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Abstract We investigate the inside dynamics of solutions to integrodifference equa-1

tions to understand the genetic consequences of a population with nonoverlapping2

generations undergoing range expansion. To obtain the inside dynamics, we decom-3

pose the solution into neutral genetic components. The inside dynamics are given by4

the spatiotemporal evolution of the neutral genetic components. We consider thin-5

tailed dispersal kernels and a variety of per capita growth rate functions to classify6

the traveling wave solutions as either pushed or pulled fronts. We find that pulled7

fronts are synonymous with the founder effect in population genetics. Adding over-8

compensation to the dynamics of these fronts has no impact on genetic diversity in9

the expanding population. However, growth functions with a strong Allee effect cause10

the traveling wave solution to be a pushed front preserving the genetic variation in11

the population. In this case, the contribution of each neutral fraction can be computed12

by a simple formula dependent on the initial distribution of the neutral fractions, the13

traveling wave solution, and the asymptotic spreading speed.14
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N. G. Marculis et al.

1 Introduction17

The topic of populations undergoing range expansions in spatial ecology is well studied18

(Holmes et al. 1994; Ibrahim et al. 1996; Thomas et al. 2001). However, many of the19

previous mathematical studies focus on the spread of entire populations and ignore the20

neutral genetic consequences of the expansion (Kot 1992; Lutscher 2008; Wang et al.21

2002). The aim of this work is to connect the range expansion of a population to the22

genetic consequences for populations with nonoverlapping generations. To achieve this23

goal, we develop and analyze a mathematical model of integrodifference equations to24

connect the fundamental ecological and genetic concepts with mathematical structure.25

A recent interest in ecological literature is focused around the neutral genetic conse-26

quences of range expansions (Hallatschek and Nelson 2008). A founder effect is said27

to occur when the establishment of a new population is performed by a few original28

founders who carry only a small fraction of the total genetic variation of the parental29

population (Mayr 1942). It is a widely accepted notion that range expansions often lead30

to a loss of genetic diversity because of the founder effect (Dlugosch and Parker 2008;31

Ibrahim et al. 1996). Serial founder events that occur when a population undergoes a32

range expansion result in the phenomena known as gene surfing (Excoffier and Ray33

2008). This is the spatial analog of genetic drift and occurs when alleles reach higher34

than expected frequencies at the front of a range expansion (Slatkin and Excoffier35

2012). By understanding the effect that spatial assortment plays in expanding popu-36

lations, we can begin to understand the effect that dispersal has on genetic diversity,37

independent of selection.38

It has been shown that, in some scenarios, genetic drift in edge populations can be a39

stronger driver than selection during range expansion because of the spatial structure40

of the population (Müller et al. 2014). A simple theoretical experiment was conducted41

to demonstrate that mutations at expanding frontiers can sweep through a population,42

even without any selective advantage (Hallatschek et al. 2007). This experiment pro-43

vides support for theoretical arguments and genetic evidence that common genes in a44

population may not necessarily reflect positive selection but, instead, may be due to45

recent range expansions (Hewitt 2000). This evidence motivates the work conducted46

in this paper to understand the effect that growth and dispersal have on the neutral47

genetic composition of a population.48

Often, large scale genomic surveys are motivated, in part, by the idea that the neutral49

genetic variation observed in a population may be used to reconstruct the history of50

its range expansion (Hewitt 1996). However, the ability to trace back the colonization51

pathways of a species from their genetic footprints is limited by our understanding of52

the genetic consequences of a range expansion (Excoffier 2004; Hallatschek and Nel-53

son 2008). The model considered in this work provides a framework for understanding54

the genetic consequences that in turn can assist the inverse problem of understanding55

where the species originated.56

Mathematically, the concept of modeling the evolution of the neutral genetic diver-57

sity of an expanding population is known as the “inside dynamics” of the population.58

The term comes from the idea that we break the population into subpopulations that59

can be identified by a neutral genetic marker used to study the underlying structure of60

the population. A recent series of papers focused on understanding the inside dynamics61
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Neutral Genetic Patterns for Expanding Populations...

for a variety of different types of continuous-time models (Garnier et al. 2012; Roques62

et al. 2012; Bonnefon et al. 2013, 2014). Early work on inside dynamics focused on63

the study of the classical reaction diffusion equations with monostable, bistable, or64

ignition type reaction dynamics. The authors were able to classify the inside dynamics65

of the deterministic population structure in terms of pulled and pushed traveling wave66

solutions (Garnier et al. 2012). The theory was quickly extended by incorporating67

biological insight to the original work by showing that Allee effects preserve genetic68

diversity (Roques et al. 2012). The inside dynamics analysis has also been extended to69

other kinds of one-dimensional equations such as delayed traveling waves (Bonnefon70

et al. 2013) and integrodifferential equations (Bonnefon et al. 2014).71

As was done for the previous studies on continuous-time models, this work aims72

to classify the inside dynamics of solutions to integrodifference equations as pushed73

or pulled fronts. The classical integrodifference equation is a discrete-time continu-74

ous space equation that describes a populations growth and spread. The discrete-time75

aspect coincides with the assumption that the population has nonoverlapping genera-76

tions. This provides a widely used biological model for population dynamics (Lewis77

et al. 2016).78

2 Mathematical Preliminaries and Model79

In this section, we provide necessary background material for the reader. We first80

discuss the basic model structure with the types of growth functions and dispersal81

kernels considered in this work. A few integral transforms are then defined for use82

in the long time analysis of the model. Next, the concept of inside dynamics is then83

introduced, and the model is formulated. To complete this section, we discuss some84

classical results for traveling wave solutions and define pushed and pulled traveling85

wave solutions in terms of the inside dynamics.86

2.1 Model Structure87

The classical integrodifference equation, describing the growth and dispersal of a88

population density u, is given by89

ut+1(x) =
∫ ∞

−∞
k(x − y)g(ut (y))ut (y) dy. (1)90

In Eq. (1), g is the density-dependent per capita growth rate function describing the91

local growth of the population at location y and time t . We assume that g is a non-92

negative continuous function where g(u)u has a trivial steady state and a steady state93

at 1. The function k is a probability density function that describes the probability of94

movement of individuals from location y to location x . That is, k is a nonnegative95

function that integrates to one. The recursion in Eq. (1) describes the reproduction96

and dispersal of a population with nonoverlapping generations. That is, all individuals97

first undergo reproduction and then the offspring are redistributed before reproduction98
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Three Types of Fecundity

Beverton-Holt
Sigmoid Beverton-Holt
Ricker

Fig. 1 Fecundity functions, g(u)u, used in the numerical simulations. The intrinsic growth rate, R, for the

Beverton–Holt, Sigmoid Beverton–Holt, and Ricker type growth functions are 2.5, 4, and 1.5, respectively.

