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Soil may serve as an environmental reservoir for prion infectivity and contribute to the horizontal transmission of prion
diseases (transmissible spongiform encephalopathies [TSEs]) of sheep, deer, and elk. TSE infectivity can persist in soil
for years, and we previously demonstrated that the disease-associated form of the prion protein binds to soil particles
and prions adsorbed to the common soil mineral montmorillonite (Mte) retain infectivity following intracerebral
inoculation. Here, we assess the oral infectivity of Mte- and soil-bound prions. We establish that prions bound to Mte
are orally bioavailable, and that, unexpectedly, binding to Mte significantly enhances disease penetrance and reduces
the incubation period relative to unbound agent. Cox proportional hazards modeling revealed that across the doses of
TSE agent tested, Mte increased the effective infectious titer by a factor of 680 relative to unbound agent. Oral exposure
to Mte-associated prions led to TSE development in experimental animals even at doses too low to produce clinical
symptoms in the absence of the mineral. We tested the oral infectivity of prions bound to three whole soils differing in
texture, mineralogy, and organic carbon content and found soil-bound prions to be orally infectious. Two of the three
soils increased oral transmission of disease, and the infectivity of agent bound to the third organic carbon-rich soil was
equivalent to that of unbound agent. Enhanced transmissibility of soil-bound prions may explain the environmental
spread of some TSEs despite the presumably low levels shed into the environment. Association of prions with inorganic
microparticles represents a novel means by which their oral transmission is enhanced relative to unbound agent.
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Introduction

Bovine spongiform encephalopathy, human Creutzfeldt-
Jakob disease and kuru, sheep scrapie, and chronic wasting
disease of deer, elk, and moose belong to the class of fatal,
infectious neurodegenerative diseases known as transmissible
spongiform encephalopathies (TSEs) or prion diseases [1,2].
The precise nature of the etiological agent of these diseases
remains controversial, but most evidence points to a
misfolded isoform of the prion protein (PrPTSE) as the major,
if not sole, component of the pathogen [3].

Sheep scrapie and cervid (deer, elk, and moose) chronic
wasting disease are distinct among TSEs because epizootics
can be maintained by horizontal transmission from infected
to naı̈ve animals [4–6], and transmission is mediated, at least in
part, by an environmental reservoir of infectivity [7–10]. The
presence of an environmental TSE reservoir impacts several
epidemiological factors including contact rate (the frequency
animals come in contact with the disease agent), duration of
exposure (time period over which animals come in contact
with the pathogen), and the efficiency of transmission (the
probability that an exposed individual contracts the disease).

The oral route of exposure appears responsible for
environmental transmission of chronic wasting disease and
scrapie [6,11]; the propagation of bovine spongiform ence-
phalopathy epizootics (feeding TSE-infected meat and bone-
meal to cattle); the appearance of variant Creutzfeldt-Jacob
disease in humans and feline spongiform encephalopathy in
cats (presumably by consumption of bovine spongiform
encephalopathy–infected beef) [12,13]; the spread of kuru

among the Fore of Papua New Guinea (ritualistic endocanni-
balism [14–16]); and outbreaks of transmissible mink ence-
phalopathy (TME) in farm-reared mink [17]. Following
consumption, TSE agent is sampled by gut-associated
lymphoid tissue, such as Peyer’s patches or isolated lymphoid
follicles, and accumulates in lymphatic tissues before entering
the central nervous system via the enteric nervous system [18–
20]. While ingestion is a biologically relevant TSE exposure
route, oral dosing is a factor of ;105 less efficient than
intracerebral inoculation in inducing disease in rodent
models [21]. The amounts of TSE agent shed into the
environment are presumably small. The assumed low levels
of TSE agent in the environment and the inefficiency of oral
transmission have led to uncertainty about the contribution
of environmental reservoirs of infectivity to prion disease
transmission.
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We and others have hypothesized that soil may serve as a
reservoir of TSE infectivity [8,9,22,23]. Deliberate and
incidental ingestion of soil by ruminants can amount to
hundreds of grams daily [24,25]. Prions enter soil environ-
ments via decomposition of infected carcasses [8,26], alimen-
tary shedding [11,27,28], deliberate burial of diseased
carcasses/material [29], and possibly, urinary excretion [30].
TSE agent persists for years when buried in soil [26]. The
disease-associated prion protein sorbs to soil particles
[22,31,32], and the interaction of PrPTSE with the common
aluminosilicate clay mineral montmorillonite (Mte) is re-
markably avid [22]. Despite this strong binding, PrPTSE–Mte
complexes are infectious when inoculated into brains of
recipient animals [22].

