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Abstract 

Glass-formation is a ubiquitous phenomenon that is often observed in a broad class of materials 

ranging from biological matter to commonly encountered synthetic polymer, as well as metallic 

and inorganic glass-forming (GF) materials. Despite the many regularities in the dynamical 

properties of GF materials, the structural origin of the universal dynamical properties of these 

materials has not yet been identified. In the current thesis, we employ the methodologies for 

characterization of dynamics in numerous GF liquids to study the ‘dynamic heterogeneity’ (DH) 

in model metallic glass systems under three scenarios. In particular, we investigate the dynamics 

within the mobile interfacial layer of secondary prismatic plane  of hexagonal ice, 

metallic GF liquids, and deformed metallic glasses by molecular dynamics simulation and test 

the metrology drawn from the field of glass-forming liquids. Relaxation mode is examined above 

and below glass-transition temperatures. Firstly, the width ξ of the mobile interfacial layer varies 

from a monolayer to a few nm as the temperature is increased towards the melting temperature 

Tm in the study of interfacial dynamics in hexagonal ice. The dynamics within this mobile 

interfacial layer prove to be “dynamically heterogeneous” in a fashion that has many features in 

common with glass-forming liquids over a reduced temperature range, 2/3 < T / Tm < 1. We also 

find that the common non-Gaussian diffusive transport, decoupling between mass diffusion and 

structural relaxation, and stretched exponential relaxation. String-like cooperative motion is 

identified within the mobile layer, confirming that the mobile layer evidently shares many 

common features with GF liquids. Then, we extend the study on dynamic heterogeneity arising 

in the coarse-grained polymeric GF liquids to metallic GF liquids with vastly different molecular 
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structure and chemistry (i.e., Cu-Zr, Ni-Nb and Pd-Si). By identifying the lifetimes of mobile 

and immobile clusters, we confirm the ‘universality’ of DH phenomenon. While the mobile 

clusters arise from molecular diffusion, the immobile clusters are dominated by -relaxation. 

Finally, we examine the relaxation mode in the low-temperature regime. Model metallic glasses 

Cu-Zr systems with different thicknesses under different temperatures are investigated. We 

observe that the applied stress acts as excitation instead of diffusion to particles and makes them 

‘mobile’, and these ‘mobile’ particles form the soft spots initiating the formation of shear band 

(SB) region. The ‘Debye-Waller factor’ provides a useful method for estimating the shear 

modulus of the entire material and, by extension, the material stiffness at an atomic value. This 

metrology further proves that that SB formation indeed occurs through the strain-induced 

formation of localized soft regions that percolate within the SBs in our deformed metallic glass 

with free surfaces. The current thesis work clearly provides us a better understanding of the 

nature of universal relaxation from a dynamic heterogeneity perspective.  
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1. Introduction 

1.1 Relaxation processes in Glass-forming liquids 

Glass-formation has been identified in a broad class of materials ranging from biological 

materials and synthetic polymers to metallic and other inorganic GF materials, a phenomenon 

that has been intensively studied, which is concretized as the slowing down of dynamics at 

temperatures near 2/3 of the melting temperature. A significant number of GF materials exist in 

nature and human-made materials. At low temperatures, this wide variety of materials exhibits 

tendency to form medium or short-range structural order, but still shows similar or enhanced 

mechanical properties as solid.  

Take metallic glasses (MG) as an example, MGs are metallic alloys with amorphous 

structure. The main method for synthetization is quenching the high-temperature metallic melts 

to room temperature with a high cooling rate, thus the liquid structures are “frozen” before 

metals have the chance to crystallize. 1,2 The existence of the amorphous structure prompts that 

MGs do not have crystalline defects such as vacancies, dislocations, and grain boundaries. The 

lack of translational long-range order provides unusual structural properties and non-traditional 

deformation mechanisms; it also empowers this special kind of materials with superior high 

strength, large ductility, high hardness, and high resistance to corrosion compared with their 

crystalline counterparts.  

Another example of GF liquids would be most of the water appearing in the universe. 

Amorphous water ice is found as interstellar ice in the dense molecular clouds using 

spectroscopic. 3  The formation of this unusual structured ice is caused by the low-pressure 

vapour deposition. 3 Also the amorphous silica, the result of volcanic activity, constitutes the 
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earth crust. 4 A prerequisite in generating the amorphous structure in GF liquids is that 

crystallization is depressed, and normally achieved by applying a relatively high cooling rate to 

prevent nucleation in the systems. Normally viscosity  shows an exponential increase with 

decreasing temperature T, which could be described using the Arrhenius equation: 𝜂 =

 𝜂0exp (𝑊/𝑘𝑇). As expected, if the material follows the Arrhenius temperature dependence, a 

linear relationship should be observed between log(𝜂) and  log(1/𝑇). However GF liquids does 

not follow the rule as shown in Figure 1.1, and exhibit deviation from the behavior of SiO2 

which is known to show near-Arrhenius behavior. 5  

 

 

Figure 1.1 Relationship between T and h in a wide range of GF liquids. 5 
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Relaxation in GF liquids happens in a hierarchical order, involving separate relaxation 

processes in the timescales and length scales. These relaxation processes both have different 

influences on the observable properties of this broad class of materials. The character of these 

processes is found to be greatly dependent on the T. To be more specific, at elevated T, only 

structural relaxation process exists while the properties of the fluid show Arrhenius relaxation. In 

this ‘homogenous’ liquid regime at elevated T, the shear viscosity  of the liquid behaves 

consistently as simple liquid, also the Stokes-Einstein relation 𝐷 =  𝑘𝐵 𝑇/6𝜋𝜂𝑟  between D and 

viscosity  still holds.  

At T lower than onset temperature TA the relaxation has switched to non-Arrhenius mode. 

Relaxation time  and viscosity  may undergo dramatic change by more than 15 orders of 

magnitude in the range of T below TA. And further, a primary relaxation process called -

relaxation has raised, ranging from ps to even minutes. On a much shorter timescale of ps, an 

initial relaxation process has occurred in the glass-forming liquids and very small molecules like 

water, identified as ‘-relaxation’ or ‘fast’ relaxation process. 6 As shown in Figure 1.2, the two-

point density correlation function indicates that glass-forming liquids typically exhibit a multi-

stage hierarchical process. The -relaxation clearly shows retardation as temperature decreases, 

also the short time -relaxation has emerged. There is a growing consensus that -relaxation is 

associated with cooperative motion and has unprecedented significance in understanding the 

many properties of the materials. Much of the modeling of GF liquids has focused on the -

relaxation since its associated relaxation time  is important in explaining challenges in diverse 

practical applications.7–11 However, -relaxation in glass-state has drawn increasing attention 

because of its short time scales. Particularly, it is widely accepted that the ‘anomalous’ 

temperature dependence of thermal conductivity, specific heat and some low temperature-
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dependent properties in the GF liquids could be attributed to -relaxation. 6,12–15 The relaxation 

time  of -relaxation has been identified as the primary relaxation process of GF liquids in the 

fluid state. However, when T id below the glass transition time Tg  usually comes to several 

minutes and the dynamics will slow down. 16 Since it is not feasible or simulation-wise to study 

the -relaxation process in the glass state, the fast relaxation process has become preeminently 

important in understanding the performance of glass materials for many practical applications. 

The urgent need for comprehending the molecular origin of -relaxation has become both 

theoretical and technological concern.  

 

 

Figure 1.2 Sketch of two-point density correlation function 𝑄 as a function of time t for a binary 

glass-forming liquids. 17  

 

Many molecular dynamics simulations 18,19 and experimental studies 20,21 have proposed 

that -relaxation is closely related to collective atomic motion which takes place on a ps time 
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scale and in form of particles undergoing string-like displacements over a broad class of GF 

liquids. Betancourt et al. have examined the atomic motion related to - and -relaxation in a 

coarse-grained polymer melt. Since relaxation occurs in a multi-stage hierarchical order, strings 

have been acted as excitation in different regimes. However, the variation of string length with 

temperature is reversed in these processes. At first, the inertia motion of the particles dominates 

-relaxation, and fast “stringlet” collective motion has been suppressed as temperature decreased. 

Then the string-like cooperative motion governed by diffusion has raised and mediated the 

relaxation approaching glass-transition. 6 Near TA characteristic timescales of - and -relaxation, 

 and  become equal. Then upon cooling the increase of molecular caging inhibits the 

collective motion at short times. Particles are confined in the cage formed by surrounding 

particles, leading to the large-scale collective motion, string-like cooperative motion, is desired 

to mediate the structural relaxation. A relationship between strings and stringlets corresponding 

to a connection between - and -relaxation has been established. 6,22  

 In the low-T regime (below Tg), relaxation and mobility are ceaselessly changing, and it 

is not rational to simply extrapolate the dynamical properties from the T regime above Tg. Rather, 

a new relaxation process has emerged identified as Johari-Goldstein (JG-) or “slow- ” 

relaxation process. This process can not be directly confirmed using intermediate scattering 

function, 6 however it has dominated the diffusion and other material properties in the glass state. 

JG- relaxation has replaced -relaxation in the glass regime as the primary relaxation process 

concerning the material properties. Naturally, the engineering community has put much effort in 

understanding this fundamentally significant process in metallic, polymeric and other GF liquids 

to interpret the basic engineering properties like toughness, hardness, and impact resistance.23,24 

Recent simulation results have shown that fast -relaxation is corresponding to the highly mobile 
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atomic movements which follow Arrhenius temperature dependence and exhibit exponential 

decay in the correlations. And -relaxation is identified with major structural rearrangements and 

shows highly non-Arrhenius behavior. Stretched exponential decay could well capture the time 

dependence of -relaxation. 25–27  

 

1.2 Dynamic heterogeneity  

 Based on the extensive simulation studies on the GF liquids, we can conclude that the 

slowing down of the dynamics and the accompanying increase in the activation energy for 

relaxation and diffusion often correlates with the growth in DH which can be defined by the 

spatially divided regions involving particles with relatively high and low mobility. The observed 

change in mobility is the comparative of the Brownian motion of particles. The geometrical form 

of heterogeneities has shown a lack of sensitivity to the different kinds of compositions, 

remarkably similar to the performance of DH in the metallic glasses 28 and polymeric GF liquids 

29. This universal feature shared between metallic glasses and polymeric GF liquids is the result 

of the morphological similarity. A variety of systems besides metallic glasses and polymeric GF 

liquids have displayed this kind of DH in the form of spatial correlations shown in Figure 1.3. 

Here, clusters or particles with relatively high and low mobility have emerged in different 

systems, although the mobility is probed using different methods. Also, it reveals that particles 

with similar mobility tend to aggregate rather than appear randomly throughout the system, 

suggesting that structural relaxation in GF liquids is a fluctuated dynamical process. Therefore, 

we could classify the particles in the systems into mobile and immobile clusters over an 

intermediate timescale.   
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Figure 1.3 The examples of dynamical heterogeneity in granular matter 30, colloidal hard spheres 

31, repulsive disks 31. 

 

1.3 Characterization of Dynamical Heterogeneity 

  After the discussion on the dynamic heterogeneity, the underlying question is what 

method could be used to characterize this phenomenon. Experimentally, the existence of DH can 

be observed using different techniques. Gokhale et. al have utilized video microscopy and 

holographic optical tweezers to show that ‘Dynamical Facilitation’ in colloidal GF forming 

liquids increases with the density inclusive of the fraction of pinned particles. 32 Some well-

established theories like free-volume 33 and mode-coupling 34,35 which treated the liquid as 

homogeneous would not be adequate to explain this heterogeneity. Theoretically, Adam and 

Gibbs have proposed specific dynamic structures called “cooperatively rearranging regions” 

(CRRs) in 1965. 36 They proposed that the increase in the relaxation time and dramatic dropping 

in the diffusion rate could attribute to the increment of these hypothetical clusters. Postulation of 
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the direct proportional relation between the activation energy Δ𝐺𝑎 and the product of the number 

of particles in the proposed clusters and the activation free energy Δ𝜇𝑎 under the condition of 

high temperature and Arrhenius behaviour was purported which could be expressed as Δ𝐺𝑎(𝑇) =

 𝓏(𝑡)Δ𝜇𝑎. To correlate the theoretical hypothesis with the experiments, they further speculate 

that 𝓏(𝑡) exhibits inversely scaling with the configurational entropy 𝑆𝑐  of the GF liquids. The 

abstract of AG’s theory is that as T decreases the number of accessible configurational states 

rapidly drops. Then diffusion and relaxation have to happen through the collective motion of 

CRRs, and this correlated excitation results in an increase of the activation energy of transport. 

28,36 The random first-order transition (RFOT) theory 37–39 is proposed on the basis of the same 

concept to explain the slow down of dynamics upon cooling, which states that the growth in the 

size of these cooperatively dynamic clusters holds account for the increase in the activation 

energy of diffusion and structural relaxation. However, AG and RFOT theories both provide 

only conceptual understanding and little information on the definition or algorithm for the CRRs.  

 Recent computational works have attempted to understand DH founded on the 

fundamental concepts of CRRs by modeling the string-like cooperative clusters as a form of 

equilibrium polymerization. 29,40 The string model (SM) has been developed to quantitively 

describe the relaxation process in the polymeric GF liquids at different temperatures. 29 This 

theory has been tested over a large range of polymeric GF liquids including thin polymer films 

with various thicknesses, substrate roughness, and substrate rigidity also polymer 

nanocomposites with different compositions and concentrations and have shown great coherency 

with the SM. 41,42 The SM theory has been tested on metallic GF liquids to further support its 

universality in describing the DH in the wide range of GF liquids. 28 In Figure 1.4, a typical 

string-like cooperative motion in the metallic GF liquids has been shown geometrically. The 
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direction of the movement was identified using arrows. Zhang et al. 28 have investigated Cu- Zr 

metallic GF liquids over a wide range of temperatures and compositions with a focus on the 

mobile particles inside the system. With the tools derived from polymeric GF liquids, the 

dynamic of metallic GF liquids can be described by DH in the terms of clusters undergoing 

collective motion. Strings exhibit a dynamical appearance and disappearance within the string 

lifetime t* in the system. There is no certainty that particular atom will always participate in the 

string-like cooperative motion. At this moment, one particular atom could be mobile, it might be 

immobile at next time interval. String length L confirms to be a good approximation to the 

changes in the diffusion coefficients and relaxation time. There exists a dynamic equilibrium 

between localized (‘solid-like’) and wandering (‘liquid-like’) particles then the dynamic 

heterogeneity could be treated as a type of self-assemble process. 43 

 

 

Figure 1.4 Typical string-like cooperative motion in Cu64Zr36 at T = 1000 K. 28 
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 Hypothetically, Grain boundaries (GBs) in the polycrystalline caused by adjacent grains 

with different orientations should have shared common features with GF liquids, since GBs 

exhibit medium-range order similar to GF liquids. 44,45 It leads to the suspicion that similarity in 

the dynamics should be observed in both systems. GBs have been observed to be ordered and 

relatively immobile at low T, however, an increase in T has ignited the region and resulted in 

high mobility and structural disorder. The nonlinear relationship has been observed in the 

Arrhenius plot of GBs which is the most common feature in the GF liquids. 45 Zhang et al. have 

observed similar string-like cooperation motion inside the grain boundaries. Previous findings in 

GF liquids have shown that the average string length n and the effective activation energy for 

structural relaxation grow as T decreases. 46,47 Similar correlation still holds in GBs, even the 

magnitude and distribution of string length are practically the same in both materials. 45 Besides 

GBs, the string-like cooperative motion has been observed in other non-typical GF liquids like 

interfacial dynamics of Ni nanoparticles, melting and freezing of nanoparticles, and the 

interfacial dynamics of crystalline Ni. 48–50 Especially in crystalline materials, many of the 

important properties such as mechanical properties, catalytic behaviour, is essentially determined 

or deeply influenced by the dynamics and thermodynamics of their interfacial regions. At 

elevated temperatures, researchers find that the dynamics inside the region behave similarly to 

the GF liquids. The collective atomic dynamics exhibiting in the interfacial region of crystalline 

Ni are strongly consistent with the findings in GF liquids. Zhang et al. show that  the noise 

component  of 〈𝑢2〉 is directly related to the average string length L, the extent of string-like 

collective motion, by a simple equation 𝛼 = 𝐿 − 1. 48 

Another commonly used analysis measure utilized in the characterization of DH would 

be non-Gaussian parameter, 2, which is defined to be zero when the particle is moving as 
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Brownian particles. An inverse proportional relation has been discovered between D/T where D 

is the diffusion constant and t* the peak time of 2 confirming that t* is a characteristic timescale 

to represent mass diffusion in GF liquids and other non-typical GF liquids. All the investigation 

done on these strongly interactive particle systems has developed a similar trend that the lifetime 

of the mobile clusters exhibiting the string-like cooperative motion is controlled by the mass 

diffusion relaxation time, t*. Schober and coworkers have studied relaxation in a soft-sphered 

glass and accentuated that the existence of string-like motion on the timescale of picoseconds 

indicating the onset of atomic caging could have great influence on studying the intrinsic 

properties of GF liquids. 51,52  

 Since correlation between mobile atoms, string-like cooperative motion and mass 

diffusion has been established, the question falls on which timescale could correlate with 

momentum diffusion i.e., shear viscosity. We have noticed that the structural relaxation time , 

a characteristic time developed from the intermediate scattering function has been frequently 

affiliated with the momentum diffusion. 53 Based on the Maxwell scaling relation 𝜂 =  𝐺∞𝜏𝑠 , we 

can conclude that the shear viscosity and high frequency shear modulus 𝐺∞ and the shear stress 

relaxation time 𝜏𝑠  are highly correlated. Then the expectation of the structural relaxation time 𝜏𝛼  

to vary with T like 𝜂 has been confirmed in many simulation studies on metallic GF liquids 28, 

supercooled water 54, polymer 55. A “decoupling exponent” 𝜉 has been identified to describe this 

decoupling phenomenon between the characteristic timescales of structural relaxation and 

diffusion 𝑡∗ ~ (𝜏𝛼)
1−𝜉  which could quantify the breakdown of the Stokes-Einstein relation.28,54 

Starr et al. then have identified that the time scale of highly mobile particles correlates with the 

string-like motion, while the time scale of particles with low mobility is associated with the 

structural relaxation time. These two distinct dynamical clusters and different characteristic 
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timescales have perfectly explained the decoupling phenomenon between structural relaxation 

time and diffusion. 55  

 

1.4 Objectives of this study 

 The intensive research work mentioned above indicates that DH is a universal feature in 

the GF liquids. Much simulation research on polymeric GF liquids has tried to develop a 

universal measure on characterizing DH. It is not yet clear whether supercooled interfacial layer 

of water exhibits dynamical heterogeneity sharing common features with GF liquids. We have 

investigated the collective motion of water molecules in the mobile interfacial layer over a wide 

range of Ts. The analysis tools drawn from polymeric GF liquids have been utilized to confirm 

the universality of the DH phenomenon in different metallic GF liquids i.e., Cu-Zr, Ni-Nb, and 

Pd-Si alloys. The structural origin of this universal phenomenon has been examined by 

identifying the clusters with dramatically different mobilities. As the third part of the study, 

simulation was performed in comparable size scales and T well below Tg to provide insight into 

the initiation of shear band (SB) formation in deformed metallic glasses which could help 

understand the atomic mechanism of shear banding and lead to a solution to overcome the 

limited application of metallic glasses.  
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2. Simulation methodology 

Molecular dynamics simulation has been employed to study atomic-level process, which 

is not feasible nor efficient with experiments. Before the emergence of MD simulation, 

researchers often use direct observations or analytical machines to obtain insight on different 

matters. With great effort made in the computational power and theoretical studies, MD 

simulations have been empowered to simulate the phenomena that are can hardly be 

characterized by experiments. Especially in the field of simulating metallic glasses, with the high 

requirements on the experimental level and lack of understanding on the atomic level 

applications of MGs have been limited. MD simulations could provide in-depth insights on the 

atomic trajectory, atomic stress, and structural information which are not acquirable in the 

experiments.  

 

2.1 Equations of motion 

 The classic molecular dynamics method is established on Newton’s second law : 

 𝐹𝑖 = 𝑚𝑖𝑎𝑖 2.1 

where 𝐹𝑖 , 𝑚𝑖 , and 𝑎𝑖 are the force, mass, and acceleration of atom 𝑖. When the force on each atom 

in the system is known and initial positions and velocities of each atom are assigned , then it is 

feasible to determine the acceleration of each atom 𝑎𝑖.  

 𝑎𝑖 =  
𝑑𝑣𝑖

𝑑 𝑡𝑖
= 

𝑑2𝑟𝑖

𝑑𝑡2
 2.2 
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where 𝑣𝑖 is the velocity of atom 𝑖 and can be computed by calculating the second derivative of 

displacement of atom 𝑖  with respect to time. The acting force 𝐹𝑖  can be expressed as the 

derivation from the interatomic potential energy 𝑉(𝑟𝑖):  

 𝐹𝑖 =  −𝛻𝑉(𝑟𝑖) 2.3 

Combining equation 2.1, 2.2 and 2.3, then we have 

 −
𝑑𝑉(𝑟𝑖)

𝑑𝑟𝑖
= 𝑚𝑖

𝑑2𝑟𝑖

𝑑𝑡2
 2.4 

In statistic mechanics, Hamiltonian, H, is employed to describe a microstate in the whole system, 

which can be illustrated by the sum of kinetic energy K and potential energy U. Both energies 

can be expressed using functions of Cartesian momentum and coordinates of each microstate.  

 𝑯 = 𝐾(𝑝) + 𝑈(𝑟) =  ∑
|𝑃𝑖|

2

2𝑚𝑖
+ 𝑈(𝑟𝑁) 2.5 

where 𝑃𝑖 is the momentum of atom 𝑖. Through derivation on the Hamiltonian’s equation, we can 

obtain the force acting on each atom and velocity of each atom shown as follow:  

 −
𝜕𝐻(𝑟,𝑝)

𝜕𝑟𝑖
= 

𝑑𝑝𝑖

𝑑𝑡
=  𝐹𝑖 2.6 

 −
𝜕𝐻(𝑟,𝑝)

𝜕𝑝𝑖
= 

𝑑𝑟𝑖

𝑑𝑡
= 

𝑝𝑖

𝑚𝑖
 2.7 

The integration of Hamiltonian’s equations of motion has been performed each step of the MD 

simulation to acquire the updated positions and velocities of the particles in the system. Then the 

trajectory of each atom has been stored. A schematic of MD simulation is shown in Figure 2.1. 
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Figure 2.1 Schematic of MD simulation 

 

 In the MD simulation, one of the key parts is the numerical algorithms of the equations of 

motions. The accuracy and simulation time are highly relied on the choice of the algorithm. The 

Velocity Verlet  algorithm 56 was developed to overcome the limitations of the Verlet algorithm 

57 and obtain higher accuracy. The velocity 𝑣𝑖 is calculated at mid-step: 

 𝑣 (𝑡 +
𝛿𝑡

2
) = 𝑣(𝑡) +

1

2
𝑎(𝑡)𝛿𝑡 2.8 

The positions 𝑟𝑖 are then computed using the new 𝑣𝑖 

 𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝑣(𝑡 +
𝛿𝑡

2
)𝛿𝑡 2.9 

In this form, the velocities 𝑣𝑖 are calculated at mid-step using the force and velocity from step 𝑡. 

Then it is sufficient to allow the calculation of the atom positions at 𝑡 + 𝛿𝑡. Using the Velocity 

Verlet algorithm will require less usage of computer memory.  
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2.2 Potentials 

 Potential energy surfaces are required to be constructed before molecular simulation. 

Potential is a function 𝜐(𝑟1 ∙∙∙ 𝑟𝑖 ∙∙∙ 𝑟𝑁) of the positions of the nuclei, served as potential energy 

surface of metallic glasses when the atoms are arranged in a specific configuration. The 

Embedded Atom Method (EAM) 58 has incorporated many-body interactions unlike pairwise 

interaction considered only two-body approximations. EAM can guarantee quantitative 

agreement with experimental data although more time and memory are required. Another 

appealing reason for using EAM is its physical picture of metallic bonding. Each particle is 

constrained in a host electron gas created by the surrounding particles, which is intrinsically 

more complex than the simple pair-wise model. Particularly, EAM empowers a simple way to 

establish how coordination influences the bonding inside the system, and naturally leads to a 

distinguishment between bulk and surface bonds. 59  

 The total potential energy is represented by the following equation: 

 𝑈 = ∑ ∑ 𝜑𝛼𝑖𝛼𝑗𝑁
𝑗=𝑖+1 (𝑟𝑖𝑗)+ ∑ Φ𝛼𝑖 (𝜌𝑖)

𝑁
𝑖=1

𝑁−1
𝑖=1  2.10 

 In the above equation, 𝑖 and 𝑗 represent different atoms; 𝑁 is the total number of atoms in 

the system; 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗; 𝛼𝑖 is the element type of atom 𝑖; 𝜌𝑖 is the 

background charge density, which is expressed by: 

 𝜌𝑖 = ∑ 𝜓𝛼𝑖𝛼𝑗 (𝑟𝑖𝑗)𝑗  2.11 
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 Total potential energy consists of two components: a pairwise and a local density part. 

The functions are determined by taking the sublimation energy, equilibrium lattice constant, 

elastic constants, and vacancy-formation energies into consideration. 

 

2.3 Ensembles 

 In statistical mechanics, all the possible microstates like coordination and momentum of 

the particle will be the subject of interest. The behaviour of all the possible microstates could 

eventually represent the change in the macroscopic properties for instance temperature T, 

pressure P and volume V. An ensemble refers to a collection of microstates that could possibly 

exist in the system. According to the ergodic hypothesis, the correlation between MD simulation 

and experiments can be established, since we could consider the systems are consisted of many 

replicas, each replica could be considered as ensemble. Over a long period of time, the time 

average of the observed properties could be considered as ensemble average. To make the 

connection between simulation and experiments, sufficient time for the microstates to fulfill the 

quasi-ergodic theorem is necessary.  

Different statistical ensembles have been generated based on different thermodynamic 

parameters. We have listed four kinds of ensembles in Figure 2.2. A microcanonical ensemble 

NVE is considered as an isolated system, Number of particles, N, volume of the system, V, and 

the total energy, E are conserved. The system and surroundings are completely cut off. A 

canonical ensemble NVT represents fixed number of partic les and volume. The system could 

exchange energy through heat with a heat reservoir to keep temperature fixed, but there will be 

no work done by the system on the reservoir or vice versa. In isothermal-isobaric ensemble NPT, 
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pressure could be controlled by changing the volume of the system, and temperature is being 

fixed the same way as it is in the NVT ensemble. In the grand canonical ensemble VT, since the 

number of the particles is not fixed then the chemical potential could be controlled through 

exchanging particles with the surroundings.  

 

 

Figure 2.2 Schematic illustrations of different ensembles (a) microcanonical ensemble NVE, (b) 

canonical ensemble NVT, (c) isothermal-isobaric ensemble NPT, and (d) grand canonical 

ensemble VT. 

 

2.4 Periodic boundary conditions 

 Considering the rational utilization of the computing power, the whole system simulation 

is unnecessary and infeasible. An area of interest in the whole system is chosen prior to the 
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simulation. The finite size of the unit cell will cause boundary effects and lead to uncertainty in 

connecting the simulation with macroscopic sample. Usually, when the goal of the simulation is 

to study bulk properties, periodic boundary conditions (PBC) will help to overcome the 

limitations on the number of atoms in each simulation cells. In Figure 2.3 a representation of 

PBC is shown. In PBC presented systems, the primary unit call is replicated in all simulation 

directions shown as image cells. All the image cells share the same number, positions, and 

momentum of particles. When the atom in the primary unit cell moves, the corresponding atom 

in the image cell will move in the same manner. Once the atom leaves the cell from one end, it 

will re-enter the cell from the other end. Also, the atoms could interact across the boundary since 

PBC has minimized the surface effect 60. For the study of the surface properties, vacuum spaces 

will be added to the surface of interest.  

 

 

Figure 2.3 Periodic boundary condition (PBC) represented in two dimensions (2D).  
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2.5 Temperature and pressure control 

2.5.1 Temperature Control 

Isothermal-isobaric NPT ensemble is mostly used in the study. Temperature is controlled 

by Nose-Hoover thermostat. The general idea of the Nose-Hoover method 61,62 is to consider the 

heat reservoir as an integral part of the whole system with an additional fictitious coordinate.  

 𝐻𝑁𝑜𝑠𝑒 −𝐻𝑜𝑜𝑣𝑒𝑟 = ∑
𝑃𝑖

2

2𝑚𝑖
+ 𝑈(𝑅) +

𝜁2𝑄

2

𝑁
𝑖=1 + (3𝑁)

ln 𝑠

𝛽
 2.12 

The last two terms in the above equation are correlated with the external hear reservoir. 𝜁 

represents the friction coefficient. By connecting the system with an external hear reservoir the time 

evolution of the positions and momenta needs to be updated.  

 𝑎 =
𝑑𝑣𝑖

𝑑𝑡
= −

1

𝑚𝑖

𝜕𝑈(𝑅)

𝜕𝑟𝑖
− 𝜁𝑣𝑖 2.13 

 
𝑑𝜁

𝑑𝑡
= (∑𝑚𝑖|𝑣𝑖|

2 − 3𝑁𝑘𝐵𝑇)/𝑄 2.14 

The choice of the heat reservoir mass Q influences the coupling between the system and the 

external heat reservoir.  

