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Abstract 

The sustainability and profitability of beef cattle production are largely associated with 

feed efficiency, carcass merit, and resistance to infectious diseases. These traits are difficult or 

expensive to measure on individual animals, which makes them suitable for genomic application. 

Currently accuracies of genomic prediction (a method that could predict genetic merit of animals 

based on DNA markers) for these traits are relatively low, hindering their uptake in beef cattle. 

The transcriptome and metabolome are intermediate, molecular phenotypes lying between 

genomic and phenotypic levels, which could be used to provide a better understanding of the 

genetic background of traits. They may therefore contribute to the development of more effective 

genomic selection strategies to further enhance genomic selection in beef cattle. In this thesis, 

integrative analyses of multi-omics data were applied to give insights into these questions. 

In the first study the genetic architecture of blood metabolites was evaluated. Eleven 

metabolites with heritability estimates ranging from 0.09 ± 0.15 to 0.36 ± 0.15 were found. Several 

regions were identified that explained a small proportion of heritable genetic variation (0.62% - 

4.21%). These results provided evidence for genetic variation of blood metabolites in beef cattle, 

and baseline information for research into the utilization of plasma metabolites for genetic 

improvement of beef cattle. Secondly, multiple metabolites were found to be associated with feed 

efficiency and carcass merit traits. Combining the results of metabolome-genome-wide association 

analysis identified many significant SNPs and candidate genes associated with these traits. 

Functional SNPs and genes are recommended to be included in SNP panels to improve the 

accuracy of genomic evaluation and prediction. Additionally, candidate genes were subjected to 

functional enrichment analyses. Several significant biological processes and networks such as lipid 

metabolism were identified to be associated with these important traits, which could assist 
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preselection or prioritizing of SNPs used in genomic prediction models. In general, the integrative 

analysis of genomic and metabolomic data sheds light on how genes affect phenotypes by 

modifying the synthesis or degradation of related metabolites and improves understanding of 

genetic influence on phenotypes. 

Lastly, transcriptomic and genotypic data were analyzed to study the genetics of bovine 

respiratory disease (BRD), the most common and costly infectious disease of beef cattle in North 

America. BRD susceptibility showed a moderate heritability (0.43 ± 0.51) in feedlot cattle. Two 

significant SNPs were identified to be associated with BRD susceptibility and 101 genes which 

were mainly involved in inflammatory response were differentially expressed (DE) in BRD and 

non-BRD animals. A total of 420 cis-expression quantitative loci (cis-eQTLs) and 144 trans-

eQTLs were associated with the expression of the DE genes. Investigations into the relationship 

between different omics levels, revealed effect of genotype on gene expression and their roles in 

the host immune responses and disease susceptibility. Transcriptomic biomarkers with high 

accuracy and reliability to predict BRD status were identified which could be used to help diagnose 

BRD in feedlots. 

In conclusion, this multi-omics integrative analysis exhibits advantages in the 

interpretation of previous GWAS results, identification of functional SNP and genetic mechanisms 

as well as understanding of biological processes associated with expression of beef cattle traits 

which could enhance genomic prediction and disease diagnosis.  
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Chapter 1. Literature review 

1.1 Economically relevant traits in beef industry 

The beef cattle industry is an important component of Canadian agriculture and economy. 

In 2020, cash receipts from all agricultural products were $72.2 billion, of which $26.3 billion 

originated from livestock and livestock products, including $9.1 billion from cattle and calves 

(Statistics Canada, 2020). Beef cattle production also supports many other related industries, such 

as animal health products, feed, equipment, and marketing, which add additional billions of dollars 

to the Canadian economy. In addition to economic profits, cattle also bring high-quality protein 

sources to people in Canada and around the world. About 1 million tonnes of beef (carcass weight 

equivalent) are produced to meet domestic meat consumption (Statistics Canada, 2020). 

Approximately 0.5 million tonnes of beef (carcass weight equivalent) are exported to other 

countries including U.S., Japan and China, which makes Canada one of the top ten beef exporters 

in the world (USDA). The competitiveness and sustainability of the beef industry are largely 

associated with feed efficiency, carcass merit and (losses due to) infectious diseases of beef cattle 

production. 

Feed efficiency. Feed efficiency is defined as the ability of the animal to convert consumed 

feed nutrients into saleable beef products (Carstens and Tedeschi, 2006). Efficient animals 

consume less feed for the same amount of meat production (Hegarty et al., 2007). Feed efficiency 

is of great interest to beef production because feeding-related costs are the single largest variable 

expense (55% - 75%) in animal production (Ramsey et al., 2005; Ahola and Hill, 2012). A 2004 

study reported that reducing feed inputs per unit of production could significantly improve 

profitability by 9 to 33% in beef cattle (Archer et al., 2004). Individual feed efficiency cannot be 
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easily measured, and thus several indices that represent feed efficiency have been developed, such 

as partial efficiency of gain (Kellner and Goodwin, 1913), feed conversion ratio (Brody, 1945), 

residual feed intake (Koch et al., 1963), and residual intake and body weight gain (Berry and 

Crowley, 2012).  

Of the feed efficiency measures, residual feed intake (RFI) has gained popularity because 

it is phenotypically independent of growth and body size (Archer et al., 1999). RFI is defined as 

the difference between an animal’s actual feed intake and expected feed intake based on its body 

size and growth (Koch et al., 1963). It describes the variation in feed intake that remains after the 

requirements for maintenance and growth have been met (Koch et al., 1963). For beef cattle, RFI 

values are calculated based on dry matter intake, average daily gain, and metabolic body weight 

over a certain test period (Nkrumah et al., 2006), which take both maintenance and growth 

requirements into consideration via a linear regression (Basarab et al., 2011). Efficient animals eat 

less than expected and have a negative or low RFI, while inefficient animals eat more than 

expected and have a positive or high RFI.  

Selection of animals with low RFI could reduce feed costs without sacrificing the growth 

performance of beef cattle, and also could reduce the negative environmental impact of beef 

production. For example, a study has reported that steers and heifers consumed 11% less feed after 

two generations of selection for lower RFI, and they had similar weights and performance to their 

randomly mated contemporary groups (Arthur et al., 2001a). If divergent RFI lines were selected, 

daily feed consumption decreased by an average of 0.249 kg/day for each year of selection (Arthur 

et al., 2001a). Additionally, as beef cattle contribute up to 41% of the total livestock greenhouse 

gas emissions, this negative environmental impact may cause public concerns on beef production 

(Gerber et al., 2013; Morgavi et al., 2013). Selecting animals with low RFI will simultaneously 
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select animals with low methane emissions because of the positive genetic correlation between 

RFI and methane emission (Nkrumah et al., 2006; Hegarty et al., 2007). Therefore, improving feed 

efficiency based on RFI could decrease both production inputs and environmental footprint, which 

contribute to the profitability and sustainability of beef production. 

Carcass merit. In addition to feed efficiency, carcass merit traits that directly influence the 

meat yield and quality grade also play an important role in the profitability of beef production. 

Yield grade (also known as cutability) is an estimate of the percent retail yield of the four primal 

cuts of beef including chuck, rib, loin and round, which is determined by hot carcass weight, 

backfat thickness, rib eye area, and percent of kidney, heart and pelvic fat. The yield grade is 

important to producers because it can affect animal value and the overall economic returns from 

the animal (Holland and Loveday, 2013). Quality grade is a composite of factors that affect 

palatability of meat, including the degree of marbling and degree of maturity. Improved carcass 

quality can enhance consumer acceptance of beef by increasing consumer satisfaction (Killinger 

et al., 2004). For example, sufficient marbling is important for beef tenderness, juiciness and flavor, 

which makes the degree of marbling in beef a primary factor determining quality grade in market 

age animals. Therefore, improving carcass merit traits related to meat yield and quality grade can 

increase the market price of beef products and total revenue.  

Bovine respiratory disease. Controlling infectious diseases to keep the health of the cattle 

population is important for successful beef production. Bovine respiratory disease (BRD) as the 

most common and costly infectious disease for beef cattle in North America can cause a large 

economic loss in beef production. An American feedlot report showed that the direct cost of 

treatment of respiratory disease in feedlot cattle is USD $23.60 per case, and the total cost for 

treating all infected cattle (~2.29 million cattle) is estimated to be USD $51.12 million per annum 
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(USDA, 2011). Apart from treatment costs, cattle infected with BRD pathogens can have reduced 

performance, lower yield grades, increased mortality rates and may have reproductive loss (Chi et 

al., 2002; Snowder et al., 2006; Montgomery et al., 2009; Garcia et al., 2010), which leads to 

economic losses in beef production due to morbidity, mortality, prevention costs, loss of 

production and reduced carcass value (Griffin, 1997; Smith, 2000; Irsik et al., 2006; Montgomery 

et al., 2009). It was estimated that the annual economic losses from death, reduced feed efficiency, 

and treatment cost of BRD have ranged from USD $800 to $900 million in the U.S. beef industry 

(Chirase and Greene, 2001). Additionally, BRD can occur in every phase of beef production, from 

cow-calf to finishing. Particularly, BRD occurs most often within 4 weeks after weaning, because 

the weaning process is a stressful time for calves. Other stress factors (“stressors”) that are 

commonly associated with BRD include transportation, commingling cattle from different sources, 

overcrowding, sudden and extreme weather change, dust, humidity, dehydration, hunger, and acute 

metabolic disturbances. The combination of these stressors and viral or parasitic infections can 

suppress the host immune system, allowing bacterial pathogens to rapidly reproduce in the upper 

respiratory tract (Griffin et al., 2010).  

In North America, metaphylaxis and vaccination programs aimed mainly at bacterial 

pathogens are two major approaches to prevent and control BRD in large commercial feedlots. 

Metaphylaxis is defined as the mass treatment of an entire group or population of cattle with an 

antimicrobial to prevent and minimize an expected outbreak of disease (Ives and Richeson, 2015). 

Metaphylactic treatment can eliminate the already existing bacterial infections and protect those 

immunosuppressed and vulnerable animals against colonization and proliferation of pathogens, 

thereby reducing BRD-associated morbidity and mortality. Although metaphylaxis can effectively 

reduce BRD incidence in feedlots (Ives and Richeson, 2015), the use of mass medication has 
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resulted in drawbacks that include high medical costs and concerns about antimicrobial resistance 

associated with this procedure. Therefore, it has been suggested that mass medication should only 

be used on high-risk cattle where at least a BRD incidence rate of 30% would be expected (Currin 

and Whittier, 2000). The vaccination program is another common practice for the prevention of 

BRD and there are a number of commercial vaccines available against the bacterial agents and 

viruses associated with BRD (Bowland and Shewen, 2000; Larson and Step, 2012). However, the 

efficacy of these vaccines is inconsistent according to the literature (Larson and Step, 2012; 

Theurer et al., 2015; Chamorro and Palomares, 2020) possibly due to the polymicrobial nature of 

the disease. Additional research to determine the true effects of vaccination, type of vaccines, and 

routes of administration is needed (Chamorro and Palomares, 2020). Additionally, the viral 

infection is generally considered as antecedent to, or concurrent with, bacterial infection (Jericho 

and Langford, 1978). For example, most cattle infected by bovine respiratory syncytial virus 

(BRSV) are asymptomatic, but the primary infection induces loss of cilia or necrosis of bronchial 

and bronchiolar epithelial cells (Griffin et al., 2010). The reduced mucociliary clearance will result 

in buildup of fluid and cellular debris in the airways and alveoli, which provides an ideal 

environment for bacterial colonization. In some cases viral agents may produce a clinical 

syndrome consistent with BRD even though there is no bacterial co-infection (Decaro et al., 2008). 

Other common viral agents that are implicated in BRD, such as bovine viral diarrhea virus (BVDV), 

infectious bovine rhinotracheitis (IBR) and parainfluenza type 3 (PI-3) could also be observed in 

BRD cases. Mannheimia haemolytica and Pasteurella multocida are the most common bacterial 

pathogens isolated from BRD infected beef cattle (Dabo et al., 2008; Rice et al., 2008; Griffin et 

al., 2010; Klima et al., 2014). The co-infection of multiple viral and bacterial pathogens and non-

specific symptoms of BRD make the control and diagnosis of BRD a challenge. 
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1.2 Genetic improvement of complex traits 

Given the importance of feed efficiency, carcass merit, and resistance to BRD in 

determining the profitability and sustainability of beef production, researchers have been 

attempting to improve these important traits by genetic methods. However, the measurement of 

these traits is an expensive and time-consuming process (Pryce et al., 2014). For example, some 

carcass traits are expressed at later stages of animal production and are mostly assessed at slaughter, 

although some carcass traits (e.g., backfat) can be measured on live animals using real-time 

ultrasound imaging technologies (Schröder and Staufenbiel, 2006). Additionally, it is difficult to 

record and establish accurate pedigree information in commercial beef production systems in 

Canada unlike for dairy cows and pigs due to a low level of artificial insemination use and the high 

rate of crossbreeding. These factors restrict the genetic improvement of these traits using 

traditional genetic selection methods, such as best linear unbiased prediction (BLUP) which 

requires accurate phenotypic records of the individual and its relatives. With the development of 

genotyping technology, genetic markers associated with target breeding traits are used to assist 

selection (Lande and Thompson, 1990). However, target traits are usually complex and controlled 

by many genes with minor effects, meaning that a few genetic markers explain limited genetic 

variance and individually they contribute little to the genetic gain (Bernardo, 2008). In 2001, 

Meuwissen et al. (2001) proposed the concept of genomic selection, which is a method for 

predicting the genetic merit of selection candidates without phenotypes by estimating effects of all 

genetic markers across the whole genome. As the availability of affordable high-density 

genotyping services increases, genomic selection has been widely used in animal breeding and 

remarkably improves the selection accuracy as well as accelerates breeding progress (Hayes et al., 

2009; García-Ruiz et al., 2016; Meuwissen et al., 2016; Doublet et al., 2019). Thus, genomic 
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selection is a desirable method of genomic evaluation and selection for complex traits. A better 

understanding of the genetic architecture underlying complex traits (e.g., heritability of traits, and 

DNA variants responsible for phenotypic variation) will help to develop a more effective genomic 

prediction strategy to further enhance feasibility of genomic selection in beef cattle (Hayes et al., 

2009; Snelling et al., 2012). 

1.3 Heritability and genome-wide association studies of traits of interest 

The narrow-sense heritability of a trait refers to the proportion of phenotypic variation that 

is explained by additive genetic variation among individuals in a population. Heritability estimates 

range in value from 0 to 1. If heritability is equal to 1, then all variation in a population is due to 

differences or variation between genotypes. If heritability is equal to 0, all phenotypic variation in 

the population comes from differences in the environments experienced by individuals. The above-

mentioned important traits (RFI, carcass merit traits, and susceptibility or resistance to BRD) have 

shown considerable variation among animals with low to moderate heritability estimates, 

indicating that reasonable responses could be achieved through genetic improvement. For example, 

the heritability of RFI has been estimated to range from 0.22 ± 0.02 to 0.68 ± 0.14 (Arthur et al., 

2001; Mao et al., 2013; Ceacero et al., 2016; Torres-Vázquez et al., 2018; Zhang et al., 2020). The 

heritability of carcass merit traits, such as carcass weight (0.31 ± 0.04 to 0.49 ± 0.03), backfat 

thickness (0.26 ± 0.03 to 0.49 ± 0.05), rib eye area (0.32 ± 0.04 to 0.43 ± 0.05), and marbling score 

(0.33 ± 0.05 to 0.61 ± 0.06) were also estimated in different populations (Mehrban et al., 2017; 

Grigoletto et al., 2020; Wang et al., 2020). In addition, genetics plays a significant role in 

regulating immune response and determining susceptibility and resistance to BRD (Muggli-

Cockett et al., 1992; Snowder et al., 2006; Snowder, 2009; Emam et al., 2019). Cattle of similar 

physiological characteristics and housed under the same environment show distinct individual 
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variability in their tendency to develop the disease and the severity of the resultant clinical signs, 

which implies a certain degree of genetic effect on immune response and disease susceptibility 

and resistance. In feedlot beef cattle, estimates of heritability for resistance to BRD ranged from 

0.04 ± 0.01 to 0.08 ± 0.01 (Snowder et al., 2006). In pre-weaned calves, the estimates of heritability 

for resistance to BRD ranged from 0.07 ± 0.01 to 0.19 ± 0.01 (Muggli-Cockett et al., 1992; 

Snowder et al., 2005). Overall, these studies have shown that the variation of these traits is affected 

by genetic variation, which provides the possibility to improve these traits through genomic 

selection. Identification of DNA variants responsible for these traits will help design a better 

genomic prediction strategy to improve genomic selection accuracy (Hayes et al., 2009; Snelling 

et al., 2012). 

Genome-wide association studies (GWAS) is an approach used in genetics research to 

associate specific genetic variations with phenotypes. The GWAS aim to understand the variation 

in complex traits and diseases by relating genotypes of large numbers of markers, such as single 

nucleotide polymorphisms (SNPs), to observed phenotypes. Over the past decade, GWAS have 

revolutionized research of the genetics of complex traits, as evidenced by numerous compelling 

associations for complex traits in humans (Hyde et al., 2016; Duncan et al., 2017; Zhao et al., 2017) 

and animals (Do et al., 2018; Zhang et al., 2020; Wu et al., 2021). For the traits of interest, many 

studies have endeavored to identify SNPs, quantitative trait loci (QTLs) or genes associated with 

RFI (Abo-Ismail et al., 2014; Seabury et al., 2017; Higgins et al., 2018; Zhang et al., 2020), carcass 

merit traits (Mehrban et al., 2017; Chang et al., 2018; Hay and Roberts, 2018; Srikanth et al., 2020; 

Wang et al., 2020), and BRD susceptibility/resistance (Neibergs et al., 2014; Hoff et al., 2019) by 

GWAS. Zhang et al. (2020) performed GWAS for RFI and identified 16 SNPs and 596 genes 

significantly associated with RFI. They also found that the distribution of DNA variant allele 
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substitution effects approximated a bell-shaped distribution while the distribution of additive 

genetic variances explained by single DNA variants followed a scaled inverse chi-squared 

distribution. These results indicate that RFI is controlled by many DNA variants with relatively 

small effects (Zhang et al., 2020). Similarly, Hay and Roberts (2018) implemented GWAS for fat 

thickness, marbling and rib eye area of beef cattle, and their results showed different SNP marker 

windows associated with carcass traits explained a small percentage of the genetic variance, which 

suggests the polygenic genetic nature of carcass traits in beef cattle. For BRD, several important 

genomic regions associated with susceptibility have been identified in pre-weaned Holstein calves 

using GWAS, and SNPs within these genomic regions were suggested to be further characterized 

and used for genomic selection (Neibergs et al., 2014). Especially for genes that are related to 

immune response, SNPs within these genes are considered to have potential effects on BRD (Casas 

et al., 2011). These GWAS for complex traits provided useful insights into the genetic architecture 

of complex traits and disease in the form of potential SNPs, structural variants and candidate genes. 

However, despite the clear successes of GWAS, these studies also have several limitations, 

including spurious associations (McClellan and King, 2010), the inability to pinpoint causal 

variants and genes (Boyle et al., 2017), and the lack of portability between populations (Ioannidis, 

2007). In addition, GWAS usually do not provide evidence on how the variants affect downstream 

pathways and lead to the phenotypic variation or diseases, which troubles scientists in interpreting 

GWAS results and hinders the translation of GWAS findings into productive applications. In order 

to understand the “black box” between genotype to phenotype, researchers have turned to study 

the components between genotype and phenotype (Figure 1.1).  
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1.4 Intermediate phenotypes and omics data 

Intermediate phenotype, also known as internal phenotype or endophenotype, is a 

quantitative biological trait that is reasonably heritable and considered to be involved in the 

development of an endpoint of interest (i.e., external phenotype). As shown in Figure 1.1, if a gene 

is considered as the start point and the associated external phenotype is considered as the end point, 

then a parameter lying between genome and phenome, such as transcriptome, proteome and 

metabolome, could be viewed as an intermediate phenotype (Preston and Weinberger, 2005; 

Kronenberg, 2012; Fontanesi, 2016). Since intermediate phenotypes are considered to be involved 

in the biological processes or pathways to external phenotypes, intermediate phenotypes may be 

the most valuable data for understanding the biological mechanisms of complex traits (Flint et al., 

2014).  

The data collected from different “omes” are collectively referred to as “multi-omics” data. 

Genomics, the first omics discipline to appear, focuses on the study of the entire genome, rather 

than the “genetics” that interrogated individual variants or single genes. As we discussed in section 

1.3, GWAS is a successful approach that has been used to identify thousands of genetic variants 

associated with complex traits. Technologies associated with genomic data include genotype 

arrays, next generation sequencing for whole-genome sequencing, and exome sequencing. 

According to the central dogma of biology, RNA is a molecular intermediate between DNA and 

proteins, which are considered the primary functional read-out of DNA. Transcriptomics can 

qualitatively and quantitatively examine RNA levels genome-wide using probe-based arrays and 

RNA sequencing (RNA-Seq). After the transcriptomic level, the next level is protein. Mass 

spectrometry (MS) based methods have revolutionized the analysis and quantification of 

proteomic data. Recently, such MS methods have been adapted for high-throughput analyses of 
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thousands of proteins in cells or body fluids (Selevsek et al., 2015). Metabolomics is the 

comprehensive analysis of metabolites in a biological specimen (Clish, 2015). Metabolites are 

substances involved in metabolism, their levels and relative ratios reflect metabolic function and 

could be indicative of disease. Quantitative measures of metabolite levels in plasma and other 

tissues enables the discovery of novel genetic loci that regulates small molecules or their relative 

ratios (Kettunen et al., 2012; Shin et al., 2014). Nuclear magnetic resonance and MS are the two 

most commonly used techniques for generating metabolomic data. Overall, these omics data offer 

the possibility to study the transmission of genetic information, thereby reducing the gap between 

genotype and phenotype. Studies on different “omes” beyond the genome including the 

transcriptome for gene expression, the proteome for protein production, and the metabolome for 

products of metabolic functions have been conducted (Karisa et al., 2014; Tizioto et al., 2015a, 

2015b; Baldassini et al., 2018; Mukiibi et al., 2018a; Fonseca et al., 2019; Blakebrough-Hall et al., 

2020; Sun et al., 2020).  

In respect of RFI, many studies on different intermediate phenotypes have been reported. 

At the transcriptome level, Mukiibi et al. (2018) performed whole transcriptome analyses for 

transcripts in liver because of its central physiological and metabolic functions in the body. The 

results suggest that reduced hepatic lipid synthesis and accumulation processes in feed efficient 

beef cattle may lead to a more efficient energy utilization thereby improving feed efficiency. At 

the metabolome level, Karisa et al. (2014) collected blood samples from beef cattle in three 

different periods of feeding (weeks 2, 6 and 10 in the feedlot) and identified blood metabolites 

(e.g., lysine, betaine, and choline etc.) were significantly associated with RFI. They also found that 

the metabolites associated with RFI varied over time (Karisa et al., 2014). Metabolic networks for 

RFI in each period showed that the cellular and molecular processes associated with RFI were 



 12 

involved in energy and protein metabolism as well as the metabolism of urea and methane (Karisa 

et al., 2014). This study revealed the association between metabolites and RFI and potential 

metabolic networks, however, it does not study genetic effects on metabolite variation, which is 

essential information that could help identify functional SNPs associated with RFI. More recently 

studies at the proteome level have investigated the molecular controls of RFI in liver tissue 

(Baldassini et al., 2018; Fonseca et al., 2019). The differentially abundant proteins identified are 

mainly involved in energy metabolism, xenobiotic metabolism, vitamin metabolism, amino acid 

metabolism, mitochondrial function, oxygen transport, blood flow, ion transport, cell survival, 

microbial metabolism, biosynthesis of fatty acids, and antigen processing and presentation 

(Baldassini et al., 2018; Fonseca et al., 2019). These studies have broadened the knowledge of the 

biological mechanisms related to feed efficiency. 

Regarding carcass merit traits, researchers have investigated biological mechanisms related 

to carcass merit traits using RNA-Seq data (Lee et al., 2014; Wang et al., 2017; Mukiibi et al., 

2018b). These studies suggest that some cellular and molecular processes, including molecular 

transportation, lipid and fatty acid metabolism, carbohydrate metabolism, amino acid and protein 

metabolism, and genes involved in these functions may contribute to carcass merit traits (Lee et 

al., 2014; Wang et al., 2017; Mukiibi et al., 2018b). For example, Mukiibi et al. (2018b) conducted 

transcriptome analysis of liver tissues between 6 high and 6 low marbling Charolais steers, and 

identified 40 differentially expressed genes and 25 key biological processes associated with 

marbling. By performing the liver transcriptome analysis, they suggest that steers with more 

marbling were predicted to have downregulated liver lipid biosynthesis and relatively upregulated 

lipid concentration. The identification of these biological processes and their corresponding genes 

could improve our understanding of biological mechanisms associated with marbling and help 
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prioritize candidate genes for identification of causal gene polymorphisms responsible for the 

phenotypic variation. Furthermore, variation of carcass merit traits has also been reported to be 

associated with metabolite concentration (Connolly et al., 2019, 2020; Jeong et al., 2020). 

Connolly et al. (2019) reported the correlation between relative concentrations of 35 blood 

metabolites and carcass traits (marbling, rump fat thickness and carcass weight). Marbling was 

positively associated with the relative concentrations of seven metabolites (3-hydroxybutyrate, 

propionate, acetate, creatine, histidine, valine, and isoleucine), rump fat thickness was positively 

associated with glucose, leucine and lipids and negatively associated with anserine and arabinose, 

and carcass weight was negatively associated with 3-hydroxybutyrate. This study suggests that 

carcass merit traits are associated with metabolites, and the metabolome is an important 

intermediate phenotype that should be considered when studying the variation of carcass merit 

traits. 

As for BRD, several transcriptomic studies were performed to investigate the gene 

expression variation and host response to BRD infection (Tizioto et al., 2015b; Scott et al., 2020; 

Sun et al., 2020; Jiminez et al., 2021). More than a thousand genes were differentially expressed 

in blood when animals were infected by BRD in feedlots (Scott et al., 2020; Jiminez et al., 2021). 

Considering multiple viral and bacterial pathogens involved in BRD infection, single-pathogen 

challenges in steers for three viral pathogens (BRSV, IBR, and BVDV) and three bacterial 

pathogens (Mannheimia haemolytica, Pasteurella multocida, and Mycobacterium bovis) were 

performed to identity common and unique differentially expressed genes to different challenge 

agents through RNA-Seq and transcriptomic analyses (Tizioto et al., 2015b). The results showed 

that many genes were expressed differentially to respond to specific pathogen challenges. They 

also observed some differentially expressed genes and pathways were common to all pathogen 
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challenges, which were primarily related to the innate immune response. This may be due to innate 

immune response being the first line of defense against invading pathogens and is not specific to 

a particular pathogen in the way that the adaptive immune response is. However, with the 

development of BRD, host response and related gene expression regulation may be different. A 

longitudinal blood transcriptomic analysis for feedlot beef cattle in Entry, Pulled and Close-out 

stage gives us a longitudinal view for the same individual from different time points (Sun et al., 

2020). This study revealed the gene expression variations in disease development and showed that 

animals at Entry stage may have activated the initial response to BRD and those at Pulled stage 

coordinated a higher level of innate and adaptive immune responses (Sun et al., 2020). These 

studies have shown that host animals may regulate the immune response to defense against BRD 

pathogens or to respond to the damage caused by BRD pathogens through influencing the 

expression of certain genes.  

Overall, these studies indicate that complex traits are commonly regulated through many 

genes and biological processes, and intermediate phenotypes play important roles in molecular 

processes and pathways related to external phenotypes. This knowledge not only improves the 

understanding of the molecular architecture of complex traits but also provides potential molecular 

biomarkers that could be used to identify animals with diseases or select animals with superior 

performance. For example, early diagnosis and appropriate treatment of BRD infected animals 

would enhance faster recovery and potentially reduce the negative impact of the disease on animal 

performance and productivity. However, most clinical signs of BRD are subjective, difficult to 

standardize, and nonspecific for BRD, such as fever, difficulty breathing, nasal discharge, 

depression, diminished or no appetite, lethargy, and coughing. Observation of clinical signs is the 

predominant tool for diagnosis of BRD and because of this the diagnosis of BRD can be 
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troublesome. By studying the intermediate phenotype, molecular biomarkers for BRD diagnosis 

and prediction have been proposed. Blakebrough-Hall et al. (2020) suggested that blood 

metabolome has a high accuracy in classifying BRD and non-BRD animals in feedlots, indicating 

the potential of using blood metabolome as a BRD diagnosis tool. This provides a new method to 

differentiate sick and healthy animals. Additionally, Sun et al. (2020b) proposed that the 

expression of IFI6, IFIT3, ISG15, MX1, and OAS2 may be related to the stress level of beef cattle, 

and could be used as biomarkers to predict and recognize sick cattle when animals enter the feedlot. 

Although these molecular biomarkers are promising and need further validation, they provide 

alternative methods of identifying or predicting sick animals in feedlot production.  

Despite these achievements, most of the studies only focused on the relationship between 

a single omics layer and the phenotype and overlooked the interrelationship between different 

omics layers. For example, some metabolites have been reported to be heritable and their variations 

are affected by genetic variants (Buitenhuis et al., 2013; Li et al., 2020), and changes in gene 

expression are also affected by genetic regulation (e.g., expression QTL; eQTL) (Cookson et al., 

2009). However, studies of a single omics layer are difficult to identify the interrelationship 

between different omics layers and causal SNPs or genes. Additionally, most of the biological 

processes involve more than one type of biomolecule, and hence operate not solely at the level of 

either genome, transcriptome, proteome, or metabolome (Haas et al., 2017). Although many 

important biological processes associated with traits of interest have been identified, a single omics 

layer can only carry part of the biological information and such single omics studies could not 

generate a whole picture of biological and molecular background of complex traits. Therefore, 

with single omics research it is still difficult to answer the two important questions of GWAS as 

discussed in section 1.2: “Which genetic variants drive the phenotypic variation?” and “How do 
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genetic variants lead to phenotypic variation?”. To answer these questions, it is imperative to take 

an integrative approach that combines multi-omics data. 

1.5 Multi-omics analysis to identify functional SNPs and genes and biological functions 

With the advent of high throughput sequencing and mass spectrometry technologies, it has 

been possible to collect two or more omics datasets at the same time and study them under a given 

circumstance. This multi-omics analysis could provide new insights into the interrelationships 

between different omics layers and help to identify functional or causal SNPs and biological 

functions related to traits of interest. The advantage of such multi-omics approach is that they can 

better answer the two above-mentioned questions of GWAS. 

“Which genetic variants drive the phenotypic variation?” The resolution of GWAS is 

relatively low since it only requires correlation to phenotypes by neighbouring genetic markers in 

linkage disequilibrium (LD). For the great majority of identified genetic markers or genes, more 

effort is still needed to refine their identities. Multi-omics analysis has been used to pinpoint the 

functional or causal SNPs and genes that are associated with complex traits in both humans (Shin 

et al., 2014; Frost and Amos, 2018; Sun et al., 2018; Schlosser et al., 2020) and some livestock 

species (Fang et al., 2017b; Li et al., 2019; Xu et al., 2019; Fu et al., 2020). For example, Schlosser 

et al. (2020) analyzed the urinary concentrations of 1172 metabolites in 1627 individuals with 

reduced kidney function and they identified 240 genomic regions associated with urinary 

concentration of metabolites. The colocalization analysis of identified metabolite QTLs (mQTLs) 

and genetic association signals for human diseases found numerous significant overlaps, such as 

overlapped association signals at the ALPL locus between urinary phosphoethanolamine, 

urolithiasis, and kidney stones (Schlosser et al., 2020). In another human study, a comprehensive 

genetic association study of metabolites in blood identified 145 mQTLs, and 41 (28.3%) of these 
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mQTLs were reported to be associated with other human complex traits and diseases (Shin et al., 

2014). These studies suggest that these overlapping QTLs may be more important than others 

because they may contain biologically relevant genes associated with phenotypes. In beef cattle, a 

pilot study combining host genotype and rumen microbiota was performed to investigate the 

association between SNPs, rumen microbiota and feed efficiency. The results showed that some 

rumen microbial features are heritable, and the heritable elements of these microbial features are 

affected by host additive genetics (Li et al., 2019). They also found that those heritable rumen 

microbial features were associated with host feed efficiency and differences in rumen volatile fatty 

acids. Some SNPs were identified as associated with both rumen microbiota and feed efficiency 

(Li et al., 2019), indicating that these overlapping SNPs may influence feed efficiency by 

influencing rumen microbiota. Compared with GWAS, which is based solely on the association 

between genotype and phenotype, this multi-omics analysis could help to refine or prioritize the 

real functional or causal SNPs and genes. 

“How genetic variants lead to phenotypic variation?” Multi-omics analysis can assess the 

information flow from one omics level to the other and the interaction between different omics 

levels, which could provide new insights and perspectives into how genetic variants or genes 

influence phenotypes, and the molecular mechanisms underlying traits of interest. The biological 

information obtained by analyzing multi-omics data could further help to elucidate potential causal 

variants and genes that lead to the variation of phenotype (Hasin et al., 2017; Zhao et al., 2020). 

For example, Widmann et al. (2013) combined genetic, metabolomic and physiological data to 

dissect genes and molecular pathways that modulate differential growth at the onset of puberty. 

They found GnRH (Gonadotropin-releasing hormone) signaling was associated with divergent 

growth at the onset of puberty, and revealed two highly connected genes, BTC and DGKH, within 
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the GnRH network. They also indicate the functional role of an interaction network for NCAPG in 

divergent growth (Widmann et al., 2013). In another study using multi-omics data to study puberty 

in cattle, Cánovas et al. (2014) characterized the transcriptome of five reproductive tissues (i.e., 

hypothalamus, pituitary gland, ovary, uterus, and endometrium) and three puberty related tissues 

(i.e., longissimus dorsi muscle, adipose, and liver) of pre- and post-pubertal Brangus heifers with 

genotypes to study gene and molecular regulatory networks for puberty. In this study, 1,515 

differentially expressed, and 943 tissue-specific genes and key transcriptional regulators were 

identified. Twenty-five loci containing a SNP associated with fertility traits were determined 

through combining the results of GWAS and RNA-Seq (Cánovas et al., 2014). Finally, they 

constructed pre- and post-puberty co-expression gene networks (an undirected graph to indicate 

which genes have a tendency to show a coordinated expression pattern across a group of samples) 

by combining the results from GWAS, RNA-Seq, and bovine transcription factors to reveal the 

changes in biomolecules and biological functions of animals before and after puberty. Overall, the 

multi-omics analysis has shown great potential in revealing potential regulatory mechanisms that 

cannot be captured by single omics data, as well as discovering genes that contain biologically 

relevant SNPs, which could be used in genomic selection and may lead to improved performance 

of genomic selection in beef cattle. 

1.6 Functional information obtained through multi-omics analysis could enhance genomic 

selection 

Genomic selection is a method of choice for selective breeding and improvement of 

economically relevant traits in livestock. One major factor that affects the rate of genetic 

improvement is the accuracy of genomic prediction of selection candidates (Georges et al., 2018). 

Genomic prediction accuracy, the correlation between predicted and true breeding values, depends 
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on the LD between DNA marker and QTLs, the size of the training population, the genetic 

relationship among animals in the training and validation populations, number of DNA markers in 

the evaluation panel, genetic architecture of the trait, and the statistical method used for the genetic 

evaluation (Habier et al., 2007; Goddard, 2009; Goddard and Hayes, 2009; Zhang et al., 2019). In 

beef cattle, genomic prediction has been applied to feed efficiency and carcass merit traits (Akanno 

et al., 2014; Lourenco et al., 2015; Fernandes Júnior et al., 2016; Lu et al., 2016). Nevertheless, 

the accuracy of genomic prediction for these traits remains relatively low (Mujibi et al., 2011; 

Bolormaa et al., 2013; Akanno et al., 2014; Lu et al., 2016; Silva et al., 2016). The lower prediction 

accuracy of beef cattle may be due to the lack of a large number of reference populations within a 

breed, which is caused by the high rate of crossbreeding of beef cattle and the high cost of recording 

certain traits (e.g., feed efficiency). Meanwhile, information from another breed is much less useful 

than information from the target breed because animals of different breeds share much smaller 

chromosome segments than animals of the same breed (Bolormaa et al., 2013; Chen et al., 2013; 

Akanno et al., 2014). Additionally, the polygenic nature of these complex traits and insufficient 

understanding of causal DNA variants/genes and biological mechanisms are also important 

reasons for low accuracy (Snelling et al., 2013; Fang et al., 2017b; Wang et al., 2020; Zhang et al., 

2020). 

The low accuracy of genomic prediction in beef cattle makes it difficult to identify true 

animals with high breeding values, which affects the rate of genetic gain in beef cattle. 

Consequently, multiple strategies including different analysis methods, SNP densities, and 

reference population construction strategies have been evaluated with the objective of improving 

genomic prediction accuracy in beef cattle. For example, with respect to feed efficiency, Lu et al. 

(2016) tested the impact of genomic distance between training and validation population, training 
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population size, statistical methods (genomic BLUP and Bayes C), density of genetic markers 

(50K and imputed high density genotype) on prediction accuracy for feed efficiency traits in 

multibreed and crossbred beef cattle. They found that the Bayes C could obtain marginally higher 

accuracy than genomic BLUP, and adding animals that were less related to the training population 

could not increase the prediction accuracy (Lu et al., 2016). According to the comparison of 

prediction accuracy between 50K and imputed high density genotype, they found that 50K 

genotypes are more effective for predicting genomic estimate breeding value in purebred cattle 

while imputed high density genotypes found utility when dealing with composites and crossbreds 

(Lu et al., 2016). Chen et al. (2013) evaluated the impact of the reference population construction 

strategies for feed efficiency in two purebred (Angus and Charolais) populations. The results 

showed that the accuracy of the prediction for Angus and Charolais reduced dramatically (0.53 to 

0.16 and 0.64 to 0.10, respectively) when the reference population used for genomic prediction 

changed from within breed to across breed. This study indicates that genetic relationship of 

selection candidates with the reference population has a greater impact on the prediction accuracy. 

In another study, phenotype and genotype records of cattle from multiple sources were combined 

as a reference population to improve the genomic prediction accuracy for feed efficiency 

(Khansefid et al., 2014). The results showed that the multibreed reference population increased the 

accuracy of genomic prediction slightly by an average of 5% (Khansefid et al., 2014). However, 

due to the inconsistent LD across breeds of the beef population and the small number of reference 

animals within a breed (De Roos et al., 2009; Meuwissen et al., 2016), the improvement of 

prediction accuracy is relatively small. Therefore, achieving a reasonably greater accuracy of 

genomic prediction in beef cattle remains a challenge.  
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One strategy to improve prediction accuracy is to include biological or functional 

information or causal DNA variants into the SNP panels or in the statistical models (Snelling et 

al., 2013; MacLeod et al., 2016; Fang et al., 2017b). This could provide an opportunity to improve 

genomic prediction through reducing reliance on the LD for gene or regulatory SNP markers to 

capture the effects of QTLs (Snelling et al., 2013). The functionally enriched SNP panels are 

expected to result in a higher genomic prediction accuracy for crossbred animals because 

prediction would be based on the functional SNP effects expected to be relatively stable across 

breeds or populations, rather than LD that is usually unstable across population or usually broken 

down through crossing (Snelling et al., 2013). Several pilot studies have been conducted to 

incorporate functional SNPs and biological information into genomic prediction models or SNP 

evaluation panels (Melzer et al., 2013; MacLeod et al., 2016; Sarup et al., 2016; Fang et al., 2017a; 

Gebreyesus et al., 2019). For example, Fang et al. (2017a) applied an extended genomic BLUP 

(GBLUP) model called genomic feature BLUP (GFBLUP) that includes a separate random effect 

for the joint action of SNPs within genomic feature which are obtained from RNA differential 

expression analyses. Compared to GBLUP, the accuracy of genomic prediction for mastitis and 

milk production traits with GFBLUP was marginally improved (3.2% to 3.9%) in within-breed 

prediction but significantly increased (164.4%) in across-breed prediction (Fang et al., 2017a). 

Theoretically, the genomic features could be defined from various sources of biological knowledge 

(e.g., metabolomics and proteomics) and the GFBLUP model could be applied to other complex 

traits. MacLeod et al. (2016) introduced Bayes RC based on Bayes R that incorporates prior 

biological information in the analysis. The information can be derived from a range of sources, 

including variant annotation, candidate genes and known causal variants, and this information is 

then incorporated objectively in the analysis based on the evidence of enrichment in the data. The 



 22 

result showed that Bayes RC could increase the power to detect causal variants and increase the 

accuracy of genomic prediction. The relative improvement for genomic prediction was most 

apparent in validation populations that were not closely related to the training population 

(MacLeod et al., 2016). These studies have shown the advantage of including functional 

information in the genomic prediction for crossbred animals (commercial crossbred beef cattle as 

found in the Canadian industry) or less related populations (the validation population is not closely 

related to training population). Therefore, as biological knowledge accumulates regarding 

functional regions of the genome for a range of traits and species, approaches such as GFBLUP 

and Bayes RC will become increasingly useful in genomic prediction. The multi-omics analysis 

as a promising approach to identify more reliable and accurate functional or causal SNPs and genes 

would also contribute to the improvement of genomic prediction accuracy of complex traits in beef 

cattle. 

In addition to improve genomic prediction accuracy, including functional or causal DNA 

variants into the SNP panels may decrease the DNA marker density used in genomic prediction 

while retaining accuracy. This may reduce the cost of genotyping services during the genome 

selection process. Melzer et al. (2013) integrated genomic and metabolomic data into genomic 

prediction of three traditional milk traits in dairy cows. In that study, regression methods were 

applied to identify important milk metabolites and then those SNPs with significant genetic effects 

on important metabolites were identified and used to predict milk traits. Compared with the 

classical approach that uses all SNPs (40,317) in prediction, the panel containing metabolite 

associated SNPs could achieve similar prediction precision with less than 1% of the total amount 

of SNPs (Melzer et al., 2013). Although some promising results have been achieved, we would 

like to highlight that this is not always the case. In another study, a 50K functional SNP panel in 
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which SNPs were located within or close to the differentially expressed genes associated with feed 

efficiency traits from their own studies and other published literature was assembled, and its 

prediction accuracy was compared with prediction accuracy of a commercial 50K SNP panel and 

a random panel (Mukiibi, 2019). The results showed that the genomic prediction accuracies of the 

three SNP panels were similar for all the traits under all the genomic prediction scenarios (within-

breed or across breeds) when the standard errors were considered, indicating that the functional 

panel did not lead to tangible improvement in genomic prediction for the feed efficiency and the 

related traits in the beef cattle populations investigated. One of the reasons is that SNPs in the 

functional panel are not real functional SNPs, and exact causal SNPs might be still unknown. This 

indicates that identifying functional or causal SNPs and genes just based on the correlation 

between a single omics level and phenotype is insufficient and may cause either false positive or 

false negative results. Including unrelated SNPs in genomic prediction may just add more 

background noise and create more prediction errors (Li et al., 2018). This also highlights the 

importance and necessity of employing multiple omics tools to identify or refine causal SNPs 

associated with complex traits. In addition, the biological information carried by multi-omics data 

can assist genomic feature preselection or prioritize SNPs used in genomic prediction models or 

evaluation SNP panels, and can further contribute to improving performance of genomic prediction 

(Ye et al., 2020).  

In summary, multi-omics analysis is becoming increasingly important to bridge the gap 

from genotype to phenotype and holistically study complex traits. However, for the traits under 

consideration in the current study (i.e., feed efficiency, carcass merit, and BRD), the successful 

application of such multi-omics analysis is still rare. It is necessary to conduct multi-omics studies 

on these traits to improve the understanding of their genetic and molecular background. 
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Additionally, in view of the relatively low accuracy of genomic prediction for feed efficiency, 

carcass merit traits and BRD, identification of more reliable and accurate functional or causal SNPs 

and genes using multi-omics analysis is also a promising way to improve genomic prediction for 

these traits. 

1.7 Research objectives 

The overall goal of this thesis was to utilise a multi-omics dataset (genomics, 

transcriptomics, and metabolomics) to study the genetic and molecular background of feed 

efficiency and carcass merit traits as well as bovine respiratory disease of beef cattle, and to 

identify functional or causal SNPs and genes associated with these traits. Specific objectives 

included: 

1) Exploring the genetic architecture of blood metabolites in beef cattle 

2) Performing integrative analyses of genomic and metabolomic data to reveal genetic 

mechanisms underlying feed efficiency traits in beef cattle 

3) Performing integrative analyses of genomic and metabolomic data to reveal genetic 

mechanisms underlying carcass merit traits in beef cattle 

4) Exploring the genetic background and molecular mechanisms of bovine respiratory disease 

using genomic and transcriptomic data in feedlot beef cattle 
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Figure 1.1 Schematic diagram of the intermediate phenotype lying between genome and phenome 
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Chapter 2. Genomic heritability and genome-wide association studies of 

plasma metabolites in crossbred beef cattle 

2.1 Abstract 

Metabolites, substrates or products of metabolic processes, are involved in many biological 

functions, such as energy metabolism, signaling, stimulatory and inhibitory effects on enzymes 

and immunological defense. Metabolomic phenotypes are influenced by combination of genetic 

and environmental effects allowing for metabolome-genome-wide association studies (mGWAS) 

as a powerful tool to investigate the relationship between these phenotypes and genetic variants. 

The objectives of this study were to estimate genomic heritability and perform mGWAS and in 

silico functional enrichment analyses for a set of plasma metabolites in Canadian crossbred beef 

cattle. 

Thirty-three plasma metabolites and 45,266 single nucleotide polymorphisms (SNPs) were 

available for 475 animals. Genomic heritability for all metabolites was estimated using genomic 

best linear unbiased prediction (GBLUP) including genomic breed composition as covariates in 

the model. A single-step GBLUP implemented in BLUPF90 programs was used to determine SNP 

P values and the proportion of genetic variance explained by SNP windows containing 10 

consecutive SNPs. The top 10 SNP windows that explained the largest genetic variation for each 

metabolite were identified and mapped to detect corresponding candidate genes. Functional 

enrichment analyses were performed on metabolites and their candidate genes using the Ingenuity 

Pathway Analysis software. 

Eleven metabolites showed low to moderate heritability that ranged from 0.09 ± 0.15 to 

0.36 ± 0.15, while heritability estimates for 22 metabolites were zero or negligible. This result 

indicates that while variations in 11 metabolites were due to genetic variants, the majority are 
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largely influenced by environment. Three significant SNP associations were detected for betaine 

(rs109862186), L-alanine (rs81117935) and L-lactic acid (rs42009425) based on Bonferroni 

correction for multiple testing (family-wise error rate < 0.05). The SNP rs81117935 was found to 

be located within the Catenin Alpha 2 gene (CTNNA2) showing a possible association with the 

regulation of L-alanine concentration. Other candidate genes were identified based on additive 

genetic variance explained by SNP windows of 10 consecutive SNPs. The observed heritability 

estimates and the candidate genes and networks identified in this study will serve as baseline 

information for research into the utilization of plasma metabolites for genetic improvement of 

crossbred beef cattle. 

2.2 Introduction 

The metabolic phenotype (or “metabotype”) is a characteristic metabolite profile that 

depends on the interactions between genetic and environmental effects. Commonly, the metabolic 

phenotype of an individual is measured from easily accessible biofluids such as urine or blood 

(Nicholson and Lindon, 2008). Additionally, blood metabolites have been shown to be powerful 

tools for the indication of the nutritional and health status of humans and animals. For example, in 

humans, several blood metabolites have been identified as biomarkers for diseases (López-López 

et al., 2018). In livestock species, associations between metabolites and economically important 

traits such as feed efficiency (Karisa et al., 2014), growth performance (Widmann et al., 2013) and 

animal health (Montgomery et al., 2009) have been reported.  

Metabolome-genome-wide association study is a powerful tool for identifying genetic 

variants underlying metabolic phenotypes and provides new opportunities to decipher the genetic 

basis of metabolic phenotypes. Importantly, metabolome-genome-wide association studies detect 

genetic variants that are functionally associated with metabolic phenotype variation. For example, 
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previous studies have reported that SNPs in the glutamine synthase 2 gene (GLS2) were associated 

with glutamine in human serum, which provides a potential biological association, as the enzyme 

GLS2 catalyzes the hydrolysis of glutamine (Suhre et al., 2011; Kettunen et al., 2012). Furthermore, 

genome-wide hits with unknown gene function offer an opportunity to infer novel biological 

mechanisms of the SNP-metabolite association. For instance, Suhre et al. (2011) experimentally 

studied the association of the SNP rs7094971 inside the solute carrier family 16, member 9 gene 

(SLC16A9) with carnitine and validated that the hitherto uncharacterized protein was indeed a 

carnitine transporter in Xenopus oocytes. Additionally, as metabolites lie between genomic and 

external phenotypes, they could explain the variation of external phenotypes by revealing 

biological mechanisms underlying the associations between them. Recent application of GWAS 

have successfully uncovered genetic variants that contribute to variation in both the external 

phenotype (e.g. type 2 diabetes) and the metabolic phenotype (e.g. fasting glucose levels) (Stranger 

et al., 2011).  

Due to the rapidly growing number of candidate biomarkers and the increasing role of 

metabolites in genetic studies, the knowledge of the genetic basis of metabolites is therefore a 

prerequisite to evaluate new biomarkers and dissect the genetic architecture of metabolites. Until 

now, however, knowledge regarding the genetic level of metabolites in beef cattle has been limited. 

Thus, the objectives of this study were to estimate genomic heritability of 33 plasma metabolites 

in crossbred beef cattle, to identify genetic variants, genomic regions and candidate genes 

associated with metabolite variation, and to understand the biological functions and gene networks 

linked to these associations. 
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2.3 Material and Methods 

2.3.1 Animal, blood samples and nuclear magnetic resonance (NMR) spectroscopy 

All management and procedures involving live animals, where applicable, conformed to 

the guidelines outlined by the Canadian Council on Animal Care (2009); otherwise, existing data 

sets from the various Canadian research herds were used. 

The dataset used in this study was obtained from the Phenomic Gap Project (McKeown et 

al., 2013). This project started in 2008 aiming to generate feed efficiency, carcass and meat quality 

phenotypes as well as genomic information for Canadian crossbred beef animals as previously 

described by Akanno et al. (2014). A total of 475 Canadian multibreed composite and crossbred 

beef cattle was used in this study. The animals comprised of bulls, slaughter steers, slaughter 

heifers and replacement heifers submitted to a feedlot feeding test from 2009 to 2012 and the test 

groups were labeled as contemporary groups. The population structure consisted of Beefbooster 

composite breed (n = 224) which is predominantly Charolais-based with infusion of Holstein, 

Maine Anjou, and Chianina (http://www.beefbooster.com), Hereford-Angus (n = 181) crosses, 

Charolais (n = 68) and Angus (n = 2).  

Blood samples were collected in EDTA tubes from each animal by jugular venipuncture 

on the first day of the feedlot feeding test and immediately frozen at -80°C which is considered 

appropriate for storage. Our assumption is that all samples were affected equally by the freezing 

process if at all. Therefore, although the metabolite profiles may not be the same as those obtained 

from fresh samples, the freezing process should not be a source of variation for this study since all 

samples were frozen the same way according to best practice. Frozen blood samples were sent to 

the Metabolomics Innovation Center at University of Alberta, AB, Canada in 2014 for analysis. 

The variation in time of sample collection is expected to be captured under the ‘contemporary 
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group’ variable applied in subsequent statistical analysis. Each frozen sample was thawed at room 

temperature then centrifuged at 10,000 rpm for 10 minutes to separate the plasma then filtered 

through 3kDa molecular weight cut-off filters (Merck Millipore Ltd., Darmstadt, Germany) to 

remove macromolecules, including lipids and proteins. As the filter tube manufacturer treats the 

filter membranes with glycerol as a preservative, filters were washed and centrifuged five times 

before use. Samples made up of less than 570 μl after filtration were diluted with HPLC water to 

ensure adequate volume for NMR acquisition. 5 mm NMR tube (New Era Enterprises Inc., NJ, 

USA) contained a total of 700 μl of total volume of 570 μl filtered serum, 60 μl DSS and 70 μl 

D2O. This mixture was vortexed and centrifuged shortly before it was transferred to an NMR tube 

for data acquisition. All metabolite concentrations obtained were adjusted by appropriate factors 

to account for the above dilutions, and represent the contents of the filtered samples, not the 

contents of the NMR tube. 

