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Abstract

In this Thesis, two problems were studied: a direct vacuum acceleration of

electrons by a tightly focused ultrashort relativistic laser pulse and ion accel-

eration in the process of spherical laser-heated plasma explosion.

The electromagnetic field of a tightly focused laser pulse was evaluated

numerically by means of Stratton-Chu integrals. The properties of the fo-

cused field were analyzed in detail for a plane wave or a macroscopically large

Gaussian beam incident onto the mirror. Free electrons moving in the tightly

focused field were found to accelerate by two possible mechanisms: focal spot

acceleration and capture-and-acceleration scenario. The two mechanisms were

studied in detail. Comparison of the mirror-focused field with first- and fifth-

order paraxial fields is performed. A 3D electromagnetic PIC code SCPIC was

created for simulations of pulse interaction with targets having a finite num-

ber of particles interacting with each other by collective fields. Atto-second

bunch formation was observed in the interaction with ultra-small or ultra-thin

targets. Physical mechanism of bunch formation is explained.

The problem of electrostatic explosion of a nano-scale spherical plasma

with initially hot electrons and cold ions was solved numerically. Expansion

in a wide regime of electron temperature 0 < T ≤ ∞ was studied in detail for

different initial density profiles of plasma. Favorable conditions for obtaining

mono-energetic ions resulting from the explosion were specified in single and

two ionic species cases. In case of a two-species explosion, the number of

mono-energetic, δε/ε < 10%, ions can be as high as 70-80% of the total light

ions for a wide range of electron temperatures.
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Chapter 1

Introduction

Acceleration of charged particles by electromagnetic waves has been considered

back in 1950’s as a mechanism of energy gain in cosmic-ray particles [1]. Later,

in the early 1970’s, the first works have appeared [2] dealing with particle

acceleration by laser beams under laboratory conditions. With the invention

of chirped laser pulse amplification in 1985 [3] and subsequent progress in

high-power lasers [4, 5, 6, 7, 8, 9], laser-based charged particle acceleration

has become an independent subfield of plasma physics. The contemporary

laser systems are capable of producing pulses with intensities of 1022 W/cm2

in the best focus of the system [8]. For such intensities, matter is usually

fully ionized already at the very beginning of the pulse, with most of the

laser pulse interacting with the resulting plasma. The intensity of 1022 W/cm2

corresponds to electric field E ∼ 5 ·1014 V/m (as compared to the present limit

of E ∼ 108 V/m in the conventional charged particle accelerators). Efficient

application of such huge fields is a problem yet to be solved. This Thesis

aims at investigating the physical processes and effectiveness of two particular

schemes of electron and ion acceleration working in the high laser intensity

regime.
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Besides the ultimate goal to accelerate charged particles to energies of

interest for high energy physics, there exist other applications of accelerated

particles. The fast laser-produced electrons are the key element in the concept

of fast ignition in the inertial confinement thermonuclear fusion [10, 11] where

the electron beam is supposed to play the role of a spark, igniting the fusion

reaction. Another important application of fast electrons is generation of hard

x-rays and γ-rays [12, 13] and a compact source of coherent x-ray radiation

obtained in a free electron laser [14, 15]. There are also applications of lower-

energy, MeV electrons, in waste and medical products sterilization [16, 17].

Energetic ions are needed in the controlled nuclear reactions such as isotope

and neutron production [18, 19, 20, 21, 22, 23, 24, 25] as well as in plasma and

matter diagnostics at extremely short times [26], material engineering [27] and

aforementioned fast ignition with energetic ions [28, 29, 30, 31, 32]. Cheap

high-quality fast ions would be ultimately useful in medicine, for tomography

[33], which employs isotopes prepared by using the fast ions, and in proton

therapy [34, 35, 36].

It was shown more than four decades ago [37] that a charged particle cannot

be accelerated by a pulsed plane electromagnetic wave, although the particle

can be shifted by a finite distance in space as a result of the interaction.

Whereas the particle is accelerated at the leading edge of the pulse by the

radiation pressure (more strictly speaking, by the positive longitudinal pon-

deromotive force which is anti-parallel to the gradient of intensity), it is decel-

erated by the negative longitudinal ponderomotive force at the pulse trailing

edge. For this reason, one needs to employ more complicated techniques to

transfer energy from the pulse to the particle.

Due to the large difference between electron and ion masses (mp/me is at

least 1836, for the case of proton, where me is electron mass and mp is that of
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proton), laser-based methods of their acceleration can be different. The most

usually discussed methods for electron acceleration are inverse free electron-

laser acceleration (IFEL), plasma wave acceleration, inverse Cherenkov effect,

and direct vacuum acceleration. The principles of these methods are schemat-

ically shown in Fig. 1.1. In an IFEL accelerator [38, 39], the charged particle,

co-propagating with the laser wave, moves in the external magnetic field pro-

duced by undulator magnets. For the proper magnitude and structure of the

external magnetic field, the electron can be shown to acquire a nonzero energy

from the laser. The principle of IFEL accelerator is depicted schematically in

Fig. 1.1a.

The plasma wave acceleration [40], Fig. 1.1b, is one of most commonly

discussed schemes in the literature. Historically, this scheme was first proposed

in 1979 by Tajima and Dawson in a seminal paper [41]. The idea is to excite

plasma waves by a laser pulse and use the resulting electric fields of charge

separation in the wave to accelerate the particles. It was shown [40] that the

plasma waves can remain linear while supporting very high fields (Eth ∼ √
ne,

where Eth is the wave-breaking electric field threshold in the plasma wave

and ne is electron density in plasma; for ne = 1018 cm−3, Eth ≈ 100GV/m).

Depending on the method of plasma wave excitation, there can be, among

the most popular, plasma beat-wave or laser wake-field accelerators. In a

plasma beat-wave accelerator [42, 43, 44], the plasma wave is excited by two

laser pulses having frequency difference equal to the plasma frequency. The

resulting laser beat wave can be shown to excite the plasma wave. The laser

wake-field accelerator (also called plasma wake-field accelerator) [40, 45, 46]

uses a laser with the pulse equal to or smaller than the plasma wavelength.

For a relativistically strong laser pulse, the plasma wave can break [47] which

eventually leads to self injection of electrons into the resulting bubble in the
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Figure 1.1: (Color) Some popular schemes of laser based electron acceleration:
(a) IFEL accelerator, the net acceleration is provided by a proper choice of the
external magnetic field; (b) plasma wave accelerator, electrons are accelerated
by the electrostatic field of laser-induced plasma wave; (c) inverse Cherenkov
accelerator, electrons are accelerated by the longitudinal field of the laser(s)
slowed down by a gas medium; (d) direct vacuum acceleration, a laser pulse in
vacuum interacts directly with the charged particle. An extraction mechanism
is needed to acquire a nonzero energy.

plasma with the subsequent acceleration of the self-injected electrons to high

energies [48, 49, 50]. Under some plasma conditions, the electrons possess the

highly desirable mono-energeticity feature [51, 52, 53]. The results in Refs. [51,

52, 53] represent one of the major results in laser-based electron acceleration.

Electron acceleration to GeV energies by the plasma wake accelerators was

experimentally demonstrated recently [54].

The inverse Cherenkov accelerator [55, 56], Fig. 1.1c, depends on the

subluminous phase velocity of the electromagnetic waves propagating in gases.

This allows an injected ultra-relativistic electron to co-propagate with the pulse
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at approximately the same field phase. The acceleration is provided by the

longitudinal component of either two crossed quasi-planar laser beams (as in

[55]) or by that of a focused laser (as in [56]). The idea of inverse Cherenkov

accelerator was modified in [57] where plasma (rather than gas) was used to

slow down the group velocity of the laser pulse and thus avoid the deceleration

stage. The electrons in this scheme, upon reaching the maximum of the pulse,

become energetic enough to overcome the laser pulse and thus do not appear

in the region with negative ponderomotive force.

The direct vacuum acceleration, Fig. 1.1d, is popular for simplicity of its

concept. The charged particles are supposed to accelerate in vacuum in the

pure electromagnetic field of the laser beam. It is shown in Appendix A.1

that motion of a charged particle in a periodic plane electromagnetic wave

consists of oscillatory motion in the transverse direction and a drift along the

laser propagation. As was stated above, if the laser is pulsed, the particle, after

acceleration while climbing the leading edge of the pulse, eventually decelerates

at the pulse trailing edge. Certain particular schemes are proposed to extract

the accelerated particle from the pulse and to avoid the deceleration stage.

In papers [58, 59, 60, 61, 62, 63], the deceleration stage is avoided by natural

inhomogeneities of focused laser pulses. The particles, accelerated by the laser

field in the vicinity of focus, scatter from the large intensity region and thus

can gain a nonzero net kinetic energy. Another extraction scheme deals with

reflection of the laser pulse by a plasma mirror [64, 65]. The laser is reflected by

plasma when the particle is in the middle of the pulse and has a high magnitude

of energy oscillation. The ultra-relativistic electrons, in turn, normally can

penetrate the overdense plasma by a distance on the order centimeters and

thus are unaffected by the mirror. Injection of the particles into the middle of

the pulse using, for example, field ionization of heavy atoms [66, 67] breaks the
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symmetry of motion and was also shown to provide nonzero particle energy. A

scheme of injection dealing with interplay between the electrostatic field of a

partially evacuated target and the electromagnetic field of laser was discussed

in [68]. In paper [69], usage of a metal screen with a hole in it was proposed

to break the symmetry of motion. Some of the particle extraction schemes are

shown schematically in Fig. 1.2.

(a)

t = 0

(b)

mirror

(c)

focused pulse

Figure 1.2: (Color) Particle extraction schemes in vacuum acceleration. (a) in-
jection of a particle into the middle of the pulse; (b) reflection of the pulse by a
mirror, particle continues moving through the mirror; (c) transverse scattering
of a particle from a focused laser pulse.

Many direct vacuum acceleration schemes consider the extraction scheme

dealing with particle scattering from a tightly focused laser beam. The tight

focusing is needed to maximize the laser intensity in the vicinity of the laser

focus and thus obtain large electromagnetic fields accelerating the particles.

Whereas motion of charged particles in plane and quasi-planar electromagnetic

waves is known, this is not the case for the regime of tight focusing. There are

two main problems to be resolved in this context: (a) proper description of the

field structure of a tightly focused beam and (b) calculation and optimization

of particles motion in the resulting field. In this way, the most interesting case

of direct vacuum acceleration dealing with the highest fields was not clear until

recently. The case of tight focusing was clarified in the recent papers [63, 68],

representing the original contribution of the author of this Thesis on the topic

of direct vacuum acceleration.
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A way to resolve the two problems of particle motion in a tightly focused

laser beam is discussed in detail in Chapter 2 of this Thesis. The method

employs an integral representation of the solutions of Maxwell equations with

the given boundary conditions for the field description and numerical solution

of the particle equations of motion. The two cases of particles moving in either

pure electromagnetic field of the laser or in the self-consistent field of a plasma

target interacting with the laser beams are considered. The methods and re-

sults discussed in Chapter 2 represent the conclusions of studies performed in

Refs. [63, 68] as well as description of 3D relativistic electromagnetic particle-

in-cell (PIC) code SCPIC developed for simulations of laser-plasma interac-

tions and some new material to be published elsewhere.

Although it is possible, in principle, in most of the cases to use the same

methods for ion acceleration as for electrons, in practice it is not usually done.

Most of the proposed ion acceleration methods deal with partial evacuation of

electrons from the target by the laser pulse, thus creating a charge separation

electrostatic field which accelerates ions. Historically, the first studies of the

dynamics of hot electron-driven plasma expansion into vacuum appeared in

late 1960’s [70], although at that time this phenomenon was discussed in the

context of inertial confinement fusion (ICF). Laser-driven plasma expansion

as a source of fast ions began to be discussed in the late 1970’s [71, 72], mostly

in planar geometry with semi-infinite plasma. During the last three decades,

some optimizations of the ion acceleration by this scheme were proposed, such

as using spherical geometry [73], multi-species ions [21, 74, 75], nonuniform

initial plasma profiles [76, 77], and properly shaped [78] or multi-layered targets

[79]. A typical process of the ion acceleration is depicted, for a case of spherical

geometry of the plasma target, in Fig. 1.3. At a first stage of this process,

the target is irradiated by the laser. Since the ions are heavy, they are almost
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unaffected by the pulse. The light electrons, however, oscillate in the laser

field with an amplitude comparable with, or, very often, exceeding, the size

of the target. As a result, electrons tend to escape the target and thus an

electrostatic field of the charge separation appears. This field slows down the

electron expansion and, on the other hand, accelerates the ions in the radial

direction.

(a) (b) (c)

Figure 1.3: (Color) Acceleration of ions from a spherical target: (a) a laser
pulse irradiates the target and heats it; (b) light hot electrons escape the
target; (c) ions are accelerated in the field of the resulting unbalanced positive
charge.

The details of absorption of laser energy by the target electrons are com-

plicated (cf., for example, [80]). In many works the complicated physics of

absorption is omitted altogether. Instead, an approximation is used in which

the electrons are prescribed to have a certain distribution function at t = 0.

In this way, only the problem of hot-electron driven expansion is studied.

Depending on regime, the process of plasma expansion can be described in

different ways. If the total kinetic energy of electrons considerably exceeds the

total electrostatic energy of fully evacuated ions in plasma, such a regime is

described using the model of Coulomb explosion (CE). In the CE model, the

electron distribution function is assumed to be exactly zero. As a result, the

problem of self-consistent motion of ions in the absence of electrons is solved.

The limit of very small average kinetic energy of electrons is described with the
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help of a quasi-neutral expansion model where the condition of quasi-neutrality

is used to avoid the solution of Poisson’s equation. Only few studies are ded-

icated to the description of plasma expansion in the intermediate regime of

moderate electron average kinetic energy. This is especially the case for more

than one ionic species present. The latter case is of particular interest since

it can be shown to result in mono-energetic spectra of one of the ionic species

comprising the expanding plasma.

In Chapter 3 of this Thesis, the hot-electron driven expansion of multi-

species, nonuniform plasma is discussed. The electrons are assumed to have

a Maxwellian velocity distribution at t = 0, characterized by a certain tem-

perature. The multi-species plasma composition can be “homogeneous” (con-

centration of light ions does not depend on radius) or “heterogeneous” (the

light ions form a shell around the heavy core). A major part of Chapter 3

represents the results of the author’s contribution to the topic of plasma ex-

pansion published in papers [77, 81, 82]. These results include: the particular

dynamics of double collisionless shocks in the CE of inhomogeneous spherical

targets, dynamics of single-species homogeneous and inhomogeneous spherical

targets in the intermediate electron energy regime, dynamics of two-species

expansion of spherical plasma targets in the CE and intermediate electron en-

ergy regimes. The results were obtained using a gridless particle simulation

code developed for modeling of 1D spherical plasma expansion incorporating

multi-ion species.

The outline of this Thesis is as follows. In Chapter 2, acceleration of elec-

trons by a tightly focused laser pulse is studied. In the Section 2.1, the history

of the subject and the basic physical concepts of direct vacuum acceleration

are presented in detail. The main problems of vacuum electron acceleration

are posed. Among these problems is the correct field description which is an
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important issue, especially for a tight laser focus. Section 2.2 describes the

particular method of field evaluation which is used in this research. Section

2.3 presents results of numerical solution of the equations of motion for sin-

gle charged particles moving in the tightly focused laser. To understand the

motion of electrons in the self-consistent field, which includes also fields of

the surrounding charges, one needs to solve the Vlasov equation for plasma

evolution. Section 2.4 presents the 3D relativistic electromagnetic PIC code

SCPIC created by the author of this Thesis. This code numerically solves the

equations of a finite number of characteristics of the Vlasov equation for col-

lisionless plasma and thus gives a numerical approximation to the solution of

the Vlasov equation. The equations of motion are solved in the self-consistent

electromagnetic field, being the sum of external and plasma-generated fields.

The corresponding results are given in Section 2.5. Section 2.6 concludes the

discussion of direct vacuum electron acceleration.

Hot-electron driven acceleration of ions from the laser-heated exploding

spherical plasma targets is discussed in the Chapter 3. The detailed historical

introduction and formulation of the problems to be solved are given in Section

3.1. The physical model and simulation tools used in the analysis are given

in Section 3.2. The explosion of a single-species nonuniform plasma target, in

two different regimes, CE and thermal explosion (TE) is discussed in Sections

3.3 and 3.4, correspondingly. The explosion of multi-species targets, both

homogeneous or multi-layered, is discussed in Section 3.5. Section 3.6 presents

discussion of the obtained results and conclusions.
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Chapter 2

Vacuum electron acceleration

by a tightly focused laser

2.1 Basic physical concepts of direct vacuum

acceleration

2.1.1 Charged particle in electromagnetic field. Plane

wave solution

To find the motion of a single charged particle in an external electromagnetic

field ~E, ~B, one has to solve the Lorentz-Newton equations of motion

d(γm~v)

dt
= q( ~E +

~v

c
× ~B),

d~r

dt
= ~v,

(2.1)

where m and q are, correspondingly, mass and charge of the particle, ~r and ~v

are its position and velocity, γ = 1/
√

1 − ~v2/c2, c is the speed of light and t

is time in the laboratory frame. Due to nonlinearity on both sides of the first
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equation of (2.1), where ~E, ~B are, generally, nonlinear functions of coordinates

~r(t), the system (2.1) is exactly integrable only in very few cases. One of such

cases is a plane electromagnetic wave:

~E = ~E(kx− ωt), ~B = ~B(kx− ωt), (2.2)

where x is coordinate along the wave propagation direction (longitudinal co-

ordinate) and k = ω/c, ω is the laser frequency. It is a well-know result that

plane electromagnetic waves are necessarily transverse since having nonzero

longitudinal components for the field depending only on the longitudinal co-

ordinate would immediately make ∇ · ~E = ∂Ex/∂x 6= 0.

For a plane wave, the equation of motion (2.1) was solved for relativistic

case in late 1960’s [37, 83, 84]. A solution for the case of plane polarized

harmonic plane wave:

~E = E0êy cos(kx− ωt), ~B = E0êz cos(kx− ωt), (2.3)

where E0 is the wave amplitude, and êy, êz are unity vectors along the corre-

sponding transverse axes, is given in Appendix A.1. The plane wave possesses

a number of important symmetries which allow one to reduce the dimension-

ality of the system, and to solve the equations of motion of a charged particle

exactly. If the particle starts at rest, and the laser pulse which has a finite

length, starts from minus infinity, then a particle, upon pulse arrival, will per-

form oscillatory motion, with its relativistic factor γ oscillating between zero

and

γmax = 1 +
a2
max

2
, (2.4)

where the dimensionless field amplitude a at the particle position is a =

12



qE0/mωc, with q, E0, m, ω and c expressed in CGS units. A similar de-

pendence (although with a different coefficient before a2) holds for circular

and elliptic polarizations. If the particle had a nonzero kinetic energy before

the pulse has started interacting with it, its γ-factor can be shown to oscillate

between γ0, t→ −∞ value, and

γmax = γ0

(

1 +
a2
max

2

)

, (2.5)

The quadratic dependence between the magnitude of the field and am-

plitude of particle kinetic energy oscillations can result in very large particle

energy for a � 1. Thus, the intensity of 1022 W/cm2, discussed above, for

which a ≈ 85 in the case λ = 1µm, can produce up to 1.8 GeV electrons,

according to Eq. (2.4).

Unfortunately, this value is only an amplitude of energy oscillations while

the particle co-propagates with the laser pulse. When particle climbs the pulse,

i.e., interacts with its leading edge, the amplitude of the field oscillation at the

particle position increases with time and so does the amplitude of particle en-

ergy oscillations. Since the pulse is finite and the particle velocity is always

smaller than c, the pulse will eventually overtake it. This results in a = 0 at

t → +∞ at the particle position and zero amplitude of energy oscillations of

the particle. In this way, interaction between the particle and a laser pulse

leads only to the overall displacement of the particle in space. This is demon-

strated in Fig. 2.1, where the trajectory and evolution of particle γ-factor are

shown for amax = 1 and a finite-duration pulse having wave envelope described

by

a(x, t) = amax exp
(

−
(t− x/c− T0

∆T

)2
)

, (2.6)

where T0 is the envelope displacement (relative to t = 0) and ∆T its length.
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Figure 2.1: Electron trajectory (a) and γ-factor evolution (b) in interaction
with a finite-duration plane polarized plane electromagnetic wave with amax =
1. Results of computer integration of Eq. (2.1).

Usually the pulse length is defined not directly by ∆T but by a more general

parameter called Full Width at intensity Half-Maximum (FWHM). For the

Gaussian envelope given by (2.6), FWHM = ∆T ·
√

2 ln 2.

Summarizing the properties of charged particle motion in a plane electro-

magnetic wave, one can conclude that: (a) there is a quadratic dependence

between the amplitude of the field and amplitude of particle kinetic energy

oscillations; 2) the net energy acquired by the particle is zero. The inability

of a pulsed plane wave to provide net acceleration of a charged particle was

realized long ago [37]. This property of interaction poses the problem of parti-

cle extraction, i.e., a method of avoiding the deceleration stage at the trailing

edge of the pulse.

2.1.2 Lawson-Woodward theorem

The inability of the particle to acquire net energy after interaction with a

planar-like electromagnetic wave is the statement of the so-called Lawson-

Woodward (LW) theorem1 [64]. Given the known controversies in understand-

1As follows from the discussion below, a more appropriate name is “Lawson-Woodward
principle” rather than the “theorem”.
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ing of this theorem [85, 86] its formulation and proof are given here. The proof

is taken from work of Palmer [87].

Theorem 1 (Lawson-Woodward theorem). Consider a charge q moving in

an electromagnetic field at a velocity v. Let the distance over which the field

phase at the particle position changes by 2π be called phase slippage distance.

If

1. Charge radiation reaction is negligible

2. Particle is ultra-relativistic (v ≈ c)

3. There are no other free charges near the interaction region

4. There are no static fields

5. Particle is moving in free space

6. Distance from field source is large compared to the wavelength

7. The characteristic distance of the field amplitude change is large com-

pared to the phase slippage distance of the particle

then the net energy gain
∫ +∞

−∞
qErdr = 0, where r̂ is the particle direction of

motion.

Proof (Palmer’s). Denoting angle between ~k and r̂ as θ, and choosing the

origin of time such that the particle position r = vt ≈ ct,

∫ +∞

−∞

qErdr =

∫ +∞

−∞

qEr0 cos(krr − ωt)dr ≈

c

∫ +∞

−∞

qEr0 cos[krct− ωt]dt =

c

∫ +∞

−∞

qEr0 cos[ωt(cos θ − 1)]dt ≈

qcEr0

∫ +∞

−∞

cos[ωt(cos θ − 1)]dt = 0, ∀ θ 6= 0.

(2.7)
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If θ = 0 then ~k‖r̂, and Er0 = 0 thus again resulting in a zero net energy

gain.

The Palmer’s proof of the theorem needs some clarifications. First of all,

the seventh condition, concerning the phase slippage distance, is not specified

in [87], but since this condition is used at the last step in Eq. (2.7), where Er0

is taken out of the integral over time, it should be present in the formulation.

This condition in fact is recognized in [64] where it is formulated as “the

ponderomotive effects are neglected”. Generally speaking, the last step in Eq.

(2.7) is exactly valid only in the case of a constant amplitude wave. If the

wave amplitude A is not exactly constant but changes slowly then

∫ +∞

−∞

A cos[ω1t]dt ≈
+∞
∑

n=−∞

∫ 2πn/ω1

2π(n−1)/ω1

An cos[ω1t]dt, (2.8)

where ω1 = ω(cos θ− 1) and A = qcEr0. An in Eq. (2.8) is the approximation

to the value of A between t = 2π(n − 1)/ω1 and t = 2πn/ω1 which, by the

seventh condition of the theorem, can be approximated by a constant. Thus,

+∞
∑

n=−∞

∫ 2πn/ω1

2π(n−1)/ω1

An cos[ω1t]dt =
+∞
∑

n=−∞

An

∫ 2πn/ω1

2π(n−1)/ω1

cos[ω1t]dt = 0. (2.9)

In principle, the presented proof is applicable also if the wave can be de-

composed into a sum of plane waves. However, the amplitude of each of the

components should change slowly at the distance of the phase slippage. This

condition may be not satisfied, for example, in a case of a radially diverging

source.

There is a subtle point that needs to be taken into consideration. In Eq.

(2.7), θ is supposed to be a constant. However, interaction with an electro-

magnetic wave should obviously change this value. In this way, the energy,
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which the particle gains during one laser cycle, should be small compared to

the average kinetic energy of the particle during this cycle (cf. condition 2 of

the theorem).

The LW theorem, as follows from its formulation, is applied to the case of

a relativistic particle injected into the laser pulse. Such a particle cannot gain

energy from the pulse. The validity of the theorem was illustrated experimen-

tally in [88] where it was demonstrated that the moving beam of electrons did

not change its energy distribution after the interaction with a laser pulse unless

a plasma wall reflecting the pulse was introduced. In [88], the kinetic energy

of electrons in the injection beam was equal to 30 MeV while the laser had

∼ 0.5 mJ in a 4ps pulse focused into ∼ 102 wavelengths which could possibly

change the energy of electrons by a value of order keV’s (when the reflecting

wall is introduced). In other words, all the conditions of the LW theorem were

met.

2.1.3 Non-zero energy gain

If the conditions of the LW theorem are violated, there can be a finite energy

gain. An example of such gain was reported in the experimental work by Malka

et. all [89]. In [89], keV electrons have gained energy of order 1 MeV upon

crossing the laser having intensity ≈ 1019 W/cm2 focused into a spot having

10µm in diameter. The laser wavelength was 1µm and its length ≈ 0.5 ps.

Although the theoretical analysis in [89] has caused some criticism [90], the

experimental result reported in [89] is an important example of a large energy

gain in a vacuum acceleration scheme working in a regime when the conditions

of LW theorem are violated.

Another example of LW theorem violation is the case discussed above when

the laser pulse is reflected by a plasma mirror.
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The LW theorem guarantees that there is no energy gain provided assump-

tions (1) – (7) from p. 15 are met. However, if they are violated, there is no

guarantee of energy gain. A typical example is the case discussed in the be-

ginning of this section: interaction between a particle, motionless at t→ −∞,

and a plane pulse. Although the second condition of the theorem is violated,

the particle is just displaced in the space. This is caused by the properties

of charged particle dynamics in a plane electromagnetic wave. As derived in

Appendix A.1, in this interaction the transverse canonical momentum of the

particle is conserved:

d

dt

(

~p +
q

c
~A
)

⊥

= 0, (2.10)

where ~A is the vector potential of the laser field and ~p particle momentum.

Since the transverse and longitudinal motions of the particle are coupled

through

d

dt

(

γ(1 − vx
c

)
)

= 0 (2.11)

(Eq. (A.24)), this leads to a zero energy gain of the particle if the values of A⊥

are the same at t→ −∞ and t→ ∞. For a finite pulse, A⊥(−∞) = A⊥(∞) =

0, and thus the net kinetic energy gain of the particle is zero.

