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Abstract

This thesis focuses on the development of advanced state estimators for contin-

uum and noncontinuum state estimations in a switching dynamic system, and the

demonstration of their applications in addressing some important process monitor-

ing problems of distillation processes.

First, the theoretical and experimental investigations of applying a sequential

continuum and noncontinuum state estimator to composition estimation in a distil-

lation process with switching dynamics are explored. A moving horizon estimator

(MHE), which has the capability to handle process constraints, is developed to es-

timate product composition in a distillation process under known switching mode

criteria using the available temperature measurements. For situations when the sys-

tem operating mode transition is unknown, an approach to state estimation under

unknown switching functions is developed. The proposed method combines a MHE

for composition estimation with a mode change detector to detect a change in the

system operating mode and an operating mode estimator to identify the functioning

mode.

Next, a noncontinuum state estimator, which is based on a moving horizon

method for a class of switching system that follows a hidden Markov model, is

developed. An approach to arrival cost development and constraint handling in

moving horizon estimation of noncontinuum state is discussed. The effectiveness of

the proposed method is illustrated by considering mode estimation problems in a

simulated leakage detection system as well as a continuous stirred tank reactor.

Last, the development and application of a hybrid moving horizon estimator

(HMHE) to achieve simultaneous estimation of both continuum and noncontinuum



states in a constrained dynamic system is explored. One of the major issues in a

moving horizon estimation approach is the development of an arrival cost to sum-

marize the effect of past and a prior information. In this work, we have developed

a generalized arrival cost, which accounts for both continuum and noncontinuum

states. A generalized hybrid state estimator, which can be used as a stand-alone

continuum state estimator, or as a simultaneous continuum and noncontinuum state

estimator, is developed. The effectiveness of the HMHE is demonstrated through

simulation studies, while its practical reliability is tested by conducting experimental

studies on distillation processes.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Chemical process plant safety, environmental regulations, plant economics, decision-

making under uncertainties, and the demand for effective process monitoring and

control are some of the main reasons that are driving an upward research interest

in the development of more advanced methods for state estimation. Most process

monitoring and control schemes rely on the assumption that the states of the system

are explicitly available. But in reality, most process states are either not directly

measurable or can only be measured with a considerable level of noise. State estima-

tor, a tool to infer the process states from the available measurement, is important

and a necessity to achieve effective process monitoring, diagnosis, and control.

State estimation of a continuum dynamic system has been well studied in the lit-

erature. The Kalman filter (KF) [50], extended Kalman filter (EKF) [63], unscented

Kalman filter (UKF) [49], moving horizon estimation (MHE) [72], and particle filter

[18] are among the well established estimation techniques that can be used for a dy-

namic estimation of a continuous-valued or continuum state. In reality, the problems

to address in a chemical system can take a discrete-event or noncontinuum forms.

Typical examples of noncontinuum form representation in process monitoring prob-

lems are stiction versus non-stiction problems of control valves [47], normal versus

abnormal conditions in fault detection and isolation problems [47, 55], and a hybrid

control system design [23]. Even for a continuum dynamic process, the problem of

interest to address may still take a noncontinuum representation such as “desired” or

“undesired” operating regions in process monitoring [43, 44] and “good”, “bad”, or

“optimum” in control performance assessment problems [41]. Noncontinuum states

also play a key role in embedded control systems that interact with the physical

world [8, 23, 58].

Studies in the literature have also shown that dynamic behavior of a nonself-

oscillatory chemical system can switch periodically between two nearby stable sta-
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tionary states [96], while a steady state multiplicity effect [44, 51] and a phase

change behavior in chemical systems [45] are other factors that make it difficult to

describe a system with a single continuum dynamics. However, existing studies on

noncontinuum state estimation have been limited in the literature. For advanced

process monitoring, fault detection and control purposes, it is necessary to interpret

and model chemical processes as hybrid systems (i.e., containing continuum and

noncontinuum states) and seek for a more general, practical and effective hybrid

estimation method, which has the capability to estimate both the continuum and

noncontinuum states.

Distillation is perhaps one of the most important and widely used unit operations

in process industry. Distillation operations consume large amount of energy. Thus,

in the face of rising prices of energy and raw materials, it has become imperative

to operate distillation columns more efficiently through effective process monitoring

and control. With the evidence of the industrially operated distillation columns

having multiple steady state solutions as well as unstable operating points [43, 44, 45,

51], the development of advanced state estimators for distillation processes modeled

as hybrid systems will help address some of the outstanding process monitoring

problems such as simultaneous composition estimation, fault detection, operating

mode determination, as well as unmeasurable disturbance input estimation in a

unified and systematic way.

At present, the most widely used approximate nonlinear state estimator in pro-

cess monitoring and control of distillation columns is the extended Kalman filter

(EKF) [9, 10, 62]. However, it has the disadvantage that the covariance propaga-

tion and update are carried out through linearization around some operating points,

and this suggests that the region of stability may be small since nonlinearities in

the system dynamics are not fully accounted for. Therefore, it is necessary to in-

vestigate new and more advanced nonlinear state estimators and demonstrate their

practical reliability by conducting both theoretical and experimental investigation

on an industrial-type distillation column.

The objective of this thesis is to develop advanced state estimators, which are

based on a moving horizon approach, for the estimation of both continuum and non-

continuum states, and demonstrate their practical applications in addressing some

important process monitoring problems of distillation processes with switching dy-

namics. Our contributions in this work will be on three major areas, which are:

improving the theoretical foundation of dynamic estimation methods and develop-

ing new state estimators for a class of hybrid system, investigating the practical

reliability of a hybrid state estimator through experimental studies on distillation

processes, and developing computational algorithms that can be used for industrial

applications. Investigation of convergence issues of the estimators is not considered
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in this thesis.

1.2 Main Contributions of This Thesis

The specific contributions of this thesis are summarized as follows:

1. Theoretical contributions: A generalized hybrid state estimator, which can

be used as a stand-alone noncontinuum state estimator, or as a stand-alone

continuum estimator, or as a simultaneous continuum and noncontinuum state

estimator, is developed. In this work, we considered the following estimation

problems:

• The development of a noncontinuum state estimation technique, which

is based on a moving horizon method for a class of switching system. An

approach to arrival cost development as well as constraint handling in

noncontinuum state estimation is discussed.

• The development of a sequential continuum and noncontinuum state es-

timator for a class of a switched hybrid system. This approach combines

a moving horizon estimator to estimate the continuum state with a mode

change detector to detect a change in the system operating mode, and

an operating mode estimator to identify the real-time functioning mode.

• The development of a hybrid moving horizon estimator to achieve a si-

multaneous estimation of both continuum and noncontinuum states in a

constrained switching dynamic system. A generalized arrival cost, which

accounts for both continuum and noncontinuum states, is derived.

2. Simulation evaluation: The application of a hybrid state estimator to the

process monitoring of some chemical processes such as a storage water tank

system, continuous stirred tank reactor (CSTR), and distillation processes is

explored.

3. Experimental investigation: The practical reliability of the developed es-

timation techniques is investigated by conducting an experimental studies on

distillation processes with switching dynamics. The effects of constraints pres-

ence, measurement noise, plant mismatch, and horizon length variation on the

estimation of both the continuum and noncontinuum states are analyzed.

1.3 Thesis Organization

Chapter 2 provides a detailed background for this work. An overview on the existing

filtering and estimation techniques is provided. A review of a moving horizon state
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estimation (MHE) formulation for a continuum state system is provided. A detailed

literature review of a hybrid state estimation and the history of state estimation

applications to distillation processes are presented in this chapter.

Chapter 3 explores both the theoretical and experimental investigations of ap-

plying a sequential continuum and noncontinuum state estimator to composition

estimation in a distillation process with switching dynamics. In a hybrid distillation

modeling, the column compositions are considered as continuum states while the

operating modes are modeled as noncontinuum states. A moving horizon estima-

tor (MHE), which has the capability to handle process constraints, is developed for

composition estimation in a distillation process under known switching mode crite-

ria using the available temperature measurements. The performance of a MHE is

shown to be superior to that of EKF in handling process and measurement noise un-

der switching dynamics. For situations when the system operating mode transition

is unknown, an approach to state estimation under unknown switching functions is

investigated. The proposed method combines a MHE for composition estimation

with a mode change detector to detect a change in the system operating mode and

an operating mode estimator to identify the functioning mode. In the presence of

both the measurement noise and plant-model mismatch, the developed estimator is

shown to be effective in estimating both the column composition and the system

operating mode.

In Chapter 4, a noncontinuum state estimator, which is based on a moving

horizon method for a class of switching system that follows a hidden Markov model,

is developed. An approach to arrival cost development and constraint handling in

moving horizon estimation of noncontinuum state is discussed. The effectiveness of

the proposed method is illustrated by considering mode estimation problems in a

simulated leakage detection system as well as a continuous stirred tank reactor.

The development and application of a hybrid moving horizon estimator (HMHE)

to achieve simultaneous estimation of both continuum and noncontinuum states in

a constrained switching dynamic system is the focus of Chapter 5. One of the major

issues in a moving horizon estimation approach is the development of an arrival cost

to summarize the effect of past and a prior information. In this work, we developed

a generalized arrival cost, which accounts for both continuum and noncontinuum

states. A generalized hybrid state estimator, which can be used as a stand-alone

continuum state estimator, or as a simultaneous continuum and noncontinuum state

estimator, is developed. The effects of constraints, process and measurement noise

levels, as well as a moving horizon length on the simultaneous estimation of both the

continuum and noncontinuum states are analyzed. The effectiveness of the HMHE is

demonstrated through simulation studies, while its practical application is examined

on a constrained continued stirred tank reactor system.

