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Abstract 

The population increase has stimulated the need for the creation and expansion of existing urban 

infrastructures such as sewer, water, power and telecommunication lines. In order to support this 

need, multiple efforts to find sustainable solutions that support the urbanization trend have been 

studied. As a solution, construction methods such as trenchless techniques—ranging from maxi 

horizontal directional drilling for large-scale pipe installations to microtrenching for the 

installation of telecommunications infrastructure, that offer reduced social and environmental 

impacts compared to conventional opencut construction methods, are becoming more accessible 

and increasingly used. Despite the advantages of underground construction, challenges exist in 

knowing the locations of existing subsurface utilities or other underground objects (such as rocks) 

an that uncertainty can impact new installations. Existing non-destructive technologies, such as 

ground penetrating radar (GPR), can be used to map extensive areas in a fast and accurate manner 

and support the construction of new infrastructure. However, GPR data is difficult to interpret, and 

requires an experienced person to be able to locate the features within the image that correspond 

to objects. In order to overcome the issue of data interpretation, multiple studies aiming towards 

the automation of GPR data interpretation have been conducted—however, the methods proposed 

can still improve in terms of detection speed and accuracy.  

The objective of this research is to automate GPR data interpretation to support underground 

construction. To achieve this, an extensive database of GPR images due to commonly encountered 

underground objects, such as rock-sized boulders and PVC and metal pipes, was collected based 

on GPR measurements in a laboratory setting. The database compiled from these measurements 

was used alongside different machine learning algorithms, including YOLO v3 and R-CNN, to 

determine the methodology that has higher accuracy of detection and classification for the 
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automated object detection based on the correspondent features in GPR images. The limitations of 

the various algorithms are considered, and recommendations are proposed for future studies.  

A study on the long-term performance evaluation of micro-trenching backfill materials was 

continued, with GPR surveys performed to precisely determine conduit depth within the micro-

trench. Updated measurements of conduit depth were compared to previously collected data to 

determine the conduit displacement four to seven years after installation. 
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1. Introduction 

Rapid population increase worldwide has impacted the way that urban infrastructure is being 

developed and what technologies are being used during construction to reduce social and 

environmental impacts (Figure 1-1). For example, Alberta is projected to have an increase of two 

million people from 2019 to 2046 (Treasury Board and Finance 2020). In order to adapt to the 

needs of this growing population, underground construction is necessary to guaranty quality of life 

by ensuring availability of water, sewer, gas, electricity, and telecommunications infrastructure.   

 

Figure 1-1: Population estimate and probabilistic projections (United Nations 2019) 

In the past, underground infrastructure construction and repair were done utilizing open-cut 

methods; however, the increase in costs related to traffic and business disruption, surface 

restoration, the necessity of excavating around existing utilities, traffic delay and increase in 

environmental regulations (when crossing wetlands and rivers) resulted in the gradual substitution 

of open-cut methods with trenchless construction methods (Allouche et al. 2000). For trenchless 

projects to be successful, extensive subsurface diagnosis—including characterization of soil and 

geological formations and determination of the location of existing infrastructure—is extremely 

important. When the subsurface is not adequately investigated, unforeseen events can impact 
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design and construction, by damaging drilling equipment, impacting borehole path design, 

damaging existing utilities (increasing construction cost and causing delays) and causing incidents 

that compromise safety (worker injuries and/or explosions when hitting a gas line or electric cable, 

for example) (Moganti 2016).  

An alternative to support the increasing demand for subsurface utilities such as telecommunication 

transmission lines is the use of micro-trenching. Micro-trenching (MT) installations are done by 

marking a path, cutting a small trench, cleaning the trench, placing the conduit (which contains the 

fibre), followed by application of backfill and sealant. In contrast to other trenchless projects, MT 

installations are usually performed in asphalt or sidewalks and thus at a shallower depth. Due to 

the shallow depth of the installation, the risks related to micro-trenching projects are different than 

for trenchless projects in general, and much of the risk is dependent on the material used to backfill 

the trench. 

In order to support applications such as trenchless construction and performance evaluation of 

micro-trenching, ground penetrating radar (GPR) has been widely used. GPR is a non-destructive 

geophysical tool capable of locating subsurface objects in a fast and accurate manner (Liu et al. 

2002). Even with the known benefits, GPR data interpretation remains a challenge due to the 

complexity of data analysis and the time required. Recent efforts have been made to apply machine 

learning to the automation of GPR data interpretation, but the lack of available training data and 

algorithm generalization capabilities are topics that still need attention.  

1.1. Objective 

The object of this research is to assess the capabilities of machine learning in the automation of 

underground object detection based on GPR images and to build on previous studies that used 

GPR technology for the long-term performance evaluation of MT backfill materials. For this 

purpose, the following research problems were addressed: 

• Understand previously used methodologies for the automatic detection of underground objects 

based on GPR images 

• Establish a training dataset of GPR images collected under controlled (laboratory) conditions, 

including images of pipes, voids and boulders in a sand medium  
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• Implement a fast and accurate machine learning methodology to identify and classify 

underground objects based on GPR images 

• Apply existing GPR methods to monitor an existing MT pilot installation  

1.2. Methodology 

This research was conducted in three phases: literature review, implementation of ML to 

automatically detect and identify features in GPR images corresponding to underground objects 

and apply GPR to the long-term performance monitoring of a pilot micro-trenching installation. In 

the first phase, existing methods and resources for automated interpretation of GPR images were 

compiled—including algorithms, data pre-processing and training data sets. This comprehensive 

literature review supported the identification of accurate and fast ML algorithms that were applied 

in the second phase of research. The second phase involved the creation of a database of GPR 

images of underground objects that was used to assess the capabilities of YOLO v3 and R-CNN 

to automate GPR image interpretation. The third phase consisted in the visual assessment of MT 

conditions and application of GPR to determine conduit depth for a series of pilot MT installations. 

The acquired measurements were compared to measurements from previous years to determine 

current conduit displacement.  

1.3. Thesis Structure 

This paper-based thesis is organized into five chapters, each of which is briefly described below. 

Chapter 1: Introduction 

In this chapter, the research topic, motivations of the research, objectives, methodology, and thesis 

structure are presented.  

Chapter 2: Review of Machine Learning Algorithms for Automatic Detection of Underground 

Objects in GPR Images 

In this chapter, a deep review of previously used methodologies and algorithms to automatically 

detect and identify features in GPR images corresponding to underground objects is presented and 

discussed. The steps used during the automatic detection process (including pre-processing, post-

processing), algorithm choice and capabilities, and data used for training and testing algorithms 
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are presented and compared. Important factors for the success of the implementation of automatic 

detection of objects based on GPR images, such as data availability, are discussed.  

Chapter 3: Automatic Underground Object Detection and Classification based on Ground 

Penetrating Radar Images using Deep Learning 

In this chapter, the results of testing of two deep learning algorithms—YOLO v3 and R-CNN—to 

automate GPR data interpretation are presented. The algorithms were trained and tested using GPR 

images collected in a laboratory setting. Commonly encountered underground objects, including 

pipes, boulders and voids, were buried in a sand box to represent real world scenarios. GPR data 

collection was performed on these known objects to create an extensive database used for training 

and validations of the ML models.  

Chapter 4: Long-Term Performance Monitoring of Backfill Materials for Microtrenching in Cold 

Climates using Ground Penetrating Radar  

In this chapter, the capabilities of GPR for monitoring the long-term performance of MT was tested 

in a pilot installation. A GPR survey was performed to locate the fibre-optic cables and to 

determine cable depth. Cable displacement was determined by comparing current cable depth and 

depths determined from GPR surveys conducted in previous years. The observed cable 

displacements for the backfill material used in each section of the micro-trench were used to assess 

the performance of the backfill material at the time of the survey.  

Chapter 5: Summary and Conclusions 

In this chapter, the capabilities of GPR in locating objects that may impact trenchless construction 

are investigated and summarized. The limitations of the current work and future research are also 

discussed. 
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2. Review of Machine Learning Algorithms for Automatic Detection of Underground 

Objects in GPR Images  

2.1. Abstract 

Ground penetrating radar is a non-destructive tool that has gained popularity after giving promising 

results in different areas, such as utility engineering, transportation engineering, civil engineering, 

and geology, with relatively low cost. Even as the number of applications for GPR increases, the 

interpretation of GPR data is still challenging, in part due to varying ground conditions. 

Researchers are continuously working on the development of new analysis methods to address 

these challenges. Computer vision algorithms, including neural networks and convolution neural 

networks, have advanced significantly over the past decade, and researchers have utilized these 

algorithms to extract information from GPR images and thus improve interpretation of GPR data. 

This paper presents a review of literature that employs computer vision and machine learning 

algorithms, such YOLO v3, Viola Jones and AlexNet, for automatic extraction of information from 

GPR images. The uptake in use of automatic detection algorithms for GPR is increased by the 

ability to rapidly quantify and locate buried targets that previously could only be identified by 

professionals with a high level of expertise and training.  

2.2. Introduction  

Ground penetrating radar (GPR) is non-destructive electromagnetic geophysical technique that 

offers remarkable advantages compared to other non-destructive testing. The benefits of GPR 

include equipment portability, relatively low cost and high versatility, allowing it to be applied in 

different fields of study, such as utility engineering, transportation engineering, civil engineering, 

archeology, and geology (Travassos and Pantoja 2019). By varying the frequency of 

electromagnetic waves, GPR can be used to map the shallow subsurface and indicate the depth 

and location of buried objects. Unforeseen circumstances are often encountered during 

underground construction work or trenchless construction, including adverse events such as 

machinery damage from encountering an obstacle or low productivity rates due to 

boulders/cobbles. Such risk events inevitably result in negative impacts on the cost and schedule 

of a project. However, it is possible to reduce the risk of encountering underground obstacles along 

the excavation path by identifying and locating them in advance. Examples of underground objects 
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that can be detected by GPR are utility lines (e.g., electrical, water, sewage, gas, and 

telecommunications lines) or objects such as rocks, boulders and cobbles, and rebar (Figure 2-1). 

 

Figure 2-1: GPR signal response showing the similarity of GPR reflections for objects of different 

materials 

Even with the advantages of GPR, the complexity of the resulting signal remains an issue. An 

experienced person is often needed to process complex GPR data using advanced software to 

enhance target reflections and reduce noise. Depending on the signal quality and the area surveyed, 

this process can be time consuming, and is also subject to human error (Hall et al. 2002; Saarenketo 

and Scullion, 2000; Shihab et al. 2002; Zhang et al. 2020).  

Different approaches for automatic detection and interpretation systems for GPR data have been 

proposed and applied successfully (Shihab et al. 2002); however, existing methods can still 

improve in terms of accuracy, rapidity, and efficiency of detection. This paper presents an 

overview of the different methods used for automated detection and interpretation of GPR signals 

from 1995 to 2020, including Hough transform, template matching, edge detection, thresholding, 

and machine learning methods, along with comparisons of the various methods. In studying the 

different algorithms, the primary objective is to identify methods that reduce the effort consumed 

during the pre-processing and processing of GPR data, while at the same time increasing accuracy.  