If a particle is injected into the middle of the pulse at t = 0, its energy

gain is defined by the difference A⊥(0) − A⊥(−∞) and thus depends on the

field phase at the injection point at t = 0. Since ~E = −1

c

∂ ~A

∂t
, maximum of

A⊥ corresponds to a zero field. In this way, if the transverse electric field is

defined as E⊥ ∼ cos(kx− ωt+ ϕ0), the maximum energy gain of the particle

corresponds to ϕ0 = π/2. This conclusion is demonstrated in Fig. 2.2. If the

field phase at the injection point in the middle of the pulse is zero, the net

energy gain is zero. For a nonzero phase, there is a nonzero gain. For ϕ0 = π/2,

injection into the phase when field is zero, the energy gain corresponds to
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γfinal = γ0(1 + a2/2) for the plane polarization.
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Figure 2.2: γ-factor evolution of a particle injected into the middle of a plane
laser pulse: (a) injection with ϕ = 0, maximum field value; (b) injection with
ϕ = π/2, zero field value. amax = 1. Results of computer simulations.

An injection mechanism into the middle of the pulse can be provided by

field ionization [66] or by interplay between the electrostatic field of a partially

evacuated nano-scale target and the laser field [68].

2.1.4 Ponderomotive force

The plane wave solution to the Maxwell equations is an idealized field repre-

sentation that is rarely the case in practice. To increase the intensity of the

field, the laser is usually focused.

The transverse size of the laser beam upon leaving the optical system can

be as large as tens of centimeters. After focusing, the size usually becomes

not more than a few tens of microns. For a tightly focused beam, the size

of the laser spot in the focal plane can be as small as one laser wavelength,

i.e., on the order one micron. This allows one to increase the intensity by

many orders of magnitude. As a result, the structure of electromagnetic field

is more complicated than that of a plane wave. This brings in distortions of

the particle trajectory that violate the symmetry of motion and could result
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in nonzero energy gain of the particle.

The physical mechanism which actually breaks the symmetry of motion

is associated with the ponderomotive force [91] of the focused beam. The

ponderomotive force pushes the charged particles from the regions of high

intensity to the regions of a lower intensity. The particle performs fast os-

cillations in the laser field but slowly drifts in the direction opposite to the

intensity gradient. The simplest description of ponderomotive force can be

given in the nonrelativistic limit for which the force acting onto the particle is

caused almost entirely by the electric field component. Suppose that a particle

has started its oscillation cycle anti-parallel to the intensity gradient. After

an accelerating semi-cycle the particle is displaced into the region of a smaller

field. At the beginning of the decelerating semi-cycle, the particle is still mov-

ing outward of the high intensity region and thus the returning force felt by

the particle during the decelerating semi-cycle is smaller than the accelerating

force during the accelerating semi-cycle. If the field decreases too fast, the

particle may even be unable to stop at all. In the case of a slower decrease of

the field amplitude with distance, the returning points, and thus the average

particle position, drift with time towards the smaller intensity. The drift of the

particle can be described by a force, called ponderomotive force, acting onto

the guiding center of the particle defined as the oscillation-averaged position

of the particle. A more quantitative discussion of ponderomotive force is given

in Appendix A.2. The value of the force is defined in the nonrelativistic case

as

~Fp = − q2

2mω2
∇

〈

~E2
〉

, (2.12)

where the angle brackets denote averaging over one laser cycle. The relativistic

modification contains also the cycle-averaged γ-factor of the particle in the
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denominator [60, 92].

The ponderomotive force given by Eq. (2.12) gives a good approximation to

the average force acting on electron provided the intensity inhomogeneity scale

length is much larger than the particle quiver amplitude. The last condition

usually requires moderate focusing, especially for relativistic intensities (a �

1). It was shown in a number of works [59, 60, 64] that the mechanism, called

ponderomotive acceleration, indeed, provides net acceleration of the particles.

The particles drift away from the high intensity due to the ponderomotive

force and eventually scatter when the decelerating field is unable to stop the

particle. This process is illustrated in Fig. 2.3 where an electron has acquired

a final energy in vacuum from a focused pulse. The particle escapes the focal
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Figure 2.3: Electron trajectory (a) and γ-factor evolution (b) in interaction
with a finite-duration plane polarized pulse with amax = 1 focused into a
spot having radius w0 = 3 λ with the best focus at the origin. Results of
computer simulations. The fields used in simulations are described in a first
order paraxial equation, given by Eq. (2.22) below in Sec. 2.2.

spot and moves with some large angle with respect to the laser propagation

direction. The angle depends on the field amplitude, pulse length, focal spot

size and initial position of the particle relative to the best focus. The energy,

obtained by the particle, is a fraction of the value given by Eq. (2.4) with amax

evaluated at the best focus, since in fact the net acceleration of the particle is
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provided by the small field at the periphery of the focal spot. In this way, one

can hope that a more tight focusing can provide a higher escape energy.

In the focused laser, not only the intensity profile is inhomogeneous, but

also additional non-zero laser field components appear. Whereas the plane

wave has only transverse field components, the focused pulse also has lon-

gitudinal components. This can be seen from, for example, the equation

∇ · ~E = ∂Ex/∂x + ∂Ey/∂y = 0, where y is a transverse component of the

laser. If the intensity distribution in the focus is inhomogeneous, so is the

distribution of the field and thus ∂Ey/∂y 6= 0. Therefore, ∂Ex/∂x 6= 0 and the

longitudinal component Ex is, generally, nonzero (see also [93]). The existence

of longitudinal component of the field affects the particle dynamics and under

certain conditions can lead to a considerably smaller, than in the case of only

transverse component presenting, scattering angle of the particle [94]. In Refs.

[61, 95], it was proposed to use a ring-like intensity profile in the vicinity of the

laser focus confining the particles which would not escape the ponderomotive

potential formed around the laser axis. The particles are accelerated in this

scheme by the longitudinal field component of the focused laser. The motion

of the charged particles in the tightly focused laser, where the additional field

components are large, is so complicated that a detailed understanding of this

motion is still needed. In this Thesis, we will analyze the dynamics of the

particles in the field of a tightly focused laser. The first task to achieve this

goal is the correct description of the field of a tightly focused laser.

2.2 A tightly focused laser beam

In the majority of studies of the particle dynamics in focused fields [59, 61, 62,

64, 67, 69, 94, 96, 97, 98, 99, 100], a paraxial approximation with Gaussian
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beam solution is employed. The paraxial approximation deals, in principle,

with small focusing angles.

The derivation of the electromagnetic field of a focused laser in paraxial

approximation as an expansion over a small parameter, related to the ratio

between the laser wavelength and the focal spot size, can be found in the

classical paper by Davis [101]. The idea is as follows. Let ~A be the Fourier

transformation of the vector potential of the laser field in vacuum. ~A must

satisfy Helmholtz equation

∇2 ~A+ k2 ~A = 0, (2.13)

where k is the wave vector length. In the crudest approximation, Ax = Az = 0,

and the only nonzero component is Ay. For the nearly plane wave, Ay is

supposed to be a product of two functions:

Ay(~r) = Ψ(~r) · eikx, (2.14)

where Ψ(~r) is a slowly varying function of coordinates ~r, i is the imaginary

unit and x is the longitudinal coordinate. Substituting Eq. (2.14) into (2.13),

one can obtain the equation for the slowly varying part of Ay:

∇2Ψ − 2ik
∂Ψ

∂x
= 0. (2.15)

The paraxial approximation deals with low beam divergence and thus the

derivatives along beam propagation x are considered much smaller than those

perpendicular to it. In the first approximation, the derivative ∂2/∂x2 is dis-
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carded in (2.15), and the following paraxial equation is solved:

∇2
⊥Ψ − 2ik

∂Ψ

∂x
= 0. (2.16)

It can be shown [102] that equation (2.16) has a solution

Ψ0(~r) = exp
[

C(x) − r2

2D(x)

]

, (2.17)

where r2 = y2 + z2 and

C(x) = − ln

√

1 +
(x− x0

kD0

)

− i arctan
(x− x0

kD0

)

+ constant,

D(x) = D0 + i
x− x0

k
,

(2.18)

with D0 and x0 being some constants. Eq. (2.17) is a special case of a more

general set of solutions expressed as Gauss-Hermite modes [103]:

ψ0mn(x) =
1

w(x)
Hm

(

√
2z

w(x)

)

Hn

(

√
2y

w(x)

)

·

exp
[

iΦ(x) + ik
r2

2R(x)
− r2

w2(x)

]

,

(2.19)

where

w2(x) = 2D0

[

1 +
(x− x0)

2

D2
0k

2

]

,

R(x) = (x− x0)
[

1 +
k2D2

0

(x− x0)2

]

,

(2.20)

and

Hn(x) = (−1)nex
2/2 dn

dxn
e−x

2/2 (2.21)

are Hermite polynomials.

In a finer approximation, ∂2/∂x2 is not discarded in (2.15) but the solution

to Eq. (2.15) is sought as an expansion over the small parameter ε = 2/kw0,

24



where w0 is the radius of the focal spot. If only first-order terms are preserved

in this expansion, the solution to (2.15) can be shown to have the form resulting

in [60]:

Ex = E0ε
yw0

w2
exp

(

− r2

w2

)

cos(φ
(1)
G ),

Bx = E0ε
zw0

w2
exp

(

− r2

w2

)

cos(φ
(1)
G ),

Ey = Bz = E0
w0

w
exp

(

− r2

w2

)

sin(φG),

Ez = By = 0,

(2.22)

where E0 is the field amplitude in the best focus, φG = wt+kx+arctan(x/xR)−

xr2/xRw
2 + ψ0, φ

(1)
G = φG + arctan(x/xR), xR = kw2

0/2 is the Rayleigh length

and w = w0

√

1 + x2/x2
R.

Although the equation (2.15) is exact, the Eq. (2.22) is only its approx-

imate solution which is, obviously, incorrect for ε ∼ 1, i.e., in the case of a

tight focusing. Even the higher-order approximations, that are employed in

[62], [67] and [100], do not, in principle, solve this problem.

There is another method of evaluating the laser fields, called the angular

spectrum representation method. This method was employed in a number

of studies [58, 60, 104, 105]. The field calculated by the angular spectrum

representation method has a form of inverse Fourier integrals over sum of

plane and evanescent waves satisfying boundary conditions in a certain plane,

for example, in the focal plane. The result is further used in numerical solvers.

The common problem with this method deals with, generally, unknown fields

or vector potential in the plane where the boundary conditions have to be

evaluated. This field should be guessed and thus the result, although being a

solution to the wave equation, is still an approximation.

In this Thesis, a method of direct integration of the fields emitted by the

surface of an optical element will be employed. This method was previously
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discussed in [106], [107] and [108], and, in the context of particle acceleration,

in [63, 68]. The method uses the following model.

Let a plane or a quasi-plane wave propagating in the −x̂ direction hit a

surface of ideally reflecting parabolic focusing mirror of radius rm and focal

length f0 having optical axis in the +x̂ direction (see Fig. 2.4). The quantities

rm and f0 are supposed to be macroscopic, i.e.,

rm � λ,

f0 � λ,

(2.23)

where λ is the laser wavelength. In this way, the mirror is characterized by its

f -number

f# =
f0

2rm
. (2.24)

The tight focusing regime corresponds to f# ∼ 1.

Figure 2.4: Scheme of the laser focusing model.

The fields of the electromagnetic wave incident onto the surface of the
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mirror are given by

~Einc = <
{(

0, E, 0
)

e−i(kx+ωt+ψ0)
}

,

~Binc = <
{(

0, 0, −E
)

e−i(kx+ωt+ψ0)
}

,

(2.25)

where < sign stands for the real part, E is, generally, a slow function of

transverse coordinates y and z changing on the scale of mirror radius rm, and

ψ0 is the laser phase. As E changes only on macroscopic scale, the quasi-

plane wave (2.25) is, with a good accuracy, transverse. The fields of the light

reflected from the mirror are, in fact, those seen by the accelerated particles.

These fields are calculated with the help of Stratton-Chu integrals.

The Stratton-Chu integrals, appeared first in the original paper [109] (al-

though they were not called the Stratton-Chu integrals there), are an integral

representation of electromagnetic field emitted by any closed surface, observed

at any point inside the surface volume. The integrals are taken over the emit-

ting surface and are the solution to Maxwell equations provided the source

fields are a solution to Maxwell’s equations. In general, the Stratton-Chu inte-

grals can be used even if the tangential component of the emitting field suffers

a discontinuity at the surface. The derivation of Stratton-Chu integrals, for

the case of continuous field source at the surface, is given in Appendix A.3.

The Stratton-Chu integrals for this case are

~E(~r0) =
1

4π

∮

A

[ik(~n× ~Bs)ψ + (~n× ~Es) ×∇ψ + (~n · ~Es)∇ψ] dS,

~B(~r0) =
1

4π

∮

A

[ik( ~Es × ~n)ψ + (~n× ~Bs) ×∇ψ + (~n · ~Bs)∇ψ] dS,

(2.26)

where ~Es and ~Bs are field values on the surface A, ~n is the inner normal to

the surface A and ψ = eiku/u, u = |~rs − ~r0|, ~rs being a point on the surface.
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The quantity ∇u is easily evaluated:

∇u =
eiku

u
(iku− 1) · (~r − ~rp). (2.27)

The surface A in Eq. (2.26) is supposed to be a closed surface. This is not

the case for the bounded paraboloidal mirror shown in Fig. 2.4. For this

reason, the mirror surface must be closed by any continuation of it making

the sum a closed surface. The field on the continuation surface is assumed

to be zero. In this way, the field on the entire integrating surface A becomes

discontinuous since it abruptly changes to zero at the mirror boundary. A more

general, than in Eq. (2.26), form of Stratton-Chu integrals, derived in [109],

can be applied to an electromagnetic field having discontinuous tangential

components on the integrating surface. However, in the case of emitting surface

being a bounded paraboloidal mirror, both normal and tangential components

of the electromagnetic field are discontinuous on A. For this reason, the fields

calculated by integrals in Eq. (2.26) over the surface of mirror will not satisfy

Maxwell’s equations. However, Eq. (2.26) will be applied formally to the

problem of mirror focused laser beam. It will be checked later how far from

the solution of Maxwell’s equations the result is.

The paraboloidal mirror surface is described by the following equation:

y2 + z2 = 4f0(x+ f0). (2.28)

The inner normal to the surface (2.28) is given by [110]:

~n =
~ry × ~rz
|~ry × ~rz|

, (2.29)

where ~r =
(

x(y, z), y, z
)

, ~ry,z = ∂~r/∂(y, z), and x(y, z) is given by Eq. (2.28).
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The evaluation of Eq. (2.29) results in

~n =
1

√

4f 2
0 + y2 + z2

(

2f0, −y, −z
)

. (2.30)

Let us now find the fields ~Es and ~Bs entering the integrals (2.26). These fields

are formally a sum of the incident and the reflected fields at the mirror surface.

As the mirror is supposed to be perfectly reflecting, let us use boundary con-

ditions for the normal and tangential components of the fields at the perfectly

conducting surface [111]:

~E ′
n = ~En,

~E ′
τ = −~Eτ ,

~B′
n = − ~Bn,

~B′
τ = ~Bτ .

(2.31)

Substituting fields (2.25) into Eq. (2.31) and summing the resulting reflected

field with the incident (2.25) one can get the electromagnetic field components

at the integrating surface:

~Es = <
{ E

4f 2
0 + y2 + z2

(

− 4f0y, 2y2, 2yz
)

e−i(kx+ωt+ψ0)
}

,

~Bs = <
{ E

4f 2
0 + y2 + z2

(

− 4f0y, 2yz, −2(4f 2
0 + y2)

)

e−i(kx+ωt+ψ0)
}

.

(2.32)

Note that although the incident field (2.25) is a quasi-plane wave with only

Ey and Bz being nonzero, the field on the surface has, generally, all the six

components.

Substituting Eqs. (2.32) and (2.30) into (2.26) and noting that dS =

dydz/nx, one can finally obtain, after some tedious algebra, the equations
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suitable for numerical integration:

~E(~r0) =
1

4πf0

∫∫

y2+z2≤r2m

E
{

[~ak

u
+
~bek

u2

]

sin
(

k(x− u) + ωt+ ψ0

)

−

−
~be
u3

cos
(

k(x− u) + ωt+ ψ0

)

}

dydz,

~B(~r0) =
1

4πf0

∫∫

y2+z2≤r2m

E
{~bhk

u2
sin

(

k(x− u) + ωt+ ψ0

)

−

−
~bh
u3

cos
(

k(x− u) + ωt+ ψ0

)

}

dydz,

(2.33)

where

~a =
(

y, 2f0, 0
)

,

~be = −y
(

(x− x0), (y − y0), (z − z0)
)

,

~bh =
(

2f0(z − z0), −y(z − z0), y(y − y0) − 2f0(x− x0)
)

,

(2.34)

x =
y2 + z2

4f0

− f0 (2.35)

and

u =
√

(x− x0)2 + (y − y0)2 + (z − z0)2. (2.36)

Equation (2.33) is valid for the mirror f-number f# > 0.25.

Eq. (2.33) is integrated numerically using a simple mid-point method em-

ploying a finite-sum approximation of the integral, with the terms in the sum

calculated at centers of each finite piece ∆S of the integration surface. Given

some particular accuracy of numerical integration, the calculation time is pro-

portional to r2
m. The numerical integration program was written in C language

and parallelled using OpenMP extension of the C language.

Let us start the analysis of the mirror focused laser field with the case of

a pure plane wave incident onto the mirror, i.e., constant E = E0. As an

example, let us consider a mirror having radius rm = 103λ. Although this is
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still 1 – 2 orders of magnitude smaller than the size of optical elements used

in practice, it is already a macroscopic quantity which corresponds to mirror

diameter of 2 mm for λ = 1µm.

Figure (2.5) shows the absolute value of the Poynting vector of the fields

calculated using Eq. (2.33), for the mirror f-number f# = 0.75. The patterns

shown in Fig. (2.5) possess the characteristic rings (Airy rings) caused by
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Figure 2.5: (Color) Absolute value of the focused field Poynting vector in XY
(a) and YZ (b) planes passing through the geometrical focus of the parabolic
mirror.

diffraction of light on the mirror boundary. As can be seen from the Fig.

2.5, the best focus of the mirror coincides with the geometrical focus of the

parabolic surface. This corroborates the realism of the model used. The indi-

vidual field components in the focal plane are given in Fig. 2.6. The focused

laser “remembers” its polarization and thus the Ey and Bz components, the

only nonzero ones in the incident field, have the maximum amplitude and

focus to monopole-like structures. The longitudinal components Ex and Bx

form dipole-like structures having a high amplitude, ∼ 25% of that of the

transverse component. Therefore, this component by no means can be ne-

glected as was done in some of the earlier studies of particle acceleration by
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Figure 2.6: (Color) Field components in the focal plane of an f/0.75 mirror.

tightly focused beams [96]. The maxima of longitudinal and transverse fields

are shifted in time by π/2ω. This is accounted for in Fig. 2.6 where com-

ponents Ex and Bx are shown at the shifted moment of time. Finally, there

are small but non-zero components Ez and By which form quadrupole-like

structures. These components are supposed to be exactly equal to zero in the

first-order paraxial approximation (2.22).

Let us now check how well Maxwell’s equations are satisfied. There are two

possible sources of violation of Maxwell’s equations: (1) the finite accuracy of

numerical integration and (2) the inaccuracies caused by the application of

Stratton-Chu integrals to the discontinuous source. In the following discus-

sion, the fields are integrated accurately enough to make the violations due

to the first source negligible. The violations due to the second source appear

dependent on the mirror radius rm. To estimate the violations quantitatively,
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let us introduce the error parameter

εM =
(

|∇ × ~E +
1

c

∂ ~B

∂t
| + |∇ × ~B − 1

c

∂ ~E

∂t
|
) λ

Emax
, (2.37)

where Emax is the field maximum at the best focus of the laser. For every

mirror configuration, the quantity εM is spatially dependent. Specifically, let

the quantity εMmax, which is called the violation parameter below, be the

maximum of this parameter within, say, ten wavelengths from the best focus.

If the field exactly satisfies Maxwell’s equations, this parameter is zero. The

dependence of εMmax on the mirror radius, for different f-numbers, is given in

Fig. 2.7. The violation parameter almost does not depend on the f -number

and decreases with increasing rm as 1/rm. In this way, the larger mirror size
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Figure 2.7: (Color) Maxwell equation violation parameter εMmax vs. mirror
radius, for f# = 0.75 (solid line), f# = 1.5 (dashed line), f# = 3.0 (dash-
dotted line).

makes the violation parameter as small as desired, thus ensuring that the

Maxwell equations are satisfied with the given accuracy. For the discussion

in the next Section, the mirror radius will be chosen such that the resulting

particles energy remain almost the same (within few percents) for any larger

radius. In this way, it will be correct to claim that the results are obtained for
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the source being a solution to Maxwell’s equations. The Airy rings presenting

in Figs. 2.5, 2.6 do not disappear with increase of rm and thus are not caused

by the approximations involved.

It is instructive to note that for the first order paraxial source given by Eq.

(2.22), the violation parameter εMmax is equal to ≈ 0.04 for w0 = 2λ and 0.18

for w0 = 1λ, i.e. two orders of magnitude larger than the values in Fig. 2.7.

Let us suppose now that the mirror incident field is not a pure plane wave

but rather a Gaussian beam:

E(x, y, z) = E1 exp
[

−
( r

rg

)2]

, (2.38)

where r =
√

y2 + z2 and rg is the radius of the Gaussian beam incident onto

the mirror and E1 its constant amplitude. This structure of incident field is

usually the case in practice. For the energy in the Gaussian incident beam to

be equal to that in the pure plane wave, it is required that

E2
0

r2
m

2
= E2

1

∫ rm

0

{

exp
[

−
( r

rg

)2]}2

rdr. (2.39)

For rg = rm/2, Eq. (2.39) gives

E1 = E0

√

8
e8

e8 − 1
≈ 2.83E0. (2.40)

Although the ratio rm/rg can be higher than two in practice, the Gaussian

incident beam is chosen to have rm/rg = 2 in this Thesis. A large ratio is

equivalent to an increase of the mirror f -number since most of the incident

beam energy is concentrated within a smaller, than rm, radius. This can

result in a moderate focusing even for small mirror f -numbers whereas it is

interesting to study the electrons behaviour in the tight focusing regime. In
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the case rm/rg = 2,
∫ rm
0

exp(−2r2/r2
g)rdr/

∫ ∞

0
exp(−2r2/r2

g)rdr = 99.97% of

the incident beam energy reaches the mirror surface and is reflected by it,

while only 0.03% is wasted.

The absolute value of the Poynting vector of the Gaussian beam having

rg = rm/2 focused by an f/0.75 mirror is given in Fig. 2.8. It can be noted

that, as compared to the focused plane wave shown in Fig. 2.5, the diffraction

rings have now disappeared, and the pattern is more smooth. Figure 2.9

illustrates the differences in more detail. It shows the transverse electric field

(a)

-6 -4 -2  0  2  4  6

x/λ

-4

-2

 0

 2

 4

y/
λ

(b)

-4 -2  0  2  4

y/λ

-4

-2

 0

 2

 4

z/
λ

Figure 2.8: (Color) Absolute value of the focused field Poynting vector in XY
(a) and YZ (b) planes passing through the geometrical focus of the parabolic
mirror. The Gaussian beam with rg = rm/2 is focused by an f/0.75 mirror.

component of the focused plane wave and that of the focused Gaussian beam

along the OY axis in the focal plane. Besides the smeared out diffraction

rings, the spot size in the best focus appears larger in the case of a focused

Gaussian beam whereas the maximum amplitude decreases. This results in

approximately two times smaller maximum intensity of the focused Gaussian

beam as compared to that of a plane wave, although the energy of the incident

field within the mirror is the same. The Gaussian beam incident onto the

mirror has less problems associated with the discontinuity of the fields on the
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Figure 2.9: Transverse components of the field in the mirror focal plane for
incident plane wave (solid line) and Gaussian beam with rg = rm/2 (dashed
line). Mirror f -number is 1.

mirror boundary, especially if rm � rg. However, the incident field itself is no

longer a solution to Maxwell’s equations which, again, results in a finite εM .

For the present case of rg = rm/2, nevertheless, the value of εMmax has the

same order as those shown in Fig. 2.7.

The smooth pattern given by the dashed line in Fig. 2.9 resembles a Gaus-

sian shape. Therefore, it makes sense to compare it with the field given by

Eq. (2.22) which has an exact Gaussian shape in the best focus. Such a

comparison is given in Fig. 2.10. In Figure 2.10, the w0 for paraxial field is

chosen to be equal to the radius at which the field value of the mirror-focused

spot is decreased e times as compared to that in the best focus. The com-

parison in Fig. 2.10 shows that, indeed, the focusing of a Gaussian beam

produces a Gaussian spot, with some minor discrepancies between the struc-

tures of the mirror-focused (“exact”) and the paraxial (“approximate”) fields.

Due to nonlinearity of the problem of charged particle acceleration, even the

small discrepancies, however, can affect the dynamics of particle motion. In

this way, it is of particular interest to find out when the approximate simple

expressions (2.22) can be used instead of the complicated exact solution. The
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Figure 2.10: Longitudinal (a), (c) and transverse (b), (d) components of parax-
ial field given by Eq. (2.22) with w0 = 1.01 λ (dashed lines) and f/0.75-focused
Gaussian beam with rg = rm/2 (solid ones). Curves calculated in the focal
plane (a), (b) or in the plane parallel to it and having x = 10 (c), (d). The
phase on each figure is adjusted to maximize the field component shown.

answer to this question will be given in Section 2.3.

The last important question which needs to be discussed here is the de-

pendence of the focal spot radius on the mirror f -number for the two types

of fields incident onto the mirror. These dependencies are given in Fig. 2.11.

The focal spot size in Fig. 2.11 is defined as the distance, in the focal plane,

between the best focus and the closest point where the intensity is equal to

one-half of that in the best focus. For larger f -numbers, the dependencies are

linear, with the plane wave focused to a somewhat smaller spot than that of

the Gaussian beam.
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Figure 2.11: (Color) Dependence of the focal spot radius on the mirror f -
number.

2.3 Acceleration of free particles in a tightly

focused laser

Let us now proceed to the problem of acceleration of a single charged particle

in the electromagnetic fields obtained in the previous section. These results

have been reported in [63] and, in part, in [68].

In practice, the laser electromagnetic fields always have the form of a pulse.

The pulse length can be very short – up to just a few laser cycles. This auto-

matically broadens the frequency spectrum of the pulse. Furthermore, in some

cases the frequency spectrum of the leading edge of the pulse does not match

that of the trailing edge. It should be noted that the Stratton-Chu integrals

(2.26) are derived under the assumption of a monochromatic electromagnetic

wave on the exciting surface. If this wave is not monochromatic, it should

be decomposed into Fourier harmonics, with the Stratton-Chu integrals taken

for every harmonic. The sought field is the inverse Fourier transformation of

the resulting Fourier components. However, time t enters the integrals in Eq.