4



Chapter 6 details extensive experimental investigation studies carried out on a

distillation process. This experimental work aims at examining the practical relia-

bility of the developed hybrid moving horizon estimator to infer the composition of

methanol in the distillate product as well as the operating modes using the avail-

able temperature measurements. The effects of constraints presence, process and

measurement noise levels, and the horizon length variation on the estimation of the

continuum and noncontinuum states are also analyzed in this chapter.
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Chapter 2

Thesis Background

2.1 State Estimation

In most of the chemical, biochemical, and petrochemical processes, effective process

monitoring and advanced control system designs are often difficult because of the

absence of frequent and delay-free measurements of important process variables and

the presence of unknown disturbances in the process. A state estimator has been

recognized as a tool that can be designed to estimate the values of these process

variables from the available measurements. As shown in Figure 2.1 for instance,

a state estimator is required to provide the system states in order to implement

a state feedback controller. Besides, state estimators can also play a key role in

process control and monitoring wherein an early detection of hazardous conditions

is needed for a safe operation [80, 89].

2.2 Continuum State Estimation

Continuum state estimation generally involves the estimation of a continuous-valued

state, x, given the measurable input, u, and observable measurement, y. There are

several continuum state estimation techniques available in the literature. These

include the static partial least-square regression estimator [57, 13], Kalman filter

[9, 10, 50, 62, 85], H∞ filter [84], a high gain observer [101], Bayesian state estima-

tion [18, 19], Luenberger observer [69, 101], moving horizon estimator (MHE) [77],

and particle filter [18, 19, 92]. Most of these methods are well developed for contin-

uum state estimation problems with various limitations in the handling of process

nonlinearity, constraints, measurement noise, and plant-model mismatch.
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Figure 2.1: Application of a state estimator in a feedback control system.

2.2.1 Dynamic process model

To elaborate on the estimation problem for continuum state, let us consider the

following discrete state space models:

xk = f(xk−1, uk−1; θ) + wk−1,
yk = g(xk; β) + vk,

(2.1)

where xk ∈ Rn denotes the model state, uk ∈ Rp is the input and yk ∈ Rq denotes the

observed output from the system at time k. f : Rn×Rp −→ Rn is the deterministic

transition function determining the mean of xk given xk−1 and uk−1. wk−1 ∈ Rn

is the zero-mean Gaussian noise vector at time k − 1. g : Rn × Rq −→ Rq is the

deterministic output function determining the mean of the yk given xk. An additive

measurement noise vector to the output measurement is given as vk ∈ Rq. θ and

β denote the system parameters. The process follows a hidden Markov process as

shown in Figure 2.2, and the observation data are generated from the sequence of

hidden states in the presence of measurement noise.

The main interest in the state estimation problem is to find the best state es-

timates (i.e., x̂0:T ) of the hidden process states (i.e., x0:T ) from the available mea-

surements (i.e., y0:T ). Probabilistically, it means either the state estimates are the

conditional expectation of the states x0:T given the measurement y0:T ,

x̂0:T = E(x0:T |y0:T ) (2.2)

7



 
x0 xT x2 x1 

y1 y0 y2 
yT 

Figure 2.2: Markov process model.

or, the state estimates that maximize the conditional joint probability of the se-

quences of states x0:T given the observation sequence y0:T as:

max
x̂0:T

{P (x0:T |y0:T )} (2.3)

2.2.2 Choice of optimality criteria

It is obvious that the solution to the estimation problems of Eqs. (2.2) and (2.3) is

not unique as the optimality of the obtained states depends strongly on the choice

or definition of the optimality criteria. There are different factors that can influence

the choice of the optimality criteria. Among those factors are:

1. Minimum variance estimate: The objective function is defined in such a

way that the minimum variance estimate is sought for.

2. Computational complexity: Defining an optimum criterion in which all of

the hidden states (x0:T ) are to be estimated given all of the observed outputs

(y0:T ) will pose a more computational difficulty than defining an optimum

criterion to estimate an individual state xk at time k given the observed mea-

surements.

3. Area of applications: An optimum criterion definition for a state estimation

to be used for a batch system for instance, could be different from the one to

be used for a continuous system. Even to estimate state sequence for small

set of data for a batch system might require to define a different optimum

criterion from when state sequence is to be estimated from a large set of data.

4. Implementation issues: Whether the state estimation is to be implemented

online or offline could also influence the definition of the optimum criterion.

5. Desired level of accuracy: The level of accuracy that can be tolerated will

also play a big factor in the choice of the optimum criterium.
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2.2.3 Point state estimation

The point state estimation is developed by constructing a conditional probability

distribution function of the state xk given all of the observations up to the current

time k as

max
x̂k

{P (xk|y0:k)} (2.4)

A generalized solution for Eq. (2.4), in principle, can be achieved using a Bayesian

state estimation approach. State estimation methodology, which is based on Bayesian

framework is very powerful because it provides a rigorous approach for estimating

the probability distribution of unknown variables by utilizing all of the available

knowledge, data, and information about the system [18, 19]. It considers all of the

variables to be stochastic and determines the distribution of the variables to be es-

timated through the combination of prior knowledge of the system with the current

measurement information according to the Bayesian theorem as

P (xk|y0:k) =
P (yk|xk, y0:k−1)P (xk|y0:k−1)

P (yk|y0:k−1)
(2.5)

The priori knowledge about the state is represented by the conditional probability

density function (cpdf) expressed as P (xk|y0:k−1). Given the measurements informa-

tion in the form of a likelihood function P (yk|xk, y0:k−1), the prior knowledge about

the unknown state at any time k is modified into a posteriori conditional probabil-

ity distribution function P (xk|y0:k). The denominator in Eq. (2.5) is a normalizing

constant obtained from the evidence provided by the measurements up to time k.

The general state estimation procedure consists of three steps, which are:

• Prediction step: The cpdf P (xk|y0:k−1) is predicted as:

P (xk|y0:k−1) =

∫
P (xk|xk−1, y0:k−1)P (xk−1|y0:k−1)dxk−1, (2.6)

where P (xk|xk−1, y0:k−1) is evaluated according to the state function in Eq.

(2.1).

• Updating step: The cpdf P (xk|y0:k−1) is updated to P (xk|y0:k) by the current
measurements yk using Bayesian rule expressed in Eq. (2.5).

• Inference step: Once the conditional probability density function is known,

an optimal inference is typically drawn by computing the maximum of the

posterior as expressed in Eq. (2.4).

Although, the theory of Bayesian estimation of dynamic systems has been avail-

able in the literature for decades [18, 19, 92] , practical application and implemen-

tation of this method to real industrial processes remain challenging because of the
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methodological and computational problems. However, for multivariate normal dis-

tributions and an unconstrained linear dynamic system, a recursive Bayesian state

estimation will simplify to a standard Kalman filter [60].

Kalman filter

Among the several available estimation techniques, a Kalman filter (KF) is the

most widely used in state estimation applications [50, 62, 85]. The theory behind

KF [50, 85] is well established and its applications have grown significantly in both

academia and industry [9, 10, 62]. Kalman filter is known to be the best optimum

state estimator for an unconstrained, linear system subject to normally distributed

process and measurement noise [50]. If we consider an unconstrained linear dynamic

system of the following forms:

xk = Axk−1 +Buk−1 + wk, wk ∼ N(0, δ2w)
yk = Cxk + vk, vk ∼ N(0, δ2v)

(2.7)

The noise sequences have zero mean and second-order statistics described by

E[wkw
T
j ] = Qkδkj

E[vkv
T
j ] = Rkδkj

E[vkw
T
j ] = 0 for all k, j

(2.8)

The Kalman filter algorithm to estimate the optimum state xk is summarized as

follows:

• Prediction step:

x̄k = Ax̂k−1, with x0 ∼ N(x̂0, P̂0),
ȳk = Cx̄k,

P̄k = AP̂k−1A
T +Qk.

(2.9)

• Updating step:
K = P̄kC

T (CP̄kC
T +Rk)

−1,
x̂k = x̄k +K(yk − ȳk),

P̂k = (I −KC)P̄k.

(2.10)

In Eqs. (2.9) and (2.10), x̂k is the estimate of the state at sample time k given

all of the output measurements up to time k, while x̄k is a priori estimate at time

k given all information up to time k − 1. A filtered state estimate is produced at

time k by correcting the predicted state estimate at the previous sample time k− 1

through the product of the matrix gain K with the difference between the measured

output yk and the predicted output ȳk. For linear Gaussian systems, this estimate

is also the maximum likelihood estimate [60]. The filter is stable provided (C,A)

is detectable, (C,Q
1
2
k ) is stabilizable, Rk is positive definite, and Qk is nonnegative

definite [60].
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2.2.4 Full information state estimation

The objective is to estimate all of the state sequences x0:T given all of the observa-

tion sequences y0:T . To formulate an objective function for a full information state

estimation, the following lemmas will be required:

• Lemma 1. For a stochastic system that follows a Markov process:

maxx̂0:T
{P (x0:T |y0:T )} = maxx̂0:T

{P (x0:T , y0:T )}.

Proof:

By applying Bayesian Theorem, Eq. (2.3) can be expanded as

max
x̂0:T

{P (x0:T |y0:T )} = max
x̂0:T

{P (x0:T |y0:T−1)P (yT |x0:T , y0:T−1)

P (yT |y0:T−1)
},

= max
x̂0:T

{P (x0:T−1|y0:T−1)
P (xT |x0:T−1, y0:T−1)P (yT |x0:T , y0:T−1)

P (yT |y0:T−1)
},

(2.11)

For a Markov process governed by Eq. (2.1), where P (xT |x0:T−1, y0:T−1) =

P (xT |xT−1) and P (yT |x0:T , y0:T−1) = P (yT |xT ), then, Eq. (2.11) can further

be formulated as

max
x̂0:T

{P (x0:T |y0:T )} = max
x̂0:T

{P (x0:T−1|y0:T−1)
P (xT |xT−1)P (yT |xT )

P (yT |y0:T−1)
},

= max
x̂0:T

{P (x0)P (y0|x0)
T∏

k=1

P (xk|xk−1)P (yk|xk)
P (yk|y0:k−1)

},

= max
x̂0:T

{ 1

P (y0:T )
P (x0)P (y0|x0)

T∏
k=1

P (xk|xk−1)P (yk|xk)},

= max
x̂0:T

{ 1

P (y0:T )
P (x0:T , y0:T )},

= max
x̂0:T

{P (x0:T , y0:T )},
(2.12)

where

P (x0:T , y0:T ) = P (x0)P (y0|x0)
T∏

k=1

P (xk|xk−1)P (yk|xk) (2.13)

Note that the term 1
P (y0:T )

in Eq. (2.12) is independent of the decision variables,

x0:T , and it has been neglected.

