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ABSTRACT

The hybrid stress finite element method is used for
the analysis of stiffened plates. A computer program,
.called HYBSLAB, is developed with the objective that it
become a regular analysis aid for practising engineers. The
program is intended for the analysis of floor systems under
serviceability conditions where the behavior is assumed to
be linearly elastic and the ioads static. Thé elastic
constants can be those of an orthogonally isotropic
(orthotropic) material.

Prior to writing the program an extensive literature
search was conducted and the results are summarized in a
'table of existing plate elements'. Some of the simpler
elements are then used in an element evaluation study.

The program generates stiffness matrices for a variety
of plane elasticity and flexural elements ranging in shape
from a triangle-to a 6-sided polygon. After verifying that
the program and its elements are capable of satisfying the
'patch test', its use is demonstrated on full-size floor-
systems. The program also provides the user with the option
of modelling the finite size of various shaped column cross
secfions and the finite width of beam stems. The error

introduced by coupling beam elements to a plate is examined.
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Separate from the above, is a proposed formulation for
including the effects of stress singularities at reentrant
corners. The formulation is tested by generating stiffness

matrices and analysing plates with reentrant corners.
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List of SYMBOLS, NOTATIONS and SIGN CONVENTIONS

The text of this report deals with the finite element

- analysis of plates. Both a right-handed Cartesian

coordinate system (x,y,z), and a right-handed polar
coordinate system (a,r,z), are used.
The following degrees of freedom are defined at the

midsurface of the finite element plates:
Z

' —»>0x vhere,
’%;/ ‘ = transverse displacement,
y . BOx= rotation about the X axis,

By= rotation about the Y axis,
U = in-plane displacement

(in the X direction),
V = in-plane displacement

(in the Y direction),

The directions of moments and shears are defined

according to the tensor sign convention as shown below:

yA Y
t ey .
I e - /MYX
' Qx My ~
I l L
Mx
Mxy | 4411;.
| Mxy
Mx ___¢ ______ X
- ——+>My
‘A/// 1 @x
Mxy
. Qy



The following is a list of symbols, notations and

nomenclature used in the text. The notations for the beam

element and the Lagrange element are presented last. The

notations are also defined in the text where they first

appear.

Matrix Symbols

denotes a rectangular matrix,

denotes the transpose of a rectangular matrix,

a one-dimensional column matrix,

a one~dimensional row matrix,

partial differential of the quantity
with respect to the variable 'x;',

partial differential of the quantity
with respect to the variable 'y',

vector,

Z displacement of any point in the element,

nodal displacements of W for the element,

second derivative of W (index notation),

the X axis at any point in an element,

the Y axis at any point in an element,

normal to an element side,

tangent to an element side,

node 'i',

nodal rotations 8x for an element,

(1
T
[]:
{ } : denotes
< > : denotes
),; : denotes the
in brackets
( ),y : denotes the
in brackets
{o} : denotes a null
Displacements_
W =
W} =
W,ij=
Bx = rotation about
By = rotation about
6n = rotation
Bt = rotation
fx;= rotation Ox at
{6x}=
6yi= rotation By at node 'i',

{

8yl=

nodal rotations By for an element, _ i

Xii



U = X displacement of any point in an element,

u; = value 6f U at node 'i',

V' =Y displacement of any point in an element,

2; = value of V at node 'i',

Ui = index notation for any translational displacement,

of a point in a solid,
Ui = prescribed values of Ui,
{u}

[L] = matrix relating field values of displacements
to nodal degrees of freedom,

matrix notation for all nodal displacements,

1

Stresses, Stress Resultants and Tractions

Oij = stress tensor in index notation,

M

= moment stress resultant (forcexlength/length),
Mij = moment ténsor in index notation,
Mn = moment normal to an element side,
Mnt =_twistin§ moment about a normal to a side,
Q = ordinary transverse shear at a plate edge,
¥ = Kirchhoff shear,
Ti = traction vector in index notation,
{T} = traction vector in matrix notation,
Ti = prescribed values of Ti,
Sx
5 = Southwell stress functions,

Strains and Material Properties

€ij = strain tensor in index notation,

Cijkl -

Dijkl = fourth order tensors of material constants,
Eijkl

X171



[C]
(D] .= constitutive tensors in matrix form,

Energy Terms

£

T
TTe

TTmc= modified complementary potential energy,

strain energy,

potential energy,

complementary potential energy,

General Terms

a; = coefficients of the patch test polynomials,
Fi = body force components (index notation),
H}, = Hermitian interpolation polynomials as functions

of p, where the _

- superscript 'o' denotes the order of the family
or the number of derivatives which the polynomial
can interpolate,

- subscript '1' denotes the displacement being
interpolated (either W or its derivative),

- subscript '2' denotes the node at which the
function has a unit value,

dH¢ ,= derivative of above Hermitian with respect to 'p',

£ = length along the side of an element,
ni = component 'i' of a unit normal vector,
p = non-dimensional parameter used to denote

length along a beam or element side,
g. = uniform loading in the Z direction,

g = non-uniform loading in the Z direction,

Hybrid Stress Matrices

[P ] = matrix of terms for the stress functions
without the B parameters,
[Ph]l= [P ] for the homogeneous solution,
[Ppl= [P ] for the particular solution,
[Psl= [P ] for the singularity solution,

Xiv



[NP ]= matrix product of a matrix operator [N]

and the polynomial matrix [P 1,

[NPh]= [NP ] for the homogeneous solution,
[NPp]= [NP ] for the particular solution,
[NPs]= [NP ] for the singularity solution,

[Hhh]
[Hpp]
[Hss]
[Hhp]
[Hhs]
[Hps]
[Hph]

[Hsh]

[Hsp]

[Ghh]
[Gpp]

[Gss]

{8}

[GHG]
{Peq}

matrices used to evaluate the strain
energy of an element,

= matrices used to evaluate the potential of
edge tractions for an element,

~vector of B; terms from the stress functions,

{
{
{

where,
Bh} = B parameters from the homogeneous solution,
Bp} = B parameters from the particular solution,

Bs}

B parameters from the singularity solution,

stiffness matrix for a hybrid stress element,

work equivalent load vector for the hybrid element,

Sinqularity Functions (Section 4.4)

- Ws
Ws

deflection function for stress singularities,

values of Ws without B,

Ws,ar= second derivative of Ws, with respect
t

Vil
[Bw]
C;

o 'a', and 'r’',
W,xx + W,yy
a matrix of singularity displacement functions,

constants of Ws evaluated from the boundary
conditions prescribed along the reentrant edges,

polar coordinate of rotation,

XV



Bo = B; from the singularity function Ws,

A = an eigenvalue,

v = Poisson's ratio for an isotropic material,
Mo = moment normal to an edge,

F = a function used to denote part of the

singularity function, Ws,

F = third derivative of F with respect to the angle, a,
G, . -
G, = functions calculated from Ws to obtain
G, moments and shears,

G, = first derivative of G, with respect to 'a',
r¢-'"’= radius 'r' raised to the power '-1',
r‘\ = radius 'r' raised to the power '\',

Offset Beam Element Matrix

e, = 'Y' eccentricity of a beam element, ' g
e, = 'Z' eccentricity of a beam or offset plate element, |
Y = angle of rotation of a beam element in the X~-Y plane,

k; = stiffness coefficient for a beam element,

[Kb]= beam stiffness matrix in global coordinates,

[K] = beam stiffness matrix in local coordinates,

[Tel= linear transformation matrix relating geometric
' degrees of freedom between the local and
global coordinate systems, :

[Tr]= rotation transformation matrix used to rotate
a beam in plan,

Lagrange Element (Appendix A)

8x = rotation about the X axis of a normal
with respect to a tangent at the midsurface,

rotation about the Y axis of a normal

6y
with respect to a tangent at the midsurface,
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<N;> = shape functions used to relate the values
of W, Bx, By, \x, and \y, to their
respective nodal parameters,

<N;,x>= partial derivative of <N;> with respect to
{N;,x}= partial derivative of {N;} with respect to
<N;,y>= partial derivative of <N;> with respect to
{N;,y}= partial derivative of {N;} with respect to

- @ - -
- W W ow

KAOX X

- ° =« -

= work equivalent load vector for W load,
{F,} = work equivalent load vector for 8x load,
= work equivalent load vector for 8y load,

>
]
"

Lagrangian multipliers in the X direction,

\y = Lagrangian multipliers in the Y direction,

{\x} = nodal values of )\x,
{A\y} = nodal values of \y,
I = Lagrangian functional,

[L¢P>]= matrices evaluated from the product of the
Lagrangian and the displacement shape functions,

[Kti)]= stiffness submatrix number 'i'.

Xvii



Chapter 1

INTRODUCTION

1.1 General Information

The deQelopment of the finite element method over the
last two decades rahks as perhaps one of the most
significant achievements in the history of engineering.
This analysis technique has a sound base in variational
calculus and with the aid of a computer prévides a means of
solving complex problems which would otherwise be
intractabie. With its use now well established in many
fields of engineering, the research frontiers in the finite
element method have moved to areas such as non-linear
applications and the modelling of complex material behavior.
As'discussed recently by Clough*®, even in these fields the
rewards for research have reached the point of diminishing
returns. Also as discussed by Clough, the trend now is
towards analytical-experimental research in an attempt to
model actual behavior and verify the theoretical model.

Theoretical developments in the finite element field
experienced a very rapid growth rate during the latter part
of the 1960's and the early 1970's. 1In addition to the
~analytical-experimental type of research described by
Clough, present day.efforts are directed at either edging
back the frontiers established during that period or méking

practical use of existing theoretical formulations for



problem solving. The present study falls into both of these
categories, with the major portion being in the latter.

The need for practical-oriented studies is great.
Methodology employed by the majority of consulting firms
today lags seriously behind the state of the technology.

For example, the majority of structural consulting firms
still use beam/column elements to model plane stress and
plate bending structures.

The reluctance of practitioners to use the finite
element method can be attributed to a number of factors.
Probably the most significant is the lack of familiarity and
experience with the finite element method. This is mostly
due to lack of training in the area, compounded by the
nature of the solution which requires choosing a grid and
later interpreting the output. The would-be user is also
faced with finding or writing a suitable computer program.
The issue is further complicated by the fact that within the
finite element method there exist a number of different
formulations. The one most familiar to engineers is the
displacement method. 1In plate bending, for example, the use
of the various formulations has resulted in a bewildering
number of elements. After a program is obtained, the
question of costs afises. With the capability and
efficiency of present day computers, the dominaﬁt cost of
the analysis is most likely to be associated with the cost
of manpower. Many finite element programs require several

man hours for preparation of input data and interpretation



of output data. The cost of actually 'running' the finite
element program can no longer be regarded as a deterrent to
its use.

The investigation presented here deals with the use of
the finite element method for the analysis of flat plates.
The étudy ﬁas two main goals. The first goal is a practical
one and is to provide design engineers with a design aid in
the form of é finite element plate bending computer program.
This program differs from existing programs in the following
ways:

(1) The program is based on the hybrid stress method. For
reasons discussed in Chapter 3, this formulation appears
to be best suited for the analysis of flat plate floor
systems.

(2) In modelling the structure, any element shape ranging
from a triangle to a six-sided polygon may be used.
Floors of arbitrary planform can be analysed and the
finite dimensions of column cross sections and the
finite width of beams may be included in the analysis.
Translational in-plane degrees of freedom have been
included to allow for displacements, such as those
caused by eccentric stiffeners. The same subroutine

-which generates the flexural matrices for the various
shaped elements is also used to obtain the in-plane
matrices.

(3) In developing the program, much emphasis has been placed
on reducing the user manpower demands. This has been
done by automating the input of data and by using

graphical displays to aid in the checking of input data
and the interpreting of output data.

The program is primarily intended for use by consulting
firms where at present more approximate methods based on
equivalent frames predominate. 1In this sense, it represents.

an advancement because plate structures can be analysed as



plates rather than a series of crossing beam elements with
incompatible displacements. At the same time, the program
has the capability of doing refined analysis of the type
required for research purposes. |
The second goal is to develop an element for the study
of stress singularities at reentrant corners of plates. The
formulation proposed in this thesis and the results obtained

therefrom are believed to be original work.

1.2 Scope and Objectives
The scope of the investigation is restricted to the
static analysis of linear elastic orthotropic plates.

Classical Kirchhoff plate theory has been used to describe

the behavior of the plate.

The objectives of the present study are:

(a) to conduct an extensive literature review and in summary
to provide a table of elements which can serve as a
guide and a quick reference to users of plate bending
elements,

(b) to evaluate a number of plate bending elements and to
choose the one which is most suited for the analysis of
flat plate structures,

(c) to include in the analysis the modelling of eccentric
stiffeners of finite width and of columns with
finite-sized cross sections and various shapes,

(d) to study the effects of stress singularities at
reentrant corners,

(e) to develop a computer program capable of modelling
complex flat plate structures but intended for use by
consulting firms,

(f) to illustrate the use of the program on actual floor
systems and to demonstrate that it is a viable



alternative to more approximate and traditional
approaches presently being adhered to; to incorporate
graphical output for the purpose of reducing the time
spent in checking of data, interpreting the results and
preparing the working drawings.

1.3.0fganization.and Presentation

'The‘presgntation begins in Chapter 2 with an indepth
literature review highlighting the more significant events
in the development of plate bending elements. The number of
elements which have evolved over the years is overwhelming
and an attémpt is made in Table 2.2 to chronologically
catalogue most of these elements. In the table, each
element is described by a sketch and accompanying comments.
This type of table is expected to be of great assistance as
a reference chart to both users and researchers of plate
bending elements.

In Chapter 3 certain criteria are established to choose
candidate elements for the desired plate bending program.
The candidate elements are then evaluated on four test cases
thought to be relevant to practise and the results are
.presented in tabular and graphical form. From these
- results, one element is chosen for the computer program.

The theory and use of the hybrid stress method for
platé bending and plane elasticity problems is dealt with in
Chapter 4. The in-plane matrices are necessary to model the
in-plane &isplacements caused by eccentric stiffeners. The

formulation for dealing with the stress singularities is



included in this discussion of the theory. This is followed
by details on how various matrices are obtainea for
polygonal shaped plane stress and flexural elements and the
L-shaped singularity elements. These matrices are then used
to calculate stiffness matrices and work equivalent load
vectors. With Chapter 4 as a basis, a computer program
which will be referred to as HYBSLAB was developed.

The capabilities and the Qeneral set-up of the program
HYBSLAB are described in Chapter 5. As well, the methods
used in the program to model eccentric beam elements and
finite-sized columns are explained in detail.

Chapter 6 deals with the test cases.used to verify the
element matrices of Chapter 4 and the program of Chapter 5.
The patch test and other similar tests are used to verify
the in-plane and the flexural stiffness matrices. Test
problems are included to illustrate convergence trends for
the various shaped elements. The L-shaped singularity
elements are used to solve an example problem and the
importance of considering the singuarity functions in the
formulation is assessed. The chapter concludes with an
investigation into the magnitude of error caused by coupling
eccentric stiffeners to a plate.

The use of the program HYBSLAB to solve practical
problems is demonstrated in Chapter 7. Two actual floor
systems are considered. The first is a typical floor of a
high-rise building, while the second is an experimental test

slab with eccentric stiffeners. In the second case the



finite size of the columns and the finite width of the
stiffeners are accounted for in the analysis.

The final chapter contains the summary and conclusions
of this investigation. Also areas which still require

additional research work are identified.



Chapter 2

LITERATURE REVIEW

2.1 Review of Developments in Plate Bending

Solutions to typical plane stress, plane strain and
three-dimensional elasticity problems can be obtained by
solving second order differential equations such as the
Navier displacement equations. The energy functional
associated with these problems contains only the first
derivative of the displacements.

In comparison, plate analysis, even by a simple plate
theory such as the classical Kirchhoff theory'®*, requires
the solution of a fourth order differential equation. For
more refined theories such as those established by
Reissner'*®®, Hencky'*', and Kromm'*', the integration order
may increase from four to six. These more exact theories
differ from the Kirchhoff plate theory by including the
effects of transverse shear strains and thereby allowing the
use of all three actual boundary conditions along the plate
edges.

Plate analysis by the finite element method was Started
at the beginning of the 1960's by researchers such as
Clough*?’, Adini?®, Melosh'2?®, and Tocher'®%. These
researchers used Kirchhoff plate theory and assumed
functions for the deflected shape of the element. The

finite element method provided a means of replacing the




displacement form of the differential equations of
equilibrium bf a set of linear algebraic equations. The
eguations were then'solved for the unknown displacements;
therefore, this approach came to be known as the
'displacement hethod'.

By thé'mid 1960's it was realized that this type of
finite element analysis was based on the variational
principle of minimization of potential énergy for the
structure. The strain energy expresSion contains second
derivatives of the displacement functions and is calculated
from the individual elements. For the variational principle
to be valid, it is essential not to have any discontinuities
in either the transverse displacement or its first
derivatives at any point in the structure. This requirement
-of continuity for the prime variable and its first
derivatives has come to be known as the 'C' continuity'

- requirement. Plane elasticity problems require continuity
of the prime variable alone or 'C°® continuity'. It is
important to note that a complete linear polynomial function
can provide C° continuity, but nothing less than a complete
cubic polynomial will satisfy C° continuity.

Fbr elements based on Kirchhoff plate theory, the prime
variable is the transverse displacement. Its first
derivatives along an edge are the normal and tangential
slopes. The shape functions used most often are either the

polynomial type obtained from Pascal's triangle or the
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Hermitian type of interpolation functions.t With these
types of functions there is no problem in obtaining full
continuity of the transverse displacement and the tangential
rotation along a common boundary. However; as early
researchers soon discovered, obtaining the same continuity
~for the normal slope did prove to be difficult indeed.
Physically, this incompatibility of normal slope represents
a kink in the structure at the junction of two neighboring
elements and hence these elements were labelled as
'displacement nonconfo:ming' or simply 'nonconforming'.

Most early plate elements were nonconforming and this caused
much concern. The presence of the slope discontinuities
violated one of the conditions of the variational principle
and therefore there was no guarantee that the solution would
converge.

Five papers which were presented in 1965 at a
conference at the Wright Patterson Air Force Base are worthy
of mention because they not only described the state of the
art as it then was, but they set the stage for much of the
research to come. The publications by Clough and Tocher*’,
Bazeley, Cheung, Irons, and Zienkiewicz??®, and' Bogner, Fox
and Schmit?®' established the importance of the constant
strain states and demonstrated that obtaining conformity for
plate elements was not going to be easy. These papers z

marked the beginning of an era of plate bending research

+ Other shape functions have been used on occasion; in 1964,
Deak and Pian‘?® used spline functions. |



11

~where the objectivé was either to provide C' conformity or
else provide alternatives to it.

In all three papers, a displacement formulation and
claséical Kirchhoff plate theory were the bases for the
element stiffness derivations. In addition to the above,
the papers by Pian'*¢ and Herrmann®*® are included because
they infroduced the hybrid and mixed methods as alteratives
to the displacement method. Further discussions on the
contributions of these researchers follows.

Clough and Tocher's investigation was primarily a
comparative study of displacement accuracy for 3 rectangular
and 4 triangular elements. It consisted of 280 analyses
involving 8 plates. All of the elements had corner nodes
only and the 3 geometric degrees of freedom as nodal
parameters. The geometric degrees of freedom are defined as
the transverse displacement and thé two rotations. The
elements which were used are discussed in more detail in
Section 2.2.

Clough and Tocher found that the rectangles generally
provided better results than the triangular elements.
Unfortunately, for certain cases, one of the nonconforming
rectangles and all three of the nonconforming triangles
converged to incorrect values. These researchers correctly
identified the absence of a constant twist term, where |
applicable, as being responsible for the poor behavior.
However, Clough** stated in an earlier publication that

complete conformity is essential for convergence. As well,
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Clough and Tocher leave the impression that the lack of
conformity is responsible for the poor performance of the
triangles. |

Bazeley, Cheung, Irons and Zienkiewicz took issue with
this statement on conformity and set out to prove otherwise.
They postulated that, although complete geometric conformity
is useful because it ensures monotonic convergence of strain
.energy, it is not essential for convergence to the true
values. Bazeley et al. stated that the only thing which is
essential is that the element, regardless of size or shape,
is capable of representing all the constant strain (or
curvature) states.

Today it is agreed that for true convergence the
individual eiements must be able to represent the constant
strain states exactly. Although this is a necessary
condition, it not sufficient. Conformity together with the
constant strain or 'completeness' condition guarantees true
convergence but conformity is not essential; it can be
replaced by the 'patch test'. One interpretation of the
patch test is that any group of elements, when subjected to
constant strain conditions around the periphery of the
gfoup, can reproduce exactly the constant strain conditions
at all the interior points. For flat plates, elements of
any size or shape are expected to meet these requirements.
Irons''® is credited with the development of the patch test,
but its origin was in the work of Bazeley et al. More

details on convergence and the patch test are available in a
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number of publicationé by Irons.

Bazeley et al. conéidered triangular elements only;
They intfoduced the use of 'area' coordinates as a means of
obtaining element shape functions which were geometrically
isotropic and were not affected by the orientation of the
element. Unfortunately, their shape functions could not
‘satisfy the constant curvature conditions and it became .
necessary to add supplementary functions. These
supplementary shape functions by themselves had zero-valued
transverse displacement and slopes at each of the element
nodes and therefore could be added to the existing shape
functions in any proportion. The element could now
represent. the constant strain states, but still it was
‘nonconforming. To make the element conforming they added
parabolic corrective functions. These corrective shape
functions were applied to the normal slope along element
sides and eliminated departures from a linear variation
between the nodes.

Althéugh their formulation does become rather involved,
Bazeley et al. do some example problems and present the
following important results. First, without the corrective
functions, the elements are nonconforming but they still
converge to the correct results. Thus the importance of the
constant strain conditions was established. Second, they
were successful in obtaining C' continuity for a triangular
element. More will be said about their method in the next

'section. ' Third, the nonconforming elements gave results
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usually much superior to those obtained from the conforming
triangle. This was especially true for the coarser grids,
so much so that Bazeley et al. recommend these elements for
actual use.

Bogner, Fox and Schmit®' dealt with conforming
rectangular elements, They used Hermitian interpolation
functions to derive stiffness matrices for 12 and 24 degree
of freedom rectangﬁlar elementé. Each réctangle had corner
nodes only, but the 24 degree of freedom element, in
addition to the three geometric degrees of freedom, had
curvatures as nodal parameters.

Bogner et al. did some example problems and concluded
that the elements exhibited monotonic convergence and good
accuracy. However, the convergence was to incorrect values
because the constant twist térm had been omitted. In an
addendum to the paper, they removed this deficiency and "
rederived 16 and 36 degree 6f freedom stiffness matrices to
replace the earlier 12 and 24 degree of freedom versions.
The new elements exhibited extremely rapid conVergence.

Although the work of Bogner et al. did show the
importance of including all constant strain states, their
main contribution is that they were successful in obtaining
full conformity for rectangular elements. However, they
found that in order to get conformity it was necessary to
use the twist term which is a second derivativé'of the
transverse displacement. Some clarification on -this was

provided in 1965 by Irons and Draper''®. They showed that
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it was impossible to use simple polynomials with only the 3
geometric degrees of freedom as nodal parameters and get
complete conformity.

There was considerable discontent with the C'
continuity requirement and researchers looked for alternate
formulations. Not only was C!' continuityrdifficult to
obtain for most elements, but, when finally achieved, the
resuiting elements were often found to be too stiff. The
research which followed went two separate ways. Followers
of the displacement method turned to higher order
polynomials and elements with more nodes or more nodal
parametérsf Other researchers abandoned the displacement
method and searched for alternate formulations. These
alternatives were also based on variational principles.

A logical alternative was to use the principle of
.minimum complementary potential energy and an 'equiiibrium
formulation'. It would appear that all one needs to do
again is to use interpolation functions,-but this time to
describe the stress field. .The chosen functions would be
required to satisfy equilibrium at every point in the
structure and the stress conditions on the boundaries.
Hdwever, as deécribed by Zienkiewicz?°¢, 'despite many
trials of horrifying complexity' seldom has this been
achieved directly with stresses as variables. One of the
major difficulties is satisfying the kinematic boundary

conditions.
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Initial work in this field was done by de Veubeke’¢.

To avoid a redundant force analysis, de Veubeke formed
element flexibility matrices directly, inverted them to get
stiffness matrices, and then proceeded with a disp;acement
type of solution. Problems arose with this approach when
the assembled stiffness matrix was found to be positive
semi-definite; this indicated that the structure was
kinematically unstable.

Another means of using the complementary energy
principle is to use the 'flexibility' or 'force' approach
where a set of redundant self-equilibrating forces is chosen
as the unknowns. In finite element analysis, difficulties
with automating the selection of the redundant force system
have caused this approach to be all but abandoned.

Considerable clarification and simplification in the
use of the equilibrium method is attributed to Morley'®*?,'3**
and Elias’°, who implementéd the use of element stress
functions. Stresses are calculated from the'secbnd
derivatives of.these functions and therefore the stress
functions must still possess C' continuity, but choosing
these functions is made easier by 'the principle of
duality'. According to this principle, the Airy stress
function, ¢, from an equilibrium solution in plane
elasticity, has the same form as the conforming displacement
function, W, for a plate bending problem. Conversely,vthe
conforming displacement functions, U and V, froﬁ'a plane

stress solution can serve as the Southwell stress functions,
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"Sx and SY, for an equilibrium solution to a plate bending
problem. These analogies have been discussed extensivély in
the literature by Southwell'’’, Zienkiewicz and de |
Veubeke®®, Morley'??, Elias’“} and Sander'’°, In spite of
Morley's and Elias’ contributions, problems still exist with
choosing the stress functions, defining the applied load
state and specifying the boundary conditions for the stress
functions. As well, the displacements do not possess unique
values because they can only be obtained from integrating
the strains. More detailed discussions on obtaining
solutions'from the principle of minimum complementary energy
are given in Chapter 7 of Gallagher*®* and in Chapter 12 of
Zienkiewicz2°¢,

Another alternative to theAdisplacement method is'the
hybrid stress method of Pian'*¢,'%2?, Using a modified
potential energy principle, Pian chose, to his advantage,
stress polynomials for the interior of the element and
displacements around the perimeter of the element. Since
this method has traits of both the displacement and
equilibrium methods, it became known as a hybrid stress
method. 1In 1965, Pian'*‘ successfully used his method to
derive stiffness matrices and obtain solutions for both
in-plane and plate bending problems. His method has
attracted the interest of researchers such as Severn'’!',
Henshell", Wolf2°°, Cook®*, and YoshidaZz°“*,.
| Othef researchers, such as Hansteen’?, Tong'®‘, and

Kikuchi and Ando'?°, developed various displacement hybrid
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approaches based on a modified principle of minimum
potential energy. Due to difficulties in obtaining some of
the component matrices and other problems identifiéd'by Mang
and Gallagher'?**, this approach does not enjoy the same
,Success as Pian's stress hybrid.

A third alternative to the displacement method was
presented at the same conference by Herrmann’® and was based
on a modified Reissner variational principle. Using this
" method, different combinations of displacements and stresses
can be assumed on the interior as well as on the boundariés
of the element. Herrmann relaxed the continuity
requirements for displacements but imposed continuity
conditions on the stress field. The result was that C°
continuity was required from both sets of trial functions.
Computations for the element stiffness are reduced because
lower order polynomials can be used, but neither equilibrium
nor compatibility may be satisfied in totality®®. 1In
general, with the mixed methods, Lagrangian multipliers are
included in the final equations and the pivots must be
chosen carefully because the equations are positive
semi-definite®*, 2°¢,

The developments from the mid 1960's to the early
1970's are regarded by many writers as being the most
significant iﬁ the development of the finite element method.
The most important contribution from this era was the
establishment of variational principles as the bases for the

various finite element methods in structural engineering. A
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comparison of these methods is presented in Table 2.1. This
table is basically the same as thaf published in 1969 by
~Pian and Tong'®? except for the addition of the generalised
displacement and the generalised equilibrium methods to the
mixed category.