2.3. Automatic Object Detection using GPR  

The time required to analyze GPR images and the complexity of the process have incentivized the 

use of automatic object detection. Automatic object detection involves identifying the location of 
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an object (i.e., the area with a high probability of detecting an object) and the object category, in a 

fast and accurate manner (Zhao et al. 2019). Areas with high probabilities are marked with a 

bounding box, and each box corresponds to a certain class or type of object. Two major approaches 

have been used, classical image processing and machine learning (ML) based image processing 

(including artificial neural networks (ANN)). While classical image processing methods are brute 

force methods and require high computational resources, ANNs are promising, processing 

information in a way that is analogous to how human brain would function (Macukow 2016).  

The first attempt to use ANN was by McCulloch and Pitts in 1943. They developed a simple neural 

network (NN) using electrical circuits to describe how neurons in the brain might work 

(McCulloch and Pitts 1943). According to Stancu et al. (2018) the development of neural networks 

can be divided into five stages: 1) beginning of neural networks, 2) golden age, 3) quiet years, 4) 

years of renewed enthusiasm, and 5) permanent development. At present, with the availability of 

high computing power, machine learning and neural networks are continuously evolving. 

With the permanent development in artificial intelligence (AI), deep learning (DL)—a ML method 

based on ANN—has gained significant attention, as it produces faster and more accurate results 

(Ertam and Aydın 2017). Rapid advances in DL have enabled the creation of robust tools capable 

of solving existing problems in classical image processing by improving network architecture, 

training strategies, and optimization functions (Zhao et al. 2019).  

2.3.1. 1990s: Early Introduction of NN for Processing GPR Images  

The first article applying NN to analysis of GPR data was published in 1995, during the years of 

renewed enthusiasm for NN. The authors proposed a methodology to detect rebar and its size and 

depth using a three-layer fully connected ANN with backpropagation for training purposes 

(Molyneaux et al. 1995). Backpropagation is a commonly used ANN training algorithm that is 

capable of recognizing complex patterns; however, it requires a long processing time (Avan et al. 

2017). Experimental data was collected in a tank filled with an oil-water emulsion (to mimic 

concrete, which has similar dielectric property) containing rebar and voids. This controlled setup 

gives better data than a GPR survey conducted in the real world, since concrete contains aggregates 

and has variations in the internal moisture content. The results of the study demonstrated the 

capability of the NN to identify the position and depth of rebar, but not its size. Overall, this 
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introductory study was a big step in the use of ANN for automatic detection of GPR object 

reflections, showing the promising future of this approach.  

2.3.2. Classical Approaches for GPR Image Processing  

During the period of renewed enthusiasm for NN, other methodologies were applied to automate 

detection of objects in GPR data. One of the most widely used algorithms in visual pattern 

recognition of lines, ellipses, and hyperbolas was the classical Hough transform (HT) algorithm 

(Basak and Das 2003) first introduced by Duda and Hart in 1972. The original HT algorithm has 

been improved over the years, generating modified versions such as generalized HT and 

randomized HT (Köppen et al. 2001). HT algorithms (and other image processing algorithms) 

require input parameters, such as threshold values for bright pixels and selection of regions of 

interest in the image.  

In 1998, Capineri proposed a real-time approach, based on HT, for line and hyperbola detection in 

GPR images, giving information about the position size and shape of buried objects (e.g., water 

pipes, sewage ducts, and electrical and gas networks) (Capineri et al. 1998).  According to Capineri 

(1998), an ideal program would be automated, but this requires additional computational time. The 

use of HT in Capineri’s methodology resulted in detection with less than 7% error in pipe position 

and less than 2% error in pipe location. However, all HT methods (classical and improved) are 

brute force methods and require high computational capacity to be practical. At the time, manual 

steps were included in the methodology in order to minimize these issues (Capineri et al. 1998). 

Even after renewed enthusiasm with the advance of NN in GPR detection, classical methods were 

still being utilized. One example is a paper by Al-Nuaimy et al. that proposed edge detection 

(automated detection of the boundaries of the area of interest) within GPR images and 

enhancement techniques to reduce input data and thus overall computational time (2001). Ardekani 

(2006) proposed a methodology that involved pre-processing, edge detection and HT steps. 

(Golovko 2007) also proposed a method to locate objects within GPR images using HT. According 

to Kaur et al. (2016) and Khan et al. (2020), edge detection, thresholding, and template matching 

require manual adjustments and are known to be inadequate when GPR images are blurry due to 

the presence of noise and outliers; therefore, these methods are not appropriate for advanced 

performance in real-world situations. In addition, according to Kaur et al. (2016), the threshold 
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method, based on using average intensity values to detect the boundary that separates the target 

reflections from the background, binarizes the image, creating a fragile image representation that 

is dependant on the chosen threshold. In the early 2000s, NN algorithms were still evolving, and 

thus classical methods were still studied as a solution for image recognition problems, despite the 

problems mentioned. Currently, these problems have been solved using ML algorithms and 

therefore, ML has replaced the use of classical methods.  

2.3.3. 2000s: NN and Training for GPR Images  

In the early 2000s, the popularity of NN declined rapidly, due to factors such as overfitting, the 

requirement for high amounts of training data (and its availability), and limited computing 

capability (Zhao et al. 2019). The first articles that applied NN to GPR image analysis, such as Al-

Nuaimy et al. (2000), focused on reducing input data in order to decrease computation time. 

However, these issues are being addressed due to advances in computer technology—for example, 

improvements in computational capabilities, including in graphical processing units (GPUs), have 

enabled applications that were previously not practical due to long execution times (Nickolls and 

Dally 2010). 

In 2000, Al-Nuaimy et al. proposed a series of signal and image processing steps before application 

of NN in order to achieve high accuracy and resolution in locating pipes, cables, and anti-personnel 

landmines using GPR. The signal processing step included background noise removal, path loss 

compensation, antenna separation rectification and low pass filters. After signal processing, 

Welch-averaged overlapping periodograms were used to estimate the power of the signal at 

different frequencies and thus extract the regions that represented echo signals of target reflections. 

The selected regions were used to train the NN using backpropagation. The three-layer, fully-

connected, feed-forward NN was used to analyze the radargram, indicating regions that might 

contain relevant reflections. Then, the identified regions were further processed using edge 

detection and HT to determine the location and depth of the target object. Automatic extraction of 

regions of interest before applying HT reduced the processing time compared to manual extraction, 

as in the method described by Capineri (1998).  

In 2002, Shihab et al. followed previously described approaches to reduce the amount of data 

analyzed and lower computational processing time. To accomplish this, they proposed a 
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methodology in which the pre-processing step was based on statistical analysis of GPR A-scan 

images. The pre-processing stage applied statistical functions to differentiate object reflections and 

noise. To achieve this, different statistical functions were assessed, and the variance, mean, 

absolute deviation and fourth moment of the signal were demonstrated to enhance signal features 

corresponding to object reflections. After preprocessing, the next step was classification, which 

was done by applying a three-layer feed-forward NN. Images of pipes, tanks, voids, and rebar were 

used to train the NN using backpropagation. The results of the classification were indicated by 

highlighting the areas of the radargram that contained object reflections. The highlighted areas 

were further evaluated using HT to confirm the existence of objects and indicate the depth of the 

classified objects. Shihab et al. (2002) demonstrated that it is possible to reduce the amount of 

input data used in the NN step by 80% through statistical analysis of A-scans. However, multiple 

steps (i.e., re-evaluation of highlighted areas using HT) were required to achieve the desired 

results. 

Youn et al. (2003) used two ANNs to identify drainage pipes buried at depths of about 60 cm in 

clay loam and silt loam soil. The first ANN (ANN-1) was used to search for a waveform peak 

(similar to those identified in the training data) in the GPR image. The second ANN (ANN-2) was 

used to determine whether the waveform identified by ANN-1 corresponded to a hyperbolic 

reflection pattern. The result of the dual ANN process was the generation of an image, including 

the depth and position of the pipe. 

During the 2000s, GPR image analysis studies highlighted the overall strength of NN and support 

vector machines (SVM) (Stancu et al. 2018). SVM is a classification and regression prediction 

algorithm that uses ML to increase accuracy and prevent data overfitting (Jakkula 2006). SVM 

started to gain popularity for automatic detection in GPR images around 2004, nearly a decade 

after the first introduction of SVM by Vapnik in 1995 for optical character recognition (Vapnik 

2000). In general, both ANNs and SVMs have been widely used for object detections in GPR 

images. However, Xie et al. (2013) have pointed out some defects in ANN development, such as 

the tendency to get trapped in a local optimum, the sensitivity of ANN to the training dataset, and 

the limited generalization ability of ANNs. In contrast, SVMs have good generalization 

capabilities, even when the training dataset is small. However, the challenge with SVM is to 
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determine the appropriate features—i.e., the kernel function and training parameters—to give the 

best results (Shao et al. 2007).  

Zhang et al. (2004) adapted a methodology described by Zhang and Wong (2001), which uses 

linear SVM for gene selection and classification, for application to image analysis in GPR. The 

images used for training and classification were generated using two anti-personnel mines and a 

stone buried at various depths in different soils. To perform feature extraction, a linear SVM was 

used to maximize the separation margin, minimize the number of misclassified samples, and give 

better generalization when extracting the important features of the image. After this, a recursive 

classification and leave-one-out cross-validation was used to assess the performance of the SVM 

classifier. In addition, to achieve adequate classification accuracy, random permutation was used 

to analyze the probability of errors during the cross-validation (Zhang et al. 2004). This 

methodology worked well for the detection and classification of landmines using GPR images.  

Even with the rise and application of new machine learning methods, NNs showed strong 

improvement between 2000 and 2015. This motivated development of different methodologies for 

the analysis of GPR images involving NN until 2015, when deep learning algorithms such as 

convolutional neural networks (CNNs) started to be applied to object detection using GPR images.  

In 2005, Shaw et al. created a multi-layer perception (MLP) network (a class of feedforward ANN) 

for analysis of GPR images using the Stuttgart Neural Network Simulator (SNNS), which was 

trained by a resilient backpropagation (RPROP) algorithm. RPROP has achieved faster 

convergence and higher accuracy than original backpropagation by improvements in the learning 

rate (Avan et al. 2017; Prasad et al. 2013). The GPR radargrams used during the training process 

were collected in an oil/water emulsion tank containing rebar: the oil/water emulsion was used 

instead of concrete to facilitate data collection, since the emulsion has a similar dielectric value, 

but does not require time to mature. However, voids filled with air or water change the dielectric 

of a material. Any variation in compaction while pouring concrete can result in heterogeneity, and 

variation in the dielectric properties of the concrete. Thus, the data used to train the NN might not 

be representative. Before applying the MLP network, the GPR images were pre-processed using 

background removal to improve the visibility and detection of the hyperbolae. After that, the MLP 

network—comprising a single layer with eight hidden nodes—performed pattern recognition using 

radargrams of rebar in real concrete slabs at predetermined depths. Based on GPR data taken using 
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the test environment (i.e., the emulsion tank), the existence, lateral position and depth of rebar 

were identified by NN. However, the NN was not used successfully in identifying rebar in concrete 

slabs, due to signal attenuation. To summarize, while the methodology developed works for 

detection of hyperbolae in GPR images, training of the NN should be done using datasets collected 

in the same environment in which the NN is to be applied. This approach increased object accuracy 

by 69%.  