The positive sigmoid scaling parameter, δ, for the Sigmoid Beverton–Holt function is chosen to be 2. The

solid line is the reference line g(u)u = u dictating when there is no change in population density

occurs in the next generation. Given an initial condition u0(x), ut (x) is the solution99

to Eq. (1) defined recursively.100

For the population growth, we consider three different types of functions that include101

different kinds of effects. In particular, we look at Beverton–Holt, Ricker, and Sigmoid102

Beverton–Holt type growth functions, see Fig. 1.103

The classical Beverton–Holt growth is the discrete analog of logistic growth, and104

the per capita growth is defined by105

gbh(u) = R

1 + (R − 1)u
, (2)106

where R is the geometric growth rate. A model introduced by Grant Thompson for107

fisheries, called the Sigmoid Beverton–Holt model, has per capita growth rate108

gs(u) = Ruδ−1

1 + (R − 1)uδ
, (3)109

where R is the intrinsic growth rate and δ is a positive sigmoid scaling parameter110

(Thompson 1993). It is known that when δ > 1 this growth function exhibits a strong111

Allee effect.112

Since we have scalar discrete-time equations we can consider growth functions113

with overcompensation. This is not possible for a scalar first order continuous-time114

model. Ricker type growth is commonly used when overcompensation is present. The115

Ricker model has the form116

gr (u) = eR(1−u), (4)117
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Neutral Genetic Patterns for Expanding Populations...

where R is the intrinsic growth rate (Ricker 1954). Note that gbh(u)u and gs(u)u are118

monotone where gr (u)u is not, see Fig. 1.119

Definition 1 (Thin-tailed dispersal kernel) A dispersal kernel k(x) is called thin-120

tailed if there exists a real valued ξ > 0, such that121

∫ ∞

−∞
k(x)eξ |x | dx < ∞. (5)122

If a dispersal kernel is not thin-tailed, then we say the dispersal kernel is fat-tailed.123

For simplicity, we only consider thin-tailed dispersal kernels in this work. Many of124

the classical mathematical results for the dynamics of Eq. (1) focus on thin-tailed125

dispersal kernels. The thin-tailed assumption implies that k(x) decays at least as fast126

as an exponential function as |x | → ∞. A consequence of the thin-tailed assumption is127

that k has a moment generating function. A common dispersal kernel that we consider128

throughout our work is the Gaussian probability distribution function. That is:129

k(x;µ, σ) = 1√
2πσ 2

e
− (x−µ)2

2σ2 , (6)130

where µ is the mean shift in location and σ 2 is the variance in dispersal distance. In131

the following sections, we use the shorthand notation k ∼ N (µ, σ 2).132

2.2 Integral Transforms133

The two integral transforms that are particularly useful in our work are the Fourier134

transform and the reflected bilateral Laplace transform (Zemanian 1968). These trans-135

formations and their inverses are given in Definitions 2 and 3.136

Definition 2 (Fourier transform) Let f : R → R where f ∈ L1(R). Then, the137

Fourier transform and its inverse are, respectively, defined to be138

f̂ (ω) = F[ f (x)] =
∫ ∞

−∞
f (x)e−iωx dx, and (7)139

f (x) = F
−1[ f̂ (ω)] = 1

2π

∫ ∞

−∞
f̂ (ω)eiωx dω. (8)140

141

Definition 3 (Reflected bilateral Laplace transform) Let f : R → R where f is142

piecewise continuous on every finite interval in R satisfying | f (x)| ≤ Me−sx for all143

x ∈ R and 0 < s < smax . Then, the reflected bilateral Laplace transform and its144

inverse are, respectively, defined to be145

F(s) = M[ f (x)] =
∫ ∞

−∞
f (x)esx dx, and (9)146

f (x) = M
−1[F(s)] = 1

2π i
lim

R→∞

∫ γ+i R

γ−i R

F(s)e−sx ds (10)147

148
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N. G. Marculis et al.

for 0 < s < smax, where the integration in Eq. (10) is over the vertical line, Re(s) = γ149

in the complex plane and γ is greater than the real parts of all singularities of F(s).150

The reflected bilateral Laplace transform can be used to write the solution to our151

model in terms of its initial condition by using the convolution theorem. This theorem152

states that the reflected bilateral Laplace transform of a convolution is the product of153

the reflected bilateral Laplace transforms. That is,154

M[ f (x) ∗ h(x)](s) = F(s)H(s). (11)155

Note that the reflected bilateral Laplace transform of a probability density function is156

also referred to as its moment generating function (Casella and Berger 2002).157

2.3 Inside Dynamics158

To include neutral genetic diversity, we assume that the population density is composed159

of either haploid individuals or genes. To analyze the inside dynamics, we separate160

the population into different neutral fractions vi
t (x). The initial population is defined161

to be162

u0(x) :=
N

∑

i=1

vi
0(x), (12)163

where vi
0(x) ≥ 0 is the initial population density for neutral fraction i and N is the164

finite number of distinct neutral fractions. We assume that the individuals (or genes) in165

each fraction have the same dispersal and growth capabilities as the entire population166

u and only differ by position and their label (or their alleles). In short, we assume that167

individuals in each neutral fraction have no genetic advantage over any other neutral168

fraction. Then, by decomposing the population density into the neutral fractions gives169

the following system of N equations:170

vi
t+1(x) =

∫ ∞

−∞
k(x − y)g(ut (y))vi

t (y) dy, (13)171

where g is the common per capita growth rate for all neutral fractions. That is, the per172

capita growth rate of each neutral fraction is the same as the per capita growth rate173

of the total population giving no genetic advantage of one fraction over another. A174

key feature of System (13) is that the sum of the neutral fraction densities, vi
t (x), is175

equal to the entire population density ut (x). When we add together the N equations in176

System (13), we obtain the integrodifference equation for the entire population density177

given by Eq. (1). Using System (13), we are now able to track how individual neutral178

fractions spread.179

2.4 Traveling Wave Solutions180

We focus our study on classifying the traveling wave solutions of Eq. (1). A traveling181

wave solution U (x − ct) is a solution that connects the trivial steady state, 0, to182
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Neutral Genetic Patterns for Expanding Populations...

the stable nontrivial steady state, 1, and propagates at a constant speed c. That is183

ut (x) = U (x − ct) solves equation (1) with constant density profile U . The traveling184

wave equation is given by185

U (x − c) =
∫ ∞

−∞
k(x − y)g(U (y))U (y) dy. (14)186

Weinberger was a pioneer in this area and created the seminal work that analyzed trav-187

eling wave solutions for scalar discrete-time operators (Weinberger 1982). The main188

result in his work shows that for thin-tailed dispersal kernels, if g(u)u is nondecreas-189

ing, then Eq. (1) has a family of monotone traveling wave solutions parameterized190

by the speed c where c ≥ c∗. The asymptotic spreading speed, c∗, is defined to be191

the asymptotic speed that a wave with compact initial conditions spreads. It was later192

shown that the asymptotic spreading speed is the minimum speed for which traveling193

wave solutions exist. In addition, if the per capita growth rate is maximal at zero,194

g(u) ≤ g(0), then the asymptotic spreading speed can be determined by a simple195

formula involving g(0) and the dispersal kernel k(x) given below196

c∗ = inf
z>0

1

z
ln

(

g(0)

∫ ∞

−∞
k(x)ezx dx

)