In the 'generalised displacement method', nonconforming
elements are used in conjuction with interelement Lagrangian
multipliers. The Lagrangian multipliers are preseht in the
global equations and can be identified as forces which are
attempting to remove the discontinuities in normal slopes
between the elements. This approach appears to have been
initiated by Joneé"’, Greene et al.*®®, Anderheggen'?, and
Harvey and Kelsey®?®.

Similarily, in the 'generalised equilibrium method’',
the Lagrangian multipliers are applied to the global set of
equafions but now are identified as displacements. These
displacements restore equilibrium conditions between
elements in an overall or integfal sense. Such a solution
was used in 1969 by Anderheggen'' and later by Sander'’®,
With these two mixed methods, as with the mixed method
described earlier, Lagréngian multipliers are included\in
the final solution -and the equations are positive
semi-definite. Morley'®’ has developed an approximation
technigue to ensure that the final equations are positive
definite. Due to the increased number of unknowns and the
more complicated nature of these solutions, they are seldom

used.
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The period from the early 1970's onward was
considerably less rewarding in terms of plate bending
element_research. Nevertheless, there were many papers
published primarily dealing with C' continuity or
alternatives to it. This period saw the introduction of
techniques such as reduced integration and penalty number
formulations, the use of substitute shape functions and
derivative smoothing, and the use of discrete Kirchhoff
constraints. Some of these topics and the resulting
elements are discussed in the next section.

bne of the most significant developments wnich emerged
from this period was the use of the displacement formulation
based on Mindlin plate theory and reduced integration
schemes. A discussion of these schemes and two related
approaches follows after a brief description of the Mindlin
plate theory. |

Discontent with the C' continuity requirement and the
desire to include shear deformations caused some researchers
to abandon the Kirchhoff plate theory in favour of other
theories such4as that due to Mindlin'?®'. For flexural
"equilibrium of plates, Mindlin's plate theory is very
similar to Reissner's'‘®. Both theories recognize three
separate boundary conditions along the edge of a plate and
Reissner's theory can be considered as a special case of the
more general Mindlin theory. A comparison of the two

methods is given by Mindlin'?',
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In Mindlin plate theory the rotations at the plate

midsurface are not solely dependent on the transverse

displacement of the plate. For a finite element analysis,

this means that independent shape functions can be used for

the 3 geometric degrees of freedom. Only the first

‘derivative of the variables appears in the energy functional

and therefore only C° continuity is required of the shape
functions. As well, the shape functions from plane
elasticity elements can be used for the plate bending
elements and the elements can be distorted or mapped into
isoparametric shapes.

This approach worked fine for thick plates, but as the
plate thickness decreased the shear stiffness became so
large as to render the computations useless?°®, Therefore,
for thin plates, it became necessary to either impose the
Kifchhoff conditions of normality directly as constraints or
else make the shear strain matrix rank deficient by using
reduced integration. This type of approach had been used
with some success in 1969 by Doherty et al.®¢ for overly
stiff plane stress elements. For plate bending, it was
introduced simultaneously in 1971 by Zienkiewicz, Taylor and
Too"f and by Pawsey and Clough'*?Z,

In both publications, its use was demonstrated on
Ahmad's eight-node serendipity shell element®. 1In
evaluating the shear strain energy, both research groups
purposely underintegrated the shear strain terms while

evaluating the flexural terms exactly. This procedure has
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come to be known as 'selective reduced integration’.
Zienkiewicz and co-workers also tried underintegrating all
terms by one order of integration. Such a procedure is now
referred to as 'uniform reduced integration'. Both methods
gave much improved results and led to the method of
selective reduced integration with Mindlin plate theory.
This was to dominate the plate bending research field from
the mid 1970's to the present. The main contfibutions’to
this area have come from research groups associated with
Hughes'®®,'°%,1'°” and Hinton'¢®,'°°, Some of the elements
from this development are used in the next chapter.

One alternative to using selective reduced integration
for Mindlin plate elements is to impose, at the element
level, the Kirchhoff constraints of normality at discrete
locations such as the Gauss integration points or the Loof
nodes'?', Although this is a systematic approach, it is not
always successful and C° continuity is not always
preserved?°®¢. This idea was introduced in 1968 by Wempner
et al.'’°¢ and has been used for plates by researchers such
as Stricklin'®°, Baldwin'®, Fried®', Irons''*, and Lyons'??,

A second alternative is to impose the Kirchhoff
constraints in a weighted integral sense by using Lagrangian
multipliers. The details of using this approach to obtain
an element stiffness matrix are presented in Appendix A.

Neither of the last two approaches is as simple or
effective as the selective reduced integration technique.

In 1980, the use of the selective reduced integration scheme
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‘'was extended to hybrid stress formulations by Spilker'’°®,.

All of the methods discussed thus far are not
independent and a more comprehensive treatment of these
topics and the equivalences between certain methods are
discussed in Chapters 11 and 12 of Zienkiewicz?°‘ and in
Chapter 12 of Gallagher®*. As well, Malkus and Hughes'??®
and Spilker'’’ show the equivalence of selective reduced
integration and some mixed methods.

A radically different approach to all the methods which
have been discussed thus far is the 'direct method’
introduced in 1975 by Bergan and Hanseen?®. The method is
not based on any variational principle, and any element
matrix which satisfies certain conditions is acceptable.
The conditions consist of representing the rigid body modes
and the constant strain conditions and satisfying the patch
test. The method does not require involved computations as
some of the previous methods, and Bergan and Hanseen have
derived a triangle which is quite accurate.

Various other methods exist for the finite element
analysis of plates. One of these is the 'constraint' method
used by Rossow'*®’, Another approach, which has unlimited
applicability, is to use three-dimensional elements for
plate analysis. Neither of these methods is discussed in

this review.
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2.2 Egisting Elements

The purpose of this section is to identify most of the
elements which have resulted from the developments discussed
in the reviev section. Some of the more prominent elements
are discussed first and then a table of elements is
presented. The rectangular elemehts are considered iits;
and then the triangles. Quadrilateral elements can be
obtained from rectangles by a tréngformgtiOn of coordinates,
but unfortunately the constant curvature states gre often
destroyed?°¢. Therefore guadriléteral elements are usually
derived from triangles and will not be discussed separately.

The derivation of stiffness matrices for plate bending
elements was initiated by three simple rectangles. All
three elements had corner nodes only and the 3 geometric
degrees of freedom at each node.

The most well known of these elements was presented at
the beginning of the 1960's and is the Adini-Clough-Melosh
or 'A CM element. This is a displacement element based on
a twelve term polynomial displacement function consisting of
a complete cubic and two qguartic terms. Although this
element is nonconforming, its shape function does satisfy
the plate's differential equation of equilibrium and
biharmonic displacement equation. The principle of minimum’
potential energy does not require the shape functions to
satisfy either of these two equations.

The second rectangle was presented in 1961 and is often

referred to as the Melosh or 'M' element'?®, To derive the
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stiffness matrix for this element, Melosh used the Hermitian
beam functions along the edges of the element and assumed a
linear decay to zefe at the opposite and parallel side.

The third element is based on a product of two cubic
Hermitien polynomials, one along the local X axis and the
other along the Y axis. This element is sometimes referred
to as the element with crossing-beam displacement functions.
It was presented in 1959 by Papenfuss'*°®, but did not
receive much attention until rederived by Bogner,gFox and
Schmit in 1965. Although conforming, this element suffers
from the lack of a constant twist term and may not converge
to the correct result.

The above three simple rectangular elements initiated
the derivation of plate bending matrices. Several other
rectanguiar elements based on various functions and
formulations are presented in Table 2.2. Two of the more
prominent types from these developments are the hybrid
stress elements and those based on Mindlin plate theory and
selective reduced integration.

The hybrid stress elements were put forward by Pian in
the mid ﬁ960's. Since that time a large number of elements
‘have been derived by his method; several of these are
presented in Table 2.2.

The rectangles based on selective reduced integration
and Mindlin plate theory are a recent development due mainly
to the efforts of researchers such as Hughes and Hinton.,

Most of the elements developed by this approach are included
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in Table 2.2. Two of the more promising of these elements
are the simple bilinear rectangle and the 'heterosis'
element. These elements will be encountered again in the
next chapter. |

The derivation of stiffness matrices for triangular
elements has been the most challenging of all. The problem.
with triangles.arises from the fact that it is‘very |
difficult to obtain conformity and retain geometric isotropy
because the number of terms in a suitable shape function
seldom equals the total number of nodal parameters. Adding
internal degrees of freedom does not help conformity. 1In
the following paragraphs, a survey of element types
originating from various solutions is presented.

Beginning with the work of Adini® in 1960, and
Tocher'®® in 1962, it was soon apparent that for the basic 9
degree of freedom triangle it was not going to be easy to
obtain a stiffness matrix which converged to the correct
result. The problems arose because a complete cubic
displacement function has 10 terms but the basic triangle
has only 9 degrees of freedom. Therefore, the choice
regarding which terms to omit is almost arbitrary, but
symmetry should be maintained. Clough and Tocher*’
presented 3 nonconforming triangles, none of which was
satisfactory. One of these, derived earlier by Adini*, had
the xy term omitted and converged to an incorrect value.

The second one, derived by Tocher'®s, had the x?y and xy?

terms combined. Unfortunately, for some orientations of the
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element, problems are encountered with singular
matrices®*,'??,2°¢, The third triangle, known as the 'T-10'
triangle, was also derived by Tocher. All 10 terms of the
cubic polynomial were used and an internal degree of freedom
- was added to the triangle. This degree of freedom could be
eliminated from the stiffness matrix by static condensétion.
It was found that the resulting stiffness matrices were too
flexible and converged to incorrect values. The problem
with this element is unique in the sense that it can satisfy
the constant strain conditions but it cannot pass the patch
test.

The fourth triangle presented by Clough and Tocher is
conforming and marked the beginning of a method which
Gallagher®® has labelled as the 'subdomain approach'. To
use this abprbach, a_triangular element is subdivided into 3
subtriangles and independent displacement functions are
chosen for each. Clough and Tocher used only 9 terms of the
cubic function, but chose the local coordinates for each
subtriangle in such a manner that geometric isotropy was
preserved. They began with 27 degrees of freedom, but by
imposing compatibility conditions at the nodes and along
subtriangle boundaries, reduced the number of degrees of
freedom to 9. This conforming triangle is known as the
'H C T' or Hsieh-Clough-Tocher element and has been found to
be somewhat stiff. The excessive stiffness has been
attributed to the constraint of linear variation of normal

slopes between the nodes.
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In 1968, Clough and Felippa‘® improved on this method
by using all 10 terms of the cubic polynomial. In addition
to obtaining a stiffness matrix for a triangular element,
they also used 4 subtriangles to.derive a conforming matrix
- for a quadrilateral. This element is one of the better
plate bending quadrilaterals available and is still being
used in the SAP4** computer program.

Several researchers have used the subdomain approach or
variations of it. Elements derived by this approach are
identified in Table 2.2 by showing the subtriangles within
the element.

Instead of using the subdomain approach, a number of
researchers devised 'single field' approaches®*. Some of
the elements resulting from these efforts are discussed
below,

Bazeley et al.'s?® approach of superimposing various
shape functions was discuésed in Section 2.1,

Zienkiewicz*°* has labelled these types of displacement
functions as 'conforming shape functions with nodal
singularities'. The singularity refers to the fact that the
second order derivatives or curvatures are not uniquely
defined between elements. Because of this sipgularity, a
high order of numerical integration is necessary to compute
the stiffness matrix?°¢., Bazeley et al.'s approach cduld
probably be used to obtain shape functions. which give
results identical to Clough's subdomain approach, but in its _ 1

present form it has not enjoyed the same usage.
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A significant iﬁprovement to Bazeley's approach was
presented by Irons and Razzague''’,'¢* through the use of
'substitute shape functions' and the 'smoothed derivative
technique'. In a conforming element, the terms of the
highest order complete polynomial govern the rate of

convergence. Terms above this order are necessary for
conformity, but these same terms are responsible for the
excessive stiffness displayed by many conforming elements.
fhe substitute shape functions replace the original
functions but retain the same order of completeness and
approximate the derivatives which appear in the stiffness
. matrix computations in a least squares sense?°‘, The
resulting elements are nonconforming and have convergence
rates which parallel those of their conforming predecessors,
but the new elements are much more accurate. A more
detailed discussion is given in Chapter 11 of Zienkiewicz2°®
and in Chapter 12 of Gallagher“‘. Two elements, a 9 and a
‘12’degree of freedom triangle, were derived by Razzaque and
Irons and are included in Table 2.2.

Many attempts were made to get a single triangle to
¢dnfprm by using the complete cubic polynomial and an
interior node. To obtain conformity, techniques ranging
from constraint equations and Lagrangian multipliers to
calculating of 'corrective matrices’ héve been used. A
discussion of these approaches is given in Chapter 12 of
Gallagher®* and several of the resulting elements are

included in Table 2.2.
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To avoid the 9 degree of freedom triangle, some
researchers reduced the number of nodal parameters to 6,
while others kept on increasing the order of the.polynomial.
Some of the elements obtained from these various trials.
warrant mentioning.

The complete quadratic function with its 6 terms was
used by Morley'?®*¢ to derive the 'constant moment triangle'.
This triangle has 6 nodes and 6 degrees of freedom
. consisting of the transverse displacement at each vertex and
a normal rotation at each midside node. Along element
boundaries this element does not satisfy displacement
continuity but it is ablé to meet all the conditions of
equilibrium both internally and between elements. Therefore
it can be derived from the complementary energy principle as
an equilibrium element; this was done by Allman®. As well,
the same element can be derived from a mixed method as was
"done by Herrmann®®, Later the same stiffness matrix was
obtained from a hybrid displacement method by Kikuchi and
Ando'?*° and from the hybrid stress approach by YoshidaZz°?,
The constant moment triangle in plate bending is analogous
to the constant strain triangle in plane elasticity.

A discussion of triangular elements would not be
complete without mentioning the quintic conforming triangle.
The corner nodes of this element have 6 degrees of freedom
consisting of the 3 geometric parameters plus the 3
curvatures. Since a complete quintic polynomial has 21

terms, midside nodes with the normal slope as a degree of

[
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freeddm were added to the element. The 21 degree of freedom
matrix for this element was derived by Felippa’®, Withum'®’,
Bosshard?®?, Argyris'®, Bell?*¢, and Irons'''. Since the
midside node does present an inconvenience, it can be
eliminated by constraining the variation of the normal slope
to be cubic. Thisvwas done independently and almost
simultaneously by Cowper et al.ss, Argyris'®, Bell?®, and
Butlin and Ford®¢. The resulting element has 18 degrees of
freedom, is conforming, and gives results very similar to
the 21 degree of freedom triangle®*. These elements are
often referred to as the 'T-21' and 'T-18' triangles.
Continuing with higher order polynomials, Argyris used
sextic and septic functions to complete his TUBA family'®®.
This was followed by the work of Zenisek2°* who proposed and
proved a general interpolation theorem for triangles of many
orders. |

The most recent elements are based on Mindlin plate
theory and selective reduced integration. A triangular
element based on the displacement method was presented in
1980 by Batoz and co-workers:?, Also-in 1980, Spilker'’”®
presented a series of 4-node hybrid stress quadrilaterals
based on selective reduced integration and Mindlin plate
theory.

The table which follows, presents all the elements
discussed thﬁs far and many more which have not received
much coverage in the literature. An attempt has been made

to present these in chronological order with rectangles
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first and then the triangles and the quadrilaterals. An
extensive list of references and bibliography is provided at

the end of the text for the interested reader.
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ELEMENT

DESCRIPTION

1)

Displacement Type (Conforming)

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:
Papenfuss(1959), Clough and Tocher(1965)
Bogner ,Fox, and Schmit(1965)

- used crossing-beam functions; twist term
'xy' omitted, erroneous convergence.

2)

N N
Q. o]
o] o
Hh t+h

ACM

Displacement Type (Nonconforming)
- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Adini and Clough(1960), Melosh(1963),
Zienkiewicz and Cheung(1964),Dawe(1965)
- 12 term polynomial(cubic and x°y + xy?)
Dawe also forms a consistent mass matrix.

3)

Dz ;; D
Q
o
r-h

Displacement Type (Nonconforming)

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:
Melosh(1961)

- cubic beam functions along edges with a
linear variation to the opposite side.

4)

12 dof

|

Hybrid Stress Type

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:
Pian(1964-68) - also stress-free edges,
Severn and Taylor(1966),
Henshell and co-workers(1972-73)

- various combinations of W and M .

5)

16 dof

BFS-16

|

Displacement Type (Conforming)

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y W,xy >

- References: v '
Bogner ,Fox and Schmit(1965),
Butlin and Leckie(1966), Hansteen(1966),
Mason(1968).

Table 2.2

A Table of Existing Plate Elements.

[
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ELEMENT

DESCRIPTION

6)

Displacement Type (Conforming)

- Kirchhoff Plate Theory

- Nodal dof=< W W,x W,y W,xx W,xy W,yy >

- References:
Bogner et al(1965)- Hermitian functions,
Popplewell and MacDonald(1971),
Gopalacharyulu(1973,1975)- quartlc poly.
Watkins(1974, 1975)- blended Hermitians,

7)

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y W,xx W,xy W,yy
W,xxy W,xyy W,xxyy >
- References:
Bogner,Fox and Schmit(1965).

8)

Displacement Type (Nonconforming)
~ Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Dawe(1967)- modified the ACM polynomial
to reduce the coefficients which were
causing the W,n discontinuity.

9)

- -t w | N
N N o >
o (o] o O
Hh- Hh H\ H

Mixed Type(Generalized Dlsplacement Method)

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:
Greene,Jones,Mclay and Strome(1968,1969)
Harvey and Kelsey(1971); (triangles).

- Lagrangian multipliers are used at a
global level to restore continuity.

10) 16 dof

D

Hybr1d Stress Type
Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y W,xy >

- References:
Pian and Tong(1968), Pian(1973)

- spurious energy modes may appear for this
and other elements if assumed moments are
linear - Pian & Mau(1972), Holand(1975).
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ELEMENT DESCRIPTION
11} 36 dof | Displacement Type (Conforming)
» - Love's Moderateley Thick Plate Theory
- - Nodal dof= < W W,x W,y W,xx W,xy W,yy
; W,xxy W,xyy W,xxyy >
7 - | - References:
v Smith(1968), Smith and Duncan(1970)
i - also form a 24 dof rectangle by ignoring
' the last 3 nodal dof.
12) t2 dof | Hybrld Displacement Type(Simplified Method)

D

| - Nodal dof= < W W,x
- References:

. ~ derived 4 rectangles and 4 triangles by

Kirchhoff Plate Theory
W,y >

Kikuchi and Ando(1972)

using various displacement combinations,
('corrective' matrix enforces continuity)

13) 8 dof
CMR

U

: Hybrld Displacement Type

Kirchhoff Plate Theory
- Nodel dof= < W >
Node2 dof= < W,n or
- References:
Kikuchi and Ando(1972);
Poceski(1975) - mixed method, :
- this is the 'Constant Moment Rectangle'.

Mn >

(as above)

14)

N
>
Q.
O

rh

Displacement Type (Nonconforming)

- Kirchhoff Plate Theory

- Nodal dof=< W W,x W,y W,xx W,xy W,yy >

- References:
Wegmuller and Kostem(1972,1973)
Wegmuller (1973)

- complete quintic polynomial and the terms
x*y, x°y*®, and xy°®.

(o))
Q.
(o}
2 )

15)

{j

—
N

Dlsplacement Type (Discrete Kirchhoff)
Mindlin Plate Theory

- Nodel dof= < W 6x B8y >
Node2 dof= < én >

- References: (also a parallelogram)

Razzaque(1972),Baldwin(1973),Irons(1976)

- reduced 24 dof to 16 by using 8 discrete

conditions at the Gauss points.
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ELEMENT

DESCRIPTION

-
()]
Q.
(o]

h

| 16)

12

Dlsplacement Type (Discrete Kirchhoff)
Mindlin Plate Theory

- Nodel dof= < W} B6x By >
Node2 dof= < én >

- References: (also a quadrilateral)

Baldwin,Razzaque and Irons(1973)

- reduced 25 dof to 16 by using constraints

at 8 Loof nodes and a perimeter integral.

'17) 16 dof
Semi-Loof

1

- Nodel dof= < W >

“’D

D1sp1acement Type (Discrete Kirchhoff)
Mindlin Plate Theory

Node2 dof= < 8n > , (Loof nodes)
- References:
Irons(1976), Martins and Owens(1978)
- reduced 27 dof to 16 by using constraints
at 8 Loof nodes and 3 area integrals.

18) 12 dof

Bi .MPT

B

Displacement Type (Selective Integration)

- Mindlin Plate Theory

- Nodal dof= < |} Bx 8y >

- References:

Pugh(1976), Pugh,Hinton and Zienk.(1978)
Hughes,Taylor and Kanoknukulchai(1977)
bilinear displacement functions,

two spurious energy modes (Hughes1977-78)

19) 24 dof
QSR

D

Dlsplacement Type (Selective Integration)
Mindlin Plate Theory

- Nodal dof= < W} 6Bx 868y >

- References:(Quadratic Serendipity Reduced
Pugh(1976), Pugh,Hinton and Zienk.(1978)

- basically the same as Ahmad's reduced
integration plate element; may diverge
or converge erratically (Pugh et al.1978)

20) 27 dof
QLR

H

Displacement Type (Selective Integration)

- Mindlin Plate Theory

- Nodal dof= < W 6x 8y >

- References: (Quadratic Lagrange Reduced)
Pugh(1976), Pugh,Hinton and Zienk.(1978)

- four spurious energy modes for S$2x2
reduced integration,

- can be mapped into a qQuadrilateral.
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ELEMENT DESCRIPTION
21) 36 dof Displacement Type (Selective Integration)
- Mindlin Plate Theory
CSR - Nodal dof= < W Bx 8y >

D

- References: (Cubic Serendipity Reduced)
Pugh(1976), Pugh,Hinton and Zienk.(1978)

- no spurious energy modes for S3x3 reduced
integration, but the element locks for
S.S. and clamped plates (Pugh et al.1978)

22) 48 dof

CLR

Displacement Type (Selective Integration)

- Mindlin Plate Theory

- Nodal dof= < W 86x 8y >

- References: (Cubic Lagrange Reduced)
Pugh(1976), Pugh,Hinton and Zienk.(1978)

- four spurious energy modes for S3x3
reduced integration.

23)

D;EJ

Dlsplacement Type (Discrete Kirchhoff)
Mindlin Plate Theory
- Nodal dof= < W 6x
- References:
Lyons(1977)
- reduced 23 dof to 12 by using 8 Loof
nodes and 3 shear integrals.

By >

24) 16 dof

D

Dlsplacement Type (Discrete Kirchhoff)
Mindlin Plate Theory
- Nodel dof= < i} Bx 8y >
Node2 dof= < En >
- References:
Lyons(1977)
- reduced 27 dof to 16 by using 8 Loof

1 2 nodes and 3 shear integrals. .
25) 26 dof Dlsplacement Type (Selective Integration)
HETEROSIS Mindlin Plate Theory

o2

.

- Nodel dof= < W} Bx 8y >

- Node2 dof= < 6x 8y >

- References: (also 44 and 66 dof elments)
Hughes(1978,1979)

- Serendipity shape function for W and
Lagrangian shape functions for 8x and Oy.
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ELEMENT

DESCRIPTION

26) 12,24,36
dof

Hybr1d Stress Type (Selective Integration)
Mindlin Plate Theory

- Nodal dof= < W} 6x

- References:

Spilker(1980)

- derived matrices for thick and thin plate
rectangles with 12, 24, and 36 dof,
used Serendipity shape functions.

6y >

27)

N
Q
O

h

LAGRANGE

D1splacement Type (Integral Kirchhoff)
Mindlin Plate Theory

- Nodal dof= < W 6x

- References:
Hrudey and Hrabok(1981)

- Kirchhoff normality conditions for thin
plates are imposed in an integral sense
by using Lagrangian multipliers.

6y >

28)

0
Q.
o

+h

A (Adini)

Dlsplacement Type (Nonconforming)
Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:
.Adini(1961), Clough and Tocher(1965)

- constant twist term 'xy' omitted;
erroneous convergence (too stiff).

29)

0
Q,
O

rh

T (Tocher)| -

V

Displacement Type (Nonconforming)
Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:
Tocher(1962), Clough and Tocher(1965)

- combined x?y and xy?,

- singular matrix encountered for certain
shapes or orientations of the element.

30) 10 dof

T-10

dy

Dlsplacement Type (Nonconforming)
Kirchhoff Plate Theory
- Nodel dof= < W W,x W,y >
Node2 dof= < w >
- References:
Tocher (1962), Clough and Tocher(1965)
- element too flexible, does not pass the
'patch test'; can be reduced to 9 dof.
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ELEMENT

DESCRIPTION

31) 9 dof

x
Q
=3

Displacement Type (Conforming)
Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References: (Hsieh-Clough-Tocher element)
Clough and Tocher(1965)

- beglnnlng of the 'subdomain approach',

- 'geometric isotropy' preserved by spec1al
choice of axes; linear W,n enforced.

32) 9 dof
BC1 Z(nc)

V

Displacement Type (Nonconform1ng)

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:
Bazeley,Cheung,Irons and Zienk.(1965)

- introduced the use of 'area coordinates'
to- retain geometric 1sotropy, also begin
the 'substitute shape function' approach.

33) 9 dof
BC1I 2(c)

V

Displacement Type (Conforming)
Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Bazeley,Cheung,Irons and Zienk.(1965)
- as above, but corrective shape functions
used to obtain conformity (very stiff),
- requires very high order of integration.

34) 12 dof

V

Mixed Type (modified Reissner Principle)

- Reissner Plate Theory
- Nodal dof= < W - Mx My Mxy >
- References: ,
Herrmann(1965)
Chatterjee and Setlur(1972)
- assumed linear variation of W and M ,
trial functions need only C° continuity.

35) 9 dof

V

Displacement Type (Discrete Kirchhoff)

- Mindlin Theory or (Thick Plate Theory -
displacement functions for U, V, and W).
- References:
Melosh(1965) ,Utku(1967,71),Martin(1968)
Wempner et al(1968), Dhatt(1969-70),
Stricklin et al(1969), Fried(1973),
Hinton et al(1975), Batoz et al(1980).
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'ELEMENT

DESCRIPTION

36) 9 dof

Equ111br1um Type (Argyris'
Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:
Argyris(1965)

- obtained a 6x6 flexibility matrix by
using the Unit Load method.

Natural Approach)

0
Re) :
Hh

37)

Hybrid Stress Type
- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Severn and Taylor(1966)
- assumed quadratic M and cubic W .

N
Q,
o

~h

38)
T-21

*YF

Displacement Type (Conforming)

- Kirchhoff Plate Theory

- Nodel dof=< W W,x W,y W,xx W,xy W,yy >

Node2 dof= < W,n >

- References: Fellppa(1966), Withum(1966)
Argyris(1968), Bell(1968),Bosshard(1968)
Visser(1968), Irons(1968)

- used a complete quintic polynomial.

39) 6 dof

O
2
-3

—

Methods : - CONSTANT MOMENT TRIANGLE
Displacement ; Morley(1971)

Equilibrium ; Allman(1970)

Hybrid Stress; Yoshida(1972)

Hybrid Disp. ; Kikuchi and Ando(1972)
Mixed ;Herrmann(1967) ,Hellan(1967)
- Nodel dof= < I or Q >

Node2 dof= < W,n or Mn >

40) 12 dof

V

| - quadratic moment functions,

Equilibrium Type (Dual1ty Approach)

- Kirchhoff Plate Theory

- Nodal dof= < Sx Sy >

- References:
Morley(1967,68), Sander(1970)

- nodal parameters are the Southwell
stress functions.
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ELEMENT

DESCRIPTION

41) 9 dof

Hybrid Stress Type

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References
Dungar,Severn and Taylor(1967)
Allman(1970)
Neale, Henshell and Edwards(1972),
Yoshida(1972,1974), Batoz et al(1980).