Spectra were acquired on a 500MHz VNMRS spectrometer equipped with a 5mm cold 

probe (Agilent Technologies, CA, USA). The pulse sequence used was a 1D-noesy with a 990ms 

presaturation on water and a 4s acquisition period. Spectra were collected with 256 transients and 

4 steady-state scans at 298K. 

Spectra were zero filled to 64k points and Fourier transformed. Spectral phasing was 

performed on the spectra along with baseline correction. In total, 33 metabolites were identified 

and quantified with a targeted profiling approach using the Profiler and Library Manager modules 

in the same software which contains a total of 304 metabolites. Each spectrum was peer reviewed 

by a separate analyst and a final review pass was done on all of the spectra before exporting 

concentration results. Concentration measurements were adjusted to report metabolite 

concentrations after the filtration of the samples.  
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2.3.2 Genotyping, quality control and prediction of genomic breed composition 

Animals were genotyped using Illumina BovineSNP50 v2 BeadChip (Illumina Inc., CA, 

USA) at Delta Genomics, Edmonton, AB, Canada. The genotypes were coded as 0, 1, and 2 and 

quality control was performed using the Synbreed package (Wimmer et al., 2012) in R statistical 

software. All markers on sex chromosomes and autosomal markers with minor allele frequency < 

1%, call rate < 90%, and severe departure from Hardy-Weinberg equilibrium (P < 10!") were 

removed. Missing genotypes were imputed using Synbreed package. After quality control, 45,266 

SNPs on 29 bovine autosomes for 475 individuals remained and were used for this study. 

Genomic breed composition was predicted for all individuals using ADMIXTURE 

software (Alexander et al., 2009). To predict breed composition for each animal, a 10-fold cross-

validation procedure was performed to find the best possible number of ancestors or breeds (K 

value). The value of K = 4 was chosen because it had the smallest cross-validation error and yielded 

the most accurate breed composition prediction based on prior knowledge. The four postulated 

ancestral breeds were Hereford, Angus, Charolais and Beefbooster TX line. The distribution of 

predicted genomic breed composition is shown in Figure 2.1. Estimates of genomic breed 

composition were fitted as covariates in the various statistical models to correct for population 

stratification and breed effects. 

2.3.3 Phenotypic quality control 

Phenotypic records included 33 plasma metabolite concentrations quantified from blood 

samples of 475 animals. A linear regression model implemented in R statistical software was used 

to assess the significance of all systematic effects associated with variation in plasma metabolites. 

Fixed factors found to be significant (P < 0.05) included contemporary groups (herd and birth 

year), animal type (bulls, slaughter steers, slaughter heifers and replacement heifers) and genomic 
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breed composition. These factors were subsequently included in the mixed model used for 

estimating heritability and GWAS. Contemporary group and animal type were fitted in the model 

as fixed class effect whereas breed fractions were fitted as fixed covariates. Residual values of the 

linear regression model were checked and those residuals with more or less than 3 standard 

deviations from the mean of residuals were considered as outliers and the associated records were 

excluded. The distribution of residuals after excluding outliers was close to a normal distribution 

(i.e. a bell shape without a big tail). The summary statistics of all metabolites after phenotypic 

quality control are given in Table 2.1. In general, the concentration of plasma metabolites ranged 

from 20.72 µM (L-methionine) to 5024.04 µM (L-lactic acid), on average. 

2.3.4 Variance components and heritability estimation 

Variance components and heritability of 33 metabolites were estimated using a single-trait 

animal model and genomic relationship matrix. The genomic relationship matrix was constructed 

based on total filtered SNP markers (i.e. 45,266 SNPs) and using one of VanRaden’s formulations 

**# ∕ 2∑-$(1 − -$) , where *  contains centered genotypes codes and -$  is the minor allele 

frequency for locus i (VanRaden, 2008). The following mixed effect model (1) implemented in 

ASReml version 4.1 (Gilmour et al., 2015) was applied: 

																																																	2 = 45 +78 + 9																																																																		(1) 

Where 2	is a vector of phenotypic observation; 4 is the design matrix that relates the fixed 

effects to the observation and 5 is a vector of fixed effects of contemporary groups, animal type 

and genomic breed composition. 7 is a design matrix relating observations to random animal 

genetic effects; 8 is a vector of random additive polygenic effects that is assumed to be normally 

distributed as: 8	~	;(<, >!%&), where 	>	is genomic relationship matrix and !%&  is the additive 
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genetic variance, 9 is a vector of random residual effects that is assumed to be normally distributed 

as 9	~	;(<, ?!'&), with ?	being an identity matrix and !'& is the residual error variance.  

2.3.5 Metabolome-genome-wide association study 

The genomic heritability obtained from model (1) was used to screen all metabolites for 

metabolome genome wide association analyses. Metabolites with zero or near zero heritability 

were excluded from mGWAS. Here, the SNP P values for 11 metabolites with non-zero 

heritability were determined using a single-step genomic BLUP (ssGBLUP) approach as described 

by Aguilar et al. (2019) and followed by the estimation of the proportion of additive variance 

explained by 10 consecutive SNP windows using a Weighted ssGBLUP (WssGBLUP) approach 

(Wang et al., 2012). Two iterations were applied in WssGBLUP. Both approaches were 

implemented in the BLUPF90 programs (Misztal et al., 2002). The mGWAS model used was 

similar to model (1) above except that 8 was assumed to follow ;(<,@!%&), where @ is the matrix 

that combines genomic and pedigree information (Aguilar et al., 2010). The inverse of @ for mixed 

model equations is: 

@!( = A!( +	B0 0
0 >!( − A&&!(C 

A is the pedigree-based numerator relationship matrix for all animals, A)) is the numerator 

relationship matrix for genotyped animals, and matrix > is the genomic relationship matrix, where 

> was weighted as described by Wang et al. (2012) for the WssGBLUP method. 

A rejection threshold based on Bonferroni correction for multiple testing (0.05/45266) was 

applied, which is equal to 5.96 in the -log10 scale. The quantile-quantile (Q-Q) plots of P values 

for each SNP were used to compare observed distributions of -log (P value) to the expected 

distribution under the null hypothesis for each metabolite. Manhattan plots of P values for each 
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SNP were also used to illustrate significant associations at the level of each chromosome for the 

metabolites. All plots were completed using the R package qqman (Turner, 2014).  

2.3.6 Candidate gene identification 

To identify a candidate gene, the surrounding region of each significant SNP was surveyed 

by expanding 100-kbp upstream and downstream, respectively. The 200-kbp region was defined 

based on the average linkage disequilibrium (D&) between pairs of syntenic SNPs within this 

distance which is known to be 0.20 in a related beef cattle population (Lu et al., 2012).  

Further, additional candidate genes associated with the top 10 SNP windows that explained 

the largest proportion of genetic variance for each metabolite from the WssGBLUP approach were 

identified. Positional candidate genes within 200-kbp regions and those inside the top 10 SNP 

windows were mapped on Bos taurus genome view in Biomart available at the Ensembl database 

UMD 3.1 version (Zerbino et al., 2018). The functions of all identified genes were manually 

searched from the literature to see if they had a previously identified relationship with the 

associated metabolites under investigation. 

2.3.7 Analysis of least square means for significant SNPs 

The least square mean of SNPs significantly associated with metabolites were assessed 

based on model (2) and implemented in R where applicable, to see how different allele 

combinations for these SNPs resulted in observed differences in the metabolite concentration. 

																																																	2 = 45 + EFG + 9																																																																		(2) 

Where 2, 4, 5 and 9 are the same as in model (1) and (2); EFG is a vector of genotype 

class 0, 1 and 2 fitted as a classification factor. 
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2.3.8 Functional enrichment analyses 

The interpretation of mGWAS using metabolite concentrations as the target phenotype is 

a complicated task because their concentrations are influenced indirectly by mRNA and protein 

expression as well as directly by several environmental effects. Pathway analysis using prior 

knowledge improves the interpretation of mGWAS data and provides insight from the genetics of 

biochemical conversions and biological functions. Functional analyses for the genes associated 

with each metabolite were performed using Ingenuity Pathway Analysis software (IPA; 

www.Ingenuity.com). Several lists including metabolites (PubChem CID) and candidate genes 

(Bovine Entrez gene IDs) in Table 2.S1 were imported in IPA for biological function analysis and 

network construction. Biological functions were considered significantly enriched if the P value 

for the overlap comparison test between the input list and the knowledge base of IPA for a given 

biological function was less than 0.05. Identification of significant pathways in biological 

processes was described in detail by Calvano et al. (2005). The analysis was performed following 

IPA default setting and parameters were set to allow the network to show indirect relationships for 

the imported metabolite and gene lists. Indirect relationships assist in the identification of other 

metabolites/genes that were not among the ones in the input list but may be associated with them 

based on the IPA biological reference. In addition, the resulting gene networks are scored and then 

sorted based on the score not based on P value, as multiple testing for this sort of analysis is not 

feasible.  
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2.4 Results 

2.4.1 Heritability estimates 

Eleven metabolites showed low to moderate heritability that ranged from 0.09 ± 0.15 

(succinic acid) to 0.36 ± 0.15 (choline), while heritability estimates for 22 metabolites were zero 

or negligible. Table 2.2 shows the results of all metabolites with heritability.  

2.4.2 SNP association, candidate genes and genetic effects 

Three significant SNP associations were detected for betaine (rs109862186), L-alanine 

(rs81117935) and L-lactic acid (rs42009425) based on Bonferroni correction for multiple testing 

(family-wise error rate < 0.05) (Table 2.3, Figures 2.2 – 2.4). The SNPs were located on 

chromosome 5, 11 and 22, respectively. The SNP rs81117935 was found within the catenin alpha 

2 gene (CTNNA2), while the other two SNPs were not mapped to any known candidate gene (Table 

2.4). 

In addition to the identified significant SNPs, the WssGBLUP method also identified more 

genomic regions associated with heritable metabolites based on additive genetic variance 

explained by SNP windows of 10 consecutive SNPs. The proportion of additive genetic variance 

explained by top 10 SNP windows and genes mapped in these windows are shown in Table 2.S1. 

The SNP window (107,403,824 - 107,704,991 bp) located on chromosome 5 was found to be 

associated with citric acid and explained the highest proportion of additive genetic variance (4.21%) 

while the SNP window (35,619,632 - 36,428,58 bp) with the lowest proportion of additive genetic 

variance (0.62%) was located on chromosome 26 and associated with L-lactic acid. A total of 368 

unique genes were identified within the selected SNP windows (Table 2.S1). Further, five SNP 

windows showed pleiotropic effects on two or more metabolites and were mapped to 17 candidate 

genes (Table 2.5). 
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The least square means of the genotypic classes are given in Figure 2.5. All three significant 

SNPs (rs109862186, rs81117935 and rs42009425) showed characteristics of additivity with the 

associated metabolite as concentration either increased or decreased with the number of “B” alleles 

for the three genotypic classes.  

2.4.3 Functional enrichment analyses 

The eleven heritable metabolites and their candidate genes were significantly enriched (P 

< 0.05) for biological functions related to cellular, tissue, and organ development, cell-to-cell 

signaling and interaction, molecular transport, small molecule biochemistry, lipid metabolism, 

carbohydrate metabolism, and cellular growth and proliferation. Additionally, one of the most 

informative networks (Figure 2.6) was related to lipid metabolism and cell-to-cell signaling and 

interaction with betaine and some of its candidate genes. 

2.5 Discussion 

2.5.1 Heritability estimates 

Metabolites have the potential to serve as biomarkers for production traits and diseases in 

livestock (Montgomery et al., 2009), and the concentration of biomarkers should not vary too much 

over the short term within a healthy individual because such variation could undermine the 

predictive association in a single sample (Nicholson et al., 2011b). Most highly conserved 

metabolites are also highly heritable (Yousri et al., 2014) and less influenced by the environmental 

changes. In this study, we performed a baseline investigation into the heritability of plasma 

metabolites in crossbred beef cattle and identified potential associations between heritable 

metabolites and SNP markers. As certain metabolites are essential for growth and health, 

knowledge of the genetic parameters of these important metabolites could trigger directional 
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selection towards regulating their concentration in metabolic processes. For instance, alanine is an 

essential amino acid for T cell activation (Ron-Harel et al., 2019) which affects immunity level. 

Here, a total of eleven metabolites out of thirty-three showed low to moderate heritability, 

suggesting their potential as biomarkers for genetic selection. Betaine and choline which showed 

moderate heritability in this study have been previously identified to be associated with residual 

feed intake in beef cattle (Karisa et al., 2014), thus, they could potentially be used as biomarkers 

for improving feed efficiency in beef cattle. The majority of the metabolites with negligible 

heritability may be largely influenced by environmental effects such as age, gender, nutrition, 

medication, and possibly underlying diseases (Beuchel et al., 2019). The non-heritable status of 

these metabolites may be used as a guide to animal management. For example, ruminants fed 

silage-based diets are likely to ingest ethanol because of ethanol production in fermented feeds 

(Nishino and Shinde, 2007) and the process of ethanol detoxification in liver could affect 

splanchnic nutrient metabolism (Obitsu et al., 2013). Ethanol showed a negligible heritability in 

this study, which suggests that the variation of ethanol concentration may be mainly affected by 

management factors such as feed. 

In a related study that utilized milk metabolites from dairy cattle, Buitenhuis et al. (2013) 

found heritability estimates that were similar to estimates observed for five metabolites from the 

current study. Although, these studies are not completely comparable, this finding corroborates the 

possible existence of a genetic basis for plasma metabolites. In addition, the negligible heritability 

or large standard error observed for some of the metabolites may be due to the limited number of 

animals utilized. Thus, further study may be warranted as this is the first attempt to characterise 

the genetic basis of plasma metabolites in crossbred beef cattle. 



 50 

2.5.2 SNP association, candidate genes and genetic effects 

Genetic profiling of plasma metabolites has been previously studied in other species to 

assess their value as biomarkers for disease prediction (López-López et al., 2018). Recently, 

metabolomics GWAS was performed to identify genomic regions associated with variation in milk 

metabolites in dairy cattle (Buitenhuis et al., 2013). To the best of our knowledge, this study is the 

first attempt at profiling the genetic basis of plasma metabolites in crossbred beef cattle. The SNPs 

and candidate genes identified here revealed the potential association between metabolomics and 

genetics, which could help fill the knowledge gap that exist between genetic level and external 

phenotype. The possible signals detected in this study were associated with betaine, L-alanine and 

L-lactic acid and the peaks for significant additive SNPs including rs109862186, rs81117935 and 

rs42009425 were on chromosome 5, 11, and 22. Two of the SNPs rs109862186 and rs42009425 

showed no evidence of a candidate gene within 200-kbp distance, however, SNP rs42009425 

associated with L-lactic acid was reported to be associated with clinical mastitis in French Holstein 

cattle (Marete et al., 2018). The SNP rs81117935 associated with L-alanine was found to be located 

within the candidate gene CTNNA2 which is one of three human alpha-catenin genes. Alpha-

catenin functions as a linking protein between cadherins and actin-containing filaments of the 

cytoskeleton (Cooper and Hausman, 2000), however, it is not known whether CTNNA2 gene may 

regulate the concentration of L-alanine in bovine blood. The least square mean results (Figure 2.5) 

showed that the concentration of L-alanine was significantly (P < 0.05) greater in individuals that 

are homozygotes for the “A” allele of SNP rs81117935 while no significant differences existed for 

the other two genotypic classes. Our finding suggests that CTNNA2 gene may play a role in the 

regulation of plasma L-alanine which requires further investigation.  
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Further, several candidate genes associated with heritable metabolites were mapped inside 

the selected SNP windows of 10 consecutive SNPs based on WssGBLUP analyses. Here, choline 

kinase alpha gene (CHKA) which is associated with choline was mapped inside the SNP window 

(46,143,465 – 46,796,930 bp) on chromosome 29. This gene encodes an enzyme called choline 

kinase alpha (Hosaka et al., 1992) which catalyzes the phosphorylation of choline to 

phosphocholine (Aoyama et al., 2004) as a first step in the biosynthesis pathway of 

phosphatidylcholine (Lacal, 2001). Phosphatidylcholine is one of the most abundant phospholipids 

in all mammalian cell membranes (van der Veen et al., 2017) and plays a critical role in membrane 

structure and also in cell signaling (Lacal, 2001). The importance of phospholipid metabolism in 

regulating lipid, lipoprotein and whole-body energy metabolism has been reviewed by van der 

Veen et al. (2017). Lipid metabolism has been previously identified as an important biological 

function in relation to beef cattle residual feed intake (Chen et al., 2011; Alexandre et al., 2015; 

Mukiibi et al., 2018). Therefore, the relationship between CHKA gene and choline metabolite used 

in this study has potential value for improving feed efficiency in beef cattle. Interestingly, several 

overlapped SNP windows were also identified, which indicates that either two metabolites were 

controlled by the same gene or by different genes within a SNP window (Table 2.5). The 

substantial polygenic and pleiotropic nature of the metabolite variation observed in the current 

study have been previously reported in human metabolomics studies (Hu et al., 2018; Gallois et 

al., 2019). 

Several reasons may lead to the few significant SNPs identified. Firstly, variation in 

metabolite concentrations may be due to the polygenic nature of the genes underlying the variation. 

Polygenic inheritance for primary metabolites have been reported in humans (Tanha et al., 2021) 

and plants (Rowe et al., 2008; Chan et al., 2010; Wen et al., 2014) and could potentially exist in 



 52 

beef cattle as evident in our study that utilized primary metabolites. Secondly, the crossbred nature 

of our studied population could lead to inconsistent linkage disequilibrium across multiple 

populations (De Roos et al., 2009). Thirdly, the ability to identify SNPs and quantitative trait loci 

with large effects on any of the metabolites depends partly on the amount of variation in metabolite 

concentration that can be attributed to genetic source. Here, low to moderate heritability were 

observed for some of the metabolites studied. Marker density is another factor that may lead to 

identification of fewer significant SNPs associated with variation in metabolites. In this study, 50K 

SNP panel was used for mGWAS, however, most causative SNPs may not be included in this 

panel and thus, would likely not be detected. Studies involving other beef cattle traits have shown 

that increasing marker density from 50K to 7.8 million SNPs can capture more additive genetic 

variance and can detect additional or novel significant SNPs (Wang et al., 2020; Zhang et al., 2020). 

Therefore, high-density SNP marker panel or whole-genome sequence data are suggested for 

future studies. Lastly, a stringent significance threshold based on Bonferroni correction for 

multiple testing was imposed to identify significant SNPs and exclude false positive results. 

However, compared with traditional GWAS, metabolites are highly correlated to other similar 

metabolites and often cannot be considered as independent. The traditional multiple testing 

methods may therefore eliminate some valuable SNPs. Some groups have computed the 

Bonferroni correction by counting all the metabolites (Gieger et al., 2008; Illig et al., 2010; Suhre 

et al., 2011), while a few other groups have adopted a less stringent strategy by taking into account 

the number of independent metabolites as determined by a principal component analysis to adjust 

for multiple test correction (Demirkan et al., 2012). 
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2.5.3 Functional enrichment analyses 

A one-to-one metabolite-to-gene correspondence is not known a priori (Nicholson et al., 

2011a) but functional enrichment analyses could provide enriched functions and networks of 

metabolites and identified candidate genes to give a whole picture of gene-metabolite associations. 

Some biological functions that are significantly enriched may help us improve understanding of 

molecular factors for some important traits, such as feed efficiency. The eight most significantly 

enriched biological functions for beef cattle feed efficiency included lipid metabolism, amino acid 

metabolism, carbohydrate metabolism, energy production, molecular transport, small molecule 

biochemistry, cellular development, and cell death and survival (Cantalapiedra-Hijar et al., 2018). 

Our results supplement the part played by genetic and molecular factors for these functions, thus, 

available data with both information (i.e., metabolite data and feed efficiency related traits) could 

be used to elucidate this hypothesis. Detailed insight into the specific pathways that are affected 

by variation in metabolites is a useful first step to select the most likely hypotheses. A good 

example is betaine which is widely distributed within the animal body (Xia et al., 2018) and was 

reported to enhance the synthesis of methylated compounds such as phospholipids as well as 

directly influence lipid metabolism (Huang et al., 2008). In addition, a recent study showed that 

insulin was associated with phospholipid alterations, but the mechanism is still not clear (Chang 

et al., 2019). Interestingly, the enriched pathway constructed by IPA showed a relationship 

between betaine, insulin and phospholipids and provides new insight into the connection between 

them (Figure 2.6), however, this connection requires experimental validation.  

2.6 Conclusion 

This study estimated heritability of 33 plasma metabolites for crossbred beef cattle and 

found low to moderate heritability for 11 metabolites, which provides evidence for the genetic 
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basis underlying the variation of metabolite concentrations. Three significant SNP associations 

were detected for betaine (rs109862186), L-alanine (rs81117935) and L-lactic acid (rs42009425) 

which suggest that the genetic effects may be largely polygenic. The SNP rs81117935 was found 

to be within CTNNA2 gene which is possibly associated with the regulation of L-alanine 

concentration in bovine blood. Other candidate genes were identified based on additive genetic 

variance explained by SNP windows of 10 consecutive SNPs. The observed heritability estimates 

and candidate genes and networks identified in this study will serve as baseline information for 

further research into the utilization of plasma metabolites for genetic improvement of crossbred 

beef cattle. 
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Table 2.1 Descriptive statistics for 33 plasma metabolites: number of animals per metabolite (n), 
mean, standard deviation (SD), coefficient of variation (CV), minimum (Min.) and maximum 
(Max.). Unit: µM 
Trait n Mean SD CV Min. Max. 
1-methylhistidine 435 56.26 22.71 0.40 15.34 136.31 
2-hydroxybutyrate 460 41.23 17.02 0.41 12.26 94.48 
acetic acid 462 264.60 256.05 0.97 33.40 2,056.21 
betaine 448 111.67 52.97 0.47 29.62 298.33 
creatine 451 127.59 44.39 0.35 41.98 262.67 
citric acid 448 120.27 65.38 0.54 15.61 338.45 
choline 456 346.37 173.98 0.50 61.35 960.08 
ethanol 404 61.38 84.91 1.38 13.53 560.94 
D-glucose 452 837.40 692.11 0.83 68.42 3,731.80 
glycine 451 378.65 162.32 0.43 90.38 896.70 
glycerol 452 511.10 354.71 0.69 15.68 1,532.64 
fumaric acid 300 23.85 8.48 0.36 10.75 66.11 
formic acid 454 30.34 28.25 0.93 9.46 370.87 
L-tyrosine 475 65.51 19.32 0.29 22.88 119.90 
L-phenylalanine 454 67.54 19.54 0.29 27.53 125.61 
L-alanine 446 390.34 148.99 0.38 104.46 852.47 
L-proline 465 129.58 41.02 0.32 42.09 257.82 
L-isoleucine 465 52.85 19.88 0.38 15.11 120.63 
L-histidine 450 76.09 28.57 0.38 23.35 150.45 
lysine 460 70.34 26.19 0.37 15.24 154.49 
L-lactic acid 450 5,024.04 2,790.01 0.56 885.17 15,976.05 
pyruvic acid 321 87.56 81.42 0.93 14.23 395.75 
succinic acid 448 58.47 34.46 0.59 14.86 280.58 
3-hydroxybutyric acid 457 86.65 41.66 0.48 18.29 272.70 
creatinine 451 132.14 57.85 0.44 30.77 308.61 
L-glutamine 441 58.97 23.00 0.39 14.35 119.97 
L-leucine 475 93.08 39.48 0.42 25.63 302.17 
L-methionine 193 20.72 4.49 0.22 12.08 33.77 
3-hydroxyisovaleric acid 155 32.38 13.02 0.40 11.70 79.06 
L-valine 454 147.16 49.58 0.34 49.88 313.97 
acetone 260 35.97 19.84 0.55 12.47 125.08 
methanol 447 135.47 76.28 0.56 31.35 383.19 
dimethyl sulfone 449 46.86 19.41 0.41 15.31 128.60 
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Table 2.2 Estimates of additive variance (!*&), residual variance (!+&), heritability (ℎ&) and their 
standard error (&') for eleven plasma metabolites1. 

Trait !*& !+& ℎ& &' 
choline 6,598.90 11,545.80 0.36 0.15 
creatinine 1,051.67 1,947.73 0.35 0.17 
betaine 402.10 783.09 0.34 0.16 
pyruvic acid 1,027.32 2,007.84 0.34 0.24 
L-lactic acid 639,240 2,268,490 0.22 0.16 
citric acid 477.13 1,719.37 0.22 0.15 
creatine 160.55 843.99 0.16 0.15 
D-glucose 17,497.10 100,579.00 0.15 0.14 
acetone 29.39 185.01 0.14 0.21 
L-alanine 768.05 7,824.22 0.09 0.13 
succinic acid 78.47 838.28 0.09 0.15 

1Metabolites with zero or near zero heritability estimates were not listed. 
 

Table 2.3 SNPs significantly associated with metabolites: chromosome (Chr), position of SNP on 
chromosome (bp), minor allele and minor allele frequency (MAF), nucleotide of SNP, P values of 
significant test and Bonferroni correction of P values. 

Trait SNP Chr Position (bp) Minor allele and MAF 

Nucleotide 
(major/minor 
allele) 

P 
Bonferroni 
correction 

betaine rs109862186 5 118,820,845 B (0.18) T/C 7.63E-07 0.03 
L-alanine rs81117935 11 54,765,154 A (0.45) T/C 9.10E-07 0.04 
L-lactic acid rs42009425 22 41,109,447 A (0.19) A/G 9.94E-07 0.04 
 

Table 2.4 200-kpb regions around the significant SNPs: chromosome (Chr), position of the region 
on chromosome (bp), gene in the regions and the location of the gene compared to SNP location. 

Trait Chr Position (bp) Gene name Gene location compared to 
SNP location 

betaine 5 118,720,845 - 
118,920,845 

- - 

L-alanine 11 54,665,154 - 54,865,154 CTNNA2 SNP is within gene 
L-lactic acid 22 41,009,447 - 41,209,447 - - 
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Table 2.5 Chromosome (Chr), position of overlapped windows (bp) and genes in overlap windows. 
Traits Chr Position (bp) Gene name 
acetone, L-lactic acid 1 28,675,718 - 29,049,389 GBE1 
L-alanine, choline 7 13,336,301 - 13,632,174 IER2, STX10, TRMT1, LYL1, 

NACC1, NFIX, CACNA1A 
L-alanine, betaine 19 24,357,241 - 24,917,540 RAP1GAP2, SPATA22, OR1G1, 

ASPA, TRPV1, TRPV3 
L-alanine, creatine 21 49,290,972 - 49,623,230 GEMIN2, PNN 
creatine, choline 28 15,916,594 - 16,124,333 ANK3 
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Table 2.S1 Genes that were identified within the top 10 SNP windows for heritable metabolites: proportion of additive genetics variance 
explained by each region, chromosome (Chr), start and end of the region on chromosome, genes in the regions. 

Trait 
Variance 
explained 
by region 

Chr Start (bp) End (bp) Gene name 

Acetone 2.45 1 28648176 29049389 GBE1  
2.06 9 98124370 98526918 MAP3K4, AGPAT4, PRKN  
1.33 10 44821159 45069536 GNG2, RTRAF, NID2  
1.12 5 63870367 64565816 UHRF1BP1L, ACTR6, SCYL2  
1.01 5 111313740 111790193 SYNGR1, TAB1, MGAT3, MIEF1, ATF4, RPS19BP1, CACNA1I, ENTHD1  
0.95 7 65379758 65689219 NMUR2  
0.95 5 57424855 58282365 NABP2, RNF41, SMARCC2, MYL6, MYL6B, ESYT1, ZC3H10, PA2G4, 

ERBB3, RPS26, IKZF4, SUOX, RAB5B, CDK2, PMEL, DGKA, PYM1, 
MMP19, DNAJC14, ORMDL2, SARNP, GDF11, CD63, RDH5, BLOC1S1, 
ITGA7, METTL7B, OR10P1, OR2AP1  

0.78 23 9617524 10026534 FKBP5, ARMC12, CLPS, LHFPL5, SRPK1, SLC26A8, MAPK14  
0.67 5 30275164 30912029 TMBIM6, FMNL3, PRPF40B, FAM186B, MCRS1, KCNH3, SPATS2, 

DNAJC22, C1QL4, TROAP, PRPH, TUBA1C, TUBA1A, TUBA1B, 
LMBR1L, DHH  

0.66 6 12942582 13295514 CAMK2D 
Betaine 1.86 18 33602408 33891066 

 
 

1.71 14 20952022 21452744 SPIDR, H3F3C, PRKDC, UBE2V2  
1.71 9 96215762 96715173 TULP4, TMEM181, DYNLT1, SYTL3, EZR  
1.59 9 97732365 98047172 IGF2R, SLC22A1, SLC22A2, SLC22A3, PLG  
1.48 2 96021111 96857370 CREB1, METTL21A, CCNYL1, FZD5, PLEKHM3, CRYGD, CRYGC, 

CRYGB  
1.17 19 24357241 24917540 RAP1GAP2, OR1G1, SPATA22, ASPA, TRPV3, TRPV1  
1.10 7 56766754 57175519 

 
 

1.06 2 108665467 109020542 
 

 
1.04 11 46307696 46701073 NT5DC4, CKAP2L, IL1A, IL1B, IL37, IL36G, IL36A, IL36B, IL36RN, 

IL1F10, IL1RN  
0.97 4 75741220 76123840 

 

Creatine 4.16 21 29563115 29923689 PCSK6, SNRPA1  
2.36 28 15812621 16124333 ANK3  
1.53 6 54369253 54625529 

 
 

1.46 21 49242650 49623230 SEC23A, GEMIN2, TRAPPC6B, PNN 
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1.22 26 27894025 28368749 SORCS1  
1.19 14 64767268 65300637 NCALD, GRHL2  
1.19 11 66073158 66554571 C1D, WDR92  
1.06 8 93786059 94115663 

 
 

0.99 7 3069070 3388020 WNT9A, PRSS38, SNAP47, JMJD4  
0.99 3 69940346 70313793 TYW3, CRYZ 

Citric acid 4.21 5 107403824 107704991 
 

 
1.94 1 144411032 144758824 SLC37A1, PDE9A, WDR4, NDUFV3, PKNOX1  
1.88 5 7733715 8063248 

 
 

1.62 3 96751550 97221503 
 

 
1.62 6 75380980 76407633 

 
 

1.37 21 51461130 52239094 LRFN5  
1.14 17 62311865 62623054 GLRB, PDGFC, TBX3, TBX5  
1.12 17 43052005 43459410 

 
 

1.08 26 36905943 37336603 GFRA1, CCDC172, PNLIPRP3, PNLIP  
0.89 13 29277185 29647662 FAM107B 

Choline 2.64 26 49366950 49736388 EBF3  
2.62 7 13336301 13632174 CACNA1A, IER2, STX10, NACC1, TRMT1, LYL1, NFIX  
1.56 1 1983902 2462297 C1H21orf62, PAXBP1, SYNJ1, CFAP298, EVA1C, URB1  
1.42 29 46143465 46796930 ALDH3B2, UNC93B1, ALDH3B1, NDUFS8, TCIRG1, CHKA, KMT5B, 

C29H11orf24, PPP6R3, GAL  
1.35 28 15916594 16250507 ANK3  
1.06 12 12557821 12977211 TNFSF11, FAM216B  
0.99 2 69753620 70442711 CCDC93, INSIG2  
0.99 1 18099231 18578077 TMPRSS15, CHODL  
0.97 6 25033485 25556469 PPP3CA  
0.96 19 63625695 64007021 CACNG5, CACNG4, CACNG1, HELZ 

D-Glucose 3.72 13 25298145 25681327 KIAA1217  
1.83 13 23925250 24688809 PIP4K2A, ARMC3, MSRB2, PTF1A, OTUD1  
1.51 2 1039834 1316010 CYFIP1, TUBGCP5, CCDC115, IMP4, PTPN18  
1.14 24 29013292 29349786 CDH2  
1.09 6 64466274 64733603 

 
 

0.96 13 75310875 75604222 TNNC2, ACOT8, ZSWIM3, ZSWIM1, SPATA25, NEURL2, CTSA, PLTP, 
PCIF1, ZNF335, MMP9, SLC12A5, NCOA5, CD40  

0.93 1 61996164 62696719 
 

 
0.92 1 132388576 132768483 
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0.85 6 41858119 42155077 KCNIP4  
0.78 9 45699093 46351157 HACE1 

L-Alanine 4.06 11 54730416 55170733 CTNNA2  
2.87 21 49290972 49646269 SEC23A, GEMIN2, TRAPPC6B, PNN  
2.56 1 45957974 46402519 IMPG2, SENP7, TRMT10C, PCNP, ZBTB11  
1.99 7 62839580 63231799 CSNK1A1, ARHGEF37, PPARGC1B, PDE6A  
1.26 3 96751550 97221503 

 
 

1.08 19 23220366 23605621 PITPNA, SLC43A2, SCARF1, RILP, PRPF8, TLCD2, MIR22, WDR81, 
SERPINF2, SERPINF1, SMYD4, RPA1, RTN4RL1  

1.08 19 24357241 24917540 RAP1GAP2, OR1G1, SPATA22, ASPA, TRPV3, TRPV1  
0.94 7 13336301 13632174 CACNA1A, IER2, STX10, NACC1, TRMT1, LYL1, NFIX  
0.92 7 86461228 86823742 EDIL3  
0.66 5 107302660 107590490 TEAD4, TULP3, RHNO1, FOXM1, TEX52, NRIP2, ITFG2, FKBP4, 

DDX11, WASHC1, IQSEC3 
L-Lactic acid 1.83 1 28675718 29073969 GBE1  

0.90 7 6698584 8376994 AP1M1, FAM32A, CIB3, HSH2D, RAB8A, TPM4, OR10H1  
0.87 12 15154465 15573724 NUFIP1, GPALPP1, GTF2F2, KCTD4, TPT1  
0.85 20 8897859 9270217 ZNF366, PTCD2, MRPS27  
0.80 9 93552330 94154628 

 
 

0.74 12 79456283 79814959 STK24, SLC15A1, DOCK9  
0.74 19 49247372 49627477 MILR1, POLG2, DDX5, CEP95, SMURF2, KPNA2, BPTF  
0.68 13 29821617 30337948 SUV39H2, DCLRE1C, MEIG1, OLAH, ACBD7, RPP38, NMT2, 

FAM171A1  
0.63 22 43478537 43834473 PXK, RPP14, ABHD6, DNASE1L3, FLNB  
0.62 26 35619632 36428581 TRUB1, ATRNL1 

Pyruvic acid 1.71 16 48544837 48879755 
 

 
1.19 11 4525511 4918860 REV1  
1.06 12 61686477 62517886 

 
 

1.02 20 52816141 53201978 
 

 
0.97 2 110598183 111155237 PAX3  
0.96 24 2094260 2466721 GALR1, ZNF516  
0.95 8 110455623 110921940 BRINP1  
0.93 10 45323831 45687660 PIF1, RBPMS2, OAZ2, ZNF609, TRIP4  
0.83 6 15294694 15633977 

 
 

0.79 24 2795809 3143836 
 

Succinic acid 3.91 3 106289280 106611961 SMAP2, COL9A2, ZMPSTE24, TMCO2, RLF 
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2.79 27 15291371 15686768 FAM149A, CYP4V2, KLKB1, F11, MTNR1A, FAT1  
2.41 7 41321459 41742027 MGAT1, ZFP62, BTNL9, TRIM7  
2.40 1 19182174 19829143 

 
 

1.45 7 56910268 57334500 YIPF5, KCTD16  
1.30 1 131261969 131642361 PIK3CB, FAIM, CEP70  
1.09 6 108026956 108340883 SH3BP2, TNIP2, FAM193A, RNF4  
1.04 2 129768904 130187033 RPL11, ID3, E2F2, ASAP3, TCEA3, ZNF436, HNRNPR  
0.89 11 24050822 24317047 

 
 

0.87 19 44632448 45005031 TMUB2, ATXN7L3, UBTF, SLC4A1, RUNDC3A, SLC25A39, GRN, 
FAM171A2, ITGA2B, GPATCH8, FZD2 

Creatinine 1.64 20 676757 1052840 
 

 
1.59 9 101640789 102007389 C9H6orf118, PDE10A  
1.45 20 17617134 17986264 ZSWIM6  
1.32 22 52504436 52955533 SMARCC1, CSPG5, ELP6, SCAP, PTPN23, NGP, KLHL18, KIF9  
1.14 10 77151640 77518423 PLEKHG3, SPTB, CHURC1, GPX2, RAB15, FNTB, MAX  
1.02 27 43066841 43459156 

 
 

0.98 1 73077982 73487973 XXYLT1, FAM43A, LSG1  
0.89 7 56766754 57175519 

 
 

0.87 29 29194986 29595613 PKNOX2, FEZ1, EI24, STT3A, CHEK1, ACRV1, SSLP1, PATE2 
  0.86 12 11955547 12513750 VWA8, DGKH, AKAP11 
 



 66 

 

Figure 2.1 Distribution of predicted genomic breed composition of crossbred beef cattle 

population (n = 475). Beefbooster is red, Angus is yellow, Hereford is green, Charolais is blue. 
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Figure 2.2 Manhattan plot (A) and QQ plot (B) for betaine, significant SNPs were determined by 

Bonferroni correction (red line). 
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Figure 2.3 Manhattan plot (A) and QQ plot (B) for L-alanine, significant SNPs were determined 

by Bonferroni correction (red line). 
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Figure 2.4 Manhattan plot (A) and QQ plot (B) for L-lactic acid, significant SNPs were determined 

by Bonferroni correction (red line).  
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Figure 2.5 Least square means for the genotypic classes of significant SNPs associated with 
betaine (A), L-alanine (B) and L-lactic acid (C), respectively. All three significant SNPs 
(rs109862186, rs81117935 and rs42009425) showed characteristics of additivity with the 
associated metabolite. 
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Figure 2.6 The enrichment network for betaine and associated genes, and the molecules in IPA 
database. The enriched pathway predicted by IPA showed a potential relationship between betaine, 
insulin and phospholipids. 
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Chapter 3. Identification of candidate genes and enriched biological functions 

for feed efficiency traits by integrating plasma metabolites and imputed whole 

genome sequence variants in beef cattle 

3.1 Abstract 

Feed efficiency is one of the key determinants of beef industry profitability and 

sustainability. However, the cellular and molecular background behind feed efficiency is largely 

unknown. This study combines imputed whole genome DNA variants and 31 plasma metabolites 

to dissect genes and biological functions/processes that are associated with residual feed intake 

(RFI) and its component traits including dry matter intake (DMI), average daily gain (ADG), and 

metabolic body weight (MWT) in beef cattle.  

Regression analyses between feed efficiency traits and plasma metabolites in a population 

of 493 crossbred beef cattle identified 5 (L-valine, lysine, L-tyrosine, L-isoleucine, and L-leucine), 

4 (lysine, L-lactic acid, L-tyrosine, and choline), 1 (citric acid), and 4 (L-glutamine, glycine, citric 

acid, and dimethyl sulfone) plasma metabolites associated with RFI, DMI, ADG, and MWT (P-

value < 0.1), respectively. Combining the results of metabolome-genome wide association studies 

using 10,488,742 imputed SNPs, 40, 66, 15, and 40 unique candidate genes were identified as 

associated with RFI, DMI, ADG, and MWT (P-value < 1×10-5), respectively. These candidate 

genes were found to be involved in some key metabolic processes including metabolism of lipids, 

molecular transportation, cellular function and maintenance, cell morphology and biochemistry of 

small molecules. 

This study identified metabolites, candidate genes and enriched biological 

functions/processes associated with RFI and its component traits through the integrative analyses 

of metabolites with phenotypic traits and DNA variants. Our findings could enhance the 



 73 

understanding of biochemical mechanisms of feed efficiency traits and could lead to improvement 

of genomic prediction accuracy via incorporating metabolite data. 

3.2 Introduction 

Feeding-related costs are the major expense in beef cattle enterprises, representing 55% - 

75% of total production costs (Ramsey et al., 2005; Ahola and Hill, 2012; Nielsen et al., 2013). 

Reducing feed inputs per unit of production could significantly improve profitability by 9 to 33% 

in beef production (Archer et al., 2004). Additionally, with the projected increase of the global 

population to 9.6 billion by the year 2050, the growing demand for beef is likely to put more 

pressure on already limited production resources such as water, land, fertilizers and labor (Gerber 

et al., 2013). Moreover, studies have shown that more feed efficient beef cattle consume less feed 

for the same amount of beef produced, and meanwhile, have a reduced methane emission (Hegarty 

et al., 2007). Therefore, improvements in feed efficiency of beef cattle can increase producer 

profitability and simultaneously lower the environmental footprint of beef production.  

Residual feed intake (RFI) is an important indicator of feed efficiency, which is usually 

defined as the difference between an animal's actual daily dry matter intake (DMI) and the 

expected daily DMI given the animal’s average daily gain (ADG) and metabolic body weight 

(MWT) (Koch et al., 1963). Currently, measuring individual animal feed intake to calculate RFI 

is a complex and expensive process. Numerous studies in beef cattle have revealed moderate to 

high heritability estimates (0.16 - 0.68) for RFI (Herd and Bishop, 2000; Arthur et al., 2001; 

Nkrumah et al., 2006; Mao et al., 2013), and thus make RFI suitable for genetic/genomic selection 

of efficient beef cattle. Over the decades, genome-wide association studies (GWAS) have detected 

thousands of single nucleotide polymorphisms (SNPs) and hundreds of candidate genes associated 

with RFI in beef cattle (Bolormaa et al., 2011; Abo-Ismail et al., 2014; Seabury et al., 2017; Zhang 
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et al., 2020). However, cellular and molecular functions associated with transcriptomic, 

metabolomic and proteomic levels of omic data, and detailed knowledge regarding the biological 

processes involved in feed efficiency still remain largely unknown. Metabolites are substrates or 

products of metabolic processes and are the results of combined endogenous and exogenous 

production (Fontanesi, 2016), thus metabolites are considered as intermediate phenotypes between 

the genomic (base) and phenotypic (top) levels (Fontanesi, 2016). Integration of metabolomic data 

into feed efficiency studies could help reveal the relationship between animal genetics and 

physiological phenotypes (i.e., RFI and its component traits), thereby increasing the fundamental 

understanding of biological functions related to feed efficiency and improving genetic/genomic 

selection efficacy in beef cattle. Therefore, the objective of this study was to use metabolites as 

intermediate phenotypes to study genes and biological functions/processes related to feed 

efficiency in beef cattle. In this study, feed efficiency data were collected from a beef cattle 

population consisting of 493 crossbred bulls, heifers, and steers. Thirty-one metabolites and their 

concentration levels (µM) were quantified from plasma of these animals on the first day of feedlot 

tests. Linear regression models were applied to identify metabolites associated with RFI and its 

component traits (DMI, ADG, and MWT). Whole genome sequence variants were imputed and 

used in metabolome-genome wide association studies (mGWAS) to identify significant SNPs for 

trait associated metabolites. Candidate genes were mapped based on significant SNPs and gene 

functional enrichment analyses were subsequently performed on candidate genes of each trait to 

predict biological functions/processes associated with feed efficiency in beef cattle.  
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3.3 Material and Methods 

3.3.1 Animal population, data collection of feed efficiency traits and metabolites 

All animals in this study were cared for according to the guidelines of the Canadian Council 

on Animal Care (2009). The population of animals was obtained from the Phenomic Gap Project 

that aimed to generate phenotypes of feed efficiency, carcass and meat quality as well as genomic 

data for Canadian crossbred beef animals (McKeown et al., 2013). Details of animal management, 

the herd, and animal breeds were previously described (Akanno et al., 2014; Abo-Ismail et al., 

2018; Li et al., 2020; Zhang et al., 2020). In summary, the population used in this study consisted 

of 493 crossbred bulls (n = 93), heifers (n = 125) and steers (n = 275) that were born between 2002 

to 2011. These animals were from five different commercial herds and they were tested in feedlots 

from 2003 to 2012 (McKeown et al., 2013). The major breed components were primarily Charolais 

(n = 73), Hereford-Angus crosses (n = 191) and a Beefbooster composite breed (predominantly 

Charolais-based, n = 229). The GrowSafe system (GrowSafe Systems Ltd., Airdrie, Alberta, 

Canada) was used to measure the feed intake of finishing calves at the feeding test station for a 

period of 76 to 112 days. Serial body weights (BW) in kg were measured for each animal at the 

beginning and end of the test and at approximately 14-day intervals during the test. The daily DMI 

in kg was calculated as an average of dry matter intake over the test period and further standardized 

according to the energy content of the diet. The initial BW in kg at the start of the feeding test and 

the ADG in kg were derived from a linear regression of the serial BW measurements against time 

(day) (Nkrumah et al., 2007; Lu et al., 2013; Mao et al., 2013; Zhang et al., 2020). The MWT in 

kg was calculated as midpoint BW0.75 while the midpoint BW was computed as the sum of the 

initial BW in kg and the product of ADG multiplied by half of the days on test (Nkrumah et al., 

2007; Lu et al., 2013; Mao et al., 2013; Zhang et al., 2020). The RFI in kg of DMI per day was 
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computed as the difference between the standardized daily DMI and the expected DMI that was 

predicted based on animal ADG and MWT (Koch et al., 1963). Blood samples were collected from 

all animals by jugular venipuncture in the early morning on the first day of feedlot tests and 

immediately frozen at -80°C for storage. These blood samples were used to quantify metabolites 

using nuclear magnetic resonance (NMR) spectroscopy. The procedure of metabolite 

quantification using NMR was previously described by Li et al. (2020). Thirty-one metabolites 

and their concentration levels (µM) were quantified from plasma. Blood samples were also used 

to extract DNA for genotyping using the Illumina BovineSNP50 v2 BeadChip (Illumina Inc., CA, 

USA). 

3.3.2 SNP genotype imputation, quality control and population admixture analyses 

Theoretically, a higher marker density could improve the power of GWAS to identify 

significant SNPs, therefore, the 50K genotypes were imputed to whole genome sequence variants 

using Beagle 5.1 software (Browning et al., 2018). The SNP imputation for animals used in this 

study was completed using a step-wise approach as described by Zhang et al. (2020) and Wang et 

al. (2020) based on the latest genome assembly ARS-UCD 1.2. The reference populations were 

4,247 animals of mixed beef breeds from our own reference population, and 3,093 Bos taurus 

animals from the 1000 Bull Genomes Project (Daetwyler et al., 2014) (run 7), respectively. After 

the imputation, 53,258,178 SNPs and indels (they are all termed SNPs for simplicity) on 29 

autosomes were obtained. Quality control for imputed whole genome sequence variants was 

performed to exclude DNA variants based on the following criteria: SNPs on 29 autosomes that 

had an imputation accuracy < 0.95, minor allele frequency < 0.05, and failed to pass the Hardy-

Weinberg equilibrium test (P-value < 0.0001). Finally, a total of 10,488,742 SNPs remained after 

quality control and were used in further analyses. 
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Breed composition of each animal was predicted based on the 50K genotypes using 

ADMIXTURE software to account for population stratification (Alexander et al., 2009; Hellwege 

et al., 2017). In order to find the best possible number of ancestors or breeds (K value), a 5-fold 

cross-validation procedure was performed as described in Zhang et al. (2020). The breed 

composition prediction had the smallest cross-validation error when the value of K = 6.  

3.3.3 Data consolidation, quality control for feed efficiency traits and metabolites 

The variation in feed efficiency traits and metabolites could be affected by multiple 

systematic effects. A linear regression model implemented in R statistical software was used to 

assess the significant systematic effects that were associated with feed efficiency traits or 

metabolites. Animal type (bull, heifer, steer), birth year, herd, feedlot pen, age at the feedlot test, 

and breeding composition were found to be the significantly associated factors for both the feed 

efficiency traits and metabolites (P-value < 0.05). Therefore, phenotypic values of the feed 

efficiency traits and metabolites were pre-adjusted for the above factors using liner regression 

models. Residuals with more or less than 3 standard deviations from the mean of residuals were 

considered as outliers and were excluded.  

3.3.4 Regression analyses between feed efficiency traits and metabolites and metabolome-

genome wide association studies 

After quality control and pre-adjustment of phenotypic data, regression analyses were 

conducted to identify associations between four feed efficiency traits and thirty-one metabolites 

using R statistical software. A feed efficiency trait and a metabolite were considered to be 

significantly associated when a P-value < 0.1 of the regression analyses was observed. This step 

was intended to determine the relationship between feed efficiency traits and metabolites. The 

mGWAS (metabolome-genome wide association studies) were performed for metabolites that 
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were significantly associated with the feed efficiency traits using the mlma (mixed linear model 

association) option as implemented in the GCTA package (Yang et al., 2011) based on the 

following linear mixed model: 

!!" = # + %"&!" + '!" + (!" 

where !!" is the adjusted metabolite value of the )th animal with the *th SNP (i.e. the )*th 

animal), %" is the allele substitution effect of the *th SNP, &!"  is the *th SNP genotype of animal ) 

coded as 0, 1, 2 for genotypes +#+#, +#+$, and +$+$, respectively, '!" is the additive polygenic 

effect of the )*th animal ~	.(0, 23%$), and (!"  is the random residual effect ~	.(0, 	53&$ ). The 

genomic relationship matrix 2  that was derived based on total filtered SNP markers (i.e. 

10,488,742 SNPs) as described by Yang et al. (2014), which is essentially the same as the second 

VanRaden formulation (VanRaden, 2008). The same 2 matrix was used to estimate variance 

components and heritability of metabolites via restricted maximum likelihood (REML) as 

implemented in the GCTA package. 

The SNPs with P-value < 1×10-5 were classified to be significantly associated with the 

metabolite according to the recommendation of The Wellcome Trust Case Control Consortium 

(Burton et al., 2007). The phenotypic variance of the metabolite explained by each significant SNP 

was calculated by 
$'()!
*! ∗ 100%, where 9 and : denote the SNP allele frequency of	+#	 and +$, 

respectively; ; is the SNP allele substitute effect that was estimated by generalized least square 

and the significance of SNP allele substitution effect was conducted via a generalized least square 

F-test as implemented in the GCTA package; 29:;$ is the additive variance of the SNP, and =$ 

is the phenotypic variance of the metabolite.  
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3.3.5 Identification of candidate genes and functional enrichment analyses for feed efficiency 

traits 

To identify candidate genes for concentration of each metabolite, a 140-kbp window (70-

kbp upstream and 70-kbp downstream) of each significant SNP was surveyed based on SNP 

annotation information from ARS-UCD 1.2 bovine genome assembly from the Ensembl BioMart 

database (accessed on 02 February, 2021). The 70-kbp was the chromosomal length within which 

a high linkage disequilibrium phase correlation (>$	> 0.77) was maintained across a sample of 

Canadian beef cattle breeds (Lu et al., 2012). Small nucleolar RNA and microRNA were excluded 

because we are interested in protein coding genes. Then candidate genes (Entrez gene IDs) of all 

metabolites that were associated with the feed efficiency traits (RFI, DMI, ADG, or MWT) as 

identified in the regression analyses were combined and imported into the Ingenuity Pathway 

Analysis software (accessed on 02 February, 2021) (IPA; www.Ingenuity.com) to predict the 

enriched biological functions and gene networks for feed efficiency traits. Biological functions 

were considered significantly enriched if the P-value for the overlap comparison test between the 

input gene list and the knowledge base of IPA for a given biological function was less than 0.05. 

In order to provide insight into cellular and molecular functions associated with feed efficiency 

traits, gene networks for some significant biological functions were constructed in IPA. 

3.4 Results 

3.4.1 Associations between feed efficiency traits and metabolites 

Of the 31 metabolites analyzed, 11 were found to be significantly associated with the feed 

efficiency traits (P-value < 0.1) and the results of regression analyses are shown in Table 3.1. 

Among significant associated metabolites with each trait, ten metabolites showed P-values less 

than 0.05, and four metabolites (choline for DMI, glycine, citric acid and dimethyl sulfone for 
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MWT) showed P-values ranging from 0.05 to 0.1 (0.09, 0.05, 0.06, and 0.09, respectively). At P-

values less than 0.1, five metabolites, including L-valine, lysine, L-tyrosine, L-isoleucine and L-

leucine, were significantly associated with RFI, accounting for 5.90% of the phenotypic variance 

in RFI. Lysine, L-lactic acid, L-tyrosine and choline were significantly associated with DMI, and 

these four metabolites accounted for 4.04% of phenotypic variance in DMI. Of note, lysine and L-

tyrosine were significantly associated with both RFI and DMI. Citric acid was the only metabolite 

that was significantly associated with ADG and accounted for 0.93% of phenotypic variance in 

ADG. Four metabolites, L-glutamine, glycine, citric acid and dimethyl sulfone, were significantly 

associated with MWT and accounted for 3.39% of phenotypic variance of MWT.  