Pasolli et al. 2008 followed four steps to achieve automatic detection and classification of 

underground objects based on GPR data: pre-processing, segmentation, object detection and 

material recognition. For pre-processing, a median filter was applied to reduce noise, a simple 

averaging operation was used for time zero correction, and a time gain was used to compensate 

for signal attenuation. In the segmentation stage, a modulus operator and Kapur’s thresholding 

were applied. Single object detection was done using a genetic optimization algorithm (GA) which 

was run in cascade (i.e., the information collected from the output of the GA was used as additional 

information for the next classifier for each of the patterns searched) when trying to locate multiple 

objects. For each identified pattern, geospatial coordinates were extracted. Material recognition 

was done by an SVM using a radial basis function (RBF) kernel, a mathematical function that 

allows SVM to classify a dataset (originally in one dimension) in two-dimensions (Patle and 

Chouhan 2013). This approach gave an overall classification accuracy of 80% when determining 

the existence, position, and material of a buried object based on GPR data. 

In the following year, Pasolli et al. (2009) refined the methodology, adding a fifth step to estimate 

the size of objects. Object dimension extraction was done using a regression approach based on 

Gaussian processes (GP). The methodology was tested for images generated using the open-source 

software gprMax (Giannopoulos 2005) based on a background of uniform sandy soil, achieving a 

18% relative mean absolute error. In this case, the accuracy of the methodology was not 

determined, since the existence, position, and material of the buried objects were considered 

known.   

Birkenfeld (2010) used a NN trained with trapezoidal bounded images containing half of a 

hyperbolic reflection (i.e., images containing the apex and one branch of a hyperbola). The training 

data was pre-processed using a low-pass filter, background noise removal and gain filters. A 

standard multilayer feed-forward network was trained using a backpropagation algorithm with the 
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application of receptive fields and local connections, which increases the perception of faint and 

distorted hyperbolas. The NN detected multiple activities areas selected based on a threshold value, 

and the activities areas are discretized by using a Gaussian filter to locate the highest activity point, 

which corresponds to the apex of the hyperbola. The algorithm is very sensitive, and, depending 

on the chosen threshold value, can lead to misclassifications of hyperbolic reflections within the 

image. One improvement recommended by Kaur et al. (2016) is that curve fitting could be applied 

to extract hyperbolic parameters. 

2.3.4. 2010s: Advanced NN for GPR Image Processing  

Kobashigawa et al. (2011) compared the performance of NN and genetic programming (GP) to 

automatically detect unexploded ordnance (UXO). GP, which was first introduced in 1999 by Koza 

et al., is a fairly new method that uses principles of Darwinian natural selection (such as crossover, 

mutation and reproduction) to generate computer programs to perform a given task. According to 

Khan et al. (2020), GP was developed to achieve optimum or near-optimum outputs to 

computationally difficult problems. One of the reasons that optimum solutions can be attained 

using GP is because sizes and structures are not defined by trial-and-error methods (as done for 

NN) (Kobashigawa et al. 2011). Kobashigawa et al. used FEKO (2005) to generate radargrams 

with different levels of noise, which were used to train a NN and GP. Four different NN structures 

were trained and tested, including NN structures with neurons of the backpropagation, and a radial 

basis, feed-forward NN. Genetic programming (GP) was performed in MATLAB and evaluated 

using the ratio of the number of correctly classified patterns to the total number of patterns Overall, 

compared to backpropagation NN, GP gave better classifications and faster performance when a 

high level of noise was present in the GPR image, achieving accuracies of 90 to 97%.  

Maas and Schmalzl (2013) used ML to locate areas containing hyperbolic reflections on 

radargrams in unprocessed data in real time using the Viola-Jones algorithm (Sathya and Abraham 

2013). According to the authors, training the Viola-Jones cascade classifier can take up to two 

weeks, depending on the settings, sample size, and resolution. After training, the algorithm can be 

used for automatic detection by dividing the original radargram into multiple sub-radargrams. In 

each sub-radargram, the search window looks for Haar-like features, i.e., features used to encode 

differences in average intensities between rectangular regions within an image (Mita et al. 2005). 

The Viola-Jones algorithm is based on N stages, consisting of weak classifiers called subwindows. 
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As the algorithm analyzes each subwindow, one at a time, and the image is either rejected or 

progresses to the next subwindow. If an image passes through all N subwindows without being 

rejected, an object is detected (Viola and Jones 2004). After application of the Viola-Jones 

algorithm, Canny edge detection and HT were applied to precisely determine the position and 

depth for each of the hyperbolae, as well as the signal velocity. This methodology worked well in 

situations with low noise and clear hyperbolic reflections; however, when reflections were noisy, 

hyperbolae could not be identified (Maas and Schmalzl 2013). Another factor that may have 

decreased the detection capability of the algorithm is the background variation in the input data 

compared to the training data. With the available data, this algorithm achieved an accuracy of 65 

to 75%, with 7% false positives. According to Maas and Schmalzl (2013), the accuracy of this 

method was directly related to the amount of training data available; thus it cannot be compared 

to other methods.  

Núñez-Nieto et al. (2014) tested logistic regressions and NNs to calculate the probability of 

locating landmines and UXO by GPR. GPR radargrams were collected in an experimental setting 

and filtered with time zero correction, dewow filtering, gain filtering and background noise 

removal. The images collected were sliced and used to train the logistic regression and NN 

algorithms. After training, the model was run, with a set of values ranging between 0 and 1 as the 

output. In order to determine if an object is present or not, a threshold value (between 0 and 1) 

must be assigned. A lower threshold value can result in an increased number of false positives. 

Overall, the study showed that the two NNs performed better than logistic regression for 

underground object location, with accuracies of 92% and 89%, respectively. The authors also 

suggested that more training data should be generated for different types of soils to expand the 

detection capabilities of the methods in different environments. 

In 2015, convolutional neural networks (CNNs) (which were first introduced by LeCun et al. in 

1990) started to be applied to GPR, although they were already widely used in other areas, such as 

character recognition (Al-Jawfi 2009; LeCun et al. 1990). Lecun et al. introduced LeNet, a simple 

structured CNN in 1998, which further popularized CNNs by making them easier to apply. CNNs 

were proven by Krizhevsky et al. 2012 to work well for difficult image recognition problems 

(Wang and Raj 2017). 
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Besaw and Stimac (2015) proposed a deep CNN to automatically identify and categorize signals 

in GPR images as buried explosive hazards (BEHs) or false alarms (FAs). BEHs and FAs are 

represented by hyperbolic signatures (similarly to utility reflections), and therefore this 

methodology can also be used for other GPR applications. The methodology consisted of 

preprocessing, anomaly detection, postprocessing, discrimination and algorithm fusion stages. 

During the preprocessing stage, spatial resampling, ground-bounce tracking and alignment, and 

A-scan phase alignment were applied to the images. This was followed by anomaly detection using 

a deep belief network (a class of deep NN that acts as hyperbola detectors). Images of the identified 

targets were further processed using a two-dimensional median filter and a zero-score component 

analysis (ZCA) to prepare the images used to train the CNN algorithm. The CNN for object 

detection and classification comprised two convolutional layers and a single layer with a fully-

connected ANN. To prevent overtraining—i.e., reduction in generalization of detection—when 

the CNN is applied to new data, Besaw and Stimac (2015) used cross-validation, network weight 

regularization and dropout strategies. One of the benefits of CNN is that, compared to a standard 

feed-forward NN composed of layers of a similar size, it has fewer connections and parameters, 

and therefore it is easier to train (Hashemi 2019). The performance of the CNN was compared 

with a texture feature coding method (TFCM) and edge histogram descriptors (EHD) (two 

traditional methods for feature extraction which extract important features in an image to make the 

recognition task easier and more accurate). Compared to TFCM and EHD, CNN showed superior 

performance, achieving 72% detection accuracy, as well as fewer false alarms.  

Kaur et al. (2016) applied SVM and curve fitting to GPR images for the identification of hyperbolic 

reflections of rebar in bridge decks. In contrast to methods proposed by previous authors (Al-

Nuaimy et al. 2001; Pasolli et al. 2008), Kaur et al. avoided a pre-processing thresholding step. 

The SVM classifier was trained by manually labeling GPR radargrams collected on a bridge deck. 

SVM classifiers using different template matching and feature vectors—such as intensity values, 

intensity histogram, edge pixels, maximum gradient orientation, histogram of oriented gradients 

[HOG]—were tested. Of these classifiers, HOG features showed the best accuracy, precision, 

sensitivity and specificity; thus, HOG features were used to train and classify rebar reflections. 

The SVM classifier identified clustered regions of possible hyperbolic reflections, in which the 

centroid of each cluster was computed. The final step was to apply random sample consensus curve 

fitting (a robust curve fitting method that works well in the presence of outliers) for the selected 



16 

 

regions to determine the precise location of the rebar. Approximately 92% accuracy was achieved 

for rebar detection and hyperbola fitting. 

Dou et al. (2017) proposed a method that involved pre-processing of a GPR image and application 

of a threshold value (automatically determined based on edge detection results) to separate target 

reflections from the background. According to the authors (Dou et al. 2017), the proposed classical 

threshold method has proved to be more efficient in separating the target reflection compared to 

the maximum entropy thresholding method proposed in Kapur thresholding (used by Pasolli et al. 

2008), in which the resultant threshold value is too high and results in suppression of target 

reflections. A column-connection clustering (C3) algorithm was then applied to the previously 

selected regions to separate regions of interest and serve as input for a three-layer feedforward NN 

(trained using backpropagation). After using the NN to identify the area in which the hyperbola 

was located, an orthogonal distance-fitting algorithm was applied for hyperbola fitting, 

determining the size and depth of the object. The C3 algorithm resolved multiple overlapping 

hyperbolas into separated images and worked well with GPR signals containing noise. It also 

demonstrated high efficiency and the ability to detect hyperbolae in real-time GPR surveys (70% 

accuracy).  

Kim et al. (2018) adopted a deep-learning object classification methodology that consisted of three 

steps: data collection, data pre-processing and data classification. During data collection, GPR data 

was acquired to build a library with statistical analyses applied to automatically determine upper 

and lower threshold limits for feature enhancement. The threshold amplitude limits enhanced 

important features in the images, such as target reflections, but also enhanced noise signals. The 

resultant image was cropped with a mask consisting of m x n pixels and used during a manual 

labeling process. After labeling, images were prepared for CNN training using AlexNet. AlexNet 

is a deep convolutional neural network that emerged in 2012 to fulfill a need for performance 

improvements when using larger datasets, such as ImageNet (Deng et al. 2009). In addition, 

AlexNet can learn more powerful models while preventing overfitting, i.e., when the model does 

not generalize well from the training data to unseen data (Krizhevsky et al. 2012). Kim et al. (2018) 

stated that object detection accuracy depended on the amount of training data, however, they 

achieved an accuracy of 98% for object classification with the available data. 
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In 2019, Zong et al.  continued the application of deep learning aimed at classifying GPR images 

in real time. Training images were collected from a moving vehicle and labeled manually using 

categories—e.g., rainwater wells, cables, metal/non-metal pipes, and sparse/dense steel 

reinforcement. To improve NN detection capabilities, the collected images were augmented using 

an albumentations library (Buslaev et al. 2018). Albumentations libraries apply image adjustments 

such as random cropping, small angle rotation, blurring, etc., in order to increase existing training 

examples, consequently reducing overfitting (Krizhevsky et al. 2012). Zong et al. (2019) used 

YOLO v3 (Redmon and Farhadi 2018b) in conjunction with Darknet 53 (Redmon 2013) to classify 

and locate target reflections in radargrams in real time. Darknet 53— a CNN used as a foundation 

for object detection problems and YOLO workflows (Redmon 2013)—was trained to extract the 

features of the training images using convolution kernel networks. YOLO v3, a CNN that works 

as a single-stage detector, was used to locate target reflections in GPR images in a single pass 

(Valiati and Menotti 2019). Using the two CNNs (Darknet 53 and YOLO v3), the authors achieved 

a precision of over 85% in identifying object reflections, as well as correctly locating and 

classifying objects. 