42) 12 dof
Leect=-12

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- Node2 dof= < W,n >
- References:
Clough and Felippa(1968)
-improved the subdomain approach by using a
complete cubic and reducing 30 dof to 12.

-_—

Displacement Type (Nonconforming)

-~ Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >
Node2 dof= < W W,n >
References:

Bell(1968,1969)

Chu and Schnobr1ch(1972)
- used complete quartic shape functions.

44) 9 dof

Displacement Type (Non-Conforming 1n w)
- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Connor and Will(1968)
- discarded the x*y term, conforming in W,n
but not in W along one of the sides,
- used in the STRUDL2Z computer program.

45) 12 dof
LMT

Equilibrium Type

- Kirchhoff Plate Theory

- Nodal dof= < W

- Side dof= < averaged integral value of W

and 2 weighted edge rotations >

- References: (Linear Moment Triangle)
de Veubeke and Sander(1968),
Somervaille(1974)-also presented Q M T.
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DESCRIPTION

46)

\0

u
O

)]

Dlsplacement Type (Conformlng)

Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:

. Shieh et al(1968)
- used a quadratic function and reduced

18 dof to 9 dof, element cannot satisfy

interior dlsplacement comptability.

47)

-
(o]
Q
O

L]

T-18

V

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodal dof=< W W,x W,y W,xx W,xy W,yy >
- References:
Cowper et al(1968), Argyris(1968),
Butlin and Ford(1968), Bell(1968- 69)
- derived from T-21 tr1angle by imposing a
a cubic variation of W,n .

48) 21 dof
TUBA-6

v

- References:

Displacement Type (Conforming)

- Kirchhoff Plate Theory

- Nodel dof= < W W,x W,y W,xx W,xy W,yy >
Node2 dof= < W,n >

Argyris(1968) - identical to T-21,
-complete quintic displacement polynomial,
element has 6 nodes and 21 dof.

149) 28 dof
TUBA-13

‘W

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodel dof= < W W,x W,y W,xx W, xy W,yy >
Nodei dof= various dof at remaining nodes
- References:
Argyris(1968)
-complete sextic displacement polynomial,
element has 13 nodes and 28 dof.

50) 36 dof
TUBA-15

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodel dof= < W W,x W,y W,xx W, xy W,yy >
Nodei dof= various dof at remaining nodes
- References:
Argyris(1968), Zenisek(1970)
-complete septic displacement polynomial,
element has 15 nodes and 36 dof.
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51)

6 dof

Bquilibrium Type

- Kirchhoff Plate Theory

Nodal dof= < Sx Sy >

- References:

Elias(1968), Sander(1970)

nodal parameters are Southwell functions,
assumed linear moment functions.

52)

12 dof

Mixed Type (Herrmann's Method)

- Reissnet Plate Theory .
Nodal dof= < W Mx My Mxy >
- References: ,
Visser(1969), Boot(1978)
9 dof obtainable by static condensation,
parabolic variation of W and
a8 linear variation of M .

53)

18 dof

D1splacement Type (Conforming)
Kirchhoff Plate Theory

- Node!l dof= < W W,x W,y >
Node2 dof= < W W,n W,nt >

- References: _

Irons(1969)

- used all 15 terms of a quartic plus 3

basic or s1ngular1ty functlons.

;54’_

24 dof

Mixed Type (Generalized Equ111br1um Method)

Linear 8Stress Variation across thickness

Nodal dof= < Mx My Mxy >

Side dof= < 2 Lagrange multipliers to
restore shear continuity >

References:
Anderheggen(1969), Meek(1975)

55)

9 dof

- Nodal dof= < W W,x W,y >

Hybrid Stress Type
Kirchhoff Plate Theoty

- References:
Dungar and Severn(1969),
- various combinations of M and W,
- variable thickhess, also triangles with
stress-free edges, and hybrid beams.
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ELEMENT -

DESCRIPTION

56) - 9 dof

-Hybrld Displacement Type

Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References: _
Hansteen(1969),Yoshida(1972),Al1lman(1976)

- Allman's cubic W for interior and edges
is identical to a stress hybrid with
cubic W and linear M .

57) 12 dof

- References:

Mixed Type(Generalized Displacement Method)

- Kirchhoff Plate Theory

Nodal dof= < W W,x W,y >

- Side dof= < weighted average of Mn (used
to restore interelement continuity)>

Anderheggen(1970)
complete cubic, one dof is integral of W

58) 12 dof

1

Hybrld Stress Type
Kirchhoff Plate Theory
- Node1 dof= < W W,x W,y >
Node2 dof= < W,n >
- References:
Allman(1970), Bartholomew(1976)
- element with linear M and cubic W is
identical to Razzaque's 'A-12'.

59) 9,10 dof

—h

Mlxed Type (Generalized Displacement Method)
Kirchhoff Plate Theory

- Nodetl dof= < W W,x W,y >

- Node2 dof= < |} >, can be condensed out.

- References:
Harvey and Kelsey(1971), Meek(1975)

- Lagrangian multipliers restore continuity
at a global level, similar to Anderheggen

60) 12 dof

Mixed Type (Herrmann's Method)
- Reissner Plate Theory
- Nodal dof= < W Mx My Mxy >
- References:

Tahiani(1971)

Bron and Dhatt(1972)
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DESCRIPTION

N
>
Q.
o

Hh

161)

Mixed Type (Herrmann's Method)
- Reissner Plate Theory
- Nodal dof= < W Mx My
- References:
Tahiani(1971)
Bron and Dhatt(1972)

Mxy >

62) 9 dof

V

Displacement Type (Nonconforming)

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References: '
Irons and RazzaqQue(1972-73)

-~ used 'derivative smoothing' and
'substitute shape functions',

- identical results to Allman(1970) hybrid.

63) 12 dof

“W

Dlsplacement Type (Conforming)
Kirchhoff Plate Theory
- Nodel dof= < W W,x W,y >
Node2 dof= < W,n >
- References:
Irons and Razzaque(1972-73)
- used 'derivative smoothing' but element
identical to Allman's(1970) stress hybrid

o
Q,
[o]

rh

64),

| Hybrld Displacement Type(Simplified Method)

Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:
Kikuchi and Ando(1972)

~ used a complete cubic and a 'corrective
matrix' to derive 4 rectangles and ¢
triangles.

65) 33 dof

“V

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodel dof=< W W,x W,y W,xx W,xy W,yy >

Nodei dof= various dof at remaining nodes
- References:

Svec and Gladwell(1973)

- similar to TUBA-15 but reduced to 33 dof,
- 10 node element used for contact problems
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66) 9 dof Hybrid Stress Type
- Love's Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Cook(1972-74)
- various aspects of the hybrid stress
method; emphasis on transverse shear,
- also formed quadrilaterals from triangles|
67) 9 dof 'Direct Approach’

V

- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Bergan and Hanseen(1975)
- not based on any variational principle
but must satisfy constant strain states
and pass the 'patch test'.

68) 8 dof

Ve

Mixed Type (modified Herrmann's method)
- Kirchhoff Plate Theory '
- Node1 dof= < W Mx My >,

Node2 dof= < W Mn >

Node3 dof= < W > ,(linear M along 2-2)
- References: (constant M along 1-2)

Poceski(1975)

- stress polys. partly dependent on disps.

6S) 21 dof

W/

Displacement Type (Conforming)
~ Kirchhoff Plate Theory
- Nodel dof= < W W,x W,y >
Node2 dof= < W W,x W,y W,nt >
- References:
Caramanlian, Selby and Will(1978)

70) 9 dof

V

Displacement Type (Selective Integration)
- Mindlin Plate Theory

- Nodal dof= < W 6B6x 8y >

- References:

Batoz,Bathe and Ho(1980) S
= a study of 9 dof triangles which included
conventional disp., hybrid stress, and

discrete Kirchhoff elements.
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71) 12 dof Methods:
Rhombics Displacement ; Sander(1970)
; Equilibrium ; Sander(1970)
Hybrid Stress; Wolf(1973)
- Nodal dof= < W W,x W,y >
- References:
Pian(1973)
72) 12 dof Displacement Type(Argyris' Natural Method)

- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Argyris(1965) '
- derived 9x9 'natural flexibility matrix'
from which the 12x12 stiffness matrix
was obtained.

73) 12 dof

[/

Displacement Type (Nonconforming)
- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
~ References:
Dawe (1966),
Ramstad and Holand(1966), Ramstad(1967)
- Dawe uses the ACM polynomial in an :
obligue coordinate system.

74) 16 dof

Q

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y W,xy >
- References:
Granheim(1968)

75) 12,24,36
- dof

: Equ111br1um Type (Duality Approach)

'~ - References:

- - derived a family of equilibrium linear,

Kirchhoff Plate Theory
- Nodal dof= < Sx Sy >

Sander(1970)

quadratic, and cubic parallelograms and
triangles (also sub- and hypér- elements)
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76) 16 dof . | Displacement Type (Conforming)
- Kirchhoff Plate Theory
CQ-16 - Nodel dof= < W W,x W,y >
: Node2 dof= < W,n >

- References:
Sander(1964), de Veubeke(1965, 1968)
- 12 dof guad. may be obtained by imposing
a linear variation of normal slopes.

Displacement Type (Conforming)

- Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:
Clough and Felippa(1968)

- the quadrilateral used in the SAP4
computer program.

78) 24 dof

[

Displacement Type (Conforming)
- Kirchhoff Plate Theory
- Nodal dof=< W W,x W,y W,xx W,xy W,yy >
- References:
Clough and Felippa(1968)

79) 16 dof

ﬂ

Mlxed Type (Generalized Displacement Method)
Kirchhoff Plate Theory

~ Nodal dof= < W W,x W,y >

~ References:
Greene,Jones,Mclay and Strome (1968, 1969)

- used Lagrangian multipliers to restore
continuity at a global level.

80) Polygons

<]

Hybrld Stress Type
Kirchhoff Plate Theory
- Nodal dof= < W W,x W,y >
- References:
Allwood and Cornes(1969)
- reported results for work done on
polygons with 3 to 9 sides.
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DESCRIPTION

81) 24 dof

Displacement Type (C° Conformity)
- Ahmad's quadratic thick shell element.
- Nodal dof= < W BOx 8y >
- References:
Ahmad,Irons and Zienkiewicz(1968,1970)
- a plate element obtained from a
degenerated solid, found to be too stiff
for thin plates.

82) 24 dof

Displacement Type (Selective Integration)
- Ahmad's shell element underintegrated.
- Nodal dof= < W 8x 8y >
- References:

Pawsey and Clough(1971)

Zlenk1ew1cz Taylor and Too(1971)
- both selectlve and 'uniform' reduced

integration used to soften the element.

83) 12,24,36
dof

Mapplng of Rectangles to Quadr1laterals.
Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:

Henshell,Walters and Warburton(1972)

- a guadrilateral can be obtained from a
rectangle by a transformation of i
coordinates, but the constant curvature
states may be destroyed (Zienkiewicz1977)

84) 16 dof

Mixed Type (Herrmann's Method)
- Reissner Plate Theory

Nodal dof= < W Mx My Mxy >
-~ References:

Bron and Dhatt(1972)

linear W and linear M.

85) 24 dof

Mixed Type (Herrmann's Method)
- Reissner Plate Theory
Nodal dof= < W Mx My Mxy >
References:
Bron and Dhatt(1972)
guadratic W and quadratic M.

et
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ELEMENT

DESCRIPTION
86) 12 dof | Hybrid Stress Type
- | - Kirchhoff Plate Theory

- Nodal dof= < W W,x W,y >

- References:

Torbe and Church(1975)

- also derived the in-plane matrices.

87) 24 dof Hybrld Displacement - Trefftz's Principle
Kirchhoff Plate Theory
- Nodal dof=< W W,x W,y W,xx W,xy W,yy >
- References:
Jirousek and Leon(1977)

- independent disp. functions for interior
and perimeter; attempt to satisfy the
differential equations of equilibrium.

88) 9 dof Hybrid Stress Type (Selective Integration)

- Mindlin Plate Theory
- Nodal dof= < [ Bx 8By >
- References:
Spilker(1980)
- derived a series of 4-node quadrilaterals
- also derived Serendipity quadratic and
cubic elements for thick plates.




Chapter 3

EVALUATION AND TESTING OF ELEMENTS

3.1 Selection Criteria for Test Elements

From the literature review of the preceding chapter, it
is obvious that there is a bewildering number of elements
from which to choose. However, the intent of this research
project is to develop a program for practical use and this
will eliminate a considerable number of elements. The
factors considered to be important for the selection process
will be dealt with shortly. The property of conformity is
felt to be of secondary importance and is not used in the
selection of candidate elements.

As well, to aid in the search for the 'best' element,
there exist a number of studies where various plate bending
elements have been compared. The findings of two of these
studies, one by Smith and Duncan'’® and the other by Abel
and Desai', are thought to be particularly useful and will
also be discussed. |

The first selection criterion is that only the ¢
transverse displacement, W, and the two rotations, 8x and '
Oy, will be used as nodal degrees of freedom. These ﬁodal
parameters are often referred to as the 'engineering',
'geometric' or 'basic' degrees of freedom. Elements which
have nodal parameters consisting of second and higher order

derivatives of W have been labelled as elements with

52
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excessive nodal continuities'’®,2°¢, The terminology stems
from the fact that in a displacement formulation based on
classical plate theory the variational principle requires
only C' continuity. In this chapter the phrase 'higher
order parameters' will be used interchangeably with
'excessive nodal continuities'. The reasons for not using
higher order barameters as nodal degrees of freedom are
discussed in the following paragraphs.

A study by Smith and Duncan'’® compared displacements
and moments versus the nﬁmber of unknowns for four different
rectangular and parallelogram shaped elements. The four
elements were the nonconforming A C M element, the Bogner,
Fox and Schmit 16 and 36 degree of freedom conforming
rectangles, and Smith's 24 degree of freedom rectangle.
More information on these elements is contained in Table
2.2. Smith and Duncan formulated the stiffness matrices in
terms of skew coérdinates and analysed rhombic plates with
- various angles of skew. They concluded that for thin plate
flexure there was no substantial improvement in using
elements with excessive nodal continuities. This is one of
the reasons for not insisting that the higher order degrees
of freedom be used as nodal parameters. At the same time,
however, it is necessary to mention that elements such as
the T-18 triangles with curvatures as degrees of freedom are
capable of providing very accurate results.

A second reason for choosing ohly the geometric

parameters is that each degree of freedom of the structure
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physically represents a displacement or load quantity which
can easily be visualized. This makes it easier for a
designer to specify the kinematic boundary conditions and
the loading and later to interpret the results.

A third reason is that in some structures the higher
order parameters are not continuous. For example, in a beam
or plate with an abrupt change in cross section or moment of
inertia, equilibrium requires that the bending moment
remains continuous. If the member is homogeneous then the
bending curvature cannot be continuous. This causes
problems for elements with excessive nodal continuities.

The problem can be resolved by using discontinuous degrees
of freedom, but this is undesirable because it causes
inconveniences in the modelling of the structure and
increases the total number of unknowns.

| A similar problem arises when coupling adjoining plate
elements at such locations as corners of columns. ' The
problem can again be rectified by using discontinuous
degrees of freedom, but this has the same disadvantages as
discussed in the above paragraph.

Another complication with the higher order parameters
arises when coupling eccentric beam or plate elements to the
mainlplate. The geometric degrees of freedom}are zero and
first order tensors in the X-Y plane, and, as such, have
translational and rotational transformations which are
simple to obtain because the coupling action betweeén the

degrees of freedom can be visualised. The same is not true
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for the higher order nodal parameters where it is difficult
to decide which degrees of freedom are coupled to which.

For the reasons discussed above, elements with
exceésive nodal parameters were eliminated in the
preliminary selection process.

The second selection criterion deals with the number of
nodes per element and the degrees of freedom at these nodes.
For convenience of use and versatility in coupling beams to
plates, any element without the same set of nodal parameters
at each node is undesirable. This eliminates a large number
of plate bending elements which have nodal parameters such
as 'W' and 'W,n' at midside or interior nodes. Most higher
order elements are of this type and therefore, after the
second selectionbcriterion is applied, most of the elements
which remain are of the simple type with corner nodés only.
Evidence to show that simple elements are not necessarily
inferior to the higher order elements was presented by Abel
and Desai' in 1972,

Abel and Desai did a displacement accuracy study and
‘used 12 different elements to analyse simply supported and
fixed square plates subjected to central point loads. The
elements included the A C M and M rectangles, the HC T
triangle, Clough and Felippa's triangle and quédrilateral,
de Veubeke's displacement conforming quadrilateral and
equilibrium triangle, Anderheggen's mixed method with
equilibrium triangles, Elias' equilibrium triangle, Argyris'

Tuba-6 triangle, the BFS-16 rectangle and Severn and
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Taylor's hybrid stress rectangle. Details on these elements
can be found in Chapter 2 and Table 2.2,

For all the cases, quadrilaterals or an equivalent
assemblage of triangles were used. Abel and Desai compared
displacement accuracy versus NB?, where 'N' is the total
number of unknowns and 'B' is the semi-band width. Their
graphs indicate that the M rectangle is the best overall
element and that the more complicated elements are really
not superior to the simple rectangles.

Abel and Desai's, and Smith and Duncan's studies do not
-consider the work required to obtain the element matrix, but
their comparisons are much more valid than most studies
which simply compare displacements versus the number of
elements. The latter type of comparison definitely favors
the higher order elements.

The result of applying the two selection criteria is
that the candidate elements must have nodes with only the 3
geometric degrees of freedom as nodal parameters. At this
point it was decided to use rectangular elements for the
evaluation. The reasons for making this choice are
discussed in the paragraphs which follow. The test cases
which were used are described in the next section.

The decision to use rectangular elements was based on
two main considerations., First, most floor plans in
practise can be represented almost entirely by a rectangular
gridwork. This type of grid is desirable because it

simplifies the operations of automatic mesh generation for
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input data, post-processing of the solution data and

production of graphical output. Second, for the simpler

type of elements being considered here, rectangular elements

usually provide better results than an equivalent number of

triangles. This is to be expected of the displacement

elements where the interpolation polynomials for a rectangle

are usually of a higher order than for a triangle, but it

has also been found to be true for other methods'’','2°,

Therefore, wherever possible, the use of rectangular

- elements is preferred.

Using the guidelines established thus far, it was

decided to use the following rectangles in the evaluation:

(a)

(b)

(c)

The well known A C M rectangle based on a displacement
formulation and Kirchhoff plate theory. The
displacement function for this element is a twelve-term
polynom1a1 consisting of a complete cubic and two
quartic terms. The element is nonconforming. It was
discussed in Chapter 2 and appears as element (2) in
Table 2.2.

A hybrid stress element similar to that initially
developed by Pian and later by Severn and Taylor. The
element has 12 displacement degrees of freedom and its
derivation is based on a modified complementary
potential energy principle and Kirchhoff plate theory.
The internal bending moments are represented by complete
guadratic polynomials, while along the element edges the
transverse displacement and the normal rotation are
represented by cubic and linear polynomials
respectively. This element is listed as element (4) in
Table 2.2,

The element referred to as the Bi.MPT element in this
study. This is a bilinear displacement element based on
minimum potential energy, Mindlin plate theory and
selective reduced integration. It appears as element
(18) in Table 2.2. The flexural strain energy is
evaluated exactly using a 2x2 order of Gauss integration
while the shear strain energy is underintegrated by
using a 1x1 Gauss order. The shear strain energy is
purposely underintegrated to prevent 'locking''°®., This
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element was introduced by Hughes et al.'°’ in 1977 and
was quoted as being 'the simplest effective plate
bending element yet proposed' and described as being
'highly efficient' and 'surprisingly accurate’.

(@) The fourth element of this study does not meet the
requirement of having the same degrees of freedom at all
nodes. However, the so-called 'heterosis' element
developed in 1978 by Hughes and Cohen'®® is included
because it looks sufficiently promising and has been
highly recommended by Hughes. This element is listed as
member (25) of Table 2.2. It is a higher order
displacement element based on Mindlin plate theory and
selective reduced integration. The element has nine
nodes and uses Serendipidty shape functions for the
transverse displacement, while Lagrangian shape
functions are used for the rotations. The flexural
strain energy is evaluated exactly using a 3x3 Gauss
order of integration, while the shear strain energy is
underintegrated by using a 2x2 order.

(e) The fifth and last element is a 12 degree of freedom
displacement element where independent shape functions
have been used to describe the transverse displacement
and the rotations. Lagrangian multipliers are then used
to impose the Kirchhoff conditions of normality. This
element appears as member (27) in Table 2.2 and for lack
of a better name is referred to as the 'Lagrange'
element. The details of its derivation are given in
Appendix A,

Details of the element evaluations are contained in the next
section.

After this work was completed, the results of a similar
study were published in 1980 by Batoz, Bathe and Ho?°®.
However, the work of Batoz et al. deals only with basic 9
degree of freedom triangular elements and therefore, can be
considered as being complementary to this study on

rectangles.
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3.2 Test Cases and Results
Four test plates were chosen for the element
evaluations. The test cases were categorized according to
the following sets of boundary conditions:
(1) Simply supported edges.
(2) Clamped edges.
(3) Corners simply supported and edges free.
" (4) Corners clamped and edges free to displace but with zero

normal slopes. In practise, this test case could
- represent a typical interior panel of a floor systenm.

Only square plates were used and each plate was
analysed using 4 different finite element gridworks. The
loading conditions for each plate consisted of a uniformly
distributed load and a central point load. A sketch of the
plate and a typical 4x4 grid are shown in Figure 3.1. For
all cases, the plate was assumed to be isotropic and a
Poisson's ratio of 0.30 was used.

The results of the anélyses are presented in Tables 3.1
to 3.6 and in Figures 3.2 to 3.9. Numerical comparisons of
deflections and moments for the four test cases and both
load cases are presented in Tables 3.1 to 3.4. The
deflections are those calculated at the centre of the plate.
The location of the moments is indicated in the tables. The
normalized values of these moments are shown in Tables 3.5
and 3.6. Graphs of 'displacement error' versus 'number of
unknowns' on logarithmic axes are presented in Figures 3.2

to 3.9. Although the graphs and tables are for the most
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part self-explanatory, the following information may be of
interest. |

The ratio of plate side dimension to the thickness
(L/t) is 100, except for the Bi.MPT and heterosis elements.
In an attempt to reduce the effects of shear.deflections,
values of 10° were initially used for the Bi.MPT element and
10¢ for the heterosis element. These were the upper limits
of plate slenderness as recommended by Hughes et al.'®°® for
the Bi.MPT element and by Hughes and Cohen'®® for the
heterosis element. For larger L/t values, the element
matrices may be expected to degenerate numerically due to
the overwhelming shear stiffness.  To confirm that these
limits were acceptable, the test cases were run for both
elements using L/t values of 102, 10*, and 10%. For the
heterosis element the ratio of 10¢ was also used. A
comparison of the displacements from each of the L/t values
revealed that numerical deterioration was evident for both
elements for L/t ratios greater than 10*. This was
especially true for the finer grids. Based on these
comparisons, it was decided to use L/t=10* for both the
Bi .MPT and the heterosis element.

A second point of interest is the behavior of the
Bi.MPT element for the last two test cases as indicated in
Tables 3.3 and 3.4. For these applications, the Bi.MPT
element matrix is almost singular and the résults become
very erratic, alternating between extremely large positive

and negative numbers. The same problém was encountered by
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Hughes et al.'®’ when they attempted to analyse a pergola
type structure supported at its centre by a single node.

The singular element matrix is caused by a 'spurious'
or false zero-energy mode. A spurious energy mode is a
deformed shape of the element which has zero strain energy.
It occurs as a result of the low order of integration and
_ﬁsually does not appear for the structure as a whole because
it has been eliminated by the kinematic boundary conditions
and the assembly procedure. For the Bi.MPT element, Hughes
and Co-ﬁorkers'°’,'°7 identify two such modes. One is an
in-plane constant twist mode while the other is a
W-hourglass mode. It is interesting to note that if the
flexural strain energy had also been underintegrated, then
the element would have four spurious energy modes. For
structures which have only one suppressed transverse
displacement, the W-hourglass mode is the spurious energy
mode causing the singularity problem. Hughes et al.'°®’ have
overcome this problem by suppressing additional transverse
displacements. This type of remedial work was not done in

the present study.

3.3 Discussion of Results and Conclusions

With the aid of the tables .and graphs of the previous
section, the process of element selection may begin. This
is done in the following paragraphs by a proceés of

successive elimination.,
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The first element to be eliminated is the heterosis
element. A comparison of displacement accuracy versus
number of unknowns in Figures 3.2 to 3.9 indicates that this
element is not superior to the simpler elements. It is
expected that a comparison based on NB? would make the
element look even less favorable.

A second reason for not using the heterosis element is
the presence of the centre node which does not have the same
nodal parameters as the remaining nodes. Although the
centre degree of freedom can be eliminated by static
condensation, this does require additional computation and a
modification to the work equivalent load vector. It is felt
that this is not worth the effort because better elements
exist.

The next element to be eliminated is the Bi.MPT
element. Although the element provides good results for the
first two test cases, it encounters_difficulties with
singular matrices for the last two. To obtain solutions for
problems similar to the last two test cases, it is necessary
to provide artificial constraints to suppress more
transverse displacements. This complication is a feature
which precludes its use in a practical analysis program.

The Bi.MPT element is eliminated mainly for this reason, and
also because it does not exhibit behavior superior to some
of the other elements.

The third element to be eliminated is the Lagrange

element. From the graphs in Figures 3.2 to 3.9, it can be
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observed that this element's behavior is very similar to
that of the A C M element. However,vobtaining the stiffness
matrix for the Lagrange element requires significantly more
computational effort and therefore it is abandoned in favor
of the 2 C M element.

The final choice is to be made between the A C M and
the hybrid stress element. After studying the tables and
graphs of displacements, it is clear that the hybrid element
is the better overall element. A similar comparison of
Tables 3.5 and 3.6 indicates that the same statement is
again true for the stress resultants. .In addition to the
satisfactory performance of the element, there are two other
factors which strongly influence the decision to use the
hybrid stress method.