For TSEs to be transmitted via ingestion of prion-
contaminated soil, prions bound to soil components must
remain infectious by the oral route of exposure. We therefore
investigated the oral infectivity of Mte- and soil-bound
prions. We examined the effects of prion source (viz. infected
brain homogenate [BH] and purified PrPTSE) and dose on
disease penetrance (proportion of animals eventually exhib-
iting clinical TSE symptoms) and incubation period (time to
onset of clinical symptoms) in experiments with Mte. We
investigated the oral infectivity of soil particle–bound prions
to Syrian hamsters using four dosing regimes: (1) infected BH
mixed with Mte (BH–Mte mixtures), (2) isolated complexes of
purified PrPTSE bound to Mte (PrPTSE–Mte complexes), (3)
purified PrPTSE mixed with Mte (PrPTSE–Mte mixtures), and
(4) PrPTSE mixed with each of three whole soils (PrPTSE–soil
mixtures). The rationale for each dosing regime is described
below. Survival analysis was used to assess risk of clinical
disease manifestation and quantify differences in effective
titer. Application of survival analysis to oral bioassays of TSE
transmissibility is discussed in Figure S1 and Text S1.

Results

Oral Infectivity of BH–Mte Mixtures
To examine the effect of Mte on the oral transmissibility of

prions in BH, we incubated infected BH with clay particles

for 2 h to allow sorption of the agent; controls lacking Mte
were treated identically [22]. Three doses of 10% BH (30, 3,
and 0.3 lL) were assayed. Diminished gastrointestinal
bioavailability was expected to be evidenced by significant
lengthening of incubation period, reduced disease pene-
trance, or both. Binding of either 30 or 3 lL of brain material
to Mte yielded disease penetrance and incubation periods
similar to BH alone (Figure 1A and 1B), a finding consistent
with our previous report that a substantial fraction of PrPTSE

in clarified BH binds to Mte and that Mte-bound prions
remain infectious [22].
Surprisingly, at the lowest BH dose (0.3 lL, Figure 2),

sorption of TSE agent to Mte enhanced transmission,
increasing disease penetrance and shortening incubation
period. Adjusted for the amount of BH administered and
combined across doses, Mte significantly enhanced oral
transmissibility (p , 0.0001). Survival analysis indicated the
risk of clinical disease manifestation relative to Mte-free
controls was 3.03 (95% confidence interval [CI]: 1.68, 5.45),
signifying an increase in the effective titer of TSE agent.
While the influence of Mte was significant when tested across
all BH doses, the effect was most readily observed at 0.3 lL.
The dose-dependent difference in the influence of Mte on
transmissibility may be attributable to competition between
macromolecules in BH (e.g., lipids, other proteins, nucleic

Figure 1. No Loss of Oral TSE Transmissibility Following Sorption of

Prions from Infected BH to Mte (BH–Mte Mixtures)

The oral transmissibility of prions in 30 (A) and 3 (B) lL was not
diminished by dosing with Mte. * indicates non-TSE intercurrent death.
Animals dosed with Mte alone remained healthy throughout the course
of the experiment (unpublished data).
doi:10.1371/journal.ppat.0030093.g001
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Author Summary

Transmissible spongiform encephalopathies (TSEs) are a group of
incurable neurological diseases likely caused by a misfolded form of
the prion protein. TSEs include scrapie in sheep, bovine spongiform
encephalopathy (‘‘mad cow’’ disease) in cattle, chronic wasting
disease in deer and elk, and Creutzfeldt-Jakob disease in humans.
Scrapie and chronic wasting disease are unique among TSEs
because they can be transmitted between animals, and the disease
agents appear to persist in environments previously inhabited by
infected animals. Soil has been hypothesized to act as a reservoir of
infectivity and to bind the infectious agent. In the current study, we
orally dosed experimental animals with a common clay mineral,
montmorillonite, or whole soils laden with infectious prions, and
compared the transmissibility to unbound agent. We found that
prions bound to montmorillonite and whole soils remained orally
infectious, and, in most cases, increased the oral transmission of
disease compared to the unbound agent. The results presented in
this study suggest that soil may contribute to environmental spread
of TSEs by increasing the transmissibility of small amounts of
infectious agent in the environment.



acids) with PrPTSE for sorption sites on the clay surface. Such
competition was evidenced by detection of unbound PrPTSE

and other proteins in incubations of Mte with 30 and 3 lL BH
(unpublished data).