In 2020, Gong and Zhang applied a fast region-based convolutional neural network (Faster R-

CNN) (Girshick 2015) to images generated using gprMax software (Giannopoulos 2005). Faster 

R-CNN is an end-to-end object detection CNN, which means it is capable of determining candidate 

regions of objects, as well as performing feature extraction, classification and location refinement 

(Gong and Zhang 2020). In order to increase the database generated with gprMax software, image 

manipulation techniques, such as horizontal and vertical flipping, stretching, compression, image 

cropping and enhancement, were applied, which increased the dataset from 40 to 200 images, 

improving detection capabilities. The results showed an accuracy for detection and classification 

of around 94%. The simulated images presented in the article showed low noise levels. In order to 

determine the level of accuracy in real GPR scenarios, the authors suggested that further studies 

should be done to increase the image dataset (Gong and Zhang 2020).  

Based on the results reported by Zong et al. (2019) and Gong and Zhang (2020), YOLO v3 gives 

better performance (in terms of sensitivity and speed) compared to Faster R-CNN. However, a 

comparison of the reported accuracies indicates that both methodologies achieve similar results 

(Benjdira et al. 2019).  
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A chronological summary of the application of machine learning algorithms in GPR image 

processing is given in TABLE 2-1. Highlights of the outputs of the various machine learning 

algorithms are also summarized in the table.  
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TABLE 2-1: Chronological summary of application of ML algorithms in GPR image processing 

Reference Methodology Dataset 
Number of 

Images 

Number of 

Classes 
ML Accuracy/Results 

Molyneaux 

et al., 1995 

(1) Collection of GPR images 

(2) NN trained by backpropagation 

algorithm 

(3) NN applied to GPR images 

Images 

taken using 

an emulsion 

tank with 

and without 

rebars at 

varying 

depth 

Training: 153 

(99 of rebar, 

54 without 

rebar) 

Testing: 132 

(101 with 

rebar, 99 

without) 

Two classes: 

(1) rebar 

present, and 

(2) no rebar 

detected 

NN Overall accuracy 

of 82% for 

hyperbolic 

detection and 

correct depth 

classification 

Al-Nuaimy 

et al., 2000 

(1) Data preprocessed using 

background noise removal, path loss 

compensation, antenna separation 

rectification and low-pass filters 

(2) Welch-averaged overlapping 

periodograms of signal segments 

applied 

(3) NN trained using backpropagation  

(4) NN used to locate areas of object 

reflections; HT further applied to 

identify exact location and depth of 

targets 

Radargrams 

of 

landmines 

and pipes of 

different 

materials  

Training: 10 

radargrams (8 

pipes and 2 

landmines)  

(each 

radargram 

presented in 

the paper had 

1-3 

hyperbolic 

reflections) 

Two classes: 

(1) object 

reflection, 

and (2) 

background 

reflection 

NN Promising results 

for locating and 

assigning depth of 

pipes, cables, and 

anti-personnel 

landmines, but 

high 

computational cost 

Shihab et al., 

2002 

(1) Statistical analysis used to reduce 

input data   

(2) NN trained using backpropagation 

algorithm  

(3) NN used to locate regions of 

possible object location 

(4) HT used to confirm existence of 

target and determine hyperbola 

parameters such as depth 

Images of 

pipes, tanks, 

voids, 

rebars and 

non-targets 

 Two classes: 

(1) object 

reflection, 

and (2) 

background 

reflection 

NN Statistical analysis 

reduced input data 

by 80%. 

Proposed 

methodology can 

locate objects with 

better accuracy 

than a trained 

operator 
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Youn et al., 

2003 

Used two ANNs to  

(1) Locate waveform peak (similar to 

the ones on GPR images) 

(2) Determine whether waveform 

corresponds to a hyperbolic reflection 

pattern 

Drainage 

pipes in 

farmlands 

with a 

variety of 

soil types 

  NN 2D map with depth 

and position of 

pipes 

Zhang et al., 

2004 

(1) Linear SVM  

(2) Recursive classification, leave-

one-out cross validation and random 

permutation assessed algorithm 

performance and accuracy 

Non-

metallic AP 

mines (PFM 

and PMN) 

and stones 

 Six classes:  

PFM and 

PMN in 

sand, PMN 

and stone in 

earth,  Sand 

and earth 

background  

SVM Showed feasibility 

of feature 

extraction and 

classification of 

landmine images 

Shaw, M. R., 

et al. 2005 

(1) Images of rebar in emulsion tank 

used for training purposes 

(2) RBP algorithm using training 

images, trained multi-layer 

perception network (MLP) 

(3) MLP network identified parabolas 

and determined rebar depth in real 

reinforced concrete 

 Training: 388 

images 

Testing: 390 

images 

 NN Accuracy of 69% 

for object 

detection (in real 

data detections) 

Depth prediction 

error varied 

between 0.7% to 

47%   

Pasolli et al., 

2008  

(1) Data preprocessing using median 

filter, simple average operation and 

time gain 

(2) Modulus operator and Kapur’s 

thresholding used to segment data 

(3) GA using unsupervised learning 

used for object detection 

(4) SVM using RBF Kernel function 

applied for object material 

classification 

Buried 

objects with 

varying 

position, 

size, shape 

and material 

type 

Testing: 120 

images  

 GA, 

SVM 

71% accuracy for 

object detection;  

overall 

classification and 

detection of 80% 
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Pasolli et al. 

(2009) 

(1) Data preprocessing using median 

filter, simple average operation and 

time gain 

(2) Modulus operator and Kapur’s 

thresholding used to segment data 

(3) GA using unsupervised learning 

used for object detection 

(4) SVM using RBF Kernel function 

applied for object material 

classification 

(as in Pasolli et al., 2008) 

(5) Gaussian processes (GP) used for 

object dimension extraction (Pasolli 

et al., 2009) 

GprMax 

images with 

varying 

depth, size, 

position and 

surrounding 

material for 

circular, 

squared and 

uniform 

layer objects 

Testing: 2500   GA, 

SVM 

Object dimension 

achieved 18% 

relative mean 

absolute error 

Birkenfeld, 

2010 

(1) Data preprocessing using low-

pass filter, background removal and 

gain filters 

(2) Multilayer feedforward network 

trained using backpropagation 

algorithm  

(3) NN used to identify areas of 

possible location of hyperbola apex 

above a threshold limit  

(3) Gaussian filter applied to 

determine apex location  

Pipes and 

cables of 

different 

sizes and 

materials 

buried in six 

different 

soils and at 

varying 

depths 

Training: 

1000 images 

(showing the 

apex and one 

branch of 

hyperbola).  

Tested on 

hundreds of 

radargrams 

 NN Algorithm is very 

sensitive, classifies 

incomplete 

hyperbolae 

reflections, but can 

lead to false 

positives 

depending on the 

chosen threshold 

value.  

Kobashigawa 

et al., 2011 

(1) Dataset creation using FEKO 

software  

(2) Network training using Genetic 

programing and NN algorithms with 

different architectures  

 

Images 

generated in 

FEKO with 

5 different 

objects and 

noises levels 

added in 

MATALAB 

Training: 

1350  

Two classes:  

UXO and 

non-UXO 

GP 

and 

NN 

Classification 

accuracy varied 

from 90 to 97% 

GP showed faster 

classification 

performance than 

NN in images with  
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high levels of 

noise  

Maas & 

Schmalzl, 

2013 

(1) Viola-Jones algorithm used to 

locate areas of hyperbolic reflection 

in unprocessed images 

(2) Canny edge detector used to 

binarize image  

(3) HT extracts hyperbola parameters 

and signal velocity  

Four 

datasets 

Training 

dataset: 8005 

(3020 of 

hyperbolas 

and 4985 

negative 

sample 

reflections 

(such as 

background 

reflections))  

Testing 

dataset: 342 

 Viola

-

Jones  

Detection rates 

vary between 75 

and 65% with a 

false detection rate 

of approximately 

7% 

Methodology can 

be used for real 

time object 

detection.  

Training process 

can take up to two 

weeks 

Núñez-Nieto 

et al., 2014 

(1) NN and logistic regression (LR) 

algorithms trained with real data and 

tested 

(2) Output is a value between 0 and 1  

(3) Requires selection of threshold 

value between 0 and 1 to characterize 

the existence or not of an object 

Data set 

composed 

of GPR 

traces as 

input  

 Two classes: 

(1) safe 

regions and 

(2) 

dangerous 

regions  

NN NN achieved 

accuracy of 92%; 

LR achieved 

accuracy of 89% 

for object 

detection 

Besaw & 

Stimac, 2015 

(1) Data preprocessing using spatial 

resampling, ground-bounce tracking 

and alignment, and A-scan phase 

alignment 

(2) Deep belief network used for 

anomaly detection 

(3) 2D median filter and zero-score 

component analysis applied to 

training data  

(4) CNN used for object detection 

and classification  

Database 

was created 

by 

collecting 

data in a test 

range with 

buried 

explosive 

hazards  

Testing: 1800 

m2 of GPR 

data with total 

of 786 unique 

target.  

(Unsupervised 

learning, no 

training data 

required) 

Two classes: 

(1) buried 

explosive 

hazards and 

(2) false 

alarms 

CNN CNN had 72% 

accuracy, the best 

detection 

probability and the 

lowest rate of false 

alarms compared 

to texture feature 

coding method and 

edge histogram 

descriptors 
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Kaur et al. 

(2016a) 

(1) SVM using HOG for 

classifications  

(2) Curve fitting done by random 

sample consensus 

Three 

datasets 

from 

different 

bridge decks  

Training: 

2400 images 

Testing: 4000 

images  

Cross-

validation: 

600 images 

Two classes: 

Positive and 

negative 

SVM Rebar detection 

accuracy of 96% 

and 92% accuracy 

for detection and 

hyperbola fitting 

Dou et al., 

2017 

(1) Thresholding 

(2) C3 algorithm selected regions of 

interest  

(3) Backpropagation algorithm used 

to train NN 

(3) NN applied for object detection 

(4) Hyperbola fitting performed using 

orthogonal distance 

 Training: 

3434 images 

(464 real 

hyperbolae 

and 3000 

negative 

samples) 

 NN 70% accuracy; can 

be used in real-

time surveys 

 

Kim et al., 

2018 

(1) Data preprocessing and feature 

enhancement using statistical 

information  

(2) Object detection and classification 

used AlexNet transfer learning  

 

 Training: 

10296 images  

Testing: 

10296 images 

 

Four classes: 

(1) 

hyperbola, 

(2) manhole, 

(3) layer 

interface and 

(4) ground 

CNN 

-

Alex

Net  

Accuracy of 98% 

for object 

detection and 

classification. 