3.4.2 Significant SNPs and candidate genes associated with metabolites 

Metabolome-genome wide association studies were performed for the 11 metabolites 

associated with the feed efficiency traits. The range of P-value and allele substitution effect of 

significant SNPs, the range and average of proportion of metabolite phenotypic variance explained 

by each significant SNP, and the number of quantitative trait loci (QTLs) and candidate genes 

identified for each metabolite are summarized in Table 3.2. In summary, 40, 66, 15 and 40 unique 

candidate genes were identified as related to RFI, DMI, ADG, and MWT, respectively (Table 3.3). 

Besides, 24 candidate genes were overlapped for RFI and DMI, 15 candidate genes were 

overlapped for ADG and MWT and 1 gene was common between DMI and MWT (Table 3.S1 and 

Figure 3.S1).  

3.4.3 Significantly enriched biological functions and gene networks for feed efficiency traits 

Of the 40, 66, 15 and 40 unique candidate genes, 39, 65, 15 and 39 genes for RFI, DMI, 

ADG and MWT were mapped to the IPA database for functional enrichment analyses, respectively. 

In summary, 24, 25, 18 and 28 significant cellular and molecular functions were identified for RFI, 
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DMI, ADG, and MWT (P-value < 0.05), respectively as presented in Table 3.S2 - 3.S5. The top 

five enriched cellular and molecular functions with corresponding candidate genes for each feed 

efficiency trait are shown in Table 3.4. Of the top five enriched cellular and molecular functions, 

lipid metabolism was the biological function with the lowest P-value for DMI and also 

significantly associated with RFI and MWT (Table 3.S3 and Table 3.S6). Molecular transport was 

one of the top five biological functions associated with DMI, ADG, and MWT. Small molecule 

biochemistry and nucleic acid metabolism were two top biological functions associated with both 

DMI and MWT. Among all significant biological functions, 15 biological functions were common 

for all four feed efficiency traits, and other biological functions shared among different feed 

efficiency traits are shown in Table 3.S6 and Figure 3.S2. 

Additionally, in order to gain insight into potentially important biological functions, gene 

networks of lipid metabolism and carbohydrate metabolism were investigated and constructed 

through IPA. Within the lipid metabolism function for DMI, 16 candidate genes (ACACB, 

ADGRF5, ALDH3B1, AQP9, CCDC80, CHKA, CPT1A, DAB1, DDX5, HNF1A, IGHMBP2, LRP5, 

NOS1, PLSCR1, PVALB and SSPN) were involved (Figure 3.1). The lipid metabolism included 

nine subfunctions which were concentration of fatty acid, concentration of lipid, concentration of 

phosphatidylcholine, concentration of triacylglycerol, fatty acid metabolism, cholesterol 

metabolism, synthesis of fatty acid, synthesis of lipid, and transport of lipid (Figure 3.1). 

Interestingly, seven genes (ACACB, AQP9, CCDC80, CHKA, CPT1A, HNF1A and LRP5) 

involved in the lipid metabolism were also involved in the carbohydrate metabolism for DMI, 

which engaged three subfunctions including oxidation of D-glucose, concentration of D-glucose 

and quantity of carbohydrate (Figure 3.2). 
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3.5 Discussion 

3.5.1 The role of metabolites in variation of feed efficiency traits  

Variation in RFI and its component traits could represent differences among animals in 

terms of metabolic process activity. For example, a study has shown that low RFI steers tend to 

have more efficient metabolic process activity and are able to meet their maintenance requirement 

with less energy intake than high RFI steers (Richardson and Herd, 2004). Blood is the major 

highway for transportation of nutrients to the different organs and tissues, and metabolites carried 

by blood are directly involved in metabolic processes as substrates or products, making blood 

metabolites prime candidates for further studies of feed efficiency in beef cattle. Additionally, 

some blood metabolites have the potential to serve as biomarkers for selection of efficient beef 

cattle (Karisa et al., 2014; Novais et al., 2019). 

In this study, 5 (L-valine, lysine, L-tyrosine, L-isoleucine, and L-leucine), 4 (lysine, L-

lactic acid, L-tyrosine, and choline), 1 (citric acid) and 4 (L-glutamine, glycine, citric acid, and 

dimethyl sulfone) plasma metabolites were identified to be associated with RFI, DMI, ADG, and 

MWT, respectively (Table 3.1). Individual metabolites accounted for 0.59% to 1.50% of the total 

phenotypic variance of RFI and its component traits. The results suggest that the feed efficiency 

traits could be associated with many metabolites with small effects. However, the identified 

metabolites associated with the feed efficiency traits in this study may require validation in 

independent beef cattle populations especially as a more relaxed threshold (P-value < 0.1) was 

used. Furthermore, we would like to highlight that only 31 metabolites were detected by the 

targeted method of NMR used in the current study. We therefore recommend that metabolomic 

profiles with more metabolites should be investigated in future with larger numbers of samples to 

identify more metabolites that are associated with RFI or its component traits.  
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To date, several metabolomic studies have attempted to identify relationships between 

serum or plasma metabolite levels and RFI in beef cattle (Karisa et al., 2014; Jorge-Smeding et al., 

2019; Foroutan et al., 2020). We found good agreement between the results from those studies and 

the current study. In the current study, valine, lysine, tyrosine, and leucine showed higher 

concentrations in beef cattle with high RFI than those with low RFI. In line with our results, Karisa 

et al. (2014) and Foroutan et al. (2020) observed higher concentrations of valine, lysine, and 

tyrosine in beef cattle with high RFI as compared to those with low RFI. Similarly, Jorge-Smeding 

et al. (2019) reported that concentrations of valine and lysine were decreased in heifers with low 

RFI. Additionally, Foroutan et al. (2020) reported the concentration of leucine was higher in high-

RFI beef cattle, which is consistent with our results. The consistency of results from different 

studies suggests that these metabolites have the potential to be used as biomarkers for feed 

efficiency. 

It is worth noting that, the three metabolites (isoleucine, leucine, and valine) associated 

with RFI are three essential branched-chain amino acids. These three metabolites share the first 

enzymatic steps in their oxidative pathways, including a reversible transamination followed by an 

irreversible oxidative decarboxylation to coenzyme-A derivatives (Manoli and Venditti, 2016). 

The respective oxidative pathways subsequently diverge and at the final steps yield acetyl- and/or 

propionyl-CoA that enter the tricarboxylic acid cycle (TCA cycle) (Manoli and Venditti, 2016). 

For animals, the TCA cycle is the main energy producing (mainly from carbohydrates and fatty 

acids) metabolic pathway (Akram, 2014), and some of the processes of the TCA cycle pathway 

have been previously reported to be associated with feed efficiency in beef cattle (Karisa et al., 

2014) and pigs (Wang and Kadarmideen, 2019). Additionally, in this study, citric acid was the 

only metabolite that was significantly associated with ADG and was overlapping for ADG and 
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MWT. Citric acid is an important intermediate in the TCA cycle (Akram, 2014) indicating a 

potential relationship between the TCA cycle related metabolic processes and feed efficiency traits. 

Interestingly, two other metabolites (lysine and L-tyrosine) were identified as associated with both 

RFI and DMI in this study. In the current study, we observed that the concentrations of lysine and 

L-tyrosine were significantly positively correlated (> = 0.29, P-value < 0.001). A previous study 

reported a higher positive correlation (> > 0.75, P-value < 0.001) between lysine and tyrosine 

(Wang and Kadarmideen, 2019). The association of lysine and L-tyrosine with both RFI and DMI 

could be due to the significant positive correlation between lysine and tyrosine and the fact that 

RFI has a high and positive genetic correlation with DMI (>, = 0.66 ± 0.11 to 0.75 ± 0.10) (Mao 

et al., 2013; Ceacero et al., 2016). Furthermore, lysine and tyrosine were reported as important 

amino acids involved in some important metabolic processes in beef cattle, such as amino acid 

metabolism and urea cycle (Jorge-Smeding et al., 2019), further supporting them as potential 

biomarkers for feed efficiency traits.  

3.5.2 Candidate genes, enriched molecular functions and gene networks for feed efficiency 

traits 

In this study, we identified 40, 66, 15 and 40 unique candidate genes as related to RFI, 

DMI, ADG, and MWT respectively via integrative analyses of regression analyses and mGWAS 

(Table 3.3). In a previous study, Zhang et al. (2020) performed GWAS based on imputed whole 

genome sequence variants for RFI, DMI, ADG, and MWT using 7,500 beef cattle and reported 

596, 268, 179 and 532 candidate genes for RFI, DMI, ADG, and MWT, respectively. Comparing 

their results with those in this study, we found 10, 23, 6 and 7 candidate genes in common between 

the two studies for RFI, DMI, ADG, and MWT, respectively (Table 3.S7). These overlapping 

genes indicated that metabolites are potentially important intermediate phenotypes between 
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candidate genes and feed efficiency traits. Additionally, results from our study provide more 

knowledge and better understanding of how the previously identified candidate genes exert their 

influence on the variability of RFI and its component traits via intermediate phenotype metabolites. 

For instance, Zhang et al. (2020) reported that some genes were associated with more than one 

trait such as, ADGRF1 and ADGRF5 which were associated with both RFI and DMI (Zhang et al., 

2020). However, the potential mechanism of how these genes could influence the two traits 

remained unclear. According to the results of the current study, these two genes were both 

associated with L-tyrosine as a common metabolite which was associated with RFI and DMI 

(Table 3.3). Similarly, according to Zhang et al. (2020), SLC28A3 was associated with ADG and 

MWT, and our results showed this gene was associated with citric acid as a common metabolite 

which was associated with ADG and MWT (Table 3.3). Interestingly, Zhang et al. (2020) 

identified ADGRF1, ADGRF5, GTPBP8 and NEPRO as associated with both RFI and DMI and 

the same genes for RFI and DMI were identified in the current study. However, the results of this 

study indicated that the molecular background of these associations might be different. L-tyrosine 

might explain the associations of ADGRF1, ADGRF5 with RFI and DMI, because we identified 

that ADGRF1 and ADGRF5 were associated with L-tyrosine which was a metabolite associated 

with both RFI and DMI. As for GTPBP8 and NEPRO, both genes were associated with another 

common metabolite, lysine that was identified to be associated with both RFI and DMI in the 

current study. Additionally, we observed that certain genes might be associated with the same feed 

efficiency trait through different metabolites. For example, SHROOM3 was associated with L-

valine and L-leucine and these two metabolites were associated with RFI (Table 3.3). Our study 

also showed that certain genes could be associated with different feed efficiency traits through 

different metabolites. For example, AQP9 was associated with DMI and MWT through L-lactic 
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acid and glycine, respectively (Table 3.3). Therefore, our integrative analyses of feed efficiency 

traits, metabolites, and whole genome sequence variants will enhance our understanding on genetic 

influence of feed efficiency traits in beef cattle. 

Some candidate genes identified for feed efficiency traits in the current study have been 

reported in our previous transcriptomic studies involving animals related to those used in the 

current study (Mukiibi et al., 2018, 2019). For instance, CCDC80 was reported as a differentially 

expressed gene between beef steers with divergent RFI (Mukiibi et al., 2018). Additionally, 

CCDC80, CUX2 and ALDH3B1 were differentially expressed in the liver of beef steers for DMI, 

and SERPINE3 was a differentially expressed gene for ADG (Mukiibi et al., 2019). Our current 

study identified the same genes associated with these traits through integrating metabolites (Table 

3.3). Indeed, CCDC80, CUX2, ALDH3B1 and SERPINE3 were associated with lysine, L-lactic 

acid, choline and citric acid, respectively. Therefore, our results potentially provide further insight 

into how these differentially expressed genes affect the feed efficiency traits in beef cattle. It is 

worth noting that CUX2 has also been reported to be associated with DMI in the American 

(Seabury et al., 2017) and Canadian beef population (Zhang et al., 2020). Therefore, these genes 

identified as associated with the same feed efficiency traits using genomic, transcriptomic and 

metabolomic data suggest the importance of these genes in influencing feed efficiency traits in 

beef cattle. Furthermore, some differentially expressed genes may affect RFI by influencing 

metabolites associated with its component traits (DMI, ADG, and MWT). For example, TCIRG1, 

AMN, and AQP9 were reported as differentially expressed genes in high- and low-RFI beef cattle 

(Tizioto et al., 2015; Weber et al., 2016) and these three genes were identified to be respectively 

associated with DMI, ADG, and MWT through different metabolites in this study. 
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Identification of enriched molecular processes, pathways and gene networks associated 

with feed efficiency traits using candidate genes from these different omics studies shed some light 

on underlying biological mechanism and gene interactions for complex traits. For the five topmost 

biological functions associated with RFI in the current study, cellular assembly and organization, 

cell morphology, cellular function and maintenance, and molecular transport were four biological 

functions that overlapped with the five topmost biological functions reported by Zhang et al. (2020) 

for RFI. Lipid metabolism, small molecule biochemistry and nucleic acid metabolism were three 

common top biological functions for DMI in the two studies. Lipid metabolism and small molecule 

biochemistry were also identified as two of the five topmost biological functions in our previous 

transcriptomic study for DMI in beef cattle (Mukiibi et al., 2019). Molecular transport, small 

molecule biochemistry and cell morphology were three overlapping top biological functions for 

MWT in Zhang et al. (2020) and this study. These three biological functions were also top 

biological functions for MWT in our previous transcriptomic study (Mukiibi et al., 2019). For 

ADG, cell-to-cell signaling and interaction was a common top biological functions in Zhang et al. 

(2020), Mukiibi et al. (2019) and the current study. Our results and those reported by previous 

studies indicated the overlapping top five biological functions have a potentially important 

relationship with feed efficiency traits in beef cattle. These important functions could further help 

to prioritize candidate genes and related functional SNPs associated with phenotypes. 

Additionally, we would like to note that attention should be paid to nutrient or energy 

metabolic processes, such as lipid metabolism, since several studies have reported its potential role 

in feed efficiency related to DMI and RFI (Nkrumah et al., 2007; Chen et al., 2011; Mao et al., 

2013; Alexandre et al., 2015; Weber et al., 2016; McKenna et al., 2018; Mukiibi et al., 2018, 2019; 

Higgins et al., 2019; Zhang et al., 2020). Nkrumah et al. (2007) and Mao et al. (2013) reported that 
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more efficient beef cattle tended to have less backfat and slightly less marbling. Transcriptomic 

studies reported that more efficient beef cattle were associated with differentially expressed genes 

related to reducing lipid metabolism in liver (Mukiibi et al., 2018, 2019), implying an important 

relationship between lipid metabolism and feed efficiency. Weber and colleagues identified 

differentially expressed genes in multiple tissues (pituitary, skeletal muscle, liver, visceral adipose, 

and duodenum) of beef cattle with divergent RFI, and their pathway analyses showed that many 

of the differentially expressed genes were involved in the immune system and fat metabolism 

(Weber et al., 2016). In this study, lipid metabolism was the most significant biological function 

for DMI and it was also significantly associated with RFI and MWT. Lipid metabolism was 

identified as one of the top biological functions for ADG in previous studies (Mukiibi et al., 2019; 

Zhang et al., 2020) but it was not shown in the current study, which is likely due to limitations of 

relatively small number of metabolites analyzed. In addition, of the candidate genes identified for 

the metabolites, there is limited knowledge on how candidate genes influence the respective 

plasma metabolite levels. For instance, enzyme choline kinase alpha is encoded by CHKA (Hosaka 

et al., 1992). In the biosynthesis pathway of phosphatidylcholine, the enzyme can catalyze the 

phosphorylation of choline to phosphocholine (Lacal, 2001; Aoyama et al., 2004). However, little 

is known on how concentrations of choline vary among animals due to their gene variants. 

Nevertheless, our integrative study of feed efficiency, blood metabolites and DNA variants has 

provided additional insight into relationships between gene functionalities, metabolites and feed 

efficiency traits, which may help develop strategies to enhance genomic prediction of feed 

efficiency traits with incorporation of metabolite data. 
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3.6 Conclusion 

This study combined genomic, metabolomic and phenotypic data to investigate molecules 

and biological functions/processes related to feed efficiency in beef cattle. Several plasma 

metabolites associated with RFI and its component traits were identified, and some of metabolites 

showed the potential to serve as biomarkers for feed efficiency in beef cattle. Multiple candidate 

genes were identified as associated with RFI and its component traits based on the results of 

regression analyses between feed efficiency traits and metabolites, and mGWAS. Gene functional 

enrichment analyses indicated that lipid metabolism may have an important role in feed efficiency. 

Our findings showed good consistency with previous metabolomic studies and GWAS studies for 

feed efficiency and also added more information regarding biological mechanisms of feed 

efficiency. Therefore, this integrative method could enhance the understanding of genetic 

influence, metabolites and biological functions/processes involved in feed efficiency traits, which 

could lead to improvement of genomic prediction accuracy via incorporating metabolite data.  
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Table 3.1 A summary of metabolites associated with RFI and its component traits in a multibreed 
population of beef cattle 
Trait1 Metabolite2 P-value3 b4 Vm/VP (%)5 
RFI L-valine 6.94E-03 2.72E-03 5.90 

Lysine 9.61E-03 3.96E-03 
L-tyrosine 2.40E-02 6.65E-03 
L-isoleucine 2.64E-02 5.80E-03 
L-leucine 3.40E-02 3.13E-03 

DMI Lysine 1.15E-02 5.06E-03 4.04 
L-lactic acid 2.25E-02 -6.98E-05 
L-tyrosine 2.45E-02 8.69E-03 
choline 9.27E-02 6.69E-04 

ADG citric acid 3.56E-02 4.31E-04 0.93 
MWT L-glutamine 1.49E-02 3.57E-02 3.39 

glycine 5.29E-02 -4.79E-03 
citric acid 6.11E-02 -9.56E-03 
dimethyl sulfone 9.67E-02 -2.63E-02 

1RFI residual feed intake in kg of DMI per day, DMI daily dry matter intake in kg per day, ADG 
average daily gain in kg, MWT metabolic body weight in kg 
2The unit of metabolite concentration is µM 
3The significance level of regression analysis is P-value < 0.1 
4b regression coefficient 
5Vm/VP the proportion of phenotypic variance of feed efficiency traits explained by associated 
metabolites (%) 
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Table 3.2 A summary of significant SNPs, the number of QTLs, and the number of candidate genes for metabolites associated with feed 
efficiency traits in a multibreed population of beef cattle 

1The unit of metabolite concentration is µM 
2The P-value range (minimum to maximum) of significant SNPs, the significance level is P-value < 1×10-5 
3! range the range of allele substitution effect of each significant SNP  
4VSNP/VP range the range of metabolite phenotypic variance explained by each significant SNP (%) 
5VSNP/VP mean the average of metabolite phenotypic variance explained by each significant SNP (%) 
6No. of QTL the number of QTLs identified for each metabolite 
7No. of gene the number of candidate gene identified for each metabolite  

Metabolite1 P-value range2 ! range3 VSNP/VP 
range (%)4 

VSNP/VP 
mean (%)5 No. of QTL6 No. of gene7 

citric acid 1.47E-06 – 9.75E-06 -29.80 – 37.62 3.57 – 4.95 4.05 15 15 
choline 4.94E-07 – 9.90E-06 -89.13 – 84.25 3.85 – 5.43 4.61 13 23 
glycine 3.17E-06 – 9.54E-06 68.80 – 75.32 3.97 – 4.65 4.31 9 10 
L-tyrosine 2.75E-06 – 9.40E-06 -4.20 – 7.73 3.96 – 4.49 4.11 5 2 
L-isoleucine 4.21E-06 – 8.94E-06 -8.88 – 9.75 4.04 – 4.35 4.14 3 3 
lysine 9.11E-09 – 9.80E-06 -17.77 – 20.56 3.88 – 7.13 4.82 15 20 
L-lactic acid 2.24E-07 – 9.43E-06 -1076.62 – 1261.24 3.74 – 5.95 4.58 16 21 
L-glutamine 7.37E-07 – 9.90E-06 -11.76 – 11.53 4.06 – 5.30 4.66 13 13 
L-leucine 1.03E-06 – 9.30E-06 -18.12 – 17.33 3.99 – 5.04 4.40 9 12 
L-valine 3.64E-06 – 9.78E-06 -25.43 – 24.38 3.73 – 4.46 4.03 8 4 
dimethyl sulfone 9.44E-07 – 9.53E-06 -8.46 – 7.52 3.90 – 5.04 4.45 4 2 
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Table 3.3 Metabolites and their candidate genes associated with RFI and its component traits in a multibreed population of beef cattle 
Trait1 Metabolite2 Candidate gene 
RFI L-valine NEDD4, PRTG, SHROOM3, XKR6 

lysine BTLA, ATG3, SLC35A5, CCDC80, CD200R1L, GTPBP8, NEPRO, BOC, SPICE1, SIDT1, 
FGF12, HS6ST3, FRMD5, MFHAS1, STYXL2, GPA33, DAB1, OR6C75, ITPR2, SSPN 

L-tyrosine ADGRF5, ADGRF1 
L-isoleucine C15H11orf49, PPYR1, ANXA8L1 
L-leucine SLC9A9, SYNE2, ESR2, DYNC1LI1, CD2AP, ADGRF2, ADGRF4, SHROOM3, KATNA1, LATS1, 

NUP43, PCMT1 
DMI lysine BTLA, ATG3, SLC35A5, CCDC80, CD200R1L, GTPBP8, NEPRO, BOC, SPICE1, SIDT1, 

FGF12, HS6ST3, FRMD5, MFHAS1, STYXL2, GPA33, DAB1, OR6C75, ITPR2, SSPN 
L-lactic acid PLSCR1, AQP9, NEDD4, PRTG, PYGO1, CUX2, NOS1, FBXO21, SPPL3, HNF1A, 

C17H12orf43, OASL, FOXN4, ACACB, TMEM171, FCHO2, CD247, POU2F1, MACF1, 
NPFFR2, SGCD 

L-tyrosine ADGRF5, ADGRF1 
choline HHAT, CDH8, PECAM1, MILR1, POLG2, DDX5, CEP95, ALDH3B1, NDUFS8, TCIRG1, 

CHKA, KMT5B, LRP5, PPP6R3, CPT1A, MRPL21, IGHMBP2, MRGPRF, CACNG2, IFT27, 
PVALB, BICD1, PERP 

ADG citric acid SERPINE3, INTS6, ZNF667, ZNF583, USP32, CA4, ZNHIT3, MYO19, TRAF3, AMN, 
CDC42BPB, EDEM1, ARL8B, KLHL31, SLC28A3 

MWT L-glutamine MYO16, UBE2E2, DDX56, NPC1L1, NUDCD3, CAMK2B, TRIM24, SVOPL, ATP6V0A4, 
PPP3CC, SORBS3, PDLIM2, CCAR2 

glycine AQP9, PHLDB1, TREH, DDX6, EIF5, MARK3, SEM1, PINX1, SOX7, C8H8orf74 
citric acid SERPINE3, INTS6, ZNF667, ZNF583, USP32, CA4, ZNHIT3, MYO19, TRAF3, AMN, 

CDC42BPB, EDEM1, ARL8B, KLHL31, SLC28A3 
dimethyl sulfone ULK4, TRAK1 

1RFI residual feed intake in kg of DMI per day, DMI daily dry matter intake in kg per day, ADG average daily gain in kg, MWT metabolic 
body weight in kg 
2The unit of metabolite concentration is µM  
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Table 3.4 Five topmost significantly enriched biological functions for RFI and its component traits, and genes involved in functions 
Trait1 Biological function P-value range2 Genes involved in the biological function 
RFI Cellular Assembly and 

Organization 
7.92E-05 – 4.19E-02 ADGRF1, ADGRF5, ANXA8L1, ATG3, BOC, CD2AP, DAB1, 

DYNC1LI1, ESR2, FGF12, ITPR2, KATNA1, LATS1, NEDD4, 
SHROOM3, SPICE1, SYNE2 

Cell Morphology 1.02E-03 – 4.02E-02 ADGRF5, ATG3, BOC, CD2AP, ESR2, KATNA1, LATS1, 
NEDD4, SLC9A9, SYNE2 

Cellular Function and 
Maintenance 

1.02E-03 – 4.19E-02 ADGRF1, ADGRF5, ANXA8L1, ATG3, BOC, CD2AP, DAB1, 
DYNC1LI1, ESR2, FGF12, ITPR2, KATNA1, NEDD4, 
SHROOM3, SYNE2 

Cellular Movement 1.12E-03 – 2.87E-02 DAB1, ESR2, KATNA1 
Molecular Transport 1.28E-03 – 3.36E-02 ADGRF5, DAB1, ESR2, ITPR2, LATS1, SHROOM3 

DMI Lipid Metabolism 2.46E-04 – 2.81E-02 ACACB, ADGRF5, ALDH3B1, AQP9, CCDC80, CHKA, 
CPT1A, DAB1, DDX5, HNF1A, IGHMBP2, LRP5, NOS1, 
PLSCR1, PVALB, SSPN 

Molecular Transport 2.46E-04 – 2.54E-02 ACACB, ADGRF5, AQP9, CCDC80, CD247, CHKA, CPT1A, 
DAB1, DDX5, FGF12, HNF1A, IFT27, IGHMBP2, ITPR2, 
LRP5, NEDD4, NOS1, NPFFR2, PECAM1, PLSCR1, PVALB, 
TCIRG1 

Small Molecule Biochemistry 2.46E-04 – 2.81E-02 ACACB, ADGRF5, ALDH3B1, AQP9, CCDC80, CHKA, 
CPT1A, DAB1, DDX5, HNF1A, HS6ST3, IGHMBP2, LRP5, 
NOS1, NPFFR2, PECAM1, PLSCR1, PVALB, SGCD, SSPN, 
TCIRG1 

Nucleic Acid Metabolism 2.84E-04 – 2.81E-02 ACACB, CPT1A, NOS1 
Protein Synthesis 5.66E-04 – 1.13E-02 ACACB, CCDC80, HNF1A, LRP5, NOS1, NPFFR2, PECAM1, 

SGCD 
ADG Cell-To-Cell Signaling and 

Interaction 
6.57E-04 – 6.57E-04 TRAF3 

Cellular Development 6.57E-04 – 2.34E-02 TRAF3 
Cellular Function and 
Maintenance 

6.57E-04 – 2.21E-02 AMN, ARL8B, MYO19, TRAF3 

Cellular Growth and Proliferation 6.57E-04 – 2.34E-02 TRAF3 
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Molecular Transport 6.57E-04 – 2.34E-02 AMN, ARL8B, CA4, SLC28A3, TRAF3 
MWT Molecular Transport 7.04E-04 – 4.79E-02 AMN, AQP9, ARL8B, ATP6V0A4, CA4, CAMK2B, DDX56, 

DDX6, NPC1L1, PPP3CC, SLC28A3, SORBS3, TRAF3, TRAK1 
Nucleic Acid Metabolism 7.04E-04 – 2.7E-02 AQP9, SLC28A3 
Small Molecule Biochemistry 7.04E-04 – 4.79E-02 AMN, AQP9, NPC1L1, PPP3CC, SLC28A3, SORBS3, TREH 
Cell Cycle 1.45E-03 – 2.78E-02 ARL8B, CAMK2B, MYO19, NUDCD3, TRIM24 
Cell Morphology 1.45E-03 – 3.36E-02 AQP9, ARL8B, CAMK2B, NUDCD3, PDLIM2, PINX1, TRIM24 

1RFI residual feed intake in kg of DMI per day, DMI daily dry matter intake in kg per day, ADG average daily gain in kg, MWT metabolic 
body weight in kg 
2The P-value range (minimum to maximum) of significant biological functions, the significance level is P-value < 0.05 
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Table 3.S1 Uniquely common candidate genes for feed efficiency traits in a beef cattle multibreed 
population 
Trait Number of common genes Common gene name 
DMI, RFI 24 ADGRF1, FRMD5, OR6C75, PRTG, SLC35A5, 

CCDC80, ATG3, GTPBP8, STYXL2, SIDT1, 
HS6ST3, BOC, NEPRO, BTLA, GPA33, DAB1, 
NEDD4, FGF12, MFHAS1, ITPR2, CD200R1L, 
SSPN, SPICE1, ADGRF5 

ADG, MWT 15 ZNF667, CDC42BPB, CA4, SERPINE3, ZNHIT3, 
INTS6, KLHL31, SLC28A3, EDEM1, ARL8B, AMN, 
TRAF3, ZNF583, MYO19, USP32 

DMI, MWT 1 AQP9 
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Table 3.S2 Enriched biological functions significantly associated with RFI in a beef cattle 
multibreed population 
Biological function P-value range Genes involved in the biological function 
Cellular Assembly and 
Organization 

7.92E-05-4.19E-02 ADGRF1,ADGRF5,ANXA8/ANXA8L1,ATG3, 
BOC,CD2AP,DAB1,DYNC1LI1,ESR2,FGF12, 
ITPR2,KATNA1,LATS1,NEDD4,SHROOM3, 
SPICE1,SYNE2 

Cell Morphology 1.02E-03-4.02E-02 ADGRF5,ATG3,BOC,CD2AP,ESR2,KATNA1, 
LATS1,NEDD4,SLC9A9,SYNE2 

Cellular Function and 
Maintenance 

1.02E-03-4.19E-02 ADGRF1,ADGRF5,ANXA8/ANXA8L1,ATG3, 
BOC,CD2AP,DAB1,DYNC1LI1,ESR2,FGF12, 
ITPR2,KATNA1,NEDD4,SHROOM3,SYNE2 

Cellular Movement 1.12E-03-2.87E-02 DAB1,ESR2,KATNA1 
Molecular Transport 1.28E-03-3.36E-02 ADGRF5,DAB1,ESR2,ITPR2,LATS1,SHROOM3 
Protein Synthesis 1.28E-03-3.2E-02 ESR2,LATS1,SHROOM3 
Small Molecule 
Biochemistry 

1.28E-03-4.31E-02 ADGRF5,DAB1,ESR2,HS6ST3,LATS1,SSPN 

Cell-To-Cell Signaling and 
Interaction 

1.71E-03-3.7E-02 CD200R1L,ESR2,FGF12,LATS1,NEDD4,SLC9A9 

Cellular Development 1.71E-03-4.46E-02 BOC,BTLA,ESR2,LATS1,NEDD4,SSPN 
Cellular Growth and 
Proliferation 

1.71E-03-4.46E-02 BOC,BTLA,ESR2,LATS1,NEDD4 

Post-Translational 
Modification 

1.71E-03-8.52E-03 PCMT1,SHROOM3 

Cell Death and Survival 2.69E-03-4.35E-02 ATG3,BTLA,CCDC80,CD2AP,ESR2,FGF12, 
ITPR2,LATS1 

Cell Cycle 3.42E-03-4.35E-02 BTLA,CD2AP,DYNC1LI1,ESR2,LATS1,SPICE1 
DNA Replication, 
Recombination, and Repair 

3.42E-03-4.19E-02 LATS1 

Cell Signaling 5.12E-03-3.27E-02 ESR2,ITPR2,NEDD4 
Cellular Compromise 5.12E-03-4.19E-02 DAB1,ESR2,KATNA1 
Drug Metabolism 5.12E-03-2.7E-02 ESR2 
Lipid Metabolism 5.12E-03-4.31E-02 ADGRF5,DAB1,ESR2,SSPN 
Protein Trafficking 5.12E-03-5.12E-03 ESR2,SHROOM3 
Vitamin and Mineral 
Metabolism 

5.12E-03-3.27E-02 ESR2,ITPR2 

Carbohydrate Metabolism 1.02E-02-1.02E-02 HS6ST3 
Cellular Response to 
Therapeutics 

1.02E-02-2.53E-02 ATG3,ESR2 

Gene Expression 1.7E-02-1.7E-02 ESR2 
Free Radical Scavenging 3.36E-02-3.36E-02 ADGRF5 
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Table 3.S3 Enriched biological functions significantly associated with DMI in a beef cattle 
multibreed population 
Biological 
function P-value range Genes involved in the biological function 

Lipid Metabolism 2.46E-04-2.81E-02 ACACB,ADGRF5,ALDH3B1,AQP9,CCDC80,CHKA, 
CPT1A,DAB1,DDX5,HNF1A,IGHMBP2,LRP5,NOS1, 
PLSCR1,PVALB,SSPN 

Molecular 
Transport 

2.46E-04-2.54E-02 ACACB,ADGRF5,AQP9,CCDC80,CD247,CHKA,CPT1A,
DAB1,DDX5,FGF12,HNF1A,IFT27,IGHMBP2,ITPR2, 
LRP5,NEDD4,NOS1,NPFFR2,PECAM1,PLSCR1,PVAL, 
TCIRG1 

Small Molecule 
Biochemistry 

2.46E-04-2.81E-02 ACACB,ADGRF5,ALDH3B1,AQP9,CCDC80,CHKA, 
CPT1A,DAB1,DDX5,HNF1A,HS6ST3,IGHMBP2,LRP5, 
NOS1,NPFFR2,PECAM1,PLSCR1,PVALB,SGCD,SSPN, 
TCIRG1 

Nucleic Acid 
Metabolism 

2.84E-04-2.81E-02 ACACB,CPT1A,NOS1 

Protein Synthesis 5.66E-04-1.13E-02 ACACB,CCDC80,HNF1A,LRP5,NOS1,NPFFR2, 
PECAM1,SGCD 

Cell Death and 
Survival 

6.11E-04-2.81E-02 ATG3,BTLA,CD247,DDX5,HNF1A,ITPR2,LRP5,NOS1, 
PECAM1,PERP,PLSCR1,POU2F1,SGCD,SSPN 

Cellular 
Compromise 

6.11E-04-2.54E-02 HNF1A,LRP5,NOS1,PLSCR1,PRTG,TCIRG1 

Cell Signaling 7.06E-04-2.26E-02 BICD1,BOC,CD247,DDX5,HHAT,HNF1A,IFT27,ITPR2,
LRP5,NOS1,OASL,PLSCR1,PVALB,SGCD,TCIRG1 

Cellular Function 
and Maintenance 

1.19E-03-2.54E-02 ATG3,BICD1,BOC,CACNG2,DAB1,FCHO2,HNF1A, 
IFT27,ITPR2,LRP5,NEDD4,NOS1,PECAM1,PLSCR1, 
PVALB,SGCD,TCIRG1 

Cell Cycle 1.62E-03-2.26E-02 BTLA,CHKA,PLSCR1,POU2F1 
Carbohydrate 
Metabolism 

2.38E-03-2.54E-02 ACACB,AQP9,CCDC80,CHKA,CPT1A,HNF1A,HS6ST3, 
LRP5,PLSCR1 

Amino Acid 
Metabolism 

2.85E-03-2.54E-02 HNF1A,NOS1 

Cell Morphology 2.85E-03-2.81E-02 ADGRF5,ATG3,BOC,CACNG2,CD247,FOXN4,HNF1A, 
LRP5,NEDD4,NOS1,PECAM1,PERP,POLG2,PVALB, 
SGCD,TCIRG1 

Cell-To-Cell 
Signaling and 
Interaction 

2.85E-03-2.65E-02 ACACB,CACNG2,CD247,CDH8,FGF12,LRP5,NEDD4, 
NOS1,PECAM1,PERP,PVALB 

Cellular Assembly 
and Organization 

2.85E-03-2.81E-02 ACACB,ATG3,BOC,CACNG2,CD247,CDH8,DAB1, 
FCHO2,HNF1A,IFT27,ITPR2,KMT5B,NEDD4,NOS1, 
PECAM1,PERP,PLSCR1,POLG2,PVALB,SGCD 

Cellular 
Development 

2.85E-03-2.81E-02 BOC,BTLA,CHKA,DAB1,FOXN4,HNF1A,ITPR2,NEPRO,
NOS1,PECAM1,PLSCR1,PRTG,PVALB,SSPN,TCIRG1 

Cellular Growth 
and Proliferation 

2.85E-03-2.81E-02 BOC,BTLA,HNF1A,ITPR2,NOS1,PECAM1,PLSCR1, 
POU2F1,PVALB,TCIRG1 

Cellular Movement 2.85E-03-2.56E-02 DAB1,HNF1A,MACF1,NEDD4,NOS1,PECAM1 
Drug Metabolism 2.85E-03-2.85E-03 PVALB 
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RNA Post-
Transcriptional 
Modification 

2.85E-03-2.85E-03 DDX5 

Energy Production 5.69E-03-1.98E-02 ACACB,CCDC80,CPT1A,DDX5,HNF1A,NOS1 
Gene Expression 5.69E-03-2.26E-02 DDX5,IGHMBP2,POU2F1 
Post-Translational 
Modification 

5.69E-03-8.52E-03 HNF1A,NOS1 

Vitamin and 
Mineral 
Metabolism 

8.52E-03-2.26E-02 ACACB,CD247,HNF1A,ITPR2,LRP5,NOS1,PVALB, 
SGCD,TCIRG1 

Cellular Response 
to Therapeutics 

1.7E-02-2.54E-02 ATG3 

 

Table 3.S4 Enriched biological functions significantly associated with ADG in a beef cattle 
multibreed population 
Biological function P-value range Genes involved in the biological function 
Cell-To-Cell Signaling and 
Interaction 

6.57E-04-6.57E-04 TRAF3 

Cellular Development 6.57E-04-2.34E-02 TRAF3 
Cellular Function and 
Maintenance 

6.57E-04-2.21E-02 AMN,ARL8B,MYO19,TRAF3 

Cellular Growth and 
Proliferation 

6.57E-04-2.34E-02 TRAF3 

Molecular Transport 6.57E-04-2.34E-02 AMN,ARL8B,CA4,SLC28A3,TRAF3 
Nucleic Acid Metabolism 6.57E-04-1.5E-02 SLC28A3 
Small Molecule Biochemistry 6.57E-04-1.5E-02 AMN,SLC28A3 
Cellular Compromise 1.31E-03-1.18E-02 ARL8B,CA4 
Cellular Movement 1.31E-03-2.15E-02 ARL8B,CA4 
Protein Trafficking 2.63E-03-4.59E-03 AMN,TRAF3 
Cell Death and Survival 3.28E-03-3.24E-02 ARL8B,CA4,TRAF3 
Drug Metabolism 4.59E-03-4.59E-03 AMN 
Cell Cycle 6.56E-03-3.81E-02 MYO19 
Cellular Assembly and 
Organization 

7.21E-03-3.62E-02 ARL8B,MYO19 

RNA Post-Transcriptional 
Modification 

8.51E-03-8.51E-03 INTS6 

Cell Morphology 9.82E-03-9.82E-03 ARL8B 
Post-Translational 
Modification 

1.02E-02-1.02E-02 TRAF3,USP32 

Vitamin and Mineral 
Metabolism 

1.5E-02-1.5E-02 AMN 
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Table 3.S5 Enriched biological functions significantly associated with MWT in a beef cattle 
multibreed population 
Biological function P-value range Genes involved in the biological function 
Molecular Transport 7.04E-04-4.79E-02 AMN,AQP9,ARL8B,ATP6V0A4,CA4,CAMK2B, 

DDX56,DDX6,NPC1L1,PPP3CC,SLC28A3, 
SORBS3,TRAF3, TRAK1 

Nucleic Acid Metabolism 7.04E-04-2.7E-02 AQP9,SLC28A3 
Small Molecule 
Biochemistry 

7.04E-04-4.79E-02 AMN,AQP9,NPC1L1,PPP3CC,SLC28A3, 
SORBS3, TREH 

Cell Cycle 1.45E-03-2.78E-02 ARL8B,CAMK2B,MYO19,NUDCD3,TRIM24 
Cell Morphology 1.45E-03-3.36E-02 AQP9,ARL8B,CAMK2B,NUDCD3,PDLIM2, 

PINX1, TRIM24 
Cellular Assembly and 
Organization 

1.45E-03-4.38E-02 ARL8B,CAMK2B,CCAR2,CDC42BPB,DDX6, 
MYO16, 
NPC1L1,NUDCD3,PDLIM2,PHLDB1,PINX1, 
TRAK1, TRIM24,ULK4 

DNA Replication, 
Recombination, and Repair 

1.45E-03-4.19E-02 ARL8B,NUDCD3,PINX1,TRIM24 

Cellular Function and 
Maintenance 

1.49E-03-4.38E-02 AMN,AQP9,ARL8B,CAMK2B,CCAR2, 
CDC42BPB,MYO16,MYO19,NPC1L1,NUDCD3,
PHLDB1,TRAF3, TRAK1,ULK4 

Carbohydrate Metabolism 1.71E-03-1.36E-02 AQP9,TREH 
Cell-To-Cell Signaling and 
Interaction 

1.71E-03-4.19E-02 CAMK2B,PDLIM2,PPP3CC,SORBS3,TRAF3 

Cellular Development 1.71E-03-3.2E-02 CAMK2B,TRAF3,ULK4 
Cellular Growth and 
Proliferation 

1.71E-03-3.2E-02 CCAR2,DDX56,SOX7,TRAF3 

Lipid Metabolism 1.71E-03-4.79E-02 AQP9,NPC1L1 
Vitamin and Mineral 
Metabolism 

1.71E-03-3.86E-02 AMN,NPC1L1 

Cellular Compromise 3.42E-03-3.03E-02 ARL8B,CA4,CCAR2,PINX1 
Cellular Movement 3.42E-03-3.53E-02 ARL8B,CA4,PPP3CC,TRAK1 
Gene Expression 3.42E-03-4.62E-02 DDX6,EIF5,TRIM24 
RNA Damage and Repair 3.42E-03-3.42E-03 EIF5 
Post-Translational 
Modification 

4.42E-03-3.53E-02 CAMK2B,CDC42BPB,KLHL31,MARK3,TRIM24, 
UBE2E2 

Protein Trafficking 6.82E-03-1.53E-02 AMN,TRAF3,UBE2E2 
Cell Death and Survival 8.52E-03-3.03E-02 ARL8B,CAMK2B,PPP3CC,TRAF3 
Protein Degradation 9.57E-03-2.09E-02 CCAR2,EDEM1,PINX1,TRAF3,TRIM24 
Protein Synthesis 9.57E-03-3.7E-02 CAMK2B,CCAR2,DDX6,EDEM1,EIF5,MARK3,

NPC1L1,PINX1,TRAF3,TRIM24 
Drug Metabolism 1.19E-02-1.19E-02 AMN 
Protein Folding 1.53E-02-1.53E-02 UBE2E2 
Cell Signaling 1.88E-02-3.89E-02 CAMK2B,KLHL31,MARK3,SORBS3,ULK4 
RNA Post-Transcriptional 
Modification 

2.2E-02-2.2E-02 INTS6 

RNA Trafficking 3.7E-02-3.7E-02 DDX6 
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Table 3.S6 Uniquely common biological functions for feed efficiency traits in a beef cattle 
multibreed population 

Trait Number of common 
biological functions Common biological functions 

ADG, DMI, MWT, RFI 15 Molecular Transport, Cellular Function and 
Maintenance, Cell Morphology, Small Molecule 
Biochemistry, Cellular Assembly and 
Organization, Cell-To-Cell Signaling and 
Interaction, Cell Cycle, Cellular Development, 
Cellular Movement, Drug Metabolism, Vitamin 
and Mineral Metabolism, Cell Death and 
Survival, Cellular Growth and Proliferation, 
Post-Translational Modification, Cellular 
Compromise 

DMI, MWT, RFI 5 Lipid Metabolism, Carbohydrate Metabolism, 
Cell Signaling, Protein Synthesis, Gene 
Expression 

ADG, DMI, MWT 2 Nucleic Acid Metabolism, RNA Post-
Transcriptional Modification 

ADG, MWT, RFI 1 Protein Trafficking 
DMI, RFI 1 Cellular Response to Therapeutics 
MWT, RFI 1 DNA Replication, Recombination, and Repair 

 

Table 3.S7 The comparison of candidate genes between the current study and Zhang et al. 

Trait 

Number of 
candidate 
genes 
identified 
by Zhang et 
al. 

Number of 
candidate 
genes 
identified in 
this study 

Number 
of 
overlap
ping 
genes 

overlapping 
genes / total 
identified 
genes (%) 

Overlapping genes 

RFI 596 40 10 25.00% SHROOM3, GTPBP8, 
ADGRF5, SLC9A9, NEPRO, 
ADGRF1, SYNE2, FRMD5, 
ADGRF4, ITPR2 

DMI 268 66 23 34.85% GTPBP8, CUX2, ADGRF5, 
DDX5, NEPRO, NOS1, 
ADGRF1, NDUFS8, 
MFHAS1, FBXO21, TCIRG1, 
HNF1A, CHKA, 
C17H12orf43, LRP5, OASL, 
PPP6R3, TMEM171, PERP, 
FCHO2, POU2F1, MACF1, 
SGCD 

ADG 179 15 6 40.00% SERPINE3, INTS6, TRAF3, 
AMN, CDC42BPB, SLC28A3 

MWT 532 40 7 17.50% UBE2E2, MARK3, USP32, 
CAMK2B, SLC28A3, 
PPP3CC, SORBS3 
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Figure 3.1 Gene network of lipid metabolism for dry matter intake (DMI) 

 

Figure 3.2 Gene network of carbohydrate metabolism for dry matter intake (DMI) 
  



 106 

 

Figure 3.S1 Uniquely common candidate genes for feed efficiency traits RFI, DMI, ADG, MWT 
in a beef cattle multibreed population 

 

 

Figure 3.S2 Uniquely common biological functions for feed efficiency traits RFI, DMI, ADG, 
MWT in a beef cattle multibreed population  
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Chapter 4. Integrative analyses of genomic and metabolomic data reveal 

genetic mechanisms associated with carcass merit traits in beef cattle 

4.1 Abstract 

Improvement of carcass merit traits is a priority for the beef industry. Discovering DNA 

variants and genes associated with variation in these traits and understanding biological 

functions/processes underlying their associations are of paramount importance for more effective 

genetic improvement of carcass merit traits in beef cattle. This study integrates 10,488,742 

imputed whole genome DNA variants, 31 plasma metabolites, and animal phenotypes to identify 

genes and biological functions/processes that are associated with carcass merit traits including hot 

carcass weight (HCW), rib eye area (REA), average backfat thickness (AFAT), lean meat yield 

(LMY), and carcass marbling score (CMAR) in a population of 493 crossbred beef cattle.  

Regression analyses were performed to identify plasma metabolites associated with the 

carcass merit traits, and the results showed that 4 (3-hydroxybutyric acid, acetic acid, citric acid, 

and choline), 6 (creatinine L-glutamine, succinic acid, pyruvic acid, L-lactic acid, and 3-

hydroxybutyric acid), 4 (fumaric acid, methanol, D-glucose, and glycerol), 2 (L-lactic acid and 

creatinine), and 5 (succinic acid, fumaric acid, lysine, glycine, and choline) plasma metabolites 

were significantly associated with HCW, REA, AFAT, LMY, and CMAR (P-value < 0.1), 

respectively. Combining the results of metabolome-genome wide association studies using the 

10,488,742 imputed SNPs, 103, 160, 83, 43, and 109 candidate genes were identified as 

significantly associated with HCW, REA, AFAT, LMY, and CMAR (P-value < 1×10-5), 

respectively. By applying functional enrichment analyses for candidate genes of each trait, 26, 24, 

26, 24, and 28 significant cellular and molecular functions were predicted for HCW, REA, AFAT, 

LMY, and CMAR, respectively. Among the five topmost significantly enriched biological 
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functions for carcass merit traits, molecular transport and small molecule biochemistry were two 

top biological functions associated with all carcass merit traits. Lipid metabolism was the most 

significant biological function for LMY and CMAR and it was also the second and fourth highest 

biological function for REA and HCW, respectively. Candidate genes and enriched biological 

functions identified by the integrative analyses of metabolites with phenotypic traits and DNA 

variants could help to interpret the results of previous genome-wide association studies for carcass 

merit traits. Our integrative study also revealed additional potential novel genes associated with 

these economically important traits.  

Therefore, our study improves understanding of the molecular and biological 

functions/processes that influence carcass merit traits, which could help develop strategies to 

enhance genomic prediction of carcass merit traits with incorporation of metabolomic data. 

Similarly, this information could guide management practices, such as nutritional interventions, 

with the purpose of boosting specific carcass merit traits. 

4.2 Introduction 

Carcass merit traits, including hot carcass weight (HCW), rib eye area (REA), average 

backfat thickness (AFAT), lean meat yield (LMY), and carcass marbling score (CMAR), are 

economically important traits in beef cattle since they directly influence the meat product yield 

and quality grade, and therefore profitability. For example, sufficient marbling is important for 

beef tenderness, juiciness and flavor, so the degree of marbling in beef is the primary factor 

determining quality grade of the meat. However, carcass merit traits are expressed late in life and 

the measurement of these traits for individual live animals is relatively expensive via ultrasound 

technologies. In many cases evaluation occurs post mortem, thereby eliminating breeding stock 

with superior breeding values for the traits. The development of genomic prediction provides an 
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opportunity to assess genetic merit of animals as early as birth (Todd et al., 2014; Fernandes Júnior 

et al., 2016; Mehrban et al., 2017; Xu et al., 2020) but there is still a need to improve the accuracy 

of genomic selection for carcass traits in beef cattle in order to achieve broader industry 

applications (Chen et al., 2015; Mehrban et al., 2017; Ogawa et al., 2017). Detecting more 

candidate genes and potentially functional or causal DNA variants through genome-wide 

association studies (GWAS) and understanding the biological background of the relationship 

between the genome and phenome could help improve the accuracy of genomic selection for 

complex traits including carcass merit traits (Meuwissen et al., 2013, 2021; Snelling et al., 2013; 

Zhang et al., 2019).  

As more omics-based intermediate phenotypes, based on gene expression, protein and 

metabolite analysis, become available, integrating multi-omics data to further elucidate genetic 

influence of complex traits holds great promise (Widmann et al., 2013; Weber et al., 2016; Fonseca 

et al., 2018, 2019). Among the omics-based intermediate phenotypes, metabolites have been 

reported to be associated with carcass merit traits of livestock (Matthews et al., 2001; Connolly et 

al., 2019; Goldansaz et al., 2020) and their variation is influenced by genetic effects (Buitenhuis 

et al., 2013; Li et al., 2020). Therefore, we hypothesize that combining metabolomic data into 

GWAS of whole genome DNA variants could help detect key candidate genes and potentially 

functional or causal DNA variants associated with carcass merit traits. 

In this study, the data of 5 carcass merit traits (HCW, REA, AFAT, LMY, and CMAR) and 

31 plasma metabolites were collected from a beef cattle population consisting of 493 crossbred 

bulls, heifers, and steers. Our objective was to identify significant single nucleotide 

polymorphisms (SNPs), candidate genes and biological functions associated with carcass merit 

traits through integration of carcass merit traits, plasma metabolites and whole genome sequence 
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variants. Linear regression models were first used to identify metabolites associated with carcass 

merit traits. Metabolome-genome wide association studies (mGWAS) were then performed with 

10,488,742 imputed whole genome SNPs to identify significant SNPs for the trait associated 

metabolites. Candidate genes were mapped based on significant SNPs and gene functional 

enrichment analyses were subsequently performed on candidate genes of each trait to predict 

biological functions/processes associated with carcass merit traits in beef cattle.  

4.3 Material and Methods 

4.3.1 Animal population, metabolomic and phenotypic data collection  

All animals in this study were cared for according to the guidelines of the Canadian Council 

on Animal Care (2009) and the experimental procedures were approved by the University of 

Alberta Animal Care and Use Committee (AUP00000777). In total, 493 bulls (n = 93), heifers (n 

= 125) or steers (n = 275) from different herds including Charolais (n = 73), Hereford-Angus 

crosses (n = 191), and Beefbooster composite breed (predominantly Charolais-based, n = 229) 

were used. Among these animals, 277 animals from two herds had implants, while 216 animals 

from the other three herds had no implant. The effect of the factor of implant was examined using 

statistical analysis, and its effect has been captured under the herd variable applied in subsequent 

statistical analysis. Animals were born between 2002 to 2011 and initially measured for feed intake 

using the GrowSafe system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada) at the feedlot test 

station under multiple projects, which were described previously (Basarab et al., 2003; Nkrumah 

et al., 2007b; Basarab et al., 2011; Zhang et al., 2020). The animals from the same herd of a 

particular year were tested in the same feedlot and diet. Blood samples were collected from all 

animals by jugular venipuncture in the early morning on the first day of feedlot feeding test and 

immediately frozen at -80°C for storage. Plasma metabolites were quantified using nuclear 
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magnetic resonance (NMR) spectroscopy as described by Li et al. (2020). Briefly, blood samples 

were thawed at room temperature and centrifuged at 10,000 rpm for 10 minutes to separate the 

plasma. Plasma was then filtered through 3kDa molecular weight cut-off filters (Merck Millipore 

Ltd. 3KDA filter tubes; Darmstadt, Germany) to exclude macromolecules, including lipids and 

proteins. After filtration samples with a low volume were diluted with high-performance liquid 

chromatography (HPLC) water to 570 μl to ensure an adequate volume for NMR acquisition. 

