where there are sharp

pixel intensity change and great prediction error and thus it is generally hard for the semi-

supervised learner to assign them correct labels.

Fig. 5.6 shows the evolution of PSNR and the number of RPs during the course of

training for view 2 of the “Santa Claus” sequence. It has similar characteristics to the results

described in [142]. Namely, initially it takes a relatively small number of representative

pixels to quickly improve the realized PSNR, SNRr, however, it takes a large number of
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(a) Original Y Frame

(b) Depth
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(c) Decoded Y Frame, Iter = 1

(d) RPs, Iteration = 1
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(e) Decoded Y Frame, Iter = 51

(f) RPs, Iter = 51
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(g) Decoded Y Frame, Last Iter

(h) RPs, Last Iter

Figure 5.5: Compressing Luminance Frames of “Santa Claus” by LMVC
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Figure 5.6: PSNR and Number of RPs Evolution Example When Compressing Y Frames
of “Santa Claus” Sequence
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Figure 5.7: Rate-Distortion Performance of LMVC on luminance frames of “Santa Claus”
Sequence

representative pixels in later iterations but with only moderate improvement of signal to

noise ratio. Results for other views are similar.

Fig. 5.7 shows the rate-distortion performance of LMVC on compressing luminance

frames of the “Santa Claus” sequence. There is still a large gap between LMVC and JMVM.

The reason for the poor performance of LMVC on luminance frames might be because the

predicted frame based on frames in the neighbor views is not good enough for LMVC to

construct a good adjacency graph to predict the unknown pixel values based on the known

representative pixels. Results for the “Breakdance” video is similar.

We also evaluate the performance of LMVC on compressing chrominance frames,

namely, the U and V component of an image. In this case, the luminance frame is used

to construct the adjacency graph. Fig. 5.8 shows the decoded U frames and representative

pixels of “Breakdance” sequence during the training phase. The target PSNR, SNRt, in

this experiment is 42.8dB and PSNR threshold, ε, is 0.1dB. The process to compress the V

frames is similar.

Fig. 5.9 shows the evolution of PSNR for U frames and number of RPs when LMVC is

used to compress the chrominance frames of “Breakdance” sequence. Similar to the case

of compressing luminance frames, PSNR can improve very fast initially as the number of
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(a) Original U Frame

(b) Depth
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(c) Decoded U Frame, Iter = 1

(d) RPs, Iteration = 1
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(e) Decoded U Frame, Iter = 11

(f) RPs, Iter = 11
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(g) Decoded U Frame, Last Iter

(h) RPs, Last Iter

Figure 5.8: Compressing Chrominance Frames of “Breakdance” Sequence by LMVC
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Figure 5.9: PSNR and Number of RPs Evolution Example When Compressing Chromi-
nance Frames of “Breakdance” Sequence
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Figure 5.10: Rate-Distortion Performance of LMVC on chrominance frames of ”Santa
Claus” Sequence

representative pixels increases. A relative large number of representative pixels can only

get moderate PSNR improvement at later iterations.

Rate-distortion performance of LMVC on compressing chrominance frames is also

compared with JMVM. Fig. 5.10 and Fig. 5.11 show the rate-distortion performance of

LMVC on compressing chrominance frames of “Santa Claus” sequence and “Breakdance”

sequence. LMVC has a large performance gap with JMVM when the target PSNR is high

and can achieve a comparable performance with JMVM when the target PSNR is low. The

reason might be that the algorithm can learn a good prediction function from a small number

of representative pixels to achieve a relative low target PSNR but need a very large number

of representative pixels to learn an accurate prediction function for the high target PSNR.

5.5 Conclusion

In this chapter, we propose a novel learning-based multiview video compression frame-

work. LMVC intends to efficiently compress multiview video represented by the MVD

format. We model the multiview video compression as a semi-supervised learning prob-

lem and find ways to solve it efficiently. LMVC roots at the sound learning theory and is
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Figure 5.11: Rate-Distortion Performance of LMVC on chrominance frames of “Break-
dance” Sequence

significantly different from previous multiview video coding approaches. The results show

that our scheme still has a significant gap with JMVM when it is used to compress lumi-

nance frames. In the case of compressing chrominance frames, there is also a large gap with

JMVM when the target PSNR is high. LMVC can achieve a comparable performance as

JMVM when the target PSNR is relatively low. The rate-distortion performance of LMVC

depends on how good the adjacency graph is. When the label values between connected

nodes in the adjacency graph is similar, the performance is good as the case for chromi-

nance frame compression. Otherwise, the performance is bad as the case for luminance

frame compression.
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Chapter 6

Symmetric Distributed Source
Coding

6.1 Introduction

As discussed in Chapter 2, distributed source coding is an underlying scheme for dis-

tributed multiview video coding. It also has broad applications in wireless sensor net-

works [149]. Distributed source coding is based on the theorem proved by Slepian and

Wolf in 1970s [40]. The fascinating aspect of distributed source coding is that efficient

compression of two or more sources can be achieved by separate encoding and joint de-

coding. The achievable rate region of distributed source coding is shown in Fig. 2.4. As

we mentioned in Section 2.1.3, distributed source coding methods can be grouped into two

classes: asymmetric distributed source coding (ADSC) and symmetric distributed source

coding (SDSC). ADSC corresponds to the corner point in the achievable rate region shown

in Fig. 2.4. SDSC refers to the schemes that can achieve an arbitrary rate point in the

achievable rate region.

Slepian and Wolf’s seminal work inspires other researchers to produce dozens of ensu-

ing theoretical papers [150]. However, practical distributed source coding algorithm was not

developed until Pradhan and Ramchandran’s work in 1999 [151]. Since distributed source

coding is dual to channel coding [42], powerful channel codes such as lattice codes, convo-

lutional codes, Turbo codes and low density parity check codes (LDPC), can all be used to

realize distributed source coding. Algebraic binning is the basic idea to construct the prac-

tical distributed source codes, which was first introduced by Wyner in the seventies [152].

The majority of early research effort is focused on asymmetric distributed source coding.

A survey in 2004 [149] summarizes the early results. With asymmetric distributed source

codes, symmetric distributed source coding can be achieved straightforwardly through time
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sharing or source splitting approaches [153, 154]. However, these methods are hard to de-

ploy in real world because time sharing requires accurate time synchronization and source

splitting induces practical performance loss and increases implementation complexity.

Although it appears difficult to design one channel code to achieve the entire Slepian-

Wolf rate region at first sight, several researchers have proposed excellent solutions to

realize symmetric distributed source coding [155, 156, 157, 158, 159, 160]. These ap-

proaches can be classified into two classes: parity-based approaches and syndrome-based

approaches. [160, 158] are parity-based approaches, where a decoder recovers the origi-

nal source bits by processing the information bits and parity bits generated by an encoder.

Garcia-Frias and Zhao [160] propose one of earliest papers on symmetric distributed source

coding, which lets two correlated sources X and Y pass through a Turbo code encoder and

achieves the arbitrary rate by puncturing the systematic bits and parity bits. Sartipi and

Fekri [158] use non-uniform LDPC codes and rate-compatible LDPC codes to achieve the

entire rate region. [155, 156, 157, 159] are syndrome-based approaches where a decoder

deciphers the original source from part of source bits and syndrome bits generated by an

encoder. [155, 156, 157] share the similar idea that a decoder first retrieves the syndrome

of the difference pattern between X and Y , and then decodes the difference pattern from

the syndrome by using a powerful Turbo or LDPC code, and finally solves linear equations

to obtain all the original information bits by exploiting the unique property of linear chan-

nel codes. Schonberg [159] uses the sum-product algorithm in an extended Tanner graph

to decode original source bits. [156, 157] needs one linear channel code to encode both

sources. [155, 159], which both have roots in [161], construct independent subcodes from

one main channel code and use them to realize the symmetric distributed source coding.

The aforementioned symmetric distributed source coding approaches are elegant and

able to create capacity-approaching codes. However, it is still difficult to use them in the

real world. There are two main disadvantages in previous symmetric distributed source cod-

ing schemes. First, the decoding procedure in previous syndrome-based approaches [155,

156, 157, 159] is a dependent process. Namely, the decoding of sources are dependent to

each other. In other words, given two sources X and Y , to recover X (Y ), the decoding pro-

cess needs to iteratively utilize the partial information of Y (X). The dependent decoding

procedure propagates the decoding error and make it hard to design capacity-approaching

code. Unlike these syndrome-based approaches, the parity-based scheme in [158] proposes

a decoding process where the decoding of sources are independent to each other. Second,

all previous approaches implicitly assume that an encoder knows the exact bit correspon-
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dence between correlated sources, X and Y . However, this assumption is not true in most

cases due to various reasons. For example, in the camera sensor network, pixel correspon-

dence between two correlated images is not known at the encoder and can only be inferred

at the decoder since there is no communication channel between two encoders. Without the

knowledge of bit correspondence, many algorithms [156, 158, 155] will fail to work since

bit mismatch problem makes it impossible for the decoder to correctly recover the syndrome

of the difference pattern between X and Y , and thus the decoder is unable to decipher the

difference pattern, X⊕Y , though they offer mathematically provable capacity-approaching

codes. The decoder normally knows the bit correspondence. Though authors do not specif-

ically address the bit mismatch problem, the algorithm [159] can successfully decode the

original mismatched sources because the process to recover the bit correspondence can be

easily integrated into the decoding process as shown in Fig. 6.1(a) and 6.1(c), where bit

correspondence between sources is modeled as a mapping, π, which specifies the bit map-

ping between two sources. However, the code partitioning technique makes it difficult to

design capacity-approaching codes since it requires both the main code and two subcodes

to be good codes [159]. Specifically for LDPC code, authors in [159] give a future research

direction to possibly use a nested LDPC design algorithm to construct capacity-approaching

codes. if not impossible, it is still hard to realize such a nested code design procedure.