• Lemma 2. maxx̂0:T
{P (x0:T , y0:T )} = minx̂0:T

{− logP (x0:T , y0:T )}.
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If we define JT = − logP (x0:T , y0:T ), the optimization problem of Eq. (2.3) can

be posed as

min
x̂0:T

{JT} : JT = − logP (x0:T |y0:T ). (2.14)

By taking the log probability of Eq. (2.13), we have

logP (x0:T , y0:T ) = logP (x0) +
T∑

k=1

logP (xk|xk−1) +
T∑

k=0

logP (yk|xk). (2.15)

Substituting Eq.(2.15) into the Eq. (2.14), we have

min
{x̂0:T }

JT : JT = − logP (x0)−
T∑

k=1

logP (xk|xk−1)−
T∑

k=0

logP (yk|xk). (2.16)

Assuming Gaussian distributions, P (x0), P (xk|xk−1) and P (yk|xk) can be respec-

tively formulated as

P (x0) = (2π)−
n
2P

− 1
2

−1 exp{−
1

2
(x0 − x̄−1)P

−1
−1 (x0 − x̄−1)}

P (xk|xk−1) = (2π)−
n
2Q

− 1
2

k exp{−1

2
(xk − f(xk−1, uk−1; θ))Q

−1
k (xk − f(xk−1, uk−1; θ))},

P (yk|xk) = (2π)−
q
2R

− 1
2

k exp{−1

2
(yk − g(xk; β))R

−1
k (yk − g(xk; β))},

(2.17)

Pk ∈ Rn×n, Qk ∈ Rn×n, and Rk ∈ Rn×q are symmetric positive definite weight-

ing matrices. They are quantitative measurements of the belief in the prior es-

timate, state transition model, and the observation equation respectively. If we

define ŵ−1 := (x̂0 − x̄); v̂k := yk − g(x̂k; β), and ŵk−1 := x̂k − f(x̂k−1, uk−1; θ), we

can further take the negative logarithms of Eq. (2.17) to give

− logP (x0) = K0 +
1

2
ŵ−1P

−1
0 ŵ−1,

− logP (xk|xk−1) = Kw +
1

2
ŵk−1Q

−1
k ŵk−1,

− logP (yk|xk) = Kv +
1

2
v̂kR

−1
k v̂k,

(2.18)

whereK0 = − log{(2π)−n
2P

− 1
2

−1 },Kw = − log{(2π)−n
2Q

− 1
2

k }, andKv = − log{(2π)− q
2R

− 1
2

−1 }.
By substituting Eq. (2.18) into the Eq. (2.16), while the constants K0, Kw, and Kv

are neglected, the state estimation problem can be constructed as an optimization

problem by estimating ŵk that minimizes as

min
{ŵ−1,...,ŵT−1}

JT : JT = ŵT
−1P

−1
−1 ŵ−1 +

T−1∑
k=0

ŵT
kQ

−1
k ŵk +

T∑
k=0

v̂TkR
−1
k v̂k (2.19)

subject to
x̂0 = x̄−1 + ŵ−1,
x̂k = f(x̂k−1, uk−1; θ) + ŵk, k = 1, ..., T − 1,
ŷk = g(x̂k; β),
v̂k = yk − ŷk,
x̂ ∈ X, ŵ ∈ W and v̂ ∈ V.

(2.20)
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The estimated states from time k = 0 : T are evaluated from

x̂0 = x̄−1 + ŵopt
−1 ,

x̂k = f(x̂k−1, uk−1; θ) + ŵopt
k , k = 1, ..., T − 1,

ŷk = g(x̂k; β).
(2.21)

The problem with a batch estimation formulation is that its solution becomes

computationally intractable even for a small system because the optimization prob-

lem to solve grows rapidly with every time step. This computational burden will

make it practically difficult if not impossible to make use of a batch state estimation

in various process monitoring and control schemes where an online implementation

is a necessity. It is therefore obvious that different optimality criteria will have

to be sought based on different factors such as the area of application, method of

implementations, desired level of accuracy and the computational feasibility.

2.2.5 Moving horizon estimation

Moving horizon estimation (MHE) is one of the most efficient optimization-based

approaches to state estimation. It is a technique in which a sequence of unknown

states or parameters is estimated based on a weighted least squares cost function

over a moving but fixed-size window called horizon. The concept of MHE approach

was originally proposed to overcome the limitations of the widely used Kalman filter,

which are its inability to incorporate constraints on state, approximating a nonlinear

model with a linear model, and the assumptions of Gaussian disturbances.

The basic strategy is to use a moving, but fixed-size window of the observed

data to estimate the sequence of states. As shown in Figure 2.3, at every time

instance, a new available measurement is added to the window of data, while the

oldest observed measurement is removed. The effect of the discarded data on the

current states is summarized in what is termed as arrival cost. Instead of estimating

a single point like in other estimation methods, by denoting the state over horizon

length N ∈ N+ as xT−N :T , the MHE provides the estimate sequence, x̂T−N+1:T ,

through a constrained optimization:

max
x̂T−N :T

{P (xT−N :T , y0:T )}. (2.22)

This formulation can take constraints into account explicitly, and shape the esti-

mates to form different distributions other than the Gaussian distribution by con-

straining the disturbances. The arrival cost information of a horizon may be propa-

gated to the subsequent horizon by updating the joint probability density function

P (xT−N , y0:T ).

13



 

T T+1 
Time

Arrival cost Optimization Horizon N 

Measurement 

T-N 

Figure 2.3: Moving horizon scheme.

MHE Review

The idea of moving horizon strategies in state estimation can be traced back to the

various works reported from late 60s to early 70s [46, 54, 88]. Since then, significant

research works, which spans well over three decades, have surfaced in the litera-

ture that discussed the MHE formulation, stability, convergence, robustness, and

applications. Findeisen (1997) [27] and Rao (2000) [71] provided a well summarized

literature works on a moving horizon estimation method.

The formulation of MHE using a least square methods was given by Muske

and Rawlings (1993) [61], while Robertson (1996) [76] discussed MHE development

from a probabilistic point of view. Several studies have provided stability proofs for

MHE schemes on linear systems [27, 77, 72] as well as nonlinear systems [73]. Rao

et al. (2002) [72] investigated the moving horizon approximation for the constrained

process monitoring and showed that constrained MHE is an asymptotically stable

observer in a nonlinear modeling framework. Rao, et. al. (2002)[72] also presented

different arrival costs development options for MHE and discussed their impacts

on the stability of moving horizon state estimation with linear models subject to

constraints on the estimate.

Convergence and computational time issues in a moving horizon estimation are

addressed in the works of [72, 56, 99, 100]. The performances of MHE were compared
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to other types of filters [37, 86]. Specifically, Haseltine and Rawlings (2005)[37] crit-

ically compared the performance of MHE to an extended Kalman filter(EKF) and

concluded that MHE consistently provides improved state estimation and greater

robustness to both poor guesses of the initial state and tuning parameters in com-

parison to the EKF.

Application of a moving horizon estimation to industrial processes have also been

studied extensively [81, 52, 89, 97, 98, 86]. Russo and Young (1999) [81] applied

a moving horizon estimation to an industrial polymerization process, while Kraus,

et. al. (2006) [52] applied a moving horizon state estimation algorithm to the Ten-

nessee Eastman Benchmark process. Gallivan (2007) [97] applied a moving horizon

estimation (MHE) technique to estimate thin film growth rate, thickness, and high

temperature optical constants in situ monitoring of chemical vapor deposition pro-

cess. MHE algorithm is shown to provide a better performance in parameters and

state estimation of an industrial process fouling than an extended Kalman filter in

the work of [86].

MHE formulation

The formulation of a moving horizon estimation from both deterministic and proba-

bilistic point of views is detailed in the literature [61, 71, 72]. Because the objective

function for the batch optimization will become computationally expensive and nu-

merically intractable as the T increases, the optimization objective function for a

moving horizon estimation method is formulated for a finite horizon length N as:

min
{ŵT−N−1,...,ŵT−1}

JT : JT = ŵT
T−N−1P

−1
T−N−1ŵT−N−1+

T−1∑
k=T−N

ŵT
kQ

−1
k ŵk+

T∑
k=T−N

v̂TkR
−1
k v̂k,

(2.23)

subject to

x̂0 = x̄−1 + ŵT−N−1,
x̂k = f(x̂k−1, uk−1; θ) + ŵk, k = T −N + 1, ..., T − 1,
ŷk = g(x̂k; β), k = T −N + 1, ..., T − 1,
v̂k = yk − ŷk, k = T −N + 1, ..., T − 1,
x̂ ∈ X, ŵ ∈ W and v̂ ∈ V

(2.24)

and, the estimated states from time k = T −N : T are evaluated as

x̂T−N = x̄−1 + ŵopt
T−N−1,

x̂k = f(x̂k−1, uk−1; θ) + ŵopt
k , k = T −N + 1, ..., T,

ŷk = g(x̂k; β), k = T −N + 1, ..., T.
(2.25)

Note that the first term of Eq. (2.23) represents the arrival cost. The expression in

Eq. (2.25) computes the smoothed estimates, x̂T−N :T−1, for k = T −N : T − 1, and
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a filtered estimate, x̂T , at the current time k = T . When N = 0, the MHE objective

function reduces to

min
ŵT−1

J : JT = ŵT
T−1P

−1
T−1ŵT−1 + v̂TkR

−1
k v̂k. (2.26)

For a stochastic unconstrained linear system, it is established [72] that when wk and

vk are independent, zero mean, normally distributed random variables, the solution

of Eq. (2.26) is a discrete Kalman filter, which is the optimum or minimum variance

estimate of the state.