 

2.5.2 Pressure Control 

The pressure is controlled by the Parrinello-Rahman algorith 63, an extension method of 

Anderson 64. Initially, Anderson barostat only allows the simulation cell to scale the volume. We 

could consider Andersen barostat as an extended system method by connecting the system to an 

external variable. This coupling system simulate the action of piston on a real system. 64,65 By 

applying Parrinello-Rahman barostat, the simulation box is allowed to change shape and size. 
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The simulation cell is allowed to have an arbitrary shape. The new coordinates are rescaled as: 

𝑟𝑖 = 𝐇𝑠𝑖 where H is a 3 × 3 matrix. Then the potential and kinetic energies are rescaled with the 

fluctuating volume.  

 

2.6 Data Analysis Techniques 

2.6.1 Mean Squared Displacement  

 A representative time correlation function is the mean square displacement (MSD) which 

is expressed as 〈𝑟2(𝑡)〉 = 〈(𝑟(𝑡) − 𝑟(0))〉2 for all atoms. At ultrashort times, the MSD and time 

have a quadratic dependence. This stage is the so-called “ballistic regime”, because particles 

move ballistically with constant velocity, and have not “felt” each other. At long times, collision 

happens between particles. Diffusive motion appears and MSD has linear relation. Diffusion 

coefficient is defined at this stage. (∆𝑟(𝑡))2 = 6𝐷𝑡, where D is diffusion coefficient. As we can 

notice there is a caging regime at low temperatures. At this point, MSD is approximately 

constant, representing particles are trapped by the particles near them. When temperature 

decreases, the dynamics slows down because of the increased length of the plateau. 
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Figure 2.4 Mean square displacement of A and B particles of the Kob-Andesen binary Lennard-

Jones mixture. 66  

 

2.6.2 van Hove Distribution 

 Self-part of the van Hove correlation function 𝐺𝑠(𝑟,∆𝑡)  is utilized to characterize 

fundamental aspects of dynamic properties, which illustrates the probability distribution of the 

position 𝑟 of an atom after a time ∆𝑡. 67,68 It is written as: 

 𝐺𝑠(𝑟,∆𝑡) =
1

𝑁
〈∑ 𝛿(𝑟𝑖⃗⃗ (∆𝑡) − 𝑟𝑖⃗⃗ (0)− 𝑟)𝑁

𝐼=1 〉 2.15 

 At small ∆𝑡, 𝐺𝑠(𝑟, ∆𝑡)  has become Gaussian, indicating the existence of harmonically 

localized motion. From 𝐺𝑠(𝑟, ∆𝑡) at different time intervals, we can observe the path taken by 

atom when it moves around and quantify these motions in terms of atomic displacement. When 
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∆𝑡 increases, non-Gaussian behaviour is expected. The non-Gaussian parameter 𝛼2 can be served 

as basic measure of dynamic heterogeneity. 69,70 It can be expressed mathematically as: 

 𝛼2(∆𝑡) =
3〈𝑟4(∆𝑡)〉

5〈𝑟2(∆𝑡)〉2
− 1 2.16 

where 𝑟(∆𝑡) is the displacement of atom after time ∆𝑡. 

 By performing Fourier transformation of van Hove correlation function, self-intermediate 

scattering function is obtained as 68: 

 𝐹𝑠(𝑞, 𝑡) = 〈𝑒𝑥𝑝{−𝑖𝑞[𝑟𝑖(𝑡) − 𝑟𝑖(0)]}〉 2.17 

𝐹𝑠(𝑞, 𝑡) can estimate the mean structural relaxation time. The dynamic structural factor 𝐹𝑠(𝑞, 𝑡) 

always exhibit a plateau stage then associated with stretched exponential behaviour. At low 

temperatures, a plateau stage happens at an intermediate time because of the existence of cage 

motion (𝛽 relaxation). Then particles leave cages and exhibit Kohlrausch (stretched exponential) 

behaviour. At high temperatures, the decay of correlation is notable after microscopic regime. 17 

 

2.6.3 Four-point Susceptibility 

The observation of clusters with relatively high or low mobility has intrigued many 

attempts to propose a unified way to distinguish these two clusters. The emergence of the four-

point correlation function has been broadly accepted as a universal tool to analyze dynamical 

heterogeneity. First time-dependent self-overlap function 𝑄𝑠(𝑡)  71 is defined as follow: 

 𝑄𝑠(𝑡) =  ∑ 𝜔(|𝑟𝑗(𝑡) − 𝑟𝑗(0)|)𝑁
𝑗=1  2.18 

the mean-squared variance of 𝑄𝑠(𝑡)  then defines the (self-part) of 𝜒4 72 
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 𝜒4,𝑠  =  
𝑉

𝑁2
[〈𝑄𝑠(𝑡)

2〉 − 〈𝑄𝑠(𝑡)〉
2] 2.19 

 

 

Figure 2.5 Time dependence of 𝜒4(𝑡) representing the spontaneous fluctuations of the self-

intermediate scattering function in a Lennard-Jones supercooled liquid. 73,74  

 

2.6.4 String-like cooperative motion 

Dynamic heterogeneity has been identified in glass-forming liquids for quite some time. 

MD simulation with stored positions and velocities allowed us to characterize the cooperative 

motion. String-like cooperative motion implies that the spatial connection between the atoms is 

preserved to some degree as the atoms move.  

The first step in characterizing the string-like cooperative motion is to isolate the ‘mobile’ 

particles in the system. In glass-forming liquids, the mobile particles normally refer to the 
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particles with displacement larger than the average amplitude of atomic vibration and are defined 

by a threshold atomic displacement condition involving the average interatomic spacing.  

 

 

Figure 2.6 Typical string of 15 particles at T = 1840 K in homogeneous melting of Ni crystals. 50  

 

The mobile particles were identified by atomic displacement 𝑎 < |𝑟𝑖(𝑡
∗)− 𝑟𝑖(0)| < 𝑏 at 

𝑡∗. 𝑡 ∗is the peak time of non-Gaussian parameter. 𝑎 and 𝑏 are determined from self-part of van-

Hove function  𝐺𝑠(𝑟, 𝑡) at 𝑡 ∗. 

 𝐺𝑠(𝑟,∆𝑡) =  
1

𝑁
〈∑ 𝛿(𝑟𝑖(Δ𝑡) − 𝑟𝑖(0) − 𝑟)𝑁

𝑖=1 〉 2.20 

𝑎 is the value of the first minimum of the function. 

We then define a ‘mobile particle cluster’ as the group of neighbouring particles having a 

separation less than 1.2 times the interatomic spacing, 𝑟0 . Explicitly, two reference mobile 

particles 𝑖 and 𝑗, if min[|𝑟𝑖(𝑡
∗)−  𝑟𝑗(0)|, |𝑟𝑖(0)−  𝑟𝑗(𝑡

∗)|] < 1.2𝑟0 . This condition means that 

one mobile particle moved to another position, then the neighbouring particle has occupied its 
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original position. Figure 2.8 shows a typical string of 15 particles. Most representative strings are 

free end but loops also show modest frequency.  
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3. String-like Collective Motion and Diffusion in the Interfacial Region of Ice 

3.1 Introduction 

Crystalline materials generally become “reactive” at T well below their melting 

temperature Tm and, in particular, Tammann suggested a widely reported empirical rule of thumb 

that this onset temperature for the reactivity of solid state materials should be   2 /3 Tm. 75–77 It is 

natural to suppose that this onset of reactivity is associated with a change in the interfacial 

mobility given that this phenomenon is rather independent of the chemical nature of the material. 

In previous work 48, we examined this phenomenon in the interfacial dynamics of crystalline Ni 

where a sharp rise in atomic mobility was observed in the (110) interface of Ni at temperatures 

(T) near 2 Tm / 3 and the thickness  of this interfacial layer was observed to progressively 

increase with T up to Tm. Moreover, the dynamics within this mobile interfacial was neither like 

a perfect crystal or a simple liquid, but rather resembled the heterogeneous dynamics of GF 

liquids where atomic motion takes the form of string-like cooperative atomic exchange events 

and where individual particle displacement distances on a ps timescale exhibit large fluctuations 

reminiscent of earthquake data. Since the presence of such an interfacial layer can be expected to 

greatly impact the reactive, frictional and mechanical properties of crystalline materials, it is of 

interest to investigate the generality of this phenomenon by studying the interfacial dynamics of 

other substances. 

We choose ice for the current study since it is a rather distinct chemistry from Ni and 

because the interfacial dynamics of ice is recognized to be important in a wide range of 

geophysical phenomena such as frost heave, the movement of glaciers, glacial motion, snow 

metamorphosis by grain sintering, the electrification of thunderclouds through charge and mass 

transfer between colliding ice particles, reactions in atmospheric ice particles influencing the 
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ozone hole, etc. 78–82  The frictional properties of ice are also known to be greatly influenced by a 

mobile interfacial layer on ice below its Tm, a phenomenon relevant to the friction of tires and 

shoes on ice, and as well as skis, ice skates and other winter sporting equipment. Because of 

these many practical applications areas, the interfacial dynamics of ice has been studied in many 

previous experimental and computational studies, 78–81,83 allowing us to make comparison with 

our simulation observations. 

Faraday 84,85 was apparently the first scientist to suggest that the relative low friction of 

ice over a wide T range below Tm = 273 K was due to the formation of a mobile layer at the 

surface of ice and he performed ingenious measurements to support the mobile interfacial layer 

hypothesis. In the absence of a theoretical explanation of this phenomenon, however, it took over 

a hundred years for these arguments and measurements to be appreciated. 78–81 Recent 

experimental 86,87 and computational studies 88 have confirmed that there is indeed a mobile 

interfacial layer near the surface of ice whose thickness grows upon approaching Tm , a 

phenomenon qualitatively resembling our previous observations on crystalline Ni. 48 We then 

examine the interfacial dynamics of ice and compare with our former simulations of interfacial 

dynamics of crystalline Ni. We specifically adopt a state of the art intermolecular water potential 

(TIP4P/2005) 89 for our simulations, and we focus our attention on the secondary prismatic plane 

of hexagonal ice, because its relatively loose packed nature leads us to expect that this should be 

the most mobile interface of ice. Correspondingly, the (110) interface of Ni is the most loosely 

packed low index interface of crystalline Ni, making this interface particularly suitable for 

comparison with our ice simulations. We note that Conde et al. 90 have recently simulated basal 

interface of hexagonal ice and found the onset of a mobile layer at about 0.63 Tm, a finding rather 

consistent both with our former interfacial Ni study and the empirical Timmerman rule for the 



 
 

- 29 - 
 

onset of interfacial mobility. However, Conde et al. did not examine the heterogeneous dynamics 

and diffusion in this interfacial layer or utilize tools drawn from glass-forming liquids to quantify 

the dynamics of interfacial ice. We also note that Watkins et al. 91,92 and Limmer and Chandler 93 

have also recently emphasized that interfacial water has many properties in common with glass-

forming liquids and, correspondingly, Smit and Baker recently reported direct surface sum-

frequency generation spectroscopy evidence indicating that interfacial ice contains a spectral 

component that is indistinguishable from supercooled water over a wide temperature range 

below the melting temperature. 94 However, it is not yet clear whether supercooled interfacial 

water on a solid substrate quantitatively resembles the pre-melted water layer in the interfacial 

region of ice since an active coupling between the ice underlayer and the mobile interfacial layer 

might lead to distinct dynamic features from a simple supercooled liquid. Below, we indeed find 

this to be the case. 

 

3.2 Simulation Methodology 

The intermolecular interactions of water molecules in the hexagonal ice state were 

described by the TIP4P/2005 water potential, 89 which is a rigid non-polarizable water model that 

consists of three fixed point charges and one Lennard-Jones center. The parameters in the 

TIP4P/2005 were optimized by fitting to six properties, i.e., the temperature of maximum density, 

the enthalpy of vaporization, the densities of liquid water at ambient conditions, the density of 

ice II at 123 K and zero pressure, the density of ice V at 223 K and 530 MPa, and, the range of 

temperatures at which ice III is the thermodynamically stable at a pressure of 300 MPa. 89 A 

previous comparative study of five related non-polarizable water models, namely TIP3P, TIP4P, 

TIP5P, SPC/E and TIP4P/2005, suggests that TIP4P/2005 potential model shows an overall 
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better performance than most other non-polarizable water models. 95 In particular, TIP4P/2005 

ice has a melting temperature Tm near 252 K, compared to Tm = 146 K for TIP3P water, Tm = 215 

K for SPC/E water, Tm = 232 K for TIP4P water, and Tm = 274 K for TIP5P water. 96 Recent 

simulations of water in its liquid state using the TIP4P/2205f model 97 have shown quantitative 

agreement with water self-diffusion and shear viscosity data over a large temperature range (228 

K to 360 K) where the heterogeneous dynamics of glass-forming liquid was exhibited over this 

entire T range. 

Our simulation cell consists of 4,800 water molecules with a dimension of about 8 nm x 

4.5 nm x 4.5 nm, oriented with crystallographic directions ,  and [0001] in the X-, 

Y- and Z-directions. In all simulations, periodic boundary conditions were applied in Y-, and Z- 

directions and free boundary condition was applied in X-direction. Canonical ensemble (NVT) 

was employed and constant T was maintained by the Nose-Hoover method. 61,98 Molecular 

dynamics (MD) simulations were performed to characterize string-like collective atomic motion 

and self-diffusion on ice  free surface (a secondary prism face). Our MD simulations 

utilize the publicly available simulation package, Large-scale Atomic/Molecular Massively 

Parallel Simulator or LAMMPS, 99 which was developed at Sandia National Laboratories. 

Pfalzgraff et al. 100 provide excellent visualizations of the basal, prismatic  and pyramidal facets 

of ice in its hexagonal form. 

To characterize the interfacial dynamics of ice and the self-diffusivity Ds of interfacial 

atoms within the  interfacial region of hexagonal ice, we maintained our systems to fixed 

T values at which our isothermal simulations were performed: T = 210 K, 220 K, 250 K, 260 K, 

and 270 K. The “equilibrium melting temperature” Tm of 252 K was determined under the 
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condition that ice and water co-exist. We observe that no superheating is required to melt the ice 

with a free surface, as observed previously. 95 At each T, simulations were conducted for at least 

2 ns, and in some cases this time was extended to 20 ns. Diffusion coefficients Ds were 

determined from the slope of the mean-square-displacement <r2> of water molecules in the 

 interfacial layer versus time t. Specifically, the water self-diffusion coefficient Ds of the 

interfacial layer is defined by,  

 𝐷𝑠  ≡  (1/𝑁)∑ (〈Δ𝑥𝑖
2〉 +  〈Δ𝑦𝑖

2〉 + 〈Δ𝑧𝑖
2〉) / 6 𝑡𝑖=1  3.1 

in the limit of long times where the sum ranges all the atoms in the mobile interfacial layer. 

Below, we describe how the interfacial layer of ice is defined. It should be appreciated that Ds is 

an average diffusion coefficient describing the mobility in this layer as whole so that gradients of 

mobility in the interfacial layer are not considered. 

Our crystalline ice material is modeled as a film having a thickness of 8 nm where 

periodic boundary conditions are considered in the plane of the film. We illustrate this film 

structure in Figure 3.1 at T = 250 K where we show an illustrative atomic configuration. The 

melting temperature Tm of bulk TIP4P/2005 water equals Tm = 252 K so that T = 250 K is slightly 

below Tm in our water model. The ice interfacial region is clearly somewhat disordered with 

respect to the film interior, consistent with previous computational and experimental studies. 78–

81,83 
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Figure 3.1 Atomic configuration of simulation cell at T = 250 K or T / Tm = 0.992 in reduced 

temperature units that should be more transferable to measurement. Red indicates oxygen and the 

blue indicates hydrogen atoms. 

 

3.3 Results and Discussion 

3.3.1 Definition of the Mobile Interfacial Layer of Ice 

Following our previous discussion of the interfacial mobile layer in crystalline Ni, we 

define the interfacial layer of the  interface of ice by calculating the mean square 

displacement <u2> of the water molecules as a function of distance from the crystal surface.  The 

thickness of the “quasi-liquid” interfacial layer is then determined between the point where the 

<u2> starts to deviate from the bulk value by ~ 5% and the point corresponding to the maximum 

value of <u2>.  
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The Debye-Waller factor (DWF) <u2> is determined after a time on the order of 1 ps 

corresponding to a caging time 45 and Figure 3.2 shows <u2> as function of distance from the 

film surface for T = 250 K film shown in Figure 3.1. We see that the average amplitude of 

atomic motion <u2> near the ice surface is much larger than in the interior of the ice slab and that 

there is an interfacial region having a T-dependent width over which <u2> decays to within about 

5 % of the nearly constant value in the center of the slab. The spatial variation of <u2> in the 

interfacial region can be fit to a good approximation by an exponential decay, as found in recent 

experimental studies on colloidal crystals 101 and in our recent study of the interfacial region of 

crystalline Ni. 48 The thickness of this interfacial layer  varies with T and we illustrate some 

representative <u2> profiles through the film in Figure 3.3 (a). We see that  grows with T, but 

its rate of growth is relatively small. We contrast this observation of a growing interfacial 

mobility length scale upon heating with a recent simulation study 102 of supercooled liquid near a 

neutral substrate of pinned water molecules where the interfacial mobility likewise varied nearly 

exponentially near the wall, but where the interfacial mobility scale increased upon cooling 

rather than heating so that it is then inappropriate to think of the interfacial mobile layer as being 

equivalent to a supercooled liquid on a non-interacting solid substrate. At the highest T simulated, 

about 3 K below Tm, we find   2.5 nm. An interfacial mobility length scale having this order of 

magnitude accords with recent computational and experimental estimates. 86,90,103 As shown in 

Figure 3.3 (b), a rough extrapolation of our   data to low T indicates that   becomes on the 

order of the diameter of a water molecule (2.75 Å) for T  165 K, corresponding to an interfacial 

layer that is a molecular monolayer.  Elastic Helium atom scattering measurements suggest that 

the onset of enhanced interfacial dynamics occurs for a comparable temperature around 180 K or 

T / Tm  0.66, consistent with the Tammann onset condition for interfacial mobility. 104 We note 
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that no direct connection can be generally made between interfacial structure, such as the 

gradient in the interfacial density, and interfacial mobility profile so that estimates of interfacial 

layer thickness from scattering measurements cannot be expected to coincide with estimates of 

the interfacial mobility gradient.  

 

Figure 3.2 Variation of Debye-Waller factor along the normal to the  interface of ice (x-

axis) at T = 250 K (above) and the corresponding atomic configuration (below). The thickness  

of the mobile interfacial layer is determined between the position where the Debye-Waller factor 

starts to deviate from its bulk value and the position where <u2> exhibits its maximum value. 

The DWF profile along Y-axis can be well-fitted by an exponential function (blue solid line), 

providing another means of estimating . 
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Estimates of the interfacial width based on thermodynamic arguments cannot then be directly 

compared to the interfacial mobility gradient scale. Further research is needed to better 

understand what factors control the width of the mobile layer of ice and other crystalline 

materials above the Tammann temperature. 

 

 

        (a)                        (b) 

Figure 3.3 (a) Variation of <u2> along direction normal to the interface of ice (x-axis) for 

different T. (b) Interfacial width  of the mobile interfacial region of ice as a function of T. 

Extrapolating  for the lowest three temperatures to a scale corresponding to the molecular 

diameter indicates that a  reduces to the scale comparable to the molecular diameter of water 

(2.75 Å) for T  165 K.  
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Figure 3.4 Mean square displacement of the water (log-log) in the  interfacial region of 

ice as a function of time at different temperatures. The inset shows the Debye-Waller factor <u2> 

in interfacial region and interior of the deep interior of crystal as a function of T. 

 

Since most measurements cannot resolve the spatial gradients in <u2> in crystalline 

materials, it is also natural to average <u2> over the entire interfacial region and compare this 

interfacial <u2> to the magnitude of <u2> deep within the interior of the ice material. We show a 

comparison of this kind as function of T in Figure 3.4 where we see that the interfacial <u2> near 

Tm can be more than a factor 2 to 3 larger than its value deep in the interior of the ice material, as 

noted previously Kawamura et al. 80,105 Our previous simulations on the interfacial dynamics of       

Ni 4 and measurements on colloidal crystals 101 indicated that <u2> of atoms in the mobile 

interfacial region is often about twice the value of the bulk  material so this significant 

amplification of <u2> near boundaries seems to be rather generic phenomenon associated with 

“interfacial pre-melting”. It is generally appreciated that this significantly larger amplitude of 
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thermally excited atomic motion near the boundaries of crystals also explains why heterogeneous 

nucleation of melting tends to initiate from the boundary region. We now take a closer look at 

the water dynamics within the mobile interfacial layer, which is sometimes termed a “quasi-

liquid” layer in the context of studies of ice. 78–81,83 

 

3.3.2 Quantifying Dynamics Heterogeneity Within the Mobile Interfacial Layer of Ice 

The van Hove correlation function Gs(r,t) describes the distribution function for 

molecular displacements from an arbitrary origin at t = 0 to a distance r(t) at time t. 

Mathematically, the van Hove correlation function Gs(r,t) is defined as, 106–108 

 𝐺𝑠(𝑟,𝑡) =  〈∑ 𝛿(𝑟𝑖(𝑡) − 𝑟𝑖(0)− 𝑟)𝑖 〉 𝑁⁄  3.2 

where ri designates the atomic position of the ith particle, r is a general position in space having a 

distance r = r from the origin, and N is the total number of atoms. For simple fluid undergoing 

Brownian motion, Gs(r,t) can be described by a Gaussian function, but in glass-forming and 

other complex fluids Gs(r,t) often develops multiple peaks reflecting the development of hopping 

molecular displacement motion in the fluid, after transient localization of molecules in cages 

created by surrounding molecules. This hopping process is evidently more complex in the 

interfacial dynamics of pre-melted crystal because there is a gradient in mobility in this layer so 

that there is averaging over hopping processes between different layers and within layers in the 

mobile interfacial layer. The position of the "hopping peak" in Gs(r,t) accordingly varies 

somewhat with T rather than remaining at a fixed scale as in glass-forming liquids at fixed 

density. We illustrate Gs(r,t) for water molecules in the ice interfacial region, defined above, in 

Figure 3.5. The van Hove function Gs(r,t) for the interfacial atoms of crystalline Ni also exhibits 
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this hopping phenomenon (See Figure 4 of ref. 4). We also remark on the general similarity 

between Gs(r,t) in Figure 3.5 for the interfacial layer of ice to Gs(r,t) for dense quasi-two 

dimensional colloidal fluids near their freezing point 109 although the height of the hopping peak 

in Gs(r,t) is clearly relatively intense in the interfacial layer of ice in comparison to the quasi-

two-dimensional colloidal suspension. Despite this superficial similarity in Gs(r,t), we expect the 

active coupling of the dynamics of the atoms of the crystal below the interfacial leads to effects 

that make the interfacial mobile layer dynamics distinct from a molecular or colloidal glass-

forming liquid and clear differences indeed emerge from the interfacial dynamics of crystals and 

glass-forming liquids below. 

 

 

Figure 3.5 van Hove correlation function in the  interfacial region of ice at different T. 
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We next consider one of the most basic measures of dynamic heterogeneity (DH) in 

glass-forming liquids, the non-Gaussian parameter, α2. This quantity is defined in terms of 

moments of the particle displacement distance from their initial position at  t = 0 after time ∆t,  

 𝛼2(Δ𝑡) =  (3〈𝑟4(Δ𝑡)〉 5〈𝑟2(Δ𝑡)〉2⁄ ) − 1 3.3 

The non-Gaussian parameter α2 is defined to equal zero for Brownian motion and this measure of 

dynamical heterogeneity has often been considered in previous MD simulation studies of GF 

liquids 110, grain-boundaries 45,111,112 and the interfacial dynamics of nanoparticles. 13,113  

 

 

Figure 3.6 Non-Gaussian parameter in the  interfacial region of ice as function of 

simulation time at different T. 

In Figure 3.6, we see that the peak value of α2 progressively increases as we move away from Tm, 

providing clear evidence for heterogeneous dynamics. The same trend in the peak value of α2 

with T is observed the (110) interfacial region of Ni in Figure 3 of Zhang et al. 48 Again the 
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analogy between the interfacial dynamics of Ni and ice is striking. Previously, Giovambattista et 

al. 53,114,115 observed a structurally similar dynamic heterogeneity in cooled liquid water and this 

phenomenon is familiar from experiments and simulations on essentially any glass-forming or 

incipiently freezing liquids.  

It is well known that heterogeneous dynamics of glass-forming liquids is highly 

correlated with a non-Arrhenius self-diffusion coefficient Ds. Previous experimental and 

simulation observations on interfacial diffusion coefficients of metallic crystals as a function of T 

have also indicated a non-Arrhenius T dependence, 48 although the deviations observed from an 

Arrhenius T dependence are not as large as normally found in GF liquids. Figure 3.7(a) 

illustrates average mean square displacement data for the interfacial atoms of ice for a range of 

temperature below Tm (210 K ≤ T ≤ 270K), and we show interfacial water Ds estimates in the 

inset of Figure 3.7(a). In our previous study 48 of the interfacial region of crystalline Ni, we 

found a similar concave upward shape of the Arrhenius plots as for Ds in the interfacial region of 

ice. Figure 3.7(b) shows a direct comparison of our simulation estimates of Ds for interfacial ice 

and the interfacial diffusion coefficient of Ni atoms in the interfacial regions of various 

crystallographic interfaces. We see that there is a strong correspondence between Ds for the 

 interface of ice and the (110) interface of Ni, as we anticipated. As a leading 

approximation, the T dependence of Ds exhibits high and low temperature Arrhenius regimes 

having rather different activation energies and prefactors [Ds = D0  exp(Ea /kBT)]. In particular, 

we find the activation energy Ea to equal 0.51 eV and 0.26 eV in the high and low temperature 

regimes, respectively, and, correspondingly, D0 equals 3.88104 cm2/s and 0.175 cm2/s, 

respectively. The large increase in D0 in the high T regime explains how Ds can increase upon 

heating while at the same time Ea becomes larger in the high temperature Arrhenius regime. A 
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similar behavior has been observed for the interfacial dynamics of many crystalline metals, 116–

118 and we suggest this trend is rather general for the interfacial dynamics of crystalline materials.  

 

 

                                        (a)           (b) 

Figure 3.7 (a) Mean square displacement of the water in the  interfacial region of ice as a 

function of time over a range of T. The inset shows corresponding reduced D estimates in the 

interfacial region. (b) Comparison of the reduced interfacial diffusion coefficient Ds /D0 versus 

reciprocal reduced temperature Tm / T for the interface of ice and various crystallographic 

interfaces of Ni. 

 

The non-Gaussian parameter α2(t) provides a measure of the magnitude of mobility 

fluctuations 119 and the timescale where α2(t) peaks t* has previously been found 26,28,43,48,50,120 to 

scale with Ds / T, making t* a characteristic diffusion or “hopping” time. Figure 3.8 confirms our 

expectation that Ds /T for interfacial ice likewise scale in inverse proportion to t∗, Ds / T ~ t*.  
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This relation has been established before in glass-forming liquids 26,28,43,120, the interfacial 

dynamics of Ni 48,  and in homogeneous melting of crystalline Ni 50, another material exhibiting 

dynamic heterogeneity. 28 We next characterize the structural relaxation time  of the  

interfacial water of ice. 

 

 

Figure 3.8 The reduced diffusion coefficient Ds / T within the  interfacial region of ice 

shows linear relationship with t*, the time at which α2 exhibits a maximum. The time t* is the 

diffusive relaxation time. 

 

Following standard practice in the field of glass-forming liquids, we estimate the 

structural time of the interfacial water by calculating the self-intermediate scattering function of 

the interfacial atoms, Fs(q,t). This quantity is obtained from the Fourier transform of Gs(r,t) and 

the magnitude of the scattering wavevector q is usually fixed to correspond to a scale on the 
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order of the intermolecular distance. In Figure 3.9, we illustrate Fs(q,t) for the same range of T as 

indicated for Gs(r,t) in Figure 3.5. The relaxation occurs as two-step decay, a fast -relaxation 

process having a timescale on the order of a ps, followed by an -relaxation process 

characterized by a stretched exponential relaxation,    

 𝐹𝑠(𝑞, 𝑡) 𝐹𝑠(𝑞, 𝑡 = 0)⁄ ≈ 𝑒𝑥𝑝[−(𝑡/𝜏𝛼)𝛽] 3.4 

where  is the structural relaxation time. The apparent  values obtained from fitting this data lie 

in a range between 0.76 to 0.9, depending on T. The relaxation time     is often found to be 

related to Ds / T by a power law in glass-forming liquids, a phenomenon termed “decoupling”. 121 

The inset to Figure 3.9 shows that this relation also holds to a high approximation for the 

interfacial region of ice. Both these relationships were observed before for the interfacial 

dynamics of Ni and are universal features exhibited by glass-forming liquids. From all the 

accumulated evidence shown, the dynamics of mobile interfacial layer certainly resembles the 

dynamics of glass-forming liquid in many ways. We next investigate whether the interfacial 

dynamics of ice exhibits string-like molecular exchange motion, a feature observed many times 

before in glass-forming liquids. 68 
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Figure 3.9 The self-intermediate scattering function for the  interfacial region of ice at 

different T. Those curves can be fitted using Fs (q, t)  exp [(t / )], where the apparent value of 

 varies between 0.76 to 0.9 over the T range indicated.  The inset shows power-law decoupling 

relationship between Ds / T and τα, i.e., t* ~ (τα)1−ζ , where the “decoupling” exponent ζ  is 

estimated to be ζ  0.1. 