(2.26) only through a multiplier e−iωt which can be taken out of the integration

sign. In this way, the inverse Fourier transformation can be taken indepen-
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dently of the spatial integration, and the frequency spectrum of the incident

pulse coincides with that of the focused one. For this reason, it is correct to

just multiply the electromagnetic fields (2.26) by an envelope function a(xp, t),

where xp is the longitudinal coordinate of the particle, with the dependence on

xp also taken out of the integration sign, as xp is independent on the integra-

tion variables y and z in Eq. (2.33). In this Thesis, the envelope is supposed

to be described by a Gaussian (in time) shape given by Eq. (2.6).

The following discussion is mostly applied to the powerful lasers for which

the quantity amax = eEmax/mωc � 1, where Emax is the maximum of the

field in the best focus. As a particular example, the following parameters of

the laser were considered: maximum intensity of the pulse focused into a spot

of ∼ 1λ in diameter is 1022 W/cm2, laser wavelength λ ≈ 1µm and laser pulse

length, defined by FWHM, is 30 fs. These parameters are similar to those

described in [8] for a particular laser device. The intensity of 1022 W/cm2

corresponds to amax ≈ 85 for λ = 1µm. As follows from Fig. 2.11, the spot

diameter of one wavelength corresponds to the mirror f# ≈ 0.9 for the focused

plane wave and f# ≈ 0.6 for the focused Gaussian beam having rg = rm/2.

An estimation shows that a plane wave with λ ≈ 1 focused by an f/1 mirror

and having maximum intensity in the focus equal to 1022 W/cm2 corresponds

to the peak power in the laser pulse equal to ≈ 120 TW.

As discussed in Sec. 2.2, the proximity of the fields (2.26) to the solutions

of Maxwell’s equations depends on the size of the focusing mirror rm. Fur-

thermore, even if the fields were the exact solutions to the Maxwell equations,

the field structure for different mirror radii is, in general, different, although

the differences should vanish for rm ≫ λ. As the amount of computations

in the numerical integration increases with rm as r2
m, it is important to find

the minimum value of rm which would result in particle acceleration patterns
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close to those with rm ≫ λ and the same intensity in the focus. It was found

that for most cases the energy gained by the particle interacting with a laser,

tightly focused by a mirror having rm = 100λ, does not change more than

by 10 – 20% if the mirror radius is further increased. The calculations in the

following discussion are done for rm = 400λ and thus are believed to represent

the results of interaction with a laser focused by a macroscopic mirror with

accuracy of at least several percents.

It is easier to work with the dimensionless equations of motion rather than

with the physical quantities in Eq. (2.1). Natural dimensionless parameters

of the problem are ~ξ = k~r, τ = ωt, ~ν = ~p/mc and a = qEmax/mωc. In the

dimensionless coordinates, the equations of motion of a charged particle take

form
d~ν

dτ
= a(~E +

~ν

γ
× ~B),

d~ξ

dτ
=
~ν

γ
,

γ =
√

1 + ~ν2,

(2.41)

where ~E and ~B are dimensionless fields: ~E = ~E/Emax and ~B = ~B/Emax.

The equations of motion (2.41) of a charged particle in the fields (2.26) are

solved numerically using 4-th order Runge-Kutta method [112]. To ensure that

the results do not depend on properties of the particular numerical integration

scheme used, some of the calculations were repeated using a 4-th order Adams

method [112], with the results matched those obtained using the Runge-Kutta

method.

Figure 2.12a shows a sample trajectory of an electron in the field of an f/1-

focused plane wave having envelope length of 30 fs, laser wavelength λ = 1µm

and maximum intensity in the best focus being equal to 1022 W/cm2. As a ref-

erence, the contours of the Poynting vector absolute value at a certain moment
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Figure 2.12: (Color) (a) Sample particle trajectory (thick blue line), with the
contours of the laser intensity overlaid (thin red lines). (b) Energy evolution of
the particle shown in the figure (a). The particle has started from the origin.

of time are given in Fig. 2.12a by the thin red lines. The particle dynamics re-

sembles that of a ponderomotive force-scattered particle described in Sec. 2.1.

Upon arrival of the leading edge of the laser pulse, the electron starts moving,

with the trajectory similar to that of an electron in a plane wave (Fig. 2.1a).

With increasing laser field intensity at the particle position, the amplitude of

its oscillations increases, and particle drifts in the direction of laser propaga-

tion. Eventually, the particle leaves the region of high laser intensity. After

this moment, the oscillations cease, with the particle continuing its motion

along a rectilinear trajectory. These processes are illustrated by the energy

evolution of the particle depicted in Fig. 2.12b. While inside the focal spot,

the particle energy pattern resembles that of Fig. 2.1b. However, after the

particle leaves the high intensity region, its energy becomes almost constant.

The envelope center passes through the laser best focus at ωt ≈ 175 in Fig.

2.12b. As will be shown later, the particle still can gain or lose energy even

after leaving the focal spot region. Even so, the structure of the fields provides

a natural extraction mechanism which breaks the symmetry of interaction and
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thus can result in a non-zero final kinetic energy of electrons.
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Figure 2.13: (Color) Asymptotic value of the particle γ-factor as a function of
the laser phase ϕ0 at the top of the pulse. The dashed line shows average of
the γ-factor over the phase ϕ0.

As the laser envelope is finite, the acceleration pattern depends on the

phase ϕ0, defined as the phase of the Ey field component at the best focus at

the top of the pulse. The phase ϕ0 = 0 corresponds to the maximum of the

Ey field. Motion in the field having zero phase at the very top of the pulse

results in, generally, a different asymptotic (at t→ ∞) energy than, say, that

in the field having phase π/2. The corresponding dependence for the particle

starting from the origin is given in Fig. 2.13. Depending on the phase, the

energy can change considerably. A good way to characterize the acceleration,

in this way, is an average of the energy over the phase. The corresponding

average γ-factor is given in Fig. 2.13 by the dashed line.

As follows from Fig. 2.13, whatever the phase ϕ0 is, the final energy is

relatively small. The maximum dimensionless parameter a for the laser field is

a ≈ 85. This parameter corresponds to an ultra-relativistic motion in the case

of a plane wave (γmax = a2/2 ≈ 3.6 ·103) whereas the values of γ-factor in Fig.

2.13 are almost three orders of magnitude smaller. However, it is obvious that

the best focus is not the optimal initial position of the particle in the case of
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a tight focus. For this position, the particle escapes the high intensity region

before the top of the pulse reaches the laser focus and thus never feels a high

laser field (cf. Fig. 2.12). One can anticipate that some pre-focal position

should result in a higher final energy. To find out the optimal particle initial

position, an energy map was created.
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Figure 2.14: (Color) Electron energy map in XY plane for an f/1-focused plane
wave having maximum intensity in the best focus 1022 W/cm2, wavelength
λ = 1µm and pulse length 30 fs.

An energy map is a dependence of the phase-average asymptotic energy of

the particle on its initial position. Such a dependence is given for electrons

in Fig. 2.14 as a color map. To create this dependence, 3.6 · 105 particles

from the random positions in the shown box, with z = 0, were taken, with

the subsequent average over 40 phases. It should be noted that if a particle

starts from the plane z = 0, it will never escape this plane because the only

nonzero components of laser field in the plane z = 0 are Ex, Ey and Bz. It

can be easily seen that if vz = 0 at t = 0, which is the case, then the force in

ẑ direction Fz = Ez + (~v × ~B)z = 0.

One can see from Fig. 2.14 that, indeed, the energy of the particles con-

43



siderably depends on their initial positions, with the optimal position being

several wavelengths before the laser best focus. Although still far from the

maximum value in plane wave, the electrons phase-average energy from the

optimal positions are of order ≈ 30 MeV, with the maximum particle energy

in individual runs, for certain phases, exceeding 100 MeV.

Let us analyze the acceleration in more detail. It was found that most of

the particles with acquired energy exceeding several MeV from the energy map

in Fig. 2.14 are accelerated by a combination of two major mechanisms. The

first mechanism is called, as in [63], focal spot acceleration, and the second

one is called Capture-and-Acceleration Scenario (CAS), as in [98, 99].

The focal spot acceleration deals with the particles appearing within the

focal spot simultaneously with the maximum of the laser pulse. This results

in a very rapid acceleration to a high energy during just a part of the laser

cycle. This rapid acceleration stops when the particle leaves the focal spot.

As an example, the trajectory and energy evolution of such a particle is given

in Fig. 2.15 by the solid line.
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Figure 2.15: (Color) Trajectories (a) and γ-factor evolutions (b) of sample
particles. Solid lines show a particle accelerating due to the focal spot acceler-
ation mechanism, and the dashed ones show a CAS-accelerated particle. The
inset in (a) shows the parts of the trajectories in the vicinity of the laser best
focus.
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The second mechanism, CAS, deals with the co-propagating of the particle

with the laser field. For this mechanism, the particle is first accelerated to

some modest energy, although relativistic, by the leading edge of the pulse.

However, after the particle leaves the region of high intensity, its accelera-

tion does not stop. The particle appears to be able to co-propagate along

with the diverging laser field, with the local field phase at the particle posi-

tion being approximately constant. This phase may be such that the particle

feels an accelerating force which leads to a further slow increase of the energy.

Furthermore, the accelerating force does not change the particle direction of

propagation. The process of slow acceleration in the diverging field is illus-

trated by Fig. 2.15, dashed lines, and Fig. 2.16a, where the local phase of

the Ey field component as seen by the particle is shown. One can see from

Figs. 2.15b, dashed line, and 2.16a that, indeed, the main energy gain is ac-

quired by the particle on the long time scale, after the field phase has locked,

i.e. after the particle has started to co-propagate along with the diverging

laser field, which corresponds to ωt ≈ 230 in the Figures. The acceleration is

allowed since second and seventh conditions of the LW theorem are violated.

As shown in Fig. 2.16b and in the inset in Fig. 2.16a, the particle has some

modest energy with γ ∼ 3 at the moment after which the phase is locked.

The process of phase locking has been connected with the subluminous

phase velocity of the focused laser field along the CAS-accelerated particle

trajectory in [98, 99] and, in [63], with an oscillating phase velocity of the

focused field resulting in a slightly subluminous average phase velocity along

a part of the trajectory. The oscillating phase velocity of the focused field is

a result of the particle moving between the diffraction rings. As shown in the

paper [68], the subluminous phase velocity is not, however, necessary for the

particle-field synchronization; rather, if the particle has a relativistic velocity,
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Figure 2.16: (a) Local phase of the Ey component of the laser field, as seen by
the particle. The time is in the lab frame. The inset shows the field phase in
the vicinity of the moment when the phase locks. (b) Behaviour of the particle
γ-factor at the time scale of the inset in (a).

the phase synchronization will happen naturally on the time scale of order tens

or hundreds of wavelengths. Indeed, a simple estimation shows that if there is

no force at all, the phase change along a distance d for a particle with velocity

v is δφ = 2πd(1 − v/c)/λ, which, for a particle with γ ≈ 30 gives δφ = π/4

only at a distance d ∼ 225λ. To see that the phase slippage δφ is small also

in the case of a particle injected with a smaller γ-factor into an accelerating

field, let us consider a simplified 1D model of the particle motion. In this 1D

model, the particle moves under the action of a force

F1D(r, t) =
A

r
sin(ω(t− r/c) + φ0), (2.42)

where A = A(r−ct) is a slowly varying force amplitude, φ0 is a constant phase,

and k = 2π/λ = ω/c, as ususally. The amplitude A represents a Gaussian

envelope of the pulse: A(r − ct) = A0 · exp[−(r/c − t − T0)
2/∆T 2]. The 1/r

dependence of the model force amplitude is relevant to the 1/r dependence of

all the field components of the focused laser far from its focus. The force F1D

depends on r since the trajectory of the synchronized particle, according to Fig.
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2.15, is rectilinear along the acceleration path and thus the force acting onto

the particle can be approximated by only an ~r nonzero component, depending

on the distance from the best focus.

A relativistic 1D equation of motion of a particle under the action of the

force (2.42) was solved numerically, with the parameters A0 and φ0 chosen to

approximately match the resulting energy evolution pattern to that in Fig.

2.15b, dashed line2. The energy evolution and local phase seen by the particle

that starts moving at the moment ωt = 230 with p = 2mc are depicted

in Fig. 2.17. The qualitative agreement between the γ-factor evolutions in

Figs. 2.17a and 2.15b, dashed line, and the stabilized phase pattern in Fig.

2.17b demonstrate that the initial γ = 3 is enough to prevent wave-particle

dephasing, even in the field having phase velocity exactly equal to c. Since

the particle velocity is slightly smaller than speed of light, after a certain large

time the phase will change to a decelerating one. However, as more extensive

simulations show, this happens at considerably large distances from the focus

where fields are too small to noticeably change the particle energy.
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Figure 2.17: (a) Energy evolution of the particle moving in a simplified 1D
model. (b) Phase of the force F1D acting onto the particle, at the particle
position. Time is given in the lab frame.

2The exact parameters used are: A0 = 14.1 c2/e, r(ωt = 230) = 2.5 λ, p(ωt = 230) =
2 mc, φ0 =

(

kr(t = 230)− 230
)

+ 2.04 rad
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The above argumentation shows that if a particle moves along a rectilinear

trajectory, and this motion has started with a relativistic velocity, the particle

will remain synchronized with the field along a distance large enough to gain

a finite energy. However, it is not obvious why the particle trajectory is recti-

linear. To understand this aspect of the synchronized particles dynamics, let

us pay attention to the details of the forces acting onto the CAS-accelerated

particle.
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Figure 2.18: (Color) r- and ⊥-components of the force acting onto the CAS-
accelerated particle.

The total force acting onto the particle is ~F = e( ~E+~v× ~B/c). Let its pro-

jection onto the particle direction of motion be Fr and the one perpendicular

to it be F⊥. Both Fr and F⊥ lie in the plane z = 0 for the particle discussed.

The two components, Fr and F⊥, are depicted in Fig. 2.18. According to Fig.

2.18, after the instant ωt ≈ 230, correspondent to the moment of the phase

lock, the ⊥-component of the force starts to oscillate around zero whereas the

force in the direction of the radius-vector oscillates around some finite value.

The oscillations of the F⊥ around zero value result in the stabilized direction

of the particle motion (rectilinear trajectory), in agreement with the assump-

tions of the above discussed 1D model. On the other hand, the existence of a

non-zero component of Fr gives rise to the non-zero energy gain of the particle.
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To show how such a behaviour arises from the field structure let us consider

a negatively charged particle having coordinate ~rp and moving along the direc-

tion ~rp in the plane z = 0. Let this particle have a fixed velocity ~vp = βc~rp/rp.

Suppose for a while that the fields ~E(~rp, t), ~B(~rp, t) do not change the velocity

of the particle. Let us consider quantity

~F (~rp) = −e
[

~E
(

~rp, (k~rp − ψ0)/ω
)

+
~vp
c
× ~B

(

~rp, (k~rp − ψ0)/ω
)

]

. (2.43)

Obviously, the quantity (2.43) represents a force acting onto an electron located

at point ~rp, moving with velocity ~vp and synchronized with the laser wave at

phase ψ0. The phase ψ0 is supposed to change so slowly with time that it can

be considered almost constant.
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Figure 2.19: (Color) Fr (a) and F⊥ (b) components of the force (2.43) for
β = 0.995. The green solid lines show possible trajectories of the particles
which would propagate rectilinearly and gain energy in the diverging laser
field.

Figure 2.19a,b shows the values of projections of ~F : Fr, onto the particle

radius-vector, and F⊥, perpendicular to it, of the quantity (2.43). The force

~F in Fig. 2.19 is calculated for the field of an f/1-mirror focused plane wave
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and a certain phase ψ0. In Fig. 2.19, β was chosen to be β = 0.995, which

corresponds to a particle γ-factor γ ≈ 10. It is worth to note that the patterns

shown in Fig. 2.19 almost do not change for any γ & 4.

One can see that if a particle propagates along paths shown by the green

solid lines in Fig. 2.19, then the F⊥ component of the force acting onto the

particle should oscillate around a zero value whereas Fr oscillates around some

positive value. In other words, if the particle happens to be injected, by the

complicated pre-acceleration process in the focal spot, along one of these paths,

it will continue moving along them. Furthermore, it will gain energy in the

diverging laser field. Since the patterns in Fig. 2.19 almost do not change for

larger particle energies, they will remain the same even for the particle being

constantly accelerated. In other words, in the described field, the particle

will gain energy due to the nonzero accelerating force Fr, and will not change

direction, due to the zero average of F⊥. It will stay synchronized, due to the

large distance needed to be passed for a noticeable phase slippage. This results

in an energy evolution shown by the dashed line in Fig. 2.15b. This behavior

is a pure consequence of the laser field geometrical structure. For other field

patterns it may not necessarily work. Indeed, as reported in [98, 99], for a

first-order paraxial Gaussian field, the CAS is observed only for externally

injected relativistic particles.

It is typical for the highest energy particles that they are accelerated by

a combination of the two described mechanisms (focal spot acceleration and

CAS). A sample energy evolution is given in Fig. 2.20.

One can determine a scaling of the maximum possible electron energy ver-

sus mirror f -number, for a fixed laser power, or versus laser power, for a

fixed mirror geometry. Such dependencies are given in Fig. 2.21a,b. Figure

2.21a shows the scaling of maximum possible energy vs. f -number for a 120
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Figure 2.20: A sample energy evolution of a high-energy particle.

TW laser. Unlike the phase-averaged energy scaling ([63]), the scaling is non-

monotonic, with two local maxima. The dependence of the particle dynamics

on the laser phase for the case when the two acceleration mechanisms work,

is, in fact, much more severe than that shown in Fig. 2.13. Due to this strong

dependence, the phase-averaged energy in ([63]) followed a simpler scaling.

The reason for the two local maxima is a competition between the two ac-

celeration mechanisms when the f -number changes. Extensive study of the

particle dynamics from the energy map in Fig. 2.14 shows that the energetic

particles from the bright spots behind the focus (−10 < x/λ < −5) are mostly

accelerated by the focal spot acceleration or by the combination between the

two mechanisms as shown in Fig. 2.20. The particles from the horizontal lines,

right above and below the best focus in Fig. 2.14, are mostly accelerated by

CAS. For f# = 1, the pure CAS-accelerated particles acquire considerably, at

least 3 times, smaller energy than the focal spot acceleration. However, if the

laser is defocused, this situation changes (see Fig. 2.21c). The energy gain of

the focal spot accelerated particles decreases whereas that of CAS increases.

For this reason, with defocusing from f# = 1 to f# ≈ 2, the maximum energy

decreases. This trend changes for f# & 2 where the CAS-accelerated par-
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Figure 2.21: (Color). Focused plane wave. (a) Maximum particle γ-factor vs.
f#; (b) γ-factor scaling for f# = 1; (c) energy map for a 120 TW laser focused
by an f/2 mirror; (d) energy map for a 7 TW laser focused by an f/1 mirror.

ticles, for which the maximum energy keeps increasing, play the major role.

The maximum energy continues increasing until f# ∼ 4 and then the energy

decreases again. For very large f -numbers, the fields become too small for the

CAS mechanism to work.

The pattern type shown in Fig. 2.14 for laser power P = 120 TW keeps its

geometry for other values of power. This is demonstrated in Fig. 2.21d where

the energy map for P = 7 TW is given. The particles from the horizontal lines

right above and below the best focus are accelerated predominantly by CAS

for the smaller laser power, too. It therefore makes sense to have the maximum

energy scaling vs. laser power for two kinds of particles: all the particles and

those from the horizontal lines regions. The corresponding dependencies are

given in Fig. 2.21b by the red and blue colored points. The fitting curves are
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given in Fig. 2.21b by the solid lines. The absolute maximum energy scales as

a sum of functions proportional to P and to
√
P , due to the different scalings

of the two discussed major accelerating mechanisms. The CAS-accelerated

particles are scaled as
√
P as shown in Fig. 2.21b by the blue line.
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Figure 2.22: (a) Angular distribution of all particles having γ > 30 in the
case of f/1-focused 120 TW laser. The distribution is normalized to unity.
θ is the angle between the particle momentum and OX axis. (b)Transverse
positions, at a certain moment when all the particles have finished oscillations
and started to move along a rectilinear trajectory, of the 2% most energetic
electrons from 25 000 electrons initially regularly distributed in the square of
size 10 × 10λ with center at (−2λ, 0, 0), parallel to the YZ plane. The laser
is tightly focused (f# = 0.9).

The patterns in Fig. 2.19 depend on the synchronization phase ψ0 and

therefore different synchronization phases ψ0 result in the different paths al-

lowing acceleration in the diverging laser field. These rectilinear paths have

certain angles between them and the laser propagation direction. For this

reason, the accelerated particles have some angular spread. However, if one

filters the most energetic particles, one finds that they are accelerated by the

same path giving the maximum energy. Therefore, the most energetic parti-

cles are grouped around a certain direction, with a small angular spread. This

is demonstrated in Fig. 2.22a where the angular distribution of the energetic

particles is shown. Due to the maxima in the angular distribution, the most
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Figure 2.23: (Color) Electron energy maps of (a) a Gaussian beam focused by
an f/1 parabolic mirror; (b) a paraxial beam with w0 = 1.35 λ which results
in the same FWHM as in (a). The both energy maps are calculated for the
same laser power P ≈ 120 TW.

energetic particles form jets having maximum density in a certain direction.

In 3D space, the centers of the jets lie in the XY plane as shown in Fig. 2.22b3.

As was shown in Section 2.2, a focused Gaussian beam of large radius pos-

sesses a structure very close to that of a Gaussian beam in paraxial approx-

imation. Since calculating realistic fields through the Stratton-Chu integrals

requires considerable computing resources, it is of great interest to find out

when a paraxial approximation can be used in the problems of charged parti-

cle acceleration. Figure 2.23 gives energy maps of electrons accelerated by an

f/1-focused Gaussian beam and a paraxial beam having the same FWHM in

the focus.

The patterns in Fig. 2.23 look very similar, and are considerably different

from that in Fig. 2.14 where the presence of diffraction rings has largely af-

fected the particle dynamics. The energy values on both maps in Fig. 2.23

are of the same order and are noticeably smaller than those in Fig. 2.14. It is

obvious, that for high beam radii in the focus, the two field representations,

mirror-focused Gaussian beam and paraxial Gaussian beam, must give iden-

3Figure 2.22b was taken from [63], Fig. 13.
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tical results. However, for smaller radii of the laser beam in the focus the

paraxial approximation gives an inaccurate result. Therefore, a critical value

of w0 in Eq. (2.22) should exist, such that it is safe, with a certain accuracy,

to use paraxial approximation for all values of w0 larger than the critical one.

The solid line in Figure 2.24a shows a maximum relative difference between
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Figure 2.24: (Color) (a) Relative maximum difference vs. laser waist size
between the particle γ-factors from the best focus of a focused Gaussian beam
and a 1-st (solid line) or 5-th (dashed line) order paraxial Gaussian beam.
Maximum value of a at the best focus is a = 1. (b) Scaling of the maximum
acquirable particle energy in the 1-st order paraxial Gaussian field vs. w0 for
laser power 120 TW. (c)Scaling of the maximum acquirable particle energy vs.
laser power for w0 = 1.7 that corresponds to relative error 5% in Fig. 2.24a.
(d) Energy evolution of a sample CAS-accelerated particle injected into the
middle of the pulse at the best focus of a Gaussian laser beam, P = 120 TW,
f# = 1.

the kinetic energies of the particles accelerated by the exact and approximate

fields. The particle is located at the laser best focus at t → −∞. As an ad-

ditional check, the comparison of the exact field with the 5-th order paraxial
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approximation [100]:

Ex = E0
y

w
exp

(

−
[ r

w

]2
)

·
{

ε
w0

w
cos[φ

(1)
G ]+

ε3
(

− w2
0

2w2
cos[φ

(2)
G ] +

r2w0

w3
cos[φ

(3)
G ] − r4

4w4
cos[φ

(4)
G ]

)

+

ε5
(

− 3w3
0

8w3
cos[φ

(3)
G ] − 3r2w2

0

8w4
cos[φ

(4)
G ] +

17r4w0

16w5
cos[φ

(5)
G ]−

3r6

8w6
cos[φ

(6)
G ] +

r8

32w0w7
cos[φ

(7)
G ]

)

}

,

Ey = E0
w0

w
exp

(

−
[ r

w

]2
)

·
{

sin[φG]+

ε2
( y2

w2
sin[φ

(2)
G ] − r4

4w0w3
sin[φ

(3)
G ]

)

+

ε4
( w2

0

8w2
sin[φ

(2)
G ] − r2w0

4w3
sin[φ

(3)
G ] − r2(r2 − 16y2)

16w4
sin[φ

(4)
G ]−

r4(r2 + 2y2)

8w0w5
sin[φ

(5)
G ] +

r8

32w2
0w

6
sin[φ

(6)
G ]

)

}

,

Ez = E0
yz

ww0
exp

(

−
[ r

w

]2
)

·
{

ε2
w2

0

w2
sin[φ

(2)
G ]+

ε4
(r2w2

0

w4
sin[φ

(4)
G ] − r4w0

4w5
sin[φ

(5)
G ]

)

}

,

(2.44)

Bx = E0
z

w
exp

(

−
[ r

w

]2
)

·
{

ε
w0

w
cos[φ

(1)
G ]+

ε3
(

2
w2

0

2w2
cos[φ

(2)
G ] +

r2w0

2w3
cos[φ

(3)
G ] − r4

4w4
cos[φ

(4)
G ]

)

+

ε5
(3w3

0

8w3
cos[φ

(3)
G ] +

3r2w2
0

8w4
cos[φ

(4)
G ] +

3r4w0

16w5
cos[φ

(5)
G ]−

r6

4w6
cos[φ

(6)
G ] +

r8

32w0w7
cos[φ

(7)
G ]

)

}

,

By = 0,

Bz = E0
w0

w
exp

(

−
[ r

w

]2
)

·
{

sin[φG]+

ε2
( r2

2w2
sin[φ

(2)
G ] − r4

4w0w3
sin[φ

(3)
G ]

)

+

ε4
(

− w2
0

8w2
sin[φ

(2)
G ] +

r2w0

4w3
sin[φ

(3)
G ] +

5r4

16w4
sin[φ

(4)
G ]−

r6

4w0w5
sin[φ

(5)
G ] +

r8

32w2
0w

6
sin[φ

(6)
G ]

)

}

,

(2.45)

56



where

φ
(n)
G = φG + n · arctan(x/xR), (2.46)

is done and shown in Fig. 2.24a by the dashed line. To match the f -number

of the mirror used for calculating the exact field and w0 for paraxial approxi-

mation, it was demanded that the total energy flux of the two sources through

the focal plane was equal to each other, i.e.,

∫

S(mirrorfocused)
x ds =

∫

S(paraxial)
x ds, (2.47)

where ~S is the Poynting vector and integration was carried out over the focal

plane. Since the accuracy of several percents which was provided by the mirror

having rm = 400λ is not sufficient for the precise comparisons, the mirror

radius was taken to be rm = 104 λ. This value guarantee that the energies of

the particles coincide with those of asymptotic value rm → ∞ with accuracy

∼ 10−3. The numerical integration of the Stratton-Chu integrals was carried

out with accuracy not worser than 10−7.

