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Abstract

Applying an algorithm to a new domain often incurs much tuning to its many con­

trol parameters. A problem with such a tuning approach is that it is rarely possi­

ble for an algorithm to achieve the best segmentation result on a per image basis. 

This thesis investigates applying machine learning techniques to adaptively select 

parameters for image segmentation. We adopt Multi Resolution Adaptive Object 

Recognition (MR ADORE) as the overall framework of our system and extend it 

with several novel components into a system that is capable of adaptively selecting 

parameters for image segmentation algorithms. In particular, we implement a frag­

ment based similarity scoring metric, a Generalized Gaussian Distribution based 

feature extraction method, and a new pruning strategy called the machine learned 

branch expansion. Experiments show that the new system achieves better accuracy 

than the best static algorithm.
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Chapter 1 

Introduction

1.1 Statement of Research Problem
Image segmentation is a difficult problem. It is typically the first task of any auto­
mated image understanding process. All subsequent interpretation tasks, including 
object detection, feature extraction, object recognition, and classification, rely heav­
ily on the quality o f the segmentation result.

Despite the large number of segmentation techniques presently available, no 
general methods have been found that perform adequately well across a diverse set 
of images. A segmentation algorithm typically contains numerous control parame­
ters, which must be adjusted to obtain the optimal performance. Only after numer­
ous modifications to the set of control parameters can a segmentation algorithm be 
used to process the wide diverse set of images encountered in real-world applica­
tions. Thus the selection of appropriate parameters for a segmentation algorithm 
plays a key role in effective image segmentation.

One approach to selecting parameters is to tune them manually. A problem with 
this manual approach is that these parameters often interact in a complex fashion, 
which makes it difficult, or even impossible, to model the parameters’ behavior in 
an algorithmic or rule-based fashion.

An alternative to the manual tuning approach is to select a set of parameter val­
ues adaptively and automatically on a per image basis. In this thesis we investigate 
the feasibility of an adaptive parameter selection approach to segmenting natural 
images. In particular, we use oil sand images as test cases for our system. We 
believe that lessons learnt in this thesis can be applied to other natural image pro­
cessing systems when the issue of parameter selection occurs.

1
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1.2 MR ADORE
ADORE (ADaptive Object REcognition) is the first system capable of learning a 
complex domain-specific control policy for recognizing roofs in aerial photographs [11]. 
ADORE models image interpretation as a Markov decision process, where the in­
termediate representations are continuous states, and the vision procedures are ac­
tions. The goal is to learn a dynamic control policy that selects the next action (i.e., 
an image processing operator) at each step so as to maximize the quality of the fi­
nal image interpretation. ADORE has been ported to another domain (recognizing 
objects in office scenes) in another laboratory [10].

The MR ADORE system (Multi Resolution ADaptive Object REcognition) [21] 
extends ADORE in two ways. First, ADORE does not utilize features from the ini­
tial image. To compensate for the potential loss of quality due to suboptimal subse­
quent processing steps, in addition to features from the candidate interpretation, MR 
ADORE also extracts features from the initial image. Second, MR ADORE adopts 
the least-commitment policy, therefore it can avoid defining high-quality features 
for the intermediate processing levels. This policy increases both the interpretation 
quality and the portability of the system. These two extensions enable a machine- 
learned vision system for the interpretation of natural (as opposed to man-made) 
objects.

1.3 Oil Sand Domain
We empirically evaluate the proposed parameter selection system using oil sand 
images. Oil sand as shown in Figure 1.1 is composed o f sand, bitumen, mineral 
rich clays and water. Oil sand is key to meeting North America’s continued en­
ergy needs. Measurement of conveyed oil sand ore is essential to improve the de­
ployment and operation o f plant and machinery. Although traditional size analysis 
techniques exist, such as mechanical sieving, centrifugation, and sedimentation, it 
is highly desirable to use a system based on computer vision to obtain oil sand size 
information as it does not interfere with or disrupt the production.

Prior to this work, an Ore Size Analyst (OSA) system was built for segment­
ing oil sand images. A challenge for OSA is the selection of appropriate operator 
parameters. Varying lighting, weather, and oil sand ore properties change the char­
acteristics of the image, preventing us from having a fixed set of image processing 
parameters that are always appropriate. The performance of the contrast enhance­
ment and thresholding algorithms used in OSA is especially sensitive to the values 
of their parameters. Determining the best image processing parameters for the OSA 
software, under different environmental conditions, is a challenging task.

To build an adaptive parameter selection system, we adopt the MR ADORE sys-

2
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Figure 1.1: An oil sand image acquired by a camera positioned above oil sand 
conveyor belt s  (left). The right image is the desired segmentation with oil sand 
fragments shown against the b lack background.

tem [21] as a machine learning framework, and parameterize it with a new scoring 
metric, a GGD based feature extraction technique, a machine-learned branch ex­
pansion strategy, and OSA image processing operators. The goal of our system is 
to obtain the best image processing parameters for the OSA software under different 
environmental conditions.

1.4 Summary of Contributions
We have made three contributions in this thesis. Both efficiency and accuracy are 
important for an image interpretation task. Our fist contribution is a scoring metric 
that is more accurate than previous measures. Our second contribution is the iden­
tification of features that are suitable for our machine learning approach. Our third 
contribution is a pruning strategy that is as accurate as MR ADORE but much more 
efficient.

1.4.1 Scoring Metric
Several measures of segmentation quality have been suggested in the literature [4], 
such as Edge-Border Coincidence, Boundary Consistency, Pixel classification, Ob­
ject overlap, Object Contrast, and so on, although none of these has achieved 
widespread acceptance as a universal measure of segmentation quality. To fairly 
and accurately evaluate and compare the performance of segmentation such that 
machine can learn the the mapping from input images to corresponding segmenta­
tion parameters, it is crucial to have a good quality measure.

3
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MR ADORE adopts overall intersection over union to measure the quality of 
segmentation. Thus the scoring metric evaluates the performance of segmentation 
without considering the segmentation quality of individual fragments. Since there 
are many individual objects on the oil sand image, individual fragment segmenta­
tion performance has to be measured to give a correct evaluation on segmentation. 
In this work, a more appropriate fragment-based similarity scoring metric is devel­
oped in order for successful machine learning. Given a segmentation, individual 
quality of segmentation of every fragment is measured against the target object on 
the corresponding ground truth by intersection over union at first. The intersection 
proportional to the size of fragments on the ground truth is then used as weight to 
scale the individual scores. Finally, all weighted individual scores are added up to 
be the reward score representing the performance of the segmentation.

The new metric penalizes not only every single pixel mis-labeled but also the 
wrong segmentation where a single fragment is segmented into a few fragments or 
a few fragments are segmented into a big fragment. There is no conflict among 
the segmentation evaluations, i.e., greater over/under-segmentation leads to lower 
score and lower overlap between ground truth and segmented image leads to lower 
score. With the new fragment-based similarity scoring metric, the segmentation can 
be evaluated fairly and accurately.

1.4.2 Feature Extraction
Useful features are necessary for machine-learning the image processing param­
eters. Current machine learning techniques are unable to directly deal with data 
tokens consisting of thousands or even millions of pixels. Relevant features that 
compactly describe a given state (i.e., data tokens) must be abstracted and used by a 
machine learning method to learn a function approximator. These features capture 
attributes most relevant to the current task.

Since the quality of the approximation depends on the relationship between fea­
tures and rewards, in addition to the need for descriptive features, the structure of 
rewards must also be taken into account. The fragment based similarity scoring 
metric penalizes both false positives and false negatives. To more accurately eval­
uate the quality o f the segmentation result, features from both fine (background) 
areas and coarse (object) areas, as opposed to only coarse areas, should be extracted 
and used. Otherwise the reward approximator will compensate for only false posi­
tives but not false negatives.

Recently the statistics of natural image have attracted much attention from im­
age processing researchers. The statistics of texture operators on natural images are 
em pirically determined to conform  to som e special distribution. For exam ple, the 
distribution o f pixel differences of natural image conforms to Generalized Gaus­
sian distribution (GGD). The distribution of pixel differences, also known as the

4
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first order derivatives, reflects the dependence between neighboring pixels.
In this work, since oil sand image is rich of the texture information, GGD is 

applied to model the statistics of texture operators on oil sand images, in particular, 
the distribution o f pixels difference. The shape parameter j3 and scale parameter 
a  obtained from the modeling are used as the features for machine learning. The 
shape parameter, as the name implies, helps define the shape of a distribution. In 
the case of the normal distribution, the shape is always the familiar bell shape. The 
scale parameter defines where the bulk of the distribution lies, or how stretched out 
the distribution is. In the case of the normal distribution, the scale parameter is 
the standard deviation. The segmentation is used as a mask to get coarse (object) 
and fine (background) area information such that the area information is applied on 
raw input image to figure out the pixel differences for both fine and coarse parts. 
The distributions of pixel differences are then modeled by GGD respectively in 
order to obtain the important parameters to represent fine and coarse parts according 
to the segmentation result. The shape parameters and scale parameters are then 
concatenated together as the feature vector for machine learning.

To get a complete feature vector to represent the input image and the segmented 
result, the multi resolution decomposition of an image is computed with Gaussian 
filtering and implemented with a pyramid (n=3) for efficiency. The image at each 
resolution yields a different histogram of pixel differences. The features use a  and 
/3 from the pixels difference histogram of fine and coarse part on the original image 
together with a  and /3 from pixel-difference histogram for each resolution.

Analysis o f the performance achieved by different feature extraction methods 
reveals that GGD based features represent image segments most compactly and 
descriptively. Thus they improve segmentation quality and enable the mapping 
from the input images to the optimal parameter set to be learned almost completely.

1.4.3 Pruning Strategy: Machine Learned Branch Expansion

The “least-commitment” control policy of MR ADORE is achieved by an exhaus­
tive search of all permutations of operator sequences up to a limited length, which is 
computationally expensive. We apply a pruning strategy called the machine learned 
branch expansion to improve system efficiency. Experimental results show that the 
new strategy increases system efficiency exponentially while maintaining the same 
accuracy as the “least-commitment” policy.