 

3.3.3 String-like Collective Motion in the Mobile Interfacial Layer 

The identification of cooperative exchange motion first requires the isolation of mobile 

particles that move further at t* in comparison to Brownian particles. The mobile molecules in 

the interfacial region are defined as those that make displacements beyond the first minimum in 

Gs(r,t) at the characteristic diffusive time, t∗. This well-defined cut-off scale is about 1.8 Å in 

Figure 3.5 and varies weakly with T. An examination of the mobile particles shows that their 

positions are highly correlated in space in the form fractal structures. In a series of recent papers, 

we have investigated collective motion in GF liquids 68, as well as in Ni GBs 45 and in the 
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interfacial dynamics of Ni NPs 49, and in each case, there is a similar development of clusters of 

mobile clusters upon changing temperature.  

Investigations of other strongly interacting particle systems have consistently indicated 

that the mobile particle clusters just defined are themselves clusters of more primitive clusters of 

particles undergoing string-like correlated motion. An examination of the specific geometrical 

form of the collective motion occurring on the secondary prismatic surface of crystalline ice 

reveals that we are dealing with the same physical phenomenon, cooperative string-like 

collective motion of water molecules. Since we have repeatedly described our method for 

determining these dynamic structures in recent publications in the context of other strongly 

interacting particle systems 13,28,45,48–50,113,119,122,123, we only briefly describe the method of 

characterizing this motion in Appendix A.** The basic idea of this procedure is that we sort the 

mobile particles into clusters constrained by the condition that they stay within about an 

intermolecular distance from each other within the lifetime over which the mobile clusters and 

strings exist, i.e., t∗.   

Figure 3.10 illustrates representative strings of water molecules in the mobile interfacial 

layer of the secondary prismatic plane of ice at T = 250 K. The lines connect O atoms that belong 

to the same collective atom movement, in which the arrows indicate direction of atom movement, 

and the colors are introduced to help discriminate between distinct strings. The light grey 

molecules do not participate in the string-like cooperative motion. As in many previous studies 

of strings in other physical contexts, the mass distribution of these molecular exchange events is 

nearly exponential, as shown in Figure 3.11, and the average length of the strings L  <n> 

obtained from these distributions is indicated in the inset of this figure. While the extent of 

cooperative motion in the interfacial grows upon cooling as in glass-forming liquids, 68 this trend 
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is not the same as observed before in the interfacial dynamics of the (110) interface of Ni where 

L was found to increase upon heating. We return to this conspicuous difference between the 

interfacial dynamics of these materials below where we find that the T variation of L depends 

strongly on the particular type of interface, even for a fixed material type. We again emphasize 

that the interfacial dynamics of crystals clearly has aspects that are distinct from glass-forming 

materials.  

 

 

Figure 3.10 String-like collective atomic motion in the  interfacial region of ice at 2 K 

below the melting temperature. The lines denote O atoms that belong to the same collective atom 

movement, arrows indicate direction of atom movement, and the colors are introduced to help 

discriminate between distinct strings.  
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Figure 3.11 String-length distribution, P(n), as a function of the length of the string for the 

 interfacial region of ice. The inset shows the average string, L = <n>, as a function of 

temperature.  

 

3.3.4 Colored Noise, Quakes and Collective Motion in Interfacial Ice 

The existence of molecular clustering of mobile atoms in the interfacial regime of ice, 

and other strongly interacting fluids 13,48,68,123–125, implies the existence of mobility and potential 

energy fluctuations that should be observable as noise in the time series of these properties. In 

past studies of the interfacial dynamics of Ni nanoparticles, we found the time series for potential 

energy fluctuations and <u2>, which is directly related to the average particle mobility 13, exhibit 

colored noise with a power spectral exponent  dependent on T and related to the scale of 

collective motion L under a wide range of conditions (doping the surface with different atoms to 

tune the scale of collective motion, varying nanoparticle size, etc.). In particular, we found that 

the noise exponent α for <u2> fluctuations was related to the scale of collective motion L by the 

approximation, α ≈ L – 1, and theoretical arguments were given to rationalize this relation based 
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on the hypothesis that the string length distribution determines a distribution of activation 

energies for hopping displacement of the molecules. 13 The same relationship between α and L 

has been observed in the interfacial dynamics of Ni 48 and the internal dynamics of ubiquitin 

dissolved in glycerol, 123 although the data supporting this finding was found to be more limited 

and uncertain.  

 

 

Figure 3.12 A representative portion of the <u2> times series from which the power spectra are 

derived at three different temperatures. The inset shows the power spectrum of <u2> fluctuations 

of the water molecules in the  interfacial region of ice. 

 

We next consider whether the  noise exponent informs on the scale of collective motion 

L in the interfacial dynamics of ice. First, we illustrate the times series of ⟨u2⟩ for fluctuations of 

the interfacial water molecules for a range of temperatures (T = 210 K, 250 K, 270 K) in Figure 
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3.12. The observed <u2> fluctuations clearly have long correlations, and we show the power 

spectrum of the <u2> in the inset of Fig 3.12. Based on the α and L estimates given above, we 

check the relation α ≈ L – 1 in Figure 3.13. The noise exponent α and L are clearly correlated, but 

the data exhibit some uncertainty as in our former study of the interfacial dynamics of Ni. The 

growth of the color in the noise associated with mobility fluctuations grows hand in hand with 

the extent of collective motion. 

 

 

Figure 3.13 Noise exponent   of <u2> versus extent of collective motion, L – 1. To obtain 

uncertainty estimates, we estimated L uncertainty from the standard deviation of the slope fitted 

in Figure 3.11 where we assuming the curves are described by an exponential function, while the 

uncertainty of the noise exponent was estimated from a standard deviation from a fit of the noise 

spectra in Figure 3.12 to the power law function. 

 

In our previous study of the interfacial dynamics of Ni we found that the time series for 

the <u2> values exhibited large fluctuations in intensity that resembled the power distribution in 
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intensity observed in earthquake data. 126 This phenomenon was observed both for the interfacial 

dynamics of Ni nanoparticles 119 and the (110) interface of bulk crystalline Ni 48, and recently we 

found this phenomenon to arise even in the internal dynamics of the protein ubiquitin 123 so that 

this phenomenon seems to be rather general. Figure 3.14 (a) shows representative quake-like 

displacements for mobile molecules and immobile molecules, and Figure 3.14 (b) shows the 

probability distribution function P(u2) for the intensity of these <u2> “quake” events at T = 250 

K where we again observe a power law scaling, P(u2) ∼ (u2)−γ. The inset shows that quake 

exponent  changes in a concerted fashion with the <u2> noise exponent  and the average string 

length, L. 

 

 
   (a)       (b) 

Figure 3.14 (a) Representative quake-like displacements for mobile molecule and immobile 

molecule, (b) Probability distribution function P(<u2>) for <u2> events (peak values of <u2> in 

Figure 3.12) in the  interfacial region of ice at T = 250 K where we observe a convincing 

power law scaling, P(u2) ∼ (u2)−γ as in previous systems showing glassy dynamics. The inset 

shows that the quake exponent  varies in a correlated fashion with the <u2> noise exponent  
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and the average string length L. To obtain uncertainty estimates, we estimated L uncertainty from 

the standard deviation of the slope fitted in Figure 3.11 where we assuming the curves are 

described by an exponential function, while the uncertainty of the exponent was estimated from a 

standard deviation from a fit of the noise to the power law function describing P(<u2>). 

 

3.3.5 Activation Energy Ea (T) and the Mobile Interfacial Layer Width  (T) 

In previous studies of both the interfacial dynamics of simulated glass-forming films 42 

and the interfacial dynamics of the (110) interface crystalline Ni, 48 we found that the interfacial 

mobility scale  seemed vary linearly with L, while showing no obvious correlation to the 

density gradient in the interfacial region of the material. Unfortunately, when we consider this 

relation it does not hold for the secondary prismatic interfacial region of ice. In Figure 3.15, we 

observe that L increases upon cooling while  increases upon heating;  and L thus vary in an 

approximately inverse relation to each other for this interface. We must conclude that the linear 

scaling relation between   with L is not general for the interfacial region of crystalline materials. 
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Figure 3. 15 The correlation between interfacial width and the average string length L in the 

 interfacial region of ice. 

 

We also find that the direct proportionality between the Ds activation energy Ea(T) and L, 

found before both for the (110) interfacial region of crystalline Ni and in the interfacial dynamics 

of both metallic 48 and polymeric glass-forming liquids 41,42,55,71,72,127–130, also fails to hold for the 

secondary prismatic plane of interfacial ice. Figure 3.16 shows that Ea(T) decreases upon cooling, 

while L increases upon cooling. This is the first time in which we have seen that a change in Ea(T) 

does not correspond to a proportional change in L. The relationship between Ea(T) to the scale of 

cooperative particle exchange motion L apparently works differently in the interfacial dynamics 

of ice. We have checked other crystallographic interfaces of Ni and found the (110) interfacial 

dynamics of crystalline Ni follows a similar pattern of behavior as we have found for  

interfacial region of ice. Unexpectedly, the relation between L and  depends on the particular 

crystallographic interface! 
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Figure 3.16 The correlation between L and apparent activation energy Ea(T) for diffusion in the 

 interfacial region of ice. 

  

If not L, what property of the interfacial region of crystalline materials governs the 

change in Ea(T)? It is evident that for all crystallographic interfaces that we have investigated 

that the Ea(T) increases in parallel with the interfacial width and this trend is also observed in 

supported glass-forming polymer films. Perhaps the interfacial width itself is the more 

fundamental quantity governing the change of Ea(T) with temperature in crystalline materials? 

We test this hypothesis in Figure 3.17, where the Ea(T), normalized by its value in the low T 

Arrhenius regime, is plotted against the interfacial width of mobile interfacial layer divided by 

the average interfacial width before and after transition. The values of the high and low T 

activation parameters and normalizing interfacial width corresponding to this plot are given in 

Table 3.1. The reduced activation energy and reduced interfacial width vary proportionately in 
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the region where Ea(T) varies with T, but the reduced activation energy Ea(T) approaches a 

plateau value at high temperature that apparently depends on the interface type and material. The 

entropy theory of glass-formation as applied to flexible glass-forming polymers 131 and 

experimental studies on glass-formation 132,133 are also consistent with the existence of a high and 

low T regimes of glass-formation having different activation energies whose relative values are 

material system specific, separated by a T range in which Ea(T) changes with T. 

 

Table 3.1 Activation energy parameters and normalizing thickness of different surfaces. 

 Ice  Ni (110)  Ni (100)  Ni (103) 

Ea (High) (eV) 0.51 1.68 2.64 1.57 

Ea (Low) (eV) 0.26 0.83 1.49 0.94 

Normalizing  

(Å) 
12.0 8.5 7.0 11.3 

 

We again see another common phenomenological pattern in the interfacial dynamics of a 

crystalline material to glass-forming liquids, but at the same time we find a different relationship 

between the scale of collective molecular motion and the activation energy Ea(T) and interfacial 

width  in these strongly interacting forms of condensed matter.  
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Figure 3.17 Reduced activation energy for diffusion in interfacial regions of Ni and the  

interfacial region of ice. 

 

3.4 Conclusions 

In current study, we performed molecular dynamics simulation to examine string-like 

collective atomic motion and self-diffusion on ice  free surface and utilize tools drawn 

from glass-forming liquids to quantify the dynamics of interfacial ice. Our simulation results for 

interfacial ice were compared with our former simulations of the interfacial dynamics of 

crystalline Ni since both the (110) interface of Ni and the  secondary prismatic plane of 

hexagonal ice are relatively loosely packed crystalline interfaces. In our simulation, we utilized 

the TIP4P/2005 water potential 89 to describe the water intermolecular interaction in ice. For all 

the T examined, the amplitude of atomic motion in the interfacial region is significantly larger 

than in the interior crystal, explaining the origin of the “premelting” phenomenon and why 

heterogeneous nucleation of crystal melting tends to initiate from the boundary region.  

 (1120)

 (1120)

 (1120)



 
 

- 56 - 
 

Utilizing tools drawn from GF liquids, such as non-Gaussian parameter, the self-part of 

van Hove correlation functions, surface diffusion coefficients, and self -intermediate scattering 

function of the interfacial atoms, we quantify the dynamics of interfacial ice. Our simulation 

results show that the peak value of the non-Gaussian parameter becomes larger as T becomes 

further below Tm, the same trend observed before in the (110) interfacial region of Ni. The van 

Hove function of the interfacial water exhibits a multi-peaked structure, a feature often observed 

in glass-forming liquids that reflect the development of hopping motion in the fluid after 

transient localization of molecules in a cage, although this hopping motion is more complex due 

to gradient in mobility in the interfacial layer and different rates of hopping within the layer and 

between the different layers. The surface diffusion coefficient Ds / T shows inversely proportion 

to the peaks t* in α2 (t), a relation established before in glass-forming liquids. In addition, the 

relaxation time obtained from the intermediate scattering function is found to be related with Ds / 

T. From all this accumulated evidence, the interfacial dynamics of ice certainly resembles the 

characteristic dynamics of glass-forming liquids in many ways. 

In all the glass-forming liquids that we have investigated before, we have observed 

string-like collective molecular exchange motion, a phenomenon that we believe is universal to 

all glass-forming liquids. We then characterized such molecular motions in the  

interfacial region of ice and found cooperative motion that grows upon cooling as found before 

in glass-forming liquids. This trend is also not consistent with previous observations on 

interfacial dynamics of the (110) interface of Ni where the extent of string-like collective motion 

was found to grow upon heating rather than cooling, although we found that other interfaces of 

Ni were consistent with our findings of the dynamics of the  interface of water. The 

cooperative motion in the interfacial regions seems to be sensitive to the particular 
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crystallographic interface considered so that some aspects of the dynamics of crystalline 

interfaces are evidently different from glass-forming liquids or colloidal fluids near their freezing 

point or glass transition. In addition, we examined the  noise exponent of the <u2> for 

fluctuations of the interfacial water molecules and found the noise exponent α and L to be highly 

correlated. The growth of the color in the noise is generally associated with mobility fluctuations 

that increase with the extent of collective motion. 

Although we do not find a direct proportionality between the activation energy Ea(T) for 

self-diffusion Ds and the width  of the mobile interfacial layer and the scale of collective motion 

L as found in the (110) interfacial region of crystalline Ni, we do find that Ea(T) changes in 

proportion to Ea(T) in the temperature range where Ea(T) and  vary. Evidently, while the 

interfacial dynamics of crystalline materials and glass-forming materials exhibit many 

similarities, they also exhibit some dynamical properties that are rather distinct. Further 

simulation, experimental and theoretical studies are needed to better understand the relationships 

between these strongly interacting and disordered materials. 
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4. Universal Nature of Dynamics Heterogeneity in Glass-forming liquids: A Comparative 

Study of Metallic and Polymeric Glass-forming liquids 

4.1 Introduction 

Glass-formation has been observed in diverse materials ranging from biological matter 

and synthetic polymeric materials to metallic and other inorganic GF materials, a phenomenon 

having profound significance for materials design, processing and performance. Measurements 

on the dynamics of glass-forming liquids often show a dramatic slowing down of the relaxation 

dynamics and diffusivity that is accompanied by a large increase in the viscosity, which is often 

non-Arrhenius. 134 The dynamics of these complex GF liquids are often characterized by 

“dynamic heterogeneity” in the form of transient polymeric clusters of highly mobile atoms. This 

type of heterogeneous dynamics is characteristic of grain boundaries at elevated T 45, the 

interfacial dynamics of NPs, 49,122 dynamics of both metallic 28,48,50 and polymeric GF liquids in 

the bulk state, and the simulated dynamics of lipid membranes. 135,136 In addition, heterogeneous 

dynamics has also been observed in superionic materials, which are currently of intense interest 

in the development of safer, more efficient and longer lasting battery materials, and are also of 

great interest in understanding geophysical phenomena associated with the properties of the 

earth’s Fe core and the MgSiO3 perovskite material composing a substantial fraction the earth’s 

lower mantle. 137–141 Apparently, dynamic heterogeneity is a universal phenomenon of materials 

composed of strongly interacting particles in a non-crystalline state of organization. Here, the 

term ‘strongly interacting particle’ system refers to material systems exhibiting non-trivial 

collective particle motion, distinct from ideal crystalline matter involving particles interacting 

with approximately harmonic interactions and dilute gasses, as a dynamical consequence of 

strong interparticle interactions. Typically, these strong interactions arise in equilibrium materials 
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at high densities or in particle systems exhibiting long range repulsive interactions (e.g., dusty 

plasmas 142, Wigner glasses 143,144), but such strong interactions, and associated collective particle 

motion, also arise in non-equilibrium systems such as sheared fluids, fluids in temperature 

gradients and other fields, self-propelled particles, etc.  Molecular glass-forming liquids are a 

prototypical strongly interacting fluids that exhibit collective particle motion 145 upon 

approaching the glass transition temperature Tg and corresponding exhibit large changes in their 

dynamic material properties associated with the emergent collective motion. We also view 

superionic crystalline materials 146, the grain boundaries 45 and free interfaces of crystalline 

materials approaching their melting temperatures 48,147, lipid membranes 136, folded proteins 123 

and duplex DNA 148 to be strongly interacting particle systems. It is apparent from the discussion 

above that many real materials fall into this category. 

A common physical feature of GF liquids is a strong driving force for local ordering, 

where the ordering process is “frustrated” by competing interactions, geometrical constraints or 

the kinetics of molecular reorganization, resulting in the formation of an amorphous solid state at 

sufficiently low temperatures, high densities or the presence of constraints, such as cross-linking 

polymer materials, geometrical confinement, etc., that ultimately do not allow the material to 

crystallize. Although some materials have shown a tendency for this packing frustration to be 

reflected in regions of high and low relative packing efficiency (quantified by the local relative 

density) and for these local density fluctuations to be correlated with local changes in molecular 

mobility (see Appendix B), no general correlation between local density and mobility seems to 

exist in condensed materials. 145,149–151 

Nonetheless, the occurrence of large fluctuations in local mobility in glass -forming 

liquids has been established by many experimental 152–156 and simulation 157–160 studies and 
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continuing efforts are currently being made to quantify the origin, nature and form of these 

mobility fluctuations. These fluctuations have been investigated in particular detail in model 

polymeric glass-forming liquids since these fluids are single component fluids that are apparently 

not capable of crystallization, greatly simplifying the study of the equilibrium and dynamic 

properties of these materials under conditions of incipient glass-formation. 55,130 

We note that traditional models of the dynamics of glass-formation are of a mean field 

nature and inherently neglect dynamic heterogeneity in the form of mobile and immobile particle 

clusters, and we briefly mention some models of this kind as a point of reference to our 

discussion below where the significance and nature of fluid dynamic heterogeneity (i.e., 

fluctuations) is emphasized. There are defect diffusion models such as Glarum model 161 and its 

extensions 162 where high mobility regions are considered to arise from rare density fluctuations 

in viscous liquids that act like “defects” that diffuse through the material, facilitating material 

relaxation in a fashion similar to vacancies and interstitials in crystalline materials. 163,164 There 

are also mean field “free volume” models of glass-forming liquids 165,166 and various “caging” 

based models (e.g., mode-coupling theory 167,168), preserving the essential spirit of the free 

volume models, that assume that the slowing of the dynamics of GF liquid s arises solely from 

constraints on the motion of a typical particle moving in an average field of surrounding particles 

that progressively restricts particle motion as the fluid density is increased and the available space 

for particle motion becomes reduced.  More recently, kinetic Ising models of glass-forming 

materials 169,170 have been introduced to consider the effect of defect clustering and cooperative 

motion induced by defect clustering on structural relaxation. While these are instructive toy 

models exhibiting dynamic heterogeneity, these models have not yet been developed to 

quantitatively describe molecular GF liquids.  
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    There are interesting attempts in this direction, however. Angell and Moynihan 171 have 

developed an interesting phenomenological defect excitation model that emphasizes the 

interaction of defects and emergent cooperativity and attempts to address specific features of real 

glass-forming materials such as the origin of the Boson peak and two-level systems. Isobe et al. 

172 have made an interesting attempt at describing glass-formation in hard sphere and hard disc 

liquids based on the ‘facilitated’ kinetic Ising model of Chandler and coworkers. 170 In our view, 

the development of a fundamental theory of GF liquids is still a work in progress. Berthier and 

Biroli 173 have reviewed various models of GF liquids, observations of spatially heterogeneous 

dynamics of these materials, describing the successes and failures the various approaches, and the 

reader is referred to this work and the experimental articles by  Angell et al. 9 and Richert 174 for a 

perspective emphasizing an experimental perspective. 

More recent modeling of GF liquids has emphasized the use of molecular dynamics 

simulation methods and methods of analyzing this data that stresses the importance of many-body 

interactions in GF liquids and other strongly interacting materials, and the associated emergence 

of dynamic heterogeneity (the appearance of particles having correlated mobility and collective 

motion). This type of modeling has a long history going back to Adam and Gibbs (AG) 36, and 

even earlier, but this approach has received significant impetus from recently simulation studies 

in which dynamic heterogeneity and collective motion of significance for the dynamics have been 

clearly identified by molecular dynamics simulation. For example, Starr et al. 55 have shown that 

dynamic clusters of both high and low mobility of polymer segments are formed in simulated 

cooled polymer melts where these mobility clusters that are largely uncorrelated in space with the 

chemically bonded polymers comprising these fluids. Dynamic clusters of mobile and immobile 

particles having a branched polymeric form coexist and interpenetrate, growing in a parallel 
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fashion and forming percolating structures as the material is cooled towards the glass transition 

This interpenetrating network structure of particles of extreme mobility is phenomenologically 

associated with the emergence of the complex viscoelasticity and solid -like properties of the 

material, but there are many open questions about the precise structure property relations between 

these dynamic clusters and the observable properties of GF liquids. 55 Previous work has also 

established that the lifetimes of the mobile and immobile clusters correlate strongly with the 

characteristic times associated with diffusion and structural relaxation, respectively, and that 

these timescales become increasingly separated upon progressive cooling, providing a structural 

explanation of the “decoupling” phenomenon between the molecular diffusion coefficient  D and 

structural relaxation time in terms of the relative persistence of these dynamic clusters as T is 

varied. It was also found that the mobile and immobile particle clusters exhibit highly similar 

geometric forms that are characteristic of the self-assembly of branched equilibrium polymers in 

terms of the fractal dimension, size distribution, etc. 55 (See discussion comparing mobile and 

immobile clusters to the formation of branched equilibrium polymers below.). Starr et al. 55 also 

found that the mobile particle clusters in model polymer liquids are comprised of sub-clusters of 

polymer segments exhibiting cooperative exchange motion where the average size of these 

clusters was found to quantitatively correlate with changes in the activation free energy for 

structural relaxation. 55 Xu et al. 71 later made an in-depth investigation of cooperative motion and 

dynamic heterogeneity in polymer melts under conditions where the pressure and cohesive 

interaction strength were varied over a large range to “tune” the fluid collective dynamics. The 

principal goal of the present work is to investigate dynamic heterogeneity in a range of model 

metallic glass materials to assess the generality of previous observations on dynamic 

heterogeneity in coarse-grained polymer melts. 55 
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Given previous finding indicating that local “free volume” arguments cannot be applied 

generally to understanding the dynamics of GF liquids, 145,149–151 it is imperative to check the 

generality of the methods and results of Starr et al. for GF liquids before accepting the 

universality of the approach to the quantification of dynamic heterogeneity in GF liquids. In the 

present work, we address this issue by investigating metallic GF liquids that have completely 

different chemistry, and do not have a polymeric nature. If the same dynamic heterogeneity 

phenomenology arises in this family of glass-forming liquids, then we think it is safe to infer that 

this type of dynamic phenomenon is “universal”. In our specific interest of metallic glass 

materials, this situation is illustrated by simulations of Cu-Zr metallic glasses, where some 

correlation with local packing efficiency and local mobility has been noted, 28,43 while the 

prevalence for locally preferred (icosahedral) packing in Pd-Si metallic is extremely limited 175 so 

that no general correlation between local preferred packing and mobility seems to exist. We also 

investigate Ni-Nb metallic glass materials in view of the increasing technological interest of this 

class of metallic glasses. 1,176,177 Wei et al. review recent attempts to correlate local structure to 

dynamics in Cu-Zr and other model atomic glass-forming fluids. 178 It is currently unclear 

whether any structural indicator exists that can predict changes in the local mobility in glass-

forming liquids. The only thing that is certain at this point is that the popular “free volume” 

model, which assumes that local variations in the density are responsible for local variations in 

mobility, can be excluded. 

Our simulations indicate that the dynamical heterogeneity phenomenon, and the 

quantitative relations between this heterogeneity and the dynamical properties of these fluids are 

remarkably similar in metallic and polymeric GF systems, confirming the genera lity of the 

dynamic heterogeneity of the phenomenon and the applicability of our methodologies for 
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quantifying the dynamic heterogeneity. In particular, in all the metallic glass systems investigated, 

both the mobile and immobile particles exhibit geometric characteristics similar to branched 

equilibrium polymers upon cooling. 55 The characteristic timescale for mobile and immobile 

particles are directly related to diffusion and structural relaxation in all the systems of interest. In 

addition, four-point susceptibility suggests the growth of immobile cluster size is closely related 

to relaxation, which is similar to dynamics of a simulated polymer melt. 71 

Before proceeding to our analysis of our model metallic GF materials, we note that these 

materials have many special properties that independently merit the study of these materials as a 

class distinct from crystalline and metallic polycrystalline materials. Metallic glasses (MGs) have 

no crystalline defects such as vacancies, dislocations, and grain boundaries, the existence of 

amorphous structure makes MGs have high strength, exceeding about 3 GPa, and high resistance 

to corrosion in comparison to their crystalline counterparts.179 MG are thus attractive candidate 

materials for applications that require high strength and corrosion resistance. Since metallic 

glasses share many dynamic properties with polymeric GF liquids, but they still have 

dramatically different chemistry and structure. 28 Metallic glasses are “amorphous” structurally, 

although they do exhibit some medium or short-range ordering. These are supercooled liquids in 

which the “amorphous” structure arises during non-equilibrium fast cooling process due to 

“packing frustration” between the different types of atomic species. In general, materials of this 

kind will crystallize after “aging” for sufficient times 180, explaining the designation “supercooled 

liquid”. Polymeric glass-forming liquids, however, appear to have sufficient disorder, at least in 

some cases, so that these materials apparently may form an equilibrium glass state at low 

temperatures. From a computational perspective, however, it is reasonable to ignore this 

distinction between the equilibrium and non-equilibrium nature of these different types of GF 
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materials given the long-lived nature of the supercooled liquid condition in metallic GF liquids. 

We are thus led to examining the dynamics of atomic and polymeric GF liquids regardless of the 

previous suggestion that the dynamics of these materials should be completely different. 181 

 

4.2 Simulation Methodology 

MD simulations were performed to examine the dynamic behavior in Cu-Zr, Ni-Nb, and 

Pd-Si metallic glass systems. The MD simulations were carried out using LAMMPS, which was 

developed at the Sandia National Laboratories. 99 The atomic interaction in metallic glasses 

system was described by semi-empirical potentials optimized to reproduce the measured static 

structure factor and other equilibrium properties of Cu-Zr, Ni-Nb, and Pd-Si alloys. 58,182–184 

Previous studies based on these potentials have established that these potentials provide a 

reasonably good description of both the structural and dynamic properties of these alloys. 

175,182,185 In the present work, the representative alloy types and compositions were chosen 

(Cu36Zr64, Cu50Zr50, Cu64Zr36, Ni50Nb50, Ni62Nb38, and Pd82Si18) based on empirical rule that 

metallic alloys often form good metallic glasses near the eutectic points of the alloys. 186,187 We 

arrived at these alloy compositional choices based on published reports of the phase diagrams of 

different alloys 187,188 which are close to their eutectic points of the selected metallic glasses.    

 We next describe the simulation methods for molecular dynamics simulations of metallic 

glasses. First, taking Cu64Zr36 as an example, we start with a perfect Cu single crystal containing 

13500 atoms with a simulation cell around (6.4 × 6.4 × 6.4) nm in X, Y, and Z-directions. Then, 

we randomly replace 36 % of Cu atoms by Zr. The mixture of Cu and Zr crystal was then heated 

from 300 K to 2000 K. After melting, the system was kept at 2000 K for 5 ns to allow relaxation 

to ensure the formation of a structurally homogeneous glass-forming liquid. Finally, the system 
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was cooled down to 300 K with a cooling rate of 100 K/ns. During the entire procedure, NPT 

(constant number of atoms, constant pressure, and constant temperature) ensemble was employed 

with zero pressure and periodic boundary conditions. The constant pressure was controlled by the 

Parrinello-Rahman algorithm, 63 and temperature was maintained by the Nose-Hoover thermostat 

method. 61,62 Isothermal heating below melting point for an extended period of time would ensure 

the system to reach equilibrium, allowing us to probe kinetic processes. In order to obtain 

relatively stable supercooled 180 metallic glass-forming liquids, isothermal heating simulations 

were also performed from 700 K to 1400 K, with interval of 50 K. At every temperature, 

simulation lasts at least 5 ns and up to 30 ns, depending on the temperature. Atomic 

configurations were saved every 1 ps for further analyses.  