It can be seen from Fig. 2.24a that for w0 & 2 λ the difference between the

results calculated with exact and 1-st order paraxial field representations can

be as small as ∼ 5%. If the size of the spot is higher than this value it is safe

to use the paraxial approximation and be sure the obtained results coincide

with the exact ones with at most a few percents. If the 5-th order paraxial

approximation is used, the error does not exceed 5% for w0 & 1 λ.

Since the discrepancies between the particle dynamics in the mirror-focused

Gaussian and paraxial Gaussian fields are small, one can use the paraxial field

to repeat the scalings of Fig. 2.21a,b. These scalngs are given in Fig. 2.24b,c

for the 1-st order paraxial field. Compared to the values in Fig. 2.21a,b, the

Gaussian field has produced smaller energies. The dependence γmax(w0), on
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the other hand, has become more uniform. The reason for this is that it was

impossible to find CAS-accelerated free particles in the case of a Gaussian

field. However, if the particle is injected into the middle of the pulse then it is

still possible to accelerate it via CAS and acquire a high energy. An example

of energy evolution of such a particle started from right above the laser best

focus is given in Fig. 2.24d. Note that the curve in Fig. 2.24d does not have

the tiny fast oscillations as was the case in the case of a focused plane wave (cf.

Fig. 2.20). Apparently, these oscillations were associated with the existence

of diffraction rings in the case of a focused plane wave.

It is shown in Section 2.5 that a mechanism of particle injection exists

which makes the CAS acceleration possible in the case of a focused Gaussian

field.

2.4 Electromagnetic 3D PIC code SCPIC

2.4.1 General outline

In the previous section, motion of a free single particle in a field of a tightly

focused plane polarized beam has been analyzed. However, motion of an

isolated particle, although important, is rarely interesting in practice where

the laser usually interacts with plasma targets of a certain density. To study

such interactions one needs to use special tools. The most widely used tools

for studying laser-plasma interactions are Particle-in-Cell (PIC) codes.

The code SCPIC was created by the author of this Thesis in 2008. Most

of methods, although standard, were borrowed from the parallel PIC code

Mandor [113] which was developed at the University of Alberta in 2002 – 2005.

The SCPIC code solves Maxwell’s equations using a certain finite-difference-

time-domain (FDTD) method. To solve for the plasma evolution, the code
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finds a numerical approximation to the solution of the Vlasov equation:

∂fα
∂t

+
∂fα
∂~r

· ~v +
∂fα
∂~p

· ~̇p = 0,

~̇p = q
[

~E(~r, t) +
~v

c
× ~B(~r, t)

]

,

(2.48)

where fα(~r, ~p, t) is the single-particle distribution function of the α-th species

representing density of its particles in the 6D phase space, fα = dNα/d
3rd3p,

and the fields ~E(~r, t) and ~B(~r, t) are the sum of external and the internal

plasma fields. In this way, the code is in principle capable of solving only

problems of interaction of laser light with collisionless plasma.

Equation (2.48) can be solved using the method of characteristics [114].

As the distribution function depends on the phase space coordinates ~r and ~p

and time t, Eq. (2.48) can be written as

dfα
dt

= 0. (2.49)

In this way, the distribution function of an infinitesimal piece of plasma stays

constant along the trajectory of the piece in the phase space. This trajectory

is called characteristic. Mathematically, finding the characteristic is equivalent

to finding the seven functions ~r(s), ~p(s), t(s) of a parameter s. Given these

seven dependencies, a curve in the 7D (phase space + time) space can be

specified. These dependencies must satisfy the following differential equations

[115]:
dt

ds
= 1,

d~r

ds
= ~v(s),

d~p

ds
= ~̇p

(

~r(s), ~p(s), t(s)
)

.

(2.50)

The family of characteristics defines a hypersurface over which the distri-
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bution function is a solution to the Vlasov equation.

In the code, only a finite family of characteristics is tracked. To accomplish

this goal, the code has a number of markers, with the i-th marker specifying

a point in the phase space, at time t, lying along the i-th characteristic. The

position of every marker in the phase space is obtained by numerical solution

of Eq. (2.50) for each marker. Each marker is associated with a value of an

α-th distribution function at t = 0 at the marker’s initial position.

To solve equation (2.50) for each of the markers, one needs to know the

fields ~E and ~B. These fields can be found from Maxwell’s equations:

∇× ~E = −1

c

∂ ~B

∂t
,

∇× ~B =
1

c

∂ ~E

∂t
+

4π

c
~J.

(2.51)

Equation (2.51) contains the quantity ~J which is a sum of moments of the

distribution functions fα:

~J =
∑

α

qα

∫

~vfαd
3p, (2.52)

where qα is the charge of the α-th particle species. As the code has only a

finite number of characteristics, it is a common situation that there are no

markers at the point (~r, ~p) at time t. For this reason, the value of fα(~r, ~p, t)

is found by summing the contributions of markers in a certain vicinity of the

point (~r, ~p). The particular mechanism is described in a subsection below. In

fact, the step of evaluation of fα is omitted entirely and J is computed directly

from the information about the markers in vicinity of a point ~r in the space.

The code algorithm can be summarized in simple terms as follows. The

plasma is represented by a finite set of markers moving in the phase space and
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described by the set of equations of motion (2.50). These equations contain

fields ~E and ~B which are found by a solution to Eq. (2.51). The last equations

contain, in turn, the current density term ~J which is evaluated from the posi-

tions of the markers in the phase space. Thus, at each discrete time step, the

set of markers positions in the phase space gives the current density ~J , which

allows one to update the fields ~E and ~B to the next time step. The new fields

are used to update the coordinates and velocities of the markers to the next

time step. This sequence is repeated further until the problem calculation is

finished.

It is convenient to work in dimensionless units. The only physical variable

through which all dimensional units can be expressed is the laser frequency ω.

Using this parameter the dimensionless quantities can be obtained by dividing

the physical ones by:

t0 =
2π

ω
(for time),

r0 =
2πc

ω
(for coordinate),

p0 = mc (for momentum),

E0 =
mωc

2πe
(for electromagnetic field),

n0 =
mω2

16π3e2
(for particle density),

J0 = en0c (for current density),

ρ0 = en0 (for charge density).

(2.53)

In (2.53), e and m are charge and mass of an electron and c is the speed of

light.

The details of the code algorithms are given in the following subsections.
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2.4.2 Finite-difference solution to the Maxwell equa-

tions

The Maxwell equations for the field are solved in the SCPIC code using a

classical FDTD method known as the Yee scheme [116]. The Yee scheme gives

a numerical solution having 2-nd order accuracy in both time and space and

uses a regular mesh.

The meshes for different field components are displaced from each other in

space. If ∆x, ∆y and ∆z are mesh steps along x, y and z and ∆t is the time

step, then a quantity A(x, y, z, t) at a mesh node (i, j, k) can be written as

Ani,j,k = A(i∆x, j∆y, k∆z, n∆t), (2.54)

where n is the number of the time step.

In this notation the storage scheme for the components of vectors ~E, ~B

and ~J in the Yee scheme can be written as follows

Bx
n−0.5
i, j−0.5, k−0.5, By

n−0.5
i−0.5, j, k−0.5, Bz

n−0.5
i−0.5, j−0.5, k

Ex
n
i−0.5, j, k, Ey

n
i, j−0.5, k, Ez

n
i, j, k−0.5,

Jx
n−0.5
i−0.5, j, k, Jy

n−0.5
i, j−0.5, k, Jz

n−0.5
i, j, k−0.5.

(2.55)

In this way, Bx at the mesh node (i, j, k) at time step n is evaluated at x = i∆x,

y = (j − 0.5)∆y, z = (k − 0.5)∆z and t = (n − 0.5)∆t and so on. Using

the storage scheme (2.55), the finite-difference approximation to the Maxwell
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equations (2.51) can be written as
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(2.56)

and
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−

Bz
n+0.5
i+0.5, j−0.5, k −Bz

n+0.5
i−0.5, j−0.5, k

∆x
− Jy

n+0.5
i, j−0.5, k

]

,

Ez
n+1
i, j, k−0.5 = Ez

n
i, j, k−0.5+

∆t ·
[By

n+0.5
i+0.5, j, k−0.5 − By

n+0.5
i−0.5, j, k−0.5

∆x
−

Bx
n+0.5
i, j+0.5, k−0.5 −Bx

n+0.5
i, j−0.5, k−0.5

∆y
− Jx

n+0.5
i, j, k−0.5

]

.

(2.57)

Given the fields at a certain time step n, the ~B field at the next time

step is found using Eq. (2.56) and the ~E using Eq. (2.57). Equations (2.56)

and (2.57) represent the Yee scheme for numerical FDTD solution of Maxwell

equations, one of the simplest schemes known.
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It can be shown that the Yee scheme is stable for

∆t <
1

c
√

1/∆x2 + 1/∆y2 + 1/∆z2
. (2.58)

Eq. (2.58) is known as a Courant condition for stability of Yee scheme.

2.4.3 Equations of motion of markers along the charac-

teristics

The trajectories of markers in the phase space are solved using a relativistic

modification of the Boris scheme [117, 118].

As the initial value for the parameter s in Eq. (2.50) is arbitrary, the

system of equations of motion of characteristics can be rewritten as follows:

d~r

dt
= ~v,

d~p

dt
= q

[

~E +
~v

c
× ~B

]

,

(2.59)

where q is a charge of the given particle species, for example, charge of electron.

Eq. (2.59) is nothing but the equation of motion of a charged particle

in an external electromagnetic field. For this reason, markers are sometimes

called large particles, thus introducing a concept which is intuitively easier to

understand. This concept, which results in the same algorithms, is, however,

not used in this Thesis because it has some inherent difficulties such as rigid

particles which are inconsistent with the theory of relativity.

Since ~p = m~v/
√

1 − v2/c2, Eq. (2.59) is nonlinear. For this reason, solving

a discretized equation of motion would require solving a nonlinear algebraic

equation at every time step. Indeed, if the coordinate ~r of the marker is

discretized at time step n whereas momentum is found at a shifted moment of
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time, n + 0.5, the discretized equation of motion, having 2-nd order accuracy

in time, takes the form

~rn+1 − ~rn

∆t
=
~pn+0.5

γn+0.5
,

~pn+0.5 − ~pn−0.5

∆t
= q

[

~En +
~pn+0.5 + ~pn−0.5

2γnmc
× ~Bn

]

,

γn+0.5 =
√

1 + (~pn+0.5/mc)2,

γn =
√

1 + [(~pn+0.5 + ~pn−0.5)/2mc]2.

(2.60)

Even if ~Bn was known at the n-th time step, which is not the case for the

Yee scheme used, finding out ~pn+0.5 from ~pn−0.5 and ~rn (second equation in

2.60) implies solving a nonlinear algebraic equation. This would make the

markers motion step very computationally expensive. This problem is resolved

in [117, 118] as follows.

First, the entire time step ~pn−0.5 → ~pn+0.5 is decomposed into half-time step

acceleration in the electric field ~En, subsequent rotation in the field ~Bn and

the remaining half-time step acceleration in the field ~En. As the fields depend

only on coordinates and the coordinates do not change during rotation, this is

a legitimate decomposition. The decomposed equation of motion is solved as

follows. Let the momentum value after the first acceleration half-time step be

~p∗ and after the rotation ~p∗∗. The equation

~p∗ − ~pn−0.5

∆t/2
= q ~En (2.61)

is linear and is solved trivially. The subsequent rotation does not change

the particle energy and therefore γn = γ∗ =

√

1 + ( ~p∗/mc)2. This value is
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substituted into the rotation equation

~p∗∗ − ~p∗

∆t
= q

~p∗∗ + ~p∗

2γ∗mc
× ~Bn. (2.62)

Rewriting Eq. (2.62) in a more transparent form, one can obtain:

~p∗∗ = ~p∗ + α(~p∗ × ~Bn) + α(~p∗∗ × ~Bn), (2.63)

where α = q∆t/2γ∗mc. Equation (2.63) is linear and has the following solu-

tion:

~p∗∗ =
A ·X

1 + α2 · ( ~Bn)2
, (2.64)

where

A =













1 + α2Bn
x

2 αBn
z + α2Bn

xB
n
y −αBn

y + α2Bn
xB

n
z

−αBn
z + α2Bn

xB
n
y 1 + α2Bn

y
2 αBn

x + α2Bn
yB

n
z

αBn
y + α2Bn

xB
n
z −αBn

x + α2Bn
yB

n
z 1 + α2Bn

z
2













(2.65)

and

X = ~p∗ + α~p∗ × ~Bn. (2.66)

The remaining half-step acceleration in the field ~En

~pn+0.5 − ~p∗∗

∆t/2
= q ~En (2.67)

is solved trivially.

As was pointed out above, the Yee scheme does not give ~Bn but rather

~Bn−0.5 or ~Bn+0.5. However, it can be noted that Eq. (2.56) contains only ~En

which is known from the previous time step. In principle, one could use (2.56)

to find ~Bn+0.5 and have an additional storage for ~Bn which is calculated as
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~Bn = ( ~Bn+0.5 + ~Bn−0.5)/2. However, as was proposed in [117], in practice, to

avoid the extra storage requirement, ~Bn is calculated from a half-time step

from ~Bn−0.5 and ~En. After the equations of motions of the markers are solved,

the remaining half-time step is performed to find ~Bn+0.5 from ~Bn and ~En.

The described procedure allows one to avoid the solution to the nonlinear

systems of equations for the markers at every time step and is second-order

accurate in time.

The remaining unresolved complication is finding the values of fields at the

markers positions. The field values are given at the mesh nodes and therefore

are discrete. On the other hand, markers move, generally, between the mesh

nodes where the fields are unknown. To find out the fields, one needs to use

an interpolation of the values from the nodes into the space between them.

In the SCPIC code, a method called PIC volume weighting is used. For 2D

geometry, this method (which in this case called area weighting) is described

in [119]. Since a 2D method explanation is more illustrative, it is given below.

The 3D generalization, which was actually used in the code, is straightforward.

A

B C

D
a

b c

d

Figure 2.25: (Color) Illustration of the PIC area weighting method.

The area weighting interpolation method idea is depicted in Fig. 2.25. Let
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the marker appear in the cell having vertices at nodes A, B, C and D. If lines

parallel to the cell boundaries and passing through the marker are drawn, they

divide the cell into four sub-cells having areas, correspondingly, a, b, c and d. If

the sought function has values fA, fB, fC and fD on the nodes then, according

to the area weighting method, the value of the function at the marker position

is

f =
fASc + fBSd + fCSa + fDSb

Scell
, (2.68)

where Sa, Sb, Sc and Sd are the area of the sub-cells shown in Fig. 2.25 and

Scell is the area of the entire cell.

2.4.4 Evaluation of currents

As was mentioned above, every marker is associated with a certain value of

distribution function at t = 0. The value of the distribution function does

not change along the trajectory of the marker in phase space, i.e., along the

characteristic. In the general case of infinite number of characteristics, where

no approximations are needed, the value of distribution function at any given

point of the phase space is equal to the value associated with a marker appeared

at this point, or to zero if no characteristics pass through this point.

In the SCPIC code, the currents are not evaluated directly from the dis-

tribution function. Rather, the charge density is calculated first and then the

current density is found from the continuity equation

∂ρα
∂t

+ ∇ · ~Jα = 0. (2.69)

Use of this algorithm ensures that the code conserves charges and no fictitious

charges are generated due to inaccurate fulfillment of ∇ · ~E = 4πρ, which is

equivalent to Eq. (2.69).
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The charge density ρα is proportional to the particle density nα which in

principle can be computed as

nα(~r, t) =

∫

fα(~r, ~p, t)d
3p, (2.70)

with function fα(~r, ~p, t) being equal to the value of the distribution function

associated with the marker appearing at the point (~r, ~p) of the phase space at

time t. However, since fα = dNα/d
3rd3p, an i-th marker is associated with a

certain particle density in the phase space: (fα)i = d(Nα)i/d
3rd3p. The total

charge density of α-th species, in this way, can be calculated as

nα(~r, t) =
∑

i

dNαi

d3r
=

∑

i

dnαi, (2.71)

where the summation is carried out over all the markers appearing at time t

in the point of the real space having coordinates ~r. The quantity

dnαi =
dNαi

d3r
= fαid

3p (2.72)

is the particle density associated with every marker. It is infinitesimal in the

case of a continuous characteristic distribution and can be finite in the discrete

case.

In this way, every marker can be viewed as associated with a certain particle

density dnαi, and the total particle density at a particular point is the sum of

all the densities associated with the markers located at that point. For this

reason, one can operate only with the particle densities associated with the

markers rather than with the distribution functions. The particle densities

dnαi are calculated at t = 0 and used further to evaluate the particle density

nα at t > 0.
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The method of extrapolation of a charge density, associated with a certain

marker, onto the grid is similar to the PIC volume weighting method described

above. For the geometry shown in Fig. 2.25, the value ni at the marker position

is extrapolated into the adjacent nodes as follows:

nAi = ni
Sc
Scell

,

nBi = ni
Sd
Scell

,

nCi = ni
Sa
Scell

,

nDi = ni
Sb
Scell

.

(2.73)

The total charge density at every node is the sum of the contributions from

all the markers.

The evaluation of the current densities from the known charge density is

most transparent in the 1D case. In this case, the continuity equation (2.69)

simplifies to

∂ρα
∂t

+
∂Jαx
∂x

= 0. (2.74)

Below, for simplicity of notation, the index α is suppressed. If ρ is discretized at

an unshifted time tn and unshifted mesh nodes i, j, k, the discretized equation

(2.74) has the form

ρn+1
i − ρni

∆t
= −J

n+0.5
i+0.5 − Jn+0.5

i−0.5

∆x
, (2.75)

where index x in Jx was also suppressed for simplicity. Eq. (2.75) can be

rewritten as

Jn+0.5
i+0.5 = Jn+0.5

i−0.5 − ∆x

∆t

(

ρn+1
i − ρni

)

. (2.76)

Equation (2.76) is a system of linear equations giving set of Jn+0.5
i+0.5 provided
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ρni and Jn+0.5
−0.5 are known. Supposing that the marker is moving at distance

x > ∆x/2 from the boundary, it is safe to set Jn+0.5
−0.5 = 0.

There are two possible cases: 1) both xn and xn+1 are located within a

single cell, say, between nodes i and i+1; and 2) both xn and xn+1 are located

inside different cells, i.e., the marker has jumped from one cell into another.

It is easy to see that since the particle velocity is limited by c and the time

step is constrained by the Courant condition (2.58), a marker can jump only

into at most an adjacent cell during a single time step.

Let us illustrate the method by considering the first possibility. Application

of the PIC extrapolation algorithm results in the following nonzero values of

charge density

ρni =
(i+ 1)∆x− xn

∆x
ρ0,

ρn+1
i =

(i+ 1)∆x− xn+1

∆x
ρ0,

ρni+1 =
xn − (i+ 1)∆x

∆x
ρ0,

ρn+1
i+1 =

xn+1 − (i+ 1)∆x

∆x
ρ0,

(2.77)

where ρ0 is the charge density associated with the marker. Substitution of Eq.

(2.77) into the system (2.76) and solving it results in

Jn+0.5
0.5 = 0,

. . .

Jn+0.5
i−0.5 = 0,

Jn+0.5
i+0.5 =

∆x

∆t

xn+1 − xn

∆x
ρ0 = ρ0v,

Jn+0.5
i+1.5 = ρ0v −

∆x

∆t

xn+1 − xn

∆x
ρ0 = 0,

. . .

Jn+0.5
imax+0.5 = 0.

(2.78)
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In this way, motion of a marker between nodes i and i+1 results in only nonzero

current density at the current node i + 0.5 and zero at all other nodes. The

second possibility, moving of the marker in the two adjacent cells, results in

the current density ρ0v proportionally divided between the two cells depending

on what part of the trajectory actually lies in the cell.

The derivation of a general 3D case is less transparent and involves con-

siderable efforts. If a marker moves within a single cell having lower vertex

with indices (i, j, k), the algorithm results in the following nonzero current

densities:

Jx
n+0.5
i+0.5, j, k = ρ0vx

(j + 1)∆y − y

∆y
· (k + 1)∆z − z

∆z
+

1

12
ρ0vx

(yn+1 − yn)(zn+1 − zn)

∆y∆z
,

Jx
n+0.5
i+0.5, j+1, k = ρ0vx

y − j∆y

∆y
· (k + 1)∆z − z

∆z
−

1

12
ρ0vx

(yn+1 − yn)(zn+1 − zn)

∆y∆z
,

Jx
n+0.5
i+0.5, j, k+1 = ρ0vx

(j + 1)∆y − y

∆y
· z − k∆z

∆z
−

1

12
ρ0vx

(yn+1 − yn)(zn+1 − zn)

∆y∆z
,

Jx
n+0.5
i+0.5, j+1, k+1 = ρ0vx

y − j∆y

∆y
· z − k∆z

∆z
+

1

12
ρ0vx

(yn+1 − yn)(zn+1 − zn)

∆y∆z
,

(2.79)
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Jy
n+0.5
i, j+0.5, k = ρ0vy

(i+ 1)∆x− x

∆x
· (k + 1)∆z − z

∆z
+

1

12
ρ0vy

(xn+1 − xn)(zn+1 − zn)

∆x∆z
,

Jy
n+0.5
i+1, j+0.5, k = ρ0vy

x− i∆x

∆x
· (k + 1)∆z − z

∆z
−

1

12
ρ0vy

(xn+1 − xn)(zn+1 − zn)

∆x∆z
,

Jy
n+0.5
i, j+0.5, k+1 = ρ0vy

(i+ 1)∆x− x

∆x
· z − k∆z

∆z
−

1

12
ρ0vy

(xn+1 − xn)(zn+1 − zn)

∆x∆z
,

Jy
n+0.5
i+1, j+0.5, k+1 = ρ0vy

x− i∆x

∆x
· z − k∆z

∆z
+

1

12
ρ0vy

(xn+1 − xn)(zn+1 − zn)

∆x∆z
,

(2.80)

Jz
n+0.5
i, j, k+0.5 = ρ0vz

(i+ 1)∆x− x

∆x
· (j + 1)∆y − y

∆y
+

1

12
ρ0vz

(xn+1 − xn)(yn+1 − yn)

∆x∆y
,

Jz
n+0.5
i+1, j, k+0.5 = ρ0vz

x− i∆x

∆x
· (j + 1)∆y − y

∆y
−

1

12
ρ0vz

(xn+1 − xn)(yn+1 − yn)

∆x∆y
,

Jz
n+0.5
i, j+1, k+0.5 = ρ0vz

(i+ 1)∆x− x

∆x
· y − j∆y

∆y
−

1

12
ρ0vz

(xn+1 − xn)(yn+1 − yn)

∆x∆y
,

Jz
n+0.5
i+1, j+1, k+0.5 = ρ0vz

x− i∆x

∆x
· y − j∆y

∆y
+

1

12
ρ0vz

(xn+1 − xn)(yn+1 − yn)

∆x∆y
,

(2.81)

where vx = (xn+1 − xn)/∆t, vy = (yn+1 − yn)/∆t, vz = (zn+1 − zn)/∆t,

x = (xn+1 +xn)/2, y = (yn+1 + yn)/2 and z = (zn+1 + zn)/2. Equations (2.79)

– (2.81) can be found in [120].

Multi-cell markers motions can be decomposed into the single-cell motions,

with the proportional contribution into each of the cell. The total current

density at each node is the sum of the contributions of every marker. The
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algorithm given by Eqs. (2.79) – (2.81) ensures the continuity equation is

fulfilled with the machine precision.

2.4.5 Boundary conditions for fields, markers and elec-

tromagnetic sources

The SCPIC code has three types of boundary conditions (BCs) for both fields

and markers: periodic, reflecting and absorbing.

For markers, periodic boundary conditions are trivial: once a marker reaches

a boundary it continues from the opposite side with unchanged velocity. The

periodic BCs for fields is described by the fields in the ghost cells being equal

to those near the opposite boundary.

In the case of reflecting BCs, the markers bounce back from a wall with

reversed normal component of the velocity. The values of the field in the ghost

cells are such that the following is ensured on the reflecting wall:

En : continuous,

Eτ = 0,

Bn = 0,

Bτ : continuous.

(2.82)

In the case of absorbing BCs, markers stick to the boundary upon reaching

it and just stop their motion. This inevitably leads to accumulation of static

charges on the absorbing BCs. The field absorbing BCs are implemented using

Mur’s first order boundary conditions. This is a classical and the simplest

possible algorithm for implementation of absorbing BCs. Its derivation can be

found in [121].

For field excitation, a total field/scattered field (TFSF) method is used.
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This method, which is described in great detail in [122], introduces a source

into the computational domain which does not interact with the field reaching

the source from the domain (i.e. with the field scattered from the plasma

targets in the domain). The method needs an exact knowledge of the source

fields in the vicinity of an excitation plane (interface). These fields must satisfy

Maxwell equations. In the SCPIC code, the source fields used are those of

a parabolic focusing mirror, calculated by the Stratton-Chu integrals using

methods described in Section 2.2.

The SCPIC code was created using C programming language and paral-

lelized using OpenMP extension of the language. Besides the described fea-

tures, the code also has an ability to turn the simulation domain into a moving

frame which can be used in calculations of propagation of short pulses in long

plasmas.

2.5 Electron acceleration from micro- and nan-

otargets in a tightly focused laser

Using the SCPIC code, simulations of interaction between a focused laser and

plasma targets were performed. The goal of the analysis given in this Section4

is to understand the acceleration process and find optimal conditions for elec-

tron acceleration in interaction with the nano-scale targets. The nanotargets

participating in the interaction serve as a source of the particles.

As a first step, a situation closely related to the test particle problem is

considered: the interaction between a laser and a spherical nanotarget. A

linearly polarized laser pulse of Gaussian shape (in time) with longitudinal

4A major part of the text in this Section was taken directly from the paper [68].
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FWHM (full width at half maximum) length 9λ (λ is the laser wavelength)

which is equivalent to the pulse duration ∼ 30 fs for λ = 1µm, focused by a

parabolic mirror, hits a cluster having center positioned off-axis in the focal

plane. As an example, a focused plane wave will be considered. The electron

plasma density of the spherical nanotarget is taken as n = 100ncr, where ncr

is the critical electron density, ncr = mω/4πe, where e is the electron charge

and m is, as in previous section, its mass. The initial radius of the target is

50 nm and the wavelength of the laser is equal to 1 micron. The number of

particles per cell (markers per mesh cell) used was 103. The mesh resolution

was 333 cells per λ3. The ion charge-to-mass ratio is equal to e/3672m. It was

assumed that there is no preplasma that is relevant to the laser with a high

intensity contrast ratio.

Figure 2.26a shows a cluster irradiated by a 120 TW laser focused by a

parabolic mirror with f# = 1 into a spot of ∼ 1 wavelength diameter. The

laser pulse propagates in the direction of the x-axis and the laser polarization

plane is XY . The position of the cluster in the focal plane is chosen consistent

with the previous result of test particle simulations considered in the Section

2.3 to produce a relatively high final energy of the electrons.