Oral Infectivity of PrPTSE–Mte Complexes
To examine the influence of Mte on oral transmissibility

without the interference of other macromolecules from brain
homogenate, we purified PrPTSE and inoculated hamsters
using two different dosing regimes. The first dosing regime
(PrPTSE–Mte complexes) was designed to directly assay the
infectivity of PrPTSE sorbed to Mte surfaces (i.e., the amount
of unbound PrPTSE was minimized in treatments containing
Mte). Purified PrPTSE was clarified to remove large aggregates,
and after 2-h incubation with Mte, PrPTSE–Mte complexes
were separated from unbound protein by centrifugation
through a sucrose cushion [22]. Hamsters were orally
challenged with the isolated PrPTSE–Mte complexes [22] or
an amount of unbound clarified PrPTSE (200 or 20 ng)
equivalent to that introduced into the clay suspension (Table
1). Immunoblot analysis of the inocula (Figure S2A) demon-
strated that the amount of PrP in the unbound samples was
not less than that in PrPTSE–Mte complexes.

Sorption of PrPTSE to Mte dramatically enhanced prion
disease transmission (Table 1). Approximately 38% of
animals receiving 200 ng of unbound clarified PrPTSE

exhibited clinical symptoms with an incubation period for
infected animals of 203 6 33 (mean 6 standard deviation)
days post inoculation (dpi). In contrast, all animals orally
dosed with an equivalent amount of Mte-bound PrPTSE

manifested disease symptoms (incubation period ¼ 195 6

37 dpi), an enhancement of transmission comparable to that
observed for the lowest BH dose (Figure 2). Animals
inoculated with Mte alone or 10-fold less unbound clarified
PrPTSE (20 ng) remained asymptomatic throughout the course
of the experiment (.365 dpi), whereas 20 ng of clarified
PrPTSE adsorbed to Mte produced TSE infection in 17% of

animals. These data establish not only that the Mte-bound
prions remain infectious via the oral route of exposure, but
that agent binding to Mte increases disease penetrance,
enhancing the efficiency of oral transmission.

Oral Infectivity of PrPTSE–Mte Mixtures
The second oral dosing regime using purified PrPTSE

(PrPTSE–Mte mixtures) was designed to ensure that treat-
ments with and without Mte contained equivalent PrPTSE

doses. These experiments differed from those above in two
important aspects. First, PrPTSE–Mte complexes were not
separated from suspension prior to inoculation so that
comparable amounts of infectious agent were administered
to both treatment groups. In the first dosing regime, some
PrPTSE may have been lost during sedimentation of PrPTSE–
Mte complexes (Figure S2A). Second, the purified prion
preparation was not clarified and therefore contained a range
of PrPTSE aggregate sizes. The sizes of PrPTSE aggregates
attached to Mte particles were expected to be more
heterogeneous than those in the first dosing regime.
Compared to Mte-free controls, administration of purified

PrPTSE mixed with Mte increased disease penetrance at all
doses and shorted incubation times in the 1-lg PrPTSE

treatment (Figure 3A). At the two lower doses (0.1 and 0.01
lg PrPTSE), binding of the agent to Mte dramatically
increased disease penetrance (31%) at PrPTSE doses failing
to yield clinical infection in 31 of 32 animals in the absence of
the clay mineral (Figure 3B and 3C). Comparison of the
survival curves in Figure 3A and 3C indicates that the 0.01-lg
PrPTSE–Mte mixture was at least as infectious as 1-lg PrPTSE

Mte-free samples, suggesting that sorption of purified PrPTSE

to Mte enhanced transmission by a factor of �100.
To quantify the contributions to changes in relative risk of

prion dose and agent sorption to Mte, we constructed a
multivariate Cox proportional hazards model with two
covariates: log10 PrPTSE dose and Mte presence (Table 2).
Each log10 increase in PrPTSE dose multiplies the relative risk
by a factor of ;2 (i.e., a 10-fold increase in dose approx-

Figure 2. Mte Enhances Oral TSE Transmission at a Low Dose of Infected

BH (BH–Mte Mixtures)

Ingestion of Mte mixed with a lower dose of TSE-infected BH (0.3 lL)
markedly shortens incubation period and increases disease penetrance
relative to an equal amount of unbound BH. * indicates non-TSE
intercurrent death. Animals dosed with Mte alone remained healthy
throughout the course of the experiment (unpublished data).
doi:10.1371/journal.ppat.0030093.g002