2.3 Noncontinuum State Estimation

Existing studies on state estimation have almost exclusively been devoted to a

continuous-valued system with very few exceptions. In reality, the problem to solve

in a system, can also take a discrete-event or noncontinuum forms. Typical exam-

ples of noncontinuum form representation problems are stiction versus non-stiction

of control valves, multi-mode process operations, and normal versus abnormal con-

ditions in fault detection diagnosis [55]. Even for continuous dynamic systems, the

problem to solve may still take a noncontinuum representation such as “desired” or

“undesired” operating region, and “good”, “bad”, or “optimum” in control perfor-

mance assessment problems. Noncontinuum state also plays a key role in embedded

control systems that interact with the physical world. Therefore noncontinuum state

estimation deals with the estimation of the discrete-event states (i.e., system mode)

from the available measurement data.

The state transition of a switching system can be captured by a Hidden Markov

Model (HMM)[29], and the noncontinuum state estimation problem in such system

can be posed as an optimization problem in which the set of decision variables

takes only a finite set of possible values. Park and Miller (1997) [66] developed

an algorithm for realizing optimal maximum a posterior (MAP) estimates of the

hidden states associated with a hidden Markov model, given a sequence of observed

symbols. Ghahramani (1999) [34] presented a unifying review of linear Gaussian

models and shown how the factor analysis, principal component analysis, mixtures

of Gaussian clusters, vector quantization, Kalman filter models, and hidden Markov

models can all be unified as variations of unsupervised learning under a single basic

generative model. In their work, the forward-backward algorithm is used to compute

the posterior probabilities of the hidden states in a HMM and therefore formed the

basis of the inference required for EM [34].

Doucet and Andrieu (2001) [21] presented both the deterministic and stochas-

tic iterative algorithms for optimal state estimation of jump Markov linear sys-

tems. Their algorithms are formulated to obtain the marginal maximum a poste-
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riori (MMAP) sequence estimate of the finite state Markov chain. Active mode

estimation of switching systems in stochastic set up was studied by Hofbaur and

Williams (2002) [38]. The observability and identifiability of a jump linear system

are addressed by Vidal, et. al. (2002) [93] and in more recent time, by Baglietto,

et. al. [6, 7].

Goodwin and Quevedo (2003) [35] proposed a receding horizon optimization ap-

proach for a system where the control input is limited to a small and finite set

of scalars and the initial condition is to be estimated. This noncontinuum input

optimization approach, which is termed a finite alphabet problem, does not con-

sider time-varying parameter systems neither do switching systems. However, it

provides semi-definite programming relaxation methods to yield approximate so-

lutions for receding horizon combinatorial optimization problems. Goodwin and

Quevedo (2005) [36] extended their work to include a moving horizon design for

discrete coefficient FIR filters.

Schon, et al. (2003) [82] formulated the state estimation problem of HMM in a

convex optimization framework. Using a mean square criterium, this approach is

shown to be better than formulating HMM in a state space model and employed a

Kalman filter algorithm to compute the best possible linear estimate of the Markov

states. Domlan (2007) [20] studied the determination of the active mode of switch-

ing deterministic systems using only the system’s input-output data, and derived

the discernability conditions that ensure the uniqueness of the recovered mode. A

nonlinear Luenberger hybrid observer for a class of repetitive operation mode pro-

cess was studied by Aguilar-Lopez and Martinez-Guerra (2007) [1]. The observer

was successfully applied to a sequencing batch reactor.

Blackmore and Rajamanoharan [15] designed finite sequences of control inputs

that reduce the probability of pruning the true mode sequence while ensuring that

a given control task is achieved. The key innovation was to derive a tractable

upper bound on the probability of pruning the true mode sequence. Evans and

Krishnamurthy (2001) [24] addressed optimal sensor scheduling problems for finite-

state hidden Markov models using a stochastic dynamic programming framework.

A cost function of estimation errors and measurement costs are minimized to select

an optimum measurement scheduling policy.

In the Chapter 3 of the thesis, we will focus exclusively on the development

of a noncontinuum state estimator, which is based on a moving horizon approach

for switching systems that follow a HMM with either a discrete- or continuous-

valued noisy measurements. We will propose a new arrival cost for a moving horizon

estimation of noncontinuum state to summarize the effects of the past observed data

on the estimation of the states in the current horizon window.
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2.4 Continuum and Noncontinuum States Esti-

mation

2.4.1 Hybrid system

The term hybrid is generally used to represent the coexistence of a continuous sub-

system (i.e., describing a continuous-valued dynamics) and a discrete subsystem

(i.e., describing discrete-valued dynamics), while the concept of a hybrid dynamical

system represents a dynamical system where the behavior of interest is governed by

the interacting continuous and discrete dynamics. A hybrid system generates mixed

states, some of which take values from a continuous set (e.g., the set of real num-

bers) and are termed continuum states, while others take values from a discrete set

(e.g., the set of symbols) and are referred to as noncontinuum states. Furthermore,

these continuum or noncontinuum states usually depend on one or more indepen-

dent variables such as time. In some other cases, some of the signals from a hybrid

system could be time-driven while others could be event-driven.

Over the past few decades, there have been significant research interests in hybrid

systems and their applications cutting across mathematics, control engineering, and

computer science. A detailed summary of the recent work on the development,

modeling, and application of a hybrid system can be found in the work of Antsklis

(2000) [5].

The behavior of a hybrid dynamic system may be described via different models.

The complexity of modeling a hybrid system is largely dependent on the level of

interaction between the coexisting continuum and noncontinuum dynamics. Thus,

the nature of a hybrid model considered depends on what the model is intended to be

used for. In this thesis, we consider two general forms of dynamic modeling, which

are the state space model described by differential or difference equation to represent

continuum state, and a Hidden Markov Model (HMM) described by state transition

probabilities to represent noncontinuum state. Therefore, the hybrid system of the

following dynamic stochastic models

mk = η(mk−1;λ),
xk = fmk

{xk−1, uk−1; θ}+ wk−1,
yk = gmk

(xk; β) + vk,
mk ∈ M : M = {1, ...,M},

(2.27)

are considered. mk is noncontinuum state governed by a hidden Markov model,

η and λ represent the noncontinuum transition function and the HMM parameter

respectively.
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2.4.2 Hybrid state estimation

State estimation of a hybrid system is a significant and challenging problem for

process monitoring[16, 40], feedback control[8, 58, 23], and model-based fault di-

agnosis and isolation[12]. There are basically two approaches (i.e., sequential and

simultaneous) to a hybrid state estimation development. Sequential approach is a

method in which two separate algorithms are combined interactively to estimate

both the continuum and noncontinuum states. One distinct feature of this method

is the requirement to involve two filters or two objective functions (in the case of

optimization based filters), one to estimate the continuum state, while the other to

estimate the noncontinuum state [8, 17].

Most of the hybrid state estimation methods that exist in the literature use

sequential approach largely because it is intuitively the easier of the two approaches

to develop or formulate. Besides, combination of different types of filters can be

tried to achieve one form of improvement or the other. However, the major setback

of this method is the interaction effects of two filters, especially if there are other

external constraints desired to be satisfied by the system [72]. Besides, a hybrid

state estimation that uses such an approach often poses different implementation

challenges. Another approach to a hybrid state estimation development is called

a simultaneous approach, in which a single filter with a single objective function

is formulated to simultaneously estimate both the continuum and noncontinuum

states. The development of such a filter is non trivial, but it has the advantage

of addressing a hybrid state estimation problem in a unified and systematic way.

Even though, a majority of research work have concentrated on the continuum

state estimation developments and applications, quite a sizable number of works has

appeared in the literature that discussed the state estimation problems of hybrid

systems.

Alessandri and Coletta (2001, 2003)[3, 4] considered an estimation approach

based on Luenberger-like observers for a class of switched continuous and discrete

time linear systems with a known operation mode. Boker and Lunze (2002) [17]

proposed switching Kalman filters for switched affine systems, where a set of Kalman

filters is designed for each dynamics of the hybrid system. An estimation method

of combining location observers with Luengerger observers based on known discrete

input and output was studied by Balluchi et al. (2003) [8], while Hofbaur and

Williams (2004) [39] developed a method based on banks of extended Kalman filters,

which only focused on the set of most likely modes. Boers and Driessen (2002)

[16] numerically solved an hybrid state estimation problem using the particle filter

approach.

The design and stability analysis of hybrid nonlinear control systems for a class
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of switched nonlinear systems have also been extensively studied in the literature[23,

58]. El-Farra at. al (2005) [23] addressed nonlinear and constrained control system

of switched systems. In their work, a deterministic high gain observer was developed

for estimation of unconstrained states. A predictive control framework for the con-

strained stabilization of switched nonlinear systems was proposed by Mhaskar at.

al (2005) [58]. The key achievement in this work is the design of a Lyaounov-based

model predictive controller (MPC) that guarantees the stability of the switched

closed-loop system. In one of the most recent studies in hybrid state estimation ap-

plication in control system design and implementation, Hu and El-Farra (2010) [40]

explored a technique for fault detection and monitoring of nonlinear hybrid systems

with control actuator faults and uncertain mode transitions. The proposed mode

observers, which work sequentially with the Lyapunov-based fault detector schemes,

are able to identify the active mode without information from the controllers.

A state estimation method, which is based on moving horizon estimation (MHE)

scheme is able to overcome most of the existing challenges on state estimation prob-

lems because it estimates the desired variables over a finite horizon of time [61, 72].

MHE approach has been employed in the literature for state estimation of hybrid sys-

tems. Bemporad et. al. (1999) [12] explored the ideas of receding horizon control to

the state estimation and fault detection problem of hybrid systems. Ferrari-Trecate,

et al. (2000, 2002) [25, 26] investigated state-estimation for hybrid systems in the

mixed logical dynamical (MLD) form and proposed a state-smoothing algorithm for

hybrid systems based on moving-horizon estimation (MHE). Sufficient conditions

to guarantee asymptotic convergence of the MHE were given. [67] extended MHE

method to simultaneous estimation of state and unknown input for hybrid linear

systems.