1.5 Outline of the Rest of the Thesis
The rest o f the thesis is organized as follows. Chapter 2 introduces the domain of oil 
sand size distribution. Chapter 3 presents the related work on adaptive parameter

5
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selection systems within the field of vision. Chapter 4 presents a thorough intro­
duction to the MR ADORE framework (Multi Resolution Adaptive Object Recog­
nition) and the extensions of the framework to achieve the adaptive parameter se­
lection system in oil sand image segmentation. Chapter 5 presents the experimental 
results of running the new segmentation algorithm with adaptive parameter selec­
tion on oil sand ore images. This chapter also presents the quality difference among 
the features extraction methods we have applied. Finally, Chapter 6 summarizes the 
main contributions o f this thesis and outlines some future research directions.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 

Oil Sand Domain

Oil sands, as shown in Figure 2.1, are deposits of bitumen, a heavy black viscous 
oil that must be rigorously treated to convert into an upgraded crude oil before it 
can be used by refineries to produce gasoline and diesel fuels. Oil sands is key to 
meet North America’s continued energy needs.

Figure 2.1: An oil sand image.

2.1 Oil Sand Size Distribution
While conventional crude oil flows naturally or is pumped from the ground, oil 
sands must be mined. A key performance indicator of the mining process is the 
size o f the oil sand ore as it progresses through the ore sizing and delivery pipeline. 
Measurement o f conveyed oil sand ore size is essential to improve the deployment

7
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and operation o f plant and machinery. There are four reasons why it is important to 
have an accurate measurement of the oil sand ore fragments:

•  the optimal hole size in the shaking separator screens can be achieved such 
that less of the oil sands ore will need to be thrown away.

•  less rock thrown away means better throughput.

•  better throughput means less impact on the environment.

•  less impact on the environment means a better planet for our children.

The oil sands industry is limited by the performance of measurement o f the sizes 
of oil sand fragments. Although traditional size analysis techniques exist, such as 
mechanical sieving, centrifugation, and sedimentation, it is highly desirable to use 
a system based on computer vision to obtain oil sand size information as it does 
not interfere with or disrupt the production, and allows analysis of a large number 
of samples, thanks to the relatively high speed of image processing. In addition, a 
vision-based technique is not invasive, preserving the shape properties of oil sand 
lumps to be analyzed.

Our investigations have found no known literature on oil sand granulometry 
using computer vision, except for systems developed for the hard rock industry for 
analyzing fragmented rocks after blasting. The nature of oil sands precludes using 
these techniques or the underlying paradigm of edge based recognition.

The development of ore size analysis system for oil sands is non-routine due to

•  The complexity in recognition of oil sand geometry and modeling. Hard 
rocks have well-defined edges and their images can be segmented easily us­
ing edge-based techniques. In the case of oil sand images, however, edge- 
based methods fail due to the rich texture of oil sand lumps, and lack of edge 
information.

•  The reflection and refraction of light in oil sand. Oil sand mining is a 24-hour 
outdoor operation, varying lighting and weather conditions play a signifi­
cant role in the appearance o f oil sand. The variations do not permit unique 
identification in pixel transformations. Whereas humans have little difficulty 
identifying fragments from intensity images, the computer has a hard time 
distinguishing one fragment from the next. The situation becomes worse if 
the images being analyzed have low contrast.

On that basis, the development of reliable image processing algorithms for oil 
sand ore size measurement, under variable conditions, is needed before statistical 
modeling or optimization of the mining process can take place.

8
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2.2 Ore Size Analyst (OSA)
An Ore Size Analyst (OSA) [31] for oil sands based on image segmentation has 
been well-defined. OSA, with a number o f adjustable parameters, resolves the tech­
nical challenges that are known to be difficult for computer vision.

OSA operates in four stages (Figure 2.2):

•  Noise removal filters the image to remove noise.

•  Contrast enhancement improves the image quality before binarization.

•  Adaptive thresholding turns the gray scale image into a binary image where 
each ore fragment is labeled so that it can be differentiated from other frag­
ments and fine particles.

•  Post processing of the labeled images smoothens and/or splits some of the 
ore fragments to fix some of the imperfections created by the binarization 
process.

A m * ...... I

Noise
Removal

POSt
Processing

m z [>
Contrast

Enhancement

v

Adaptive
Thresholding

Figure 2.2: OSA workflow.

9
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Noise
Removal

CV_BILATERAL_NOISE_REMOVAL (Type of Noise Removal) 
Color Sigma (10)
Space Sigma (7)

Contrast
Enhancement

LOCAL_HE (Type of Contrast Enhancement) 
Window Size X (60)
Window Size Y (60)

Adaptive
Thresholding

CV_LOCAL_THRESHOLD (Type of Adaptive Thresholding) 
Adaptive Method (CV_ADAPTIVE_THRESH_GAUSSIAN_C) 
Block Size (91) 
dParam (0.0)
Struct Element Size of Morphological Segmentation (5)
Struct Element Shape of Morphological Segmentation 
(CV_SHAPEJELLIPSE)
Number of Iterations of Morphological Segmentation (1)

Post
Processing

Activeness of Erasing Spurious Connections (1)
Erode Disk Radius of Erasing Spurious Connections (5)
Dilate Disk Radius of Erasing Spurious Connections (3)
Erode Number Iterations of Erasing Spurious Connections (1) 
Dilate Number Iterations of Erasing Spurious Connections (1) 
Activeness of Eliminating Crags (1)
Erode Disk Radius Eliminating Crags (3)
Dilate Disk Radius Eliminating Crags (5)
Size of Threshold Eliminating Crags (100)

Table 2.1: Parameters of OSA (V2).

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.1 shows the parameters used in the OSA (v2). A value in a pair o f paren­
theses is the default value for the corresponding parameter. Noise Removal attemps 
to remove any noise from the image. Contrast Enhancement changes the contrast 
of the image to allow for better segmentation. Thresholding turns the greyscale 
image into a binary image to represent segments and background. Morphological 
segmentation for segment creation uses morphological operations to smooth seg­
ments and remove single pixel segments. Erase Spurious Connections removes any 
thin connections between fragments. Eliminate Crags fills in any region that is ex­
tremely concave. Block Size is CV_LOCAL_THRESHOLD window size. dParam 
is CV_LOCAL_THRESHOLD scaling factor.

2.3 Weakness of OSA
Most of the image-processing/computer-vision operations or sub-algorithms used 
require a set of operating parameters, which directly affect overall performance. 
Together these image-processing parameters establish the quality of segmentation. 
Before this work, the OSA software does not have any tools for finding the opti­
mal parameters. Varying lighting, weather, and oil sand ore properties change the 
characteristics of the image and do not allow us to have one set of image process­
ing parameters that are always appropriate for all images. The performance of the 
contrast enhancement and thresholding algorithms used in the OSA are especially 
sensitive to the values of their parameters. Determining the best image processing 
parameters for the OSA software, under different environmental conditions, is a 
challenging task. Ideally, we would like the OSA system to select its own image 
processing parameters automatically and on a per image basis.

In this work, we automate the parameter selection task, using MR ADORE as 
a framework. MR ADORE casts image processing as a machine learning task. 
Specifically, it learns the dynamic control policy by which the optimal operator 
sequence can be selected on a per image basis, and thus the best possible interpreta­
tion can be obtained. We extend MR ADORE with OSA segmentation algorithms, 
a descriptive feature extraction method, and a strict and accurate fragment based 
scoring metric to achieve an adaptive parameter tuning system (so called Adaptive 
OSA). Given a raw image, the Adaptive OSA can select the parameter set auto­
matically on a per image basis to achieve the best segmentation, from which the 
accurate size information can be obtained and used to improve the deployment and 
operation of plant and machinery.

11
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Chapter 3 

Related Work on Parameter Tuning

Learning operator parameters is intimately related to the task of robust object recog­
nition. One of the fundamental weaknesses that prevents current computer vision 
systems from practical applications is their inability to adapt the segmentation pro­
cess as changes occur in the image. Most vision operators found in the literature 
have various controls, the settings of which strongly affect output quality. The 
optimal parameter values depend on not only the task at hand but also the input 
data. Furthermore, in most operators the search space for all the parameters is 
prohibitively large and parameters interact in complex, non-linear ways, thereby 
making it practically impossible to explicitly model parameter behavior in a rule- 
based or algorithmic fashion. Thus, dependencies between input data and recogni­
tion goals in addition to complex parameter interactions create a need for dynamic 
parameter selection.

3.1 Automatic Parameter Tuning using a Genetic Al­
gorithm

In [6] and [5], Bhanu et al. present an image segmentation system that implements 
the automatic parameter tuning by using a genetic algorithm. The closed loop image 
segmentation system can adapt the segmentation process to changes in image char­
acteristics caused by variable environmental conditions such as time of day, time 
of year, clouds, etc. The segmentation problem is formulated as an optimization 
problem and the genetic algorithm efficiently searches the hyperspace of segmen­
tation parameter combinations to determine the parameter set that maximizes the 
segmentation quality.

Genetic algorithms can be used to provide an adaptive behavior within a com­
puter vision system. The simplest approach is to allow the genetic system to modify 
a set of control parameters that affect the output of an existing computer vision pro-
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gram. By monitoring the quality of the resulting program output, the genetic sys­
tem can dynamically change the parameters to achieve the best performance. Since 
almost every image segmentation algorithm contains parameters that are used to 
control the segmentation results, the authors adopt the simplest strategy.

The system consists of three stages: segmentation, feature extraction, and ob­
ject recognition. Since they are working with color imagery in the experiments, the 
authors select the Phoenix segmentation algorithm developed at Camegie-Mellon 
University [18]. Phoenix is a recursive region splitting technique. It contains seven­
teen different control parameters, fourteen of which are used to control the thresh­
olds and termination conditions of the algorithm. The authors find that of the four­
teen values, the two most critical parameters that affect the overall results of the 
segmentation process are maxmin and hsmooth. Since the input image must be an­
alyzed so that a set o f features can be extracted to aid in the parameter selection 
process performed by the genetic component, the authors compute twelve first or­
der properties for each color component (red, green, and blue) of the image. These 
features include mean, variance, skewness, kurtosis, energy, entropy, x intensity 
centroid, y intensity centroid, maximum peak height, maximum peak location, in­
terval set score, and interval set size. They also compute the twelve features for the 
Y (luminance component) image. In addition, they utilize two external variables, 
time of day and weather conditions, in the outdoor experiments to characterize each 
image. Combining the image characteristic data from these four components yields 
a list o f 48 elements. 50 elements are involved as feature set for the outdoor exper­
iments. The authors use a genetic learning algorithm [14] to obtain near-optimal 
parameter settings based on image content. The performance of the adaptive image 
segmentation system has been tested on a time sequence of outdoor images that 
contains variation in the position of the light source (sun) and the amount of light 
as well as changing environmental conditions. Totally 20 images were used in ex­
periments, 10 images for training and 10 images for testing. Since there were no 
other known adaptive segmentation techniques with a learning capability in both 
the computer vision and neural networks fields to compare their system with, they 
measured the performance of the adaptive image segmentation system relative to the 
set o f default Phoenix segmentation parameters [18] and a traditional optimization 
approach. The parameters for the traditional approach are obtained by manually 
optimizing the segmentation algorithm on the first image in the database and then 
utilizing that parameter set for the remainder of the experiments.