Table 1. Prions Adsorbed to Mte Clay Are Infectious Perorally

Inoculum Positive Animals/

Total Animals

Onset of Clinical

Symptoms (dpi)

Mte (no PrPTSE) 0/8 n/a (.365)a

PrPTSE–Mte complex

(200 ng protein)

8/8 195 6 37b,c

PrPTSE (200 ng protein) 3/8 166, 216, 228c,d

PrPTSE–Mte complex

(20 ng protein)

2/12 213, 216d,e

PrPTSE (20 ng protein) 0/11 n/a (.365)a,e

Mock pellet (no Mte,

200 ng PrPTSE)f

0/8 n/a (.365)a

aNo animals showed clinical symptoms of TSE infection.
bMean dpi 6 standard deviation before onset of clinical symptoms of TSE infection.
cThe proportional hazards estimate of the hazard ratio between PrPTSE–Mte complexes
and unbound PrPTSE (200 ng protein) was 4.77 (95% CI: 1.39–16.4), p¼ 0.0012.
ddpi on which individual animals displayed clinical symptoms.
eThe proportional hazards estimate of the hazard ratio between PrPTSE–Mte complexes
and unbound PrPTSE (20 ng protein) was infinite, p , 0.0001.
fMock pellet samples were generated by adding clarified PrPTSE (;200 ng) to background
solution in the absence of soil minerals and processing identically to samples containing
Mte to control for potential sedimentation of unbound PrPTSE.
doi:10.1371/journal.ppat.0030093.t001
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imately doubles the risk of infection). Notably, sorption of
purified PrPTSE to Mte multiplies the relative risk by a factor
of ;8. These values allowed computation of a multiplicative
equivalence factor between PrPTSE dose and Mte presence in
the inoculum. Expressed in terms of PrPTSE dose, addition of
Mte to the inoculum is equivalent to multiplying the PrPTSE

dose by a factor of 680 (95% CI 16, ‘); that is, inclusion of Mte
increases the effective titer of a given PrPTSE dose by 680-fold.

Estimates of effective titer span a wide range (95% CI 16, ‘),
and the present data do not allow us to place an upper bound
on the increased risk associated with the presence of Mte in a
sample. At a minimum, effective titer increased by 1.2 orders
of magnitude, but the effect could be substantially larger. The
best estimate of the Cox analysis represents a 2.8 order-of-
magnitude increase in effective titer.

Strain Properties
Oral administration of Mte-bound PrPTSE did not appear

to alter strain properties. Following limited proteinase K (PK)
digestion, many PrPTSE strains can be discriminated by the
size and glycoform pattern of PK-resistant core of PrPTSE

(PrP-res) [33–36]. Strain differences are also manifested in
specific clinical symptoms. At the conclusion of the oral
transmission experiments described above, the brains of
clinically infected animals were assayed for PrP-res by
immunoblotting (Figure S3). Differences in the molecular
mass and glycoform distribution of PrP-res were not
apparent between the treatment groups. Furthermore,
clinical presentation of disease (symptoms or length of
clinically positive period) did not differ between treatments.
The experiments described above were conducted using

the Hyper (HY) strain of hamster-adapted TME agent
(PrPHY). To further examine the strain stability of Mte-bound
PrPTSE, we employed the Drowsy (DY) strain of hamster-
passaged TME agent (PrPDY) to investigate the molecular
mass of PrP desorbed from Mte and the effect of this clay
mineral on oral transmissibility [35,36]. We previously
reported the N-terminal cleavage of PrPHY extracted from
Mte yielding a product similar in size to PK-digested PrPHY

[22]. PK digestion of PrPHY and PrPDY results in products of
characteristically different molecular masses [35,36]: the
length of the PrPHY digestion product exceeds that of PrPDY

by at least ten amino acids [35,36]. We found that extraction
of bound PrPDY from Mte resulted in a product similar in
molecular mass to PrPDY cleaved by PK (Figure 4). These data
are consistent with the idea that strain properties are
preserved when PrPTSE binds to Mte. DY agent is not orally
transmissible [37], and we find that sorption of DY to Mte
does not facilitate oral transmission (Text S1).