In this chapter, we strive to design novel symmetric distributed source coding schemes

to address the shortcomings of previous schemes. First, inspired by the work of Sartipi and

Fekri [158], we propose a syndrome-based symmetric distributed source coding scheme that

has an independent decoding procedure. Similar to [158], non-uniform parallel channels

are used to model the correlation between two sources. The scheme is called Syndrome-

based Nonuniform Symmetric Slepian-Wolf Coding scheme (SNS-SWC). Second, inspired

by the work [156, 159], we propose an enhanced symmetric distributed source coding ap-

proach that combines both advantages of the two previous approaches. Namely, at the

encoder we use one capacity-approaching code to encode the correlated sources, which

helps us circumvent the difficulty of code construction in [159]; at the decoder we use the

message-passing algorithm on the extended Tanner graph, which makes it easy to handle

the bit mismatch problem. We call the approach Enhanced Extended Tanner Graph (EETG)

method. We also put forward a simple heuristic to construct the extended Tanner graph to

achieve better decoding performance. Furthermore, we introduce a general framework to

handle the bit mismatch problem. This work is published in [162]

The remainder of the chapter is organized as follows. Section 6.2 gives an overview of
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Figure 6.1: Illustration of Encoder and Decoder Using Extended Tanner Graph. π is a
mapping, which is used to change the bit order of a source.
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three previous symmetric distributed source coding approaches [158, 156, 159] in detail.

SNS-SWC is presented in Section 6.3. In Section 6.4, we elaborate on the details of EETG.

Simulation results are presented in Section 6.5. Conclusion is drawn at Section 6.6.

6.2 Background

In this section, we first give some definitions related to bit correspondence that will be

used in the later sections. Then we give an overview of the symmetric distributed source

coding schemes proposed in [158, 159, 156]. The scheme in [158] is called “Parity-based

Nonuniform Symmetric Distributed Source Coding scheme (PNS-DSC)”. The approach

in [159] is termed “Two-machine Algorithm (TM)”, and the method in [156] is called

“Symmetric SF-ISF (Syndrome Former - Inverse Syndrome Former) Framework (SSIF)”.

These approaches are general and can be realized with any linear channel code. To facilitate

easy exposition, we use LDPC codes as an example to explain the basic ideas. The virtual

correlation channel is BSC.

6.2.1 Bit Correspondence

Given two n-bit sources, X and Y , bit correspondence is defined as a mapping between bit

Xi and its correlated bit, Yj . Namely, let π be the mapping, then π(i) = j. Given a bit

location, i, which satisfies 1 ≤ i ≤ n, and a mapping, π, let γ = |i−π(i)|. If 0 ≤ γ ≤ n, the

mapping π is called arbitrary mapping. If 0 ≤ γ ≤ t < n, the mapping π is called bounded

mapping. if the mapping is independent of time and source blocks and an encoder knows

the mapping as a priori knowledge, the encoder is said to be aware of bit correspondence

between two sources. Otherwise, the encoder is oblivious to the bit correspondence. In

PNS-DSC, TM and SSIF, the authors assume that the mapping between two sources is an

identity mapping and an encoder knows the mapping. Namely the mapping, π, shown in

Fig. 6.1 has the form π(i) = i.

6.2.2 Parity-based Nonuniform Symmetric Distributed Source Coding

PNS-DSC [158] achieves the entire Slepian-Wolf rate region by sending parity bits. Fig. 6.2

illustrates its architecture. The basic idea of PNS-DSC is to use two systematic LDPC codes

to encode two correlated sources X and Y . The correlation channel is assumed to be BSC

(Binary Symmetric Channel). The k-bit source X is encoded by a systematic LDPC code of

rate rX = k
k+|P1|

, where |P1| denotes the cardinality of the parity bits P1. The encoder then

sends the parity bits P1 and the first qk bits of the information bits to the communication
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Figure 6.2: Architecture of Parity-based Nonuniform Symmetric Distributed Source Coding
Scheme

channel. Thus, the compression rate of X is RX = qk+|P1|
k

. Similarly, the source Y can

be encoded by a systematic LDPC code of rate rY = k
k+|P2|

and the encoder sends the

corresponding parity bits P2 and the complement (1 − q)k information bits in Y to the

communication channel. The compression rate of Y is RY = (1−q)k+|P2|
k

. To losslessly

recover the source X and Y at the decoder, the cardinality of P1 and P2 should be at least

(1 − q)kH(p) and qkH(p). Namely, |P1| = (1 − q)kH(p) and |P2| = qkH(p). Thus

the compression rates of X and Y are q + (1 − q)H(p) and 1 − q + qH(p). A single

rate-compatible channel code can be used to realize the channel codes for compressing X

and Y through puncturing.

The source in PNS-DSC is encoded through the systematic generator matrix and parity

bits are sent to the communication channel. The decoder of PNS-DSC includes two inde-

pendent sub-decoders which is responsible for decoding the source X and Y respectively.

Each sub-decoder uses a standard message-passing algorithm to decode the original source

based on the received parity bits and partial information bits.

6.2.3 Two-Machine Algorithm

The Two-Machine algorithm realizes any point in the entire rate region by creating two sub-

codes from a main code. Both the main code and subcodes need to be capacity-approaching

codes to avoid practical performance loss.

Fig. 6.1(a) illustrates its encoder architecture. Given the parity check matrix of two
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subcodes, encoding is realized by straightforward multiplication of the parity check matrix

and the sources. Namely, Sx = H1X and Sy = H2Y . The resulting syndromes, Sx and

Sy, are transmitted to the decoder.

Fig. 6.1(c) shows the extended Tanner graph used by the message-passing decoding al-

gorithm. The message-passing algorithm for each single Tanner graph is exactly the same

as the typical message-passing algorithm used to decode LDPC codes. The only difference

is that messages are also passed between two Tanner graphs to exchange extrinsic informa-

tion. The exact formulas to calculate the extrinsic information can be found in [159]. A

column dropping procedure is proposed to create parity check matrices of subcodes from

the parity check matrix of the main code. The column-dropping procedure might not guar-

antee to generate capacity-approaching subcodes. Further research effort is needed to refine

the column dropping procedure [159].

6.2.4 Symmetric SF-ISF Framework

SSIF uses one channel code to achieve an arbitrary rate pair. Its encoder structure is illus-

trated in Fig. 6.1(b). SSIF requires two encoders using the same parity check matrix, which

is the syndrome former of a LDPC code. Let H = H1 = H2 and its size is m × n. Then

the sum rate of two sources is m + n. Each encoder transmits its syndrome, m bits, and

complementary subset of first n−m bits. Different rates between two sources are achieved

by adjusting what subsets of source bits to transmit.

X

Y

Z

m

n

k n − m − k m

Sx

Sy

Figure 6.3: Illustration of the Second Decoding Step in SSIF Decoder. The gray areas
represent the bits known before the second step decoding.

The decoder in SSIF proceeds in two steps. Given two binary sources, X and Y . Let Z

be the difference patten of X and Y . Namely Z = X ⊕ Y . In the first step, the syndrome

corresponding to Z can be obtained through Sz = Sx ⊕ Sy. Then Sz is passed through a

inverse syndrome former, which is H−1 for LDPC codes, to get the noise codeword of the

difference patten, Z . Z can be recovered after passing the noise codeword into a channel

decoder corresponding to H . In the second step, with the knowledge of the difference
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pattern, Z , Xn−m
k+1 and Y k

1 can be recovered through the following equations:

Xn−m
k+1 = Y n−m

k+1 ⊕ Zn−m
k+1 (6.1)

Y k
1 = Xk

1 ⊕ Zk
1 . (6.2)

To decipher the rest of bits, SSIF partitions H into two sub-matrices:

Hm⊕n = [Am⊕(n−m), Bm⊕m]

where B is square matrix and must have full rank. Since

Sx = HX = [A,B]

[

Xn−m
1

Xn
n−m+1

]

= AXn−m
1 ⊕ BXn

n−m+1

we can obtain the remaining m source bits using

Xn
n−m+1 = B−1(Sx ⊕ AXn−m

1 )

After recovering all bits of X , the m remaining bits of Y can be recovered through

Y n
n−m+1 = Xn

n−m+1 ⊕ Zn
n−m+1. Fig. 6.3 illustrates the second decoding step.

From the decoding process of SSIF, it is obvious that the performance gap between

SSIF and the theoretical limit solely depends on how well the channel code performs on

the equivalent virtual correlation channel between two sources. In addition, SSIF imposes

stringent requirement on bit correspondence at the encoder. The bit mismatch problem will

cause the decoder to fail.

6.3 Syndrome-based Non-uniform Symmetric Slepian-Wolf Code

In this section, we propose a novel approach to realize symmetric Slepian-Wolf coding.

We call the proposed approach the Syndrome-based Nonuniform Symmetric Slepian-Wolf

Coding scheme (SNS-SWC). It is inspired by PNS-DSC [158]. The basic idea of the pro-

posed approach is to design two nonuniform LDPC codes [163] and let each source transmit

a complement set of source bits and syndrome bits. Its architecture is illustrated in Fig. 6.4.

