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Abstract

In this thesis, we focus on topics relevant to developing and deploying large-

scale wireless sensor network (WSN) applications within real dynamic urban

environments. Given few reported experiences in the literature, we designed

our own such network to provide a foundation for our research.

The Smart Condo, a well-defined project with the goal of helping people age

in place, provided the setting for our WSN that would non-intrusively monitor

an occupant and environment. Although we carefully designed, developed, and

deployed the network, all of our planning did not prepare us for a key challenge

of that environment: significant radio-frequency interference. Most researchers

tend to ignore the existence of interference along with its potentially serious

implications: beyond impacting network performance, it can lead researchers

to misleading or unrealistic conclusions.

Interference is a particularly difficult problem to study because it varies

in time, space, and intensity. Other researchers have typically approached

the problem by investigating only known interferers. Instead, we approach

the problem more generally and consider interference of unknown origins. We

envision nodes periodically observing their environment, recognizing patterns

in those observations, and responding appropriately, so we use only standard

WSN nodes for our data collection. Unfortunately, collecting high-resolution

data is difficult using these simple devices, and to the best of our knowledge,

other researchers have only used them to collect rather coarse data.

Within the Smart Condo urban environment, we recorded a transceiver’s

received power level at 5000 Hz, a higher rate than we encountered elsewhere

in the literature, using 16 synchronized nodes. We explored traces from 256

channels and observed a number of recurring patterns; we then investigated

classifying traces automatically and obtained rather promising results. We fo-

cused on the two patterns most detrimental to packet reception rates and fur-



ther investigated both sampling and classification techniques tailored to them.

As part of our work, we extended our simulator, making it capable of gener-

ating impulsive interference, and developed a proof-of-concept pattern-aware

medium access control (MAC) protocol.

Through experiments using both the simulator and WSN devices, we eval-

uated the classifier and proof-of-concept MAC. Our results show that impres-

sive gains in the packet reception rates are possible when nodes can recognize

and appropriately react to interference. Using our techniques, nodes can com-

municate more efficiently by reducing the number of failed transmissions and

consequently decreasing overall network congestion.
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Chapter 1

Introduction

A wireless sensor network (WSN) consists of a geographically-distributed col-
lection of devices – essentially special-purpose computers – called wireless

nodes or motes. Each device has a radio transceiver that allows it to commu-
nicate wirelessly and do so over often short distances. It may have a number
of attached sensors and actuators for observing and affecting its surroundings,
respectively. It often transmits its observations to a collection point called a
sink and receives acknowledgements and commands from the sink.

Although it would be convenient to design WSNs in a vacuum or even isola-
tion, all WSNs operate within some sort of environment. The specific environ-
ment can affect the WSN: in some cases, it may present particular opportuni-
ties, and in others, it may impose inconvenient challenges. For example, nodes
placed within a densely populated building may be able to take advantage of
electrical outlets as a power source, but at the same time, unknown devices
may interfere with their communication.

Our research centres on topics relevant to developing and deploying large-
scale wireless sensor network applications within real dynamic urban environ-
ments. Urban environments can exist on a number of scales, ranging from a
single-occupancy apartment unit to a much larger metropolitan area. They are
characterized by a number of features (Section 1.2), with the most relevant to
our present work being the probable presence of high and dynamic interference.
Some other researchers have focused special attention on these environments,
too, but they have looked at different problems. For example, Oehen [59] calls
them non-deterministic environments as he investigates deployment support
networks.

Mainstream research often overlooks their unique characteristics and fo-
cuses – intentionally or not – on rural or even fictitious scenarios. When work-
ing with WSNs and even more typically their simulators, researchers often
make a number of simplifying assumptions that detach their work from re-
ality [46]. Some of these assumptions include

1. representing node locations as simple two-dimensional (x, y) values and
failing to account for hills, buildings, or other obstacles,

2. modelling a radio’s transmission range as a circle,
3. assuming that all radios have an equal transmission range,
4. believing that the link between two communicating nodes is symmetric,
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5. ignoring the possibility of corrupt transmissions (packets), and
6. calculating signal strengths simply as a function of distance.

The effect of using these assumptions can be serious: they can lead researchers
to misleading or unrealistic conclusions [47]. Our work within urban environ-
ments suggests an addition to the list published in [46]:

7. ignoring the existence of external interference.

We have noticed that researchers rarely consider the serious impact that exter-
nal interference can have on network performance [57].

Given very few reported experiences from deployed urban networks, we be-
gan exploring this area ourselves. Our foray started within the context of a
well-defined urban project named the Smart Condo (Chapter 2). After defining
the project’s requirements and establishing its architecture, we began to de-
velop software for both the nodes and support systems (Chapter 3). To speed
up this development, we made extensive use of the SMURPH/SIDE simula-
tor. Using this powerful tool, we emulated the software and tested it with
the many other involved components. After seeing that the (emulated) sys-
tem achieved its objectives, we deployed the nodes in the real environment –
the Smart Condo.

After deploying the network, we soon discovered that although the system
generally met its design goals, characteristics of the particular environment
negatively affected the wireless communication. When we searched for the po-
tential sources of the problems, we found the presence of strong interference. In
our desire to alleviate the effect of the interference, we had to address a number
of sub-problems that include

• sampling received signal strength indicator (RSSI) values at a high rate
while using low-end hardware (Chapter 4),

• generalizing the patterns that we observed in the time series (RSSI)
traces (Chapter 4),

• using low sampling rates to obtain feature vectors still suitable for classi-
fication (Chapter 5),

• classifying channels within the strict resource confines of low-end WSN
nodes (Chapter 5), and

• exploiting in-node classifications to improve network performance (Chap-
ter 6).

While our results from investigating these topics will benefit WSN research
generally, they are particularly relevant to the emerging field of cognitive ra-
dios, which attempt to opportunistically use unoccupied frequency bands after
predicting the near-term occupancy of a channel [99].

In this chapter, we review WSNs, both in terms of their hardware and soft-
ware, and identify some of their applications. We then describe our assump-
tions for the specific class of WSN that we call an urban WSN. Most of these
assumptions relate not to the communication channel between nodes, which it
turns out is highly unpredictable, but instead to the environment’s more gen-
eral opportunities and challenges. After this gentle introduction, we list some
topics relevant to our research. Finally, we close the chapter by enumerating
our contributions and providing an outline for this thesis.
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1.1 Wireless sensor networks

In its typical form, a wireless sensor node consists of a microcontroller unit
(MCU), a radio transceiver, and supporting components including a voltage
regulator, a clock, resistors, capacitors, and light-emitting diodes (LEDs) all
soldered to a circuit board. One or more sensors or actuators and an energy
source may be either connected to or integrated on this board. Given that these
nodes are often battery powered, energy consumption plays a key role in the
components selected for them.

The MCUs used in these devices are often from the lower end of the perfor-
mance spectrum. Two popular examples are the Texas Instruments MSP430
series, built around a 16-bit central processing unit (CPU) that now runs at
up to 25 MHz, and the Atmel megaAVR series, built around an 8-bit CPU that
now runs at up to 20 MHz. Table 1.1 describes three specific models that have
been used within WSN nodes. Notice that they often have just a few kilobytes
of random-access memory (RAM) and flash storage in addition to their rela-
tively slow clock speeds. Although these MCUs are rather meagre computing
platforms, they consume very little energy when active and offer a variety of
reduced-functionality low-power modes that allow them to use just a few mi-
croamps of current. Given the right settings, they can literally run for years on
even relatively small batteries (e.g., AAA- or AA-sized batteries). The boards
that we use incorporate the MSP430 running at either 5 MHz for the RF Mono-
lithics DM2200 [76] (given a 9 V battery with the voltage regulator) or 4.5 MHz
for the Olsonet EMSPCC11 [62] (given two AA batteries).

Table 1.1: Specifications for three MCUs used in wireless sensor nodes. They
all use the reduced instruction set computing (RISC) architecture. I/O pins
support data input and output from the MCU. An ADC converts analog signals
to digital values, and a DAC makes the opposite conversion. Finally, the US-
ART allows the MCU to communicate with other receiver/transmitter devices
asynchronously.

MSP430F148 MSP430F1611 ATmega128L

architecture RISC RISC RISC
bit width 16 16 8
frequency ≤ 8 MHz ≤ 8 MHz ≤ 8 MHz
flash memory 48 KB 48 KB 128 KB
RAM 2 KB 10 KB 4 KB
I/O pins 48 48 53
ADC 12-bit 12-bit 10-bit
DAC N/A 12-bit 10-bit
USART 2 2 2
hardware multiplier N/A integer fractional
example usage [76] [62] [26]

Many different radio transceivers are suitable for these devices as well,
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with low energy consumption again being their common characteristic. Over
the course of our research, we used two rather different transceivers: the RF
Monolithics TR8100 [75] incorporated in the DM2200 and the Texas Instru-
ments/Chipcon CC1100 [91] incorporated in the EMSPCC11. The former has
very few features, e.g., it only communicates at a single frequency (916.5 MHz),
at a single power level, at a single data rate, and with a single physical mod-
ulation. The latter, on the other hand, has a large number of parameters,
e.g., frequencies, power levels, data rates, and physical modulations. Much
research now uses transceivers built around the IEEE 802.15.4 (ZigBee) stan-
dard, e.g., the Texas Instruments/Chipcon CC2420 [89], which shares similar-
ities with our CC1100 transceiver. One such similarity relevant to our work
is the easy retrieval of the received signal strength indicator (RSSI) value – a
measure of the power received at the transceiver. Given the CC2420 rather
than the CC1100, we could have used the same methodology to perform similar
research in the 2.4 GHz spectrum rather than the 900 MHz spectrum.

A variety of sensors are available to detect physical phenomena such as
doors opening, temperature, humidity, motion, and tactile pressure. Further-
more, several sensors may be integrated on a single circuit board, which is
called a sensor board, e.g., [53]. Some sensors produce digital signals that
can serve as input to the MCU directly, and others produce analog ones that
must be interpreted by an analog-to-digital converter (ADC). After receiving
an observation, a program running on the node then processes it and possibly
communicates it through the radio transceiver.

A node may incorporate actuators as well that allow it to influence its sur-
roundings. For example, an attached relay could allow a node to enable or
disable an external device such as a light. In the case of an actuator, a node
can either autonomously control it or act on commands received through the
wireless network.

The nodes within a single network deployment may be heterogeneous. One
subset of nodes may detect a certain environmental characteristic (e.g., sound),
and another subset may detect another (e.g., light). Nodes may also fulfil dif-
ferent communication roles. For example, some nodes may strictly sense the
environment and transmit observations, while others may actively participate
in relaying messages to the collection point (sink). Multiple sinks may exist in
a single network deployment.

The small physical size, low cost, and diverse and ad hoc capabilities of
these nodes make them well-suited to a variety of applications. Some of the
proposed applications include (a) intrusion detection, classification, and track-
ing [8], (b) indoor [13] and outdoor [53] environment monitoring, and (c) struc-
tural monitoring [98]. For a thorough discussion of possible applications, see
references [4,7]. The ability to deploy these nodes at high densities promises to
provide insight into many existing problems at previously impractical scales.
For example, a recent (2010) study of soil ecology within urban forests used
WSNs to measure both moisture and temperature at previously impossible
temporal and spatial levels [87].

The use of low-performance hardware components in a node restricts the
software that can run on it. Within limited flash memory, it becomes im-
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portant to keep code lean, without the waste of unused functions in large li-
braries. Given limited RAM, traditional multitasking (i.e., allocating one stack
per thread) also becomes impractical. The limited processing power makes it
particularly important to consider the computational complexity when imple-
menting algorithms. For example, we derived an algorithm to detect knocking
on a door from a real-time QRS complex (heartbeat) detection algorithm pub-

lished in 1985 [65]. Using 16-element circular buffers, our implementation uses
only around 101 bytes of RAM.

Many of the traditional wired and wireless networking problems persist
with WSNs (e.g., medium access control [28]), but the unique characteristics of
these small devices have motivated new approaches to well-studied problems.
Routing techniques are possibly the largest body of research [5]. Both energy
constraints and the desire to scale WSNs to thousands of nodes have motivated
new work. The different schemes make different assumptions about the net-
work (e.g., memory to store routes [37] and availability of location data [16])
and focus their optimization effort on different characteristics (e.g., scalabil-
ity [52] or energy consumption [92]). Other hot topics in wireless sensor net-
works include localization [54], sleep cycles [44], emulation/simulation [14], and
programming abstractions [95].

1.2 Assumptions

We are interested in the development and large-scale deployment of WSNs
within dynamic urban environments. With this focus, we depart – to a degree
– from the dominant assumptions about WSNs and instead seek appropriate

assumptions for this class of environments.
We consider environments that likely experience high levels of radio-

frequency (RF) noise and interference. Noise, RF byproducts from devices,
may originate from a number of sources, e.g., fluorescent lighting, elevators,
and office equipment [21]. The amplitude of the introduced noise may be non-
Gaussian, and it cannot necessarily be modelled analytically. Interference, in-
tentional RF transmissions from devices, may result from devices using over-
lapping frequencies, e.g., a cordless telephone. Both noise and interference
sources may appear and disappear apparently randomly over time, e.g., lights
being switched on or a cordless telephone call.

We expect that networks will be deployed in stages, i.e., they will evolve
as dictated by either conditions or user needs. In the former case, the nodes
may collect network performance measurements over time, e.g., transmission
(packet) loss rates, and these statistics may suggest preferred locations for new
nodes. In the latter case, we expect that the hardware and software will un-
doubtedly evolve and be heterogeneous, possibly with vast performance differ-
ences. At the same time, however, new devices must be able to communicate
with old ones, and the protocols must be backwards compatible.

We realize that extrinsic, application-specific constraints may affect the
placement of sensors. For example, a passive-infrared motion sensor detects
motion within a conical sensing area and must be pointed at the area of in-
terest. These types of constraints subsequently restrict the placement of the
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attached wireless nodes. In some cases, nodes will be placed in suboptimal lo-
cations that yield poor-quality wireless links. One way to address this problem
is with the addition of relay nodes, i.e., intermediate nodes to repeat transmis-
sions.

Although energy conservation remains a goal, we assume that some nodes
will use the abundant power sources available in urban settings. These nodes
will typically be those with a degree of placement flexibility, e.g., relay nodes.
Nodes with more stringent restrictions on their placement will still tend to be
energy-constrained. From an optimization standpoint, this creates an interest-
ing mix of node properties. The addition of further devices powered by small
but perpetual energy sources, e.g., solar cells, presents the possibility for a third
class. These nodes would offer flexible placement, and at the same time, more
communication potential than strictly battery-operated nodes.

We assume that most – not necessarily all – communication in the WSN
passes directly between a sensor node and its sink (i.e., with only a single hop).
To support such communication, we assume that an environment will have a
reasonable number of sinks that are connected to a backbone (often wired) net-
work. Such a backbone network will offer significant performance advantages
over the WSN in terms of data carrying capacity and reliability. For areas out-
side of the range of the sinks, we envision that hard-wired relay nodes placed
between sensor nodes and the sinks will connect the network with extra hops
where necessary. To support these few multi-hop links, a low-complexity small-
footprint routing protocol, e.g., TARP [61], will suffice. For the sensor nodes,
this design results in a reduced energy burden (no relaying) and lower latency
(typically single-hop communication).

Robustness and reliability are major requirements as we perceive that
the data produced by sensors may have direct use in life-critical applications,
e.g., healthcare. However, for the sake of our work to date, we are not interested
in real-time (RT) criticality. Hence, even though a deliberate effort is made to
reduce all relevant latencies, the systems in question are non-RT critical ones.

1.3 Implications

The results presented in this thesis have significant implications for a num-
ber of urban WSN development topics. Here, we list selected topics and briefly
describe their relationship to our work. Many of them also relate to the afore-
mentioned assumptions.

Accurate emulation

Early in this chapter, we introduced a number of common assumptions that
are used in wireless network simulators/emulators, and at the same time, we
highlighted the general lack of attention that they give to background noise
and interference. Meanwhile, simulators and emulators are frequently used
when developing WSNs to test new techniques and evaluate performance. By
incorporating our observations on interference patterns into these virtual en-
vironments, network researchers will be able to improve the fidelity of their
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experiments and have more confidence in their results.

Protocol development

The Smart Condo project introduced a framework and associated protocol suit-
able for healthcare applications. When we deployed nodes with this protocol,
the system achieved our design goals even within an interference-filled envi-
ronment. Our architecture could serve as a blueprint for other similar WSNs.

Protocols, particularly those for medium access control, can benefit from an
awareness of background noise and interference. Nodes can use this knowl-
edge of their environment to either avoid certain channels or time transmis-
sions, for example. Later, in Chapter 6, we present our work on a transmission
scheduling technique within the context of a new medium access control (MAC)
protocol.

Site surveys

In order to classify channels, nodes must first observe the noise and interfer-
ence present in their surrounding environment. Rather than simply transmit
a handful of packets to measure packet loss rates, nodes can measure the back-
ground noise and interference. Through classification, nodes can better con-
clude why a channel performs poorly, and they can potentially improve the
performance through appropriately designed protocols.

1.4 Contributions and outline

As described in the previous section, our work on investigating urban envi-
ronments applies to a number of areas. In this thesis, we make the following
contributions:

1. We present a well-defined urban WSN application named the Smart
Condo (Chapter 2). With this description, we show its overall architec-
ture with its associated components and protocols. Our design addresses
each of our assumptions for urban environments.

2. We describe the development of software for the Smart Condo application,
along with the tools that we used (Chapter 3).

3. We present a technique for sampling RSSI values at a high rate while us-
ing low-end hardware (Chapter 4). While other researchers have sampled
channels using WSN hardware, we do so at much higher rates.

4. We explore the time-series behaviour of RSSI traces and identify a num-
ber of common patterns (Chapter 4). These patterns provide a starting
point for further work on recognizing specific patterns.

5. We investigate using lower sampling rates to obtain feature vectors still
suitable for classification (Chapter 5). This work is made possible by the
high sampling rate that we achieved using WSN hardware.

6. We describe a classifier that fits within the strict resource requirements
of low-end WSN nodes (Chapter 5).
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7. We implement the described classifier and a pattern-aware medium ac-
cess control technique, and we show their combined ability to improve
network performance (Chapter 6).

In Chapter 7, we summarize our contributions in greater detail and suggest
some future research opportunities.
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Chapter 2

The Smart Condo Project

With a strong desire to develop and deploy an urban wireless sensor network
(WSN), we joined a multifaceted interdisciplinary research project named the
Smart Condo in the summer of 2008 [12,13,85]. The team, which included stu-
dents and faculty from Computing Science (CS), Occupational Therapy (OT),
Industrial Design (ID), and Pharmacy, endeavoured to create an accessible and
supportive living environment. We planned to use locally-developed WSN tech-
nology to form the basis for the environment’s support system.

2.1 Overview

In one facet of the project, which primarily spanned from September to Decem-
ber 2008, classes of undergraduate students from OT, ID, and pharmacy re-
ceived the blueprint for a room located within the Telus Centre for Professional
Development at the University of Alberta (Figure 2.1). Following universal de-
sign principles [20] and with the goal of producing a barrier-free and accessible
environment, they divided the open space into rooms and designed furnishings
for those rooms. As part of this process, they generated computer renderings
of their vision and built foam core models that they placed within the physical
space (Figure 2.2).

In another facet, we searched for an appropriate way to incorporate WSN
technology into this urban environment, and before long, we found our appli-
cation. As baby boomers continue to age and life expectancies increase, the
elderly are placing an increasing strain on the Canadian healthcare system.
This fact has led governments, private companies, and researchers to actively
search for ways to enable the elderly to live independently – at home – for
longer. The elderly often share the same goal, too: they want to remain in their
homes rather than transition to assisted-living facilities. If they are to remain
in their homes, however, they need support. Although these individuals are, by
and large, able to live independently, they are still susceptible to harmful inci-
dents related to diverse physical and cognitive impairments. Our focus is thus
designing a supportive environment that includes monitoring functionality to
detect concerning behaviour and alert caregivers (healthcare professionals or
family) when appropriate.

Although home environments initially motivated our work, the resulting
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Figure 2.1: The Smart Condo’s 79-square-metre space within Telus Centre.
The two sliding doors at the top of the figure have now been replaced by two
swinging doors. The accordion shape at the bottom of the figure can divide the
space into two rooms and remains unused in the final design. The unit’s six
large windows are on the south wall.

Figure 2.2: A rendering of the kitchen (left) and corresponding foam core models
placed within the Smart Condo (right). Foam core consists of polystyrene foam
(like foam drinking cups) sandwiched between pieces of thin cardboard.

technology transfers easily to other environments. For example, seniors living
in an enhanced-living or an assisted-living community could also benefit. In
fact, these settings would have the advantage of on-site support staff to respond
promptly to system-generated alerts.

As we began to develop this system, we considered questions that included:

1. Why are we monitoring the environment, and given that motivation, what
would we like to monitor?
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2. What sensors are suitable for monitoring these aspects of the environ-
ment?

3. How can data from multiple sources be combined to infer clinically rele-
vant information about patients?

4. How can the inferred information be effectively communicated to patients
and their caregivers (health professionals and family members)?

Our answers to these questions, which we outline in the following subsections,
helped shape our system.

2.1.1 Objective of monitoring

Our primary goal is to detect behaviour of potential concern within
independent-living environments and subsequently alert caregivers, and con-
cerning behaviour can take any number of forms. For elderly patients generally,
it might be an usually high number of bathroom visits during the night, wak-
ing up at an unusually late time, or failing to maintain regular meal schedules.
For a dementia patient, it might be trying to leave the home. These situations
suggest a few aspects worth monitoring.

A patient’s location within the home might loosely suggest a certain activity.
For example, a patient in the bedroom might suggest sleeping and a patient in
the kitchen might suggest eating. For that reason, we endeavour to locate the
patient within the home.

Given our goal to detect concerning behaviour, we can then monitor other
aspects that will help us refine the initial inferences. Particularly for dementia
patients, it is relevant to monitor doors to detect wandering. To infer eating,
it is relevant to monitor the use of appliances in the kitchen (the fridge or mi-
crowave) or access to cupboards. To infer activity levels, it is relevant to monitor
the use of chairs and the bed.

2.1.2 Selection of sensors

With all of the monitoring, we have an overall goal of doing it non-intrusively.
In our use of the term non-intrusive, we consider both (a) physical intrusion,
e.g., requiring the patient to wear a device and (b) privacy intrusion, e.g., ob-
serving the patient in excessive detail. In the first case, a patient living in-
dependently could easily forget to wear the required device, and even if the
patient were to remember it, a device could potentially restrict movement or be
otherwise uncomfortable. We can collect a large amount of data without wear-
able devices, so we elect to use only environmental observations. In the second
case, certain sensors intrude on privacy more than others, e.g., researchers have
found resistance to video cameras in private living environments [27]. In our
approach, we help preserve the patient’s privacy by collecting only very coarse
data without the use of video cameras and microphones.

To collect these environmental data, our design uses

• passive-infrared motion sensors to detect the occupant’s movement (Pana-
sonic AMN43121 and AMN44121),

• magnetic reed switches to monitor the state of doors (Hamlin 59140-010),
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• tactile pressure sensors to detect the occupant sitting on chairs (Tekscan
FlexiForce A201), and

• accelerometers to detect vibration (STMicroelectronics LIS302DL).

We also investigated the incorporation of (a) a bed occupancy sensor to detect
laying on the bed (S4 Sensors BEDsensor Pro) and (b) electric current sensors
to recognize the use of appliances. Our most abundant sensor is the passive-
infrared motion sensor, and it only provides very coarse data indicating whether
motion occurred within its conical sensing region.