Rowe and Maciejowski (2003) [78] developed a strategy for a min-max moving

horizon estimation of a class of uncertain Piecewise Affine systems (PWA) with both

continuous valued and logic components. Their work is an extension of the MHE

scheme for PWA systems, but without plant uncertainties, as presented in the work

of Ferrari-Trecate, et al. (2001, 2003) [25, 26]. Sufficient conditions that guarantee

convergence of the MHE scheme on hybrid systems were analyzed. Pina and Botto

(2006) [67] extended MHE method to simultaneous estimation of state and unknown

input for hybrid linear systems. The MHE method can simultaneously estimate the

state and the mode of the system and it is based on a moving fixed-size estimation

window, which bounds the size of the optimization problem. In a more recent study,

Alessandri, et. al. (2007) [2] used a receding-horizon approach for the estimation

of the system mode according to a minimum-distance. In this case, the system and

measurement equations of each mode are assumed to be linear and perfectly known,

but the current mode of the system is unknown and is regarded as a discrete state
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to be estimated at each time instant together with the continuous state vector.

2.4.3 Generalized Bayesian hybrid state estimation

Bayesian formulation of the estimation problem suggests a general solution for all

types of systems including linear or nonlinear dynamics, Gaussian or non-Gaussian

distributions, bias, constraints, and missing or multirate data [30, 18, 19]. State-

estimation methodology which is based on Bayesian framework is powerful because

they are rigorously based on the probability axioms and therefore preserve informa-

tion [92]. Besides, they give the probability density function of the model state con-

ditioned on the available information, which may then be used for any probability-

based process monitoring, identification, and reliability analysis.

For simplicity, let us use zk to denote xk or mk or their combination {xk,mk}.
By denoting z0:T = {z1, ...zk, ...zT}, the logarithm of the joint probability mass

function (i.e., for noncontinuum state) or joint probability density function (i.e., for

continuum state) can be written as:

logP (z0:T , y0:T ) = logP (z0) +
T∑

k=1

logP (zk|zk−1) +
T∑

k=1

logP (yk|zk). (2.28)

If z0:T is continuum, following the general solution procedure described in Section

2.2.5, the continuum MHE solution provided by Rao and Rawlings (2002) [72] can be

adopted. If however, z0:T is noncontinuum, under stationarity and hidden Markov

model assumptions, we derive the state estimate sequence by minimizing the neg-

ative logarithm form of the joint probability P (z0:T , y0:T ) subject to constraints on

input, output, or state, using the maximum a posteriori estimate based on the mea-

surements y0:T . If z0:T is a mixture of continuum and noncontinuum states, i.e.

z0:T = {x0:T ,m0:T}, one can use the joint probability density function P (x0:T ,m0:T )

to represent the distribution of mixed continuum and noncontinuum states. As we

will show in the next chapters, the problem is solved by obtaining the joint distri-

bution of continuum state and noncontinuum state as a summation of logarithm of

marginal densities.

2.5 Distillation Processes

Distillation is defined as a process in which liquid or vapor mixture of two or more

substances is separated into its component fractions of desired purity, by the ap-

plication and removal of heat. Distillation is based on the fact that the vapor of

a boiling mixture will be richer in the components that have lower boiling points,

therefore when this vapor is cooled and condensed, the condensate will contain more

volatile components. At the same time, the original mixture will contain more of the
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less volatile material. There are many types of distillation column, each designed to

perform specific types of separation, and each differs in terms of complexity.

1. Batch distillation column: In batch operation, the feed to the column is

introduced batch-wise. The column is charged with a ‘batch‘ and then the

distillation process is carried out. When the desired task is achieved, a next

batch of feed is introduced.

2. Continuous distillation column: In contrast to batch distillation, a contin-

uous distillation column processes a continuous feed stream. No interruptions

occur unless there is a problem with the column or surrounding process unit.

They are capable of handling high throughputs, and they can either design as

a tray column or as a packed column.

3. Binary distillation column: Feed contains only two components.

4. Multi-component distillation column: Feed contains more than two com-

ponents.

5. Tray distillation column (internal): Trays of various designs are used to

hold up the liquid to provide better contract between vapor and liquid

6. Packed distillation column: Instead of trays, ‘packings‘ are used to enhance

contact between vapor and liquid.

The distillation column is made up of several components, each of which is used

either to transfer heat energy or enhance material transfer. A typical distillation

contains several major components, which are:

• A vertical column where the separation of fluid components is carried out.

• Column internals such as trays or packings, which are used to enhance com-

ponents separation.

• A reboiler to provide the necessary vaporization for the distillation process.

• A condenser to cool and condense the vapor leaving the top of the column.

• A reflux drums to hold the condensed liquid from the top of the column so

that reflux can be recycle back to the column.
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2.5.1 State estimation in distillation processes

The development and application of state estimation to distillation processes have

a long history in the literature. After the pioneering work of Joseph and Brosilow

(1978) [48] who applied optimal estimators to a multicomponent distillation column,

several studies have been devoted to the development of estimators for both batch

[62, 69] and continuous distillation columns [9, 10, 53, 80]. Lang and Gilles (1991)

[53] developed a full-order nonlinear observer for distillation columns. The perfor-

mance of the observer was tested through numerical simulation and it was found to

be very robust toward model errors, wrong parameters and uncertain inputs.

Quintero-Marmol et al.(1991) [69] applied an extended Luenberger observer

(ELO) to predict composition in multicomponent batch distillation from temper-

ature measurements, while Ruokang et al. (1991) [80] presented a strategy for

fault detection and diagnosis in a closed-loop nonlinear distillation system using

an extended Kalman filter. Oisiovici et al. (2000) [62] developed a discrete ex-

tended Kalman filter (DEKF) for binary and multicomponent distillation systems.

The developed DEKF algorithm provides reliable and real-time column composition

profiles from few temperature measurements. Unlike off-line design of the extended

Luenberger observer proposed by Quintero-Marmol et al. (1991) [69], the gains of

DEKF are calculated and updated online. State estimation techniques have also

been recently extended to determine the unmeasurable composition profiles in a

more complex reactive distillation column [59, 63].

Among several studies on the application of state estimation to distillation

processes, only a few papers tested their results using actual experimental data

[9, 10, 57]. Mejdell and Skogestad (1999) [57] implemented a static partial least-

square regression estimator for product compositions on a high-purity pilot-plant

distillation column. An experimentally based estimator, with logarithmically trans-

formed temperatures and compositions, was reported to give excellent performance

over a wide range of operating points. Baratti et al. (1995) [9] developed a non-

linear extended Kalman filter (EKF), which predicts the composition of the outlet

streams of a binary distillation column from the temperature measurements. The

performance of the estimator was evaluated by comparison with data obtained from

the several transient experiments performed in a pilot plant. The EKF estima-

tor was found to be robust with respect to model errors. They extended their

work to the multicomponent distillation column and concluded that a more rigor-

ous vapor-liquid equilibrium description is required for composition estimation in

multicomponent system [10].

The handful state estimation techniques developed and verified experimentally

[9, 10, 57] are limited to the estimation of the column composition as continuum
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states. However, due to the advancement in the simultaneous process monitoring,

fault detection and control of complex chemical systems such as distillation columns,

there is need to experimentally investigate the practical reliability of advanced filters

such as hybrid state estimators where the interest will not only be in estimating the

process states, but also in the determining the operating mode, detecting the fault

in the system and estimating uncertain disturbance inputs simultaneously.

2.5.2 Hybrid state estimation in distillation process with
switching dynamics

In a typical industrial distillation process, the state estimation problems to solve of-

ten involve the continuum state, noncontinuum state or the combination of both. A

common example of continuum state estimation problem is the column composition

estimation using the online state observer, while a typical example of noncontinuum

form representation of interest is to determine if there is a change (either desirably

or undesirably) in the operating mode of a distillation process.

Using several illustrating examples, Jacobsen and Skogestad (1994) [45] showed

that two-product distillation columns, operating with reflux and boilup as indepen-

dent inputs, might have multiple steady-state solutions, even in the ideal binary

case. The issue of steady state multiplicities has also been widely reported in reac-

tive distillation processes [87]. A hybrid state estimator, which has the capability

to estimate unmeasurable states under switching operating modes, will provide new

direction in achieving a more effective monitoring of such unstable distillation pro-

cesses.

Besides, the operational procedure of a typical industrial distillation process

involves switching from one mode into the other, notably from the start-up to the

steady-state operation, and to the process shut-down. Under the distillation start-

up operation, the determination of an optimum switching time from one operating

mode into the other will be a key factor to energy consumption minimization [31].

Other forms of undesirable mode changes are also common in distillation operation.

Common examples are operational mode changes due to system malfunctions (i.e.,

fault) as well as feed input quality change, which is usually being dictated from the

upstream [64].

With several other evidences of an industrially operated distillation column ex-

hibiting unstable operating regions [44, 45, 51], the development of advanced filters

for distillation processes modeled as hybrid systems will help to address some of the

outstanding process monitoring problems such as simultaneous composition estima-

tion, operational mode change determination, fault detection and isolation [80], as

well as unknown disturbance input estimation in a unified and systematic way.
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Chapter 3

Online Composition Estimation
and Experiment Validation of
Distillation Processes with
Switching Dynamics

3.1 Introduction

1 This chapter explores both the theoretical and experimental investigations of ap-

plying a sequential continuum and noncontinuum state estimator to composition

estimation in a distillation process with switching dynamics. At present, the most

widely used approximate nonlinear filter in the process monitoring and control of

distillation columns is the extended Kalman filters (EKF) [9, 10, 62]. However, it

has the disadvantage that the covariance propagation and update are carried out

through linearization around some operating regions, and this suggests that the re-

gion of stability may be small since nonlinearities in the system dynamics are not

fully accounted for. Therefore, it is necessary to investigate new and more advanced

nonlinear filters and demonstrate their practical reliability by conducting both the

theoretical and experimental investigations on an industrial-type distillation column.