Given two correlated n-bit sources, X and Y , Slepian-Wolf theorem dictates that com-

pression rates RX ≥ H(X|Y ), RY ≥ H(Y |X) and RX + RY ≥ H(X,Y ). To facilitate

exposition of the basic idea, the virtual correlation channel between two sources is assumed

to be a BSC (Binary Symmetric Channel). In this case, RX ≥ H(p), RY ≥ H(p) and
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Figure 6.4: The Architecture of the Syndrome-based Nonuniform Symmetric Slepian-Wolf
Coding Scheme

RX + RY ≥ 1 + H(p), where p is the crossover probability P (X 6= Y |X). We intend

to design a symmetric Slepian-Wolf coding scheme to achieve the following compression

rates:

RX =
nX + (n − nX)H(p)

n
(6.3)

RY =
n − nX + nXH(p)

n
(6.4)

where nX is the number of source bits directly transmitted by source X. Let q = nX

n

represent the fraction of transmitted source bits. Then we have

RX = q + (1 − q)H(p) (6.5)

RY = 1 − q + qH(p). (6.6)

Thus the rate of LDPC codes, rX and rY , that realize the proposed symmetric Slepian-Wolf
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coding scheme should satisfy the following constraints:

rX =
kX

n
(6.7)

=
n − (n − nX)H(p)

n
(6.8)

= 1 − (1 − q)H(p) (6.9)

rY =
kY

n
(6.10)

=
n − nXH(p)

n
(6.11)

= 1 − qH(p) (6.12)

where kX and kY is the number of information bits of LDPC codes used to compress source

X and source Y. Obviously, as q varies from 0 to 1, the compression rates of two sources, RX

and RY , change in the range [H(p) 1+H(p)]. Namely, the scheme can achieve an arbitrary

rate in the Slepian-Wolf rate region. In the case of q = 1/2, the encoder uses the equal rate

to compress source X and Y , we have RX = RY = 1+H(p)
2 and rX = rY = 1 − H(p)

2 .

6.3.1 LDPC Code Design

The LDPC code used in SNS-SWC can be deemed as an LDPC code for two parallel chan-

nels as shown in Fig. 6.5, where one part of the code bits are transmitted to the decoder

losslessly through a perfect channel and while the other part of code bits are not transmit-

ted, their information can be inferred from the perfectly available complement bits of the

other source based on the virtual correlation channel between them. Let Zi, i = 1, 2, denote

the random variable that is equal to the log-likelihood ratio (LLR) of a received bit from the

ith channel. The LLR distribution of a received bit can be represented by a single channel

by using the two channels. Namely

PZX
(z) = qPZ1

(z) + (1 − q)PZ2
(z) (6.13)

PZY
(z) = (1 − q)PZ1

(z) + qPZ2
(z) (6.14)

where Z1 is the perfect channel and Z2 is the BSC.

The proposed LDPC code has similar format to PNS-DSC [158]. They both are LDPC

codes for a nonuniform channel [163] which are composed of two parallel channels. There-

fore, the proposed LDPC code profile can be designed using either the classical single-

channel density evolution algorithm [53] or the density evolution algorithm of nonuniform

channels in [163]. The difference between the two approaches is that our approach is a

syndrome-based approach and treats the n source bits as the code bits and uses the parity
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check matrix to encode the sources while PNS-DSC [158] is a parity-based approach and

treats the n source bits as the information bits and uses the systematic generator matrix to

encode the sources.

6.3.2 Encoding

The left part of Fig. 6.4 illustrates the encoder structure of the proposed symmetric Slepian-

Wolf code. Each encoder transmits a complement set of source bits and the corresponding

syndrome bits. Different rates of two sources are achieved by adjusting the proportion of

source bits to be perfectly transmitted.

6.3.3 Decoding

The decoder structure is shown in the right part of Fig. 6.4. The decoder includes a separate

LDPC decoder for each source X and Y . The architecture makes it possible to avoid

dependent decoding. Hence, it prevents error propagation that will happen in previous

syndrome-based schemes [156, 155, 159, 162]. The decoder of X receives the first part of

the source bits perfectly. To reconstruct the whole sequence, the decoder tries to recover

the remaining bits based on the part of source bits of Y which is perfectly received by the

decoder. The decoder considers the missing bits of X as the output of a BSC with the

crossover probability p whose input is perfectly available bits of Y . The decoder of Y

follows the same algorithm. The decoding algorithm in each LDPC decoder is the standard

message passing algorithm. The only difference between the decoding algorithm in SNS-

SWC and the original LDPC decoding algorithm is the initialization of LLR values. The

initial LLR values of all bits used in the message passing algorithm are set based on the type

of channel to which the bit belongs. The bits passing through the perfect channel have their

LLR values set as ±∞. The LLR values of the bits passing through the BSC(p) channel are

equal to ±log 1−p
p

.
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6.4 Enhanced Extended Tanner Graph

In this section, we discuss the proposed symmetric distributed source coding approach

(EETG) that can handle the bit mismatch problem at encoder. The idea is simple and

intuitive. EETG takes advantage of both benefits of the Two-Machine algorithm and SSIF.

It simplifies the code design and relaxes the bit correspondence requirement at an encoder.

EETG is realized by LDPC codes.

6.4.1 Encoder Design

The design objective is to find a symmetric distributed source coding approach that make it

easy to construct a capacity-approaching code and can handle potential bit mismatch prob-

lem at the encoder. It turns out that turbo-like iterative decoding is the only option since

mapping and inverse mapping operation can be naturally integrated into such a decoder.

Because the two-machine algorithm [159] is essentially an iterative decoding algorithm, we

thus decide to use the message-passing algorithm in an extended Tanner graph as the de-

coding algorithm. However, it is difficult to construct good subcodes if we follow the code

partitioning philosophy [161]. Inspired by the observation that the work [159, 155] both

root back to the code partitioning idea [161] and [156, 155] share the same ingredient to

realize the symmetric distributed source coding while [156] does not use code partitioning,

we realize that one channel code without partitioning should be able to achieve similar per-

formance when it is used in the iterative message-passing algorithm in an extended Tanner

graph. Without much thought, it is evident that a channel code and its permutation equiv-

alent code should be used. It is well known in algebraic coding theory that a channel code

and its permutation equivalent code have the same weight distribution and thus same error

correction capability. Fig. 6.1(b) illustrates the encoder structure of the proposed approach.

H2 is formed by permutation of the columns of H1. It is almost the same as the encoder

used in [156]. The only difference is that two parity check matrices in EETG are specially

designed permutation equivalent matrices while they are the same matrix in [156]. Com-

pared with two same matrices, permutation equivalent parity check matrices make it easy

to reduce the the number of short cycles that go across two Tanner graphs and thus can im-

prove the decoding performance. Like SSIF, EETG achieves the entire Slepian-Wolf region

by adjusting which subsets of source bits are transmitted.
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6.4.2 Decoder Design

Given a capacity-approaching channel code, the key to the decoder design is to construct a

good extended Tanner graph to improve the performance of message-passing algorithm. In

the case of LDPC codes, given a LDPC code ensemble profile (λ, ρ), the question is how

we should choose a parity check matrix and its permutation equivalent matrix to construct

a good extended Tanner graph. The naive approach would be to randomly choose a code

from the code ensemble as the parity check matrix and get a permutation equivalent matrix

by randomly permuting the columns of the known parity check matrix and then construct

the extended Tanner graph to decode the sources. Experiment results in Section 6.5 show

that this method performs poorly. We propose a simple heuristic to construct a parity check

matrix and its permutation equivalent parity check matrix from a given channel code en-

semble profile. Algorithm 4 gives the pseudo code to construct the parity check matrix

and its permutation equivalent parity check matrix. Fig. 6.6 illustrates the structure of the

constructed extended Tanner graph.

We construct the extended Tanner graph by observing the following basic guidelines:

(1) reduce as many short cycles as possible; (2) let the transmitted source bits associate with

variable nodes with large degree; (3) let the extrinsic information propagate into ambiguous

nodes as soon as possible. The heuristic approach described in Algorithm 4 is a specific

realization of the above principles. Variable nodes in A consist of the set of information

variable nodes since their initial log-likelihood ratio (LLR) is ±∞ or ±log 1−p
p

, where p is

the crossover probability of the BSC virtual correlation channel, and includes most infor-

mation about their original bits. Variable nodes in C consist of the set of internal reachable

variable nodes since extrinsic information can be directly obtained from variable nodes in

A from the same Tanner graph. Variable nodes in D consist of the set of external variable

nodes since they can only obtain their extrinsic information initially from the other Tanner

graph. The variable nodes in E consists of the set of isolated variable nodes since they only

obtain their extrinsic information after all other nodes have their extrinsic information.

The rationale to partition H1 into A and B is inspired by the second decoding step of

SSIF. We let the initially most ambiguous bits, whose initial LLR is 0, associate with B

and hope that if all n − m bits in A is known, the rest m bits can be quickly decoded.