. (15)197

For Gaussian dispersal kernels, we can write down an explicit formula for the asymp-198

totic spreading speed199

c∗ =
√

2σ 2 ln(g(0)) + µ. (16)200

Many of the fundamental techniques and concepts presented by Weinberger such as201

the comparison principle, asymptotic spreading speed, and integral transforms will be202

used in our analysis.203

Weinberger’s results were extended to include growth functions that have overcom-204

pensatory dynamics (Li et al. 2009). The extended theory requires some additional205

assumptions on the growth function, but commonly used functions such as the Ricker206

or logistic growth functions satisfy the required assumptions. In this scenario, it is not207

guaranteed that the traveling wave profile is monotone. The effect of overcompensa-208

tion allows for complicated or even chaotic dynamics. Existence of traveling wave209

solutions with a strong Allee effect has been proven for a unique speed c = c∗ (Lui210

1983). The decay of the wave profile is given by U (x) ∼ Ce−s∗x as x → ∞ where211

s∗ is the unique positive root of212

1

s
ln

(

g(0)

∫ ∞

−∞
esx k(x) dx

)

= c, (17)213

see Proposition 5 of Lui (1983). In the case where k ∼ N (µ, σ 2) we can explicitly214

calculate s∗ to be215
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N. G. Marculis et al.

s∗ = c − µ +
√

(µ − c)2 − 2σ 2 ln(g(0))

σ 2
. (18)216

Thus, we can conclude that e
c−µ

σ2 x
U (x) ∈ L1(R). When Eq. (1) has a strong Allee217

effect, there are still many open questions. In our work, we conjecture about the decay218

rate of pushed fronts that comes from the proof for growth functions with a strong219

Allee effect.220

The techniques used to prove results for strong Allee are based on functional anal-221

ysis arguments for superpositive operators. A linear operator is called superpositive222

(Krasnosel’skii and Zabreiko 1984) if it has a simple positive dominant eigenvalue223

with positive eigenfunction where no other eigenfunction is positive. In particular,224

Jentsch’s theorem provides sufficient conditions for a linear integral operator to be225

superpositive (Vladimirov 1971).226

In this paper, we focus on pulled and pushed fronts; see Definitions 4 and 5 for227

details. Instead of using the classical definitions of pulled and pushed fronts, see228

Stokes (1976), Rothe (1981), we classify the waves using the asymptotic dynamics229

of the neutral fractions. The following definitions come from the previous work on230

inside dynamics (Bonnefon et al. 2014).231

Definition 4 (Pulled front) A traveling wave solution ut (x) = U (x − ct) is said to232

be a pulled front if, for any neutral fraction vi
t (x) satisfying (13), 0 ≤ vi

0 ≤ U and233

vi
0(x) = 0 for large x , the statement234

vi
t (x + ct) → 0 as t → ∞,235

holds uniformly on any compact subset of R.236

Next, we define what it means for a traveling wave solution to be a pushed front in237

terms of the neutral fractions.238

Definition 5 (Pushed front) A traveling wave solution ut (x) = U (x − ct) is said to239

be a pushed front if, for any neutral fraction vi
t (x) satisfying (13), 0 ≤ vi

0 ≤ U and240

vi
0 
≡ 0, there exists M > 0 such that241

lim sup
t→∞

sup
x∈[−M,M]

vi
t (x + ct) > 0.242

To recap, the preliminary definitions, theory, techniques, and the mathematical243

model have been laid out. Now that we have all the required knowledge we move into244

the next section where we classify the asymptotic dynamics of System (13).245

3 Large Time Neutral Genetic Variation246

In this section, we provide the theoretical results about the neutral genetic composition247

for System (13). In Theorems 1 and 2, we assume that the dispersal kernel is Gaussian,248
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Neutral Genetic Patterns for Expanding Populations...

see Eq. (6). This allows us to exploit the fact that the moment generating function for249

a Gaussian has the following form:250

M(s) = eµs+σ 2s2/2. (19)251

After the proof of Theorem 1, we provide two corollaries that provide a better inter-252

pretation for the results of Theorem 1. We then extend the results of Theorem 1 to the253

general class of thin-tailed dispersal kernels given by Theorem 3.254

Theorem 1 (Gaussian kernel with maximum per capita growth at zero) Consider the255

solution of System (12)–(13) where k ∼ N (µ, σ 2) and 0 < g(u) ≤ g(0) for all u ∈256

(0, 1). Let c be the speed of a moving half-frame. If c ≥ c∗ and
∫ ∞
−∞ e

c−µ

σ2 y
vi

0(y) dy <257

∞, then for any A ∈ R, the density of the neutral fraction i , vi
t (x), converges to 0258

uniformly as t → ∞ in the moving half-frame [A + ct,∞).259

Proof For simplicity in notation, we focus on a single neutral fraction and drop the260

superscript i notation. Using the fact that 0 < g(u) ≤ g(0) for all u ∈ (0, 1), we can261

use a comparison principle to show that a new sequence wt (x) defined by262

wt+1(x) = g(0)

∫ ∞

−∞
k(x − y)wt (y) dy (20)263

is always greater than the solution to any neutral fraction vt (x) with the same initial264

condition w0(x) = v0(x). The solution of Eq. (20) is given by the t-fold convolution265

wt (x) = (g(0))t k∗t ∗ w0(x) (21)266

where k∗t is k convolved with itself t times. Applying the reflected bilateral Laplace267

transform to Eq. (21) and using the convolution theorem, we obtain268

M[wt (x)](s) = [g(0)]t [M [k(x)] (s)]t
M [w0(x)] (s) (22)269

= [g(0)]t

[

e
σ2s2

2 +µs

]t

M [w0(x)] (s) (23)270

= [g(0)]t e
σ2 ts2

2 +µts
M [w0(x)] (s) (24)271

= [g(0)]t
M

[

1√
2πσ 2t

e
− (x−µt)2

2σ2 t

]

(s)M [w0(x)] (s) (25)272

= [g(0)]t
M [kt ∗ w0)(x)] (s), (26)273

274

where kt ∼ N (µt, σ 2t). Then applying the inverse transform yields275

wt (x) = [g(0)]t (kt ∗ w0)(x) (27)276

= [g(0)]t

∫ ∞

−∞

1√
2πσ 2t

e
− (x−y−µt)2

2σ2 t w0(y) dy. (28)277

278
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In the moving half-frame [A + ct,∞) with fixed A ∈ R, consider the element x0 + ct279

with c ≥ c∗ =
√

2σ 2 ln(g(0))+µ. When we rewrite wt (x) in this moving half-frame280

we have281

wt (x0 + ct) = [g(0)]t

∫ ∞

−∞

1√
2πσ 2t

e
− (x0+ct−y−µt)2

2σ2 t w0(y) dy. (29)282

283

Expanding the exponent, yields284

(x0 + ct − y − µt)2

2σ 2t
= (x0 − y)2

2σ 2t
+ 2(c − µ)t (x0 − y) + (c − µ)2t2

2σ 2t
(30)285

≥ (x0 − y)2

2σ 2t
+ c − µ

σ 2
(x0 − y) + ln(g(0))t. (31)286

287

Thus,288

wt (x0 + ct) ≤ eln(g(0))t

√
2πσ 2t

∫ ∞

−∞
e
− (x0−y)2

2σ2 t e
− c−µ

σ2 (x0−y)
e− ln(g(0))tw0(y) dy (32)289

= 1√
2πσ 2t

∫ ∞

−∞
e
− (x0−y)2

2σ2 t e
− c−µ

σ2 (x0−y)
w0(y) dy (33)290

= e
− c−µ

σ2 x0

√
2πσ 2t

∫ ∞

−∞
e
− (x0−y)2

2σ2 t e
c−µ

σ2 y
w0(y) dy. (34)291

292

Since x0 ≥ A we have293

wt (x0 + ct) ≤ e
− A(c−µ)