For noisy images, 

feature 

enhancement can 

enhance noise as 

well as reflections  

Zong et al., 

2019 

(1) Original and augmented images 

were used for training purposes 

(2) Training used transfer learning 

from ImageNet, COCO and PASCAL 

VOC data sets 

(3) Darknet 53 CNN used to extract 

features of the buried objects 

(4) YOLO v3 used to classify and 

locate the objects  

GPR system 

collected 

data around 

the city 

Training: 

3522 images 

(489 labelled 

and 3033 

augmented)  

Eight 

classes: 

(1) rainwater 

wells, 

(2) cables, 

(3) metal and 

(4) nonmetal 

pipes, 

(5) sparse 

YOL

O v3 

Accuracy of 

detection and 

classification of 

85%; Can be used 

in real-time 

surveys 
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and (6) dense 

steel, 

(7) reinforce

ment, and (8) 

voids 

Gong & 

Zhang, 2020 

(1) Training set composed of 

computationally created images using 

gprMax  

(2) DA method expanded available 

data 

(3) Faster R-CNN used for object 

detection and classification 

Dataset 

produced 

using 

GprMax 

Training: 160 

images 

Testing: 40 

images 

Three 

classes: 

rebar, and 

rounded and 

rectangle 

objects 

Faster 

R-

CNN 

Accuracy of 94% 

for detection and 

classification 
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2.4. Training Data: Impact and Availability 

The availability of GPR databases to train and test ML algorithms is a limiting factor in the real-

world application of automatic object detection techniques. This is because automatic object 

detection involves more than distinguishing between target objects and non-target reflection, as 

done by Al-Nuaimy et al. (2000), Kaur et al. (2016), Kobashigawa et al. (2011), Molyneaux et al. 

(1995), and Núñez-Nieto et al. (2014). Further research (Gong & Zhang 2020; Kim et al. 2018; 

Jing Zhang et al. 2004; Zong et al. 2019), is underway to classify the identified targets, which 

increases the complexity of the problem and requires larger datasets. To solve this larger problem, 

a representative GPR library should include multiple images of different objects in a variety of 

real environments (e.g., soil conditions, depth, material, etc.), collected using different GPR 

systems, and with different levels of background noise. Some alternative methodologies have been 

used to resolve the issue of the limited training data available, such as augmentation libraries and 

computer-generated images (such as gprMax) but training algorithms using such images only 

increases detection accuracy slightly. A summary of the available data, including the size of the 

datasets (including the number of training, testing and cross-validation samples) is presented in 

Figure 2-2, which is a representation of the relationship between the number of samples in the 

dataset and algorithm accuracy.  

 

Figure 2-2: Relationship between sample size of dataset and algorithm accuracy 

As seen in Figure 2-2, the AlexNet algorithm (Kim et al. 2018) trained with 20592 images resulted 

in an accuracy of 98%, while an SVM (Kaur et al. 2016) trained with 6400 images resulted in a 
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slightly lower accuracy (96%). The discrepancy between the large increase in the sample size and 

the small improvement in accuracy can be related to algorithm capabilities, such as generalization, 

but also to the level of noise in the GPR images. This may explain why some of the methodologies 

might have high algorithm accuracy despite having been tested in images with little or no noise 

present. An example of the impact of the complexity of GPR images on accuracy can be seen in 

the work of Maas and Schmalzl (2013). In this work, unprocessed radargrams were used, 

decreasing the contrast between the target reflections and background. Even with a relatively high 

number of training samples, this model had a lower accuracy than other models trained and tested 

with fewer samples. The discrepancies in GPR image characteristics makes it difficult to determine 

whether the capability of an algorithm to recognize and classify objects correctly can be attributed 

to the algorithm or to the characteristics of the images used to train and test the algorithms. If 

algorithms are trained with an extensive dataset, the accuracy of the results can be related to the 

capability of the algorithms; however, low accuracy can more often be attributed to deficiencies 

in the training datasets.  

2.5. Conclusion  

This article summarizes AI-based methodologies used to implement automatic object detection 

and classification of GPR images in work published between 1995 and 2020. The necessity of 

reducing human interpretation time and bias in the analysis of GPR data, in conjunction with the 

permanent development of artificial intelligence, is reflected in significant efforts to apply visual 

computing methods used in other applications (such as facial recognition) to locating and 

classifying underground objects based on GPR images. As of 2021, many different algorithm 

structures have been proposed, including YOLO V3, AlexNet, SVM and Viola Jones. However, 

finding an optimal solution is still an ongoing effort and depends somewhat on the desired output 

(e.g. high accuracy for object location, detection in real time, detection under specific conditions, 

etc.).  

A high degree of time and effort is currently spent in developing GPR training data by separate 

research groups. The effort expended by research groups to generate representative datasets of 

GPR images decreases the actual time available to focus on the development of algorithms to 

automate interpretation. Classification of underground objects could be vastly improved if an 

open-source GPR library of labeled images was available for use in training algorithms, similar to 
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the image datasets tailored to visual computation problems (such as ImageNet (Deng et al. 2009) 

and COCO (Lin et al. 2014)) that are available for general use. 

Even with the current deficits in training data, which generally reduce the accuracy of detection 

algorithms, certain ML techniques have demonstrated real-time detection and classification 

capabilities of up to 98% accuracy. In comparison, a trained specialist could spend months 

interpreting a similar dataset (depending on its size and complexity). Thus, many of the ML 

techniques summarized in this work show promise in facilitating the interpretation of GPR images 

with further development. 

2.6. Data Availability Statement 

No data, models, or code were generated or used during the study (e.g., opinion or data-less paper).  
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3. Automatic Underground Object Detection and Classification based on Ground 

Penetrating Radar Images using Deep Learning 

3.1. Abstract 

Ground penetrating radar (GPR) is a non-destructive tool that has gained popularity in supporting 

underground projects such as HDD, after giving promising results in subsurface mapping. Even 

with the benefits including equipment portability, low cost, and high versatility in locating objects, 

GPR has a drawback of the time spent in data interpretation. Because of this, to increase the 

number of radargrams analyzed in a fraction of time, multiple efforts have been made to automate 

data interpretation through machine learning. Recent researchers have shown success in using deep 

learning for automatic detection of underground objects however, GPR images variations such as 

the presence of noise, type of equipment used, and variety of buried objects makes it hard to find 

a deep learning solution with generalization capacity to detect targets in such variable conditions. 

This study evaluates the effectiveness of YOLO v3 and R-CNN in detecting and classifying GPR 

images. A 2GHz high-frequency GPR antenna was used in a laboratory setup to build a GPR 

dataset with images of pipes, air and water voids, and boulders. The proposed scheme successfully 

detected and classified underground objects feature presented in GPR images, achieving 57% and 

84% f1 scores for R-CNN and YOLO v3 respectively.  

Keywords: Ground Penetrating Radar, Machine learning, YOLO v3, and R-CNN.   

3.2. Introduction  

The rapid growth of urban areas has increased the need to expand underground infrastructures by 

creating new and/or reconstructing existing utilities such as water, sewer, gas, and fiber-optic lines. 

The success of new underground construction relies on the understanding of existing subsurface 

structures. The presence of impediments—such as boulder-sized rocks or any other objects that 

are difficult to penetrate or that can complicate, be hazardous, and damage the equipment when 

digging, trenching, or boring— need to be located in advance to the beginning of construction 

(Young and Alft 2004). Studies have shown that accurate subsurface mapping increases safety and 

productivity by minimizing the risks related to hitting existing utilities, (such as gas lines), 

increases design reliability by working the design of new utilities around existing ones, increases 

the precision of cost estimation by accounting for any needed utility relocates, and decreases the 
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possibility of delays, claims, change orders, or damage costs due to public injury or utility damage, 

etc. (Arcand et al. 2006).  

To facilitate greater understanding of subsurface utility distribution, many efforts have been made 

related to urban data management. Those efforts include the creation of a geographic information 

system (GIS) integrated database to share information on new and existing utilities (Cazzaniga et 

al. 2013). However, there are limitations associated with such databases. Subsurface databases 

often contain incomplete or low-accuracy data (Cazzaniga et al. 2013), and they also lack 

information regarding other objects, such as rocks.  

Ground penetrating radar (GPR) is a non-destructive geophysical technique that offers remarkable 

advantages, including portability, low survey cost, low initial investment, the ability to cover large 

areas, and versatility (Travassos and Pantoja 2019). GPR provides excellent resolution (except in 

highly conductive environments, such as clay soils) in locating underground utilities and other 

underground objects, such as rocks. GPR can achieve a quality level B (QL-B) in utility locates, 

the “designating” level, which is the second highest level of accuracy, just under the highest level 

QL-A (ASCE 2002).  

3.3. Principles of GPR  

GPR works by sending out an electromagnetic signal and recording the time that takes for a 

receiver to capture the signal energy that is reflected from the subsurface. The reflected energy 

varies according to the dielectric property of the subsurface material that the electromagnetic (EM) 

signal travels through. The EM velocity change at the boundaries between materials with different 

properties and also reflects the characteristic of the target object (e.g., material, size). For example, 

the output of a typical GPR survey is an image called B-scan, which shows hyperbolic reflections 

for cylindrical or rounded targets (such as pipe cross-sections or rocks) and linear reflections, 

representing layers and pipe extensions. To interpret B-scan images, a series of processing steps 

are necessary to reduce noise and signal attenuation (the loss of energy that occurs by energy 

absorption as the signal travels through the medium), making the contrasts between the target 

object and background material more evident.  

The complexity involved with GPR data analysis requires an experienced person to interpret GPR 

data and therefore to identify target reflections. In addition to the presence of noise and signal 
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attenuation, the sheer size of the datasets collected can increase the time required for data analysis, 

increasing the overall cost of GPR (Bianchini Ciampoli et al. 2019). In addition, the analysis of a 

variety of GPR images over extended hours can decrease the efficiency in visually recognizing 

important information, and therefore decreasing the possibility of detecting target objects 

(Vejdannik et al. 2018).  

3.3.1. GPR Data Interpretation   

In the real world, images can be visualized in color (red-green-blue or RGB), and it reproduces the 

real characteristics of an object or person. On the other hand, GPR images infer object 

characteristics such as shape and material by registering the amplitude variation of the EM signal. 

GPR images are usually visualized in greyscale, and the intensity of the reflection is represented 

by brighter or lighter reflections. The strength of a reflection is proportional to the difference in 

dielectric constant (a property of the object) between two distinct materials, and the higher the 

difference in dielectric, the brighter the reflection (GSSI 2016). An example of good contrast can 

be observed in Figure 3-1, where a metal pipe gives a brighter reflection than a boulder or PVC 

pipe. Moreover, the difference in the PVC and boulder reflections can be seen by the pattern 

change (also called reflection polarity), in which the dominant band (brighter reflection) and the 

halo effect represent the change in the signal velocity. For the PVC pipe, since the PVC pipe was 

filled with air, the EM signal passed from soil to air, with the velocity of the signal increasing 

when it reached the air to generate a negative reflection (black/white/black). The opposite effect 

occurs when the EM signal hits the boulder and the velocity of the signal slows down, resulting in 

a white/black/white reflection (Figure 3-1) (GSSI 2016).  

 

Figure 3-1: GPR images from (A) a metal pipe, (B), a PVC pipe and (C) a boulder 
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3.4. Machine Learning for Automatic Object Detection  

ML has already been widely used to automate a variety of tasks, such as facial recognition, object 

detection and localization, image characterization and activity recognition (Dhillon and Verma 

2020). It can perform tasks beyond human capabilities when it involve the processing of large and 

complex datasets (Alzubi et al. 2018). When comparing to human ability to perform GPR object 

detection, ML can achieve higher accuracy, higher detection speed, and lower cost. In addition, 

existing algorithms, such as YOLO v3, can be used in near real-time and real-time applications, 

which can support new technologies such as HDD GPR equipped bore-head, to avoid hitting 

objects during drilling in real time (Manacorda et al. 2014). 