After laser-cluster interaction, the accelerated electrons form a jet moving

off from an exploding ion core. The jet possesses a fine structure, i.e. it

consists of well separated narrow subwavelength-sized layers (bunches). A

similar bunching of electrons was reported in previous theoretical studies [123,

124, 125]. So far, there has been no clear explanation of this phenomenon.

Due to the simplicity of the numerical experiment arrangement considered in

this Section, it was possible to give such an explanation which is presented

below.

The simulations have demonstrated that the submicron bunches within the
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Figure 2.26: (a) Electron jet moving out from the Coulomb-exploding ion
core after interaction between the laser and a spherical plasma target. Here,
a projection of the 3D distribution of electrons (15µm . x . 20µm) and
ions (x ' 0) onto the XY plane is shown for 33 fs after the pulse maximum
reached the cluster. The laser is focused onto the origin. Initial position of the
target center is: (0, 1.35, 0) µm. The curve at the bottom of the figure shows
the position of the Gaussian envelope at this moment of time. (b) Average
electron energies (solid line bars) and number of particles (dashed line bars)
in the bunches for the instant corresponding to the panel (a) versus the time
delay of the pulse maximum with respect to the bunches; estimation for the
particles number per bunch given by Eq. (2.83) (open squares). The inset
shows the spectrum of the electrons in the last (most energetic) bunch.

propagating electron jet (cf. Fig. 2.26a) are sequentially extracted from the

cluster as the laser intensity at the cluster increases following the Gaussian

shape. Every bunch starts to move out of the cluster at its own instant. The

distance between the nearby bunches is one laser wavelength. It is instructive

to show the typical energy of the electrons in each bunch as a function of

the distance ∆x between the bunch and the center of the laser pulse or the

corresponding time shift ∆t = ∆x/c. This dependence is illustrated in Fig.

2.26b by the solid bars. The number of particles in every bunch is given by the

dashed bars. The energies of electrons in the bunches increase with the bunch

order number; the later the bunch appears, the higher its energy is. Certainly,

this picture is typical for the early stage of electron motion as long as the faster

bunches do not start to overtake the slower ones. In the case of relativistic
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electrons whose velocities are close to the speed of light, this requires quite a

long time. Simultaneously, the laser pulse overtakes the trapped electron jet,

and far away from the cluster they both propagate independently.

Serial bunch production occurs at the instants when the laser field is high

enough to extract electrons from the cluster, which attracts them back by

the Coulomb force increasing in proportion as more and more electrons are

removed. Increasing of laser intensity at the pulse leading edge provides the

serial generation of the electron bunches. The electric field components of

the laser at the position of the cluster center, during a laser period, in the

vicinity of the top of the pulse (as example) are shown in Fig. 2.27a. The Ez
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Figure 2.27: (a) Longitudinal (solid line) and transversal (dashed line) electric
field components of the laser in the vicinity of the top of the pulse; (b) energy
evolutions of the test particles started at different moments within the pulse;
(c) the scheme showing how the bunch length is estimated.

component, not shown in Fig. 2.27a, is equal to zero. As the longitudinal com-

ponent of the field is dominating (due to the tight focusing), in the following

qualitative explanation it will be considered to be the only field component

present. The electrons can start moving when the absolute value of the laser

field exceeds the electrostatic field of the uncompensated positive charge of

the cluster (due to the electrons extracted at the previous laser cycles). If

the cycle is located at the leading edge of the wave envelope, the maximum

of the laser field exceeds that of the previous cycle, which is approximately

equal to the electrostatic field that can be estimated as the Coulomb field of
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the cluster on its boundary. The instants when the electrons can be extracted

from the cluster are schematically shown by the arrows in Fig. 2.27a. How-

ever, the particles started at the positive (first arrow) maximum of the field,

move backwards (electrons have negative charge), enter the region of negative

Ex, slow down, stop and return back to the cluster. The particles started at

the negative (second arrow) maximum of the field co-propagate with the pulse

in the accelerating phase and are effectively accelerated. For this reason, the

bunches are separated by the distance 1λ (period of the Ex field component)

from each other. The PIC simulations have indeed shown that the bunches

corresponding to Fig. 2.26a have been extracted in the vicinities of the nega-

tive maxima of Ex. The particle extraction stops when the value of the field

reaches maximum laser intensity, thus resulting in an asymmetric jet with the

length less than or equal to half of the pulse length. In the case when the

laser intensity is higher than that needed to extract all electrons, the jet size

is shorter than the half of the pulse length.

To estimate the energies of the particles in the bunches, further test particle

simulations were performed for a single particle starting its motion from the

center of the cluster. A test particle (initially at rest) was prescribed to move

at the moment when the magnitude of Ex at its position was equal to the

maximum magnitude of Ex at the previous pulse cycle. That has allowed us

to omit the electrostatic field because it strongly decreases with distance from

the boundary of the cluster which size is much smaller than λ. The laser field

is calculated by using Stratton-Chu integrals in the entire space. The energy

evolutions of the test particles, started in different cycles are shown in Fig.

2.27b where the top of the pulse passes the center of the cluster at t = 0.

The final energies of the electrons in Fig. 2.27b reproduce the trend given in

Fig. 2.26b by the solid bars (the closer to the top of the pulse, the higher the
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energy).

In this way, the electrostatic field of the uncompensated positive charge

provides a mechanism of injection of the particles into the wave (cf. [66]).

This mechanism, in principle, must also work in the case of a plane wave, with

the only difference that the injecting force in that case would be the Lorentz

force which should result in the distances between bunches being equal to the

λ/2 (cf. [125]).

The number of particles ∆N in a single bunch can be estimated using a

simple balance ∆Ex ≈ ∆Ec, where ∆Ex is the difference between the field

maxima in the two subsequent cycles of the pulse and ∆Ec = e∆N/R2 is

the corresponding difference between the Coulomb field at the boundary of a

cluster. This results in

∆N ≈ ∆ExR
2

e
= ∆ax ·

2πmc2R2

λe2
, (2.83)

where ∆ax is the difference between the maximum values of dimensionless x-

component of the laser electric field in the two subsequent cycles of the pulse.

The resulting estimation of the electron numbers is given by the open boxes

in Fig. 2.26b. Certainly, Eq. (2.83) can significantly overestimate the number

of particles in the last most energetic bunch in the case where laser intensity

is high enough to extract all the electrons before the laser pulse maximum

reaches the cluster. This is because the last bunch contains only the remaining

electrons (all cluster electrons minus electrons from all previous bunches). This

estimation also somewhat underestimates the number of particles in all the

bunches due to the nonzero Ey field component and Lorentz force which have

not been taken into account. However, this approximation gives the correct

order of magnitude and therefore correctly describes the physics of electron
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injection.

Equation (2.83) suggests a way of maximizing the number of particles in

a bunch; the steeper the pulse shape, the higher the number of extracted

electrons. In this way, a high intensity ultra-short laser pulse would be able

to extract all the particles in just few bunches thus maximizing the number of

electrons per bunch. On the other hand, a long envelope would produce many

bunches with fewer number of particles in each of them and smaller bunch

size. The latter is due to a decrease of the duration of electron injection which

happens because the maxima between the subsequent cycles become closer to

each other (see Fig. 2.27c).

The length of every bunch can be estimated if one takes into account that

the electron extraction stops at the negative maximum of the field in the given

laser cycle. Let the pulse envelope have form a(x, t) = a0 exp[−(x/c−t)2/∆T 2],

where ∆T is the pulse duration and a0 is the pulse maximum dimension-

less amplitude. Then, if n is the number of bunch, its length δtn satisfies

cos(2πδtn/T ) = Exn+1/Exn (see Fig. 2.27c), where Exn is the negative maxi-

mum of the x field component in the n-th cycle, and can be estimated as

δtn =
T

2π
arccos

( exp[−(nT/∆T )2]

exp[−((n− 1)T/∆T )2]

)

, (2.84)

where T is the laser wave period.

If the pulse is long (∆T � T ) then not too far from its top, cos(2πδtn/T ) ≈

1 − (2πδtn/T )2/2, and

δtn ≈ T

2π

√

2
Exn − Exn+1

Exn
≈ T

π

√

T

2

∂ ln a

∂t
. (2.85)

The bunch length is minimum if extracted at the top of the pulse (δt1 =

T exp[−(T/∆T )2]/2π) and approaches T/4 for the bunches generated by the
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pulse wing (n→ ∞).

The final energy of the electron depends on the laser phase at which the

particle starts to move; the interval of phases allowing extraction of the parti-

cles from the cluster (located between the second arrow and negative maximum

of Ex in Fig. 2.27a) defines the spectrum thickness shown as δε in the inset

of Fig. 2.26b. This interval slightly depends on the number of the bunch.

From the test particle simulations, the approximate scalings for the maximum

energy (εmax)n and energy spread δεn in the n-th bunch were found:

(εmax)n ≈ 120
√

In/I0 MeV ,

δεn ≈ [28 − 40(In/I0 − 0.75)2] MeV ,

(2.86)

where In is the intensity in the n-th (from top to bottom of a pulse) cycle of

the laser and I0 is the intensity at the top of the laser. For the bunches in Fig.

2.26, n ranges from 6 (most energetic bunch) to 12.

The first scaling in Eq. (2.86) reflects the approximate proportionality of

the particles energy to the laser field which is consistent with the mechanism

of particle acceleration in the diverging laser field discussed in Sec. 2.3. The

second scaling is just a numerical approximation to a more sophisticated de-

pendence; it, however, demonstrates that the electrons in a single bunch are

rather monoenergetic (with the best δε/ε < 20% in the vicinity of the top of

the pulse). The inset in Fig. 2.26b shows an example of such monoenergetic

spectrum.

The described mechanism also works with more complicated targets, for

both focused plane wave and a focused Gaussian beam. An example of in-

teraction of an f/1-focused laser with an ultrathin foil target is given in Fig.

2.28.

In Fig. 2.28, as before, the laser power, focused by an f/1 mirror was taken
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Figure 2.28: A snapshot of particles accelerated by the plane wave (a) and a
Gaussian beam (b), incident onto an f/1 parabolic mirror. Only electrons with
−λ/2 ≤ z ≤ λ/2 are shown. The foil position is given by ∆x = −4 λ from the
best focus.

to be 120 TW, with the wavelength λ = 1µm and pulse length 30 fs. The laser

polarization plane is XY and the propagation direction is OX. The foil having

thickness of 100 nm is composed of plasma with electron density 100ncr. As

before, the ion charge-to-mass ratio is 3672. The number of particles per cell

used was 102 and the mesh resolution 333 cells per λ3.

As can be seen from Fig. 2.28, interaction of both focused plane wave

and focused Gaussian beam with the foil can produce bunched electron jets,

consisting of attosecond bunches. The distance between the jets is equal to

λ in the half-spaces y > 0 and y < 0. At the same time, the jet bunches in

y > 0 or y < 0 half-spaces are shifted by λ/2 in the x direction with respect to

each other. The mechanism of particle extraction is similar to that described

above, with the only difference that the electrons are extracted by either Ex or
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Ey field components, whichever is dominant at the point of extraction. When

it is said that the bunch is extracted by the Ey field component, it is implied

that the Ey field pushes the particle in y direction which immediately gives

rise to the Lorentz force extracting the electrons from the foil.

The parameters of jets extracted from the foil appeared to depend consid-

erably on the distance ∆x between the center of the foil and the best focus

position and on the mirror f -number. The maximal number of high-energy

electrons is produced by the foil located in the best focus position.

Figure 2.29 shows angular dependencies of the electrons deposited on the

right wall of the simulation box. In Fig. 2.29, θ is defined as an angle between

the particle momentum and OX axis. All the displaced foil positions appearing

in Fig. 2.29 for plane wave incident onto the focusing mirror are shifted in

the −x direction within the Rayleigh length. It can be seen that there is a

considerable difference between the number of particles extracted from the

foils having different displacements with respect to the focus, especially for

the f# = 1 case. The angular distributions in Fig. 2.29 are integrated over

time and the azimuthal angle.
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Figure 2.29: Angular distributions of the electrons accelerated by a laser beam
focused by an f/1 (a), f/2 (b) and f/3 (c) parabolic mirrors. Solid line:
focused plane wave, ∆x = 0; dotted line: focused Gaussian beam, ∆x = 0;
dashed line: focused plane wave, ∆x = −4 λ (for f# = 1), ∆x = −9 λ (for
f# = 2), ∆x = −20 λ (for f# = 3).

Increasing the mirror f -number results in a several times decrease in the

84



number of electrons extracted from the target, both in the case of plane wave

and the Gaussian beam incident onto the mirror. In this way, the main pa-

rameter responsible for the number of extracted particles is the intensity in

the focus rather than the power. Therefore, unlike the free particle results

discussed above, it does make sense to focus the laser pulse most tightly. The

electron jet production by a focused Gaussian beam is somewhat less effective

than that by the focused plane wave.

Let us discuss now the particles energy spectra. Figure 2.30a shows the

spectra of electrons moving inside a solid angle of 4π/1000 sr (that is equivalent

to a cone having full base angle 7◦) in the direction of the maximum density

of the electron jet. All the four spectra corresponding to different laser beams

possess flattened and banded tails. The highest energy and number of particles

are for the plane wave focused by an f/1 mirror. An estimation for the number

of particles gives the total charge ∼ 250 pC in the beam propagating within the

specified solid angle of 4π/1000 sr for this f/1 case. The energy spectrum of

these particles is quasi-monoenergetic. It was confirmed that the jets density

is a maximum in the laser polarization plane passing through the best focus

of the mirror.
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Figure 2.30: Spectra of electrons moving inside the solid angle ∆Ω = 4π/1000
sr in the direction of the maximum density of the electron jet: (a) 120 TW
laser, 100 nm foil, various f -numbers and types of laser pulses incident onto
the focusing mirror; (b) plane wave beam incident onto the f/1-mirror, various
foil thickness or laser power; (c) 120 TW plane wave focused by an f/1-mirror,
100 nm foil pre-expanded to various thicknesses.
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It is of some interest to consider interaction with a thicker foil. Figure 2.30b

shows spectra of jet electrons accelerated from the 100 nm- and 250 nm-thick

foils, correspondingly (solid and dashed lines). As the foil thickness increases

from 100 nm to 250 nm, the particles become less monoenergetic. The num-

ber of energetic (ε > 60 MeV) electrons also decreases whereas the number

of low-energetic particles greatly increases with the foil thickness. Note, that

in the case of completely removed electrons from the 100 nm-thick foil having

charge density 100ncr (1.11 · 1023cm−3 for the laser wavelength λ = 1µm), the

remaining ions will cause an electrostatic field at the surface having magni-

tude approximately equal to the Ex component of the laser field. If the laser

intensity is increased ∼ 4 times (Fig. 2.30b, dotted line), the spectrum again

becomes monoenergetic, with the energies of electrons increased ∼ 2 times.

This indicates that the main mechanism of acceleration is CAS which scales

as square root of the laser power (cf. Sec. 2.3).

Due to unlimited electron supply of the focal domain from the foil, the

jet length for transversally unbounded foil is equal to the length of the laser

envelope (Fig. 2.28). As the angles between the electrons in the bunches are

not entirely equal, the bunches diverge. This results in the electron density in

the bunch decreasing with distance from the foil as ∼ 1/r2. The measurement

of the electron density per bunch results in values up to ∼ 1ncr at the distance

∼ 10λ from the foil.

Let us now consider the type of targets which might be more feasible as

a practical matter than the ultrathin foils discussed above. This is a plasma

slab having charge density profile

n(x, y, z) = n0 exp
[

−
( x

∆x

)2]
, (2.87)
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where ∆x is the thickness of the plasma slab. Such a density distribution

may result from interaction between a foil and the laser prepulse which can

be either natural or a controlled prepulse. For convenient comparison with a

nondecayed foil, let us consider the slabs with different thicknesses having the

same number of particles as the 100-nm ultrathin foil discussed above, having

∆x = 0. Such a comparison is given in Fig. 2.30c.

All of the spectra shown in Fig. 2.30c can be considered as quasi-monoenergetic

and, in fact, do not differ from each other considerably until a slab thickness is

much smaller than the Rayleigh length. The main difference is some decrease

of the number of accelerated particles with thickness. For this reason, it can

be concluded that interaction of the foil with the prepulse does not consider-

ably worsen the properties of accelerated electrons if the resulting plasma size

is of the order one laser wavelength. The higher preplasma size can result in

appearance of Maxwellian tails (cf. Fig. 2.30c, dash-dotted line, for the 2 λ

plasma size, for ε > 60 MeV). However, even for this case, the electrons are

extracted from the plasma in the form of jets consisting of subwavelegth-sized

bunches.

It is instructive to discuss an oblique incidence of the laser pulse. As an ex-

ample, let us consider a p-polarized plane wave focused by an f/1 mirror. The

resulting charge density pattern in plane z = 0 for the case of 30◦ incidence

angle is shown in Fig. 2.31a. The p-polarized oblique incidence results in an

asymmetric jet pattern; one jet appears suppressed and another has a higher

charge density within it. The electron energy spectra for 15, 30 and 45 degrees

angle of laser incidence are given in Fig. 2.31b where the spectrum of normal

incidence is given by the solid line for reference. One can conclude that, at

first, the p-polarized oblique laser incidence can produce more energetic parti-

cles than the normal one, and, secondly, there is an optimal angle of incidence
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Figure 2.31: (a) Plasma charge densitiy, in units of encr, in the plane z = 0
of plasma for 30◦ p-polarized laser incidence. (b) Electrons spectra in the
solid angle ∆Ω = 4π/1000 sr in the direction of the maximum density of the
electron jet for different laser incidence angles and p-polarization.

resulting in the best quality electrons. For the chosen parameters of foil and

laser, this optimal angle is ∼ 30◦. The number of electrons in the solid angle

4π/1000 which corresponds to the densest part of the jet is ∼ 2 · 109. Given

the energy in the peak ∼ 50 MeV, this corresponds to the laser-to-particle en-

ergy conversion factor > 0.5%. Oblique incidence of a p-polarized laser pulse

results in an enhanced longitudinal electric field component which efficiently

accelerates electrons. The larger the angle of incidence, the stronger this com-

ponent. However, for large enough angles of incidence both laser intensity at

the target and target transparency become low and electrons cannot be ac-

celerated efficiently any more. This results in non-monotonic dependence of

the electron energy spectra (Fig. 2.31) on the angle of incidence. For the case

of s-polarized light, it was found that the oblique incidence does not produce

improvement in the electron spectra, with the jets structure being symmetrical

as in the case of normal laser incidence.
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2.6 Conclusion

In this Chapter, a dynamics of electrons in a relativistically strong tightly

focused laser was discussed. First, a problem of finding the exact fields of

a parabolic mirror-focused laser field was solved numerically using analytical

methods developed in [109] and employed previously in [106], [108] and [63].

The structure of the resulting fields was discussed in detail. It was shown

that the expressions (2.26) approach the solutions of Maxwell equations for

mirror radius much larger than the laser wavelength. In the calculations, the

radius was taken large enough for the discrepancy from the exact solution to

the Maxwell equations to be negligible.

The field of a parabolic mirror was used in the equations of motion of a

free charged particle. These equations were solved numerically. It was found

that the particle can be accelerated by means of two mechanisms or their

combination. The first mechanism, focal spot acceleration, deals with the

plane wave-like interaction between the particle and field at the leading edge

of the pulse inside the focal spot. Upon reaching high energy, the particle

escapes the hot spot and does not loose its energy due to slowing down in

the trailing edge of the pulse as would happen in the interaction with a plane

wave. This is the kind of interaction which one would intuitively expect. The

second mechanism, CAS, which was found previously for the case of injected

relativistic particles in [99, 98], deals with synchronization between the particle

and the field and slow acceleration in a constant phase of the diverging laser.

A simple 1D model of CAS was proposed giving intuitive explanation of the

process.

An energy map, i.e., dependence of the phase-averaged asymptotic energy

of the particle on its initial position, has demonstrated high spatial inhomo-
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geneity of the energy acquired by the particles. The energy maps created for

different f -numbers have allowed us to find the maximum energy which a par-

ticle can reach for the given laser parameters. The maximum energy scales

as a sum of a function linear in laser power and the one proportional to the

square root of it. The CAS-accelerated particle energy scales as
√
P , where P

is the laser power.

The structure of the focused laser depends on that of the incident field on

the parabolic mirror. Two kinds of incident laser were discussed: pure plane

wave and a Gaussian beam of a large radius having a macroscopic scale. In

the case of a Gaussian beam incident onto the mirror, the resulting structure

is close to that of a Gaussian paraxial beam. It was found that it is safe to

use the 1-st order paraxial approximation (2.22) in the problems of particle

acceleration by a focused Gaussian beam for any w0 & 2 λ and the 5-th order

paraxial approximation (2.44), (2.45) for w0 & 1 λ since the resulting error in

acquired kinetic energy due to inaccuracy of the field lies within few percents.

To study the interaction between the focused laser and more realistic tar-

gets than free particles, a 3D relativistic electromagnetic PIC code SCPIC was

created. The code uses standard numerical methods. A unique ability of the

SCPIC code is employing the fields of a focused laser described by expressions

(2.26) as boundary conditions for the field sources. These sources were used

in studies of interaction with spherical nano-plasmas and ultrathin foils. It

was shown that the tightly focused laser can extract bunches of attosecond

durations from the targets. A simple and intuitive model of bunch generation

was proposed dealing with interplay between the laser field and electrostatic

field of a partially evacuated target. The model has provided estimation of

bunch length and particle energy which matched the results of PIC simula-

tions within a factor of 2. The PIC simulations of interaction with ultrathin
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foils, for both normal and oblique incidence of laser and with pre-expanded

foils have demonstrated extraction of electron bunches with the total charge

in all the bunches being as high as few tens nanoCoulombs per steradian in

the densest part of accelerated electron pattern. The electron energy from the

plasma targets scales approximately as
√
P .

All the calculations in this Chapter were performed for laser powers within

abilities of currently existing or next generation systems and can be verified

experimentally.
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Chapter 3

Expansion of spherical

nanoplasmas into vacuum

3.1 Plasma expansion as a source of acceler-

ated ions

As mentioned in Chapter 1, a common way to accelerate ions is to create a

charge separation between electrons and ions by means of laser heating of elec-

trons. During this process, a laser is shined onto the surface of a target, such

as foil, microdroplet or an atomic cluster. The target, or its part interacting

with the laser, is usually ionized at the very beginning of the pulse leading

edge while the rest of the laser pulse interacts with the resulting plasma. The

light electrons acquire a certain energy in this process and start to escape the

target. This process continues until the potential energy of the electrostatic

field of the remaining unbalanced positive charge of the target ions is equal

to the kinetic energy of the escaping electrons. Whether the laser pulse is

short or long, the electrostatic field of charge separation persists. On a longer

time scale, the charge separation field accelerates the ions from the target. A
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description of the ions dynamics is one of the goals of this Chapter.

A full-scale study of laser-plasma interaction with nanotargets requires

considerable computational efforts (cf. [126, 127]). Furthermore, due to the

complexity of the models used, the full-scale study does not show the physical

behavior of accelerating particles in simple terms.

In the many papers discussing the laser-driven acceleration of ions, a num-

ber of simpler models are used. The laser is usually not considered at all.

Instead, the electrons are prescribed to have a certain distribution function at

t = 0 which is believed to be a result of interaction with a laser. The ions

are usually considered immovable at t = 0. At t > 0, the plasma evolution is

determined, depending on the particular plasma expansion model used. The

models can be either hydrodynamical or kinetic and may or may not assume a

thermodynamical equilibrium for the electrons. The hydrodynamical models

use assumptions, such as isothermal, adiabatic or, more generally, polytropic

equation of state for hydrodynamical closure. Finally, the expansion can be

considered in limiting cases such as quasi-neutral expansion or, in the other

limit, a Coulomb explosion of the target.

Historically, the first theoretical studies of plasma expansion into vacuum

began more than forty years ago starting with [70]. The first approaches have

been exploiting a hydrodynamic model of quasi-neutral expansion and self-

similar solutions for semi-infinite plasmas in planar geometry [70, 72, 128, 129,

130, 131, 132, 133, 134, 135, 136]. The hydro-model was also extended to the

case of spherical geometry and mass-limited targets [73] in the context of par-

ticular interest to inertial confinement fusion. In most of the hydrodynamical

models, in order to provide the hydrodynamical closure, authors have assumed

isothermal [70, 73, 128, 129, 130, 132, 133, 134, 136] electrons and cold ions.

The isothermal electrons are supposed to describe interaction of a long laser
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pulse with plasma, with the laser being an infinite reservoir of energy keep-

ing temperature constant. For reference, a derivation of self-similar solution

to the hydrodynamic equations of isothermal equilibrium plasma expansion is

presented in Appendix B.1. For a special form of boundary conditions, the

quasi-neutral hydrodynamical model with isothermal electrons has allowed an

exact solution for the Cauchy problem [71].

More complicated models [135, 137] use polytropic equation of state for

electrons, pe = knγe , where pe is the hydrodynamic pressure of electrons and

γ polytropic index. A particular case of adiabatic electrons (γ = 5/3 for

monatomic gas) can describe interaction of short laser pulses with plasma. To

account for non-equilibrium effects, several authors have also used a simplified

kinetic description of electrons [72, 131].

The quasi-neutral expansion of plasma takes place when the scale length

of plasma inhomogeneity is much larger than the electron Debye length. In

principle, this is usually the case at later stages of plasma expansion unless the

temperature of electrons is comparable to the Coulomb energy of the ion core.

However, at earlier stages of expansion or for large electronic temperatures

the charge separation effects may be important. In the early papers these

effects were accounted through numerical modeling [73, 133, 134, 135, 138,

139]. The charge separation effects were included into the hydrodynamical

model in more recent papers [140, 141]. The paper [140] has employed an

interpolation formula for an unknown characteristic of expansion taken from a

Lagrangian code, whereas the authors of [141] have found a self-similar solution

for a certain value of the electrons polytropic index.

From the beginning of systematic studies of plasma expansion and fast

ion generation, the hydrodynamic models have faced difficulties in describing

wavebreaking and subsequent multistream ion motion. This was first pre-
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dicted to occur in a plasma with two electron species (hot and cold) [128, 129,

130, 136]. Only a kinetic approach can describe this multistream motion ade-

quately. This was demonstrated, for example, in [142] where the authors have

numerically solved kinetic equations for a 1D planar plasma configuration and

found stable multi-layered structures resulting from the multistream motion.

For this reason, in the late 1990-s – early 2000-s, a number of analytical

works have concentrated on the kinetic approach. A particular self-similar

solution to Vlasov kinetic equations for electrons and ions for quasi-neutral

adiabatic plasma expansion in 1D, 2D, or 3D symmetric case was found in

[143]. Later there was found a more general (than in [143]) class of solutions to

the initial-value problem for the Vlasov equations for arbitrary initial particle

velocity distributions that was achieved by using the renormalization-group

approach [144, 145, 146].

The opposite limiting case, the Coulomb explosion, was kinetically ana-

lyzed in a number of papers [76, 77, 146, 147], where appearance of singularities

resulting from multi flows taking place for inhomogeneous initial plasmas was

reported. These singularities were also referred as “collisionless shocks”. There

is a number of papers presenting PIC simulations of laser-plasma interactions

proving that such regime can be realized in practice [148, 149, 150, 151].