Samples were further prepared in a 5 mm NMR tube (New Era Enterprises Inc., NJ, USA) that 

contained a total of 700 μl including 570 μl filtered serum, 60 μl DSS and 70 μl D2O. Spectra were 

acquired on a 500MHz VNMRS spectrometer equipped with a 5mm cold probe (Agilent 

Technologies, CA, USA). Metabolites were identified and quantified with a targeted profiling 

approach using the Profiler and Library Manager modules in the same software which contained 

304 total metabolites as references. Each spectrum was reviewed by a separate analyst and a final 

review was performed on all of the spectra before exporting concentration results. Concentration 

measurements were adjusted to report metabolite concentrations (µM). In total, 33 metabolites 

were initially identified and quantified using NMR. However, two of them were excluded due to 

missing values, resulting in 31 metabolites for further analyses. 

In order to collect carcass data, animals were then slaughtered after the feedlot tests at 

either a commercial plant or the Lacombe Research and Development Centre (LRDC) abattoir 

when a majority of them reached > 8 mm backfat as predicted from ultrasound measurement. The 

processes of carcass data collection were previously described (Nkrumah et al., 2007a; Basarab et 

al., 2011; Lu et al., 2013; Mao et al., 2013; Akanno et al., 2014; Chen et al., 2014). In summary, 

hot carcass weight (HCW) in kg was obtained by summing up the weight of each side of the carcass 

that was split during dressing, about 45 min post-mortem. Average backfat thickness (AFAT) in 
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mm, rib eye area (REA) in square centimeters, and carcass marbling score (CMAR) at the grading 

site between the 12th and 13th ribs was assessed by trained personnel. Carcass marbling score was 

measured as a continuous variable from 100 (trace marbling or less) to 499 (abundant or more 

marbling) to reflect the amount of fat deposit interspersed between the muscle fibers (i.e., 

intramuscular fat) of the longissimus thoracis. Lean meat yield (LMY) was calculated as LMY, % 

= 57.96 + (0.202 × REA, cm2) − (0.027 × HCW, kg) − (0.703 × AFAT, mm) as an estimate of 

saleable meat in the carcass (Basarab et al., 2003). 

4.3.2 Animal genotyping, SNP imputation and quality control 

DNA was extracted from the blood samples using DNeasy Blood & Tissue Kit (QIAGEN, 

Ontario, Canada). and then genotyped using the Illumina BovineSNP50 v2 BeadChip (Illumina 

Inc., CA, USA). For the SNP imputation, a step-wise procedure was applied using Beagle 5.1 

software (Browning et al., 2018) as described by Zhang et al. (2020) and Wang et al. (2020). 

Briefly, we first imputed from the 50K SNPs to the AffyHD panel of 444,558 SNPs with 4,247 

animals of mixed beef breeds in the reference population. We then imputed from the imputed 

AffyHD panel to the whole genome sequence variants with the reference population of 3,093 Bos 

taurus animals from the 1000 Bull Genomes Project (Daetwyler et al., 2014) (run 7). Finally, 

53,258,178 variants (SNPs and indels) on 29 autosomes were obtained after the imputation with 

average imputation accuracy of 0.97 across variants with a standard deviation (SD) of 0.08, which 

was assessed through a five-fold cross-validation as described by Zhang et al. (2020) and Wang et 

al. (2020). For each SNP, post-imputation quality control was then performed to filter the imputed 

variant genotypes if one of the following conditions was met: (1): SNPs on 29 autosomes that had 

an imputation accuracy < 0.95; (2): minor allele frequency < 0.05; (3) SNPs failed to pass the 
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Hardy-Weinberg equilibrium test (P-value < 0.0001). A total of 10,488,742 SNPs remained for 

subsequent analyses after the quality control. 

4.3.3 Regression analyses between carcass merit traits and metabolites and metabolome-

genome wide association studies 

Phenotypic values of carcass merit traits and metabolites were corrected for factors 

including animal type (bull, heifer, steer), birth year, herd, feedlot pen, animal age at slaughter, 

and breeding composition using linear regression models. The breed composition (K = 6) of each 

animal was predicted based on their 50K SNPs using ADMIXTURE software to account for 

population stratification (Alexander et al., 2009; Hellwege et al., 2017). Residuals of metabolomic 

and phenotypic data beyond 3 standard deviations from the mean of residuals were considered as 

outliers and excluded from further analyses. In order to determine relationships between carcass 

merit traits and metabolites, regression analyses were conducted between the adjusted carcass 

merit traits and the 31 adjusted metabolites using R statistical software. A carcass merit trait and a 

metabolite were considered to be significantly associated when the regression analyses have P-

value < 0.1.  

For the metabolome-genome wide association studies (mGWAS), the adjusted values of 

metabolites that were significantly associated with the carcass merit traits were the response 

variable in the single SNP-based mixed linear model association (mlma) as implemented in GCTA 

software (Yang et al., 2011). The linear mixed model can be described as follows: 

!!" = # + %"&!" + '!" + (!" 

where !!" is the adjusted metabolite value of the )th animal with the *th SNP (i.e. the )*th 

animal), %" is the allele substitution effect of the *th SNP, &!"  is the *th SNP genotype of animal ) 

coded as 0, 1, 2 for genotypes +#+#, +#+$, and +$+$, respectively, '!" is the additive polygenic 
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effect of the )*th animal ~	.(0, 23%$), and (!"  is the random residual effect ~	.(0, 	53&$). The 

genomic relationship matrix 2  that was derived based on total filtered SNP markers (i.e. 

10,488,742 SNPs) as described by Yang et al. (2014), which is essentially the same as the second 

VanRaden’s formulation (VanRaden, 2008). The SNP allele substitution effect was estimated and 

the significance test of the SNP allele substitution effect was conducted via a generalized least 

square F-test as implemented in the GCTA package. The SNPs with P-value < 1×10-5 were 

considered to be significantly associated with the metabolite according to the recommendation of 

The Wellcome Trust Case Control Consortium (Burton et al., 2007). The phenotypic variance of 

the metabolite explained by each significant SNP was calculated by $'()
!

*! ∗ 100%, where 9 and : 

denote the SNP allele frequency of	+#	 and +$, respectively; ; is the SNP allele substitution effect; 

29:;$ is the additive variance of the SNP, and =$ is the phenotypic variance of the metabolite.  

4.3.4 Identification of candidate gene and functional enrichment analyses for carcass merit 

traits 

A 140-kbp window (70-kbp upstream and 70-kbp downstream) of each significant SNP 

was used to map candidate genes based on ARS-UCD 1.2 bovine genome assembly from the 

Ensembl BioMart database (accessed in February 2021). The 70-kbp was the chromosomal length 

within which a high linkage disequilibrium phase correlation (>$	> 0.77) was maintained across a 

sample of Canadian beef cattle breeds (Lu et al., 2012).  

The Entrez gene IDs were used as gene identifiers and small nucleolar RNA and 

microRNA were excluded from gene functional enrichment analyses. Bovine genes were changed 

to known human orthologous genes from Ensembl, whereas for those genes without human 

orthologs their bovine gene IDs were maintained in the gene list. Then candidate genes of all 

metabolites associated with the carcass merit traits (HCW, REA, AFAT, LMY or CMAR) as 
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identified in the regression analyses between carcass merit traits and metabolites were combined 

and imported into the Ingenuity Pathway Analysis software (accessed in February 2021) (IPA; 

www.Ingenuity.com). Significantly enriched molecular and cellular biological functions and gene 

networks (P-value < 0.05) for each carcass merit traits were inferred and gene-sub-biological 

function/process interactions within the most significant molecular and cellular functions were 

predicted in the IPA. 

4.4 Results 

4.4.1 Metabolites associated with carcass merit traits 

The results of regression analyses showed 15 out of 31 analyzed metabolites were 

associated with one or more than one of the carcass merit traits (Table 4.1). At P-values less than 

0.05, 3 (3-hydroxybutyric acid, acetic acid, and citric acid), 3 (creatinine, L-glutamine, and 

succinic acid), 1 (methanol), 1 (L-lactic acid), and 3 (succinic acid, lysine, and glycine) metabolites 

were identified as associated with HCW, REA, AFAT, LMY, and CMAR, respectively. Some of 

metabolites (P-value from 0.05 to 0.1) explained more than 1% of the phenotypic variance of 

associated carcass merit traits, thus, a relatively relaxed threshold of P-value < 0.1 was chosen to 

include more metabolites that may be potentially associated with carcass merit traits. For HCW, 

at P-values less than 0.1, 3-hydroxybutyric acid, acetic acid, citric acid and choline were the 

associated metabolites, accounting for 1.92%, 1.69%, 1.48%, and 1.09% of the phenotypic 

variance in HCW, respectively. Creatinine, L-glutamine, succinic acid, pyruvic acid, L-lactic acid 

and 3-hydroxybutyric acid were significantly associated with REA, and these six metabolites 

accounted for 1.87%, 1.79%, 1.60%, 1.56%, 1.04%, and 0.80% of phenotypic variance, 

respectively. AFAT was associated with fumaric acid, methanol, D-glucose and glycerol, and these 

four metabolites explained 2.40%, 1.71%, 1.67%, and 1.39% of the phenotypic variance, 
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respectively. L-lactic acid and creatinine were associated with LMY and accounted for 2.71% and 

1.42% of phenotypic variance, respectively. Five metabolites, including succinic acid, fumaric 

acid, lysine, glycine, and choline, were associated with CMAR and each respectively accounted 

1.76%, 1.36%, 1.22%, 1.20%, and 1.05% of the phenotypic variance in CMAR, respectively. Most 

of these metabolites were mainly associated with a single trait. However, a few metabolites were 

associated with more than one trait. For example, 3-hydroxybutyric acid was associated with both 

HCW and REA. L-lactic acid and creatinine were both associated with REA and LMY. Choline 

was associated with HCW and CMAR, and fumaric acid was associated with both AFAT and 

CMAR (Table 4.1). 

4.4.2 Significant SNPs and candidate genes associated with metabolites 

Genomic inflation factors (defined as the median of the observed chi-squared test statistics 

divided by the expected median of the corresponding chi-squared distribution) for all association 

analyses ranged from 0.95 to 1.01, the value around 1 indicates that there is no population 

stratification, and the statistical models are well fitted. Summarized results of the mGWAS for the 

15 metabolites (identified as associated with the carcass merit traits, P-value < 0.1) are presented 

in Table 4.2. The average of phenotypic variance of the metabolites explained by a single SNP 

was 5.13% with a range of 3.57% - 10.95%. Through integrating the metabolite and carcass merit 

trait regression analyses and the mGWAS results, a total of 103, 160, 83, 43, and 109 candidate 

genes were found to be associated with HCW, REA, AFAT, LMY, and CMAR, respectively 

(Table 4.3). As for metabolites, some candidate genes identified through the mGWAS were 

associated with multiple carcass traits (Table 4.S1 and Figure 4.S1). For instance, CDH13 was 

associated with HCW, REA, AFAT, and CMAR, while 5 genes (KMT5B, NDUFS8, ALDH3B1, 

CHKA, and TCIRG1) were associated with HCW, REA, LMY, and CMAR. 
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4.4.3 Significantly enriched molecular functions and gene networks for carcass merit traits 

Of the identified candidate genes for HCW, REA, AFAT, LMY and CMAR, 99, 149, 78, 

42 and 102 genes were respectively mapped to the IPA database for functional enrichment analyses. 

Briefly, 26, 24, 26, 24, and 28 cellular and molecular functions were identified as significantly (P-

value < 0.05) associated with HCW, REA, AFAT, LMY, and CMAR, respectively (Table 4.S2 - 

4.S6). Interestingly, 75% of the biological functions were commonly associated with all the five 

carcass merit traits in this study (Table 4.S7 and Figure 4.S2). Some of the major functions 

common across the traits included molecular transport, small molecule biochemistry, lipid 

metabolism, cell-to-cell signaling and interaction, carbohydrate metabolism, cellular assembly and 

organization. Additionally, the five topmost significantly enriched biological functions for each 

trait and the candidate genes involved are presented in Table 4.4. Among the top five significant 

enriched functions, molecular transport and small molecule biochemistry were commonly 

associated with all carcass merit traits. Lipid metabolism was the most significant biological 

function for LMY and CMAR, and it was the second and fourth highest biological function for 

REA and HCW, respectively. Cell-to-cell signaling and interaction was one of the top significant 

biological functions associated with HCW, REA, AFAT, and CMAR. Carbohydrate metabolism 

was among the top significant biological functions associated with both HCW and CMAR. Further 

investigation within some of the biological functions revealed molecular/metabolic processes 

related to the carcass merit traits. For HCW, within the molecular transport function, 11 genes 

(AGTR1, CHKA, CPT1A, DDX5, IGHMBP2, IL21R, LRP5, NTRK2, PVALB, SULT1E1, and 

TRAF3) were involved in concentration of corticosterone and lipid, and quantity of steroid and 

steroid hormone (Figure 4.1a). For CMAR, within the lipid metabolism function, 17 candidate 

genes (AGTR1, AQP9, CCDC80, CHKA, CPT1A, DAB1, DDX5, IGHMBP2, LRP5, PLA2G2A, 
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PLA2G2E, PLA2G5, PTGS1, PVALB, SLC10A1, SPRED2, and SSPN) were involved in multiple 

metabolic processes related to fatty acid and lipid metabolism (Figure 4.1b), such as synthesis of 

fatty acid and release of lipid. Additionally, within the carbohydrate metabolism function for 

CMAR, 12 candidate genes (AGTR1, AQP9, CHKA, CPT1A, GYG1, LRP5, NKX3-2, PDCL, 

PLA2G2A, PLA2G2E, PLA2G5, and TREH) were involved in carbohydrate metabolic processes 

such as carbohydrate biosynthesis (Figure 4.1c). It is worth noting that 8 candidate genes (AGTR1, 

AQP9, CHKA, CPT1A, LRP5, PLA2G2A, PLA2G2E, and PLA2G5) associated with CMAR were 

involved in both lipid and carbohydrate metabolism. 

4.5 Discussion 

4.5.1 Metabolomics to improve understanding on genetic influence of carcass merit traits 

Studies have demonstrated metabolites as potential biomarkers for economically important 

traits in livestock species (Matthews et al., 2001; Connolly et al., 2019; Goldansaz et al., 2020). 

However, improving understanding of the biology involved is hampered by the limited knowledge 

of how these metabolites are associated with different economically important traits in the different 

livestock species. Carcass traits are of fundamental interest to every beef producer and everyone 

involved in the beef industry. However, these traits are relatively expensive to measure using 

ultrasound technologies on individual live animals, which is a limitation for selection and 

improvement of these traits. Since blood metabolites are easily measurable/quantifiable even on 

live animals, we speculate that identification of genetic/biological associations between metabolite 

concentrations and beef cattle carcass merit traits could potentially enhance genetic prediction and 

selection for these traits in beef cattle. In addition, identification of blood metabolite biomarkers 

associated with carcass traits at an earlier stage would have a more practical application for genetic 

selection and for sorting animals into different finishing groups for more uniform carcass outputs. 
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Therefore, we collected the blood samples at the start of the feedlot test instead of close to slaughter 

and examined the associations between 31 plasma metabolites and 5 carcass merit traits. We 

further explored the potential biological linkage between these metabolites and carcass merit traits. 

Our results showed that several metabolites were associated with the carcass merit traits studied. 

However, individual metabolites, despite being significantly associated with the trait, only 

accounted for 0.80% to 2.71% of the total phenotypic variance of carcass merit traits. This 

relatively small percentage of phenotypic variance reflected the complex nature of these traits, 

which we believe are regulated by multiple metabolic pathways involving many metabolites with 

each having only a small contribution/effect. It is also possible that due to the limited number of 

metabolites we profiled in the current study, we were not able to identify those metabolites with 

major influences on the traits studied. Additionally, this study used a more relaxed threshold (P-

value < 0.1) to identify metabolites potentially associated with the carcass merit traits, therefore, 

the validation in independent beef cattle populations or further studies considering a wider range 

of metabolites is warranted. It is also worthwhile to analyze metabolites on samples collected at 

different developmental stages to see whether and how the associations between the metabolites 

and the carcass traits may change. Furthermore, we observed that a majority of the significant 

metabolites were only associated with one trait. However, some metabolites in the current study 

were associated with two traits, indicating potential biological relationships between these traits. 

For example, in this study, we observed that 3-hydroxybutyric acid was associated with both HCW 

and REA, and beef cattle with high HCW and REA had lower concentration of 3-hydroxybutyric 

acid, indicating that animals with high HCW and REA may have better carbohydrate metabolism. 

Additionally, 3-hydroxybutyrate is the main representative of ketone bodies and one important 

function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for the synthesis of 
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cholesterol, fatty acids, and complex lipids (Mierziak et al., 2021). Thus, a lower concentration of 

3-hydroxybutyric acid may lead to reduced lipid synthesis in animals with high HCW and REA. 

Interestingly, creatinine, the final catabolite of muscle energy metabolism (Wyss and Kaddurah-

Daouk, 2000), was positively associated with both REA and LMY in the current study (Table 4.1), 

and these two carcass merit traits measure muscle development and the proportion of lean meat in 

a carcass respectively. In line with our results, Hanset and Michaux (1982) previously observed 

higher concentrations of plasma creatinine in double muscled bulls as compared to conventional 

or normal muscled bulls, and Patel et al. (2013) proposed creatinine in serum as a promising 

biomarker for human muscle mass. These previous studies and the results from our study 

demonstrate that creatinine is a potential indicator trait or biomarker for muscle related traits in 

beef cattle.  

4.5.2 Candidate genes, enriched molecular functions and gene networks for carcass merit 

traits 

Generally, identification of SNPs and genes associated with carcass merit traits mainly 

relies on association studies between DNA variants and the traits. For example, Wang et al. (2020) 

performed GWAS based on 7.8 million imputed whole genome sequence variants for carcass merit 

traits using Canadian beef cattle and they identified hundreds of candidate genes associated with 

carcass merit traits. However, the knowledge about the underlying biological background behind 

these associations is relatively limited. We assume that metabolites, which are an intermediate 

phenotype lying between genome and carcass merit traits, could provide additional insight into the 

associations. In the current study, the candidate genes identified through incorporating metabolites 

showed relatively good consistency with the previous study (Wang et al., 2020) (Table 4.S8). 

Briefly, we found that 34.95%, 28.13%, 27.71%, 41.86%, and 22.94% of the candidate genes 
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identified in this study overlapped with those from Wang et al. (2020) for HCW, REA, AFAT, 

LMY, and CMAR, respectively. Of note, some of the candidate genes were also reported in 

different cattle breeds or populations in other studies. For example, ST18 was associated with 

AFAT in the current study and it was associated with the metabolite D-glucose. Medeiros de 

Oliveira Silva et al. (2017) also identified ST18 as candidate gene for backfat through GWAS in a 

Nelore cattle population. Additionally, by integrating metabolomic data, this study added more 

information to some previously identified associations between genes and carcass merit traits. For 

example, Wang et al. (2020) reported that UMODL1, L3HYPDH, JKAMP, and LUZP2 were 

candidate genes associated with REA and LMY, but the potential mechanism of how these genes 

could influence the two traits remained unclear. Our study showed that these same genes 

(UMODL1, L3HYPDH, JKAMP, and LUZP2) were associated with the concentration of creatinine 

which is a metabolite associated with REA and LMY. These results indicated that these genes may 

be associated with the synthesis or degradation of creatinine in animals and thereby influence the 

related traits. Similarly, HLTF, GYG1, RYR2, RBM47, and APBB2 were reported to be associated 

with REA and CMAR by Wang et al. (2020). Our results showed these genes were associated with 

succinic acid which was negatively associated with both REA and CMAR. Both examples 

represent one of situations that genes may influence different traits by regulating the same 

metabolites, and the mechanism of how these genetic variants affect the concentration of 

metabolites still needs more studies. According to our results, we would like to highlight that some 

genes could affect the same carcass merit traits by influencing different metabolites. For instance, 

AMN was associated with both 3-hydroxybutyric acid and citric acid, and both metabolites were 

identified as associated with HCW. Therefore, information obtained via analyzing metabolites 

could improve the understanding of genetic effects on these phenotypes. In our companion paper 
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by Li et al. (2021), similar findings were also observed. These two studies indicate that metabolites 

play important roles in the variation of both feed efficiency and carcass merit traits. Integration of 

metabolomic and genomic data could help to identify functional or causal SNPs or genes, and 

interpret the biological meaning of the candidate genes identified in GWAS. In addition, these two 

studies investigated the association between different omics levels, which shed light on the 

interrelationship between different omics layers and potential molecular mechanisms underlying 

these traits. Therefore, our findings have broadened our knowledge on the genetic and molecular 

mechanisms of these traits. Based on what we learned from these two studies, we recommend 

applying such multi-omics analysis to study other important traits in beef cattle. 

In addition to adding more information to known associations, incorporating metabolomic 

data can help us identify additional novel associations as metabolites represent a level close to the 

final phenotypes (i.e., carcass merit traits). In the current study, some additional candidate genes 

were reported to be associated with carcass merit traits. Therefore, we expect that including the 

candidate gene SNPs in the DNA marker panel or increasing the weight applied to such SNPs 

could either improve accuracy of genomic prediction of the traits or decrease the DNA marker 

density used in genomic prediction while retaining accuracy. A preliminary attempt of this latter 

option was done by Melzer et al. (2013) for the prediction of three traditional milk traits in dairy 

cows. Melzer et al. (2013) applied regression methods to identify important milk metabolites and 

then those SNPs with significant genetic effects on important metabolites were identified and used 

to predict milk traits. Compared with the classical approach that uses all SNPs (40,317) in 

prediction, this metabolite approach could achieve similar prediction precision with less than 1% 

of the total amount of SNPs. Fontanesi (2016) suggested integration of metabolomic data would 

be useful if the heritability of a trait is low, if a trait is hard to be precisely and directly measured 
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on the animals, or if the prediction accuracy was limited by the small number of phenotyped 

animals in the training populations. Since carcass merit traits are expressed at later stages of animal 

production and are usually measured by sacrificing potential breeding stock, these traits are more 

suitable for DNA marker based genomic prediction, and incorporating metabolomic data into the 

genomic prediction has the potential to enhance the genomic prediction accuracy. In addition to 

metabolites, the information carried by other omics data, such as RNA and protein, also helps to 

prioritize SNPs associated with complex traits, and can further contribute to improving genomic 

prediction accuracy of these traits. For example, Fang et al. (2017) applied an extended genomic 

best linear unbiased prediction (GBLUP) model called genomic feature BLUP (GFBLUP) that 

includes a separate random effect for the joint action of SNPs within genomic features which are 

obtained from RNA differential expression analyses. Compared to GBLUP, the accuracy of 

genomic prediction for mastitis and milk production traits with GFBLUP was marginally improved 

(3.2 to 3.9%) in within-breed prediction but significantly increased (164.4%) in across-breed 

prediction. Theoretically, the genomic features could be defined from various sources of biological 

knowledge (e.g., metabolomics) and the GFBLUP model could be applied to other complex traits. 

Therefore, it would be of interest to investigate the accuracy of prediction for carcass merit traits 

with and without utilizing multi-omics data. 

In order to further investigate biological functions associated with carcass merit traits, the 

five topmost significant biological functions associated with each trait were identified in the 

current study. These top five biological functions showed substantial overlap with the top five 

biological functions identified by previous studies (Wang et al., 2017, 2020; Mukiibi et al., 2018), 

which indicated those overlapping top biological functions potentially have important biological 

meaning for the carcass merit traits in beef cattle. Since our carcass data were collected from 
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animals that were finished for meat production, genes involved in these overlapping top biological 

functions, such as lipid metabolism and carbohydrate metabolism, likely play a more important 

role in determining the carcass merit traits. Therefore, the identification of top and other enriched 

biological functions and their corresponding genes will not only improve our understanding of the 

underlying biology but also help prioritize candidate genes and related causal SNPs for future 

studies. Additionally, construction of gene networks for biological functions could help us 

elucidate complicated connections among genes and disentangle the potential relationships among 

genes, biological functions and phenotypes. For example, molecular transport was identified as a 

top enriched biological function associated with all carcass merit traits and its network of HCW as 

an example showed that some of the associated genes were involved in concentration of lipid and 

corticosterone, and quantity of steroid and steroid hormones (Figure 4.1a). In beef cattle 

production, more than 30 commercially-available steroid hormone implants are marketed in the 

U.S. and the effects of steroid hormone implants on improving carcass leanness, increasing 

average daily gain, and altering dry matter intake has been reviewed by Smith and Johnson (2020). 

Thus, those genes linked to the functions of steroid and steroid hormones in the network may 

consequently influence final muscle mass in the carcass. For those genes involved in the 

concentration of lipid, they may influence fats in the carcass by regulating breakdown or storage 

of fats. Additionally, we would like to highlight the network of lipid metabolism for CMAR 

(Figure 4.1b) because lipid metabolism was the most significant biological function associated 

with this trait. In this network, some genes were involved in fatty acid metabolism including fatty 

acid synthesis, release and concentration. The phenotypic and genetic correlations between fatty 

acid composition and marbling have been reported in different beef cattle populations (Kazala et 

al., 1999, 2006; Hwang and Joo, 2016; Ekine-Dzivenu et al., 2017). Our results provide further 
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insight into the potential molecular and genetic background accounting for genetic correlations 

between marbling and fatty acid composition in beef cattle, further indicating that the selection for 

fatty acid composition or concentration could influence marbling in beef cattle as previously 

proposed (Ekine-Dzivenu et al., 2017).  

4.6 Conclusion 

In this study, genomic, metabolomic, and phenotypic data were integrated to investigate 

biological functions/processes related to carcass merit traits in beef cattle. Plasma metabolites 

associated with HCW, REA, AFAT, LMY, and CMAR were identified and individual metabolites 

were found to account for a small proportion of the total phenotypic variance of the carcass merit 

traits. Several candidate genes as associated with carcass merit traits were identified through 

mGWAS along with regression analyses. These genes are involved in multiple biological functions 

that are related to the associated carcass merit traits. Additionally, the results of our integrative 

analyses could help to interpret previous results from DNA marker based GWAS of the carcass 

merit traits and revealed functional genes associated with these economically important traits. 

Therefore, our integrative study has provided insights into relationships between genes, 

metabolites and carcass merit traits, which could potentially lead to improvement of genomic 

prediction accuracy via incorporating metabolomic related data. 
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Table 4.1 A summary of metabolites associated with carcass merit traits in a multibreed population 
of beef cattle 
Trait1 Metabolite2 P-value3 b4 Vm/VP (%)5 
HCW 3-hydroxybutyric acid 1.01E-02 -2.33E-01 1.92 

acetic acid 1.56E-02 -3.61E-02 1.69 
citric acid 2.35E-02 -1.10E-01 1.48 
choline 5.31E-02 4.03E-02 1.09 

REA creatinine 1.15E-02 2.50E-02 1.87 
L-glutamine 1.44E-02 5.51E-02 1.79 
succinic acid 1.90E-02 -3.46E-02 1.60 
pyruvic acid 5.32E-02 1.87E-02 1.56 
L-lactic acid 5.94E-02 4.61E-04 1.04 
3-hydroxybutyric acid 9.70E-02 -2.47E-02 0.80 

AFAT fumaric acid 4.05E-02 -7.90E-02 2.40 
methanol 4.81E-02 -5.15E-03 1.71 
D-glucose 5.01E-02 -8.64E-04 1.67 
glycerol 7.29E-02 9.33E-04 1.39 

LMY L-lactic acid 1.21E-02 2.73E-04 2.71 
creatinine 7.15E-02 7.41E-03 1.42 

CMAR succinic acid 1.53E-02 -2.18E-01 1.76 
fumaric acid 7.83E-02 -9.86E-01 1.36 
lysine 4.36E-02 1.94E-01 1.22 
glycine 4.55E-02 -4.71E-02 1.20 
choline 6.11E-02 -3.80E-02 1.05 

1
HCW hot carcass weight in kg, REA rib eye area in cm2, AFAT average backfat thickness in mm, 
LMY lean meat yield in %, CMAR carcass marbling score from 100 (trace marbling) to 499 (more 
marbling) 
2The unit of metabolite concentration is µM 
3The significance level of regression analysis is P-value < 0.1 
4
b regression coefficient 
5
Vm/VP: the proportion of phenotypic variance of carcass merit traits explained by associated 
metabolites (%) 
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Table 4.2 A summary of significant SNPs, the number of putative QTLs, and the number of candidate genes for metabolites associated 
with carcass merit traits in a multibreed population of beef cattle 

Metabolite1 P-value range2 ! range3 VSNP/VP 
range (%)4 

VSNP/VP 
mean (%)5 No. of QTL

6 No. of gene7 

acetic acid 2.46E-12 – 9.97E-06 -259.54 – 181.91 4.01 – 10.95 5.05 31 49 
citric acid 1.47E-06 – 9.75E-06 -29.80 – 37.62 3.57 – 4.95 4.05 15 15 
choline 4.94E-07 – 9.90E-06 -89.13 – 84.25 3.85 – 5.43 4.61 13 23 
D-glucose 6.82E-07 – 9.72E-06 -226.21 – 257.62 3.70 – 5.67 4.33 18 23 
glycine 3.17E-06 – 9.54E-06 -68.80 – 75.32 3.97 – 4.65 4.31 9 10 
glycerol 1.71E-07 – 9.76E-06 -457.22 – 355.60 4.05 – 6.67 4.93 21 29 
fumaric acid 2.24E-07 – 9.83E-06 2.28 – 5.06 5.78 – 7.65 6.95 8 3 
lysine 9.11E-09 – 9.80E-06 -17.77 – 20.56 3.88 – 7.13 4.82 15 20 
L-lactic acid 2.24E-07 – 9.43E-06 -1076.62 – 1261.24 3.74 – 5.95 4.58 16 21 
pyruvic acid 7.82E-08 – 9.99E-06 -42.51 – 47.85 6.03 – 9.88 6.90 18 32 
succinic acid 3.32E-07 – 9.92E-06 -30.10 – 25.93 3.94 – 6.19 5.01 26 53 
3-hydroxybutyric acid 8.55E-07 – 9.95E-06 11.24 – 19.78 4.00 – 5.13 4.46 12 19 
creatinine 1.64E-07 – 9.86E-06 -26.59 – 31.04 3.78 – 6.31 4.67 17 22 
L-glutamine 7.37E-07 – 9.90E-06 -11.76 – 11.53 4.06 – 5.30 4.66 13 13 
methanol 3.15E-06 – 9.86E-06 -32.86 – 45.32 4.00 – 4.82 4.30 15 28 
1The unit of metabolite concentration is µM 
2The P-value range (minimum to maximum) of significant SNPs, the significance level is P-value < 1×10-5 
3! range: the range of allele substitution effect of each significant SNP  
4VSNP/VP range: the range metabolite phenotypic variance explained by each significant SNP (%) 
5VSNP/VP mean: the average of metabolite phenotypic variance explained by each significant SNP (%) 
6No. of QTL: the number of putative QTLs identified for each metabolite 
7No. of gene: the number of candidate gene identified for each metabolite  
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Table 4.3 Metabolites and their candidate genes associated with carcass merit traits in a multibreed population of beef cattle 
Trait1 Metabolite2 Candidate gene 
HCW 3-hydroxybutyric acid RNASE1, RNASE6, RNASE4, ANG2, CDH13, TRAF3, AMN, CDC42BPB, PGM2, SULT1E1, 

CSN1S1, CSN2, HSTN, FRAS1, ANXA3, LOX, SRFBP1, NTRK2, COL12A1 
acetic acid PFN2, AGTR1, S100Z, CRHBP, AGGF1, LBH, YPEL5, ATAD2B, KLHL29, OR12K5, OR1B1, 

OR1L1, OR1L3, OR10W4, OR5B17, IZUMO2, MYH14, ZNF814, SNORA70, TMEM132E, 
HMGCLL1, GFRAL, TRAM2, TMEM14A, GSTA2, GPR139, UMOD, PDILT, ACSM5, ACSM2B, 
ACSM1, UQCRC2, PDZD9, MOSMO, VWA3A, IL21R, GTF3C1, KATNIP, ARMH3, HPS6, LDB1, 
PPRC1, SNORD22, DUSP5, SMC3, RBM20, KLRC1, APBB2, MAN2A1 

citric acid SERPINE3, INTS6, ZNF667, ZNF583, USP32, CA4, ZNHIT3, MYO19, TRAF3, AMN, CDC42BPB, 
EDEM1, ARL8B, KLHL31, SLC28A3 

choline HHAT, CDH8, PECAM1, MILR1, POLG2, DDX5, CEP95, ALDH3B1, NDUFS8, TCIRG1, CHKA, 
KMT5B, LRP5, PPP6R3, CPT1A, MRPL21, IGHMBP2, MRGPRF, CACNG2, IFT27, PVALB, 
BICD1, PERP 

REA creatinine ZBTB21, UMODL1, L3HYPDH, JKAMP, RTN1, PPP2R5E, MAML2, STOX2, ENPP6, IRF2, 
PRIMPOL, ACSL1, CENPU, RAB38, LUZP2, ALDH3B1, NDUFS8, TCIRG1, CHKA, KMT5B, 
LEPROT, DNAJC6 

L-glutamine MYO16, UBE2E2, DDX56, NPC1L1, NUDCD3, CAMK2B, TRIM24, SVOPL, ATP6V0A4, 
PPP3CC, SORBS3, PDLIM2, CCAR2 

succinic acid GPR149, DHX36, ARHGEF26, PFN2, RNF13, HLTF, GYG1, AGTR1, ZIC1, ZIC4, SRSF5, 
SLC10A1, SMOC1, ACTR2, SPRED2, NDUFA8, MORN5, LHX6, RBM18, MRRF, PTGS1, OR1J2, 
OR1N2, OR1N1, OR1Q1, OR12K5, OR1B1, OR1L1, OR1L3, OR1AF3, OR1AF1, PDCL, RC3H2, 
ZBTB6, ZBTB26, RABGAP1, ZNF814, PLA2G2D1, PLA2G5, PLA2G2A, PLA2G2E, OTUD3, 
RNF186, TMCO4, LAP, DEFB13, RYR2, RBM47, NSUN7, APBB2, RAB28, NKX3-2, BOD1L1 

pyruvic acid SLC49A4, SEMA5B, HMGB1, CDX2, PDX1, GSX1, CHST8, KCTD15, NTN1, GAS7, KCNJ2, 
KCNJ16, DNER, RAB3C, PRL, GALR1, MBP, ZNF236, ZNF516, CNDP2, DIPK1C, C24H18orf63, 
CYB5A, STAB2, NT5DC3, HSP90B1, C5H12orf73, TDG, GLT8D2, PHF21B, NUP50, RIMS1 

L-lactic acid PLSCR1, AQP9, NEDD4, PRTG, PYGO1, CUX2, NOS1, FBXO21, SPPL3, HNF1A, C17H12orf43, 
OASL, FOXN4, ACACB, TMEM171, FCHO2, CD247, POU2F1, MACF1, NPFFR2, SGCD 

3-hydroxybutyric acid RNASE1, RNASE6, RNASE4, ANG2, CDH13, TRAF3, AMN, CDC42BPB, PGM2, SULT1E1, 
CSN1S1, CSN2, HSTN, FRAS1, ANXA3, LOX, SRFBP1, NTRK2, COL12A1 

AFAT fumaric acid CDH13, SLC17A6, PPP2R2B 
methanol GRIK4, GRAMD1B, SCN3B, ZNF202, SMYD3, KIF26B, RGL1, CCDC92, DNAH10, PLA2G2A, 

PLA2G2E, OTUD3, MCTP2, XPC, TMEM43, CHCHD4, WNT7A, LUZP2, MARCHF1, PLAC8B, 
PLAC8A, COQ2, DENND4C, PLIN2, HAUS6, NEFM, NEFL, DOCK5 
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D-glucose TIAM1, KATNBL1, EMC7, CHRM5, AVEN, UBAC2, ST18, OR5M3, OR5M11, OR5AR1, INPP4B, 
PNKD, CATIP, SLC11A1, CTDSP1, VIL1, USP37, RARB, PGM5, TMEM252, WDR27, 
C9H6orf120, PHF10 

glycerol DGKG, SNX31, ANKRD46, BCO2, PTS, C15H11orf34, WIPF1, CPEB4, C20H5orf47, NSG2, 
CCDC88C, PPP4R3A, RAB23, BAG2, ZNF451, KCNK17, KCNK16, KIF6, STOX2, THRB, CDK14, 
TRBV15, LOX, SRFBP1, FSTL4, JADE2, SAR1B, SEC24A, TJP2 

LMY L-lactic acid PLSCR1, AQP9, NEDD4, PRTG, PYGO1, CUX2, NOS1, FBXO21, SPPL3, HNF1A, C17H12orf43, 
OASL, FOXN4, ACACB, TMEM171, FCHO2, CD247, POU2F1, MACF1, NPFFR2, SGCD 

creatinine ZBTB21, UMODL1, L3HYPDH, JKAMP, RTN1, PPP2R5E, MAML2, STOX2, ENPP6, IRF2, 
PRIMPOL, ACSL1, CENPU, RAB38, LUZP2, ALDH3B1, NDUFS8, TCIRG1, CHKA, KMT5B, 
LEPROT, DNAJC6 

CMAR succinic acid GPR149, DHX36, ARHGEF26, PFN2, RNF13, HLTF, GYG1, AGTR1, ZIC1, ZIC4, SRSF5, 
SLC10A1, SMOC1, ACTR2, SPRED2, NDUFA8, MORN5, LHX6, RBM18, MRRF, PTGS1, OR1J2, 
OR1N2, OR1N1, OR1Q1, OR12K5, OR1B1, OR1L1, OR1L3, OR1AF3, OR1AF1, PDCL, RC3H2, 
ZBTB6, ZBTB26, RABGAP1, ZNF814, PLA2G2D1, PLA2G5, PLA2G2A, PLA2G2E, OTUD3, 
RNF186, TMCO4, LAP, DEFB13, RYR2, RBM47, NSUN7, APBB2, RAB28, NKX3-2, BOD1L1 

fumaric acid CDH13, SLC17A6, PPP2R2B 
lysine BTLA, ATG3, SLC35A5, CCDC80, CD200R1L, GTPBP8, NEPRO, BOC, SPICE1, SIDT1, FGF12, 

HS6ST3, FRMD5, MFHAS1, STYXL2, GPA33, DAB1, OR6C75, ITPR2, SSPN 
glycine AQP9, PHLDB1, TREH, DDX6, EIF5, MARK3, SEM1, PINX1, SOX7, C8H8orf74 
choline HHAT, CDH8, PECAM1, MILR1, POLG2, DDX5, CEP95, ALDH3B1, NDUFS8, TCIRG1, CHKA, 

KMT5B, LRP5, PPP6R3, CPT1A, MRPL21, IGHMBP2, MRGPRF, CACNG2, IFT27, PVALB, 
BICD1, PERP 

1HCW hot carcass weight in kg, REA rib eye area in cm2, AFAT average backfat thickness in mm, LMY lean meat yield in %, CMAR 
carcass marbling score from 100 (trace marbling) to 499 (more marbling)  
2The unit of metabolite concentration is µM 
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Table 4.4 Five topmost significantly enriched biological functions for carcass merit traits, and genes involved in functions 
Trait1 Biological function P-value range2 Genes involved in the biological function 
HCW Cell-To-Cell Signaling and 

Interaction 

8.91E-04 – 2.52E-02 AGTR1, CACNG2, CDH13, CDH8, KLRC1, LOX, MAN2A1, NTRK2, 
PECAM1, PERP, PVALB, TRAF3, UMOD 

Molecular Transport 8.91E-04 – 2.52E-02 AGTR1, CHKA, CPT1A, DDX5, HPS6, IGHMBP2, IL21R, KLRC1, LRP5, 
NTRK2, PECAM1, PVALB, SLC28A3, SULT1E1, TRAF3, UMOD 

Small Molecule Biochemistry 8.91E-04 – 2.52E-02 AGTR1, CHKA, CPT1A, DDX5, HMGCLL1, IGHMBP2, IL21R, KLRC1, 
LOX, LRP5, MAN2A1, NTRK2, PECAM1, PFN2, PGM2, PVALB, 
SLC28A3, SULT1E1, TRAF3, UMOD 

Lipid Metabolism 9.14E-04 – 2.52E-02 AGTR1, CHKA, CPT1A, DDX5, HMGCLL1, IGHMBP2, IL21R, LRP5, 
NTRK2, PVALB, SULT1E1, TRAF3 

Carbohydrate Metabolism 1.35E-03 – 2.52E-02 AGTR1, CPT1A, LRP5, MAN2A1, PGM2 
REA Molecular Transport 1.03E-06 – 6.53E-03 ACACB, ACSL1, AGTR1, AMN, AQP9, ATP6V0A4, CAMK2B, CDX2, 

CHKA, CHST8, CSN2, DDX56, FRAS1, GALR1, GAS7, GSX1, HMGB1, 
HNF1A, IRF2, KCNJ16, KCNJ2, MBP, NEDD4, NOS1, NPC1L1, NTN1, 
NTRK2, NUP50, PFN2, PLA2G2A, PLA2G2E, PLA2G5, PLSCR1, 
PPP3CC, PRL, PTGS1, RAB3C, RIMS1, RYR2, SLC10A1, SORBS3, 
SPRED2, SRSF5, SULT1E1, TCIRG1, TRAF3, ZBTB21, ZIC1 

Lipid Metabolism 3.27E-05 – 6.53E-03 ACACB, ACSL1, AGTR1, ALDH3B1, AQP9, CHKA, CHST8, CYB5A, 
ENPP6, GALR1, GAS7, HMGB1, HNF1A, IRF2, MBP, NOS1, NPC1L1, 
NTN1, NTRK2, PLA2G2A, PLA2G2E, PLA2G5, PLSCR1, PRL, PTGS1, 
RIMS1, SLC10A1, SPRED2, SULT1E1, TRAF3, ZBTB21 

Small Molecule Biochemistry 3.27E-05 – 6.53E-03 ACACB, ACSL1, AGTR1, ALDH3B1, AQP9, CHKA, CHST8, CNDP2, 
CYB5A, ENPP6, GALR1, GAS7, GSX1, HMGB1, HNF1A, IRF2, LOX, 
MBP, NOS1, NPC1L1, NTN1, NTRK2, PFN2, PLA2G2A, PLA2G2E, 
PLA2G5, PLSCR1, PPP3CC, PRL, PTGS1, RIMS1, RYR2, SLC10A1, 
SORBS3, SPRED2, STAB2, SULT1E1, TDG, TRAF3, ZBTB21 

Cellular Assembly and 

Organization 

9.97E-05 – 6.53E-03 ACTR2, CAMK2B, CDC42BPB, CDH13, CUX2, DNAJC6, DNER, 
FCHO2, GAS7, HMGB1, KCNJ2, LOX, MBP, MYO16, NOS1, NTN1, 
NTRK2, NUDCD3, PFN2, PLSCR1, PPP3CC, PRL, RAB28, RAB38, 
RIMS1, RYR2 

Cell-To-Cell Signaling and 

Interaction 

1.5E-04 – 6.53E-03 AGTR1, CAMK2B, CD247, CDH13, CUX2, GALR1, HMGB1, HSP90B1, 
NOS1, NTN1, NTRK2, PFN2, PLA2G5, PPP3CC, PRL, RIMS1, SORBS3, 
TRAF3 

AFAT Cell-To-Cell Signaling and 

Interaction 

1.63E-05 – 2.67E-02 CDH13, CHRM5, GRIK4, LOX, MARCHF1, NEFL, NEFM, PNKD, PTS, 
RARB, SLC17A6, THRB, TIAM1, TJP2, WNT7A, XPC 
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Drug Metabolism 1.63E-05 – 1.34E-02 CHRM5, PNKD, PTS, SLC17A6 
Molecular Transport 1.63E-05 – 2.67E-02 

 

 

CDK14, CHCHD4, CHRM5, GRIK4, INPP4B, KCNK16, KCNK17, NEFM, 
PLA2G2A, PLA2G2E, PLIN2, PNKD, PPP2R2B, PTS, SCN3B, SEC24A, 
SLC11A1, SLC17A6, TJP2, WNT7A, XPC, ZNF202 

Small Molecule Biochemistry 1.63E-05 – 2.34E-02 BCO2, CHRM5, COQ2, DGKG, GRIK4, INPP4B, LOX, PLA2G2A, 
PLA2G2E, PLIN2, PNKD, PTS, SLC11A1, SLC17A6, THRB, WNT7A, XPC 

Cellular Assembly and 

Organization 

3.36E-05 – 2.67E-02 CATIP, CDH13, CHCHD4, CHRM5, CPEB4, DGKG, DOCK5, KATNBL1, 
LOX, NEFL, NEFM, RAB23, RARB, TIAM1, TJP2, VIL1, WIPF1, WNT7A, 
XPC 

LMY Lipid Metabolism 1.18E-04 – 3.44E-02 ACACB, ACSL1, ALDH3B1, AQP9, CHKA, ENPP6, HNF1A, NOS1, 
PLSCR1 

Molecular Transport 1.18E-04 – 3.8E-02 ACACB, ACSL1, AQP9, CHKA, HNF1A, NEDD4, NOS1, NPFFR2, 
PLSCR1, TCIRG1, ZBTB21 

Nucleic Acid Metabolism 1.18E-04 – 2.91E-02 ACACB, ACSL1, AQP9, NOS1 
Small Molecule Biochemistry 1.18E-04 – 3.44E-02 ACACB, ACSL1, ALDH3B1, AQP9, CHKA, ENPP6, HNF1A, IRF2, NOS1, 

NPFFR2, PLSCR1, RAB38 
Amino Acid Metabolism 1.84E-03 – 1.64E-02 HNF1A, NOS1, RAB38 

CMAR Lipid Metabolism 1.57E-05 – 2.22E-02 AGTR1, AQP9, CCDC80, CHKA, CPT1A, DAB1, DDX5, IGHMBP2, 
LRP5, PLA2G2A, PLA2G2E, PLA2G5, PTGS1, PVALB, SLC10A1, 
SPRED2, SSPN 

Molecular Transport 1.57E-05 – 2.36E-02 AGTR1, AQP9, CCDC80, CHKA, CPT1A, DAB1, DDX5, IGHMBP2, 
LRP5, PECAM1, PLA2G2A, PLA2G2E, PLA2G5, PTGS1, PVALB, 
SLC10A1, SLC17A6, SPRED2 

Small Molecule Biochemistry 1.57E-05 – 2.22E-02 AGTR1, AQP9, CCDC80, CHKA, CPT1A, DAB1, DDX5, IGHMBP2, 
LRP5, PECAM1, PFN2, PLA2G2A, PLA2G2E, PLA2G5, PTGS1, PVALB, 
SLC10A1, SLC17A6, SPRED2, SSPN, TREH 

Carbohydrate Metabolism 4.1E-04 – 1.34E-02 AGTR1, AQP9, CHKA, CPT1A, GYG1, LRP5, NKX3-2, PDCL, PLA2G2A, 
PLA2G2E, PLA2G5, TREH 

Cell-To-Cell Signaling and 

Interaction 

2.47E-03 – 1.78E-02 AGTR1, CACNG2, CDH13, CDH8, PECAM1, PERP, PFN2, PLA2G5, 
PVALB, SLC17A6 

1HCW hot carcass weight in kg, REA rib eye area in cm2, AFAT average backfat thickness in mm, LMY lean meat yield in %, CMAR 
carcass marbling score from 100 (trace marbling) to 499 (more marbling) 
2The P-value range (minimum to maximum) of significant biological functions, the significance level is P-value < 0.05  
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Table 4.S1 Uniquely common candidate genes for carcass merit traits in a multibreed population of beef cattle 
Trait Number of common genes Common gene name 
AFAT, CMAR, HCW, REA 1 CDH13 
CMAR, HCW, LMY, REA 5 KMT5B, NDUFS8, ALDH3B1, CHKA, TCIRG1 
CMAR, HCW, REA 8 PFN2, APBB2, OR1L1, ZNF814, OR12K5, AGTR1, OR1L3, OR1B1 
AFAT, HCW, REA 2 SRFBP1, LOX 
AFAT, CMAR, REA 3 PLA2G2A, OTUD3, PLA2G2E 
AFAT, LMY, REA 2 LUZP2, STOX2 
CMAR, LMY, REA 1 AQP9 
HCW, REA 16 PGM2, RNASE1, SULT1E1, FRAS1, CSN1S1, ANG2, AMN, RNASE6, NTRK2, 

CDC42BPB, ANXA3, HSTN, CSN2, TRAF3, RNASE4, COL12A1 
CMAR, HCW 18 MILR1, IGHMBP2, PPP6R3, MRPL21, DDX5, PECAM1, POLG2, BICD1, 

LRP5, CACNG2, CPT1A, PVALB, MRGPRF, CDH8, CEP95, HHAT, PERP, 
IFT27 

LMY, REA 35 DNAJC6, L3HYPDH, TMEM171, RAB38, PRTG, MACF1, LEPROT, NPFFR2, 
FBXO21, HNF1A, RTN1, PRIMPOL, ENPP6, ACACB, NOS1, MAML2, JKAMP, 
C17H12orf43, NEDD4, UMODL1, PYGO1, PPP2R5E, SPPL3, ZBTB21, 
FOXN4, POU2F1, PLSCR1, ACSL1, CUX2, OASL, FCHO2, CENPU, CD247, 
IRF2, SGCD 

CMAR, REA 42 RBM18, RNF186, MRRF, OR1N1, ZIC1, HLTF, ARHGEF26, SLC10A1, OR1J2, 
PDCL, PLA2G5, RABGAP1, ZBTB26, OR1AF1, NSUN7, RAB28, NDUFA8, 
PTGS1, TMCO4, GYG1, BOD1L1, RNF13, SPRED2, SRSF5, GPR149, OR1Q1, 
PLA2G2D1, NKX3-2, RBM47, LHX6, DEFB13, OR1N2, MORN5, DHX36, 
SMOC1, ZBTB6, RYR2, OR1AF3, LAP, ZIC4, ACTR2, RC3H2 

AFAT, CMAR 2 PPP2R2B, SLC17A6 
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Table 4.S2 Enriched biological functions significantly associated with HCW in a multibreed population of beef cattle 
Biological function P-value range Genes involved in the biological function 
Cell-To-Cell Signaling and 

Interaction 

8.91E-04-2.52E-02 AGTR1,CACNG2,CDH13,CDH8,KLRC1,LOX,MAN2A1,NTRK2,PECAM1,PERP,
PVALB,TRAF3,UMOD 

Molecular Transport 8.91E-04-2.52E-02 AGTR1,CHKA,CPT1A,DDX5,HPS6,IGHMBP2,IL21R,KLRC1,LRP5,NTRK2, 
PECAM1,PVALB,SLC28A3,SULT1E1,TRAF3,UMOD 

Small Molecule Biochemistry 8.91E-04-2.52E-02 AGTR1,CHKA,CPT1A,DDX5,HMGCLL1,IGHMBP2,IL21R,KLRC1,LOX,LRP5, 
MAN2A1,NTRK2,PECAM1,PFN2,PGM2,PVALB,SLC28A3,SULT1E1,TRAF3, 
UMOD 

Lipid Metabolism 9.14E-04-2.52E-02 AGTR1,CHKA,CPT1A,DDX5,HMGCLL1,IGHMBP2,IL21R,LRP5,NTRK2,PVALB,
SULT1E1,TRAF3 

Carbohydrate Metabolism 1.35E-03-2.52E-02 AGTR1,CPT1A,LRP5,MAN2A1,PGM2 
Cell Morphology 1.53E-03-2.52E-02 AGTR1,CDH13,MYH14,NTRK2,PECAM1,PERP,PFN2,POLG2,PVALB,SULT1E1 
Cellular Function and Maintenance 1.53E-03-2.11E-02 ARL8B,CACNG2,CDH13,CDH8,COL12A1,HPS6,IL21R,LRP5,MAN2A1,MYH14,