3.4.1. Background of ML in GPR Automatic Object Detection  

The first effort to solve the problem of the time required for the analysis of GPR images was in 

1995, when Molyneaux et al. (1995) applied neural networks (NN) to automatically detect 

reflections for rebar in concrete (and determine the size and depth of the rebar). At first, NN and 

classical approaches such as Hough transform (HT) (Capineri et al. 1998), edge detection (Al-

Nuaimy et al. 2001) and thresholding (Ardekani 2006) were used to automate object detection. 

However, these methods required manual inputs and eventually were overtaken by ML techniques 

such as deep learning (DL). Lately, DL has been applied widely, not only for automatic detection 

of object reflections in GPR images, but also for the automatic classification of the identified 

objects. Promising results have been achieved for several different algorithms, for instance: 

AlexNet achieved 98% accuracy in object classification based on real GPR images (Kim et al. 

2018);, real GPR images that were further augmented were used to train and test Darknet 53 and 

YOLO v3, achieving 89% accuracy in detection and classification (Zong et al. 2019); and 

augmented computer-generated images were used to test and train a Faster R-CNN algorithm, with 

94% accuracy achieved for detection and classification (Gong and Zhang 2020). 

The successful application of a variety of supervised ML algorithms, such as YOLO v3 and R-

CNN family, arises from the algorithm’s ability to learn from a dataset of labeled images, enabling 

the identification of objects in unlabeled data. To accurately identify and classify objects in images, 

an extensive labeled dataset is required for model training. A variety of images of common objects 

used for training of object recognition algorithms —including vehicles, animals, people, household 

items, etc.—are available online in labeled datasets such as ImageNet (Deng et al. 2009), Microsoft 
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COCO (Lin et al. 2014), and PASCAL VOC (Everingham et al. 2010). However, a similar online 

database of GPR images suitable for training datasets, containing images captured using different 

GPR equipment, with background noise, and images collected in a variety of subsurface 

conditions, with buried objects of different types, materials and sizes is not available. Even while 

a variety of papers related to the automatic detection of objects in GPR images are available, only 

a few researchers such as Dérobert and Pajewski (2018), have made GPR image databases 

available. In addition to the time-consuming task of collecting GPR data, images need to be 

carefully labeled by experts, which makes the process of forming a reliable database expensive 

and time-consuming (Huang et al. 2020). In addition to limited data availability, another challenge 

in ML is the algorithm generalization capacity. This term refers to the capability of an algorithm 

to generalize detection of features in images that were not included in the training dataset. The 

generalization capacity of an algorithm decreases in cases where there are limited training images 

available for a variety of conditions.  

Overall, the current goals for the automatic detection of objects in GPR images are the creation of 

a database with a variety of images, to be used in an algorithm with good generalization 

capabilities. This involves achieving high detection and classification speed and accuracy, so that 

the method can possibly be used for real-time applications.  

3.5. R-CNN and YOLO v3 

The main objective of this research is to compare and evaluate the object detection models R-CNN 

and YOLO v3 to determine the best algorithm that best performs classification and detection of 

object features in GPR images.  

R-CNN (Region-based Convolutional Neural Networks - Girshick et al. 2014) is a multistage 

algorithm that works by using a selective search to generate regions of interest (ROI) (i.e., 

candidate object locations), which are used as input in a CNN, that acts as a feature extractor, and 

its output is used by an SVM (support vector machine) to classify and assign, using a bounding 

box regression, object detection results. The drawback of this algorithm is the multistage training 

(i.e., training involves multiple steps, including object proposal for 2000 regions, object detection 

and bounding box learning) which makes the process expensive in terms of computational space 

and time (Girshick 2015). In addition to the considerations about training, object detection relies 
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on a region proposal for each object within the image, which makes the overall process slow, and 

consumes massive data, time and computational effort (Du 2018).  

YOLO (You Only Look Once) v3 is a fully CNN capable of performing end-to-end detection—

i.e. the algorithm can detect and classify images in one step, which includes the prediction of 

bounding boxes and the class prediction probability for each bounding box (Redmon and Farhadi 

2018a). YOLO v3 divides the input image into grids, that if the ground truth falls into a grid, that 

grid will detect, predict, and classify the object using bounding boxes. YOLO v3 is faster than R-

CNN because it uses logistic regression, for object detection, allowing object location and category 

to be predicted at the same time (Huang et al. 2020; Redmon and Farhadi 2018a). Even with the 

benefit of fast detection from YOLO v3, the group of Region-Based CNN (R-CNN, Fast R-CNN, 

and Faster R-CNN) can achieve better accuracy than YOLO v3. 

R-CNN and YOLO v3 used TensorFlow as a framework and VGG-16 (visual geometry group - a 

CNN model with 13 convolutional layers and 3 fully connected layers) as a feature extractor. 

VGG-16 was pre-trained using ImageNet (Deng et al. 2009). 

3.5.1. Experimental Data Collection and Dataset Creation 

The dataset used to train and test the algorithm was formed of GPR images collected using a GSSI-

SIR 4000 GPR unit (Geophysical Survey Systems, Inc.) coupled with a 2000 MHz palm antenna 

(GSSI – Model 62000). Data collection was performed using a laboratory set-up comprising a 

large plastic bin (dimensions 1.3 x 1.3 x 0.4m) filled with homogeneous dry sandy soil. Five 

different target objects were used, including lengths of metal and plastic pipe, boulder, and air-

filled and water-filled balloons (to represent air and water voids) (Figure 3-2).  
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Figure 3-2: GPR survey setup and resulting GPR images 

The GPR image data set generated using the laboratory setup contains a total of 352 images, of 

which were divided in 80% for training and for 20% for model validation using the Pareto 

Principle. The labeled dataset was created using LabelImg (an open-source graphical image 

notation tool), in which annotations retrieved from manually assigned object bounding boxes in 

the images generated XML files containing the category of the object, the coordinates of the 

bounding box, and the size and depth of the image (Figure 3-3).  
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Figure 3-3: GPR image labeling process 

3.6. Experimental Results and Analysis 

The results of R-CNN and YOLO v3 for feature detection in GPR images are shown in Figure 3-4 

and Figure 3-5. 

 

Figure 3-4: R-CNN results for metal pipes (A), PVC pipes (B), boulders (C), air voids (D) and water 

voids (E) 

  

Figure 3-5: YOLO v3 results for metal pipes (A), PVC pipes (B), boulders (C), air voids (D) and water 

voids (E) 

In order to determine the performance of the proposed method, precision, recall and F1 score were 

calculate and are presented in Error! Reference source not found.. The precision measures the 
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percentage of identified objects over all the objects present in the image, while recall indicates 

how many of the identified objects are correctly classified. In order asses the performance of the 

models, precision and recall were used to compute the F1 score. 

TABLE 3-1: Precision, Recall and F1 score for YOLO v3 and R-CNN 

Class 
R-CNN YOLO v3 

Recall  Precision F1 Score Recall Precision F1 Score 

Metal Pipe 1.00 0.42 0.59 1.00 0.86 0.91 

PVC Pipe 1.00 0.43 0.59 0.74 0.79 0.88 

Air Void 1.00 0.33 0.50 0.95 0.95 0.94 

Water Void 1.00 0.33 0.50 0.78 0.81 0.74 

Boulder 1.00 0.56 0.67 0.94 0.61 0.71 

Average 1.00 0.41 0.57 0.88 0.80 0.84 
 

Overall, R-CNN has better recall when classifying the features of the detected objects in the image 

i.e., when R-CNN correctly predicted an object location by assigning a bounding box around it, 

the class was correctly assigned in 100% of the cases. However, R-CNN was able to detect only 

one object per image, and, in some cases, the bounding boxes were assigned around background 

reflections, resulting in a precision of 41%. On the other hand, in 100% of the cases that YOLO 

v3 assigned a bounding box, it was in the correct location—i.e., the bounding box was just where 

hyperbolic reflections were present; however, the bounding box class was not always correctly 

assigned.  

3.7. Summary and Conclusions  

The use of ML to detect object features in GPR data is an important step to increase the accuracy 

of detection and reduce survey cost by decreasing the time spent on data analysis, when comparing 

to having extensive data analysis performed by person. This paper examined two deep learning 

algorithms, YOLO v3 and R-CNN, to select the one that has the best performance in detecting 

object features within GPR images. The test results showed that YOLO v3 outperformed R-CNN 

by presenting an F1 score of 84% versus 57%. R-CNN achieved 100% classification accuracy, 

i.e., the bounding boxes were correctly placed over hyperbolic reflections—however, R-CNN did 

not locate all hyperbolic reflections within the image achieving a detection accuracy of 41%. On 

the other hand, YOLO v3 achieved lower accuracy in object classification (88%) but was able to 

correctly identify 80% of the object reflections present within the images.  
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This research focused on the accurate detection and classification of objects in GPR images; 

however further studies are necessary to merge the classification accuracy achieved from R-CNN 

with the detection accuracy of YOLO v3. Moreover, adding object depth is recommended to 

increase detection parameters and improve the quality results. In addition, YOLO v3 should be 

applied in real time surveys to support the location of unexpected objects during construction, such 

as while drilling pilot bores in HDD.  
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4. Long-Term Performance Monitoring of Backfill Materials for Microtrenching in Cold 

Climates using Ground Penetrating Radar 

4.1. Abstract 

Ground penetrating radar (GPR) is a non-destructive tool that has been widely used in civil 

engineering projects to either support new construction (such as identifying potential conflicts in 

advance of utility installations) or to monitor existing installations. Microtrenching is a technique 

the offers remarkable advantages for fibre deployment, including less environmental disturbance 

and minimal surface restoration (compared to open-cut methods). MT installations involve the 

creation of a narrow trench, followed by laying a cable or conduit inside the trench, before 

backfilling and sealing the trench. The capacity of GPR to map the subsurface makes it an 

extremely valuable tool for monitoring the performance of microtrenching installations by flagging 

upward or downward displacement of the conduit inside the trench. This paper investigates conduit 

depth location of different backfill materials, during summer (survey conducted in August 2020), 

of a microtrenching installation performed in a cold region (Edmonton, Alberta, Canada) using 

visual inspection and GPR to assess any changes in conduit depth within the trench (along the 

installation path). The results indicate that GPR does give accurate readings, but additional 

measurements are needed during different seasons.  

Keywords:  Ground Penetrating Radar; Micro-trench; Fibre optics; Pavement backfill materials 

4.2. Introduction  

With advances in technology and changes in societal needs, the demand for real-time data 

transmission is increasing rapidly. The success of new applications—including remote medical 

treatment, autonomous vehicles, virtual and augmented reality, traffic operation sensors and 

municipal security systems—depends on the transmission of data in real time with high reliability 

and availability, as well as high security standards (Arnold et al. 2018; Singh and Rajan 2019). To 

address this need, there has been increased investment in expanding fiber to the x (FTTx – where 

x can be business, home or premises) networks installations to increase bandwidth capacity. 

Furthermore, widespread shifts observed in 2020/2021 towards working from home for many 

employees, due to the SARS-CoV-2 pandemic, has increased the need for reliable internet access 

to a higher number of homes. With the increasing demand for FTTx, the challenge of deploying 
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fibre installations with minimal cost and disturbance to society and the environment becomes even 

more important. 