One factor is the ease with which stiffness matrices
for nonrectangular shapes can be derived by this method.
These special shapes will be required in situations where
rectangular elements are not capable of modelling the
geometry of the structure. The second factor is the-
capability of the method to include the effects of stress
singularities in the formulation of the element matrix.
These two factors, together with the accuracy demonstrated
‘earlier, indicate that the hybrid stress method appears to
be ideally suited for the analysis of flat plates. Thus it
was decided to use the hybrid stress formulation for the
remainder of this investigation. The chapters which follow

deal solely with the theory and use of this method.
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Deflection = Coefficient *(qgL*/D)/1000
Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 5.06323 3.90625 3.18878 3.82544 4.88769
4x4 4,32819 4,05156 3.96899 4,02407 4,29079
8x8 4,12928 4.06166 4,04142 4,05473 4.12080
16x16 4,.07910 4.06231 4,05721 4.06095 4,07703
Timoshenko (Navier's solution, 25 terms): 4.062353
Moment (centre) = Coefficient * gL®/100
Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 6.602 4,906 3.316 -
4x4 5.217 4,827 4.771 - -
8x8 4,892 4,799 4.790 = -
16x16 4.814 4,791 4,789 - -
Timoshenko (Levy's solution, 5 terms): 4.7886
Central Point Load:
Deflection = Coefficient *(PL2/D)/1000
Grid ACM Hybrid Bi.MPT |Heterosis Légrange
2x2 13.7841 10.4498 12.7551 10.5131 12.9940
4x4 12.3272 11,3819 11.5093 11.3808 12,1528
8x8 11.8285 11.5514 11.5382 11.5464 11.7805
16x16 11.6694 11.5888 11.5786 11.5873 11.6560
Timoshenko (Navier's solution, 250 terms): 11.60083
Twisting Moment(corners) = Coefficient =* P'/100
Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 7.008 5.768 7.144 - -
4x4 6.440 6.484 6.840 - -
8x8 6.212 6.192 6.296 - -
16x16 6.128 6.120 6.140 - -
Timoshenko (Levy's solution, 10 térms): 6.0953

Table 3.1

Deflection and Moment Comparisons —
Square Plate with Simply Supported Edges.
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Deflection = Coefficient *(qL*/D)/1000
Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 1.47964 | 1.33501 0.00357 1.54093 1.25313
4x4 1.40334 1.23884 1.21124 1.23449 1.37122
8x8 1.30394 1.26009 1.25069 1.25722 1.29813
16x16 1.27518 1.26454 1.26165 1.26368 1.27388

Timoshenko (coefficient method, 20 equations): 1.265319

Moment (centre)

Coefficient % qL?*/100

Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 4.616 3.394 0.
4x4 2,778 2.250 2.519 - -
8x8 2.405 2.295 2.331 - -
16x16 2.319 2,292 2.300 - -

Timoshenko (coefficient method, 20 equations): 2.3067

Central Point Load:

Deflection = Coefficient *(PL2/D)/1000
Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 5.91856 5.34006 0.01429 6.16371 5.01253
4x4 6.13445 5.34963 4,.84496 5.38977 5.95282
8x8 5.80257 5.55001 5.40373 5.55149 5.75670
16x16 5.67214 5.59801 5.55464 | 5.59683 5.65961

Timoshenko (coefficient method, 20 equations): 5.612017

Moment (midside)=

Coefficient * P /100_

Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 14,20 14.48 0.0 - -
4x4 11.78 12.85 7.75 - -
16x16 12.50 12.57 10.54 - -

Timoshenko (coefficient method, 20 equations): 12.5775

Table 3.2

Deflection and Moment Comparisons —
Square Plate with Clamped Edges.
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Deflection = Coefficient %(gL*/D)/1000

Grid ACM Hybrid Bi .MPT |Heterosis| Lagrange
2%x2 | 21.7898 | 25.4618 * 27.6998 | 21.8228
4x4 24,2956 25,5035 erratic 25.9715 24.3000
8x8 25.1778 25,5058 results 25.6244 25.1924
16x16 25,4219 25,5064 * 25,5374 25,4335

(Marcus:24;87), (Galerkin:26.48), (Lee&Ballesteros:26.48)

Moment (centre) =

Coefficient * gL®*/100
Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 11.75 11.07 % - -
4x4 11.55 11.23 erratic - -
8x8 11.27 11.18 results - -
16x16 11.20 11.17 * - -

(Marcus:10.90),

(Galerkin:11.09),

(Lee&Ballesteros:11,04)

Centfal Point Load:

Deflection = Coefficient *(PL?/D)/1000
Grid ACM Hybrid | Bi.MPT |Heterosis| Lagrange
2x2 34.7041 38.9753 ¥ 41.7874 34.7085
4x4 37.8161 38.9978 erratic 39.5096 37.7582
8x8 38.8260 39.0965 results 39.2225 38.8149
16x16 39.0718 39.1301 ¥ 39.1622 39.0753
Moment (midside)= Coefficient * P /100
Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 20.96 20.26 * - -

4x4 19.87 20.86 erratic - -

8x8 20.34 20.42 results - -
16x16 20.29 20.33 3 - -

Table 3.3 Deflection and Moment Comparisons —

Square Plate with Simply Supported Corners.
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Deflection = Coefficient *(gL*/D)/1000
Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange|
2x2 5.20833 5.20833 % 5.20834 5.20834
4x4 5.78512 5.67104 erratic 5.75558 5.72883
8x8 5.84288 5.75616 results 5.77021 5.81898
16x16 | .5.82276 5.78871 * 5.79110 5.81516
Bares (series solution): 5.81
Moment = Coefficient # qL?*/100
Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 2.780 1.809 * -
4x4 3.712 3.854 erratic -
8x8 3.643 3.599 results - -
16x16 3.600 3.588 - % - -
Bares (series solution): 3.59
Central Point Load:
Deflection= Coefficient *(PL2/D)/1000
Grid ACM Hybrid Bi .MPT |Heterosis| Lagrange
2x2 10.4167 10.4167 * 10.4167 10.4167
4x4 11.5702 11.3421 erratic 11.5112 11.4577
8x8 11.6858 11.5123 results 11.5404 11.6380
16x16 11.6455 11.5774 * 11.5821 11.6303
Moment (midside)= Coefficient * P /100
Grid ACM Hybrid Bi.MPT |Heterosis| Lagrange
2x2 8.748 8.752 * - -
4x4 6.016 6.812 erratic - -
8x8 6.148 6.276 results - -
-16x%16 6.112 6.144 * - -

‘Table 3.4 Deflection and Moment Comparisons -

Square Plate with Clamped Corners and Edge
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Moment ﬁormalized w.r.t. 4,7886 gL?/100
Grid ACM Hybrid Bi .MPT most accurate
2x2 1.379 1.025 0.692 hybrid

4x4 1.089 1.008 0.996 Bi.MPT

8x8 1.022 1.002 1.000 Bi ,MPT
16x16 1.005 1.001 1.000 Bi .MPT

Clamped Edges:

Moment normalized w.r.t. 2.291 gL?/100
Grid ACM Hybrid Bi.MPT most accurate
2x2 2.015 1.481 0.0 hybrid

4x4 1.213 0.982 1.100 hybrid

8x8 1.050 1.002 1.017 hybrid
16x16 1.012 1.000 1.004 hybrid

- Simply Supported Corners:

Moment normalized w.r.t. 11.17 gL?*/100
Grid ACM Hybrid Bi .MPT most accurate
2x2 1.052 0.991 * hybrid

4x4 1.034 1.006 erratic hybrid

8x8 1.009 1.001 results hybrid

16x16 1.003 1.000 x hybrid

Clamped Corners, Edge W,n=0:

Moment normalized w.r.t. 3.585 gL2/100
Grid ACM Hybrid Bi .MPT most accurate
2x2 0.775 0.505 * - ACM

4x4 1.035 1.075 erratic ACM

8x8 1.016 1.004 results hybrid
16x16 1.004 1.001 * hybrid

Table 3.5 Normalized Moment Comparisons for Uniform Loading.
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Moment normalized w.r.t. 6.0953 P /100
Grid A'CM Hybrid Bi ,MPT most accurate
2x2 1.150 0.946 1,172 hybrid
4x4 1.057 1.064 1.122 ACM
8x8 1.019 1.016 1.033 hybrid
16x16 1.005 1.004 1.007 hybrid
Clamped Edges:
Moment normalized w.r.t. 12.57 P /100
Grid ACM Hybrid Bi ,MPT most accurate
2x2 1.130 1.152 0.0 ACM
4x4 0.937 1.022 0.617 hybrid
8x8 0.981 1.003 0.729 hybrid
16x16 0.994 1.000 0.839 hybrid
Simply Supported Corners
Moment normalizéd w.r.t. 20.25 P /100
Grid ACM Hybrid Bi ,MPT most accurate
2x2 1.035 1.000 * hybrid
4x4 0.981 1.030 erratic ACM
8x8 1.004 1.008 results ACM
16x16 1.002 1.004 * ACM
Clamped Corners, Edge W,n=0:
Moment normalized w.r.t. 6.095 P /100
Grid ACM, Hybrid Bi .MPT most accurate
2x2 1.435 1.436 * ACM
4x4 0.987 1.118 erratic ACM
8x8 1,009 1.030 results ACM
16x16 1.003 1.008 % ACM

Table 3.6 Normalized Moment Comparisons for Point Load.
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Figure 3.1 Square Test Plate with Typiéal 4x4 Grid.
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Chapter 4

THE HYBRID STRESS METHOD

4.1 Theory of The Hybrid Stress Method

A complete derivation of the hybrid stress method along
with its proof of convergence was given in the late 1960's
by Pian and Tong'®*?,'**, The method as proposed by Pian and
Tong requires that a set of stress functions be chosen to
describe the stress field inside the element. A second set
of independent functions is required to describe.the
displacement field along the element boundaries and to
provide interelement displacement compatibility.

The presentation given in this section is an extension
of Pian and Tong's work to include the effects of stress
singﬁlarities. Although this type of approach has been used
for in-plane problems to determine stresses at the tips of
sharp cracks'®?®, to the best of the author's knowledge, it
has not as yet been used for plate bending problems.

The presentation will proceed by describing the energy
functional on which the hybrid stress method is based. Then
the components of this functional, namely the the strain
energy of the element and the elastic potential of the edge
tractions, will be considered. These expressions will then

be used to obtain an element stiffness matrix.

79
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The Variational Principle:

The energy functional from which the hybrid stress
method is obtained is a modified version of the principle of
minimum complementary potential energy. This has been
described in detail by Pian and Tong'®*, For the purposes
of review and to provide a base for future discussion some
of the main points of their derivation are given here.

The principle of minimum complementary potential energy
for a structure may be written as:

1/zfo'i5 Cijkl Okl av -/Ti Ui asu (4.1)
v Su ~

TTe

where,
1j = stress tensor which must satisfy the
differential equations of equilibrium over
the volume 'V', and the prescribed boundary
tractions over the region Sv,
Cijkl = constitutive matrix of elastic constants
which relates the stress and strain tensors,
V = volume of the structure,
Su = surfaces with prescribed displacements,
Ti = traction field on the surfaces Su, as
derived from the stress tensor Oij,
and,
Ui = prescribed displacements on the surfaces Su.

In applying the finite element method, [[c of Equation
4.1 is evaluated on a subregion or by a piecewise approach

as shown in Equation 4.2 below.

TTe Z(1/2f0’ij Cijkl 0kl av —fTi Ui dasu)
n A" S

u (4.2)

n n
where,
n

the element under consideration.

Furthermore, in using the hybrid stress formulation,

the choice is made to specify stress functions independently
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for each element. This means that the stresses will be
single-valued within the element and along its boundaries,
but the boundary values of two adjoining elements will not
‘necessarily be the same at the common boundary. However,
for equilibrium to be satisfied it is necessary that the
tractions across interelement boundaries be continuous. As
well, the element must remain in equilibrium in the presence
of the prescribed tractions. Since these equilibrium
conditions are difficult to satisfy exactly on a pointwise
basis, an alternate and approximate approach is used where
only overall equilibrium of the element is enforced. A
convenient way of implementing this approach is to regard
the interelement equilibrium conditions as constraint
equations and to impose these constraints by using
Lagrangian muitipliers. This has been done by Pian and
Tong, and the Lagrangian multipliers have been identified as
being the'displacements along element boundaries. The
energy functional is now in a modified or augmented form
because T]c includes the constraint equations and can be
written as:
TTme= 3 (1/2 Vo’ij Cijkl Okl av —/Ti Ui dsu —/sTi Ui asi)
n

“J Su i

n n n

=Y (1/2f dij cijkl k1 av -/Ti Ui ds +/Ti Ui dsv)
n v S Sv
n n n

vwhere, (4.3)
N the element being considered, ‘ '
S Su + Sv + Si = total surface,
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and, '

: surfaces with prescribed displacement,
Sv = surfaces with prescribed tractions,

Si surfaces between elements.

wn
c
[}

Whereas the original complementary energy functional
involved only the stress components as unknowns, the
modified complementary energy functional of Equation 4.3 has
both stresses and displacements as variables. In using the
hybrid stress method separate functions are used to describe
each set of variables. Proof that a finite element analysis
based on such an approach would converge was presented in
1969 by Tong and Pian'®®,

Equation 4.3 will be used later to derive the element
and global stiffness matrices. A discussion of the

individual integrals follows.

Strain Energy, £:

For an elastic structure, there exists a scalar
function known as the strain energy or elastic potential
which can be calculated from the components of the stress

and strain tensors as shown below in Equation 4.4,

E= 1/2 /O'ij €ij av
V .
= 1/2 /O'ij Cijkl Okl Qv (4.4)
\%
where,

£ = strain energy,

Jij = stress tensor,

€ij = strain tensor,

\% = volume of integration.
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At this point in the derivation it is convenient to

regard‘the equilibrium stress field as consisting of a

superposition of three stress fields as described below:

(1)

(2)

(3)

The stress from the homogeneous or complementary
solution. This solution must satisfy the homogeneous
equations of equilibrium for the element. It is not
necessary for this solution to satisfy any of the
prescribed traction boundary conditions.

The stress from the particular solution. The particular
solution must satisfy the equations of equilibrium with
the prescribed body forces acting and it must also
satisfy the prescribed traction boundary conditions.
This solution includes all the known stress parameters
while the homogeneous solution includes the unknowns.

The stress from the singularity solution. This solution

like the homogeneous solution must satisfy the equations
of equilibrium in the absence of any loading, but unlike
the homogeneous solution it must give rise to stresses
wvhich may be caused by the geometry of the element.

For conveniedce, the singularity solution has been separated

from the homogeneous part so that the homogeneous solution

does not contain any singularity terms.

In equation form the stress field may be written as:

h Op S
dij = dij + 0ij + ¢fij (4.5)
where,
h .
0ij = stress from the homogeneous solution,
Ogj = stress from the particular solution,
s
0ij = stress from the singularity solution.

It is not essential that any of the above solutions satisfy

kinematic boundary conditions. These will be enforced on a

" global level when the structure's stiffness matrix is being
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assembled.
By subStituting Equations 4.5 into Equation 4.4, the

following expression can be obtained for the strain energy:

h h
£ = 1/2/0‘15 Cijkl Okl av + 1/2/‘;0};3' Cijkl 651 av
V .
s 8 h
+ 1/2/0‘13' Cijkl Okl av + /vo'ij Cijkl &jl av
v |
h 8 s
+ /0‘13‘ Cijkl ¢kl av + fvdfj Cijkl Okl av
v 7
(4.6a)
(or, in matrix notation)
£ = 1/2f<o'> [C] {0} av + 1/2f<o’> [C] {0} av
vV h h V p p
+1/Z/<0'>[C]{o’}dv+ f<o'>[c:]{o’}dv
V s s V h p
+ /<J>[C]{O'}dv+ /<O’>[C]{O'}dv
V h s V p s
(4.6b)

The second assumption is that each of the stress fields of
Equation 4.4 can be adequately represented by the type of

expressions shown in the following equations:

{O’h} = [Ph] {ph}

{1} = I[Ppl {Bp} ‘ (4.7)
p

{0} = [Ps] {Bs}
S

In the above set of equations, the [P ] matrices contain
polynomial or trigonometric expressions in terms of spatial

coordinates. The unknown or free parameters are the {8}
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terms. The values of {Bp} can be assigned as soon as the

loading .is kndwn. The components of {Bh} and {Bs} can only

be determined after the set

of global equations is solved.

By substituting Equation set 4.7 into Equation 4.6b,

the final form of £ can be obﬁained as:

1/2 <ph> [Hhh] {gh} +

£ =
+ 1/2 <Bs> [Hss] {Bs} +
+ <ph> [Hhs] {Bs} +
where,

T
[Hhh] = [Ph]

v
T
[Hpp]l = [Pp]

v
, T
[Hss] = /[Ps]

v

T
[Hhp] = [Ph]

v
T
[Hhs] = [Ph]

\Y
T
[Hps] = /[Pp]

\'

The remaining terms of
4.3 involve the 'Ti Ui' and

discussed next.

1/2 <Bp> [Hppl {Bp}
<ph> [Hhp] {Bp}
<Bp> [Hpsl {Bs} (4.8)

[C] [Ph] av
[C] [Pp] av
[C] [Ps] av
[cl th] av
[C] [Ps] av
[C] [Ps] av

the T]mc functional of Equation

'Ti Ui' terms. These will be
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Potential of Edge Tract ions:

The second integral of Equation 4.3 involves the
quantity 'Ti Ui' over the entire surface. Integrals of the
'Ti Ui' quantities will be referred to as the potential of
edge tractions.

The tractions, Ti, on any surface can be calculated
from:
d5i  nj (4.9)

components of an outward unit
vector normal to the surface.

Ti

where,

nj

By using Equation 4.9 and the expressions {0} = [P ]{B} from
Equation 4.7, the tractions may be rewritten in matrix form
as:

{T} = [NPh]{Bh} + [NPpl{Bp} + [NPsl{Bs} (4.10)

The explicit forms of the [NP ] matrices are described in
detail in later sections.

The displacements, Ui, of the integral term invélving
'Ti Ui' have been identified earlier as being displacements
along the edges of the element. Although it may be possible
to obtain a displacement field by integrating the stress
functions, the amount of effort required for nonrectangular
shapes is prohibitive; furthermore, this type of approach is
not necessary. In the hybrid stress method, the element
displacement functions and the stress functions are chosen
separately. Because this is done, the hybrid stress method

is sometimes referred to as a 'two-field approach'.



87

The assumed displacement functions which relate edge
displacements to nodal displacements must be chosen to be
compatible between elements and can be represented by

Equation 4.11 as shown below.

{ul = [L] {u} (4.11)
where,
U = displacements along element edges,
L = displacement interpolating functions,
U = element nodal displacements.

Equation 4.11 can be used with Equation 4.10 to obtain

the following expression:

/Ti Ui ds =
S

<Bh>[Ghh]{U} + <Bp>[Gppl{U} + <Bs>[Gss]{U}

where, (4.12)
T
[Ghh] = U/”[NPh] [L] as
S
T
[Gpp] = u/;[NPp] [L] as
T
[Gss] = /[NPs] [L] as
S

The last integral term of Equation 4.3 is 'Ti Ui'.
This can be rewritten in a matrix form similar to Equation
4.12 as:

Ti Ui asv
Sv

=/<$> [L] dsv  {u}
Sv

= <P> {U} (4.13)
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The Stiffness Matrix:
The final form of J[mec can be obtained by substituting

Equations 4.8, 4.12 and 4.13 into Equation 4.3 to get:

Time = 1/2 <ph>[Hhh]{Bh} + 1/2 <Bp>[Hppl{Bp}

+ 1/2 <Bs>[Hss]{Bs} + <ph>[Hhpl{Bp}

+ <ph>[Hhs]1{Bs} + <Bp>[Hps1{Bs}

- <ph>[Ghhl{U} - <Bp>[Gppl{U} - <Bs>[Gss}{U} |

+ <?> {U} . (4.14)

The only unknown quantities of Equatibn 4.14 are {gh},
{Bs} and {U}. The terms of {Bp} are known because the
applied loading and prescribed tractions are specified. To
obtain a stiffness matrix from Equation 4.14, the functional
TTmc is minimized with respect to the parameters contained
in the two unknown {8} vectors and the terms of the {U}
displacement vector. This is necessary because {B} and {u}
are independent vectors and thé stationary value of [|mc can
only be obtained if it is minimized with respect to both
sets of variables.

The minimization with respect to the {Bh} and {Bs}
vectors eliminates all the stress fields for which TJc does
not have a stationary valué. The minimization with respect
to {U} is discussed later.

The result of the minimization of J[mc with réspect to
{Bh} and {Bs} vectors respectively reésults in the following

set of equations:
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n

[Hhh]{gh} + [Hhpl{pp} + [Hhs]{Bs} - [Ghh]{U} = {o}

[Hss]{Bs} + [Hshl{ph} + [Hspl{Bp} - [Gss]l{Uu} = {o}

_where, . ' (4.15)
[Hph] = [th?

[Hsh] = [Hhs?

[Hsp] = [Hps?

and the matrices [Hhh], [Hpp] and [Hss] are symmetrical.

Equation 4.15 can be substituted into Eguation 4.14 and
the functional J[mc can be rewritten so that the only
unknowns are {U}. To accomplish this, it is necessary to
solve the equations in 4.15 for {Bh} and {Bs}. This task is
simplified if the two unknown vectors {Bh} and {Bs} are
combined into a single vector {Bhs}. After this is done,

"Equation 4.15 can be rewritten as:
[Hhhss]{Bhs}= [Ghhss]{U} - [Hhspl{Bp}

' -1
{Bhs}= [Hhhss] ([Ghhss]{U} - [Hhspl{Bp})
where, | (4.16)

{ph}
{phs} =
{Bs}
[Hhh] | [Ans]
[Hhhss] =
[Hsh] [Hss]
[Hhp]
[Hhsp] =
[Hsp]
[Ghh]
[Ghhss] =
[Gss]

With the above expressions, [[mc of Equation 4.14 can be
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rewritten as:

TTme

1/2 <Bhs>[Hhhss]}{Bhs}
+ <phs>[Hhspl{Bp} + 1/2 <Bp>[Hppl{Bp}
<Bhs>[Ghhss]{U} - <gp>[Gppl{U} + <P>{U}

(4.17)

Equation 4.16 can also be obtained by minimizing T|mc
of Equation 4.17 with respect to {fhs}. After eliminating
{Bhs} and combining like terms, the following equation can

be written:

TTme = 2. (-1/2 <Uu>[GHG]{U} + <Peg>{U} + Co)

where, ~ | (4.18)
T -1
[GHG] = [Ghhss] [Hhhss] [Ghhss]
T -1 |
<Peg> = <Bp> ([Hhspl[Hhhss][Ghhss] - [Gppl) + <P>

and,
T -1
Co = <Bp> ( 1/2[Hppl] - [HhspllHhhss][Hhspl) {Bp}

= a constant.

The next step is to minimize Equation 4.18 with respect to
{ful. The {U}] vector contains the second set of independent
variables which were earlier derived from the Lagrangian
multipliers. The Lagrangian multipliers are required to
ensure that the elements remain in equilibrium. Theréfore
upon minimizing J[mc of Equation 4.18 with respect to {U}

the following set of equilibrium equations is obtained:

2. [GHGI{U} = 3 {Peq] | (4.19)
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From this point on, with [GHG] as a stiffness matrix,
and {Peq} as a load vector, the hybrid stress method is
identical in format to the standard displacement method.

In the remaining sections of this chapter, element
stiffness matrices are derived for the following four cases:
(1) A plane stress element without body forces and without

stress singularities. The element shape can range from
a triangle to a six-sided irregular polygon.

(2) A plate bending element with body forces but without
stress singularities. The element shape can range from
a triangle to a six-sided irregular polygon.

(3) An L-shaped plate bending element with the stress
singularity included. The two sides which meet at the
reentrant corner have 'free edge' boundary conditions.

(4) An L-shaped plate bending element with the stress

singularity included. The two sides which meet at the
reentrant corner have 'fixed edge' boundary conditions.

Before proceeding with the derivations, some guidelines
and requirements pertaining to the selection of stress
functions are discussed. Although many choices aré possible
for the stress functions, it is necessary to satisfy two
important requirements.

First, it is essential that the number of independent
{B} parameters must not be less then the displacement rank
of the element stiffness matrix. The displacement rank of
an element stiffness matrix is equal to the total number of
element degrees of freedom minus the number of rigid body
modes. It is the number of linearly independent rows in the
element stiffness matrix. If this condition is not met,

then the element stiffness matrix will be rank deficient'®®,
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Although this is a necessary condition, it is not sufficient
to guarantee that spurious energy modes do not appear.  Some
researchers'*®®,?? have encountered extraneous zero-valued
eigenvalues when using linear stress functions. In each
case, these energy modes were successfully eliminated by the
addition of some quadratic terms. Therefore, it is
recommended that linear stress functions not be used without
checking the number of zero eigenvalues in the stiffness
matrix.
At the same time, an excess of {B}‘parameters tends to
overstiffen the element and should be avoided. Work on the
subject of optimum number of {B} parameters has been done by
Henshell’* and Pian'®'. Although no exact eguation is
given, the consensus is that the order of the stress
functions should be compatible with the order of the
displacement functions and that neither set should be
changed without a corresponding change in the other.
Henshell’¢ also recommends that the number of {8} parameters
approximately equals the displacement rank of the stiffness
matri#. ;
The second important requirement is that the stress |
functions satisfy the differential equations of equilibrium
as given by, O§i,j + Fi = 0.
These requirements and guidelines will be followed in
the derivations of element stiffness matrices which follow

in Sections 4.2 to 4.4.
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4.2 Polygonal Elemenf In-Plane Matrices

This section contains the derivation of in-plane
stiffness matrices for plane stress elements with three to
six sides. These stiffness matrices are required to model
plates with in-plane displacements caused by eccentric
stiffners. Because of the intended use of these elements,
~ the body forces and prescribed tractions can be neglected.
As well it is assumed that stress sinqularities do hot have
to be considered.t Therefore only the [Hhh] and [Ghh]

matrices are needed to obtain the stiffness matrix.

[Hhh]:

In order to obtain [Hhh] it is necessary to assume
stress functions for (x, Oy, and Oxy. A set of partial
quadratic stress functions were chosen to describe the
stress field inside the element. These functions are shown
below in Equation 4.20 and satisfy the equilibrium and rank
requirements discussed at the end of Section 4.1,

Ox= B, + xB. + yB. + xyB.
Oy= Bs + xBs + yB, + xyBs (4.20)
‘Oxy= - yB: - 0.5y°B, - xB, - 0.5x*B, + B,

In matrix form this can be written as stated earlier in

Equation 4.7:

{0} = [Ph] {ph} | (4.21)
3x1 3x9  9x1

t+ The situations where stress singularities do occur are
not common and details of these cases are discussed by
Morley'®? and Williams'’®,
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where, p
X

{0} = g&
. | Gxy

Since the above stress polYnomials are not complete,'
coordinate invariance for rectangular shapes can only be
guaranteed if the polynomials are evaluated in a locai
coordinate system which remains parallel to the sides of the
rectangle. Although this type of invariance is a desirable
 property, it is not essential.

The constitutive matrix is assumed to be of the form:

Cq Cs .
[Cl] = c, | ¢, . (4.22)
. . Ca

The matrix [Hhh] can now be calculated from the

expression in Equation 4.8 which is repeated below:

T
[Hhh] j([Ph] [C] [Ph] av
v

t/-[Ph%‘ [C] [Ph] aA
where, § (4.23)
t = thickness of the element.

Since any polygonal element can be constructed from an
assemblage of triangular and trapezoidal shapes, it was
decided to evaluate the explicit form of [Hhh] for a
trapezoidal region. Triangular shapes are defined as a
trapezoid with one of the parallel sides equal to zero. The
explicit form is then used in the computer program HYBSLAB
and [Hhh] for the element as a whole is obtained from a

summation of [Hhh]'s from the trapezoids. Additional
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details of this procedure are provided in the next chapter.

[Ghh]:
The matrix [Ghh] is obtained from the expression in

Equation 4.12 which is shown below:

T
f[NPh] [L] as
S

T
t/[NPh] [L] af
£

vhere, (4.24)
t = thickness of the element,
£ = length along the element's perimeter.

[Ghh]

The [NPh] matrix is obtained from 'Ti Ui' and for a
plane stress element its form can be determined as indicated
below in Equation 4.25. 1In this equation, n, and n, are the
components of an outward unit normal vector located at a
point on the element's boundary. The matrix {U} consists of
'U' and 'V' which are the in-plane x and y displacements of
the point. As well, the set of indices ',' and ',',6 are
used interchangeably with the set 'x' and 'y'. The
following.steps in Equation 4.25 indicate how [NPh] is

obtained from 'Ti Ui':

/TiUids

S

t/TiUid£
£

_t/(o’ji nj Ui) 4f
£ .



96

(and, in matrix form)

n, . U
= tu/ﬁ< Ox , Oy , Oxy > . | N, 2 as
£ n, n, "4
(or)
T .
= tu/ﬂ<0$ [N] {U} as
£
T T
= t <gh> [Ph] [N] [L] ag ({u}
1x9 £ 9x3 3x2 2x4 4x1

, T
t <gh> [NPR] [L] af {u}
1x9 J£  9x2 2x4 4x1 (4.25)

As indicated in the last two steps of the above equation,
[NPh] is the product of the [N] and [Ph] matrices. At this
time it is noted that Equation 4.25 requires integration
along the element sides only. This means that [Ghh] can be
calculated in a step-by-step manner by considering one side
at a time. The explicit form of [NPh] for one side is a

(2x9) matrix which can be written as:

[NPh] =
n, n,x n.y n.,xy . . -n.x |-n,x*/2 n.
—“n.y -n,y:/2
. "I'71Y . -n1y2/2 n, nN.Xx nzy nzxy n,
"n,X _n1xz/2

(4.26)
The next step is to choose the shape functions of the
matrix [L] which relates edge displacements to nodal
displacements. For an element side, defined by nodes 1 and
2, a suitable set of displacement functions is the linear

set shown below in Equation 4.27.
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Ut = [L] {u}
(or) u,
A U — 1':9 . P . Y_l
V = . 1‘p . p Hz
. v,
where, (4.27)
U = in-plane X displacement along the element side,
V = in-plane Y displacement along the element side,
p = non-dimensional coordinate measured along the

element»side from node 1 to node 2.