Apart from EKF, other advanced observers (i.e., geometric observers, particle

filtering, a moving horizon estimation) have been proposed in the literature. How-

ever, a composition estimation problem in a distillation process will require a state

observer that can handle system constraints. A moving horizon estimation (MHE)

approach is known for its ability to handle constraints on state and parameter es-

timates. This is particularly needed when designing an observer for a distillation

process where the composition (to be estimated) is bounded.

This study aims at developing a sequential continuum and noncontinuum state

1. This chapter has been published as “M.J. Olanrewaju, B. Huang, and A. Afacan. Online com-
position estimation and experiment validation of distillation processes with switching dynamics.
Chem. Eng. Sci., 2010, 65: 1597-1608.”
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estimator for composition estimation in the distillation processes under switching

dynamics by using the available temperature measurements. For state estimation

purposes, a distillation process will be modeled as a hybrid nonlinear system with

column composition as continuum states and operating modes as noncontinuum

states. A sequential hybrid moving horizon estimator (SHMHE) is developed for

both continuum and noncontinuum states estimation. The performance of SHMHE

will be compared to that of an extended Kalman filter in handling distillation process

with switching dynamics, physical constraints, measurement noise and plant-model

mismatch. For some situations where the system operating mode transition is un-

known (i.e., occurs unexpectedly), a new approach to hybrid state estimation under

unknown operating mode transition function is proposed and verified by conduct-

ing both the simulation on a batch distillation and experiment on a continuous

distillation process.

3.2 Hybrid Distillation Process Modeling

A rigorous dynamic model for a typical distillation column shown in Figure 3.1

consists of a large number of nonlinear differential equations and demands much

information such as system compositions, vapor and liquid flow rates, liquid hold

up in all stages at every instant, tray hydraulics, energy balances and vapor-liquid

equilibrium data. However, modeling distillation process as a hybrid nonlinear sys-

tem depends largely on a particular problem to address and the factors that cause

changes in system operating modes. Different scenarios under which a distillation

model can be modeled as a hybrid system as well as the system’s variables that can

be represented as noncontinuum states are highlighted as follows:

• Scenario 1: Change in operating modes due to different scheduled industrial

operational procedures. Common examples are:

1. The change in distillation dynamics due to the scheduled operation from

“the start-up” to “steady-state operation”, and to “shut-down”. The

system variables that can be modeled as noncontinuum states to achieve

such a task are switch in reflux ratio (RR), reflux flow rate (R) distillate

flow rate (D), bottoms flow rate (B) and vapor boilup (V ).

2. The switching of operating pressure (Pi) in azeotropic distillation pro-

cesses [11].

• Scenario 2: Steady state multiplicity and the existence of instability regions

with respect to the manipulated input variables transformation in distillation

processes [44, 45, 51]. Jacobsen and Skogestad (1991,1994) [44, 45] reported
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Figure 3.1: A pilot-scale distillation column.

the existence of multiple steady state solutions corresponding to different op-

erating regions for mass or volume input flows (i.e., R and V ).

• Scenario 3: An unexpected switch in operating modes due to unknown input

disturbances from the feed flow rate (F ) and feed composition (z) as well as

change in the tray efficiency (Emv) due to fouling for instance [45].

• Scenario 4: Operating mode changes due to system faults and malfunctions

[80]. It will be difficult to achieve a predefined set of reliable modes for a par-

tial fault or malfunction in a system. However, with respect to determining

whether the system is operating at normal operating mode, or is at a total

fault, it is possible to use past system data to predefine the modes. For in-

stance, the operator might just be interested in quantifying, for instance, input

reflux ratio (RR) and heat duty (QR) as “too high”, “too low” or “normal”.

In summary, we have laid out different scenarios under which a distillation pro-

cess can be modeled as a hybrid system. However, we make no claims that all of
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these scenarios listed are addressed in this work. Specifically, change in operating

mode due to disturbance inputs is not addressed in this work.

The hybrid nonlinear model of distillation processes can be summarized as fol-

lows:

dxi,j
dt

= fm(xi,j, yi,j, Vm, Rm, Fm, zm, Emv; θ),

Yi = gm(xi,j; β),
0 ≤ xi,j ≤ 1,
m ∈ M : M = {1, ...,M} i = {1, ..., Ns}, j = {1, ..., Nc− 1},

(3.1)

By defining the following new variables:

X := {xi,j}, i = {1, ..., N}, j = {1, ..., Nc− 1},
u := {Vm, Rm, Dm, Bm, Fm, zm, Emv},

(3.2)

and by selecting a suitable sampling time, the hybrid dynamic model of a distillation

process can be discretized and expressed in a more compact state space equation of

the form:
mk = η(mk−1, uk−1),
Xk+1 = fmk

(Xk, uk; θ) + wk,
Yk = gmk

(Xk; β) + vk,
X ∈ X, w ∈ W, m ∈ M,

(3.3)

where X, the liquid composition in the column, represents the continuum state of

the system and m ∈ M, the system operating modes, represents the noncontinuum

states. Ns is the total number of column stages including a reboiler and a condenser,

Nc represents the number of components to be separated. yi,j is the vapor compo-

sition of component j on a stage i, while θ and β are system parameters. mk is the

operating mode at time k, while η is an unknown mode transition function. Yk rep-

resents the noisy output measurements at time k. wk ∼ N(0, δ2w) and vk ∼ N(0, δ2v)

are additive process noise and measurement noise respectively.

Modeling a distillation process as a hybrid system will help to address some of the

outstanding process monitoring problems such as simultaneous composition estima-

tion, fault detection through operating mode determination as well as unmeasurable

disturbance input estimation in a unified and systematic way. If a distillation sys-

tem operating mode is known, a conventional state estimator can be developed to

infer the column composition profiles from the available temperature measurements.

In a situation where the system operating mode changes, and in most cases unde-

sirably (i.e. due to system fault or unknown disturbance input), then, an accurate

continuum state estimation will also depend strongly on the ability to identify the

functioning operating mode correctly at any given point in time.

28



3.3 Sequential State Estimation of Continuum and

Noncontinuum states

Several state estimation algorithms are available in the literature. The most popu-

lar among them are the Kalman filter (KF), moving horizon estimator (MHE), and

particle filter [74]. In this study, we consider a moving horizon estimation technique

largely because of its optimality and ability to handle constraints. Besides, a state

estimation method based on MHE is able to overcome most of the existing chal-

lenges on state estimation problems because it estimates the desired variables using

multiple output data over a horizon. These challenges include formulating the state

estimation that can take constraints into account and shape the estimates to form

different distributions other than the Gaussian distribution. However, few papers

have considered the application of the MHE method to hybrid systems [12, 26].

3.3.1 Estimation under known switching functions

Switching in distillation dynamics occurs when the system operation changes from

one mode into the another. This switching in operating mode can either be desirable

or undesirable. The change in system operating mode is said to be desirable when the

switch of operation follows a specified operational schedule or policy (e.g Scenario

1 discussed in Section 3.2). In this case, the mode transition function is said to be

known and the information on the switching criteria is available to both the real

process and the estimator as shown in Figure 3.2.

In the case of a known switching mode criterium (i.e.,mk = l), the hybrid process

model of Eq. (3.3) becomes:

Xk+1 = fl(Xk, uk; θ) + wk,
Yk = gl(Xk; β) + vk,

(3.4)

and the hybrid state estimator model will be of the form:

X̂k+1 = fl(X̂k, uk; θ) + ŵk,

Ŷk = gl(X̂k; β),
(3.5)

Using MHE algorithm, an optimum sequence of ŵk can be obtained by con-

structing a quadratic cost function (Φk) as:

min
{ŵk−N−1,...,ŵk−1}

Φk : Φk = ŵT
k−N−1Q

−1
k−N−1ŵk−N−1

+
k−1∑

j=k−N

ŵT
j Q

−1ŵj +
k∑

j=k−N

v̂Tj R−1v̂j,
(3.6)
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Figure 3.2: The flowchart of a state estimation with known switching transition
function.

subject to the following constraints:

X̂k−N = X̄k−N + ŵk−N−1,

X̄k−N = fl(X̂k−N−1, ûk−N−1; θ),

X̂j+1 = fl(X̂j, ûj; θ) + ŵj, j = k −N, ..., k − 1,

Ŷj = gl(X̂j; β),

v̂j = Yj − Ŷj,

X̂ ∈ X, ŵ ∈ W,

(3.7)

where Q and R are the weighting matrices and treated as tuning parameters to

achieve the best results.

3.3.2 Estimation under unknown switching functions

In this section, a hybrid state estimation is developed for a switching system where

the transition between modes is not characterized a priori. By considering a hybrid

system model given in Eq. (3.3) with a finite discrete mode set (i.e., m ∈ M)

but with unknown mode transition function, the main objective is to estimate the

continuous state xk as well as the discrete operating mode mk given the sequences

of continuous input and output. The hybrid state estimator proposed comprises

three components, which are the moving horizon estimator (MHE) for continuum
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Figure 3.3: The flowchart of a hybrid state estimation implementation.

state estimation, a mode change detector (MCD) to detect a change in operating

mode and an operating mode estimator (OME) to estimate the functioning operating

mode. Figure 3.3 shows the flowchart of the proposed continuum and noncontinuum

state estimator.

In this case of an unknown transition mode, the hybrid process model will be of

the form defined in Eq. (3.3). Given an output data of horizon N , we can consider

a hybrid time trajectory defined as follows:

• ki := The time at which change in the operating mode is detected to occur.

For illustration purposes, we assume (in this formulation) that from the time

ki−1 to the time ki, the operating mode is detected to change and we also

assume without loss of generality that the mode change is from mki−1
= m1

to mki = m2.

• ki+b := The time at which a correct operating mode is identified. For instance,

b = 1 means the mode estimator is able to identify a new mode after one sample

delay of the time the mode change being detected.