2.1.3 Necessity for data fusion

A key aspect of monitoring the environment is identifying the location of the
occupant, and our passive-infrared (PIR) motion sensors have this explicit pur-
pose. Unfortunately, their wide-angle view and simple binary output allow for
only very coarse localization. To improve their precision, sensor readings from
multiple sources must be considered collectively.

In some cases, we consider readings from multiple motion sensors, which we
can strategically place to introduce conveniently overlapping sensing regions.
For example, consider two motion sensors (A and B) observing a kitchen with
some overlap. These two sensors provide three possible localization regions:

1. output from only A implies motion within the region only seen by A,
2. output from only B implies motion within the region only seen by B, and
3. simultaneous output from both A and B implies motion within the overlap

(intersection) of their sensing regions.

In other cases, we combine readings from motion sensors with non-motion
sensors. For example, a motion sensor might observe a kitchen; a switch, the
microwave door. If both these sensors fire together, their readings suggest that
the occupant is standing within the kitchen in front of the microwave.

To accomplish such processing, software must have access to all of an en-
vironment’s observations. For this reason, all nodes transmit their observa-
tions through a WSN collection point (sink) to a server that stores them in a
database. Software running on a server can query this database and consider
all of the observations collectively rather than individually.

To help strategically place sensors, a colleague (Jianzhao Huang) developed
the program named Visual Manager (Figure 2.3). Within it, we can place and
orient the various types of sensors on a blueprint of a space. In this particular
example (Figure 2.3), the coverage of the space is particularly poor given envi-
ronmental constraints. Our prototyped space lacks walls between rooms, so to
prevent unnatural overlap between sensors, we were forced to focus them on
the perimeter walls.

After placing all of the nodes within Visual Manager, the software can an-
alyze the layout and determine the overlap between sensing regions. Finally,
it can produce the structured query language (SQL) necessary to populate a
database table that describes both single sensors that cover isolated regions
and combinations of sensors that cover more complex intersections of regions.
We used this software when deploying the Smart Condo’s WSN.
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Figure 2.3: We use the program Visual Manager to describe sensor locations
and visualize their coverage within the Smart Condo.

As a stream of observations arrives at a server, stream-mining software
can infer the occupant’s location using the just-mentioned region table. By
buffering incoming observations to account for slight delays, it looks at windows
of time and attempts to identify the most likely state during each window. Both
the individual observations and the inferred locations are archived within a
database for visualization purposes.

2.1.4 Communication to caregivers

Another one of our colleagues, David Chodos, focused on communicating the
information to caregivers, and he built a particularly useful view using a virtual
world, currently, Second Life (SL) (Figure 2.4). Within the virtual world, a
model of the Smart Condo represents the physical space, and within that space,
it is possible to view a patient’s activity realistically and intuitively. At the same
time, this display is relatively non-intrusive compared to a video camera.

If and when this project evolves into a mature and final product, caregivers
would not be expected to constantly watch the virtual-world display, but in-
stead, they would use it to explore time segments of interest. These time seg-
ments could be identified by data-mining methods that inspect the archive of
recorded sensor readings to extract patterns and recognize trends associated
with clinically significant symptoms and also raise alarms (e.g., [51]). In ad-
dition to alarms, graphs could provide a concise summary of an occupant’s be-
haviour (e.g., [64]).
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Figure 2.4: Within Second Life, it is possible to view the Smart Condo and the
occupant’s approximate location within the space.

2.2 Proposed architecture

We developed a three-tier architecture for the Smart Condo system (Figure 2.5).
The central resource is a database (SensorDB), which constantly receives new
(raw) data from the connected WSN. Server-side scripts, the stream process-
ing and location engine on the server crescer (Figure 2.5), further process the
data to infer higher-order information, such as an individual’s location given
multiple instantaneous motion sensor readings, and store their inferences in
SensorDB.

The upper half of Figure 2.5 shows the WSN-specific and data generation
components. Although the data originate in the WSN, they pass through a WSN
collection point (sink) to the operations support system (OSS), which stores
them in the database. The sink is an on-site computer that bridges the WSN
with the Internet, and the OSS, a server-based component, monitors the state of
the network and provides network data to other components as a data stream.

On the other side of SensorDB, the HTTP/PHP server (hypatia) exposes
a set of application programming interfaces (APIs) based on representational
state transfer (REST) to one or more client applications. The client most rele-
vant to this work is based on SL. Within it, a user can request (a) a visualization
for a certain period of time (e.g., a 10-minute span 4 hours ago from when the
patient was preparing lunch) or (b) a live display of the environment’s current
state. Given an SL request, the server queries the database and returns the
result to SL as XML data. The visualization engine then displays the retrieved
data as an avatar walking around the space and interacting with objects (e.g.,
the microwave, doors, or chairs). A second client, a 2D GIS component named

14



��������	
�������	���� �����	����������

�����������������	��

���
��

���

����	
����������
����	����������

�������

�����������

����������

�	�����	�����

�������������

���������������	����

��

	�	�	� �������

	������	�

������������

��������������������� �	�� 

�!""##

$�������

��%��

�&'

   

�&'

��%��

����	�

(��	��� ���� 

�	�����)(���*�������

+����	������) *���� ���

�	�	���) *���� 

�����,-��	�	����(����

�����"-��	�	����	��

�����.-��	�	�/�	��

Figure 2.5: The Smart Condo’s three-tier architecture.

SensorGIS, can show data as points on a map. Thus, sensor data are decou-
pled from their representation to the user, allowing for many different ways of
visualizing the same sensor data.

2.3 WSN design

Prior to developing software for the Smart Condo, we identified some goals
for our design, looked at the capabilities of our hardware, chose an appropriate
network topology, developed a protocol for the network, and developed a scheme
to flexibly configure nodes for their attached hardware.

2.3.1 Goals

In designing the Smart Condo WSN, we had several key goals in mind. These
goals loosely match many of our initial assumptions in Section 1.2. They in-
clude (a) reliability, (b) responsiveness, (c) energy conservation, and (d) exten-
sibility. In the following paragraphs, we describe further details for each.

First and foremost, our highest priority in a healthcare environment is re-
liability. Many of the sensors in our network, such as a switch on a cupboard
door, produce data of little consequence. If a message is lost, it has no impact
on the occupant. Given a different location, however, that same switch could
produce critical data: consider the importance of a switch installed on the ex-
terior door of a dementia patient’s home. Now, the same switch produces data
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Figure 2.6: An RF Monolithics DM2200 wireless node.

essential to detecting potentially dangerous wandering; moreover, an alert gen-
erated based on an observation from this node would require immediate action
from a caregiver.

A parallel goal to reliability is responsiveness. If the occupant calls for help,
for example, we want the message to reach help in a matter of seconds so that
assistance can arrive as quickly as possible. We must be cognisant of respon-
siveness since it has the potential to conflict with our next goal, energy conser-
vation.

While paying the most attention to the above goals, we always consider
energy consumption. We aimed to produce a system that could be easily
retrofitted in homes, and as such, we opted for fully-wireless sensor nodes
(i.e., no dependence on a wired power source). As soon as we made this deci-
sion, energy conservation became key. In selecting sensors for nodes, we aimed
to find the most energy efficient ones available. In terms of communication, we
wanted to minimize communication while maintaining a certain and flexible
level of responsiveness.

One of the final features that we wanted was extensibility. As time passes,
we will certainly want to add new sensors to the network with new capabilities.
For that reason, whatever protocol we use should be flexible enough to allow
for these additions while remaining backwards compatible.

2.3.2 Hardware capabilities

We began the project with two hundred DM2200 wireless nodes from RF Mono-
lithics, Inc. that were used in earlier projects (Figure 2.6). As described in the
introduction, these boards feature the MSP430F148 microcontroller (5 MHz,
2 KB of RAM, and 48 KB of flash memory) and TR8100 radio transceiver
(916.5 MHz, 9600 bps). We also already had three Metrix Mark II outdoor
wireless kits from Metrix Communication LLC (for more information, see [56]).
These are very flexible platforms (233 MHz, 64 MB of RAM, and 64 MB of flash
memory) that can bridge a WSN (via USB) with the Internet (via Ethernet or
its two 802.11 interfaces). With this given hardware, we then had much flexi-
bility in designing the network, selecting sensors, and writing software.
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In September 2007, prior to our work on the Smart Condo, we performed
a number of experiments with the DM2200 wireless nodes in both indoor and
outdoor environments. In each environment, we fixed the location of the trans-
mitter and varied the location of the receiver. The receiver controlled the exper-
iment, and for each location, it would wirelessly request that the transmitter
begin sending a number of packets, each containing a predetermined sequence
of bytes.

For all DM2200 transmissions (both regular packets and the test sequence),
the node converts each 4-bit nibble into a 6-bit symbol immediately prior to
transmission. This conversion prevents a node from physically transmitting a
long sequence of 0s or 1s, which could cause the receiver to lose synchronization
with the transmitter. All of the symbols that it uses are DC-balanced, i.e., they
have the same number of 0s as 1s.

In the driver for the DM2200’s radio transceiver, the arrival of each symbol
triggers a conversion to the corresponding nibble. When the receive process
encounters an error, it immediately aborts the whole packet. For our purposes,
this behaviour is undesirable because it would only allow us to record one error
per packet. To overcome this limitation, we modified the driver so that after
observing a start symbol, it processes every symbol for the length of the prede-
termined sequence regardless of individual symbol failures.

In order to record results at the receiving DM2200, we connected the node
to an interface module, the IM2200. This board adapts the DM2200’s serial
interface to USB, and we connected it to a notebook computer. For each detected
start symbol, the receiver wrote to the serial port

• the number of correctly received symbols,
• the number of incorrectly received symbols, and
• the received signal strength indicator (RSSI) value.

In these experiments, we observed better than expected error rates in both
environments.

Outdoors, on the west side of the University of Alberta campus at 116 Street
near 87 Avenue, nodes could successfully communicate with line-of-sight com-
munication at distances of up to 400 metres (Figure 2.7). As the distance in-
creased between the two nodes, the RSSI smoothly decreased as expected. For
the symbol error rate, the curve was not nearly as smooth, which is likely an ar-
tifact of changing the receiver’s environment with each change in the distance.

We then attempted some indoor experiments by varying the propagation
distance within a 20-floor 321-unit apartment building. We found that nodes
separated by nine concrete floors (a distance of just over 23 m) could trans-
mit symbols with a 99.37554% success rate (Figure 2.8). For this largest tested
distance, extrapolating from the SER to a modestly sized 16-byte packet sug-
gests an equivalent packet loss rate of around 20%. Although this error rate is
now quite significant, distances between nodes in the Smart Condo are much
smaller, and in many cases, there are no obstructions.

The Smart Condo is approximately 79 m2 and roughly 11 m by 7 m. This
floor-space is quite typical of one-bedroom apartments or condominiums in our
area. The maximum propagation distance for nodes placed on the unit’s ex-
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Figure 2.7: Results from outdoor line-of-sight experiments with the DM2200
wireless node. It shows both the average RSSI values (with standard devia-
tions) and the symbol error rates that we observed.
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Figure 2.8: Results from indoor experiments with the DM2200 wireless node.
It shows both the average RSSI values (with standard deviations) and symbol
error rates that we observed.
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tremities is 13 m. The actual maximum propagation distance in our deployed
network is only 8 m.

Given our outdoor and indoor results, the Smart Condo distances are well
within the communication range of a DM2200 wireless node. Consequently, we
had no hesitation in adopting these nodes for our prototype environment.

2.3.3 Network

Given the adequate communication range of the DM2200, we decided to use
a single sink node (collection point) and support only single-hop communica-
tion. There are several advantages to single-hop communication in this envi-
ronment:

• Nodes can communicate observations at any time to the sink. Given only a
single hop, they do not rely on other nodes in the network. This results in
flexible responsiveness that can be determined at the transmitting node.

• When not transmitting, nodes are free to sleep for extended periods of
time. They do not need to periodically help relay packets. This results in
significant energy conservation at the nodes.

With these advantages and our observations about the range of our nodes and
the size of our environment, we had no hesitation in restricting our network to
a single hop.

A number of components collectively act as the sink. Sensor nodes transmit
their observations to a centrally located DM2200, which is an essential compo-
nent because it communicates using the WSN’s proprietary protocol. As with
our indoor and outdoor propagation experiments, we connect the DM2200 to an
IM2200 that provides a USB interface. Using USB, we connect the IM2200 to
a Metrix Mark II that provides an Ethernet interface. Software runs on both
the DM2200 and Metrix that effectively bridges the WSN to a host over the
Internet. This remote host, a server running in the Department of Computing
Science, stores all of the measurements in a database. Although our current
design only uses single-hop wireless communication, the overall path from a
sensor node to the server is multi-hop by virtue of the wired connections.

Recall that the highest priority in our design is reliability. To this end, our
nodes use a stop-and-wait automatic repeat request (ARQ) scheme. In such an
approach, all received packets result in either an acknowledgement (ACK) or
a negative acknowledgement (NACK). The transmitting node will retransmit a
packet, up to a certain limit, until it receives an ACK. When it receives neither
an ACK nor a NACK, it uses a timeout to initiate the retransmission. If it does
not receive an ACK before reaching the specific retransmission limit, it begins
searching for alternate sink nodes.

Furthermore, we adopt a fate sharing approach [24] and insist on end-to-
end reliability at the application layer. That is, “information about transport
level synchronization is stored in the host which is attached to the net,” and in
our case, this information is stored at the sensor node. When nodes transmit
observations, they do not remove them from their transmit queue until they
have received confirmation (i.e., an acknowledgement) that the data reached
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Figure 2.9: Suppose that node B transmits its observation to node C and re-
ceives a custody acknowledgement (1 and 2, respectively). If node C’s link to
the database fails (3), the observation is stuck at node C because it has no way
to communicate with the redundant sink (A). Moreover, since node B handed
off the observation and cleared its buffer, it will not retransmit the packet to
the redundant sink (A).

its endpoint (i.e., the database). Essentially, we have placed the responsibility
on the sensor nodes for ensuring the delivery of their observations. This ap-
proach helps protect against intermediate failures, and it gives us the option of
later introducing redundant sink nodes that could use higher-cost redundant
connections to the Internet (e.g., general packet radio service, GPRS).

An alternative approach to addressing reliability is known as custody trans-

fer [31]. In this approach, when a relay node accepts a message, it promises
not to delete it until the message is passed off to another node via custody
transfer or it reaches its destination. In this scheme, successful handoffs do not
provide end-to-end reliability, but instead delegate the responsibility for end-to-
end delivery to another node. This allows nodes to clear buffers quicker since
the round-trip time to complete a custody transfer is less than the end-to-end
round trip.

To see the potential problem with custody handoffs, consider Figure 2.9. The
problem arises given multiple sink nodes, while at the same time, not providing
them a means to communicate with each other. Depending on the timing of a
failure, observations could end up being stuck at a sink node.

2.3.4 Communication protocol

To address our goal for extensibility, we carefully designed our network’s com-
munication protocol. At the network layer, the Tiny Ad hoc Routing Protocol
(TARP) [61] includes the following fields in each packet:

• the type of message (1 byte),
• a network-layer sequence number (1 byte),
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• the node ID of the transmitter (2 bytes),
• the node ID of the receiver (2 bytes),
• the number of hops travelled so far (1 byte), and
• the number of hops previously travelled by packets in the reverse direc-

tion (1 byte).

We explicitly make use of the emphasized fields. Furthermore, we define
four types of TARP messages for the Smart Condo application: msg poweron,
msg announce, msg command, and msg ack.

When a node is new to the network or fails to receive multiple acknowledge-
ments through its associated sink, it begins to generate power-on packets (type
msg poweron). These packets consist of only the TARP headers and are broad-
cast into the environment. Generally, sensor nodes are sleeping and do not
receive these messages, although they may occasionally overhear and ignore
them. When received at a sink and forwarded to the server, the OSS running
on that server generates a msg announce packet that may include details rele-
vant for sink selection (in the case of multiple sinks). Such details may include
a quality rating for its link or the expense of the link.

Further sensor node to OSS communication occurs using our general-
purpose msg command packets. They build on the basic TARP headers by
including an application-layer sequence number (1 byte) and length (1 byte),
which allow for a variable number of subsequent key/value pairs. Table 2.1
summarizes the currently-implemented key/value pairs.

In the key, the three most significant bits indicate the length of the following
value. To support values that are seven bytes and larger, we reserve 111 to
indicate that a 1-byte length immediately follows the key. The reasoning behind
this approach originates in the difficulty in updating deployed sensor nodes. As
the software evolves, we will add new key/value pairs to the protocol and can
easily update the sink node’s software. In order for older nodes to continue
to function given these additions, they need to be able to parse packets and
ignore what they cannot understand. The encoded length allows for this type
of processing.

The final message type, msg ack, includes the same application-layer se-
quence number, length, and support for key/value pairs found in our general-
purpose command type. After the OSS receives observations in a msg command

packet, the acknowledgement always contains the BIN ACK key/value pair. The
OSS may add other key/value pairs to the acknowledgements as necessary such
as GLOBAL TIMESTAMP to synchronize the sensor node clocks.

2.3.5 Behaviour overview

When we first power on a node in the field, it broadcasts its existence, including
its unique node identifier. It collects responses through the sinks, and after a
timeout, associates with the best sink. It currently defines best based solely on
the highest RSSI value that it receives. Future work may add additional sink
nodes that use redundant, but more expensive, Internet connections. After we
make this addition, our software will need to consider extra information when
determining the best sink.
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As part of associating itself with a sink, the node describes its attached sen-
sors and its software version. The OSS then replies with both general (e.g., the
sleep cycle) and sensor-specific (e.g., debounce timeouts) configuration param-
eters. After processing that response, the node then begins to monitor its at-
tached sensors and then goes to sleep.

Nodes wake up and transmit when either (a) they have an observation to
report to the OSS or (b) a timer expires because no observations were made
within a configurable amount of time. The latter case informs the server that
the node is functioning (but had no observations). Recall that (a) nodes spend
most of their time sleeping in a state where they cannot receive packets and
(b) all transmission from sensor nodes to the OSS are acknowledged by the
OSS. These acknowledgements, with their support for key/value pairs, provide
an opportunity for OSS-to-sensor communication.

Sensor nodes use a rather clever technique for time-stamping observations
that only requires one byte per observation. Nodes will periodically receive a
global time-stamp from the OSS and store it locally. When a node caches its
first observation, it

1. determines the time elapsed between the global time-stamp and the cur-
rent time,

2. increments its locally stored global time-stamp by that elapsed time, and
3. uses the global time-stamp henceforth as a reference point for the current

and any subsequent observations in the cache.

Based on the reference point, the one-byte time-stamp field allows nodes to
stamp observations for up to 255 seconds with one-second precision. If the
node adds another observation to the queue after 255 seconds, it shifts the
time-stamp for each entry in the queue one bit to the right. Now, the queue
supports time-stamps from 0 to 510 seconds with two-second precision. The
node will continue to make further shifts as necessary, and thus it can queue
many observations in its limited memory. After a node successfully transmits
all of its observations, it returns to updating its global time-stamp as it receives
new values from the OSS.

2.4 Summary

Given few reported experiences using urban WSNs, we endeavoured to create
one ourselves. In our search for a practical application, we joined an interdisci-
plinary research project named the Smart Condo. Through discussions with our
colleagues, we identified a significant and well-defined application. The Cana-
dian healthcare system is straining given an increasing elderly population, and
various stakeholders are searching for ways to keep them out of hospitals and
living independently in their homes for as long as possible. For them to live in
their homes, however, they need support, so we focused on developing a WSN
for monitoring independent living environments. After identifying and defining
the problem, we designed our system.

We developed a three-tier architecture centred around a database, Sen-
sorDB. On one side of the database, a WSN and supporting components feed
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it with data and make inferences about the environment. On the other side,
components can access data through well-defined APIs to support a number of
views.

We then focused on the development of the WSN. We optimized the network
for a number of goals including (a) reliability, (b) responsiveness, (c) energy
conservation, and (d) extensibility. With these goals in mind, we reviewed prior
evaluations of our existing hardware in both indoor and outdoor environments,
and in both cases, their communication range exceeded our requirements. We
then decided to use a single-hop network, and we developed a communication
protocol and node behaviour around this topology.

In the next chapter, we discuss the software development. Moreover, we will
present results on whether our chosen design achieves its objectives.
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Chapter 3

WSN Development and the

Smart Condo Deployment

At this point, we have defined an urban wireless sensor network (WSN) named
the Smart Condo. We have determined its overall objective, architecture, and
communication protocol. In this chapter, we focus on our experience developing
its software and deploying it.

We begin by describing the software components that constitute our devel-
opment environment: (a) an operating system (OS), (b) a simulator, and (c) an
implementation of the OS’s application programming interface (API) for that
simulator. We often refer to the combination of the latter two components as an
emulator because it emulates an application at the level of the OS’s API.

With these available components, we developed our software using the em-
ulator, rather than the hardware, with the knowledge that we could later re-
compile the same code for the hardware. To improve the emulator’s fidelity, we
configured it to consider the capabilities of our nodes. Once our emulated appli-
cation was relatively stable, we transitioned it to the hardware and addressed
a specific challenge that we encountered in the process (addressed later).

Finally, we discuss our experience with the complete Smart Condo system
and specifically address whether it met the project’s initial objective of real-
time non-intrusive visualization of an independent-living environment. At that
point, we highlight how this system inspired the research questions that we
address later in this thesis.

3.1 Development environment

Developing software for a WSN node is quite different than developing it for a
personal computer. Nodes are not self-sufficient: software must be developed on
a personal computer and then programmed into a node’s non-volatile memory.
This approach statically links the OS with the application prior to program-
ming the hardware. In this section, we introduce our OS and its related tools
that simplify software development within these constraints.
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3.1.1 PicOS

PicOS [2] is a lightweight operating system that supports the organization of
a reactive application’s multiple activities on a microcontroller with limited re-
sources. It implements a flavor of multitasking within a very small amount
of RAM and provides simple, orthogonal, and expressive tools for event-driven
input and output (I/O) and inter-process communication (IPC).

A PicOS application, which may be logically split over multiple source files,
consists of (a) global data structures and variables, (b) finite state machines
(FSMs), and (c) functions that may be called from within the FSMs. The ex-
ecution of an application begins at the root FSM, which is akin to the main

function of a C/C++ program. Here is the customary “Hello World” program
written for PicOS:

#include "sysio.h"

#include "ser.h"

fsm root {

state WRITE_MSG:

ser_out (WRITE_MSG, "hello, world\r\n");

finish;

}

This complete PicOS application consists of one FSM, root, which contains a
single state WRITE MSG. The first line within this state writes the message to the
device’s serial port (universal asynchronous receiver/transmitter, UART) using
the library function ser out, which has been made available by including the
header file ser.h. Since a busy serial port would cause this function call to
block, its first argument is the state in which it should resume when the port
becomes available. If required by the application, PicOS supports a number
of ways to interrupt a blocked FSM, e.g., timeouts and inter-process commu-
nication (IPC). While one FSM remains blocked, other FSMs can continue to
operate independently.

This FSM paradigm is fundamental in PicOS’s support for multitasking.
When execution reaches the end of a state, the FSM releases the CPU back to
the operating system. At that point, the OS scheduler can allocate it to a ready
FSM. If none are ready, the OS can transition it into a sleep state where it
consumes less energy and can remain until an event occurs. In this paradigm,
one FSM cannot interrupt another, so a responsive application tends to use
FSM’s with relatively short states.