σ2

√
2πσ 2t

∫ ∞

−∞
e

c−µ

σ2 y
w0(y) dy. (35)294

295

Thus since
∫ ∞
−∞ e

c−µ

σ2 y
w0(y) dy < ∞ we have wt (x0 + ct) → 0 uniformly as t →296

∞ in [A,∞). Recall that wt (x) was constructed so that 0 ≤ vt (x) ≤ wt (x). This297

implies the uniform convergence of vt (x) → 0 as t → ∞ in the moving half-frame298

[A + ct,∞). ⊓⊔299

Corollary 1 (Compact initial conditions) Consider the solution of System (12)–(13)300

where k ∼ N (µ, σ 2) and 0 < g(u) ≤ g(0) for all u ∈ (0, 1) with compactly supported301

initial conditions vi
0(x) for i = 1, . . . N. Then each neutral fraction converges to zero302

uniformly to zero as t → ∞ in the moving half-frame [A + ct,∞) where c ≥ c∗.303

This result is clear from the condition that any compact initial conditions will satisfy the304

assumption of Theorem 1 that
∫ ∞
−∞ e

c−µ

σ2 y
vi

0(y) dy < ∞. This result is relevant because305

when we perform numerical simulations we must use compact initial conditions. Thus,306

it takes time for the traveling wave solution to spread at the asymptotic spreading speed307

c∗. Therefore, we will always outrun the solution by looking in the moving half-frame308

[A + c∗t,∞).309
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For the next corollary, we consider initial conditions were u0(x) =
∑N

i=1 vi
0(x) =310

U (x) and v1
0(x) = ⋗1x≥aU (x) where a is a constant. Here, we call v1

0(x) the neutral311

fraction at the leading edge of the traveling wave.312

Corollary 2 (Traveling wave initial conditions) Consider the solution of System (12)–313

(13) where k ∼ N (µ, σ 2) and 0 < g(u) ≤ g(0) for all u ∈ (0, 1) with initial condition314
∑N

i=1 vi
0(x) = U (x) with speed c ≥ c∗. Then the neutral fraction at the leading edge315

of the traveling wave converges to U (x) uniformly as t → ∞ in the moving half-316

frame [A + ct,∞) and all other neutral fractions converges to zero uniformly to zero317

as t → ∞ in the moving half-frame [A + ct,∞).318

In Corollary 2, the initial conditions for System (13) sum to be the traveling wave319

solution with speed greater than or equal to the minimum asymptotic spreading speed320

c∗. In this case, we know that traveling wave solutions exist for all c ≥ c∗ (Weinberger321

1982). The key question is what happens to the neutral fraction at the front of the322

spread. We see that all other neutral fractions vanish when the moving half-frame323

is sufficiently far to the right. Thus, each one of these neutral fractions satisfy the324

assumption
∫ ∞
−∞ e

c−µ

σ2 y
vi

0(y) dy < ∞ required for Theorem 1. However, the neutral325

fraction at the leading edge decays no faster than e
− c−µ

σ2 y
. Thus,

∫ ∞
−∞ e

c−µ

σ2 y
vi

0(y) dy326

is not finite, and hence, one cannot apply Theorem 1 to this neutral fraction. However,327

if all other neutral fractions approach zero then it must be the case that the neutral328

fraction at the leading edge of the traveling wave converges to U uniformly as t → ∞329

in the moving half-frame [A + ct,∞). From Definition 4, it is clear that the results330

from Corollary 2 show that the solution to System (12)–(13) where k ∼ N (µ, σ 2),331

0 < g(u) ≤ g(0) for all u ∈ (0, 1), and
∑N

i=1 vi
0(x) = U (x) is a pulled front.332

Next, we extend the theory to consider growth functions with a strong Allee effect.333

The idea of proof is different from Theorem 1 because we can no longer construct334

a supersolution by using the linearization. Instead, we use Hilbert Schmidt theory to335

obtain the asymptotic dynamics.336

Theorem 2 (Gaussian kernel with strong Allee type growth) Consider the solution of337

System (12)–(13) where k ∼ N (µ, σ 2), g has a strong Allee effect, and
∑N

i=1 vi
0(x) =338

U (x). Then for any A ∈ R, the density of neutral fraction i , vi
t (x), converges to339

a proportion pi [vi
0] of the total population U (x − ct) uniformly as t → ∞ in the340

moving half-frame [A + ct,∞). That is,
∣

∣vi
t (x) − pi [vi

0]U (x − ct)
∣

∣ → 0 uniformly341

as t → ∞ in the moving half-frame [A + ct,∞). Moreover, if e
c−µ

σ2 x
U (x) ∈ L2(R),342

then the proportion pi [vi
0] can be computed explicitly:343

pi [vi
0] =

∫ ∞
−∞ vi

0(x)U (x)e
c−µ

σ2/2
x

dx

∫ ∞
−∞ U 2(x)e

c−µ

σ2/2
x

dx

. (36)344

Proof Consider System (13) where k ∼ N (µ, σ 2) and g has a strong Allee effect. For345

simplicity in notation, we focus on a single neutral fraction and drop the superscript i346

notation. Define ṽt (x) = vt (x + ct), then347
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ṽt+1(x) =
∫ ∞

−∞
k(x + c − y)g(U (y))ṽt (y) dy. (37)348

Since k ∼ N (µ, σ 2),349

k(x + c − y) = 1√
2πσ 2

e
− (x+c−y−µ)2

2σ2 (38)350

= 1√
2πσ 2

e
− (x−y)2

2σ2 e
− (c−µ)2

2σ2 e
− c−µ

σ2 x
e

c−µ

σ2 y
(39)351

= k̃(x − y)e
− (c−µ)2

2σ2 e
− c−µ

σ2 x
e

(c−µ)

σ2 y
(40)352

353

where k̃ ∼ N (0, σ 2). Define v∗
t (x) = e

c−µ

σ2 x
ṽt (x). Then Eq. (37) becomes354

v∗
t+1(x) =

∫ ∞

−∞
e
− (c−µ)2

2σ2 k̃(x − y)g(U (y))v∗
t (y) dy. (41)355

We know that the weight function ρ(y) = e
− (c−µ)2

2σ2 g(U (y)) is a positive and continu-356

ous function and ρ(y)k̃(x − y) ∈ L2(R). Then we consider357

φ(x) =
∫ ∞

−∞
e
− c−µ

2σ2 k̃(x − y)g(U (y))φ(y) dy. (42)358

Multiplying equation (42) on both sides by
√

ρ(x), we have359

√

ρ(x)φ(x) =
∫ ∞

−∞

√

ρ(x)k̃(x − y)
√

ρ(y)
√

ρ(y)φ(y) dy. (43)360

Since k̃ ∼ N (0, σ 2), the function k(x, y) :=
√

ρ(x)k̃(x − y)
√

ρ(y) is symmetric;361

k(x, y) = k(y, x). Therefore, the Hilbert–Schmidt theory can still be applied with a362

nonsymmetric kernel. Also φ(x) = e
c−µ

σ2 x
U (x) is a positive eigenfunction of Eq. (42)363

with eigenvalue 1. Thus, by Jentsch’s theorem (Vladimirov 1971), since our eigenfunc-364

tion is positive, this eigenfunction is associated with the eigenvalue with the largest365

modulus. Therefore, we know that all other eigenvalues have modulus strictly less366

than one. We can write the solution by eigenfunction expansion as367

v∗
t (x) = pφ(x) + zt (x) (44)368

where p is a scalar and zt (x) is composed of elements that are orthogonal to φ(x) for369

each t ∈ N and |zt (x)| ≤ K |λ|t for some constants K > 0 and |λ| < 1. Hence,370

∣

∣v∗
t (x) − pφ(x)

∣

∣ ≤ K |λ|t . (45)371
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Neutral Genetic Patterns for Expanding Populations...