A large number of segmentation quality measures have been suggested in the 
literature [4], However, none has achieved widespread acceptance as a universal 
measure of segmentation quality. In order to overcome the drawback o f using only 
a single quality measure, the authors incorporate an evaluation technique that uses  
five different quality measures to determine the overall fitness for a particular pa­
rameter set. The five segmentation quality measures selected are, Edge-Border Co-
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incidence, Boundary Consistency, Pixel Classification, Object Overlap, and Object 
Contrast. The fitness function was composed of five different quality measures 
measuring both global and local segmentation properties. Two global properties: 
edge-order coincidence and boundary consistency, measure overall segmentation 
quality without explicit knowledge about the target objects. The three local mea­
sures: pixel classification, object contrast, and object overlap, require ground-truth 
about the objects present within the image. The experiment results show that the 
average segmentation quality for the adaptive segmentation technique was 95.8%. 
In contrast, the performance o f the default parameters was only 55.6% while the 
traditional approach provided 63.2% accuracy.

3.2 Adaptive Parameter Selection Using Reinforce­
ment Learning

Peng and Bhanu [23] present an approach in which a reinforcement learning sys­
tem is used to close the loop between segmentation and recognition, and to in­
duce a mapping from input images to corresponding segmentation parameters. Re­
searchers used reinforcement learning to find optimal parameters for the same seg­
mentation operator. The goal was to find a mapping between an input image (or its 
extracted features) and optimal parameter settings for the Phoenix segmentation op­
erator. Once again the system described in the paper was composed by three stages, 
namely: segmentation, feature extraction, and object recognition, with respective 
algorithm parameters being learned, fixed, and fixed. The closed loop system is 
based on obtaining immediate (associative) rewards back from the environment by 
feeding back the confidence score produced by the final/terminal object recognition 
procedure. The system uses teams or groups of units trained on encoded image 
features and the confidence score (feedback), in order to output operator parame­
ters. In other words, the inputs to the stochastic neural net were the image features 
and the confidence score at time t, the resulting output was a new parameter set 
for time t+1. The system looped until the confidence score (i.e., the quality mea­
sure) surpassed a predefined threshold or a predefined maximum number o f itera­
tions has been exceeded (implying that the object was not present or could not be 
found within the image). The experimental results seem to demonstrate the near 
optimal performance o f the algorithm in contrast to the total segmentation failure 
produced by running the Phoenix algorithm with default parameters. The system 
presented in [23] achieves robust performance by using reinforcement learning to 
induce a mapping from input images to corresponding segmentation parameters. 
Reinforcement learning is a framework for learning to make sequences of decisions 
in an environment [3]. This paper presents a learning-based vision framework. To 
achieve robust performance under changing environmental conditions, the low and
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high level components of a vision system must interact. This system accomplishes 
this by incorporating a reinforcement learning mechanism to control the interac­
tions of different levels within it. Specifically, the system takes the output of the 
recognition algorithm and uses it as a feedback to influence the performance of the 
segmentation performance. Again the Phoenix algorithm was chosen as the image 
segmentation component in their system since it is a well-known method with a 
number o f adjustable parameters. The four most critical parameters that affect the 
overall results of the segmentation process are used in learning. The feature ex­
traction consists of finding polygon approximation tokens for each of the regions 
obtained after image segmentation. The polygon approximation is obtained using 
a split and merge technique [7] that has a fixed set of parameters. This system 
employed a cluster-structure matching algorithm that is based on the clustering of 
translational and rotational transformations between the object and the model for 
recognizing 2D and 3D objects. The algorithm took two sets of tokens as input, one 
of which represents the stored model and the other represents the input region to 
be recognized. It then performs topological matching between the two token sets 
and computes a real number that indicates the confidence level of the matching pro­
cess. This confidence level is then used as a reinforcement signal to drive the team 
algorithm.The cluster-structure matching algorithm does not have the knowledge 
of the actual object location in the image. It simply attempts to match the stored 
model against the polygonal approximation of each blob in the segmented image. 
Experiments were done on both 12 indoor images and 10 outdoor images to show 
the segmentation performance of this system. The results showed that the system 
seemed to approximate the unknown mappings sufficiently well, for nearly opti­
mal performance has been achieved. In comparison, the Phoenix algorithm with 
default parameter setting obtained after extensive tests [18] was also run on the 
same images. This default parameter setting resulted in a total matching failure for 
experiments on indoor and outdoor images.

3.3 Delayed Reinforcement Learning for Adaptive Pa­
rameter Selection

In [24] a robust closed-loop system based on ’’delayed” reinforcement learning is 
introduced. Delayed reinforcement learning is important because, in many prob­
lem domain, immediate reinforcement regarding the value of a decision may not 
always be available. So reinforcement is often temporally delayed, occurring only 
after the execution of a sequence of decisions. Delayed reinforcement learning is 
attractive and play an important role in computer v ision  [23]. The parameters o f  a 
multilevel system employed for model-based object recognition are learned. The 
method improves recognition results over time by using the output at the highest
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level as feedback for the learning system. In the multistage system, there are un­
known parameters for both the segmentation and feature extraction modules. The 
Phoenix algorithm was chosen as the segmentation component. The two critical 
parameters Hsmooth and Maxmin are used in learning. The feature extraction mod­
ule found polygon approximation for borders of each of the regions obtained after 
image segmentation. Again the system employs a cluster-structure matching algo­
rithm to compute a real number to indicate the confidence level of the matching 
process. This confidence level is then used as a reinforcement signal to drive the 
system. It has been experimentally validated by learning the parameters of image 
segmentation and feature extraction and thereby recognizing objects. Experiments 
were done on some outdoor images. For acceptable recognition, the confidence of 
matching has to be greater than 0.75. When default parameter were used, the object 
(car) is broken into many small blobs from which polygonal approximation of the 
car cannot be accurately obtained. However the segmentation obtained by using 
the parameters obtained from learning showed the confidence of model matching is 
0 .88 .

3.4 Adaptive Integrated Image Segmentation
In [8], research within the aforementioned directions was combined into a more 
complete system. A general approach to image segmentation and object recog­
nition that can adapt the image segmentation algorithm parameters to the chang­
ing environmental conditions was presented. The system used a learned mapping 
to compute segmentation parameters for a given input to achieve optimal model 
matching. In this work, the edge-border coincidence measure is first used as rein­
forcement for segmentation evaluation to reduce computational expenses associated 
with model matching during the early stage of adaptation while the matching confi­
dence is used as a reinforcement signal to provide optimal segmentation evaluation 
in a close-loop object recognition system. They achieved better computational ef­
ficiency of the learning system and improved recognition rates compared to their 
earlier system [23].

The experiments were done with Phoenix segmentation algorithm on 24 indoor 
and outdoor images. The four most critical parameters were selected for adaption: 
Hsmooth, Maxmin, Splitmin, and Height.

3.5 Summary
Performance of image interpretation algorithm depends on the parameter selection 
of image processing operators. To achieve the adaptive parameter selection system, 
researchers have turned to machine learning methods aimed at selecting parameters
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for the sub-components to optimize the performance of the overall system. In this 
chapter, we have reviewed some most promising techniques for automatic parame­
ter selection of vision systems. Furthermore, although methodologies for the anal­
ysis and optimization of systems and individual components have been developed, 
systems with a long development cycle are expensive to maintain and difficult to 
port to other domains. Machine learning based systems may help ease the systems 
challenge.

The experimental results presented in the reviewed literature suggest that the 
adaptive parameter selection can be achieved by casting it as a machine learning 
task. Machine learning seems to be a promising technique to achieve automatic 
parameter selection on a per image basis.

Despite some researchers claim that their adaptive image interpretation system 
is designed to be fundamental in nature, independent of any specific image segmen­
tation algorithm or the type of input images, the following problems remain:

•  Empirical evaluations involve only a small number of images. It is hard to 
jump from such evaluations to the conclusion that their system will continu­
ously adapt in a real-time environment.

•  The features used are not suitable for natural images, like oil sand images, 
which possess rich texture information.

•  Although the researchers found applicable feedback signals (namely edge- 
border coincidence and boundary consistency) for the task of color segmen­
tation, it is not clear that such quality measures readily exist or can be easily 
created to find parameters of other image processing algorithms. In addition, 
the evaluation methods are not enough to give strict and accurate measure­
ment of segmentation performance. Therefore, an individual object based 
evaluation method is needed.
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Chapter 4 

System Design and Implementation

In this chapter, we introduce the design and implementation of our adaptive pa­
rameter selection system, highlighting its novel contributions. Our implementation 
demonstrates that it is feasible to build such an adaptive parameter selection system, 
and that such a system can indeed produce noticeable improvements on segmenta­
tion quality over the best static algorithm available. Empirical experiments that 
support this claim will be presented in the next chapter.

4.1 MR ADORE
ADORE (ADaptive Object REcognition) is the first system capable of learning a 
complex domain-specific control policy for recognizing roofs in aerial photographs [11]. 
It identifies objects (in this case buildings) in a multi-step process. The initial input 
data are raw images, and the final output are image regions that contain identi­
fied buildings. In the intermediate steps, the data could be represented as intensity 
images, probability images, edges, lines, or curves. ADORE models image inter­
pretation as a Markov decision process, where the intermediate representations are 
continuous states, and the vision procedures are actions. The goal is to learn a dy­
namic control policy that selects the next action (i.e., an image processing operator) 
at each step so as to maximize the quality of the final image interpretation. To 
demonstrate its general applicability, ADORE was subsequently ported to another 
domain (recognizing objects in office scenes) in another laboratory [10].