 

4.3 Results and Discussion 

4.3.1 Definition of Immobile Particles and their Clustering in Supercooled Liquids 

In our previous work, we took Cu-Zr metallic glass alloys as model system to carefully 

examine the dynamic behavior of supercooled metallic liquids with a focus on mobile particles. 28 

We found that some particles form locally preferred packing configurations, but a large portion of 

particles is left to “wander” with high energy and free volume (i.e., relatively low local density), 

and exhibit collective atomic motions that can be characterized using average string length. In 

particular, the change in average string length, L, can approximate the temperature dependence of 

diffusion coefficients D, viscosity, and the relaxation time, . The string theory of relaxation 

suggests that the relaxation time can be expressed using average string length, implying that the 

changes in the structural relaxation are dominated by the changes in the average length of string-

like cooperative motions. 29,41 In Cu-Zr alloys, we found a linear relationship between activation 
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free energy for diffusion ∆μ L/kT and characteristic time for diffusion ln ( t* t0⁄ ), which means 

that the change in the activation free energy for diffusion is proportional to the change in the 

average string length. Since the correlation between relaxation time,  and diffusion coefficient, 

D can be described by the “decoupling” power-law, the change in average string length 

simultaneously describes the change of the activation free energy for the structural relaxation 

time and D. 28 However, a true relationship between the structural relaxation time and well-

packed clusters is not explicitly established in this work. 

In the current work, we will pay more attention to the dynamics of immobile particles and 

its relationship with mobile particles. The first step is to define a unified way to distinguish 

particles of extreme mobility in cooled liquids and other forms of strongly interacting matter that 

is independent of the material composition and chemistry. Starr et al. 55 have established a robust 

measure to identify mobile and immobile particles in a model polymer melt and we first examine 

whether the same methodology can be applied for metallic glass materials. Since the goal is to 

establish a generality of the method of Starr et al. 55, we closely follow the methodology of this 

work to identify immobile particles. We will mainly focus on the Cu64Zr36 to illustrate the 

analysis involved, but sometimes we will refer to other systems if a special point is to be made.  

 In order to identify the immobile particles, the first step is first necessary to define a cage 

size. 55 Figure 4.1 shows a typical mean square atomic displacement <r2> as a function of 

simulation time at different temperatures in Cu64Zr36 alloy. The mean square atomic displacement 

<r2> exhibits a well-defined plateau after a particular decorrelation time characterizing the 

crossover from ballistic to caged atom motion and <r2> at long times is diffusive. Since the 

logarithmic derivative d(ln⟨r2(t)⟩) d(ln t)⁄  exhibits a minimum on the time scale of particle 
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caging, tcage, we can precisely define the cage size by rcage≡ 〈r2(tcage)〉
1

2, as shown in Figure 4.1(b). 

The inset in Figure 4.1(b) shows the cage size as a function of temperature in Cu64Zr36 alloy. 

Apparently, the cage size decreases as temperature approaching glass transition temperature. 

Effectively, caged particles or “immobile” particles can be defined as those particles having a 

mean square displacement less than 〈rcage
2 〉. 

 

 

   (a)         (b) 

Figure 4.1 (a) Mean square displacement of Cu64Zr36 alloy at different temperatures. (b) The 

logarithmic derivative of <r2> exhibits a minimum on the time scale of particle caging time, tcage, 

which is on the order of a ps.  

 

The cage size for other metallic alloys shows similar behaviour with temperature as found 

for Cu64Zr36 [See Appendix B] and a similar phenomenon has been discussed previously by 

Leporini and coworkers. 22 Although cage size found in polymer fluids has much weaker T 

dependence in polymer liquids than found so far in metallic GF materials, the algorithm used to 
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identify immobile clusters is formally the same in polymer fluids and metallic GF alloys. 

Similarly to polymer fluids, the MSD of Cu64Zr36 (see Figure 4.1(b)) changes from ballistic-like 

motion [i.e., d(ln⟨r2(t)⟩) d(ln t)⁄ = 2] to sub-diffusive motion when d(ln⟨r2(t)⟩) d(ln t)⁄ ≈ 0.6 

189, where the characteristic time at which this condition is met serves to define a “caging time”. 

 

 

Figure 4.2 Dynamical fraction of caged particles as a function of time interval at different 

temperatures in Cu64Zr36 alloy.   

           

Using this definition of cage size and caging time, we can identify how immobile particles 

persist in time and how they are clustered in space. In general, a cluster is defined as a group of 

particles of interest (either mobile or immobile) whose nearest-neighbour distance is less than the 

nearest-neighbour distance of the system. For instance, we choose nearest-neighbour distance to 

be 3.7 Å for Cu64Zr36 alloy based on the first minimum value in the radial distribution function. 

Next, we examine how the population of caged particles evolves as time interval increases at 
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different temperatures. It is expected that the majority particles will be initially “caged”, but as 

time passes particles will gradually escape from these cages so that the initial population of caged 

particles will decrease. Figure 4.2 shows the temporal evolution of the fraction of caged particles 

in the systems at different temperatures in Cu64Zr36 alloy. The same analyses for other metallic 

alloys are shown in the SI. As expected, the time in which the fraction of caged particles persists 

increases upon cooling. 

 

 

Figure 4.3 Normalized cluster size for caged particles in Cu64Zr36 alloy at different temperatures. 

 

Once cage size has been identified, the next step is to study the dynamic behavior of 

caged particles. We study the average cluster size of these particles with low mobility to 

understand the spatially correlated tendency of these caged particles. Since the cluster size is 

greatly influenced by the number of caged particles, we normalize the cage particles size by the 

cluster size of randomly chosen particles to offset a trivial effect that clusters are larger at shorter 
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time. Figure 4.3 shows the normalized cluster size of the caged particles as a function of time. 

There cluster size increases progressively in size and then a maximum that defines a 

characteristic time.  The peak height and characteristic time increase sharply upon cooling, which 

is characteristic of the growing dynamic heterogeneity found in cooled liquids. 

 

 

Figure 4.4 Fraction of the most immobile particles at a characteristic peak time (see Figure 4.3). 

For various alloy concentrations, the fraction of caged atoms exhibits similar tendency, varies 

from 0.05 to 0.15, however, Cu-Zr systems have larger fluctuations comparing to others. In high-

temperature region, the fraction shows smaller fluctuation. For the Pd-Si alloy, the immobile 

particle fraction only varies from 0.13 to 0.15.  

 

Further, we consider a more simplified version of this approach, which can still catch the 

characteristic peak time and amplitude of immobile clusters. The fraction of caged atoms at 

characteristic peak time is identified, which can be seen in Figure 4.4. The fractions are obtained 
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by evaluating the displacements of atoms in the system at those characteristic times comparing 

the displacements with rcage
2. In general, this characteristic fraction of caged particles increases 

with temperature; however, this tendency becomes less distinct at higher temperatures. As the 

temperature increases, atoms tend to be more active, i.e., most of the atoms have jumped out of 

the cage and become mobile, or more liquid-like. Regardless of temperature and material type, 

the fraction of caged particles at characteristic time seems to be on the order of 10 %  ±  5 %. 

Next, we will recalculate the temporal evolution of cluster size for caged particles by 

only considering the fraction of the most immobile particles obtained at the characteristic peak 

time. At a given temperature, a fixed fraction of caged particles (see Figure 4.4) is used to 

calculate the immobile cluster size at any given time t. Following Starr et al. 55, we define the 

average immobile cluster size 〈𝑛𝐼(𝑡)〉 at time t, and mathematically as, 〈𝑛𝐼(𝑡)〉 =
1

𝑁𝐶

∑ 𝑛𝑖(𝑡)
𝑁𝐶
𝑖=1 , 

where NC is the total number of immobile clusters and ni(t) is the cluster size of ith immobile 

cluster at time t. Figure 4.5 shows the normalized average immobile particle cluster size as 

function of t  for the Cu64Zr36 alloy. We see that 〈𝑛𝐼(𝑡)〉 peaks at a characteristic time 𝑡𝐼  that 

increases upon cooling; the peak height also grows on cooling, indicating an increase in the 

positional correlations between the immobile particles.                                                              

  Our previous study has shown that an apparent relationship between the immobile particle 

and atomic local structure in CuZr metallic glasses 28 based on a Voronoi tessellation of the 

liquid structure, a widely utilized framework for analyzing atomic local structure in metallic 

glasses and other liquids. In the SI, we performed a similar analysis (which is not the focus of the 

current work) to check the generality of a correlative relationship between dominant Voronoi cell 

types and the least mobile particles. Although there is some overlap in these particle populations, 
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we conclude that there is no general relationship between Voronoi type and local mobility. The 

search for a structural indicator of local mobility thus continues. 

 

 

Figure 4.5 Dynamical cluster sizes for immobile particles 〈nI(t)〉 at different temperatures for 

Cu64Zr36 alloy. The data are normalized by their value at t = 0. 

 

4.3.2 Spatial and Size Distribution and Fractal Geometry of Mobile and Immobile Particles 

Next, we will examine geometrical properties of immobile clusters and mobile particles in 

metallic glass alloys and make a comparison with polymeric glass-forming liquids. Based on our 

previous study, the mobile particles were identified by atomic displacement 𝑎 < |ri(t*) - 

ri(0)| < b at t* [the time at peak non-Gaussian parameter, 2(t); See Eq. (2)], where the 

parameters a and b are determined from the second peak in the self-part van-Hove correlation 

function Gs
(r, t) at t* . 50 (A brief description of how to determine the mobile particles using self-

part van Hove correlation function has been provided in Appendix B). Atomic configurations of 

typical mobile and immobile clusters in Cu64Zr36 at 1000 K are shown in Figure 4.6(a) and 4.6(b). 



 
 

- 74 - 
 

Apparently, both mobile and immobile particle clusters grow quite extensively at this temperature. 

To further examine the geometrical structure of mobile and immobile particle clusters, we 

calculate the fractal dimension df using the relation, n ~ Rg
df, where n is the number of particle 

clusters and Rg is the radius of gyration of a given cluster. For a given cluster, the radius of 

gyration was defined as Rg
2  = 

1

2N
∑ (ri-rj)

2
i,j  , where N is the total number of particles in the cluster 

and ri and rj are the position of the ith and jth particles. The fractal dimension, df, varies between 

2.5 and 2.8 in the temperature range we studied with an average number of df  ≈ 2.7 for both 

mobile and immobile clusters [see the inset of Figure 4.6(c) and 4.6(d)]. This fractal dimension 

value  confirms that the mobile and immobile clusters are similar to values for randomly 

branched equilibrium polymer in 3D, which is also consistent with previous estimates of for the 

immobile particle clusters in polymeric GF liquids. 55 

The data point for the lowest temperature in the inset of Figure 4.6(d) is suggestive of a 

tendency of the fractal dimension df  of the immobile particle clusters to approach 3 at low T. This 

uncertain trend potentially has significance in relation to the Random First Order Transition 

Theory (RFOT) 190, which predicts that the dynamic heterogeneity in the form of immobile 

particle clusters (“entropic droplets”) should form “compact” clusters upon approaching the glass 

state, i.e., df  = 3. However, a previous study of df of the immobile particles in polymer melts by 

Starr et al. 55 showed no tendency for df  to approach 3 even at temperatures well below the 

crossover temperature of glass-formation, Tc, so that the tendency of the immobile particles to 

become compact at low temperatures does not appear to be general. Moreover, df estimates for 

both the immobile clusters (Figure B.7) and symmetric Voronoi cell clusters defined by locally 

preferred packing (Figure B.12) for other metallic glasses are shown in SI where a gradual 

increase in df is observed as in Figure 4.6(d) upon cooling, but where this data also shows no 
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definite tendency for the immobile particles to form compact clusters over the T range simulated. 

Further studies of the shape of the immobile clusters based on a consideration of the radius 

gyration tensor of these clusters and their apparent df at low T would be of interest to determine if 

the immobile particles ultimately become compact at temperatures near Tg. We then conclude 

that while immobile particle clusters might ultimately become compact at very low temperatures, 

the experimental uncertainties are currently too large to make a definite conclusion about such a 

limiting structural form of the immobile particle clusters. On the other hand, we can definitely 

conclude that the immobile particle clusters are not generally compact for T somewhat below Tc. 

This observation has some significance since the RFOT model 190 predicts that the immobile 

particle clusters should become compact for T <  Tc. Finally, we note that there seems to be no 

evidence that the mobile particles form compact clusters at low T. 

We next considered the size distribution of the immobile particle clusters, a property 

expected to be important for understanding stress relaxation in glass-forming liquids. Previous 

studies of both polymeric and the Kob-Anderson model 110 have indicated that P(n) appears to 

approach a power law at low T, 

 P(n) ~ n - τF  4.1 

and more generally P(n) can be described by a power-law times an exponential cut-off which 

makes a more prevalent contribution at higher temperatures where the clustering is limited. 55 The 

cluster size distribution of mobile and the least immobile particles in Cu-Zr system at different 

compositions and temperatures follows this rather standard pattern of behavior, as illustrated in 

Figure 4.7. Apparently, both the mobile and immobile particle distributions approach the same 

limiting power-law scaling at low temperatures, with a scaling exponent near τF   1.8 ±0.5. For 

the Ni-Nb and Pd-Si metallic glasses, we found the mass scaling exponent to equal, τF  = 1.85 
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(mobile or immobile particle clusters) and a scaling exponent near 1.8 has also been observed 

before for the mobile particle mass distribution in superheated crystalline. 50,55 We note that τF for 

the mobile particle clusters is also consistent with the estimate τF  = 1.85 ± 0.1 found previously in 

a model polymeric material, although a somewhat larger exponent τF  ≈ 2.2 was found for the 

immobile particle clusters. 55 (Notably, the immobile particle clusters had not grown to large size 

in the polymer melt simulations so that the estimate of τF  for the immobile particles in the 

polymer fluid is rather uncertain.) We note that a mass-scaling exponent near 1.8 is characteristic 

of thermodynamic systems undergoing thermo-reversible association into branched polymers.  

55,191,192 We conclude that the clustering of mobile and immobile particles in GF metallic and 

polymeric GF liquids is strikingly similar so the particle systems exhibiting self -assembly of 

branched polymers at equilibrium. We next confirm that this correspondence also holds for the 

fractal geometry of the mobile and immobile particle clusters. 

 

 

(a)      (b) 
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   (c)      (d) 

Figure 4.6 Typical atomic configurations for mobile (a) and immobile (b) particles in Cu64Zr36 at 

1000K. Different colors represent different clusters. Scaling of mobile (c) and immobile (d) 

cluster radius of gyration Rg with its mass n,  n ~ Rg
df in the Cu64Zr36 alloy. The inset shows that 

the fractal dimension, df, does not vary significantly with T, i.e., df  ≈ 2.7. This fractal dimension 

number confirms that the mobile and immobile clusters have a similar geometrical structure to 

randomly branched polymer in 3D, a finding consistent with previous observations on polymeric 

GF liquids. 55 
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   (a)            (b) 

Figure 4.7 The distributions of mobile (a) and immobile (b) particle cluster sizes 𝑃(𝑛) . The 

distribution can be described by a power law. The dashed line indicates a characteristic power-

law with τF  = 1.85 and 1.8 in mobile and immobile particles, respectively.  

 

4.3.3 Correlation between Relaxation and Dynamics Behavior of Immobile Particles 

To investigate the correlation between relaxation and dynamic behaviour, first we 

calculate non-Gaussian parameter,  α2, which is a common analysis for mobility fluctuation in GF 

liquids. It can be mathematically expressed as, 67 

 α2
(∆t) = 

3〈r4(∆t)〉

5〈r2(∆t)〉2  – 1 4.2 

which is defined as the moments of particle displacement distance from their initial position at 

t = 0 after a time interval ∆t. For simple Brownian motion, the non-Gaussian parameter α2  equals 

zero and this quantity often serves as a basic measure of ‘dynamic heterogeneity’. We then obtain 

the peak time in non-Gaussian parameter, and denotes it by t* , which is related to the diffusion of 

mobile particles, as we established in the previous work.  28 This characteristic time represents the 
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time when the system is the most heterogeneous and it also indicates the “end” of β-relaxation 

regime and the beginning of the α-relaxation regime. 193 

An examination of the size of the mobile clusters as a function of time (the mobile 

particle counterpart to Figure 4.3 showing the size of the immobile particle clusters) allows for 

the definition of the “lifetime” tM of such clusters by the time at which the cluster size peaks. In 

Figure 4.8(a), we show that t* scales in proportion to tM  to a good approximation (Although we 

find a power-law 0.9, the uncertainty in our data does not allow us to discriminate our results 

from the approximate linear scaling between t* and tM  previously reported by Starr et al. 55)  This 

approximately linear interrelationship between t* and tM  is further supported by simulations of 

Xu et al. 71,130 for a coarse-grained polymer melt under constant volume and constant pressure, 

and for a wide range of polymer cohesive interaction and pressure variation where an apparent 

scaling exponent relating t* and tM was found to be slightly larger than 1.  The approximate linear 

scaling relationship between t* and tM appears to be a robust. However, we note that the relation 

between t* and tM  does not hold in materials having large mobility gradients, such as thin films 

and nanocomposites. 194 In such materials, t* no longer provides a measure of dynamic 

heterogeneity, as evidenced by the fact that  α2  can deviate appreciably from 0 even in fluids in 

which the particles undergo ideal Brownian motion.  

Mobile particles make a predominant contribution to molecular diffusion, giving rise to a 

quantitative relation between t* and the diffusion coefficient of the component species of the 

fluid. 55 Douglas et al. 43 have shown that the average diffusion coefficient D and the individual 

atom species diffusion coefficients of the Cu-Zr can be quantitatively related to t* and the t* 

values of each atomic species, respectively (See Figure 5 of Douglas et al. 43). Specifically, it was 

established by Douglas et al. that Di / T scales inversely to ti
*

. and that D for the entire system is 
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the concentration average of the component species. These results generalize earlier results 

showing this relationship for the Kob-Anderson model (see Figure 19 of Starr et al. 55). These 

results indicate that we may interpret t* as a “diffusive timescale. 43 

The lifetime of the mobile particle clusters becomes appreciably longer than the immobile 

particle in glass-forming liquids, indicating that the mobile and immobile particles correspond to 

two distinct types of dynamic heterogeneity. Following Starr et al. 55, we may show that these 

distinct dynamic heterogeneity timescales are nonetheless interrelated. Figure 4.8(b) shows the 

correlation between the immobile characteristic time tI  and the peak time t*  of non-Gaussian 

parameter for the studied alloy systems, which can be described by a power-law t*  ~ tI
0.6. It is 

evident that t* increases less rapidly than τα  upon cooling for all alloys investigated, as found 

before in the simulations of Starr et al. of polymeric glass-forming liquids. Since t*  indicates a 

characteristic timescale associated with diffusion and mobility fluctuations tI  corresponds to the 

lifetime of immobile particles and the structural relaxation time (See below), we may expect tI  

and t*  to exhibit a “decoupling” relationship. 121 Our previous work has shown that the 

characteristic timescales of diffusion and structural relaxation have a power-law relationship, 

t*  ~ (τα
)1-ζ, where the “decoupling exponent”    quantifies the degree to which the Stokes-

Einstein relationship ( = 1) "breaks down” (Below we show that tI  and τα can be approximated 

in GF liquids. In the present case of Cu-Zr alloys, the decoupling exponent  was previously 

estimated to be in the range 0.26 to 0.32.  28,121 Previous simulations by Starr et al. on model 

glass-forming polymer liquids indicated a corresponding power-law scaling t*  ~ (τα)
2/3 or    1/3. 

72 Figure 4.8 then confirms that the same type of Fractional Stokes-Einstein power-law 

relationship exists in both metallic and polymeric GF liquids.  
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   (a)           (b) 

Figure 4.8 (a) The correlation between the peak time of non-Gaussian parameter t* and mobile 

cluster lifetime tM. (a) Correlation between immobile characteristic time tI  and t* . The dashed 

line represents the correlation can be described by t*  ~ tI
0.6.  

  

 By performing Fourier transformation of the van Hove correlation function, the self-

intermediate scattering function or “dynamic structural factor” is obtained as, 26 

 Fs
(q, t) = 〈exp{-iq[ri

(t) - ri(0)]}〉 4.3 

Fs
(q, t) exhibits a two-stage decay, β-relaxation followed by α-relaxation. The “primary” or α-

relaxation process associated with glass-formation can often be described by a stretched 

exponential functional form, 55 

 Fs
(q, t) ~ exp[-(t/τα

)βs] 4.4 

where τα   is the “structural relaxation time” and  β
s
 is the “stretching exponent”, 0 < β

s
 < 1. In the 

present simulations on metallic GF liquids, β
s
 varies from 0.5 to 0.9 where its value gradually 
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decreases upon lowering T. As shown in Figure 4.9, tI  is related τα  by a power-law linking these 

timescales, tI  ~ (τα)
ζ. In particular, we find ζ  ≈ 0.94 for alloys with different composition over the 

entire T range simulated so that there is a roughly proportional scaling relation exists between the 

cluster lifetime and the structural relaxation time, tI   τα .  

 

 

Figure 4.9 The characteristic time, tI  scales nearly linearly with structural relaxation time, τα. The 

inset shows the self-intermediate scattering function of Ni62Nb38. τα is obtained by fitting Fs(q, t) 

to a stretched exponential decay, where the wave factor q is obtained from the first peak of the 

structure factor.  

 

The immobile particle clusters can alternatively be quantified by an extension of the 

dynamic structure, the four-point susceptibility, χ
4
. Starr et al. and Xu et al. 71,130,195 have shown 

that tχ, the time at which tχ  peaks, and τα  are highly correlated in polymeric glass-forming liquids, 
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and we check whether this relation also holds in our model metallic glass-forming liquids. First, 

we define time-dependent self-overlap function Q
s
(t), 71 

 Q
s
(t) = ∑ ωN

j=1 (|rj
(t) - rj

(0)|) 4.5 

when |rj(t) - rj(0)| < 0.3 , ω = 1, and when |rj(t) - rj(0)| ≥ 0.3 , ω = 0, where  is the average 

atomic spacing of a particular system and 0.3 is chosen as a typical amplitude of caged particles. 

This is a conventional choice of the cut-off parameter utilized before by Glotzer and coworkers in 

the context of discussing Q
s
(t) for the Kob-Anderson model, 195 and the motivation of choosing 

this cut-off scale for polymer liquids is discussed at length in Appendix B of Starr et al. 55 The 

cut-off value 0.3  in the original work of Glotzer and coworkers 195 was chosen empirically 

because it maximized the peak height of Q
s
(t) and because this scale was consistent with cage 

size estimates from the root mean-square particle displacement <u2>1/2 at a caging time on the 

order of a ps. (See Starr et al. for further discussion on this point.). Notably, both Glotzer and 

coworkers 195 and Starr et al. 55 found that Q
s
(t) was relatively insensitive to the choice of cut-off 

when the range of cut-off values was chosen to be consistent with observed range of <u2>1/2 

values. Despite all this discussion about the rationale for this choice of cut-off, we must admit 

that the fundamental reason for the choice of this “conventional” cut-off value is still somewhat 

obscure.   

At present, we suggest that arguments by La Violette and Stillinger 196 give some physical 

insight into this phenomenological cut-off criterion. They note that a critical cage size 

approximately three times the Lindemann melting point value (typically in the range 0.1  to 0.15 

 depending on the potential type) should arise in liquids that should define an onset condition 

for liquid freezing where this critical cage size was argued to be related to the maximum basin 
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size in the potential energy surface. We view this argument as providing a plausible physical 

argument for the origin of the cut-off scale. Correspondingly, we have previously defined 

“localized” or “Lindemann” particles by an atomic displacement cut-off of 0.27  in connection 

modeling melting of superheated crystalline Ni materials 50 and Jin et al. 197 previously estimated 

a somewhat smaller magnitude value 0.22  for particles interacting with a Lennard-Jones 

interaction. We then suggest a precise criterion for defining the cut-off of Q
s
(t) that is based on 

the perspective of La Violette and Stillinger 196 with adaption to glass-forming liquids; the cut-off 

may be defined by the value of <u2>1/2 at the onset temperature TA of non-Arrhenius dynamics, a 

temperature often found to be near melting temperature in liquids that readily crystallize, but still 

well-defined in fluids [See Douglas et al. 43 for a discussion of TA for Cu-Zr liquids based on the 

same potentials as in the present paper]. The basic idea here is that the cage first appears at TA 

and the magnitude of <u2>1/2 at this temperature defines the maximum value of the caging scale. 

As a test of this hypothesis, we find that <u2>1/2 at TA for Cu64Zr36 is 0.37 , which is a very 

plausible estimate in comparison to previous studies utilizing the heuristic criteria mentioned 

above. In the present paper, we utilize the conventional value of the cut-off 0.3  as a reasonable 

choice of cut-off, but this choice requires further consideration to understand the fundamental 

physical significance of this scale. We finally note that Cicerone and coworkers 198 have 

determined this caging scale from an experimental standpoint where a “loose cage scale” of 

comparable dimensions to our coarse-grained simulations was determined. 

The mean-squared variance of Q
s
(t) then defines the (self-part) of χ

4
, 58 

 χ
4
 = 

V

N
2 [〈Q

s
(t)2〉 - 〈Q

s
(t)〉2] 4.6 
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In the inset of Figure 4.10, we observe a peak in χ
4
(t), as observed before in the Kob-Anderson 

model of metallic glass liquids defined in terms of a mixture of Lennard -Jones particles 195.  We 

next establish that tχ  provides another method of estimating the lifetime of the ‘immobile’ 

particles.  

For GF liquids, the relaxation time τα  increases dramatically approaching to glass 

transition temperature, reflecting the growth of immobile clusters that persist on an increasing 

timescale. χ
4
 provides a useful metric for quantifying this type of dynamic heterogeneity 173,199 

and we illustrate the variation of this quantity as a function of time in the inset of Figure 4.10. 

Both the peak height of χ
4 

and the time tχ  at which this peak occurs progressively increase upon 

cooling. A direct comparison of tχ  and τα  for the example of a Cu64Zr36 alloy indicates an 

apparent power-law relationship, tχ  ~  (τ
α
)δχ  where δχ   0.97, which is close to the former 

apparent exponent estimates δχ  = 0.96 to 0.97 for a model polymeric glass-forming liquid under a 

wide range of conditions. 71,130 We conclude that tχ  is proportional to τα  within numerical 

uncertainty. Other metallic glass-forming liquids exhibit a similar proportional relationship, as 

illustrated in Figure 4.11(a). These results are to be expected from the previous observations of 

Glotzer and coworkers 195, who likewise found an approximate identity between tχ  and τα  in their 

pioneering molecular dynamics study of tχ  for the Kob-Anderson model, and a more recent 

extensions of these calculations to lower temperatures and longer relaxation times by Berthier 

and Biroli 173 have provided further support for the robustness of this relationship between the 

“lifetime” of the immobile clusters (tχ) and the structural relaxation time (τα). In every glass-

forming liquid examined to date, τα and tχ  exhibit a nearly proportional relation, regardless of 

fluid chemistry, the presence of molecular bonding, and the temperature range considered. 
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Figure 4.10 Correlation between the peak time tχ of χ
4
(t) and τα  at different temperatures for 

Cu64Zr36. The line indicates that tχ scales nearly linear with τα . The insect presents χ
4
(t) as a 

function of temperature.  

 

We also find that the immobile characteristic time tI  varies nearly proportionally to tχ, as 

shown in Figure 4.11(b). This relationship is consistent with our former conclusion that the 

lifetime of the immobile clusters governs the structural relaxation time and with previous work 55 

showing that tχ, τα, and tI  correlate strongly with the lifetime of the immobile particle clusters in 

other materials. Evidently, the peak time of 4-point density autocorrelation function tχ  provides a 

convenient measure of the lifetime of the immobile clusters. We emphasize this dynamically 

heterogeneity timescale is quite distinct from the timescale t* characteristic of mobile particle 

clusters. Glass-forming liquids exhibit multiple forms of dynamic heterogeneity which each form 

of heterogeneity has its own impact on the dynamics of GF liquids. 
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   (a)            (b) 

Figure 4.11 Relationship between tχ and τα (a), immobile particle characteristic lifetime time tI  

and 4-point time tχ (b) for systems studied in the present work. 

 

4.4 Conclusions 

We systematically examined the dynamic heterogeneity in model metallic glass-forming 

liquids and compared the results of our analysis with previous findings for a simulated polymeric 

glass-forming liquid in order to assess the nature and generality of the dynamic heterogeneity 

occurring in these chemically and topologically distinct molecular systems. Our primary goal 

was to assess the universality of the dynamic heterogeneity phenomenon and to better develop 

tools for enhanced quantification of dynamic heterogeneity. We summarize some of our specific 

findings and then make some general conclusions. 