Converting back to the moving frame coordinates,372

∣

∣

∣

∣

e
c−µ

σ2 x
ṽt (x) − pe

c−µ

σ2 x
U (x)

∣

∣

∣

∣

≤ K |λ|t . (46)373

Thus,374

|ṽt (x) − pU (x)| ≤ K e
− c−µ

σ2 x |λ|t . (47)375

From this, we can conclude that |ṽt (x) − pU (x)| → 0 uniformly as t → ∞ in the376

interval [A,∞). Therefore, |vt (x) − pU (x − ct)| → 0 uniformly as t → ∞ in the377

moving half-frame [A + ct,∞).378

To obtain the proportion p, we multiply equation (44) evaluated at t = 0 by φ(x)379

and integrate to obtain380

∫ ∞

−∞
v∗

0(x)φ(x) dx =
∫ ∞

−∞
pφ2(x) dx +

∫ ∞

−∞
z0(x)φ(x) dx (48)381

= p

∫ ∞

−∞
φ2(x) dx (49)382

383

by the orthogonality of z to φ. Solving for p we find384

p =
∫ ∞
−∞ v∗

0(x)φ(x) dx
∫ ∞
−∞ φ2(x) dx

(50)385

=
∫ ∞
−∞ e

c−µ

σ2 x
ṽ0(x)e

c−µ

σ2 x
U (x) dx

∫ ∞
−∞

(

e
c−µ

σ2 x
U (x)

)2

dx

(51)386

=
∫ ∞
−∞ v0(x)U (x)e

c−µ

σ2/2
x

dx

∫ ∞
−∞ U 2(x)e

c−µ

σ2/2
x

dx

. (52)387

388

The proof of Theorem 2 is complete. ⊓⊔389

From Definition 5, it is clear that the results from Theorem 2 show that the solution to390

System (12)–(13) where k ∼ N (µ, σ 2), g has a strong Allee effect, and u0(x) = U (x)391

is a pushed front.392

The next step in our work is to extend the result of Theorem 1 to a general class393

of thin-tailed dispersal kernels. To accomplish this goal, we must place some extra394

constraints on the initial conditions for the neutral fractions. That is, we define the set395

Bs :=
{

vi
0 : x2vi

0(x)esx ∈ L1(R) ∩ L∞(R)
}

. This condition is given as the assump-396

tion of Lemma 1.397
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Lemma 1 Let vi
0(x) ∈ Bs for all s > 0, then there exists a positive constant C such398

that399

wi
0(x) := Ce−sx

1 + x2
(53)400

bounds vi
0(x) for all x ∈ R. Moreover, the Fourier transform of wi

0(x)esx with respect401

to x is in L1(R) and is given by402

Cπe−|ω|. (54)403

The proof of Lemma 1 is provided in section “Proof of Lemma 1” in “Appendix’.404

Lemma 1 provides important assumptions to guarantee that the initial conditions can405

be bounded by a function that has a Fourier transform in L1(R). This result allows us406

to extend the result of Theorem 1 to a general class of thin-tailed dispersal kernels.407

Theorem 3 (Thin-tailed kernel with maximum per capita growth at zero) Consider408

the solution of System (12)–(13) where k is a thin-tailed dispersal kernel and g is the409

per capita growth rate that satisfies 0 < g(u) ≤ g(0) for all u ∈ (0, 1). Let c be410

the speed of a moving half-frame. If c ≥ c∗ and vi
0(x) ∈ Bs0(c) where s0(c) is the411

smallest positive root of ln (g(0)K (s)) = sc, then for any A ∈ R, the density of the412

neutral fraction i , vi
t (x), converges to 0 uniformly as t → ∞ in the moving half-frame413

[A + ct,∞).414

Proof Consider the neutral fraction model given by System (13). For simplicity, we415

consider a single neutral fraction vi
t (x) and drop the superscript i notation. That is,416

vt (x) =
∫ ∞

−∞
k(x − y)g(ut−1(y))vt−1(y) dy. (55)417

Equation (1) produces traveling wave solutions ut (x) = U (x − ct). In the case where418

k, is a thin-tailed dispersal kernel and 0 < g(u) ≤ g(0) for all u ∈ (0, 1) we know419

that the asymptotic spreading speed c∗ can be calculated by420

c∗ = inf
s>0

1

s
ln (g(0)K (s)) (56)421

where K (s) =
∫ ∞
−∞ k(x)esx dx is the moment generating function for the dispersal422

kernel k. The function ln(g(0)K (s))/s is positive and convex where K (s) is finite.423

Thus, there is a unique minimum for c∗ obtained at some s∗. That is, ln (g(0)K (s∗)) =424

s∗c∗. For all c > c∗, the equation ln (g(0)K (s)) = sc has at most two positive roots.425

We define the smallest positive root by s0(c) < s∗. Using the fact that the per capita426

growth rate is the largest at zero, we obtain a supersolution wt (x) to System (55). That427

is, wt (x) satisfies the Cauchy problem428

{

wt (x) = g(0)
∫ ∞
−∞ k(x − y)wt−1(y) dy, t ∈ N, x ∈ R

w0(x) = Ce−s0(c)x

1+x2 ≥ v0(x), x ∈ R
(57)429
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Neutral Genetic Patterns for Expanding Populations...

where vt (x) ≤ wt (x) for all t ≥ 0. The solution of Eq. (57) is given by the t-fold430

convolution431

wt (x) = (g(0))t k∗t ∗ w0(x). (58)432

Next, we introduce the reflected bilateral Laplace transform defined in Eq. (9) for433

all 0 < s < smax. It is clear that we can apply this transform to wt (x) because k is434

thin-tailed and w0(x) is defined by Eq. (53). Applying this transform to Eq. (58) and435

using the convolution property we obtain436

M[wt (x)](s) = (g(0))t (M[k(x)](s))t
M[w0(x)](s) (59)437

= (g(0))t (K (s))t W0(s). (60)438
439

To obtain our solution for wt (x), we must use the inverse transform, as defined in440