The matrix product of [NPh] [L] is integrated to form a
resultant matrix which will be called [Ghh],, where the
subscript ',' indicates that only one side has been
considered. The [Ghh] matrix is formed by a direct entry
and summation procedure of the [Ghh], matrices.

The element stiffness matrix [GHG] is evaluated from

Equation 4.28 as shown below:

: T -1
[GHG] = [Ghh] [Hhh] [Ghh] (4.28)
mxm mx9 9x9 9xm

where, m = number of element degrees of freedom =< 12

If any external in-plane loads exist they can be
proportioned directly to the nodes.

At this time it is again pointed out that the chosen
stress functions have only nine indepenaent B parameters and
therefore the element cannot have more than six nodes.

Details of the computer subroutine which is used to
calculate the stiffness matrix can be found in the program

HYBSLAB which is discussed in Chapter 5.
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4.3 Polygonal Element Flexural Matrices

This section contains the derivation of flexural
stiffness matrices for plate elements with three to six
sides. The derivation is based on the following assumptions
and conditions:

(1) Classical Kirchhoff plate theory is used to describe the
' behavior of the plate.

(2) Body forces are included but prescribed tractions are
not considered. These assumptions are dlscussed in more
detail in the paragraphs which follow.

(3) Stress singularities are not considered in the
derivation,

Disregarding the prescribed tractions means, that in
the T[mc functional of Eguation 4.3, 'Ti' is assumed to be
zero-valued. This assumption is true whére elements share a
common boundary and the equation, Ti= 03i nj , gives the
cor;ect values of edge tractions. However, it is not valid
for cases where the edge tractions are specified beforehand.
A common example is the free edge condition.

For a free edge, only in the limit will the the assumed
stress functions provide a stress-free condition. This
problem is not unique to the hybrid formulation and similar
statements can be made for the displacement and mixed
methods. In the hybrid stress method the situation may be
rectified in one of two ways. The first approach was
introduced by Pian and Tong'®' and requires a reformulation
of the [NPh] matrix so that the stress functions do

reproduce the desired traction conditions. The second
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approach consists of adding corrective Ti values to those
éaléulated from Tj= ij ni in such a mannef that the
desired boundary conditions are obtained. Since neither
approach is easily implemented and because good results were
obtained in the previous chapter without making any
corrections, it was decided ﬁo formulate the stiffness
matrix for a typi;al interior element only.

This.stiffness matrix is to be used for all elements
;egardless of edge conditions. 'In doing so, no serious
problems are expected, because the error decreases with
element size and although the rate of convergence may be
changed, the values to which the solution converges remain
uhchanged.

From Equations 4.16 to 4.18 it can be seen that the
matfices which are required to calculate a stiffness matrix
are: [Hhh], [Hhp), [Hppl, [Ghh], and [Gpp]. Befdre
considering the functions required for these matrices, the
equations of Section 4.1 will be modified so that moments
and curvatures appear in place of stresses and strains.

The term 'moment' is being used in the context of plate
bending and denotes a stress'resultant which has the units
of 'force x distance/ distadce'. In equation form this

moment, denoted by 'Mij', is defined as:

Mij = /z 0ij dz (4.29)

where,
z= distance from the plates's midsurface
to the fibre being considered, measured
along the +Z coordinate direction.
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Using Kirchhoff plate theory the strain tensor, €ij,
may be written in terms of curvatures, W,ij, as shown below
in Equation 4.30. Partial differentiation is indicated by
using the comma notation.

€ij = -z W,ij (4.30)
where,
W = transverse displacement of the midsurface
of the plate and is a function of the X and
and Y coordinates only.
As well, it is assumed that there are constitutive

tensors, Dijkl and Eijkl, which relate the moment and

curvature tensors according to:
W,i3 = - Dijkl Mkl - (or) Mij = - Eijkl W,k1  (4.31)

With the above three equations, the expression for

'Cﬁj €ij' may be rewritten to get the following equation:

/o'ij €ij av
v

/(o’ij) (-z W,ij) dz da
v

-/Mij W,ij da
A

+/Mij Dijkl Mkl 4da (4.32)
A

(or, in matrix notation)

_ +/<M> (D] M} aa
A

v el
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where, o
<M> = < Mx My Mxy >
and,

A = midsurface area of the element as
_ .. defined by the X and Y coordinates.
By following through Equations 4.4 to 4.8 and replacing the
stress and strain tensors by moment and curvature tensors

the following sets of equations can be obtained:

[Ph] {Bh}

M1} =
h
{M} = [Pp] {Bp} (4.33)
P ' :
(M} = [Ph] {8s}
. :
(and) _
T
. [Hhh] = /[Ph] [D] [PR] aA
A
T
[Hppl = A[Pp] [D] [Pp] aA
‘ . T
[Hss] = ;/F[Ps] {D] [Ps] aa
/A
A (4.34)
T
[Hhp] = /[Ph] [D] [Pp] aA
. T
[Hhs] = /'[Ph] [D] [Ps] dA
A
' T
[Hps] = f[Pp] [D] [Ps] aa
A .

The individual matrices [Hhh], [Hhpl, [Hppl are

discussed in the following paragraphs.
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[Hhh]:

To describe the moment field inside the element, it is
necessary to assume functioﬁs for Mx, My, and Mxy . A set of
complete quadratic moment functions were chosen. These'
functions are shown below in Equation 4.35 and satisfy the
equiliﬁrium and rank requirements discussed at the énd of
Section 4.1;

Mx= B, + xB, + yB, + x*B, *+ xyBs *+ y?B.
My= B, + xB, + yBs * X?B,o * xyBi+ * y*Bis  (4.35)
Mxy= = xyB. = XyBi: + Bis * XBis + YBis * X*Bic * ¥7Bis
In matrix form, the above can be written as:
(M3} = [Ph] {gh} - (4.36)
h

The moment functions of Equation 4.35 have a_tdtal of

seventeen independent B parameters. The_platerbending

elements have as nodal degrees of freedom < W, 6x , 8y>,

where:
W = transverse displacement in the +Z direction,
Bx = rotation about the +X axis (= W,y),
By = rotation about the -Y axis (= W,x).

Hence, the moment functions of Equation 4.35 can be used to
formulate stiffness matrices for any plate element with six
nodes or less.

The constitutive matrix is assumed to be of the form:

d| d3 . - . . R
(D} = d, | d, . N (4.37)
) . d4 . .
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The matrix [Hhh] can now be calculated from the
expression in Equation 4.34 which is repeated below:

T
[Hhh] = [ [Ph] [D] ([Ph] da
A 17x3 3x3 3x17

[Hpp]:

The matrix [Hppl is calculated from the moment
‘functions of the particular solution. Although many such
solutions exist,‘Tong and Pian'®® have shown that the
introductién of body forces does not change the stiffness
matrix at all. This statement can be verified by examining
Equation 4.18. Howebeﬁ; as can also be seen from Equation
4.18, the form of the'‘equivalent load vector {Peq} is very
much dependent on the paftiéular solution. Therefore, one
might expect that the finite element solution would depend
on the choice of particular solution, but Tong and Pian'®®
have proved that this is not so if a certain requirement is
met. The requiremeht is: if all the terms of the different
[Pp]{ﬂp} particular solutions appear in the polynomials of
the homogeneous solution [Ph]{Bh} then the finite element
solution ié independent of the choice of particular
solution.

In keeping with the above requirement, if a uniform
load, Go. is to be accommodated then the [Ph] polynomials
must be at least complete quadratics. The moment functions

of Equation 4.35 satisfy this requirement. The various
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particular solutions, which can be chosen, contaih only
quadratic and lesser order terms. The quadratic terms
satisfy the equilibrium equation:

Mx,xx + 2 Mxy,xy + My,yy = = (o
while the constant aﬁd linear terms drop out upon double
differentiation,

Some possible particular solutions are:

(1) <M > = <-x2/2, o , o > Qo
p .

(2) <M>= < o, -y?/2, o > Q. (4.38)
P

(3) <sM>= < o, o , -xy/2> Q.
p

An infinite number of other ; articular solutions can be
obtained from combinations of the above three solutions.

The last two solutions were used at different times in the
HYBSLAB program to confirm that the displacements and
stresses were not dependent on the choice of particular
solution.

The last particular solution shown in Equation 4.38
will be used in this chapter. The matrix [Hpp] can be
calculated from the second expression of Equation 4.34 which
is repeated below:

T
[Hpp] = [(Pp]l [D] [Pp] aa
A 1x3 3x3 3x1
where, '
T
[PP] = <0, o, -xy/2>

and,
{Bp} = Qo
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[Hhp]:
The matrix [Hhp] is calculated from the homogeneous and
particular solutions according to the following expression

of Equation 4.34:

T
[Hhp] = /[Ph] (D] [Pp]l 4aa
A 17x3 3x3 3x1

The explicit forms of [Hhh], [Hhp] and [Hpp] were
evaluated for a trapezoidal region as described earlier and

used in the computer program HYBSLAB.

[Ghh] and [Gppl:
The matrices [Ghh] and [Gppl are obtained from the

following expressions of Equation 4.12:

T
~/”[NPh] [L] as
s

T
U/P[NPp] [L] a&s
S

The [NP ] matrices are obtained from 'Ti Ui' and for a

[Ghh]

[Gpp]

plate bending element their form can be determined as
indicated below in Equation 4.39. 1In this equation, n, and
n, afe the components of an outward unit normal vector
located at a point on the element's‘bdundary, and 'Mn' and
'Mnt' denote the normal and twisting moments at this same
point. The ordinary transverse shear is denoted by 'Q',
(Kirchhoff's shear will be denoted by '¥'). The indices ','

and ',', are used interchangeably with 'x' and 'y'.



106

fTi Ui das
S

= f(-Mn W,n - Mnt W,t + Qn W) 4f
£

= /(-Mji nj W,i + Qi ni W) as
£

= .}fEF(Mx n, + Myx n,)(8y) - (Mxy n, + My n,)(ex) +
F A :
(Mx,x + Myx,y)(n,) (W) + (Mxy,x + My,y)(n,) (W)} 4z

(and, in matrix operator form:)

n, ( ),1‘ . ' I ’
: w
=“/ﬂ<Mx , My , Mxy> n. (),, -n, S Ox as
£ By
n, ( )rz -n, ;nz
+n, (),
(or) .
T
=/ <M> [N] {U} as¢ (4.39)
£ 1x3 3x3 3x1 .
(if <M> of the homogeneous solution is considered then;)
T T v
= <Bh> [Ph] [N] [L] at {u}
1x17 £ 17x3 3x3 3x6 6x1
T
= <Bh> [NPh] [L] af {u} (4.40)
117 < £ 17x3 3x6 6x1

As indicated in the above equation, the product of [N] from
Equation 4.39 and [Ph] from Equation 4.35, provides the
[NPh] matrix. The explicit form of [NPh] for one side of an

element can be determined as:
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. Y —n| B|
+n, . -n,x B
. . n.y B
" N.X = N,y Nn:xy “N.x* + N,x B.
n1y . "‘n,xy Bs
. . ] "I'),Yz Bg
. -nz . ﬁ'l
T . -N.X . B.
[NPh] = n, -n.y . B,
: . —nzxz . B|o
NaX N, Xy . B
“N.x + N,y +N.Xy - n,y? Naxy Bi:
» __ . N, -n, B1a
n, ARE S “NaX Bis
n, -y “n.,y Bis
2 N;x -Nn,x? -n,x? B
B

2 n1y —n1y2 —nzyz

-Likewise, the form of [NPpl] can be calculated as:
T |
[NPp) = <-(n,x+n.y)/2, +n,xy/2, +n,xy/2> (4.42)

The nexfistep is to choose the shape functions of the
matrix [L] which relate edge displacements to nodal
displacements. For an element side, defined by nodes 1 and
2, and oriéntation specified by n, and n,, the Hermitian
interpolatiqn functions shown in Equation 4.43‘were used.
According to these interpolation functions, W and 8t have a

cubic variation between nodes, while On varies linearly.

Ut = [L] {u} (4.43)
3x1 3x6 6x1 . ~
where, . W,
0x,
W 0y,
Uy =<{6xp , and  {U} = { ===
BY W,
0x,
and, L 6Y:
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(L] =
H{ n, HY, -n, H}, Hs . n, Hi.: -n, HY,
n, dH}, ni Hg, n.nHy, n, dH;, ng. 02 -nyn.HY
""r’|2 dH:1 —.ngnde:1 +n? dH:z -nqnde:z
=N, dH;I n.n, HY, ni HE -Nn,; dHaz n,n, H, ni ng
-n.n,dH{,| +n} dH}, -n.n,8H} .| +n3 dH;},
where,
HS, = T -p
02 = P
Hyy = 1 = 3p2 + 2p°
Hg, = 3p? - 2p°
Hi, = £( p - 2p2 + p?)
Hi, = £(-p2 + p?
dHi{, = 6(-p + p2)/ £
dHi{, = 6( p - p2)/ £
dH}, = (1 -4p + 3p2)
dH}, = (-2p + 3p2)
and, ‘

p = non-dimensional coordinate measured along the
element side from node 1 to node 2
£ = length of the element side from node 1
to node 2.
To form the [Ghh] matrix, the matrix product of [NPh] [L] is
integrated and the resultant matrix is called [Ghh],. The
[Ghh] matrix is formed by a direct entry and summation
procedure of the ‘individual [Ghh], matrices.

The procedure is repeated with the [NPp] and [L]

matrices to obtain [Gpp].

[GHG]:

The stiffness matrix [GHG] and the equivalent load
vector {Peq} can now be éalculated from the set of equations
shown below: :

T
[GHG] = [Ghh] [Hhh] [Ghh] (4.45)
mxm mx17 17x17v 17xm
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(and)
T -1
<Peg> = <Bp> ([Hhp] [Hhh] [Ghh] - [Gpp]l )
' 1xm 1x1 1x17 17x17  17xm 1xm

where, m = number of element degrees of freedom < 18.

The procedure described in this section and the
previous one has been used in a subroutine called 'STIFFS'
of the program HYBSLAB to generate the in-plane and flexural

stiffness matrices for the various shaped elements.

4.4 L-Shaped Singularity Elements

In this section, the effects of stress singularities at
vthe reentrant corner of an L-shaped element are included in
the formulation of the'flexﬁral stiffness matrix. It is
assumed that the plate material is isotropic. Two types of
elements are considered. The distinction between the two
types'is:madg on the basis of the boundary conditions along
the two sides which meet at the reentrant corner. The first
element fype has 'free edge' conditions along these edges
wﬁile the second type has 'fixed' or clamped edges.

The various matrices which are required to obtain a
stiffness matrix are shown in Equations 4.16 and 4.18 of
Section 4.1. The matrices [Hhh], [Hhpl, [Hppl, [Ghh] and
[Gppl have been dealt with in the previous section and can
be reused'without'any changes, The remaining matrices
[Hss]), [Hshl, [Hspl, and [Gss] are still required and this

section deals solely with these four matrices.
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The formulation is based on a singularity deflection
function, Ws. The form of this function was established and
verified by Williams'®’ in the early 1950's. 1t consists of
a trigonometric series and in terms of polar coordinatesf it

may be written as:

Ws = rt> ') (F) (B,) (4.46)
where,
F = C,sin(\+1)a + C,cos(\+1)a + C,sin(\-1)a + C,cos(\~-1)a.

r = radius from the reentrant corner to some
point in the element (see Fig. 4.1),

\ = an eigenvalue determined from a

characteristic equation, :

(i=1,2,3,4), constants of 'Ws' to be

C;=
determined from the boundary conditions
along the reentrant edges,
« = an in-plane angle defining the position
of 'r' and serving as the rotational polar
coordinate (see Fig. 4.1),
B. = a 'stress singularity factor' which indicates

the intensity of the singularity.

A sketch of a typical L-shaped element and its
coordinate systems is shown in Figure 4.1. The derivation
‘which will be presented in this section is valid for any
orientation of the element. In Figure 4.1, point 1 is the

A

reentrant corner and sides 'a' and 'f' which meet at point 1
will be referred to as the reentrant sides.

With the aid of the deflection function, Ws, the
intended meaning of the term 'singularity' will now be

explained. The type of singularity being considered here is

+ Polar coordinates are most often represented by 'r' and
'0', but since '6' is already being used for rotation of the.
midsurface, the polar coordinates will be denoted by 'r' and

'd'.
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often referred to as a singularity of the 'first type''®:?,
In this type of singularity the prime variable remains
finite-valued or 'non-singular' but its derivatives can
“become unbounded or 'singular'. For the plate bending
problem beidg considered here, one can be more specific and
state that neither the prime variable, Ws, nor its first |
derivative are sinéular but that its second and third
derivatives may become unbounded. The second derivatives
are required to calculate moments while the third |
derivatives are needed to calcuiate shears, hence the
terminology 'stress singularities'. All singularities
refgrred to in this study are stress singularities. Also,
unless otherwise noted, all moments and shears in this
~section will be those calculated from Ws of Equation 4.46.
Refe::ing to Figure 4.1, along each of the reentrant
sides 'a' and "f' there exist two boundary conditions. From
-these conditions a set of four simultaneous equations can be
obtained with the unknowns C,, C,, C,, C, and \. For both
the free-free case and the fixed-fixed case, the boundary
conditions are such that the set of equations is
homogeneous; that is, the right hand side is a null vector.
For these types of equation sets, a non-trivial solution can
only be obtained for certain characteristic values or
'eigenvalues' of N\. The eigenvalues are obtained by setting
the determinant of the coefficient matrix equal to zero and

then solving for \.
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a) L-Shaped Element with Free Edge Conditions:

The derivation of the stiffness matrix [GHG] for the
free edge element will begin by obtaining the A\ values.
For both sides, Wa{ and 'f', the free edge conditions

"are:
(1) the normal moment, Ma = 0.

]
o
.

(2) the Kirchhoff shear, ¥

In equation form, the zero moment condition can be written
as:

Ma

-D[r-2 Ws,ea + r'-') Ws,r + ~v Ws,rr]
= =D rx1) [ (NN (1+\) F + F ]
(and, for Ma = 0)

(N*1)(1+v\) F + F = 0 ~ (4.47)

The Kirchhoff shear condition can be written as shown below,

where Vill= W,rr + r‘ - "W, r + r‘ -2, acx.

¥ =-D[r - ((vl),e + (1=v)(r‘-"'Ws,ra - r‘-2'Ws,a),r]
=D rA [ (17 4 N(1=v)(\=1)) F + F ]
(and, for ¥ =0 ) _
[(A+1)2 + N(1=v)(\-1)]1 F + F =0 (4.48)

where,
(from Bq. 4.46)

F = C,sin(A\+1)a + C,cos(\+1)a
+ C,sin(\-1)a + C,cos(\-1)a
and, |
f = F,a = [Cicos(\+1)a - C,sin(\+1

1) Ja]l
1) [Cicos(\-1)a - C,sin(A\-1)a]

F=F,ae = (\+1)2 [~C,sin(\+1)a - C,cos(\+1)a]
(\=-1)% [~-C,sin{A-1)a - C,cos{\-1)a]
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F =F,aae = (\+1)? [-C,cos(\+1)a + C,sin(\+1)a]
+ (\-1)* [-Cicos(A\-1)a + C,sin(\-1)a]
and,
D = flexural rigidity of the plate

E t2/012(1 - v?)]

By substituting the values of a for the two sides 'a' and
"£f' into quations‘4.47 and 4.48, the set of four equations
discussed earlier can be obtained. These equations are

’shown beiow:

a,sin(A\+1)af+a,cos(\+1)aja,sin(\-1)al+a,cos(\-1)al(C, o
ascos(\+1)al|-a,sin(\+1)ala,cos(\~-1)a|-a.sin(\-1)al|)c,|_J o
a,sin(\+1)f|+a,cos(\+1)f|a,sin(\~-1)Ff +a,cos(\ DF{JC.[ o
a;cos(A\+1)f[-a,sin(\+1)Ffla,cos{\~1)f|-a,sin(\-1)F|\C, o
where, (4.49)

a, = (A\+1) (1+v)\) = (\+1)?

a; = (\+1) (1+9)) - (\-1)?

a, = (A+1) (1-v) (\) (\-1)

a, = (N-DLN1)2 + (1=v)(N)(N-1) = (\-1)2]
and,

a a value of side 'a'

f = a value of side 'f’

The characteristic equation from the above set of
equations has trigonometric terms and there exist an
infinite_number of characteristic values which satisfy it.
However, the eigenvalues required for this study are those
between 0.0 and 2.0. The reasons for using this range are
based on the behavior of the plate at the reentrant corner
(r=0).

From a physical point of view, negative eigenvalues are

. not permissible because the transverse displacement and the
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slopes at the reentrant corner must remain finite. A zero
eigenvalue is of no interest because it rgsults in the
trivial solution, Ws=0.

The need for eigenvalues above 0.0 but less than 2.0
can be explained with the'aid'of Equations 4.47 and 4.48.

- Values between 0.0 and 1.0 cause singularities in both the
moment and shear at the reentrant corner. Eigenvalues
starting at 1.0 but less than 2.0 cause singularities in the
shear only.

From the characteristic equation(4.49) the following
five real eigenvalues were calculated: |

0.63786586803463 1
: 0.698211827331357
{\} = 1.27520788054242
1.39718494820201
1.91141012573973
There are no complex eigenvalues for this case.

To obtain the constants C; (i=1,2,3,4), only three of
the four equations of 4.49 are independent and a solution
can only be obtained in terms of one of the C; constants;
The remaining equation can be used to check the accuracy of
the computations. In this study, the equations were
lnormalized with respect to C, and a large number of digits
for the X\ values were required to satisfy the 'checking'
equation. This was especially true for the second and third
eigenvalues.,

With N\ and the C; constants evaluated, the déflection

' ]

function, Ws, now contains only the three unknowns 'r', 'e',
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and 'Bo'. In the process of evaluating the [[mc functional,
~values are assigned-to the polar coordinates and therefore
the only unknown which remains is 'Bo';
Since Ws is available, it is advantageous to express
the strain energy in terms of line integrals rather than
area integrais. This can be done by using Gauss' theorem as

shown below:
/MijDijkl Mkl da
A

;/u/,ij Eijkl W, k1 da

—f/('W,i Eijkl W,k1l),j da -ﬁw Eijkl W,jkl),i da
+ﬁw Eijkl W,ijkl) d4a

= -/(Mji nj W,i) az fﬁ@i ni W) as —/qu/ aa

=v%:01 ni, -M;, ni, -M;, ni> %,z¥6x agf - v/Pq W aa
» | oo (4.50)
where,
g = q(x,y) = transverse loading on the plate.
There are a number of reasons for making the above
conversion and some of these are discussed below.

First, when using numerical integration to integrate
non-polynomial expressions it is usually computationally
more efficient to evaluate the line integrals than an area
integral. This is especially true when the integrand
involves a trigonometric series and the value of the

integral.can only be approximated.
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Second, since [Hss], [Hsh] and [Hsp] can now be
evaluated by either an area integral or a line integral,
this provides a convenient means of checking the
computations of a computer program. This was done in the
program which was used to obtain the stiffness matrices for
the singularity example problems of Chapter 6.

The third reason may be the most important of all. In
some circumstances, even though the area integrél itself is
finite-valued, its integrand may at times be singular. For
such cases, the change from an area to a line integral may

eliminate this problem.

[Hhs], [Hps], and [Hss]:

The expression '(-Mji nj W,i) + (Qi ni W)' appears in
both Equations 4.50 and 4.39 and is the product'of two
‘vectors. One vector is '<Qi ni, -M;, ni, -M;, ni>' and it
was shown in Equations 4.39 and 4.40 that it could be
rewritten as a matrix product '<g ->[NP I

The other vectof, as indica;ed in_EQUation‘4.50,
consists of W and its first derivatiQes. 'If‘this vector is
rewritten in the form '[Bwl{Bs}' then [Hhs], [Hpsl, and |

[Hss] can be written directly from Equation 4.50 as:

h s T
./PMij Dijkl Mkl da = <gh> . ¢[NPh] [Bw] df {Bs}
1x17 17x3 3xe ex1
: (4.51a)
= <Bh> [Hhs] {Bs}
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P s roT _
/Mij Dijkl Mkl dA=<Bp> ¢[NPpl [Bw] df {Bs} -/q<Ws>dA {Bs}
' 1x1 1x3 3xe ex1 1xe ex1
= <Bp> [Hps] {Bs} (4.51b)
s 8 T
/Mij Dijkl Mkl dA = <Bs> ¢[NPs] [Bw] df {Bs}
1xe ex3 3xe ex1
= <Bs> [Hss] {Bs} (4.51c)
where,
e = number of eigenvalues being considered,
Ws = set of Ws displacement functions
but with the B, factors omitted.

- The only matrices in the above
~explained as yet are [NPs] and

The [NPs] matrix could be

equations which have not been
[Bwl. This will be done now.

calculated from the product

of [N] and [Ps] in the manner described earlier for [NPh].
This time however, rather ‘than working with a [Ps] matrix,
{NPs] will be obtained directly from Equation 4.50 by

expanding the vector < @Qini, -M;.ni, -M;,ni>. Each term of

this vector can be written as:

Qi ni = (Mx,x + Myx,y) n, + (Mxy,x + My,y) n, (4.52a)
-M;, ni= -Mxy n, - My n. (4.52b)
-M;, ni= -Mx n, - Myx n, (4.52c¢)
where,

Mx,x = cosa Mx,r - r‘" ') sina Mx,a
Myx,y = sina Myx,r + r‘-') cosa Myx,«
Mxy,x = cosa Mxy,r - r‘-') sina Mxy,a
My,y = sina My,r + rt"') cosa My,«a

and,
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Mx =-D i} G, B,

Mx,r = -D r(>»2).(\-1) G, B,

Mx,a = -D ‘21" G, B,

where, : .
G, = [(cosa?+vsina?)(\2+)\) + (sina’+vcosq’)(\+1)], F

- 2(cosa sina)(1-v)(X) F
+ (sina?+vcosa®) F
G, = -2(cosa sina) (1-v)(\2-1) F
+ [-2(cosa?~sine?) (1-v)\ + (cosa’+vsina?)(\1+\) +
(sina?+vcosa?) (\+1)] F
+ 2(cosa sina) (1-v) (1-\) F

+ (sina?*+vcosa?) F

My =-D r(*1') G, B,
_My,r = =D rtXx2) (\-1) G, Bo

My,e = =D rt}*) G, B,

where, ‘ -
G, = [(sina?+vcosa?)(\2+X) + (cosa’+vsina’)(\+1)] F &

_+ 2(cosa sina) (1-v)(\) F | ' o !