Since WSN applications are predominantly reactive, i.e., not CPU bound, it
is quite natural to express them using PicOS’s FSM paradigm. The format is
especially useful and natural for applications that respond to possibly compli-
cated configurations of events, as once the application identifies the events of in-
terest, the underlying operating system handles much of the complexity. More-
over, this representation stimulates clarity – to the extent that well-written
and appropriately partitioned blocks of code often appear self-documenting. At
the same time, it is not restrictive: developers can write and incorporate stan-
dard C functions within a PicOS application. In doing so, however, they must
be cognizant of their function’s run time and its potential impact on the overall
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Figure 3.1: The relationships between the various PicOS components.

system responsiveness.
The operating system provides a variety of system calls and library func-

tions, many of which can be selectively included by using a handful of header
files. The system calls fall in a number of categories that include

• manipulating FSMs: creating, managing, and destroying them;
• allocating memory: dynamically allocating and freeing memory using the

familiar malloc/free operations of C;
• managing power: selecting the different low-power modes available to the

microcontroller for duty cycling;
• communicating between processes: providing tools for FSM IPC;
• timing events: implementing delays within FSMs, including both non-

busy and precisely-timed busy waits;
• generating random numbers: deriving truly random numbers based on

external entropy sources;
• debugging software: printing debug messages, asserting Boolean expres-

sions, and throwing exceptions; and
• monitoring faults: resetting an unresponsive device using a watchdog.

The operating system also includes libraries for interacting with (a) a selection
of abstracted sensors via built-in drivers, (b) the general purpose input/output
(GPIO) pins, (c) light-emitting diodes (LEDs), (d) the universal asynchronous
receiver/transmitter (UART), and (e) radio transceivers.

For the last two hardware components, the UART and radio transceivers,
their drivers interact with PicOS through an API provided by the Versatile
NETwork Interface (VNETI) (Figure 3.1). In addition to its device driver API,
VNETI provides additional APIs for the application and communication proto-
cols. This three-facet mediator makes it relatively easy to redeploy an existing
application on new hardware platforms.
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3.1.2 SIDE

PicOS inherits its programming paradigm from SMURPH/SIDE [35], which is
best summarized as “a programming language for describing reactive systems
(e.g., communication networks) and specifying event-driven programs (e.g., net-
work protocols) in a natural and straightforward way” [36]. After writing a pro-
gram using the SIDE language, the user can compile and link it with the SIDE
kernel to produce an executable file. Running this file will then simulate the
specified reactive system.

The SIDE simulator has a long history that began in 1986, and until re-
cently, it lacked support for two desirable features: (a) simulating wireless com-
munication channels and (b) emulating a PicOS application as its specification
of a reactive system. In 2006, it gained the first ability with the introduction
of flexible abstractions for describing realistic wireless propagation environ-
ments [38]. It also recently gained the second ability with the introduction of a
SIDE-based implementation of PicOS’s API called the Virtual Underlay Execu-
tion Engine (VUE2). In the next subsection, we focus on VUE2 and specifically
address how it supports descriptions of both devices and their environment.

3.1.3 VUE2

Our desire to develop software using an emulator is motivated by two factors.
First, although an application running on a node can communicate wirelessly,
nodes must be individually wired to a computer to be programmed.1 Given a
collection of nodes, simply loading them with an updated application is a time-
consuming process, so we want to minimize the number of times that we need
to load them. Second, although PicOS provides extensive support for writing
reactive multitasking programs, debugging those programs while they run on
a node is a tedious process. The form factor of a node (they typically have a sur-
face area of just a few square centimetres) means that they provide very little
output about their internal state. Debugging the software on a node typically
uses its LEDs and UART extensively, and when the application itself uses the
UART, the developer might be restricted to just the LEDs.2 For that reason, we
regularly emulated our software while we were developing it.

When (generally) evaluating a protocol using SIDE, i.e., without the concept
of a PicOS application, SIDE is arguably a simulator. The code describing the
protocol may be written specifically for the evaluation, and outside of SIDE, it
has little relevance. With the introduction of VUE2, however, the SIDE/VUE2

combination is arguably an emulator. A developer can produce a PicOS applica-
tion that is ultimately destined for a piece of hardware, and SIDE will emulate
it at the level of the PicOS API. It is precisely this ability – writing source code

1One of our colleagues investigated the ability to remotely update even these small devices.
However, for this project, the nodes were incapable of remote updates.

2Using the program msp430-gdbproxy and an extended version of gdb, it is possible to trace
the execution of code running on a node. This approach, however, requires a connection between
each node and a personal computer using the JTAG interface. Therefore, although it can provide
reasonable insight into the state of a single node, it is quite impractical given a collection of
nodes.
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Figure 3.2: The relationship between PicOS components and VUE2, the Virtual
Underlay Execution Engine.

once and targeting it for either the hardware or the emulator during compila-
tion – that makes it easy to incorporate SIDE into the development cycle.

Development using the emulator immediately provides a number of bene-
fits:

• flexible output: SIDE supports additional file streams that can be used
for debug messages,

• rapid re-evaluation: SIDE allows for the immediate testing of new code
that runs at multiple virtual nodes simply by recompiling the application,
and

• global view: SIDE displays the state of all nodes simultaneously to the
developer, which can provide insight into the precise timing of a protocol.

In summary, SIDE provides significant support to developers that makes de-
velopment more efficient.

The feasibility of extending SIDE with VUE2 was made possible in part be-
cause of PicOS’s clear division between components and use of APIs (Figure 3.2
shows the SIDE/VUE2 equivalent to Figure 3.1). Recall that VNETI provides
three different APIs: one for the application, one for protocols, and one for de-
vice drivers. The clear delineation between these components allows SIDE to
use the existing implementation of VNETI (and hence the same application and
protocol implementations) while emulating the devices.

In order to execute a PicOS application within VUE2, the developer must
provide VUE2 with a description of the network, and to a degree, the hard-
ware. In the next section, we describe configuring VUE2 for our Smart Condo
network.
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3.2 Configuring the emulator

Generally speaking, an emulator’s configuration consists of both hardware- and
network-specific properties. The former properties typically affect an applica-
tion’s execution on a node, and the latter, communication between the nodes.

Hardware-specific properties include such things as

• the amount of memory available at a node,
• the rate at which a node can communicate over both its wired and wireless

interfaces,
• the number of light-emitting diodes (LEDs) available at a node, and
• the type and number of peripherals that are attached to a node.

A node also has a specific processor speed, but since our applications tend to be
reactive, our emulator quite reasonably ignores this detail.

Given that our emulator simulates the wireless channel, a number of factors
directly impact the quality of wireless communication. Beyond the channel
model being used, these properties include such things as

• the location of a node relative to the others in the network and
• properties of the (virtual) environment in which all of the nodes exist.

To accommodate different environments, simulators typically adjust a channel
model parameter.

A high-fidelity emulator must account for these details in order to produce
accurate results. In our case, most of this information is provided to the emu-
lator in a VUE2-specific XML configuration file when it starts.

3.2.1 VUE2 configuration

When running a VUE2-based instance of SIDE, a file containing extensible
markup language (XML) provides it with hardware- and network-specific pa-
rameters. Appendix A (pp. 110-113) lists an example configuration file. VUE2

supports a wide range of tags and attributes for these files, and in this section,
we simply provide an overview of them guided by the sample in the appendix.
The interested reader can find a complete description of the XML configuration
file within the VUE2 manual [63].

The number of nodes (and possibly different number of radios) is very im-
portant, and these values prominently appear as attributes to the outermost
tag <network>. In a single configuration file, only one <network> tag may
exist, and its children provide the hardware- and network-specific parameters.

The hardware-specific attributes appear within the tag <nodes>. Typically,
an experiment uses many nodes of the same type, so a <defaults> section
reduces repetition. The tags in this section typically describe such things as

• the amount of memory available at a node (<memory>),
• radio parameters (<radio>) including the default transmit power level

(<power>), the number of bits of preamble to transmit (<preamble>), the
settings for the listen-before-talk medium access control (MAC) protocol
(<lbt>), and the delay that a transmitter backs off after detecting an
occupied channel (<backoff>).
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• the configuration of light-emitting diodes available at a node (<leds>),
• the configuration of general-purpose input/output (GPIO) pins (<pins>),

and
• the settings for the universal asynchronous receiver/transmitter (UART)

(<uart>).

A collection of <preinit> tags generally appear at the end of the <defaults>
section. These tags provide the values for constants defined within the applica-
tion. Following the defaults section, the user often provides per-node values for
constants and the node’s location. In the sample presented in Appendix A, the
SENS_0 constant identifies the specific sensor available at a given node.

An XML configuration file also specifies a number of network-specific pa-
rameters, with the most prominent being the description of the communication
channel (<channel>). Our simulated communication links use a log-normal
shadowing model [73, p. 104] (<shadowing>), and the user can specify the
parameters to the model using both attributes to the tag and text in its body.
Common attributes include (a) the level of background noise (bn) and (b) the
number of preamble bits that a receiver must correctly receive in order to syn-
chronize with the signal (syncbits). The body of the tag provides the param-
eters for the shadowing model’s attenuation equation

[

Pr(d)

Px

]

dB

= −10β log

(

d

d0

)

+ χ(σdB)− L(d0) (3.1)

and subsequently allows the emulator to calculate the received signal level for
a given transmit level and distance. Within the sample provided in Appendix A

RP(d)/XP [dB] = -10 x 5.1 x log(d/1.0m) + X(1.0) - 33.5

VUE2 ignores non-numeric characters and extracts the initial −10, the loss
exponent (β = 5.1), the reference distance (d0 = 1.0 m), the standard deviation
(σdB = 1.0) for the log-normal random Gaussian component (χ), and the loss at
the reference distance (L(d0) = 33.5).

Beyond the shadowing model, the <channel> section also specifies

• <cutoff>: the signal level at which signals become irrelevant,
• <ber>: a mapping from signal-to-interference ratios to bit error rates,
• <frame>: the number of bits necessary in order to frame a packet,
• <rates>: the supported communication rates,
• <rssi>: the mapping from received signal values to transceiver-reported

received signal strength indicator (RSSI) values, and
• <power>: the mapping from abstracted to real transmit power levels.

Given all of these parameters, VUE2 provides a reasonable amount of flexibility
for describing an environment’s radio propagation characteristics.

3.3 Challenges with transitioning to the hardware

Using our software tools (PicOS, SIDE/SMURPH, and VUE2), we developed our
wireless sensor network within the virtual environment. We were even able to
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interface the virtual network with the external components in our overall ar-
chitecture (Figure 2.5): VUE2 provided sockets to which the operations support
system (OSS) could connect. We tested our work under a variety of conditions,
e.g., differing the propagation distances, varying event arrival rates, and even
periodically restarting nodes. When we were satisfied with the stability and
performance of our software, we began to transition it to the hardware.

The primary challenge in moving the application from a virtual to real en-
vironment was setting node-specific attributes. When using VUE2, we took
advantage of its ability to efficiently define per-node constants with the syntax

<preinit tag="const name" type="const type">const value</preinit>

We made such declarations for each node’s identifier and type of attached sen-
sors.

Compiling the Smart Condo application for the hardware, however, pro-
duces a generic image lacking individual identifiers, and we desired a way to set
per-node constants when programming individual nodes. To this end, we care-
fully placed constant values (tags) within our program to serve as placeholders
for the node ID, sensor configuration, and software version. Just prior to actu-
ally programming a node, we use an extended version of the genihex script to
search for these constant identifiers and replace them with node-specific values
to create a new derived image. We derive a node-specific image for each node
that we deploy.

3.4 Discussion

After deploying the WSN in the Smart Condo, we evaluated its performance
with respect to our vision of non-intrusively monitoring an independent living
environment. Video cameras provided us with the ground-truth for our evalu-
ation. They allowed us to compare the virtual reality produced by our system
against reality.

We concocted a scenario whereby an actor would move around the Smart
Condo and perform a number of tasks. These tasks included opening and clos-
ing doors, using the microwave, and sitting on furniture. Meanwhile, evalu-
ators in a separate room could watch both the live video feed from the envi-
ronment and the virtual feed using Second Life. With both displays in front of
them, they could judge the fidelity of the virtual display.

In terms of the system’s performance, the Second Life display generally
matched reality. We observed that the real-time display of the virtual envi-
ronment would periodically miss events from particular nodes. If we were to
go back and replay the period in question, however, the event would occur in
the replay. By monitoring the database, we quickly concluded that the problem
was not with the virtual world display, and instead, it involved delays within
the sensor network. Congestion was not responsible for the delays, so we ex-
plored packet loss rates.

Every packet sent from a sensor node to the collection point (sink) includes
both a network- and application-layer sequence number. The sink perceives
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Table 3.1: A comparison of packets sizes (in bytes) sent from the sink (n =
151 161) and sent from sensor nodes (n = 151 163).

sender min mean max med stddev

sink 8.00 15.98 32.00 15.00 1.90
sensor 10.00 15.88 42.00 10.00 7.48
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Figure 3.3: Packet losses versus distance.

packet losses using these sequence numbers. A duplicate application-layer se-
quence number indicates a lost acknowledgement from the sink. A skipped
network-layer sequence number indicates a lost packet from the sensor node.
For each associated node, the sink records both types of sequence numbers.

Using this technique, differences in the incoming versus outgoing packet
sizes may bias the packet error rates. In data collected from the Smart Condo,
we observed the packet size statistics in Table 3.1. The packets sent from sen-
sors show much greater variance because nodes regularly report their status in
small packets, and during periods of high activity, nodes queue observations to
produce large packets and reduce the impact of overheads.

In Figure 3.3, we show the packet loss rate plotted against distance. Com-
pare this figure with the smooth curve in Figure 2.7 that clearly showed cor-
relation between symbol error rates (SERs) and distance. Within the Smart
Condo, notice that as the distance increases, the change in the packet loss
rate is unpredictable. Statistically, the Smart Condo packet loss rates are
not significantly correlated with propagation distance (n = 16,Spearman’s ρ =

0.329,p-value = 0.2105).
In Figure 3.4, we show the same loss rates spatially, and the larger dot near

(8.4, -0.6) represents the sink. The interpolation shown in the graph is only to
emphasize the lack of correlation with distance. Our observations are consis-
tent with the extreme variability in reception probability for various distances
noted in [97]. As an example of the intricate behaviours at play here, [103]
mentions that the packet reception ratio depends on node orientation – even
with whip antennas.
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Figure 3.4: Packet losses presented spatially.

After encountering such high loss rates within the Smart Condo, we investi-
gated received signal strength indicator (RSSI) values in the absence of trans-
missions. Radio transceivers generally output an RSSI value, and it refers to
the current signal level that a node observes. The TR8100 transceiver incorpo-
rated in the DM2200 does not provide it as a digital value. Instead, a circuit
smooths the signal and the result feeds into a 12-bit analog-to-digital converter
(ADC) on the MSP430. We measured the RSSI value in three environments:
the Smart Condo, the Computing Science Centre at the University of Alberta,
and a 1-bedroom apartment in a 321-unit apartment building (Figure 3.5). We
discovered that the Smart Condo had the highest received signal levels (in the
absence of transmissions) of all three environments. These observations moti-
vate the next chapter’s exploration of interference in an urban environment.

3.5 Summary

This chapter provided an overview of our software development environment
after Chapter 2 presented the design of the Smart Condo’s WSN. As back-
ground material, we introduced the PicOS operating system, which inherited
its programming paradigm from SIDE, and VUE2, an implementation of the
PicOS API for our wireless simulator named SIDE/SMURPH. This software al-
lowed us to design our software efficiently and provided us with such benefits
as (a) flexible output of diagnostic messages from several nodes at once, (b) easy
use of the GNU Debugger (GDB), and (c) quick turn-around times between a
compilation and an experiment involving the application.

After developing our application in the virtual environment, we moved it to
the real hardware. The primary problem that we encountered was the need to
set per-node constants prior to programming nodes. Using a technique already
used for setting host IDs, we expanded genihex to allow us to set a node’s
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Figure 3.5: Interference observed across three environments.

sensor types and version time-stamps when programming nodes.
We then deployed the WSN and evaluated it in terms of unobtrusively

monitoring independent living environments. Although the software generally
worked as expected, we noticed that the virtual environment would miss some
events. After investigating the problem, we found that the events would even-
tually arrive, and if replayed, the display would appear correct.

We then focused on why these events were delayed, and to this end, we in-
vestigated the packet loss rates between nodes and the sink. These links expe-
rienced high losses – in some cases around 45% – which were unexpected given
our earlier tests. Using the RSSI output from the DM2200, we measured the
received signal strength (in the absence of transmissions) in the Smart Condo
as well as other environments for informal comparison purposes. The interfer-
ence observed in the Smart Condo far exceeded that observed elsewhere, which
leads us to the next chapter.
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Chapter 4

Data Collection and Pattern

Overview

The impact of external interference became blatantly obvious to us in our 2008
deployment of the Smart Condo network to passively monitor an independent
living environment [13, 85]. As soon as the network’s simple transceivers (RF
Monolithics TR8100 [75], 916.5 MHz) began operating, we noticed significant
packet losses even over short distances and with no network congestion. Those
losses disappeared when we moved the same set of nodes to another environ-
ment several blocks away for an in-lab study of their poor performance. Having
thus confirmed the environment as the culprit, we informally checked it for in-
terference. To our surprise, we found stronger interference in the Smart Condo
than we had encountered in two other environments (Figure 3.5). This chapter
explores the environment’s interference in greater depth.

The Smart Condo is an example of an urban environment, and for such en-
vironments, we expect a degree of interference. WSN nodes typically operate at
frequencies that are heavily used by other man-made signals [29], e.g., cordless
phones, wireless local area networks (WLANs), building automation networks,
and microwave ovens. Given the location of the Smart Condo, within Telus
Centre (a moderately-sized office building) and across the street from a large
apartment building, any number of interference sources could exist.

Noise technically consists of anything other than the signal [77, p. 134].
When a node receives a transmission, the ratio between the signal strength
and the system (antenna and receiver) noise, the signal to noise ratio (SNR),
ultimately determines the quality of the radio link [72, p. 275]. A higher ratio
indicates a greater distinction of the signal from the interfering components
and an increased likelihood that the receiver can decode it. In fact, it is pos-
sible to estimate the probability of an error given the SNR and the physical
modulation scheme used by a transceiver (e.g., [72, p. 302]).

In an environment without motion, we have found that received signal
strengths tend to remain relatively stable over time. For example, consider the
signal (and noise) strength trace shown in Figure 4.1. We collected this trace
while receiving packets at 85 Hz over a 13-minute period within the Smart
Condo (channel = 94, porttx = 15, portrx = 10, d = 2.59 m). Notice that the sig-
nal strength (grey) remains stable even while the noise strength (black) fluctu-
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Figure 4.1: Trace from a node that received packets at 85 Hz and recorded
(a) the signal strength after each recognized start symbol (grey) and (b) the
noise immediately following the packet (black).

ates wildly. For this particular trace, the transmitting node sent 66 300 packets
and the receiving node recognized 66 282 start symbols (99.973%) and correctly
received 66 245 packets (99.917%). The success rate was so high because the
fluctuating noise was significantly weaker than the signal.

As shown in Figure 4.1, noise can vary significantly with time. Meanwhile,
the predominant noise model used in the design and analysis of communication
systems is the additive Gaussian noise channel [69], a stationary process. This
model applies best to stable noise traces, e.g., Figure 4.7(a), that lack exter-
nal (and unpredictable) interference. Out of curiosity, we graphically checked
the normality of some of these stable traces, and we saw the expected nearly-
normal distribution of samples (Figure 4.2).

In systems with external interference, e.g., Figure 4.1, that interference may
be separated from noise in the SNR to give the signal-to-interference-plus-noise
ratio (SINR) [39, p. 160]. With this distinction, the interference becomes the
large uncontrolled source of variation in the SINR while the signal and noise
components remain relatively stable. The former component could then be mod-
elled as a non-stationary process and the latter as a stationary one.

When channels operate near their receive sensitivity, they are especially
sensitive to even small changes in the SINR. For example, consider the trace
in Figure 4.3, which we collected while receiving packets at 85 Hz over a 13-
minute period within the Smart Condo (channel = 94, porttx = 14, portrx = 11).
This channel is the same as the one shown in Figure 4.1, but we collected the
trace at a different time and for a different pair of nodes. Unlike the previous

37



-115 -110 -105

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

strength (dBm)

n
o

rm
a

liz
e

d
 f
re

q
u

e
n

c
y

-4 -2 0 2 4

-1
2

0
-1

1
5

-1
1

0
-1

0
5

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

Figure 4.2: Graphical normality tests for a trace (channel = 237, port = 2,
n = 175 000 samples) of the noise in a stable (and apparently interference-free)
environment. On the left, a histogram (frequency normalized to match the
density) includes a grey normal curve. On the right, a normal quantile-quantile
plot includes a straight grey line.

trace, the signal strength here was much lower, and the receiver only detected
24 354 start symbols (36.733%) and only successfully received 2383 packets
(3.594%). Here, the interference had a huge impact on the packet reception
rate.

In simulation studies, researchers typically compute their results using
over-simplistic environmental models assuming that the only disturbance to
the proper signal from a transmitting node at the receiver comes from white
Gaussian background noise plus possible interference from peer devices (mem-
bers of the same networked wireless system). The two types of disturbance
have received considerable attention in research under the umbrellas of chan-
nel modelling (e.g., [43]) and MAC protocol design (e.g., [28]), respectively. The
third type of disturbance, namely external interference from a different wire-
less system, has been much overlooked. This is unfortunate, considering that
the incessantly growing number of wireless applications, combined with the
limited spectrum available to them, will make the impact of external interfer-
ence more and more pronounced. Based on our experience, external interfer-
ence is already the predominant source of communication problems in many
WSN systems, especially those deployed in densely populated urban areas.

In this chapter, we make a number of contributions. We describe a setup for
high-frequency RSSI sampling using off-the-shelf wireless sensor nodes and
sufficient cabling, and we present our results on sampling the Smart Condo
environment. We specifically wanted that assessment to be carried out by a
WSN (as opposed to some specialized and sophisticated spectrum analyzing
equipment), because one of its objectives was to make the network aware of
the interference via its own means, such that it could analyze the problem and
respond to it all by itself. We show the variety of time-series behaviour that we
encountered on channels and classify them into a few groups. In many cases,
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Figure 4.3: Trace from a node that received packets at 85 Hz and recorded
the signal strength just after each recognized start symbol (grey) and the noise
immediately following the packet (black).

these channels differ greatly from the commonly assumed additive white Gaus-
sian noise (AWGN) model. In support of these classes, we compute statistics
from each trace, use them to train a Bayesian network classifier, and present
the results of using that classifier.

Needless to say, it would be highly presumptuous to claim that any interfer-
ence patterns that we observed in a particular environment and on a particu-
lar day should be immediately generalized into blanket rules applicable to all
wireless systems. We realize that the same environment may exhibit different
characteristics if sampled again, and other environments may be completely
different. However, the fact remains that we clearly saw a small number of
simple and easily discernible patterns, and it is highly unlikely that what we
saw was specific to the one environment. It is important for researchers to re-
alize that the combination of noise and interference is rarely straightforward
AWGN. In particular, the spiky patterns (that we describe later) are intuitively
natural and expected to occur in many (otherwise unknown) wireless systems.
They are also the most interesting from the viewpoint of navigating packet
transmissions around them. For one thing, they may be representative of a
typical (generic) WSN operating in the same area. Although unlikely to be the
case in our environment, one can reasonably predict that an increasing prolif-
eration of WSNs will bring about spiky interference patterns. Circumventing
them can be viewed as solving a slightly augmented medium access control
problem, whereby a certain subset of peers follow an unknown and presumably
non-responsive (but nonetheless systematic) schedule of transmissions. Conse-
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quently, the problem appears general and interesting enough to warrant fur-
ther studies.