NTRK2,PECAM1,PFN2,POLG2,PPRC1,PVALB,TCIRG1,TRAF3 
Cell Death and Survival 2.62E-03-2.11E-02 AGTR1,ALDH3B1,ARL8B,CA4,KLRC1,LRP5,NTRK2,TRAF3,UMOD 
Cellular Compromise 2.62E-03-1.99E-02 AGTR1,ALDH3B1,ANXA3,ARL8B,CA4,KLRC1,NTRK2,PECAM1,PGM2,TCIRG1,

YPEL5 
Amino Acid Metabolism 4.25E-03-8.48E-03 LOX 
Cell Cycle 4.25E-03-2.11E-02 CDH13,CHKA,LBH,MYH14,SMC3 
Cellular Assembly and 

Organization 

4.25E-03-2.52E-02 ARL8B,CACNG2,CDH13,CDH8,HPS6,IFT27,KMT5B,LOX,MAN2A1,MYH14, 
NTRK2,PECAM1,PERP,PFN2,POLG2,PPRC1,PVALB,SMC3,UMOD 

Cellular Development 4.25E-03-2.52E-02 AGTR1,CACNG2,CDH13,CHKA,DUSP5,IL21R,LBH,LOX,NTRK2,PECAM1, 
PFN2,SMC3,TRAF3 

Cellular Growth and Proliferation 4.25E-03-2.52E-02 AGTR1,CACNG2,CDH13,DUSP5,IL21R,LDB1,LOX,NTRK2,PECAM1,PFN2, 
SMC3,TRAF3 

Cellular Movement 4.25E-03-2.52E-02 AGTR1,ANXA3,CA4,CDH13,LOX,MAN2A1,MYH14,NTRK2,PECAM1,SULT1E1,
UMOD 

Drug Metabolism 4.25E-03-1.22E-02 ACSM1,ACSM2B,GSTA2,PFN2,PVALB,SULT1E1 
Nucleic Acid Metabolism 4.25E-03-1.69E-02 CPT1A,HMGCLL1,PFN2,SLC28A3,UMOD 
Post-Translational Modification 4.25E-03-8.48E-03 LOX 
RNA Post-Transcriptional 

Modification 

4.25E-03-4.25E-03 
DDX5 

Energy Production 8.48E-03-2.52E-02 CPT1A,LOX 
Gene Expression 8.48E-03-1.78E-02 DDX5,GTF3C1,IGHMBP2,SMC3 
Cell Signaling 1.02E-02-2.11E-02 AGTR1,CDH13,PECAM1,PVALB 
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Free Radical Scavenging 1.27E-02-1.27E-02 AGTR1 
Protein Synthesis 1.27E-02-1.69E-02 PECAM1,PFN2 
Vitamin and Mineral Metabolism 1.27E-02-2.11E-02 PVALB,SULT1E1 
Protein Trafficking 1.69E-02-1.69E-02 TRAF3 

 

Table 4.S3 Enriched biological functions significantly associated with REA in a multibreed population of beef cattle 
Biological function P-value range Genes involved in the biological function 
Molecular Transport 1.03E-06-6.53E-03 ACACB,ACSL1,AGTR1,AMN,AQP9,ATP6V0A4,CAMK2B,CDX2,CHKA,CHST8,CSN2, 

DDX56,FRAS1,GALR1,GAS7,GSX1,HMGB1,HNF1A,IRF2,KCNJ16,KCNJ2,MBP,NEDD4, 
NOS1,NPC1L1,NTN1,NTRK2,NUP50,PFN2,PLA2G2A,PLA2G2E,PLA2G5,PLSCR1, 
PPP3CC,PRL,PTGS1,RAB3C,RIMS1,RYR2,SLC10A1,SORBS3,SPRED2,SRSF5,SULT1E1, 
TCIRG1,TRAF3,ZBTB21,ZIC1 

Lipid Metabolism 3.27E-05-6.53E-03 ACACB,ACSL1,AGTR1,ALDH3B1,AQP9,CHKA,CHST8,CYB5A,ENPP6,GALR1,GAS7, 
HMGB1,HNF1A,IRF2,MBP,NOS1,NPC1L1,NTN1,NTRK2,PLA2G2A,PLA2G2E,PLA2G5, 
PLSCR1,PRL,PTGS1,RIMS1,SLC10A1,SPRED2,SULT1E1,TRAF3,ZBTB21 

Small Molecule 

Biochemistry 

3.27E-05-6.53E-03 ACACB,ACSL1,AGTR1,ALDH3B1,AQP9,CHKA,CHST8,CNDP2,CYB5A,ENPP6,GALR1, 
GAS7,GSX1,HMGB1,HNF1A,IRF2,LOX,MBP,NOS1,NPC1L1,NTN1,NTRK2,PFN2, 
PLA2G2A,PLA2G2E,PLA2G5,PLSCR1,PPP3CC,PRL,PTGS1,RIMS1,RYR2,SLC10A1, 
SORBS3,SPRED2,STAB2,SULT1E1,TDG,TRAF3,ZBTB21 

Cellular Assembly and 

Organization 

9.97E-05-6.53E-03 ACTR2,CAMK2B,CDC42BPB,CDH13,CUX2,DNAJC6,DNER,FCHO2,GAS7,HMGB1, 
KCNJ2,LOX,MBP,MYO16,NOS1,NTN1,NTRK2,NUDCD3,PFN2,PLSCR1,PPP3CC,PRL, 
RAB28,RAB38,RIMS1,RYR2 

Cell-To-Cell Signaling 

and Interaction 

1.5E-04-6.53E-03 AGTR1,CAMK2B,CD247,CDH13,CUX2,GALR1,HMGB1,HSP90B1,NOS1,NTN1,NTRK2, 
PFN2,PLA2G5,PPP3CC,PRL,RIMS1,SORBS3,TRAF3 

Carbohydrate 

Metabolism 

2.92E-04-6.53E-03 ACACB,AGTR1,AQP9,CHKA,CHST8,CYB5A,ENPP6,GALR1,GYG1,HMGB1,HNF1A,NKX3-
2,PDCL,PDX1,PGM2,PLA2G2A,PLA2G2E,PLA2G5,PLSCR1,PRL,RYR2,STAB2 

Energy Production 3.71E-04-3.71E-04 ACACB,HNF1A,PRL,RYR2 
Cell Death and 

Survival 

3.84E-04-5.32E-03 
CAMK2B,GAS7,HMGB1,MBP,NTRK2,PRL,RNF13,RTN1 

Cellular Compromise 4.18E-04-6.53E-03 IRF2,MBP,NTN1 
Cellular Development 5.65E-04-6.53E-03 AGTR1,CAMK2B,CUX2,DNER,GAS7,HMGB1,HNF1A,HSP90B1,KCNJ2,LOX,MBP,MYO16,

NOS1,NTN1,NTRK2,PDX1,PFN2,PLSCR1,RIMS1,RNASE1,RYR2,TRAF3,ZIC1,ZIC4 
Gene Expression 6.22E-04-3.63E-03 ACACB,ACTR2,APBB2,CCAR2,CDH13,CDX2,CSN2,CUX2,DHX36,FOXN4,GALR1,GSX1, 

HLTF,HMGB1,HNF1A,IRF2,LOX,MAML2,MBP,NKX3-2,NOS1,NTRK2,PDX1,PLSCR1, 
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POU2F1,PRL,PYGO1,RC3H2,RIMS1,SORBS3,TCIRG1, 
TDG,TRAF3,TRIM24,UMODL1,ZBTB21,ZIC1,ZNF516 

Cell Morphology 6.25E-04-6.53E-03 ACTR2,CAMK2B,CDC42BPB,CDH13,CDX2,CUX2,DNER,FOXN4,GAS7,HMGB1,KCNJ2, 
LOX,MBP,MYO16,NOS1,NTN1,NTRK2,NUDCD3,PFN2,PRL,RIMS1,RYR2,ZIC4 

Protein Synthesis 1.07E-03-3.66E-03 CHST8,NOS1,NTRK2,PRL 
Cellular Function and 

Maintenance 

1.47E-03-6.53E-03 ACACB,ACSL1,ACTR2,AGTR1,AMN,ATP6V0A4,CAMK2B,CCAR2,CD247,CDC42BPB, 
CDH13,CUX2,DNAJC6,DNER,FCHO2,GAS7,HMGB1,HNF1A,HSP90B1,IRF2,KCNJ2,LOX,
MBP,MYO16,NEDD4,NOS1,NTN1,NTRK2,NUDCD3,PDX1,PFN2,PLA2G2A,PLA2G5, 
PLSCR1,PPP3CC,PRL,PTGS1,RC3H2,RIMS1,RNASE1,RTN1,RYR2,SGCD,SPPL3,SPRED2,
STAB2,TCIRG1,TRAF3,TRIM24 

Cellular Growth and 

Proliferation 

1.47E-03-6.53E-03 AGTR1,CAMK2B,CCAR2,CUX2,DNER,GAS7,HLTF,HMGB1,HNF1A,IRF2,KCNJ2,LOX, 
MBP,MYO16,NOS1,NTN1,NTRK2,PDX1,PFN2,PLSCR1,PRL,RIMS1,RYR2,TRAF3,ZIC1 

Nucleic Acid 

Metabolism 

1.48E-03-6.53E-03 
ACACB,ACSL1,PFN2,TDG 

Cellular Movement 2.89E-03-6.53E-03 CDH13,FCHO2,HMGB1,LOX,NTN1,NTRK2,PDCL,PFN2,PPP3CC,PRL,RIMS1,SULT1E1 
Cell Signaling 3.66E-03-6.53E-03 IRF2,NOS1,RYR2 
Vitamin and Mineral 

Metabolism 

3.66E-03-3.66E-03 
NOS1,RYR2 

Drug Metabolism 5.59E-03-6.53E-03 HMGB1,IRF2,PFN2,PTGS1,SULT1E1 
Amino Acid 

Metabolism 

6.53E-03-6.53E-03 
CNDP2,LOX,NOS1,PRL 

Cell Cycle 6.53E-03-6.53E-03 CDH13,CHKA,HMGB1 
DNA Replication, 

Recombination, and 

Repair 

6.53E-03-6.53E-03 

IRF2 

Post-Translational 

Modification 

6.53E-03-6.53E-03 
LOX 
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Table 4.S4 Enriched biological functions significantly associated with AFAT in a multibreed population of beef cattle 
Biological function P-value range Genes involved in the biological function 
Cell-To-Cell Signaling and Interaction 1.63E-05-2.67E-02 CDH13,CHRM5,GRIK4,LOX,MARCHF1,NEFL,NEFM,PNKD,PTS,RARB, 

SLC17A6,THRB,TIAM1,TJP2,WNT7A,XPC 
Drug Metabolism 1.63E-05-1.34E-02 CHRM5,PNKD,PTS,SLC17A6 
Molecular Transport 1.63E-05-2.67E-02 CDK14,CHCHD4,CHRM5,GRIK4,INPP4B,KCNK16,KCNK17,NEFM,PLA2G2A,

PLA2G2E,PLIN2,PNKD,PPP2R2B,PTS,SCN3B,SEC24A,SLC11A1,SLC17A6, 
TJP2,WNT7A,XPC,ZNF202 

Small Molecule Biochemistry 1.63E-05-2.34E-02 BCO2,CHRM5,COQ2,DGKG,GRIK4,INPP4B,LOX,PLA2G2A,PLA2G2E,PLIN2, 
PNKD,PTS,SLC11A1,SLC17A6,THRB,WNT7A,XPC 

Cellular Assembly and Organization 3.36E-05-2.67E-02 CATIP,CDH13,CHCHD4,CHRM5,CPEB4,DGKG,DOCK5,KATNBL1,LOX,NEFL,
NEFM,RAB23,RARB,TIAM1,TJP2,VIL1,WIPF1,WNT7A,XPC 

Cellular Development 6.72E-05-2.67E-02 CDH13,CHRM5,CTDSP1,DOCK5,INPP4B,LOX,LUZP2,NEFL,NEFM,RAB23, 
RARB,SLC17A6,THRB,TIAM1,WNT7A 

Cellular Function and Maintenance 6.72E-05-2.67E-02 CDH13,CHRM5,CPEB4,DGKG,DOCK5,KATNBL1,LOX,MARCHF1,NEFL, 
NEFM,RAB23,THRB,TIAM1,VIL1,WIPF1,WNT7A,XPC 

Cellular Growth and Proliferation 6.72E-05-2.67E-02 CDH13,CHRM5,CTDSP1,DOCK5,INPP4B,LOX,LUZP2,NEFL,NEFM,RARB, 
SLC11A1,SLC17A6,TIAM1,WNT7A 

Cell Morphology 1.67E-04-2.67E-02 CCDC92,CDH13,CHRM5,CPEB4,DGKG,DOCK5,KIF26B,LOX,NEFL,NEFM, 
PLA2G2A,PLIN2,RAB23,RARB,THRB,TIAM1,TJP2,WIPF1,WNT7A,ZNF451 

Amino Acid Metabolism 3.37E-03-2.34E-02 LOX,SLC11A1,SLC17A6 
Antigen Presentation 3.37E-03-3.37E-03 MARCHF1 
Carbohydrate Metabolism 3.37E-03-2.34E-02 CHRM5,COQ2,DGKG,INPP4B,PLA2G2A,PLA2G2E 
Cell Cycle 3.37E-03-2.01E-02 CDH13,CDK14,LOX,NEFL,RARB,SLC11A1,THRB,XPC 
Cellular Movement 3.37E-03-2.51E-02 CDH13,DOCK5,INPP4B,KIF26B,LOX,MARCHF1,THRB,TIAM1 
Lipid Metabolism 3.37E-03-2.34E-02 BCO2,CHRM5,DGKG,INPP4B,PLA2G2A,PLA2G2E,PLIN2,THRB,XPC 
Post-Translational Modification 3.37E-03-2.67E-02 CHCHD4,LOX,PLIN2 
Protein Trafficking 3.37E-03-3.37E-03 PPP2R2B 
Vitamin and Mineral Metabolism 3.37E-03-1.01E-02 BCO2,PLIN2 
Cell Death and Survival 6.74E-03-2.01E-02 NEFL,NEFM,PLA2G2A,PLIN2,SLC11A1,THRB,WIPF1,XPC 
Energy Production 6.74E-03-6.74E-03 LOX 
Cell Signaling 7.3E-03-7.3E-03 CDH13,TIAM1 
Cellular Compromise 1.01E-02-1.68E-02 DOCK5,NEFL,NEFM,PLA2G2A,SLC11A1,WIPF1 
DNA Replication, Recombination, and Repair 1.01E-02-1.68E-02 CHCHD4,XPC 
Gene Expression 1.01E-02-1.19E-02 LOX,RARB,THRB 
Nucleic Acid Metabolism 1.34E-02-1.34E-02 XPC 
Protein Folding 2.67E-02-2.67E-02 CHCHD4 
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Table 4.S5 Enriched biological functions significantly associated with LMY in a multibreed population of beef cattle 
Biological function P-value range Genes involved in the biological function 
Lipid Metabolism 1.18E-04-3.44E-02 ACACB,ACSL1,ALDH3B1,AQP9,CHKA,ENPP6,HNF1A,NOS1,PLSCR1 

Molecular Transport 1.18E-04-3.8E-02 
ACACB,ACSL1,AQP9,CHKA,HNF1A,NEDD4,NOS1,NPFFR2,PLSCR1,
TCIRG1,ZBTB21 

Nucleic Acid Metabolism 1.18E-04-2.91E-02 ACACB,ACSL1,AQP9,NOS1 

Small Molecule Biochemistry 1.18E-04-3.44E-02 
ACACB,ACSL1,ALDH3B1,AQP9,CHKA,ENPP6,HNF1A,IRF2,NOS1, 
NPFFR2,PLSCR1,RAB38 

Amino Acid Metabolism 1.84E-03-1.64E-02 HNF1A,NOS1,RAB38 
Carbohydrate Metabolism 1.84E-03-3.44E-02 ACACB,ACSL1,AQP9,CHKA,ENPP6,HNF1A,PLSCR1 
Cell Cycle 1.84E-03-3.75E-02 CD247,CHKA,HNF1A,IRF2,PLSCR1,POU2F1,TCIRG1 
Cell Morphology 1.84E-03-3.44E-02 AQP9,CD247,FOXN4,HNF1A,IRF2,NEDD4,NOS1,PLSCR1,SGCD 
Cell Signaling 1.84E-03-2.55E-02 IRF2,NEDD4,NOS1,OASL,PLSCR1 

Cellular Assembly and Organization 1.84E-03-3.26E-02 
ACACB,CD247,DNAJC6,FCHO2,HNF1A,KMT5B,NEDD4,NOS1, 
PLSCR1,POU2F1,RAB38,RTN1,SGCD 

Cellular Compromise 1.84E-03-3.26E-02 ACSL1,CD247,HNF1A,IRF2,NOS1,PLSCR1,PRTG,RTN1,TCIRG1 
Cellular Development 1.84E-03-3.78E-02 CD247,CHKA,FOXN4,HNF1A,IRF2,NOS1,PLSCR1,PRTG,TCIRG1 

Cellular Function and Maintenance 1.84E-03-3.62E-02 
ACACB,ACSL1,AQP9,CD247,FCHO2,HNF1A,IRF2,NEDD4,NOS1, 
PLSCR1,RTN1,SGCD,SPPL3,TCIRG1 

Cellular Growth and Proliferation 1.84E-03-3.78E-02 CD247,HNF1A,IRF2,NOS1,PLSCR1,POU2F1,TCIRG1 
DNA Replication, Recombination, and Repair 1.84E-03-3.44E-02 HNF1A,IRF2,NOS1,POU2F1,PRIMPOL,RTN1 
Cell Death and Survival 3.68E-03-3.8E-02 CD247,HNF1A,IRF2,NOS1,PLSCR1,POU2F1,SGCD 
Cell-To-Cell Signaling and Interaction 3.68E-03-3.44E-02 CD247,IRF2,NOS1,NPFFR2,RTN1 
Cellular Movement 3.68E-03-1.28E-02 HNF1A,MACF1,NEDD4,NOS1 
Energy Production 3.68E-03-2.91E-02 ACACB,ACSL1,HNF1A,NOS1 
Post-Translational Modification 3.68E-03-2.37E-02 HNF1A,NOS1 

Gene Expression 4.94E-03-3.44E-02 
ACACB,CUX2,FOXN4,HNF1A,IRF2,MAML2,NOS1,PLSCR1,POU2F1,
PYGO1,TCIRG1,UMODL1,ZBTB21 

Vitamin and Mineral Metabolism 7.34E-03-2.55E-02 ACACB,HNF1A,NOS1 
Protein Synthesis 8.02E-03-3.44E-02 ACACB,HNF1A,IRF2,NOS1,NPFFR2,POU2F1,SGCD,TCIRG1 
Drug Metabolism 2.37E-02-2.37E-02 ACSL1 
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Table 4.S6 Enriched biological functions significantly associated with CMAR in a multibreed population of beef cattle 
Biological function P-value range Genes involved in the biological function 
Lipid Metabolism 1.57E-05-2.22E-02 AGTR1,AQP9,CCDC80,CHKA,CPT1A,DAB1,DDX5,IGHMBP2,LRP5, 

PLA2G2A,PLA2G2E,PLA2G5,PTGS1,PVALB,SLC10A1,SPRED2,SSPN 
Molecular Transport 1.57E-05-2.36E-02 AGTR1,AQP9,CCDC80,CHKA,CPT1A,DAB1,DDX5,IGHMBP2,LRP5, 

PECAM1,PLA2G2A,PLA2G2E,PLA2G5,PTGS1,PVALB,SLC10A1,SLC17A6, 
SPRED2 

Small Molecule Biochemistry 1.57E-05-2.22E-02 AGTR1,AQP9,CCDC80,CHKA,CPT1A,DAB1,DDX5,IGHMBP2,LRP5, 
PECAM1,PFN2,PLA2G2A,PLA2G2E,PLA2G5,PTGS1,PVALB,SLC10A1, 
SLC17A6,SPRED2,SSPN,TREH 

Carbohydrate Metabolism 4.1E-04-1.34E-02 AGTR1,AQP9,CHKA,CPT1A,GYG1,LRP5,NKX3-2,PDCL,PLA2G2A, 
PLA2G2E,PLA2G5,TREH 

Cell-To-Cell Signaling and Interaction 2.47E-03-1.78E-02 AGTR1,CACNG2,CDH13,CDH8,PECAM1,PERP,PFN2,PLA2G5,PVALB, 
SLC17A6 

Cell Death and Survival 2.84E-03-1.73E-02 FGF12,PLA2G2A,PTGS1,RNF186 
Cell Signaling 3.81E-03-2.22E-02 AGTR1,BOC,CDH13,HHAT,IFT27,ITPR2,NDUFA8,NDUFS8,PECAM1, 

PTGS1,PVALB,ZIC1 
Cell Cycle 3.93E-03-2.22E-02 BTLA,CDH13,CHKA,ZIC1 
Cell Morphology 4.47E-03-1.95E-02 AGTR1,ARHGEF26,ATG3,BOC,CDH13,HHAT,LHX6,PECAM1,PERP,PFN2,

PLA2G2A,POLG2,PVALB,RYR2,ZIC4 
Cellular Assembly and Organization 4.47E-03-2.22E-02 ACTR2,APBB2,ATG3,BOC,CDH13,CDH8,DAB1,DDX6,HLTF,IFT27,ITPR2, 

KMT5B,PERP,PFN2,POLG2,PVALB,RAB28,RYR2,SLC17A6 
Cellular Development 4.47E-03-2.22E-02 AGTR1,ARHGEF26,BOC,BTLA,CDH13,CHKA,LHX6,PECAM1,PFN2, 

SLC17A6,SSPN,ZIC1,ZIC4 
Cellular Function and Maintenance 4.47E-03-2.05E-02 ACTR2,ARHGEF26,ATG3,BICD1,BOC,CDH13,CDH8,IFT27,ITPR2, 

PECAM1,PFN2,PLA2G5,RYR2,SPRED2 
Cellular Growth and Proliferation 4.47E-03-1.95E-02 AGTR1,ARHGEF26,BOC,CDH13,LHX6,PECAM1,PFN2,SLC17A6,ZIC1 
Cellular Movement 4.47E-03-2.22E-02 CDH13,DAB1,LHX6,PECAM1 
Drug Metabolism 4.47E-03-1.78E-02 PFN2,PLA2G2A,PLA2G5,PTGS1,PVALB,SLC17A6,SSPN 
Nucleic Acid Metabolism 4.47E-03-4.71E-03 AQP9,CPT1A,PFN2,SLC10A1 
Protein Trafficking 4.47E-03-4.47E-03 PPP2R2B 
RNA Post-Transcriptional 

Modification 

4.47E-03-4.47E-03 DDX5 

Energy Production 8.92E-03-1.78E-02 PTGS1 
Free Radical Scavenging 8.92E-03-1.34E-02 AGTR1,PTGS1 
Gene Expression 8.92E-03-1.95E-02 DDX5,EIF5,IGHMBP2 
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RNA Damage and Repair 8.92E-03-8.92E-03 EIF5 
Cellular Compromise 1.34E-02-1.34E-02 AGTR1,PLA2G2A 
DNA Replication, Recombination, and 

Repair 

1.34E-02-1.34E-02 DHX36 

Protein Synthesis 1.34E-02-2.2E-02 AGTR1,DDX6,DHX36,EIF5,MRPL21,MRRF,NDUFA8,NDUFS8,PECAM1, 
PFN2 

Vitamin and Mineral Metabolism 1.34E-02-2.22E-02 ITPR2,PVALB 
Post-Translational Modification 1.88E-02-1.88E-02 NDUFA8,NDUFS8 
Amino Acid Metabolism 2.22E-02-2.22E-02 SLC17A6 

 

Table 4.S7 Uniquely common biological functions for carcass merit traits in a multibreed population of beef cattle 

Trait Number of common 
biological function Common biological function 

AFAT, CMAR, HCW, LMY, REA 22 Gene Expression, Vitamin and Mineral Metabolism, Cellular 

Assembly and Organization, Cellular Function and Maintenance, 

Cell Death and Survival, Cell-To-Cell Signaling and Interaction, 

Cellular Development, Cell Cycle, Cellular Movement, Cellular 

Growth and Proliferation, Nucleic Acid Metabolism, Post-

Translational Modification, Carbohydrate Metabolism, Molecular 

Transport, Energy Production, Cellular Compromise, Small 

Molecule Biochemistry, Cell Signaling, Cell Morphology, Lipid 

Metabolism, Drug Metabolism, Amino Acid Metabolism 

CMAR, HCW, LMY, REA 1 Protein Synthesis 

AFAT, CMAR, LMY, REA 1 DNA Replication, Recombination, and Repair 

AFAT, CMAR, HCW 1 Protein Trafficking 

CMAR, HCW 2 RNA Post-Transcriptional Modification 
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Table 4.S8 The comparison of candidate genes between the current study and Wang et al 

Trait 

Number of candidate 

genes identified by Wang 

et al. 

Number of candidate 

genes identified in this 

study 

Number of 

overlapping 

genes 

overlapping genes 

/ total identified 

genes (%) 

Overlapping gene 

HCW 319 103 36 34.95% RNASE1, RNASE6, RNASE4, ANG2, CDH13, 
SULT1E1, FRAS1, ANXA3, NTRK2, AGTR1, 
KLHL29, SNORA70, TMEM132E, 
HMGCLL1, GFRAL, TRAM2, TMEM14A, 
GSTA2, GPR139, UMOD, PDILT, ACSM5, 
UQCRC2, PDZD9, VWA3A, PPRC1, 
SNORD22, RBM20, MAN2A1, EDEM1, 
KLHL31, SLC28A3, TCIRG1, CHKA, 
KMT5B, PERP 

REA 575 160 45 28.13% UMODL1, L3HYPDH, JKAMP, RTN1, 
LUZP2, MYO16, TRIM24, SVOPL, 
ATP6V0A4, GPR149, ARHGEF26, HLTF, 
GYG1, ZIC4, OR1J2, RYR2, RBM47, APBB2, 
CHST8, KCTD15, NTN1, RIMS1, KCNJ2, 
KCNJ16, DNER, RAB3C, CNDP2, CYB5A, 
PHF21B, PLSCR1, AQP9, NEDD4, 
TMEM171, CD247, MACF1, NPFFR2, 
SGCD, RNASE1, CDH13, TRAF3, AMN, 
CDC42BPB, FRAS1, NTRK2, COL12A1 

AFAT 189 83 23 27.71% CDH13, PPP2R2B, GRIK4, GRAMD1B, 
RGL1, CCDC92, DNAH10, MCTP2, XPC, 
TMEM43, CHCHD4, LUZP2, PLIN2, 
HAUS6, DOCK5, INPP4B, RARB, PGM5, 
TMEM252, THRB, FSTL4, SEC24A, TJP2 

LMY 329 43 18 41.86% PRTG, PYGO1, CUX2, NOS1, FOXN4, 
ACACB, CD247, POU2F1, NPFFR2, SGCD, 
UMODL1, L3HYPDH, JKAMP, PPP2R5E, 
STOX2, IRF2, RAB38, LUZP2 

CMAR 198 109 25 22.94% HLTF, GYG1, ZIC1, RYR2, RBM47, NSUN7, 
APBB2, RAB28, NKX3-2, BOD1L1, CDH13, 
SLC17A6, ITPR2, AQP9, PHLDB1, TREH, 
DDX6, EIF5, MARK3, CDH8, POLG2, 
DDX5, CEP95, LRP5, PERP 
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Figure 4.1 Gene networks for hot carcass weight and carcass marbling score 
(a) gene network of molecular transport for hot carcass weight (HCW); (b) gene network of lipid 
metabolism for carcass marbling score (CMAR); (c) gene network of carbohydrate metabolism for 
carcass marbling score (CMAR). 
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Figure 4.S1 Uniquely common candidate genes for carcass merit traits in a beef cattle multibreed 
population 

 

Figure 4.S2 Uniquely common biological functions for carcass merit traits in a beef cattle 
multibreed popular 
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Chapter 5. Genetic insights of bovine respiratory disease infection in feedlot 

crossbred cattle 

5.1 Abstract 

Bovine respiratory disease (BRD) is the most common and costly infectious disease 

affecting the well-being and productivity of beef cattle in North America. BRD is a complex 

disease whose development in the animals is dependent on environmental factors and host 

themselves (immune response and genetics). Understanding the genetic or molecular mechanisms 

underlying BRD infection would augment development of accurate diagnostic tools and better 

genetic tools that could be applied to reduce BRD prevalence, and to minimize its detrimental 

impact for feedlot beef production. The current study aimed to identify DNA markers associated 

with BRD susceptibility and universal gene expression pattern associated with BRD infection in 

feedlot cattle. We further investigated the association between DNA markers and gene expression 

to identify expression quantitative trait loci (eQTLs) associated with gene expression. 

A total of 143 blood samples (80 BRD; 63 non-BRD animals) from feedlot cattle were 

collected for extraction of RNA and DNA. A genome-wide association study (GWAS) was 

performed for BRD susceptibility using 207,038 SNPs from the bovine 100K SNP array and RNA 

sequencing (RNA-Seq) SNP calling. Two SNPs (BovineNovelSNP1874 on chromosome 5 and 

BovineHD1800016801 on chromosome 18) were significantly (P-value < 1×10-5) associated with 

BRD susceptibility. Whole blood gene expression profiles were generated for each animal using 

RNA-Seq to determine differential gene expression between BRD and non-BRD animals. 

Differentially expressed genes (DE genes) were further analyzed using functional enrichment 

analysis. At the significant threshold used (log2FC > 2, logCPM > 2, and FDR < 0.01), 101 DE 

genes were identified as associated with BRD infection and found to be involved in several 
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significantly (P-value < 0.05) enriched disease-related functions such as inflammatory response, 

organismal injury and abnormalities, infectious diseases, respiratory diseases and antimicrobial 

response. We propose to test 18 DE genes in an independent population for their potential as 

diagnostic biomarkers for the feedlot industry. Expression quantitative trait locus (eQTL) analysis 

was conducted to identify cis- and trans-eQTLs associated with DE genes. The eQTL analysis 

identified 420 cis-eQTLs and 144 trans-eQTLs significantly (FDR < 0.05) associated with the 

expression of DE genes. Additionally, the most significant SNP (BovineNovelSNP1874) 

identified in GWAS was a cis-eQTL for the DE gene GPR84. This finding suggests that this SNP 

could be causally associated with BRD susceptibility. 

In general, the integrative analyses shed light on the understanding of genetic influences 

on BRD susceptibility and the molecular mechanisms underlying bovine immune responses to 

respiratory disease. The findings are useful for the development of a genomic selection strategy 

for BRD susceptibility, and for the development of new diagnostic and therapeutic tools. 

5.2 Introduction 

Bovine respiratory disease (BRD) is a worldwide infectious disease affecting the cattle 

industry. It causes a large economic burden through increased production costs associated with 

prevention and treatment, reduced carcass value, increased labour expense and impaired growth 

of animals (Griffin, 1997; Smith, 2000; Irsik et al., 2006; Schneider et al., 2010). In North America, 

BRD has been identified as the most expensive infectious disease of beef cattle (Taylor et al., 2010) 

causing high morbidity rates that can reach up to 80%, and moderate to high mortality in some 

feedlots (Smith, 1998; Baptista et al., 2017). Cattle in the feedlot are highly susceptible to BRD 

due to compromised immunity from a number of stressors including long-distance transportation 

and commingling cattle from different sources especially in auction markets (Taylor et al., 2010). 
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These stressors expose the animals to multiple BRD pathogens and provide conducive 

environment for emergence of opportunistic viral and bacterial infections of the respiratory tract 

(Griffin et al., 2010; Taylor et al., 2010; Kirchhoff et al., 2014). Early diagnosis and appropriate 

treatment of infected animals could enhance faster recovery from infections and potentially reduce 

the negative impact of the disease on animal performance and productivity. However, most clinical 

signs of BRD are subjective, difficult to standardize, and non-specific for BRD, which makes the 

diagnosis of BRD troublesome. In feedlots, the most commonly used treatment for BRD is a 

prophylaxis approach where animals are treated with a wide range of antibiotics before or on entry 

into the feedlots (Ives and Richeson, 2015), however this may lead to the development of 

antimicrobial resistance which is a major concern for both human and animal health (Klima et al., 

2014; Stanford et al., 2020).  

Investigations into the genetic architecture of resistance or susceptibility to BRD in beef 

cattle populations is an ongoing endeavour. Recent studies have reported low to moderate 

heritability in the range of 0.07 to 0.29 (Snowder et al., 2005; Schneider et al., 2010; Neibergs et 

al., 2014a, 2014b), which indicates potential to breed BRD resistant animals through selective 

breeding that will lead to a sustainable reduction in BRD incidences and potential antimicrobial 

resistance (Neibergs et al., 2014b; Hoff et al., 2019). Several SNPs and quantitative trait loci (QTLs) 

have been reported as significantly associated with BRD through genome-wide association studies 

(GWAS) (Neibergs et al., 2014b; Hoff et al., 2019). In addition, RNA sequencing (RNA-Seq) 

offers high resolution profiling of transcriptomes of individual animals in a given sample/tissue, 

hence allowing the discovery of transcriptome-wide expression differences between animals with 

contrasting phenotypes of interest (e.g., BRD and non-BRD) (Costa-Silva et al., 2017; Hrdlickova 

et al., 2017). Such differential gene expression between BRD and non-BRD animals could reveal 
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the host response to BRD infection and could help to identify potential biomarkers that could be 

used for BRD diagnosis. Several transcriptomic studies have been conducted to investigate the 

gene expression differences and host response to BRD infection (Tizioto et al., 2015; Scott et al., 

2020; Sun et al., 2020; Jiminez et al., 2021). These studies have shown that host animals may 

regulate the immune response to defend against BRD pathogens or respond to the damage caused 

by BRD pathogens by influencing the expression of certain genes (i.e., differentially expressed 

(DE) genes), and suggest gene expression may vary with different viral and bacterial pathogen 

infections as well as the stage of disease development. However, these analyses only focused on 

the correlation between the transcriptomic level and BRD but overlooked the potential 

interconnections between different omics layers. Changes in gene expression are not only 

associated with the disease, but are also affected by genetic regulation (i.e., expression QTL, eQTL) 

(Cookson et al., 2009). Integration of GWAS, differential gene expression analysis and eQTL 

analysis could aid in interpreting the results of GWAS and identifying functional or causal SNPs. 

It also could provide additional insights into a probable biological basis for the disease associations 

and could help to identify networks of genes involved in disease pathogenesis.  

Therefore, the objective of this study was to identify SNPs associated with BRD 

susceptibility and universal gene expression pattern associated with BRD infection in feedlots. 

Besides, this study investigated the association between DNA markers and gene expression to 

identify cis- and trans-eQTLs associated with gene expression. To achieve these objectives, we 

performed GWAS, differential gene expression analysis, and eQTL analysis to study the 

association between genotype, gene expression, and phenotype. This multi-omics study is 

expected to shed light on the understanding of genetic and molecular architecture of BRD in 
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feedlot crossbred cattle and to identify the transcriptomic biomarkers that could identify infected 

animals in the general beef cattle population in Canada. 

5.3 Material and Methods 

5.3.1 Animal population and phenotype collection 

This study was conducted in accordance with the Canadian Council of Animal Care (2009) 

guidelines and recommendations (CCAC, 2009). All experimental procedures were reviewed and 

approved by the University of Calgary Veterinary Sciences Animal Care Committee (AC15-0109). 

A total of 143 multi-breed and crossbred beef cattle were used in this study. Animals were 

conventionally raised cattle that included heifers (n = 87) and steers (n = 56). These animals were 

enrolled into the feedlot during the fall of 2015 at four commercial feedlots in Central/Southern 

Alberta. The on-arrival processing for cattle was previously described (Jiminez et al., 2021). 

Briefly, animals were weighed and received a subcutaneous injection of a long-acting macrolide 

(tulathromycin, Draxxin, 2.5 mg/kg, Zoetis, Kirkland, QC, Canada) and vaccinated against 

multiple bacterial and viral agents. They were also dewormed with a pour-on ivermectin solution 

and received a prostaglandin F2α analog injection to induce abortion as per standard feedlot 

procedure. While in the feedlots, animals were fed twice daily on a concentrate barley-based 

receiving/growing diet. This diet also contained 25 ppm of monensin (Rumensin 200, Elanco, 

Guelph, ON, Canada) and 35 ppm of chlortetracycline (Aureomycin 220, Zoetis). Cattle received 

a growth implant and second vaccination against infectious viruses at approximately 30 days after 

arrival. Within 50 days on feedlots, the animals were monitored daily and those that showed BRD 

signs and symptoms (depression, nasal or ocular discharge, cough, tachypnea, or dyspnea) were 

clinically examined by an experienced veterinarian. The details of clinical examinations and case 

definition (i.e., BRD or non-BRD cattle) were previously described (Jiminez et al., 2021). Briefly, 
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animals were retrospectively identified as BRD positive based on clinical examination and serum 

haptoglobin concentration. The animal was confirmed as BRD positive by an experienced 

veterinarian if the animal displayed at least one visual BRD symptom, had a rectal temperature ≥ 

40 °C, abnormal lung sounds detected at auscultation, a serum haptoglobin concentration ≥ 0.25 

g/L, and had no prior treatment against BRD or other diseases during the feeding period (i.e., first 

BRD occurrence). Blood samples were collected from the animal by jugular vein puncture for 

genotyping and whole-blood transcriptome using 14-gauge needles attached to a vacutainer 

(Tempus tubes; Thermo Fisher Scientific, ON). Once collected in Tempus tubes, samples were 

mixed by 20 inversions, and stored on ice until ultimately stored at -20 °C. All materials are sterile 

or sanitized prior to use. Meanwhile, blood samples were collected in the same way from one or 

two healthy matched-control pen mates (i.e., non-BRD cattle) which had no visual signs of BRD 

or other disease, a rectal temperature < 40 °C, no abnormal lung sounds detected at auscultation 

and a serum haptoglobin concentration < 0.25 g/L. The non-BRD cattle did not become positive 

later (i.e., remain healthy in feedlots). After sample collection, animals identified as BRD positive 

received an antibiotic treatment intramuscularly in combination with non-steroidal anti-

inflammatory drugs, in accordance with feedlot treatment protocols. 

5.3.2 RNA isolation, cDNA library preparation and sequencing 

Total RNA was extracted in two batches (Batch 1, n = 47; Batch 2, n = 96). The following 

similar procedures were performed on all samples in both batches. Initially, total RNA was isolated 

from blood using a Preserved Blood RNA Purification Kit (Norgen Biotek Corp, Thorold, ON, 

Canada), and the quality of RNA was measured using the 2200 RNA ScreenTape TapeStation 

System (Agilent Technologies Inc., Cedar Creek, TX, United States) producing RNA integrity 

numbers (RIN) ranging from 8.0 to 9.8. Thereafter, cDNA library for each individual animal was 
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prepared from the extracted high-quality RNA using the TruSeq RNA Library Preparation kit v2 

(Illumina, San Diego, CA, United States) and the NEBNext® Ultra™ II Directional RNA Library 

Prep Kit for Illumina® (New England Biolabs Ltd., Whitby, ON, Canada) to prepare the libraries 

for sequencing. Samples in both batches used the stranded library preparation process. Paired-end 

Sequencing was performed using the Hiseq 4000 platform and Novaseq 6000 for batch 1 and batch 

2 samples respectively to generate paired-end sequences of 100 bp read length. Sequencing of 

samples in the two batches was performed at McGill University and Genome Quebec Innovation 

Center (Montreal, QC, Canada). Finally, the raw reads of 143 samples (80 BRD; 63 non-BRD) 

were obtained and used for downstream analyses. 

5.3.3 Sequence data processing, alignment and counting 

Raw reads for each sample were assessed for quality using FastQC (v0.11.8) (Andrews, 

2010). The bases with low quality score (Phred quality score < 20) and 3’ adapter sequences on 

raw reads were removed using Trimmomatic (v0.39) (Bolger et al., 2014). These cleaned-up 

sequences were aligned to the Bos taurus reference genome (ARS-UCD1.2.98, downloaded from 

Ensembl genome bowser) using a short read alignment software STAR (v2.7.1a) with paired-end 

default parameters (Dobin et al., 2013). FeatureCounts (SubRead v1.6.4) was used to count the 

reads that aligned to a particular annotated gene in the bovine genome (Liao et al., 2014) and these 

counts were consequently used for differential gene expression analysis between BRD and non-

BRD animals. 

5.3.4 DNA extraction and genotyping 

DNA was extracted from blood samples of the transcriptome-profiled animals. The 

extracted DNA was used to genotype each animal using Illumina’s GGP Bovine 100K microarray 

SNP chip (Illumina, San Diego, CA, United States). The SNPs on sex chromosomes and had minor 
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allele frequency < 5%, missing allele rate > 10% and failed to pass the Hardy-Weinberg 

equilibrium test (P-value < 0.0001) were excluded. The remaining SNPs (i.e.,85,100 SNPs) were 

used to predict breed composition using ADMIXTURE software (v1.3.0) (Alexander and Lange, 

2011). The value of K = 3 was obtained because it had the smallest cross-validation error and 

yielded the most accurate breed composition prediction based on prior knowledge of breed 

composition on a subset of animals. 

Additionally, we called additional SNP markers and genotypes from the RNA-Seq data of 

each animal using the Genome Analysis Toolkit best practices (GATK v3.8; Van der Auwera and 

O’Connor, 2020). Prior to the variant calling processes, the mapped reads from two-pass STAR 

alignment were sorted, had read groups added, and duplicates identified using the Picard tools 

package (v2.20.6). A series of processing steps including splitting “N” cigar reads (i.e., splice 

junction reads), reassigning mapping quality score, and base quality score recalibration were 

performed to improve variants calling accuracy using GATK. After data preprocessing, variants 

were called using the HaplotypeCaller algorithm in Genomic Variant Call Format (GVCF) mode, 

which included two steps: (i) variants were called individually on each sample, generating one 

GVCF file per sample that lists genotype likelihoods and their genome annotations; (ii) variants 

were called from the GVCF file through a joint genotyping analysis. The joint genotyping method 

is more flexible and technically easier, and is recommend for variant calling in RNA-Seq 

experiments (Poplin et al., 2017; Brouard et al., 2019). Stringent filtering procedures were applied 

to variants using the GATK Variant Filtration tool and VCFtools (v0.1.14) (Danecek et al., 2011). 

Indels, non-biallelic SNPs and SNPs on sex chromosomes were excluded. Then SNPs with QD < 

3.0, FS > 60.0, MQ < 40.0, MQRankSum < -12.5, ReadPosRankSum < -8.0, SOR > 3.0, minor 

allele frequency < 5%, missing allele rate > 10% and severe departure from Hardy-Weinberg 
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equilibrium (P-value < 0.0001) were removed. Some SNPs identified in this study were not 

annotated in the current reference genome. These SNPs are identified with the classification 

"BovineNovelSNP" followed by a number in the data.  

Finally, two SNP datasets (genotype derived vs. RNAseq derived) were merged based on 

the position of SNPs on the chromosome using Plink (v1.90b6.7) (Chang et al., 2015). For the 

overlapping SNPs in two SNP datasets, we retained SNPs derived from genotype. A total of 

207,038 SNPs for 138 animals were obtained and used in GWAS and eQTL analysis. 

5.3.5 Genome-wide association analysis for BRD susceptibility 

Prior to performing the GWAS for BRD susceptibility, the phenotype of BRD was first 

fitted into a logistic model with a fixed effect of “feedlot”, a covariate of “days on feed” and a 

covariate of “genomic breed composition”. The fixed effect and covariates were evaluated as 

significant in linear regression model before fitting the logistic regression. Next, the GWAS 

between SNP marker genotypes (from SNP chip and RNA-seq data) and adjusted BRD status was 

performed using the single SNP-based mixed linear model association (mlma), as implemented in 

the GCTA package (v 1.93.2) (Yang et al., 2011). The linear mixed model can be described as 

follows: 

!!" = # + %"&!" + '!" + (!" 

where !!" is the adjusted phenotypic value of the )th animal with the *th SNP (i.e. the )*th 

animal), %" is the allele substitution effect of the *th SNP, &!"  is the *th SNP genotype of animal ) 

coded as 0, 1, 2 for genotypes +#+#, +#+$, and +$+$, respectively, '!" is the additive polygenic 

effect of the )*th animal ~	.(0, 23%$), and (!"  is the random residual effect ~	.(0, 	53&$). The 

genomic relationship matrix 2 that was derived based on total filtered SNP markers (207,038 

SNPs) as described by Yang et al. (2014), which is essentially the same as the second VanRaden’s 
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formulation (VanRaden, 2008). The SNP allele substitution effect was estimated and the 

significance test of the SNP allele substitution effect was conducted via a generalized least square 

F-test as implemented in the GCTA package. The phenotypic variance explained by each 

significant SNP was calculated by 
$'()!
*! ∗ 100%, where 9 and : denote the SNP allele frequency 

of	+#	 and +$, respectively; ; is the SNP allele substitution effect; 29:;$ is the additive variance 

of the SNP, and =$  is the phenotypic variance. Additionally, the variance components were 

estimated via a restricted maximum likelihood (REML) as implemented in the GCTA package. 

The genomic heritability of BRD susceptibility was calculated as a ratio of the total additive 

genetic variance over the phenotypic variance. 

The SNPs with P-value < 1×10-5 were considered as significantly associated with BRD 

susceptibility according to the recommendation of The Wellcome Trust Case Control Consortium 

(Burton et al., 2007). The quantile-quantile (Q-Q) plot is a graphical representation of the deviation 

of the observed P-values from the null hypothesis. The Manhattan plot can visually show 

associations between SNPs and BRD susceptibility at the level of each chromosome. Both Q-Q 

plot and Manhattan plot were completed using the R package qqman (Turner, 2014).  

5.3.6 Differential gene expression analysis and functional enrichment analysis 

We first performed principal component analysis (PCA) based on all expressed genes of 

each animal to study the relationship between gene expression of animals and four feedlots. We 

found that animals from different feedlots were not distinct in the PCA plot containing principal 

components 1 and 2 (Figure 5.S1). Additionally, in this study, we aimed to determine the universal 

gene expression pattern of BRD. This PCA analysis illustrates that it is feasible to combine all 

animals from different feedlots in the differential expression analysis.  
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For the differential gene expression analysis, we first performed this analysis using all 

animals from the four feedlots. The detail of this analysis is as follows. Differential gene 

expression analysis between BRD and non-BRD animals was performed using the read counts and 

the R Bioconductor package edgeR (McCarthy et al., 2012). Lowly expressed (count per million 

or CPM < 0.5 in at least 63 samples) genes were filtered out from the analysis. Counts of the 

retained genes were then normalized using the trimmed mean M values (TMM) method (Robinson 

and Oshlack, 2010), to account for the technical variations between samples that may have been 

caused by the RNA extraction, cDNA library construction, and differences in sequencing depth 

(Robinson and Oshlack, 2010). The normalized counts were then modeled for differential gene 

expression between BRD and non-BRD animals using generalized linear models (GLM) that 

considered “feedlot”, “sequencing batch” and “genomic breed composition”. To test for 

significance of differential expression of a gene between the animal groups, a likelihood ratio test 

under negative binomial distribution assumption was performed, and those genes with Benjamini-

Hochberg false discovery rate (FDR) < 0.01, log fold change (log2FC) > 2, and log counts per 

million (logCPM) > 2 were identified as significant differentially expressed genes between BRD 

and non-BRD animals. After the differential gene expression analysis for all animals, we also 

performed such differential expressed gene analysis for animals from each feedlot to identify the 

common and unique DE genes in these four feedlots. Of note, in this study, the non-BRD animals 

were set as the reference to indicate the DE genes that were up-regulated or down-regulated in 

BRD animals. 

Functional enrichment for the DE genes was performed using the Ingenuity Pathway 

Analysis software (IPA; www.Ingenuity.com) using the Ensembl gene ID and log fold change as 

the inputs. In this study, biological functions were considered significantly enriched if the P-value 
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for the overlap comparison test between the input gene list and the knowledge base of IPA for a 

given biological function was less than 0.05. 

Log transformed counts for all the DE genes for each sample were utilized for partial least 

squares discriminant analysis (PLS-DA) using Metaboanalyst 5.0, a web-based platform 

(https://www.metaboanalyst.ca/) (Pang et al., 2021). Initially, a PLS-DA model involving all the 

DE genes was implemented to identify the DE genes that importantly contribute to distinction of 

BRD from non-BRD animals. Consequently, variable importance in projection (VIP) score as a 

measure of informativeness of each of the DE genes in the model was calculated. In this study, we 

used VIP value > 1.2 as the cut-off to identify significant compounds that drives the separation of 

animals (i.e., potential biomarkers). A permutation test with 2,000 random resamplings was 

implemented to validate the reliability of the PLS-DA model.  

5.3.7 eQTL analysis and eQTL annotation 

We further performed eQTL analysis to identify association between expression of 

differentially expressed genes and SNP genotypes. Log transformed normalized counts (log2CPM) 

values of DE genes on autosomes and 207,038 SNPs from 138 animals were used in eQTL analysis. 

The analysis of linear model was fitted to test the association of each single gene’s expression and 

genotype classes of a SNP implemented in the R package MatrixEQTL (Shabalin, 2012). “Feedlot”, 

“sequencing batch” and “genomic breed composition of animals” were also fitted in the model to 

correct for any variability in gene expression that could have been due to these factors. SNPs 

located within 1 Mbp around the gene transcription starting site (TSS) were tested for cis-

associations, while SNPs located further than 1 Mbp or on other chromosomes were tested for 

trans-associations. Only those associations with FDR < 0.05 were considered significant cis- or 

trans-eQTLs. The significant eQTLs were then annotated as located in the TSS-promoter, exonic, 
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intronic, transcription termination site (TTS) or intergenic regions using the annotatePeaks.pl 

script from the HOMER software (http://homer.ucsd.edu/homer/ngs/annotation.html). 

5.4 Results 

5.4.1 Genomic background of BRD susceptibility 

In this study, the genomic heritability estimate of BRD susceptibility was 0.43 ± 0.51. The 

GWAS results showed polygenic background of susceptibility to BRD infection in beef cattle, 

with only two SNPs (BovineNovelSNP1874 and BovineHD1800016801) showing significant (P-

value > 1×10-5) association with the trait (Table 5.1; Figure 5.S2 – 5.S3). The significant SNPs 

BovineNovelSNP1874 and BovineHD1800016801 are located on chromosome 5 and 18, 

respectively. Both SNPs are located in exonic regions of genes, i.e., BovineNovelSNP1874 is 

located in SMUG1 while BovineHD1800016801 is located in IGLON5.  

5.4.2 Transcriptomic architecture of BRD infection in feedlots 

At the significant threshold of log fold change (log2FC) > 2, log counts per million 

(logCPM) > 2 and Benjamini-Hochberg false discovery rate (FDR) < 0.01, 101 genes were 

identified as differentially expressed between BRD and non-BRD animals, of which 7 and 94 were 

respectively downregulated and upregulated in the infected animals (Figure 5.1). The full list of 

all DE genes with related description and statistics is provided in Table 5.2. Our result showed that 

interleukin 3 receptor subunit alpha (IL3RA) was the most significant (FDR = 6.6×10-81) 

upregulated gene, whereas hemoglobin subunit beta (HBB) was the most significant (FDR = 

1.25×10-24) downregulated gene (Table 5.2). In terms of fold change, leucine rich alpha-2-

glycoprotein 1 (LRG1) showed the highest fold change (FC = 162.87), and hemoglobin subunit 

alpha 1 (HBA1) showed the lowest fold change (FC = 0.11) (Table 5.2).  
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Of the 101 DE genes, 88 successfully mapped to the IPA database for functional 

enrichment analysis. The DE genes were significantly (P-value < 0.05) involved in 17 disease-

related biological functions of which inflammatory response was the most significant with 60 DE 

genes. The top 10 most enriched functions are presented in Table 5.3, while all the 17 functions 

are presented in the Table 5.S1. Within the inflammatory response function, 3 DE genes (ARG1, 

ALOX15, and ALAS2) were downregulated, and 57 DE genes (e.g., IL3RA, LRG1, BPI, CFB, 

GPR84, MMP9, and CA4) were upregulated in the BRD animals. Furthermore, within the 

inflammatory response function, enriched innate immune response related processes such as 

leukocyte immune response, activation and migration of macrophages and neutrophils, and 

antimicrobial response were predicted to be activated or upregulated in the BRD animals (Figure 

5.2). Adaptive immune response related processes such as activation of antigen processing cells, 

and cellular immune response were identified as enriched and predicted to be activated in the BRD 

animals. Some of the key DE genes as demonstrated by their involvement in numerous immune 

functions included LCN2, S100A8, S100A9, S100A12, LTF, IL12B, CHI3L1 and DEFB4A (Figure 

5.2).  