1. We utilized the algorithm developed by Starr et al. 55 to identify both mobile and immobile 

particles and clusters of these particles of extreme mobility in the metallic glass system and 

confirm this methodology can be used on different chemistry and compositions of metallic 
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glasses. The lifetimes tM and tI of the mobile and immobile particle clusters were found to 

increasingly separate upon cooling and to exhibit a power-law relation that mirrors the 

“decoupling” relation between the average atom diffusion coefficient (D) and the structural 

relaxation time () of all the metallic fluids investigated. We independently showed that t* 

and tI are related to D and   through the relations, D / T ~ 1 / t* and    tI, proving insight 

into the origin of decoupling in glass-forming liquids. Decoupling arises from the presence 

of two distinct types of dynamic heterogeneity associated with mobile and immobile particle 

cluster formation.  Notably, no decoupling (or stretched exponential relaxation) was 

observed in superheated crystalline Ni 50 where mobile particle clustering similar in form to 

glass-forming liquids and non-Arrhenius relaxation is present, but where immobile particle 

clusters of finite size do not exist. Together these results highlight that these distinct types of 

dynamic heterogeneity make different contributions to the collective properties of materials 

composed of strongly interacting particles. 

2. We then examined the fractal dimension and the size distribution of immobile and mobile 

clusters. The size distributions of both types of dynamic heterogeneity exhibiting a mass 

scaling remarkably similar to that observed before for a model polymeric glass-forming 

liquids 55 and the fractal dimensions were found to be fully consistent between these 

chemically rather different materials. Moreover, these results for the size distribution and 

fractal dimension of these clusters, along with the temperature of these clusters are consistent 

with the known properties of particles clustering of particles to formed branched polymers at 

equilibrium. 55,191,192 These results support the existence of universality of the form of 

dynamic heterogeneity in glass-forming liquids, the primary question motivating the present 

study, and the previous suggestion that a self-assembly process underlies the glass-formation 
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process. 40,200,201 

3. We confirm previous observations indicating that the peak time t* and t for the non-Gaussian 

parameter 2(t) and the 4-point density correlation function 4(t), respectively, correspond to 

the lifetimes of the mobile and immobile particles in our simulated glass -forming liquids. 

2(t) and 4(t) then inform on the different types of dynamic heterogeneity in the present 

paper. These findings support the existence of “universality” in the structure and dynamics of 

glass-forming liquids. 

4. To better understand the origin of immobile particle clustering in terms of static fluid 

structure, we also examined locally preferred atomic packing in our metallic alloys based on 

a consideration of Voronoi cell analysis of the local geometry about all atoms in our system. 

We found clear evidence for atoms to adopt locally energetically preferred packing and for 

the close-packed Voronoi cells associated with these atoms to form branched polymeric 

clusters as found for the immobile particle clusters in our study, we unfortunately could not 

find any one-to-one relation between these populations of particles. Unfortunately, the 

attractive hypothesis that immobile particle clusters arise from the occurrence of locally 

preferred packing is simply not generally supported by our simulations. The goal of finding a 

relation between local static structure and dynamics in glass-forming liquids thus remains 

elusive. 

5. Our comparison between the dynamics of polymeric and metallic glass-forming liquids also 

directly addresses the claim by Colmenero 181 that glass-formation in small molecule liquids 

is fundamentally different from small molecule glass-forming liquids. Contrary to this 

suggestion, we find that the dynamics of these structurally and chemically glass-forming 

liquids is remarkably similar. 
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The present paper has mainly emphasized immobile particles and the geometry and 

lifetime of the dynamic clusters of these particles, although we briefly consider mobile particle 

clusters and clusters of such particles to establish that this type of dynamic heterogeneity is 

distinct in nature and significance for the properties of glass-forming liquids from the immobile 

particle dynamic heterogeneity. Our previous simulations 28,55 have emphasized that the mobile 

particle clusters are themselves actually clusters of more primitive dynamical structures involving 

string-like collective exchange motion where the temperature-dependent average length of these 

“strings” is proportional to the change in the temperature-dependent activation energy for 

structural relaxation time, , a finding consistent with the identification of the strings with the 

‘cooperatively rearranging regions’ of Adam and Gibbs.  36 This aspect of dynamic heterogeneity 

in glass-forming liquids has been established before both for Cu-Zr metallic glasses 28 and 

polymeric glass-forming liquids 55 so that this appears to be another general feature of glass-

forming liquids. 

It is our expectation that the immobile particle clusters can be decomposed, in a 

complementary fashion, into linear chain clusters that can support shear stress as suggested by 

Douglas and Hubbard 200,202 where such clusters were suggested to have great significance for 

understanding the universality of stress-relaxation relaxation in glass-forming liquids and the 

phenomenon of decoupling. 201 However, this expectation remains to be investigated by 

molecular dynamics simulation. 

We should also mention that much of the interest in characterizing the immobile clusters 

in glass-forming liquids derives from the Random First Order Transition Theory prediction that 

the temperature dependent size of the immobile particle clusters should determine the 

temperature dependence of the activation free energy for relaxation and molecular diffusion in 
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glass-forming liquids. In qualitative accord with this RFOT model prediction, Bauer et al.  203 and 

Flenner et al. 204 have provided, respectively,  experimental and computational evidence in 

support of at least a qualitative relation between the growing activation energy of glass -forming 

liquids upon cooling and the size of the immobile particle clusters inferred from multiparticle 

density correlation function analyses. On the other hand, Wyart and Cates 205 have raised serious 

questions about the existence of any general quantitative relation between the immobile particle 

cluster size and the activation energy for transport in glass-forming liquids. We believe that the 

earlier finite system size study of Karmakar  et al. 206 on a model binary Lennard-Jones glass-

forming liquid provides essential insights into this proposed relationship between immobile 

particles and activation energy changes in glass-forming liquids that have not been sufficiently 

appreciated previously. In particular, Karmakar et al. found that the 4 function, which is heavily 

weighted by the immobile particle type of dynamic heterogeneity, shows large changes with 

system size, while  exhibits a limited change in comparison to expectations for a direct relation 

between immobile particle size and the activation energy.   

We also point out that the experimentally observed 29 change in the activation free energy 

of glass forming liquids usually involves a relatively small factor of about 4 ± 2  over the entire 

range of glass formation, while the average number of particles in either the mobile and immobile 

particle clusters has been found to range from a small number at elevated temperatures to a 

relatively large number (Clusters of mobile and immobile particles as large as 200 particles are 

often observed at low temperatures or high particle concentrations in the studies of glass-forming 

liquids; See Figure 4.7 for illustration of this phenomenon in the case of the present metallic glass 

simulations). This observation alone suffices to exclude either mobile or immobile particles as 

being identifiable with the “cooperatively rearranging regions” (CRR) of the Adam-Gibbs (AG) 
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model. On the other hand, the average number of the mobile particles exhibiting string-like 

collective particle exchange motion (“strings”) exhibits both a size variation with temperature, 

and an absolute size consistent with the observed activation free energy in simulated liquids. 

29,55,128 Starr et al. 55 also observed that the average number of particles in the strings scales 

inversely to the configurational entropy estimated from inherent structure calculations to a good 

approximation, an observation again according with the heuristic AG model. The strings are the 

only form of dynamic heterogeneity identified so far that are consistent with the hypothetical 

CRRs of AG. In this interpretation of the hypothetical and rather ill-defined cooperative 

rearrangement motions that AG proposed to describe the temperature dependent activation free 

energy of cooled liquids is more specifically related to a sub-class of mobile particle clusters 

(‘strings’) that are characterized additionally by the simultaneous presence of particle exchange 

motion so that the mobile particles are clusters of more primitive clusters, strings. It is then 

evident from this discussion that the AG and RFOT models emphasize qualitatively different 

types of dynamic heterogeneity in glass-forming liquids so that these models cannot be 

considered to be basically “equivalent” entropy theories of glass-formation. We also point out 

that the strings show no tendency to form compact structures in liquids at low temperatures, but 

the existing evidence indicates that these dynamic structures tend to adopt a structure consistent 

with polydisperse flexible polymer chains formed by self-assembly, regardless of the chemical 

structure of the glass-forming liquid. 28,29,55,128 Thus, even if the immobile particles become 

ultimately compact at low temperatures, as suggested by the RFOT model, this would have no 

direct implication for the strings. Of course, the degree on the universality of the strings for other 

glass-forming liquids should be investigated further, along with the fundamental origin of this 

form of collective motion in the cooled liquids.  
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We conclude that glass-forming liquids evidently exhibit general characteristics that can 

be expected to explain the “universal” phenomenology of their material properties. Both metallic 

and polymer glass-forming materials exhibit a multiplicity of scales in the intermolecular 

interaction potential that frustrates crystallization and ordering by default takes the form of 

transient formation of particles into clusters in which the particles only exhibit local ordering. We 

expect this to be a universal property of glass-forming materials. The formation of locally well-

packed and energetically preferred clusters leaves the surrounding particles in a relatively 

frustrated state that leads to collective motion 28, a situation akin to particles in the grain 

boundaries where atom motion likewise can be highly cooperative for the same reason. 45 We 

expect this is another general aspect of glass-forming liquids. Of course, chain connectivity, 

stiffness, and changes in the cohesive interaction and pressure, modulate the degree of packing 

frustration in these condensed materials, and thus the fragility of glass formation, and other 

specific aspects of glass-formation, are characteristic of polymeric fluids as a class, and we 

briefly comment on this aspect of glass-formation in molecular versus polymeric fluids. 

Molecular bonding is a defining feature of polymeric materials that accounts for the 

relatively high fragility of many glass-forming liquids in comparison to metallic glass and small 

molecule liquids. Molecular bonding gives rise to the emergence of molecular rigidity, which, in 

turn, alters the efficiency of local molecular packing. The entropy theory of glass formation 

207,208 allows for the quantification of these packing effects arising variations of molecular 

structure and rigidity, pressure etc. and their effect on the dynamics of glass-formation. In 

particular, increasing the relative rigidity of the chain backbone relative to the side-groups, or 

vice versa, leads to significant enhancements of the (segmental) fragility of glass-formation for 

polymers having the same van der Waals interaction strength under the same constant pressure 
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conditions. 208 These general trends have been confirmed by the group of Sokolov and coworkers. 

209 Chemical bonding and the control of the topological structure of the polymer 210 modulate 

molecular rigidity and packing efficiency in the melt, allowing for the tuning of the glass 

transition temperature and fragility over a large range, a phenomenon that accounts for many of 

the unique properties of polymer materials. In metallic glasses, the packing frustration and 

fragility can be tuned through varying metallic composition, but the range of fragility variation 

tends to be much more limited and these materials also exhibit an inherent tendency towards 

phase separation and crystallization processes. 
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5. The Initiation of Shear Band Formation in Deformed Metallic Glasses from Soft 

Localized Domains 

5.1 Introduction 

MGs have been intensively researched as a promising new class of materials for many 

applications, but the inherent brittleness of these materials, and other technical problems have 

limited their development 211–214. In particular, MGs tend to readily undergo catastrophic fracture 

following the formation of highly localized SB in the material in which deformation becomes 

highly localized, precipitating material failure 211–213. Given the practical importance of SBs in 

MGs, the process and mechanisms of SB formation have been extensively studied by both 

experimental and computational methods 215–218. Experimental methods of studying SBs 

normally cannot resolve many aspects of SB formation and evolution because the nanoscale 

width and rapid evolution of these structures make measurements extremely challenging, and the 

long computational timescales required, and the inherently low temperatures characteristic of 

MG materials make the problem of studying SB formation and evolution also extremely difficult 

from a simulation standpoint. Since the timescale of the process is extremely short, and the 

length-scale is initially on the order of nm, we try to gain insights in SB formation and evolution 

through MD simulation since this method at least has the requisite time and spatial resolution for 

studying this phenomenon.   

Shear bands form spontaneously in MG materials at temperatures well below their glass 

transition temperature Tg where molecular diffusion is unmeasurably slow by simulation, yet the 

formation of shear bands hints at the emergence of appreciable mobility in the material under 

deformation. The nature of ‘mobility’, and how to quantify it, under conditions where one cannot 

normally estimate the rate of molecular diffusion are clearly basic issues that need to be 

addressed. There is also a universal geometrical character to the SBs themselves that invites 
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theoretical explanation. SBs in diverse materials take the form of ribbon-like thin regions that 

arise from the emergence of localized layer-like regions of the material in which relatively large 

strains arise, hence the term ‘shear band’. This is the primary deformation mode of metallic 

glasses 219 that is of recognized critical importance for the mechanical properties of these 

materials in relation to their performance in applications. There is a general view in the MG 

community that if the mechanism of shear localization could be understood, along with the 

subsequent formation of mature SBs, then this knowledge might be used to engineer tougher MG 

materials that are less prone to this elastic instability. It is this ultimate goal of developing design 

rules for making metallic glasses for many applications that animate our work. It is notable that 

many aspects of SB formation in glass materials are remarkably insensitive to the chemical 

nature of the material. For example, the observations of Argon et al. 220 on shear banding in 

polystyrene in its glass state are remarkably similar to those for metallic glasses and the 

similarity between shear banding in polymeric and metallic glass materials has also been 

emphasized by Shavit and Riggleman 221. This commonality in the phenomenology of shear band 

formation in such different materials gives us hope that there are general principles to be 

discovered about SB formation and yield in glassy materials that are invariant to the material 

substance.  

Our own approach to this problem is heavily informed by ideas and computational tools 

derived from quantifying mobility fluctuations and collective motion arising in GF liquids as 

these materials approach their glass transition from above. It is initially seemed reasonable to us 

to suppose that these dynamical structures, and atomic clustering associated with these mobility 

fluctuations, become kinetically trapped in the glass state. In the previous simulations, we and 

others have found 28,49 that the atoms of MGs and other model GF liquids tend to form string-like 
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clusters of atoms corresponding to locally energetically preferred configurations and that the 

particles in these clusters tend to be relatively immobile in the fluid state under conditions in 

which the diffusion coefficients of different types of atoms in the material can be quantified by 

simulation. Ma 222 has recently provided a detailed review of locally preferred packing in 

metallic glass materials and Ding et al. 223 discuss this local packing geometry for the specific 

MG material studied in the present work. Many simulations have also shown that these relatively 

well-packed particles having an energetically preferred spatial configuration can be identified by 

a Voronoi analysis of the local environment of the atoms where it is found that the Voronoi cells 

are organized in highly correlated polymer-like structures in space. This is clearly a kind of 

topological ‘ordering’ process, as evidenced by the corresponding parallel drop in the fluid 

entropy in polymerizing systems and GF liquids 40, so that the material structure is not really 

‘random’. Of course, not all the atoms can participate in this locally preferred packing, and the 

atoms in the not so well-packed regions are energetically frustrated 222  in a fashion highly 

analogous to the ‘amorphous regions’ in polycrystalline materials 45. We have found in our 

previous simulations that the dynamics of both metallic and polymeric GF liquids exhibit 

dynamic interpenetrating structures in which particle mobility is excessively high and low in 

these regions, respectively, and, in the liquid state the particles undergo a constant exchange 

between these dynamical states. We may then expect some remnants of this dynamical and 

structural heterogeneity of the liquid state to persist in the glass state below the glass transition 

temperature, Tg. Under deformation conditions, where mechanical rather than thermal energy 

should ‘activate’ particle motion, and we also expect active dynamic heterogeneity to re-emerge 

upon increasing stress until the material locally ‘melts’. The present work pursues how ‘dynamic 

heterogeneity’ might influence SB formation in a model Zr-Cu metallic glass material. We 
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naturally bring the tools that we previously brought to studying metallic GF liquids to study the 

dynamics of our simulated MG in its glass state.  We note recent work has shown that deforming 

glass-forming materials leads to changes roughly equivalent to increasing T 224 and another goal 

of our work is check this possibility.  

The concept of dynamical heterogeneities has independently been introduced into 

phenomenological descriptions of the dynamics of MG and other glass materials. In particular, 

shear transformation zones (STZs) have been invoked to model the deformation processes of 

MG, these proposed structures being roughly the ‘defect’ counterpart of dislocations in deformed 

crystalline materials in their significance of the mechanical properties such as strain hardening, 

etc. The basic ‘function’ of the proposed STZs is to enable localized deformation in the material 

that allows macroscopically deformation through the action of numerous hypothetical regions of 

this kind spread throughout the material. Extensive research on metallic glasses has revealed that 

the relaxation process obtained from fitting models of the mechanics, with local properties 

assumed for STZs to mechanical measurements, 225 has indicated that the activation energy of 

the STZs is thermally activated where the thermal activation energy is highly correlated in 

general with the JG relaxation process. It is widely appreciated that this relaxation process is the 

dominant relaxation process in mechanical and dielectric measurements of materials in their 

glass state 226. This is highly encouraging from the standpoint of the present study because we 

have recently found that the JG relaxation process in model Al-Sm metallic glass materials can 

be quantitatively described by collective motions that have been observed in GF liquids 227,228. 

There would then appear to be some prospect of obtaining a more fundamental understanding 

and precise specification of the rather abstract STZs. Recent works 229–231 have indicated that 

well-defined elastic heterogeneities in the stress field develop in deformed metallic glasses and 
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we may expect the heterogeneities that we tentatively identify with the STZs to likewise exhibit 

stress multipole interactions. We hope to consider this problem in future work in simulations 

dedicated to elucidating this hypothesis. 

Recently, Cao et al. quantified the network of icosahedral clustering mentioned and 

suggested its important role in the initiation of shear band formation 225.  This work reminds us 

that it is the organization of the locally well-packed particles in the material that is ultimately 

responsible for the ‘strength’ (shear modulus) of the material and the alteration of these 

structures under deformation can be expected to be an important contribution to the deformation 

dependence of material properties, in addition to alterations of the less well-packed regions 

exhibiting relatively high local deformability. Evidence of the importance of the deformation of 

these immobile particle clusters was emphasized in the magnitude of deformation-induced 

acceleration of structural relaxation in glass-forming liquids under steady shear conditions 224. 

Both classes of ‘dynamic heterogeneity’, highly mobile and immobile particle clusters, can be 

expected to contribute to changes of materials properties under deformation. 

One of the general trends that arises in liquids as they are cooled towards their glass-

transition is a general increase in the scale of collective motion as the shear rigidity tends to 

increase 128 and this tendency at fixed T can be expected to be contravened by material 

deformation. This tight interrelationship between cooperative motion and rigidity makes 

measures of rigidity particularly useful in the quantification of the dynamics of condensed 

materials. Since shear bands arise locally in the material, we are interested in local measures of 

rigidity that lend themselves to measurement and quantitative determination by simulation. The 

Debye-Waller factor, <u2> has been proposed as a measure of local material stiffness that has a 

highly predictive value in relation to understanding the material dynamics. This quantity is 
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defined as the mean square displacement <r2> after a fixed ‘caging’ or decorrelation time t0 

characterizing the crossover from ballistic to caged atomic motion in the liquid dynamics 43.  <u2> 

is considered a ‘fast dynamics’ property since t0 is typically on the order of a ps in molecular and 

atomic fluids. Remarkably, this dynamical property defined on this very short timescale has 

shown great value in estimating the structural relaxation time  on the timescale at the glass 

transition temperature Tg where  is typically on the order of a min. This type of 

interrelationship has been explored in a range of materials and thus has some generality 224,232–236. 

We note that previous studies have focussed on <r2> and various measures of local effective 

shear modulus in connection with the quantification of the onset of SB formation 237,238, but we 

are not aware of any previous study based on <u2>. 

In an early simulation study of <u2> in relation to relaxation in GF liquids, Starr et al. 

established a near proportionality between <u2>3/2 and ‘rattle free volume’ <vf>, defined by the 

volume explored by the particle rattling about in a cage defined by the surrounding particles in 

the material 2,239. Note that the inertial energy of the particles is a significant contributor to this 

type of free volume so that this quantity is quite different, even qualitatively in some cases, from 

estimates of ‘free volume’ based on material ‘structure’, e.g., estimates based on Voronoi 

volume, etc. We may expect <u2>, which provides a useful local measure of stiffness, as a well 

as local mobility in terms of the mean amplitude of motion (‘dynamic free volume’), to provide a 

useful metric for studying the emergence of local soft spots in deformed materials and the 

coalescence of soft regions into a shear band. Our previous studies of GF liquids have repeatedly 

shown that <u2> can inform on local mobility gradients that are not apparent structurally 145. 

Previous work has shown that the magnitude of <u2> is often dominated by the motion of a 

relatively small fraction of particles in the system exhibiting string-like collective motion 6, and 
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these dynamic structures are candidate structures for describing the STZs noted above. We may 

then expect to gain some important new insights in the formation and evolution of shear bands in 

deformed MGs by simply observing the evolution of the field of values of <u2>. We find that 

this is indeed the case. 

In the current paper, we examine the initiation and evolution of the formation of SB in 

Cu64Zr36 MG materials under uniaxial tensile loading with different sizes and temperatures. First, 

using commonly used local von Mises strain measure, we observed numerous areas with 

relatively large local strain spontaneously arises as the stress increases. Those areas grow and 

coalescence in particular band upon the stress approaching the critical value for the formation of 

SB, phenomenologically resembling early and late stage of spinodal decomposition. We then 

examined whether the common dynamic heterogeneity types found in the cooled GF liquid 

approaching the glass transition from above also exist in the glass state. Since the systems do not 

have pre-existing regions with stress concentration, we found that regions with relatively large 

<u2> first appeared simultaneously at many places within the material, but these regions evolved 

in their organization into a shear band become concentrated into a band-like domain. We find 

that when the SB has fully formed, almost all the particles inside these regions are ‘interfacial-

like’ (i.e., atomic mobility is equivalent to the atomic mobility in the interfacial region at the 

undeformed state), which enables the relatively facile deformation of these regions. We then 

define a precise local measure of material stiffness to investigate the initiation of shear band 

formation. The local stiffness distribution in the SB region and the whole system both approach 

to the distribution of the interfacial region at the undeformed state. In particular, as the material 

strain increased, the fraction of mobile particles progressively grew at relatively random 

positions within the incipient shear band region. In addition, we found that the van Hove 
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function describing atomic displacement in a highly deformed metallic glass exhibits rather 

typical behaviour for the type of elastically turbulent system observed during the formation of 

SB.    

 

5.2 Simulation Methodology 

Molecular dynamics simulations were implemented to examine the formation of shear 

band in Cu64Zr36 metallic glass systems. The MD simulations were carried out using Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS), developed by the Sandia National 

Laboratories 99. The atomic interaction in metallic glasses systems was described by semi-

empirical potentials optimized to reproduce the measured static structure factor and other 

equilibrium properties of Cu-Zr alloys 58. It has been demonstrated in previous studies that this 

potential provided reliable descriptions of both structural and dynamic properties. In the present 

study, the representative alloys Cu64Zr36 were chosen based on extensive research and studies 

show that this alloy possesses good glass-forming ability near the eutectic points of the alloys.   

 Next, we describe the simulation methods for MD simulations of metallic glasses. First, 

we chose four different length scales of Cu64Zr36 alloys: (180 × 30 × 30) Å ( 10, 125 atoms), 

(180 × 90 × 30) Å ( 30 375 atoms), (300 × 150 × 30) Å ( 84 375 atoms), and (600 × 300 × 60) 

Å (  675, 000 atoms) in X, Y, and Z directions. For the latter three simulation cells, the 

dimension in X and Y was chosen to keep the aspect ratio constant. Taking (600 × 300 × 60) Å 

as an example, we begin with a perfect Cu single crystal containing 675 000 atoms. Then 36 % 

of the Cu atoms are randomly replaced by Zr atoms. The mixture was then heated from 300 K to 

2000 K and kept at 2000 K for 5 ns to achieve a structural homogeneous glass-forming liquid. 

After that, the system was cooled down to 50 K in 19.5 ns, given a cooling rate of 100 K/ns. 
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During this process, NPT (constant number of atoms, constant pressure, and constant 

temperature) ensemble was implemented with zero pressure and periodic boundary conditions. 

The constant pressure was controlled by the Parrinello-Rahman algorithm 63, and temperature 

was kept constant using Nose-Hoover thermostat method 61,62. After obtaining the metallic glass 

sample, 30 Å vacuum spaces were added on both sides along the Y-axis.  

 The deformation of the sample was achieved by loading the sample under uniaxial tensile 

loading along X-axis using a constant strain rate of 1 × 107 / s to 15 %. Periodic boundary 

condition was applied on the X and Z-axis, while the free surface condition was applied on the 

Y-axis. The simulations were first carried out at 50 K to guarantee the formation of the shear 

band. To examine the temperature influence on the deformation, three more temperatures at 200 

K, 300 K and 400 K were carried out on the system with h = 300 Å. Same strain rate was applied 

with different temperatures. Atomic configurations were saved every 1 ps for future analysis.  

 

5.3 Results and Discussion 

5.3.1 Uniaxial Tension Test on Cu64Zr36 Materials Having a Range of Thicknesses 

Figure 5.1 (a) shows stress-strain curves of Cu64Zr36 with four different thicknesses h = 

30 Å, 90 Å, 150 Å, and 300 Å. For h = 90 Å, 150 Å, and 300 Å, stress overshot and dramatic 

drop have been observed after roughly strain at 7 %, which is known as a characteristic feature of 

localized deformation, similar to the findings in other literature 225,240,241. After the stress drops, 

fluctuations in the stress-strain curves become noticeable. We find below that this phenomenon 

is related to an intermittent softening and stiffening of the shear band region. These soft areas 

have been identified as shear transformation zones in other literature 242. Eventually, one 

dominant SB formed and led to a catastrophic failure in the sample.  
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The atomic shear strain Mises was implemented to monitor the formation of the shear 

band, which was calculated using the equation243: 

 𝜂𝑀𝑖𝑠𝑒𝑠 = √𝜀𝑥𝑦
2 + 𝜀𝑥𝑧

2 + 𝜀𝑦𝑧
2 + 

(𝜀𝑥𝑥− 𝜀𝑦𝑦)
2
+(𝜀𝑥𝑥− 𝜀𝑧𝑧  )2+ (𝜀𝑦𝑦− 𝜀𝑧𝑧)

2
 

6
  5.1 

 

 

(a)               (b) 

Figure 5.1 Stress-strain curves (a) for Cu64Zr36 metallic glass materials under uniaxial extension 

at 50 K for films having a range of thicknesses and the onset of shear band formation. (b) 

Deformation maps of Cu64Zr36 with different thicknesses at  = 15 %. The red atoms are those 

with the von Mises local strain higher than 0.2. Corresponding from left to right: thickness h = 

30 Å, 90 Å, 150 Å, and 300 Å. The characteristic angle of the shear band near 45 corresponds to 

the direction in which the resolved shear stresses are maximum in this mode of deformation 

based on Schmid’s law 244. 

 

As shown in Figure 5.1 (b), atoms with the atomic shear strain larger than 0.2 have been 

marked as red to identify the deformation mode. Also, a non-localized deformation has been 
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observed in the deformation map with h = 30 Å, as well as in the stress-strain curves having no 

overshoot. This confirmed with the critical thickness tc = (3.33 ± 0.20) nm (note the variation 

was estimated based on multiple simulations) for Cu64Zr36 alloys proposed by Zhong et al. 240,241 

that systems with smaller dimensions than the critical thickness exhibited a deformation 

transition mode from localized deformation to non-localized stress-induced uniform flow.  

 A series of snapshots of local von Mises strain directly demonstrating the formation of 

shear band is shown in Figure 5.2. The sample was under uniaxial tensile loading without a stress 

concentrator. Von Mises local Mises defined in eq. (5.1) were implemented to monitor the 

formation of shear band. The cut-off radius for von Mises strain calculation was chosen as the 

first minimum of the pair distribution function. As observed by Cao et al., systems without pre-

existing stress concentrations tend to show multiple areas that undergo larger local deformation 

225. The shear band does not seem to initiate its growth from the surface, and then propagate 

along a 45° direction (maximum resolved shear stress direction) from this interface as we 

initially anticipated. (Below, we show that the dynamics of the interfacial region does have an 

impact on the onset of SB formation.)  Instead, the SB gradually evidently build s up from a 

gradual accumulation of soft regions within the SB region. Once the band has fully formed in 

this way, it begins to widen and further soften, a pattern of growth that superficially resembles 

early and late stage of spinodal decomposition where local density or composition fluctuations 

first form spontaneously in local regions of the material, and this structure coarsens in time in a 

later coarsening stage. We see below, however, that the softness of the interior of the SBs closely 

matches the boundary of the material, and that the critical condition for SB formation is 

apparently related to a ‘critical’ condition at which this confluence of <u2> values occur. Thus, 
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even if the SB is not ‘nucleated’ from the boundary the mechanical properties of the boundary 

and interfacial dynamics of the material appear to be highly relevant to the development of SBs. 

 

 

Figure 5.2 Snapshots of von Mises strain showing the formation of the shear band. 

Corresponding to strain   = 8.0 %, 8.5 %, 8.7 %, 8.8 %, 8.9 %, and 9.0 %.  
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Based on Griffith’s theory, the propagation of shear band only succeeds when the elastic 

strain energy causing by the propagation is larger than the formation energy of the two free 

surfaces 245,246. While the samples possess no pre-existing stress concentrator, fluctuations have 

been observed in terms of local strain. When the strain equals  = 8.0 %, multiple areas with 

relatively large von Mises strain appeared within the sample. We believe that these areas are 

mainly responsible for mediating plastic deformation. When we increased the strain, these areas 

would soften or harden during the process. Eventually, one dominant shear band develops in 

which deformation becomes predominantly localized.  