In addition, the partition makes the asymmetric case naturally fit into the scheme. In the

asymmetric case, one node transmits n−m source bits and m syndrome bits in our scheme;

the other node transmits m syndrome bits. Since our construction guarantees that n − m
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Figure 6.6: Illustration of Permutation Equivalent Parity Check Matrix Construction. A
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set of isolated variable nodes. The dashed arrow indicates the degree decreasing direction
of variable nodes in A for each matrix (Tanner graph).
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Algorithm 4 Pseudo Code to Construct A Parity Check Matrix and Its Permutation Equiv-
alent Parity Check Matrix

1: λ : variable node degree distribution
2: ρ : check node degree distribution
3: H1 : parity check matrix
4: H2 : permutation equivalent parity check matrix
5: n : the code length
6: m : the syndrome length

7: Randomly construct a Tanner graph as H1 based on the channel code profile (λ, ρ);
8: Partition H1 into two matrices Am×(n−m) and Bm×m. Make sure that B is full rank

and the degree of variable nodes in B is as small as possible;
9: Partition B into three matrices Cm×u, Dm×u, and Em×(m−2u). Suppose that all n−m

variable nodes in A are known, make sure that all u variable nodes in C are success-
fully decoded under BEC assumption and no variable nodes in D and E can be de-
coded using message-passing algorithm in the Tanner graph of H1. Suppose that all
n − m variable nodes in A and 2u nodes in C and D are known, make sure that all
m− 2u variable nodes in E can be successfully decoded under BEC assumption using
message-passing algorithm in the Tanner graph of H1;

10: Sort the columns in A based on variable node degree so that the degree of variable node
associated with each column is in non-increasing order from left to right;

11: H1 = [AEDC];
12: Sort the columns in A based on variable node degree so that the degree of variable node

associated with each column is in non-decreasing order from left to right;
13: Randomly permute columns in C D E;
14: H2 = [AECD];
15: Construct the extended Tanner graph based on H1 and H2;
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bits correspond to A and B is full rank, the n original source bits can be easily decoded

by solving m linear equations. The other source can then be decoded using sum-product

algorithm in a Tanner graph. The reason that we let the variable nodes in B have low degree

is to mitigate the negative effect of the most ambiguous bits on the decoding of other bits.

According to the message update rule, shown in Eqn. 2.13, of the sum-product algorithm

in check nodes, if the message in one of the neighbor nodes is zero, the output message

of the check node is zero. Therefore, if the degree of variable nodes in B is large, the

extrinsic information propagation will be slow and some bits are hard to decode. Similarly,

our intention to sort the variable nodes in A based on their degree is to let the transmitted

source bits, whose LLR is ±∞, to associate with large degree variable nodes and thus

maximize their positive impact to decode other source bits. The exchange of C and D in

the parity check matrix and its permutation matrix aims to accelerate the propagation of

extrinsic information since variable nodes in C can get extrinsic information directly from

internal iteration and variable nodes in D initially have no way to get extrinsic information

from internal iterations. The Binary Erasure Channel (BEC) assumption is used in the

pseudo code because the extrinsic information propagation from known variable nodes to

the ambiguous variable nodes is much like the decoding of erasure bits in a BEC channel.

6.4.3 Handling The Bit Mismatch Problem

Though our approach relaxes the stringent requirement on bit correspondence at the en-

coder, it still cannot totally eliminate all the problems created by lack of knowledge of bit

correspondence at an encoder. The major problem created by the bit mismatch is that there

is no way for two encoders to send non-overlapped source bits if the mapping between two

sources is arbitrary and unknown at the encoder. Overlapped source bits will induce perfor-

mance loss at the decoder since less information is available for the decoder to decipher the

original source bits.

However, the parity check matrices and the extended Tanner graph can be modified to

avoid the sending of overlapping bits by encoders if the mapping is bounded and can be

described by the following equation.

π(i) =

{

j j ∈ [1 k1 + m1], i ∈ [1 k1];
j j ∈ [n − k1 − m1 n], i ∈ [n − k2 n].

(6.15)

where k1 and k2 are length of source bits sent by two separate sources and satisfy k1 +k2 =

n − m, and 0 ≤ m1 ≤ m.

For example, as shown in Fig. 6.7, we can move the matrix B to the middle portion of
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the parity check matrix H and let one encoder transmit the first k1 source bits and let the

other decoder transmit the last k2 = n − m − k1 bits. Then no bit overlapping will occur.

Thus the proposed approach can tolerate some degree of bit mismatch and is more suitable

to be used in the real world.

6.5 Simulation Results

In this section, we present simulation results to evaluate the performance of SNS-SWC

and EETG. Results on different code length and rate pairs are compared since they have a

significant impact on the performance of distributed source coding schemes. Bit Error Rate

(BER), which is the ratio between the number of unsuccessfully decoded bits to the code

length, is used as a performance metric. In our simulation, two independent and identically

distributed (i.i.d) binary sources, X and Y , are generated with a BSC(p) correlation, where

p is the switching probability.

We first present the performance evaluation results for SNS-SWC. Based on the ratio of

source bits directly transmitted by two sources, the rate of LDPC codes can be calculated

using Eqn. 6.9 and Eqn. 6.12. LDPC codes are then designed using the density evolution

algorithm [53] for the nonuniform channel that is comprised of a BSC channel and a perfect

channel.

We first evaluate the performance of compressing both sources at different rate pairs.

Fig. 6.8 gives the log-scale bit error rate (BER) when the code length is 10000. Each data

point is an average result with one million simulated bits. Results show that symmetric

rate pairs have similar performance to the asymmetric rate pair. It gives the expected per-

formance that the smaller the number of different bits between X and Y and their entropy

H(X,Y ), the lower the BER. We then compare the performance of SNS-SWC for different

code lengths. Fig. 6.9 shows the results for rate pairs (0.75, 0.75) and (0.8, 0.7). The graph

gives the expected results that BER decreases as the bit length increases.

We next present the performance evaluation results for EETG. We demonstrate the fea-

sibility and efficiency of EETG using a rate 1
2 irregular (n, k) LDPC code. The degree

distribution pair in example 2 of [53] is used to generate LDPC codes.

We first show the effectiveness of the heuristic structural code construction approach.

Fig. 6.10 compares the performance of the code generated by the random construction and

code generated by structural construction when the code length is 10000 and rate pair is

(0.75, 0.75). Results indicate that the code generated by the random construction has a
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Figure 6.8: Simulation Results under Various Rate Pairs for SNS-SWC. The code length is
10000.

consistent error rates regardless of the joint entropy rate. The code created by structural

construction is significantly better than the code generated by random construction. For

each data point, one million bits are simulated and the results are averaged. Experiments

on other code length and rate pairs have the similar results.

We then study the performance of compressing both sources at different rate pairs.

Fig. 6.11 shows the log-scale bit error rate (BER) when the code length is 10000. Results

indicate that asymmetric rate pair (1, 0.5) has better performance than other symmetric

rate pairs. The reason might be that the iterative message-passing algorithm is sub-optimal

in extended Tanner graph. The results of symmetric rate pairs are comparable to other

symmetric distributed coding approach using an iterative decoding procedure in extended

Tanner graph such as [159, 160].

We also compare the performance of EETG for different code lengths. Fig. 6.12 shows

the BER for different code lengths under two symmetric rate setup. Fig. 6.12(a) illustrates

the BER for different code lengths when RX and RY are both 0.75. Fig. 6.12(b) gives the

BER for different code lengths when RX is 0.9 and RY is 0.6. The results indicate that

the performance becomes better when the code length increases. However, when the joint

entropy of two sources are greater than a bound, for example, 1.4 in the presented case, the
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Figure 6.9: Simulation Results under Various Code Length for SNS-SWC
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Figure 6.10: Random Code Construction vs. Structural Code Construction for EETG. The
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(b) RX = 0.9 RY = 0.6

Figure 6.12: Simulation Results under Various Code Length for EETG
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(b) RX = 0.85 RY = 0.65

Figure 6.13: Simulation Results under Various Mismatch Ratio for EETG. The code length
is 10000.
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performance is generally poor and is independent of code length. The reason might be that

the sum-product decoding algorithm in the extended tanner graph is not powerful enough

to losslessly recover the original sources when joint entropy of two sources is near the rate

of the chosen channel code.

EETG is able to handle mismatched bits at the encoders by avoiding sending overlapped

bits. To evaluate its ability to handle mismatched bits, we use the following equation to

specify the mapping between two sources.

π(i) =

{

j j ∈ [1 k1 + ηm], i ∈ [1 k1];
j j ∈ [n − k2 − ηm n], i ∈ [n − k2 n].

(6.16)

where k1 and k2 are length of source bits sent by two separate sources and satisfy k1 +k2 =

n−m, and η is the mismatched ratio and is used to measure the degree of mismatched bits

between two sources and 0 ≤ η ≤ 0.5.

Eqn. 6.16 satisfies Eqn. 6.15 and can guarantee that no overlapped bits are sent. Fig. 6.13(a)

and Fig. 6.13(b) give the BER for different mismatched ratio when the rate pairs, RX and

RY , are (0.75, 0.75) and (0.85, 0.65). The code length is 10000. Results show that there

is a consistent performance gap between the case with mismatched bits (η > 0) and the

case without mismatched bits (η = 0). The reason is that the code design algorithm pre-

sented in Algorithm 4 has no way to guarantee that the initial LLRs of variable nodes with

large degree are known when there is unknown mapping between two sources. In other

words, some variable nodes with large degree become the most ambiguous nodes in the

extended Tanner graph. This makes the successful decoding difficult. In addition, the larger

the mismatched ratio η, the worse the performance. It is understandable since the larger

mismatched ratio makes more variable nodes with large degree become the most ambigu-

ous nodes. In the case of mismatched bits at encoders, EETG still needs to pay the cost of

performance degradation for the unknown mapping information between two sources even

if it avoids sending overlapped bits.