The most complicated theoretical study is the kinetic problem of plasma

expansion in the intermediate regime, neither quasineutral not CE, with strong

charge separation effects. For plane geometry this regime is often referred as

Target Normal Sheath Acceleration (TNSA) [78] where, at the plasma-vacuum

interface, electrons create a strong sheath electrostatic field, which accelerates

ions to high energies. A number of hybrid models were proposed [75, 152] in

this context with fully kinetic ions and a simplified description for electrons.

In this Thesis, a particular case of expansion of a spherically symmetric
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plasma into vacuum is considered. Physically, it may address an interaction

of a laser with spherical nano-clusters. The plasma is described kinetically

with a Maxwellian distribution function of electrons and all the ions motion-

less at t = 0. At t > 0 a Vlasov equation of collisionless plasma evolution

is solved numerically using the particle simulation approach in the different

regimes, starting from the quasineutral, passing the charge separation regime

and finishing with the CE.

Due to motion of accelerated ions in the 4π solid angle, their applicability

is limited. However, there are certain nuclear reactions which can be carried

out between the ions [18]. To maximize their cross-section, it is desirable that

the ions be monoenergetic.

Typically, the energy spectra of the ions accelerated by the plasma expan-

sion is rather broad and terminates with an abrupt upper cutoff. However, it is

known that monoenergetic ions can be produced from microplasmas composed

of heavy and light ions [74, 153]. The most straightforward way is generation

of high-quality light ion beams from the double layer targets, irradiated by

ultraintense laser pulses [79, 154, 155]. In this scheme the first layer, at the

foil front, consists of high-Z atoms, while the second (rear) layer is a thin coat-

ing of low-Z atoms. The coated thin layer detaches from the foil and moves

as a whole out of the foil which acts on it as electrostatic pusher. A similar

scheme was proposed in Ref. [156] for a spherical target composed of high-Z

core and a thin shell of light ions. As before, the heavy ions create a strong

radial electric field which acts as a Coulomb piston onto the light ions and

effectively accelerates them.

The quasi-monoenergetic spectra of light ions were reported also for ho-

mogeneous multi-species targets for which the light species is distributed uni-

formly inside the target [21, 127, 157, 158, 159]. Ions with monoenergetic
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features is a result of light ion acceleration at the heavy ion front that was

clearly demonstrated in semi-analytical BVP (Boltzmann – Vlasov – Pois-

son) model for expanding multispecies plasmas with strong charge separation

field, dealing with the planar geometry [75]. Similarly, the effect of light ion

acceleration at the heavy ion front was derived in the analytical approach of

adiabatic expansion of quasi-neutral plasma bunch where the spectrum of light

ions possesses a narrow band structure [144]. Vlasov simulations of adiabatic

expansion of a two ion species 1D plasma slab with charge separation field

have demonstrated that the electrostatic shock at the heavy ion front gives

rise to a peak in the light ion energy spectrum [154].

Spherical geometry of the homogeneous multi-species targets results in a

more monoenergetic spectrum of light ions as compared to the expansion in the

planar geometry (cf., for expample, [75] and [21]). The case of acceleration of

impurity light ions in the spherical geometry was considered analytically in the

recent papers [160] and [161] for, correspondingly, Coulomb explosion and self-

similar charge separation driven expansion of a uniformly distributed plasma

target. A more general case of a finite light ions concentration was studied

numerically in [81] and [82] where formation of a mono-energetic spectrum

was demonstrated for a wide range of electron temperatures and light ion

concentrations. In this Thesis, the results of [81] and [82] are summarized and

generalized.

3.2 Electrostatic gridless spherical particle code

It is possible, in principle, to run the 3D electromagnetic code described in the

section 2.4, either with the laser or without it, with a certain initial distribution

function of electrons and ions. However, since the problem in question is multi-
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parametric, its study in this case would require many expensive computations

which cannot be afforded.

For modeling of the spherical plasma expansion, a 1D electrostatic gridless

spherical particle code was created. This code numerically solves a spherically-

symmetric expansion of, generally, multi-species plasma into vacuum.

As commented in Sec. 2.4, the characteristics of the Vlasov equation for a

collisionless plasma formally coincide with those of a free particle in an external

field (2.59). One can write the equations (2.59) in a spherical coordinate

system. As shown in Appendix B.2, the equations for r(t) and vr(t) in the

new coordinates in the non-relativistic limit are

dr

dt
= vr,

dvr
dt

=
q

m
Er +

1

r3

l2

m2
,

(3.1)

with certain equations for θ, ϕ, vθ and vϕ, which are of no interest for the

reasons clarified below. In Eq. (3.1), Er is the radial component of the elec-

trostatic field, magnetic field was neglected, and l2 is the square of angular

momentum:

~l = m~r × ~v = ~l0, (3.2)

where ~l0 is the value of angular momentum at t = 0. In the present case of

a purely central potential and field ~E = r̂Er(r, t), with no external fields, the

angular momentum is conserved.

Equations (3.1 – 3.2) define the behavior of r-th and vr-th coordinates

of a characteristic of the Vlasov equation started at t = 0 from a point (~r0,

~p0 = m~v0) in phase space, such that ~l0 = ~r0 × ~p0. In principle, to evaluate

the distribution function at any point of the 6D space, one needs to solve four

other equations for θ, ϕ, vθ and vϕ. However, it is easy to see that since the
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angular momentum is an integral of motion, the velocities vθ and vϕ are in

fact dependent on vr. Indeed, the square of the total particle velocity ~v is

v2 = v2(cos2 α + sin2 α) = v2
r +

1

r2
r2v2 sin2 α = v2

r +
1

r2

l2

m2
, (3.3)

where α is an angle between ~v and ~r of the particle. In this argumentation, the

term “particle” is used due to the formal coincidence between the equations

of characteristics and equations of motion of a material point.

Equation (3.3) says that if v2
r is known, v2 is automatically specified. On

the other hand, due to conservation of ~l, the particle velocity must stay in a

certain plane defined by vectors ~r0 and ~v0. This gives the second restriction,

defining the components of ~v. In this way, vθ and vϕ depend on vr and can be

calculated from it.

Due to the spherical symmetry, the distribution function does not depend

on coordinates θ and ϕ. Therefore, knowledge of r of the characteristic is

sufficient to know the distribution function at any θ and ϕ for the given r.

In view of the above argumentation, given the spherical symmetry, the 1D

system of equations (3.1) completely describes the 3D evolution of plasma for

any initial distribution function provided the last possesses spherical symmetry

in the real space and a way to calculate the static field Er is known.

Let us imagine a characteristic started at t = 0 from a point (r0, θ0, ϕ0)

with certain values of vr0 and l2. At a moment t > 0, the characteristic will

appear at another point in space (r, θ, ϕ) and will have a certain value of vr.

Due to the spherical symmetry, the values of r and vr do not depend on θ0

and ϕ0 if l2 is fixed. Furthermore, the characteristics are uniformly distributed

over the surface of the sphere with radius r for any r in this case. Therefore,

every characteristic can be associated with a hollow sphere carrying a certain
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charge ddqα = qdNα = qfα0d
3rd3v with it, where α is the index of the given

species, fα0 is the value of α-th distribution function at the starting point of

the characteristic, q is the total charge of the given plasma component and

d3rd3v is an element of phase space. In this way, only one characteristic per

r0 per ~v0 is needed.

It is possible to avoid utilizing a grid, as in the standard PIC algorithm,

and therefore avoid solving the Poisson equation. Instead, the value of Er can

be evaluated using Gauss’s theorem:

Er(r) =
1

r2

∑

α

∫ r

0

dqα. (3.4)

In the 1D code, there is a finite number of characteristics, each one of

them is associated with a charge δqα = Qα/Nα, where Qα is the total charge

of the given species and Nα is the number of characteristics. The integral

in 3.4 is replaced by a finite sum over characteristic markers. At t = 0,

every characteristic starts from an appropriate r0 and ~v0 chosen from a certain

distribution. At t > 0, the equations (3.1) are solved for every characteristic

using the leap-frog time-differencing scheme.

In the approach used, the ions are considered initially motionless whereas

electrons have a 3D Maxwellian velocity distribution with a certain temper-

ature Te. In the following discussion, only one or two ion species will be

considered. The calculations are carried out in dimensionless units. The time,

radial coordinate, electric field, particle densities, velocities, and energies are

measured in ω−1
L1 , R, 4πZ1en1R, n1, RωL1 and M1ω

2
L1R

2/2, respectively, where

ωL1 is the Langmuir frequency of the heaviest plasma species in the center of

cluster, R is the initial characteristic radius of the cluster, Z1e, n1, M1 are

the charge, density, mass of the heaviest plasma species. For consistency, the
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temperature is measured in the units of M1ω
2
L1R

2/2.

The reliability of the code was checked for the two single-species cases: (1)

CE of a homogeneous ion sphere of given radius with a thin linearly decreasing

boundary (example 2 in [77]) that corresponds to Te → ∞; (2) a quasi-neutral-

like expansion of a spherical plasma with Gaussian initial density profile, that

corresponds to Te → 0. These problems have exact analytical solutions [77,

144].

The asymptotic ion spectrum for the CE regime (1) is given in Fig. 3.1a,

where ε is the dimensionless ion kinetic energy. The solid line in Fig. 3.1a

represents the numerical spectrum. For reference, the analytic spectrum is

given by the dots. Perfect coincidence of the analytical and numerical results

is found. The main code benchmark for the electron-ion plasma is provided by
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Figure 3.1: (Color) Code benchmarks with various targets configurations:
spectrum for CE of example 2 of [77] (a); quasi-neutral spectrum [144] (b).
Solid lines: the numerical results; dots – analytical spectra from the references.
Here and below, the spectra are normalized to unity.

the test in the low-temperature regime of plasma expansion (2) which is most

difficult for simulations. This regime can be described analytically by a quasi-

neutral expansion approximation. Numerical study of this regime requires very

high resolution due to the quasi-neutrality condition rD � R, where rD is the

electron Debye radius. The resulting asymptotic spectrum of expansion of a
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spherical plasma target with initial Gaussian density profile and R = 140 rD,

is found by using 107 characteristics. It is given in Fig. 3.1b by the solid line.

The corresponding spectrum of exact analytical solution [144] is given by the

dots. Again, comparison demonstrates very good matching between these two

spectra. The matching indicates that the 1D code describes the 3D problem

correctly, without problems of an unphysical behavior.

3.3 Coulomb explosion of inhomogeneous single-

species spherical plasma

If the laser is powerful enough, it can strip all the electrons from the target.

This happens when the laser electric field component considerably exceeds the

electrostatic field of the ion core of the plasma target with fully evacuated

electrons. Due to the high ion mass, the ions almost do not interact with the

laser field. Rather, when the laser and electrons are gone, the ions repel from

each other. On a longer time scale, this results in the explosion of the ion core

due to the uncompensated Coulomb forces. This gives rise to a finite energy

of ions.

The details of the exploding ions dynamics crucially depend on the initial

particle density profile of the ions. It can be shown (see Appendix B.3) that a

sphere having initially uniform ion charge density distribution inside radius R0

will expand while preserving the uniformity of the distribution. This process

is demonstrated in Fig. 3.2a. The resulting energy spectrum shown in Fig.

3.2b is rather broad and monotonically increases with increase of energy ε

until it reaches the cut-off value εmax. The values in Fig. 3.2 are given in the

dimensionless variables and the spectra in Fig. 3.2b are normed to unity.

The situation is different in a physically more sensible case of explosion of
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Figure 3.2: (Color) (a) Charge density dynamics of an exploding charged
sphere with initially uniform charge distribution; (b) energy spectrum, normed
to unity, of the exploding uniformly distributed charged sphere.

a charged sphere having initially inhomogeneous charge density distribution.

It is anticipated that for laser-heated targets their density is inhomogeneous,

due to pre-expansion of the target after its interaction with the laser pre-pulse.

As it was reported in [76] (and mentioned in certain previous papers), the

inhomogeneous initial charge distribution results in formation of, generally,

multiple shock structures, i.e., structures of vanishing thickness and charge

density approaching infinity. In the case of linearly decreasing charge density, a

single shock forms. For a nonlinear but monotonic density profile, double shock

arises. In a more general non-monotonic charge density, multiple shocks are

produced. The case resulting with the double shocks seems the most realistic.

The shocks dynamics for the single- and double shocks cases is analyzed in

detail in the semi-analytical paper [77].

Formation of the double shocks is explained as follows. Let the initial

density profile be described, as an example, by a Gaussian function:

n(r, t = 0) = n0 exp
[

−
( r

R0

)2]

. (3.5)

This profile is shown in Fig. 3.3a by the purple line. The charge distribution
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Figure 3.3: (Color) Dynamics of Coulomb explosion of a charged sphere having
Gaussian density profile at t = 0. (a) Charge density evolution; (b) electro-
static field at t = 0; (c) ions in the phase space; (d) ions spectrum at t = 60.

(3.5) gives rise to a certain dependence of the radial electric field Er directed

outward. The electrostatic field can be calculated by the Gauss theorem (3.4)

and is shown in Fig. 3.3b. The field is non-monotonic, with a maximum at

a certain radius inside the charged ball. This is in contrast to the case of

a monotonic initial charge density profile for which the field is maximum at

the boundary of the ball. The field certainly depends on time but due to its

∼ 1/r2
p(t) dependence on rp(t), where rp(t) is the distance from the origin of

every given charged particle, it essentially goes to zero after the ball radius

increases a few times. Thus, the field gives a kick to all the particles and

then vanishes very fast. At t = 0, all the charged particles have zero velocity

vr = 0. Due to the non-monotonic field distribution, the particles in the

vicinity of the field maximum are accelerated by a considerably higher force
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than those located far from the maximum. In particular, the particles from

the vicinity of the field maximum acquire a larger velocity than those which

originally have a larger radius. This is shown by Fig. 3.3c, red line. For this

reason, they start to overtake the larger radius particles. Eventually, at time

ts, certain particles having different velocities align at some radius rs1 (cf. Fig.

3.3c, green line) which leads to the formation of an instantaneous density peak

(i.e, a shock) at rs1, as demonstrated by Fig. 3.3a, green line. At t > ts, the

faster particles surpass the slower ones. This leads to the appearance of two

points, located at radii rs1 and rs2, where the local density of particles is high

(mathematically, it approaches infinity). In this way, the single shock splits

into two which continue moving outward. This process is depicted in Fig.

3.3a,c, blue line.

The described collisionless shock formation process is essentially kinetic

since it involves particle multi-flows inside the expanding ball. For this reason,

this process cannot be properly described by hydrodynamic codes.

In Fig. 3.3c, blue line, the most of the particles are bounded between the

two shocks. The shocks travel with different velocity. Positions of the shocks

as functions of time are given in Fig. 3.4a. It is shown in the approximate

theoretical analysis in Ref. [77] that the velocity difference between the two

shocks increases as ln(t) at large t. This is a slow dependence. Furthermore,

most of the particles in between the shocks are grouped near the outer one.

This gives rise to a much better monoenergeticity of the resulting ions. The

spectrum of the exploded charged sphere with Gaussian density profile at t =

60 is given in Fig. 3.3d. At this time, the spectrum approaches its asymptotic

functional dependence. Although the maximum value of ε is approximately

two times smaller than in the case of a uniform charge density profile, much

more particles have energy close to εmax. The approaching of the maximum
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energy εmax to the asymptotic value is demonstrated by Fig. 3.4b.
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Figure 3.4: (Color) Details of the Gaussian charged sphere explosion. (a) Radii
of the shocks vs. time; (b) Maximum acquired energy vs. time.

Let us make an estimate of the maximum energy, in MeV, which can be

acquired by the ions in a typical experiment. Having in mind interaction

of laser with spherical atomic clusters, let us assign R = 40 nm (cf. [162]).

Clusters usually have a metal charge density. For a rough estimation, let

n = 250ncr, where ncr is electron critical density. For laser wavelength λ ∼

0.8µm, 250ncr corresponds to ∼ 2.8 · 1023 cm−3. Let the target be a fully

ionized hydrogen cluster. Then the quantity ε0 = Mω2
LR

2/2 can be calculated

and gives ε0 ≈ 4 MeV. This gives maximum energy approximately 2.7 MeV

for a uniform cluster and 1.5 MeV for the one with a Gaussian initial density

profile.

3.4 Charge-separation-driven explosion of a single-

species target

A complete evacuation of electrons from a plasma target can depend on a large

laser intensity. In the example given at the end of the previous section, the unit

of electric field E0 = 4πenR corresponds to the dimensionless laser amplitude
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a = eE0/mωλc = 2π(n/ncr)(R/λ) ≈ 60. This makes the laser intensity I ∼

1022 W/cm2 a minimum requirement for such an experiment. In this way, it

makes sense to examine the plasma expansion for smaller intensities.

A smaller laser intensity results in an incomplete electron evacuation. Af-

ter the laser heating process, the smaller-energy electrons remain inside the

plasma core. It is known [163] that the electrons, after the interaction with

the laser, possess a complicated velocity distribution function which can be ap-

proximated by a two-temperature Maxwellian distribution, with temperatures

Th of hot electrons and Tc of cold ones. Ignoring the inevitable asymmetry

resulting from the laser direction, one can adopt this distribution function in

the spherically symmetrical problem. In many studies, including recent ones

[140, 141, 145, 147, 152, 161], one of the temperatures is ignored altogether.

This Thesis follows this approach, considering only a single-temperature case.

A more realistic case will be analyzed in a future work.

Let us start the discussion from the case of explosion of uniformly dis-

tributed spherical plasma, i.e., plasma with charge density profile given by

ni,e(r, t = 0) = ±n0 ·











1, if r ≤ 1,

0, otherwise ,
(3.6)

where plus sign stands for ions and minus – for electrons. At t = 0, all the

ions are motionless and electrons have Maxwellian velocity distribution with

a dimensionless temperature T = Te/T0. The same problem formulation was

also considered in [152]. Dynamics of charge density of the electrons and

ions as a function of time is shown in Fig. 3.5a for the case of T = 0.05.

One can easily verify that the potential difference between the center of a

completely evacuated spherical plasma and infinity for the case of uniform

charge distribution is ∆φ = ε0/Ze and thus the case of T = 0.05 corresponds
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to the electron temperature being equal, for Z = 1, to 5% of the maximum

energy which can be acquired by an electron in the electrostatic field of the

fully evacuated ion core. In Fig. 3.5a, the initial charge density of electrons is
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Figure 3.5: (Color) Dynamics of charge-separation driven plasma explosion:
(a) charge density of electron and ion components: t = 0 (solid lines), t =
1.2 (dashed lines), t = 6 (dotted lines); (b) evolution of the ion spectrum.
Electrons initial temperature T = 0.05.

shown by the solid lines. On a short time scale, the electrons, which are not

initially at thermodynamical equilibrium, start to move unless the built-up

positive charge slows them down and pulls them back. In this way, a certain

dynamic equilibrium sets up. At a longer time scale, the built-up charge

separation field starts to move the ions as shown by the dashed lines in Fig.

3.5a. This process goes on (dotted lines in Fig. 3.5a) and asymptotically

continues to infinity in the approached quasi-neutral regime.

The energy spectrum of the resulting ions is demonstrated in Fig. 3.5b

and is qualitatively different from the one shown in Fig. 3.2b. The presence

of electrons slows down all the ions and especially those from the bulk of the

plasma which now form a local maximum at the lower part of the energy scale.

The transformation of the CE spectrum to that of T → 0 limit, with decrease

of the temperature, is illustrated in Fig. 3.6a. The cutoff energy εmax is smaller

in the finite temperature case than in that of CE, due to the smaller values
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of electric field. The εmax is given in Fig. 3.6b and it monotonically increases

from 0 for small T to 2/3, CE value, for T � 1.
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Figure 3.6: (Color). Temperature dependence of asymptotic ion spectrum
shape (a) and cutoff energy εmax (b).

The spectrum at T → 0 can be analyzed in more detail. Physically, one can

suppose that the T → 0 case can be described analytically with the help of the

quasi-neutral approximation which has an analytical solution [143, 144, 145].

The solution given in [143] is a self-similar one, i.e., has the same dependence

of distribution function on velocity as on coordinates and thus requires an

initial Gaussian density profile for the Maxwellian velocity distribution. The

paper [144] (as well as [145]) presents a solution to the Cauchy problem but the

symmetry of the solution still requires a Gaussian charge density profile if the

velocity distribution function is Maxwellian. The spectrum of quasi-neutral

expansion of a Gaussian density profile, according to [144], can be described

by formula

dNqn/dε ∼
√
ε exp(−ε/Te). (3.7)

It is unclear how severe deviations of the quasi-neutral spectrum (3.7) can

be in a case of non-Gaussian initial particle density distribution. Figure 3.7a

shows the asymptotic spectra of plasma explosion with T = 10−4 and uniform
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(3.6), Gaussian (3.5) or exponential:

n(r, t = 0) = n0 exp
[

− r

R0

]

(3.8)

initial density profiles. For reference, a quasi-neutral spectrum (3.7) is given

by the dashed line. The uniform density profile is an example of a sharper,

than the Gaussian one, plasma boundary whereas the exponential profile is an

example of a slower density decrease. The quasi-neutral spectrum lies close to

the solid lines in Fig. 3.7a, with very small deviations for the exponent profile

and somewhat larger deviations for the uniform one. Therefore, it is safe to use

the quasi-neutral expression (3.7) for any smooth initial charge density profile

for the small electron temperatures if the required accuracy of the spectrum

calculation is within few percents.

Eq. (3.7) does not have a cut-off energy but rather smoothly goes to zero

at ε → ∞. This apparent paradox is caused by the approximation of quasi-

neutrality for which high-energy electrons from the Maxwellian tail escape

the plasma, and the ions have to follow them to fulfill the quasi-neutrality

condition. In reality, of course, there should always be a cut-off energy which,

however, is much larger than the local maxima in Fig. 3.7a.

Another important question is the maximum temperature of electrons

which still allows one to use the quasi-neutral expression for the spectrum.

As follows from Fig. 3.7b, even for the temperature T = 1.25 · 10−2, one of

the cases shown in Fig. 3.6a, which is already somewhat close to the CE case,

the quasi-neutral expression describes the low-energy part of spectrum with a

good accuracy. To describe the mismatch between the charge-separation and
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Figure 3.7: (Color). (a) Spectra of plasmas having different initial density
profiles and T = 10−4. (b) Charge-separation and quasi-neutral spectra for
T = 0.0125, Gaussian initial density profile. (c) Quantity δqn, defined in the
text, vs. T , for Gaussian initial charge density profile.
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quasi-neutral spectra, a quantity

δqn =
1

2

∫ ∞

0

∣

∣

∣

dN

dε
− dNqn

dε

∣

∣

∣
dε (3.9)

can be analyzed, where dN/dε is the spectrum resulting in the numerical

calculation. Since the spectra dN/dε and dNqn/dε are supposed to be normed

to unity, δqn can take values from 0 to 1. The value δqn = 0 correspond to

the absolute matching of the two spectra and δqn = 1 corresponds to the

absolute mismatch between them. It seems reasonable to have an acceptable

value of δqn within few percents. Figure 3.7c shows the dependence δqn(T ).

For smaller temperatures, δqn decreases slower due to higher noise of the code

at such temperatures. As follows from Fig. 3.7c, the quasi-neutral spectrum

gives a good approximation for temperatures T . 10−2 or, equivalently, Debye

radius rD . 1
15
R.

Let us discuss the expansion of a non-uniform plasma in more detail. As

was shown in Sec. 3.3, the non-uniform expansion results in the shock forma-

tion. Figure 3.8a shows the creation of a double shock in a plasma with an ini-

tially Gaussian charge density profile and electron temperature T = 1.25·10−2.

Compared to the CE case, the double shock is formed at a later time point

(ts ≈ 7.2 for CE case and ts ≈ 17 for T = 1.25 · 10−2). The mechanism of the

shocks creation remains the same as in the CE case with the difference that,

due to the partially neutralized ions, all the processes are slower. The moment

of shock formation vs. T is depicted in Fig. 3.8b.

The asymptotic spectrum of the inhomogeneous plasma explosion is af-

fected by the finite T in approximately the same way as that of uniform

plasma. The sample spectra for different T are depicted in Fig. 3.9a. For

a small enough temperature of electrons, the spectrum is nonuniform, with
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Figure 3.8: (Color). Shock formation in the case of a finite electron tempera-
ture: (a) ρ(r) for different moments of time and T = 1.25·10−2; (b) dependence
ts(T ) for a plasma with Gaussian initial density profile.
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Figure 3.9: (Color). Asymptotic spectra of ions from explosion of a plasma
with initial Gaussian density profile and different electron temperatures (a);
dependence εmax(T ) for a plasma with Gaussian initial density profile (b).

two local maxima, the first in the region of smaller energies, and the second,

due to the shock formation, in the vicinity of the cut-off energy. The cut-off

energy as a function of T is given in Fig. 3.9b.

3.5 Two-species plasma explosion

The ion spectrum from the inhomogeneous plasma explosion, shown in Fig.

3.3d, possesses better monoenergeticity than those of a homogeneous plasma

(Fig. 3.2b), but is still far from being monoenergetic. It is known for more

than forty years [74, 153] that in the case of explosion of a plasma composed
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of heavy ions and an impurity of light ions, the latter can acquire a good mo-

noenergetic energetic energy spectrum. However, it is not obvious whether the

monoenergetic properties of the light species will remain for the case of a non-

negligible admixture of light ions and a finite electron temperature. In this

Section1, an explosion of a two ionic species plasma into vacuum is studied.

The mechanism of monoenergetic spectrum formation is discussed and the re-

sults of multi-parameter simulations of spherical plasma expansion for different

electron temperatures T , relative total light ion charge ρ0 = Zn0/Z1n
(1)
0 and

kinematic parameter µ = M1Z/MZ1 which defines the relative acceleration

rate of the light ions with regard to heavy ion acceleration rate, are demon-

strated. In the above notation, index “1” stands for the heavy species and “0”

for the light ones.

In Fig. 3.10a, the evolution of the density of light ions is shown. When

the spherical plasma is exploding, light ions, which are more mobile, over-

take heavy ions, propagate ahead of them and finally gather into a thin shell.

This is because the peripheral light ions, which are initially accelerated by the

strong radial linearly increasing electric field (∝ r for high electron temperature

T ∼ 1), finally get into the decreasing electric field (∝ r−2), where acceleration

stops (see Fig.3.10b). The details of this process are illustrated by the phase

space plots given in Fig. 3.10c. For a certain set of parameters (typically, ρ0

less than few tens percent and T larger than several percent) the shell forma-

tion is accompanied by multi-flows near the expansion front (c.f. insert in Fig.