One should also keep in mind that the ultimate goal of any WSN perfor-
mance study is to guide practical deployments involving tangible hardware
with painfully idiosyncratic properties. The most extreme example of such a
property in our case is the systemic suppression of certain channels separated
by half-multiples of the crystal frequency driving the RF chip (seen in the high-
level trace of Figure 4.8). It is clearly impossible to account for all such features

in any blanket theoretical model, as it is in any experimental study whose re-
sults one may be tempted to extrapolate onto unexplored hardware. Nonethe-
less, the actual behaviour of real devices is what ultimately matters the most;
thus, we should try to bring as much order as possible into those necessarily
unsystematic, but extremely valuable from a practical standpoint, observations
from real-life implementations.

4.1 Related work

The related work most relevant to our work falls into a few categories. First,
we explore research on the transitional or grey region which discusses how rel-
atively small changes in the SINR can affect whether packets are successfully
received – it helps motivate our work. Next, we look at the types of devices
that can cause interference, observations about interference, and how other re-
searchers have used WSNs to sample channels. Finally, we describe how work
on cognitive radios looks at determining channel occupancy based on observa-
tions.

4.1.1 The transitional/grey region

Many researchers have reported on a transitional (or grey) region in the SINR
where, over time, a subset of nodes may fluctuate between successful and failed
transmissions, e.g., [1,9,74,80,84,97,100,101,104]. Patterns in the interference
are most likely to affect these nodes first, and for that reason, we will begin with
a review of this work.

Zhao and Govindan [101] quantified the size of the area in three different
environments: an office building, a park, and a parking lot. They set up 60
nodes operating in the 70-centimetre amateur radio band at 433 MHz in a line
topology and had the node at one end transmit packets at 1 Hz. In the building
and park environments, they noticed surprisingly large grey areas of almost
one-third and one-fifth of the communication ranges, respectively.

Later experiments by Son, Krishnamachari, and Heidemann [80] consid-
ered one less variable: hardware variations. They discovered that for a partic-
ular node and level of signal strength, the grey region is actually quite narrow.
Furthermore, the specific width and location of the grey region depends on both
(a) the transmitter hardware and (b) the transmission power. The grey region
only appeared relatively wide when many radios were used, and in that case it
spanned roughly 6 dB.
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More recently, Zamalloa and Krishnamachari [100] approached the problem
from a different perspective – mathematically. Although they derived expres-
sions for the location and extent of the transitional region, their model does not
consider interference. They mention that the noise floor varies over time and
list large changes in temperature and interference as possible causes.

4.1.2 Observations and sampling

Interference can originate from any number of sources in an environment. For
example, Chandra [21] used a spectrum analyzer in a three-story building to
explore frequencies in the 900 MHz and 1.8 GHz bands. He looked at the noise
generated by electronic equipment in a workshop, a photocopier, an elevator,
and fluorescent tubes, and he concluded that all should be modelled as inter-
ferers in the building. He did not, however, consider detecting these interferers
using WSN hardware.

Using sensor platforms, Srinivasan, Dutta, Tavakoli, and Levis [81] studied
packet delivery performance. They encountered large correlated spikes (up to
-35 dBm or higher) in their traces and investigated these further. With the
nodes synchronized, they checked for spatial correlation among the spikes, and
upon finding high correlation, concluded that the spikes originated externally
to the nodes. We also noticed correlation in many of our traces, which led us to
the same (external) conclusion.

Researchers working on closest-fit pattern matching (CPM) sampled noise
in both indoor and outdoor environments [49, 78]. While we sampled at 5 kHz,
they sampled at relatively low rates (1 kHz or less) and made only the infor-
mal comments about interference patterns that we reiterate in the following
paragraphs.

Using the CC2420 IEEE 802.15.4 transceiver, Lee, Cerpa, and Levis [49]
sampled the chip’s RSSI register at 1 kHz (the register itself updates at
62.5 kHz). By storing the retrieved measurements in the device’s flash memory,
they could record samples for 197 s. They sampled noise on channels that both
overlapped and did not overlap IEEE 802.11b channels in Wi-Fi-enabled build-
ings, Wi-Fi-enabled outdoor areas, outdoor quiet areas, and controlled areas.
They observed three key characteristics in their samples: (a) spikes sometimes
as strong as 40 dB above the noise floor, (b) many of the spikes were peri-
odic, and (c) over time, the noise patterns changed. They did not encounter the
shifting-mean characteristic that we observed, and they offered little descrip-
tion of the patterns beyond what we summarize here.

Using TelosB nodes with CC2420 transceivers, Rusak and Levis [78] sam-
pled the chip’s RSSI register for packets transmitted between a pair of nodes at
both 4 and 100 Hz. They sampled channels in buildings at Cornell and Stan-
ford University and concentrated on modelling the signal strength rather than
just noise. Both environments had a number of interference sources including
802.11 wireless networks, cordless phones, microwaves, and personal wireless
access points. Although they mentioned the presence of interferers, they did
not comment on the observed interference patterns.

Most recently, Srinivasan, Dutta, Tavakoli, and Levis [82] expanded on
much of their previous work. With six synchronized nodes, they sampled RSSI
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values at 128 Hz and explored the correlation of noise traces. They focused on
the interaction of specific protocols, e.g., IEEE 802.11b (WLAN), 802.15.1 (Blue-
tooth), and 802.15.4 (ZigBee). They observed 802.11b interference at 45 dB
above the noise floor and suggest avoiding channels that coexist with 802.11b
networks.

4.1.3 Cognitive radios

A better understanding of interference patterns without resorting to assump-
tions about the coding and modulation strategy of the interferers also relates
to the wider field of cognitive networking [3, 6, 18, 19, 94]. Wang and Liu [94]
summarize the typical cycle of a cognitive radio (CR) as

1. sense the environment,
2. analyze the sensed data,
3. reason about the best response to that analysis, and
4. adapt new operating parameters.

To accomplish these tasks, they usually make use of special hardware. Since
we specifically aim to assess channels using a WSN, we will keep our review of
CRs brief.

For the lower networking layers, CRs aim to opportunistically use unoc-
cupied frequency bands by determining the near-term occupancy of a chan-
nel through noise and interference observations [99]. In our work, we at-
tempt to characterize channels (at a high level) that are potentially occupied,
a step needed by cognitive radios, and rather than just producing a binary oc-
cupied/unoccupied classification, our approach produces a class. Some of the
classes, e.g., those exhibiting signs of spread spectrum interferers, could, de-
pending on the cognitive networking scheme, be used at the same time for
narrowband transmissions by the cognitive network. A medium access con-
trol (MAC) scheme based on this idea could enhance an existing protocol such
as B-MAC [67], which already takes samples between transmissions.

For the upper layers, an awareness of the interference could present other
opportunities. For example, an interference-aware routing protocol could po-
tentially route transmissions around weak interference. In another situation,
nodes could potentially exploit particularly strong and consistent periodic in-
terference for synchronization purposes.

4.2 Data collection

Within the 80 m2 space of the Smart Condo [13] at the University of Alberta,
we deployed a four-by-four grid of 16 wireless nodes (Figure 4.4). We used
1.83 m grid spacing and elevated each node 28 cm off of the floor. While running
the experiments, we kept the room’s doors closed and there was no movement
within the room. Figure 4.5 shows a number of the nodes (located on the left
side of Figure 4.4) sitting on their paper pedestals.

In the experiments, we used EMSPCC11 wireless nodes (Figure 4.6) pro-
vided by Olsonet Communications [62]. These devices consist of a Texas Instru-
ments (TI) MSP430F1611 microcontroller and TI/Chipcon CC1100 transceiver
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Figure 4.4: The experiment setup within the Smart Condo. The circles rep-
resent the nodes. The small black boxes represent the 7-port USB hubs. The
notebook computer in the top-left recorded the results.

Figure 4.5: We set up a grid of nodes within the Smart Condo.
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Figure 4.6: An Olsonet EMSPCC11 wireless node.

powered by two AA batteries. In terms of software, they run a low-footprint
operating system named PicOS [2] that supports multithreaded applications.

Our nodes sample the received signal strength indicator (RSSI), which mea-
sures the radio-frequency power input at the transceiver [90]. The CC1100
stores it in an internal register, and the microcontroller can easily retrieve it
through the serial peripheral interference (SPI) that connects the two compo-
nents. The register value update frequency is

fRSSI =
2× BWchannel

8× 2FILTER LENGTH
(4.1)

where

BWchannel =
fXOSC

8× (4 + CHANBW M)× 2CHANBW E
, (4.2)

and where in our configuration the FILTER LENGTH = 1, fXOSC = 26 × 106,
CHANBW M = 0, and CHANBW E = 3. By working through the formulae,
the RSSI register update frequency fRSSI is 12 695.31 Hz. We eventually need to
convert the 8-bit 2’s complement RSSI value to dBm, and the 2’s complement
offset depends on the data rate [91]. The CC1100 driver for PicOS implements
one set of data rates (4.8 kbps, 10 kbps, 38.4 kbps, and 200 kbps), and TI has
published the procedure for another set (1.2 kbps, 38.4 kbps, 250 kbps, and
500 kbps). When configuring the CC1100 for our experiments, we looked for
the intersection between these two sets and selected the only choice: 38.4 kbps
using 2-FSK modulation.

A PicOS application collects noise measurements by reading the 8-bit 2’s
complement RSSI value and immediately writing it to the UART (without con-
verting it to dBm). It performs these actions in a tight loop that involves the
OS scheduler at every iteration, but since no other user threads are running,
the scheduler latency is relatively constant. We verified the periodicity of our
sampling by toggling an LED on every call to the output function and monitor-
ing the pin with an oscilloscope. With this software, we can obtain the RSSI at
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over 5 kHz, well under its 12.7 kHz update rate, but at the same time, much
higher than previously described in the literature.

Writing values to the UART necessitates connecting all the nodes to a com-
puter by wire. The EMSPCC11 provides direct access to the MSP430’s UART
pins at TTL levels, so we opt to use a TTL RS232 to USB interface cable (FTDI
TTL-232R-3V3). Now with a USB interface, it is easy to connect all 16 nodes
to a single computer using a combination of USB extension cables and powered
7-port USB hubs (Digitus DA-70227). In making the connections, we do not
exceed USB’s maximum cable length of 5 m.

A single application on the personal computer (PC) opens all 16 serial ports
when it starts. Given 16 connected nodes and a 5 kHz sampling rate, samples
arrive at roughly 80 kHz. Each sample becomes a line in a comma-separated
values (CSV) text file, with an average line length of 25.6 bytes. Thus, the
application writes the file at around 2 MB/s.

The whole application is very sensitive to latency. The TTL-232R-3V3 has
a 256-byte receive buffer (about 51 ms of buffer space), and without taking
special precautions, we experienced buffer overruns. To eliminate them, we
use the following sufficient, but possibly not optimal, steps:

• introduce a large circular buffer of blocks of bytes (using 64 KB blocks),
• read the ports and write measurements to the circular buffer (in the main

thread),
• assign this thread real-time priority (in Mac OS X 10.6, give it 2.5 ms of

computation time every 5.0 ms and allow it to be preempted), and
• write completed buffer blocks to disk (in a second thread).

With these precautions, our application processed the samples with ease on a
late-2006 model MacBook Pro. The FTDI buffers never filled to more than 100
bytes.1 In fact, in the early tests of this modified setup, they would rarely fill to
more than 10 bytes.

The PC-based application produces time-stamps for all measurements as
they arrive. Because measurements arrive in blocks, it interpolates times us-
ing the time of the last received block and the current time as bounds. We
adopted this PC-based time-stamping approach to reduce the data sent over
the serial link and avoid assuming that all of our nodes were always perfectly
synchronized.

Before taking proper measurements, we verified whether the connection of
our nodes by wires to a single data collection point affected their RF behaviour.
Note that the careful isolation of the RF tract on the EMSPCC11, which is a
common practise in professionally designed RF equipment, gave us no reason
to suspect an interaction between the wired and RF interfaces, but we nonethe-
less verified our expectation. By disconnecting individual nodes, logging RSSI
values to memory, and then (visually) inspecting their RSSI readings, we were
able to ascertain that neither the USB cables alone, nor their connections to
the central hub had a perceptible impact on the RF channels.

1In the application, we added code to print out the buffered number of bytes if it ever exceeded
100. In our experiments, this code was never executed; the maximum buffered bytes may have
been far less than 100.
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With the described measurement framework in place, we proceeded to mea-
sure the RSSI on each of the node’s 256 channels. Our nodes were configured
with a base frequency of 904 MHz. The channels are spaced 199.9512 kHz
apart, and the transceiver uses a receive filter bandwidth of 101.5625 kHz.
These settings allow our nodes to listen on frequencies from 904 MHz to
928 MHz (within the ISM band) and 928 MHz to 954 MHz (outside the ISM
band). For each channel, we collected exactly 175 000 samples for each node for
a duration of less than 35 s. For the whole collection process, the time-span was
roughly 2.5 h and the final CSV data file consumed 18.38 GB. Please note that
in all the measurements reported here, our sensor nodes remained silent and
did not introduce any transmissions of their own.

4.3 Channel classification

With the 4096 traces stored in a CSV file, we converted the 8-bit 2’s comple-
ment RSSI values into signed dBm values (with 1

2
dB resolution) using the pro-

cedure outlined in the CC1100 documentation [91]. To plot the received signal
strength (dBm) against time (s) for each of the 4096 traces, we thinned the data
first using an implementation of the Douglas-Peucker line simplification algo-
rithm [30]. The thinned results, which had on average 2077 points per trace,
maintained the visual characteristics that we needed to hand-classify traces.
At the same time, plotting the thinned version was much more efficient than
plotting the full 175 000-point traces. We used R for the majority of our data
analysis [71].

Through visual inspection, we identified five general categories for the in-
terference patterns.

1. The quiet channel is characterized by a low maximum and appears to lack
interference.

2. The quiet-with-spikes channel is similar to (1), but it has low-frequency
(less than 1 Hz) short-duration spikes that give it a higher maximum.

3. The quiet-with-rapid-spikes channel has a higher frequency of spikes than
(2).

4. The high-and-level channel exhibits a high minimum and low deviation.
5. The shifting-mean channel exhibits shifts of its mean, and its RSSI sam-

ples have a bimodal distribution.

See Figure 4.7 for an illustration of each class of channel.
Given the general classes of interference patterns, we hand-classified the

trace for each channel/node combination. The task of classifying the samples
was particularly difficult given that a single trace might contain overlapping
patterns or a pattern at only a weak strength. We did not test the intra-rater
reliability of these hand-classifications, and we would expect some variance.
When more than one characteristic was present in a trace, we tried to clas-
sify it as the visually dominant pattern. For example, we tended to classify
a trace as shifting-mean rather than quiet-with-spikes and quiet-with-rapid-
spikes rather than shifting-mean. Figure 4.8 shows the classifications for the
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Figure 4.7: The different primary classes of channels that we identified in our
RSSI traces. From top to bottom, the figure shows the samples and density plot
for the (a) quiet channel, (b) quiet-with-spikes channel, (c) quiet-with-rapid-
spikes channel, (d) high-and-level channel, and (e) shifting-mean channel. On
the density plot, the grey line indicates the Gaussian distribution given the
mean and standard deviation.
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Table 4.1: Classification of traces for both ISM and non-ISM bands.

Classification ISM Non-ISM Total

quiet 144 1625 1769
quiet-with-spikes 1142 183 1325
quiet-with-rapid-spikes 523 25 548
high-level 32 69 101
shifting-mean 79 274 353

4096 combinations and Table 4.1 summarizes our counts for ISM and non-ISM
bands.

We encountered spikes predominantly within the ISM band. When inspect-
ing some of the spikes, we calculated very short durations of around 6 ms; we
speculate that they result from the presence of spread spectrum interferers.

Figure 4.8 highlights a curious pattern in channels grouped in the high-
level class. The four cases on channels 30, 95, 160, and 225 are located 65
channels apart. To investigate this curious interference, we set up the nodes
in a new environment, added some shielding to them, and again measured
these channels to find no decrease in the strength of the interference. That
was suggestive of a hardware issue and, indeed, a closer inspection revealed
the problem signalled in [23], a systemic attenuation of those channels whose
frequencies fall at 806 + n × 13 MHz (13 MHz is 1

2
of the transceiver’s crystal

frequency), which perfectly agrees with the observed anomaly.
In the non-ISM band, we noticed that channels 126-130 and 138-141 had

very powerful shifting-mean signals (e.g., Figure 4.9). Using Spectrum Direct
at Industry Canada, we searched the Assignment and Licensing System (ALS)
database2 and found that the closest registered frequency is 931.737500. This
frequency is registered to Telus Communications Inc. for their 900 MHz pag-
ing service. For the lower channels, 126 to 130, we also found that they were
registered for paging services.

We also found that the licensed spectrum is relatively quiet apart from the
paging service and accounting for the explained anomalous behaviour of chan-
nels 30 + n× 65.

4.3.1 Automated classification

After manually classifying the traces, we rather informally explored the feasi-
bility of automatically classifying them. Classification in this sense is the task
of identifying the best class label given a set of features [22]. For each trace,
we produced a feature vector by computing a number of summary statistics:
(a) mean, (b) standard deviation, (c) skew, (d) kurtosis, (e) minimum, (f) maxi-
mum, (g) dip, (h) 99.5th percentile, and (i) 99th percentile. Suffice it to say that
the dip statistic is used when testing for unimodality [41], and we explain it
later when we formally explore classification in the next chapter. We included

2See http://www.ic.gc.ca/eic/site/sd-sd.nsf/eng/h_00025.html.
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Figure 4.9: A sample showing particularly strong interference at 931.793 MHz;
we attribute this interference to pagers.

the percentile metrics in an attempt to better identify the quiet-with-rapid-
spikes traces.

We used Weka 3.6.2 [40], a comprehensive collection of data mining and
analysis tools, to explore automated classification. Although we tried a num-
ber of its available algorithms and options, we made no attempt to rigorously
explore and compare the performance of different classifiers to determine the
best. In this section, we summarize our experience with the Bayesian network
classifier, which we selected because of its particularly good performance in our
informal comparison.

A Bayesian network consists of

• a directed acyclic graph (DAG) G = (V, ~E) with vertices V and edges ~E

and
• a table of probabilities for each vertex.

The vertices in this graph G represent features, and the directed edges indi-
cate direct causal influences between the linked features [66, p. 117]. For each
vertex, a table summarizes the strengths of the forward conditional probabil-
ities for every possible state of its direct parents. Given a Bayesian network,
it is possible to compute the conditional probability of a node given values as-
signed to the other nodes [22]. A classifier based on the network will return
the class label that maximized the posterior probability of that class given the
attributes [33].

The Bayesian network must be learnt prior to classification, and learning
generally follows a two-stage process [17]. First, an algorithm learns the net-
work structure, and in our experiments, we used the tree-augmented naı̈ve
Bayes (TAN) approach [33]. Second, an algorithm learns the probability tables,
and for that, we used Weka SimpleEstimator class, which produces direct es-
timates of the conditional probabilities [17]. Prior to creating and using the
classifier, we discretized the feature vector using Weka’s supervised discretize
algorithm [32]. By using a supervised approach, the algorithm considers the
class attribute as the ground truth.

We loaded a data file prepared in the attribute-relation file format (ARFF)
containing the class of channel and the statistics. On these data, we ran 10-
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Table 4.2: Accuracy statistics for the BayesNet classifier with 10-fold cross-
validation.

TP rate FP rate Precision

quiet 0.931 0.046 0.940
quiet-with-spikes 0.832 0.055 0.878

quiet-with-rapid-spikes 0.786 0.052 0.702
shifting-mean 0.714 0.031 0.685

high-level 0.970 0.002 0.933

Table 4.3: Confusion matrix for the BayesNet classification. Abbreviations
as follows: q: quiet, qs: quiet-with-spikes, qrs: quiet-with-rapid-spikes, sm:
shifting-mean, and hl: high-level.

Classified as
q qs qrs sm hl

Actual

q 1647 59 38 18 7 1769
qs 65 1103 95 62 0 1325
qrs 18 63 431 36 0 548
sm 20 31 50 252 0 101
hl 3 0 0 0 98 353

1753 1256 614 368 105 4096

fold cross-validation with the BayesNet classifier. Overall, it correctly classified
86.21% of the instances.

Table 4.2 provides accuracy statistics by class. The true positive (TP) rate
refers to the proportion of a given class that was actually classified as the class.
The false positive (FP) rate refers to the proportion misclassified as a class.
Finally, precision is defined as

Precision =
TP

TP + FP
(4.3)

and indicates the proportion of the true classifications that are correct.
Table 4.3 shows the confusion matrix for the classifier. The sum of each row

indicates the number of instances of each individual class. The columns show
how the classifier predicted the actual classes. In the ideal case, it would be a
diagonal matrix as non-diagonal elements indicate the classifier’s errors.

The BayesNet classifier obtained the best performance with the quiet and
high-level traces. Both of these classes were clearly distinguished by character-
istics in their feature vectors. In the former case, traces had a low maximum,
and in the latter case, they had a high minimum. The classifier had more trou-
ble on the channels with spikes and the shifting means. All three of these types
can look quite similar depending on the strength (dBm) of the pattern.
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4.4 Summary

This work was inspired by the unusually high packet loss rates that we en-
countered after deploying an initial WSN within the Smart Condo. To further
explore the environment, we deployed a second WSN to sample the received
signal strength indicator (noise and interference) on 256 channels ranging from
904 to 954 MHz. By visually inspecting the collected data, we observed five dis-
tinct patterns in the traces; we then hand-classified each trace as belonging
to one of these types. We later used these classifications for the ground truth
when training and evaluating a classifier.

In the ISM band, we encountered a number of quiet traces (n = 144), while
the vast majority (n = 1776) contained some form of interference. While much of
this interference would have a very low impact on receptions (spikes, n = 1142),
the remaining three types would be much more detrimental. The high-and-
level and shifting-mean channel types are best avoided. In the former, the
interference is constant, and in the latter, it is highly unpredictable. For other
channel types, such as the rapid-spikes channels, nodes could employ avoidance
strategies given the periodic and consistent interference pattern.

In the non-ISM band, we saw a much greater occurrence of quiet channels
(n = 1625). Our second-highest class, shifting-mean (n = 274), was often very
strong with a consistent level across all deployed nodes. To investigate these
traces, we searched the Assignment and Licensing System (ALS) database at
Industry Canada. We found that the pattern often occurred on frequencies used
by the paging services of various wireless providers in Edmonton, Alberta.

Subsequently, we explored using a Bayesian network classifier on statistics
extracted from the traces. The classifier performed reasonably well on all types
of traces, exhibiting (not surprisingly) somewhat better accuracy for the quiet
and high-level classes.