6.6 Conclusion

In this chapter, we propose two enhanced syndrome-based symmetric distributed source

coding schemes that addresses the shortcomings of previous approaches. The idea is sim-

ple and effective. Both SNS-SWC and EETG can achieve the whole Slepian-Wolf rate

region. SNS-SWC has two independent sub-decoders and thus is able to simplify the de-

coding process and avoid the error propagation. EETG simplifies the code construction
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procedure and relaxes the stringent requirement of bit correspondence at an encoder. A

simple code construction heuristic is put forward to construct good extended Tanner graphs

used in EETG from a single LDPC code profile. The performance of both SNS-SWC and

EETG will get better as the bit length increases. Regardless of the bit length, EETG has a

consistent performance gap with the capacity. When there is mismatched bits at encoders,

the decoding performance of EETG becomes a little worse.
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Chapter 7

Symmetric Distributed Multiview
Video Coding

7.1 Introduction

Research in multiview video coding initially focuses on joint multiview video coding (JMVC).

JMVC can achieve a high compression ratio. However, JMVC demands communication

between cameras to achieve compression. Recently distributed multiview video coding

(DMVC), which is rooted in the distributed source coding theory [149], has gained lots of

attention. Distributed source coding that exploits the statistics of source signals at the de-

coder to achieve the compression is essentially different from joint source coding such as

methods standardized by MPEG and H.26x which achieves the compression by exploiting

the source statistics at the encoder. Practical distributed video coding algorithms have been

developed in the past several years and [99, 39] summarize recent advances on distributed

video coding. In theory, DMVC holds the promise to achieve the same compression per-

formance as JMVC while demanding no communication between cameras. One particular

application scenario for DMVC in MVSN is to reduce the cost of video acquisition subsys-

tem as shown in Fig 7.1. Each video camera directly compresses the video using a DMVC

encoder and sends the compressed video to the server for joint decoding. The server can

then use a DMVC to MPEG/H.26x based JMVC transcoder to encode the video in the stan-

dard format and transmit compressed video over a network to receivers. The configuration

could be more cost-effective than the one using multiview video transcoder as illustrated in

Fig 4.1. Several distributed multiview video codecs [100, 101, 102, 164, 165, 166] have

recently been proposed. However, those approaches are based on asymmetric Slepian-Wolf

codes which can not achieve the whole Slepian-Wolf rate region and thus limit the rate

allocation options between the encoders.
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Figure 7.1: Illustration of A DMVC Application Scenario in Video Acquisition Subsystem

Thirumalai et. al [167], Taglisacchi et. al [168] and Yang et.al [105] use source splitting

and asymmetric Slepian-Wolf codes to realize symmetric distributed multiview video cod-

ing. However, source splitting might incur performance loss. Recently several researchers

have designed a capacity-approaching symmetric Slepian-Wolf code which can achieve the

whole Slepian-Wolf rate region [155, 156, 158]. Though these solutions are elegant, it

is difficult to use them to design symmetric distributed multiview video codec since they

implicitly assume that an encoder knows the exact bit correspondence between correlated

sources. In the case of distributed multiview video coding, pixel correspondence between

two correlated images is not known at the encoder and can only be inferred at the decoder

since there is no communication channel between two encoders. Without the assumption

of bit correspondence at the encoders, those approaches fail to decode the original source

at the decoder. Though the approaches proposed in [159, 162] can handle the bit mismatch

problem, it is still elusive to design capacity-approaching codes.

The key to address the pixel mismatch is for the decoder to know the disparity map

between two correlated images. There exists two generic approaches to handle the pixel

mismatch problem in previous DMVC schemes. The first method is that the decoder esti-

mates a rough disparity map from the rough images transmitted by the encoder [100, 165].

The second approach is to let the decoder learn the disparity in the decoding process using
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unsupervised learning algorithm [169, 170]. In this chapter, we put forward a symmetric

distributed multiview video codec (SDMVC) that uses the symmetric Slepian-Wolf code

SNS-SWC proposed in Section 6.3. It is published in [106]. The scheme estimates the

disparity between two correlated images at the decoder and then generates the side infor-

mation and uses the two independent sub-decoder to recover the original images. Thus,

the scheme is able to handle the pixel mismatch problem at the encoder. In addition, the

proposed symmetric multiview video codec can realize flexible rate allocation between two

encoders and outperform separate H.264 coding of two stereo video sequences.

The rest of chapter is organized as follows. Section 7.2 describes the details of the

proposed symmetric distributed multiview video codec. Experimental results are presented

in Section 7.3. The chapter concludes in Section 7.4.

7.2 Implementation Details of the Symmetric Distributed Mul-
tiview Video Codec
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Figure 7.2: The Architecture of The Symmetric Distributed Multiview Video Coding
Scheme

DMVC is the application of multiterminal source coding theory on multiview videos.

Since the multiterminal source coding theory [43, 44, 171, 172, 173, 45, 46] is not fully

developed even for jointly Gaussian sources for the cases with more than two terminals,

similar to previous distributed multiview video coding scheme, we also focus on compress-

ing stereo videos. For compressing multiview video with more than two views, it is can
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be straightforwardly realized by arranging two neighbor views as a group and using the

proposed scheme to distributedly encode them. Though the approach is not a theoreti-

cally sound method, it is useful in practice. In this thesis, we concentrate on addressing

key challenges to distributedly compress two videos. The architecture of the proposed

symmetric distributed multiview video coding (SDMVC) scheme is illustrated in Fig. 7.2.

The proposed SDMVC uses the SNS-SWC discussed in Section 6.3 as the underlying dis-

tributed source coding scheme. We call our symmetric multiview video coding scheme

SDMVC-SNS. Let IL = {IL1
, IL2

, · · · , ILn} and IR = {IR1
, IR2

, · · · , IRn} be the left

and right stereo video sequences, respectively. Pixels in both left and right videos are first

processed using standard H.264 algorithms such as intra-prediction or inter-prediction by

motion search to get corresponding residual coefficients. Residual coefficients in the frames

of both left and right video sequences are first transformed and quantized. Then the higher

bit planes of residual DCT coefficients are coded by the H.264 entropy encoder. The lower

bit planes of the residual DCT coefficients are compressed by the SNS-SWC introduced in

Section 6.3. Since bit planes of a DCT coefficient is used as input source bits in SNS-SWC,

bit correspondence is decided by the correspondence of pixels that generate corresponding

DCT coefficients. At the decoder, the higher bit planes of DCT coefficients are first used to

construct the low quality frames ˆILi
and ˆIRi

, i = 1, 2, · · · , n. Then a rough disparity map

is estimated from the reconstructed low quality frames. The pixel correspondence can be

inferred from the disparity map and then the side information I s
Li

and Is
Ri

for ILi
and IRi

(i = 1, 2, · · · , n) can be estimated. Finally the lower bit planes can be decoded by using the

side information and the higher bit planes. The proposed scheme can be used to compress

residual coefficients in I, P or B frames. We will elaborate on the details of the algorithms

below.

7.2.1 Handling The Pixel Mismatch Problem at The Encoder

left image right image

Corresponding Pixel Regions

B K U

QPhQPlQPl

U K B

QPlQPlQPh

wBwB

Figure 7.3: Handling The Pixel Mismatch Problem at The Encoder
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As we know from the architecture of SNS-SWC elaborated in Section 6.3, the decoding

process of SNS-SWC is essentially two separate asymmetric Slepian-Wolf decoding proce-

dures. This property makes it possible for our scheme to handle the bit mismatch problem

at the encoder while other approaches such as [156, 155] will fail. The output of the SNS-

SWC encoder composes of two parts, syndrome bits and a subset of the source bits. The

aim of the SNS-SWC decoder is to recover the unknown part of source bits. The unknown

source bits can be recovered correctly if we can successfully estimate the side information

and then calculate the correct initial LLR values for those unknown source bits. We use

Fig. 7.3 to illustrate how we carefully design our SDMVC-SNS encoder to handle the pixel

mismatch problem at the encoder. For simplicity, we assume that there is only horizon-

tal disparity between the left and right image and the maximal disparity is dmax, which is

known a priori. Pixels in the left or right frame are partitioned into 3 regions: boundary

pixel region (B), known pixel region (K) and unknown pixel region (U ). Lower bit planes

of DCT coefficients in the region K and U are coded by SNS-SWC. Pixels in the region B

are not used in Slepian-Wolf coding since they can be occluded with a very high probability

and thus can not find corresponding pixels in the other image. The width of the region B,

wB , should be greater than dmax. In addition, since a macroblock is a basic coding unit in

H.264, wB should be divided by the macroblock width (16 pixels). Since the correspond-

ing pixels for pixels in the region U of an image are located in the region B and K of the

other image which are known at the decoder, the side information for pixels in the region

U can be estimated. Thus the bit planes for DCT coefficients in region U can be recovered

even though the SNS-SWC encoder is oblivious to the pixel correspondence information

between the left and right image.

Table 7.1: Percentage of DCT coefficients whose magnitude is less than 4 for Breakdance
video

Frame Type I Frame P Frame
QPl = 4 87.75% 90.74%
QPl = 10 97.27% 98.49%
QPl = 16 99.31% 99.71%

7.2.2 Multi-Level Bit Plane Slepian-Wolf Coding

For each 4 × 4 block in H.264, its residual pixel values are transformed by DCT and quan-

tized. The least significant bit planes of quantized coefficients are coded by SNS-SWC. Bit
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Table 7.2: Percentage of DCT coefficients whose magnitude is less than 4 for Ballet video

Frame Type I Frame P Frame
QPl = 4 92.46% 95.24%
QPl = 10 98.26% 99.63%
QPl = 16 99.41% 99.91%

planes for every frequency in 4×4 block are separately coded. The length of the source bits

to be encoded is n = H×(W−dmax)
16 where W and H is the width and height of an image.