3.10c). If light ions exhibit multi-flows, the density peak in the thin light ion

shell comes to a singularity n ∝ (1−r/rmax)−1/2 similar to that for CE of a sin-

gle ion species in an inhomogeneous plasma. The particles accumulated in the

shell have radial velocities close to each other and the phase space curves, espe-

1The main part of this Section was previously published in [81] and [82].
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Figure 3.10: Dynamics of the light plasma component for µ = 3 and ρ0 = 0.33:
light ions charge density (a), electric field distribution (b), phase space plots
(c), energy spectra (d). 1: t = 0, 2: t = 1, 3: t = 5. Thin curves correspond to
Coulomb explosion regime (T → ∞) and thick curves correspond to T = 0.05.

cially for the Coulomb explosion regime (T � 1), are flattening near the light

ion front with time thus providing a quasi-monoenergetic spectrum. A small

fraction of quasi-monoenergetic particles from the vicinity dv/dr = 0 forms a

peak fine structure of the light ions spectrum as shown in Fig. 3.10d. The en-

ergy cutoff of the spectrum is singular, dN/dε ∝ (εmax − ε)−1/2. Formation of

the density and spectrum singularities is reminiscent of a single species plasma

with an inhomogeneous truncated density profile, discussed above, where also

overtaking of ions results in a two flow regime with a singularity that arises at

the edge of the plasma.

The force of the Coulomb piston acting on the light ions depends on the

number of evacuated electrons and thus on their initial temperature. With

decreasing electron temperature, fewer electrons leave plasma. The electrons
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trapped within the plasma suppress the electric field (c.f. thick and thin curves

in Fig. 3.10b) which slows the plasma explosion and leads to the maximum

energy of the light ions decreasing with decreasing of T . However, a remark-

able feature of the two ion species plasma explosion is the maintenance of

monochromaticity for the given number of ions for modest electron tempera-

tures (c.f. thick and thin curves in Fig. 3.10d).

With electron temperature change in a wide range, the spectrum of light

ions experiences a dramatic transformation. For small temperatures (T →

0) the spectrum is monotonically decaying with negligible spike at its high-

energy end, εmax. With increasing temperature, the spectrum becomes non-

monotonic with a minimum (when T is on the order of 1 – 2%). With further

temperature increase the spectrum flattens in the main domain and finally

becomes monotonic with a sharp increase near the energy cutoff (T . 1).

Thus, for dimensionless electron temperatures exceeding several percents, the

light ion spectrum for a two ion species plasma explosion demonstrates a well-

pronounced monochromatic feature. The energy and spectral width of the

monoenergetic light ions depends on three controlling parameters, T , ρ0, and

µ. Below several illustrative examples of the dependencies on these parameters

are presented.

The energy spectrum of the exploding plasma is characterized by three

main parameters: the energy cutoff, εmax, the relative width of the quasi-

monoenergetic spectrum, ∆ε/εmax, and the relative number of monoenergetic

particles, ∆N/N (in the energy interval ∆ε). For definiteness, let us introduce

a spectrum width which is the ∆ε where the monoenergetic spectral contour

line is twice as large as the average spectral level, N/ε, where N is the total

number of particles, ε =
∫ εmax

0
(dN/dε)dε, and ∆N =

∫ εmax

εmax−∆ε
(dN/dε)dε is

the number of monoenergetic particles. The typical light ion spectra of the
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Figure 3.11: Asymptotic light ions spectra for ρ0 = 0.33, µ = 3: T = 0.05
(1), T = 0.3 (2), and T � 1, CE regime (3). Solid lines show the spectra of a
single plasma, dashed lines show average spectra of multiple spherical plasma
targets having ± 3% radius dispersion, dotted lines – spectra of the targets
having ± 10% radius dispersion. The dash-dotted line shows the theoretical
asymptotical spectrum of Coulomb explosion with ρ→ 0 and t→ ∞.

exploding plasma at a late time moment, for different temperatures, are shown

in Fig. 3.11 by solid lines. Figure 3.11 reveals the strong dependence of εmax

and spectrum shape on the electron temperature. For example, for T = 0.3

and CE regime the spectra in Fig. 3.11 have singularities at the energy cutoff,

whereas for T = 0.05 the spectrum is finite because of the absence of multi

flows. Note that even for the single flow regime the light ion spectrum can be

quasi-monoenergetic if the electron temperature is at the level T & 0.1 − 0.2.

In a real experiment there is always a natural spread of the cluster sizes.

Let us suppose that cluster radii are distributed according to the Gaussian

law: ∝ exp
[

−
(

(R−R0)/∆R
)2]

, where R0 is the clusters average radius and

∆R is the radius spread. Asymptotic light ion spectra for T = 0.05, T = 0.3

and CE regime for ∆R/R0 = 3% and 10% are given in Fig. 3.11 by the, corre-

spondingly, dashed and dotted lines. The spectrum slightly broadens for the

small temperature case and becomes much broader for the high temperature

and especially CE cases.

To understand the resulting spectra, below an analytical solution of plasma
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explosion for an impurity of light ions (ρ� 1) in the Coulomb explosion regime

is presented. In this case the light ions move in the field [77, 156]:

E(t, r) =











r(1 − u2)3/3 , r < (1 − u2)−1 ,

r−2/3 , r ≥ (1 − u2)−1 ,
(3.10)

where t =
√

6
u
∫

0

dξ/(1 − ξ2)2.

The distribution function of the radial velocity of the cold light ions can

be calculated as [77]

F (t, r, vr) =
1

r2

∫ ∞

0

dhh2 n0(h) δ(r − R) δ(vr − U) , (3.11)

where the functions R = R(t, h) and U = U(t, h) are the solutions to the

following equations:

Rt = U, Ut = w(t, R)/R2, R |t=0= h, U |t=0= 0, (3.12)

w(t, r) = (Ze/M)r2E(t, r). In Eq. (3.12), the field E is given by Eq. (3.10).

The Eqs. (3.10) – (3.12) allow one to obtain all the light ion characteristics

including the energy spectrum. The asymptotic spectrum of the light ions

corresponding to this solution is shown in Fig. 3.11 by the dash-dotted line.

This spectrum is close to the one obtained in the numerical simulation so long

as ρ is not too large. It is therefore concluded that the theory given above

is applicable for ρ . 20%. The dependence of the cutoff energy (in physical

units) on the kinematic parameter following from Eqs. (3.10) – (3.12) is defined

by a simple approximated formula

εmax ≈
3

2

Z1eQ1

R

[

µ− 1/3
]M

M1
, (3.13)
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where Q1 is the total charge of the heavy component.

The formula (3.13) can be generalized to the case of a finite temperature

comparable to the Coulomb energy of the ion core in a qualitative manner.

An estimation of the total charge of electrons inside the ion core is Qe ∼

Q1 · (R/(R + λD))3. The negative electron charge partly compensates the

charge Q1 in (3.13), thus giving Q1 − Qe as an effective accelerating charge.

Therefore, for large finite temperatures the formula (3.13) may be written as

εmax ≈
3

2

Z1eQ1

R

(

1 − (
1

1 +
√

T/2
)3

)[

µ− 1/3
]M

M1

. (3.14)

The effective charge concept corresponds to approximately the same shape of

spectrum. Lines 2 and 3 in Fig. 3.11 clearly demonstrate that this is the case

for large enough temperatures. If the temperature decreases, one has to use

the results of numerical calculations.

Let us now discuss the mechanism of narrow spectrum formation in more

detail for the case of Coulomb explosion of a plasma with an impurity of

light ions. If µ → ∞ (immobile heavy ions) the light ions spectrum is broad

because of the significant potential difference between center and boundary of

the heavy core. The light ions from the boundary appear much slower than

those from the center in this case. If the heavy ions can move (finite µ), this

affects only those light ions which have not left the heavy core. This results

in reduced acceleration of the inner light ions and better monoenergeticity. If

µ is too low, (µ − 1 � 1), only a small fraction of them is able to leave the

core although being monoenergetic. When the light particles are accelerated

inside the heavy core, their spectrum is broad, dN/dε ∼ √
ε. In this way, a

modest µ ∼ 5 leads to a considerable number of monoenergetic particles. This

is illustrated by the case of µ=3 shown in Figs. 3.10, 3.11 that can be applied,
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for example, to a mixture of carbon and hydrogen, C+4H+1. Such ionization

states can be obtained from interaction of a carbohydrate cluster with a laser

having intensity of 1018 W/cm2 or higher. The cluster radius in this case may

be on the order of 20 nm to fall into temperature regimes discussed. The

r2 dependence of the number of particles per dr is another reason for high

numbers of monoenergetic particles.
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Figure 3.12: (a) The asymptotic spectrum width vs. ρ0; (b) the number of
monoenergetic particles (solid lines) and the number of particles participating
in multi flows (dash-dotted lines) vs. ρ0. µ = 3, T = 0.05 (1), T = 0.3 (2),
and T � 1, CE regime (3).

The dependencies ∆ε/εmax and ∆N/N on the relative charge ratio ρ0 for

different electron temperatures can be discussed in more detail. As was pointed

out above, for small ρ0, light particles experience multi-flows. The size of

the multi-flow sheath is universal in this case and does not depend on ρ0 for

ρ0 � 1. With increasing light ion density, the self-field of the formed ion shell

somewhat equalizes the total accelerating field and this leads to reduction of

overtaking of the front particles by the back ones. Correspondingly, the multi-

flow sheath decreases, leading to an improvement in the spectrum. At some ρ0,

when the total light ion charge is comparable in magnitude to the heavy ion

charge, the expansion becomes a single flow. At the same time the spectrum

loses monochromaticity with a decreasing of the number of monoenergetic
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particles. For CE, multi-flow does not arise for ρ0 & 0.4 (cf. [156] where

the single-flow regime for a bi-layered spherical plasma was restricted to the

ρ0 & 0.38) and for smaller ρ0 with finite temperature. This is illustrated

in Fig. 3.12. The number of particles participating in multi flows is shown

in Fig. 3.12b. The remarkable feature is that for a wide range of electron

temperatures 0.04 < T < ∞ the spectra of light ions are (1) narrow and (2)

contain a considerable fraction or majority of the particles. It is also noted

that for a wide range of electron temperatures the cutoff energy weakly changes

(within 10 – 20%) with change of ρ in the range 0 ≥ ρ0 & 1.
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Figure 3.13: Asymptotic spectra of homogeneous (solid lines) and heteroge-
neous (dashed lines) compositions of the targets. µ = 3, ρ0 = 0.33. (a)
Coulomb explosion regime; (b) T = 0.05.

The target structuring is another important parameter which can affect

the resulting spectrum of light ions. As was mentioned above, a heterogeneous

target ([79, 156]) should provide a high energy of the light ions because the light

particles are initially located in the narrow domain near the maximum electric

field. The small thickness of the layer is a factor of good monoenergeticity. For

example, if ρ0 = 1/3, µ = 3 and mass densities of the species are approximately

equal to each other, the thickness of the light ions layer is only 3-4% of the

cluster radius. However, as follows from Fig.3.13, a homogeneous target with

the same ρ0 does provides an even better particle monoenergeticity and has
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approximately the same energy for both CE and thermal-like regimes. It is

obvious that the manufacture of homogeneous micro-targets is simpler that

offers an advantage of their practical use.

3.6 Conclusion

In this Chapter, the problem of explosion of a spherical plasma composed

of one or two ionic species, motionless at t = 0 and hot single-temperature

electrons, was solved numerically with the help of specially developed gridless

particle code. The code was designed with the capability of describing the

evolution of an initial 3D particle velocity distribution under the conditions

of spatial spherical symmetry. The code was tested on the problems having

analytical solutions and has demonstrated to give the matching results.

Using the example of Coulomb explosion, the limiting case of plasma explo-

sion with electron temperature Te → ∞, it was shown that the kinetic effects

determine the formation of collisionless shocks in the case of inhomogeneous

initial particle density profile of plasma. The energy spectra and dynamics of

shocks was presented and discussed.

For the finite temperature of electrons, the spectra of resulting ions were

obtained for the wide range of temperatures 0 . Te ≤ ∞. It was shown that

for finite temperatures, the spectra of ions become quantitatively and qualita-

tively different from those of the CE regime. For explosion of inhomogeneous

plasmas, the collisionless shocks still exist but appear at later times compared

to the Coulomb explosion. In the limit Te → 0, the ion spectrum almost does

not depend on the particle density profile and can be described by a simple

analytical expression.

Explosion of plasmas composed of two ionic species was shown to be able
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to serve as a source of monoenergetic ions, with monochromaticity holding

within a wide range of electron temperatures, from few percents of the plasma

Coulomb energy up to values much higher than the Coulomb energy. As in the

case of a single ionic species plasma, monoenergetic ions participate in multi

flows that can not be studied within the hydrodynamic approach and require

kinetic description. A further study has demonstrated an optimum light ion

concentration at levels of up to few tens of percent for the best spectrum

monochromaticity. The number of monoenergetic ions can be as high as 70-

80% of the total light ions. Changing of spherical plasmas radii, their radial

distribution, light ions concentration, kinematic parameter and laser intensity

allows one to control the monoenergeticity and cutoff energy of the light ions.

This could be a way for optimization of laser triggered nuclear reactions in,

for expample, a cluster gas.

The 1D model presented here can be improved by having a two-temperature

velocity distribution function of electrons which is much more realistic. A

complete study would require 3D electromagnetic simulations with laser and

ionization physics included. This goal is currently beyond the present study

but can be fulfilled in the future.
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Appendix A

Electron acceleration

A.1 Charged particle in a plane electromag-

netic wave

The motion of charged particles in a relativistically strong plane electromag-

netic wave is one of a few problems where the solution can be found exactly.

Its solution can be found in a number of textbooks (see, for example, [164]).

Here is another derivation.

Let the particle of charge q and mass m be at rest at time t = 0:

~r(0) = 0,

~p(0) = 0,

(A.1)

where ~r and ~p are, correspondingly, particle coordinate and momentum. Let

this particle move in a plane polarized plane electromagnetic wave, which,

written in CGS units, has form:

~E(~r, t) = E0 · (0, cos(kx− ωt+ ϕ0), 0),

~B(~r, t) = E0 · (0, 0, cos(kx− ωt+ ϕ0)),

(A.2)
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where E0 is the wave amplitude, ω is the wave frequency, k = ω/c, c is the

speed of light, and ϕ0 is the initial phase of the wave.

In the absence of radiation losses, the particle equation of motion is

d~p

dt
= q

(

~E +
1

c
[~v ×B]

)

,

d~r

dt
=

~p

m
√

1 + (~p/mc)2
,

(A.3)

where ~v = ~p/(m
√

1 + (~p/mc)2) is the particle velocity.

To solve equation (A.3), let us introduce vector potential ~A:

∇× ~A = ~B. (A.4)

In the absence of electrostatic fields, which is the case for the plane electro-

magnetic wave, the vector potential defines also the electric component of the

field:

~E = −1

c

∂ ~A

∂t
. (A.5)

Substituting (A.5) into the first equation of (A.3), one gets

d~p

dt
= q

(

− 1

c

∂ ~A

∂t
+

1

c
[~v × (∇× ~A)]

)

. (A.6)

Using vector identity

~v × rot( ~A) = ∇ · ( ~A · ~v) − (~v · ∇) ~A, (A.7)

one can rewrite (A.6) in the following form:

d~p

dt
= −q

c

(∂ ~A

∂t
+ (~v · ∇) ~A−∇( ~A · ~v)

)

= −q
c

(d ~A

dt
−∇( ~A · ~v)

)

, (A.8)
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or, that is equivalent,

d

dt

(

~p+
q

c
~A
)

=
q

c
∇( ~A · ~v). (A.9)

Equation (A.9) is the general equation of motion of a charged particle in

an electromagnetic field defined by vector potential ~A. To proceed further, let

us note that as both ~E and ~B have a simple form given by (A.2), the vector

potential of the plane wave also depends only on the quantity kx− ωt:

~A =
E0

k
· (0, sin(kx− ωt+ ϕ0), 0). (A.10)

For this reason,

∂

∂y
(~v · ~A) =

∂

∂z
(~v · ~A) = 0. (A.11)

Substituting (A.11) into (A.9), one gets

d

dt

(

~p+
q

c
~A
)

y
=

d

dt

(

~p+
q

c
~A
)

z
= 0, (A.12)

or, more generally,

d

dt

(

~p+
q

c
~A
)

⊥
= 0, (A.13)

where ⊥ sign means a component in the direction perpendicular to x̂. Equation

(A.13) defines the first integral of particle motion in a plane electromagnetic

wave.

Let us now form a scalar product of the first equation in (A.3) with ~v:

d~p

dt
· ~v = q

(

~E +
1

c
[~v ×B]

)

· ~v. (A.14)

It is easy to see that [~v × B] · ~v = 0 because ~v × B is perpendicular to ~v.
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Therefore, Eq. (A.14) turns into

d~p

dt
· ~v = q ~E · ~v. (A.15)

To evaluate the left part of Eq. (A.15), let’s differentiate the square of particle

total energy ε2 = (γmc2)2 = p2c2 + m2c4, where γ =
√

1 + (~p/mc)2 is the

particle relativistic factor:

dε2

dt
= 2~pc2 · d~p

dt
= 2γmc2~v · d~p

dt
= 2ε

d~p

dt
· ~v. (A.16)

On the other hand,

dε2

dt
= 2ε

dε

dt
. (A.17)

Combining together Eqs. (A.16) and (A.17), one gets

d~p

dt
· ~v =

dε

dt
. (A.18)

In this way, Eq. (A.15) reads

q ~E · ~v =
dε

dt
. (A.19)

Returning back to Eq. (A.9), one finds that

d

dt

(

~p +
q

c
~A
)

x
=
q

c

∂

∂x
( ~A · ~v) =

q

c

∂ ~A

∂x
· ~v. (A.20)

However, denoting kx− ωt = ξ, it is easy to find that

∂ ~A

∂x
=

d ~A

dξ

∂ξ

∂x
=
ω

c

d ~A

dξ
=

1

c

(

− ∂ξ

∂t

)d ~A

dξ
= −1

c

∂ ~A

∂t
= ~E. (A.21)
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Substituting of Eqs. (A.21) and (A.19) into (A.20) gives

d

dt

(

~p +
q

c
~A
)

x
=
q

c
~E · ~v =

1

c

dε

dt
. (A.22)

Note that the fact that ~A is the vector potential of a plane wave was directly

used in Eq. (A.21). Equation (A.10) suggests another useful property of the

plane wave vector potential: Ax = 0. Substituting this into one gets

d

dt

(ε

c
− px

)

= 0, (A.23)

or

d

dt

(

γ(1 − vx
c

)
)

= 0. (A.24)

Equation (A.24) is the second integral of particle motion.

The integrals of motion (A.13) and (A.24) define important properties of

the particle motion. Recalling that the particle is subject to the initial condi-

tions (A.1) at t = 0, one can immediately obtain from the first integral:

~p⊥ =
q

c

(

~A0 − ~A
)

⊥
, (A.25)

where ~A0 is the vector potential at the particle position at t = 0. The second

integral, combined with particle initial conditions (A.1) results in

γ(1 − vx
c

) = 1. (A.26)

After a simple algebra, one can get from (A.26) the following

px +mc = γmc, (A.27)
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or

p2
x + 2mcpx +m2c2 =

ε2

c2
= m2c2 + p2 = m2c2 + p2

x + p2
y + p2

z, (A.28)

which results in

px =
1

2mc
(p2
y + p2

z). (A.29)

Equations (A.25) and (A.29) express direct dependence of the particle mo-

mentum on the field vector potential. In their derivation, the particular be-

havior of the field (i.e., its being a plane wave) was used twice: in Eqs. (A.11)

and (A.21). Of course, Eq. (A.25) contains dependence on the particle posi-

tion in its right hand side which can be obtained only after solving the second

equation in (A.3). However, some important conclusions can be drawn even

from the limited information enclosed in Eqs. (A.25) and (A.29). To do it, let

us transfer to the dimensionless coordinates ~̃p and ξ:

~̃p =
~p

mc
(A.30)

and kx − ωt = ξ, as before in Eq. (A.21). Making transformation to the

dimensionless coordinates in Eqs. (A.25) and (A.29) and substituting Eq.

(A.10) into (A.25), one can obtain:

p̃x =
p̃2
y

2
,

p̃y = a0[sin(ϕ0) − sin(ξ + ϕ0)],

p̃z = 0,

(A.31)

where

a0 =
qE0

mωc
(A.32)
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is the dimensionless field parameter. One can see from Eq. (A.31) that as ξ

changes, the quantity p̃y changes between a0[sin(ϕ0) − 1] and a0[sin(ϕ0) + 1],

i.e., it is proportional to a0, whereas p̃x is proportional a2
0/2. In this way, the

parameter a0 defines the behavior of particle dynamics: if a0 � 1 the motion

is nonrelativistic, with px � py, i.e., predominantly in the transverse direction.

When a0 & 1, the motion becomes relativistic, with momenta being relativistic

in both transverse and longitudinal directions. If a0 � 1, the motion is ultra-

relativistic, with px � py � mc. a0 ≈ 1 for the intensity I ≈ 1018 W/cm2 of

a light having wavelength λ ≈ 1µm.

As the particle velocity is always smaller than speed of light, the quantity

ξ = kx(t) − ωt monotonically decreases, although in a complicated nonlin-

ear way. However, because ξ enters momenta (A.31) as an argument of a

trigonometric function, the momenta are periodical in ξ and, as a consequence

of monotonic dependence ξ(t), are periodical in time. Therefore, particle γ-

factor γ =
√

1 + p̃2
x + p̃2

x + p̃2
x is also periodical in time, with

min(γ) =1 (for ξ = 2πn),

max(γ) =

√

1 + a2
0(1 + sinϕ0)2 +

a4
0(1 + sinϕ0)4

4
=

1 +
a2

0

2
(1 + sinϕ0)

2 (for ξ = 2πn− π

2
− ϕ0),

(A.33)

where n is an integer number. In an ultrarelativistic regime (a0 � 1),

max(γ) ∝ a2
0. (A.34)

Let us now integrate the second equation in (A.3) to find the particle tra-

jectory. It is also convenient to work in the dimensionless spatial coordinates
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and time here:

~̃r =
~r

λ
=
k~r

2π
,

t̃ =
ωt

2π
.

(A.35)

In the dimensionless coordinates,

ξ = 2π(x̃− t̃), (A.36)

and the second equation of (A.3) has form

dx̃

dt̃
=
p̃x
γ

=
a2

0[sinϕ0 − sin(ξ + ϕ0)]
2/2

1 + a2
0[sinϕ0 − sin(ξ + ϕ0)]2/2

, (A.37)

dỹ

dt̃
=
p̃y
γ

=
a0[sinϕ0 − sin(ξ + ϕ0)]

1 + a2
0[sinϕ0 − sin(ξ + ϕ0)]2/2

, (A.38)

dz̃

dt̃
= 0. (A.39)

To solve Eq. (A.37), let us note that

dξ

dt̃
=
∂ξ

∂t̃
+
∂ξ

∂x̃

dx̃

dt̃
= 2π

(dx̃

dt̃
− 1

)

. (A.40)

Substituting (A.37) into (A.40), one gets

dξ

dt̃
=2π

( a0[sinϕ0 − sin(ξ + ϕ0)]

1 + a2
0[sinϕ0 − sin(ξ + ϕ0)]2/2

− 1
)

=

− 2π
1

1 + a2
0[sinϕ0 − sin(ξ + ϕ0)]2/2

.

(A.41)

Equation (A.41) can be integrated using method of separation of variables:

− 1

2π

∫ ξ

0

(

1 +
a2

2
[sinϕ0 − sin(ξ + ϕ0)]

2
)

dξ = t̃, (A.42)
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or, evaluating the integral in the left hand side,

− 1

2π

{

ξ[1 +
a2

0

4
(1 + 2 sin2 ϕ0)] −

3

8
a2

0 sin(2ϕ0)+

a2
0 sinϕ0 cos(ξ + ϕ0) −

a2
0

8
sin[2(ξ + ϕ0)]

}

= t̃.

(A.43)

Substituting x̃ = t̃ + ξ/(2π) (cf. (A.36)), one can obtain a similar relation

between x̃ and ξ:

x̃ = − 1

2π

{a2
0

4
ξ(1 + 2 sin2 ϕ0) −

3

8
a2

0 sin(2ϕ0)+

a2
0 sinϕ0 cos(ξ + ϕ0) −

a2
0

8
sin[2(ξ + ϕ0)]

}

.

(A.44)

To solve Eq. (A.38), let us note that as dỹ/dt̃ is a function of only ξ and

t̃ can be represented, according to Eq. (A.43), as a function of ξ, ỹ is also a

function of ξ. Therefore,

dỹ

dt̃
=

dỹ

dξ

dξ

dt̃
, (A.45)

and

dỹ

dξ
=

dỹ/dt̃

dξ/dt̃
. (A.46)

Substituting Eqs. (A.38) and (A.41) into (A.46), one gets an easily integrable

equation:

dỹ

dξ
= − a0

2π
[sinϕ0 − sin(ξ + ϕ0)], (A.47)

which has the following solution for the boundary condition yξ=0 = 0:

ỹ = − a0

2π
[ξ sinϕ0 − cosϕ0 + cos(ξ + ϕ0)]. (A.48)

Finally, the last equation of motion, Eq. (A.39) gives a trivial solution

z = 0. (A.49)
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Equations (A.31), (A.44), (A.48) and (A.49) give the dimensionless coordi-

nates of the particle in the phase space as functions of ξ given by Eq. (A.36).

However, as the dimensionless time t̃ is also a function of ξ (A.43), ξ can be

considered as a parameter:

t̃(ξ) = − 1

2π

{

ξ[1 +
a2

0

4
(1 + 2 sin2 ϕ0)] −

3

8
a2

0 sin(2ϕ0)+

a2
0 sinϕ0 cos(ξ + ϕ0) −

a2
0

8
sin[2(ξ + ϕ0)]

}

,

x̃(ξ) = − 1

2π

{a2
0

4
ξ(1 + 2 sin2 ϕ0) −

3

8
a2

0 sin(2ϕ0)+

a2
0 sinϕ0 cos(ξ + ϕ0) −

a2
0

8
sin[2(ξ + ϕ0)]

}

,

ỹ(ξ) = − a0

2π
[ξ sinϕ0 − cosϕ0 + cos(ξ + ϕ0)],

z̃(ξ) = 0,

p̃x(ξ) =
a2

0

2
[sin(ϕ0) − sin(ξ + ϕ0)]

2,

p̃y(ξ) = a0[sin(ϕ0) − sin(ξ + ϕ0)],

p̃z(ξ) = 0.

(A.50)

Equations (A.50) represent the solution, given in the parametric form, to the

problem of charged particle motion in a plane polarized plane electromagnetic

wave.

An example of particle trajectory and γ-factor for a = 1 and ϕ = 0, π/6, π/2

is given in Fig. A.1. Note that the period of γ-factor oscillations in the labo-

ratory system is not equal to the wave period.

A.2 Ponderomotive force

The ponderomotive force is a nonlinear force arising from dependence of am-

plitude of an oscillatory field on coordinate. For the expressions derived below
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Figure A.1: (Color) Particle trajectory (a) and γ(t) (b) for a = 1 and ϕ =
0, π/6, π/2.

to give correct results, the amplitude of oscillations has to be much smaller

than the characteristic distance of the field amplitude change.

Here, the derivation is carried out for the simplest case of slow quasi-

static field oscillations ( ~B = 0) and non-relativistic particle motion. A similar

derivation for a more general case of small but nonzero ~B can be found in Ref.

[165].