Reflecting back on our initial high packet loss rates, although the DM2200’s
TR8100 transceiver transmitted at reasonably powerful levels (10 dBm), it used
a very simple encoding scheme (on-off keying) that is particularly susceptible to
interference [60,93]. It operated at 916.5 MHz, which is near the EMSPCC11’s
channel 63, and on this channel, we later observed the quiet-with-rapid-spikes
pattern. This pattern helps explain the poor performance that we initially en-
countered.
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Chapter 5

Classifying Patterns and

Subsampling Traces

In the previous chapter, we investigated noise and interference samples from
256 channels in an urban environment [15]. We described how we collected
the rather extensive time series data, and we identified five common patterns
in those data, namely, the (a) quiet, (b) quiet-with-spikes, (c) quiet-with-rapid-
spikes, (d) high-and-level, and (e) shifting-mean patterns (Section 4.3). After
making these observations, we extracted a feature vector from each trace and
explored the automatic classification of traces. To evaluate the classifier, we
classified each trace by its predominant pattern to establish the ground truth,
used these hand-classified vectors to train the classifier, and compared the clas-
sifier’s output against the ground truth.

Our earlier work produced promising results, but the classifier was not suit-
able for a resource-constrained node. In this chapter, we refine our approach so
that individual nodes can classify channels. We primarily address two related
questions:

1. How can we use a classifier to determine whether a particular pattern is
present in an RSSI trace (Section 5.1)?

2. How can such classification occur within the limited resources of a WSN
node (Section 5.1.2 and Section 5.2)?

To this end, we focus on developing independent classifiers for the two patterns
that have dynamics most detrimental to transmissions, quiet-with-rapid-spikes
and shifting-mean. We elect to use independent classifiers because the pat-
terns can coexist, i.e., they are not mutually exclusive, and in both cases, we
are interested in detecting the pattern’s presence, rather than accurately de-
scribing it. Note that when we later evaluate the performance of these refined
classifiers, we make neither reference nor comparison to the earlier Bayesian
network given its relatively high complexity.

Consistent with work in cognitive networking (Section 4.1.3), and in order
to address the second question raised earlier, is the desire to use as small a
number of samples, together with the right features and classification algo-
rithm (expressed as a decision tree), to allow nodes to reassess the channel
behaviour and re-classify channels on an as-needed basis. An awareness of en-
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ergy consumption motivates us to do this collection and classification efficiently,
since batteries often power nodes. Consistent with these objectives, we use the
same hardware, i.e., radio-frequency (RF) transceiver and microcontroller, for
the measurement and classification as we use in our deployed networks. We do
not assume the use of any special equipment or special calibration protocols.

5.1 Classification

Recall that in our initial classification of traces (Chapter 4), we encountered
traces containing more than one characteristic. To avoid classifying them by
the dominant one in this work, we instead consider each characteristic inde-
pendently. From the 4096 original traces, we randomly selected 1024 traces
to closely inspect in a random order. For each trace, we evaluated it for the
following five characteristics:

1. spikes: for apparently random and infrequent spikes, their approximate
strength (dB) above the noise floor and number,

2. periodic-spikes: for periodic and infrequent spikes, their approximate
strength and number,

3. rapid-spikes: for periodic and frequent spikes, their approximate
strength,

4. shifting-mean: the strength of the shift, and
5. high-and-level: the strength of the level above where we would expect to

find the noise floor.

Most of the frequent spikes occurred at 4 Hz, while most of the infrequent ones
occurred at 0.2 Hz or less, and we never encountered any difficult-to-classify
cases that required us to measure the time between spikes.

Beyond the visual differences of the infrequent and frequent spikes, other
reasons made it quite natural to distinguish the two types. In our observed
traces, the frequent spikes occur approximately 20 times more often than the
infrequent spikes. Therefore, recognizing the frequent case should require a
magnitude fewer samples. Similarly, once the pattern is recognized, the fre-
quent case lends itself much better to opportunistically timing transmissions
(Chapter 6), where nodes waking with a pending transmission may need to
find a spike in order to track the interference. Finally, the two different pat-
terns have different implications for the packet error rate. Given Smart Condo-
sized packets and data rates, a transmission can take up to 50 ms to complete.
With the spikes pattern, a node oblivious to the interference can quite possi-
bly achieve a 99% packet reception rate even when the interference obliterates
every encountered packet. With the rapid-spikes pattern, however, the higher
frequency of spikes now suggests a packet reception rate of 80% – a low enough
rate to warrant some way of handling the rapid spikes to avoid this drastic
performance degradation.

From these five introduced numeric values, we derive two new Boolean class
attributes: rapid-spikes and shifting-mean. We originally created a third one,
spikes (for any of the three spike cases), but we later dropped this class given
the low impact of its patterns. These attributes indicate the pattern’s presence
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in a trace – the ground truth: we set these new attributes to true when a pat-
tern’s level exceeds 3 dB. We use these values while training and evaluating
classifiers, and herein, any reference to their names is to the Boolean rather
than numeric attribute. The rapid-spikes attribute is true for 154 of the 1024
traces (15.0%), the shifting-mean one is true for 91 (8.9%), and they are both
true for 9 (0.9%).

5.1.1 Decision trees

Many different classification techniques exist, and we focused on those most
feasible for low-powered nodes. We elected to use a decision tree classifier,
since once built offline, it has low memory and processing requirements. Quite
possibly the most well-known algorithm in the literature for building decision
trees [45] is the C4.5 classifier [70], and we adopted it for our experiments. C4.5
actually refers to the collection of programs described in [70]; the primary pro-
gram, sharing the same name, generates a classifier in the form of a decision
tree.

Weka 3.6.2 [40], data mining software written in Java, incorporates the im-
plementation of the C4.5 classifier that we used. Algorithm 1 summarizes it:
the algorithm essentially builds the tree top-down and attempts to select the
best attribute for each decision node as it builds. It begins the process with
all of the feature vectors in the training set, and as it goes, the tree’s decisions
gradually partition those vectors into smaller subsets.

Algorithm 1 Building the C4.5 decision tree

1: check base cases
2: initialize list U for storing useful splits
3: initialize list G for storing their information gains
4: for each a in the non-class attributes do

5: if split(a) is useful then

6: U .append (a)
7: G.append (gain (a))
8: end if

9: end for

10: let abest be one attribute a from U such that
gain(abest) ≥ mean(G) and

gratio(abest) = maxa∈U gratio(a)
11: create decision node that splits on abest

12: recurse on each subset below decision node

The algorithm initially tests a number of base cases that can end the recur-
sion if (a) all of the feature vectors belong to the same class or (b) not enough
feature vectors exist to warrant a decision node. Both of these cases result in
a leaf node with its class determined by the class majority among its feature
vectors.

When the base cases fail, it will create a new decision node that contains a
test, and it will explore each non-class attribute for that test. For a continuous
numeric attribute, the decision node will test whether the attribute value is
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above a certain threshold. Such a test results in a Boolean outcome: true or
false. For a discrete (nominal) attribute, each possible value of the attribute
will result in an outcome.

Each possible outcome of the decision yields a child, and the training set’s
feature vector is partitioned (split) amongst the children according to the result
of the test. It is possible for a child to contain no feature vectors, i.e., when a
possible nominal value does not occur in the subset of feature vectors. In these
cases, the child becomes a leaf with its class determined by the most frequent
class of its parent. A good attribute for a decision node yields two or even a few
children, where each child is reasonably pure, i.e., the feature vectors in the
child are predominately of the same class. In fact, before an attribute becomes
a candidate for the best split, an initial usefulness test limits the candidates to
(a) non-numeric attributes with a limited number of outcomes and (b) numeric
attributes. After building the tree, a reduction phase (not described here, but
found in [70]) collapses and prunes the tree.

To determine the best attribute for a decision node, the concept of infor-

mation plays a fundamental role [70, p. 21]. As usual, the formula − log2 P
conveys the information content of a message in bits, where P is the message’s
probability. For example, given four equally probable messages (P = 1

4
), the

information content of any one of them is − log2(
1

4
) or 2 bits.

Algorithm 1’s first use of information occurs on line 7, when it calculates the
gain of splitting the feature vectors F on the attribute a. Gain represents “the
informational value of creating a branch on the . . . attribute [a]” [96]. Prior to
calculating this difference, the approach first needs a baseline, which in this
case is the informational value prior to creating the branch.

Let F be the feature vectors available when creating a decision node. Given
a case in F ,

info(F ) = −
n
∑

i=1

[

freq(Ci, F )

|F | × log2

(

freq(Ci, F )

|F |

)]

(5.1)

calculates the average amount of information needed to identify its class where
C1, C2, . . . , Cn represent the different classes and the notation freq(Ci, F ) refers
to the frequency of class Ci in F .

After splitting the feature vector into the children using a test X with m
outcomes, the average amount becomes

infoX(F ) =

m
∑

i=1

[ |Fi|
|F | × info(Fi)

]

(5.2)

where Fi is the collection of feature vectors partitioned into child i.
With these values,

gain(X) = info(F )− infoX(F ) (5.3)

finally calculates the gain achieved by splitting on the test X.
In a predecessor to C4.5 named ID3, Quinlan used only this gain as its crite-

rion for determining the best split. Unfortunately, notice from 5.3 that the gain
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Figure 5.1: The trace from channel 94, port 10 (top) and its density plot (bot-
tom). This trace has the shifting-mean pattern and its density plot is bimodal.

is maximized when infoX(F ) is minimal; if each outcome contains only a sin-
gle feature vector then infoX(F ) will equal 0. To compensate for this problem,
C4.5 uses a normalization of gain called the gain ratio when determining the
best split. The gain ratio divides gain by the potential information generated
by partitioning F into m subsets (one for each outcome)

gratio(X) =
gain(X)

−
∑m

i=1

|Fi|
|F | × log2

(

|Fi|
|F |

) (5.4)

In order to use this classifier, we extract a number of features (attributes)
from our traces. The most obvious metrics include the (a) mean, (b) standard
deviation, (c) standard deviation of the moving average, (d) skew, (e) kurtosis,
(f) minimum, and (g) maximum. The moving-average standard deviation rather
arbitrarily averages ten data points. We also include a number of percentiles:
the (h) 95.0th, (i) 96.0th, (j) 97.0th, (k) 98.0th, (l) 99.0th, and (m) 99.5th percentiles.
Finally, we include the (n) modal and (o) periodic features as explained in Sec-
tions 5.1.3 and 5.1.4.

The modal and periodic features address our desire to capture two specific
characteristics in our data. For the shifting-mean traces, we observed that their
density plots are rarely unimodal (Figure 5.1). For the rapid-spike traces, we
observed that their high-frequency spikes tend to be very periodic (Figure 5.2).
We later describe the features that account for these observations.
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Figure 5.2: The trace from channel 69, port 12 (top) and its periodogram (bot-
tom). This trace has the rapid-spikes pattern and its periodogram shows a
significant response at 4 Hz and for the higher-frequency harmonics.

5.1.2 Subsampling

We derive the training set’s feature vectors using the 1024 randomly selected
traces from the 4096 traces that we collected. After summarizing these full
175 000-point traces into feature vectors, we use those vectors to build decision
trees for each pattern of interest.

Given a built decision tree, we want deployed nodes to classify channels with
fewer than 175 000 samples. These devices tend to have small memories, and as
they collect more data, the computations also consume additional CPU cycles.
Moreover, the data collection requires the transceiver to actively listen to the
channel, which increases the node’s energy consumption. For those reasons,
we investigate classification performance on subsamples of our data. Since we
passively collected traces, subsampling our data is equivalent to collecting the
initial samples at a lower rate. If we had used an active approach that could
affect the environment, e.g., packet transmissions, then this approach would be
invalid.

With periodic (even) sampling, a constant time separates each sample
(△t = ti+1 − ti is constant ∀i). In this case, it is possible for the sampling to be
synchronized with the trace’s characteristic of interest – and all of the samples
could miss it. For that reason, we compare periodic sampling with Poisson sam-
pling, since the latter separates samples by random times and also maintains
the distribution characteristics of the sampled distribution [25, pp. 327-328].

Suppose that we want to produce an even subsample of length n from a trace
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of length N . We divide the trace into n segments of equal duration

[

t 0

n
N , t 1

n
N

)

,
[

t 1

n
N , t 2

n
N

)

, . . . ,
[

tn−1

n
N , tn

n
N

]

Within the first segment, between t0 and t 1

n
N , we randomly select a starting

point ts and its corresponding value (x1) is the first in our subsample. For the
times t 1

n
N + ts, t 2

n
N + ts, . . . , tn−1

n
N + ts, we then add their corresponding values

(x2, x3, . . . xn) to our subsample, respectively.
To produce a Poisson subsample, we first determine the length of the sub-

sample by drawing a random number from the Poisson distribution with λ = n.
We then draw a simple random sample without replacement of that length from
the trace.

To evaluate our results, we use the φ coefficient, which is actually a product-
moment coefficient of correlation [48] and is also called the Matthews correla-
tion coefficient [55]. It indicates the association between two variables, and as
a normalized value, ranges from -1 to 1. Its value reflects the association be-
tween the correct classifications, true positives (TP) and true negatives (TN),
and the incorrect classifications, false positives (FP) and false negatives (FN).
We want a (high) positive value, which indicates a greater association between
the true negative/positive values than the false negative/positive values. Al-
though other methods can be used to evaluate classifiers, e.g., the sensitivity,
specificity, precision, and recall percentages, the coefficient may provide a more
balanced evaluation [10]. Unlike percentage-based measures, it uses (and can
be calculated solely from) the four values from a confusion matrix

Predicted
FALSE TRUE

Actual

FALSE true negative false positive
(TN) (FP)

TRUE false negative true positive
(FN) (TP)

using the formula

φ =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5.5)

It has a direct relationship with the χ2 statistic for a 2× 2 contingency table

φ2 =
χ2

n
(5.6)

and this relationship can be used to test significance levels (with 1 degree of
freedom).

We evaluated C4.5-built decision trees for the two most disruptive channel
classes: rapid-spikes and shifting-mean. We subsampled each of the 1024 hand-
classified 175 000-point traces ten times for each subsample size and technique.
The subsample sizes included 250, 375, 500, 750, 1000, 2000, 3000, 4000, 6000,
8000, and 12 000 points.
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5.1.3 Dip statistic

Given that histograms of shifting-mean traces often show more than one mode
(e.g., Figure 5.1), our search for a statistic to capture this fact led us to the dip
statistic [41]. Without making any assumptions about the underlying sample
distribution, the dip statistic allows us to test for unimodality. It does this by
computing “the maximum difference between the empirical distribution func-
tion and the unimodal distribution function that minimizes that maximum dif-
ference” [41].

For a given p-value, the dip value depends heavily on the number of sam-
ples. Hartigan and Hartigan [41] provide values for sample sizes up to 200, and
Martin Maechler1 extended this table for sample sizes up to 5000. Given that
our complete traces consist of 175 000 points, we again extended it.

To make this extension, we used code written by Martin Maechler, which
was originally based on the published Hartigan code [42]. Our random uniform
values of the null distribution came from the GNU Scientific Library [34] with
the gsl rng ranlxd2 generator and unique seed values for each run. We cal-
culated values for both 50 000 and 175 000 samples at 26 different significance
levels.

We next augmented our training set with dip values. We also introduced a
new Boolean feature named modal that we set to true when we rejected the null
(unimodal) hypothesis, i.e., when the dip statistic exceeded the threshold for a
given significance level. To determine the best significance level, we calculated
the modal attribute for each level, and in each case, looked at the agreement
between the shifting-mean and modal attributes. The previously introduced φ

coefficient gave us an indication of the agreement, and we obtained the maxi-
mum value for it at the significance level of 1.

For each of our 1024 hand-classified traces, we computed subsamples using
both even and Poisson sampling, as previously described. When adding our
Boolean modal attribute to the subsamples, we interpolated for the smaller
sample sizes using values from our dip value table at the chosen significance
level.

The process of evaluating a classifier’s performance on subsampled data is,
in a sense, end-to-end. It begins with subsampling traces, which corresponds
to the data collection that nodes would perform. The classifier then operates
on the samples, and the process ends with the classifier producing a result:
positive or negative for the particular pattern.

We applied our decision tree classifier to the subsamples, and we found that
the tree incorporating the modal attribute (which is based on the dip statistic)
improves the classification performance across all the tested subsample sizes
(Figure 5.3). The shifting-mean channels tend to remain stable at each mean
for a reasonable amount of time, and thus, even a small number of samples can
capture the two modes. As it was to be expected, without the modal attribute
the classifier was very sensitive to the sample size and generally performed
poorly. We did not see a significant difference between even and Poisson sam-
pling in either case.

1See http://www.cran.r-project.org/web/packages/diptest/.
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Figure 5.3: The effect of sampling technique and use of the modal attribute (de-
rived from the dip statistic) on the classification of shifting-mean subsamples.

Beyond the classifier performance, we compared the shifting-mean decision
tree both before and after adding the modal attribute. The tree without this
attribute has 29 nodes, with 15 of them being leaf nodes (Figure 5.4). The
tree that incorporates this attribute only has 15 nodes, with 8 of them being
leaf nodes (Figure 5.5). This simpler tree has lower memory requirements and
slightly faster classification performance. Also in the simpler tree, C4.5 selected
the modal attribute for the first decision node, which lends further support to
its effectiveness for detecting shifting-mean interference.

5.1.4 Lomb periodogram

In our plots of traces with rapid spikes, we noticed that the spikes appeared
to have a very periodic nature (Figure 5.2). The first thought that occurred to
us – Fourier transforms – does not apply when the spacing between samples
is uneven. Given our desire to test Poisson sampling with its uneven spacing,
we looked for alternative solutions. The Lomb periodogram is a technique of
computing least-squares frequency analysis on unequally spaced data [50, 68].
In this subsection, we provide details for the algorithm because later, in Sec-
tion 5.2.1, we will describe a simplification of it.

Given N data points, the periodogram’s normalized form is defined by

PN (ω) ≡ 1

2σ2











[

∑

j(hj − h̄) cosω(tj − τ)
]2

∑

j cos2 ω(tj − τ)
+

[

∑

j(hj − h̄) sinω(tj − τ)
]2

∑

j sin
2 ω(tj − τ)











(5.7)

where ω = 2πf , f is the frequency, hj and tj represent the magnitude and time
of sample j (respectively), h̄ and σ2 are the mean and variance of all the samples
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p96 > -103.5 min > -117

min > -118.5 p95 > -102

max > -97 TRUE

p995 > -95.5 p96 > -100

min > -119.5 TRUE

FALSE masd > 1.747

FALSE p99 > -100

FALSE TRUE

FALSE periodic

FALSE p95 > -101.5

TRUE sd > 3.111

TRUE FALSE

TRUE FALSE

TRUE FALSE

Figure 5.4: When we exclude the modal attribute, the C4.5 algorithm produces
this tree to classify the shifting-mean channels. For each decision node, the left
child is the false case. The Boolean value in the leaf nodes indicates member-
ship in the shifting-mean class. This tree should be compared with Figure 5.5.

FALSE TRUE

FALSE TRUE

TRUE

modal

p96 > -103.5 masd > 3.763

masd > 1.747 kurtosis > -0.816

periodic FALSE

p995 > -94.5

TRUE FALSE

Figure 5.5: When we include the modal attribute, the C4.5 algorithm produces
this tree to classify the shifting-mean channels. This tree should be compared
with Figure 5.4.
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(respectively), and τ is defined by the relation

tan(2ωτ) =

∑

j sin 2ωtj
∑

j cos 2ωtj
(5.8)

The intuition behind (5.7) is as follows: for each sample in the trace, multiply it
by the sine and cosine waves modulated at the chosen frequency f . One of the
two waves will capture any periodicity at f regardless of shifts in time. When
the values hj − h̄ are randomly distributed about 0, i.e., the mean-adjusted
signal level is essentially a Gaussian random variable with mean 0, this sum
will tend to 0. When the values also modulate with the frequency, however, it
will tend to a larger value. The final division at the end, by the sample variance,
accounts for the width of the Gaussian distribution.

In our periodograms, we noticed that in addition to a peak at the fundamen-
tal frequency, additional peaks often occurred at multiples of that frequency.
According to [58], the strong non-sinusoidal signal in our time series is respon-
sible for these peaks, and the subsequent peaks are called harmonics.

We added a periodic attribute to our training set to summarize the peri-
odogram in a single Boolean value. To determine when it should be true, we
considered for each trace (a) the maximum periodogram value in one of the
frequency ranges 2.5 to 3.5 Hz, 2.5 to 4.5 Hz, 2.5 to 5.5 Hz, and so on up 2.5
to 20.5 Hz and (b) the threshold that, when the above maximum periodogram
value exceeds it, yields a maximum value for φ. Using a variant of simulated
annealing implemented in R’s optim function,2 we identified a suitable thresh-
old parameter for setting the periodic attribute when using the maximum fre-
quency between 2.5 and 5.5 Hz.

As with the dip statistic, we subsampled our 1024 hand-classified traces,
using both even and Poisson sampling, for the previously described subsam-
ple sizes and repetitions. Given that the periodogram is a sum across the
(sub)sample, its magnitude depends on the number of samples in the sum.
Therefore, when adding our new Boolean attribute to the subsamples, we had
to scale the threshold proportionately.

We found that the periodic attribute derived from the Lomb periodogram
produced significant gains in the rapid-spikes classifier performance (Fig-
ure 5.6). Given small sample sizes, classifiers both with and without the pe-
riodic attribute show low performance. As the sample size increases, the per-
formance of the classifier incorporating the periodic attribute increases at a
higher rate than the one without the attribute. Compared to the dip statistic, a
larger sample size appears to be necessary for a response from the periodogram.
Like with the dip statistic, we did not see a significant difference between even
and Poisson sampling.

We compared the decision trees both with (Figure 5.7) and without (Fig-
ure 5.8) the periodic attribute. Prior to adding the attribute, the tree size is
67 with 34 leaf nodes, while with the attribute, the size is 15 with only 8 leaf
nodes. It is evident that given the periodic attribute, we not only improve the
classification performance but also obtain a simpler decision tree. Moreover,

2See http://www.r-project.org for more information.
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Figure 5.6: The effect of sampling technique and use of the periodic attribute
(derived from the Lomb periodogram) on the classification of rapid-spikes sub-
samples.

as with the modal attribute, C4.5 selected the periodic attribute as the first
decision node, which supports its use for detecting rapid-spikes interference.

5.2 Node-based realizations

In the previous section, we showed that the modal attribute (based on the dip
statistic) and the periodic attribute (based on the Lomb periodogram) allowed
the C4.5 algorithm to generate smaller decision trees that classified feature
vectors with higher accuracy. When generating the earlier trees, the C4.5 al-
gorithm had a wide range of attributes available to it, and the resulting trees
included many of them. Computing those attributes on a wireless node, with
the exception of the minimum, mean, and maximum, requires considerable
memory and processing power. For in-node classification, we therefore explore
smaller attribute sets to simplify the computations.

Recall that C4.5 builds trees from the top working down, and at each node,
it selects the attribute that yields the purest children. In both the rapid-spikes
and shifting-mean trees, our new attributes, periodic and modal, are the top
attributes in their respective tree. For that reason, we first consider the perfor-
mance of using just these attributes in a single-node decision tree.

We used C4.5 to generate a single-node decision tree based on the dip statis-
tic alone, and it positively associated our modal attribute with the shifting-
mean class as expected. Earlier, in Figure 5.3, we show that the dip statistic,
when combined with other attributes, greatly improves performance for all our
sample sizes. In this case, however, the dip statistic alone performs poorly com-
pared with the full C4.5 tree, and this attribute should not be used alone to
predict shifting-mean channels (Figure 5.9, dip only).