The rate allocation between two encoders is controlled by the fraction of source bits are

directly transmitted to the decoders. Let γ be the fraction of source bits directly sent by

the encoder for IL. The fraction of source bits sent by the encoder for IR is 1 − γ. The

LDPC code rate can be computed based on the Eqn. 6.9 and Eqn. 6.12. The number of bit

planes for quantized DCT coefficients in H.264 is essentially controlled by the quantization

parameter (QP ). Suppose that k lower bit planes are coded by the SNS-SWC. Quantization

step size in H.264 doubles for every increment of 6 in QP [174]. Given two quantization

parameters, QPl and QPh, let QPl = QPh − 6k, we can use them to quantize the DCT

coefficients and get the lower k bit planes that are encoded by SNS-SWC. Since the mag-

nitudes of a significant portion of quantized coefficients are small as shown in Table 7.1

and Table 7.2, the sign of the coefficients quantized by QPl is different from the sign of the

coefficients quantized by QPh. Therefore, the sign bit plane also needs to be encoded by

SNS-SWC. Namely, k + 1 bit planes are encoded by SNS-SWC.

As shown in Fig. 7.3, QPl is used to quantize pixels in the region B and K and QPh

is used to quantize pixels in the region U . For a 4 × 4 block, let ci, i = 0, . . . , 15 de-

note its original pixel values and vp
i be its predicted pixel values. The unquantized resid-

ual coefficients, Ri, are equal to ci − vp
i . Thus the quantized residual coefficients, Rq

i ,

are Q(DCT (Ri), QP ), where Q(•, •) is a quantization function and DCT (•) is the dis-

crete cosine transform function. At the decoder the reconstructed residual coefficients,

R̂i, are R̂i = IDCT (IQ(Rq
i , QP )), where IQ(•, •) is an inverse quantization function

and IDCT (•) is an inverse discrete cosine transform function. The reconstructed pixel

values, ĉi, are ĉi = vp
i + R̂i. vp

i can be intra-predicted from the reconstructed neighbor

blocks or inter-predicted by blocks in adjacent frames, c̄, at the encoder. In particular, if

a 4 × 4 block is in the unknown region U , two versions of reconstructed pixels are com-

puted, c̄h
j = vp

j + IDCT (IQ(Rqh

j )) and c̄l
j = vp

j + IDCT (IQ(Rql

j )). When it is used

to intra-predict other blocks in the same frame, c̄h
j is used; when it is used to inter-predict
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other blocks in adjacent frames, c̄l
j is used. The reason is that the decoder needs to know

the same c̄ to reconstruct a low quality frame to estimate the disparity map. For the blocks

in the unknown region U , the decoder only has the coefficients quantized by QPh and thus

if other blocks in the same frame are predicted by the blocks in the region U , c̄h
j is only

correct pixel value that the decoder is capable to accurately reconstruct. If the blocks in the

unknown region U is used to inter-predict blocks in adjacent frames, the higher bit planes

is already successfully decoded at the decoder and thus c̄l
j can be used to reconstruct the

blocks in adjacent frames.

A straightforward way to encode the lower bit planes is to first quantize the residual

coefficients, Ri, using a higher quantization parameter QPh and transmit the resulting co-

efficients, Rqh

i , to the decoder. R̂qh

i = IDCT (IQ(Q(DCT (Ri), QPh), QPh)) is recon-

structed in the decoder and helps estimate the rough disparity map. Then the same coef-

ficient, Ri, is requantized using a lower quantization parameter QPl and lower bit planes

are extracted from the resulting coefficients, Rql

i , and then are encoded by SNS-SWC and

transmitted to the decoder. However, there are two major flaws in the above method: (i)

Since the quantization step size does not strictly double for every increment of 6 in QP ,

the bit planes of Rqh

i are not exactly equal to the higher bit planes of Rql

i . Therefore, even

though the decoder can successfully decode the lower bit plane of Rql

i , the concatenation of

Rqh

i and the lower bit planes at the decoder, let R̂ql

i denote the value, is very likely not equal

to Rql

i at the encoder. Namely, R̂ql

i 6= Rql

i happens with a high probability. Although the

problem can be addressed by designing strictly embedded quantizers so that every quanti-

zation threshold using QPh is also a threshold using QPl as it is proposed in [105], careful

quantizer design is needed. (ii) Even if R̂ql

i at the decoder is equal to Rql

i at the encoder.

The approach is not efficient and leads to sub-optimal compression performance since the

lower bit planes of pixels in the known region K need to be separately entropy coded and

transmitted to the decoder. Overhead bits are greatly increased.

We use a simple method to address those two problems and encode the lower bit planes.

First, for each 4 × 4 block, the residual coefficients, Ri, are quantized by QPl to get

Rql

i . The lower bit planes of Rql

i are extracted to calculate the syndrome bits which are

transmitted to the decoder. For pixels in the region K , the lower bit planes of Rql

i need

not be separately entropy coded since the Rql

i for blocks in the region K can be entropy

coded by using the standard H.264 entropy coding method. In this way, we avoid us-

ing more overhead bits to encode the lower bit planes of pixels in the region K . For

pixels in the region U , the lower bit planes of Rql

i need not be transmitted and are sim-

128



ply discarded. We can also guarantee that both the encoder and the decoder can recover

the same higher bit planes of DCT coefficients in the region U . With the combination

of lower bit planes recovered by the SNS-SWC, the decoder can reconstructed the same

coefficients as the encoder. The coefficient in the unknown region U is reconstructed

using R̃qh

i = IDCT (IQ(bitshift(DCT (Ri),−k), QPh)), where bitshift(•, •) is a bit

shift function. One critical point worthy of note is that compared with the previous ap-

proach, R̃qh

i 6= R̂qh

i . Therefore, the reconstructed approximation of the original pixel value,

c̃i = vp
i +R̃qh

i , is unequal to ĉi = vp
i +R̂qh

i , which is reconstructed in the previous approach.

since the the reconstructed pixel value is used to help estimate the rough disparity map, the

quality of disparity map might be affected. However, since R̃qh

i is the same as R̂qh

i in most

time, there is not much difference in the disparity estimated by two methods.

7.2.3 Disparity Estimation and Side Information Generation

To handle the bit mismatch problem at the encoder in SNS-SWC, the decoder needs to first

find the correspondent pixels for pixels in the region U . Namely the decoder needs to es-

timate the disparity map for pixels in the region U . Since the correspondent pixels for the

pixels in the region U of an image are located in the region K and B of the other image that

is known at the decoder, the stereo matching algorithm can be used to estimate the disparity

map for pixels in region U and find the correspondent pixels. The region-tree based stereo

matching algorithm [175] is used in the implementation to estimate the disparity map be-

tween two stereo video sequences. Once we have the disparity map, the side information

can be generated by warping the other frame, for example, I s
Li

= warp(IRi
, Di), where

warp is defined in Eqn. 5.11, Di is the disparity map between two frames, ILi
and IRi

.

However, not every pixel has a matched pixel due to occlusion. For occluded pixels, we use

their neighbor pixel values to estimate their real pixel values. Denote the predicted frame as

Ip
Li

and Ip
Ri

. The side information of the DCT coefficients in the region U can be calculated

by transforming and quantizing the residual frame I s
Li

− Ip
Li

for the left stream or Is
Ri

− Ip
Ri

for the right stream.

7.2.4 LDPC Code Design

The capacity-approaching LDPC codes need to be designed for the virtual correlation chan-

nel of bit planes between two correlated coefficients, X and Y . Let bj
i (i = 1, 2, · · · , n, j =

X,Y ) denote the ith bit plane of X or Y . The virtual correlation channel between the ith bit

plane can be modeled by the conditional probability mass function P (bX
i |bX

i−1, · · · , bX
1 , bX

0 , Y ).
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We use a Gaussian channel to approximate the virtual correlation channel between two cor-

related bit planes. Thus the LDPC code profile for the nonuniform channel that is comprised

of a perfect channel and a Gaussian channel is designed by using the Differential Evolution

method [53].

7.2.5 SNS-SWC Decoding

To successfully decode the symmetric Slepian-Wolf code and recover the lower bit planes of

pixels in region U , we need to estimate the initial LLR value of each bit plane of unknown

pixels. The most significant bit planes are decoded first and they are used to help decode the

least significant bit planes. Suppose that bX
0 , bX

1 , · · · , bX
i−1 are known i−1 higher bit planes.

To decode an ith bit plane, we need to calculate the value of log
P (bX

i =0|bX
i−1

,··· ,bX
1

,bX
0

,Y )

P (bX
i =1|bX

i−1
,··· ,bX

1
,bX

0
,Y )

. It

is calculated by the following equation :

log
P (bX

i = 0|bX
i−1, · · · , bX

1 , bX
0 , Y )

P (bX
i = 1|bX

i−1, · · · , bX
1 , bX

0 , Y )
= log

P (bX
i = 0, bX

i−1, · · · , bX
1 , bX

0 , Y )

P (bX
i = 1, bX

i−1, · · · , bX
1 , bX

0 , Y )
(7.1)

= log

∑

bX
i =bZ

i =0,bX
j =bZ

j ,j<i

P (Z, Y )

∑

bX
i =bZ

i =1,bX
j =bZ

j ,j<i

P (Z, Y )
(7.2)

where P (Z, Y ) is the joint statistics of correlated DCT coefficients. P (Z, Y ) can be esti-

mated based on the joint statistics of previous decoded frames. Fig. 7.4 and Fig. 7.5 give

example of estimated joint statistics of correlated coefficients for I frames and P frames.