Oral Transmission of PrPTSE Bound to Whole Soils
Natural soils are composed of a complex mixture of

inorganic and organic components of various particle sizes.
Smectitic clays such as Mte are important constituents of
many natural soils and contribute significantly to their
surface reactivity [38]. In natural soils, metal oxide and
organic matter often coat smectite surfaces and may alter

Figure 3. Concurrent Peroral Administration of Mte and PrPTSE

Dramatically Increases Disease Penetrance at Agent Doses That Typically

Fail to Produce Clinical Symptoms (PrPTSE–Mte Mixture)

(A) Mte increases disease penetrance and shortens incubation periods
associated with ingestion of 1 lg of purified PrPTSE. Concurrent peroral
dosage of lower, typically subclinical doses of purified PrPTSE (0.1 or 0.01
lg, [B and C]) with Mte increases disease incidence. Animals dosed with
Mte alone remained healthy throughout the course of the experiment
(unpublished data).
doi:10.1371/journal.ppat.0030093.g003

Table 2. Estimated Hazard Ratios due to Prion Dose and Mte
Addition

Predictor Estimated

Hazard Ratio

95% CI p-Value

Purified PrPTSE (per log10 increase) 2.10 1.26, 3.51 0.0046

Purified PrPTSE þ presence versus

absence of Mte

8.18 2.80, 23.9 0.00012

doi:10.1371/journal.ppat.0030093.t002
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their propensity to bind PrPTSE. Furthermore, additional
sorbent phases may be important in the binding of TSE
agents to whole soils. We previously demonstrated that
PrPTSE binds to whole soils of varying texture, mineralogy,
and organic carbon content [22]. To examine the impact of
agent binding to whole soil on oral TSE transmission, we
incubated 1 lg of purified PrPTSE with each of three whole
soil samples (Elliot, Dodge, and Bluestem soils) to allow
sorption, and then orally dosed hamsters with the PrPTSE–soil
mixtures. Soil-bound TSE agent remained infectious pero-
rally, and two of the soils significantly enhanced oral disease
transmission (Figure 5). Hazard ratios between Elliot (4.76
[95% CI: 1.38–16.4], p ¼ 0.019) and Bluestem (6.04 [95% CI:
1.59–22.9], p ¼ 0.013) soils and unbound PrPTSE indicate a
significant increase in transmissibility, but no difference for
the Dodge soil (1.66 [95% CI: 0.52–1.66], p ¼ 0.578). The
hazard ratios for the Elliot and Bluestem soils did not differ
from one another (0.79 [95% CI: 0.19–3.25], p ¼ 0.543)
indicating statistical equivalence in transmissibility. The
limited numbers of animals in the treatment groups
precluded derivation of a multiplicative equivalence factor
to equate the presence of Elliot or Bluestem soil with dose of
infectious agent; however, substantially more animals in the
Elliot and Bluestem treatment groups (14 of 16 animals,
87.5% penetrance) displayed clinical symptoms compared to
the unbound PrPTSE treatment group (two of eight animals,
25% penetrance).

Discussion

These experiments address the critical question of whether
soil particle–bound prions are infectious by an environ-
mentally relevant exposure route, namely, oral ingestion.
Oral infectivity of soil particle–bound prions is a conditio sine
qua non for soil to serve as an environmental reservoir for TSE
agent. The maintenance of infectivity and enhanced trans-
missibility when TSE agent is bound to the common soil
mineral Mte is remarkable given the avidity of the PrPTSE–
Mte interaction [22]. One might expect the avid interaction
of PrPTSE with Mte to result in the mineral serving as a sink,
rather than a reservoir, for TSE infectivity. Our results
demonstrate this may not be the case. Furthermore, sorption

of prions to complex whole soils did not diminish bioavail-
ability, and in two of three cases promoted disease trans-
mission by the oral route of exposure. While extrapolation of
these results to environmental conditions must be made with
care, prion sorption to soil particles clearly has the potential
to increase disease transmission via the oral route and
contribute to the maintenance of TSE epizootics.
Two of three tested soils potentiated oral prion disease

transmission. The reason for increased oral transmissibility
associated with some, but not all, of the soils remains to be
elucidated. One possibility is that components responsible
for enhancing oral transmissibility were present at higher
levels in the Elliot and Bluestem soils than in the Dodge soil.
The major difference between the Dodge soil and the other
two soils was the extremely high natural organic matter
content of the former (34%, [22]). The Dodge and Elliot soils
contained similar levels of mixed-layer illite/smectite,
although the contribution of smectite layers was higher in
the Dodge soil (14%–16%, [22]). The organic matter present
in the Dodge soil may have obstructed access of PrPTSE to
sorption sites on smectite (or other mineral) surfaces.
The mechanism by which Mte or other soil components

enhances the oral transmissibility of particle-bound prions
remains to be clarified. Aluminosilicate minerals such as Mte
do not provoke inflammation of the intestinal lining [39].
Although such an effect is conceivable for whole soils, soil
ingestion is common in ruminants and other mammals [25].
Prion binding to Mte or other soil components may partially
protect PrPTSE from denaturation or proteolysis in the
digestive tract [22,40] allowing more disease agent to be
taken up from the gut than would otherwise be the case.
Adsorption of PrPTSE to soil or soil minerals may alter the
aggregation state of the protein, shifting the size distribution
toward more infectious prion protein particles, thereby
increasing the specific titer (i.e., infectious units per mass of
protein) [41]. In the intestine, PrPTSE complexed with soil