+ (cosat+vsine?) F

éz = 2(cosa sinea)(1-v)(\2-1) F . ' , .,{
+ [2(cosa?-sina?)(1-v)N\ + (sina?+vcosa?) (\2+\) +

(cosa?+vsina?){(N\+1)] F ’ o i

+

2(cosa sine) (1-v)(\-1) F i

+ (cosa?+vsina?) F

Mxy = -D r(\-0 (1-v) G, B, | |
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My,r = -D r‘*2) (1-v) (\-1) G, B,
My,a = <D r A1 (1=v) G, B,

- where,
~ G; = (cosa sina)(A\2-1) F
"+ (\)(cosa?-sina?) F

= (cosa sina) F

G, = (cosa?-sina?)(\2-1) F

+ (cosa sina)[-4\ + (\2*-1)] F
+ (COSa;‘Sina’)(\*1) F

- (cosa sina) F

08 600 4 0008606000069 0000000000800 0

The matrix [NPs] can now be written as:

[NPs] {Bs}=
| s
Qi ni/ B.. === [/======= > Bo:
— 7 - /— .
“M;i. ni/ B.. repeat for each S
7 / .
-M;, ni/ B, eigenvalue .
' \£°eJ
(3xe) (ex1)

(4.53)

The '/ Bo,' term simply indicates that [NPs] consists of the

cr
e
o

expressions given in Equations 4.52a) to 4.52c) but with
unknown term 'B,’ factored out. Therefore [NPs] contains
only'known.quantities and can be calculated from the
information given in Equations 4,52, ‘

Equation set 4.52 also contains all the information
required to calculate [Hsh], [Hspl, [Hss] from area

integrals. To evaluate these same matrices by using the



120

line integral approach the [Bw] matrix is still required.
The [Bw] matrix is calculated from Ws and its first

derivatives according to:

[Bw] {Bs}=
.
Bos)
WS/ Bo1 <==m=-== // “““““ > Boz
7/ /] .
Ws,./ Bo: repeat for each { . )
7 /— .
“Ws, ./ Bo: eigenvalue .
Po€
(3xe) (8x1)
: (4.54)
where,
Ws = rtxv) F B,
Ws,, = sine Ws,r + r¢-') cosa MWs,a

= r(N) [(\+1) sina F + cosa F] 8,

Ws, ,

cosa Ws,r - r'-') sina Ws,a

= r(\ [(\+1) cose F - sina F] B,

[Gss]:

The only remaining matrix which has not been discussed
thus far is [Gss]. This matrix is calculated from the

following expression of Equation 4.12.
. T '
[Gss] = /[NPs]' [L] af
£
Since [NPs] has just been discussed, and [L] was given

in Equation 4,27 of the previous section, [Gss] can be

calculated by the procedure described in the last section.
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[GHG]:
The stiffness matrix [GHG] can now be obtained from the

expressions of Equation 4.18 which are repeated below:

T -1
[GHG] = [Ghhss] [Hhhss] [Ghhss]
18x18 18xf fxf fx18
and, | ‘
<Peq> = <Bp> ([Hhsp] [Hhhss] [Ghhss] - [Gpp] )
18x 1 1x1 1xf fx£f fx18 1x18
ﬁhere,

f =17 + e, (e = the number of eigenvalues).

- Before proceeding with the next element, a problem
wﬁiéﬁ was encountered at the reentrant corner will be
discussed. In evaluaﬁing the singularity line integrals for
[Gss] along elemént sides 'a' andv'f', probléms were
encountered with the terms 'r‘*"'’' and 'r‘A"?’' at the
reentrant»corner (r=0). To overcome this problem the
expression '(-Mn W,n - Mnt W,t + Qn W) 4f£' from Equation

4,39 was rewritten as:

/(—Mn W,n - Mnt W,t + Qn W) 4
£ .

= f[—(Mn W,n) - (Mnt W),t + (Mnt,t W) + (Qn W)] as
£ 4
(and, when integrated from point 1 to point 2 )

' - 2
= -(Mnt W)] + f[-(Mn W,n) + (Mnt,t + @Qn)(W)]as
' . 1 , (4.55)

For the following reasons the integrand in the above
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equation is zero. The quantity '(Mn W,n)' is zero because
the normal moment, Mn, is zero along the free edges. The
remaining part of the integrand is zero because the guantity
"(Mnt,t + Qn)' is the Kirchhoff shear and it also is zero
along free edges.

Therefore, the 'Ti Ui’ contribution of the two free
edges to the [Gss] matrix simply consists of the quantity
"(Mnt W)]' evaluated at corners 1,2, and 6 of the element
shown in Figure 4.1, Since the contributions of sides 'a'
and 'f' at point 1 are equal butvopposite, only points 2 and

6 have to be considered.

b) L-Shaped Element with Fixed Edge Conditions:

The stiffness matrix for an L-shaped element with
clamped reentrant edges is described in this part. For this
case, the eigenvalues of interest consist of one real number
and a conjugate pair of complex numbers.

After the real eigenvaiue and related C; constants have
been determined, then the procedure outlined.in part a) of
this section can be used without any modifications.

In order tb include the complex eigenvalues consider-
able revision is required to most of the presentation given
thus far in this section. Because substantially more work
is still required and because of the time factor involved,
these values were not included in this study. Assessing the

importance of the complex eigenvalues in the formulation of
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the stiffness matrix is left as a subject for future
research; . :

The remainder of this section deals with the
calculation of the eigenvaiues for the case where edges 'a'
and"f' aré assumed to be clamped; Along these two edges
the'boundafy conditions are:

(1) the transverse displacement, Ws = 0.

(2) the normal rotation, Ws,a = 0.

In equation form; the zero transverse displacement condition
can be written as: |

Ws = -D r‘>»'") F B, = 0.
(and, for r' 'z 0 ,  B.# 0)

F=0. (4.56)
(of) .

C,sin(\+1)a + C,cos(\+1)a + C,sin(\-1)a + C,cos(\-1)a = 0
The zero normal sldpe condition can be written as:

WS,(X = -D r()\+‘) E" Bo = Oo
(and, for riX 1z 0 , Bo.# 0)

F=0. (4.57)

+1) [C,cos(\+1)a - C,sin(\+1)a]
_1) [C;COS(\'1)(¥ - C;Sin(\—1)a] = 0-

By substituting the values of a for the two sides 'a’

and 'f' into Equations 4.56 and 4.57, the set of four
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equations can be obtained. These equations are shown below:

sin(A\+1)a cos{A+1)al sin(\-1)a cos(\-1)al(c, o
a,;cos(\+1)al-a,sin(\+1)aja,cos(\-1)al-a,sin(\~-1)allc,|_) o
sin(\+1)f cos(\+1)f sin(\-1)f cos(\-1)f{lcC, o
a,cos(\+1)f|-a,sin(\+1)fla,cos(\~1)f|-a,sin(\-1)F]|\cC, o
where, : (4.58)
a, = (\+1)
a, = (\-1)
and,
a; = a value of side 'a'
a, = a value of side 'f'

As discussed earlier, the only eigenvalues of interest
for this study are those between 0.0 and 2.0. From the
characteristic equation of 4.58 the following eigenvalues

were calculated:

0.54448

N} =
1.62925 + 0,23125 i

For the real eigenvalue, a stiffness matrix was
calculated according to the procedure described in Part a)
of this section. This stiffness matrix was then used for an

example problem in Chapter 6.
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Figure 4.1 Typical L-Shaped Element and Coordinate Systems.



Chapter 5
THE COMPUTER PROGRAM 'HYBSLAB'

5.1 Introduction

The hybrid stress finite element method as described in
the previous chapter was used as the basis for a Fortran IV
computer program called HYBSLAB. The program was written
for the elastic analysis of flat plate structures with the
intent that it could be used for analysing theé type of floor
systems typically found in buildings.

From a technical point of view, for a program to serve
such a purpose it must not only be capable of'providing
stiffness matrices for a variety of eélement shapes but if
must also be capable of modelling beams which are eccentric
to the plate. As well, in certain situations it may be
desirable to model the columns not only as point supports
but also as finite-sized members. |

From a practical point of view, any program intended
for design office use must be cost-competitive. This means
that the time spent in the prépérétioh and checking of input
data and the interpretation of the output must be kept to a
minimum. As well, the cost of ‘runnihg'lthé(?rogram‘must
not be unreasonable. |

In addition to thé time factor and the data checking
| demands, the user of a finite element program is also faced

with the challenge of choosing a gridwork which will provide

126
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'Vvélues suitable for the design phase. The choosing of
gridworks,isbbést-learned through repeated use of the finite
element method, but it is hoped that the test cases of
Chapter 3 and the éxample problems of the next chapter may
 provide some guidelines.

There are very few programs available which have the
features and capabilities discussed thus far, and none df
these are based on the hybrid stress method. The remainder
of this chaptef is devoted to explaining how the program
HYBSLAB-has been written to meet the technical and practical
requirements discussed so far. The presentation consists of
a general description of the program in the next section,
followed by two more sections which deal with the modelling

of beams and columns.

5.2 General Description

The program HYBSLAB is based on the hybrid stress
method and the stress functions and related matrices as
presented in the previous chapter. The calculation of
stiffness matrices for the L-shaped singularity elements has
not been included directly in the program; However, these
mafrices and the associated load vectors are available from
another program and can be accessed by HYBSLAB.

ThelderiQation of flexural stiffness matrices for
quadrilateral and polygonal shapes by the hybrid stress

method is relatively easy when compared to the other
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methods. Therefore, the focal point of technical interest
is probably the subroutine 'STIFFS' which calculates the
in-plane and flexural stiffness matrices for the various
shaped elements. As mentioned earlier, the element shapes
may vary from a triangle to a polygon with six nodes or
less. Some possible element configurations are shown in
Figure 5.1,

In the subroutine 'STIFFS' the strain energy of the
element is evaluated in a piecewise manner by explicit
integration of the stress polynomials over trapezoidal
regions. The individual [Hhh]l, [Hhpl] and [Hppl matrices are
then summed to obtain the corresponding matrices for the
element as a whole. The orientation of a typical trapezoid
and the limits of integration are shown in Figure 5.2.

In the present version of HYBSLAB, the local
‘coordinates axes of an element may be placed at any locétion
relative to the global axes but the two sets must remain
parallel. As discussed in Section 4.2, the lack of complete
order expressions for the in-plane stress polynomials
suggests a potential problem with lack of invariance. To
assess the significance of the léck of complete quadratic
expressions, tests were conducted where rectangular grids
were rotated in the X-Y plane. The tests consisted of a
rectangular 2x2 grid with minimal support provided at two
corners and a point load applied at a third corner. The
tests indicated that, even though the grids were rotated,

the displacements at all nodes remained invariant. This
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appears to suggest that the contribution from the guadratic
terms is insignificant.

The.potential of edge tractions as described in the
previous chapter requires the evaluation of line integrals
necessary.for the calculation of the [Ghh] and [Gpp]
matrices.' In the current version of the program these
 integra1s are evaluated by using a Gaussian numerical
integration procedure. This completes the discussion of the
subroutine 'STIFFS'. The program has a number of other
technical features which may be of interest.

Provisions have been made in fhe program to accommodate
the singularity elements and other elements for which
HYBSLAB cannot generaté a stiffness matrix and load vector.
For example, the stiffness matrix and load vector for the
'singularity elements are generated by the singularity
~program and are stored in a file which is later accessed by
HYBSLAB. This file is separate from the file which contains
the data for the main problem and will be referred to as an
auxiliary file. |

To model eccentric stiffeners, the user can use either
beam elements or other plate elements which have midsurfaces
offset from the midsurface of the main plate. Details of
this procedure are given in the next section.

The effects of columns may be lumped at a single node
.or<the finite dimensions of the column cross section may be
represented. A more detailed discussion of this topic is

contained in the last section.
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The program has a number of special features that may
be required for certain problems. For example, the user may
specify non-zero values for any degree of freedom or
_'éonstrain two or more degrees of freedom to have the same
value. As well, additional sfiffness may be added to the
diagonal term associated with any degree of freedom.

The solution for nodal displacements is obtained by
using an in-core banded Gaussian elimination routine. The
problem size that may be solved with the present version on
the AMDAHL 470/V8 is 1500 unknowns with a semi-band of 80.
These values may be varied subject to the condition that
their product must be compétible with the in-core storage
‘limits of the computer facility being used.

The following measures have been taken to assist the
user with the practical asbects of time and cost, and error
detection. |

The input data may be Specified in one of three ways, -
which will be referred to as 'automatic', 'semi-automatic'
and 'manual'. The automatic data generating subroutine,
called"RECDAT', is specifically intended for rectangular
element gridwofks and requires very little input from the
user. The semi-automatic data generating subroutine, called
'LINDAT', operates from 2 two-dimensional integer matrices,
one of which contains the joint numbers of the structure
while the other contains the element numbers. The inbut
required for this subroutine basicélly consists of

specifying the rows of the matrices, but with provisions
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made to automatically generate subsequent rows from any
given row ahd numbers within a row. The third method is to
manually specify the input data, element by element. This
is the most inefficient and time-consuming way to prepare
thé data and should only be used when no other option is
aQailablg. To provide the user with added flexibility in
data preparation, all three methods may be used at the same
time in a given problem.

To'reduée computational costs, elements with identical
Vstiffness matrices are placed in the same group so that only
one element stiffness matrix needs to be calculated.

After the input data has been prepared, the user can
run the program without calculating any stiffness matrices
and create an-auxiliary data file. This data file can then
be used to produce a drawing of the structure complete with
node and element numbers. This type of graphical display
provides é quick and easy means of detecting errors in the
connectivity data of the structure.

The program output for each load case consists of the
nodal displacements and rotations, element nodal and centre
point stress values, and internal nodal forces. As well, at
each node, stresses averaged from the valﬁes associated with
the adjoining elements are printed along with the principal
flexural stressés.

The solution output may élso be obtained in a graphical
form. 1In the current version of the program, two auxiliary

files are reqguired to store output data for contour plots.
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The first of these files contains the nodal values of the
transverse displacement, while the second file contains the
averaged nodal values of Mx, My, Mxy, Mp, and Mp., where Mp,
and Mp. are the principal moments. For example, in the
design of reinforced concrete slabs if the reinforcing is to
be placed in the X and Y coordinate directions,‘then contour
plots of the orthogonal moments Mx and My would be most
useful. 1If these plots are done to thé same scale as the
working drawings, then the designer can do the steel layout
directly on the contour drawings. Examples of such moment

plots are provided in Chapter 7.

5.3 Modelling of Eccentric Stiffeners

When a plate is stiffened by a beam which has its
centroidal axis in a plane not coinciding with the plate's
midsurface, then in-plane or membrane strains are introduced
into the structure. The applied loads are carried jointly
by flexural action and membrane action in proportion to the
relative rigidities of the plate and the beam and the amount
of eccentricity. 1In order to analyse these types of
structures it is necesary to consider not only the geometric
degreés of freedom, < W , 6x , By>, but also, the in-plane
displacements, < U , V>. Before describing the method used
in HYBSLAB, a brief discussion will be given of some of the

more common methods used in the past.
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Priér to the finite element era, three general methods
were used to analyse plates with integral stiffeners. The
first method was to replace the plate and beam structure
with an equivalent grillage. The second method was to apply
orthotropic plate theory to the problem and replace the beam
and plafé_system by an equivalent orthotropic plate. The
third approach ignores the interface shear between the beam
and the plate but then adjusts the flexural stiffness of the
beam to compensate for the composite action. All three
approaches have the disadvantage of requiring considerable
ehgineering judgement in assigning equivalent properties.

As well, the final results are for an equivalent member from
which it may be impossible to separate the beam forces.

" In the finite element method, the use of beam elements
with plate elements appears to have started in the late
1960's with the work of Zienkiewicz and co-workers?°?,42,%°,
In one of these publications, Davies, Parekh, and
Zienkiewicz®’ compared finite element analysis against test
results from perspex models for plates with concentric and
eccentric edges beams. They modelled the eccentric beams
both by vertical plate elements and by an equivalent
Concentrié beam which had its moment of inertia calculated
from the composite cross section., They found that the more
accurate approach was to use the equivalent concentric.beam.
The advantage of the concentric beam approach is that
in-plane degrees of freedom are not required. The

disadvantage is that an effective flange width must be
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assumed in order to locate the neutral axis of the composite
section,

An alternative to the equivalent concentric beam
approach is to calculate the stiffness matrix of a
rectangular beam about its own centroid‘and then transfer it
. to the midsurface of the plate. The transfer is done by
pre- and post-multiplying the beam matrix by a linear
transformation matrix. 1In essence, the transformation
matrix relates the nodal actions by attaching the beam node
to the plate node by a rigid bar. This is equivalent to
specifying that plane sections remain plane. Even though
this method introduces additional unknowns in the form of
in-plane degrees 6f freedom, it has become quite popular
because it does away with estimating the location of the
neutral axis in the composite section. This approach has
been used in the SAP4 computer program and will also be used
in HYBSLAB. 1In this study it will be referred to as the
'coupling' approach. However, before proceeding with the
details of the transformation matrix, it is necessary to
draw attention to an error introduced by this method.

The nature of the error. was identified in 1977 by Gupta
and Ma®’. The error arises from a conflict in desctibing
the axial displacement field of the beam element. If plane
sections are assumed to remain plane, then a rotation at a
node in the plate causes the axial displacements in the beam
to vary according to the plate functions. The plate

functions are usually quadratic or higher order and the

b
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conflict arises because a linear function was used to derive
the beam's axial stiffness. The magnitude of the error is
problem dependent and is discussed in more detail in the
next chapter. It is important to note that published
articles tend to exaggerate the error by not using the
overall height of the beam. This is illustrated in the next
chapter and meésures which can be taken to reduce the error
are discussed.

An obvious solution to the problem is to eliminate the
error entirely by adding intérmediate axial displacement
degrees'of freedom to the béam element. Such a solution was
publisﬁed in 1980 by Miller'®*°, but it has the drawback that
the additional degrees of freedom cannot be eliminated until
after the beam matrix has been combined with the plate
matrices.

The stiffness matrix for the beam element and the
linear transformation matrix which were used in HYBSLAB will
now.be pfesented. The beam axis is initially assumed to be
parallel to the global X axis. To obtain the stiffness
_matrix of the beam in terms of the global coordinates, it is
necesséry to pré— and post-multiply the centroidal matrix by
a transformation hatrix. Since the beam's centroidal 10x10
stiffness matrix consists of four very simiiar submatrices,
it is necessary to consider only one of the submatrices.

The 5x5 submatrices have terms which are idehticél except

for the signs and each submatrix is of the form:
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k, . ks
. k, .
[5] = kv . ka (5.1)

L]
.
o [ Rle |o |e
-
K'ie |o o |o
bad .

The stiffness submatrix in the global X-Y plane is
[Te?[g][Te] where the terms of of [Te] are given below in
Equation 5.2. 1In this matrix, the offsets between the beam
and the plate node are e, and e,, where e, is measured in

the +Y direction and e, along the +Z direction.

1.0 “e, . . .
» 1.0 [ ] L] *

[Te] = . . 1.0 . . (5.2)
. . ‘e, 1.0 .
. te, . . 1.0

where, :
e, = Y(plate) - Y(beam)
e, = Z(plate) - Z(beam)

If the beam is to be rotated in plan (X-Y plane) then
it is also necessary to pre- and post-multiply by a
rotational transformation matrix [Tr].- The final form of
the beam submatrix in the global system will be denoted as

[Kb] and can be written as:

T T
[Kb]l = [Tr]llTel[K][TellTr] : (5.3)
where,
1.0 . . . .
: . +C +s . .
[Tr] = . -8 | +c . .
. . . +c -s
. . +s +C
and,
c = cos(y),
s = sin(y),

the angle between the global X axis and the beam's
longitudinal axis (positive counterclockwise).
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[Kb]=
+k, -ce,k, + sk.| +se,k, + ck; . .
-ce,k, |c?etk,-cse,;k;]|~-cseik,-csk,+]| +cse,k, +s?e, k.,
+sk, . +c?k,-cse k,|{s?e,;k,-c?e,ks| -cse,k; +c?e,k;
+s?*k,+s?eik,| +csk,tcseik,
+cleik, -cseik;
- +se,k, -cseik,-csk,+|s?e}k,+cse k| +c?e,k, +cse,k,
+ck, s’e,k¢-c?*e,k,| +s?k,+cse k.| +s?e.k; -cse; ks
+csk,+cseik,| +c?k,+c?eik,
-cseik, +s2eiks
. +cse,k, +c?e,k, +c?k, +csk,
- -cseks +s’e,k; +s%Kk, -csks
. +s?e,k, +cse,k, +csk, +s2k,
+c?e, ks -cse, ks ~csks +c?k,
(5.4)
where, _
Signs for Submatrix:
= 12 E Ix/ L?® + + -
kz= G J/L + + -
k= 4 E Ix/ L + + +
K,= EA/L + + -
ks= 12 E Iy/ L?® + + =
k¢= 6 E Ix/ L? + - +
k.= 6 E Ix/ L2 + - -
and,
E = modulus of elasticity,
G- = shear modulus,
Ix = moment of inertia resisting W displacements,
Iy = moment of inertia resisting V displacements,
J = St. Venant's uniform torque constant,
L = length of the beam.

The matrix shown above in Equation 5.4 was used in the

program HYBSLAB.
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The process described thus far has dealt with the
representation of eccentric line beams. Provisions have
also been made to allow the user to model the finite width
of a beam. When this option is used the beam will be
referred to as a wide beam. |

To model wide beams, thick plate eiements are used and
the stiffness matrix which is calculated at the midsurface
of the thick plate is transferred to the global midsurface
by pre- and post-multiplying it by a transformation matrix.
The transformation matrix consists of diagonal submatrices

obtained from [Te] of Equation 5.2 but with e,=0.

5.4 Modelling of Columns

Typically, floor systems of buildings are supported
either by columns or by load bearing walls or a combination
of the two. The column support dimensions are usually of
the same order of magnitude as the plate or slab thickness
and are considerably less than the span dimensions. For
these cases it is customary to assume that the plate is
resting on point supports. In making this assumption, a
concern immediately arises because, according to plate
theory, even though the deflections at a point support
remain finite the bending moments and shears become
infinite. Because of this stress singularity, it is not
clear if a numerical method such as the fiﬁite element

method can provide meaningful stress results in the vicinity
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of the column. This problem was investigated in connection
with slab bridges by Cheung, King and Zienkiewicz*? in 1968.
By comparing moment contours from the finite element method
against those from an exact solution, they concluded that
despite the singularity even the coarsest subdivision (a 4x4
triangular grid / QUarter plate) illustrated the trend
“accurately and gave values suitable for engineering design.

In the program HYBSLAB provisions have been made to
allow the designer to use either point-sized or finite-sized
columns. To use either type of column, the program reguires
as input the column's axial and flexural stiffnesses at the
location where the column and the midsurface of the plate
meet.} Since these values are very much dependent on the far
end conditions, the material properties of the column, and
‘the jbint;connection detail, the assighing of these values
is left solely to the discretion of the engineer. The
remaining input consists of the X and Y coordinates for the
column centroid and the joint numbers to which the.
centroidal stiffnesses are to be distributed.

For finite-sized columns, the joints to which the
distribution is made are those which lie on the perimeter of
the column. The distribution is done in such a manner that
two conditions are satisfied. The first is that the
centroid of the column and the joints on the column's
perimeter define an X-Y region which can undergo rigid body
motions only. This region will be referred to as a 'column

head' and the following constraint equations are assumed to
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apply in this region:

W; = wn_ + (Yl-YQ) B,Kn + (X.i—xq); B‘Yo
6X| = B'Xq_ (5.5)
Byi = By,

where, the subscript ',' denotes the column centroid,

and ';' denotes a joint in the rigid body region,

The second condition is that the substitute system of
distributed stiffnesses at the perimeter joints contributes
the same strain energy to the structure as the original
system. An alternate view of this method is that rigid bars
have been used to attach each perimeter joint to the
centroid of the column.

For point-sized columns the same method is used but
only one finite element joint is usually invol@ed. The
advantage of using this method for point supports is that
the centroid of the column and a joint of the finite element
model do not have to coincide., This permits the user to use
more rectangles when doing the grid layout. However, the
transfer distances between the two points should be kept
small so that the constraints in Eguation 5.5 still apply.

To implement the.constraint equations for finite-sized
columns two'separate approaches were tried. The first
approach involved the use of substructurihg around the
column head. The second approach was to use artificially

thick elements to represent the column head.
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The substructuring approach was considered because it
is more economical to impose the constraint equations on an
individual column head at a substructure level than on a
global level. The procedure consists of forming the
stiffness matrix for the entire substructure and then
imposing the constraint equations to eliminate the dependent
degrees of freedom. All the degrees of freedom on the |
perimeter of the column can be eliminated, while the degrees
of freedom at the centroid of the column are retained. The
resuiting stiffness matrix and load vector can now be
partitioned and the interior degrees of freedom eliminated
according to the standard method of substructures's®,

If no interior joints are present in the substructure,
then further savings in computational effort can be realised
because a number of operations involving the partitioning,
inverting and multiplying of matrices are not required. The
geometry in the vicinity of the column head is such that it
can be represénted by a substructure which has only boundary
joints, joints on the perimeter of the column, and a joint
at the centroid of the column. After the substructure
matrix has been formed and modified by the constraint
equations, the only degrees of freedom which remain are
those of the boundary joints and the joint at the centroid
of the column. This matrix can now be entered directly into
the global stiffness matrix. After the complete set of
equations for.the structure have been solved, all the

displacements within the substructure can be calculated
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directly from the constraint equations; it is not necessary
to recalculate the stiffness matrix of the substructure.

The substructuring approach satisfies the constraint
equations exactly but it has the disadvantages of increasing
the complexity of the program and widening the semi-band
width of the problem. Therefore, an alterhate approach was
tried wherein the constraint equations were satisfied only
approximately.

The alternate approach consists of using artificially
thick elements to provide the rigid body behavior described
by Equation 5.5. The accuracy of such an approach can only
be assessed by considering specific problems. One such
. problem which was considered involved an 8.0 inch slab
spanning 20.0 feet and supported by 24.0 inch square columns
11.5 feet in length. 1In representing the column heads,
800.0 inch thick elements were used and a comparison of
nodal rotations and transverse displacements between this
method and the substructuring method indicated agfeement of
the first four digits. It appears that the thick element
approach can be made as accurate as desired for practical
usage. Therefore, in the HYBSLAB program, the more involved
substructuring approach was abandoned in favor of the thick
element approach. No additional comparisons were done
because when using the program, the designer can always
determine the extent of column head 'mushrooming' by looking

at the displacement output for the column head.
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Chapter 6

VERIFICATION OF ELEMENT MATRICES

6.1 Introduction

In this chapter the program HYBSLAB is used to solve a
wide range of test problems. The problems involve a variety
of element shapes and were chosen to check the program and
to verify the matrices given in Chapter 4. The next chapter
will deal with the analysis of actual floor systems, but
before analysing such structures it is necessary to verify
that the elements, when assembled, are able to represent the
constant strain states. As well, for modelling floors with
eccentric stiffeners, it is necessary to know the magnitude
of the error caused by coupling such stiffeners to the
plate.

The importance of representing the constant strain (or
constant stress states) was discussed in Chapter 2. For the
individual elements, no tests are required because each of
the polynomial stress functions in Chapter 4 contains a
constant B term. Therefore each of the constant stress
states has been included. As an assemblage, the elements
are required to pass the 'patch test'. The nature and the
role of the patch test were described in Chapter 2. If the
elements can meet these two requirements, then one can be
certain that as the gridwork is refined the résults wiil

converge to the correct values.
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In this chapter the testing of the hybrid elements is
done through the use of simple test problems. The nature of
some of the constant strain tests is such that they can be
labelled as patch tests. Section 6.2 contains the constant
strain tests for the in-plane stiffness matrices while
Section 6.3 deals with the constant curvature states for the
flexural matrices. As well, some simple test structures are
included to compare the convergence characteristics of the
various element shapes.

In Section 6.4 two stress singularity problems are
considered. The first problem uses the free edge
singularity element, while the second problem uses the fixed
edge element developed in Section 4.4.

Some numerical results are presented in Section 6.5 for
the error introduced when coupling eccentric beam elements
to a plate. The error was identified earlier in Section 5.3
and some example problems are done in Section 6.5 to

illustrate how it can be reduced.

6.2 Plane Stress Problems

This section contains the test problems used to verify
that the in-plane stiffness matrices are able to represent
the constant strain states for €x, €y, and €xy. The
gridworks and element shapes which were used are shown in

Figures 6.1 and 6.2.