Given the poor performance of the dip statistic alone, we also consider com-
bining it with other easily-generated attributes, i.e., minimum, mean, and max-
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Figure 5.7: When we include the periodic attribute, the C4.5 algorithm pro-
duces this tree to classify the rapid-spikes channels. For each decision node,
the left child is the false case. The Boolean value in the leaf nodes indicates
membership in the rapid-spikes class. This tree should be compared with Fig-
ure 5.8, where we excluded the periodic attribute.

imum (Figure 5.9, dip+easy). In this case, we see improved performance at all
sample sizes over the dip-only case, but for small sample sizes, the performance
still significantly lags behind using the full attribute set; we do not find the
dip+easy classifier’s performance satisfactory until about 6000 samples. Given
the high number of required samples, we abandon our current investigation
of the dip+easy classifier. We therefore switch our focus to the rapid-spikes
classifier.

Like with the dip statistic, we generated a single-node decision tree based
on the Lomb periodogram alone (Figure 5.10). In this case, however, we ob-
serve that the single-decision tree performs very well for subsamples of at least
2000 observations. Apparently, this single attribute is responsible for most of
the rapid-spike classifier’s performance even at small sample sizes. In the next
section, we focus on approximating the Lomb periodogram so that we can imple-
ment it within WSN-class devices. The actual implementation of the algorithm,
however, will not occur until Chapter 6, at which point we investigate its use in
identifying transmission opportunities in this class of channel.

5.2.1 lombest: an estimation of the Lomb periodogram

For a given frequency, the Lomb periodogram is defined by 5.7 and 5.8. In the
exact case, the calculation

1. requires recording all of the samples, which is necessary to compute the
mean and variance used in 5.7 and τ used in 5.8,

2. makes extensive use of the sine and cosine trigonometric functions,
3. uses floating-point values throughout, and
4. includes many multiplications and divisions (of floating-point numbers).
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Figure 5.8: When we exclude the periodic attribute, the C4.5 algorithm pro-
duces this tree to classify the rapid-spikes channels. This tree should be com-
pared with Figure 5.7, where we included this attribute.
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Figure 5.9: The effect of using (a) only the dip statistic (dip only) and (b) the dip
statistic plus other easily-computed attributes (dip+easy) on φ for identifying
shifting-mean channels.
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Figure 5.10: The effect of using only the Lomb periodogram on φ for identifying
rapid-spikes channels. Note that after 2000 samples, the Lomb periodogram
alone predicts the channels almost as well as with the full attribute set.
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In the last case, note that one integer-float multiplication or division on the
TI MSP430 uses over 400 instruction cycles3, while a register add or shift op-
eration requires only one cycle [88]. Given the limited memory and lack of
hardware support for floating-point arithmetic and trigonometric functions in
many microcontrollers, we need to consider approximations.

We aim for constant memory usage regardless of the sample size, and in-
stead, we allow the usage to scale linearly with the number of analyzed fre-
quencies. This setup allows us to collect a flexible number of samples, and at
the same time, it encourages us to reduce the memory footprint by searching
only frequencies of interest. To make the construction of the algorithm feasible
within mote-class devices, we

• calculate and evolve an integer estimate of the mean,
• disregard the τ parameter, and
• quantize the sine and cosine waves with discontinuities selected to allow

bitshifting.

The following paragraphs describe each compromise in detail.
Note the use of the noise’s mean h̄ and variance σ2 in 5.7, which in the exact

case, requires the logging of all samples. Instead of taking this approach, we
opt to (a) use an integer estimate of the mean that we calculate in advance us-
ing a small sample and (b) calculate the variance while collecting samples. To
calculate the mean, we evaluated different sample sizes, and as expected, its
value converges quickly as the sample size increases. At around 200 samples,
we obtain a close approximation. Given a trace, we therefore use the first 10%
for mean calculations and the remaining 90% for periodogram calculations. For
example, at 2000 samples, the threshold for reasonable Lomb-only classifica-
tion, the mean estimation uses 200 samples. To calculate the variance, we use
floating-point numbers with one multiplication for each sample, and we per-
form the final divisions after accumulating this sum over the trace.

The mean plays a very important role in the algorithm, which assumes a
random distribution of non-periodic samples around the mean. To reduce the
risks associated with deriving the mean from a non-representative sample, we
constantly adjust it: a sample above it increases it by 1 (and vice versa for
samples below it).

The calculation of τ is another prerequisite for the exact periodogram. Lomb
introduced this parameter to facilitate the statistical description of the least-
squares spectrum [50]. For our approximation, however, we do not need such
rigour, and intuitively, the periodogram changes little with shifts in time. We
confirmed our suspicion by comparing several periodograms both before and
after the removal of τ : we observed very little difference between the two cases.

The sines and cosines in the exact formulation oscillate at the frequency of
interest. When calculating the periodogram value for a particular frequency,
we first identify each sample’s location in the sine and cosine waves and then
multiply the sample’s magnitude by the corresponding values in those waves.

3This cycle count assumes the C library included with IAR Embedded Workbench, version
3.41A.
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Figure 5.11: Alternative approximations of the sine and cosine functions used
when calculating the Lomb periodogram.

We make a number of approximations here, both with identifying the sample’s
location in the wave and with the values of the waves.

To identify a location in a wave, we keep an array of time-stamps, one for
each frequency of interest, that indicates when the next wave begins. For each
new sample, we update this array, which requires an integer comparison for
each frequency and possibly a few additions. By knowing when the next wave
begins for a given frequency, we can perform subtractions and additions to iden-
tify the offset into the current wave. This technique allows us to avoid the
alternative – the modulo operation – which would be more expensive.

By quantizing the wave and making the discontinuities occur at opportune
locations (bitshifts of the frequency), we can easily compute the offset into a
wave and avoid divisions. We experimented with two rather crude (but effec-
tive) approximations of the sine and cosine functions (Figure 5.11).

In the 4-level approximation, we use seven comparisons to determine the
correct offset. Given an offset, we add/subtract the whole or (bitshifted) half
mean-adjusted sample to a sum depending on the sine or cosine amplitude at
that offset. We record two integer sums for each denominator (

∑

j cos
2 ω(tj)

and
∑

j sin
2 ω(tj)): one for whole numbers and one for quarters. Using this

approximation requires 6 short (2-byte) integers per frequency of interest.
In the 3-level approximation, we use four comparisons to determine the cor-

rect offset rather than seven. Given an offset, we need only add/subtract whole
mean-adjusted samples, and we now only encounter zero and one in the denom-
inator. In this case, we only require 4 short integer sums per frequency.

In Figure 5.12, we compare the classification accuracy of the original and 4-
and 3-level trigonometric approximations. Recall that the Lomb-only classifier
begins to perform comparably to that of the full attribute set at 2000 samples.
When using between 2000 and 4000 samples, the performance of our sine and
cosine approximations perform reasonably well when compared with the origi-
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Figure 5.12: The performance of classifying rapid-spikes channels when using
only the Lomb periodogram to produce the attribute. This graph compares us-
ing the original Lomb periodogram against approximations based on our 3- and
4-level trigonometric approximations. At 2000 samples, our Lomb-only rapid-
spikes classifier performs nearly as well as the full classifier. After 4000 sam-
ples, the performance when using the approximation-based attribute remains
steady.

nal. After 4000 samples, the performance of the original periodogram continues
to slightly increase while the approximations remain constant. The 4- and 3-
level approximations perform similarly across all sample sizes. Overall, the
approximations perform very well when compared with the exact periodogram,
with the 3-level being preferred given its lower requirements.

5.3 Summary

In this chapter, we described key work towards enabling WSN devices to char-
acterize the interference in their environment. We consider observed patterns
and macro-level descriptions of them (i.e., without knowing whether the inter-
ferers are adhering to a particular modulation and coding protocol, or even if
they happen to just be noise sources). We focus on the most problematic classes
of interference (in terms of their impact on packet loss rates) and develop classi-
fication mechanisms for them. Our main concern in this chapter is to generate
accurate classification outcomes given little computation and energy resources,
as is usually the case in wireless sensor networks.

In our work, we considered the energy and space constraints of a WSN node
when selecting a classifier. We focused on decision trees, since after training,
the classification of new cases is simple. In all of our experiments, we con-
sidered two different sampling techniques, even and uneven/Poisson sampling,
and we had expected to find improved performance with the latter. Our results,
however, showed no advantage when using Poisson sampling, and in hindsight,
we are not surprised. Given the frequency of our sampling, it would be very
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unlikely for them to synchronize with the rapid spikes and consistently miss
the impulses.

We investigated the classification of samples according to distinct channel
patterns: shifting-mean and rapid-spikes. Each of these can be exploited by
cognitive radio avoidance strategies: in the former, changing channels or in-
creasing the transmission power and in the latter, carefully timing transmis-
sions. We found two features that aided in recognizing these patterns. For the
shifting-mean channels, we exploited the sample’s multi-modal distribution by
using the dip statistic. For the rapid-spikes channels, we exploited their pe-
riodic nature by calculating the Lomb periodogram. In both cases, the new
attributes improved the classification performance for all subsample sizes. We
also observed that both of these new attributes reduced the size of their respec-
tive decision trees, particularly in the periodic case.

We then explored using one-node decision trees to classify the shifting-mean
and rapid-spikes channels. The dip statistic alone was a poor predictor of
shifting-mean channels. We managed to improve its performance by adding
other easily calculated attributes (minimum, mean, and maximum), but it
needed a rather large number of samples before its performance satisfied us.
The Lomb periodogram, when used alone, performed quite well, particularly
when collecting more than 2000 samples. Finally, we showed a simplification of
the Lomb periodogram that could be implemented within the limited resources
of a WSN-class device.

Given the positive results that we have presented here, the next chapter ex-
plores the how question – how we can use these channel classifications. Using
the rapid-spikes classifier, we develop a pattern-aware medium access control
(MAC) protocol that carefully schedules transmissions to avoid expected inter-
ference impulses.
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Chapter 6

Exploiting Channel

Classification

In Chapter 4, we described the interference and noise patterns that we encoun-
tered in our indoor urban wireless sensor network (WSN), and in Chapter 5, we
explored classifying the two most disruptive of these patterns, shifting-mean
and rapid-spikes. After showing that our classifiers performed well given the
full attribute set, we reduced the available attributes to simplify the calcula-
tions and make them feasible for use by wireless sensor nodes. As we expected,
these simplifications impacted the performance of our classifiers, but for the
rapid-spikes one, we could still obtain very good results using only a single at-
tribute. We then simplified the computation of this attribute to make it suitable
for the limited resources of a wireless sensor node.

In this chapter, we describe the migration of our stand-alone classifier to our
WSN programming paradigm and then explore the avoidance of the impulsive
(rapid-spikes) interference within the framework of WSN devices. We show
the effect of varying the packet arrival rate and packet length on the packet
reception rate and latency. For these experiments, we isolate the variables of
interest and eliminate a huge number of unknown and uncontrollable variables
found in real environments by using simulation. In Section 6.1, we describe our
extension to SIDE that generates impulsive interference. After modelling the
interference, we incorporate the classifier and a proof-of-concept MAC into a
WSN application (Section 6.2) and present the results from several simulations
(Section 6.3). The positive simulation results led us to integrate the MAC into
our EMSPCC11 wireless sensor nodes, and Section 6.4 presents the results
from a small-scale deployment using hardware rather than simulation. Finally,
in Section 6.5, we summarize our results.

Note that we are not the first researchers to incorporate interference into a
WSN simulator: those working on closest-fit pattern matching (CPM) [49, 78]
also use real-world observations to guide their channel modelling. Instead of
focusing on specific patterns, they developed a modelling approach that initially
replays a recorded trace and then estimates future points based on computed
probabilities. Unfortunately, their probabilistic approach could easily lose the
key periodic attribute that we are trying to recognize and subsequently exploit.
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6.1 Interference modelling

In this section, we describe an extension to SIDE that allows users to define
external impulsive interference. Its user-visible component consists of new at-
tributes and tags for use within the existing XML configuration. Internal to the
simulator, we implemented interference generation by adding a new node type,
Interferer, and writing new processes that run on those nodes to produce the
specified pattern. In Chapter 3, we described our development environment;
in this section, we only describe our additions to it that allow us to model the
interference.

Additional tags and attributes added to an existing XML (extensible
markup language) configuration file provide the user-specified interference con-
figuration. A new interferers attribute for the network tag indicates the num-
ber of interferers in the environment, e.g.,

<network nodes="40" interferers="3">

Within the <network> tag, a single <interferers> tag identifies the section for
interferer-specific settings, akin to the existing <nodes> tag. Within this new
<interferers> section, the user can define the parameters for each interferer,
e.g.,

<interferer number="0" type="impulsive">

<location type="random">170.0 170.0</location>

<pattern>

R 0.245 s ; random delay

P ; start periodic portion

O 0.0 dBm 3 dB ; on at 0.0 dBm with 3 dB sd

T 0.005 s ; delay

F ; off

T 0.245 s ; delay then implicit jump to P

</pattern>

</interferer>

In our current implementation, the only valid interferer type is impulsive,
but in the future, we could add additional types. Internally, each interferer be-
comes an object within the simulation, much like what already happens for a
node. These new objects execute a process specific to their associated interfer-
ence type: for this work, we implemented an Impulsive process to simulate the
pattern of impulsive interference specified within the <pattern> tag.

The body of the <pattern> tag essentially provides a script for the
Impulsive process to follow. When SIDE parses the pattern, it extracts com-
mands and arguments from the possibly commented description. It creates two
arrays for these extracted values: one for the single-character commands and
one for the double-valued arguments. For an impulsive interferer, SIDE sup-
ports the commands shown in Table 6.1. Essentially, the Interferer process
interprets (in a fetch-decode-execute style) the command sequence provided in
the specification block. Upon reaching the end of the command list, an implicit
jump occurs to the command immediately following the P command, if specified;
otherwise, it jumps to the start of the script.
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Table 6.1: Commands supported by the Impulsive process.

Cmd. Args. Description

R 1 Delay the process for a random duration between 0 and
the value specified in the argument (in seconds).

T 1 Delay the process for the specified duration (in seconds).
O 2 Generate interference at the specified power level (in

dBm) with the specified standard deviation (in dB).
F 0 Stop the generation of interference.
P 0 Mark the start of the periodic portion of the pattern.

For the <location> tag, the attribute type with the value "random" causes
SIDE to generate a new location every time the simulator starts (assuming a
new seed for the random number generator). It uses the specified coordinates
(e.g., 170.0 170.0) as upper bounds for the random values.

We placed a number of synchronized impulsive interferers in a virtual en-
vironment, and using our earlier sampling application [15], collected a number
of virtual traces (e.g., Figure 6.1, bottom). With very little tweaking, we were
able to make the simulated traces match, in essence, the real traces. Upon
close inspection, there were slight differences, e.g., the simulated traces lacked
some random non-periodic components, and with a little more work, we could
include these in our model as well. That said, the existing model’s detail suf-
fices for testing the classification and medium access control techniques in the
following sections.
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Figure 6.1: An actual trace (top) plotted with a simulated trace (bottom). We
used the same application to collect both traces.
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6.2 Implementing the classifier and a MAC protocol

PicOS includes a central driver, named the Versatile NETwork Interface
(VNETI), that acts as the mediator between three primary components. Fig-
ures 3.1 (p. 27) and 3.2 (p. 29) show its location within PicOS and VUE2, respec-
tively, and Figure 6.2 shows additional VNETI components. The three primary
components are

1. the application programming interface (API),
2. network protocol plug-ins, and
3. hardware drivers.

VNETI’s primary responsibility in this framework is buffer and queue man-
agement. The following subsections describe it (and its three components) in
greater detail so that readers can better understand our placement of the clas-
sifier and MAC within this framework.

6.2.1 VNETI

Networks are traditionally built around a stack of layers, where each layer
provides a set of services via a clearly defined interface [86]. By isolating each
layer and assigning it clear responsibilities, this approach allows for an overall
reduction in design complexity at the cost of

• increased non-volatile memory usage for storing the additional function
implementations,

• increased random access memory (RAM) usage for making function calls
between layers and storing local variables at individual layers,

• increased processor usage for traversing the levels of abstraction inter-
vening on the way from general-purpose high-level interfaces down to
heterogeneous protocols and devices, and

• increased communication for transmitting data that is functionally dupli-
cated in multiple layers, e.g., checksums.

In general-purpose computing environments, where the machines and operat-
ing systems are rather diverse and powerful, the costs are negligible and such
layering has proven quite effective. On the other hand, these costs tend to
outweigh the benefits in networks consisting of generally homogeneous (net-
working) hardware with scarce memory and limited processing capabilities.

The purpose of the Versatile NETwork Interface (VNETI) is to provide a
simple collection of APIs, independent of the underlying I/O driver implemen-
tation, which, in addition to enabling a rapid deployment of networked appli-
cation for microcontrollers, would make it easy to develop test beds using emu-
lated I/O interfaces. To avoid protocol layering problems on small footprint so-
lutions, the presented interface is essentially layer-less and its semi-complete
generic functionality can be redefined by plug-ins. Also, the actual implemen-
tation of the physical interface can be encapsulated as a relatively simple and
easily exchangeable module. This modularization allows us to easily compile
a single PicOS application for a number of different hardware platforms. In a
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Figure 6.2: The Versatile NETwork Interface component in PicOS. This com-
ponent serves as a mediator between the application programming interface
(API), protocol plug-ins, and physical device drivers.

drastic departure from the layered approach, the plug-ins facilitate modular-
ity and incorporate functionality that would, conceptually, span across many
layers in a traditional layered design. For example, there is no restriction pre-
venting plug-ins from consulting the packet’s payload as well as its headers.
Multiple plug-ins and physical interfaces can coexist within the same system
configuration.

Figure 6.2 shows the internal structure of VNETI. In essence, VNETI im-
plements (a) transparent management of buffer (packet) storage organized into
a dynamic number of queues with timeouts definable on a per-packet basis,
(b) multiple application access points (roughly equivalent to connections or ses-
sions), and (c) a unified set of functions for interfacing plug-ins and physical
modules. It acts as a mediator between the physical I/O modules, protocol plug-
ins, and the application.

Physical network interface (phy)

The phy (physical) interface provides a standard set of APIs for attaching de-
vice drivers to VNETI. These drivers typically add support for RF networking
devices; however, other I/O devices, e.g., the UART, can also be accessed via
VNETI as honorary networking devices. The interface assumes that informa-
tion written to/received from the device is packetized, in the sense that it is
extracted and written in chunks obeying some specific requirements regarding
their minimum/maximum size.

A phy module (device driver) registers itself with VNETI by calling the func-
tion

int tcvphy_reg (int phy, ofun_t ps, int info);

where phy is a logical (unique within the application) numerical identifier of
the module, ps is a function that provides hooks for setting and querying some
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standard options that all drivers must provide, and info is a globally unique
information attribute used to identify the device handled by the driver. The
function returns an event identifier corresponding to the event that will be
triggered whenever the outgoing queue of packets associated with the driver
becomes non-empty.

VNETI assigns a queue of outgoing packets to each registered phy module,
and three functions allow the module to access this queue:

address tcvphy_top (int phy);

address tcvphy_get (int phy, int *len);

void tcvphy_end (address pkt);

The first function returns a pointer to the first (topmost) packet in the queue (or
NULL if the queue is empty), while the second extracts the first packet from the
queue. In both cases, the phy argument identifies the phy module, which should
match the identifier assigned during the earlier registration phase. The phy
module calls the third function when the packet, pointed to by the argument,
has been transmitted, i.e., it is no longer needed by the driver.

The organization of a typical driver’s transmission thread (FSM) is an event
loop in which it examines the outgoing queue. If the queue is non-empty, the
thread extracts and transmits the first packet; otherwise, it waits for the event
whose identifier was returned by tcvphy reg. Figure 6.3 shows a skeletal ver-
sion of such an FSM, and we will reference this figure later when we discuss our
implementation. The function call start transmission represents the phys-
ical action of submitting the packet to the RF device for transmission, and
xmit done stands for the event triggered by the device when the transmission
has been completed; it is typically signalled by an interrupt.

When sent over an RF channel, a packet is never physically addressed or
encapsulated in any particular way, even if the device implements support for
point-to-point transmission. At the phy level, packets are always broadcast and
their contents are considered raw, i.e., the entire packet is treated as a sequence
of bytes to be made available to the application or, more specifically, to VNETI
plug-ins.

A driver also has a reception thread that typically waits for a hardware
interrupt indicating a reception, reads received packets from the device, and
provides those packets to VNETI. Alternatively, a single driver may combine
both of these threads into a single thread. In either case, upon receiving a
packet, the driver calls the function

int tcvphy_rcv (int phy, address p, int len);

which accepts the phy number, a buffer with the just-received packet, and
its length in bytes. In contrast to the packet pointers commonly handled by
VNETI, which typically point to packet buffers that can be put in queues, the
second argument of tcvphy rcv points to the raw sequence of bytes that have
arrived from the device. After the driver calls this function, VNETI presents
the newly received packet to the chain of plug-ins for the first step of its formal
processing.
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...

int event_id;

...

fsm driver {

int len;

address pkt;

state LOOP:

if ((pkt = tcvphy_get (0, &len)) == NULL) {

when (event_id, LOOP);

} else {

start_transmission (pkt, len);

when (xmit_done, DONE);

}

release;

state DONE:

tcvphy_end (pkt);

proceed LOOP;

}

...

event_id = tcvphy_reg (0, my_opts, 0xFECA);

...

Figure 6.3: The skeletal version of a physical I/O driver.

Application programming interface (API)

A workable VNETI setup involves at least one physical I/O module (phy) and
at least one plug-in. Application interactions through VNETI deal with ses-
sions which are logical entities with the flavor of socket file descriptors from
UNIX. In contrast to such a UNIX file descriptor, however, a VNETI session
need not (and usually does not) represent a communication peer. Instead, at
the highest level, a session is an identifier that refers to some specific way of
handling packets sent out or received by the application. The need for multiple
sessions stems from the fact that the application may require diverse ways of
handling different kinds of packets, in which case, it can have different sessions
associated with a single networking interface.

An application establishes a session by performing three steps in sequence:

1. Initializing the phy. This is usually accomplished by invoking a function
associated with the specific device driver, e.g.,

phys_cc1100 (0, 62);

which initializes the CC1100 transceiver driver as phy number 0 with a
maximum packet length of 62 bytes. The function carries out the driver-
specific initialization and invokes tcvphy reg, where it registers itself
with VNETI.

2. Configuring one or more plug-ins. This is accomplished by invoking

int tcv_plug (int pl, const tcvplug_t *pl);

which takes a logical plug-in ID as its first argument and a structure of
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plug-in functions (described later) as its second. The plug-in ID fulfils a
role similar to the phy ID for tcvphy reg.

3. Opening a session by executing

int tcv_open (word st, int phy, int pl);

The function takes a state number, phy ID, and plug-in ID, and returns a
new session ID. The state number is needed in those situations when the
function may block, which depends on the plug-in. For example, setting
up an elaborate session may involve exchanging packets with other nodes.

Once a session has been created, the application can acquire packets from it
and/or write packets to it using the functions

address tcv_rnp (word st, int ses);

address tcv_wnp (word st, int ses, int len);

The second argument of both functions is the session ID.
For each session, VNETI assigns an incoming queue where it stores packets

that are ready to be retrieved by the application. The application can acquire
them with the first function, tcv rnp, which will block when the queue is empty.
Given its initial state argument, the scheduler will resume the invoking FSM
in the indicated state when a packet arrives in the queue.

An application can use the second function to write a packet to the ses-
sion, i.e., send it out, which happens in two stages. First, the application calls
tcv wnp to acquire a packet buffer of the specified length and associated with
the indicated session. The function will block if no memory is available, and
the scheduler will restart the FSM at the specified state when enough memory
is freed elsewhere. Once the application obtains a buffer, it can fill the buffer
with the required content. When done, the application calls

void tcv_endp (address packet);

to terminate the packet which, in this case, means that the packet is ready for
transmission. The same function (tcv endp) called for a packet retrieved with
tcv rnp deallocates the packet buffer, which an application will do when it has
no further use for its contents.