Eq. (10), given by441

wt (x) = 1

2π i
lim

R→∞

∫ s0(c)+i R

s0(c)−i R

(g(0))t (K (s))t W0(s)e
−sx ds (61)442

443

where 0 < Re(s) < smax is the region of convergence for (K (s))t W0(s)e
−sx . By444

performing a change of variables to integrate over the real line by letting s = s0(c)+iω,445

we obtain446

wt (x) = 1

2π

∫ ∞

−∞
(g(0))t (K (s0(c) + iω))t W0(s0(c) + iω)e−(s0(c)+iω)x dω (62)447

= 1

2π

∫ ∞

−∞
e(Log(g(0)))+Log(K (s0(c)+iω))t W0(s0(c) + iω)e−(s0(c)+iω)x dω, (63)448

449

where Log is the principal value of the complex logarithm. In the moving frame,450

x = x0 + ct choose x0 ∈ R, the solution satisfies451

wt (x0 + ct) = 1

2π

∫ ∞

−∞
eJ (s0(c)+iω)t W0(s0(c) + iω)e−(s0(c)+iω)x0 dω, (64)452

453

where J is a complex-valued function defined as follows454

J (s0(c) + iω) := Log(g(0)) + Log(K (s0(c) + iω)) − c(s0(c) + iω). (65)455

Although we expect that wt (x) as a solution to Eq. (58) is real, this fact is not immedi-456

ately evident from Eq. (64). Therefore, we treat wt (x) as if it were a complex-valued457

function. The modulus of the supersolution is458
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|wt (x0 + ct)| =
∣

∣

∣

∣

1

2π

∫ ∞

−∞
eJ (s0(c)+iω)t W0(s0(c) + iω)e−(s0(c)+iω)x0 dω

∣

∣

∣

∣

(66)459

≤ 1

2π

∫ ∞

−∞
eRe(J (s0(c)+iω))t |W0(s0(c) + iω))| e−s0(c)x0 dω. (67)460

461

Using the results from Lemma 1, we have that462

W0(s0(c) + iω) =
∫ ∞

−∞
w0(x)e(s0(c)+iω)x dx (68)463

=
∫ ∞

−∞
w0(x)es0(c)x eiωx dx (69)464

= F

[

w0(x)es0(c)x
]

(−ω) (70)465

= Cπe−|ω| (71)466
467

for all ω ∈ R. Then using Eq. (67) and the previous result, we have468

|wt (x0 + ct)| ≤ 1

2π

∫ ∞

−∞
eRe(J (s0(c)+iω))t Cπe−|ω|e−s0(c)x0 dω. (72)469

Notice that470

Re(J (s0(c) + iω)) = ln(g(0)) + Re(Log(K (s0(c) + iω))) − cs0(c) (73)471

= ln(g(0)) + Re

(

Log

(∫ ∞

−∞
k(x)es0(c)x eiωx dx

))

− cs0(c).

(74)

472

473

Let us define474

I := Re

(

Log

(∫ ∞

−∞
k(x)es0(c)x eiωx dx

))

. (75)475

Using Euler’s formula, we find that476

I = Re

(

Log

(∫ ∞

−∞
k(x)es0(c)(cos(ωx) + i sin(ωx)) dx

))

(76)477

= ln

⎛

⎝

√

(∫ ∞

−∞
k(x)es0(c)x cos(ωx) dx

)2

+
(∫ ∞

−∞
k(x)es0(c)x sin(ωx) dx

)2
⎞

⎠ .

(77)

478

479
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Define I I :=
(∫ ∞

−∞ k(x)es0(c)x cos(ωx) dx
)2 +

(∫ ∞
−∞ k(x)es0(c)x sin(ωx) dx

)2
. Using480

Cauchy-Schwarz inequality we find that481

I I <

∫ ∞

−∞
k(x)es0(c)x dx

∫ ∞

−∞
k(x)es0(c)x cos2(ωx) dx + · · ·482

∫ ∞

−∞
k(x)es0(c)x dx

∫ ∞

−∞
k(x)es0(c)x sin2(ωx) dx (78)483

=
∫ ∞

−∞
k(x)es0(c)x dx

∫ ∞

−∞
k(x)es0(c)x

(

cos2(ωx) + sin2(ωx)
)

dx (79)484

=
(∫ ∞

−∞
k(x)es0(c)x dx

)2

. (80)485

486

Thus,487

Re(J (s0(c) + iω)) < ln(g(0)) + ln

⎛

⎝

√

(∫ ∞

−∞
k(x)es0(c)x dx

)2
⎞

⎠ − cs0(c) (81)488

= ln(g(0)) + ln

(∫ ∞

−∞
k(x)es0(c)x dx

)

− cs0(c) (82)489

= ln(g(0)) + ln (K (s0(c))) − cs0(c) (83)490

= 0 (84)491
492

for ω 
= 0. When ω = 0, we have that Re(J (s0(c)+ iω)) = 0. Returning to Inequality493

(72), by the Dominated Convergence theorem, we have494

lim
t→∞

|wt (x0 + ct)| ≤ lim
t→∞

1

2π

∫ ∞

−∞
eRe(J (s0(c)+iω))t Cπe−|ω|e−s0(c)x0 dω (85)495

= Ce−s0(c)x0

2

∫ ∞

−∞
lim

t→∞
eRe(J (s0(c)+iω))t e−|ω| dω (86)496

= 0. (87)497
498

Thus, for any A ∈ R499

lim
t→∞

max
[A,∞)

wt (x + ct) = 0. (88)500

Since w was chosen to be a supersolution of v, we can conclude that501

lim
t→∞

max
[A,∞)

vt (x + ct) = 0. (89)502

Therefore, we obtain the desired result that for any A ∈ R, the density vt (x) of503

the neutral fraction converges to 0 uniformly as t → ∞ in the moving half-frame504

[A + ct,∞). ⊓⊔505
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From Definition 4, it is clear that the results from Theorem 3 show that the solution506

to System (12)–(13) where k is thin-tailed, 0 < g(u) ≤ g(0) for all u ∈ (0, 1), and507
∑N

i=1 vi
0(x) = U (x) is a pulled front.508

This section contains the main mathematical results of our work. We showed that509

when the dispersal kernel is assumed to be Gaussian we showed two main results. When510

the per capita growth is maximal at zero we see that all neutral fractions converge to511

zero uniformly in the moving frame. If the growth function has a strong Allee effect,512

then all neutral fractions contribute to the spread. Moreover, the proportion of each513

neutral fraction in the spread is given by Eq. (36). We then extended the first result to514

thin-tailed dispersal kernels showing that when the per capita growth is maximal at515

zero we see that all neutral fractions converge to zero uniformly in the moving frame.516

4 Numerical Simulations517

The numerical simulations were performed using MATLAB. To calculate the convo-518

lution519

∫ ∞

−∞
k(x − y)g(ut (y))vi

t (y) dy (90)520

we use a numerical “fast Fourier transform” (fft)with inverse (ifft). Solving the521

problem by using the convolution theorem, changes the numerical scheme to become522

O(n log n) instead of O(n2). Numerically, we implement the following strategy523

k ∗ (g · vi ) = ifft(fft(k) · fft(g · vi )). (91)524

For simplicity, in all the numerical simulations we start with the same initial condition525

and use the same dispersal kernel. We assume that there are eight neutral fractions526

in the population and assume that they satisfy vi
0(x) = ⋗1(−0.5i,−0.5(i−1)] where527

⋗1S is the indicator function on a set S. This assumes that we have the strongest528

initial spatial heterogeneity between the neutral fractions, see Fig. 2a for a plot of the529

initial conditions. The dispersal kernel is assumed to be Gaussian with µ = 0 and530