146

In addition to these tests, similar elements shapes are
used to analyse a cantilever beam supporting a point load at
its free end. This test case was included to compare the
accuracy and convergence characteristics for the different
element shapes. The results for the cantilever beam are
presented after dealing with the constant strain cases.

For the test cases shown in Figure 6.1, the patch test
for constant strains was applied in the following manner.
The in-plane displacements, U and V, were prescribed at the
perimeter nodes of each group of elements according to the
equations shown below,

U= a, + a;x + a,y

%

(6.1)

a, + a;x + a.y

From this set of equations, the following expressions for

stresses and strains can be obtained.

€x = a,
€y = a,
€xy = (a; + as)/2
and, (6.2)

Ox = E (a, + vae)

=7
Oy = E (va, + a¢)

1-v?

dxy = B (a, + as)

2(1+v)

To use the program HYBSLAB it is necessary to assign
numerical values to the a; coefficients. Since the choice
of these coefficients is arbitrary, it was decided to assign

to each coefficient the value of its subscript, that is,
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a,=1, a,=2, ..., a,=6. With these values and E=27.300 ksi,
v=0.3, and t=0.1 inches, the following results were
obtained.

For all interior points of the element groups in Figure
6.1, the U and V displacements were output to 7 digits of
accuracy and agreed exactly with the values calculated from
Equation 6.1. The stresses at all nodal points, both on the
perimeter and on the interior, were Cx=+114.0 ksi,

=+198.0 ksi, and (Jxy=+84.00 ksi. These numbers are
identical to the values calculated from Equation 6.2.

Based on the above results, it can be concluded that
the hybrid in-plane matrices are capable of representing the
constant strain states and that rigid body motion does not
cause straining of the element. However, it was decided to
do some additional testing on these element groups by
analysing them as supported structures subjected to nodal
‘loads. The primary reasons for doing this was to provide
additional checking of the HYBSLAB program and to determine
if the unsymmetrical gridworks could still provide accurate
results with only a minimum number of constrained joints.
The nature of the load cases was such that they would cause
constant strain conditions in the structure. Values of

E=27300 ksi, v=0.3, and t=0.1 inches were used for each
case. .Three separate cases were considered.

| For the first case, the structures of Figure 6.1 were
supported at X=0 and loaded at X=20 inches with loads of

Px=100 kips. The resulting X displacements for the loaded
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nodes were [/=0.07326007 inches, and the stresses at all
nodal points were Ox=+100.0 ksi, Cy=0.0 ksi, and Oxy=0.0
ksi.

For the second case, the same structures were supported
at Y=0, and loads of Py=+100 kips were applied at ¥Y=10
inches. The resulting Y displacements of the loaded nodes
were V=0,01831502 inches, and the stresses at all nodal
points were (Jx=0.0 ksi, Oy=+50.00 ksi, and Cxy=0.0 ksi.

For the third case, that of pure shear, the groups of
elements shown in Figure 6.2 were used. In each of these
structures, the node at X=0,Y=0 was prevented from moving,
while the node at X=20 inches was permitted to move in the X
~direction only. The loads were calculated from a pure shear
of 10.0 ksi, acting along the sides of the structure. The
calculated displacements from HYBSLAB at X=20 inches were
‘U=0.009523810 inches, and the stresses at all nodal points
wvere Ox=+10.00 ksi, Oy=-10.00 ksi, and Oxy=0.0 ksi. 1In
all three of the above test cases, the values from the
HYBSLAB program were identical to the expected values.

The results from these three cases and the patch tests
done earlier indicate that the in-plane stiffness matrices,
as generated by HYBSLAB, are capable of providing an exact
analysis of constant strain structures. The importance of
this capability is that, in the limif, exact results can be
obtained for any structure.

To get an indication of the convergence characteristics

for the different shaped elements, a cantilever beam was
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analysed. A sketch of the beam and the gridworks are shown
in Figure 6.3. The (x,y,z) dimensions of the beam are
(20.0,2.0,1.2), where the length is 20.0 inches and the
depth is 2.0 inches. Only a single rectangular element was
used to model the depth, while gridworks based on 1, 4, and
10 equallrectangular'subdivisions were used along the length
of the beam. The loading condition consisted of an end load
of Py=-100 kips.

The results of the analyses are shown as normalized
values in Table 6.1. As well, the results from a bilinear
conforming displacement element have also been included.

From these results it can be concluded that, with the
exception of the triangular elements, all of the element
shapes perform reasonably well. The excessive stiffness
displayed by the triangular elements can be attributed to
thé relatively large number of B parameters in comparison to
the low order of the displacement functions and the low
displacement rank of the triangular stiffness matrix. This

was discussed earlier in Section 4.1.

6.3 Pure Bending Problems

In this section test cases are presented to determine
if the hybrid flexural matrices aré capable of representing
the constant curvature states W,xx , W,yy , and W,xy .
The gridworks and element shapes used for the test cases are

the same as those used in the previous section and are shown
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in Figures 6.1 and 6.2.

In addition to the above, two more test cases were
added to investigate the convergence characteristics of the
different element shapes. The first of these cases is the
cantilever beam used in the previous section. The second is
a clamped square plate subjected to uniform and point
loading. The results of these two test cases will be dealf
with after the constant curvature states are discuésed.

In addition to examining the various groups of elements
in Fig 6.1 for the constant curvature states, it was also
decided to test for linear curvatures. To achieve this, the
following equation was used for W .

W=a, + a,x + a,y + a,x* + a;xy + a.y?

(6.3)
+ a,x? + a,x%y + a.,xy? + a,.y*

From Equation 6.3 the following expressions can be obtained.

Ox = a, + asX + 2a¢y +* azx? + 2a,xy + 3a,,y?

By = a, + 2a,x + asy + 3a.x? + 2a,Xy + a,y?
W,xx = 2a, + 6a.,x + 2a,y (6.4)
W,yy = 2a, + 2a,x + 6a,.y

+

W,xy = as + 2a,x 2a,y

The moments can be calculated from the above expressions as:

Mx -D [(2a,+ 6a,x+ 2a,y) + v(2a,+ 2a,x+ 6a,,y)]

My

-D [v(2a,+ 6a,.x+ 2a,y) + (2a,+ 2a,x+ 6a,,y)] (6.5)

Mxy = -D (1-v)(as+ 2a,x+ 2a,y)
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As discussed earlier, the choice of the a; coefficients is
guite arbitrary, and again the value of each coefficient was
assigned equal to its subscript.

‘The constant curvature states were considered first,
énd for these cases it is necessary to reset the values of
a,, a,, a, and a,, to zero. Before running the program
HYBSLAB, the values of W, 6x, and By were calculated from
the above equations and prescribed for the perimeter nodes
in Figure 6.1. Values of E=27300 ksi, v=0.3, and t= 0.1
inches were used again.

, The results of fhe analysis were the same for each
group of elements. At all interior points, the W, 6x, By
values were output to 7 digits of accuracy and agreed
exactly with the values calculated from Equations 6.3 and
6.4. The moments at all nodal points, both on the perimeter
and on the interior, were Mx=-29.00 kip.in/in, My=-36.00
kip.in/in, and Mxy=-8.750 kip.in/in. These values agree
with those calculated from Equation 6.5.

In addition to the above test cases, another test was
done for pure shear by using the element groups shown
earlier in Figure 6.2. Three corners of each group were
simply supported, while the fourth corner was subjected to a
load of 1.0 kips ' in the Z direction. For each structure,
with E=27300 ksi, v= 0.3, and t=0.1, the resulting
displacement at the point of loading was +57.14286 inches.
At all nodes, boﬁh interior and exterior, the bending

moments were Mx=-0.5000 kip.in/in, My=+0.5000 kip.in/in,
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and Mxy=0.0 kip.in/in. These values agree well with the
published results of W=0.7142858 PL?/D and principal moment
values of 0.5000 P. The output for the displacement at the
centre of the plate was +14.28571 inches. This is the same
value as calculated from W=k,xy , which is the equation of
the deflected surface, with k., a constant and the (x,y)
coordinate system at 45 degrees to the X axis.

From the results obtained thus far, it can be stated
‘that the hybrid flexural matrices generated by HYBSLAB are
capable of representing the constant curvature states in a
structure.

Testing of the element groups for linear curvatures can
_be done in the same manner as described for the constant
curvature conditions. The only difference is that all ten
a; coefficients of Equation 6.3 are used to describe W . An.
analysis of the element groups shown in Figure 6.1 revealed
that the values of W, 8x and 8y could not be reproduced
exactly at all interior points. It was therefore concluded
that linear variations of curvatures cannot be represented
within a single element.

The next test case considered is the cantilever beam of
Figure 6.3. This time, to cause bending about the Y axis,
the free end of the cantilever was loaded with a point load
of Pz=10.0 kips. The results for the same gridworks as
those used in the previous section are shown in Table 6.2.

From the results presented in this table, it is

interesting to note that all element shapes, even the
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triangular elements, provide rather accurate values for the
end displacement. The much better results for the coarser
grids can be attributed to the fact that cubic functions are
used to describe W, whereas only linear functions were used
for U and V of the in-plane matrix.

Another test case which was done on the cantilever beam
involved the use of the 1x1 rectangular grid and a Poisson's
ratio of zero. Under these conditions, a rectangular plate
element should degenerate to the classical beam element and
give exactly the same results. Although seldom discussed in
the literature, this is a performance test which any
rectangular plate element should pass.

To do the test, a single rectangle was used to model a
cantilever beam carrying a point load at its free end.

Under these conditions, the curvature variation in the X
direction is linear. The output from HYBSLAB for the free
end displacement and rotation agreed with the expected
values to 7 digits of accuracy. The stresses at both ends
_of‘the beam were also calculated correctly.

The last test case to be considered is a clamped plate
subjected to uniform and point loading. The various
gridworks which were used are shown in Figure 6.4. Values
of E=27300 ksi, v=0.3, t=0.1 inches, and @.,=-1.0 ksi were
used in thé analysis.

Displacement and moment results from the program
HYBSLAB are shown in Tables 6.3 and 6.4. The results

indicate that, for all element shapes, both the
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displacements and moments are converging to the accepted
values. The quadrilateral shapes with reentrant corners do
not appear to cause any convergence problems. It is again
noted that the tables only indicate accuracy versus the
number of rectangular subdivisions. The total number of
unknowns does not enter into the comparison. It also
appears that, of all the element shapes, the rectangular
shape is the most éccurate. General conclusions regarding
convergence rates cannot be made because many alternate

choices exist for defining the nonrectangular element grids.

6.4 Singularity Problems

The singularity elements derived in Chapter 4 are used
in this section for two example problems with reentrant
corners. The first problem is that of a simply supported
square plate with a concentric square opening as shown in
Figure 6.5. The second problem uses the same pléte but with
all edges clamped.

For both problems the analysis was first done by using
a number of gridworks with square elements only. A typical
8x8 grid is shown in Figure 6.5. This was then followed by
an analysis which involved one L-shaped singularity element
at the reentrant corner with the remaining elements beiné
rectangles. Two such gridworks were considered and a
typical 7x7 L-grid is shown in Figure 6.5. The plate with

the square opening will be discussed first, followed by the
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plate with fixed edges. The following values were used for
both cases: E=27300 ksi, v=0.3, and t=0.75 inches.

Two load conditions were considered for the plate with
the square opening. The first load case was a uniform load,
while the second load case consisted of four equal Pz point
loads applied at the reentrant corners.

The results from the program HYBSLAB are presented in
Tables 6.5 and 6.6. The locations of points 'a', 'b', 'c¢’',
and 'd' are shown in Figure 6.5. As discussed earlier in
Section 4.4, there are five eigenvalues of interest and
therefore the analysis was done with e=0,1,2,3,4, and 5,
where 'e' is the number of eigenvalues. From the results it
appears that for this problem the second and third
eigenvalues are the most important and that the remaining
‘three have little, if any, influence on the solution. No
explénation is offered as to why the first eigenvalue does
not play a more prominent role.

From the comparison of displacements in these tables,
it can be concluded that, for both gridworks and for both
load cases, the results with the eigenvalues are at least as
accurate as those without them. As a matter of fact, with
the exception of the first eigenvalue, the results with the
eigenvalues are significantly better.

A cohparison of moments at point 'a' indicates that
when the eigenvalues are included there is only a modest
increase in accuracy. This can be attributed to the fact

that point 'a' is far removed from the singularity point.
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A graphical comparison of moments along side 'a-b' is
presented in Figure 6.6 for the uniform locad and the 7x7L,
8x8, and 24x24 grids. The use of the singularity element
reduces significantly the number of elements required. The
7x7L solution with a singularity element is seen ta be
comparable to the 24x24 solution obtained using sguare
elements only.

The second test case to be considered is the same plate
but with all edges fixed. For this case, only the real
eigenvalue discussed in Section 4.4 b) was used. The same
grids were used as for the previous problem, but only
uniform loading was considered. Results for deflection and
moments from the HYBSLAB program are shown in Table 6.7. As
well, bending moments normal to the fixeé edge are shown in
_graphical form in Figure 6.7.

The deflection comparisons in Table 6.7 indicate that
at point 'c' the results basically remain unchanged when the
singularity functions are included. This is not surprising,
as point 'c' is far removed from the reentrant corner. The
deflection results at point 'd' are improved significantly
for the 3x3 L-grid, but there is only a modest improvement
for the 7x7 L-grid. A similar statement also applies to the
bending moments at point 'd'; these wvalues are not shown in
Table 6.7.

The deflection and moment values for a fixed end beam
along 'a-c' are also given in Table 6.7. These values are

included simply to provide an estimate of the deflection at
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point 'c' and the moment at point 'a'.

In Figure 6.7 the bending moment normal to the clamped
edge 'a-b' is shown for the 24x24 square grid. The values
for all the other square grids fall below this curve and
were omitted for clarity. From this graph, it can be seen
that the rapid'increase in moment does not occur until one
approaches the immediate vicinity of the reentrant corner.
For comparison, the data points for the 7x7 L-grid are also
shown in the same figure. Although the 7x7 L-grid is less
accurate along most of the edge, it appears fo be as
accurate as the 24x24 grid in the immediate vicinity of the
reentrant corner. More detailed results cannot be presented
because stresses were not calculated within the singularity
élement; |

The results discussed thus far indicate that the grids
with the singularity elements appear to provide more
accurate results than those without. Additional work on
this subject is still required for the clamped edge element
to assess the importance of including the complex eigenvalue
discussed in Section 4.4. As well, extensive testing of

both elements is still requiréd.

6.5 Errors in Modelling Eccentric Stiffeners
An error which occurs when eccentric beams are coupled
to a plate was identified in 1977 by Gupta and discussed

earlier in Section 5.3. Before undertaking the analysis of
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actual floor systems, it was decided to obtain somev
additional information on the magnitude of this error. To
do this, it was decided to analyse a cantilevered T-beam
supporting a point load at its free end.-

The beam and its cross section are shown in Figure 6.8.
Also, as indicated in this figure, two choices exist fof
representing the flange and the stem of the cross section.
The first choice, referred to as the 'layered' approach, is
to regard the plate as having the same width and thickness
as the overall flange and the beam being only the portion
which protrudes above or below the slab. The second choice,
referred to as the 'overall thickness' or 'overall height’
approach, is to consider the plate as being only the
overhanging portions of the T-beam flange. i

To illustrate the magnitude of the error, Gupta used
the layered approach and replaced the plate element with a
beam element. He then derived the following expression:

A,Ae?

error= (6.6)
4(A,+A, ) (1,+1I,)

where, .
A;= area of the cross section for beam 'i',(i=1,2), :
I;= moment of inertia for beam 'i',(i=1,2),

e = the distance between the beam centroids.

Using the above equation for the T-beam shown in Figure
6.8, the error for the layered cross section can be
calculated as 0.600. This means that if the entire length

of the T-beam is represented by a single beam element, then
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- the calculated displacement will be 1.600 times the correct
value. However, what Gupta fails to mention is that the
same expression ié valid for the overall approach and the
error calculatéd for the overall cross section shown in
Figure 6.8 is only 0.136 . |

With this information, it was decided to try both the
Alayered:and the overall approaches for the T-beam with the
dimensions shown in Figure 6.8. As well, it was decided not
only to use beam elements as Gupta had done, but also to
model each cross section by using plate elements only; the
corresponding models are shown in Figure 6.9. The use of
the offset plate elements to model beam stems was discussed
earlier in Section 5.3.

The choice to use both a layered and an overall
approach and either beam or plate elements leads to four
different repfesentations of the cross section. For each of
these cross_section models, it was decided to use
1,2,4,8,16, and 32 equal subdivisions in the X direction
along the length of the T-beam. For the plate element
models, the dimensions of the plates in the Y direction were
kept equal aﬁd constant at 12.0 inches for all the
gridworks. The results from the HYBSLAB program are given
in Table 6.8. - The following observations can be made for
this T-beam.

For the beam models with only one subdivision along the
length, the results are identical to those calculated from

Gupta's expression given in Equation 6.6. For the coarser
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gridworks, the overall height approach is much more accurate
than the layered approach. Both the overall and the layered
methods converge to the correct value.

The plate models both appear to be converging to a
normalized value between 0.997 and 0.998. This slight
dicrepancy can be attributed to Poigson's ratio and the
modelling of the T-beam support conditions. The boundary
conditions at the fixed end are suspected of causing some
restraint of the Y displacement. To confirm this, the 32-
subdivision gridwork was rerun with a Poisson's ratio of
zero and the normalized values were found to be 1.005 for
the layered approach and 1.004 for the overall approach.

Again for the plate models as for the beam models, with
the coarser grids, the overall approach is much more
accurate than the layered approach. Also for the coarser
grids, the plate models are more accurate than their
counterpart beam models.

A totally unexpected convergence trend is indicated by
the values in the last columh for the plate model. Here
convergence begins at a value above 1.000 for the first two
grids and then drops sharply and converges from below.
Although in the hybrid method there is no reason to expect
monotonic convergence, this type of behaviour appears to be
totally out of éharacter for a member in single curvature.
For the 4-subdivision gridwork, extensive backchecking of
the data and independent calculations of the stiffness

matrices failed to reveal any errors and therefore it is
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'assumed that the results being presented are correct.
Although the results presented in Table 6.8 are for a
pafticuiar cross section, the following general statements
can be made. Guptais expreésion as given in(Equation 6.6
can be used to estimate the displacement error for both the
‘beam and the offset plate model. The overall thickness
approach is expected to be more accurate than the layered

approach for both the beam and the plate mbdels.



Cantilever Beam with Point Load, Py, at the Free End.

Y-Deflection at Free End, normalized w.r.t. PL®/ 3EI

GRID 1x1 4x1 10x1
Rectangles 0.02568 0.32787 0.88181
Triangles 0.01286 0.10074 0.23118
Quadrilaterals 0.02440 0.30894 " 0.83454
Polygons 0.21594 0.86521 0.94888

Disp. Rectangle V0.02547 0.28776 0.67323

Table 6.1

" Cantilever Beam with

Cantilever Beam In-Plane Displacements.

Point Load, Pz, at the Free End.

Z-Deflection at Free

End, normalized w.r.t. PL®/ 3EI

GRID 1x1 4x1 10x1
Rectangles 0.93167 0.97861 0.98794
Triangles 0.91102 0.96235 0.98179
Quadrilaterals 0.93012 0.97694 0.98623
Polygons 0.95503 0.98357 0.98930

Table 6.2

Cantilever Beam Flexural Displacements.




Deflections for Uniform Loading:
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‘Deflection at centre, normalized w.r.t. 0.001265319 qL*/D

GRID 2x2 4x4 8x8 16x16
~Rectangular 1.055 0.979 0.996 0.999

T;iangular 0.564 0.928 0.979 0.995
Quadrilateral 1.009 0.961 0.989 0.998
Polygonal 0.964 0.981 0.997 0.999
‘Transitions 1.110 0.994 0.998 1.000
Moments for Uniform Loading:
Moment at centre, normalized w.r.t. 0.02291 qL?

GRID 2x2 4x4 8x8 16x16
Rectangular 1.481 0.982 1.002 1.000
Triangular 0.218 0.898 0.948 0.982
Quadrilateral|  1.540 0.834 0.950 0.986
Polygonal 0.940 0.970 0.990 0.997
Transitions 1.339 1.013 1.007 1.002

Table 6.3

Clamped Plate: Deflections and Moments for

Various Shaped Elements (Uniform Load).



Deflections for Central Point Load:
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Deflection at centre, normalized w.r.t. 0.005612017 PL?/D

Various Shaped Elements (Point Load).

GRID 2x2 4x4 8x8 16x16
Rectangular 0.952 0.953 0.989 0.998
Triangular 0.377 0.857 0.957 0.988
Quadrilateral 0.914 0.933 0.980 . 0.994
Polygonal 0.955 0.979 0.995 0.999
Transitions 1.362 1.078 ‘1.020’ 1.005
Mbments forHCentral Point Load: |
Moment at midsidé, normalized w.r, .1257 P

GRID 2x2 4x4 8x8 16x16
Rectangular” W_H;1'152 ”1.022 1.003 | 1.000
Triangulat 0.459 0.779 0.863 | 0.924
Quadri@a;eral 1.167 0.811 10.898 | 0.955
Polygonal 0.780 0.877 0.930 0.965
Transitions | 1.053 S 1.057 1.021 1.006

Table 6.4 Clamped Plate: Deflections and Moments for
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Uniform Load Deflections and Moments:
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Deflection/ (gL*/100D) Moment/(qL?)
GRID
Point ‘'a' Point 'b' Point

2x2 0.30716 0.22169 0.0204

4x4 0.31539 0.22293 0.0239

8x8 0.31811 0.22749 0.0240
16x16 0.31915 0.22930 0.0240
24x24 0.31943 0.22979 0.0240
3x3 L 0.32726 0.24251 0.0232
3x3 L 0.32726 Q.24251 0.0232
3x3 L 0.31877 0.22717 0.0236
3x3 L 0.31897 0.22866 0.0234
3x3 L 0.31897 0.22865 0.0234
3x3 L 0.31897 0.22866 0.0234
7x7 L 0.32320 0.23658 0.0236
7x7L 0.32320 0.23658 0.0236
7x7 L 0.31865 0.23011 0.0238
7x7 L 0.31958 0.23018 0.0238
7x7 L 0.31957 0.23017 0.0238
7x7 L 0.31957 0.23017 0.0238

Table 6.5 Deflections and Moments for the Singularity Test

Case with the Free Edge Opening (Uniform Load).



Point Load Deflections and Moments:

166

Deflection/ (PL?*/10D) Moment/ P
GRID : :
Point 'a' Point 'b' Point 'a'
2x2 0.30218 0.21944 0.068
4x4 0.31620 0.23660 0.146
8x8 0.32107 0.24473 0.145
16x16 0.32310 0.24826 0.145
24x24 - 0.32367 0.24927 0.145
3x3 L 0.34229 0.28702 0.108
3x3 L 0.34229 0.28702 0.108
3x3 L 0.32386 0.25371 0.117
3x3 L 0.32288 0.24732 0.125
3x3 L 0.32287 0.24732 0.125
3x3 L 0.32287 0.24732 0.125
7x7 L 0.33217 0.26521 0.138
7x7 L 0.33217 0.26521 0.138
7x7 L 0.32441 0.25104 0.143
7x7 L 0.32412 0.25017 0.142
7x7 L 0.32410 0.25016 0.142
7x7 L 0.32411 0.25016 0.142
Table 6. Deflections and Moments for the Singularity Test

Case with the Free Edge Opening (Point Loads).
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Uniform Load Deflections and Moments:

Deflection/ (gL*/100D) Moment/100qL?
GRID _
Point 'c¢' - Point '4g! Point 'a'

4x4 ~0.10134 - 0.11299 0.464
8x8 0.10114 0.11835 0.505
16x16 0.10113 0.12015 0.515
24x24 0.10112 0.12068 0.517

3x3 L 0.10140 0.14086 0.474

3x3 L 0.10150 0.11929 0.491

7x7 L 0.10102 0.12696 0.507

7x7 L 0.10117 0.12077 0.509
Fixed

Beam 0.10173 - 0.521

Table 6.7 Deflections and Moments for the Singularity Test

Case with the Clamped Edge Opening (Uniform Load).
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Cantilever T-Beam with Point Load, Pz, at the Free End.

Z-Deflection at Free End, normalized w.r.t. PL®/3EI
BEAM MODELS| PLATE MODETLS
Grid - . - ——

.along LAYERED OVERALL LAYERED OVERALL
X-axis APPROACH DEPTH APPROACH THICKNESS
1 1.600 1.136 1.486 1.064
2 1.150 1.034 1.106 1.001
4 1.038 1.009 1.019 0.993
8 1.009 1.002 1.002 0.995
16 1.002 1.001 0.999 0.996
32 1,001 1.000 0.998 0.997

Table 6.8 Error Comparison for Modelling of
Eccentric Stiffeners.
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Chapter 7

APPLICATIONS TO FULL-SCALE FLOOR SYSTEMS

7.1 Introduction

In this chapter the program HYBSLAB is used for the
analysis of actual floor systems. Two reinforced concrete
floors were chosen. The first is presented in Section 7.2
and is a flat plate without stiffeners. The second case is
dealt with in Sectioh 7.3 and is a plate with eccentric
stiffeners. Whereas in the first case the columns are
modelled as point supports, in the second case finite-sized
columns are used.

For the first case, a typical floor of a high-rise
- building is analysed. Often in dealing with this type of
Structure, circumstances allow the designer to use one-
dimensional beam elements and plane frame or plane grid
computer programs to do the analysis. For example, the CSA
and ACI building codes®®,? for the design of,reinforéed
concrete structures permit designers to analjse two—way
slabs by an equivalent frame method. This method is
satisfactory and practical for most floor systems which have
columns laid out on a rectangular grid. However, as floor
plans are selected to meet functional requirements, it is
often necessafy to move or even remove columns from a
rectangular layout. The resulting column layout may become

so irregular that it is virtually impossible to model the
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floor system by an equivalent frame method. Similarly, the
presence of large floor openings or load bearing walls can
further complicate the frame analysis. It is for these
situations fhat the finite element method is particularly
suited and the use of equivalent frame methods is highly
questiohable.

The second floor system analysed is an experimental
test slab with eccentric beams. For this floor both the
finite size of the columns and the finite width of the beams
is considered. This case is included not only to illustrate
the use of the program but also to provide analytical data
which can be correlated with experimental test data. The
experimental data was obtained from a 3/4 scale test
conducted'in 1962 by the Portland Cement Association®®,

Such correlation studies are essential to verify that that
an elastic finite element model can represent accurately the
behavior of a real structure under service loads. The
results of the data correlation are the subject of a

continuing study and will not be discussed in this chapter.

7.2 Typical Floor of an Apartment Building

To illustrate the use of the program HYBSLAB and to
demonstrate the feasibility of using this program for the
‘analysis of real floor systems, the floor plan shown in
Figure 7.1 wés chosen. It is a typical floor of a recently

constructed 17 story condominium apartment building. This
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plan is characterized by an irregular layout of columns,
large openings, cantilevered corners &and load bearing walls.
All of these features make it particularly difficult to
choose a set of equivalent frames for analysis purposes. It
is therefore the type of problem which is ideally suited for
a finite element analysis. The floor plan shown in Figure
7.1 has overall plan dimensions of 109.0 feet by 81.7 feet
and a slab thickness of 7.0 inches. fThe strength of the
concreté was assumed to be 3500 psi and a single load case
of 0.225 ksf was applied to the structure.

The finite element gridwork is shown in Figure 7.2. A
total of 504 joints and 430 elements were used. For this
gfidwork, the amount of data and the number of man hours
required to produce it are comparable to the data and
preparation timé required by an equivalent frame analysis.

Several guidelines were followed in selecting the
gridwork. Rectangles were used wherever possible with an
effort made to maximize the number of elements having the
same dimensions. On the basis of the results from the
square test plates in Chaptér 3, an atteémpt was made to use
at least four plate elements per panel side. This grid was
felt to be adequate because, for the uniformly loaded square
plate, the following errors in maximum posit§Vé moment were
obtained: 0.80% for the simply supported plate, 1.79% for
the clamped plate, 0.54% for the cornér supported plate with
free edges, and 7.50% for the clamped corners plate with

zero normal slope along the edges.