Fibre installations are done in the subsurface and traditional installations depend on open-cut 

installations, which generally cause traffic disruptions, surface scarring, and economic and 

environmental impact on surrounding business and residents (Atalah et al. 2012). To address the 

challenges associated with fibre deployment, new technologies, such as micro-trenching, have 

been introduced. Such technologies have the advantage of minimal disturbance to the community 

and environment during construction, as well as lower cost and construction times compared to 

traditional construction methods (Hashemian et al. 2017). The long-term performance of MT 

depends on the prevention of conduit movement inside the trench, as well as maintaining the 

integrity of the pavement surrounding the trench. Both of these considerations depend directly on 

the backfill material, the performance of which can vary significantly depending on weather 

conditions (Hasanuzzaman 2016). For example, Hashemian et al. observed that for installation in 

cold climates, backfill materials must be selected to withstand potential frost heaving (caused by 

frost penetration and high water tables) (2017). Once the proper backfill materials have been 

selected and the fibre has been deployed, long-term monitoring of the installation is necessary to 

confirm that the MT design withstands the environmental conditions. 

GPR has been widely used as a non-destructive tool for subsurface mapping, including to 

investigate the performance of new and existing underground utilities. Multiple articles have been 

published related to the capability of GPR to locate underground utilities, mainly to support 

underground excavation by reducing the uncertainty associated with excavation and thus avoiding 

damage of existing utilities (Dave and Agrawal 2018; Metwaly 2015; Porsani et al. 2012). 

However, despite the many applications of GPR for underground mapping, little information has 

been published regarding the use of GPR for long-term monitoring of MT installations in cold 

climates. In previously published research, Hasanuzzaman (2016) monitored the performance of 

MT under traffic loads and in cold weather conditions, with results showing significant cable 

displacement inside the trench and premature failure of backfill materials. Similarly, Hashemian 

et al. (2017) monitored a pilot MT installation using GPR over three years. In this work, GPR and 

visual inspections showed vertical displacement of the conduit in the trench and failure of backfill 

material over time.  



40 

 

4.3. Objectives and Scope 

The main objective of this research is to investigate the applicability of GPR in determining the 

conduit depth within the MT, and to assess the service life of different backfill materials for MT 

in cold climates. To achieve this, several GPR measurements were conducted for a pilot MT 

installation, to localize and determine conduit depth and compare with previous surveys to 

determine conduit movement in the MT. In addition to measuring horizontal cable displacement, 

GPR was also used to determine asphalt layer depth in the MT. 

4.4. Methodology 

4.4.1. Microtrenching Installations 

To investigate conduit location at a MT installation performed in cold climate under different 

traffic conditions, a GPR survey was conducted in August 2020 at a pilot MT installation located 

in the private parking lot of a corporate-owned operational building located in Edmonton, AB, as 

shown in Figure 4-1. Traffic loading in the installation area was due to the movement of cars and 

garbage trucks. At this location, MT installations using two different technologies (VIF and SMCI) 

and different backfill materials were installed in October 2013, July 2014, July 2016, and 

September 2016. All MT fibre installations involved marking the installation path, followed by 

cutting and cleaning the trench. Then, the cable or conduit was laid, followed by the application 

of backfill material. A description of the installation layout and backfill materials, as well as a 

discussion of conduit location, as determined using GPR, is included in the following sections. 
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Figure 4-1: Microtrench installation layouts 

4.4.2. Backfill Materials 

The first fibre installation was done in October 2013, with three vertical inlaid fibre (VIF) 

installations completed. The trench dimensions for VIF were 1.5 cm wide and 22.8 cm deep, with 

a backfill design consisted of a layer of playground sand, followed by Perma-Patch cold mix 

asphalt (CMA) (Figure 4-2). All three VIF installations had the same backfill design but varied in 

size and traffic loading (due to cars and garbage trucks). The installations were as follows: a 30-m 

linear installation located in the path of traffic (VIF-A); a 30-m linear installation located in the 

path of traffic (VIF-B); and a 55-m loop located directly in the path of traffic (VIF-C). In the third 

installation, a vertical deflecting conduit (VDC) was used, with a wire tracer included in one 

channel. The wire tracer, which is a complete reflector, is extremely helpful for GPR detection of 

the VDC (and thus determination of fibre depth) because it reflects all the energy received from 

the GPR, while the surrounding material absorbs part of the energy.   
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In June 2014, an MT installation in an area without traffic loading (SCMI-A), as well as a 72-m 

loop directly in the path of traffic (SCMI-B) were performed. Both installations were done using 

surface micro cable inlay (SMCI) in a trench that was 0.9 cm wide and 7.6 cm deep (Figure 4-2). 

The SMCI installation consisted of a fiber optic cable, followed by a foam spacer and rubber strip 

covered with playground sand and hot bitumen sealant as backfill.  

 

Figure 4-2: VIF and SMCI installations layouts 

For both the VIF and SCMI MT installations, the specifications and performance of the backfill 

materials used—e.g., uniformly graded playground sand (with small particle size), hot bitumen 

sealant, and Perma-Patch CMA)—were confirmed through laboratory testing. Details related to 

the testing procedures and material characteristics have been reported previously by Hashemian, 

Rezaei, and Bayat (2017). 

4.4.3. Ground Penetrating Radar  

GPR involves sending an electromagnetic (EM) signal from a transmitting antenna. The EM signal 

travels through the ground and is reflected when it hits an object or subsurface layer that has 

different electrical properties from the surrounding medium (Daniels 2000). The higher the 

difference in electrical properties between the feature and the surrounding material, the stronger 

and clearer is the observed signal (Geophysical Survey Systems, Inc 2016). This is the reason that 
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VIF technology, which includes a wire tracer, results in clearer GPR determinations of conduit 

location compared to SMCI.  

Electromagnetic waves travel at specific velocities that are determined primarily by the 

permittivity (i.e., the ability of a material to store and release EM energy) of the material (Daniels 

2000). For this reason, the capability of GPR for investigation of MT performance is influenced 

directly by accurate prediction of the dielectric constant (also known as relative permittivity) of 

the material in which the EM wave travels (Leng and Al-Qadi 2014). This is related to velocity as 

shown in Equation (1), 

𝑣 =
𝑐

𝜀𝑟
  (1) 

where v is the wave propagation speed, c is the speed of light in free space (3 × 108 m/s) and 𝜀𝑟 is 

the relative permittivity.  

By rearranging Equation 1 and replacing the velocity with the distance travelled by the 

electromagnetic wave, d, divided by time, t, Equation 2 can be derived. 

𝜀𝑟 =
𝑐 ×  𝑡

𝑑
 (2) 

In this case, the EM velocity (ns) within the material used to fill the MT is determined using GPR 

measurements. The depth of the conduit (d) was determined by opening a small area of the trench 

to expose the conduit (Figure 4-3). Using these two measured quantities, the dielectric constant of 

the material was determined. As seen from Equation 2, a slight increase in the dielectric constant 

leads to an error in the GPR reading, indicating a shallower conduit. For the purpose of this 

research, all surveys were conducted in similar conditions (i.e., no change in moisture content) and 

the conduit depth was confirmed for each section. This resulted in a determination of a dielectric 

constant of 6.9 for the backfill materials used in this work. The lack of variation in the value of the 

dielectric constant determined for the different MT installations can be explained by the similarity 

of the properties of the various backfill materials.   
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Figure 4-3: Determination of dielectric value based on a measurement of conduit depth in an 

open trench 

4.4.4. GPR Data Acquisition and Processing 

GPR data acquisition was done using a GSSI-SIR 4000 GPR (Geophysical Survey Systems, Inc.) 

coupled with a palm antenna of 2000 MHz (GSSI, Model 62000). A high frequency antenna was 

chosen because it gives high resolution at shallower depths, with a low penetration depth. This fits 

the requirements for the investigation of MT installations, which are typically shallower than 

30 cm. Additional data collection parameters are specified in TABLE 4-1.  

TABLE 4-1: Parameters used for GPR data acquisition 

GPR system SIR-4000 

Antenna frequency 2000 MHz 

Transmission rate 2000 MHz 

Collection mode Distance 

Samples/Scan 512 

Dielectric 6.9 

Filters 400–5000 MHz 

Gain Automatic 

Horizontal calibration of the GPR unit was done using a measuring tape. Vertical calibration was 

done by opening a small section of each trench. In this way, it was possible to precisely determine 
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the conduit depth (as in Equation 1) and thus determine the dielectric constant. Opening the trench 

to calibrate the depth measurements was found to be the best option to ensure a high level of 

confidence in determining conduit depth. This is because each of the different materials present in 

the trench has a different dielectric constant, making it difficult to determine a single dielectric 

value to use as an input for interpretation of the GPR data. Furthermore, knowledge of the material 

type is not enough to characterize the dielectric constant, since compaction also should be 

considered. Compaction reduces the quantity of air (which has a low dielectric constant) in the 

backfill material, thus increasing the volumetric proportion of components with higher dielectric 

constants (e.g., sand and CMA), which results in higher dielectric values for compacted materials 

(Saarenketo 1997).  

To precisely determine the conduit location and thickness of the asphalt layer, data collection was 

performed in two directions, by conducting surveys parallel and perpendicular to the trench (Figure 

4-4). The parallel survey results in an image with a continuous line indicating the conduit depth 

along the installation path. In contrast, perpendicular surveys images show a hyperbolic reflection, 

corresponding to the local depth of the conduit, and therefore this data needs to be interpolated 

between two perpendicular measurements. Perpendicular surveys also show a first-layer reflection 

which corresponds to the asphalt depth. Ideally, perpendicular (depth) measurements and parallel 

measurements should be performed to ensure the accuracy of the survey; however, for the SMCI 

sections, the parallel survey did not give a clear reflection of conduit location. In contrast, VIF, 

which includes a trace wire, showed clear parallel reflections, as depicted in Figure 4-4.  

 

Figure 4-4: GPR image showing conduit reflection during (a) parallel and (b) perpendicular 

surveys 
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After performing data collection, GPR images were filtered to reduce noise and the effect of 

equipment instability, such as signal drift, giving data that were easier to interpret (Szymczyk and 

Szymczyk 2013). The most commonly used filters for GPR data are time zero correction, 

background removal, gain, and high- and low-pass filters. In this study, background removal, 

which is used to remove horizontal bands of noise, was only applied to data collected in the 

perpendicular survey. If background removal were to be applied to data from the parallel survey, 

it could remove the horizontal reflection due to the wire, i.e., the target reflection. Low- and high-

pass filters were used to remove noise by attenuating signal frequencies below (for high-pass 

filters) and above (for low-pass filters) a selected cutoff frequency (Hinterleitner et al. 2009). 

4.5. Field Monitoring Results 

4.5.1.1. VIF Installation Monitoring Results 

GPR data was acquired during monitoring inspections (conducted on November 8, 2013; May 12, 

2014; July 30, 2014; and May 4, 2015) of the VIF pilot installations on the 30-m linear installations 

with and without traffic loading and the 55-m loop with traffic loading (Vaseli 2015). In addition, 

Rios (2018) reported the results of a GPR survey conducted in September 2018 for the 55-m loop 

located in the direct path of traffic (Figure 1, red loop). Another GPR survey of all MT installations 

was performed on August 13, 2020. These results were compared to previous measurements. 