The MR ADORE system (Multi Resolution ADaptive Object REcognition) [21] 
extends ADORE in two ways. First, ADORE does not utilize features from the ini­
tial image. However, the quality of an interpretation often depends on features 
available in the input image, which may be lost in subsequent processing steps. To 
com pensate for the potential loss o f  quality due to suboptimal subsequent process­
ing steps, in addition to features from the candidate interpretation, MR ADORE 
also extracts features off the initial image. Second, MR ADORE adopts the least-
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commitment policy, therefore it can avoid defining high-quality features for the 
intermediate processing levels. This policy increases both the interpretation quality 
and the portability of the system. Cumulatively, these extensions enable an applica­
tion o f a machine-learned vision system to the interpretation of natural (as opposed 
to man-made) objects.

As in the case of ADORE, MR ADORE begins with the Markov decision pro­
cess (MDP) as the basic mathematical model, casting the operators and correspond­
ing parameters as the MDP actions and the results of their applications as the MDP 
states. However, in the context of image interpretation, the formulation frequently 
leads to the following challenges absent from typical search settings and standard 
MDP formulations:

•  Standard machine learning algorithms cannot leam directly from raw pixel 
level data since the individual states are on the order of several mega-bytes 
each. Selecting optimal features as state descriptions for sequential decision­
making is a known challenge in itself.

•  The number of allowed starting states (i.e., the initial high-resolution images) 
alone is effectively unlimited for practical purposes. Additionally, certain 
intermediate states (e.g., probability maps) have a continuous nature.

•  In addition to the relatively high branching factor, due to large image pro­
cessing operator libraries, some of the complex operators may require hours 
of computation time.

•  Unlike the standard search, typically used to find the shortest sequence lead­
ing to a goal state, MR ADORE attempts to find/produce the best image in­
terpretation. In this respect, the system is solving an optimization problem 
rather than one o f heuristic search. In particular, goal states are not easily 
recognizable as the target image interpretation is usually not known a priori, 
and thus standard search techniques are inapplicable.

In response to these challenges MR ADORE employs the following off-line 
and on-line machine learning techniques. During the off-line training stage, avail­
able subject matter expertise is encoded as a collection of training images with 
the corresponding desired interpretation (the so called ground truth). Figure 1.1 
demonstrates an example of such (input image, ground truth label) pair for the oil 
sand size analysis domain. Then off-policy reinforcement learning with roll-outs is 
used to acquire a value function [28]. At first, all feasible length limited sequences 
of operators are applied to each training image. The resulting interpretations are 
evaluated against the domain expert provided ground truth as shown in Figure 4.1. 
MR ADORE uses a pixel-level similarity scoring metric defined as the ratio of the
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number o f pixels labeled as the target class by both the system and the expert to the 
total number of pixels labeled as the target class by either one of them. According 
to such a metric, an interpretation identical to the user-supplied label scores 1 while 
a totally disjoint interpretation will get a score of 0.

The interpretation scores are then “backed up” along the operator sequences 
using dynamic programming. As a result, the value function Q : S  x  A  -¥  R  is 
computed for the expanded states S ' C S  and applied actions A' C A. Here S  is 
the set of states, A  is the set of actions (operators), and R  is the set o f cumulative 
rewards the policy can expect to collect by taking action A  in state S. The value 
of Q (s , a) corresponds to the best interpretation score the system can expect by 
applying operator a in state s and acting optimally thereafter. The term Q comes 
from Watkins’ Q-leaming [32].

Image
Processing
Algorithm

Artificial
Neural

Networks

Segmented image

Performance
Evaluation

Reward Score

Ground Truth

Figure 4.1: Off-line training stage: Parameter sets of image processing operators 
are applied to each training image. The resulting image segmentations are evalu­
ated against the desired label. Rewards are then computed.

The collected training set of Q-values {[s, a, Q(s, a)]} samples a tiny fraction 
of the S  x  A  space. Correspondingly, function approximation methods are used to 
extrapolate the value function onto the entire space. As modem machine learning 
methods are unable to deal with data tokens consisting of thousands or even millions
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of pixels, features /  have to be extracted off the raw (large) states S  to make the 
approximation feasible.

During the on-line interpretation stage, the system receives a novel image and 
proceeds to interpret it as shown in Figure 4.2. Namely, the value function learned 
off-line now guides the control policy to apply vision operators. Several control 
policies are possible ranging from greedy policies that select the next action a so 
as to maximize Q(s, a) in each state s to static policies that always apply the same 
sequence of vision operators regardless of the input image [19].

Machine Learned 
Control Policy

l m ^  Processing 
Operators

Figure 4.2: On-line operation: the control policy uses an approximate value function 
to select the best sequence of image processing operators. As the result, an image 
interpretation label is produced.

The “least-commitment” control policy addresses the two shortcomings o f the 
original ADORE. First, it applies all limited feasible sequences of operators to the 
input image s0. Once the set o f possible image interpretations { s i , . . . ,  sjv} is com­
puted, the policy uses the label o f each interpretation sz to extract features from the 
original input image s0- The resulting composite feature vectors / Sj( s o )  are used 
with the machine-learned value function to select the most promising interpretation 
•V as follows: i* = arg max, Q ( f Si (s0), subm it). In other words, the policy selects 
the interpretation sz- that is expected to bring the highest reward when submitted 
(i.e., output as the system’s interpretation of the input image).

This technique eliminates the need for ADORE to design high-quality features 
for every processing level as they are now required only for the initial color image 
and the final binary interpretation. Additionally, extracting features from the initial 
image provides a context for the features extracted off a candidate interpretation 
thereby addressing ADORE’s loss of performance due to the history-free nature of 
the Markov decision process.
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4.2 Extensions to MR ADORE
To achieve the adaptive parameter selection system, we extend the framework of 
MR ADORE with a GGD based feature extraction method, a more accurate scoring 
metric, a well defined Ore Size Analyst algorithm (OSA), and an efficient pruning 
strategy called machine learned branch expansion.

4.2.1 Segmentation Algorithm

Ore Size Analyst (OSA) is a well-defined oil sand image segmentation system with 
a number of adjustable parameters. Since we work with oil sand images in our 
experiments, the segmentation module based on OSA algorithm is applied in the 
adaptive parameter selection system.

OSA operates in four stages (Figure 2.2):

•  Noise removal filters the image to remove noise.

•  Contrast enhancement improves the image quality before the binarization 
process.

•  Adaptive thresholding turns the gray scale image into an image where each 
ore fragment can be labeled and differentiated from other fragments and the 
fine particles.

•  Post processing of the labeled images smooths and/or splits some o f the ore 
fragments to fix some of the imperfections created by the binarization pro­
cess.

It is a challenging task to determine the best image processing parameters for 
the OSA software under different environmental conditions. OSA contains more 
than 20 adjustable control parameters. Varying lighting, weather, and oil sand ore 
properties change the characteristics of the image and do not allow us to have one 
set o f image processing parameters that are always appropriate. The performance 
of the contrast enhancement and thresholding algorithms used in our OSA are espe­
cially sensitive to the values of their parameters. We find that o f these parameters, 
the two most critical parameters that affect the overall results o f the segmentation 
process are windowsize for local histogram equalization in contrast enhancement 
and blocksize (i.e., window size of local thresholding) in adaptive thresholding. 
From an analysis of OSA algorithm, we find that incorrect values of these two pa­
rameters lead to poor segmentation results: big fragment is segmented into many 
sm all fragments or a few  sm all fragments are segm ented into a b ig p iece. Since  
windowSize and blockSize affect the overall results of the segmentation process, 
these two parameters are chosen for adaption. The use o f only two parameters for
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the initial experiment aids in the visualization of the optimization process since we 
can easily plot the associated segmentation quality corresponding to each parameter 
combination.

Nth Level 
operator

intermediate State gegm'enled Image

Parameters
and

Follow-Up
Operators

Reward ScorePerformance
Evaluation

(ground rfaih

Figure 4.3: Off-line training stage: nth operator with possible parameters followed 
by subsequent operators with static optimal parameters are respectively applied to 
the intermediate state. The resulting image segmentations are evaluated against 
the desired label. Rewards are then computed.

4.2.2 Scoring Metric
To accurately evaluate the quality o f segmentation such that machine can learn the 
mapping from input images to corresponding segmentation parameters, it is crucial 
to have a good quality measurement. A number o f segmentation quality measures 
have been suggested in the literature [4], but none has achieved widespread accep­
tance as a universal measure of segmentation quality. In fact, the measurement of 
segmentation quality can be problem specific. For example, the number of frag­
ments, fragments with specific properties, the total areas of identified fragments, 
and the fragment size can all be used to measure quality. In our work, we need to 
achieve the size distribution of oil sand ore in images.
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Output Segmentation
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Figure 4.4: On-line operation: the control policy uses a set of approximate value 
functions to select the best set of parameters of image processing operators. As 
a result, an best image interpretation is produced corresponding to the input raw 
image.
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Two common approaches to measuring segmentation quality with respect to size 
are the overall intersection over union and histograms. The former is appropriate for 
a segmentation task where the goal is to find the total area of interest, or where the 
fragments are sparse. Intensity histograms are suitable when results are averaged 
over many images, not a single image. It does not take the positions or shapes 
of the fragments into account. So errors can be canceled out and thus masked. 
The example in Figure 4.5 demonstrates this problem. Despite the apparent poor 
segmentation quality, with histograms as a measure, the score for the segmentation 
in Figure 4.5 is as high as 1.

Ground Truth

Segmentation 1 
Reword Score: 

1.000

Segmentation 2 
Reword Score: 

1,000

Figure 4.5: A ground truth and possible segmentation results.

Overall intersection over union

The overall intersection over union [20] is a measure for the quality o f segmenta­
tion, which can be defined as follows:

if A  =  0 and B  = 0 
R { S ) = ™  otherwise. (4' 1)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where A  is the set of pixels of fragments on the segmented image, and B  represents 
the set of pixels of fragments on the corresponding ground truth. This metric is 
commonly used in vision research. MR ADORE adopts this metric.

The overall intersection over union is pixel-based. It calculates the overlap be­
tween B  produced by the ground truth and A  produced by segmentation. The score 
is 1 if  A and B  are the same such that their intersection is equal to their union. 
The score decreases as A  and B  become more and more disjoint, indicating that the 
segmentation result corresponds poorly to the ground truth.