Additionally, at the same threshold, we also identified DE genes using animals separately 

for each feedlot: 127, 69, 50 and 21 DE genes were identified for the different feedlots (Table 5.S2 

– S5). The common and unique DE genes are summarized in the Table 5.S6. The results showed 

that 12 DE genes were identified in all feedlots, 32 DE genes were identified in three feedlots, and 

31 DE genes were identified in two feedlots. Interestingly, LRG1 was the DE gene with highest 

fold change in all feedlots. HBB, HBA and HBA1 were downregulated DE genes in three feedlots. 

We also compared the DE genes identified using the combined animals (i.e., all animals) and those 

animals from each feedlot. The result showed 96 genes were overlapped (Table 5.S7). 
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Partial least squares discriminant analysis (PLS-DA) revealed clear distinction between 

BRD infected and the non-infected animals as shown in Figure 5.3. Of the 101 DE genes used in 

the PLS-DA model, 18 DE genes had Variable Importance in the Projection (VIP) scores greater 

than 1.2 (Figure 5.4) and LRG1 had the highest VIP values. The result indicated the suitability of 

these 18 DE genes as biomarkers for identifying BRD infected and non-infected animals. 

5.4.3 Gene expression and genotype associations  

At FDR < 0.05, we identified 420 cis-eQTLs and 144 trans-eQTLs associated with the 

expression of DE genes (Table 5.S8 – 5.S9). Some cis-eQTLs and trans-eQTLs were associated 

with more than one DE gene associated with BRD. For example, the SNP BovineNovelSNP2890 

was a cis-eQTL associated with the expression of the DE gene BST1 and a trans-eQTL associated 

with the expression of other 6 DE genes (GPR84, NUPR1, ART5, CFB, SLC6A2, and ADGRE1). 

Similarly, the expression of a DE gene could also be associated with more than one cis- or trans-

eQTLs. Of note, the eQTL analysis showed that the SNP (BovineNovelSNP1874) with the 

smallest P-value in GWAS (Table 5.1) was a cis-eQTL associated with the expression of the DE 

genes GPR84 (Table 5.S8 – 5.S9). Additionally, the eQTL annotation showed that the eQTL SNPs 

identified in this study are mostly located in the intronic and exonic regions (Figure 5.5). 

5.5 Discussion 

The BRD and non-BRD animals used in the current study were fed in feedlots with the 

same operations and similar environments. It is expected that all animals in the study were equally 

exposed to BRD causing pathogens, therefore, all BRD animals are assumed to be susceptible 

while non-BRD animals are resistant. Disease susceptibility and resistance was defined in relation 

to BRD in general and not according to specific pathogens involved. Based on this assumption, 

heritability of BRD susceptibility was estimated and SNPs associated with BRD susceptibility in 
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beef cattle were identified through GWAS. A moderate heritability estimate of 0.43 ± 0.51 for 

BRD susceptibility was observed in the studied population. This estimate had a relatively large 

standard error due to limited sample size (n = 138). Previous studies have reported low to moderate 

heritability for BRD susceptibility that ranged from 0.07 ± 0.01 to 0.29 ± NA in different cattle 

populations (Snowder et al., 2005; Schneider et al., 2010; Neibergs et al., 2014a, 2014b). For 

GWAS analysis, two SNPs: BovineNovelSNP1874 and BovineHD1800016801 that were 

associated with BRD susceptibility were identified (Table 5.1). Interestingly, the most significant 

SNP (BovineNovelSNP1874) explained 17% of the phenotypic variance for BRD susceptibility. 

This implies that this SNP could be a major quantitative trait nucleotide (QTN) or in linkage 

disequilibrium with a major QTL for BRD susceptibility in the studied population. However, the 

proportion of phenotypic variance explained by significant SNPs could be overestimated because 

of the limited number of animals used. In addition, the low coverage depth of SNP calling and low 

minor allele frequency of BovineNovelSNP1874 may also lead to a false-positive result. Thus, 

future research utilising larger sample size is warranted to verify these results. 

In addition to the genetic background, the transcriptome variability associated with BRD 

was investigated. A total of 101 DE genes were identified between BRD and non-BRD animals. 

About 93% of the DE genes were upregulated in the BRD animals (Table 5.2). Among these 

upregulated genes, IL3RA and LRG1 showed the strongest association to BRD in terms of 

statistical significance and fold change, respectively. IL3RA encodes the protein of interleukin 3 

receptor subunit alpha which is a cytokine receptor protein for the interleukin 3 (IL3), colony 

stimulating factor 2 (CSF2/GM-CSF) and interleukin 5 (IL5) (Milatovich et al., 1993). The 

cytokine IL3 is generated from T cells and stem cells, and is involved in macrophage activation 

and regulation of cytokine production (Frendl, 1992). On the other hand, IL-5 is produced by 



 164 

CD4+ T cells and causes B-cell growth factor and differentiation, IgA selection, eosinophil 

activation and increased production of innate immune cells (Akdis et al., 2011). This study also 

identified DE genes (IL1R2, IL1RAP, and IL12B) related to interleukin-1 (IL-1) and interleukin-

12 (IL-12), which causes lymphocyte activation, macrophage stimulation, increased leukocyte 

adhesion and release of acute phase proteins by the liver, or induced interferon gamma production 

by T cells and NK cells (Arena et al., 1998; Akdis et al., 2011; Dinarello, 2018; Jiang et al., 2018). 

The LRG1 is an important DE gene that has also been reported as associated with BRD in previous 

transcriptomic studies (Tizioto et al., 2015; Scott et al., 2020; Jiminez et al., 2021). LRG1 encodes 

the protein of leucine rich alpha-2-glycoprotein 1 that has been reported to be packaged into the 

granule compartment of human neutrophils and secreted upon neutrophil activation (Druhan et al., 

2017). For downregulated genes, the top 3 genes (HBA1, HBA, and HBB) are all related to 

hemoglobin - the oxygen-carrying protein within red blood cells. Specifically, HBA1 and HBA 

encodes α-globins, and HBB encodes β-globins, which are the two main globins that compose 

hemoglobin (Marengo-Rowe, 2006). Thus, the low expressed level of HBA1, HBA and HBB may 

indicate a low hemoglobin count in infected cattle (BRD susceptible cattle) associated with anemia. 

Additionally, the low hemoglobin count may be associated with elevated iron levels. Iron is 

important to pathogen growth, and elevated iron may lead to a higher chance of pathogen infection. 

Future studies should determine iron levels to investigate this hypothesis. 

Since the type and number of pathogens may be different in different feedlots, we also 

analyzed DE genes separately in each feedlot (Table 5.S2 – 5.S5). The results showed some genes 

were differentially expressed in all feedlots (e.g., 12 overlapping DE genes), which indicates that 

these genes may play key role in the BRD infection. Especially, the gene LRG1 was the DE gene 

with the highest fold change in all feedlots (Table 5.S2 – 5.S5). We further compared the DE genes 
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identified in combined animals (i.e., all animals) and separated animals (animals from each 

feedlot), about 95% of DE genes (96 DE genes) that were identified using combined animals 

overlapped with those identified using separate animals (Table 5.S6). Also, since the combined 

population contains all animals from each feedlot, the number of false positive genes could be 

reduced. Therefore, the DE genes identified in the combined population could represent the 

transcriptome variability associated with BRD. 

Some of the DE genes identified in the current study have been identified as associated 

with BRD in beef cattle in other similar studies but from DE analysis of lymph nodes (Tizioto et 

al., 2015), bronchial epithelial cells (N’jai et al., 2013), and blood (Scott et al., 2020; Jiminez et 

al., 2021). Compared with the results of Tizioto et al. (2015), 26, 35, 29, 39, 20 and 8 of DE genes 

identified in this study were common with those identified in the lymph node of animals who were 

challenged by BRSV, IBR, BVDV, M. haemolytica, P. multocida, and M. bovis, respectively 

(overlapping genes are shown in the Table 5.S5). In addition to identifying DE genes specific to 

individual challenges, Tizioto et al. (2015) found 25 genes expressed differentially in all the 

infections, of which 5 genes (S100A8, S100A9, MMP9, TGM3, and PGLYRP1) were also identified 

as DE genes in the current study (Table 5.S10). These genes may be differentially expressed in all 

pathogen challenges because they are related to innate immune cells. For example, 

S100A8 and S100A9 are expressed in neutrophils and monocytes (Edgeworth et al., 1991) and are 

known danger-associated molecular patterns that bind pattern recognition receptors in response to 

inflammation (Schiopu and Cotoi, 2013). Additionally. N’jai et al. (2013) reported the top 70 DE 

genes identified in bovine bronchial epithelial cells, 3 genes (CA4, TNFAIP6, and HP) were also 

reported in our study and previous studies (Tizioto et al., 2015; Jiminez et al., 2021). Comparing 

our results with DE genes identified in blood samples from other studies (Scott et al., 2020; Jiminez 
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et al., 2021), more common DE genes, such as LRG1, CFB, and ALOX15, were observed. 

Therefore, the DE genes associated with BRD in different populations have good consistency. 

Furthermore, BRD is a polymicrobial disease that is usually the result of co-infection of several 

common viral and bacterial pathogens (Dabo et al., 2008; Rice et al., 2008; Griffin et al., 2010; 

Klima et al., 2014). The infection of different pathogens may cause different immune responses 

and related gene expression of the host (N’jai et al., 2013; Tizioto et al., 2015). Through the 

comparison between our results and results of Tizioto et al. (2015) (Table 5.S10), the infection 

process in our population seems to involve multiple pathogens as well. However, the study design 

and the objectives of our study were to determine the common immune response to BRD infection 

and to identify transcriptome biomarkers that could be used in different populations and feedlots. 

The fact that the expression of some genes is associated with more than one pathogen and some 

genes could respond to all pathogen infections (N’jai et al., 2013; Tizioto et al., 2015) makes it 

difficult to distinguish specific pathogen infections based on gene expression alone. Therefore, 

future study to evaluate the influence of pathogens on gene expression is recommended. This may 

also help to identify pathogen-specific DE genes.  

Investigation into the biological involvement of the DE genes revealed inflammatory 

response as the most significant enriched function. In animals, inflammatory response is a 

biological response of the immune system to injurious stimuli, such as pathogens, damaged cells 

and toxic compounds (Ferrero-Miliani et al., 2007; Medzhitov, 2010). This response is aimed at 

clearing the immune insulting agents and initiating healing (Ferrero-Miliani et al., 2007; 

Medzhitov, 2010). Upon recognition of the pathogenic agents, the immune system responds to 

such attack by recruiting and activating the phagocytic cells such as macrophages and neutrophils, 

and those phagocytes that are tasked with the immediate destruction and clearing of the pathogenic 
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agents from the body (Ackermann et al., 2010; Mantovani et al., 2011). Interestingly, activation 

and recruitment of both neutrophils and macrophages were among the processes identified as 

enriched within inflammatory response in the current study (Figure 5.2). These processes were 

predicted to be activated in the BRD animals compared to the non-BRD animals, indicating that 

the inflammatory response plays a key role in defense against pathogenic infection of BRD. 

Previous transcriptome studies of blood and other immune organs also demonstrated the 

significant association of inflammatory response with BRD status (N’jai et al., 2013; Scott et al., 

2020). Some of the interesting genes involved in inflammatory response due to their involvement 

in multiple innate immune response within this function included LCN2, S100A8, S100A9, 

S100A12, LTF, IL12B, CHI3L1, DEFB4A, and MMP9. In line with our results and speculation, 

Tizioto et al. (2015) reported DE genes and pathways that were found to be common to all 

pathogen challenges were up-regulated (e.g., S100A8, S100A9, and MMP9) in the challenged 

animals (BRD animals) and appear to primarily be related to the innate immune response. 

Therefore, this information revealed the biological processes that DE genes were involved in, 

which provides insights into the biological background of BRD infection and host immune 

response. 

Furthermore, eQTL analysis identified many associations between DNA markers and gene 

expression, indicating complex genetic regulation of gene expression. For example, one trans-

eQTL could affect the expression of many DE genes, suggesting that there may be a trans-eQTL 

hotspot (Figure 5.6). This information obtained from eQTL analysis could help to understand our 

GWAS result and illustrate the causality between the significant SNP and BRD susceptibility. For 

example, the SNP (BovineNovelSNP1874) with the lowest P-value in GWAS showed a cis effect 

on the DE gene GPR84 (Table 5.S8 – 5.S9). The SNP could indeed be a causal mutation for 
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variability in BRD susceptibility or resistance that needs further investigation and validation in 

independent populations or cell culture or transgenic assays. In addition, the results obtained from 

eQTL analysis could help to pinpoint causal SNPs associated with susceptibility to BRD. For 

example, Neibergs et al. (2014b) reported a genomic region covering BPI as associated with BRD 

susceptibility in Holstein calves, thus indicating that variants within or near this gene, have 

functional relevance in modulating susceptibility to BRD in cattle. BPI was also a DE gene 

associated with BRD in the current study and previous studies (Tizioto et al., 2015; Jiminez et al., 

2021). BPI encodes the bactericidal permeability increasing protein, a critical protein involved in 

neutralizing gram negative bacteria lipopolysaccharide antigen and mediates and promotes gram 

negative bacteria recognition by monocytes for phagocytosis (Yu and Song, 2020). Through the 

eQTL analysis, we further identified the most likely causal SNP among all variants within or near 

the gene BPI. The SNP (rs209419196) was the most significant SNP (P-value < 2.1×10-6, FDR < 

0.006) among 6 cis-eQTLs associated with the expression of BPI (Figure 5.7), and the expression 

of BPI was significantly (P-value < 0.05) decreased as the number of “T” alleles increased in the 

genotype (Figure 5.8). According to eQTL annotation analysis, rs209419196 was predicted to be 

in the promoter region of BPI, which is located 92 bp downstream of the 5’ end of the transcription 

start site for the transcript (ENSBTAT00000077785) of BPI. Therefore, the results of eQTLs and 

their annotation cannot only provide important reference information for GWAS interpretation and 

causal SNP identification, but also provide additional insights into potential molecular mechanism 

of gene expression. Also, identification of these SNP markers provides more functional 

information that could be utilized to enhance genomic selection for BRD resistance in beef cattle.  

In view of the multiple etiology of BRD and a complex interaction among risk factors, 

BRD is difficult to control and prevent. Conventionally, BRD diagnosis is based on clinical signs, 
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and varies among premises, calf caretakers, producers, and herd veterinarians leading to a 

proportion of false-negative and false-positive diagnoses (Moisá et al., 2019). Such diagnostic 

inaccuracies lead to progression of disease, misuse of antimicrobials, production losses, and 

suboptimal animal welfare outcomes (Moisá et al., 2019). Therefore, accurate diagnostic methods 

for BRD are still needed. Blood transcriptomic biomarkers have been proposed to be used in the 

identification of BRD cattle in feedlots (Sun et al., 2020). In the current study, we propose 18 DE 

genes as potential diagnostics biomarkers for BRD in our population. The most informative marker 

LRG1 has been previously identified as a potential biomarker of different infections in humans 

(Wu et al., 2015; Fujimoto et al., 2020; Yang et al., 2020; Ma et al., 2021). Although these 

biomarkers are very promising, validation in other independent beef cattle populations is required 

for evaluating their performance.  

5.6 Conclusion 

Genomic and transcriptomic tools were applied to elucidate the genetic and molecular 

background of BRD infection in feedlot beef cattle. Two SNPs associated with BRD susceptibility 

were identified through GWAS. Transcriptomic and functional analyses revealed 101 DE genes 

associated with BRD infection. These genes were mainly involved in inflammatory response 

processes such as recruitment and activation of phagocytes. The most significant SNP 

(BovineNovelSNP1874) from the GWAS analysis was also a cis-eQTL associated with a DE gene 

GPR84. This indicates that such integrative analysis could help to interpret previous GWAS results 

and identify causal SNPs associated with BRD susceptibility. Additionally, we recommend testing 

18 DE genes in an independent population to investigate their potential as diagnostic biomarkers 

in feedlots. Therefore, these biomarkers and causal SNPs identified in our population warrants 

further investigation to validate their usefulness in other beef cattle populations.  
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Table 5.1 SNPs significantly associated with BRD susceptibility 

SNP Chromosome Position (bp) Minor allele 
frequency 

b se P-value 

BovineNovelSN
P1874 

5 25858264 0.07 1.18124 0.260658 5.8496E-06 

BovineHD1800
016801 

18 57400705 0.20 0.674002 0.150619 7.65E-06 

 

Table 5.2 Differentially expressed genes between BRD and non-BRD animals 
Gene ID Gene name Chr Start (bp) End (bp) logFC logCPM P-Value FDR 
ENSBTAG00000054844 HBA1 25 219512 220318 -3.1884825 11.0003434 3.80E-18 4.95E-17 
ENSBTAG00000051412 HBA 25 216448 217264 -3.1783435 10.998965 5.02E-18 6.47E-17 
ENSBTAG00000037644 HBB 15 48362236 48363996 -3.0503428 11.0891232 4.35E-26 1.25E-24 
ENSBTAG00000013178 ALAS2 X 92485200 92512358 -2.5422182 5.31393543 2.27E-20 3.70E-19 
ENSBTAG00000004824 REEP1 11 48518871 48654804 -2.4186155 2.11319391 1.02E-14 9.21E-14 
ENSBTAG00000011990 ALOX15 19 26697231 26705809 -2.3472557 4.91470179 1.35E-21 2.46E-20 
ENSBTAG00000012403 ARG1 9 69522090 69539079 -2.1567384 2.58862838 7.74E-13 5.65E-12 
ENSBTAG00000011465 MYBPH 16 957169 965458 2.00248844 6.08726325 1.16E-33 6.80E-32 
ENSBTAG00000010464 MN1 17 67173546 67221633 2.0092144 2.52554496 4.76E-61 3.00E-58 
ENSBTAG00000006156 BST1 6 110872406 110901795 2.01176374 5.49028329 3.76E-43 5.60E-41 
ENSBTAG00000020430 GLT1D1 17 48170769 48286681 2.01978988 3.08211947 5.24E-43 7.63E-41 
ENSBTAG00000050072  11 98685584 98686780 2.04689154 2.42678465 1.30E-24 3.23E-23 
ENSBTAG00000052465  9 42992439 42996483 2.04843735 6.79225753 2.32E-37 1.97E-35 
ENSBTAG00000013368 ANKRD22 26 10506966 10534508 2.04918903 3.86149275 5.75E-36 4.16E-34 
ENSBTAG00000002148 RAB3D 7 15736270 15747432 2.05267427 7.19558878 4.63E-53 1.36E-50 
ENSBTAG00000023648 ART5 15 51386896 51443955 2.05464096 7.1142583 1.13E-45 2.00E-43 
ENSBTAG00000011037 RBPMS2 10 45313259 45339402 2.06745272 2.97256633 1.10E-39 1.16E-37 
ENSBTAG00000039556 WIPI1 19 61752501 61782684 2.07573348 4.45488993 4.77E-48 1.05E-45 
ENSBTAG00000006921 ABCA6 19 61421551 61482846 2.08080075 6.47238725 2.33E-49 5.61E-47 
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ENSBTAG00000013555 ACVR1B 5 27884739 27915481 2.08763819 5.89682031 6.85E-60 3.49E-57 
ENSBTAG00000000783 TGFA 11 13861144 13975868 2.09292441 2.66737919 1.94E-36 1.47E-34 
ENSBTAG00000004150 NRG1 27 28529266 28651519 2.09330082 4.79180584 1.59E-50 4.13E-48 
ENSBTAG00000022779 OLFM4 12 10641503 10665121 2.09662554 3.27667994 2.97E-28 1.04E-26 
ENSBTAG00000006990 MYRF 29 40197141 40232303 2.11379718 2.5779438 2.04E-25 5.47E-24 
ENSBTAG00000037826  15 51474978 51495512 2.11535036 2.44646954 5.59E-33 3.01E-31 
ENSBTAG00000004716 RETN 7 16513147 16514562 2.13295268 5.03641985 1.76E-19 2.63E-18 
ENSBTAG00000014046 BPI 13 67172370 67201998 2.13491623 5.64807134 1.67E-15 1.64E-14 
ENSBTAG00000018016 NUPR1 25 26082047 26083376 2.18407186 5.1458393 1.94E-26 5.74E-25 
ENSBTAG00000014122 FOXRED1 29 29617419 29625087 2.18756759 6.74409681 1.28E-72 3.39E-69 
ENSBTAG00000054765 PGLYRP4 3 17126512 17142568 2.21032662 2.84672596 6.61E-49 1.54E-46 
ENSBTAG00000011677 H1-2 23 31876303 31878150 2.22628994 6.77795024 4.82E-46 8.87E-44 
ENSBTAG00000013290 DYSF 11 12899573 13123869 2.23294351 7.22533236 1.98E-59 9.37E-57 
ENSBTAG00000002635 PGLYRP1 18 53513706 53515925 2.24700062 2.17219562 3.56E-16 3.76E-15 
ENSBTAG00000018223 CHI3L1 16 968434 978542 2.25708517 8.31264111 4.32E-57 1.59E-54 
ENSBTAG00000010065 TRPC5 X 59975310 60322067 2.27756822 3.910392 3.87E-44 6.10E-42 
ENSBTAG00000007169 P2RX1 19 24528313 24545951 2.29844203 4.35615943 1.25E-34 7.89E-33 
ENSBTAG00000001051 OSCAR 18 63283496 63290397 2.32401338 7.21999908 6.67E-45 1.12E-42 
ENSBTAG00000013205 IL1RAP 1 76577593 76723526 2.33129355 5.61237156 2.63E-47 5.44E-45 
ENSBTAG00000006904 TNS2 5 26903397 26921895 2.33181233 2.08615516 4.01E-36 2.92E-34 
ENSBTAG00000004741 IL12B 7 70893041 70912103 2.35487073 2.37995281 3.14E-37 2.63E-35 
ENSBTAG00000008389 HTRA1 26 42285479 42343309 2.35809337 2.11791885 1.89E-31 8.88E-30 
ENSBTAG00000001785 TGM3 13 52793538 52836265 2.36208162 9.9423002 1.06E-40 1.23E-38 
ENSBTAG00000018446 GCA 2 34070353 34087612 2.36293622 3.84814895 1.22E-30 5.35E-29 
ENSBTAG00000013201 ALOX5AP 12 30108987 30138259 2.40703286 6.9373371 6.31E-47 1.23E-44 
ENSBTAG00000020257 PTPN5 29 25991833 26050347 2.42337177 4.81324996 5.81E-49 1.37E-46 
ENSBTAG00000018134 AREG 6 89379645 89391792 2.44626852 2.16046865 3.37E-58 1.31E-55 
ENSBTAG00000003920 TGM1 10 20902051 20916712 2.4565639 2.68321759 2.95E-36 2.17E-34 
ENSBTAG00000010007 MAPK13 23 10058481 10067089 2.48414318 4.01377935 1.08E-48 2.47E-46 
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ENSBTAG00000003519 NOL3 18 34807714 34812057 2.48652097 2.56296205 1.27E-59 6.23E-57 
ENSBTAG00000005668 SLC39A8 6 22459117 22542658 2.49407544 2.92614113 5.96E-46 1.08E-43 
ENSBTAG00000012638 S100A12 3 17102722 17104173 2.52030644 11.6008924 2.66E-55 8.20E-53 
ENSBTAG00000008428 UPP1 4 7619639 7648114 2.5492016 7.23254632 9.94E-57 3.47E-54 
ENSBTAG00000003353 SLC6A2 18 23875374 23939382 2.57574654 2.38872528 1.48E-45 2.58E-43 
ENSBTAG00000048737 DEFB10 27 6596422 6598413 2.57645919 3.85563287 1.00E-29 4.06E-28 
ENSBTAG00000006523 SOD2 9 95955338 95966127 2.60697164 9.70477441 7.47E-62 5.21E-59 
ENSBTAG00000016566 ITGA9 22 10908546 11272063 2.61849499 3.06964927 4.37E-31 1.98E-29 
ENSBTAG00000049416 RAB20 12 85168908 85200403 2.6539923 5.39992561 3.32E-70 7.33E-67 
ENSBTAG00000001292 LTF 22 52952571 52986619 2.65838065 3.64223275 9.82E-17 1.10E-15 
ENSBTAG00000021887 DPYS 14 60148619 60239255 2.73430746 2.12609435 1.13E-30 4.97E-29 
ENSBTAG00000019669 CD163 5 101786078 101818046 2.74124089 8.22115496 4.50E-62 3.51E-59 
ENSBTAG00000046152 MGAM 4 105285315 105466927 2.77488972 5.32831653 7.60E-44 1.16E-41 
ENSBTAG00000013706 MEGF9 8 110032801 110110151 2.81976799 5.63250368 4.75E-60 2.52E-57 
ENSBTAG00000017969 CA4 19 12803073 12811847 2.87328291 3.69508725 2.72E-69 5.15E-66 
ENSBTAG00000015592 GPR84 5 25709927 25711851 2.90997466 3.86203237 1.86E-56 6.32E-54 
ENSBTAG00000017251 SLC26A8 23 9878961 9967961 2.92458937 2.73729509 6.38E-57 2.28E-54 
ENSBTAG00000020406 GPC3 X 17366350 17829036 2.94499757 3.50945164 1.20E-34 7.61E-33 
ENSBTAG00000018280 SLC28A3 8 77514711 77587255 2.97496279 6.61909768 4.28E-45 7.27E-43 
ENSBTAG00000012640 S100A8 3 17085577 17086827 3.01187475 10.0378609 5.43E-58 2.06E-55 
ENSBTAG00000020580 TCN1 15 83058088 83073458 3.01691809 8.62925931 2.11E-58 8.74E-56 
ENSBTAG00000006505 S100A9 3 17115128 17117984 3.02955042 11.2625886 1.04E-60 6.26E-58 
ENSBTAG00000031950 RAB3IP 5 43657005 43713702 3.04020761 6.6902838 1.64E-75 1.09E-71 
ENSBTAG00000019330 PROK2 22 29859914 29883008 3.05834103 4.70971728 1.28E-62 1.06E-59 
ENSBTAG00000002233 CPNE2 18 25134033 25166257 3.12972775 4.90756036 1.61E-58 6.88E-56 
ENSBTAG00000021240 DCSTAMP 14 60265369 60283636 3.13235993 4.52674729 4.67E-47 9.23E-45 
ENSBTAG00000006354 HP 18 39037402 39043531 3.14928995 9.30133677 3.26E-48 7.32E-46 
ENSBTAG00000006221 ADGRG3 18 25644891 25674917 3.16049926 5.549692 5.38E-68 7.92E-65 
ENSBTAG00000006999 RYR1 18 48237459 48365215 3.30921973 5.94180205 1.85E-60 1.02E-57 
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ENSBTAG00000007239 TNFAIP6 2 44747145 44764214 3.34835832 3.88150879 3.97E-55 1.20E-52 
ENSBTAG00000020676 MMP9 13 74746976 74754303 3.43368711 5.94807756 1.48E-40 1.66E-38 
ENSBTAG00000014149 LCN2 11 98781893 98785927 3.44623679 6.95188733 8.55E-44 1.29E-41 
ENSBTAG00000007901 ADGRE1 7 17557794 17633496 3.45389826 8.94007079 4.73E-68 7.83E-65 
ENSBTAG00000000377 BMX X 127954722 127992190 3.49095229 5.40899509 8.54E-75 3.77E-71 
ENSBTAG00000002996 SHROOM4 X 88412754 88541873 3.49107172 3.22509705 2.38E-65 2.63E-62 
ENSBTAG00000053557 DEFB4A 27 7138873 7140876 3.63970879 3.01214453 2.60E-28 9.14E-27 
ENSBTAG00000009773 KREMEN1 17 68432890 68476866 3.69612485 6.82415319 8.66E-64 8.20E-61 
ENSBTAG00000049808 IL3RA 3 119480332 119499353 3.89413651 6.82970855 4.98E-85 6.60E-81 
ENSBTAG00000048720  24 61926351 61935647 4.24764936 2.86278283 5.64E-24 1.32E-22 
ENSBTAG00000008951 ALPL 2 131181416 131245100 4.32698395 7.42489259 1.10E-61 7.29E-59 
ENSBTAG00000046158 CFB 23 27415355 27421377 4.3602461 5.399988 3.19E-66 3.84E-63 
ENSBTAG00000050618  26 42405805 42438497 4.40311183 4.64722978 2.75E-58 1.10E-55 
ENSBTAG00000019627 THY1 15 29981019 29986913 4.77741378 3.65512439 2.17E-55 6.85E-53 

ENSBTAG00000052012  
NKLS0
2000500
.1 

916 4537 4.78846917 5.79325831 9.54E-37 7.57E-35 

ENSBTAG00000010273 EREG 6 89306902 89325899 4.81657827 2.21264622 5.84E-62 4.30E-59 
ENSBTAG00000054882  24 61844175 61850625 4.98984381 4.3046835 3.10E-38 2.85E-36 
ENSBTAG00000051132  24 61907407 61913758 5.1138886 5.24075655 1.08E-42 1.51E-40 

ENSBTAG00000039037 SERPINB4 
NKLS0
2001094
.1 

5955 12952 5.20313648 6.36372934 3.02E-51 8.00E-49 

ENSBTAG00000048835  24 61862826 61887768 5.31868482 7.65609637 8.80E-48 1.91E-45 

ENSBTAG00000049569  
NKLS0
2001931
.1 

565 6035 5.3721789 6.9730613 1.99E-49 4.88E-47 

ENSBTAG00000006343 IL1R2 11 6689610 6728985 5.59521591 7.5133198 4.97E-56 1.61E-53 
ENSBTAG00000013356 CATHL3 22 51579579 51621314 6.08740823 4.37280747 5.49E-33 2.97E-31 
ENSBTAG00000031647 LRG1 7 19596244 19599321 7.34756702 4.23058149 2.37E-74 7.85E-71 
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Table 5.3 Ten topmost significantly enriched biological functions associated with differentially expressed genes 
Biological function P-value range Genes involved in the biological function 

Inflammatory Response 3.22E-20-2.06E-03 ADGRE1,ADGRG3,ALAS2,ALOX15,ALOX5AP,ALPL,AREG,ARG1,BMX,BPI, 
BST1,CA4,CD163,CFB,CHI3L1,DEFB4A/DEFB4B,DPYS,DYSF,EREG,GCA, 
GPC3,GPR84,HP,HTRA1,IL12B,IL1R2,IL1RAP,IL3RA,ITGA9,LCN2,LRG1,LTF,
MAPK13,MGAM,MMP9,MYRF,NRG1,NUPR1,OLFM4,OSCAR,P2RX1, 
PGLYRP1,PGLYRP4,PROK2,RAB3D,RETN,S100A12,S100A8,S100A9, 
SERPINB4,SLC39A8,SLC6A2,SOD2,TCN1,TGFA,TGM3,THY1,TNFAIP6, 
TRPC5,UPP1 

Connective Tissue Disorders 1.55E-14-1.62E-03 ALAS2,ALOX15,ALOX5AP,ALPL,AREG,ARG1,BMX,BPI,CA4,CD163,CFB, 
CHI3L1,DCSTAMP,DPYS,GCA,GPC3,HP,HTRA1,IL12B,IL1R2,IL3RA,ITGA9, 
KREMEN1,LCN2,LTF,MMP9,PGLYRP1,PROK2,RETN,S100A12,S100A8, 
S100A9,SLC39A8,SLC6A2,SOD2,TGFA,TNFAIP6 

Inflammatory Disease 1.55E-14-1.83E-03 ADGRE1,ALAS2,ALOX15,ALOX5AP,ALPL,AREG,ARG1,BMX,BPI,CA4,CD163,
CFB,CHI3L1,DEFB4A/DEFB4B,DPYS,EREG,GCA, zH1-2,HP,HTRA1,IL12B, 
IL1R2,IL3RA,ITGA9,LCN2,LRG1,LTF,MGAM,MMP9,NRG1,OLFM4,PGLYRP1,
PGLYRP4,PROK2,RETN,S100A12,S100A8,S100A9,SERPINB4,SLC39A8, 
SLC6A2,SOD2,TCN1,TGFA,TGM3,THY1,TNFAIP6 

Organismal Injury and 
Abnormalities 

1.55E-14-2.07E-03 ABCA6,ACVR1B,ADGRE1,ADGRG3,ALAS2,ALOX15,ALOX5AP,ALPL, 
ANKRD22,AREG,ARG1,ART5,BMX,BPI,BST1,CA4,CD163,CFB,CHI3L1, 
CPNE2,DCSTAMP,DEFB4A/DEFB4B,DPYS,DYSF,EREG,FOXRED1,GCA, 
GLT1D1,GPC3,GPR84,H1-2,HBD,HP,HTRA1,IL12B,IL1R2,IL1RAP,IL3RA, 
ITGA9,KREMEN1,LCN2,LRG1,LTF,MAPK13,MEGF9,MGAM,MMP9,MN1, 
MYBPH,MYRF,NOL3,NRG1,NUPR1,OLFM4,OSCAR,P2RX1,PGLYRP1, 
PGLYRP4,PROK2,PTPN5,RAB20,RAB3D,RAB3IP,RBPMS2,REEP1,RETN, 
RYR1,S100A12,S100A8,S100A9,SERPINB4,SHROOM4,SLC26A8,SLC28A3, 
SLC39A8,SLC6A2,SOD2,TCN1,TGFA,TGM1,TGM3,THY1,TNFAIP6,TNS2, 
TRPC5,UPP1,WIPI1 

Immunological Disease 3.58E-11-2.05E-03 ADGRG3,ALAS2,ALOX15,ALOX5AP,ALPL,AREG,ARG1,BMX,BPI,CD163,CFB,
CHI3L1,DEFB4A/DEFB4B,GCA,GPC3,GPR84,HP,IL12B,IL1R2,IL3RA,ITGA9, 
LCN2,LTF,MGAM,MMP9,NRG1,PGLYRP1,PROK2,RETN,S100A12,S100A8, 
S100A9,SERPINB4,SLC6A2,SOD2,TGFA,TGM3,TNFAIP6 

Infectious Diseases 1.62E-08-1.42E-03 ALOX5AP,ALPL,BPI,CD163,CFB,DEFB4A/DEFB4B,DYSF,GCA,GPC3,H1-2, 
HP,IL12B,IL1R2,IL3RA,LCN2,LTF,MGAM,MMP9,MYRF,NRG1,OLFM4,P2RX1,
PGLYRP1,RAB3D,RETN,S100A12,S100A8,S100A9,SLC6A2,TCN1 
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Respiratory Disease 1.62E-08-1.73E-03 ABCA6,ACVR1B,ALAS2,ALOX15,ALPL,ANKRD22,AREG,ARG1,BMX,BPI,BST1,
CA4,CD163,CFB,CHI3L1,CPNE2,DCSTAMP,DPYS,DYSF,EREG,FOXRED1, 
GLT1D1,GPC3,GPR84,H1-2,HP,HTRA1,IL12B,IL1RAP,IL3RA,ITGA9,LCN2, 
LTF,MAPK13,MEGF9,MGAM,MMP9,MN1,MYBPH,MYRF,NOL3,NRG1, 
NUPR1,OLFM4,PGLYRP1,PGLYRP4,PTPN5,RETN,RYR1,S100A12,S100A8, 
S100A9,SERPINB4,SHROOM4,SLC6A2,SOD2,TCN1,TGFA,TGM3,THY1, 
TNFAIP6,TNS2,TRPC5 

Antimicrobial Response 2.01E-08-2.57E-04 BPI,DEFB4A/DEFB4B,IL12B,LCN2,LTF,PGLYRP1,PGLYRP4,S100A12,S100A8,
S100A9 

Psychological Disorders 2.55E-08-1.83E-03 ALOX15,ARG1,CA4,CFB,CHI3L1,DYSF,HP,HTRA1,IL12B,IL1R2,LCN2,LRG1, 
LTF,MMP9,NRG1,PTPN5,RYR1,S100A9,SLC6A2,SOD2,TGM1,THY1,UPP1 

Metabolic Disease 1.81E-07-7.5E-04 ALOX15,ALOX5AP,ALPL,ARG1,BPI,CA4,CFB,CHI3L1,DYSF,GPC3,HBD,HP, 
HTRA1,IL12B,IL1R2,IL3RA,LCN2,LTF,MGAM,MMP9,PTPN5,RETN,S100A8, 
S100A9,SLC6A2,SOD2,TGM1,THY1 
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Table 5.S1 The significant enriched biological functions associated with differentially expressed genes 
Biological function P-value range Genes involved in the biological function 
Inflammatory Response 3.22E-20-2.06E-03 ADGRE1,ADGRG3,ALAS2,ALOX15,ALOX5AP,ALPL,AREG,ARG1,BMX,BPI,BST1, 

CA4,CD163,CFB,CHI3L1,DEFB4A/DEFB4B,DPYS,DYSF,EREG,GCA,GPC3,GPR84,
HP,HTRA1,IL12B,IL1R2,IL1RAP,IL3RA,ITGA9,LCN2,LRG1,LTF,MAPK13,MGAM, 
MMP9,MYRF,NRG1,NUPR1,OLFM4,OSCAR,P2RX1,PGLYRP1,PGLYRP4,PROK2, 
RAB3D,RETN,S100A12,S100A8,S100A9,SERPINB4,SLC39A8,SLC6A2,SOD2,TCN1, 
TGFA,TGM3,THY1,TNFAIP6,TRPC5,UPP1 

Connective Tissue Disorders 1.55E-14-1.62E-03 ALAS2,ALOX15,ALOX5AP,ALPL,AREG,ARG1,BMX,BPI,CA4,CD163,CFB,CHI3L1, 
DCSTAMP,DPYS,GCA,GPC3,HP,HTRA1,IL12B,IL1R2,IL3RA,ITGA9,KREMEN1, 
LCN2,LTF,MMP9,PGLYRP1,PROK2,RETN,S100A12,S100A8,S100A9,SLC39A8, 
SLC6A2,SOD2,TGFA,TNFAIP6 

Inflammatory Disease 1.55E-14-1.83E-03 ADGRE1,ALAS2,ALOX15,ALOX5AP,ALPL,AREG,ARG1,BMX,BPI,CA4,CD163,CFB,
CHI3L1,DEFB4A/DEFB4B,DPYS,EREG,GCA,H1-
2,HP,HTRA1,IL12B,IL1R2,IL3RA,ITGA9,LCN2,LRG1,LTF,MGAM,MMP9,NRG1, 
OLFM4,PGLYRP1,PGLYRP4,PROK2,RETN,S100A12,S100A8,S100A9,SERPINB4, 
SLC39A8,SLC6A2,SOD2,TCN1,TGFA,TGM3,THY1,TNFAIP6 

Organismal Injury and 
Abnormalities 

1.55E-14-2.07E-03 ABCA6,ACVR1B,ADGRE1,ADGRG3,ALAS2,ALOX15,ALOX5AP,ALPL,ANKRD22, 
AREG,ARG1,ART5,BMX,BPI,BST1,CA4,CD163,CFB,CHI3L1,CPNE2,DCSTAMP, 
DEFB4A/DEFB4B,DPYS,DYSF,EREG,FOXRED1,GCA,GLT1D1,GPC3,GPR84,H1-2, 
HBD,HP,HTRA1,IL12B,IL1R2,IL1RAP,IL3RA,ITGA9,KREMEN1,LCN2,LRG1,LTF, 
MAPK13,MEGF9,MGAM,MMP9,MN1,MYBPH,MYRF,NOL3,NRG1,NUPR1,OLFM4,
OSCAR,P2RX1,PGLYRP1,PGLYRP4,PROK2,PTPN5,RAB20,RAB3D,RAB3IP, 
RBPMS2,REEP1,RETN,RYR1,S100A12,S100A8,S100A9,SERPINB4,SHROOM4, 
SLC26A8,SLC28A3,SLC39A8,SLC6A2,SOD2,TCN1,TGFA,TGM1,TGM3,THY1, 
TNFAIP6,TNS2,TRPC5,UPP1,WIPI1 

Immunological Disease 3.58E-11-2.05E-03 ADGRG3,ALAS2,ALOX15,ALOX5AP,ALPL,AREG,ARG1,BMX,BPI,CD163,CFB, 
CHI3L1,DEFB4A/DEFB4B,GCA,GPC3,GPR84,HP,IL12B,IL1R2,IL3RA,ITGA9, 
LCN2,LTF,MGAM,MMP9,NRG1,PGLYRP1,PROK2,RETN,S100A12,S100A8,S100A9,
SERPINB4,SLC6A2,SOD2,TGFA,TGM3,TNFAIP6 

Infectious Diseases 1.62E-08-1.42E-03 ALOX5AP,ALPL,BPI,CD163,CFB,DEFB4A/DEFB4B,DYSF,GCA,GPC3,H1-2,HP, 
IL12B,IL1R2,IL3RA,LCN2,LTF,MGAM,MMP9,MYRF,NRG1,OLFM4,P2RX1, 
PGLYRP1,RAB3D,RETN,S100A12,S100A8,S100A9,SLC6A2,TCN1 

Respiratory Disease 1.62E-08-1.73E-03 ABCA6,ACVR1B,ALAS2,ALOX15,ALPL,ANKRD22,AREG,ARG1,BMX,BPI,BST1,CA4,
CD163,CFB,CHI3L1,CPNE2,DCSTAMP,DPYS,DYSF,EREG,FOXRED1,GLT1D1, 
GPC3,GPR84,H1-2,HP,HTRA1,IL12B,IL1RAP,IL3RA,ITGA9,LCN2,LTF, 
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MAPK13,MEGF9,MGAM,MMP9,MN1,MYBPH,MYRF,NOL3,NRG1,NUPR1,OLFM4,
PGLYRP1,PGLYRP4,PTPN5,RETN,RYR1,S100A12,S100A8,S100A9,SERPINB4, 
SHROOM4,SLC6A2,SOD2,TCN1,TGFA,TGM3,THY1,TNFAIP6,TNS2,TRPC5 

Antimicrobial Response 2.01E-08-2.57E-04 BPI,DEFB4A/DEFB4B,IL12B,LCN2,LTF,PGLYRP1,PGLYRP4,S100A12,S100A8, 
S100A9 

Psychological Disorders 2.55E-08-1.83E-03 ALOX15,ARG1,CA4,CFB,CHI3L1,DYSF,HP,HTRA1,IL12B,IL1R2,LCN2,LRG1,LTF,
MMP9,NRG1,PTPN5,RYR1,S100A9,SLC6A2,SOD2,TGM1,THY1,UPP1 

Metabolic Disease 1.81E-07-7.5E-04 ALOX15,ALOX5AP,ALPL,ARG1,BPI,CA4,CFB,CHI3L1,DYSF,GPC3,HBD,HP, 
HTRA1,IL12B,IL1R2,IL3RA,LCN2,LTF,MGAM,MMP9,PTPN5,RETN,S100A8, 
S100A9,SLC6A2,SOD2,TGM1,THY1 

Endocrine System Disorders 6.75E-06-1.96E-03 ABCA6,ACVR1B,ADGRE1,ALAS2,ALOX15,ALOX5AP,ALPL,ANKRD22,AREG,ARG1,
ART5,BMX,BPI,BST1,CA4,CD163,CFB,CHI3L1,DCSTAMP,DPYS,DYSF,EREG, 
FOXRED1,GCA,GLT1D1,GPC3,GPR84,H1-
2,HBD,HP,HTRA1,IL12B,IL1R2,IL1RAP,IL3RA,ITGA9,KREMEN1,LCN2,LRG1,LTF,
MAPK13,MEGF9,MGAM,MMP9,MN1,MYBPH,MYRF,NOL3,NRG1,OLFM4,OSCAR,
P2RX1,PGLYRP4,PROK2,PTPN5,RAB20,RAB3D,RBPMS2,REEP1,RETN,RYR1, 
S100A8,SERPINB4,SHROOM4,SLC26A8,SLC28A3,SLC39A8,SLC6A2,SOD2,TCN1, 
TGFA,TGM1,TGM3,THY1,TNFAIP6,TNS2,TRPC5,UPP1,WIPI1 

Hereditary Disorder 5.96E-05-1.31E-03 CA4,CFB,CHI3L1,FOXRED1,GPC3,HP,HTRA1,IL3RA,LCN2,LRG1,MMP9,MN1, 
MYRF,PROK2,PTPN5,REEP1,RETN,RYR1,S100A12,S100A9,SHROOM4,SLC6A2, 
SOD2,TGM1 

Nutritional Disease 3.51E-04-1.91E-03 ADGRE1,AREG,ARG1,CA4,CD163,EREG,IL1RAP,LCN2,LTF,MAPK13,MGAM, 
MMP9,PGLYRP4,RETN,SLC6A2,TGFA 

Developmental Disorder 7.5E-04-7.5E-04 LCN2,MMP9 
Hematological Disease 7.75E-04-7.75E-04 CFB,IL12B,LCN2,LTF,MMP9,P2RX1,S100A9 
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Table 5.S2 Differentially expressed genes between BRD and non-BRD animals in feedlot 1 

Gene ID Gene 
name 

Chr Start (bp) End (bp) logFC logCPM P-Value FDR 

ENSBTAG00000054844 HBA1 25 219512 220318 -4.2973366 10.2568414 1.83E-23 7.71E-22 
ENSBTAG00000051412 HBA 25 216448 217264 -4.2783593 10.2297791 2.10E-23 8.76E-22 
ENSBTAG00000013178 ALAS2 X 92485200 92512358 -3.6103259 4.82602073 7.74E-41 3.58E-38 
ENSBTAG00000037644 HBB 15 48362236 48363996 -3.3646968 10.3183578 3.77E-32 4.94E-30 
ENSBTAG00000011990 ALOX15 19 26697231 26705809 -3.2522801 4.67377917 1.30E-23 5.55E-22 
ENSBTAG00000048626  19 14399906 14401309 -2.5987282 4.3164336 2.76E-29 2.35E-27 
ENSBTAG00000001032 PYGM 29 42985611 42997675 -2.2929225 3.33328741 7.89E-39 2.74E-36 
ENSBTAG00000014269 SCARB1 17 50929375 51022457 2.0451812 7.69285595 1.56E-47 1.44E-44 
ENSBTAG00000008648 PRDX5 29 42613257 42616366 2.06314739 7.46569807 1.83E-28 1.42E-26 
ENSBTAG00000019428 CCR1 22 53225174 53231223 2.07442803 8.76031592 2.50E-24 1.16E-22 
ENSBTAG00000045854  18 62462232 62476548 2.0772604 9.88027762 3.13E-30 3.06E-28 
ENSBTAG00000006685 IL10 16 4550836 4555318 2.09595882 2.61777573 2.34E-23 9.69E-22 
ENSBTAG00000016204 C1RL 5 103273388 103298036 2.09935865 6.58260581 1.99E-38 6.50E-36 
ENSBTAG00000015032 CD14 7 51762895 51765768 2.11674682 7.55592213 1.59E-27 1.09E-25 
ENSBTAG00000019567 IL21R 25 24941958 25002153 2.14437884 7.19622647 8.38E-48 9.69E-45 
ENSBTAG00000011037 RBPMS2 10 45313259 45339402 2.2919649 3.05337159 1.10E-21 3.93E-20 
ENSBTAG00000035081 SERINC2 2 122233162 122259028 2.30961334 7.63510967 5.44E-30 5.13E-28 
ENSBTAG00000021647 FCAR 18 62527485 62537893 2.31287175 5.42434663 1.03E-23 4.42E-22 
ENSBTAG00000018517 VLDLR 8 41826623 41860757 2.34188981 5.07370421 6.19E-22 2.27E-20 
ENSBTAG00000051383 DEFB7 27 6676076 6678281 2.35681888 4.56083724 2.22E-18 5.17E-17 
ENSBTAG00000001511 BCL6 1 79558314 79611183 2.36728084 8.62532537 1.77E-38 5.99E-36 
ENSBTAG00000010328 KCNK17 23 13166550 13179213 2.37664071 4.71405008 9.64E-52 1.91E-48 
ENSBTAG00000050072  11 98685584 98686780 2.43401674 2.49742416 2.61E-14 3.65E-13 
ENSBTAG00000003944 CATIP 2 106378600 106384257 2.44485054 2.22172121 3.88E-37 1.02E-34 
ENSBTAG00000010047 TIAM2 9 91723944 91866359 2.49004614 4.65145371 4.43E-26 2.62E-24 
ENSBTAG00000006608 GGT5 17 71443740 71453369 2.49391529 5.98245285 1.07E-28 8.55E-27 
ENSBTAG00000006156 BST1 6 110872406 110901795 2.49479041 5.71011438 4.65E-30 4.48E-28 
ENSBTAG00000008124 GK X 112861218 112935556 2.49939178 6.02675446 1.89E-42 1.01E-39 
ENSBTAG00000020892 IL2RA 13 17455360 17500714 2.50649074 6.93085166 5.53E-50 7.67E-47 
ENSBTAG00000010464 MN1 17 67173546 67221633 2.51938721 2.6135965 2.01E-38 6.50E-36 
ENSBTAG00000013290 DYSF 11 12899573 13123869 2.52995181 7.51607068 1.96E-33 3.13E-31 
ENSBTAG00000008851  18 57488548 57494764 2.57648382 6.82309135 9.10E-32 1.10E-29 
ENSBTAG00000013555 ACVR1B 5 27884739 27915481 2.58162706 6.15735641 1.21E-34 2.29E-32 
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ENSBTAG00000052465  9 42992439 42996483 2.59490249 7.16693166 2.16E-24 1.02E-22 
ENSBTAG00000023648 ART5 15 51386896 51443955 2.5973771 7.40605672 3.63E-37 9.70E-35 
ENSBTAG00000014122 FOXRED1 29 29617419 29625087 2.5984207 7.09967922 1.20E-47 1.27E-44 
ENSBTAG00000002148 RAB3D 7 15736270 15747432 2.59990187 7.56604139 3.05E-35 6.42E-33 
ENSBTAG00000018016 NUPR1 25 26082047 26083376 2.60415958 5.54503137 2.07E-19 5.58E-18 
ENSBTAG00000033748 IL18RAP 11 7203304 7233720 2.60556797 5.48416939 1.39E-33 2.32E-31 
ENSBTAG00000020430 GLT1D1 17 48170769 48286681 2.60569099 3.21120558 2.19E-25 1.18E-23 
ENSBTAG00000037826  15 51474978 51495512 2.65750801 3.05319112 1.61E-31 1.86E-29 
ENSBTAG00000014069 PDK4 4 12881889 12895362 2.65775179 5.92019635 5.71E-35 1.17E-32 
ENSBTAG00000030424 CLEC1A 5 99860312 99880739 2.67070157 2.61775197 1.94E-13 2.46E-12 
ENSBTAG00000016477 PEAK3 7 21274513 21280458 2.67657098 5.11716636 2.80E-36 6.95E-34 
ENSBTAG00000054765 PGLYRP4 3 17126512 17142568 2.68395549 3.19950095 1.04E-37 3.13E-35 
ENSBTAG00000013368 ANKRD22 26 10506966 10534508 2.69776247 4.22625509 1.52E-22 6.00E-21 
ENSBTAG00000004150 NRG1 27 28529266 28651519 2.7230818 5.07904789 5.11E-31 5.63E-29 
ENSBTAG00000010065 TRPC5 X 59975310 60322067 2.7287576 4.00345186 2.63E-25 1.39E-23 
ENSBTAG00000011465 MYBPH 16 957169 965458 2.73364827 6.4809191 5.58E-38 1.72E-35 
ENSBTAG00000006921 ABCA6 19 61421551 61482846 2.73990641 6.84004875 1.28E-47 1.27E-44 
ENSBTAG00000007169 P2RX1 19 24528313 24545951 2.76542813 4.88197075 6.91E-19 1.73E-17 
ENSBTAG00000045808 IL17REL 5 119366047 119390141 2.83812653 2.62546178 5.86E-17 1.14E-15 
ENSBTAG00000022779 OLFM4 12 10641503 10665121 2.84013624 3.70949773 1.96E-21 6.76E-20 
ENSBTAG00000018134 AREG 6 89379645 89391792 2.86258141 2.49231926 5.05E-31 5.60E-29 
ENSBTAG00000006904 TNS2 5 26903397 26921895 2.88678435 2.50111355 1.98E-21 6.79E-20 
ENSBTAG00000000783 TGFA 11 13861144 13975868 2.90139822 3.04966321 5.06E-37 1.30E-34 
ENSBTAG00000011677 H1-2 23 31876303 31878150 2.92811547 7.00726852 6.28E-35 1.26E-32 
ENSBTAG00000013201 ALOX5AP 12 30108987 30138259 2.95881911 7.35645499 2.47E-28 1.90E-26 
ENSBTAG00000020257 PTPN5 29 25991833 26050347 2.97487725 5.11780993 4.55E-32 5.79E-30 
ENSBTAG00000018223 CHI3L1 16 968434 978542 2.99720233 8.79119794 3.12E-55 2.17E-51 
ENSBTAG00000013205 IL1RAP 1 76577593 76723526 3.01042415 5.94716852 6.55E-27 4.23E-25 
ENSBTAG00000001785 TGM3 13 52793538 52836265 3.02278062 10.3869376 1.01E-34 1.94E-32 
ENSBTAG00000014046 BPI 13 67172370 67201998 3.03626779 6.30989356 4.59E-12 4.83E-11 
ENSBTAG00000003920 TGM1 10 20902051 20916712 3.06804087 3.15341894 1.26E-20 3.88E-19 
ENSBTAG00000002635 PGLYRP1 18 53513706 53515925 3.0807196 2.88253583 4.33E-10 3.50E-09 
ENSBTAG00000018446 GCA 2 34070353 34087612 3.09043557 4.33977129 3.44E-21 1.14E-19 
ENSBTAG00000003519 NOL3 18 34807714 34812057 3.09100227 2.99551523 2.66E-41 1.32E-38 
ENSBTAG00000001051 OSCAR 18 63283496 63290397 3.11383381 7.70693664 2.12E-43 1.22E-40 
ENSBTAG00000003353 SLC6A2 18 23875374 23939382 3.16452408 2.84511352 6.55E-43 3.64E-40 
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ENSBTAG00000004716 RETN 7 16513147 16514562 3.18032812 5.74769745 1.15E-13 1.51E-12 
ENSBTAG00000008428 UPP1 4 7619639 7648114 3.18317751 7.60620298 1.43E-39 5.52E-37 
ENSBTAG00000010007 MAPK13 23 10058481 10067089 3.21213355 4.46914928 1.09E-27 7.71E-26 
ENSBTAG00000006523 SOD2 9 95955338 95966127 3.21903451 10.1428464 1.85E-50 2.85E-47 
ENSBTAG00000012638 S100A12 3 17102722 17104173 3.23871478 11.9809943 9.81E-34 1.72E-31 
ENSBTAG00000013706 MEGF9 8 110032801 110110151 3.25291167 5.8873535 4.70E-30 4.50E-28 
ENSBTAG00000008389 HTRA1 26 42285479 42343309 3.30062971 2.44259414 9.05E-24 3.90E-22 
ENSBTAG00000048737 DEFB10 27 6596422 6598413 3.31426917 4.41138357 5.70E-20 1.61E-18 
ENSBTAG00000005668 SLC39A8 6 22459117 22542658 3.32110747 3.30072448 1.04E-33 1.79E-31 
ENSBTAG00000049416 RAB20 12 85168908 85200403 3.33713107 5.66321856 3.24E-52 7.49E-49 
ENSBTAG00000017969 CA4 19 12803073 12811847 3.41311077 3.97922501 2.85E-55 2.17E-51 
ENSBTAG00000004741 IL12B 7 70893041 70912103 3.41683604 2.92274451 2.53E-32 3.48E-30 
ENSBTAG00000019669 CD163 5 101786078 101818046 3.47992853 8.66021642 8.81E-36 2.11E-33 
ENSBTAG00000015592 GPR84 5 25709927 25711851 3.49054978 4.39291106 1.01E-33 1.75E-31 
ENSBTAG00000017251 SLC26A8 23 9878961 9967961 3.49176436 3.21189608 2.55E-29 2.18E-27 
ENSBTAG00000020406 GPC3 X 17366350 17829036 3.49788532 3.62061423 3.42E-23 1.40E-21 
ENSBTAG00000032068 PLA2G4F 10 37533181 37547704 3.49864846 2.39761523 2.55E-39 9.51E-37 
ENSBTAG00000001292 LTF 22 52952571 52986619 3.56864745 4.48067791 8.23E-11 7.30E-10 
ENSBTAG00000002233 CPNE2 18 25134033 25166257 3.61212146 5.33770111 9.28E-30 8.48E-28 
ENSBTAG00000016566 ITGA9 22 10908546 11272063 3.65826711 3.71930323 1.23E-23 5.27E-22 
ENSBTAG00000031950 RAB3IP 5 43657005 43713702 3.68072539 7.04207079 5.46E-47 4.21E-44 
ENSBTAG00000019330 PROK2 22 29859914 29883008 3.70684804 4.94377801 1.87E-35 4.25E-33 
ENSBTAG00000020580 TCN1 15 83058088 83073458 3.74727764 9.13666359 2.61E-38 8.24E-36 
ENSBTAG00000046152 MGAM 4 105285315 105466927 3.77057077 5.7578948 8.12E-29 6.60E-27 
ENSBTAG00000038532 FOLR3 15 51782270 51788157 3.77102735 2.42521719 2.33E-11 2.24E-10 
ENSBTAG00000006505 S100A9 3 17115128 17117984 3.78303888 11.7813729 2.08E-35 4.58E-33 
ENSBTAG00000018280 SLC28A3 8 77514711 77587255 3.81736019 7.12643211 9.01E-32 1.10E-29 
ENSBTAG00000006354 HP 18 39037402 39043531 3.82895489 9.8732448 1.15E-25 6.44E-24 
ENSBTAG00000012640 S100A8 3 17085577 17086827 3.85988315 10.4517459 5.49E-32 6.80E-30 
ENSBTAG00000002996 SHROOM4 X 88412754 88541873 4.03659463 3.53651657 3.15E-37 8.56E-35 
ENSBTAG00000006221 ADGRG3 18 25644891 25674917 4.0495256 6.02515919 1.75E-50 2.85E-47 
ENSBTAG00000007239 TNFAIP6 2 44747145 44764214 4.12434796 4.20592922 6.65E-31 7.16E-29 
ENSBTAG00000007901 ADGRE1 7 17557794 17633496 4.13527429 9.52174038 1.24E-37 3.66E-35 
ENSBTAG00000021240 DCSTAMP 14 60265369 60283636 4.14693808 5.14457708 4.18E-35 8.65E-33 
ENSBTAG00000014149 LCN2 11 98781893 98785927 4.17123564 7.75525651 5.58E-24 2.48E-22 
ENSBTAG00000006999 RYR1 18 48237459 48365215 4.18280317 6.56993497 5.98E-39 2.13E-36 
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ENSBTAG00000020676 MMP9 13 74746976 74754303 4.25226299 6.56583352 1.04E-21 3.75E-20 
ENSBTAG00000049808 IL3RA 3 119480332 119499353 4.27203036 7.38165778 5.77E-53 2.00E-49 
ENSBTAG00000000377 BMX X 127954722 127992190 4.35406757 5.72334627 2.01E-47 1.75E-44 
ENSBTAG00000009773 KREMEN1 17 68432890 68476866 4.41817659 7.41941193 1.33E-37 3.85E-35 
ENSBTAG00000053557 DEFB4A 27 7138873 7140876 4.72411959 3.94443641 1.40E-16 2.62E-15 
ENSBTAG00000046158 CFB 23 27415355 27421377 5.07295915 6.13366715 5.20E-45 3.14E-42 
ENSBTAG00000050618  26 42405805 42438497 5.08634489 5.32979311 1.58E-34 2.93E-32 
ENSBTAG00000008951 ALPL 2 131181416 131245100 5.26645087 7.91570538 9.70E-33 1.43E-30 
ENSBTAG00000019627 THY1 15 29981019 29986913 5.59422236 4.31342278 5.00E-30 4.75E-28 
ENSBTAG00000048720  24 61926351 61935647 6.04526541 3.61944597 3.67E-21 1.21E-19 
ENSBTAG00000010273 EREG 6 89306902 89325899 6.05111123 2.76189694 1.94E-35 4.33E-33 