σ 2 = 0.002. That is,1 531

k(x − y) = 1√
0.004π

e− (x−y)2

0.004 . (92)532

Simulations for System (13) with the different types of growth functions are pro-533

vided in Fig. 2.534

The interpretation of the simulations provided in Fig. 2 must be made carefully535

because, without proper explanation, they may be misunderstood. In Fig. 2, the light536

gray component is the sum all eight neutral fractions. The red component is plotted in537

front of the light gray and is given by the sum of all neutral fractions except the first538

one. The same process continues for the rest of the six colors yellow, green, light blue,539

blue, and dark gray, respectively. The easiest way to interpret the numerical results540

presented in Fig. 2 is by looking at a vertical strip of the solution for a particular value541
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Fig. 2 Numerical realization for the solution ut (x) of System (13) for three different per capita growth

functions. a The initial condition for the simulations. b Beverton–Holt growth with parameter values R = 2.5

at time t = 30. c Ricker growth with parameter values R = 1.5 at time t = 25. d Sigmoid Beverton–Holt

growth with parameter values R = 4 and δ = 2 at time t = 250

of x . From this perspective, the amount of color showing for each neutral fraction542

dictates the proportion of that fraction to the entire population density at a particular543

location x . For example, we can see from the initial condition in Fig. 2a that each544

neutral fraction has complete spatial segregation from other neutral fractions.545

In Fig. 2b, we observe that only the rightmost fraction drives the propagation of546

the total population where as the trailing populations will be left behind in the moving547

frame. In Fig. 2c, we observe that the leading neutral fraction dominates the spread,548

but in this case the traveling wave is nonmonotone. In Fig. 2d, the inclusion of a strong549

Allee effect promotes genetic diversity in the colonization front. The numerical results550

suggest that the classification of pulled and pushed fronts should be able to be extended551

for initial conditions other than the traveling wave profile U (x). The complexity in552

extending the results lie in understanding how to choose the correct speed for the553

moving half-frame.554

It should be noted that the simulations are numerical approximations to System555

(13) because the domain where we can compute the numerics is finite. The results556

shown in Fig. 2 provide numerical support for the extension of the results presented557

in the previous section to compact initial conditions. For Theorem 2 and Corollary 2,558

the results require that the initial conditions are in the form of the traveling wave559
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solution U (x). However, since the computational domain is finite, we know that all560

the initial conditions will have finite support. This means that we obtain the results561

from Corollary 1 when the per capita growth rate is maximal at zero which states that562

if we move the frame at speed c∗ then asymptotically all neutral fractions approach563

zero. This is because compact initial conditions that converges to a front moving at564

speed c∗ would have fallen behind the moving half-frame that travels at speed c∗ for565

all time.566

5 Discussion567

The work presented in this paper develops a mathematical model to understand the568

role that dispersal into new territory has on the neutral genetic composition of a569

population with discrete nonoverlapping generations. We construct our model using570

the integrodifference framework where space is continuous but time is discrete.571

This work extends the previous results on the mathematical analysis of inside572

dynamics to include discrete-time dynamics. All previous analyses of inside dynam-573

ics have assumed continuous-time dynamics. By working with discrete-time models,574

we explore how overcompensation affects the neutral genetic diversity. Since this575

phenomena is not possible for a scalar continuous-time model, the analysis of the576

overcompensatory growth is fundamentally new.577

We were able to prove asymptotic results about the genetic structure of the expand-578

ing population. First, we considered Gaussian dispersal with two different kinds of579

growth functions. The first having maximum per capita growth at zero, and the second580

having a strong Allee effect. The results are given by Theorems 1 and 2. The theorems581

provide very different asymptotic behavior for solutions whose initial conditions are582

in the shape of the traveling wave solution.583

For growth functions whose per capita growth is maximal at zero, we see that584

the spread of the population is dominated by the leading neutral fraction and all other585

neutral fractions approach zero, see Corollary 2. However, we are only able to conclude586

this result when the initial population density is in the shape of the traveling wave587

solution. Mathematically, this is analogous with the concept of a pulled front where588

the dynamics of the spread are governed solely by what happens at the leading edge of589

the wave. From a biological perspective, this is an extreme case of the founder effect590

where the uninhabited area is settled by only one of the neutral fractions. Numerical591

results suggest that for compact initial conditions the spread is still dominated by592

the leading neutral fraction. The setback is that we do not know exactly how fast593

compact initial conditions converge to the traveling wave solution, but the proof of594

Theorem 1 suggests that solutions starting with initial conditions spread at most like595

c∗t − 1/2 ln(t). Hence, we are only able to show that for compact initial conditions596

that spread at c∗, all neutral fractions will be outrun by the moving half-frame, see597

Corollary 1.598

When the growth function has a strong Allee effect, we are able to show that599

asymptotically each neutral fraction converges to a proportion of the traveling wave600

solution given by Eq. (36). The proportion of individuals is dependent on the initial601

condition of the neutral fractions, the traveling wave solution, and the asymptotic602
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spreading speed of the population. It is also clear from Eq. (36) that the neutral fractions603

at the wave front contribute a larger proportion of the total population density than604

those at the rear. This is analogous with the concept of a pushed front, where the605

genetic variation at the front of the wave comes from the spill over effect from the606

strong Allee effect. Generally, the Allee effect is thought to have a negative connotation607

on expanding populations because of the ability of the population to die out for low608

density levels. Our results show that the strong Allee effect preserves the neutral genetic609

variation in an expanding population. Thus, the strong Allee effect has a positive effect610

on the neutral genetic variation of an expanding population. We did not generalize this611

result for the general class of thin-tailed dispersal kernels as done in the case where612

the per capita growth was maximal at zero.613

The results proven in this paper can be connected to those for partial differential614

equations. When the dispersal kernel is Gaussian with mean zero, we are able to com-615

pare the results of Theorems 1 and 2 to the previous results for reaction diffusion616

equations, see Garnier et al. (2012), Roques et al. (2012). The conclusions from Theo-617

rem 1 are the same as for reaction diffusion equations where the growth function is of618

KPP type. When the growth function has a strong Allee effect, Theorem 2 predicts that619

each neutral fraction converges to a proportion of the traveling wave solution given620

by Eq. 36. This proportion is the same as the one calculated for the bistable reaction621

diffusion equation when k ∼ N (0, 2).622

We were able to extend the results of Theorem 1 to thin-tailed dispersal kernels.623

This result is given by Theorem 3. Here, we see the same results as seen in the previous624

result for Gaussian kernels that the traveling wave solution is a pulled front and the625

spread is dominated by the leading neutral fraction. The proofs for Theorems 1 and626

3 are very different because in the thin-tailed case we were not able to exploit the627

form of the moment generating function for Gaussian dispersal kernels. Thus, when628

inverting the bilateral Laplace transform, we could not use the convolution theorem to629

simplify the calculations and were left to compute the complex integral. The extension630

was not direct because we were forced to place an assumption allowing for our initial631

condition to be bounded by a function whose Fourier transform is in L1(R).632

This theory provided by Theorems 1 and 3 requires that the per capita growth633

rate is maximal at zero. Thus, we are able to apply these results to growth functions634

with overcompensation such as the Ricker and logistic type growth. Growth functions635

with overcompensation can produce nonmonotone traveling wave solutions as seen636

in Fig. 2c. We conjecture that in this scenario the shape of the nonmonotone shape637

of the traveling wave does not change the inside dynamics results for pulled fronts.638