Equations of motion of a non-relativistic particle in an oscillating electric

field are
d~r

dt
= ~v,

d~v

dt
=

q

m
~E.

(A.51)

The electric field ~E is supposed to oscillate with a frequency ω:

~E = ~Es cos(ωt), (A.52)

where

~Es = ~E0 + ~E1(~r). (A.53)

~E0 in Eq. (A.53) is supposed to be a constant and ~E1 a slow function of

coordinate.
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In the zeroth order, ~E = ~E0, and equations of motion have solution

δ~v0 =
q

mω
~E0 sin(ωt),

δ~r0 =
q

mω2
~E0 cos(ωt),

(A.54)

where δ~v0 and δ~r0 are deviations of the velocity and coordinate from the zero

field values.

In the first order, the field amplitude ~Es can be written as

~Es = ~E0 + δ~r0 · ∇ ~E1. (A.55)

Substituting Eqs. (A.55) and (A.54) into (A.51) one can get

d~v

dt
=

q

m

(

~E0 −
q

mω2
~E0 · ∇ ~E1 cos(ωt)

)

cos(ωt). (A.56)

Let us now average Eq. (A.56) over one oscillation period:

〈

dp

dt

〉

= − q2

mω2

〈

~E0 · ∇ ~E1 cos2(ωt)
〉

= − q2

2mω2

(

~E0 · ∇ ~Es

)

, (A.57)

where ~p = m~v and angle brackets denote averaging over one oscillation period.

Using vector identity ~E · ∇ ~E = ∇( ~E2)/2− ~E ×∇× ~E and ∇× ~E ≈ 0 for the

quasi-static field considered, and setting ~E0 ≈ ~Es one can rewrite Eq. (A.57)

in a more conventional form

~Fp = − q2

4mω2
∇

(

~E2
s

)

= − q2

2mω2
∇

〈

~E2
〉

, (A.58)

where ~Fp = 〈dp/dt〉 is the ponderomotive force. Eq. (A.58) holds in a more

general case of non-relativistic particle motion in an oscillating electromagnetic

field with slow-varying amplitude.
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An expression for a relativistic motion can also be derived. Such derivation

is performed in, for example, Refs. [60, 166]. The corresponding expression

for the relativistic ponderomotive force reads

~Fp = − q2

2〈γ〉mc2∇
〈

~A2
〉

, (A.59)

where 〈γ〉 is the oscillation period averaged γ-factor of the particle and ~A is the

field vector potential. It can be seen that in the non-relativistic limit 〈γ〉 → 1

the Eqs. (A.59) and (A.58) coincide.

A.3 Stratton-Chu integrals

Stratton-Chu integrals have originally appeared in the paper [109] in 1939. The

authors of [109] have derived an integral electromagnetic field representation

being exact solution to the Maxwell equations. The idea was to use this

representation in problems of diffraction of electromagnetic waves. It was not

until appearance of fast computers, however, when the integrals could be used

in practice. The authors of [109] themselves were unable to calculate the

integrals exactly in their example of diffraction of electromagnetic waves on a

rectangular slit and had to use paraxial approximation. On a fast computer,

however, the integrals can be calculated numerically.

Although the derivation given in [109] is clear, here the integrals will be re-

derived, with some steps, omitted in [109], shown explicitly. As the integrals

are applied in vacuum in this Thesis, the derivation will also be done for

vacuum fields ~E and ~B. Unlike [109], the derivation here will be done in CGS

units.

Let the emitting surface be A, and the observer is located at point ~r0 =
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(x0, y0, z0). The A is supposed to be a closed surface, with ~r0 being inside it.

Let S be the surface of volume V bounded by A, from one side, and a small

sphere of radius δr around ~r0, from the other side.

Let ~P (~r) and ~Q(~r) be vector functions, twice smooth inside V and on its

surface. Then, by divergence theorem,

∫

V

∇ · (~P ×∇× ~Q)dV =

∮

S

(~P ×∇× ~Q) · d~S, (A.60)

where d~S is the vector of length dS looking outside of the volume. Using the

vector identity [167]

∇ · ( ~A× ~B) = ~B · (∇× ~A) − ~B · (∇× ~A) (A.61)

in the left side of (A.60), one can obtain

∫

V

(

(∇× ~Q) · (∇× ~P ) − ~P · (∇×∇× ~Q)
)

dV =

∮

S

(~P ×∇× ~Q) · d~S.
(A.62)

It is noted in [109] that if ~P = ~Q = ~E, (A.62) is equivalent to the Poynting

theorem. As ~P and ~Q are arbitrary they can be exchanged in (A.62):

∫

V

(

(∇× ~P ) · (∇× ~Q) − ~Q · (∇×∇× ~P )
)

dV =

∮

S

( ~Q×∇× ~P ) · d~S.
(A.63)

Subtracting now (A.63) from (A.62), one gets:

∫

V

(

~Q · (∇×∇× ~P )−~P · (∇×∇× ~Q)
)

dV =

∮

S

(~P ×∇× ~Q− ~Q×∇× ~P ) · d~S.
(A.64)
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Equation (A.64) is the vector analog of the Green’s theorem [168] and is the

basic formula for the derivation of Stratton-Chu integrals.

Let us now apply fields equations to the identity (A.64). In vacuum, the

field equations read

∇× ~E = −1

c

∂ ~B

∂t
,

∇× ~B =
1

c

∂ ~E

∂t
.

(A.65)

Taking rotation of both parts of equations in (A.65), one can get wave equa-

tions:

∇×∇× ~E +
1

c2
∂2 ~E

∂t2
= 0,

∇×∇× ~B +
1

c2
∂2 ~B

∂t2
= 0,

(A.66)

which, in the frequency domain, have form

∇×∇× ~E − k2 ~E = 0,

∇×∇× ~B − k2 ~E = 0,

(A.67)

where k = ω/c, ω being the frequency of the wave mode.

Let us now set in (A.64) ~P = ~E and ~Q = ψ · ~a, where ψ = eikr/r, r = |~r|,

~r = (x− x0, y − y0, z − z0), (x, y, z) being the point on the surface S, and ~a

is a unit vector having some arbitrary direction. As ~a does not depend on ~r,

then, using vector identities [167]

∇× (f ~A) = f∇× ~A+ ∇f · ~A,

∇× ( ~A× ~B) = ~A(∇ · ~B) − ~B(∇ · ~A) + ( ~B · ∇) ~A− ( ~A · ∇) ~B,

(A.68)
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one can get

∇× ~Q = ∇× (ψ · ~a) = ∇ψ × ~a

∇×∇× ~Q = ∇×∇× (ψ · ~a) = ∇× (∇ψ × ~a) =

−∇2ψ~a+ (~a · ∇)∇ψ = −∇2
(eikr

r

)

~a+ (~a · ∇)∇ψ.

(A.69)

It is easy to see that ∇2(eikr/r) = −k2eikr/r. Indeed,

∇2
(eikr

r

)

=
1

r
· ∇2eikr + 2∇1

r
· ∇eikr + eikr∇2 1

r
,

∇eikr = ik eikr∇r,

∇2eikr = ik eikr∇2r − k2(∇r)2eikr,

∇1

r
= −∇r

r2
,

∇21

r
= − 1

r2
∇2r +

2

r3
(∇r)2.

(A.70)

Substituting derivatives of r:

∇r =
~r

r
,

(∇r)2 = 1,

∇2r =
3r − r2/r

r2
=

2

r

(A.71)

into Eq. (A.70), one can get

∇2
(eikr

r

)

=
1

r
·
[

ik eikr∇2r − k2(∇r)2eikr
]

−

2
∇r
r2

· ik eikr∇r + eikr ·
[2(∇r)2

r3
− ∇2r

r2

]

=

eikr

r

(2ik

r
− 2

r2
+

2

r2
− 2ik

r
− k2

)

= −k2 e
ikr

r
.

(A.72)

Noting that for a constant ~a, (~a · ∇)∇ψ = ∇(~a · ∇ψ), substituting Eq.

(A.72) into Eq. (A.69) and using the first equation in (A.67), one can write
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all the terms from left and right sides of Eq. (A.64):

~P = ~E,

∇×∇× ~P = ∇×∇× ~P = k2 ~E,

~Q = ~aψ,

∇×∇× ~Q = ~ak2 ψ + ∇(~a · ∇ψ),

~P ×∇× ~Q = ~E ×∇× ~a · ψ,

~Q×∇× ~P = ψ ×∇× ~E.

(A.73)

Let us now substitute relations (A.73) into (A.64).

∫

V

(

ψ~a · k2 ~E − ~E · ~ak2ψ − ~E · ∇(~a · ψ)
)

dV =

∮

S

(

~E × (∇ψ × ~a) − ikψ~a× ~B
)

· ~n dS,

(A.74)

where ~n is the unit vector looking outside of V . In the right hand side of

(A.74), Maxwell equation ∇× ~E = ik ~B was used. Due to the equality

~E · ∇f = ∇( ~E · f) − f
*

0
∇ · ~E = ∇( ~E · f), (A.75)

the left hand side of (A.74) can be transformed as follows:

−
∫

V

(

~E · ∇(~a · ∇ψ)
)

dV = −
∫

V

∇
(

~E · (~a · ∇ψ)
)

dV =

−
∮

S

(

~E · (~a · ∇ψ)
)

· ~n dS = −
∮

S

(~a · ∇ψ)( ~E · ~n) dS =

−
∮

S

~a ·
(

( ~E · ~n) · ∇ψ
)

dS.

(A.76)

Let us now transform the right hand side of (A.74). First, let us note that

~E × (∇ψ × ~a) = ∇ψ · ( ~E · ~a) − ~a · ( ~E · ∇ψ). (A.77)
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In this way,
∮

S

(

~E × (∇ψ × ~a)
)

· ~n dS =

∮

S

(

(∇ψ · ~n)( ~E · ~a) − ~a · ( ~E · ∇ψ) · ~n
)

dS =

∮

S

(

~a · ~E(∇ψ · ~n) − ~a · ( ~E · ∇ψ) · ~n
)

dS =

∮

S

~a ·
(

~E(∇ψ · ~n) − ~n( ~E · ∇ψ)
)

dS =

∮

S

~a ·
(

∇ψ × ( ~E × ~n)
)

dS.

(A.78)

Finally, due to equality ~A · ( ~B × C) = ( ~A× ~B) · ~C [167],

∮

S

ik ψ(~a× ~B) · ~n dS = ik

∮

S

~a · ( ~B × ~n)ψ dS. (A.79)

Substituting equations (A.76), (A.78) and (A.79) into (A.74), one can obtain

the following relation:

∮

S

~a ·
(

( ~E · ~n) · ∇ψ + ∇ψ × ( ~E × ~n) − ikψ( ~B × ~n)
)

dS = 0. (A.80)

As the vector ~a was supposed to have arbitrary direction, the following vector

equation should hold:

∮

S

(

( ~E · ~n) · ∇ψ + (~n× ~E) ×∇ψ + ikψ(~n× ~B)
)

dS = 0. (A.81)

Let us recall now that S is composed of A, the outer surface, and that of a

sphere of radius δr around the observation point r0. Let this sphere surface be

Aδr. Let us now calculate the part of integral (A.81) over the surface Aδr for

δr → 0. As the surface area of the sphere is 4πδr2 and ψ(r) = exp(ikr)/r ∼

1/r, the contribution to the integral of the term ikψ(~n × ~B) is zero. On the
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other hand,

∇ψ =
∇eikr
r

+ eikr∇1

r
= ∇r

( ik eikr

r
− eikr

r2

)

= ~n
eikr

r
(ik − 1

r
). (A.82)

For this reason,

( ~E · ~n) · ∇ψ+(~n× ~E) ×∇ψ =

(ik − 1

δr
)
eikδr

δr

(

(~n · ~E) · ~n+ (~n× ~E) × ~n
)

.

(A.83)

Now, it’s easy to see that (~n · ~E) · ~n + (~n × ~E) × ~n = ~E. Indeed, if (~n · ~E) ·

~n + (~n × ~E) × ~n = ~F then, as this can be easily verified, ~n · ~F = ~n · ~E and

~n × ~F = ~n × ~E. For this reason, vector ~A = ~F − ~E is both parallel and

perpendicular to ~n and therefore is zero. In this way,

∮

Sδr

(

( ~E · ~n) · ∇ψ + (~n× ~E) ×∇ψ
)

dS =

∮

Sδr

~E · (ik − 1

δr
) · e

ikδr

δr
dS −→

δr→0
−~E(~r0)

∮

Sδr

dS

δ2
r

= −4π ~E(~r0).

(A.84)

Substituting (A.84) into Eq. (A.81) one obtains the first Stratton-Chu integral

for the continuous source on surface A:

~E(~r0) =
1

4π

∮

A

(

(~n · ~E)∇ψ + (~n× ~E) ×∇ψ + ikψ(~n× ~B)
)

dS. (A.85)

Equation (A.85) gives an integral representation of the Fourier component

with frequency ω = kc of the electric field component at the point ~r. If the

fields on the surface depend on time through eiωt, then (A.85) holds in the

time domain as well.

Taking ~P = ~B in (A.64) and repeating the steps shown above gives the
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second Stratton-Chu integral, for the field ~B:

~B(~r0) =
1

4π

∮

A

(

− (~n · ~B)∇ψ − (~n× ~B) ×∇ψ + ikψ(~n× ~E)
)

dS. (A.86)

The integrals (A.85) and (A.86) are the solutions to the Maxwell equations

provided the fields ~E and ~B are continuous on the integration surface A.

This statement is generalized in [109] where it is shown that if the tangential

components of the fields ~E and ~B suffer a discontinuity on a contour C and the

fields are continuous everywhere else on the A then the following expression is

the solution to the Maxwell equations:

~E(~r0) =
1

4π

∮

A′

[ik(~n× ~Bs)ψ + (~n× ~Es) ×∇ψ+

(~n · ~Es)∇ψ]dS +
1

4πik

∮

C

∇ψ( ~Bl · d~l),

~B(~r0) =
1

4π

∮

A′

[ik( ~Es × ~n)ψ + (~n× ~Bs) ×∇ψ+

(~n · ~Bs)∇ψ]dS − 1

4πik

∮

C

∇ψ( ~El · d~l),

(A.87)

where ~Es, ~Bs are field values on the surface A′ and ~El, ~Bl are difference

between those to the right and to the left of the contour C. Equation (A.87)

gives the complete set of Stratton-Chu integrals.
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Appendix B

Plasma expansion

B.1 Self-similar expansion of isothermal 1D

planar plasma into vacuum

At time t = 0, the planar plasma is supposed to occupy the half of the space.

At t > 0 the hot electrons try to escape plasma and thus create a nonzero

electrostatic field which slows them down and pushes ions from plasma. Let

x be the space coordinate. The hydrodynamic equations describing evolution

of particle density ni of ions and their velocity vi are

∂ni
∂t

+
∂

∂x
(nivi) = 0,

∂vi
∂t

+ vi
∂vi
∂x

= −Ze
mi

∂Φ

∂x
.

(B.1)

In Eq. (B.1), the first equation is the continuity equation and the second

one is the equation of motion. Ze is the charge of ions, mi their mass and

Φ is the electrostatic potential. The hydrodynamic closure is provided by the

conditions of hydrodynamic equilibrium, resulting in Boltzmann relation for
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electron particle density,

ne = n0 exp (eΦ/Te) , (B.2)

quasi-neutrality,

ne = Zni, (B.3)

and isothermality,

Te = const, (B.4)

where Te is the electron temperature.

To find out the dynamics of expansion, one, in principle, needs to solve

Cauchy problem with differential equations given by Eq. (B.1) and the ap-

propriate boundary conditions. This is a complicated problem to solve. It

was found, however [70], that Eq. (B.1) admits a self-similar solution. To

obtain such a solution one supposes that at large times all the hydrodynamic

parameters depend on t and x only via combination x/t. In this way, a new

variable ξ, called self-similar variable, is introduced:

ξ =
1

cs

x

t
, (B.5)

where cs is speed of sound in plasma, which, for the cold ions, is

cs =

√

ZTe
mi

. (B.6)

Introducing also normalized variables

u =
vi
cs
,

φ =
eΦ

Te
,

(B.7)
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one can rewrite the continuity equation as

− x

cst2
dni
dξ

+
1

cst

d

dξ
(nivi) = 0, (B.8)

or

−ξdni
dξ

+
d

dξ
(niu) = 0. (B.9)

In the same way, the equation of motion of plasma becomes

(u− ξ)
du

dξ
= −dφ

dξ
. (B.10)

Using Eq. (B.2), the following equation is easily obtained:

1

ni

dni
dξ

=
dφ

dξ
. (B.11)

Introducing variable ν = lnni and substituting (B.11) into (B.10), one can

derive from Eqs. (B.8), (B.10) the following closed system of equations:

(u− ξ)
du

dξ
= −dν

dξ
,

(u− ξ)
dν

dξ
= −du

dξ
.

(B.12)

Substituting dν/dξ from the first equation in (B.12) into the second one, an

expression for u is obtained:

(u− ξ)2 = 1. (B.13)

A detailed analysis carried out in [70] has shown that the negative root should
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be dismissed, and thus the only valid solution is

u = ξ + 1. (B.14)

Substituting Eq. (B.14) into (B.12) and using boundary condition ni(−1) =

n0, one can get the solution for ν:

ν = −ξ + 1. (B.15)

Returning back to the physical variables, the self-similar solution to the

hydrodynamical equations in isothermal equilibrium case is

ni(x, t) = n0 exp

(

− x

cst
+ 1

)

,

vi(x, t) = cs +
x

t
.

(B.16)

B.2 Equations of r and vr of a particle in a

central field

In this Section, the equation for r and vr of a particle in a central field are

derived which are needed for understanding work of the electrostatic spherical

1D code used in Chapter 3. For simplicity, the derivation is carried out in a

plane XY; the equations of motion in an arbitrary plane can be obtained by

using the corresponding rotation and appear to have exactly the same form.

Let there be a central force Fr. Equation of motion of a particle under
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action of this force in the Cartesian coordinates are

dx

dt
= vx,

dy

dt
= vy,

m
dvx
dt

= Fx =
x

r
Fr(r),

m
dvy
dt

= Fy =
y

r
Fr(r),

(B.17)

where

r =
√

x2 + y2. (B.18)

Let the angle between ~r and OX axis be α and the one between ~r and ~v be

β (see Fig. B.1). Then the angle between ~v and OX axis is α+β. In this way,

 0 x

y

β

α

→r

→v

vr

vx

vy

Figure B.1: Geometry of particle position and velocity.

vx = v cos(α + β) = v(cosα cosβ − sinα sin β),

vy = v sin(α+ β) = v(sinα cos β + cosα sin β).

(B.19)
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Therefore, a quantinity vx cosα + vy sinα is

vx cosα + vy sinα =

v cosα(cosα cosβ − sinα sin β)+

v sinα(sinα cosβ + cosα sin β) =

v[cos2 α cosβ − sinα sin β cosα+

sin2 α cosβ + sinα sin β cosα] =

v cosβ(cos2 α+ sin2 α) = v cos β = vr.

(B.20)

I.e.,

vr = vx cosα+ vy sinα. (B.21)

Thus,
dr

dt
=

d

dt

√

x2 + y2 =
1

r

(

x
dx

dt
+ y

dy

dt

)

=

x

r
vx +

y

r
vy = vx cosα + vy sinα = vr,

(B.22)

or

dr

dt
= vr. (B.23)

Let us find now equation for vr:

dvr
dt

=
d

dt

(x

r
vx +

y

r
vy

)

=
d

dt

xvx + yvy
r

=

rd(xvx)/dt− vrxvx + rd(yvy)/dt− vryvy
r2

=

r(v2
x + xv̇x) − vrxvx + r(v2

y + yv̇y) − vryvy

r2
=

1

r
·
(

v2
x + v2

y + xv̇x + yv̇y
)

− vr
r2

(xvx + yvy).

(B.24)

The 3-rd and 4-th terms in Eq. (B.24) are easily recognizable:

1

r
(xv̇x + yv̇y) =

1

mr2
(x2Fr + y2Fr) =

Fr
m
. (B.25)
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The remaining terms in Eq. (B.24) can be evaluated as

v2
x + v2

y

r
− xvxvr + yvyvr

r2
=
v2

r
− v2

r

r
=
v2 sin2 β

r
, (B.26)

where Eq. (B.21) was used to simplify (xvx + yvy)/r. If one substitutes the

expression for the square of angular momentum

l2 = m2r2v2 sin2 β (B.27)

into the right hand side of Eq. (B.26), he easily gets

v2
x + v2

y

r
− xvxvr + yvyvr

r2
=

1

r3

( l

m

)2

. (B.28)

This equation defines so-called pseudo-force acting on the particle. It appears

from transformation into the spherical coordinates and presents even if the

interaction potential is zero. Substituting Eqs. (B.28) and (B.25) into Eq.

(B.24) one finally obtains

dvr
dt

=
1

m
Fr +

1

r3

( l

m

)2

. (B.29)

Equations (B.23) and (B.29) define the evolution of phase space coordinates r

and vr of the particle in time.
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B.3 Coulomb explosion of a uniformly charged

sphere

A uniformly charged sphere of radius R has the following dependence of charge

density on the radius r at t = 0:

ρ(r, 0) =











ρ0 if r ≤ R,

0 otherwise.
(B.30)

It is supposed that the explosion dynamics is collisionless and governed by

the Vlasov equation. The characteristics of the Vlasov equation in the case of

zero initial temperature of particles are

dr

dt
= vr,

dvr
dt

=
q

M
Er(r, t).

(B.31)

The electrostatic field Er can be evaluated by the Gauss theorem:

Er(r, t) = Qenc/r
2. (B.32)

If there are no multi-flows, i.e., if for any two characteristics having coor-

dinates r1(t) and r2(t),

r1(t) > r2(t) ⇔ r1(0) > r2(0),

r1(t) < r2(t) ⇔ r1(0) < r2(0)

(B.33)

for any t, then the value of Qenc is just the one at t = 0:

Qenc =
4π

3
n0r

3
0, (B.34)
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where r0 is the starting position of the given characteristic. In the following

discussion, the absence of multi-flows will be supposed a priori and justified

later after the solution is found.

Denoting K = qQenc/M , Eqs. (B.31), (B.32) can be rewritten as

d2r

dt2
=
K

r2
. (B.35)

Multiplying both sides of Eq. (B.35) by dr/dt, one gets

1

2

d

dt

(dr

dt

)2

=
dr

dt

K

r2
= − d

dt

K

r
. (B.36)

Integrating of Eq. (B.36) once by time gives

(dr

dt

)2

= 2K
( 1

r0
− 1

r

)

, (B.37)

or

dr

dt
= 2K

√

1

r0
− 1

r
. (B.38)

Eq. (B.38) is an equation with separating variables and can be integrated:

∫ r

r0

dr

√

r

r − r0
=

√

2K

r0

∫ t

0

dt. (B.39)

The integral on the left hand side of Eq. (B.39) evaluates to

∫ r

r0

dr

√

r

r − r0
=

1

4

(

2
√

r(r − r0) − r0 log
[ r0
(
√
r − r0 +

√
r)2

]

)

. (B.40)

Thus, the dependence r(t) for every characteristic of Vlasov equation is given
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by implicit formula

1

4

(

2
√

r(r − r0) − r0 log
[ r0
(
√
r − r0 +

√
r)2

]

)

=

√

2K

r0
t. (B.41)

The solution (B.41) can be written in parametric form. Choosing s as a

parameter and transforming to the dimensionless coordinates with the same

units as in Chapter 3, the solution to the equation (B.35) is

r(s, h) = s+ h,

t(s, h) =
1

h
√

6

(

√

s(s+ h) − h log
[ h

(
√
s +

√
s+ h)2

]

)

,

h, s ≥ 0,

(B.42)

where h = r0/R is the dimensionless starting position of the characteristic.

The complete solution to (B.31) also needs a dependence vr(t) which, however,

is currently of no interest. The parametric dependencies (B.42) are shown

graphically in Fig. B.2.

 0

 3

 6

 9

 0  1  2  3  4

t

r

Figure B.2: Projections of the family of characteristics onto the r, t plane.

The curves in Fig. B.2 never cross. Therefore, the condition (B.33) which

is satisfied at t = +0 (due to the monotonic increase of Er inside the sphere),

is never violated later. In other words, characteristics start at r = h in the
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state of absence of multi-flows and thus their trajectories should coincide with

the curves in Fig. B.2 unless multi-flows start. Since the curves never cross,

the multi-flows never appear for the density profile (B.30), and Eq. (B.42)

represents a correct solution.

Analytical inverting of Eq. (B.41) is a difficult task. It can, however,

be done numerically. The result of numerical inversion proves the following.

If ∆h1 and ∆h2 are distances between starting points of any two pairs of

characteristics and ∆r1, ∆r2 are the corresponding distances at t > 0 then the

following relation holds:

∆r2
∆r1

=
∆h2

∆h1
. (B.43)

In other words, if the density of characteristics projections onto the r axis

is constant at t = 0, it is constant at t > 0. Every characteristic follows

an element drdvr containing dN = f(t = 0)drdvr particles. However, the

constant density of characteristics projections onto the r axis correspond to

the constant charge density, since n(t = 0) = n0 inside the sphere. For this

reason, the charge density profile function preserves its uniform dependence

on coordinates, with the value of density being

n0

(

t(s)
)

= n0 ·
r3(s, 1)

R3
, (B.44)

where r(s, 1) is the coordinate of the boundary of the sphere given by Eq.

(B.42), with h = 1.
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Avetisyan, M. Schnürer, T. Sokolik, and P. V. Nickes, “Quasi-mono-

energetic ion acceleration from a homogeneous composite target by an

intense laser pulse”, Phys. Plasmas 13, 122705 (2006).

[160] I. Andriyash, V. Yu. Bychenkov, and V. F. Kovalev, “Coulomb explosion

of a cluster with a complex ion composition”, JETP Lett. 87, 720 (2008).

[161] M. Murakami and M. Tanaka, “Nanocluster explosions and quasimo-

noenergetic spectra by homogeneously distributed impurity ions”, Phys.

Plasmas, 15, 082702 (2008).

[162] F. Dorchies, F. Blasco, T. Caillaud, J. Stevefelt, C. Stenz, A. S. Boldarev,

and V. A. Gasilov, “Spatial distribution of cluster size and density in

supersonic jets as targets for intense laser pulses”, Phys. Rev. A 68,

023201 (2003).

[163] B. N. Breizman, A. V. Arefiev, and M. V. Fomytskyi, “Nonlinear physics

of laser-irradiated microclusters”, Phys. Plasmas 12, 056706 (2005).

[164] Ibid. [102], pp. 208 – 213.

[165] F. F. Chen, “Introduction to plasma physics and controlled fusion, vol.

1, Plasma physics”, second edition, Plenum press, New York (1984), pp.

305 – 307.

[166] E. A. Startsev and C. J. McKinstrie, “Multiple scale derivation of the

relativistic ponderomotive force”, Phys. Rev. E 55, 7527 (1997).

[167] J. D. Huba, “NRL plasma formulary”, NRL/PU/6790-02-450 (2002), p.

4.

[168] Ibid. [102], pp. 171 – 176.

174