181

In-plane diéplacements were not considered because the
.structure is_é flat plate without any eccentric stiffeners.
The chosen‘gridwork resulted in a problem with 1378 unknowns
and a semi-band of 75. The analysis required 40.6 seconds
of execution time on the AMDAHL 470/V7 computing system. At
current(1981) commerical computing rates this run would cost
approximately $55. This cost can be considered as
inéignificént compared to the cost associated with the
manpower demands on a design project of this type.

To check the results from the analysis, a comparison
.was made between the HYBSLAB solution and an approximate
equivalent frame method. An extensive comparison of the
metﬁods is not possible for this problem due to the
H‘difficultiesAin selecting suitable equivalent frames in most
regions of the floor. One frame which can be chosen with
some confidence is in the X direction aloﬁg the row of
columns located approximately midway between the edge of the
building and the core. The fréme is supported by the wall
at nodes 5, 15 and 26, and the columns at nodes 122, 182,
262, 351, 441, and 496.

Negative moments at the columns and positive moments at
or near midspans were compared and the results are shown in
Table 7.1. 1In this table, the location of the moment is
indicated by joint numbers along the section and the
suffixed letters 'L' and 'R' denote the left and right side
~of the section. The width of the strip or section is also

indicated and is the same for the equivalent frame as for
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the finite element model.

The numbers in Table 7.1 indicate that from joints 26
to 397 the equivalent frame-values ranged from 0.93 to 1.35
times the finite element values. From joints 441 to 496
this factor increased to 2.04. The larger discrepancy in
this region can be attributed to the fact that the
equivalent frame model which was used is not capable of
modelling the free edges‘caused by the termination of the
slab. The two free edges as shown in Figure 7.2 are |
connected by joints 436 to 441 and jbints 496 to 504. The
ratios of column axial loads are also shown in Table 7.1 and
compare quite favorably, except for the corner column at
node 496. Again the discrepancy for the corner column can
be attributed to the difference in moment restraint of the
two models at the free edge.

The ratios cited above are clearly dependent on the
choice of the finite element gridwork and the assumed lines
of zero shear which define the width of the equivalent
frame. However, comparisons and cross-checking of this'type
are necessary for structures where no other solutions exist.

On the assumption that the reinforcing steel is to be
placed in the X and Y directions, contour plots of Mx and My
were produced and are presented in Figures 7.3 and 7.4. It
is felt that plots of this type are particularly useful to a
- designer. Qualitatively, they provide a means of observing
the overall behavior of the structure and detecting gross

errors in the analysis. As well, the contour plots provide
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a means of identifying potential areas of cracking, since
unexpected tension zones can be readily deteéted.
Quantitativély; they contain sufficient information so that,
wvhen drawn to the same scale as the working drawings, the
steel layout can be done directly on the contour plots. The
zero moment contours or lines of contraflexure are useful in
aniding‘unintentional termination of reinforcing in a
tension zone.

The contour plots shown in Figures 7.3 and 7.4 were
produced from the finite element solution by usihé the
SURFACE2 plotter package. Some minor problems have been
e#perienced with tﬁis process. The solution data supplied
_to the plotting routine is for element node points. In some
regions, the combination of node spacing and the changes in
the data between nodes may be such that the plotting routine
has difficulty in producing the true contours. In these
regions, contours have been found to touch or cross over.

As well, the plotting routine has difficulty in plotting the
contoﬁrs along supporting walls and in representing the
normal moments along free and simply supported edges. The
latter problem is due in part to the fact that the finite
element solution produces zero normal moments along free
edges only in the limit as the gridwork is refined.

: Although these free edge momenté are sufficiently small for
design purposes, they do tend to distort the contour plots.

- The situation can be rectified prior to plotting by editing

- the auxiliary data file which contains the moment values.
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The more serious problems with SURFACE2 aré the method
in which openings inside the plot areas are handled and the
cost of running the program. It is felt that a simple
plotfing program can be developed which draws the contour
lines for one element at a time. This would overcomeé the
problems associated with irreqular geométry and openings in
the floor plan. As well, it would be more economical and
would provide more meaningful plots because the data at the
nodal points would be uséd directly. This would eliminate
the costly and approximate opéeration in SURFACE2 of
transferring the nodal data to rectangular grid points. The
two main disadvantages of this simple approach are:that the
contour lines would appear as & series of stréight line
segments and also it may be difficult to label thé contours.
The development of such a plotting program was not
undertaken in this study, but it is felt that it would be a

worthwhile project.

7.3 Experimental Test Floor

The second floor chosen to test the HYBSLAB program is
the experimental test floor with eccentric beams. One of
the main reasons for using this floor is to illustrate the
use of the computer program for plates supported by beams
and finite-sized columns. The floor plan‘is shown in Figure
7.5 and has overall dimensioﬁs of 46.0 feet x 46.0 feet with

~a slab thickness of 5.25 inches, Two different sizes of
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edge beams are present in the structure. Along the edge at
X=0 and the edge at Y=45 feet, the edge beams are 12 inches
wide and have an overall depth of 8.25 inches. Along the
other two edges, the beams are 6.0 inches wide and‘haQe an
overall-depth of 15.75 inches. These members will be called
the 'narrow' beams, while the 12.0 inch wide members will be
referred to as the 'wide' beams. The columns are indicated
on the plan and are identified by numbers 1 to 16 inclusive.
The structure is symmetrical about a diagonal joining column
4 to column 13. 'The modulus of elasticity of the floor was
assumed to be 3670 ksi and a Poisson's ratio of 0.15 was

A used. The column stiffnesses were calculated from a column
length of 42,375 inches and a 'fixed end' condition was
assumed at the far ends of the columns. A single load case
| of 0.100 ksf was applied to the structure.

The finite element model for the floor system is shown
in Fiqure 7.6. A total of 295 joints and 282 elements were
used. The elements consist of 256 rectangles, 24 beams and
2 rectangular transition»elements;

The edge stiffeners were modelled both as eccentric
beam elements and as offset plate elements. The overall
approach as described earlier was used to represent‘the
cross section. The wide edge beams were modelled as line
beams along the‘edge at X=0 and as offset plate elements
aloﬁg the edge at Y=45 feet. The narrow edge beams were
modelled as line beams along the edge at Y=0 }and as offset

plate elements along the edge at X=45 feet. These two
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different models were used in the same structure with the
intent that the results from_the two‘approéches could be
compared and would serve as a cross-check on each other.
The comparisons are possible because the structure is
symmetrical about its diagonal. With the two different
models, the values at points of symmetry will not remain
identical, but it is expected that the differences will not
be significant for design purposes. If this is true, then
the designer is free to use the two models interchangeably.

The column cross sections were modelled by rectangular
shaped elements with thicknesses equal to 100 times the slab
thickness. Thfs approach, which was discussed at the end of
Chapter 5, is used to make a column head very stiff so that
it undergoes a minimal amount of deformation and basically
behaves as a rigid body.

In-plane displacements were permitted in the vicinity
of the edge beams but were suppressed on the interior of the
structure. The nodes at which the in—pléne displacements.
were assumed to be zero are contained in the square block of
nodes defined by joints 55, 65, 229, and 239.

The chosen gridwork resulted in a ptoblem with 1195
unknowns and a semi-band of 97. The analysis required 35.3
seconds of execution time on the AMDAHL 470/V8 computing
system. At current(1981) commeriéal computing rates this
run would cost approximately $45.

To check the results from the program HYBSLAB, a number

of statics checks were done on the structure. These checks
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"were done at midspan of each bay in both directions and
confirmed that the conditions of statics were satisfied.
Additional checks were done by calculating the axial load in
each column based on an assumed tributary area. These
results were found to be quite close to the values obtained
from HYBSLAB and are not presented.

The effect of the two different beam models on the
columns was studied by comparing the forces at the column
cenﬁroids..-The comparison of these values is indicated in
Table 7.2. 1In this table, the bracketed number denotes the
column which has symmetrical values. The percent difference
for the axial loads is less than 3.5%, but the differences
in the more significant column moments reach values as high
as 18%. Some of the discrepancy in the column moments is
expected to be due to the difference in elements used to |
model the column cross sections. Comparisons of transverse
displacements were also done for each edge beam and the
midspan values were found to be quite similar.

A study of the rotations of each column head indicated
that all nodes on the perimeter had undergone the same
amount of rotation to within 4 and 5 digits of accuracy.
This indicates that the column heads are basically acting as
rigid members.

"~ To illustrate another plotting facility of the program,
the isolines for the transverse displacement, W, were
plotted as shown in Figure 7.7. Since the displacement

profiles of this floor can be visualized rather easily, this
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type of plot serves as a means of detecting grosé errors in
the analysis. As well, the plot can be folded about the
diagonal of symmetry and deflections at points of symmetry
can be compared. |

The intent of running the program for this floor system
was to indicate some additional capabilities of HYBSLAB and
the versatility of the finite element method to handle such
problems. The amount of checking done thus far has been
aimed at verifying that the results from HYBSLAB satisfy the
conditions of statics and that the output data looks
reasonable. The checking is by no means complete and work
is continuing on additional checking and comparing the
_finité element results to the experimental test data. The
‘ ouﬁcome of this correlation study will be made available

under separate cover.
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Typical Floor of High.Rise Building:

Nodes Strip Finite Equivalent Ratio
Width Element Frame (Frame /FEM)
(Negative (feet) (ft.kips) (ft.kips)
Moments) _
24-->30 17.0 -162.1 -152.3 0.94
120-->125L| 17.0 -101.9 -138.0 1.35
120~->125R} 17.0 -62.5 -58.3 0.93
180-->186L| 17.0 -39.4 -44.6 1.13
180-->186R| 12.5 -47.5 -51.1 1.08
260-->264L| 12.5 ~56.2 ~59.1 - 1.05
260~-->264R| 12.5 -53.9 -68.8 1.28
349-->353L| 12.5 -60.5 -70.5 1.17
349~-->353R| 12.9 -64.9 -79.0 1.22
439-->444L| 12.9 -41.5 -71.6 1.73
439-->444R 7.35 -28.3 -40.0 1.41
496-->498R 7.35 -13.1 -26.7 2.04
(Positive (feet)| (ft.kips) (ft.kips)
Moments) '
82-->87 17.0 +67.9 +68.5 1.01
220~-->224 12.5 +30.7 +28.5 0.93
302-->306 12.5 +29.2 +35.1 1.20
395-->399 12.9 +36.2 +39.7 1.10
476-->479 7.35 +14.6 +17.6 1.21
(Axial Load (Kips) (Kips)
in Column)
122 - -66.6 -64.5 0.97 -
182 - -41.2 -43.0 1.04
262 - -55.0 -46.4 0.84
351 - -45.9 -50.7 1.10
441 -37.9 -39.3 -1.04
496 - - 8.4 -12.1 1.44
Table 7.1 Comparison of Forces for the Finite Element

Model and an Equivalent Frame Model.
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Axial Loads and Moments in Columns:
Column Axial Load X-axis Moment| Y-axis Moment
1 (16) - 5,248 -10.488 - B8.144
2 (12) -11.907 -20.746 + 2,738
3 (8) -11.857 -20.111 - 2.660
4 - 5.005 - 8.715 +.9.626
5 (15) -11.677 + 1.861 -22.129
6 (11) -24,118 + 2.736 + 2,713
7 -23,731 + 2,612 - 1.499
8 (3) -12.270 + 2.911 +23.005
9 (14)| -11.602 - 1.684 -21.145
10 -23.968 - 2.405 + 2,780
11 (6) -23.595 ~ 2.314 - 1.596
12 (2)]  -12.211 - 2.841 +23.334
13 - 5.567 +11.176 -10.898
14 (9) -11.800 +22.621 + 1,833
15 (5)| -11.676 +21.917 - 1.403
16 (1) - 5.370 + 9,234 +12.562
Table 7.2 Experimental Floor, Comparison of Column Forces.
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Figure 7.7 Contour Plots of Displacement W, (feet/1000).



Chapter 8
SUMMARY AND CONCLUSIONS

8.1 Summary

At the outset it was stated that this inveétigatibn was
undertaken with two objectives in mind. The first of tﬁese
was to develop a general purpose compﬁter program for
practical use. To this end the program HYBSLAB was written.
The second objective was to present and uée a formulation
which dould take into account the effects of stress
" singularities at reentrant corners of plates in flexure.

- The program is based on the hybrid stress method and
uées elements with only geometricidegrees of freedom as
nodal parameters. The choice to use the hybrid stress
forﬁulation was made after an extensive literature search
and testing of a number of rectangular elements.

The theory of the hybrid stress method is reviewed and
a formulation is proposed to include the effects of stress
singularities at reentrant corners. This is followed by a
presentation and discussion of the explicit forms of the
various component matrices required to calculate stiffness
matrices for multi-sided elements. With these matrices as a
basis, the program HYBSLAB was developed.. A general
description of the prOgram'HYBSLAB is given and the methods
used to model eccentric stiffeners and finite-sized columns |

are discussed.
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To test the program and its variety of element shapes,
a number of test cases are used. The patch test is used to
verify that assemblages of elements with arbitrary config-
urations areAcapable of rebresenting the constant strain
states for plane stress and constant curvature states for
flexure. Additional test cases with various grids are
presented to demonstrate that the various element shapes do
converge to the correct values. This is followed by the use
of the singularity elements on plates with reentrant
corners. In the vicinity of the reentrant corner, the
singularity elements appear to be capable of providing
significantly better results than analyses which do not
consider the singularity.

The error caused by coupling eccentric stiffeners to a
plate is considered. A T-beam is analysed and the cross
section is represented by a 'layered' and an 'overall'
model. As well, both line beams and offset plate elements
are used to model the T-beam member. For all cases tested,
the overall approach was found to be more accurate than the
layered model.

In closing, it is demonstrated that the program HYBSLAB
can be used for the analysis of actual floor systems. The
first case considered is a typical floor of a high—rise
building. This floor is modelled in a mannér similar to
that expected to be used by a design engineer. The
structure is represented as a flat plate supported by

point-sized columns and the effects of stress singularities
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are not included. The second case is a slab which was
tested by the Portland Cement Association in 1962. The
finite element model for this floor takes into account the
finite dimensions of thé column cross section and the finite
width of the beam stem. At present, another study is under
way which is correlating the finite element values with the

experimental results.

8.2 Conclusiohs

The work done in this investigation demonstrates that
the finite element method. is a viable alternative to some of
the more approximate traditional methods presently being
used by design engineers. From an economical point of view,
it has been shown that the finite element method can be used
competitively against equivalent frame methods to analyse
floor systems. From an analytical point of view, there is
no question as to which method is more appropriate for the
analysis of plates.

The merits of using a finite element based program such
as HYBSLAB are many. The most important is the nature of
the solution. The analytical solﬁtion is for a structure
‘which is represented by a series of finite-sized plate
elements connected at the nodal points. .First, the solution
consists of nodal displacement values which are compatible.
There are no discontinuities in the transverse displacemént,

the two nodal rotations and the two in-plane translations.
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Second, the calculated nodal forces are such that each and
every element is in equilibrium under the action of the
applied loading. This is the type of solution that many
designers intuitively feel is adequate for design purposes.
Whether the numerical values come from a finite element
solution or elsewhere is immaterial to most designers. No
other method exists which is as simple to use as the finite
element method and, at the same time, is as capable of
providing the type of solution just discussed. |

From a designer's point of view, another advantage of
the finite element method is the consiétency introduced into
.the design procedure. After the gridwork for the structure
and the boundary conditions have been decided upon, the
remaining procedure is straightforward. 1In contrast,
non-standard floor systems designed by equivalent frame
,approacheé leave much to the discretion of the engineer.
This often léads to differences of opinions regarding
matters such as the ziz-zagging of a frame to include nearby
columns and the multiple branching or 'forking' of a.frame
to include columns on either side. |

Other advantages of using the finite element method are
the standardization which can be introduced into the design
procedure. This has time-saving advantages in the sense
that the checking of a design would simply consist of
Verifying that the input for the model is correct. This
. would be followed by spot checks on the output to determine

if the results look reasonable. Additional time-saving
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features which could be standardized are the graphical
output of the connectivity data and the plotting of moment
and displacement contours as illustrated in Chapter 7.

It is concluded that, although more traditional
analysis techniques like the equivalent frame methods are
quite satisfactory for many floor systems, there are
situations where the finite element method offers a number
of advantages while remaining competitive in terms of cost.
Thus, while not proposing the abandonment of the frame
methods, it is suggested that designers should give serious
consideration to adopting the finite element method for
problems to which it is particularly suited.

It is also felt that the automatic data generating
capabilities of HYBSLAB make it competitive with the frame
methods for floor systems with regular column layouts.
Through repeated use of the program on simple structures the
designer would become more efficient at this type of
analysis and would be more qualified to model a complicated
structure. The question of the importance of including the
effects of stress singularities at reentrant corneré is not
addressed in any amount of detail.in this study. A
formulation to include thevsingularities has been proposed.
This approach has been used to obtain stiffness matrices for
L-shaped singularity elements, and plates with reentrant
corners were analysed in Chapter 6. The results from the
- analysis appear to be reasonéble and it is concluded that

the formulation is valid.
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8.3 Recommendations for Future Studies

Additional research is still required on a number of
topics. Probably the most demanding of these is continuing
the work on the singularity elements. As discussed in
Chapter 4, only the real eigenvalue was considered for the
L-shaped element with ciamped reentrant edges. A
considerable amount of work remains to be done in obtaining
the matrices associated with the complex eigenvalue. For
both the free edge and the fixed edge elements, a more
indepth study is required to assess the importance of the
singularities for a wide range of problems. The problems in
Chapter 6 were done to demonstrate the use of the proposed
formulation. The results look encouraging enough that
further studies are warranted.

Regarding the program HYBSLAB, few technical revisions
are envisioned. The program has been used for a wide range
of problems and appears to be working satisfactorily. 1If
the program continues to be used, errors will surface but
these are not expected to cause major revisions to the
program.

Additional testing is still required to assess more
fully the behavior characteristics of a number of eleménts,
such as the multi-sided elements and the offset elements
used to model stiffeners. As well, the use of the five- and
six-noded rectangular elements as transition elements for

changing grid sizes has not been investigated;
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A complete listing of the program HYBSLAB and a related
user's manual'®* will be available from the University of

Alberta where this research was done.
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APPENDIX A

THE LAGRANGE MULTIPLIER ELEMENT

In this section a formulation is presented for
obtaining stiffness matrices from a method which combines
Mindlin plate theory, the principle of minimum potential
energy, and Lagrangian multipliers. A general form of the
stiffness matrix is obtained first and then certain
conditions are prescribed to obtain stiffness matrices for a
number of different elements. Among these elements are the
'Lagrange' element and the selective reduced integration
rectangles.

By using plate theories such as Mindlin's, the effects
of transverse shear can be included in the formulation. As
shown in Figure A.1, the total rotation of a plane section,
initially normal to the midsurface, consists of a rotation
due to flexure plus an additional rotation due to shear.

The total rotations can be written as:
Bx
8y

W,y + 8x
(A.1)

W,x + 8y

where,
' Bx= total rotation of an equivalent plane

section about the X axis,

By= total rotation of an equivalent plane
section about the Y axis,

W = transverse displacement of the plate's
midsurface, .

Ex= rotation about the X axis of a normal
with respect to a tangent at the midsurface,

By= rotation about the Y axis of a normal
with respect to a tangent at the midsurface,
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Figure A.1 Rotations at the Midsurface of the Plate.

The x and y displacements, U and V, respectively, of a
point located at a distance 'z' above the neutral surface
can be written as:

)
14

-z By
(A.2)

-z Bx

From the above expressions for U and V, the following
strains can be obtained:
€x = U,x
€y = V,y

-(z)(8y,x)
-(z)(6x,y)
€xy= +(V,x + U,y)= -+(z)(Bx,x + By,y)

(A.3)
€yz= +(W,y + V,z2)= +3+(W,y - Bx)

€xz= +(W,x +U,z)= ++(W,x - By)

The finite element method has the unique feature that
displacement functions can be specified independently for
each element. The Mindlin plate theory is characterised by
the assumption that midsurface rotations are not solely

dependent on the transverse displacements. Therefore, the
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element shape functions, <N;>, for plate flexure can be
identical to those from plane elasticity. The importance of
this aspect is that the elements can be distorted
isoparametrically. 1In equation form, the field values of
the independent variables can be related to their respective

nodal values as:

W = <N,> {ﬂ}
BOx= <N,> {8x} (a.4)
6Y= <N,> {QY}

Substituting the above expressions into the strain-
displacement Equations A.3 results in Equations A.5 shown
below. Partial differentiation is denoted by the comma
notation.

€x = -z <N,,x>{0y}

€y

€xy= -+(z) (<N,,x>{8x} + <N,,y>{8y})

-z <N, ,Y>{§X}

(A.5)

€yz= ++(<N,,y>{W} - <N,>{6x})

€xz= +L(<N,,x>{W} - <N,>{0y})

The constitutive matrix is assumed to relate stresses

to strains according to the following equations:

{d}= [El{€} (A.6)



229

where,
Ex E, . . .
E, Ey . . .
[E] = L] L] Exy L2 .
L ] . L] Eyz Ld
. . . Exz

The potential energy of the structure, ||, consists of
the strain energy, £, and the potential of external or
applied loads, Ve. The expression for the strain energy can

be written as:
£ = 1/2/0’13' €ij av (A.7)

= + <8y>[K'’1{By} + <@x>[K‘*’1{8y} + + <6x>[K(*’]{6x}
o+ <0x>[K¢*)]{Bx} + <0x>[K *’1{8y} + + <6y>[K‘*’1{@y}
++ <W>[RCD T - <W>[RC®]1{0x} + ¥+ <@x>[K(®’]{6x}
++ <W>[KC ) J{W} - <W>[R<']1{8y} + + <By>[K('2’]1{ey]}
where,

[K(')]

(t’/12)j[{N,,x} Ex <N,,x> dA
’ [_K(Z)] = (t3/12)/{N21Y} E, <N,;,x> da

[K(a)]

(t°/12)f{N,,y} Ey <N,,y> da
[KE*)] = (t°/24)/{Nz,x} Exy <N,,x> dA
[K‘AS_?_] = (t°/24)/{N,,x} Exy <N,,y> dA
[K€e)] = (t=/24)/{na,y} Exy <N,,y> dA
[K‘f;] = (yt/Z)v/ﬂ{N,,y} Eyz <N,,y> dA

[K(e] = (Yt/2)~/ﬂ{N,,y} Eyz <N,> dA
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[K(’)]

(Yt/Z)U/P{Nz} Eyz <N,> dA

[RCo)]

(yt/Z)U/ﬂ{N,,x} Exz <N,,x; da
[R¢114)]= (yt/Z)V/ﬂ{N,,x} Exz <N,> dA

[K('Z)]= (Yt/z)/{na} Exz <N,;> dA

In the above equations, 'y' .is the shear factor which
accounts for the nonuniform distribution of the shear
stresses in the Z direction.

The potential of the external loads can be written as:

Ve:»/qM/dA +/My8di +fo8ydA .
, (A.8)

= <W>{F,} + <9x>{F,} + <@y>{F,}
where,

{F,} =f{Nz} (My) da

{F,} =/{N,} (Mx) aa

For thick plates, the functional TT could now be
minimized with respect to the displacement vectors {W},
{6x}, and {6y} to obtain a reasonable stiffness matrix,
However, for thin plates the shear rigidity is so large that
it causes the element to 'léck' or become so stiff that when
loaded it virtually undergoes no displacement. To rectify

the situation, researchers such as Clough, Zienkiewicz,
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Hughes, and Hinton have developed the technique of using
selective reduced integration. A second method is to impose
the Kirchhoff conditions of normality as constraints at
discrete locations; this was done by Lyons in 1977. The
third method, the one being presented here, is to impose the
Kirchhoff constraints in an integral sense through the use
of Lagrangian multipliers. The Kirchhoff conditions of
nérmality for thin plates are:

W,y -~ ox

W,x - 8y

0

(A.9)
0

A convenient approach for minimizing the functional TT
subject to these constraints is to use Lagrangian
multipliers and work with the augmented functional TJg.

‘The field values of the Lagrangian multipliers are
assumed to be related to their respective nodal values by
shape functions similar to those used for displacements. In
matrix equation form this can be written as:

AX
Y

<N,> {\x}
<N;> {A\y}

(A.10)

The modified functional, T[g, can be written as:

TTg =TT + ¥ - (A.11)

where,

ﬁXX)(W,y - Bx) da +ﬁ\y) (W,x - B8y) da

<AAx> [LOOT{WY - <\x> [L¢2)]{8x}
+ Ay> (LT - <Ay> [L¢*]{gy}



where,

[L(]= /{n,}
[LC2)]= U/P{N.}
[LC2])= /{Ns}
[LC+)]= /{Ns}

<N, ,y> dA

<N.> da

<N, ,x> dA

<N,> dA
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To obtain a stationary value, the functional J[g is

minimized with respect to {W}, {8x}, {8y}, {\x}, and {)\y}.

The results of this operation are shown in the set of

equations below.
T T
[K¢7)] -[RC2)]|-[RC* 2] [+[L¢] +[L(3)] {w}
+[RC1 )]
T | [KE2] - T |
_[K(a)] +[K(4)] [K(z)] -[L(z)] . {QX}
+[RC ] [+[KC]
T [K(z)i [K(i)]' T
~[RC 0] T |+[RCe] -[Leer] | {8y}
+[K(s)] +[K(1z)]
+[L(1)] _[L(z)] . {lx}
+[L¢2)] . ~[Lc+)] . {\y}

{F,}

{F,}

{o}

{o}

L J

(A.12)

In the above equations, the Lagrangian multipliers can

be set equal to zero and stiffness matrices obtained for the

Bi .MPT element, the higher order Lagrangian and Serendipity

rectangles, and the heterosis elements.

Setting . {A\x} and
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{\y} to zero eliminates the last two rows and columns of
submatrices, and Equations A.12 become identical to those
typically associated with a Mindlin type of formulation.
For thick plate elements these equations are usually
evaluated exactly, while for thin plates selective reduced
integration is used.

To obtain the stiffness matrix for the Lagrange element
of Chapter 3, thé following procedure was used. The element
was initially assumed to have 4 corner nodes and 4 midside
nodes. The A C M element shape‘functions were used to
represent W and its first derivatives at the corner nodes.
Complete quadratic Serendipity shape functions were used for
Ox, By, \x, and \y. The resulting element has 44 degrees of
freedom} the parameters at the corner nodes are
< W W, x W,y 6x By A\x \y>, and < Bx By \x \y> at the midside
nodes. The resulting matrix from Equation A.12 is 44x44 and
can be reduced to 12x12 by using static condensation. The
condensed element has corner nodes only with < W 8x 8y> as
nodal degrees of freedom.

In using the above element two separate cases were

considered. For the first case, Eyz and Exz were assigned

equal to Exy. For the second case, Eyz and Exz were

assigned zero values relative to Exy. For the 4x4 and finer

grids of Chapter 3, the results from the two cases were very

similar and only the results from the second case were

reported.
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The element from the first case is a Mindlin element
and the Lagrange multipliers prevent the 'locking' normally
experienced by these elements when analysing thin plates.
The element derived from the second case is, in essence, a
Kirchhoff element because the strain energy from transverse
shear deformations is not included.

The stiffness matrix for either case can be evaluated
by numerically evaluating the coefficients of Equation A.12
and then eliminating the Lagragian multipliers by static
condensation. The remaining stiffness matrix contains only
the geometric degrees of freedom. This is the approach
which was used to obtain the 12x12 stiffness ma;rix for the
Lagrange element of Chapter 3. The results of this
operation were checked by using a separate approach where
transverse shear strains were neglected from the beginning
and the Lagrange multipliers were elimiﬁated from the

explicit form of the stiffness matrix.
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