ENSBTAG00000039037 SERPINB4 NKLS0200
1094.1 5955 12952 6.56022101 7.00535753 2.99E-35 6.38E-33 

ENSBTAG00000052012  NKLS0200
0500.1 916 4537 6.59024775 6.49339707 3.12E-31 3.52E-29 

ENSBTAG00000054882 IL1R2 24 61844175 61850625 6.66547067 5.03213692 4.49E-28 3.32E-26 
ENSBTAG00000006343  11 6689610 6728985 6.78390898 8.40125835 6.68E-32 8.20E-30 
ENSBTAG00000013356 CATHL3 22 51579579 51621314 6.79789647 5.51283742 9.53E-16 1.60E-14 
ENSBTAG00000051132  24 61907407 61913758 6.80917139 5.93934354 1.19E-31 1.42E-29 
ENSBTAG00000048835  24 61862826 61887768 6.86172982 8.30800721 4.29E-34 7.73E-32 

ENSBTAG00000049569  NKLS0200
1931.1 565 6035 6.89066714 7.67022948 2.98E-34 5.45E-32 

ENSBTAG00000002976 CD177 18 51546288 51557282 7.06281866 4.43321029 2.37E-15 3.78E-14 
ENSBTAG00000024852 CATHL2 22 51641063 51642757 8.00271765 5.96569378 2.29E-14 3.22E-13 
ENSBTAG00000031647 LRG1 7 19596244 19599321 8.33047218 5.11724925 4.98E-46 3.46E-43 
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Table 5.S3 Differentially expressed genes between BRD and non-BRD animals in feedlot 2 

Gene ID Gene 
name 

Chr Start (bp) End (bp) logFC logCPM P-Value FDR 

ENSBTAG00000037644 HBB 15 48362236 48363996 -3.3313062 12.6174759 3.36E-05 0.00081402 
ENSBTAG00000051412 HBA 25 216448 217264 -3.2274209 12.5576244 0.00041715 0.00618737 
ENSBTAG00000054844 HBA1 25 219512 220318 -3.2271536 12.5442137 0.00041478 0.00618464 
ENSBTAG00000006683 ZFYVE28 6 116265797 116364222 -3.0506406 4.16002225 1.88E-13 6.43E-11 
ENSBTAG00000013178 ALAS2 X 92485200 92512358 -2.773232 6.55951193 0.00010051 0.00199821 
ENSBTAG00000008945 SDSL 17 61005835 61018993 -2.429167 2.4812053 1.71E-10 2.39E-08 
ENSBTAG00000048817 SSX5 X 86550779 86560943 -2.2953572 3.03922109 0.00013688 0.0025311 
ENSBTAG00000023666  1 42936757 42941412 -2.2446964 2.17864132 2.67E-05 0.00066925 
ENSBTAG00000010464 MN1 17 67173546 67221633 2.04100252 2.57788149 5.80E-13 1.66E-10 
ENSBTAG00000022779 OLFM4 12 10641503 10665121 2.04305947 2.81370769 2.03E-07 1.23E-05 
ENSBTAG00000033748 IL18RAP 11 7203304 7233720 2.04431193 5.02817798 9.89E-10 1.14E-07 
ENSBTAG00000002635 PGLYRP1 18 53513706 53515925 2.05649417 2.07530631 1.90E-06 7.76E-05 
ENSBTAG00000013205 IL1RAP 1 76577593 76723526 2.07593902 5.48048561 3.07E-10 4.02E-08 
ENSBTAG00000021240 DCSTAMP 14 60265369 60283636 2.08905388 3.52450437 3.98E-07 2.13E-05 
ENSBTAG00000012638 S100A12 3 17102722 17104173 2.10931851 11.5346472 5.92E-13 1.66E-10 
ENSBTAG00000003519 NOL3 18 34807714 34812057 2.12067719 2.26424501 1.66E-13 5.95E-11 
ENSBTAG00000013201 ALOX5AP 12 30108987 30138259 2.13487295 6.74574051 6.08E-11 9.69E-09 
ENSBTAG00000007169 P2RX1 19 24528313 24545951 2.14209392 4.0406586 4.19E-13 1.25E-10 
ENSBTAG00000018446 GCA 2 34070353 34087612 2.1449927 3.5814541 3.16E-06 0.00011553 
ENSBTAG00000011037 RBPMS2 10 45313259 45339402 2.17621438 3.04954011 7.08E-11 1.12E-08 
ENSBTAG00000006999 RYR1 18 48237459 48365215 2.22541545 5.09029834 2.23E-14 1.01E-11 
ENSBTAG00000013290 DYSF 11 12899573 13123869 2.2359714 7.12160127 7.78E-13 2.11E-10 
ENSBTAG00000018134 AREG 6 89379645 89391792 2.25624408 2.04085164 5.04E-16 3.72E-13 
ENSBTAG00000008389 HTRA1 26 42285479 42343309 2.26295351 2.05763963 1.24E-10 1.81E-08 
ENSBTAG00000020257 PTPN5 29 25991833 26050347 2.26382172 4.73365293 7.39E-11 1.15E-08 
ENSBTAG00000049416 RAB20 12 85168908 85200403 2.26561588 5.15606209 2.49E-11 4.72E-09 
ENSBTAG00000008428 UPP1 4 7619639 7648114 2.29100809 6.97550656 4.92E-11 8.21E-09 
ENSBTAG00000019669 CD163 5 101786078 101818046 2.34176127 8.09449315 2.49E-19 8.74E-16 
ENSBTAG00000010007 MAPK13 23 10058481 10067089 2.38598678 3.94875145 2.24E-22 1.05E-18 
ENSBTAG00000018280 SLC28A3 8 77514711 77587255 2.39104332 5.9741236 4.16E-07 2.19E-05 
ENSBTAG00000046152 MGAM 4 105285315 105466927 2.4190759 5.11070344 2.42E-13 7.89E-11 
ENSBTAG00000020580 TCN1 15 83058088 83073458 2.4442418 8.21479133 4.78E-10 5.93E-08 
ENSBTAG00000014149 LCN2 11 98781893 98785927 2.44567427 5.92534488 1.72E-17 2.42E-14 
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ENSBTAG00000012640 S100A8 3 17085577 17086827 2.53368911 9.97236459 9.57E-17 1.03E-13 
ENSBTAG00000015592 GPR84 5 25709927 25711851 2.55001628 3.27906263 1.13E-12 2.87E-10 
ENSBTAG00000031950 RAB3IP 5 43657005 43713702 2.5720683 6.35104255 1.94E-12 4.45E-10 
ENSBTAG00000048737 DEFB10 27 6596422 6598413 2.58624064 3.73008651 1.18E-11 2.36E-09 
ENSBTAG00000006505 S100A9 3 17115128 17117984 2.59480996 10.9989727 1.42E-15 9.84E-13 
ENSBTAG00000003920 TGM1 10 20902051 20916712 2.69735948 2.53300975 1.78E-10 2.47E-08 
ENSBTAG00000017969 CA4 19 12803073 12811847 2.71539183 3.47709747 2.99E-10 3.95E-08 
ENSBTAG00000013706 MEGF9 8 110032801 110110151 2.76130293 5.4912256 2.46E-12 5.47E-10 
ENSBTAG00000030542 KRT25 19 40945832 40953601 2.78521268 2.20961455 3.07E-06 0.00011295 
ENSBTAG00000006221 ADGRG3 18 25644891 25674917 2.81196772 5.21290453 2.51E-14 1.07E-11 
ENSBTAG00000007901 ADGRE1 7 17557794 17633496 2.87149171 8.46415973 1.51E-15 9.84E-13 
ENSBTAG00000006354 HP 18 39037402 39043531 2.91144279 9.18915673 1.91E-15 1.12E-12 
ENSBTAG00000020676 MMP9 13 74746976 74754303 2.95666303 5.70616247 1.71E-16 1.60E-13 
ENSBTAG00000017251 SLC26A8 23 9878961 9967961 2.97349195 2.57032764 1.54E-15 9.84E-13 
ENSBTAG00000009773 KREMEN1 17 68432890 68476866 3.05295603 6.30284439 4.55E-13 1.33E-10 
ENSBTAG00000019330 PROK2 22 29859914 29883008 3.118044 4.8970174 4.29E-16 3.34E-13 
ENSBTAG00000000377 BMX X 127954722 127992190 3.13915197 5.36563341 6.94E-15 3.48E-12 
ENSBTAG00000002233 CPNE2 18 25134033 25166257 3.23703352 4.87264695 1.98E-16 1.63E-13 
ENSBTAG00000049808 IL3RA 3 119480332 119499353 3.28565671 6.29977977 6.15E-18 1.08E-14 
ENSBTAG00000002996 SHROOM4 X 88412754 88541873 3.30069481 3.17782575 2.38E-11 4.64E-09 
ENSBTAG00000007239 TNFAIP6 2 44747145 44764214 3.37583136 4.03797458 2.37E-15 1.28E-12 
ENSBTAG00000038532 FOLR3 15 51782270 51788157 3.56655729 2.31178514 3.54E-07 1.93E-05 
ENSBTAG00000046158 CFB 23 27415355 27421377 3.88357977 4.73882412 3.20E-19 8.97E-16 
ENSBTAG00000048720  24 61926351 61935647 3.90684514 2.6226416 4.10E-07 2.16E-05 
ENSBTAG00000008951 ALPL 2 131181416 131245100 4.0775995 7.48684535 5.87E-15 3.05E-12 
ENSBTAG00000050618  26 42405805 42438497 4.14181549 3.93242761 8.66E-19 1.97E-15 
ENSBTAG00000019627 THY1 15 29981019 29986913 4.34843311 3.65005702 1.68E-15 1.03E-12 

ENSBTAG00000052012  NKLS020
00500.1 916 4537 4.35423906 5.52250449 1.17E-09 1.30E-07 

ENSBTAG00000013356 CATHL3 22 51579579 51621314 4.49790509 2.09755897 1.62E-12 3.78E-10 
ENSBTAG00000054882  24 61844175 61850625 4.55978418 4.12153344 2.48E-11 4.72E-09 
ENSBTAG00000051132  24 61907407 61913758 4.69519508 5.14328519 1.10E-12 2.87E-10 
ENSBTAG00000006343 IL1R2 11 6689610 6728985 4.72909304 6.54130568 8.75E-17 1.02E-13 

ENSBTAG00000039037 SERPINB4 NKLS020
01094.1 5955 12952 4.91245874 6.29279909 9.87E-14 3.64E-11 
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ENSBTAG00000049569  NKLS020
01931.1 565 6035 4.9156393 6.82459895 2.39E-13 7.89E-11 

ENSBTAG00000048835  24 61862826 61887768 4.96763452 7.68066012 2.42E-14 1.06E-11 
ENSBTAG00000031647 LRG1 7 19596244 19599321 5.69037075 2.77832152 9.85E-19 1.97E-15 

 

Table 5.S4 Differentially expressed genes between BRD and non-BRD animals in feedlot 3 

Gene ID 
Gene 
name 

Chr Start (bp) End (bp) logFC logCPM P-Value FDR 

ENSBTAG00000037644 HBB 15 48362236 48363996 -2.4610853 10.9910341 5.58E-06 9.43E-05 
ENSBTAG00000054844 HBA1 25 219512 220318 -2.3558354 10.8789008 0.00054774 0.00391512 
ENSBTAG00000051412 HBA 25 216448 217264 -2.3408418 10.8748729 0.00058089 0.00410557 
ENSBTAG00000013103 COL1A1 19 36457658 36474513 -2.2497554 2.10531141 0.00058759 0.00413532 
ENSBTAG00000003353 SLC6A2 18 23875374 23939382 2.04508943 2.02940069 2.25E-11 2.11E-09 
ENSBTAG00000019669 CD163 5 101786078 101818046 2.05711042 7.68609912 1.71E-22 2.02E-19 
ENSBTAG00000050072  11 98685584 98686780 2.05951156 2.51460641 9.78E-09 4.22E-07 
ENSBTAG00000020257 PTPN5 29 25991833 26050347 2.06473288 4.56528543 7.72E-14 1.36E-11 
ENSBTAG00000011677 H1-2 23 31876303 31878150 2.07702475 6.73942837 3.98E-12 4.32E-10 
ENSBTAG00000046152 MGAM 4 105285315 105466927 2.1177211 4.91260054 1.57E-13 2.54E-11 
ENSBTAG00000010065 TRPC5 X 59975310 60322067 2.16389242 3.96116393 3.54E-16 1.07E-13 
ENSBTAG00000006354 HP 18 39037402 39043531 2.19786697 8.49216483 1.47E-14 2.98E-12 
ENSBTAG00000017251 SLC26A8 23 9878961 9967961 2.27587554 2.20497117 8.33E-20 4.74E-17 
ENSBTAG00000006505 S100A9 3 17115128 17117984 2.29066818 10.7417117 3.14E-17 1.12E-14 
ENSBTAG00000014149 LCN2 11 98781893 98785927 2.31824499 5.92209667 1.10E-12 1.43E-10 
ENSBTAG00000049416 RAB20 12 85168908 85200403 2.3207807 5.31700656 5.12E-21 3.83E-18 
ENSBTAG00000006523 SOD2 9 95955338 95966127 2.3372362 9.4506076 1.43E-16 4.64E-14 
ENSBTAG00000021240 DCSTAMP 14 60265369 60283636 2.34805146 3.95801971 6.20E-13 8.73E-11 
ENSBTAG00000015592 GPR84 5 25709927 25711851 2.36792851 3.44807493 1.13E-15 2.82E-13 
ENSBTAG00000005668 SLC39A8 6 22459117 22542658 2.38895254 2.84803044 7.07E-14 1.26E-11 
ENSBTAG00000017969 CA4 19 12803073 12811847 2.3936347 3.49069294 2.35E-17 8.58E-15 
ENSBTAG00000012640 S100A8 3 17085577 17086827 2.41285684 9.67528266 1.02E-17 3.93E-15 
ENSBTAG00000006221 ADGRG3 18 25644891 25674917 2.43186869 5.03641916 2.24E-19 1.10E-16 
ENSBTAG00000018280 SLC28A3 8 77514711 77587255 2.44998412 6.25229155 3.07E-15 7.39E-13 
ENSBTAG00000020580 TCN1 15 83058088 83073458 2.47982961 8.20013624 1.19E-17 4.46E-15 
ENSBTAG00000020676 MMP9 13 74746976 74754303 2.56952049 5.24356952 1.74E-10 1.27E-08 
ENSBTAG00000006999 RYR1 18 48237459 48365215 2.62857618 5.35516813 1.42E-16 4.64E-14 
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ENSBTAG00000002233 CPNE2 18 25134033 25166257 2.64968344 4.46085806 1.48E-21 1.32E-18 
ENSBTAG00000019330 PROK2 22 29859914 29883008 2.65674983 4.50428397 4.04E-19 1.92E-16 
ENSBTAG00000013706 MEGF9 8 110032801 110110151 2.69749793 5.52061047 8.37E-26 1.70E-22 
ENSBTAG00000031950 RAB3IP 5 43657005 43713702 2.71787798 6.56882955 2.10E-25 3.73E-22 
ENSBTAG00000007901 ADGRE1 7 17557794 17633496 2.83449419 8.31689294 3.32E-25 5.25E-22 
ENSBTAG00000020406 GPC3 X 17366350 17829036 2.88606854 4.00591981 2.63E-09 1.33E-07 
ENSBTAG00000007239 TNFAIP6 2 44747145 44764214 3.00019776 3.67215149 1.23E-18 5.29E-16 
ENSBTAG00000009773 KREMEN1 17 68432890 68476866 3.13059082 6.27154975 1.44E-20 8.53E-18 
ENSBTAG00000000377 BMX X 127954722 127992190 3.15872392 5.18735718 2.34E-26 1.11E-22 
ENSBTAG00000002996 SHROOM4 X 88412754 88541873 3.21720041 2.98543432 6.38E-21 4.32E-18 
ENSBTAG00000046158 CFB 23 27415355 27421377 3.31808654 4.61711846 6.68E-16 1.90E-13 
ENSBTAG00000008951 ALPL 2 131181416 131245100 3.64066428 6.86734475 7.70E-26 1.70E-22 
ENSBTAG00000049808 IL3RA 3 119480332 119499353 3.64623916 6.39580944 6.14E-26 1.70E-22 
ENSBTAG00000050618  26 42405805 42438497 3.67340999 3.78500568 7.15E-19 3.28E-16 
ENSBTAG00000019627 THY1 15 29981019 29986913 3.68128695 2.6580191 2.14E-14 4.22E-12 
ENSBTAG00000006343 IL1R2 11 6689610 6728985 3.89683235 6.09712733 6.64E-15 1.45E-12 

ENSBTAG00000052012  NKLS0200
0500.1 916 4537 3.98339891 4.67448468 4.67E-12 4.96E-10 

ENSBTAG00000054882  24 61844175 61850625 4.10213514 3.12521762 2.62E-13 3.97E-11 
ENSBTAG00000051132  24 61907407 61913758 4.31078223 4.11077112 1.45E-15 3.55E-13 

ENSBTAG00000039037 SERPINB4 NKLS0200
1094.1 5955 12952 4.63915587 5.4509929 2.14E-19 1.09E-16 

ENSBTAG00000049569  NKLS0200
1931.1 565 6035 4.65415732 5.91411498 8.72E-19 3.88E-16 

ENSBTAG00000048835  24 61862826 61887768 4.65476445 6.60846966 7.04E-18 2.78E-15 
ENSBTAG00000031647 LRG1 7 19596244 19599321 5.83537733 2.83595109 9.81E-20 5.37E-17 
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Table 5.S5 Differentially expressed genes between BRD and non-BRD animals in feedlot 4 
Gene ID Gene name Chr Start (bp) End (bp) logFC logCPM P-Value FDR 
ENSBTAG00000030542 KRT25 19 40945832 40953601 -3.1631419 3.19472604 6.07E-06 0.00028546 
ENSBTAG00000011990 ALOX15 19 26697231 26705809 -2.8434332 5.18852128 4.02E-08 5.51E-06 
ENSBTAG00000048626  19 14399906 14401309 -2.4309794 4.6724847 8.01E-08 9.67E-06 
ENSBTAG00000000273 IL5RA 22 23199161 23239003 -2.4064042 3.36953694 1.63E-06 0.00010059 
ENSBTAG00000020406 GPC3 X 17366350 17829036 2.04982109 2.84286597 1.09E-06 7.67E-05 
ENSBTAG00000018016 NUPR1 25 26082047 26083376 2.07109327 4.90114664 0.00012781 0.00300328 
ENSBTAG00000011037 RBPMS2 10 45313259 45339402 2.09675603 2.75170321 6.95E-11 3.09E-08 
ENSBTAG00000005359 TGFB2 16 21808003 21900539 2.17843158 3.31002987 0.00013051 0.00304657 
ENSBTAG00000009773 KREMEN1 17 68432890 68476866 2.18682267 5.58969684 1.08E-11 6.69E-09 
ENSBTAG00000007901 ADGRE1 7 17557794 17633496 2.19899112 7.93373867 1.56E-12 1.31E-09 
ENSBTAG00000000377 BMX X 127954722 127992190 2.21441204 4.67720178 6.60E-11 3.03E-08 
ENSBTAG00000017969 CA4 19 12803073 12811847 2.24418964 3.30553407 6.62E-10 1.89E-07 

ENSBTAG00000039037 SERPINB4 NKLS0200
1094.1 5955 12952 2.2733472 4.60775457 0.00046975 0.00790682 

ENSBTAG00000046158 CFB 23 27415355 27421377 2.33122503 3.30552444 1.32E-13 1.57E-10 
ENSBTAG00000002996 SHROOM4 X 88412754 88541873 2.54630902 2.5834404 4.70E-11 2.39E-08 
ENSBTAG00000008951 ALPL 2 131181416 131245100 2.57744764 6.05698002 7.59E-09 1.33E-06 
ENSBTAG00000006343 IL1R2 11 6689610 6728985 2.82220547 5.17177951 5.38E-11 2.64E-08 
ENSBTAG00000049808 IL3RA 3 119480332 119499353 2.97607174 5.65420191 1.06E-20 1.52E-16 
ENSBTAG00000050618  26 42438497  3.58513307 26.624644 2.23E-05  
ENSBTAG00000004757 LTBP4 18 49897503 49924389 4.27249106 2.81632176 2.49E-10 8.65E-08 
ENSBTAG00000031647 LRG1 7 19596244 19599321 5.98911774 2.68838879 6.40E-14 9.33E-11 
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Table 5.S6 Common and unique differential expressed genes between four feedlots 

Feedlot Number of 
overlapping genes 

Gene ID 

FEEDLOT 1, FEEDLOT 2, 
FEEDLOT 3, FEEDLOT 4 

12 ENSBTAG00000046158, ENSBTAG00000049808, ENSBTAG00000006343, 
ENSBTAG00000002996, ENSBTAG00000007901, ENSBTAG00000039037, 
ENSBTAG00000008951, ENSBTAG00000009773, ENSBTAG00000000377, 
ENSBTAG00000050618, ENSBTAG00000031647, ENSBTAG00000017969 

FEEDLOT 1, FEEDLOT 2, 
FEEDLOT 4 

1 ENSBTAG00000020406 

FEEDLOT 1, FEEDLOT 2, 
FEEDLOT 3 

30 ENSBTAG00000020676, ENSBTAG00000006221, ENSBTAG00000037644, 
ENSBTAG00000046152, ENSBTAG00000014149, ENSBTAG00000006354, 
ENSBTAG00000019330, ENSBTAG00000007239, ENSBTAG00000049569, 
ENSBTAG00000051412, ENSBTAG00000012640, ENSBTAG00000006505, 
ENSBTAG00000015592, ENSBTAG00000052012, ENSBTAG00000017251, 
ENSBTAG00000018280, ENSBTAG00000013706, ENSBTAG00000002233, 
ENSBTAG00000048835, ENSBTAG00000054844, ENSBTAG00000020580, 
ENSBTAG00000021240, ENSBTAG00000019627, ENSBTAG00000054882, 
ENSBTAG00000031950, ENSBTAG00000049416, ENSBTAG00000051132, 
ENSBTAG00000006999, ENSBTAG00000020257, ENSBTAG00000019669 

FEEDLOT 1, FEEDLOT 3, 
FEEDLOT 4 

1 ENSBTAG00000011037 

FEEDLOT 1, FEEDLOT 2 6 ENSBTAG00000011677, ENSBTAG00000010065, ENSBTAG00000050072, 
ENSBTAG00000005668, ENSBTAG00000003353, ENSBTAG00000006523 

FEEDLOT 1, FEEDLOT 4 3 ENSBTAG00000048626, ENSBTAG00000011990, ENSBTAG00000018016 
FEEDLOT 3, FEEDLOT 4 1 ENSBTAG00000030542 
FEEDLOT 1, FEEDLOT 3 21 ENSBTAG00000008389, ENSBTAG00000033748, ENSBTAG00000003519, 

ENSBTAG00000008428, ENSBTAG00000038532, ENSBTAG00000048720, 
ENSBTAG00000018134, ENSBTAG00000007169, ENSBTAG00000010464, 
ENSBTAG00000013290, ENSBTAG00000013201, ENSBTAG00000010007, 
ENSBTAG00000018446, ENSBTAG00000013178, ENSBTAG00000012638, 
ENSBTAG00000022779, ENSBTAG00000003920, ENSBTAG00000013205, 
ENSBTAG00000013356, ENSBTAG00000002635, ENSBTAG00000048737 

FEEDLOT 2 1 ENSBTAG00000013103 
FEEDLOT 4 3 ENSBTAG00000005359, ENSBTAG00000004757, ENSBTAG00000000273 
FEEDLOT 1 53 ENSBTAG00000020430, ENSBTAG00000030424, ENSBTAG00000010273, 

ENSBTAG00000053557, ENSBTAG00000004741, ENSBTAG00000001292, 
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ENSBTAG00000016477, ENSBTAG00000002148, ENSBTAG00000052465, 
ENSBTAG00000006608, ENSBTAG00000015032, ENSBTAG00000023648, 
ENSBTAG00000014069, ENSBTAG00000021647, ENSBTAG00000020892, 
ENSBTAG00000010328, ENSBTAG00000008851, ENSBTAG00000013555, 
ENSBTAG00000006156, ENSBTAG00000019567, ENSBTAG00000024852, 
ENSBTAG00000014046, ENSBTAG00000037826, ENSBTAG00000002976, 
ENSBTAG00000004716, ENSBTAG00000004150, ENSBTAG00000000783, 
ENSBTAG00000008648, ENSBTAG00000016204, ENSBTAG00000010047, 
ENSBTAG00000006685, ENSBTAG00000051383, ENSBTAG00000001785, 
ENSBTAG00000014269, ENSBTAG00000014122, ENSBTAG00000013368, 
ENSBTAG00000001032, ENSBTAG00000001511, ENSBTAG00000018223, 
ENSBTAG00000035081, ENSBTAG00000018517, ENSBTAG00000008124, 
ENSBTAG00000045854, ENSBTAG00000011465, ENSBTAG00000019428, 
ENSBTAG00000032068, ENSBTAG00000054765, ENSBTAG00000006904, 
ENSBTAG00000006921, ENSBTAG00000003944, ENSBTAG00000001051, 
ENSBTAG00000016566, ENSBTAG00000045808 

 

Table 5.S7 Common and unique differential expressed genes between combined population and separated population 
Population Number of overlapping genes 
Combined Separated 96 
Separated 40 
Combined 5 
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Table 5.S8 cis-eQTLs and associated differentially expressed genes 
SNP Gene ID b P-value FDR 
rs136463215 ENSBTAG00000050072 -1.151441192 1.25E-07 0.00361096 
rs132778261 ENSBTAG00000050072 -1.036920098 6.63E-07 0.00593164 
BovineNovelSNP6258 ENSBTAG00000023648 -0.936823393 9.45E-07 0.00593164 
rs136117999 ENSBTAG00000050072 -0.959500463 1.31E-06 0.00593164 
rs135114400 ENSBTAG00000050072 -1.015796131 1.72E-06 0.00593164 
rs135509473 ENSBTAG00000050072 -1.015796131 1.72E-06 0.00593164 
rs135903006 ENSBTAG00000050072 -1.015796131 1.72E-06 0.00593164 
rs43710072 ENSBTAG00000050072 -0.993328162 1.79E-06 0.00593164 
rs137181196 ENSBTAG00000050072 -1.004675437 2.04E-06 0.00593164 
rs209419196 ENSBTAG00000014046 -1.004018411 2.06E-06 0.00593164 
rs109814352 ENSBTAG00000050072 -0.984223847 3.84E-06 0.00882835 
rs136875779 ENSBTAG00000050072 -0.987365313 3.98E-06 0.00882835 
rs136639428 ENSBTAG00000050072 -0.987365313 3.98E-06 0.00882835 
rs379381979 ENSBTAG00000050072 -1.020528922 4.79E-06 0.00986986 
rs378845799 ENSBTAG00000037826 1.496328968 6.53E-06 0.01169291 
rs134318440 ENSBTAG00000050072 -1.011799556 7.58E-06 0.01169291 
rs110027202 ENSBTAG00000007169 1.333801699 7.91E-06 0.01169291 
BovineNovelSNP7867 ENSBTAG00000001051 1.046877853 8.38E-06 0.01169291 
BPI-1 ENSBTAG00000014046 -0.96921043 9.19E-06 0.01169291 
BovineNovelSNP6247 ENSBTAG00000037826 1.356986622 9.43E-06 0.01169291 
rs134992936 ENSBTAG00000050072 -0.863103168 9.71E-06 0.01169291 
rs135887479 ENSBTAG00000050072 -0.863103168 9.71E-06 0.01169291 
rs380015858 ENSBTAG00000037826 1.257427145 1.08E-05 0.01169291 
rs41764149 ENSBTAG00000023648 -0.652011472 1.13E-05 0.01169291 
rs109866590 ENSBTAG00000007169 1.345077876 1.18E-05 0.01169291 
BovineNovelSNP6248 ENSBTAG00000037826 1.342154121 1.25E-05 0.01169291 
rs480991415 ENSBTAG00000007169 1.102918492 1.44E-05 0.01169291 
rs211272757 ENSBTAG00000007169 1.273035574 1.55E-05 0.01169291 
BovineNovelSNP6257 ENSBTAG00000023648 -0.707169856 1.67E-05 0.01169291 
rs109253689 ENSBTAG00000050072 -0.810288529 1.69E-05 0.01169291 
BovineHD2700002052 ENSBTAG00000053557 0.979333349 1.91E-05 0.01169291 
rs133689837 ENSBTAG00000050072 -0.757932887 2.00E-05 0.01169291 
BovineNovelSNP5007 ENSBTAG00000050072 1.105340547 2.08E-05 0.01169291 
rs133288538 ENSBTAG00000050072 -0.833040473 2.12E-05 0.01169291 
rs378845799 ENSBTAG00000023648 1.470652322 2.12E-05 0.01169291 
rs384834845 ENSBTAG00000037826 1.227015394 2.15E-05 0.01169291 
rs133584270 ENSBTAG00000006523 1.1179606 2.17E-05 0.01169291 
BovineHD2700002049 ENSBTAG00000053557 0.966348033 2.18E-05 0.01169291 
rs381615356 ENSBTAG00000007169 1.262189968 2.29E-05 0.01169291 
rs133559965 ENSBTAG00000050072 -0.816126161 2.40E-05 0.01169291 
rs110649799 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs384236795 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs109675415 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs211337252 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs208096245 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs210027361 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs384661513 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs378701182 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
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rs108992565 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs109123599 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs383570468 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs379189766 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs380912239 ENSBTAG00000037826 1.299574946 2.47E-05 0.01169291 
rs41764156 ENSBTAG00000023648 -0.626272323 2.58E-05 0.01169291 
rs41764148 ENSBTAG00000023648 -0.622027786 2.67E-05 0.01169291 
rs109469511 ENSBTAG00000007169 1.250065307 2.72E-05 0.01169291 
rs134218499 ENSBTAG00000050072 -0.861241626 2.75E-05 0.01169291 
rs109963601 ENSBTAG00000007169 1.242414453 3.15E-05 0.01169291 
BovineNovelSNP1874 ENSBTAG00000015592 1.675763745 3.31E-05 0.01169291 
rs111005070 ENSBTAG00000007169 1.336629559 3.44E-05 0.01169291 
rs110221216 ENSBTAG00000007169 1.336629559 3.44E-05 0.01169291 
BovineNovelSNP6236 ENSBTAG00000037826 1.054219123 3.62E-05 0.01169291 
rs478517851 ENSBTAG00000007169 1.381533337 3.72E-05 0.01169291 
rs135920660 ENSBTAG00000050072 -0.929104675 3.77E-05 0.01169291 
rs109423917 ENSBTAG00000037826 1.344214818 3.82E-05 0.01169291 
rs109494290 ENSBTAG00000007169 1.25652957 3.85E-05 0.01169291 
rs209697538 ENSBTAG00000007169 1.322189214 3.93E-05 0.01169291 
rs208918103 ENSBTAG00000007169 1.33360881 3.99E-05 0.01169291 
rs379204276 ENSBTAG00000007169 1.343404088 4.14E-05 0.01169291 
rs208597045 ENSBTAG00000007169 1.343404088 4.14E-05 0.01169291 
rs208392503 ENSBTAG00000007169 1.321680177 4.20E-05 0.01169291 
BovineNovelSNP2890 ENSBTAG00000006156 0.912743673 4.27E-05 0.01169291 
BovineHD1100028701 ENSBTAG00000050072 0.813649541 4.36E-05 0.01169291 
rs134253779 ENSBTAG00000013368 0.567168129 4.49E-05 0.01169291 
rs210855945 ENSBTAG00000037826 1.264310659 4.62E-05 0.01169291 
BovineHD1900007133 ENSBTAG00000007169 0.692888452 4.86E-05 0.01169291 
BovineHD4100000445 ENSBTAG00000013205 1.407531059 5.19E-05 0.01169291 
rs380015858 ENSBTAG00000023648 1.2064919 5.21E-05 0.01169291 
rs109720430 ENSBTAG00000007169 1.261237356 5.26E-05 0.01169291 
rs109276468 ENSBTAG00000007169 1.261237356 5.26E-05 0.01169291 
rs41764146 ENSBTAG00000023648 -0.594293896 5.30E-05 0.01169291 
rs384378514 ENSBTAG00000050072 -1.109339172 5.63E-05 0.01169291 
Hapmap24097-BTA-
155074 ENSBTAG00000054882 1.416580892 5.73E-05 0.01169291 

rs110435405 ENSBTAG00000007169 1.252064338 5.88E-05 0.01169291 
rs207625164 ENSBTAG00000037826 1.142558449 5.99E-05 0.01169291 
rs209077424 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs211382737 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs208590366 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs110355995 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs209396627 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs208158771 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs109894072 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs209873016 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs211364835 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs109657179 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs109951644 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs380500408 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs109799358 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
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rs454128726 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
BovineNovelSNP8305 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs474090479 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs385386703 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs209382483 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs210664159 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs385534586 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs110183067 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs110470192 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs380870463 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs110216795 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs209640330 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs109395581 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs208397929 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs109407915 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs109713305 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs209824393 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs208937080 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs207552699 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs384304611 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs110319551 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs110521456 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs109295626 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs207981923 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs381459677 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs382981281 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs209377890 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs211438878 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs380673294 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs379586566 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs110358901 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs209560186 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs210852240 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs208617602 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs110768706 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs109931725 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs435667495 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs717603562 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs455545137 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs380133354 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs386036038 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs382260499 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs381517349 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs210696845 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs109806956 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs208243367 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs209805262 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs110062927 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs210976463 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs210313551 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
rs461463504 ENSBTAG00000007169 1.276717138 6.04E-05 0.01169291 
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Hapmap24097-BTA-
155074 ENSBTAG00000048720 1.321538763 6.16E-05 0.01184515 

BovineHD1100028669 ENSBTAG00000050072 0.798580366 6.62E-05 0.01250736 
rs382687054 ENSBTAG00000007169 1.179416396 6.76E-05 0.01250736 
rs210550945 ENSBTAG00000007169 1.266277044 6.98E-05 0.01250736 
rs41764160 ENSBTAG00000023648 -0.711786121 7.05E-05 0.01250736 
rs110984867 ENSBTAG00000007169 1.274903424 7.11E-05 0.01250736 
rs109097777 ENSBTAG00000007169 1.274903424 7.11E-05 0.01250736 
rs210292124 ENSBTAG00000007169 1.274903424 7.11E-05 0.01250736 
rs109639120 ENSBTAG00000007169 1.274903424 7.11E-05 0.01250736 
rs108987961 ENSBTAG00000007169 1.274903424 7.11E-05 0.01250736 
rs378032218 ENSBTAG00000007169 1.274903424 7.11E-05 0.01250736 
rs209609982 ENSBTAG00000007169 1.274903424 7.11E-05 0.01250736 
rs210896530 ENSBTAG00000007169 1.274903424 7.11E-05 0.01250736 
rs211352602 ENSBTAG00000007169 1.274903424 7.11E-05 0.01250736 
rs109023860 ENSBTAG00000007169 1.274903424 7.11E-05 0.01250736 
rs470959062 ENSBTAG00000037826 1.213000822 7.22E-05 0.01259037 
rs137449581 ENSBTAG00000003519 0.763691372 7.25E-05 0.01259037 
rs210528754 ENSBTAG00000007169 1.173498571 7.33E-05 0.01259037 
rs209557475 ENSBTAG00000007169 1.173498571 7.33E-05 0.01259037 
rs136573913 ENSBTAG00000050072 -1.005072876 7.55E-05 0.0128134 
rs133943504 ENSBTAG00000050072 -1.005072876 7.55E-05 0.0128134 
BovineNovelSNP6235 ENSBTAG00000037826 1.053600465 7.63E-05 0.01287224 
rs41764164 ENSBTAG00000023648 0.61885078 7.96E-05 0.01335045 
rs109083521 ENSBTAG00000007169 1.291300239 8.17E-05 0.01346885 
rs110992329 ENSBTAG00000007169 1.291300239 8.17E-05 0.01346885 
rs109362135 ENSBTAG00000007169 1.249591053 8.17E-05 0.01346885 
rs132727016 ENSBTAG00000050072 -0.743411407 8.38E-05 0.01373781 
rs209788846 ENSBTAG00000007169 0.952819635 8.52E-05 0.0138117 
rs109802603 ENSBTAG00000007169 1.166456092 8.59E-05 0.0138117 
BovineNovelSNP6247 ENSBTAG00000023648 1.258223876 8.60E-05 0.0138117 
BovineHD2400018165 ENSBTAG00000054882 1.518050232 8.61E-05 0.0138117 
rs134880342 ENSBTAG00000023648 -0.694835939 8.83E-05 0.01407982 
BovineHD1300019256 ENSBTAG00000014046 -0.81598874 9.33E-05 0.01479579 
rs137796850 ENSBTAG00000006523 1.053592941 9.41E-05 0.01482432 
BovineHD1500015132 ENSBTAG00000023648 0.649413975 9.45E-05 0.01482432 
rs208819931 ENSBTAG00000007169 1.241528314 9.57E-05 0.0149297 
rs109022863 ENSBTAG00000007169 1.281082597 9.76E-05 0.0150106 
rs110486937 ENSBTAG00000007169 1.281082597 9.76E-05 0.0150106 
rs208453447 ENSBTAG00000007169 1.15938873 9.99E-05 0.0150106 
rs379837335 ENSBTAG00000037826 1.226069828 0.000103075 0.0150106 
rs383741409 ENSBTAG00000023648 0.632542159 0.000104347 0.0150106 
BovineNovelSNP8060 ENSBTAG00000001051 0.981606217 0.000107214 0.0150106 
rs211049632 ENSBTAG00000050072 -1.174543696 0.000108578 0.0150106 
rs110727928 ENSBTAG00000007169 1.172329021 0.000111995 0.0150106 
BovineNovelSNP6248 ENSBTAG00000023648 1.241393737 0.000112037 0.0150106 
ARS-BFGL-NGS-
113310 ENSBTAG00000050072 -0.99972776 0.000112422 0.0150106 

rs109839719 ENSBTAG00000037826 1.271824674 0.000113028 0.0150106 
BovineNovelSNP8059 ENSBTAG00000001051 1.047264388 0.000113443 0.0150106 
rs109523587 ENSBTAG00000007169 1.167866187 0.000115592 0.0150106 
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rs109243850 ENSBTAG00000037826 1.239199826 0.000116126 0.0150106 
rs378119501 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs209454814 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs110484719 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs110291359 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs110590171 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs379579470 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs386005521 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs17871932 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs384757898 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs382814052 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs110655477 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs381009841 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs384751641 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs109163269 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs111030273 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs381355412 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs109301790 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs110002677 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs380747717 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs384642823 ENSBTAG00000037826 1.105883787 0.00011634 0.0150106 
rs110609944 ENSBTAG00000003519 0.677118868 0.000118396 0.0150106 
rs384834845 ENSBTAG00000023648 1.160398966 0.000119075 0.0150106 
rs378940497 ENSBTAG00000037826 1.198108907 0.000120871 0.0150106 
rs110649799 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs384236795 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs109675415 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs211337252 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs208096245 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs210027361 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs384661513 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs378701182 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs108992565 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs109123599 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs383570468 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs379189766 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs380912239 ENSBTAG00000023648 1.235484462 0.000122232 0.0150106 
rs110492696 ENSBTAG00000037826 1.038771405 0.000122922 0.01503143 
rs108947221 ENSBTAG00000007169 1.254015856 0.000129994 0.01582124 
rs110691164 ENSBTAG00000003519 0.751742806 0.000132517 0.01582124 
BovineNovelSNP6242 ENSBTAG00000037826 1.168370704 0.000134315 0.01582124 
rs43125505 ENSBTAG00000037826 1.168370704 0.000134315 0.01582124 
rs43125490 ENSBTAG00000037826 1.168370704 0.000134315 0.01582124 
BovineNovelSNP6244 ENSBTAG00000037826 1.168370704 0.000134315 0.01582124 
BovineNovelSNP6245 ENSBTAG00000037826 1.168370704 0.000134315 0.01582124 
BovineNovelSNP6246 ENSBTAG00000037826 1.168370704 0.000134315 0.01582124 
BovineNovelSNP6253 ENSBTAG00000037826 1.168370704 0.000134315 0.01582124 
rs17871916 ENSBTAG00000003920 0.820068048 0.000138339 0.01622897 
BovineHD1500015154 ENSBTAG00000023648 -0.624430743 0.000140768 0.01638074 
ARS-BFGL-NGS-
73444 ENSBTAG00000023648 -0.624430743 0.000140768 0.01638074 
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BovineNovelSNP6238 ENSBTAG00000023648 0.671736621 0.000147079 0.01704634 
rs110498821 ENSBTAG00000007169 1.135310679 0.000157707 0.01820507 
rs379128552 ENSBTAG00000037826 1.036323909 0.000159825 0.01827918 
BovineHD2400018165 ENSBTAG00000051132 1.492279332 0.000160174 0.01827918 
rs109198864 ENSBTAG00000007169 1.256584751 0.000160249 0.01827918 
rs133366258 ENSBTAG00000053557 -1.140421309 0.000161869 0.01839126 
rs379388109 ENSBTAG00000037826 1.196331857 0.000165851 0.01870033 
rs210855945 ENSBTAG00000023648 1.218365684 0.000165885 0.01870033 
BovineNovelSNP8061 ENSBTAG00000001051 1.020655115 0.000167209 0.01877618 
rs441131550 ENSBTAG00000046158 -1.669538827 0.000173629 0.01934652 
rs378772585 ENSBTAG00000046158 -1.669538827 0.000173629 0.01934652 
BovineNovelSNP3300 ENSBTAG00000031647 -2.057585956 0.000181864 0.02018617 
BovineNovelSNP2644 ENSBTAG00000005668 -0.952859279 0.000185021 0.02031634 
rs41765522 ENSBTAG00000023648 -0.679671285 0.000187964 0.02031634 
rs41765523 ENSBTAG00000023648 -0.679671285 0.000187964 0.02031634 
rs41765524 ENSBTAG00000023648 -0.679671285 0.000187964 0.02031634 
rs41766436 ENSBTAG00000023648 -0.679671285 0.000187964 0.02031634 
rs41766444 ENSBTAG00000023648 -0.679671285 0.000187964 0.02031634 
rs109012205 ENSBTAG00000023648 -0.679671285 0.000187964 0.02031634 
BovineNovelSNP8151 ENSBTAG00000001051 0.913417547 0.000189995 0.02045917 
rs526797318 ENSBTAG00000007169 1.11123967 0.000195585 0.02082796 
rs382497480 ENSBTAG00000007169 1.11123967 0.000195585 0.02082796 
rs110389111 ENSBTAG00000007169 1.11123967 0.000195585 0.02082796 
rs137152628 ENSBTAG00000050072 -0.871778226 0.000201168 0.02130784 
rs211589616 ENSBTAG00000006523 1.005311061 0.000201568 0.02130784 
rs109276195 ENSBTAG00000037826 1.165894655 0.000202337 0.02131114 
BovineNovelSNP7882 ENSBTAG00000001051 0.953002591 0.00020716 0.02173971 
BovineHD1100028832 ENSBTAG00000050072 -0.703476907 0.00021111 0.02207401 
ARS-BFGL-NGS-5022 ENSBTAG00000023648 0.591897661 0.000214272 0.02232376 
rs209051289 ENSBTAG00000007169 1.100294845 0.000220507 0.02280863 
rs209727009 ENSBTAG00000007169 1.100294845 0.000220507 0.02280863 
BovineHD2400018203 ENSBTAG00000048720 1.387928169 0.000226113 0.02314209 
rs211035768 ENSBTAG00000007169 1.165544261 0.000226499 0.02314209 
BovineHD1500014907 ENSBTAG00000023648 0.602004472 0.000227043 0.02314209 
ARS-BFGL-NGS-
59463 ENSBTAG00000023648 0.602004472 0.000227043 0.02314209 

rs135908577 ENSBTAG00000050072 -0.925734864 0.00022774 0.02314209 
rs441961624 ENSBTAG00000052465 -0.986343555 0.000230942 0.02338506 
rs135413666 ENSBTAG00000050072 -0.736443565 0.000237453 0.02396038 
rs109423917 ENSBTAG00000023648 1.252706917 0.000238549 0.02398702 
rs209436475 ENSBTAG00000007169 1.227996191 0.000244387 0.02448873 
BovineHD1500015115 ENSBTAG00000023648 0.635477851 0.00024702 0.02458257 
rs110262321 ENSBTAG00000003519 0.691405243 0.000247027 0.02458257 
rs135236972 ENSBTAG00000015592 0.716104131 0.000248064 0.02460093 
BovineNovelSNP3258 ENSBTAG00000007901 -1.313844662 0.000249904 0.02469853 
rs135908199 ENSBTAG00000006523 1.107655927 0.00025542 0.02505791 
rs110955377 ENSBTAG00000007169 1.187972519 0.000256145 0.02505791 
rs110088639 ENSBTAG00000007169 1.187972519 0.000256145 0.02505791 
rs210582705 ENSBTAG00000006523 0.980956898 0.000259068 0.02517316 
rs211353086 ENSBTAG00000006523 0.980956898 0.000259068 0.02517316 
rs109906421 ENSBTAG00000006523 -0.702352509 0.000274169 0.02650275 
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BovineNovelSNP7827 ENSBTAG00000001051 0.991459031 0.000274588 0.02650275 
rs450088264 ENSBTAG00000007169 1.180731623 0.000278132 0.02675535 
rs207625164 ENSBTAG00000023648 1.077809325 0.000285897 0.02741098 
rs385165514 ENSBTAG00000006523 -0.699941884 0.00028918 0.02756553 
rs211483835 ENSBTAG00000007169 1.042513079 0.000289419 0.02756553 
BovineNovelSNP8064 ENSBTAG00000001051 1.07776921 0.000290383 0.02756629 
Hapmap24097-BTA-
155074 ENSBTAG00000051132 1.308673575 0.000292258 0.02765334 