7.3 Experimental Results

The goal of the proposed symmetric distributed multiview video coding scheme is to have a

better rate-distortion performance than separate H.264 coding scheme and achieve flexible

rate allocation between two encoders. We conduct various experiments to evaluate the per-

formance of SDMVC-SNS. The Y-components of the 1024x768 Microsoft “Breakdance”

and “Ballet” multiview video sequence [3] are used to evaluate the performance of our sym-

metric distributed multiview video codec. Since the underlying distributed source coding

scheme, SNS-SWC, can only achieve the whole Slepian-Wolf region in the case of two

sources. Only video streams from two central views, camera 4 and camera 5, are used. The

width of the region B, wB , is set to 64. LDPC code length is thus 46080. We use 10 frames

in our experiments. The number of bit planes coded by SNS-SWC is 3, including 2 least

130



−30
−20

−10
0

10
20

30

−40
−20

0
20

40
0

0.005

0.01

0.015

0.02

0.025

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(a) Frequency 0

−15
−10

−5
0

5
10

15

−20
−10

0
10

20
0

0.05

0.1

0.15

0.2

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(b) Frequency 1

−15
−10

−5
0

5
10

15

−20
−10

0
10

20
0

0.05

0.1

0.15

0.2

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(c) Frequency 2

−10
−5

0
5

10

−10
−5

0
5

10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(d) Frequency 3

−10
−5

0
5

10

−10
−5

0
5

10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(e) Frequency 4

−10
−5

0
5

10

−10
−5

0
5

10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(f) Frequency 5

−10
−5

0
5

10

−10
−5

0
5

10
0

0.1

0.2

0.3

0.4

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(g) Frequency 6

−5

0

5

−5

0

5
0

0.1

0.2

0.3

0.4

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(h) Frequency 7

131



−5

0

5

−5

0

5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(i) Frequency 8

−10
−5

0
5

10

−10
−5

0
5

10
0

0.1

0.2

0.3

0.4

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(j) Frequency 9

−5

0

5

−5

0

5
0

0.1

0.2

0.3

0.4

0.5

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(k) Frequency 10

−5

0

5

−5

0

5
0

0.1

0.2

0.3

0.4

0.5

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(l) Frequency 11

−5

0

5

−5

0

5
0

0.1

0.2

0.3

0.4

0.5

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(m) Frequency 12

−5

0

5

−5

0

5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(n) Frequency 13

−5

0

5

−5

0

5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(o) Frequency 14

−5

0

5

−5

0

5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X

Joint Statistics of Correlated DCT Coefficients, I frames

Y

P(
X,

 Y
)

(p) Frequency 15

Figure 7.4: Joint Statistics of Correlated Coefficients for Each Frequency in a 4 × 4 Block
of I frames in ”Breakdance” Sequence, QPl = 10
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Figure 7.5: Joint Statistics of Correlated Coefficients for Each Frequency in a 4 × 4 Block
of P frames in ”Ballet” Sequence, QPl = 10
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significant bit planes of DCT coefficients and the sign bit plane. In the experiments, we

vary the rate of two encoders by changing the fraction of source bits, γ, sent by the encoder

for camera 4. Two cases, γ = 0.4 and γ = 0.5, are considered. Two sequences are coded

by two H.264 sequence structures, II . . . I and IP . . . P . For P frames, all the inter-frame

motion search modes are enabled and maximum search range is 16 pixels. III is used to

refer the first structure with only I frames. IPP refers to the second structure including both

I and P frames.

We first vary the quantization parameters in H.264 to evaluate the rate-distortion perfor-

mance of the proposed SDMVC-SNS. QPl is set to 4, 10 and 16 respectively. H.264/AVC

reference software JM73 [176] is used in our implementation. Fig. 7.6 and Fig. 7.10 show

an example of the original images of camera 4 and camera 5 for Breakdance and Ballet

video. Fig. 7.7 and Fig. 7.11 illustrate the reconstructed images when the quantization pa-

rameter QPl = 10 and QPh = 22. Fig. 7.8 and Fig. 7.12 gives the corresponding original

depth map of Breakdance and Ballet video. Fig. 7.9 and Fig. 7.13 show the estimated rough

depth map based on the reconstructed images. The results are compared with separate

H.264 coding scheme (H.264). We also compare with the case that the DCT coefficients

in the unknown region of frames for camera 4 and 5 are compressed by using LDPC codes

optimized for a Gaussian channel. We refer the case as asymmetric Slepian-Wolf Coding

(ASWC). ASWC is a hypothetical case and is used to evaluate the performance of LDPC

codes designed for SNS-SWC.

Fig. 7.14 and Fig. 7.16 show the rate-distortion comparison for III sequence structure

of Breakdance and Ballet video when γ = 0.4 and γ = 0.5. Rate is the sum rate of two

video streams. Fig. 7.15 and Fig. 7.17 give the rate-distortion comparison for IPP sequence

structure of Breakdance and Ballet video when γ = 0.4 and γ = 0.5. They indicate that in

the high rate case, SDMVC-SNS has a better rate-distortion performance than H.264 and

in the low rate case, SDMVC-SNS has an inferior performance than H.264. The higher the

bit rate, the better the rate-distortion performance. It is reasonable since most coefficients

are not 0 at high rate case and account for a significant portion of total bits used for coding,

SDMVC-SNS can thus save many bits by exploiting the joint statistics between correlated

coefficients. In the low rate case, most coefficients are 0 and there is not much correlation

left for exploitation by SDMVC-SNS. In terms of bit rate saving, in the high rate (QP l = 10,

QPl = 7, QPl = 4), SDMVC-SNS with III structure for the Breakdance video can save

around 0.6%, 2%, and 1.6% of total bit rate for both rate allocation cases. SDMVC-SNS

with IPP structure for the Breakdance video can save around 1.2%, 2.5%, and 2.1% of total
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(a)

(b)

Figure 7.6: Original Images, Breakdance Video
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(a)

(b)

Figure 7.7: Reconstructed Images, Breakdance Video, QPl = 10, QPh = 22
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(a)

(b)

Figure 7.8: Original Depth Map, Breakdance Video
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(a)

(b)

Figure 7.9: Depth Map, Breakdance Video, QPl = 10, QPh = 22
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(a)

(b)

Figure 7.10: Original Images, Ballet Video
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(a)

(b)

Figure 7.11: Reconstructed Images, Ballet Video, QPl = 10, QPh = 22
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(a)

(b)

Figure 7.12: Original Depth Map, Ballet Video
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(a)

(b)

Figure 7.13: Depth Map, Ballet Video, QPl = 10, QPh = 22
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(a) III, γ = 0.4
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(b) III, γ = 0.5

Figure 7.14: Rate-Distortion Comparison for Breakdance Video, III
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(a) IPP, γ = 0.4
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Figure 7.15: Rate-Distortion Comparison for Breakdance Video, IPP
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(a) III, γ = 0.4
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(b) III, γ = 0.5

Figure 7.16: Rate-Distortion Comparison for Ballet Video, III
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Figure 7.17: Rate-Distortion Comparison for Ballet Video, IPP
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bit rate for both rate allocation cases. Similarly, SDMVC-SNS with III structure for the

Ballet video can save around 1.2%, 3.3% and 2.8% of total bit rate for both rate allocation

cases. SDMVC-SNS with IPP structure for the Ballet video can save around 1.7%, 3.7%,

and 3.1% of total bit rate for both rate allocation cases. The performance of SDMVC-

SNS is consistently inferier to the ASWC. ASWC can save about 0.41% total bit rate than

SDMVC-SNS in average. This indicates that there is still significant room to improve the

LDPC code design.

Fig. 7.18 and Fig. 7.19 give a per frame PSNR and rate comparison between SDMVC-

SNS and H.264 for Breakdance video when III structure is used and γ = 0.5, QPl = 10,

QPh = 22. PSNR in SDMVC-SNS has an around 0.01db gap with H.264. The reason is

that reconstructed pixels based on QPh, which is used for prediction of other blocks in the

same frame, at 4× 4 blocks in the unknown region in SDMVC-SNS has an inferior quality

than those based on QPl at the same blocks in H.264. Fig. 7.19 shows that both camera

4 and camera 5 can save bits. Fig. 7.20 and Fig. 7.21 show a PSNR and rate comparison

between SDMVC-SNS and H.264 frame by frame for Ballet video when IPP structure is

used and γ = 0.4, QPl = 10, QPh = 22. PSNR in SDMVC-SNS is also around 0.01db

lower than H.264. Both cameras can save bits. However, camera 4 can save more bits than

camera 5 since camera 4 has 20% less source bits sent by the encoder and thus more bits can

be saved through SNS-SWC than camera 5. This also indicates that rate allocation between

two encoders can be realized.