The ability to analyze how overcompensation affects the neutral genetic patterns of639

spread is a unique feature that differentiates our work from previous studies. These640

types of dynamics were not possible in the previous works due to the fact that the641

entire population spread was governed by a scalar continuous-time model. We see that642

the sole effect of overcompensation does not promote neutral genetic variation in an643

expanding population. Thus, the traveling wave solution for the population density is644

still classified as a pulled front because the spread is dominated by the leading neutral645

fraction.646

The collective results provide a way of classifying traveling wave solutions of647

integrodifference equations in terms of pulled and pushed fronts. That is, if the spread648
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is dominated by the leading neutral fraction, then the traveling wave solution is a649

pulled front. If the leading edge of the spread includes components from many neutral650

fractions, then the traveling wave solution is a pushed front. In the case where we651

have a Gaussian dispersal kernel, we conjecture that a traveling wave solution can be652

determined simply by how fast the wave decays at the leading edge. This was stated653

in Conjecture 1 where the critical decay depends on the spreading speed and dispersal654

parameters.655

Even though this work answers some of the interesting questions about neutral656

genetic patterns in populations undergoing a range expansion in discrete time, it is657

clear that there is still more work to be done. There is still room to extend the result658

of Theorem 2 to a general class of thin-tailed dispersal kernels. The inclusion of a fat-659

tailed dispersal kernel is known to produce accelerating traveling waves. Whether this660

occurs when the growth function has an Allee effect is still unknown. Another direction661

of future work is to consider what happens to solutions with fat-tailed dispersal. In662

this case, we have accelerating traveling waves meaning that the speed that the wave663

travels increases with time.664

The convergence rate for compact initial conditions to traveling wave solution is not665

known for integrodifference equations. If such a result was known, then we would be666

able to alter the speed of the moving half-frame to extend this result as to never outrun667

the solution of System (13). This points toward the need for convergence theory about668

the speed of the solution approaching the traveling wave solution for integrodifference669

equations. For example, with partial differential equations, a well-known result by670

Bramson shows that in the frame of reference moving at 2t − 3
2

ln(t) + x∞, where671

x∞ is dependent on the initial condition, the solution of the Fisher KPP equation672

converges as t → ∞ to a translation of the traveling wave solution corresponding to673

the minimal asymptotic spreading speed c∗ = 2 (Bramson 1983). This result gives674

us the exact speed needed for the moving frame to capture the solution for compact675

initial conditions in the reaction diffusion equation framework with KPP type growth.676

Based on the assumption made on the decay of the initial condition in Theorem 1677

and the decay traveling wave solution made in Theorem 2, we make the following678

conjecture for the classification of traveling wave solutions to Eq. (1).679

Conjecture 1 (Decay properties of Gaussian traveling waves) Consider a traveling680

wave solution U (x − ct), to Eq. (1) with a Gaussian dispersal kernel. If we have681

that
∫ ∞
−∞ e

c−µ

σ2 y
U (y) dy < ∞ (U decays faster than e

c−µ

σ2 y
) then U (x − ct) is a682

pushed front. If we have that U (x − ct) decays exactly at the exponential rate e
c−µ

σ2 y
,683

then U (x − ct) is a pulled front solution corresponding to the minimum asymptotic684

spreading speed c∗ =
√

2σ 2 ln(g(0)) + µ. If U (x − ct) decays slower than e
c−µ

σ2 y
,685

then U (x − ct) is a pulled front with speed c > c∗.686

If Conjecture 1 is true, then it could give insight to the issue of pushed versus pulled687

fronts for growth functions with a weak Allee effect. Moreover, Conjecture 1 provides688

the critical decay rate for differentiating traveling wave solutions as pulled or pushed689

fronts.690

Outside of the realm of the inside dynamics analysis, this work also motivates future691

work for many general questions about traveling wave solutions for integrodifference692
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equations. The open questions that we encountered for integrodifference equations693

when completing this work were as follows:694

1. What are the asymptotic decay properties for traveling wave solutions?695

2. How fast do pulled front solutions with compact initial conditions approach the696

traveling wave solution?697

3. What is the asymptotic spreading speed for growth functions with a strong Allee698

effect?699

In summary, our work presents a framework for understanding the neutral genetic700

consequences of a population with nonoverlapping generations undergoing a range701

expansion. By connecting the ecological concepts with a mathematical model we702

encounter many interesting mathematical problems. The results shown in Sect. 3 pro-703

vide an excellent start to understanding the question of interest; however, there are704

many questions that we were not able to answer due to limited mathematical the-705

ory. Therefore, with improved mathematical theory we can provide better insight to706

understanding the neutral genetic diversity of expanding populations.707
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Appendix717

Proof of Lemma 1718

Proof For simplicity in notation we focus on a single neutral fraction and drop the719

superscript i notation. By assumption, x2v0(x)esx ∈ L1(R) ∩ L∞(R). Thus, we have720

x2v0(x)esx ≤ (1 + x2)v0(x)esx ≤ C (93)721
722

for all x ∈ R where C is a positive constant. Rearranging the previous inequality,723

v0(x) ≤ Ce−sx

1 + x2
(94)724

for all x ∈ R. Thus, there exists a positive constant C such that the function w0(x)725

defined by726

w0(x) := Ce−sx

1 + x2
(95)727
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satisfies v0(x) ≤ w0(x) for all x ∈ R. It is easy to see that w0(x)esx ∈ L1(R)∩L∞(R).728

Hence, the Fourier transform of w0(x)esx ∈ L1(R). To calculate the Fourier Transform729

of w0(x)esx , note that730

F

[

e−|x |
]

(ω) =
∫ ∞

−∞
e−|x |e−iωx dx (96)731

=
∫ 0

−∞
e(1−iω)x dx +

∫ ∞

0

e−(1+iω)x dx (97)732

= lim
b→∞

[

e(1−iω)x

(1 − iω)

∣

∣

∣

∣

0

−b

− e−(1+iω)x

(1 + iω)

∣

∣

∣

∣

b

0

]

(98)733

= lim
b→∞

[

1

(1 − iω)
− e−(1−iω)b

(1 − iω)
− e−(1+iω)b

(1 + iω)
+ 1

(1 + iω)

]

(99)734

=
[

1

(1 − iω)
+ 1

(1 + iω)

]

(100)735

= 2

1 + ω2
. (101)736

737

From the inverse Fourier transform,738

πe−|x | = π

2π

∫ ∞

−∞

2

1 + ω2
eiωx dω (102)739

=
∫ ∞

−∞

1

1 + ω2
eiωx dω. (103)740

741

Using the above result,742

F

[

C

1 + x2

]

(ω) = F

[

C

1 + (−x)2

]

(ω) (104)743

= C

∫ ∞

−∞

1

1 + (−x)2
e−iω(−x) dx (105)744

= C

∫ ∞

−∞

1

1 + x2
eiωx dx (106)745

= Cπe−|ω|. (107)746
747

The proof of the lemma is complete. ⊓⊔748
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