 

5.3.2 Quantification of Local ‘Mobility’ and Relaxation in the Glass State 

At low temperatures in the metallic glass state, atomic diffusion is extremely slow and 

other mechanisms can be expected to mediate the structural relaxation process. The nature of 

these processes was not a priori clear to us when we started our investigat ion, so we first 

examined the dynamics of single particle displacement and collective atomic motion to 

determine what features are common to the cooled liquid regime approaching the glass transition 

from above or whether any entirely new modes of motion arise in the glass state. It is also 

seemed relevant to determine how the dynamics in the MG state depended on T or whether the 

material properties strongly depended on the history of material preparation. The tentative 

answers to these questions guide how we analyze the onset and dynamics of shear banding when 

the material is subjected to deformation at low T. 

We begin our analysis by considering the average MSD <r2 (t)> of all atoms in our 

system as a function of time t for different temperatures in Figure 5.3(a). The MSD is defined as 

1

𝑁
∑ {[𝑥𝑖(𝑡) − 𝑥𝑖(0)]2 + [𝑦𝑖(𝑡) − 𝑦𝑖(0)]2 + [𝑧𝑖(𝑡) − 𝑧𝑖(0)]2}𝑁

𝑖=1 , where (𝑥𝑖(0),𝑦𝑖(0),𝑧𝑖(0)) and 
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(𝑥𝑖(𝑡), 𝑦𝑖(𝑡),𝑧𝑖(𝑡)) are particle i’s initial and final positions after time t, respectively, and N is 

the number of atoms. Notice the drift motion of all atoms due to the elastic deformation upon 

loading is subtracted. The <r2 (t)> at a later time was calculated using the atomic position at  = 

1 % as a reference and calculated up to  = 2.9 % (or equivalently 1.9 ns based on the current 

strain rate). It is ideal to use the configuration at  = 0 % as the initial position for MSD 

calculation. Due to some unknown reason, the material exhibits stress exhibits fluctuations near 

0 % strain. In order to avoid uncertainty in the calculation of MSD due to stress fluctuation, we 

instead choose the configuration at  = 1%, where we believe it does not significantly change our 

conclusion. We believe that the stress fluctuation at low strain region was mainly a result of 

significant residual stresses at the low temperature due to the quench process of our metallic 

glasses. We have found that is possible to almost entirely remove these stress fluctuations by first 

applying small prestress to the material to presumably relax the residual stresses and we describe 

this pre-stress procedure in Appendix C. Our observations strikingly resemble those of a crystal 

at low temperatures in that there is a fast, inertial motion in which the particles move ballistically, 

followed by caging after a timescale on the order of 0.1 ps in these materials 50. At very long 

times, there is the hint that the particles are entering a regime in which they are no longer 

localized after the material has been sufficiently deformed, but this time regime is difficult to 

access by simulation at low strain values (We return to a consideration of this long-time regime 

below.). Importantly, <r2 (t)> plateaus after the ‘caging time’ tcage, a time that defines the Debye-

Waller parameter, <r2 ((tcage)>  <u2>. In the inset of Figure 5.3(a), we see that this quantity 

varies linearly with T in the glass state, as normally observed for <u2> in crystalline materials at 

T much lower than the melting temperature 45. The mobility of the particles in the metallic glass, 

defined by the mean amplitude of atomic motion, clearly depends on T in a similar fashion in 
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both crystalline and glass ‘solids’. Corresponding to the plateau in <r2 (t)>, there is a plateau in 

the self-intermediate scattering function Fs(q,t) having indefinite persistence in the time in the 

absence of deformation, signaling that the metallic glass is in a non-ergodic state (i.e., the 

density-density autocorrelation function does not decay to zero at long times). Appropriately, the 

magnitude of the plateau in Fs(q,t) is often termed the ‘non-ergodic parameter’, which provides a 

quantitative measure of the ‘degree of relaxation’ that can occur in the glass state. As we shall 

discuss below, the -relaxation time , which is characteristic relaxation time of cooled liquids 

can be taken to be infinite. Upon sufficient deformation, this relaxation process re-emerges so 

that Fs(q,t) appears to decay as in a cooled liquid. We investigate this long time regime briefly 

below.  

            To quantify this transition in the dynamics, we examine how <r2 (t)> is altered by a large 

deformation of the material. In Figure 5.3(b), we apply a range of strains up to  = 8.9 % for 

material with h = 300 Å at T = 50 K, with each curve calculated within    2 % strain interval. 

The dynamics is unaffected in the short time regime, which is completely controlled by the 

particle kinetic energy, but at long times we observe a transition to delocalized behaviour at a 

progressively shorter time with increasing strain. The trend is again very much like what we 

would expect to see in crystalline materials at low T and cooled liquids upon raising T, although 

it is not clear that the dynamics is diffusive beyond the caged regime in the strained material. We 

briefly discuss this longer time dynamics below.  

While the plateau value of <r2 (t)> does not change greatly with strain in Figure 5.3(b), a 

small variation in <u2> with  can be seen upon enlarging the scale in the inset of Figure 5.3(b). 

The change of <u2> relative to its value at vanishing strain <u2( = 0)> and normalized by the 

square of the average particle distance, , <u2>  (<u2> – <u2( = 0)>) / 2, increases nearly 
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linearly with  over the large range of strain considered in our simulations.  The magnitude of 

<u2> then depends on both a thermodynamic contribution <u2( = 0)> and a contribution arising 

from the applied strain, <u2>. 

 

 

(a)                      (b) 

Figure 5.3 Qunatification of atomic displacement in the glass state and particle caging. (a) 

Average mean square displacement <r2 (t)> of all the atoms at different temperatures in the 

elastic regime. Inset shows that <u2> exhibits a linear relationship with T. (b) Average mean 

square displacement <r2 (t)> of all the atoms at different strain levels. Inset shows the normalized 

<u2> as a function of applied strain.  

 

In a previous study of shear in GF liquids 224, it was found that the structural relaxation 

time from the intermediate scattering function Fs(q, t) approaches the caging time tcage at high 

rates of deformation and it is natural to consider whether a similar trend applies when the 

metallic glass is deformed. One difficulty in pursuing this question is that the definition of 

‘relaxation time’ is not obvious in the metallic glass state. In experimental studies of metallic 

glasses, the Johari-Goldstein relaxation process is widely recognized as being the primary 
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relaxation process in the glass state, but the direct investigation of this relaxation process 

involves the simulation or measurement investigation of mechanical relaxation processes at very 

low temperatures. In recent simulation studies of an Al-Sm metallic glass 227,228, however, we 

have shown that the Johari-Goldstein relaxation process essentially coincides with a specific 

measure of dynamic heterogeneity, the average lifetime M of mobile particle clusters. This is a 

quantity more readily investigated by simulation and, conveniently, does not require the 

computation of mechanical properties of the material such as the stress autocorrelation function. 

We have previously investigated the distribution of the ‘mobile particle clusters’ in Zr-Cu 

metallic glass-forming liquids in the liquid regime, 43,247 and we next consider whether M  exists 

in the glass state and whether this quantity can serve as a relaxation time in the glass state, as in 

the Al-Sm system. 

We should note here that the emergence of particle clusters having excessively high and 

low mobility in relation to expectations of Brownian motion is a general feature of GF liquids 

and this aspect of GF liquids, along with methodologies for identifying such particles, their 

distribution of size, average size, fractal geometry, lifetime, etc. have been discussed at length in 

previous publications on both metallic glass and polymeric GF liquids. 247,55  The reader is 

referred to this previous works devoted to this topic for the requisite technical discussion of these 

‘mobile’ and ‘immobile’ particle clusters, which together define the dynamically heterogeneous 

nature of GF liquids. We find the same clusters arise in the glass state. 

In Figure 5.4, we examine the average mass of the mobile particle clusters as a function 

of time t using the same method of defining the mobile particles as described before 228 except 

that we consider a range of strain values between 3.0 % to 8.0 % in the glass state rather than a 

range of temperatures in liquid state. In the present analysis, we define ‘mobile particles’ as 
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corresponding to the top 2.75 % the most mobile particles of the system at any point of time (see 

Appendix C for the details on how we uniquely determine this cut-off value following the 

suggestion of Starr et al. 55) As in our previous simulations in the ‘liquid’ regime above Tg 247, 

the average mass of the mobile clusters generally exhibits a maximum at a characteristic time, M, 

which defines the ‘mobile cluster lifetime’. We further see that increasing strain significantly 

decreases M, but the cluster size increases. In our previous study of M in the liquid regime, we 

also found that M was approximately equal the non-Gaussian parameter, a common measure of 

dynamic heterogeneity. The non-Gaussian parameter,  𝛼2(𝑡) =
3<𝑟4 (𝑡)>

5<𝑟2 (𝑡)>2 − 1  , measures the 

deviation of the displacement dynamics from a Gaussian, i.e., 2(t) is defined to equals zero if 

the displacement distribution is Gaussian. The particle displacement distribution is Gaussian in 

fluids where the fluid dynamics is highly chaotic and the theory of Brownian motion applies, but 

this distribution also arises in crystalline materials at low temperatures where the particles are 

perfectly localized in their potential wells. The distribution function also becomes Gaussian in 

the short time inertial dynamics regime as a consequence of the Maxwell-Boltzmann distribution 

of the particle velocities for materials in equilibrium and the near ballistic nature of the particle 

motion in this short time regime. The magnitude of this distribution can thus provide information 

about whether the system is in at least local equilibrium or whether particle motion is localized, 

or a diffusion process reasonably modeled by Brownian motion. Correspondingly, we show the 

variation of  𝛼2(𝑡) as a function of time in Figure 5.5(a) for a range of strains, and in the inset of 

this figure we see that M exhibits a nearly linear relationship with t* (the time at which the non-

Gaussian parameter peaks) in the glass state. Recently, Puosi et al. also suggest a strong 

correlation between the peak time in the non-Gaussian parameter t* and JG -relaxation in a 

model polymer glass-forming liquid using molecular dynamics simulation 248 so that this relation 
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seems to have some generality, even if it is not universal. This suggests that this measure of 

‘dynamic heterogeneity’ is common to both cooled liquids and the glass states and derives from 

the existence of mobile particle clusters. We note that mobile particle clusters having a lifetime 

M 
 also arise in heated crystalline materials 50 so this definition should apply just as well for 

crystalline materials both under quiescent or deformation conditions.  

We have previously shown that the dynamics of the mobile particle clusters and the JG 

relaxation process in an Al-Sm metallic glass involves an intermittent particle ‘jump’ process. By 

‘intermittent’, we mean that the jumping events can be described by a universal distribution with 

a power-law tail. Relaxation processes exhibiting this type of temporal heterogeneity exhibit 

non-exponential relaxation and the application of a renewal theory to relaxation in material 

systems indicates that relaxation in systems with this type of intermittency should generally be 

described by the Mittag-Leffler family of functions, which in the frequency domain is known as 

the Cole-Cole relaxation function 200,249. This type of relaxation is commonly observed for the JG 

-relaxation process in glasses 250,251, including metallic glasses when the alpha and beta 

relaxation processes are well-separated 252. Mittag-Leffler relaxation leads to power-law stress 

relaxation at long times rather than the exponential or stretched exponential function (or the 

Havriliak-Negami function in the frequency domain 200,249), characteristic of the alpha relaxation 

in the liquid regime or to power-law creep deformation under applied constant stress 253.  

We suggest that the Cole-Cole relaxation function is universal for the Johari-Goldstein -

relaxation process observed in mechanical and dielectric measurements in glass materials. 

Power-law creep is a nearly universal property of diverse solid materials, encompassing glass, 

polycrystalline and crystalline materials having many different types of chemical composition 

(polymeric, metallic and ionic materials) 254–263. The ‘creep exponent’ describing the progressive 
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power-law change in the material dimensions under constant applied stress is often observed to 

be near 1/3 (‘Andrade creep’), a value that Douglas and Hubbard have interpreted before as 

arising from polymeric chains of locally icosahedrally-packed particles in many glass-forming 

materials200.  

 

 

 (a)                                                                             (b) 

Figure 5.4 Evolution of mass of mobile particle clusters in time, their lifetime with strain and 

their size distribution. (a) Mobile cluster size as a function of time at different strain levels for T 

=  50 K and h = 300 Å. (b) The mobile particle probability distribution function at different 

strains. The inset shows the mobile cluster configuration at 7.0 % with a size of 20 × 20 × 6 nm. 

The evolution of the average size of the mobile particles and their size distribution is evidently 

similar to previous observations in the liquid regime, but strain clearly alters their size and 

average ‘lifetime’, determined by the time at which their average mass peaks. The size 

distribution of the mobile particles is nearly the same in the interior and interfacial regions, and 

the fractal geometry of the clusters in these two regions are almost identical, so there is 

apparently no essential difference in the geometry of the clusters in these regions. We have 
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included a comparison of these distributions in Appendix B, along with a quantification of the 

dynamic clusters, which are a good candidate for ‘shear transformation zones’. 

 

Although the -relaxation process is inaccessible in simulations of both crystalline and 

glass materials at low temperatures because of its extremely long timescale or complete lack of 

existence, we may consider whether M may serve as a ‘relaxation time’ appropriate for the glass 

state. We show in Figure 5.5(b) that the strain dependence of M can be brought into an apparent 

universal reduced form in which M  approaches tcage corresponding to the limit of a nearly 

‘perfect fluid’ as the strain is increased. In particular, M is well-described by the scaling relation, 

 (𝜏𝑀 − 𝑡𝑐𝑎𝑔𝑒) 𝑡𝑐𝑎𝑔𝑒⁄  ~ 𝐴[(𝜀𝑐 −  𝜀) 𝜀𝑐⁄ ]𝛿 5.2  

A = 7.0,  = 1.37, where the ‘critical’ strain, c = 8.3% at which this limit is achieved 

corresponding to the point of shear band formation. This scaling mirrors the approach of  to 

tcage in the liquid regime for liquids subjected to increasing deformation 224.  

 

 

 

(a)                           (b) 
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Figure 5.5 Quantification of non-Gaussian parameter and its relation between its peak value and 

M. (a) Non-Gaussian parameter as a function of time at different strain levels. The inset shows 

the time t* at peak in non-Gaussian parameter exhibits a linear relationship with mobile particle 

lifetime M at different strain levels.  (b) Scaling relation between mobile particle lifetime M and 

strain.  

 

Recently, Giuntoli et al. 224 have emphasized that the approach of the relaxation time  

of the fluid to tcage corresponds to the point at which the -relaxation time merges with the fast -

relaxation time and that this condition corresponds to a flow instability condition because this 

condition implies that relaxation of the fluid by momentum diffusion (More precisely, the 

kinematic viscosity , the ratio  of the shear viscosity to the fluid density, is the momentum 

diffusion coefficient in hydrodynamic theory, but under the normal condensed fluid conditions in 

which the fluid density is nearly constant we may think of the shear viscosity as being 

proportional to the momentum diffusion coefficient.) becomes essentially suppressed at this 

point, i.e., the fluid can be viewed as roughly equivalent to an inviscid fluid from a modeling 

standpoint. ‘Turbulent’ or ‘chaotic’ flow is common observed in fluid flow having such 

exceptionally low viscosities 264, and, although there is no generally accepted theory of the 

transition to turbulent fluid flow, this tendency can be qualitatively understood from recent 

computational investigations of particle motion in idealized inviscid fluids, where it has been 

observed that the motion of a solid body through an incompressible, inviscid fluid, moving 

irrotationally, and otherwise at rest, is inherently chaotic 265. It is notable that such turbulent 

motion has been observed in flowing polymeric liquids even under conditions in which the 

inertial energy of the fluid flow, as quantified by the Reynolds number, is small 266–268. 
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Simulations have recently shown that shear band formation after sufficiently large deformation 

of our metallic glass leads to the onset of hierarchical vortex formation, transient super diffusive 

motion, and other features common turbulent fluids (see discussion below.) This phenomenon in 

glass materials appears to be another variety of ‘elastic turbulence’. Taylor 269 long ago stressed 

the analogy between turbulent flow in liquids and the heterogeneous flow expected to arise in 

association with the deformation of polycrystalline materials. Our results below support this 

intuition.  

In order to quantify the emergent dynamic heterogeneity in our strained MG material, we 

next consider an apparently general relation between <u2> and the glassy shear modulus G of the 

material obtained for the stress-strain relation in the limit of linear deformation. This relation will 

enable us to relate the shear modulus of the material over the entire accessible temperature range 

(200 K < T < 1000 K) to <u2> of the material as a whole, and this also allows us to make a map 

of the local stiffness as a function of strain that will enable us to gain significant insight into the 

pre-transitional softening of the MG material leading up to the formation of SBs.  

Our neglect of any consideration of -relaxation in our simulations at T well below the 

glass transition temperature, estimated to be Tg = 817 K for the present metallic glass 43, deserves 

some explanation. In previous work on the same MG based on the same potential as in the 

present paper, we found that we could predict the -relaxation time  without free parameters 

from simulation estimates of <u2> in the liquid state regime above Tg.  In particular, the structural 

relaxation in the viscous liquid regime is predicted by the localization model to equal, 

 𝜏𝛼(𝑇) =  𝜏𝛼(𝑇𝐴)𝑒𝑥𝑝[(〈𝑢2(𝑇𝐴)〉  〈𝑢2(𝑇)〉⁄ )3 2⁄ − 1] 5.3 

where TA is an onset temperature for non-Arrhenius dynamics in the structural relaxation time 

and the rate of atomic diffusion. We also found in this former work that <u2> varied nearly 
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linearly with T at low temperatures below the crossover temperature Tc = 1055 K, separating 

high and low temperature regimes of the glass-forming liquid 43,207.  

The temperature variation of <u2> also serves to define two well-defined temperature 

regimes governing the glass state.  In particular, <u2> estimates in the liquid regime formally 

extrapolate to 0 at a finite temperature To = 711 K, the same temperature at which the structural 

relaxation time   diverges in corresponding fits of the Vogel-Fulcher-Tammann 270 estimates of 

 43 (We emphasize that this extrapolation does not mean that the relaxation time actually 

diverges at To). The T regime well below the glass transition, defines the ‘low temperature glass 

state’, the T regime that is the focus of the present paper. Our estimates above of <u2> in the low 

T glass state indicate that this quantity is positive, but  can nonetheless be reasonably taken as 

being ‘infinite’ for all practical purposes. Specifically, the localization model 43 for   that 

quantitatively describes in the T range above Tg indicates that the value  <u2> = 0.0098 Å2  found 

at T = 50 K for our metallic glass implies a value of   ~ (10 1153 years), which is quite large 

even in comparison with the estimated lifetime of the universe univ indicated by the Lambda-

CDM Concordance model 271, i.e., the time elapsed since the Big Bang,  univ  ~  O(1.4  x 109 

years). It seems safe to conclude that ‘viscous relaxation’ and   are not relevant to describing 

relaxation in low temperature glasses, and, by default, we define the relaxation time in terms of 

the Johari-Goldstein relaxation process, which we have found can be estimated from the lifetime 

of the mobile particles M and t*, as we discuss above. 

In our previous paper, we found that diffusion still exists in the glass state, albeit its 

magnitude is relatively small,  and that the diffusion coefficient D scales as, D / T  ~ 1/ M 227,228 

so that the rate of diffusion in the glass state is directly linked to M. Unfortunately, the 

determination of D in the glass regime in the low regime that we study requires prohibitively 
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long simulations. The rapid growth of  to astronomical time at low T means that the plateau in 

Figure 5.3 persists to essentially ‘infinite’ time in the low temperature glass state and there is 

evidence from both experiment 272 and simulation 273–275 that a true finite equilibrium (zero 

frequency) shear modulus can emerge in the glass state. Note that this analysis suggests that 

there is a separate high temperature glass regime for To < T < Tg in which the Zr-Cu alloy 

exhibits a solid-like response over an appreciable timescale, but the material still exhibits a finite 

. so that the material exhibits viscoelastic response that is similar to a fluid over long timescales. 

This is the viscous ‘plastic deformation’ domain 276. We have also argued that the relationship 

between the relaxation time  and <u2> derives from the weakly chaotic nature of GF and 

complex fluids in which this relation holds. Correspondingly, we may anticipate by this same 

reasoning that this relation to breakdown completely at low T as the material undergoes an 

ergodic to non-ergodic transition upon cooling into the low temperature glass state. 277,278  

The decay of the intermediate scattering function to a plateau at long times as in a crystal 

at finite temperature, also implies that the material should exhibit a corresponding plateau in the 

shear stress relaxation function Gp corresponding to a finite zero frequency shear modulus.  The 

emergence of a finite ‘equilibrium shear modulus’ G in the glass state has been discussed in 

numerous recent simulations, theoretical and experimental studies of glass-forming materials. 

272–274,279–283 The localization of particles by surrounding particles is also signaled by a drop in 

the communal entropy of the fluid, a phenomenon observed in both materials that solidify into 

crystalline and non-crystalline solids. 284 This type of transition has been discussed as a 

characteristic feature of jamming transitions 285 and the same arguments seem to apply to the 

onset of the glass state. Apart from the breakdown of Eq. (5.3) relating   to <u2>, and the lack 

of even the existence of a measurable , 286,287 this transition also implies the breakdown of 
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ordinary thermodynamics. While the material still explores its phase space in a limited way in 

the ‘glass’ regime, we may expect the emergence of a generalized non-extensive 

thermodynamics under these circumstances, as illustrated by model computations dynamical 

systems at the edge of chaotic behavior 288,289. In particular, we may expect new limit theorems 

associated with non-extensive thermodynamics to emerge under these conditions 290, 

corresponding to a distribution function for particle displacements that greatly differs from the 

Gaussian functional form, which arises in the liquid regime along with a mean square 

displacement increasing linearly in time, as consequence of the limit theorem associated with the 

strongly chaotic nature of the fluid dynamics at elevated temperatures. We indeed see evidence 

of transient super-diffusion and a highly non-Gaussian distribution function for atomic 

displacement probability emerge that is consistent with Tsallis statistics 290, features that are 

observed in a wide variety of ‘turbulent’ systems. This type of highly non-Gaussian displacement 

distribution has been observed before phenomenologically in simulations of creep in a Zr-Cu 

metallic glass material in its glass state 291.  

 

5.3.3 <u2> as a Measure of Bulk and Local Material Stiffness 

To address the question of local elasticity evolution with time, position and strain, an 

appropriate and computationally feasible measure of local material ‘stiffness’ is required. In 

addition to being a measure of ‘mobility’, we argue below that <u2> can also be interpreted 

physically as a measure of material stiffness. The Debye-Waller parameter <u2> has the dual 

advantage of being defined at an atomic scale and of being readily measurable by X-ray, inelastic 

neutron scattering, and other scattering techniques 292–294, although spatially resolved 

measurements at a nanoscale are not currently possible. Simulation studies on both polymeric GF 
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liquids 128 and metallic GF liquids 43, have established a linear scaling relationship between shear 

modulus G and kB T / <u2>, where kB T is the thermal energy and we consider the validity of this 

relation in the present material, first in the bulk material and then as providing a measure of local 

material stiffness.  

To test this scaling relation linking G and <u2> in the glass state in which our shear 

banding simulations are performed, we first determined G by applying constant shear rate along 

one direction on Cu64Zr36 alloy bulk samples at different T ranging from 200 K to 1000 K, and 

calculated stress-strain curves at different T in Figure 5.6 (a) to obtain the estimates of G as a 

function of T shown in Figure 5.6 (b). The inset to Figure 5.6 (b) shows the linear correlation 

between G and kB T / <u2> in Cu64Zr36 previously observed by Douglas et al. 43 at room 

temperature. This type of relation, although the specific functional form is somewhat different,  

has been discussed for many systems previously by Leporini and coworkers 235,236. The 

relationship motivates defining kB T / <u2> as a measure of local ‘stiffness’ that we will then 

consider in connection with the onset of shear band formation.  

Before making a local ‘map’ of material stiffness based on <u2>, we discuss the 

motivation for applying this scaling relation between G and <u2> locally within the material and 

the limitations of this ‘correspondence’.  First, we note that the shear modulus G is defined in the 

thermodynamic limit and that there is no obvious unique local counterpart of this material 

property. This situation provides us with some latitude with defining a local measure of material 

‘stiffness’ that is consistent with the definition of G in the thermodynamic limit. Under the 

circumstances, we think that it is best not to identify this local measure of ‘stiffness’ as being 

exactly the local shear modulus, however.  Accordingly, we define the local stiffness S by the 

relation, 
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 S   S0 + S1  (kB T) / u2 l 5.4 

 

where S0 and S1 are fitted constants defined by the macroscopic scaling relation, and S exactly 

reduces to the glassy modulus G. Leporini and coworkers 235,236 have discussed this 

phenomenological equation at length and have tried to interpret G0, and the mysterious length 

scale l arises in Eq (5.4) by dimensional consistency. A full understanding of S0 and S1 and l 

remain an outstanding question that we do not concern ourselves here where we are interested 

only in obtaining a qualitative stiffness measure. 

Notably, this same relation between ‘stiffness’ and  kB T / <u2> has often been reported to 

apply at an atomic scale in the interpretation of neutron and x-ray scattering measurements 295–303. 

The motivation for taking <u2> as a measure of local molecular rigidity derives from the 

harmonic oscillator model, a molecular model of ‘elasticity’ in which the harmonic oscillator 

force constant kh equals kB T / <u2> (see Appendix B of Ref. [304]). At an intermediate scale 

between atoms and bulk materials, this type of scaling relationship has also been tested 

affirmatively in molecular dynamics simulations of the shear rigidity of semi-flexible polymers 

where the effective polymer rigidity inferred from the persistence length, along with well-known 

estimates of the dependence of the persistence length of worm-like chains as a function of shear 

rigidity, again conforming with Eq. (5.4) (See Appendix B of [304]). We collectively infer from 

these numerous observations that we might quite reasonably interpret kB T / <u2> as a local 

measure of material ‘stiffness’, although the literal identification of this quantity with a local 

shear modulus is questionable. To further establish the physical basis of this local ‘stiffness 

metric’, we consider an alternative measure of local stiffness and compare to the <u2> derived 

measure. 
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(a)            (b) 

Figure 5.6 Estimation of shear modulus as a function of temperature from deformation in the 

near elastic regime. (a) Stress-strain curve for Cu64Zr36 over a range of T under shear 

deformation. (b) Shear modulus G versus T for the bulk material. Inset shows a linear 

relationship between G and kB T / <u2> for the bulk Cu64Zr36 metallic glass material. 

 

 As an alternative to taking kB T / <u2> as a measure of local stiffness, we may 

independently estimate local material stiffness based on a consideration of local stresses and 

strains in the material at the atomic scale.  In particular, we may define the ‘local elastic constant’ 

by a formal extension of its macroscopic definition as, 𝐶11,𝑖 = ∆𝜎𝑖/𝜀𝑖, where ∆𝜎𝑖 has been taken 

as the von Mises stress on each particle i, and 𝜀𝑖 is the von Mises strain of each particle 303,305. 

Figure 5.7 shows the contour maps of the local elastic constant and local stiffness measure kB T / 

<u2> for a  = 2.0 % strain. In general, the correspondence between the colormaps describing the 

magnitudes of C11 and kB T / <u2> is reasonable, but not perfectly isomorphic. The average scale 

and variance of the fluctuations in these stiffness measures seem to hold very well, however.  We 
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take this as further evidence that it is reasonable to consider both kB T / <u2> and C11 as local 

stiffness measures, although we again emphasize that we must refrain from exactly identifying 

either C11 or kB T / <u2> with a local shear modulus. 

 

 

Figure 5.7 Contour maps of the local elastic constants (C11) and local shear modulus (kB T / <u2>) 

at  = 2.0 % of a 200 Å x 200 Å x 5 Å slab.  

 

5.3.4 Local ‘Softness’ Evolution During Shear Band Formation 

As emphasized in the Introduction, It has long been suggested that the initiation of shear 

band formation should initiate in soft spots in the material in which large non-affine 

deformations are concentrated 306–309 and it is for this evident reason that we have defined a 

precise local measure of material stiffness to test this hypothesis.  

If this interpretation of the mechanism underlying SB formation holds, then we may 

expect that the stiffness of the region forming the SB to be rather distinct from regions that 

remain in an ordinary glass state that is more similar to the undeformed bulk material than the 

SB region. The material also has an interfacial region in which the dynamics of the SB and bulk 
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regions of the MG material are distinct from the material interior (See Figure 5.8(a)) 232. The SB 

interfacial regions are defined by the atoms located in the upper and lower surfaces area with a 

thickness of 15 Å and these regions are marked in Figure 5.8(a). The following analysis is based 

on the sample with h = 300 Å. 

We then analyze how the stiffness S in the defined regions of Figure 5.8 (a) evolves as 

the material is deformed. In particular, we define  as the ratio of the number of atoms having a 

value of kB T / <u2> less than the critical value to the total number of atoms in the designated 

region. In our analysis, the critical value of kB T / <u2> is taken to be specifically 33 KJ/m2, 

which corresponds to this stiffness measure at the crossover temperature Tc at which previous 

molecular dynamics studies have established the onset of highly anharmonic ‘liquid -like’ 

motions in the interfacial regions of both crystalline and metallic glass materials 232. The 

crossover temperature Tc separates the high and low T regimes of the glass-formation 43. 