rs384814481 ENSBTAG00000007169 1.173508083 0.000297142 0.02802361 
rs210895989 ENSBTAG00000007169 1.129308562 0.000300122 0.02821246 
rs110660745 ENSBTAG00000007169 1.171900291 0.000301512 0.02825111 
rs136568050 ENSBTAG00000050072 -0.759583298 0.000302688 0.02826951 
BovineHD2400018101 ENSBTAG00000048720 -1.309083629 0.000306477 0.02853102 
rs381050941 ENSBTAG00000049808 0.961622851 0.000316496 0.02934307 
rs110203907 ENSBTAG00000007169 1.144703893 0.000317233 0.02934307 
rs381006828 ENSBTAG00000046158 -1.618569151 0.000321168 0.02961207 
rs209822745 ENSBTAG00000007169 1.168312594 0.000322433 0.02963407 
rs17871713 ENSBTAG00000037826 1.105699567 0.00032539 0.0298109 
rs384240836 ENSBTAG00000037826 1.047266865 0.000328364 0.02998812 
BTB-00604291 ENSBTAG00000023648 0.597033046 0.000336727 0.03026428 
BovineHD1500014999 ENSBTAG00000023648 -0.597033046 0.000336727 0.03026428 
rs41768418 ENSBTAG00000023648 -0.597033046 0.000336727 0.03026428 
BovineHD1500015059 ENSBTAG00000023648 -0.597033046 0.000336727 0.03026428 
rs109413789 ENSBTAG00000037826 0.989095261 0.000338645 0.03026428 
rs378112010 ENSBTAG00000006523 0.832600051 0.000338888 0.03026428 
rs210900104 ENSBTAG00000007169 0.955737377 0.000340826 0.03026428 
rs109792791 ENSBTAG00000007169 0.955737377 0.000340826 0.03026428 
rs209772652 ENSBTAG00000007169 0.955737377 0.000340826 0.03026428 
rs379368071 ENSBTAG00000007169 1.1682631 0.000351858 0.03105278 
rs210642963 ENSBTAG00000007169 1.1682631 0.000351858 0.03105278 
rs384545049 ENSBTAG00000007169 0.958186262 0.000354189 0.03114051 
rs137604908 ENSBTAG00000046152 -1.33989126 0.00035501 0.03114051 
rs135282255 ENSBTAG00000050072 -0.702948787 0.000361932 0.03151878 
rs110684121 ENSBTAG00000007169 1.164108491 0.000362577 0.03151878 
rs378940497 ENSBTAG00000023648 1.157157577 0.000365289 0.03151878 
rs207689213 ENSBTAG00000007169 1.167366273 0.000371589 0.03151878 
rs209253469 ENSBTAG00000007169 1.167366273 0.000371589 0.03151878 
rs210292339 ENSBTAG00000007169 0.668506357 0.000372668 0.03151878 
rs380443848 ENSBTAG00000007169 0.668506357 0.000372668 0.03151878 
rs383490727 ENSBTAG00000007169 0.668506357 0.000372668 0.03151878 
rs210197442 ENSBTAG00000007169 0.668506357 0.000372668 0.03151878 
rs208212613 ENSBTAG00000007169 0.668506357 0.000372668 0.03151878 
rs211490355 ENSBTAG00000007169 0.668506357 0.000372668 0.03151878 
BovineHD2400018165 ENSBTAG00000048835 1.421417041 0.000373101 0.03151878 
rs208957111 ENSBTAG00000007169 1.074017241 0.000375312 0.03151878 
rs380327479 ENSBTAG00000046158 -2.017963814 0.000375344 0.03151878 
rs136938332 ENSBTAG00000013368 0.516289627 0.000375705 0.03151878 
BovineNovelSNP3270 ENSBTAG00000007901 -1.177962003 0.00038276 0.03198242 
rs208015502 ENSBTAG00000007169 1.150029735 0.000386772 0.03198242 
rs110473764 ENSBTAG00000007169 1.150029735 0.000386772 0.03198242 
rs211602540 ENSBTAG00000007169 1.150029735 0.000386772 0.03198242 
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rs209059328 ENSBTAG00000007169 1.150029735 0.000386772 0.03198242 
rs43125499 ENSBTAG00000023648 -0.642431741 0.000392423 0.03235697 
rs210214722 ENSBTAG00000007169 1.148303068 0.000402295 0.03307647 
BPI-2 ENSBTAG00000014046 -0.799893603 0.000427395 0.03504036 
rs209886375 ENSBTAG00000049808 2.018315435 0.000434097 0.03544752 
rs41764145 ENSBTAG00000023648 -0.601132133 0.000434818 0.03544752 
rs210926622 ENSBTAG00000007169 1.141048947 0.000437896 0.03559784 
rs110492696 ENSBTAG00000023648 0.990181993 0.000445686 0.03602509 
BovineNovelSNP8063 ENSBTAG00000001051 1.071118484 0.000445859 0.03602509 
rs382462514 ENSBTAG00000037826 0.966862432 0.000446896 0.03602509 
BovineNovelSNP3270 ENSBTAG00000004716 -0.749992196 0.0004505 0.03621068 
rs137238434 ENSBTAG00000006523 1.045044909 0.000458873 0.03621068 
rs109839719 ENSBTAG00000023648 1.201125777 0.00047261 0.03621068 
rs17871713 ENSBTAG00000023648 1.116762509 0.0004767 0.03621068 
BovineHD1300019252 ENSBTAG00000014046 0.714746869 0.000477925 0.03621068 
ARS-BFGL-BAC-
13210 ENSBTAG00000014046 -0.714746869 0.000477925 0.03621068 

rs134805892 ENSBTAG00000050072 -0.942123265 0.000479238 0.03621068 
rs110956138 ENSBTAG00000037826 1.030997003 0.000480583 0.03621068 
rs378119501 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs209454814 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs110484719 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs110291359 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs110590171 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs379579470 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs386005521 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs17871932 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs384757898 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs382814052 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs110655477 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs381009841 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs384751641 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs109163269 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs111030273 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs381355412 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs109301790 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs110002677 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs380747717 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs384642823 ENSBTAG00000023648 1.044347834 0.000484332 0.03621068 
rs379544660 ENSBTAG00000037826 1.049901381 0.000498184 0.03713197 
rs132835009 ENSBTAG00000015592 0.736168496 0.000499227 0.03713197 
BovineNovelSNP3240 ENSBTAG00000004716 -0.738490866 0.000516562 0.03832255 
rs109852396 ENSBTAG00000037826 1.089684946 0.000518017 0.03833191 
rs135757859 ENSBTAG00000006523 0.902703564 0.000532709 0.03901846 
BovineNovelSNP8062 ENSBTAG00000001051 1.055324975 0.00053402 0.03901846 
BovineNovelSNP6646 ENSBTAG00000010464 -0.713461954 0.000534025 0.03901846 
rs109370010 ENSBTAG00000007169 1.155335935 0.000535407 0.03901846 
rs110050587 ENSBTAG00000007169 1.155335935 0.000535407 0.03901846 
rs110697789 ENSBTAG00000007169 1.155335935 0.000535407 0.03901846 
rs443132523 ENSBTAG00000007169 1.158704354 0.00054021 0.03926935 
rs470959062 ENSBTAG00000023648 1.104105201 0.000547717 0.03971501 
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rs211664177 ENSBTAG00000007169 1.025559079 0.000551447 0.03988524 
rs41764149 ENSBTAG00000037826 -0.500333125 0.000564785 0.0407478 
rs385877417 ENSBTAG00000046158 -1.957115928 0.000568585 0.04091968 
rs109110987 ENSBTAG00000037826 1.086567953 0.0005714 0.04102001 
BovineHD0200038361 ENSBTAG00000008951 1.095270955 0.000588135 0.04211662 
BovineHD1800010610 ENSBTAG00000003519 -0.662402622 0.000599608 0.04278606 
rs379388109 ENSBTAG00000023648 1.136086191 0.000602061 0.04278606 
BovineHD0200012931 ENSBTAG00000007239 -0.782030421 0.000603296 0.04278606 
rs379837335 ENSBTAG00000023648 1.130917531 0.000603414 0.04278606 
rs137193464 ENSBTAG00000050072 -0.622590402 0.000613639 0.04340444 
rs208520654 ENSBTAG00000007169 0.996150427 0.000617591 0.04345865 
BovineNovelSNP7611 ENSBTAG00000001051 1.07550156 0.000618525 0.04345865 
rs110776111 ENSBTAG00000006523 -0.643019641 0.000618923 0.04345865 
rs476887482 ENSBTAG00000009773 -1.56897358 0.000620678 0.04347611 
BTA-118330-no-rs ENSBTAG00000017969 0.723577835 0.000649187 0.04536294 
rs134790017 ENSBTAG00000013368 0.488364676 0.000663854 0.04627576 
rs134045305 ENSBTAG00000006990 0.995327553 0.000677703 0.04712727 
rs385450627 ENSBTAG00000037826 0.998914885 0.000692034 0.04800822 
rs385226415 ENSBTAG00000037826 1.05241891 0.000697833 0.04829437 
rs384404605 ENSBTAG00000046158 -1.544651071 0.000710332 0.04882173 
rs481915313 ENSBTAG00000046158 -1.924734957 0.000710413 0.04882173 
rs382268066 ENSBTAG00000046158 -1.405140848 0.000710528 0.04882173 
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Table 5.S9 trans-eQTLs and associated differentially expressed genes 
SNP Gene ID b P-value FDR 
rs207554348 ENSBTAG00000000783 -1.567618021 2.49E-09 0.00074946 
rs207554348 ENSBTAG00000001051 -1.679171656 9.76E-10 0.00033515 
rs207554348 ENSBTAG00000001292 -1.745873419 2.36E-09 0.00072162 
rs472302580 ENSBTAG00000001292 1.971267192 5.24E-08 0.01037913 
rs207554348 ENSBTAG00000001785 -1.848084539 1.28E-10 6.47E-05 
rs207554348 ENSBTAG00000002148 -1.642985365 5.19E-14 9.98E-07 
BovineNovelSNP579 ENSBTAG00000002148 1.101158625 9.54E-08 0.01730064 
rs207554348 ENSBTAG00000002233 -2.096358163 6.97E-11 3.83E-05 
BovineNovelSNP579 ENSBTAG00000002233 1.7420936 2.58E-09 0.00076183 
rs207554348 ENSBTAG00000002635 -1.378935733 1.24E-08 0.00293961 
rs472302580 ENSBTAG00000002635 1.810910269 6.85E-10 0.00025832 
rs207554348 ENSBTAG00000003353 -1.800046315 1.05E-09 0.00035305 
BovineNovelSNP2890 ENSBTAG00000003353 1.373225367 1.57E-07 0.02551795 
rs207554348 ENSBTAG00000003519 -1.681341522 1.33E-10 6.57E-05 
BovineNovelSNP579 ENSBTAG00000003519 1.332073305 2.71E-08 0.00584919 
rs207554348 ENSBTAG00000003920 -1.80490207 1.28E-12 1.97E-06 
BovineNovelSNP579 ENSBTAG00000003920 1.306988544 3.46E-08 0.00723057 
rs207554348 ENSBTAG00000004150 -1.520876975 3.77E-10 0.00015763 
rs207554348 ENSBTAG00000004716 -1.409380216 4.53E-10 0.00018546 
rs472302580 ENSBTAG00000004716 1.474145913 1.89E-07 0.02906562 
rs207554348 ENSBTAG00000004741 -1.700008009 7.36E-10 0.00026702 
BovineNovelSNP579 ENSBTAG00000004741 1.313696014 2.08E-07 0.03171393 
rs207554348 ENSBTAG00000005668 -1.97014086 2.32E-13 1.11E-06 
ARS-BFGL-NGS-
80280 ENSBTAG00000005668 -1.615340993 3.12E-07 0.04378099 

rs207554348 ENSBTAG00000006156 -1.624978444 2.22E-11 1.33E-05 
BovineNovelSNP579 ENSBTAG00000006156 1.173886567 1.89E-07 0.02906562 
rs207554348 ENSBTAG00000006221 -2.193621609 8.55E-11 4.44E-05 
BovineNovelSNP579 ENSBTAG00000006221 1.702167154 4.14E-08 0.00846375 
rs207554348 ENSBTAG00000006343 -3.367262729 9.12E-12 7.41E-06 
rs207554348 ENSBTAG00000006354 -2.227279685 9.25E-12 7.41E-06 
rs207554348 ENSBTAG00000006505 -2.167642221 6.58E-13 1.41E-06 
BovineNovelSNP579 ENSBTAG00000006505 1.45938953 2.68E-07 0.03867101 
rs207554348 ENSBTAG00000006523 -1.931499631 1.62E-12 2.08E-06 
rs207554348 ENSBTAG00000006904 -1.411825473 3.15E-07 0.04383373 
BovineNovelSNP579 ENSBTAG00000006904 1.386856891 1.56E-08 0.00365732 
rs207554348 ENSBTAG00000006921 -1.491312019 1.65E-09 0.00053688 
rs207554348 ENSBTAG00000006990 -1.594446217 4.72E-09 0.00135396 
BovineNovelSNP579 ENSBTAG00000006990 1.415834188 7.41E-09 0.00187453 
rs207554348 ENSBTAG00000006999 -2.398780857 1.63E-13 1.04E-06 
rs207554348 ENSBTAG00000007169 -1.404628699 8.84E-08 0.01617885 
rs207554348 ENSBTAG00000007239 -2.37092338 1.93E-11 1.20E-05 
BovineNovelSNP579 ENSBTAG00000007239 1.729466552 1.28E-07 0.02197581 
rs207554348 ENSBTAG00000007901 -2.385945922 4.87E-12 4.68E-06 
BovineNovelSNP579 ENSBTAG00000007901 1.713357773 9.71E-08 0.01745444 
BovineNovelSNP2890 ENSBTAG00000007901 1.616494564 2.40E-07 0.03570202 
rs207554348 ENSBTAG00000008428 -1.890181763 1.60E-11 1.05E-05 
BovineNovelSNP579 ENSBTAG00000008428 1.44788656 2.13E-08 0.00481333 
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rs207554348 ENSBTAG00000008951 -2.939356878 8.00E-11 4.27E-05 
BovineNovelSNP579 ENSBTAG00000008951 2.185292051 1.64E-07 0.02630587 
rs207554348 ENSBTAG00000009773 -2.623061501 1.41E-12 1.97E-06 
BovineNovelSNP579 ENSBTAG00000009773 1.904523571 3.32E-08 0.00701296 
rs207554348 ENSBTAG00000010007 -1.647999901 4.96E-10 0.00019851 
BovineNovelSNP579 ENSBTAG00000010007 1.261590211 2.13E-07 0.03219686 
rs207554348 ENSBTAG00000010273 -2.951351717 6.53E-10 0.00025105 
BovineNovelSNP579 ENSBTAG00000010273 2.285876242 1.78E-07 0.02817999 
rs207554348 ENSBTAG00000011465 -1.537338538 2.30E-09 0.00071209 
rs207554348 ENSBTAG00000011677 -1.506156566 1.63E-08 0.00378267 
rs41890051 ENSBTAG00000012403 1.238042741 3.54E-07 0.04757233 
rs207554348 ENSBTAG00000012638 -1.939834714 1.27E-13 1.04E-06 
rs207554348 ENSBTAG00000012640 -2.212793251 3.49E-13 1.34E-06 
rs207554348 ENSBTAG00000013201 -1.800388968 4.12E-12 4.17E-06 
BovineNovelSNP579 ENSBTAG00000013201 1.320751766 4.29E-08 0.00864264 
rs207554348 ENSBTAG00000013205 -1.798314718 6.45E-13 1.41E-06 
rs207554348 ENSBTAG00000013290 -1.515991069 2.12E-09 0.00066801 
BovineNovelSNP579 ENSBTAG00000013290 1.27669676 2.63E-08 0.00573749 
rs207554348 ENSBTAG00000013356 -2.30086723 1.47E-07 0.02430409 
rs472302580 ENSBTAG00000013356 3.076795609 6.51E-09 0.00176295 
rs210747155 ENSBTAG00000013356 2.12095349 2.58E-07 0.03750555 
rs207554348 ENSBTAG00000013368 -1.667697895 8.72E-13 1.68E-06 
rs207554348 ENSBTAG00000013555 -1.583441339 1.96E-12 2.22E-06 
rs207554348 ENSBTAG00000013706 -2.044338269 2.74E-11 1.55E-05 
BovineNovelSNP579 ENSBTAG00000013706 1.498322459 1.35E-07 0.02258775 
rs384819821 ENSBTAG00000014046 1.568367431 1.76E-08 0.00402639 
rs207554348 ENSBTAG00000014122 -1.521315883 1.45E-11 1.01E-05 
BovineNovelSNP579 ENSBTAG00000014122 1.199301124 6.69E-09 0.00176295 
rs207554348 ENSBTAG00000014149 -2.183774501 1.44E-12 1.97E-06 
rs207554348 ENSBTAG00000015592 -2.130792179 4.60E-13 1.34E-06 
BovineNovelSNP2890 ENSBTAG00000015592 1.392672785 2.25E-07 0.03386956 
rs207554348 ENSBTAG00000016566 -1.975258766 7.12E-12 6.45E-06 
rs207554348 ENSBTAG00000017251 -1.747961965 1.97E-09 0.00063071 
rs207554348 ENSBTAG00000017969 -1.724938488 2.26E-08 0.00504244 
BovineNovelSNP579 ENSBTAG00000017969 1.490785807 8.58E-08 0.01585265 
BovineHD0100032240 ENSBTAG00000017969 -1.013690614 3.34E-07 0.04553411 
Hapmap55381-
rs29025399 ENSBTAG00000017969 -1.013690614 3.34E-07 0.04553411 

BovineNovelSNP2890 ENSBTAG00000018016 1.462232738 6.94E-09 0.00180319 
BovineNovelSNP2931 ENSBTAG00000018016 1.695947861 3.20E-07 0.04431169 
rs207554348 ENSBTAG00000018134 -1.87125535 4.89E-13 1.34E-06 
BovineHD2300010006 ENSBTAG00000018134 0.926889293 1.05E-07 0.01832303 
rs207554348 ENSBTAG00000018223 -1.634951796 1.47E-11 1.01E-05 
rs207554348 ENSBTAG00000018280 -2.205365546 1.71E-10 8.23E-05 
BovineHD0100032240 ENSBTAG00000018280 -1.165887524 2.51E-07 0.03682879 
Hapmap55381-
rs29025399 ENSBTAG00000018280 -1.165887524 2.51E-07 0.03682879 

rs207554348 ENSBTAG00000018446 -1.778135936 2.96E-10 0.0001353 
BovineNovelSNP579 ENSBTAG00000018446 1.413283002 4.32E-08 0.00864264 
rs207554348 ENSBTAG00000019330 -2.225861293 1.11E-11 8.51E-06 
BovineNovelSNP579 ENSBTAG00000019330 1.731805352 9.26E-09 0.00228175 
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rs207554348 ENSBTAG00000019627 -2.754891323 7.23E-09 0.00185375 
rs207554348 ENSBTAG00000019669 -1.962757392 1.18E-11 8.72E-06 
rs207554348 ENSBTAG00000020257 -1.741603216 3.56E-10 0.00015204 
BovineNovelSNP579 ENSBTAG00000020257 1.473138854 4.85E-09 0.00137167 
rs207554348 ENSBTAG00000020430 -1.31476908 3.67E-08 0.00759168 
BovineNovelSNP579 ENSBTAG00000020430 1.140206458 1.20E-07 0.02072231 
rs207554348 ENSBTAG00000020580 -2.101469515 2.60E-11 1.52E-05 
BovineNovelSNP579 ENSBTAG00000020580 1.534419398 1.48E-07 0.02430409 
rs207554348 ENSBTAG00000020676 -2.390294251 1.34E-12 1.97E-06 
BovineNovelSNP579 ENSBTAG00000020676 1.663538755 1.35E-07 0.02258775 
rs207554348 ENSBTAG00000021240 -2.034257171 5.48E-09 0.0015059 
rs207554348 ENSBTAG00000021887 -1.82975457 2.96E-08 0.00632867 
rs207554348 ENSBTAG00000022779 -1.592503178 3.55E-10 0.00015204 
rs207554348 ENSBTAG00000023648 -1.41688526 1.06E-08 0.00257986 
BovineNovelSNP2890 ENSBTAG00000023648 1.142713724 1.60E-07 0.02579907 
BovineNovelSNP579 ENSBTAG00000023648 1.172708212 1.80E-07 0.02817999 
rs207554348 ENSBTAG00000031647 -3.923999467 3.29E-10 0.00014712 
rs207554348 ENSBTAG00000031950 -2.16809336 1.90E-12 2.22E-06 
BovineNovelSNP579 ENSBTAG00000031950 1.541753124 8.01E-08 0.01540411 
rs207554348 ENSBTAG00000037826 -1.382038921 6.62E-09 0.00176295 
BovineNovelSNP579 ENSBTAG00000037826 1.156821332 8.48E-08 0.01583543 
rs207554348 ENSBTAG00000039556 -1.566334549 2.50E-12 2.67E-06 
BovineNovelSNP579 ENSBTAG00000039556 1.125960225 6.47E-08 0.01269327 
rs207554348 ENSBTAG00000046152 -1.93380839 7.86E-10 0.0002763 
BovineNovelSNP579 ENSBTAG00000046152 1.530985893 1.01E-07 0.01790787 
rs207554348 ENSBTAG00000046158 -2.650342792 2.88E-10 0.00013523 
BovineNovelSNP2890 ENSBTAG00000046158 2.013602415 7.17E-08 0.01391896 
BovineNovelSNP9232 ENSBTAG00000046158 1.922574924 1.79E-07 0.02817999 
rs207554348 ENSBTAG00000048720 -2.994552213 8.47E-08 0.01583543 
rs207554348 ENSBTAG00000048737 -1.894842052 7.90E-10 0.0002763 
rs1118122708 ENSBTAG00000048737 -1.312587991 3.00E-07 0.04293916 
rs207554348 ENSBTAG00000048835 -3.655440782 1.48E-09 0.00049203 
rs207554348 ENSBTAG00000049416 -1.912527711 1.64E-11 1.05E-05 
BovineNovelSNP579 ENSBTAG00000049416 1.343541695 3.74E-07 0.04998529 
rs207554348 ENSBTAG00000049808 -2.407355462 7.26E-10 0.00026702 
BovineNovelSNP579 ENSBTAG00000049808 1.901195599 1.03E-07 0.018162 
rs211132440 ENSBTAG00000050072 -1.838155096 1.22E-08 0.00292783 
rs207554348 ENSBTAG00000050072 -1.464703791 3.02E-07 0.04293916 
rs210238564 ENSBTAG00000050072 -1.84720955 1.35E-07 0.02258775 
rs207554348 ENSBTAG00000050618 -2.767330452 8.62E-09 0.00215338 
rs207554348 ENSBTAG00000051132 -3.573898428 2.83E-09 0.00082507 
BovineNovelSNP579 ENSBTAG00000052465 1.190798997 8.14E-08 0.01549265 
rs207554348 ENSBTAG00000052465 -1.507322777 5.32E-10 0.00020891 
rs207554348 ENSBTAG00000053557 -2.324795623 7.38E-12 6.45E-06 
BovineNovelSNP1042
2 ENSBTAG00000053557 1.844810697 3.06E-07 0.04321986 

rs207554348 ENSBTAG00000054765 -1.428232382 2.33E-08 0.0051392 
BovineNovelSNP579 ENSBTAG00000054765 1.180992818 3.53E-07 0.04757233 
rs207554348 ENSBTAG00000054882 -3.450762956 5.22E-09 0.00145431 
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Table 5.S10 Common differential expressed genes between the current study and those identified by Tizioto et al. for animals who were 
challenged by different pathogens 
Challenge pathogen Common DE genes between two studies 
BRSV LRG1, RAB20, CFB, CD163, SOD2, ALPL, S100A9, NOL3, DYSF, TCN1, S100A8, CHI3L1, UPP1, 

S100A12, HP, WIPI1, HIST1H1C, TGM3, MMP9, IL12B, MYBPH, DEFB4A, NUPR1, RETN, PGLYRP1, 
BPI 

IBR LRG1, RAB20, CFB, CD163, SOD2, ALPL, S100A9, NOL3, DYSF, TCN1, S100A8, CHI3L1, UPP1, 
GPR84, IL1R2, S100A12, TNFAIP6, PTPN5, HP, WIPI1, HIST1H1C, TGM3, MMP9, RBPMS2, IL12B, 
ANKRD22, P2RX1, MYBPH, HTRA1, DEFB10, DEFB4A, NUPR1, RETN, PGLYRP1, BPI 

BVDV BMX, LRG1, RAB20, CFB, CD163, S100A9, NOL3, DYSF, S100A8, CHI3L1, GPR84, THY1, S100A12, 
ABCA6, MAPK13, HP, WIPI1, BST1, TGM3, MMP9, RBPMS2, GPC3, HTRA1, ITGA9, DEFB10, NUPR1, 
RETN, PGLYRP1, REEP1 

M. haemolytica BMX, LRG1, CFB, SHROOM4, KREMEN1, CD163, SOD2, ALPL, S100A9, ACVR1B, NOL3, TCN1, 
S100A8, CHI3L1, UPP1, IL1R2, S100A12, RAB3D, ABCA6, MAPK13, HP, WIPI1, IL1RAP, ALOX5AP, 
HIST1H1C, OSCAR, MGAM, BST1, TGM3, MMP9, MYBPH, HTRA1, ITGA9, DEFB10, OLFM4 RETN 
LTF PGLYRP1 REEP1 

P. multocida BMX, CA4, CD163, S100A9, S100A8, CHI3L1, S100A12, TNFAIP6, HP, WIPI1, TGM3, MMP9, RBPMS2, 
GPC3, HTRA1, DEFB10, OLFM4, RETN, LTF, PGLYRP1 

M. bovis LRG1, S100A9, S100A8, MGAM, TGM3, MMP9, HTRA1, PGLYRP1 
All pathogens S100A8, S100A9, MMP9, TGM3, PGLYRP1 
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Figure 5.1 Volcano plot of 7 down-regulated genes (blue) and 94 up-regulated genes (red) for the 
BRD animals 
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Figure 5.2 Gene regulatory network of inflammatory response 
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Figure 5.3 The 2D and 3D PLS-DA plot of animals in BRD (red) and non-BRD (green) group 
based on the expression of 101 DE genes 
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Figure 5.4 The DE genes with VIP score > 1.2 in PLS-DA 
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Figure 5.5 Distribution of eQTLs on chromosomes 
 

 

Figure 5.6 Circos plot showing trans eQTLs and their relationships to differentially expressed 
genes 
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Figure 5.7 Regional Manhattan plot for all SNPs around 1Mbp up- and down-stream of BPI 
 

 

Figure 5.8 The box plot of effects of three genotypes (CC, CT, and TT) of rs209419196 on the 
expression of BPI 
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Figure 5.S1 The principal component analysis plot of animals at four feedlots based on all 
expressed genes 
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Figure 5.S2 Manhattan Plot of GWAS 
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Figure 5.S3 Q-Q Plot of P-values 
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Chapter 6. General discussion 

Feed efficiency, carcass merit and resistance to bovine respiratory disease (BRD) are key 

economically relevant traits related to the profitability and sustainability of beef production. 

Breeding and selecting animals with desirable traits is one of the goals of beef cattle genetic 

improvement programs. In the past decade, genome-wide association studies (GWAS) have been 

widely used to study the association between genetic variants and the variation in beef cattle traits. 

However, for most SNPs or genes identified as associated with these important traits, our 

understanding of which genetic variants drive the phenotypic variation and how genetic variants 

lead to phenotypic variation is still limited. In addition, knowledge is accumulating regarding the 

association between different omics (e.g., transcriptomics and metabolomics) and the variation of 

these traits as well as the interrelationship between different omics layers involved in the 

phenotypic variation. Improving the understanding of these questions could provide a holistic view 

of the genetic and molecular background of the studied traits. Therefore, in this thesis, integrative 

analyses of multi-omics data were performed to give insights into these questions. This chapter 

consists of key findings of each study and their implications. Additionally, the limitations of 

current studies and recommendations for future research are discussed. 

6.1 Summary of key findings and implications 

Study I. Early studies in human have suggested that metabolite concentrations (direct 

readouts of biological processes) could provide functional links between genetic variance and 

external phenotypes in GWAS (Suhre and Gieger, 2012). However, in beef cattle, the genetic 

architecture of blood metabolites is largely unknown. Therefore, the first step in this work was to 

study the genetic architecture of blood metabolites in beef cattle (Chapter 2), which also provided 

the prerequisite knowledge for subsequent studies that link blood metabolites with genetic variants, 
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feed efficiency, and carcass merit traits (Chapter 3 and Chapter 4). The first study (Chapter 2) 

estimated heritability for blood metabolites and identified genomic regions that were associated 

with variation of metabolites using 50K genotypes. In this study, we found multiple genomic 

regions associated with metabolites and observed some genomic regions with pleiotropic effects 

on two or more metabolites. Although the polygenic and pleiotropic nature of the metabolite 

variation have been previously reported in human metabolomics studies (Hu et al., 2018; Gallois 

et al., 2019), this study is the first attempt to characterise the genetic basis of blood metabolites in 

crossbred beef cattle. The results obtained in this study could be used as baseline information for 

further genetic research using blood metabolites. Blood metabolites have previously been reported 

to be associated with feed efficiency and carcass merit traits (Karisa et al., 2014; Connolly et al., 

2019). Therefore, there is an opportunity to identify functional SNPs or genes and molecular 

mechanisms associated with feed efficiency and carcass merit traits by incorporating metabolites 

into genetic studies (Chapter 3 and Chapter 4). 

Study II&III. In Chapter 3 and Chapter 4, multiple metabolites were found to be associated 

with feed efficiency and carcass merit traits, which linked the variation at the phenotypic level 

with variation at the metabolomic level. According to the comparison of our results with those 

from previous studies (Karisa et al., 2014; Jorge-Smeding et al., 2019; Foroutan et al., 2020), we 

found that the results were in good agreement. The consistency of results from different studies 

suggests that metabolites have the potential to be used as biomarkers for feed efficiency and 

carcass merit traits. Additionally, by combining the results of metabolome-genome wide 

association studies for trait-associated metabolites using whole genome sequence variants, 

functional SNPs and candidate genes associated with these traits were identified. By comparing 

our results with previous GWAS for feed efficiency and carcass merit traits (Seabury et al., 2017; 
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Wang et al., 2020; Zhang et al., 2020a), we performed an integrative analysis of genomic and 

metabolomic data to give more insights into the above-mentioned questions: 1) which genetic 

variants drive the phenotypic variation; 2) how genetic variants lead to phenotypic variation, and 

3) the interrelationship between different omics layers involved in the phenotypic variation. For 

example, Zhang et al. (2020a) identified ADGRF1, ADGRF5, GTPBP8 and NEPRO as associated 

with both RFI and dry matter intake (DMI), and the same genes were identified to affect these 

same traits in this study. Further, the results of this study indicated that L-tyrosine was associated 

with ADGRFI and ADGRF5 which might explain the associations of ADGRF1, ADGRF5 with RFI 

and DMI. As for GTPBP8 and NEPRO, both genes were associated with lysine, a metabolite 

associated with both RFI and DMI in this study. Therefore, we speculated that the overlap of genes 

found in previous GWAS indicates that these genes may be functional genes that cause phenotypic 

variation by regulating the synthesis and degradation of associated metabolites. Furthermore, 

Chapter 3 and Chapter 4 provided additional insights into the potential biological processes of 

traits of interest. Several key metabolic processes including metabolism of lipids, molecular 

transportation, and carbohydrate metabolism were identified, and their related gene networks were 

constructed in our studies. Identification of these biological processes and their corresponding 

genes could help prioritize candidate genes for identification of functional or causal gene 

polymorphisms responsible for the phenotypic variation, and to identify and optimize molecular 

biomarkers (Sun and Hu, 2016; Lee et al., 2019). Therefore, the studies in Chapter 3 and Chapter 

4 have shown that metabolites play important roles in the variation of both feed efficiency and 

carcass merit traits. Integration of metabolomic and genomic data could help to identify functional 

or causal SNPs or genes and interpret the biological meaning of the candidate genes identified in 

GWAS. Thus, our findings have broadened the knowledge on the genetic and molecular 
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mechanisms underlying variation in beef cattle traits and supports future application of multi-

omics approach to beef cattle research. 

Study IV. Previous research studies have indicated that host genetics plays a significant 

role in regulating immune response and determining susceptibility and resistance to bovine 

respiratory disease (Muggli-Cockett et al., 1992; Snowder et al., 2006; Snowder, 2009; Emam et 

al., 2019). For example, heritability estimates (0.07 - 0.29) of BRD susceptibility have been 

reported in different cattle populations (Snowder et al., 2005; Schneider et al., 2010; Neibergs et 

al., 2014a, 2014b). In Chapter 5, we observed that the heritability of BRD susceptibility in our 

studied population was 0.43 ± 0.51. Even though this estimate had a relatively large standard error 

that may have resulted from the limited number of animals utilized in this study, this result reveals 

potential for genetic variability of BRD susceptibility in beef cattle which could be exploited to 

breed for BRD resistant or resilient animals. In this study, two significant SNPs 

(BovineNovelSNP1874 on chromosome 5 and BovineHD1800016801 on chromosome 18) were 

identified as associated with BRD susceptibility by GWAS. Interestingly, the most significant SNP 

(BovineNovelSNP1874) explained 17% of the phenotypic variance for BRD susceptibility. This 

implies that this SNP could be a major quantitative trait nucleotide (QTN) or in linkage 

disequilibrium with a major quantitative trait locus (QTL) for BRD susceptibility in the studied 

population. However, the proportion of phenotypic variance explained by significant SNPs could 

be overestimated because of the limited number of animals used. Thus, future research utilising 

larger sample size is warranted to more accurately estimate the heritability of BRD susceptibility. 

In addition to the genomic level, many transcriptomic studies have reported many differentially 

expressed genes (DE genes) between BRD and non-BRD animals (Tizioto et al., 2015; Scott et al., 

2020; Sun et al., 2020; Jiminez et al., 2021), indicating that gene expression is an important 
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intermediate phenotype associated with BRD. In this study, we profiled the transcriptomic 

signature of animals with and without BRD and identified 101 genes differentially expressed 

between BRD and non-BRD animals from four feedlots. Most of the DE genes identified in our 

study have been reported several times in previous transcriptomics studies for BRD. For example, 

CFB is an important DE gene identified in this study, which is also a DE gene reported in all BRD 

transcriptomic or single pathogen challenge studies (Nalpas et al., 2013; Tizioto et al., 2015; 

Johnston et al., 2019; Scott et al., 2020, 2021; Sun et al., 2020; Jiminez et al., 2021). This indicates 

that certain genes have the potential to be used as biomarkers for BRD diagnosis. By analyzing 

transcriptomic data, we identified 18 DE genes that had good predictive ability for BRD status. 

We further applied these 18 DE genes to populations from any of four feedlots and they all had 

high accuracy and reliability to predict BRD status. Therefore, we suggest that applying these 18 

DE genes to an independent population or practical feedlot beef production to test their feasibility 

and accuracy. Finally, we investigated the association between genotype and gene expression 

through expression QTL (eQTL) analysis. Multiple cis-eQTLs and trans-eQTLs associated with 

the expression of DE genes were identified. Interestingly, the most significant SNP 

(BovineNovelSNP1874) associated with BRD susceptibility was identified as a cis-eQTL for the 

DE gene GPR84, indicating that this SNP may be causal for BRD susceptibility through its cis 

effects on the expression of GPR84. Additionally, Neibergs et al. (2014) reported a genomic region 

including the gene BPI as associated with BRD susceptibility in Holstein calves, and suggested 

that variants within or in close proximity to this gene have functional relevance in modulating 

susceptibility to BRD in cattle. BPI was differentially expressed between BRD and non-BRD 

animals in this study and as well as those of previous studies (Tizioto et al., 2015; Johnston et al., 

2019, 2021; Jiminez et al., 2021). Through combing transcriptomic data and genomic data in this 
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study, we further identify the most possible causal SNP among all variants within or in close 

proximity to the gene BPI. Although these causal SNPs still need further investigation and 

validation in an independent population, our analysis gives additional information of causal SNP 

identification, GWAS interpretation and potential molecular mechanisms. Therefore, this study 

provides further enrichment of our understanding of the genetic regulation of gene expression 

associated with BRD in beef cattle. This information could not be captured by using GWAS or 

transcriptomic analysis alone, which exhibits the advantage of multi-omics study over single omics 

study. 

6.2 Limitations and recommendations 

6.2.1 Application of functional SNPs in genomic prediction 

Genomic selection has revolutionized animal breeding and many traits have benefitted 

from this technology. The accuracy or reliability of the prediction of the genomic merit of the 

candidates is one of the major factors that affect the progress rate of genetic improvement (Georges 

et al., 2018). However, the prediction accuracy for beef cattle traits such as feed efficiency, carcass 

merit, and resistance to BRD remains relatively low (Mujibi et al., 2011; Bolormaa et al., 2013; 

Akanno et al., 2014; Lu et al., 2016; Silva et al., 2016). The lower prediction accuracy of beef 

cattle may be due to the lack of a large number of reference populations within a breed and 

insufficient understanding of genetic mechanisms of complex traits. The low accuracy makes it 

difficult to identify beef cattle with high breeding values, which affects the rate of genetic gain. 

As reviewed in Chapter 1, including biological or functional information or causal DNA 

variants into the SNP panels or in the statistical models could improve the accuracy of predicting 

genetic merit of selection candidates (Snelling et al., 2013; MacLeod et al., 2016; Fang et al., 

2017b). This method could improve prediction accuracy, especially in across breed prediction, or 
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reduce the marker density used in genomic prediction while retaining accuracy (Melzer et al., 2013; 

MacLeod et al., 2016; Sarup et al., 2016; Fang et al., 2017a; Gebreyesus et al., 2019), which could 

improve the rate of genetic gain in beef cattle and reduce the cost of genotyping services. 

Additionally, the knowledge about genomic influence and molecular background of these traits 

may also help design more effective genomic selection strategies to improve the prediction 

accuracy, and the rate of response to genomic selection for the traits of interest (Brandebourg et 

al., 2013).  

Findings in this thesis have broadened our knowledge on the genetic background of feed 

efficiency, carcass merit and BRD resistance. Also, this thesis identified and refined many 

functional SNPs and genes associated with these traits by analyzing multi-omics data. Due to time 

and funding issues, we are not able to develop a SNP evaluation panel that includes these 

functional SNPs or SNPs harboured in functional genes. It is expected that such functional SNP 

panel could improve the prediction accuracy of genomic prediction in commercial crossbred beef 

cattle. In addition to developing SNP evaluation panels, these functional SNPs can be weighted in 

statistical models or used in more advanced predictive models such as genomic feature BLUP 

(Fang et al., 2017a) or Bayes RC (MacLeod et al., 2016). Overall, we recommend implementing 

further projects aimed at improving the accuracy of genome predictions by including the variants 

identified in order to elucidate this hypothesis. 

6.2.2 Utilization of comprehensive metabolomic and transcriptomic profile 

This study profiled the plasma metabolome from frozen blood samples of crossbred or 

multi-breed beef cattle using nuclear magnetic resonance methodology and 31 metabolites were 

quantified and used in the analyses. The results showed that individual metabolites only account 

for a small proportion of phenotypic variance. This relatively small percentage of phenotypic 
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variance likely indicates that the complex traits are regulated by multiple metabolic pathways 

involving many metabolites with each having only a small contribution. However, it is also 

possible that we were not able to identify metabolites with major influences on the studied traits 

due to the limited number of metabolites that was profiled. Carmelo et al. (2020) examined the 

association between 729 blood metabolites and RFI in pigs, many more metabolites (102 

metabolites for Duroc and 73 metabolites for Landrace, respectively) were identified as associated 

with RFI. The proportion of associated metabolites ranged from 10% to 14% of all profiled 

metabolites, which is similar to the proportion of 16% from this study. However, the phenotypic 

variance explained by metabolites was not reported in the study of Carmelo et al. (2020). In 

addition, other metabolomics studies in cattle also reported some metabolites are associated with 

feed efficiency which are not quantified in the current study (Clemmons et al., 2017; Novais et al., 

2019; Wang and Kadarmideen, 2019). Therefore, we anticipate that there will be more metabolites 

related to feed efficiency and carcass traits in beef cattle, and it is recommended to conduct a 

comprehensive study that includes a more complete metabolite profile, e.g., untargeted analysis 

(Zhao and Li, 2020). We analyzed plasma metabolites because blood is the major highway for 

absorption and transportation of nutrients to the different organs and tissues, and metabolites 

carried by blood are directly involved in metabolic processes as substrates or products. Also, blood 

is easy to collect from animals, which makes blood biomarkers more practical in application. We 

collected blood samples at one time point that is the first day of feeding test. This time point could 

represent the animals' metabolism in the feeding test period since the metabolite profile could show 

a level of temporal stability and predictability (Carmelo et al., 2020). However, it is not able to 

represent the situation in a lifetime. Karisa et al. (2014) reported the metabolites associated with 

feed efficiency varied over time, although some of them are common. We recommend that future 
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studies should consider collecting blood samples from animals at multiple developmental stages 

or from animals in different environments, which may help to identity more accurate biomarkers. 

This also prompts a hypothesis that different genes may play a role in metabolism at different 

stages of life. In addition to blood, more and more evidence shows that there are other important 

organs/tissues (such as liver, adipose tissue, skeletal muscle, and the digestive tract) in the body 

whose metabolism potentially influences feed efficiency and carcass merit traits of the animal 

(Alexandre et al., 2015; McKenna et al., 2018, 2021; Freetly et al., 2020). Therefore, to give 

additional insights into the relationship between animal metabolism and phenotypes, further 

metabolomics studies should be pursued considering these organs and tissues. This information 

may be useful for further gene prioritization. 

In the transcriptomic analysis of BRD (Chapter 5), there are also limitations on sampling 

source and time. We only collected the blood samples from sick and healthy animals once within 

50 days on feed after cattle arrived at feedlots. In addition, the batch effect of RNA sequencing 

caused by technical differences between samples, such as the type of sequencing machine or even 

the technician that ran the sample, also needs to be considered to because it could lead to an 

unfavourable impact on downstream biological analysis. The normalization methods, such as 

transforming the raw counts to (logarithms of) CPM, TPM or RPKM/FPKM, the trimmed mean 

of M values (TMM) (Robinson and Oshlack, 2010), or relative log expression (RLE) (Risso et al., 

2014) could correct the differences in the overall expression distribution of each sample across 

batches (Zhang et al., 2020b). For differential expression, many common methods or procedures, 

such as edgeR (Robinson et al., 2009) and DESeq2 (Love et al., 2014), suggest to include batch 

variables as covariates in the linear models behind these methods to account for the impact of 

batch. In the study of this thesis, we used the TMM normalization method and fitted batch effects 
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into the linear model to avoid the potentially existing batch effect in the analysis. Also, the 

principal component analysis (PCA) and gene differential expression analysis were performed, 

and results do not show a significant batch effect. However, future studies may include more 

animals from different sources and samples could not be processed at once, this batch effect should 

always be considered. 

6.2.3 Precision of molecular mechanisms and biomarkers 

Incorporating metabolomic data or transcriptomic data into genetic studies could offer 

insights into molecular architecture and biological background of complex traits. However, the 

precise molecular mechanisms are not very clear. For example, we found that eQTL SNPs are 

mainly located in the intronic and exonic regions. These eQTL SNPs within genes may affect gene 

expression through multiple mechanisms including amino acid sequence changes that may inhibit 

or stop gene transcription, as well as exonic splicing enhancers/silencers and intron splice 

enhancers/silencers that could regulate alternative splicing (Wang et al., 2009; Cooper, 2010; 

Kreimer and Pe’er, 2013; Deng et al., 2017). However, eQTL SNPs within genes were also 

reported to play a role in long-range gene regulation (Jowett et al., 2010; Ragvin et al., 2010; 

Kreimer and Pe’er, 2013). Therefore, some eQTL may influence the expression of remote genes 

at distance, rather than the expression of those genes that host them, and this regulatory pattern 

was also observed for some eQTLs in this study. In addition to those eQTLs located in the intronic 

and exonic regions, some eQTLs were in promoter-transcription start site (TSS), and transcription 

termination site (TTS). For example, rs209419196 was identified as a cis-eQTL associated with 

the expression of BPI, and it was predicted to be in the promoter of the transcript of BPI. However, 

the precise molecular mechanisms underlying most eQTLs, especially those in non-coding regions 

(distal regulatory regions), are still elusive. To further annotate these eQTLs, more precise and 
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comprehensive genomic information (annotation) of these distal regulatory regions is needed in 

cattle, and this is one of the core aim of the Functional Annotation of Animal Genomes (FAANG) 

project (Andersson et al., 2015). Our genomic, transcriptomic and metabolomic data have been 

used in the international BovReg project (https://www.bovreg.eu/) whose outcomes will be 

integrated into FAANG. It is expected that the research results from the FAANG project will lead 

to a better SNP functional annotation and increase our understanding of genomic structure and 

function. Additionally, epigenetics studies including DNA methylation via methylation 

sequencing (Methyl-Seq) and chromatin modification studies through chromatin 

immunoprecipitation sequencing (ChIP-Seq) and transposase-accessible chromatin sequencing 

(ATAC-Seq) (Dirks et al., 2016) may further aid in identification of genomic transcription 

regulatory regions in beef cattle.  

In this thesis, some molecular biomarkers were proposed, for example, lysine and L-

tyrosine for RFI, creatinine for hot carcass weight and rib eye area, and 18 DE genes for BRD. 

The literature or biomarker analysis indicates that these molecular biomarkers may be useful to 

select superior animals or diagnose disease. In the BRD study, we also collected blood metabolites, 

but the data has not been analyzed due to time constraints. Although the predictive ability of 

transcriptomic biomarkers is excellent, it is expected that the performance of prediction of 

phenotype by fitting both metabolomic and transcriptomic biomarkers to a prediction model would 

be better than using any single one of them. 

6.2.4 Multi-omics data integration in future research 

As sequencing technologies continue to improve and collect more in-depth data, and as the 

cost of sequencing continues to fall, researchers are trying to integrate and piece multi-omics data 

in different formats together to study complex biological questions. Huang et al. (2017) suggests 
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that “more is better” in multi-omics studies. However, adding omics datasets for the sake of adding 

more data might not always be a good idea, because they may carry useless or unrelated 

information that leads to more noise, redundancy and an increased computational burden in the 

multi-omics studies (Picard et al., 2021). Inappropriate models and incorrect integration methods 

in multi-omics analysis could even lead to worse performance (Ma et al., 2016; Picard et al., 2021). 

Additionally, for a multi-omics study, it is apparent that the costs and labour increase as more 

omics data and sample size are included. Therefore, we recommend choosing the most suitable 

tissues and most important omics layers with limited research funding. For example, multiple 

organs (e.g., liver and rumen) and tissues (e.g., muscle and adipose tissues) are involved in the 

variation of RFI. In this study, we used the blood sample that is easily accessible and could 

represent whole body metabolism to study the metabolites associated with RFI. These blood 

biomarkers are also more practical in production than those in liver or rumen. However, if the 

research topic is liver metabolism, the samples from liver will be more appropriate. In addition to 

collect field data, currently, many publicly available data sources could be utilized to serve multi-

omics analysis, but the data from different sources may introduce new biases in the data analysis, 

which should be kept in mind when looking for the most appropriate data sources. 

Statistical integration and network-based integration are two main data integration 

approaches. In our study, we mainly applied the statistical methods to identify the association 

between molecules at different omics layers and then draw inference from the associations. 

However, the association between different omics levels could provide evidence of a possible 

relationship between them, but the causality between omics levels is unknown. For example, when 

a molecular trait is associated with a phenotypic trait, there may be at least three possible 

explanations for the association: the molecular trait influences the phenotypic trait; the phenotypic 
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trait influences the molecular trait; or both are affected by a confounding factor. To overcome this 

limitation, we further performed genetic mapping for both molecular traits and phenotypic traits, 

which provides evidence of a relationship between genotype, molecular traits, and phenotypic 

traits through co-mapping. i.e., if a molecular trait and a phenotypic trait map to the same genomic 

region, then the molecular trait may be the link between genotype and phenotype. This method is 

straightforward, but it is difficult to identify the complex interaction between molecules at different 

omics layers. The network-based integration can integrate and use pre-existing biological 

knowledge in the database and combine it with experimental data to show the potential biological 

connection between molecules and facilitate the interpretation from a biological point of view and 

not from the data point of view (Yan et al., 2018; Zhou et al., 2020). This method could show the 

connection between different biomolecules and biological functions. It also could complement 

statistical data integration and help to integrate existing knowledge and interpret results (Zhou et 

al., 2020). Although network-based integrations are promising, it is worth noting that the prior 

information is often biased, which may consequently result in unreliable or unrelated connections 

in the network. Moreover, for the integration of more complex multi-omics datasets, some 

common challenges may arise, including dimension reduction, data heterogeneity, missing data, 

class imbalance and scalability issues (Mirza et al., 2019; Song et al., 2020; Picard et al., 2021). 

Deep learning architectures (Min et al., 2017; Kim et al., 2018) can better recognize complex 

features through representation learning with multiple layers and facilitate the integrative analysis 

through effectively addressing the common challenges (Mirza et al., 2019). The attempts of deep 

learning methods (e.g., based on artificial neural networks) have been applied in human studies 

(Sharifi-Noghabi et al., 2019; Lin et al., 2020). With the development of integration tools and the 

continuous growth of data integration experience, we recommend using these more advanced 
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integration methods to study multi-omics data for complex traits in future beef cattle genetic 

research. 

6.3 Overall summary 

Many SNPs and candidate genes have been identified to be associated with feed efficiency, 

carcass merit, and susceptibility/resistance to BRD by GWAS. However, our understanding of 

which genetic variants drive the phenotypic variation and how genetic variants lead to phenotypic 

variation is still limited. The metabolome and transcriptome are important intermediate phenotypes 

associated with these traits, which participate in the biological processes related to phenotypic 

variation and are also affected by genetics. Therefore, incorporating omics data into genetic 

research could improve the understanding of genetic and molecular architecture of complex traits.  

This thesis applied a preliminary multi-omics approach aimed to identify and refine 

functional SNPs and genes associated with traits of interest, and to gain insight into molecular 

mechanisms of how SNPs or genes affect phenotypes. In this thesis, the association between 

different omics levels were determined, which reveals several interesting SNPs/genes, gene 

networks, and molecular biomarkers. In addition, comparing our results with those from previous 

GWAS studies, this thesis highlights the advantages of using multiple omics data in causal 

SNP/gene identification, GWAS interpretation, and identification of biological mechanisms 

compared with single omics research.  

Given that the accuracy of genomic prediction for complex traits of beef cattle still requires 

improvement, identifying functional SNPs and genes or biological information associated with 

these traits and incorporating them into genomic prediction models or evaluation panels is 

expected to improve the performance of genomic prediction. We recommend utilizing the 

functional SNPs and genes identified in our studies to perform genomic prediction and test this 



 230 

hypothesis. Additionally, more research on omics data from different organs/tissues and time 

points using advanced data integration approaches is needed to further investigate the precise 

molecular mechanisms. It is anticipated that some of these elements will be generated by the 

BovReg project (https://www.bovreg.eu/). 

In general, the results of this thesis have shed the light on improving the understanding of 

the genetic and molecular architecture of feed efficiency, carcass merit traits and BRD 

susceptibility/resistance. The outcomes of this thesis may contribute to the genetic improvement 

of these important traits of beef cattle, thus, further increase the profitability and sustainability of 

the beef industry. 
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