The first case in Equation 4.1 applies when no target objects are present within 
an segmented image and the corresponding ground truth. In this case, the reward 
score is 1 since A  and B  are identical. On the contrary, the reward score will be 0 if 
there are target objects on the ground truth based on the application of second case 
in the equation. Thus, in the special case of \B\ = 0, rewards score are boolean. 
When \B\ > 0, indicating that there are target objects on the ground truth, the 
reward score becomes a real number between 0 and 1. The second case depends 
on the overlap of ground truth and the segmented result. The reward score is 1 
when A  = B.  The reward is 0 if  there is no overlap between the target objects 
on the ground truth and objects on the segmented image. The values in between 
depend on sizes of A  and B  as well as the degree of overlap between the two. Thus, 
this equation effectively combines the two commonly used concepts, precision and 
recall.

Precision is defined as

n s r  < 4 ' 2 )

Precision measures the number of pixels identified correctly over the number of 
pixels classified as members of the target class. Hence precision score is maximal 
when number of false positives is minimal.

Recall is defined as
A M I  (4 3)

\A\ ( ’

Recall measures the number of pixels identified correctly over the number of 
pixels belonging to the target class. Hence recall score is maximal when the number 
of false negatives is minimal.

False positives refer to the pixels which are incorrectly identified as belonging 
to the target class. False negatives refer to the pixels which are incorrectly identified 
as belonging to the background class.

\ A n B \  \ A n B \
\ A u B \ ~  |U| K '

and
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\ AnB\  ^  \ A n B  
\AUB\  -  \A\

(4.5)

imply

(4.6)

By combining precision and recall, Equation 4.1 penalizes both false positives 
and false negatives.

Figure 4.6: The left image represents a ground truth with 5 big fragments close to 
each other. A possible segmentation with only one large fragment is on the right.

Fragment-based similarity scoring metric

To precisely evaluate the segmentation quality for the purpose of monitoring oil 
sand size distributions, the segmentation quality of individual fragments must be 
considered. The overall intersection over union metric used by MR ADORE does 
not consider the segmentation quality of individual fragments. Since a natural im­
age like an oil sand image tends to contain many individual objects, individual 
fragment segmentation performance must be measured for an application like size 
distributions. Otherwise, the score will be meaningless. For example, consider the 
image shown in Figure 4.6, which contains five fragments close to each other. A 
segmentation algorithm may mistakenly recognize them as one big piece, which is 
a huge error as a measurement of size and amount. However, the score in terms of 
the overall intersection over union metric for Figure 4.6 is 0.91, much higher than 
what a human would have assigned.

A small difference in reward scores can result in a big difference in the size 
distribution. Thus the overall intersection over union metric is inappropriate for
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machine-learning the mapping from the input images to the corresponding segmen­
tation parameters.

In this work, we have developed a metric more suitable for machine learning. 
This metric is ffagments-based. Given a segmentation, the quality of each individ­
ual fragment in the segmentation is first measured against the target object on the 
corresponding ground truth by the overall intersection over union, the intersection 
proportional to the size o f fragments on the ground truth is then used as the weight 
to scale the individual scores, and finally, all weighed individual scores are added 
up to form a reward score that represents the performance of the segmentation. This 
fragment-based similarity scoring metric is defined as

where \A\ is the number of the set of pixels of fragments on the segmented image, 
and | B  | represents the number of the set of pixels of fragments on the corresponding 
ground truth, i represents the number of fragments on the ground truth image, and 
j  represents the number of fragments on the segmented image which intersect with 
the ith fragment on the ground truth image. \Ai\ represents the number of pixels of 
the ith fragment on the ground truth, | Bij | represents the number of pixels of the jth  
fragment o f all the fragments which intersect with A z. In the equation, A ^ B ^  is the 
intersection between the two fragments A^ and B ^  in pixels; A^ U B ^  is the union 
between the two fragments A t and B ^  in pixels; ^ g . . j  is the ratio (weight) o f each 
fragment B ^ ,  that to some degree intersects A z, to the union of all the fragments 
which intersect A t; and is the ratio of each fragment A t to the union of all 
the fragments in the ground truth image.

Note that the first case applies when no target objects are present on the ground 
truth image and the segmented image. The reward score is 1. In contrast, if  there 
are fragments on the segmented image while the ground truth image contains no 
objects, the reward score is 0. Thus when B  =  0, reward scores are Boolean.

The second case is applied to calculate the reward score when there are target 
objects on the ground truth image. There are three possible relationships between 
the fragments on the ground truth and the segmented fragments.

1. perfect overlap, under which the reward score is 1.

2. partial overlap, which refers to over or under segmentation and the score is 
between 0 and 1, depending on sizes of the union as well as the degree of 
overlap between the two fragments on the ground truth and the segmented 
image respectively.

if |A|  = 0  
) otherwise.

'*  ^ 3  Ei Ej  I Bij  I \AiUBij I

if  |v4| =  0 and \B\ =  0
(4.7)
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3. no overlap, under which the score is 0.

For those fragments on a segmented image that do not overlap with any target 
objects on the ground truth, since they belong to none of the target objects, thus 
all the fragments on the segmented image should share the false positive such that 
these wrong segmentation is also penalized.

The new score metric has the following properties:

•  The range o f the score is [0,1],

•  Score metric is independent of the image size.

•  The greater the over segmentation error is, the lower the score.

•  The greater the under segmentation error is, the lower the score.

•  The score is 1 if perfect overlap happens on all fragments on the ground truth 
and segmented images.

•  The score is 0 if  there is no overlap between all fragments on the ground truth 
and segmented images.

•  There is no conflict among segmentation evaluation results and intuition (see 
Figure 4.7 and Figure 4.8). Measurements should be precise and fair.

•  All individual fragment segmentation performance is measured.

•  Both false positives and false negatives are penalized.

The new metric penalizes not only every single pixel mis-labeled but also the 
wrong segmentation such as the cases where a single fragment is segmented into a 
few fragments (a.k.a over- segmentation) or a few fragments are segmented into a 
big fragment (a.k.a under-segmentation). There is no conflict between the segmen­
tation evaluation and intuition, that is, both a greater over- and under-segmentation, 
and a lower overlap between the ground truth and the segmented image will lead 
to a lower score. Also the fragment-based similarity scoring metric enlarges the 
difference o f evaluations fairly as shown in Figure 4.10. Thus the metric is fair 
and accurate so that the Q-function can be learned correctly to maximize the seg­
mentation quality in order for accurate size information. Under the new scoring 
metric, the score of the segmentation in Figure 4.6 is only 0.21, much lower and 
more realistic than the 0.91 under the overall intersection over union metric.

Figures 4.7 and 4.8 illustrate that the new scoring metric takes into account both 
over- and under-segmentation, and false positives and false negatives. Figure 4.9 
illustrates the difference between the new scoring metric and other two metrics.
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Figure 4.7: New scoring metric with over- and under-segmentation.
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Figure 4.8: New scoring metric with false positives and negatives.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(g) IOU: 0.679 RMSE: 0.932 SIIOU: 0.447 <h) IOU: 0.670 RMSE: 0.940 SIlOU: 0.474

Figure 4.9: Evaluations of segmentation results of same image using overall in­
tersection over union (IOU), root mean square error (RMSE) of size distribution 
histogram, and fragment-based similarity scoring metrics (SIIOU).
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Figure 4.10: Fragment-based similarity scoring metric enlarges the difference of 
evaluations more fairly than overall IOU. Segmentation 1 represents segmentation 
(c) in Figure 4.9, 2 represents (d), 3 represents (f), 4 represents (g), and 5 repre­
sents (h).
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4.2.3 Feature Extraction
Machine learning techniques cannot deal directly with large data like the millions of 
pixels contained in an image. To leam a function approximator from such massive 
data, we must first extract features that compactly describe the data. The compact 
features must capture attributes most relevant to the current task, and can then be 
used as input to machine learning. It is often a challenging task to explore and select 
descriptive features from large data.

The learning quality depends on the relationship between the features and the 
rewards. Thus, in addition to the features, we must also consider the structure of the 
rewards. In particular, the fragment-based similarity scoring metric penalizes both 
false positives and false negatives. Therefore, to properly evaluate the segmentation 
quality, features from fine areas (background), in addition to features from coarse 
areas (object), should be used as well, because otherwise, the reward approximator 
will leam to compensate for only false positives but not false negatives.

Plain histograms

The histograms of image intensities have several nice properties. They can be easily 
and efficiently computed, achieve a significant data reduction, and are robust to 
noises and local image transformations. Histograms of image intensities have been 
extensively used in the recognition and retrieval o f images and videos from visual 
databases [2,22,34, 35]. One of the initial applications of histograms was the work 
of Swain and Ballard for the identification of 3D objects [29]. Subsequently various 
recognition systems [12, 27] based on histograms were developed.

MR ADORE uses a 192-bin color histogram as the feature vector for machine 
learning. However, this histogram is not suitable for our application because it does 
not capture the spatial image information necessary for size distribution.

Multi resolution histograms

Multi resolution histograms can capture both intensity and spatial information from 
an image. Despite the popularity of the histogram of image intensities, a single 
image histogram fails to encode the spatial variations in an image. An obvious to 
extend this feature is to compute the histograms of an image at multiple resolutions 
and form a multi resolution histogram [16]. A multi resolution histogram directly 
encodes spatial information. Thus, it provides not only intensity but also spatial 
information [15]. Furthermore, a multi resolution histogram, like a plain histogram, 
is fast to compute, space efficient, invariant to rigid motions, and robust to noises.

In our work, the m ulti resolution decom position o f  an im age is com puted w ith
Gaussian filtering [17, 33]. Image at each resolution gives a different histogram.
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The multi resolution histogram is the set of intensity histograms of an image at 
multiple image resolutions.

The multi resolution decomposition of an image is implemented with a pyramid 
for efficiency. Assume the size of a given image is N  by N  where N  =  2” . The 
image pyramid, as shown in Figure 4.11, is a hierarchical structure composed o f n 
levels of the same image at different resolutions. At the bottom of the pyramid is the 
given image. Each set of 2 x 2 =  4 neighboring pixels is replaced by their average 
as the pixel value of the image at the next level. This process, which reduces the 
image size by half, is repeated n = log2N  times until finally an image of only 1 
pixel (average o f entire image) is generated as the top of the pyramid.

Level 0: lx l 

XX  'l*£vel 1: 2x2

Level 2:4x4

Level n: 2n x2

Figure 4.11: The filtered images stacked one on top of the other form a tapering 
pyramid structure, hence the name.