Figure 4. Maintenance of Strain Properties for Mte-Associated PrPTSE

BH from hamsters clinically affected with either HY or DY agents were
incubated with Mte to allow binding. Desorbed proteins were analyzed
by SDS-PAGE and immunoblotting. Cleavage patterns of PrPHY and PrPDY

extracted from Mte parallel PK cleavage patterns for the respective
proteins: cleaved PrPDY migrates further (corresponding to a 1- to 2-kDa
molecular mass difference) than cleaved PrPHY. Immunoblot used the
PrP-specific antibody 3F4.
doi:10.1371/journal.ppat.0030093.g004

Figure 5. Prions Bound to Whole Soils Remain Orally Infectious and

Some Soils Increase Transmission

Three soils (Dodge, Elliot, and Bluestem) were incubated in the presence
of purified PrPTSE. The samples were orally dosed into hamsters and
found to remain orally infectious. Agent association with Elliot and
Bluestem soils increases disease incidence, whereas Dodge soil does not
influence disease transmission. Animals dosed with soil alone remained
healthy throughout the course of the experiment (unpublished data).
doi:10.1371/journal.ppat.0030093.g005
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particles may be more readily sampled, endocytosed (e.g., at
Peyer’s patches), or persorbed than unbound prions. Alumi-
nosilicate (as well as titanium dioxide, starch, and silica)
microparticles, similar in size to the Mte used in our
experiments, readily undergo endocytotic and persorptive
uptake in the small intestine [42–44]. Enhanced translocation
of the infectious agent from the gut lumen into the body may
be responsible for the observed increase in transmission
efficiency.

Survival analysis indicated that when bound to Mte, prions
from both BH and purified PrPTSE preparations were more
orally infectious than unbound agent. Mte addition influ-
enced the effective titer of infected BH to a lesser extent than
purified PrPTSE. Several nonmutually exclusive factors may
explain this result: (1) other macromolecules present in BH
(e.g., lipids, nucleic acids, other proteins) compete with
PrPTSE for Mte binding sites; (2) prion protein is more
aggregated in the purified PrPTSE preparation than in BH
[45], and sorption to Mte reduces PrPTSE aggregate size,
increasing specific titer [41]; and (3) sorption of macro-
molecules present in BH to Mte influences mineral particle
uptake in the gut by altering surface charge or size, whereas
the approximately 1,000-fold lower total protein concen-
tration in purified PrPTSE preparations did not produce this
effect.

We previously showed that other inorganic microparticles
(kaolinite and silicon dioxide) also bind PrPTSE [22]. All three
types of microparticles are widely used food additives and are
typically listed as bentonite (Mte), kaolin (kaolinite), and silica
(silicon dioxide). Microparticles are increasingly included in
Western diets. Dietary microparticles are typically inert and
considered safe for consumption by themselves, do not cause
inflammatory responses or other pathologies, even with
chronic consumption, and are often sampled in the gut and
transferred from the intestinal lumen to lymphoid tissue
[39,46,47]. Our data suggest that the binding of PrPTSE to
dietary microparticles has the potential to enhance oral prion
disease transmission and warrants further investigation.

In conclusion, our results provide compelling support for
the hypothesis that soil serves as a biologically relevant
reservoir of TSE infectivity. Our data are intriguing in light of
reports that naı̈ve animals can contract TSEs following
exposure to presumably low doses of agent in the environ-
ment [5,7–9]. We find that Mte enhances the likelihood of TSE
manifestation in cases that would otherwise remain sub-
clinical (Figure 3B and 3C), and that prions bound to soil are
orally infectious (Figure 5). Our results demonstrate that
adsorption of TSE agent to inorganic microparticles and
certain soils alter transmission efficiency via the oral route of
exposure.