The black line in Figure 5.8(b) corresponds to the stress-strain curves for  between 7 % 

to 11 % and the sharp change in  indicates there is a critical strain region at which shear 

banding initiates. Apparently, the fractions of atoms in SB and bulk regions are almost 

identically near, but below the stress maximum defining the ‘yield’ of the material (see Figure 

5.1), i.e., a strain of 7.6 % at this T. Beyond this point, the soft regions in the SB apparently 

mediate the plastic deformation localized to the SB. A similar behaviour, but greatly amplified, 

is observed in the interfacial regions where the fluctuations in  are especially large. We next 

consider how the distribution of local stiffness, defined in terms of <u2>, varies with deformation 

both deep within the MG material and in the interfacial region, where we find that the onset of 

SB formation corresponds to a ‘critical’ condition in which the stiffness within the material 
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becomes equal to its value in the interfacial region in the absence of deformation. This instability 

condition was completely unanticipated. 

 

 

(a) 

 

(b) 

Figure 5.8 Shear band and bulk regions are defined in terms of local ‘stiffness’ and the evolution 

of stiffness under strain. (a) Distribution of <u2> in the sample, showing the shear band and bulk 

regions, as defined in the text. Interfacial SB and bulk regions having a thickness of 

approximately of 15 Å are indicated for both regions 310. (b) The evolution of the fraction of 

softness in the strain range of 7.0 % to 11 %. Four areas were tested, SB region, bulk region, 
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surfaces of SB region, and surfaces of the bulk region. The corresponding stress-strain curves are 

presented as the black line.  

 

5.3.5 Shear Band Formation as Emerging Interface within the Metallic Glass Material 

The full development of a SB has one of its implications as emergence of an interface 

within the material, and we may therefore expect that the dynamics within the incipient SB 

region to progressively become similar to the dynamics of interfacial region of the material. We 

have recently quantified the interfacial dynamics of both metallic glass and crystalline materials 

based on modelling that emphasizes the gradient in <u2> in the interfacial region of these 

materials 232 so that the current analysis is a natural extension of this previous work. We first 

show that this approach of the elastic fluctuations in the interior of the incipient SB indeed 

approach that of the interfacial region and we follow this analysis by introducing a measure of 

the degree to which the atoms in incipient SB have been converted into a dynamical state 

consistent with the interfacial dynamics of the material. 

 Figure 5.9(a) shows the local stiffness S distribution of the entire sample (h = 300 Å) at 

different strains before the maximum stress, with distribution on surface and interior as reference. 

The overall probability distribution of S for the interior of the material evidently progressively 

approaches the distribution of S of the interfacial region in the absence of strain as  increases 

from zero to the critical strain for SB formation. Similar behaviour has been observed in systems 

with h = 90 Å, 150 Å.  

 We note that the average magnitude of <u2> within the region that ultimately forms a 

shear band changes from <u2> = 0.0098 Å2 to a value <u2> =0.0109 Å2 at the onset of shear band 

formation. This change in <u2> allows us to estimate the change in the relative stiffness of SB 
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region compared to the undeformed material, G  [G(SB) – G( = 0)] / G( = 0). For the h = 

300 Å film at T = 50 K, we find G = –0.12. The shear band regions are inherently softer than 

the undeformed material. A softening in the SB region has been reported experimentally in 

indentation studies of metallic glass materials 311.  

 

  

   (a)             (b) 

Figure 5.9 Distribution of the effective stiffness distribution in the interfacial regime and with the 

metallic glass material in the deformed and undeformed states for h = 300 Å film at T = 50 K. (a) 

Comparison of shear modulus distribution of entire sample at different strain rates before 

reaching maximum stress. Blue and red lines are the reference distribution at center and surface 

at zero strain. The dashed line in the inset is the <u2> of the interfacial region at the undeformed 

state. Apparently, the <u2> of the bulk and shear band approaches the value of <u2> at the 

interfacial in the absence of deformation, this convergence effect is illustrated in the inset figure.  

(b) Comparison of the estimated stiffness distribution within shear band at different degrees of 

strain with the stiffness distribution in the interfacial region (‘surface’) and the interior of the 

MG material (‘interior’) in the absence of strain.  
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We next examine the distribution of S in the SB region in Figure 5.9. As the strain 

approaches the ‘yield’ value of   = 7.6 %, at which a maximum in stress or ‘yield’ (see Figure 

5.1) occurs, the SB starts to form and the local stiffness (S) distribution essentially coincides 

with the interfacial S distribution near the point of yield.  The significance of the relative value of 

<u2> in the interior of the material to that on the boundary under undeformed conditions is even 

more apparent in the inset of Figure 5.9 (a), where the magnitude of <u2> in the SB and the rest 

of the interior of MG material (‘bulk’) are nearly equal all the way up to the point of SB 

formation and yield. There is a clear suggestion from these observations that SB formation in our 

material reflects an instability in which the interior of the material has softened under 

deformation to such a degree that the stiffness is similar to the stiffness of the material prior to 

deformation. It apparently becomes energetically favorable for SBs to form when it becomes 

energetically favorable for the formation of interfaces within the material through local 

deformations arising within the material. As a practical implication, we note that the interfacial 

properties of metallic glass and other glass materials can be expected to greatly depend  on how 

the material was fabricated so that the actual value of the critical deformation required for SB 

formation can then be expected to depend on exactly how the material was fabricated, especially 

with regard to fabrication processes what influence the interfacial properties of the material. This 

sensitivity of SB formation and yield to the surface ‘states’ has been demonstrated in recent 

studies of metallic glasses 312–314, consistent with our general finding that <u2> in the boundary 

of the MG material plays a crucial role in determining the onset condition for SB formation. 

Ivancic and Riggleman 315  have recently observed in a strong sensitivity of shear banding to 
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defects in the interfacial region in simulations of a coarse-grained polymer material in 

conjunction with machine learning methods to analyze their data. 

We point out that recent measurements on glass-forming liquids have indicated the 

dynamics of the interfacial region is largely ‘decoupled’ from the interior of the material 316 so 

that we expect the interfacial value of <u2> defining the onset of SB instability to be rather 

insensitive to film thickness. This expectation remains to be checked by simulation and 

measurement. 

This instability condition reminds us of another interfacial instability condition seen in 

connection with the interfacial dynamics and the dynamics within both crystalline and glass-

forming materials. Even in the absence of material deformation, the average value of <u2> in the 

interfacial region and interior of both crystalline and glass-forming materials extrapolate to a 

common value, defining the ‘Tammann temperature’ at which the interfacial region starts to 

acquire a greatly enhanced mobility, and interestingly, this temperature appears to correlate 

strongly with the glass transition of the material 233. Notably, this convergence of <u2> values 

within the material occurs near Tg and Tm in glass-forming materials (See Figure 2b of Mahmud 

et al. 232) and the relevance of this phenomenon to the low temperature non-ergodic glass state is 

an open question. 

Since we think that this condition is a related phenomenon to the SB instability that we 

observe, we found <u2> in the interfacial region and the interior of the material are seen to 

converge around 24 K. This is similar to our previous observations in the same metallic glass-

forming liquids above Tg, where <u2> in the interfacial region and the interior of the material 

converge at a temperature close to glass transition temperature 232. This ‘premelting’ or 

‘softening’ would appear to be another interfacial instability associated with the lowered 
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energetic cost of creating interfaces within the material and this instability appears to be of a very 

general nature. 

The occurrence of the Tammann temperature in both crystalline and glass materials also 

makes us wonder whether a corresponding interfacial instability might arise in connection with 

the plastic deformation of crystalline materials. This is not the topic of the present paper, but we 

briefly note that both shear banding 317 and yield 318 are likewise observed in crystalline materials 

and the importance of interfacial mobility in the plastic deformation of small scale crystalline 

materials has also been emphasized 319–323. In particular, the Zhu et al. 324 have noticed 

empirically that the barrier height for dislocation nucleation vanishes at a ‘surface disordering 

temperature’ (This temperature is typically about (1/2 to 2/3) Tg and thus quite distinct from Tg.), 

and characteristic temperature is consistent with our definition of the Tammann temperature. It 

has also been noted 325 that the brittle-ductile transition for dislocation free crystals follows the 

empirical rule (2/3) Tm., which further supports the potential relevance of the Tammann 

temperature for the plasticity of crystalline materials. 

 The obvious implication of these observations is that it should be possible to engineer 

the surfaces of both crystalline and glass materials to impact their plastic deformation. This 

possibility was suggested for crystalline materials by Zhu et al. 324 and recently realized in 

practice by Shin et al.326 by modifying the surfaces with coating the material using atomic layer 

deposition. Recently there has been great interest in the strengthening of glass materials by 

modifying their interfaces, so-called “chemical strengthening” 327 and there would appear to be 

great scope for interfacial engineering the properties of materials based on the material 

processing changes that impact interfacial mobility.  
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One of the interesting implications of the occurrence of a Tammann temperature in 

crystalline and amorphous solid materials is its effect on material yield (see Figure 5.1). As T 

approaches this characteristic temperature at which <u2> in the interfacial region approaches <u2> 

deep within the material interior we may expect the material to become inherently unstable to 

plastic deformation (‘flow’ in the colloquial sense) without any appearance of ‘yield’.  

Consistent with this argument, many experimental studies on both metallic and polymeric glass-

forming liquids have indicated a general tendency for the yield stress to approach 0 as the T 

approaches the glass transition temperature of the material, a temperature that coincides closely 

with the Tammann temperature 276,328–330. The same trend is observed in semi-crystalline 

polymers where the onset temperature is well below the melting temperature at  which significant 

mobility emerges in these complex polycrystalline materials 276. We remind the reader that this 

reasoning does not necessarily extend to the phenomenon of shear banding region since -

relaxation remains prevalent for an appreciable temperature range below Tg. It is not clear that 

shear banding accompanies yield in this high temperature glass regime, i.e., To   T   Tg where 

we interpret To to be an ideal glass transition temperature at which the loss of ergodicity occurs. 

We may estimate To as the temperature by extrapolating <u2> of the material to 0 at low 

temperatures and in the present MG material this characteristic temperature was est imated43 to 

equal, To = 711 K. 

The formation of SB is not the end of the story. Upon increasing the strain further there is 

another distinct region beyond material ‘yield’ in which the SB regions undergo various 

transformations and in which the dynamics within the SB region changes greatly from the 

undeformed material. Viewed from a stiffness map perspective, regions rich in ‘soft’ particles at 

 = 9.0 % to regions rich in ‘stiff’ particles for  = 10.5 % so that a kind of strain hardening 
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apparently occurs in the SB region under post-yield conditions. The probability distribution of S 

also appears to move towards larger S values when  is progressively increased from  = 9.0 % 

to  = 10.5 %. After shear band formation initiates near  = 7.6 %, there are non-trivial ‘jerky’ 

fluctuations in the stress-strain curve that arise from stress-induced particle movements that 

mediate large scale plastic deformation of the material. The local stiffness in the SB fluctuates 

greatly until the SB spreads throughout the sample. Below, we analyze this regime, where we 

find that the dynamics exhibits features similar to fluids undergoing a transition to turbulent flow, 

evidently corresponding to a kind of ‘elastic turbulence’. The dynamics of this regime becomes 

much richer in this regime than before SB formation. Before briefly discussing this regime, 

however, we provide some further quantification of SB formation from a local stiffness 

perspective.  

 

5.3.6 Brief Discussion of the Dynamics in the Shear Band Region Beyond the Yield 

Condition 

As might be expected from the discussion above, the dynamics of the MG material 

becomes much more complicated beyond the point of yield and associated SB formation. An 

examination of the particle motions in this regime indicates the occurrence of complex vortex 

motions that are reminiscent of turbulent fluids 331–334. A contour map of local shear modulus 

𝑘𝐵𝑇 〈𝑢2〉⁄  near shear band and displacement vector in the corresponding region exhibiting 

‘turbulent’ were shown in Appendix C. This vortex state is a highly complex phenomenon with 

important ramifications for the dynamics of strongly deformed amorphous solid materials and we 

briefly address some of the conspicuous features of this dynamical state based again on a 

dynamic heterogeneity perspective.  
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One interesting phenomenon occurring in turbulent media, such as the earth’s atmosphere, 

is that the average particle displacement from an initial position has often been observed to occur 

in a super-ballistic fashion over appreciable space and time scales 335–337. In particular, the mean 

square displacement has often been observed to increase as t3 compared to t2 of ballistic motion 

and t for Brownian motion 337. While there is still no rigorous hydrodynamic theory explaining 

this phenomenon, it is generally appreciated that this super-ballistic transport derives from highly 

correlated velocity fluctuations in the atmosphere that drive the particle motion. Above we noted 

the existence of vortex-like fluctuations in the shear band regions that are highly developed in 

the SB region beyond yield, and we correspondingly examined the t dependence of the mean 

square atomic displacement <r2> for atoms in the ‘turbulent’ SB region.  

We find that <r2> increases very sharply with t in this unstable regime with an apparent 

power that is very large, as illustrated in Figure 5.10.  It is probably best to think of this stress-

driven transport as reflecting the macroscopic deformation within the SB associated with 

incipient ‘fracture’ (See Figure 1 b of Shrivastav et al. 238 where it is shown that there is a 

crossover back to diffusion at still longer times in their simulations of SB formation.) This type 

of crossover also arises at long times in passively driven particle displacement in turbulent fluids 

337. These brief observations offer only a small hint of the complexity of the dynamics within 

fully developed SBs.  
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Figure 5.10 Atomic displacement and the evolution of stiffness heterogeneity. Mean squared 

displacement (compared with the initial state at   = 1%) in the sample with h = 300 Å at T = 50 

K. Displacement distributions at  = (2, 4, 6, 7 and 8) % are shown in the graph. At 2 %, the 

sample shows non-localized displacement, but beyond about  = 6 %, areas with higher 

displacement marked with red color start to appear and areas apparently trigger relaxation in the 

surrounding environment.   

 

We note that superficially similar vortex excitations, ‘turbulence’ and transient super-

diffusion ‘driven’ by the vortices occur in a wide range of systems beyond ordinary turbulence 

and the elastic turbulence of flowing polymer melts and deformed metallic glass materials. This 

type of phenomenon is observed in flowing granular media 338–342, dusty plasmas 343,344, the 

movement of cells in living tissues 345–347 and ‘active matter’ in the form of living bacterial and 

alga suspensions 348–351. Recently, there has been intense interest in understanding this 

generalized turbulence phenomenon 352. Oyama and coworkers 341  and others 353,354 have shown 
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in the context of flowing granular fluids that the vortices are comprised of clusters of particles 

moving in a string-like fashion and Liu et al. 310 have also shown this type of relationship 

between string-like motion and the vortices formed in deformed metallic glasses. We have 

confirmed that this hierarchical structure of the large-scale vortex patterns is composed of a finer 

structure involving cooperative atom exchange events and we will report our findings on this 

complex phenomenon in a separate paper devoted to this topic. This type of hierarchical 

structure has also been observed in GF liquids 6. 

It should be apparent by now that glasses, GF liquids, and highly deformed materials 

generally, exhibit a rich dynamic that reflects the dynamic heterogeneity intrinsic to these 

materials, even in highly deformed crystalline materials 317,318,355, which embody arguably most 

forms of condensed matter. The dynamic formation and disintegration of structures in these 

materials (intermittency) imply that the material properties correspondingly exhibit large 

fluctuations, offering valuable information about the scale and geometry of the self-assembly 

processes underlying this spontaneous clustering arising from many-body dynamics. In practical 

terms, this means that basic properties such as potential energy become highly ‘noisy’ 355–357, and 

exhibit long range correlations in the form of colored noise and stress fluctuations and particle 

displacements exhibiting quake-like events having an exponential distribution in intensities and 

power-law distribution of occurrence are naturally observed in this type of system, even under 

equilibrium conditions. We have discussed this phenomenon at length in connection to the 

dynamics of the mobile particle clusters and Johari-Goldstein relaxation process in our previous 

work focussing on a Al-Sm metallic glass 227 and we have investigated this same rather generic 

phenomena in a variety of other materials such as interfacial dynamics of Ni nanoparticles 49, the 

interfacial dynamics of bulk crystalline Ni and ice 13,119,147 and internal dynamics of proteins 295. 
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Many others have studied this type of ‘quake’ phenomenon in deformed glass materials, 358,359 

where clusters with geometric properties consistent with our mobile particle clusters were 

inferred to be the origin of this phenomenon. We also leave this interesting aspect of the highly 

deformed glass state for a future investigation. Here we point out that studies of noise offer much 

valuable information about the dynamic heterogeneity in this class of materials and this noise 

itself is of intrinsic interest in biology and various fields of material science where it is functional 

in relation to biological sensing and the catastrophic failure of materials 360–365.  

Many studies have previously shown that the large fluctuations in the various types of 

systems exhibiting turbulent dynamics lead to transient anomalous diffusion in which the 

fluctuations accelerate the movement of particles in the system. We next show that the van Hove 

function describing atomic displacement in a highly deformed metallic glass exhibits rather 

typical behavior for this type of elastically turbulent system in the regime in which shear bands 

have formed. Given the potential practical importance of this phenomenon and the lack of 

previous quantification of this phenomenon in deformed metallic glass materials, we consider the 

particle has displaced a distance r from its initial position (taken at the origin) at time t, i.e., the 

van correlation function Gs(r,t) in liquid state dynamics jargon in Figure 5.11 at the caging time 

at which <u2> is defined and at the time M at which the mobile particles are defined, a time that 

also essentially coincides in our material with the peak time of the non-Gaussian parameter. The 

displacement at the caging time is nearly exactly described by a Gaussian function (see inset to 

Figure 5.11) where <u2> defines the atomic displacement on a ps timescale defining the caging 

time, but Gs(r,t) at M is clearly highly non-Gaussian. The ‘fat tail’ describing the particle 

displacement on intermediate is a rather universal characteristic of systems exhibiting the highly 

collective dynamics, as observed in the present material, and ‘turbulent’ systems broadly 366. The 
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long tail in this type of distribution has often been described by stretched exponential 

distributions 366,367, as in Richardson’s original model of passive transport of particles in a 

turbulent medium 334,335,  and sometimes this distribution is approximated as being exponential 

for simplicity. 349,368,369 

 

 

Figure 5.11 Van Hove correlation function with M at  = 3.0 %, 5.0%, and 8.3 %. The tail of the 

van Hove function is fit to the generalized Tsallis distribution 290,367 (solid lines), Gs (r,t) ~ [1 –  

(1 - q) r ]1/(1-q)  where q = 1.39 and  = 2.31 for  = 3.0 % and 5.0%, and  q = 1.32 and  = 2.2 for 

 = 8.3 %, respectively. The dashed curves indicate the apparent ‘stretched exponential’ tails of 

Gs (r,t) where the stretching exponent   values are noted in the text. The inset shows the van 

Hove function at the same strains at the caging time, 1 ps where we have introduced a reduced 

displacement distance, r / <u2>1/2, and where the solid line is a Gaussian function. The particle 

displacements at this short time are remarkably similar to those found in perfect crystals at low 

temperatures and are typical generally for materials in equilibrium. 
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As noted before, we may expect the deformed metallic glass to be in a non -equilibrium 

state in which ordinary equilibrium thermodynamics does not necessarily apply. As in the case of 

ordinary turbulence, we follow precedent in this type of situation and fit Gs(r,t) to a form 

expected from non-extensive thermodynamics, the thermodynamics appropriate in which the 

system is not quite ergodic, but not really periodic or regular in its dynamics either 288,289,340. The 

solid line in Figure 5.12 shows a fit to the general Tsallis distribution, as prescribed by Eq. (15) 

of  Beck 290. We see that this distribution function, which has been shown to fit probability 

distribution functions for turbulent fluids and a variety of non-equilibrium systems, is rather well. 

The Tsallis theory 290,370 does not provide a specific prediction of the characteristic exponents 

describing the non-Gaussian distribution from first principles, but we may conclude again that 

the basic phenomenology that we observe for SB region is typical of ‘turbulent’ materials. 

We note that the tail of Gs(r,t) can also be reasonably well-described phenomenologically 

by a stretched exponential of index , which jumps in its value from about  = 0.2 below the 

regime of SB formation to a value    = 0.25 near the point of SB formation, a phenomenon that 

reflects the sharp transition to a turbulent state in which the generation of a hierarchy of vortices 

that greatly influences the transport of particles on intermediate time and space scales. At very 

long timescales, we expect Gs(r,t) for particle displacement to return to a Gaussian form, as seen 

also in ordinary turbulent, granular fluids, and nearly jammed fluids 337,338,371,372, and also 

observed in the context of simulations of deformed metallic glasses by Shrivastav et al. 238 

 

5.4 Conclusions 

In the current study, we investigated the deformation mode in Cu64Zr36 alloys with 

different thicknesses and under different temperatures. A different deformation mode has been 
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observed in these systems, which leads to a question: How to characterize the localized and non-

localized deformation? Von Mises strains were implemented to monitor the formation of shear 

band. We found that the shear band gradually builds up inside the system and undergoes soften 

and harden process as we increase the strain. Eventually, one dominant shear band develops 

when the localized deformation mode occurs. Since the temperature when the deformation 

happens is relatively low, atomic diffusion is extremely slow and other processes should be 

expected to happen to influence the structural relaxation.  

1.  We first considered the average mean square displacement of our metallic glass deep in 

the glass state and found that dynamics in this regime seemed to greatly resemble that of 

crystalline materials at a temperature well below their meting point. In particular, the 

mean square particle displacement <u2> after a well-defined caging time, the ‘Debye-

Waller factor’, is relatively small and increases nearly linearly with temperature. No 

detectable evolution of <u2> was observed in our metallic glass material, but we cannot 

exclude such a possibility on timescales longer than we could simulate. 

2. The intermediate scattering function does not decay from the plateau determined by <u2> 

so no finite -relaxation time appears to exist in the glass state. Experimental studies 

have established that the Johari-Goldstein relaxation time (JG) exists in the glass state, 

however, and adopt criteria developed in previous papers investigating the Johari-

Goldstein relaxation process in which the Johari-Goldstein relaxation time is identified 

with the mobile particle lifetime, M), a well-defined form of dynamic heterogeneity 55 

that exists both in the cooled liquid state above Tg and in the glass state well below Tg. 

This puts us in a position to investigate relaxation in the metallic glass and how 

relaxation is altered by material deformation. In the low temperature non-ergodic glass 
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state. In the glass-forming liquids, it was previously observed that the -structural 

relaxation time () from the long-time decay of the intermediate scattering function Fs(q, 

t) seems to approach the caging time tcage at high rates of deformation and 

correspondingly we investigated whether a similar trend might apply for the 

corresponding relaxation time JG of the deformed metallic glass. We found that JG 

indeed seems to approach the caging time in the limit of large deformation. 

3. The local values of <u2> have long been interpreted physically as a measure of material 

local ‘stiffness’ in relation to the shear modulus of the material and at the scale of 

chemical bonds when values of <u2> at an atomic scale are estimated. This suggested the 

general use of <u2> as a measure of stiffness at any scale, although this usage of the term 

means that we may not think of this quantity as directly a measure of shear modulus. We 

first showed a strong correlation between the macroscopic elastic constant C11 as 

determined from the stress resulting from a low amplitude strain of the metallic glass 

material and the ‘stiffness’ measure kB T / <u2>. We then have firm evidence that <u2> 

provides good estimate of the shear stiffness of the material over a large temperature 

range, encompassing remarkably even the low temperature non-ergodic regime. We also 

considered estimates of local estimates of stiffness based on <u2> and local variations of 

stress and strain and an associated ‘local elastic constant’ 𝐶11,𝑖. Again, we found good 

consistency between the <u2> stiffness estimate of stiffness and the elasticity motivated 

definition, but, in this case, we can only claim qualitative a correlation since there is no 

unique way to define a local shear modulus in materials. By its very definition, <u2> is a 

good measure of stiffness at a molecular scale so the use of <u2> as general measure of 

stiffness on any length scale seems to be well-supported in our metallic glass system. 
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4. It has long been thought that SB formation in amorphous solids initiates from relatively 

‘soft’ regions in the material at which large scale non-affine deformations become 

localized. The test of this hypothesis requires an effective means of identifying ‘soft’ 

regions and their evolution as the material is deformed to varying degrees, where the 

metric of ‘softness’ must also account for the effect of temperature on local material 

stiffness. We defined a precise local measure, of ‘softness’ , defined in terms of material 

stiffness and find a sharp change in  at a critical strain value at which shear banding 

initiates.  In particular, we find that the critical strain condition for SB formation occurs 

when the softness (<u2>) distribution within the emerging soft regions approaches that of 

the interfacial region in its undeformed state, initiating an instability. Correspondingly, no 

SBs arise when the material is so thin that the entire material can be approximately 

described as being ‘interfacial’ in nature. 

5. The development of a SB, as in the case of crack formation, involves the emergence of an 

interface within the material. Correspondingly, we found that the dynamics within the 

incipient SB region is similar to the free interfacial region of the material, again 

supporting the existence of an interfacial instability. 

6. Based on an observed relationship between the mobile particle cluster lifetime 227 and 

many observations correlating the JG relaxation process to hypothetical shear 

transformation zones in glass materials 226, we make the tentative hypothesis that the 

mobile particle clusters provide well-defined realization of the hypothetical STZs. This 

identification remains to be tested to validate other attributes of the STZs that have been 

suggested by recent studies, such as a multipole stress field that plays a large role in the 

organization of the shear bands. 229,230  
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7. We briefly examined the dynamics in the deformation range beyond the onset of shear 

band formation and find that the structure and dynamics of the material becomes very 

complex in this region, and we plan to discuss this regime in some detail in a subsequent 

paper. In the present work, however, we emphasize some significant changes in the 

nature of the atomic displacement distribution as one undergoes shear band formation. In 

particular, we find that at large deformations, particle displacement becomes super-

diffusive beyond a caging regime and the atoms remain localized and nearly Gaussian in a 

fashion similar to crystalline materials in the caging regime at shorter times. The fully 

formed shear band regions become highly dynamically heterogeneous (a phenomenon 

quantified by researchers before us 317,318,355) and here we focus on the change in the 

probability of particle displacement, the so called Van Hove function Gs(r,t), as one 

passes through the SB transition. We find that Gs(r,t) develops an extended ‘fat tail’ near 

the yield stain at which shear bands emerge where this extended tail quantifies the greatly 

enhanced probability for the atoms in the shear band to exhibit jumps to large distances. 

We interpret this ‘fat tail’ to arise from the particles being convicted along by the 

movement of large-scale vortices in the shear band region, as in diverse other fluids 

exhibiting ‘turbulence’. Since the shear band state corresponds to non-equilibrium state 

similar in some ways to turbulent fluids, we fit Gs(r,t) to a general functional form ([1 –  

(1 - q) r ]1/(1-q) 290 that commonly arises in probability distributions in turbulent systems 

and we find that this type of functional form fits our Gs(r,t) very well, but as in turbulent 

fluids where the same type of fitting has often been made previously, the physical 

meaning of the fitting parameters is not clear. These observations nonetheless hint at 

some sort of ‘universality’ in the atomic dynamics in the shear band state and provide 
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insights into the thermodynamic nature of the non-ergodic glass state. We look forward to 

further quantifying this novel form of ‘elastic turbulence’ in the future. Our findings seem 

to confirm the suggestion made long ago by Taylor 269 that the heterogeneities of 

turbulent liquids and the formation of heterogeneous structures (“aggregates’) in the 

deformation of polycrystalline materials should have much in common. Our observations 

also appear complementary to those of Dauchet and Bertin 373 who have recently 

emphasized the strong analogies between glass-formation and the transition to turbulence 

in fluids at high Reynolds number based on a combination of phenomenology, energy 

landscape and dynamical systems ideas.  
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6. Conclusions and Suggestions for Future Work 

 Throughout the work, we have studied dynamic heterogeneity existed in the interfacial 

region of ice, metallic GF liquids over a wide range of temperatures and metallic glasses under 

uniaxial deformation with different thicknesses.  

 The string-like cooperative motion and self-diffusion on ice (1120) free surface was 

examined in Chapter 3. And the dynamics of the interfacial were quantified using the tools 

drawn from the GF liquids. For the wide range of T studied, we found that the amplitude of 

atomic motion in the interfacial region exhibited significantly larger than in the interior, 

explicating the “premelting” phenomenon and the initiation of heterogeneous nucleation of 

crystal melting. Utilizing non-Gaussian parameter, the self-part of van Hove correlation 

functions, surface diffusion coefficients, and self-intermediate scattering function of the 

interfacial atoms. A similar trend has been observed before in the (110) interfacial region of Ni. 

The interfacial dynamics of ice certainly resemble the characteristic dynamics of GF liquids in 

many ways. In all the GF liquids that we have investigated before, string-like cooperative motion 

has proved to be a universal feature.  

 The dynamic heterogeneity has been systematically examined in model metallic GF 

liquids, and the results have been compared with previous findings in a simulated polymeric GF 

liquid. We utilized algorithm developed by Starr et al.55 to identify mobile and immobile 

particles and clusters with extreme mobility to prove the universality of the methodology on 

different chemistry and compositions of metallic glasses. The “decoupling” relation between the 

diffusion coefficient and the structural relaxation time has been examined in all the studied 

metallic fluids. We concluded that GF liquids evidently share general characteristics in the 

structural and chemical dynamics.  
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 The deformation mode in Cu64Zr36 alloys with different thicknesses and under different 

temperatures have been investigated. A different deformation mode has been observed in these 

systems. Von Mises strains were utilized to track the formation of shear band. And we concluded 

that before one dominant band eventually penetrates the sample the shear band constantly 

changes and undergoes soften and harden processes as the strain increases. Then the factors 

could influence the relaxation process have been explored. Similar to crystalline and metallic GF 

liquids at finite temperatures a defined ‘caging’ time can be identified by observing the variation 

in the Debye-Waller factor <u2>. We have interpreted <u2> as a measure of material local 

stiffness and confirm its applicability by comparing the local elastic constant with the proposed 

parameter kB T / <u2>. Based on the common understanding on the SB formation in amorphous 

solid, we have proposed a local measure of ‘softness’ and observed a clear percolation transition 

in the SB region. The increase in the strain leads to the drop in the mobile cluster lifetime and 

growth in the cluster size. The fully formed shear band shows dynamic heterogeneity.  