A sequential hybrid moving horizon estimator is formulated as

m̂k = η(m̂k−1, ûk−1), (3.8)
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X̂k+1 = fm̂k
(X̂k, ûk; θ) + ŵm̂,k, (3.9)

Ŷk = gm̂k
(X̂k; β) + v̂m̂,k, (3.10)

X̂ ∈ X, ŵ ∈ W, m̂ ∈ M, (3.11)

while the optimum sequence of ŵm,k and mode m̂k at time k can be obtained from:

min
{ŵm1,k−N−1,ŵm1,k−N ,...,ŵm1,ki+b−1

,ŵm2,ki+b
,...,ŵm2,k−1}

Φk :

Φk = ŵT
m1,k−N−1Q

−1
k−N−1ŵm1,k−N−1 +

ki+b−1∑
j=k−N

ŵT
m1,j

Q−1ŵm1,j +

k−1∑
j=ki+b

ŵT
m2,j

Q−1ŵm2,j +
i+b−1∑
j=k−N

v̂Tm1,j
R−1v̂m1,j +

k∑
j=i+b

v̂Tm2,j
R−1v̂m2,j,

(3.12)

subject to the following constraints:

m̂k = η(m̂k−1, ûk−1),

X̂k−N = X̄k−N + ŵm̂,k−N−1,

X̄k−N = fm̂k
(X̂k−N−1, ûk−N−1; θ),

X̂j+1 = fm̂k
(X̂j, ûj; θ) + ŵm̂,j, j = k −N, ..., k − 1,

Ŷj = gm̂k
(X̂j; β),

v̂m̂,j = Yj − Ŷj,

X̂ ∈ X, ŵ ∈ W, m̂ ∈ M.

(3.13)

Mode Change Detector (MCD)

To be able to find solution to the sequential hybrid moving horizon estimator of Eqs.

(3.12) and (3.13), we need to determine the time ki and ki+b. Given the output

measurement vector Yk ∈ Rp and the estimated output vector Ŷk ∈ Rp obtained

from the hybrid moving horizon estimator, the output measurement residual will be

rk = (Yk − Ŷk). (3.14)

With the availability of the output measurement residual rk, a mode change index

ε(k) can be defined as:

ε(k) = ∥rk∥2E−1
k
, (3.15)

where Ek is the output prediction error covariance matrix. Without change in the

system operating mode, ε(k) will follow a central chi-square distribution with p

degree of freedom as

ε(k) ∼ χ2(p). (3.16)

Instead of relying on one single index ε(k), we monitor a window of ε(k) with

the window size of Ny, as illustrated in Figure 3.4. At a given time step k, by
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Figure 3.4: A moving horizon mode change index.

considering the last Ny (i.e., Ny ≥ N) of the mode change indexes (see Figure 3.4),

a moving horizon mode change index εNy(k) defined as

εNy(k) =
k∑

j=k−Ny+1

ε(j), (3.17)

is also a chi-square distribution with degree of freedom p × Ny. However, when

a change in the system operating mode occurs, εNy(k) will no longer follow a cen-

tral chi-square distribution. Therefore, a Mode Change Detector (MCD) can be

defined such that a moving average mode change index εNy(k) at any given time k

is compared with a pre-determined threshold bound εT (k) such that

MCD :=

{0 if εNy (k)<εT (k)

1 otherwise

. (3.18)

The pre-determined threshold bound εT (k) ∼ χ2
α{p×Ny} is evaluated at a selected

significance level α from the chi-square table (e.g. α = 95%).

Operation mode estimator (OME)

Based on the information from the mode change detector (MCD), operating mode

estimator (OME) will identify and isolate the functioning operating mode, which

minimizes the 2-norm of the output prediction errors at any given point in time.

Note that the OME is the mathematical formulation of mode transition function

expressed in Eq. (3.8). At any given time, operating mode estimator (OME) is either

active (i.e. when MCD = 1) or inactive (i.e. when MCD = 0). Let us assume that
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at time k̄, an operating mode estimator is active as a result of the MCD = 1. The

functioning operating mode can be estimated by solving the following optimization

problem:

m̂k̄ =: min
m̂∈M

∥Yk̄ − gm̂k
(X̂k̄−1; β)∥, (3.19)

subject to

X̂k̄ = fm̂k
(X̂k̄−1, uk̄−1; θ) + ŵm̂,k̄−1, (3.20)

and

wlo < ŵm̂k,k̄ < wup. (3.21)

At any other time when the result from a mode change detector is zero (i.e.,MCD =

0,), the estimated noncontinuum state m̂k will simply be equal to m̂k−1.

3.4 Simulation Study: A Batch Distillation Pro-

cess

Batch distillation is one of the most important separation processes used in many

chemical industries, especially those related to the production of fine chemicals. This

is due to the low scale production and the flexibility in purifying different mixtures

under a variety of operating conditions. In order to meet the purity specifications, a

batch column has to be operated as precisely as possible. If the current composition

profiles of the batch column are known, they can form a basis for improving the

process performance through an effective operating decision making. In this sec-

tion, the objective is to apply the developed hybrid state estimator to estimate the

column composition in a batch distillation process with a switching dynamics using

the available temperature measurements as shown in Figure 3.5. In this study, we

investigate two forms of operating mode changes that can occur in batch distillation

process. They are (1) composition estimation under a known mode transition func-

tion and (2) composition estimation under an unknown mode transition function.

3.4.1 Hybrid process model

The batch distillation under consideration is a ternary system. The schematic di-

agram of the batch distillation column with the proposed composition monitoring

through a moving horizon estimation scheme is shown in Figure 3.5. In this study,

we extended the process model developed by Quintero-Marmol et al.(1991) [69] for

batch distillation column to allow modeling the switching operating modes as well

as the presence of measurement noise and plant-model mismatch. Based on the
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Figure 3.5: Composition estimation of a batch distillation column.
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assumptions of equimolar overflow, constant tray and reflux drum holdups and con-

stant relative volatilities, the process model of the system is summarized as follows:

dx1,j
dt

= Rm(x2,j − x1,j) + Vm(x1,j − y1,j)]/H1, i = 1 : NS − 1, j = 1 : Nc, (3.22)

dxi,j
dt

= Rm(xi+1,j −xi,j)+Vm(yi−1,j −yi,j)]/Hi, i = 1 : NS −1, j = 1 : Nc, (3.23)

dxNS ,j

dt
= Vm(yNS−1,j − xNS ,j)]/HNS

, i = 1 : NS − 1, j = 1 : Nc, (3.24)

dH1

dt
= −Dm, Dm = Vm −Rm, (3.25)

yi,j = αjxi,j/
Nc∑
l=1

xi,l, i = 1 : NS − 1, j = 1 : Nc, (3.26)

with constraint on composition as

0 ≤ xi,j ≤ 1. (3.27)

The output temperature measurement is modeled as:

Ti = Bvp,j/[Avp,j − ln(αjP/
Nc∑
l=1

αkxi,l)], (3.28)

where α is the relative volatility, while Bvp,j and Avp,j are the vapor pressure pa-

rameters for component j.

3.4.2 Composition estimation under a known mode transi-
tion function

The main switching criteria is the purity specification of the distillate product. In

this case, the following three different types of operating modes are considered:

• Mode 1: This mode represents the startup dynamics when the column is

operated at total reflux (i.e., RR = ∞) until the concentration of the lightest

component in the distillate, xD,1, reaches the specified purity, xsp. The time

at which this occurs is defined as t1(xD,1 = xsp).

• Mode 2: This represents system mode when the column is being operated

at the specified reflux ratio (RRsp) to meet the desired product composition

specification. This mode naturally follows Mode 1 when the time t1 is reached.

• Mode 3: This mode is defined to represent the system operating mode when

the column is operated at a specified minimum reflux ratio (RRmin) such that

RRmin ≪ RRsp. For simulation studies, the switch to this operation mode is

designed to occur at time t2(xD,1 < xsp).
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Table 3.1: Different operating modes for a batch distillation system.

Variables Mode 1 Mode 2 Mode 3
Number of stages 6 6 6
Number of states 18 18 18
Number of components 3 3 3
R (mol/hr) 100 60 20
D (mol/hr) 0 40 80
RR (D/R) Infinite 1.2 0.25
xi,1 0.45 0.45 0.45
xi,2 0.25 0.25 0.25
xi,3 0.30 0.30 0.30

The switching functions for operating modes are given as:

0 ≤ t < t1(xD,1 = xsp), RR = ∞, (3.29)

t1(xD,1 = xsp) ≤ t < t2(xD,1 < xsp), RR = RRsp, (3.30)

t2(xD,1 < xsp) < t ≤ tf , RR = RRmin, (3.31)

where tf is the final batch time. The main job of a state estimator in this case, is

to use the estimated composition profiles to determine the time (ti) at which the

switching of operation will take place. An accurate estimation of the composition

profiles in the distillation column is a necessity for optimum and safe operation of

the process because the time (ti) at which the switching occurs depends on the

column compositions. The system parameters, column configuration and the initial

conditions for the five-tray ternary batch distillation column under different operat-

ing modes are provided in Table 3.1. The column design and operating parameters

are obtained from Quintero-Marmol et al.(1991) [69]. The required product quality

specification (xsp) is 95% purity of the component 1 in the distillate. Based on the

knowledge of the estimated states, the system switches automatically based on the

scheduled estimator-based operating mode switching functions of Eqs. (3.29)-(3.31).

The performance of the developed MHE in the composition estimation and moni-

toring of a switching batch distillation process was examined by investigating the

effect of process noise (w), measurement noise (v) and switching operating modes.

Figure 3.6 shows the compositions of component 1 and 2, both actual and estimated

in some selected stages of the ternary batch distillation column. The result shows

that MHE is able to estimate the column composition profiles well with a horizon

length just N = 1 under the scheduled switching dynamics.

In order to access the performance of MHE comparatively with other existing

estimation techniques, an EKF algorithm was developed for the same process. By
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Figure 3.6: Dynamic composition responses of a batch distillation process: measured
(dash line); estimated (solid line).
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Figure 3.7: MHE and EKF performance comparison using the Mean Square Error
(MSE).

fixing the standard deviation of the measurement noise (i.e. δ2v = 1×10−2), the per-

formances of both MHE and EKF with respect to increase in process variability are

quantitatively compared through their Mean Square Error (MSE) as shown in Fig-

ure 3.7. It is clear that MSE values obtained with MHE algorithm are consistently

smaller than that obtained with EKF algorithm with increase in the process noise

magnitude. With δ2w ≥ 1 × 10−4, EKF shows divergence in some of the estimated

states because some of the set constraints are violated. Figure 3.8 shows that the

performance of the MHE can further be improved by increasing the horizon length,

though at the expense of the computational time. With a horizon length just N = 1,

it takes MHE about 10 times as much time as it takes EKF to achieve the same

simulation results. In this study, using horizon length of just two is sufficient to give

a good composition estimation of the batch distillation column.