GGD based feature extraction method

Natural Image statistics
Image analysis produces a set of image statistics that measure various properties 

of the digital image. Recently the statistics o f natural image have attracted much
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attention from image processing researchers. A number of authors have shown how 
they can be exploited for denoising [9] [36], edge detection [13], tracking [26], 
segmentation [1], and so on. An image typically consists of millions of pixels, each 
pixel being 1 value out of millions. Despite this overwhelming amount of choices 
to generate an image, there is a limited amount of configurations that represent a 
natural scene. Investigation of the statistics of natural images is an important topic 
for texture synthesis and recognition.

At the highest level, image statistics mostly involve the following three steps:

1. Collecting primitive data;

2. Building histograms;

3. Fitting mathematical models.

Step 2 is standard, most techniques differ in steps 1 and 3.
The nature o f an image histogram provides many clues as to the character of 

the image [30]. For example, a narrowly distributed histogram indicates a low- 
contrast image. A bimodal histogram often suggests that the image contain an 
object with a narrow amplitude range against a background of differing amplitude. 
Image statistics differ in the ways they handle histograms.

Some o f the statistics of texture operators on natural images are empirically 
determined to conform to some special distribution. For example, the distribution 
of pixels difference of natural image conforms to Generalized Gassian distribu­
tion. Here the statistics of the first order derivatives reflect the dependence between 
neighboring pixels.

GGD basedfeature extraction
It is known empirically that Generalized Gaussian Distribution (GGD) can be 

applied to model the distribution o f Discrete Cosine Transform (DCT) coefficients, 
the wavelet transform coefficients, and pixels difference of intensity. GGD is de­
fined as

(4-8)

where a  denotes the scale parameter and fi represents the shape parameter. The 
shape parameter, as the name implies, helps define the shape of a distribution. In 
the case of the normal distribution, the shape is always the familiar bell shape. The 
scale parameter defines where the bulk of the distribution lies, or how stretched out 
the distribution is. In the case of the normal distribution, the scale parameter is the 
standard deviation.

The distribution o f pixel differences, also known as the statistics o f the first 
order derivatives, reflects the dependence between neighboring pixels. Figure 4.12
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Figure 4.12: Lena image.
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left difference

Figure 4.13: The estimation of GGD model on the left difference of Lena image.
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is the Lena image which has become the industry standard for judging imaging 
technology since 1972. Figures 4.13 [25], 4.14 [25], and 4.15 [25] show the fitting 
of the models of GGD on the distributions of pixel differences for the Lena image. 
We can see that the models closely fit the distributions.

diag difference

Figure 4.14: The estimation of GGD model on the diagonal differences of Lena 
image.

Since oil sand image is rich of the texture information, we use GGD to model 
the statistics of texture operators on oil sand images, in particular, the distribution of 
pixels difference. The shape parameter and the scale parameter obtained from the 
model are used as the features for machine learning. Specifically, the segmentation 
is used as a mask to separate the coarse (object) and fine areas (background) on the 
input image. Pixels differences are then calculated for the fine and the coarse parts, 
respectively. The distributions of pixels difference are then modeled by GGD. The 
shape parameter and the scale parameter obtained from the model are concatenated 
to form the feature vector for machine learning. Figure 4.16 shows how the feature 
vector is set up.

To get a complete feature vector to represent the performance of segmentation, 
the multi resolution decomposition o f an image is computed with Gaussian filtering
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Figure 4.15: The estimation of GGD model on all the differences of Lena image.
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and implemented with a pyramid for efficiency. The image at each resolution yields 
a different pixel differences histogram. The features use a  and (3 from the pixels 
difference histogram of fine and coarse part on the original image together with a  
and j3 from pixel-difference histogram for each resolution.

U iiior mi 11: ttxei'difttaeaces iFine)

i
Fitting with C,CD

E

a  fmt

Htstogritro of Pixel differences (Coarse*

fitting with GGD

Cl i'mrMi P imtse

\  r i* (X coarsê  P

Figure 4.16: Setting up feature vector.

4.2.4 Pruning Strategy: Machine Learned Branch Expansion
The “least-commitment” control policy of MR ADORE is achieved by an exhaus­
tive search of all permutations of operator sequences up to a limited length. Each 
operator sequence is applied to the input image, resulting in a labeled interpreta­
tion. This labeled interpretation is then used to extract features from the original 
input image. The resulting features are used as input to the machine-learned value 
function to select the most promising interpretation.

In this work, we investigate a new pruning strategy called the machine learned 
branch expansion. This pruning strategy eliminates the computationally expensive 
application of all operator parameter sets. It dynamically discards many parameter
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combinations, greatly improving the efficiency of our system while at the same time 
maintaining the accuracy.

Instead o f only one Q-function as in MR ADORE, the new control policy uti­
lizes several Q-fimctions, one for each of the ordered vision procedures. During 
the off-line training phase, an intermediate vision procedure, followed by operators 
with parameters obtained from the best static algorithm, is applied to segment the 
input image. The reward of the segmentation result is then used as the reward of 
this vision procedure. A Q-function for this procedure is approximated by training a 
back-propagation neural network, which takes feature vectors from the intermediate 
images as input and the rewards as training targets. During the online interpretation 
phase, the control policy evaluates these Q-functions on the current data and selects 
the intermediate state that achieves the highest Q-value.

The efficiency of the adaptive OSA can be increased exponentially when the 
machine learned branch expansion strategy is applied. Suppose the adaptive OSA 
works with m levels of vision procedures and n possible values for the parameters 
in each vision procedure. Due to the exhaustive search, the computational com­
plexity of adaptive OSA with the least-commitment policy is 0 (n TO). However, the 
computational complexity of the adaptive OSA with the machine learned branch 
expansion strategy is only O(nxm). Thus the efficiency of the adaptive OSA is 
increased exponentially when the machine learned branch expansion strategy is ap­
plied.

4.3 Summary
We design a system to achieve the adaptive parameter selection. In particular, we 
adopt MR ADORE as a framework, parameterizing it with the OSA image pro­
cessing operators, a new scoring metric, a new feature extraction technique based 
on GGD, and a new pruning strategy called the machine learned branch expan­
sion. The GGD-based features make it possible for our system to machine-leam a 
dynamic parameter selection policy. The new scoring metric evaluates the segmen­
tation quality more accurately than prior metrics, and thus helps the system learn 
a better control policy. Finally, the new pruning policy substantially improves the 
efficiency o f the system.
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Chapter 5 

Experiments

We have presented the design of the adaptive parameter selection system in the last 
chapter. In this chapter, we present the experiments where the automatic parameter 
selection system is applied to the oil sand images. The experiment results show that 
a GGD-based feature is the best among the six we have tested, and that the adaptive 
parameter selection can not only achieve a better segmentation than the best static 
algorithm available but also is robust to novel images.

5.1 Performance of Feature Extraction Methods
In this experiment, we set out to compare the effects o f six features on the segmen­
tation quality. Each feature extraction method is applied to segmenting the same set 
of 300 oil sand ore images. Performance data are gathered and compared. Based 
on the data, GGD (3L) is identified as the best feature extraction method for the 
segmentation quality and used in subsequent experiments.

The following six features are used in the experiment. GGD (1L) consists of a 
pair o f the shape parameter and the scale parameter from an estimated GGD model 
of the pixel differences of an image, GGD (2L) concatenates the 2 pairs o f the shape 
and scale parameters from the two GGD models for the 2 levels of a 2-level image 
pyramid, and GGD (3L) concatenates the 3 pairs of parameters from the 3 GGD 
models for the 3 levels of a 3-level image pyramid. MRH (1L) applies the intensity 
histogram of an image as the feature vector, MRH (2L) concatenates the intensity 
histograms o f a 2-level image pyramid, and MRH (3L) concatenates the 3 intensity 
histograms from a 3-level image pyramid.

Table 5.1 shows the performance of the six features tested. The significance 
level is set at 0.05. Statistics are based on the differences between the on-line and
the off-line reward scores

p    R o f f l i n e  ^o n lin e  (5 1)
R o f f l i n e
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MRH
(1L)

MRH
(2L)

MRH
(3L)

GGD
(1L)

GGD
(2L)

GGD
(3L)

Mean 4.80% 4.62% 4.23% 6.81% 3.74% 2.53%
Variance 0.37% 0.36% 0.43% 0.34% 0.35% 0.34%
Confidence 
Interval (95% 
confidence)

4.11%
-5.49%

3.94%
-5.31%

3.48%
-4.97%

6.15%
-7.47%

3.06%
-4.41%

1.87%
-3.20%

Table 5.1: Statistics of performance under different feature extraction methods.

where R 0ffime represents the best reward score obtained for an image using the 
OSA, and R miine represents the reward score from the on-line interpretation stage. 
Therefore, the smaller the P, the better a feature is.

5.2 Performance of Adaptive Parameter Selection Sys­
tem

We conducted two experiments to compare the performance of the adaptive param­
eter selection system and the best static OSA, and to compare the Machine Learned 
Branch Expansion strategy with the least-commitment policy of MR ADORE. Since 
the GGD (3L) achieves the highest online segmentation quality, the 12 GGD pa­
rameters from GGD (3L) are used as features. Cross-validation error is monitored 
during the training process to guard against over-fitting. The image segmentation 
system, Ore size Analyst (OSA), is selected as the segmentation algorithm. Two 
critical parameters of OSA are chosen for adaption, tabulated in regular intervals so 
that multiple parameter combinations can be applied. The segmentation quality is 
measured by the fragment based similarity scoring metric.

5.2.1 Experimental Data

Our adaptive parameter selection system has been tested on outdoor images with 
variations in both the position of the light source and other environmental condi­
tions. Imagery of this type allows us to monitor the system’s ability to compensate 
for real world conditions. As the experiment results will show, the image segmen­
tation system with adaptive parameter selection technique is effective in compen­
sating for the changes observed in these images.

Since we are undertaking a project to obtain the size distribution from oil sand 
images, in our experiments, we are working with the oil sand images. A total of 
150 oil sand images are acquired with three video tapes from different seasons: 
50 in April, 50 in August, and 50 in October, all in 2002. The image captured
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Figure 5.1: A sample image captured from video tape in April.