 Since we have observed that the structure and dynamics of the deformed metallic GF 

liquids become very complex in the SB region, further investigation and discussion on the 

changes in structural and dynamical properties need to be done. From a macroscopic aspect, the 

deformation of MG is highly correlated with strain rate and temperature. In the currant work, low 

temperatures and relatively high strain rate has been applied and resulted in the formation of SB. 

At higher temperatures, homogeneous deformation mode occurs within the supercooled liquid 

regions. 374 The deformation mechanisms still have unsolved matters. In crystalline materials, 

deformation mechanism and mechanical properties can be interpreted using atomic structures 

like dislocations, defects and other electronic structures. However, in MGs the lack of long-range 

order and amorphous structure have hindered the way to fully understand the ultimate 
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mechanical failure i.e., the formation of shear band. On a microscopic level, Shear band 

transformation zone involving hundreds of atoms mediating the plastic deformation has been 

proposed to explain the deformation mode. 374 In the current work we have established the 

findings that shear band usually initiate at soft spots, but how do these soft spots evolve into 

shear band? What is the activation mechanism underlying this phenomenon? These considerable 

complex and various fundamental questions about the deformation mechanism remain open and 

await answers.  

 String-like cooperative motion plays an important role in the relaxation above glass-

transition temperature, and we wonder whether this mode is similarly important in materials 

under large deformation and temperature well below glass-transition temperature. It has been 

established that string-like cooperative motion is associated with diffusion and structural 

relaxation. However, diffusion in the glass state is generally limited, then we suspect that the 

large strain may act as the source. Based on the STZ model proposed by Argon 375, shear 

deformation happens accompanied by small clusters going through the spontaneous and 

collective rearranging motion. In the study of structural relaxation of Cu-Zr alloys, Zhang et al. 

establish that dynamic heterogeneity essentially originates from packing fluctuation when some 

particles localize into preferred packing configurations with lower free energy and leaving a 

large position of mobile atoms with high free energy. The atomic motion of such a large fraction 

of “wandering” particles are often highly collective. 28 Since the cooperative nature of atomic 

displacements inside STZs, it is reasonable to correlate these soft regions with string-like 

cooperative motion. Further examinations will focus on this correlation.    

Debye-Waller factor <u2> as the mean squared atomic displacement after a fix 

decorrelation time characterizing the transfer from ballistic motion to caged atomic motion has 



 
 

- 148 - 
 

been interpreted as local material stiffness in the current work. It also provides a very simple 

method to estimate the characteristic temperatures during the glass transition. Hall and Wolynes 

have developed the relation between  and <u2>, 𝜏𝛼~𝑒𝑥𝑝(𝑢0/〈𝑢
2〉), based on the framework of 

RFOT theory. 145,376  It has become appreciated that extrapolation of <u2> could predict several 

characteristic temperatures such as glass-transition temperature, crossover temperature, and onset 

temperatures. 28 Usually a more complex calculation would be required for such estimation, but 

<u2> provides a remarkable and straightforward method and empowers greater confidence in the 

estimation of these fundamental and important timescales. In the future work, I plan to explore 

the applicability of the Debye-Waller factor as a measure of local stiffness in different metallic 

GF liquids with different compositions, glass-forming abilities.  
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Appendix A Supplementary Information: String-like Cooperative Motion and Diffusion in 

the Interfacial Region of Ice 

Cooperative particle dynamics presents one of the most characteristic features of the 

dynamics of glass-forming (GF) fluids. 46,68,110 As a first step in identifying cooperative particle 

motion, we must identify the ‘mobile’ atoms in interfacial region of ice. Following standard 

procedure in the field of GF liquids, the ‘mobile’ atoms are defined by comparing the self -part of 

the van Hove correlation function Gs(r) for the strongly interacting particle fluid to an ideal 

uncorrelated liquid exhibiting Brownian motion. 68 Gs(r) for an interacting fluid usually 

possesses a long tail at large distances r, indicating the existence of particles with relatively high 

mobility in an interacting particle system. A comparison of this kind generally produces a 

crossing of the Gs(r) curves for the interacting and non-interacting systems, and the mobile 

particles are then naturally defined as those atoms whose displacements exceed the distance at 

the crossing point after a characteristic diffusive decorrelation time t defined in terms of the 

fourth and second moments of Gs(r). 68 The van Hove correlation function of water molecules 

does not represent a single-peaked function, but rather has multiple peaks centered at successive 

locations. This type of Gs(r) implies a ‘hopping’ motion to preferentially quantized distances. 

Therefore, we conclude that the ‘mobile’ atoms are essentially those particles moving a distance 

r(t) that exceeds the typical amplitude of an atomic vibration after Δt but that is smaller than a 

particular distance. Mathematically, these particles are identified by a threshold condition for the 

atomic displacement, 𝑎 < |𝑟𝑖(∆𝑡) − 𝑟𝑖(0)| < 𝑏 , involving constants a and b that can be 

determined from the van Hove correlation function as shown in Figure 3.5. Then, the 

identification of cooperative atomic motion requires a consideration of the relative displacement 

of particles.  
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Collective atomic motion implies that the spatial relation between the atoms is preserved 

to some degree as the atoms move. Specifically, the reference mobile atoms i and j are 

considered to be within a collective atom displacement string if they remain in each other’s 

neighbourhood, and we specify this proximity relationship by, 𝑚𝑖𝑛[|𝑟𝑖(∆𝑡) −  𝑟𝑖(0)|,

|𝑟𝑖(0) − 𝑟𝑖(∆𝑡)|] < 1.0 Å. Atomistic simulations of GF liquids indicate that the distribution of 

string lengths P(n) is approximately an exponential function of the number of atoms in the string 

n,  

 𝑃(𝑛)~ exp (−𝑛 〈𝑛〉)⁄  A.1 

where P(n) is the probability of finding a string of length n at the characteristic time, t*. We 

repeat this procedure for a number of t* intervals to achieve better statistics. Note that the ‘string 

length’ n is dimensionless as it involves the number of atoms participating in the string. Eq (A.1) 

implies that the average string length <n> = L(t*) = L can then be determined from the slope of 

the fitted lines in Figure 3.11.  
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Appendix B Supplementary Information: Universal Nature of Dynamics Heterogeneity in 

Glass-Forming Liquids: A Comparative Study of Metallic and Polymeric Glass-Forming 

Liquids 

A. Definition of Immobile Particles and their Clustering in Supercooled Liquids 

 The cage size for different alloys is defined using the same methodology as shown in 

Figure B.1. Apparently, the cage sizes for other systems show similar behavior with temperature 

as found for Cu64Zr36.  

 

 

Figure B.1 The cage size as a function of reduced temperature for all metallic alloys investigated. 

 

The fraction of caged particles as a function of time interval at different temperatures in Ni-

Nb and Pd-Si alloys show similar behavior as Cu64Zr36 metallic alloy. The majority of the 

particles are caged initially, and over the time the population of caged particles decreases since 

the particles will eventually escape from the cages. Figure B.2 shows the temporal evolution of 

the fraction of caged particles in various metallic glass alloys at different temperatures. 
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   (a)      (b) 

Figure B.2 Dynamical fraction of caged particles as a function of time interval at different 

temperatures in Ni62Nb38 (a) and Pd82Si18 (b) alloys. 

 

Figure B.3 shows the normalized cluster size for caged particles in Ni62Nb38 and Pd82Si18 

alloys at different temperatures, which has similar behaviour as in Cu64Zr36 alloy, i.e., the 

characteristic lifetime of the clusters increases strongly with decreasing temperature. 

 

   (a)      (b) 

Figure B.3 Normalized cluster size for caged particles in Ni62Nb38 (a) and Pd82Si18 (b) alloys at 

different temperatures. 
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Figure B.4 shows dynamical cluster sizes for immobile particles at different temperatures for 

Ni62Nb38 and Pd82Si18 alloys. 〈nI(t)〉 peaks at a characteristic time tI  that increases upon cooling, 

and the peak value also grows on cooling in general, indicating an increase in the magnitude of 

mobility correlations related to the immobile particles. 

 

 

   (a)      (b) 

Figure B.4 Dynamical cluster sizes for immobile particles 〈nI
(t)〉 at different temperatures for 

Ni62Nb38 (a) and Pd82Si18 (b) alloys. The data are normalized by the value at t = 0. 

 

B. Size distribution of mobile and immobile particles 

The mobile particles were identified by atomic displacement a < |ri(t*) - ri(0)| < b at t* . 

t* is the peak time of non-Gaussian parameter. a and b are determined from self-part of van-Hove 

function  Gs
(r, t) at t* . a is the value of the first minimum of the function. For higher 

temperatures, van-Hove functions do not possess second peaks, so we used the values at lowest 

temperature. 
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   (a)      (b) 

Figure B.5 The non-Gaussian parameter α2  in Cu64Zr36 as a function of temperature (a). t*  is 

defined as the time which α2  exhibits a maximum. The self-part of van-Hove function Gs
(r, t) at 

t*  of Cu64Zr36 (b) at different temperatures. At lower temperatures, a notable second peak can be 

easily recognized.  

 

The immobile clusters distribution can be described by the power-law P(n) ~ n-τF, with 

similar scaling exponent of τF   1.8 ± 0.5, which is similar to the findings in Cu-Zr alloys 

reported in the main part of the paper.  
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   (a)      (b) 

Figure B.6 (a) The distribution of immobile particle cluster sizes P(n) of Ni-Nb alloys. The 

distribution can be roughly described by a power law, so we may speak of the fractal dimension 

of the particle clusters. The dashed line indicates a characteristic power law with τF  = 1.85 (See 

text for discussion). (b) Scaling of immobile cluster radius of gyration Rg with its mass n, n ~ 

Rg
df in the Ni62Nb38 alloy. The inset shows that the fractal dimension, df, varies with temperature. 

The general trend is consistent with our finding for the Cu64Zr36 alloys reported in the main text, 

and previous findings of Starr et al. for polymer melts. 55,192 
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    (a)              (b) 

Figure B.7 (a) The distributions of immobile particle cluster sizes P(n) of Pd82Si18 alloys. The 

distribution can be described by a power law, and the dashed line indicates a characteristic 

power-law with τF  = 1.85. (b) Scaling of immobile cluster radius of gyration Rg with its mass n, 

n ~ Rg
df in the Pd82Si18 alloy. The inset shows that the fractal dimension, df, shows a similar trend 

as in Figure B.6.  

 

C. Correlation Between Locally Well-Packed Voronoi Polyhedra and Immobile Particles 

 In the previous study, a relationship between dynamic heterogeneity and atomic local 

structure was shown to exist in simulated Cu-Zr metallic glass materials. 28 This dynamics-

structure correspondence was based on Voronoi tessellation, a widely used measure for 

quantifying local atomic structure. In particular, “local structure” is defined in this previous work 

by the Voronoi index 〈n3 , n4, n5, n6〉, where ni represents the number of i-edged faces in a Voronoi 

cell. 377 We revisit this analysis in the present work to determine the extent to which immobile 

particles overlap with well-packed particles defined by the Voronoi tessellation. 

We first characterize the Voronoi index 〈0,0,0,12〉 of Cu-centered atoms in Cu64Zr36 alloys 
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at 950 K, known as full icosahedral (FI) Voronoi cells, and consider how these regions correlate 

with the Debye-Waller factor 〈u2〉 of atoms in the centers of these cells, defined by their mean 

square displacements after a caging time of 1 ps. A strong qualitative correlation between 〈u2〉 of 

these central atoms and the Voronoi index is shown in Figure B.8 for this metallic glass system,  

i.e., particles having a lower 〈u2〉 often arise in close-packed regions. In particular, we observe 

that atoms having a Voronoi index 〈0,0,0,12〉  tend to have especially low-mobility and these 

atoms and associated Voronoi cells form a polymeric network in Cu-Zr alloys. 28,378,379 

 

 

Figure B.8 Correlation between Voronoi index 〈0,0,0,12〉 of Cu-centered atoms and DWF 〈u2〉 in 

Cu64Zr36 alloys at 950 K. Contoured map shows the spatial distribution of DWF in the Cu64Zr36 

alloys at 950 K. The slab has a thickness of 2.5 Å. The sidebar illustrates the range of DWF, 

darker color corresponding to the region with smaller value of DWF 〈u2〉. White spots on the 

map represent Cu particles with Voronoi index 〈0,0,0,12〉. 

 

We next examine more quantitatively the correlation between dominant polyhedron and 
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immobile particles in Cu-Zr systems. The fraction of Cu-center full icosahedral polyhedron in 

Figure B.8 increases dramatically upon approaching the glass transition temperature, Tg. Near Tg, 

the fraction in Cu64Zr36 is almost 25%, as noted in our previous study. 28 Cu64Zr36 also has the 

highest fraction of Cu-centered FI polyhedra among all three compositions. In all the Cu particles 

within the FI polyhedra, nearly 72% can be classified as being “immobile” near Tg for Cu64Zr36. 

We conclude that the slowing down of the dynamic in this metallic glass can be associated with a 

large population of fully icosahedral Voronoi polyhedra. Previous atomic simulation study has 

also indicated that significant amount of atoms (up to 70%) with icosahedral local packing are 

immobile. 380 The other two systems show similar values, despite the smaller number of particles 

exhibiting local close-packed configurations. Clearly, atomic configurations exhibiting closed-

packed configurations are more likely to be immobile in Cu-Zr alloys. The generality of this 

relation between structure and dynamics remains a question, however, so we examined other 

metallic glasses to assess this question. Unfortunately, we found that the particular relation 

between local structure and dynamics found for Cu-Zr alloys does not extend to other metallic 

glasses. 

 We applied the same analysis in Cu-Zr alloys to Pd-Si alloys. Although there is a much 

smaller fraction full icosahedra in Pd-Si alloys (e.g., the fraction of full icosahedral polyhedral 

Voronoi cells in Pd82Si18 is 1.50%, which is much lower than the fraction in Cu-Zr alloys noted 

above), we still found the fraction of immobile particles in full icosahedral polyhedral cells to be 

close to 68.81% near Tg. However, for Cu-Zr systems, nearly 99% of particles exhibit full 

icosahedral polyhedron near Tg and the particles at the centers of these cells can be recognized as 

immobile particles. The correlation between full icosahedron and immobile particles is thus much 

weaker in Pd-Si systems than in Cu-Zr metallic glass-forming systems. Since Pd-Si does not have 
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significant fraction of full icosahedral polyhedra, we take the most dominant Voronoi polyhedra 

instead in this system to test how these structurally distinct particles relate to the immobile 

particles.  

 

 

Figure B.9 Correlation between Cu-centered full icosahedral polyhedron and immobile clusters 

in Cu-Zr systems. Three compositions are considered, Cu36Zr64, Cu50Zr50, Cu64Zr36, over 

temperature range from 850 K to 1150 K. Blue dots represent fraction of Cu-centered full 

icosahedral polyhedron. Red dots represent fraction of immobile clusters in Cu particles with full 

icosahedral polyhedron.  

 

Figure B.10 shows that the fractions of immobile clusters in different Si-centered VPs 

vary with the fractions of VPs. The fraction of immobile particles in Si-centered 〈0,4,4,0〉 

increases as the temperature increase, but the fraction of immobile particles in this VP decreases. 

Fraction of immobile particles in Si-centered 〈0,3,6,0〉 shows contrast tendency. Both fractions 

decrease as we increase the temperature. We can conclude that although some correlation exists 
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between immobile particles and symmetric Voronoi polyhedral cells associated with local close-

packing, there is no general predictive relationship between Voronoi type and local mobility. The 

search for a structural indicator of local mobility thus continues. 

 

 

Figure B.10 Correlation between Si-centered 〈0,4,4,0〉  and 〈0,3,6,0〉  polyhedra and immobile 

clusters in Pd-Si systems over temperature range from 800 K to 1050 K. Red dots represent the 

fractions of different Si-centered VPs. Blue dots represent the fraction of immobile particles in 

those VPs.  

 

To further investigate the correlation between Voronoi polyhedral and immobile clusters, 

we also compared the distributions of immobile clusters and the clusters of the dominant VPs. 

Both the immobile particle cluster size distribution and icosahedral polyhedral cluster size 

distribution can be described as being approximately exponential P(n) ~ exp(-n/n0), where n0 is a 

constant, but there does seem to be an approach to a power law, P(n) ~ n-τF , at low temperatures 

with a scaling exponent τF ≈ 2. This crossover is illustrated in Figures 4.7(b) and B.11(a). Even 

though this scaling exponent is similar, suggesting the growth of branched polymeric structures at 
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equilibrium 192, the size range of the Voronoi polyhedron clusters is quite different from the 

immobile particle clusters. Apparently, immobile clusters have a significantly larger size ranging 

from 2 to 80 in our dimensionless units, while the icosahedral polyhedral Voronoi cell clusters 

vary in size from 2 to 50. As we increase the temperature, the Voronoi cell average cluster size 

progressively decreases, and at higher temperatures, these clusters contain only between about 2 

to 10 atoms, a trend again inconsistent with the immobile cluster size variation with temperature. 

Since Pd-Si does not possess significant amount of full icosahedral polyhedral Voronoi cells, we 

examine the cluster distribution of VP 〈0,3,6,0〉 and 〈0,4,4,0〉 clusters, in Figure B.11(b).  

 

 

                                  (a)                                                                        (b) 

Figure B.11 (a) The distribution of cluster sizes of particles with full icosahedral polyhedron of 

Cu-Zr systems for all T studied. (b) The distribution of cluster sizes of particles with VP 〈0,3,6,0〉 

and 〈0,4,4,0〉  of Pd82Si18 for all T studied. The dashed lines indicate power-law curves in 

comparison to the data.  

 

Apparently, the approach to a power-law scaling at low temperatures is not convincing for 
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these clusters, which is an indication of a lack of a direct correspondence between the Voronoi 

clusters and the immobile particle clusters. We thus observe further evidence that while well-

packed particles tend to be somewhat immobile, locally well-packed particles as defined by a 

Voronoi construction to determine local density does not reliably predict local mobility and the 

clusters of the atoms exhibiting locally preferred packing exhibit a d istinct geometry from the 

immobile particles.  

 

 

                                  (a)                                                                        (b) 

Figure B.12 Scaling of full icosahedral polyhedron cluster radius of gyration Rg with its mass n, 

n ~ Rg
df in the Cu64Zr36 (a) and Ni62Nb38 (b) alloys. The inset shows that the fractal dimension, df, 

varies slowly from a value around 2 for smaller clusters to a value of about 2.5 for Cu64Zr36 alloy, 

but df remains close to 2 for the Ni62Nb38 alloy. This general trend of df is consistent with 

expectations that the clusters have a geometry with equilibrium polymers. 192 
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Appendix C Supplementary Information: The Initiation of Shear Band Formation in 

Deformed Metallic Glasses From Soft Localized Domains 

A. Definition of Mobile Particles 

 We follow the methodology developed by Starr et al. 55 to estimate the fraction of ‘mobile 

particles’. In particular, we first bin particles according to the magnitude of their relative 

displacement as a function of time for a range of threshold fractions, e.g., the 1 % fraction of 

particles having greatest displacement, the 2 % fraction of particles having greatest displacement, 

etc. The particles in these classes are ‘relatively mobile’ to a degree that d epends on the cut-off 

fraction. Clustering of these relatively mobile particles can be defined for each cut -off value as 

groups of these particles whose nearest-neighbor distance is less than the nearest-neighbor 

distance defined with reference to the radial distribution function. Following Starr et al., the 

effect of trivial clusters that exist for randomly located particles is accounted for in the definition 

of the average cluster mass of these relatively mobile particles. In particular,  the average mass of 

the mobile clusters is normalized by the cluster mass of the same fraction of particles chosen at 

random. 55 The normalized mass of the relatively mobile particles exhibits a peak for each cut-off 

value and a unique cut-off value can be determined by the particular cut-off size at which the 

mobile cluster mass is maximized. If the cut-off had been chosen too small then one only 

determines fragments of the mobile particles of interest and if the cut-off is chosen too large, then 

one starts to incorporate particles that exist because of clustering at random. The methodology 

allows one to zero in on the average cut-off value in a systematic and objective fashion. The data 

in Figure C.1 indicates the normalized maximum cluster size maximizes at a cut-off value of 

2.75 % for this material. Specifically, we define ‘mobile particles’ as those particles that have the 

top 2.75 % displacement at any time t. The time at which the average mass of the mobile particle 

peaks is the mobile particle lifetime, M. See Starr et al. for illustration of the time dependence of 
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the mobile particle mass.55 The near linear relation between M and the peak in the non-Gaussian 

parameter t* shown in Figure 5.5(a) of the main paper relies only on holds when the fraction of 

mobile particles is estimated with some precision (roughly about 2.75 % ± 1.0 %) because the 

mobile particle lifetime M slightly depends on the choice of cut-off for defining mobile particles.  

 

 

Figure C.1 Normalized maximum cluster size as a function of mobile particle cutoff when  = 

7.0 % in a sample with h = 300 Å at T = 50 K. 

 

B. Spatial and size distribution and fractal geometry of mobile particles in the interior and 

interfacial regions 

We next examine the geometry of the mobile particles in interior and interfacial regions. 

We calculate the fractal dimension, df, to characterize the geometrical properties of mobile 

clusters in both regions. The ‘fractal’ dimension of the mobile clusters is calculated using the 

relation, 𝑛 ~ 𝑅𝑔

𝑑𝑓 , where n is the number of particle clusters and Rg is the radius of gyration of the 
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given clusters which is calculated using the equation: 𝑅𝑔
2 = 

1

2𝑁
∑ (𝑟𝑖 − 𝑟𝑗)

2

𝑖 ,𝑗  (N is the total 

number of mobile particles in the cluster and ri, rj are the positions of the ith and jth particles). As 

shown in the inset of Figure C.2, we found out that df varies between 2.6 and 2.9 in the strain 

range and regions that we studied, similar to the findings in our previous studies on mobile 

clusters in the metallic glasses systems at temperatures above the glass transition temperature, Tg 

247. Next, we consider the size distribution of the mobile particle clusters in both regions. P(n) can 

be described using a power law 𝑃(𝑛)~ 𝑛−𝜏𝐹 where F is the size distribution scaling exponent. As 

illustrated in Figure C.3, we see that F around 1.5 in both regions. The size distribution exponent 

(‘Fisher exponent’) for mobile particle clusters is also nearly the same as we have seen before 247 

for the same metallic glass system for a T range much greater than Tg so there is apparently no 

essential difference in the geometry of the mobile particle clusters above and below Tg.  

 

 

                                      (a)                                                                      (b) 

Figure C.2 Cluster radius of gyration Rg with its mass n, n ~ Rg
d

f at different strains in the interior 

(a) and interfacial (b) regions. The inset shows that the fractal dimensions, df, do not vary 

significantly with strain or regions. The fractal dimensions in both regions are around 2.8.  
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We show some randomly selected mobile particle clusters in the interior and interfacial 

regions of the metallic glass (MG) in the inset where it is apparent that these clusters take a 

relatively compact and symmetric form. This is natural since a perfectly compact object, like a 

sphere, has a fractal dimension df = 3. Notice that the average mass of these clusters ranges from 

about 10 to 500. Based on our discussion in the main text indicating that the lifetime of the 

mobile particles can be identified with the Johari-Goldstein (JG) relaxation time and the 

commonly stated correlation between the JG relaxation process and shear transformation zones 

(STZs), we suggest that the ‘mobile particle clusters’ can be identified as being a concrete 

realization of STZs 226,381,382. Recent atomic resolution imaging of the interface of metallic glass 

and other glass-forming liquids using ultrahigh vacuum scanning microscopy have indicated the 

presence of relatively compact mobile particle clusters on the surface of glasses deep in their 

glass state where the dynamics of their rearrangement motion was suggested to be consistent 

with the JG relaxation process and where the size of the clusters was estimated to be in the range 

of  4 to 5 atom diameters 383–385. The appearance and reported size of these clusters seem to be 

consistent with our simulations. Further comparisons between simulation and these clusters 

observations seem warranted. 
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                                        (a)                                                                     (b) 

Figure C.3 The distribution of mobile particle cluster sizes P(n) in the interior (a) and interfacial 

(b) regions at different strains. The distribution can be described using a power law with size 

distribution exponent (Fisher exponent) F around 1.5. Atomic configurations of representative 

clusters in both regions at  = 8.0 % are also shown.  

 

C. New Protocol to Eliminate Stress Fluctuation 

First, we examine the stress vs. strain relation in our material, which is indicated in the 

Figure 5.1(a) in the chapter 5. The stress fluctuations in the large deformation regime are well-

known and expected for glass materials beyond their point of “yield” and this is naturally 

attributed to the highly heterogeneous nature of the material in its shear banded state. The 

fluctuations at low strain are another matter. We did not expect “fluctuation effects” in this 

regime and it is a fair question to ask where these fluctuation effects come from. The magnitude 

of the estimated <u2> showed some fluctuations in this low deformation regime so we 

considered further what these “fluctuations at low  might represent. 
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It then occurred to us that the quench process of our metallic glass might lead to 

appreciable residual stresses in the low temperature that might be relieved small amplitude 

deformations. There have been many experimental and computational reports recently of how 

the application of small stresses can alter the “energy landscape” of glassy materials so this 

seemed like a plausible reason for the appreciable stress fluctuation effects that we observe at 

very low deformations. To check this hypothesis, we subjected the material to a very small 

prestress (deformation) to allow these hypothetical residual stresses to relax and then took the 

resulting material to be our relaxed undeformed material.  This procedure not only essentially 

eliminated the stress fluctuations at low  (see inset to Figure C.4), this pre-stress procedure also 

essentially eliminated the “noisy” nature of the average value of <u2> data at low deformation. 

The average value of <u2> at  = 0 % is now quite consistent with the average value of predicted 

from expression in the paper.  

The random fluctuations of <u2> as function of time on a ps timescale in apparent in 

Figure C.4 are to be expected and we have studied this phenomenon extensively in our previous 

works on glass-forming materials and the interfacial dynamics of crystalline materials. The time 

series no doubt exhibits colored noise which is characteristic of dynamic heterogeneity in glass-

forming liquids and this phenomenon is particularly associated with the Johari-Goldstein 

relaxation process, as we discuss in our recent paper focusing on this relaxation process 227; (see 

Fig. 4a of this paper where a similar time series is discussed for the Al-Sm metallic glass at low 

temperatures). We also see a nice example of this type of fluctuation in our study of the 

interfacial dynamics of TIP4P ice 147 (See Fig. 12), the interfacial dynamics of crystalline Ni 48 

(See Fig. 8) and in the internal dynamics of the protein ubiquitin 123. This colored noise 
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phenomenon is discussed extensively in papers dedicated to understanding colored noise in 

relation to dynamic heterogeneity 13,119.  

 

 

Figure C.4 Stress versus strain in deformed ZrCu material subjected to pre-stress and resulting 

time series of <u2> as a function of time t and  = 0. The power spectrum of <u2> fluctuation in 

the undeformed state exhibits a power-law scaling with frequency, where the color noise 

exponent is equal to 0.35. The dashed horizontal line represents the predicted average value of 

<u2> from the expression for <u2> versus   given our paper and the solid horizontal line 

represents the average value of <u2> over 500 ps in the undeformed state. The inset of this paper 

shows the stress versus strain relation of the pre-stressed material where we see that the 

“fluctuations” observed before have now been essentially eliminated. 

 

Since we have previously observed in many condensed matter systems that temperature 

greatly influences the noise color, it is natural to expect that deforming the material should also 
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alter the color of the noise in times series for <u2>, the potential energy and other properties 

probing the local molecular environment of the particles in the material. A study of how strain 

influences this time of colored noise is an obvious topic for a future publication, but such an 

analysis is beyond the scope of the present paper. 

 

D. Turbulent-like State of the Shear Band Region 

Figure C.5 shows the local shear modulus distribution captured from the system with h = 

300 Å which contains part of the SB shown in blue, with the displacement vector in the 

corresponding region.  

 

 

Figure C.5 Contour map of local shear modulus kB  T / <u2> around shear band in the system with 

thickness h = 300 Å, and displacement vector in the corresponding region at   = 8.9 %, 

corresponding to shear banded state. From the corresponding particle displacement vector, a 

circular collective, and vortex-like motion has been observed, similar to the findings from Sopu’s 

work 386. This is also a common type of collective motion seen in dense granular materials 387. 
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This type of vortex-like motion has been previously reported in the SB region and these coherent 

vortex-like structures were interpreted to arise from the percolation of smaller STZs structures 386. 

Note the vortex patterns involving collective particle displacement that are also characteristic of 

turbulent fluids and other materials that have been characterized by analogy as being “turbulent”. 

 