Materials and Methods

TSE agent source. Syrian hamsters (cared for according to all
institutional protocols) were experimentally infected with the HY or
DY strain of hamster-adapted TME agent [48]. Brain homogenate,
10% w/v, was prepared in 10 mM NaCl. PrPTSE was purified to a P4
pellet from brains of hamsters infected with the HY strain using a
modification of the procedure described by Bolton et al. [49,50]. The
P4 pellet prepared from four brains was resuspended in 1 mL of 10
mM Tris (pH 7.4) with 130 mM NaCl. In the subset of experiments
using PrPTSE–Mte complexes, larger prion aggregates were removed
from the preparation by collecting supernatants from two sequential
5-min centrifugations at 800 g (clarification). Protein concentrations

were determined using the Bio-Rad (http://www.bio-rad.com) DC
protein assay as directed by the manufacturer’s instructions.

Preparation of inocula and oral dosing. Four types of Mte- or soil-
containing inocula were prepared: BH–Mte mixtures, PrPTSE–Mte
mixtures, PrPTSE–soil mixtures, and PrPTSE–Mte complexes (see
below). To prepare mixtures of BH or PrPTSE with Mte, the indicated
amount of 10% brain homogenate (Figures 1 and 2) or PrPTSE (Figure
3) was added to 500 lL of 10 mM NaCl in the presence or absence of
500 lg of Naþ-saturated Mte (particle hydrodynamic diameter¼0.5–2
lm) (prepared per [51]). Mixtures of PrPTSE and whole soils (Figure 5)
were prepared by adding 1 lg of PrPTSE to 500 lL of 5 mM CaCl2 in
the presence or absence of 1 mg of each soil type. Samples were
rotated at ambient temperature for 2 h, like samples were pooled,
and the equivalent of 500 lg of Mte or 1 mg of whole soil was orally
inoculated into each hamster. We previously showed that absorption
of purified PrPTSE to Mte was complete within 2 h [22].

Isolated PrPTSE–Mte complexes were prepared as previously
described [22]. Briefly, the indicated amount of clarified PrPTSE

(200 or 20 ng, Table 1) was added to 500 lg of Mte in 10 mM NaCl
(500 lL final volume) per sample. Mixtures were rotated at ambient
temperature for 2 h. Each PrPTSE–Mte suspension was placed over a
750-mM sucrose cushion prepared in 10 mM NaCl and centrifuged at
800 g for 7 min to sediment mineral particles and adsorbed PrPTSE.
PrPTSE–Mte complexes were resuspended in 500 lL of 10 mM NaCl
and pooled. The equivalent of 500 lg of Mte was orally inoculated
into each hamster. To control for potential sedimentation of
unbound PrPTSE, ‘‘mock’’ samples lacking Mte were processed
identically, and any sedimented material was inoculated into
hamsters. As a positive control, unbound PrPTSE (200 or 20 ng) was
orally administered to hamsters. All oral inoculations were via pipette
and voluntary consumption. Following oral dosing, hamsters were
observed twice weekly for the onset of clinical symptoms [48] for at
least 300 d, a period of time found sufficient to observe most or all
clinical cases [52].

Immunoblotting. Immunoblotting was performed as previously
described [22]. Briefly, proteins were separated by SDS-PAGE (4%–
20% gradient for analysis of inocula, 15% for analysis of brain PrP),
transferred to polyvinyl difluoride membranes, and immunoblotted
with the PrP-specific antibody 3F4 (1:40,000 dilution). Detection was
achieved with HRP-conjugated goat anti-mouse immunoglobulin G.

Analysis of PrPTSE inocula. The quantity and characteristics of
PrPTSE dosed in Table 1 and Figure 3 were compared by immunoblot
analysis (Figure S2A and S2B). For both unbound and Mte-bound
PrPTSE inocula, a 50- lL aliquot (one-tenth the total volume) of each
200-ng or 1-lg sample of PrPTSE (Figure 3 and Table 1, respectively)
was removed following the 2-h incubation. Samples with 20 ng PrPTSE
were not consistently detectable by immunoblot analysis. Mte was
sedimented by 1-min centrifugation at 14,000 g, and PrP was
extracted for 10 min in 5 lL of 103 sample buffer (100 mM Tris
[pH 8.0], 10% SDS, 7.5 mM EDTA, 100 mM dithiothreitol, and 30%
glycerol) at 100 8C. While still hot, Mte was sedimented by brief
centrifugation, and the supernatant containing extracted PrP was
diluted with 10 mM NaCl to a total volume of 50 lL. Sample buffer
was added to the unbound PrPTSE samples to a 13 final concen-
tration, and samples were heated at 100 8C for 10 min prior to SDS-
PAGE and immunoblotting. Analysis of the sorption of PrPHY and
PrPDY from brain homogenate to Mte was performed as previously
described [22].