Figure 5.2: A sample image after cropping.
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Figure 5.3: A sample ground truth created mannually.

from video tape is 640 by 480 color image as shown in Figure 5.1. To get rid 
of the irrelavant information like conveyor belt on the image, we have to crop the 
image to get the interest region. After being cropped, the image size is 500 by 
200 as shown in Figure 5.2. Images from different seasons vary in illumination, 
environmental conditions, and fragment sizes, as shown in Figure 5.4. Images in 
April and October are used to build the machine learning model, and to select a 
global optimal parameter set. The trainedmodel is then applied to produce online 
segmentation results on the remaining 50 images, which are taken in August, but 
have never been seen by the model.

Figure 5.4: Two dissimilar images. The left one is from April, and the right one is 
from August.

High-quality ground truth images are critical to the accurate evaluation o f the 
segmentation quality. Therefore, we have manually created the ground truths for
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150 images and used them in our experiments. Figure 5.3 represents a sample 
ground truth created mannually for the oil sand image shown in Figure 5.2.

5.2.2 Online Performance: Adaptive Parameter Selection ver­
sus Best Static OSA

In this experiment we compare the performance of the adaptive parameter selection 
system and the best static OSA.

Our system adopts the least-commitment policy with an Artificial Neural Net­
work as the function approximator over a feature vector of 12 GGD parameters. 
Learning is done in two stages, offline and online. During the offline, all the possi­
ble combinations of parameters are generated and applied on the raw input image. 
The segmented results are then evaluated against the corresponding ground truth. 
To make the function approximator machine-learned, the descriptive features have 
to be extracted from the raw image and the segmented result. The neural network 
takes the features extracted as input vector and the reward score, created by seg­
mentation evaluation, as training signal to learn the mapping from the input images 
to the corresponding optimal parameter sets. During the online stage, given an un­
seen raw image, the adaptive segmentation system can adaptively select an optimal 
parameter set to achieve the best segmentation.

The best static OSA configures the OSA with the globally optimal parameter set, 
which is obtained by applying the segmentation system OSA with all the possible 
parameter sets on the training images. An average reward score on the segmentation 
quality is calculated for each parameter set. The parameter set that achieves the 
highest average reward score is selected as the globally optimal parameter set.

Figure 5.5 depicts the absolute score difference between the adaptive parameter 
selection and the best static OSA. The result shows that for 45 out of 50 test images, 
the adaptive parameter selection produces better segmentation. The improvement 
for the best case is 18.7%. For 5 out of 50 test images the adaptive parameter 
selection performs smaller reward scores, and the largest decrease is 5.5%.

Another way to appreciate the performance improvement achieved by the adap­
tive parameter selection is to use a mean score relative to R 0ffune• Our system 
achieved a mean score o f 96% relative to R 0ffune, while the best static OSA had a 
mean score of 87%.

Figure 5.6 is an example that illustrates the improvement the adaptive parameter 
selection can achieve. It can be seen that the best static OSA mistakenly segments 
the biggest fragment around the center into many small lumps while the adaptive 
parameter selection achieves a much better segmentation. It is also worth noting that 
the scoring metric used penalizes not only every pixel mislabeled but also incorrect 
splitting and merging of the fragments, and thus tends to produce smaller reward 
scores than other metrics.
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Figure 5.5: Reward score difference between online parameter selection and the 
best static OSA. The dashed line represents the mean difference.
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Figure 5.6: Sample showing improvement due to adaptive parameter selection. 
The upper left is a test oil sand image, and the upper right is its ground truth. The 
lower left is the segmentation produced by the best static OSA, with a reward score 
of 0.326. The lower right is the segmentation produced by the adaptive parameter 
selection, with a reward score of 0.476.
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Our learning system is stable. The experiment has been repeated multiple times. 
Multiple settings, such as the learning rates, momentum, random seeds, and hidden 
units, are also tried for the learning system. The results show that there is a minor 
difference of less than 1.7%, on the segmentation performance from the different 
settings.

5.2.3 Online Performance: Machine Learned Branch Expan­
sion versus Least-Commitment

In the experiments we applied the Machine Learned Branch Expansion Policy with 
Artificial Neural Networks as the function approximators over feature vectors with 
12 GGD parameters. Instead of applying only one Q-function as in the least- 
commitment policy, the new control policy is built up from a set of Q-functions, 
one for each vision procedure. The experiment is conducted on the same data set as 
the experiment reported in the last section.

Learning is also done in two stages, offline and online. Dining offline, after all 
the possible parameters are applied on the current data token, new data tokens are 
produced. New data tokens take several additional vision procedures whose param­
eters are determined according to the best static algorithm to form the hypothesis. 
The hypotheses are then evaluated against the corresponding ground truth.

The descriptive features for each vision procedure have to be extracted from 
the raw image and the hypotheses respectively to make function approximator of 
each vision procedure machine-learned. Specifically, the hypothesis of each vision 
procedure is used as a mask to get coarse (object) and fine (background) area infor­
mation such that the area information can be applied on raw input image to figure 
out the pixel differences for both fine and coarse part. The distributions of pixel 
differences are then modeled by GGD respectively to obtain the shape and scale 
parameters to describe fine and coarse part for each vision procedure.

To get a complete feature vector to represent the performance, for each vision 
procedure the multi resolution decompositions of images (raw image and hypoth­
esis) are computed with Gaussian filtering and implemented with a pyramid (n=3) 
for efficiency, a  and f3 from estimations of GGD model on the pixel differences 
histogram of fine and coarse part of each resolution are concatenated to set up the 
feature vector.

A neural network function is trained for each vision procedure by taking the 
features extracted as input vector and the reward score as training signal to learn the 
mapping from the intermediate state to the corresponding optimal parameter.

During the online stage, once given a unseen raw image, the control policy 
which is learned can then be applied to adaptively select the optimal parameters 
for every vision procedure, in particular, select one of the intermediate states which 
achieves the highest reward score to continue the segmentation process for every
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Least-Commitment MLBE Difference (MLBE - LC)
Image 51 0.464 0.523 5.9%
Image 52 0.587 0.591 0.4%
Image 53 0.427 0.426 - 0.1%
Image 54 0.555 0.571 1.6%
Image 55 0.523 0.530 0.7%
Image 56 0.513 0.498 -1.5%
Image 57 0.559 0.559 0
Image 58 0.617 0.615 - 0.2%
Image 59 0.389 0.389 0
Image 60 0.511 0.511 0

Table 5.2: Online performance under least commitment and machine learned 
branch expansion. Numbers represent the absolute reward score. Models are built 
with 100 images.

vision procedure, such that the best segmentation can be obtained based on the 
segmentation algorithm.

Table 5.2 depicts the score differences between the performance o f the least 
commitment policy and the machine learned branch expansion (MBLE) for 10 im­
ages. MBLE achieves a mean score o f 52.1%, while the least commitment a mean 
score o f 51.4%. In 7 out of the 10 images, the machine learned branch expan­
sion improves over or maintains the same segmentation performance as the least- 
commitment policy. The improvement for the best case is 5.9%. For 3 out of the 10 
images where MBLE decreases the reward score, the decrease in scores is at most 
1.5%.

5.3 Summary
We test our adaptive parameter selection system using 150 oil sand images from 
three seasons. The ground truths for these 150 images are obtained manually. In 
particular, we empirically select GGD (3L) as the best feature for the machine- 
learning, and demonstrate that our adaptive system does improve performance over 
the best static OSA. We also show that an alternative control policy, the machine 
learned branch expansion, can improve not only efficiency but also segmentation 
quality over the least-commitment policy.

These preliminary results demonstrate that our approach is robust to novel im­
ages and that the adaptive parameter selection can be effective in maximizing the 
segmentation quality on a per image basis.
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Chapter 6 

Summary and Future Work

6.1 Summary of Contributions and Results
An image segmentation system with fixed parameters cannot achieve the best seg­
mentation on a per image basis because no a fixed set of optimal parameters exists 
for all images. Thus an intelligent domain-specific policy is required to control the 
application o f operators and parameters and maximize the segmentation quality.

In this thesis, we design a system to achieve the adaptive parameter selection. In 
particular, we adopt MR ADORE as a framework, parameterizing it with the OSA 
image processing operators, a new scoring metric, a new feature extraction tech­
nique based on GGD, and a new pruning strategy called the machine learned branch 
expansion. The GGD-based features make it possible for our system to machine- 
leam a dynamic parameter selection policy. The new scoring metric evaluates the 
segmentation quality more accurately than prior metrics, and thus helps the system 
learn a better control policy. Finally, the new pruning policy substantially improves 
the efficiency o f the system. Experiments on oil sand images show that the new 
system achieves better accuracy than the best static image segmentation algorithm, 
which takes a set of globally optimal parameters.

6.2 Future Work
The initial success suggests some improvements to the system. In particular, we are 
considering more adaptive strategies to overcome problems caused by non-uniform 
images. As shown in Figure 6.1, oil sand images tend to contain fragments of 
mixed sizes. When fragment sizes are different, a fixed window size for the contrast 
enhancement cannot achieve optimal results. There is always a conflict between big 
and small fragments in terms of the segmentation quality: while a large window size 
benefits big fragments, it performs poorly on small fragments, and vice versa for a 
small window size. Clearly, we need a more effective strategy to solve this conflict
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Figure 6.1: A sample oil sand image with fragments of different sizes.

Raw Jnpultmape-

Sublmages

Figure 6.2: Sample subimages after a possible splitting.
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(a )
R ew ard  Score: 1 .000

(b )
R ew ard Score: 0 .6 7 8

(C) .(d)
R ew ard  Score: 0 .6 0 3  R ew ard Score: 0 .5 9 4

Figure 6.3: Segmentation results on the same raw input image by applying splitting 
strategy with different processing windows, (a) is the ground truth; (b) and (c) are 
segmentation results with different splitting process; (d) is a segmentation without 
splitting process;
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in order to achieve better segmentation quality. In the following, we outline two 
possible strategies.

One strategy is to split an input image into a number of reasonable process­
ing windows, as shown in Figure 6.2. Each window is segmented independently. 
The results are then merged together to form the final segmentation for the whole 
image. Some experiments have been done with this strategy, and the preliminary 
empirical results show that image splitting can be an effective method to improve 
the segmentation quality (see Figure 6.3.)

S tep  3 S tep  4  S tep  5

Figure 6.4: Adaptive window size combination with quad-tree separating strategy.