4.5.1.2. VIF Installation with no Traffic Loading  

Historical GPR data for the 30-m VIF installation with no traffic loading, was available from a 

monitoring survey conducted six months after installation (a time period which included one 

winter). After 18 months (including two winters) the conduit was almost horizontal, with a 

maximum upward displacement of 8.9 cm compared to the original location (Hashemian et al. 

2017). After almost seven years of installation (a total of 81 months, including seven winters), the 

maximum upward displacement was 10.3 cm. These results indicate that the most significant 

displacement of the conduit, including upward and downward displacements, occurred in the first 

two years after installation (Figure 4-5a). This can be confirmed by comparing the conduit depth 

in August 2020 and May 2015: at two locations, a maximum upward displacement of 3.5 cm was 

observed, while along the remaining installation path, the conduit maintained its previous depth. 
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A visual observation of the MT installation path showed the presence of vegetation, which could 

facilitate the entry of water into the trench (Figure 4-5b). 

 

Figure 4-5: (a) Conduit displacement within trench based on GPR monitoring of the 30 m linear 

VIF installation without traffic loading, and (b) presence of vegetation in the MT (~seven years 

after installation) 

4.5.1.3. VIF Installation with Traffic Loading 

GPR monitoring of the 30 m linear VIF installation in the area of the parking lot with traffic loading 

was conducted after six months of installation, in May 2014. At this time, the conduit showed a 

maximum downward displacement of 6 cm (located within the 5 last meters of the installation) 

and an upward displacement of 2 cm (at the starting point of the installation). After nine months 

(July 2014), the conduit showed an upward displacement of 12 cm relative to the initial position 

(within the last 5 m of the installation) and a maximum downward displacement of 4 cm. After 18 

months (May 2015), including two winters, the displacement of the last 5 m of conduit, which 

showed the maximum displacement according to the previous measurement, was reduced to 2 cm 

(relative to the original conduit depth). The conduit showed a maximum upward displacement of 

6 cm in the same survey. The last survey, which was performed in 2020, indicated that the greatest 

conduit displacement occurred in the last 7 m of the installation. This is similar to observations in 

previous surveys, which showed that the loose end of the conduit resulted in freedom of movement 

near the end of the installation path, with an upward displacement of 15.8 cm observed. In contrast, 

within the remaining 23 m of the installation, no major displacements were observed (compared 

to 2015 measurements)—Figure 4-6.  

In addition to GPR results, visual inspections indicated that the CMA has low adhesion to the sides 

of the microtrench. According to Hashemian et al. (2017), one of the reason for the poor adhesion 

is the presence of water during the process of cutting the microtrench, which made the trench walls 

muddy and decreased adhesion between the CMA (used as backfill material) and the existing 



48 

 

HMA layer during installation. Furthermore, in 2020, visual inspection indicated that the pavement 

surrounding the MT showed severe distresses, such as alligator cracks, in the direct path of traffic 

load (garbage truck path). These distresses caused differential settlement of the MT which 

occurred because of the infiltration of water and escape of the playground sand used as backfill 

(according to Hashemian et al. (2017)).  

 

Figure 4-6: (a) Conduit displacement within trench based on GPR monitoring of the 30m VIF 

installation with traffic load, and (b) alligator cracking near path of VIF MT installation (seven 

years after installation) 

4.5.1.4. 55 m VIF Loop with Traffic Loading 

Historical GPR data for the 55-m VIF loop located directly in the path of traffic six months after 

installation showed a conduit displacement of 5.9 cm downwards (the maximum observed 

downward displacement) and 14.3 cm upwards—for context, these movements occurred in a 

trench 22.8 cm deep (Hashemian et al. 2017). In addition, after nine months the conduit showed 

only upward displacement, with a maximum displacement of 14.3 cm relative to the initial position 

(Figure 4-7a). After that time, only upward displacements were observed, culminating in 

appearance of the conduit at the surface in 2020 (Figure 4-7b). The portion of the trench where the 

conduit appeared at the surface was located near some garbage bins and corresponded to the area 

of the parking lot in the traffic path of garbage truck and smaller vehicles. Visual inspections of 

the pavement done in previous years at this location (Rios 2018) indicated alligator cracking and 

permanent pavement deformation, which could be due to excessive water in the granular base 

layer. It is reasonable to attribute the poor performance of the MT fibre installation in this area to 

the deterioration in pavement conditions, rather than the MT construction methods and backfilling 

materials. 
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Figure 4-7: (a) Conduit displacement within trench based on GPR monitoring of the 55 m VIF 

loop installation with traffic loading 

4.5.2. SMCI Installation Monitoring Results 

For the SMCI technology, data from three previous GPR surveys was available, one conducted on 

July 30, 2014, one on May 4, 2015 (Vaseli 2015), and another survey in 2018 (Rios 2018). The 

results of the 2020 survey were compared with all previous measurements. 

4.5.2.1. 30 m SMCI Installation with no Traffic Loading 

The first survey on the 30-m SMCI installation (no traffic loading) was performed one month after 

installation of the conduit and showed an almost horizontal distribution of the conduit (same 

conduit depth along MT installation) around the original installation depth of 7.6 cm a). Ten 

months after installation, the conduit showed a maximum upward displacement of 2.5 cm from the 

initial installation depth. GPR results from the survey conducted in 2020 showed a maximum 

downward displacement of 1 cm (compared to the initial installation depth), which was observed 

in the first 4 m of the installation, and a maximum upward displacement of 2.5 cm. This indicates 

that there were no significant changes in depth (compared to the GPR monitoring conducted in 

2015). Visual inspection confirmed that six years after the installation, the MT is in good condition 

and the sealant is intact (Figure 4-8b).  
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Figure 4-8: (a) Conduit displacement within trench (based on GPR monitoring) of a 30 m SMCI 

installation without traffic load. (b) Current condition of MT installation, as observed from the 

surface 

4.5.2.2. 72 m SMCI Installation with Traffic Loading 

A GPR survey performed in the same year of the 72-m SMCI installation with traffic loading 

indicated that the conduit was located at a shallower depth in the trench compared to the design 

depth (7.6 cm) for the last 20 m of the installation. This could be due to a variation in the depth of 

the trench or backfill material during trench construction (Error! Reference source not found.a). 

Since the construction and the survey were done only two months apart, at a time of year without 

considerable temperature changes, the survey can be considered to give the as-built conduit depth. 

The tendency of cable displacement towards the surface over these last 20 m was also observed in 

the 2020 survey, with a maximum upward and downward displacement of the conduit in that area 

of 3.3 cm and 1.5 cm, respectively, compared to 2014 survey results. Visual inspection indicated 

that the MT was in good condition, with the sealant intact (Figure 4-9). 

 

Figure 4-9: (a) Conduit displacement within trench based on GPR monitoring of a 72-m SMCI 

installation with traffic loading. (b) Portion of SMCI MT installation showing good overall 

condition 
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Figure 4-9: (a) Conduit displacement within trench based on GPR monitoring of a 72-m SMCI 

installation with traffic loading. (b) Portion of SMCI MT installation showing good overall 

condition 

4.6. Summary and Conclusions 

This study used GPR to evaluate the long-term conduit displacement in MT installations in cold 

regions. The MT installations monitored had different layouts (with and without traffic loading) 

and different backfill materials. Based on the results of GPR monitoring, the following conclusions 

were reached: 

1. GPR is a useful tool for determining conduit depth within the MT, provided that the 

dielectric of the material can be accurately determined. VIF conduit, which includes a trace 

wire, gives clearer GPR readings and therefore more accurate results. 

2. GPR showed good results to track the movements  

3. All VIF installations showed upward displacement of the conduit. The straight installation 

(without traffic loading) showed the lowest maximum vertical displacement (10.3 cm). The 

straight installation with traffic loading resulted in the highest vertical displacement, a 

displacement of 15.8 cm observed at the end the MT installation, possibly due to a loose 

conduit end. The maximum vertical displacement in the loop installation occurred in an 

area of higher traffic. 

4. The SMCI installation with no traffic loading resulted in a maximum downward 

displacement of 1 cm and maximum upward displacement of 2.5 cm (the initial installation 

depth was 7.6 cm). The SMCI installation with traffic loading resulted in a maximum 

downward displacement of 1.5 cm and maximum upward displacement of 3.3 cm. Similar 

to the results observed for the VIF installation, the SMCI installation with traffic loading 

showed a maximum upward displacement at the end of the MT installation, which again 

could be due to a loose conduit end. 
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5. Summary and Conclusions 

5.1. Summary 

Developing sustainable and reliable infrastructure is vital to equip urban areas with infrastructure 

that is adequate to serve growing populations. With the increased need for new infrastructure and 

rehabilitation of sewer, water, gas, telecommunication and other lines, underground construction 

has increasingly been used to meet these demands. The use of technologies such as GPR have been 

widely used to map the subsurface and support underground infrastructure installations—however, 

the interpretation of GPR images can still improve in efficiency with the use of ML techniques.  

The focus of this study was to assess ML capabilities in the automation of underground object 

detection in GPR images. For this purpose, a comprehensive literature review to understand 

previously applied ML methodologies in the automatic detection of objects in GPR images was 

performed. The use of two ML algorithms—YOLO v3 and R-CNN— used in laboratory collected 

images was proposed to achieve fast and accurate detections.  

A secondary objective was to continue a previous study that employed GPR technology for the 

long-term performance evaluation of MT backfill materials for fiber optics installation. To achieve 

this, GPR surveys of a MT pilot installation were conducted and compared to previous studies 

performed in the same area to detect conduit movement. 

5.2. Conclusions 

Two ML algorithms were tested for the automated interpretation of GPR images in order to 

compare performance and determine and most accurate algorithm for automatic object detection. 

In addition, GPR was used in the long-term performance assessment of MT backfill materials. The 

conclusions obtained are summarized as follows: 

1. YOLO v3 outperformed R-CNN and achieved an 84% (versus 57%) F1 score, which 

confirmed the suitability of the model for the detection of underground object features 

within GPR images. 

2. R-CNN achieved the best recall (100% versus 88%) and was able to correctly classify all 

accurately detected objects. However, R-CNN was just able to detect 41% of the hyperbolic 

reflections present within an image. 
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3. YOLO v3 was able to identify 80% of all hyperbolic reflections present in the images and 

achieved good overall accuracy by correctly assigning classes to the identified reflections.  

4. GPR gave accurate results of conduit location after precisely determining the dielectric 

permittivity of each backfill material. 

5. GPR surveys are easier to interpretate when complete reflector objects such as a wire tracer 

are present.   

5.3. Future Research 

Future research is recommended to increase the algorithm F1 score (overall accuracy which 

includes object detection and classification accuracies) and to assess the generalization capabilities 

of the tested algorithms for automated processing of GPR images in scenarios different than the 

ones tested in this research. It is recommended that the existing database of GPR images be 

expanded by performing surveys with different equipment in various locations for a variety of 

underground objects and subsurface materials (i.e., different types of soils). These variations might 

result in different noise levels in the training images, which can impact detection accuracy. In 

addition, the creation of an online database of labeled GPR images ready for the application of 

different ML algorithms would speed up further developments in the automation of object 

detection based on GPR images. 

The newly developed ML methodology should be applied and tested in real time during a GPR 

survey of the MT installations. Additional GPR surveys of the pilot MT installations are 

recommended to compare the performance of the installation in different temperature conditions 

(seasons).  
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