An opened session can be closed by executing tcv close(s), where s is the
session ID. Closing a session deallocates all packets and queues related to it.

Plug-in interface (plugs)

A data structure containing six function pointers describes a plug-in; its defini-
tion is

typedef struct {

int (*tcv_ope) (int phy, int ses);

int (*tcv_clo) (int phy, int ses);

int (*tcv_rcv) (int phy, address buf, int len, int *ses);

int (*tcv_out) (address pkt);

int (*tcv_xmt) (address pkt);

int (*tcv_tmt) (address pkt);

} tcvplug_t;
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The first two plug-in functions, tcv ope and tcv clo, handle the plug-in-
specific actions related to the session open and close operations (tcv open and
tcv close). Their first argument is the phy ID (provided to tcv open), and the
second is the session ID (allocated by tcv open).

The remaining four functions allow packets to interact with the plug-in,
i.e., they are invoked when VNETI needs a plug-in-specific action (or merely
a decision) regarding a packet reaching some meaningful stage of processing.
Each of these functions returns a so-called disposition code representing an
action or decision, and possible values for the code include

TCV DSP PASS meaning skip or do nothing, depending on the context.

TCV DSP DROP meaning that the packet should be dropped and its
buffer deallocated and returned to the free memory pool.

TCV DSP RCV meaning that the packet should be queued for reception
at the session with which it is associated. A packet may be classi-
fied as urgent,1 in which case it will be queued at the front of the
session’s queue; otherwise, it will be queued at the end.

TCV DSP RCVU meaning that the packet should be marked as urgent
and queued for reception at the session (necessarily at the front of
the queue).

TCV DSP XMT meaning that the packet should be queued for transmis-
sion by the physical module with which it happens to be associated.
If the packet is urgent, it will be queued at the front of the module’s
outgoing queue; otherwise, it will be queued at the end.

TCV DSP XMTU meaning that the packet should be marked as urgent
and then queued for transmission by the respective physical module.

Function tcv rcv is an exception among the four packet-related plug-in func-
tions; it operates on raw packet contents (buf) rather than a packet buffer (as
the remaining three functions). The function is invoked by tcvphy rcv to (a) de-
termine whether the plug-in should claim the newly received packet and (b) as-
sign the packet to a session (the session ID is returned via the fourth argu-
ment). Value TCV DSP PASS returned by tcv rcv is interpreted as an indication
that the present plug-in does not want to claim the packet, i.e., the packet does
not fall under its jurisdiction. Another way to express that would be to say
the packet does not belong to the protocol handled by the plug-in, except that
we prefer to avoid drawing unnecessary boundaries or assigning things rigidly
to non-existent drawers. Note that the function makes this decision based on
the packet’s entire content (there are no predefined fields in the packet whose
meaning would be universal). Consequently, the interpretation of such a de-
cision may be more general. For example, multiple plug-ins may implement
the same protocol (whatever that means) and operate as a chain of rules whose
purpose is to diversify the processing of packets depending on some differences
in their contents.

1This is a buffer attribute used internally by VNETI. Packets as such have no explicit prede-
fined attributes stored in their contents. Thus, the (internal) urgent attribute is never transmit-
ted along with the packet, but is assumed to be derivable from its contents by the plug-in.
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If the application defines multiple plug-ins associated with the same phy
(see function tcv plug), all of them are scanned upon the reception of every
packet via the phy, and the first plug-in whose tcv rcv returns something dif-
ferent from TCV DSP PASS claims the packet, i.e., the scanning stops there. For
the purpose of this scanning (which is the only situation when that matters),
the plug-ins are assumed to be arranged in the reverse order of their associa-
tion by tcv plug, i.e., the last-associated plug-in is scanned first. Thus, the first
plug-in can be viewed as a fall-back (or default) plug-in. If no plug-in claims the
packet (all instances of tcv rcv return TCV DSP PASS), the packet is dropped.
The effect is the same as if one of those functions returned TCV DSP DROP.

Any buffered packet, i.e., any packet handled by VNETI following the recep-
tion/acceptance stage represented by tcv rcv, is always assigned to a specific
session. For a packet received from the network, this assignment is done by
tcv rcv. For a packet created by the application (e.g., with tcv wnp), the as-
signment is clear from the very beginning.

Note that tcv rcv has no obligation to assign the packet to the reception
queue of the session (which would happen if the function returned TCV DSP RCV

or TCV DSP RCVU). In particular, it may decide to drop the packet altogether
or even direct it to the transmission queue (by returning TCV DSP XMT or
TCV DSP XMTU), in which case the received packet will be immediately queued
for retransmission by the node without ever arriving at the application. The
plug-in functions have access to several operations of VNETI, which allow them
to create new packets, assign them to sessions, clone packets, and so on. Thus,
it is easy, for example, to pass a received packet to the application and simulta-
neously queue a (possibly modified) copy for retransmission.

Regarding the remaining plug-in functions, tcv out is called for a packet
that has just been submitted by the application, typically by tcv wnp2 (or rather
by tcv endp following tcv wnp). Function tcv xmt is invoked for a packet that
has just been transmitted by the phy, an event that occurs when the phy driver
calls tcvphy end.

A plug-in function may set up a timer for any packet that has been stored
in one of VNETI’s buffers. This timer is in addition to the packet’s normal path
through the system, which means that a packet may be present in one of the
standard queues (e.g., in the phy transmission queue waiting for transmission)
while also waiting for its timer to go off. When the timer goes off, tcv tmt will
be called for the packet. As with the other packet-related plug-in functions, the
value returned by tcv tmt indicates the packet’s subsequent fate.

6.2.2 Classifier integration

The division of VNETI into three clear interfaces allows us to implement the
classifier (and MAC) transparent to the application. As described in the pre-
ceding section, the plug-in interface provides an abstraction for packets. The
classifier and the MAC, on the other hand, must interact with the hardware
and both have a number of precise timing constraints. Therefore, it is most ap-
propriate to implement our work within an I/O module, as shown in Figure 6.2

2There is an urgent variant of the function called tcv wnpu.
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and exemplified in Figure 6.3. For the results presented for the simulator, we
implemented both components in VUE2’s emulated radio driver, and both com-
ponents make full use of the PicOS finite-state machine paradigm.

To classify channels with periodic short-duration impulsive interference, we
implement the approximated least-squares spectral analysis (LSSA) technique
described in Section 5.1.4. In the transceiver’s transmit FSM, we introduce
three new states to accommodate the classifier

CLS INIT to initialize the variables required for classification. After
initializing them, this state immediately advances to CLS MEANEST.

CLS MEANEST to obtain a single RSSI sample for inclusion in the
mean estimate. It remains in this state for 200 iterations prior to
transitioning to CLS SAMPLE. This number of iterations proved rea-
sonable in our early tests. The delay between each iteration is uni-
formly randomly distributed between 0 and 7 ms.

CLS SAMPLE to obtain a single RSSI sample for calculating the LSSA.
It remains in this state for 5000 iterations (approximately 17.5 s)
and then transitions to the (regular) MAC state. The delay be-
tween each iteration is uniformly randomly distributed between 0
and 7 ms. We used more iterations than the 2000-4000 identified in
Chapter 5 simply as a precaution.

The complete classification process lasts just over 18 s during which we prevent
nodes from communicating. If the application wishes to transmit packets dur-
ing the process, they are simply queued within VNETI until the nodes complete
the classification process. It is implied that in a real deployment, the classifica-
tion task is to be executed occasionally to assess the new levels and periods of
any periodic impulse interference.

We produce a rough estimate of the classification cost considering (a) the
energy consumption of the microcontroller and transceiver in various states
and (b) the time spent in each state during classification (from measurements).
According their respective data sheets,

• an active MSP430F1611 (4.5 MHz) consumes 2.25 mA,
• an idle CC1100 consumes 1.6 mA,
• a CC1100 in receive mode (915 MHz, 38.4 kbaud) consumes 15.2 mA, and
• a CC1100 in transmit mode (10 dBm) consumes 28.9 mA.

Assuming three volts, a node collects 200 samples at 319 µs per sample and
consumes 3.3 mJ for the initial mean estimation. The classifier should achieve
reasonable performance with 1800 samples at 583 µs per sample, with the node
consuming 54.9 mJ.3 Finally, a node must make some final calculations for the
periodogram: in our case, nodes tested for 21 frequencies, took 23 ms, and
consumed 0.2 mJ. For the remaining 17 s elapsed between samples, the micro-
controller can sleep (with negligible energy consumption) and the transceiver
can remain idle, consuming 81.6 mJ. This total cost of 140.1 mJ is comparable
to transmitting 52 average-sized Smart Condo packets at 10 kbps.

3Although our actual implementation used 5000 samples, our earlier work suggested that
2000 samples (200 for the mean estimation and 1800 for the periodogram) should suffice.
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6.2.3 Pattern-aware medium access control (PA-MAC)

The output from the classifier indicates the presence of periodic short-duration
impulsive interference along with its frequency (from those tested). Our proof-
of-concept pattern-aware MAC (PA-MAC) then uses this output in its attempt
to steer transmissions around the impulses. The periodic interference pro-
vides well-defined timing points around which nodes anchor transmissions,
with some back-off, of course, as we will later describe. Stretching definitions a
bit, the interference becomes a means for implicit synchronization of the MAC
transmissions across nodes.

Although our technique responds to the interference by navigating packets
around impulses, other possible approaches exist. For example, a transceiver
could use a forward error correction technique such as a repetition code, convo-
lutional code, or turbo code [79]. That said, our technique (PA-MAC) does not
consider coding techniques.

In our approach, we make observations about the interference at a transmit-
ting node and assume that they also hold for the receiving node, i.e., we assume
a significant amount of correlation in the interference between nodes. Partic-
ularly in dense deployments, we have found this assumption to hold, e.g., we
observed significant correlation in the traces collected in the Smart Condo (Fig-
ure 6.4). Moreover, other researchers have observed significant correlations
in packet losses [83]. Even in larger environments, this assumption may hold
given either a particularly strong interferer or a collection of correlated inter-
ferers.

To implement PA-MAC, we introduce one further state to the transceiver’s
transmit FSM, MAC SEARCH, and use it to track the impulse instants. Initially
after the classification, and then again regularly after each transmission win-
dow, the process will enter this state to sample the channel and search for the
next impulse. Successfully finding an impulse causes the thread to (a) set a
timer to mark the end of the next transmission window, i.e., the expected ar-
rival of the next impulse and (b) delay for the expected duration of the currently
identified impulse and then transition to the thread’s preexisting primary state
(XM LOOP). Once in the main loop, the driver will retrieve outgoing packets from
VNETI as they become available and transmit them until the expiration of the
first timer. At that point, the process reenters MAC SEARCH where it attempts to
track the next impulse.

Without PA-MAC, multiple independent transmitting nodes have little op-
portunity to synchronize: the random back-offs effectively resolve contention.
With PA-MAC, however, our regular tracking of the interference introduces a
new opportunity for nodes to synchronize, which could ultimately cause a num-
ber of nodes to transmit at the same time. In our initial experiments with PA-
MAC, we overlooked this possibility and experienced a high number of packet
losses. Upon investigating those losses, the reason became blatantly obvious:
a number of nodes would transmit immediately after an impulse, all at the
same time. We eliminated this point of contention by introducing an additional
random back-off, and we immediately saw the benefits in our results.
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Figure 6.4: Traces collected on channel 61 (916.197 MHz) from 16 different
locations simultaneously. Note that the impulses occur at all of the receivers.
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6.3 Simulation results

We evaluated the pattern-aware MAC within the interference-generating SIDE
simulator. We used its built-in shadowing channel model, and we tweaked its
parameters to represent our hardware.

We compare PA-MAC against the existing PicOS non-persistent carrier
sense multiple access (CSMA) MAC that listens before talking (LBT) and re-
solves contention using a random back-off. Such CSMA-family protocols are
quite common for WSNs; e.g., TinyOS, a particularly popular WSN operating
system, now uses a CSMA protocol named B-MAC [67]. We decided not to com-
pare against a MAC that incorporates collision avoidance, i.e., CSMA/CA, given
the additional overhead of its request-to-send and clear-to-send packets.

We include results for both single- and multi-hop random topologies. For
each tested configuration, we average the measurements from 100 different
topologies, each with its own traffic pattern, and plot the results with 95% con-
fidence intervals.

6.3.1 Single-hop

The single-hop configurations consist of 19 source nodes, one destination node,
and two interferers, and the simulator places them all randomly within an
18 m × 18 m field. Since the model neither includes obstructions nor consid-
ers radio irregularity [102], these dimensions guarantee that the destination
is within the transmission range of every source node. Each node transmits
at a rate of 10 kbps and a power of -20 dBm. The interferers introduce 5 ms
pulses of impulsive interference at 4 Hz and -30 dBm, and both interferers are
synchronized.

We first evaluated the effect of varying the packet length on the latency and
packet reception rates (PRRs) (Figure 6.5). Note that the destination node does
not acknowledge received packets, and nodes make no attempt to retransmit
lost packets. We measure latency from the application perspective: the time
that elapses between VNETI receiving the packet from the application (at the
transmitter) and the application receiving the packet from VNETI (at the re-
ceiver). Note that the effect of varying the packet length is similar to the effect
of varying the impulse frequency. In these tests, nodes generate new packets
according to an exponential distribution with a mean of 20 s to reduce (if not
practically eliminate) the effect of congestion. For each run of the simulation,
we generate 469 s of transmissions and allow the simulator to run for 600 s to
ensure that all source nodes empty their transmission queues.

When increasing the length, the PRR decreases for all configurations and
the latency increases (as expected). In terms of PRRs, PA-MAC performs simi-
larly to the quiet configuration because it successfully steers the transmissions
around the interference. To obtain these PRRs, it delays transmissions that
may collide with interference, and the latency graph reflects this behaviour.
The traditional LBT MAC’s PRRs suffer at a greater rate than the other two
configurations as more packets are lost to collisions than simply the link’s non-
zero bit error rate. The traditional LBT MAC shows higher latency than what
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Figure 6.5: In a dense single-hop network, the effect of varying the packet
length on the latency (top) and packet reception rate (bottom).

we observe with the quiet channel, demonstrating that it also yields occasion-
ally to interference because it senses the medium as being busy.

We also evaluated the effect of varying the per-node packet inter-arrival rate
on the latency and PRRs (Figure 6.6). In these experiments, we set the packet
length to its maximum (60 bytes) in order to accentuate the effect of varying
the inter-arrival rate.

Under high congestion, where the mean per-node packet inter-arrival rate
µ is less than 1.3 s, the packet reception rates drop significantly for all methods
in this dense network, and the LBT MAC and PA-MAC perform very similarly
in terms of their PRRs. Under particularly high levels of congestion (µ < 1.1 s),
nodes must drop packets as their transmission queues fill; these full queues
cause the substantial increase in the latency and the sudden drop in the re-
ception rates for all techniques at 1.1 s. To ensure that nodes can empty their
queues before the simulator terminates, we increase the duration of each sim-
ulation to 700 s from the previous 600 s, while still generating 469 s of trans-
missions. At lower levels of congestion, the PA-MAC tends towards the perfor-
mance of the interference-free configuration.

6.3.2 Multi-hop

The multi-hop configurations consist of 39 source nodes, one destination node,
and three interferers, and the simulator places them all randomly within a
170 m × 170 m field. As with the single-hop scenario, each node transmits at
a rate of 10 kbps and a power of -20 dBm. In this case, the three interferers
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Figure 6.6: In a dense single-hop network, the effect of varying the per-node
packet inter-arrival rate on the latency (top) and packet reception rate (bottom).

produce the same synchronized interference pattern as in the single-hop case,
but transmit at 0 dBm rather than -30 dBm to better ensure that interference
reaches the extents of the environment.

The nodes all use the tiny ad hoc routing protocol, TARP [61], to deliver
packets to the destination. TARP is a light-weight on-demand routing pro-
tocol that quickly converges to the shortest path in static networks. It does
not inflate the overall traffic needed to support it because it lacks explicit con-
trol packets and requires minimal control information in the packet header.
Although our test application only demands one-way communication, the des-
tination sends short 14-byte replies to each source node for the benefit of the
routing protocol. These acknowledgements allow the routing protocol to limit
the extent of its flooding, which should, in turn, reduce the congestion in the
network. Note that communication continues to be unreliable, and nodes make
no attempt to retransmit lost packets in the absence of an acknowledgement.

In order to use TARP within a dense network of this size, we tweaked a
number of its parameters. We increased the size of its duplicate discard cache
from 10 to 100 and its shortest path discard cache from 20 to 200. We also
enabled its broader definition of a duplicate packet where those sequence num-
bers “in the shadow of” (a few behind) a cached number are considered to be
duplicates.

Given random node locations, we need to take precautions to ensure that
each source node has a path to the destination node. Immediately after gen-
erating a random layout, we extended the simulator to search for a path from
every source to the single destination while ensuring that each hop is less than
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Figure 6.7: In a connected multi-hop network, the effect of varying the packet
length on the latency (top) and packet reception rate (bottom).
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Figure 6.8: In a connected multi-hop network, the effect of the packet length on
the mean number of hops.

the maximum transmission range. If the procedure finds a disconnected node,
the simulator regenerates the placement of all nodes until every node is con-
nected.

As in the single-hop case, we first evaluate the effect on varying the packet
length on the latency and PRRs (Figure 6.7). To reduce congestion in the multi-
hop environment given the high initial number of retransmissions, we lower
the packet generation rate to follow an exponential distribution with a per-node
packet inter-arrival rate of 200 s. Given the lower generation rate, we generate
1969 s of input and allow the simulator to run for 2100 s before terminating.
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Figure 6.9: In a connected multi-hop network, the effect of varying the per-node
packet inter-arrival rate on the latency (top) and packet reception rate (bottom).

As with the single-hop case, we notice decreasing PRRs and increasing la-
tencies as the packet length increases, and PA-MAC again follows the PRR of
the quiet configuration. However, unlike in the single-hop case, we notice that
the quiet configuration no longer provides the baseline for delay. To explore this
phenomenon, we investigate the path lengths compared to the packet lengths
(Figure 6.8).

Since the network is static, we expected the path lengths to remain constant
regardless of the packet lengths. However, we notice that as the packet length
increases, the average number of hops decreases for the LBT MAC. The signif-
icant number of packet losses cause this behaviour: packets are more likely to
be lost on the long paths, and these lost packets will not factor into the latency
calculations.

The final graph for our simulation results shows the effect of varying the
per-node packet inter-arrival rate on the latency and PRRs (Figure 6.9). In
these experiments, we set the packet length to its maximum (60 bytes) in order
to accentuate the effect of varying the inter-arrival rate.

Here, the PRR follows a similar trend to the single-hop case just at signifi-
cantly lower levels. Unlike with the single-hop case, the latency curve increases
(rather than decreases) as we slow the rate of packet introductions. Previously
in the single-hop case, the transmit queues filled with packets, which led to
greater latency. In this case, however, less congestion results in an increased
number of successful transmissions along the long paths, which subsequently
increases the latency.

In summary, these simulation results demonstrate the possible benefits of
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Table 6.2: The CC1100 configuration for PA-MAC experiments.

Setting Value

base frequency 904.000 MHz
channel spacing 199.951 kHz
receive filter bandwidth 270.833 kHz
modulation 2-FSK
data rate 9.993 kbps
transmission power -30 dBm
channel 63
carrier frequency 916.597 MHz

using interference in a constructive manner rather than simply ignoring its
existence. After adding our impulsive-interference classifier and pattern-aware
MAC protocol to nodes, we saw immediate benefits. Naturally, more elaborate
schemes could be devised. For example, it could be possible to construct a self-
organizing TDMA-like MAC protocol around the impulsive interference and use
the interference as the basis for its synchronization.

6.4 Hardware results

Although our wireless simulator has historically shown itself to be reason-
ably accurate, nothing inspires confidence quite like an implementation on
real hardware. We had previously claimed that both the simplified impulsive-
interference classifier and PA-MAC were suitable for wireless nodes, but we did
not substantiate those claims. In this section, we describe experiments that we
performed after testing both the classifier and PA-MAC on EMSPCC11 wireless
sensor nodes. Given that PA-MAC depends on the classifier, our experiments
consider their combined performance.

The EMSPCC11 devices from Olsonet Communications use a TI
MSP430F1611 microcontroller (4.5 MHz, 10 KB of RAM, and 48 KB of flash
memory) and flexible TI CC1100 transceiver. We set the transceiver’s data rate
to 10 kbps to match our simulations and resemble the 9.6 kbps rate that we
used in our DM2200-based Smart Condo network. Table 6.2 summarizes the
CC1100 configuration used in these experiments.

PA-MAC with an impulsive classifier requires the presence of periodic im-
pulsive interference; to run our experiments, we needed a predictable and long-
term source of such interference. Unfortunately, the unknown source of the
Smart Condo’s impulsive interference makes its long-term behaviour unpre-
dictable. Therefore, we used extra hardware to generate interference with sim-
ilar characteristics to our earlier observed pattern, and we then conducted ex-
periments in an environment with this interferer.

Using a DM2200 – the same type of node used in our earlier Smart Condo
work – we generated interference at 916.5 MHz. Although the hardware and
operating system impose a number of restrictions on transmission parameters,
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Figure 6.10: A trace of the received signal strength indicator showing the im-
pulsive interference generated by a DM2200.

e.g., the frequency, power level, and minimum/maximum packet duration, the
device is still flexible enough for our purposes. We created a simple application
for the node to periodically transmit 8-byte packets at 9.6 kbps. Note that this
size is the smallest possible while still using an official version of PicOS, and
due to the DC-balanced encoding used by PicOS, each byte actually becomes 12
bits just prior to transmission. Each transmission includes preamble (28 bits)
and a start symbol (16 bits), and considering these overheads in addition to the
DC-balanced 8-byte payload, creates a transmission with a duration of around
15 ms. The node makes this transmission with an output power of 10 dBm,
which creates significant interference at short distances.

To reproduce impulsive interference at 4 Hz, we separate each such trans-
mission by 244 ms using a PicOS delay request.4 When we first used our inter-
ferer, we noticed that the transmissions would sometimes be spaced irregularly.
We discovered that transmissions, from an unknown source or even our own
nodes, would cause an interferer’s listen-before-talk (LBT) MAC to sometimes
delay transmitting.

After disabling the LBT MAC functionality, we separated an interferer and
EMSPCC11 by

√
0.752 + 0.752 = 1.06 m to collect a trace to check the received

power levels and verify its behaviour (Figure 6.10).5 In this trace, the strong
spikes around 25 dB above the noise floor originate from the interferer. At these
distances, the interference transmitted at 10 dBm should easily overpower any
of the transmissions at -30 dBm. Our plot starts at 70 s in order to avoid
showing a coexisting (but weak) shifting-mean pattern that also occurred in
the trace.

In setting up our experiment, we connected each WSN node to a computer
using the same serial interface that we used in Chapter 4. By opting for a
wired connection, we could use a command interface to flexibly guide experi-
ments. Each node accepts commands, which may have one or two arguments,
and issues a positive or negative response (Table 6.3).