The other strategy is to select the window size adaptively. During the image pro­
cessing process, if  different window sizes can be adopted for different parts of the 
input image, both segmentation quality and processing time can be improved dra­
matically. For example, in the contrast enhancement stage, the window size is a key 
parameter. Currently, we are investigating the adaptive window size combination 
with the quad-tree separating strategy, as shown in Figure 6.4.
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Appendix A

Reward Scores from Off-line 
Training Stage of Adaptive OSA

Table A .l, Table A.2, Table A.3, Table A.4, and Table A.5 show the best possible 

scores (absolute) obtained from Off-line training stage of Adaptive OSA for each 

image on experiments . The score range is [0, 1]. Totally 150 oil sand ore images 

were applied on the experiments.
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Image# Reword Score (Absolute)
1 0.495
2 0.518
3 0.57
4 0.575
5 0.503
6 0.621
7 0.528
8 0.643
9 0.429
10 0.601
11 0.629
12 0.502
13 0.453
14 0.461
15 0.535
16 0.43
17 0.478
18 0.574
19 0.578
20 0.531
21 0.551
22 0.531
23 0.584
24 0.478
25 0.419
26 0.451
27 0.406
28 0.463
29 0.468
30 0.435

Table A. 1: The best possible scores (absolute) obtained from Off-line training stage 
of Adaptive OSA for each image on experiments. The score range is [0,1].
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Image# Reword Score (Absolute)
31 0.624
32 0.52
33 0.534
34 0.512
35 0.586
36 0.514
37 0.529
38 0.61
39 0.553
40 0.514
41 0.513
42 0.453
43 0.44
44 0.555
45 0.575
46 0.452
47 0.472
48 0.459
49 0.55
50 0.527
51 0.429
52 0.498
53 0.345
54 0.464
55 0.438
56 0.461
57 0.441
58 0.572
59 0.363
60 0.486

Table A.2: The best possible scores (absolute) obtained from Off-line training stage 
of Adaptive OSA for each image on experiments . The score range is [0, 1].
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Image# Reword Score (Absolute)
61 0.476
62 0.548
63 0.455
64 0.442
65 0.279
66 0.389
67 0.447
68 0.41
69 0.457
70 0.512
71 0.392
72 0.531
73 0.403
74 0.414
75 0.535
76 0.456
77 0.455
78 0.432
79 0.38
80 0.42
81 0.446
82 0.376
83 0.406
84 0.441
85 0.384
86 0.549
87 0.396
88 0.561
89 0.503
90 0.528

Table A.3: The best possible scores (absolute) obtained from Off-line training stage 
of Adaptive OSA for each image on experiments. The score range is [0,1].
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Image# Reword Score (Absolute)
91 0.525
92 0.473
93 0.498
94 0.506
95 0.508
96 0.434
97 0.518
98 0.438
99 0.401
100 0.488
101 0.511
102 0.504
103 0.495
104 0.578
105 0.413
106 0.474
107 0.488
108 0.446
109 0.502
110 0.476
111 0.488
112 0.445
113 0.557
114 0.538
115 0.585
116 0.494
117 0.456
118 0.51
119 0.646
120 0.409

Table A.4: The best possible scores (absolute) obtained from Off-line training stage 
of Adaptive OSA for each image on experiments . The score range is [0, 1].
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Image# Reword Score (Absolute)
121 0.51
122 0.41
123 0.561
124 0.324
125 0.533
126 0.439
127 0.455
128 0.482
129 0.517
130 0.536
131 0.448
132 0.489
133 0.516
134 0.447
135 0.534
136 0.454
137 0.562
138 0.486
139 0.485
140 0.514
141 0.502
142 0.432
143 0.502
144 0.547
145 0.534
146 0.489
147 0.512
148 0.641
149 0.42
150 0.555

Table A.5: The best possible scores (absolute) obtained from Off-line training stage 
of Adaptive OSA for each image on experiments . The score range is [0, 1].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B

Absolute Scores of Testing Images
from Off-line, Online, and the Best
Static OSA

Table B.l and Table B.2 show the absolute Scores of testing images from Off-line 

(training stage of Adaptive OSA), Online (evaluation stage of Adaptive OSA), and 

the best static OSA . The score range is [0, 1]. Totally 50 oil sand ore images were 

involved on the testing.
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Image# Score (Offline) Score (Online) Score (the Best Static OSA)
51 0.429 0.419 0.403
52 0.498 0.438 0.436
53 0.345 0.337 0.251
54 0.464 0.446 0.421
55 0.438 0.438 0.415
56 0.461 0.398 0.419
57 0.441 0.434 0.402
58 0.572 0.523 0.337
59 0.363 0.33 0.334
60 0.486 0.463 0.445
61 0.476 0.476 0.326
62 0.548 0.53 0.529
63 0.455 0.445 0.442
64 0.442 0.442 0.339
65 0.279 0.279 0.211
66 0.389 0.379 0.341
67 0.447 0.447 0.359
68 0.41 0.409 0.35
69 0.457 0.457 0.373
70 0.512 0.505 0.42
71 0.392 0.392 0.302
72 0.531 0.519 0.494
73 0.403 0.403 0.373
74 0.414 0.388 0.301
75 0.535 0.535 0.51
76 0.456 0.415 0.375
77 0.455 0.455 0.398
78 0.432 0.417 0.37
79 0.38 0.38 0.324
80 0.42 0.418 0.39

Table B. 1: The absolute Scores of testing images from Off-line (training stage of 
Adaptive OSA), Online (evaluation stage of Adaptive OSA), and the best static 
OSA . The score range is [0, 1].
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Image# Score (Offline) Score (Online) Score (the Best Static OSA)
81 0.446 0.413 0.407
82 0.376 0.294 0.281
83 0.406 0.318 0.286
84 0.441 0.372 0.398
85 0.384 0.384 0.342
86 0.549 0.544 0.538
87 0.396 0.394 0.369
88 0.561 0.556 0.488
89 0.503 0.477 0.473
90 0.528 0.518 0.505
91 0.525 0.519 0.501
92 0.473 0.442 0.414
93 0.498 0.465 0.427
94 0.506 0.45 0.442
95 0.508 0.446 0.501
96 0.434 0.434 0.39
97 0.518 0.512 0.503
98 0.438 0.428 0.379
99 0.401 0.365 0.382
100 0.488 0.482 0.423

Table B.2: The absolute Scores of testing images from Off-line (training stage of 
Adaptive OSA), Online (evaluation stage of Adaptive OSA), and the best static 
OSA . The score range is [0, 1].
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Appendix C

Relative Scores of Testing Images
from Online and the Best Static OSA

Table C.l and Table C.2 show the relative reward scores obtained from the best 

static OSA and online evaluation stage of Adaptive OSA with respect to the best 

possible scores obtained from offline training stage of Adaptive OSA. The score 

range is [0,1].
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Image# RelativeScore (Best Static OSA) RelativeScore (Online)
51 0.939 0.976
52 0.875 0.879
53 0.727 0.976
54 0.907 0.961
55 0.947 1.000
56 0.908 0.863
57 0.911 0.984
58 0.589 0.914
59 0.920 0.909
60 0.915 0.952
61 0.684 1.000
62 0.965 0.967
63 0.971 0.978
64 0.766 1.000
65 0.756 1.000
66 0.876 0.974
67 0.803 1.000
68 0.853 0.997
69 0.816 1.000
70 0.820 0.986
71 0.770 1.000
72 0.930 0.977
73 0.925 1.000
74 0.727 0.937
75 0.953 1.000
76 0.822 0.910
77 0.874 1.000
78 0.856 0.965
79 0.852 1.000
80 0.928 0.995

Table C.l: The relative reward scores obtained from the best static OSA and online 
evaluation stage of Adaptive OSA with respect to the best possible scores obtained 
from offline training stage of Adaptive OSA. The score range is [0,1].
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Image# RelativeScore (Best Static OSA) RelativeScore (Online)
81 0.912 0.926
82 0.747 0.781
83 0.704 0.783
84 0.902 0.843
85 0.890 1.000
86 0.979 0.990
87 0.931 0.994
88 0.869 0.991
89 0.940 0.948
90 0.956 0.981
91 0.954 0.988
92 0.875 0.934
93 0.857 0.933
94 0.873 0.889
95 0.986 0.877
96 0.898 1.000
97 0.971 0.988
98 0.865 0.977
99 0.952 0.910
100 0.866 0.987

Table C.2: The relative reward scores obtained from the best static OSA and online 
evaluation stage of Adaptive OSA with respect to the best possible scores obtained 
from offline training stage of Adaptive OSA. The score range is [0, 1].
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Appendix D

Score Differences between Scores
Obtained from Online and the Best
Static OSA

Table D .l and Table D.2 show the differences between the scores obtained from 

the online evaluation stage of Adaptive OSA and the Best Static OSA (Online - 

Static). Relative differences represent the score differences relative to the possible 

best scores from offline. The score range is [0,1],
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Image# ScoreDiff (Absolute) ScoreDiff (Relative)
51 0.016 0.039
52 0.002 0.004
53 0.086 0.342
54 0.025 0.059
55 0.023 0.055
56 -0.021 -0.050
57 0.032 0.079
58 0.186 0.551
59 -0.003 -0.011
60 0.018 0.040
61 0.15 0.460
62 0.001 0.002
63 0.002 0.006
64 0.103 0.303
65 0.068 0.322
66 0.038 0.111
67 0.088 0.245
68 0.059 0.168
69 0.084 0.225
70 0.085 0.202
71 0.090 0.298
72 0.025 0.050
73 0.030 0.080
74 0.087 0.289
75 0.025 0.049
76 0.040 0.106
77 0.057 0.143
78 0.047 0.127
79 0.056 0.172
80 0.028 0.071

Table D .l: The differences between the scores obtained from the online evalua­
tion stage of Adaptive OSA and the Best Static OSA (Online - Static). Relative 
differences represent the score differences relative to the possible best scores from
offline.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Image# ScoreDiff (Absolute) ScoreDiff (Relative)
81 0.005 0.014
82 0.013 0.046
83 0.032 0.111
84 -0.026 -0.065
85 0.042 0.122
86 0.006 0.011
87 0.025 0.067
88 0.068 0.139
89 0.004 0.008
90 0.013 0.025
91 0.018 0.035
92 0.028 0.067
93 0.038 0.088
94 0.007 0.018
95 -0.055 -0.109
96 0.044 0.11
97 0.009 0.017
98 0.049 0.129
99 -0.017 -0.044
100 0.059 0.139

Table D.2: The differences between the scores obtained from the online evalua­
tion stage of Adaptive OSA and the Best Static OSA (Online - Static). Relative 
differences represent the score differences relative to the possible best scores from 
offline.
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