We next study the performance of SNS-SWC on each bit plane and compare it with the

performance of arithmetic coding on each bit plane. Fig. 7.22 and Fig. 7.23 give the results

for Breakdance video using III structure when γ = 0.4, QPl = 4, and QPh = 16. Fig. 7.24

and Fig. 7.25 show the result for Ballet video using IPP structure when γ = 0.4, QPl = 4,

and QPh = 16. Bit planes are numbered from least significant bit plane to most significant

plane. Namely, first bit plane is the least significant bit plane and second bit plane is the

second least significant bit plane. The second bit plane is first decoded and the sign bit

plane is last decoded. The figures indicate that the second bit plane has least bit saving and

often there is no saving. The reason might be that it is first decoded bit plane and there

is not enough side information to successfully decode the original source bits with fewer

coded bits. Namely, its conditional entropy is very small or nearly zero and LDPC code is

not powerful enough to help save bits. Most of the bit saving comes from the first bit plane.

It is decoded with the help of the decoded second bit plane and thus more bits can be saved.

The sign bit plane is last decoded and can use both decoded bit planes as side information.
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Figure 7.18: Per Frame PSNR Comparison for Breakdance Video, III, γ = 0.5, QPl = 10,
QPh = 22
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Figure 7.19: Per Frame Rate Comparison for Breakdance Video, III, γ = 0.5, QPl = 10,
QPh = 22
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Figure 7.20: Per Frame PSNR Comparison for Ballet Video, IPP, γ = 0.4, QPl = 10,
QPh = 22
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Figure 7.21: Per Frame Rate Comparison for Ballet Video, IPP, γ = 0.4, QPl = 10,
QPh = 22
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Figure 7.22: Rate Comparison between Slepian-Wolf Coding and Arithmetic Coding for
Each Bit Plane of Breakdance Video, Camera 4, III, γ = 0.4, QPl = 4, QPh = 16
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Figure 7.23: Rate Comparison between Slepian-Wolf Coding and Arithmetic Coding for
Each Bit Plane of Breakdance Video, Camera 5, III, γ = 0.4, QPl = 4, QPh = 16
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Figure 7.24: Rate Comparison between Slepian-Wolf Coding and Arithmetic Coding for
Each Bit Plane of Ballet Video, Camera 4, IPP, γ = 0.4, QPl = 4, QPh = 16
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Figure 7.25: Rate Comparison between Slepian-Wolf Coding and Arithmetic Coding for
Each Bit Plane of Ballet Video, Camera 5, IPP, γ = 0.4, QPl = 4, QPh = 16
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Figure 7.26: Rate Comparison between Slepian-Wolf Coding and Arithmetic Coding for
Each Frequency of Breakdance Video, III, γ = 0.4, QPl = 4, QPh = 16
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Figure 7.27: Rate Comparison between Slepian-Wolf Coding and Arithmetic Coding for
Each Frequency of Ballet Video, IPP, γ = 0.4, QPl = 4, QPh = 16
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Figure 7.28: Rate Comparison between Good Depth Map and Bad Depth Map of Break-
dance Video, III, γ = 0.4, QPl = 4, QPh = 16
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Figure 7.29: Rate Comparison between Good Depth Map and Bad Depth Map of Ballet
Video, IPP, γ = 0.5, QPl = 4, QPh = 16

160



Therefore, we also can achieve some bit saving on the sign bit plane.

Fig. 7.26 and Fig. 7.27 give a view on the performance comparison between SNS-SWC

and arithmetic coding for each frequency in a 4 × 4 block for Breakdance video with III

structure and Ballet video with IPP structure when γ = 0.4, QPl = 4 and QPh = 16. They

show that bits can be saved in every frequency.

We also evaluate the effect of depth quality on the performance of SMDVC-SNS.

Fig. 7.28 gives the per-frame rate comparison for Breakdance video with III structure when

γ = 0.4, QPl = 4, and QPh = 16. The good depth map is the original depth map that is

estimated using original uncompressed images. The bad depth map is the rough depth map

based on reconstructed low quality image at the decoder. It shows that in general SDMVC-

SNS with good depth maps can save more bits, albeit very small, than SDMVC-SNS with

bad depth maps. For the scenario shown in Fig 7.28, SDMVC-SNS with good depth map

can save 6676 or 0.02% more bits than SDMVC-SNS with bad depth map. Fig. 7.29 shows

the per-frame rate comparison for Ballet video with IPP structure when γ = 0.5, QPl = 4,

and QPh = 16. In this case, SDMVC-SNS with good depth map can save 1439 or 0.003%

more bits than SDMVC-SNS with bad depth map.

7.4 Conclusion

In this chapter, We propose a generic framework for the symmetric distributed multiview

video coding. SDMVC-SNS can achieve the flexible rate allocation between two encoders.

To the best of our knowledge, this is the first work to realize the simultaneous Slepian-Wolf

coding of stereo video with the help of a symmetric distributed source code that achieves

the whole Slepian-Wolf rate region. Our results show that the proposed SDMVC-SNS

demonstrates a very promising result and moderate rate saving from H.264 frames can be

achieved in the high-rate case. In the low-rate case, SDMVC-SNS cannot achieve better

performance than separate H.264 coding scheme. SDMVC-SNS has a more complicated

encoder and decoder.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In the future, multiview video applications will likely emerge as one of prime multimedia

applications. Multiview video compression algorithms are a crucial part of a multiview

video system. In this thesis, we focus on developing novel and efficient multiview video

coding algorithms. We make contributions on both joint multiview video coding and dis-

tributed multiview video coding. In summary, we have made the following contributions.

1. We propose a novel neighbor-based multiview coding scheme and design a new algo-

rithm to automatically decide the stream encoding order and select the best neighbors

for each stream to improve the compression performance [111].

2. A novel multiview video transcoder is put forward. The multiview video transcoder

can be used to compress multiple compressed video streams and reduce the compu-

tational complexity of the encoder [114].

3. A learning-based multiview video scheme is designed and implemented. The multi-

view video coding problem is modeled as a semi-supervised learning problem. The

scheme is a joint multiview coding scheme and can be used to compress multiview

videos with a MVD format [82].

4. We propose two syndrome-based symmetric distributed source coding schemes: SNS-

SWC and EETG. SNS-SWC has two independent sub-decoders and can simplify the

decoding process of symmetric distributed source coding schemes. EETG simplifies

the code construction of distributed source coding schemes using extended Tanner

graph and is able to handle bit mismatch problem at the encoder [162].
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5. A novel symmetric distributed multiview video coding scheme based on SNS-SWC is

proposed. The scheme can achieve the flexible rate allocation between two distributed

multiview video encoders. The scheme can have a better compression performance

than the separate H.264 coding schemes at high rate [106].

The proposed algorithms seem very different, however, they have a common goal to

achieve the joint entropy of multiview videos and reduce the computational complexity of

the encoder and decoder. The neighbor-based multiview video coding scheme, multiview

video transcoder and learning-based multiview video coding scheme are joint multiview

video coding schemes. The symmetric distributed multiview video coding scheme belongs

to the distributed multiview video coding category. SNS-SWC and EETG are generic dis-

tributed source coding schemes and can be used to help compress any data sources. These

multiview coding schemes can be integrated into various subsystems of a multiview video

system to achieve the design objective. For example, the multiview video transcoder and

the symmetric distributed multiview video coding scheme can be used in video acquisition

subsystem to reduce the video acquisition cost. The neighbor-based multiview video cod-

ing scheme and the learning-based multiview video coding scheme can be used with video

transmission subsystem to reduce the network bandwidth.

8.2 Future Research

There are several avenues of research worthy to pursue in the future.

8.2.1 Extension to H.264 Schemes

The neighbor-based multiview coding scheme and multiview video transcoder discussed

in Chapter 3 and 4 are general algorithms and can be used in any block-based multiview

coding schemes. In this thesis, we evaluate the performance in MPEG2-based schemes.

With the advent of H.264-based multiview coding schemes, it would be worthwhile and

important to integrate them into H.264-based schemes.

8.2.2 Incorporate Compressive Sensing Theory into LMVC

LMVC is a novel joint multiview video coding scheme. However, its current rate-distortion

performance is still inferior than block-based JMVM schemes. The essence of LMVC is to

find a sparse representation of an image and use it to recover the original image. Compres-

sive sensing theory [177] dictates that a sparse signal such as image can be compressed by
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a sparse representation in one domain and recovered losslessly in another domain based on

incoherence principle. Currently our implementation represents RP and recovers the origi-

nal image both in the pixel domain. It might be helpful to incorporate compressive sensing

theory into the schemes and recover the original image in the frequency domain.

8.2.3 Design Better LDPC Codes for EETG and SNS-SWC

Good LDPC codes are crucial to performance of EETG and SNS-SWC. EETG is based on

extended Tanner graph. It is still an open problem to design good LDPC codes for extended

Tanner graph. Our research suggests that LDPC codes for extended Tanner graph can come

from one code ensemble. The challenge is how to design a density evolution algorithm for

the extended Tanner graph. LDPC codes for SNS-SWC used in the symmetric distributed

multiview video coding scheme is designed using the density evolution algorithm based on

differential evolution [53]. There is still a performance gap with the asymmetric distributed

multiview video coding. It is worthwhile to use density evolution algorithm for nonuniform

channels [163] to design code and try to improve the performance.

8.2.4 Integrate Multiview Video Compression Subsystem with Other Subsys-
tems of MVSN

In this thesis, we focus on addressing the challenges of multiview video compression. We

treat the multiview video compression subsystem as a standalone system and study its per-

formance independently. Since our ultimate goal is to build a multiview video system over

Internet, it is worthy to integrate the multiview video compression with other subsystems

and do a systematic study on its performance and find optimal configurations for different

applications.
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