With PA-MAC and the command interface programmed into the wireless
sensor nodes, we then developed some back-end support to script our exper-

4The PicOS application issues a delay request for 250/1024 s.
5In the experiments that we describe later (Figure 6.11), we placed the receiving node 1.06 m

from the interferer and each transmitting node.
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iments. One such program, genActual.pl, generates one input file (node

script) per node. For both the receiver and transmitters, the script issues
commands from Table 6.3 to configure the (a) packet size (bytes), (b) channel
number, (c) status of PA-MAC (enabled or disabled), and (d) status of TARP
forwarding (enabled or disabled). For a receiver, the script then instructs the
node to enter the receive state. For a transmitter, it generates packet trans-
mission commands for a predetermined duration (seconds) and separates each
command by a random exponential delay. The application also accepts a seed
value to initialize the random number generator.

A shell script ultimately controls an experiment, where an experiment con-
sists of transmitting packets under different node configurations for a num-
ber of repetitions. A short Perl script, genActualSet.pl, generates this shell

script which, for each configuration, (a) calls genActual.pl to produce a node

script for each involved node, (b) time-stamps the log file, (c) sends each gen-
erated node script to the appropriate node, (d) waits for the nodes to finish
executing the supplied script, and (e) appends the resulting individual log files
to a single large log file. When running our tests, the highest-level program
(genActualSet.pl) always generates one configuration (e.g., a single size, ar-
rival rate, or some other variable) first without and then with PA-MAC enabled.

Figure 6.11 shows the topology that we used for these experiments. During
the experiments, we did not control the environment, so interference could have
appeared and disappeared from external sources without our knowledge. In all
cases, we placed the nodes directly on the floor, and no obstructions were within
the square.

In order to investigate the protocol with different levels on congestion, we

Table 6.3: The commands implemented in the PicOS application for running
PA-MAC experiments.

Cmd Args Description

l x set the packet length to x, but restrictions on the
packet length will possibly increase this value

c 0 ≤ x ≤ 255 set the channel to x
x 0 ≤ x ≤ 7 set the power level to x, which ranges from 0

(−35 dBm) to 7 (about 10 dBm)
m 0/1 enable (1) or disable (0) PA-MAC
T 0/1 enable (1) or disable (0) forwarding using the Tiny

Ad hoc Routing Protocol (TARP)
n x y collect x × y received signal strength indicator

(RSSI) samples
r N/A start receiving packets (continues until the

(a) transmit or (b) reset command)
q N/A stop all processes, disable the radio, erase any

queued packets, re-enable the radio
t x transmit a packet to node ID x
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Figure 6.11: The low-density single-hop network that we used when determin-
ing the effect of PA-MAC on packet reception rate and latency. The error bars
indicate the 95% confidence interval.

ran a series of experiments where we varied the per-node inter-arrival time µ

while holding the packet length constant at 60 bytes (Figure 6.12). Under high
congestion (smaller values of µ), we observed much higher latencies because
nodes would locally queue packets if they were unable to transmit them fast
enough. At the fastest arrival rates, nodes would receive more packets than
they could queue and would drop some of the packets. In configurations with
and without PA-MAC, the packet reception rates (PRR) show significant de-
creases under highly congested conditions (smaller µ) because of this dropping
behaviour. In all cases, the performance of PA-MAC exceeded LBT MAC. If we
disregard the dropped packets, the average PRR for the LBT MAC was 0.724,
and for PA-MAC, 0.932; on average, PA-MAC improved the PRR by 28.7%.

Now with µ, the per-node inter-arrival rate, fixed at 0.3 s, we ran a series of
experiments where we varied the packet length (bytes) to show the actual effect
on latency and PRRs (Figure 6.13). The packets have payloads that range from
8 to 46 bytes, and we use a minimum length of 8 so that packets can accommo-
date some test-related data. The transceiver actually transmits 14 extra bytes
with each packet: the headers station ID (2 bytes) and TARP (8 bytes) and the
trailers status (2 bytes) and CRC (2 bytes). Therefore, the actually transmitted
packet lengths range from 24 to 60 bytes.

In this experiment, the PRR of LBT MAC and PA-MAC changes at different
rates as the packet length increases, with the PRR of the LBT MAC degrading
faster. At all lengths, PA-MAC’s PRR exceeds that of the LBT MAC: across all
of the tested lengths, the average LBT MAC PRR was 0.791, while the average
PA-MAC PRR was 0.958. On average, PA-MAC improved the PRR by 21.2%.
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Figure 6.12: In a low-density single-hop network, the effect of varying the per-
packet inter-arrival rate on the packet reception rate and the latency.
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Figure 6.13: In a low-density single-hop network, the effect of varying the
packet length on the packet reception rate and the latency.

Note that at all packet sizes, the network remained reasonably congested as
evidenced by the rather high latencies.
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Given all of the LBT MAC versus PA-MAC configurations that we tried, PA-
MAC consistently showed an ability to improve PRRs. In the worst case, we
saw a 12.6% improvement when transmitting our smallest tested packet size
(24 bytes). In the best case, we saw a 31.2% improvement when transmitting
large 60-byte packets at a low inter-arrival rate.

6.5 Summary

In this chapter, we extended the SIDE simulator with a flexible interface for
the production of impulsive interference. By extending its existing configura-
tion files, we outlined new syntax that allows users to describe a wide range of
impulsive interference patterns.

We incorporated the classifier and a proof-of-concept pattern-aware MAC
(PA-MAC) into SIDE’s emulated radio driver. After simulating a variety of dif-
ferent configurations, we found that PA-MAC could improve the packet recep-
tion rates in both single- and multi-hop environments at the cost of increased
latency.

Finally, we tested both the classifier and PA-MAC using actual WSN hard-
ware (EMSPCC11). To perform the experiments, we needed a predictable long-
term source of periodic impulsive interference, so we developed an application
for the DM2200 – a radio incompatible with the EMSPCC11 – to generate it. Af-
ter building a flexible command interface into the EMSPCC11 and some back-
end software necessary for running the experiments, we evaluated the perfor-
mance of PA-MAC under a variety of different conditions. In all cases, PA-MAC
improved the packet reception rates significantly: we saw PRR improvements
ranging from 12.6% to 31.2%.

Although our work here focused on the rapid-spikes pattern, we are op-
timistic that our approach to classify and subsequent avoid interference can
apply to other patterns. The Lomb periodogram proved to be a particularly
effective technique in identifying the rapid-spikes pattern, and given another
pattern, another attribute may similarly capture its essence. If a classifier can
recognize a sufficiently predictable pattern, like our rapid-spikes pattern, then
it follows that a MAC protocol can avoid its interference.
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Chapter 7

Conclusions

In this chapter, we summarize our work and main contributions (Section 7.1),
identify some opportunities for future research (Section 7.2), and finally make
some concluding remarks (Section 7.3).

7.1 Summary

In this thesis, we explored the development of wireless sensor networks for ur-
ban environments. We began our journey by distancing ourselves from many
of the mainstream assumptions for wireless sensor networks, and instead, we
sought those appropriate for this class of environment. Our appropriate as-
sumptions include

• the presence of high levels of dynamic non-Gaussian noise and interfer-
ence,

• the deployment of networks in stages so that they can evolve with user
needs,

• the existence of extrinsic, application-specific constraints on the place-
ment of nodes,

• the presence of abundant power sources that are available to at least a
subset of nodes,

• the use of predominantly single-hop communication between a sensor
node and its associated collection point (sink), and

• the requirements for both robustness and reliability, which stem from po-
tential healthcare applications.

From these assumptions, we identified several relevant research topics: accu-
rate emulation, site surveys, and protocol development.

Urban WSNs and software development

With a strong desire to develop and deploy our own urban wireless sensor net-
work (WSN), we began working on the Smart Condo [11–13, 85], a prototype
independent-living environment. Located within Telus Centre, a building on
the University of Alberta campus that provides both classroom and office space,
we deployed a wireless sensor network within an 80 m2 room. The deployed
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urban wireless sensor network used the RF Monolithics DM2200 wireless mod-
ule [76], which incorporates a Texas Instruments MSP430F148 microcontroller
and RF Monolithics TR8100 transceiver.

Given this hardware, we customized it for the Smart Condo application. We
physically attached a number of peripherals to the wireless modules (nodes):
passive-infrared motion sensors, switches, tactile pressure sensors, and ac-
celerometers. We developed software for the nodes using the PicOS operat-
ing system (OS), a small foot-print OS that supports the organization of an
embedded reactive application’s multiple activities on a microcontroller with
limited resources, and we integrated our reliable (application-layer) communi-
cation protocol. With this hardware and software in place, we deployed our
network.

Although the network met its design goals, we noticed higher end-to-end
latencies that we anticipated. Upon investigation, we discovered high packet
loss rates that were not necessarily correlated with distance – a clear violation
of a particularly common mainstream assumption. In searching for the under-
lying cause of the losses, we encountered high levels of interference in traces
of the received signal strength indicator (RSSI). For comparison purposes, we
explored two other environments: a 321-unit apartment building and the Com-
puting Science Centre at the University of Alberta. In the apartment building,
we also encountered significant interference, and in contrast, the Computing
Science Centre was relatively quiet during our experiments.

Data collection and pattern overview

Given that we observed particularly strong interference within Telus Centre,
we returned to this environment to better explore it. The transceiver used in
the Smart Condo network, the TR8100, is a rather simple device that receives
on only a single channel and produces its RSSI output as an analog signal
that cannot be easily or accurately converted to a standard unit for received
energy (dBm). To better understand the environment, we deployed a more so-
phisticated – but still WSN-class – node, the EMSPCC11, that incorporates the
Texas Instruments CC1100 transceiver. This device provides greater flexibility
for exploring the environment since it

• communicates on a user-selected frequency between 904 and 954 MHz
with a channel spacing of 199.9512 kHz and receive filter bandwidth of
101.5625 kHz (configurable),

• produces a digital RSSI output that is easily converted to dBm with 1/2 dB
resolution, and

• generates that RSSI output rapidly at 12 695.31 Hz.

With this new hardware in place, we developed software and a framework for
high-frequency sampling of the environment.

To accommodate the data collection, we connected the nodes to a single com-
puter using

• USB cables that adapt a node’s TTL-level serial output to USB (FTDI
TTL-232R-3V3),

97



• USB extension cables (Assman Electronics), and
• powered 7-port USB hubs (Digitus DA-70227).

We wrote a PicOS application for the nodes to sample the transceiver’s RSSI
value as quickly as possible. For the single computer, we wrote an application
in C that opens all of the USB ports simultaneously and reads the results as
they are produced by the nodes. Within this program, we took a number of steps
to reduce latencies, since the FTDI adapter provides only a 256-byte buffer –
enough to buffer measurements for approximately 51 ms.

After collecting traces on the CC1100’s 256 channels at roughly 5000 Hz
– a higher rate for WSN-class devices than we have found in the literature –
we plotted these time series data. Within our plots, we observed a number of
reoccurring patterns.

1. The quiet class lacks any indication of interference.
2. The quiet-with-spikes class has infrequent (less than 1 Hz) and apparently

random spiky noise/interference impulses.
3. The quiet-with-rapid-spikes class has frequent and periodic spiky im-

pulses that are likely to impact packet loss rates.
4. The high-and-level class shows constant interference with a very narrow

distribution.1

5. The shifting-mean class has apparently random shifts of the mean that
produce a multi-modal distribution of the samples.

To better understand the distribution of patterns, we manually identified
the predominant pattern in each trace. Those channels falling within the unli-
censed industrial, scientific, and medical (ISM) band commonly exhibited in-
frequent and frequent impulsive interference. Although we also saw some
shifting-mean patterns within the ISM band, they were more frequent on li-
censed channels, where we can attribute the pattern to telecommunications
equipment, i.e., pagers. Within the non-ISM band, we noticed a much higher
occurrence of quiet channels.

Given our preliminary classification of channels, we briefly explored tech-
niques for automatically classifying a channel given a trace. We computed a
variety of summary statistics for each trace, and using Weka 3.6.2, we applied
a Bayesian network classifier to them. This classifier performed best on the
quiet and high-and-level traces (as expected), but we were also satisfied with
its performance for the other classes.

Subsampling and classification

Motivated by these promising results for classifying traces, we then revisited
classification. This time, we abandoned the Bayesian network classifier to fo-
cus on a technique more suitable for the limited resources of a wireless sensor
node: decision trees. We focused on those patterns most detrimental to packet
loss rates: the quiet-with-rapid-spikes and shifting-mean traces. For each of
these patterns, we identified statistics to aid in their classification, the Lomb
periodogram and the dip statistic, respectively.

1We later determined that this interference originates at the node itself.

98



To improve the suitability of the technique for wireless nodes, we inves-
tigated the classifier given smaller sample sizes by subsampling our existing
traces. To this end, we explored two techniques for subsampling: even and un-
even/Poisson subsampling. The former technique is the easiest to implement,
but the latter technique could prevent regularly missing the interference pat-
tern during sampling.

Using the φ coefficient, we evaluated the performance of our classifier using
various sample sizes and selectively restricting the attributes available to it.
Both of the new features, the Lomb periodogram and the dip statistic, signif-
icantly improved the performance of their respective classifier for all sample
sizes. We also noticed a significant reduction in the size of the generated deci-
sion trees when using these statistics. These smaller trees, which make fewer
comparisons, would consume less space when stored within a node.

These reductions in the decision tree sizes motivated us to explore a classi-
fier based on the new statistics alone – essentially a decision tree with a single
decision node. In the shifting-mean case, with a decision node based on the
dip statistic alone, the classification performance deteriorated significantly. We
tried adding some further easily-computed statistics to the classifier, but again,
the performance was inadequate without a large enough sample size. In the
rapid-spikes case, with a decision tree based on the Lomb periodogram alone,
the classifier performed extremely well given a sample size of at least 2000.

The promising results for the Lomb periodogram motivated us to simplify
the algorithm for wireless sensor nodes. To this end, we

1. calculated and evolved an integer estimate of the mean,
2. disregarded its τ parameter, and
3. quantized the sine and cosine waves with discontinuities selected to allow

for bit-shifting.

We tried both a 3- and 4-level approximation of the trigonometric functions,
and in both cases, our simplification performed well. Given the lower memory
and computation requirements of the 3-level case, we adopted that version for
our subsequent experiments.

Evaluation using the simulator and hardware

Having developed a technique for identifying frequent short-duration impulsive
interference, we then focused on putting such characterizations to constructive
use to improve packet loss performance. To this end, we devised a proof-of-
concept pattern-aware medium access control (PA-MAC) protocol to schedule
transmissions between impulses. To evaluate this technique, we set out to test
the MAC while varying certain variables and holding all other variables con-
stant. Recall that we discovered early in our research that urban environments
are highly complex and interference is dynamic: this realization led us to sim-
ulation.

To evaluate our MAC within a simulator, we had to first extend the simu-
lator to generate impulsive interference. Given the close relationship between
PicOS (our OS of choice) and the SIDE simulator, we quickly adopted SIDE as
our simulator and began extending it to produce impulsive interference.
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When simulating a network using SIDE, an XML file describes the nodes
within the network. When the simulator starts, it parses this file and creates
an object for each node; this object descends from the Station class. For our ex-
tension, it was natural to follow the existing semantics: we added new tags and
attributes to the XML file, and the parsing of these attributes creates objects
that also descend from the Station class. Within the XML file, we define clear
and flexible syntax for describing the interference generated at an impulsive
interferer.

With the simulator now generating interference, we integrated the classifier
and PA-MAC protocol into the virtual radio driver. We explored packet recep-
tion rates and latency in both single- and multi-hop networks under varying
loads (packet arrival rates) and varying packet lengths. After running these
simulations, we confirmed that PA-MAC could improve the packet reception
rates in both single- and multi-hop environments at the cost of increased la-
tency.

Since nothing inspires confidence quite like a hardware implementation,
we then tested both the classifier and PA-MAC within the EMSPCC11 wireless
sensor node. In order to run our experiments, we needed a predictable source
of impulsive inference, so we created one using a DM2200 node. We then set
up a small single-hop network and confirmed that the classifier could recognize
impulsive interference and PA-MAC could improve packet reception rates even
when deployed on real hardware.

7.2 Future work

Our research has exposed some important and previously overlooked topics for
future work with wireless sensor networks. Here we briefly describe the most
promising directions.

1. Multi-hop deployments: When we evaluated both the classifier and PA-
MAC using the EMSPCC11, we only deployed a single-hop network. In
future work, we could evaluate the same software/hardware in multi-hop
topologies.

2. Other environments: In this work, we obtained detailed samples from a
single environment: the Smart Condo. From this environment, we iden-
tified a number of reoccurring patterns in our time-series data. It could
be valuable to explore additional urban environments and determine the
prevalence of the patterns that we encountered as well as identify some
as-of-yet unknown patterns.

3. Hardware correlation: Our work did not explore the effect of individual
node characteristics while sampling. The RF tract on a wireless sensor
node is very sensitive, and even small differences such as the amount
of solder applied, can effect its performance. Although we are certain of
the correlation in the interference we observed at our nodes, we have not
considered how the levels may differ between nodes.

4. Extensions to PA-MAC: Our proof-of-concept pattern-aware medium ac-
cess control technique provides a number of directions for further work.
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Although we have shown the benefit of it, a more complete protocol could
overcome a number of its weaknesses:

(a) nodes individually classify a channel when they could consult their
neighbours,

(b) nodes should reevaluate the channel when they observe that the en-
vironment has changed,

(c) when nodes join the WSN, communication must pause so that they
can evaluate the channel, and

(d) the protocol does not leverage the possibility of heterogeneous nodes,
where some nodes could have unlimited power.

Further development of the protocol in these directions could allow us to
relax our correlation assumption and make the technique more useful in
practical deployments.

7.3 Concluding remarks

Our work highlights the importance of considering real-world observations in
research. By actually working with hardware and carefully observing its be-
haviour, we were able to identify a research problem overlooked by many oth-
ers. Our work describes some important considerations for developing wireless
sensor networks for dynamic urban environments.
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Appendix A

Sample VUE2 Configuration

<network nodes="17">

<grid>0.1m</grid>

<tolerance quality="2">1E-4</tolerance>

<channel>

<shadowing bn="-110.0dBm" syncbits="8">

RP(d) = received power at distance d

XP = transmitted power

X = lognormal random Gaussian component

=======================================================

RP(d)/XP [dB] = -10 x 5.1 x log(d/1.0m) + X(1.0) - 33.5

=======================================================

</shadowing>

<cutoff>-115.0dBm</cutoff>

<ber>

Interpolated ber table:

======================

SIR BER

50.0dB 1.0E-6

40.0dB 2.0E-6

30.0dB 5.0E-6

20.0dB 1.0E-5

10.0dB 1.0E-4

5.0dB 1.0E-3

2.0dB 1.0E-1

0.0dB 2.0E-1

-2.0dB 5.0E-1

-5.0dB 9.9E-1

</ber>

<frame>12 16</frame>

<rates>9600</rates>

<rssi>0 -202.0 255 53.0</rssi>

<power>

0 -30.0dBm

1 -15.0dBm
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2 -10.0dBm

3 -5.0dBm

4 0.0dBm

5 5.0dBm

6 7.0dBm

7 10.0dBm

</power>

</channel>

<nodes>

<defaults>

<memory>2048 bytes</memory>

<radio>

<power>7</power>

<preamble>32 bits</preamble>

<lbt>

delay 8msec

threshold -109.0dBm

</lbt>

<backoff>

min 8msec

max 303msec

</backoff>

</radio>

<leds number="3">

<output target="socket"></output>

</leds>

<!-- note that by not specifying the debouncing parameters,

we’ve effectively disabled debouncing -->

<pins total="12" adc="1" counter="3" notifier="4" dac="0">

<input source="socket"></input>

<output target="socket"></output>

<values>000000000000</values>

</pins>

<uart rate="38400" bsize="12">

<input source="socket"></input>

<output target="socket"></output>

</uart>

<preinit tag="DATECODE" type="lword">2008120100</preinit>

<preinit tag="HID" type="lword">3133857453</preinit>

<preinit tag="MHOST" type="word">1</preinit>

<preinit tag="NID" type="word">85</preinit>

<preinit tag="SENS_0" type="lword">0</preinit>

<preinit tag="SENS_1" type="lword">0</preinit>

</defaults>

<node number="0" type="bridge" start="on">
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<location>8.4 6.8</location>

<preinit tag="HID" type="lword">0xBACA0001</preinit>

</node>

<node number="1" type="sensor" start="on">

<location>1.1 3.5</location>

<preinit tag="HID" type="lword">0xBACA0002</preinit>

<preinit tag="SENS_0" type="lword">4</preinit>

</node>

<node number="2" type="sensor" start="off">

<location>10.5 2.7</location>

<preinit tag="HID" type="lword">0xBACA0003</preinit>

<preinit tag="SENS_0" type="lword">4</preinit>

</node>

<node number="3" type="sensor" start="off">

<location>6.3 2.1</location>

<preinit tag="HID" type="lword">0xBACA0004</preinit>

<preinit tag="SENS_0" type="lword">4</preinit>

</node>

<node number="4" type="sensor" start="off">

<location>8.7 2.3</location>

<preinit tag="HID" type="lword">0xBACA0005</preinit>

<preinit tag="SENS_0" type="lword">4</preinit>

</node>

<node number="5" type="sensor" start="off">

<location>10.6 3.0</location>

<preinit tag="HID" type="lword">0xBACA0006</preinit>

<preinit tag="SENS_0" type="lword">4</preinit>

</node>

<node number="6" type="sensor" start="off">

<location>3.4 5.1</location>

<preinit tag="HID" type="lword">0xBACA0007</preinit>

<preinit tag="SENS_0" type="lword">3</preinit>

</node>

<node number="7" type="sensor" start="off">

<location>6.5 1.9</location>

<preinit tag="HID" type="lword">0xBACA0008</preinit>

<preinit tag="SENS_0" type="lword">3</preinit>

</node>

<node number="8" type="sensor" start="off">

<location>8.0 0.1</location>

<preinit tag="HID" type="lword">0xBACA0009</preinit>

<preinit tag="SENS_0" type="lword">5</preinit>

</node>

<node number="9" type="sensor" start="off">

<location>8.5 3.4</location>
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<preinit tag="HID" type="lword">0xBACA000A</preinit>

<preinit tag="SENS_0" type="lword">6</preinit>

</node>

<node number="10" type="sensor" start="off">

<location>6.8 0.3</location>

<preinit tag="HID" type="lword">0xBACA000B</preinit>

<preinit tag="SENS_0" type="lword">3</preinit>

</node>

<node number="11" type="sensor" start="off">

<location>5.9 3.6</location>

<preinit tag="HID" type="lword">0xBACA000C</preinit>

<preinit tag="SENS_0" type="lword">3</preinit>

</node>

<node number="12" type="sensor" start="off">

<location>5.3 4.6</location>

<preinit tag="HID" type="lword">0xBACA000D</preinit>

<preinit tag="SENS_0" type="lword">3</preinit>

</node>

<node number="13" type="sensor" start="off">

<location>6.8 3.4</location>

<preinit tag="HID" type="lword">0xBACA000E</preinit>

<preinit tag="SENS_0" type="lword">3</preinit>

</node>

<node number="14" type="sensor" start="off">

<location>6.6 3.7</location>

<preinit tag="HID" type="lword">0xBACA000F</preinit>

<preinit tag="SENS_0" type="lword">3</preinit>

</node>

<node number="15" type="sensor" start="off">

<location>8.2 6.3</location>

<preinit tag="HID" type="lword">0xBACA0010</preinit>

<preinit tag="SENS_0" type="lword">3</preinit>

</node>

<node number="16" type="sensor" start="off">

<location>6.5 0.5</location>

<preinit tag="HID" type="lword">0xBACA0011</preinit>

<preinit tag="SENS_0" type="lword">3</preinit>

</node>

</nodes>

</network>
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