Analysis of PK-resistant PrP. Brains from hamsters orally dosed
with unbound PrPHY or Mte-bound PrPHY were homogenized to 10%
w/v in PBS. For samples without PK, 10 lL of BH was mixed 1:1 with
103 sample buffer and heated at 100 8C for 5 min. Other samples (30
lL) were treated with PK (50 lg�mL�1) for 30 min at 37 8C.
Phenylmethylsulfonyl fluoride was added to achieve a concentration
of 1 mM to block PK activity, and samples were diluted 1:1 with 103
sample buffer and heated at 100 8C for 5 min prior to SDS-PAGE and
immunoblotting.

Survival analysis. Multivariate Cox proportional hazards regres-
sions [53] were used to estimate the effects of PrPTSE dose (using log10
PrPTSE dose as a continuous variable) and Mte inclusion on times to
onset of clinical symptoms [54]. Several diagnostic procedures were
performed to assess the validity of the Cox regressions. First,
interaction in the statistical model between Mte and PrPTSE dose
was tested and found to be far from significant (p ¼ 0.92); this
interaction was therefore excluded from further consideration.
Second, comparison of the linear fit with the three-level dose factor
indicated that the nonlinearity of the log10 prion dose covariate was
nonsignificant (p¼ 0.21); log10 prion dose was therefore retained as a
continuous covariate. Last, cumulative hazard curves were approx-
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imately parallel and simple diagnostics for proportionality [53]
showed the assumption of linearity to be appropriate.

Equivalence factors (the dose multiplier equal in effect to adding
Mte to a sample) can be derived as 10 raised to the inverse ratio of the
Mte and dilution coefficients. A 95% CI for the ratio was generated
using Fieller’s method and then exponentiated to produce a CI for
the factor [53]. All Cox analyses were performed using S-PLUS
version 3.4 [55].

Supporting Information

Figure S1. Typical Survival Curves for Intracerebral and Oral
Inoculation of a Dilution Series of Hamster-Adapted Scrapie Agent
(Prion Strain 263K) in 10% BH

For the intracerebral inoculation (inset), each log10 dilution leads to a
characteristic lengthening in incubation period (adapted from
Prusiner et al. [56]). Lines represent the mean incubation period of
eight hamsters. Typical survival curves following peroral adminis-
tration of 263K prions over a partially overlapping range of doses
reveal that each log10 dilution lengthens the incubation period and
reduces disease penetrance (adapted from Baier et al. [52]).

Found at doi:10.1371/journal.ppat.0030093.sg001 (22 KB PDF).

Figure S2. Immunoblot Analysis of Inocula for Experiments Examin-
ing PrPTSE�Mte Complexes and PrPTSE�Mte Mixtures

Aliquots of PrPTSE�Mte complexes and corresponding clarified
PrPTSE inocula were analyzed by immunoblotting to assess whether
processing losses could account for the reduced transmission by
unbound PrPTSE compared to the Mte-bound agent. One-tenth (50
lL) of the (A) 200 ng clarified PrPTSE 6 Mte samples or (B) 1 lg
PrPTSE þ Mte and corresponding unbound PrPTSE samples were
analyzed by immunoblotting. In both cases the Mte-bound samples
contained less or similar amounts of protein compared to the
unbound samples.

Found at doi:10.1371/journal.ppat.0030093.sg002 (25.7 MB TIF).

Figure S3. PK-Resistant PrP from the Brains of Clinically Infected
Animals Dosed with Unbound PrPTSE and PrPTSE�Mte Mixtures

At the conclusion of the transmission experiments, brain homoge-
nates from clinically diseased hamsters were analyzed by SDS-PAGE
and immunoblotting with the PrP-specific antibody 3F4. Brains from
animals dosed with unbound PrPTSE and PrPTSE�Mte mixtures were
assayed. Similar PrP molecular masses and banding patterns of both
uncleaved and PK-treated PrP were observed in both treatments.

Found at doi:10.1371/journal.ppat.0030093.sg003 (17 MB TIF).

Text S1. Survival Analysis in Oral TSE Infection, and Oral Admin-
istraion of Drowsy Agent with Mte

Found at doi:10.1371/journal.ppat.0030093.sd001 (37 KB DOC).

Accession Number

The GenBank (http://www.ncbi.nlm.nih.gov) accession number for
PrP is M14054.
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