3.4.3 Composition estimation under an unknown mode tran-
sition function

In this section, the developed continuum and noncontinuum estimator is applied to

a batch distillation process to estimate composition profiles as well as tracking the

change in system operating mode, which results from an unexpected change in reflux

flow rate (i.e., faulty reflux valve). Let us assume that the system has been designed

in such that any unforseen changes in the system can only trigger the operating
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Figure 3.8: MHE performance with different horizon length (N).

mode to change within a finite set of operation mode given in Table 3.1. Because a

change in operating mode, as considered in this study, is a result of a faulty valve in

the reflux stream, the mode transition function is therefore unknown and the system

dynamics can switch randomly from one operating mode into another. Figures 3.9

and 3.10 show the composition estimation in the distillate and mid-tray stage of the

column while the sequence of the system operating modes is estimated correctly as

shown in Figure 3.11. The mode change detector result shown Figure 3.12 provides

a good indication of where the mode changes occur as a function of time. The thick

solid lines are the true mode changes detected, while the dash lines are false mode

change detected.

It is interesting to compare the result of MCD in Figure 3.12 (i.e., when δ2w =

1 × 10−3) to that in Figure 3.13, where the process noise variability is reduced to

δ2w = 1 × 10−4. It is obvious that the MCD is able to detect the time at which

mode changes occur accurately with no false detection. In general, the effect of a

significant plant-model mismatch on the performance of a mode change detector

(MCD) is of two folds:

• It may lead to a missed detection, a situation where by the MCD fails to raise

alarm when there is indeed a change in the system operating modes. For the

duration of time for which MCD fails to raise alarm for a possible change in

modes, the operating mode estimator (OME) will fail to identify the correct

operating mode on time and the overall performance of the state observer to

estimate the continuum state will also be affected.

• The second effect is that it may lead to a false detection, a situation where the

MCD raises an alarm when there is indeed no change in the system operating
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Figure 3.9: Dynamic composition responses at the distillate of a batch distillation
process: measured (dash line); estimated (solid line).

modes. In this case, because the operating mode estimator (OME) will be

activated to identify the correct operating mode each time there is a detection

by MCD, OME will still be able to determine the correct mode. In this way,

OME is designed to be robust to false detection. Even though there are some

false alarms between the time of 1hr to 1.6hr as shown in Figure 3.12, for

instance, the operation mode estimator result presented in Figure 3.11 shows

that operating modes within the same time region are correctly identified.

3.5 Experimental Study: A Continuous Distilla-

tion Process

Among several studies on the application of state estimation to distillation processes,

few papers tested their results using actual experimental data [57, 9, 10]. Mejdell

and Skogestad (1991) [57] implemented a static partial least-square regression es-

timator for product compositions on a high-purity pilot-plant distillation column.

An experimentally based estimator, with logarithmically transformed temperatures

and compositions, was reported to give excellent performance over a wide range

of operating conditions. Baratti et al. (1995) [9] developed a nonlinear extended

Kalman filter (EKF), which predicts the composition of the outlet streams of a

binary distillation column from the temperature measurements. The performance
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process: measured (dash line); estimated (solid line).
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Figure 3.12: Mode Change Detector (MCD) response when δ2w = 1× 10−3.
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Figure 3.13: Mode Change Detector (MCD) response when δ2w = 1× 10−4.
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of the estimator was evaluated by comparison with data obtained from the several

transient experiments performed in a pilot plant. They extended their work to the

multicomponent distillation column and concluded that a more rigorous vapor-liquid

equilibrium description is required for composition estimation in multicomponent

system [10].

In order to establish the practical reliability of the developed composition esti-

mation technique, we investigate state estimation experimentally on a real distilla-

tion column. The experiments were carried out in a 153 mm diameter distillation

column operated at ambient pressure to separate methanol (MeoH) from methanol-

isopropanol mixture. The flow sheet of the test apparatus is shown in Figure 3.14.

The column sections were made of Pyrex glass and contained five identical stainless

steel sieve trays spaced 318 mm apart. Each tray was equipped with a thermocou-

ple and two liquid sampling points at the inlet and outlet of the tray. The total

pressure drop for the test tray was measured using a differential pressure cell. A

total condenser and thermosiphon partial reboiler completed the distillation system.

The column was completely instrumented for continuous unattended operation. An

Opto-22 process I/O subsystem interface with a personal computer running Lab

View (version 7) was used for the process control and data acquisition.

The column was started with total reflux operation and was then switched to

the continuous mode (normal operation) by introducing feed to the column and

withdrawn two products from top and bottom of the column. When the flow rate

and temperature profiles shown by the software (Lab View) remained constant for

a period of 60 minutes, steady state conditions were assumed for that particular

run. Mass and energy balance calculations were also preformed to ensure that

instrumental errors were insignificant (discrepancy < 5%). Triplicate liquid samples

were taken and analyzed to minimize the error of measurements using a Hewlett

Packard 5790A series II gas chromatograph.

3.5.1 Process modeling and validation

To perform state estimation, a dynamic model of the process is needed. In modeling

the distillation column, we consider only RV-configuration in which both the reflux

flow rate (R) and vapor boil up (V ) are the available independent input variables.

For composition estimation purposes, we modeled both the vapor boil up and reflux

flow rate as discrete-event states in order to capture the noncontinuum dynamics

created by the change in heat input and reflux flow rate. By assuming perfect

level controllers at the bottoms and the reflux drum, negligible energy dynamics

and a linear pressure drops down the column, the methanol-isopropanol distillation

process is modeled based on methanol composition (x) as follows:
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Figure 3.14: A continuous distillation column setup.
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Reboiler i=1: subject to the following constraints:

d(H1x1)

dt
= L2x2 −Bmx1 − Vmy1,

Bm = L2 − Vm,
(3.32)

Tray i (1 ≤ i ≤ f − 1):

d(Hixi)

dt
= Li+1xi+1 − Lixi + Vmyi−1 − Vmyi,

dHi

dt
= Li+1 − Li + δLRm + δLFm,

(3.33)

Feed tray i=f:

d(Hfxf )

dt
= Lf+1xf+1 − Lfxf + Vmyf−1 − (Vm − δLFm)yf + Fmzm,

dHi

dt
= Lf+1 − Lf + Fm + δLRm + δLFm,

(3.34)

Tray i (f + 1 ≤ i ≤ Ns − 1):

d(Hixi)

dt
= Li+1xi+1 − Lixi + (Vm − δLFm)yi−1 − VRyi,

dHi

dt
= Li+1 − Li + δLRm,

(3.35)

Condenser and reflux drum i = Ns:

d(HNsxNs)

dt
= (Vm − δLRm − δLFm)yNs−1 −RmxNs −DmxNs ,

Dm = (Vm − δLRm − δLFm)−Rm,
(3.36)

The liquid flow rate is modeled using the Francis weir formula, while δLR and δLF

account for the effect of temperature difference due to incoming reflux flow rate into

the top of the column and feed flow rate into the feed tray respectively [9]. The two

quantities can be calculated from:

δLRm =
CpRm(TNT

− TNs)

∆Hvap

, (3.37)

and

δLFm =
CpRm(Tf − TF )

∆Hvap

, (3.38)

where ∆Hvap is the heat of vaporization, TNT
is the top stage temperature, TNs

represents the reflux stream temperature, Tf is the temperature of the feed stream

and TF is the feed tray temperature.

The methanol-isopropanol system properties and equilibrium data were obtained

from the work of Ghmeling et al.(1981) [42]. With the vapor-liquid equilibrium

equation correlated as

y⋆i = 0.2722827x4i−0.4356193x3i−0.4627921x2i+1.629680xi+3.504611×10−5, (3.39)
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where y⋆i is the vapor composition of MeoH that is in equilibrium with the liquid

composition (xi) leaving the tray, the actual vapor composition leaving the tray is

calculated using Murphree tray efficiency relation:

yi = yi−1 + Emvm(y
⋆
i − yi−1). (3.40)

The column temperature (T ) on tray i and the reboiler can be obtained from

Ti = Bvp,j/[Avp,j − ln(
yiPi

γjxi
)], (3.41)

where γj is the activity co-efficient of the component j on tray i.

By defining the following new variables,

X := {x1, x1, x2..., xN−1, xNs},
Vm := {V1, ..., Vl, ..., VM},
Rm := {R1, ..., Rl, ..., RM},
u := {Vm, Rm, Dm, Bm},

(3.42)

it is straightforward to see that Eqs. (3.32)-(3.42) are of the same form of the Eq.

(3.3) presented in Section 3.2.

Figures 3.15 and 3.16 show the steady state composition profiles of methanol

(MeoH) at two different operating conditions, while the column composition and

temperature dynamics with a step change in the vapor boil up are presented in

Figures 3.17 and 3.18. In both figures, the measured compositions are compared

with model predictions. It is clear from the figures that the developed model does

capture well both the steady state as well as the dynamics of the column.

3.5.2 Hybrid state estimator performance

The developed hybrid state estimation technique was tested online by conduct-

ing several experiments. Each of the experiments involve series of operating mode

changes to examine how well the estimator can estimate the column composition as

well as the change in operating modes. In this study, we considered the change in the

system operating mode due to a change in the vapor boilup with a known switching

transition function and a change reflux flow rate with an unknown switching func-

tion. The operating conditions considered are summarized in Tables 3.2 and 3.3.

Measurements of temperature from the thermocouple located on all of the column

stages except the condenser are obtained at every minute and feed into the estimator

online. The experimental results given in this section are a representative of several

online experiments conducted under different types of operating mode changes.

With a known switching transition function, Figure 3.19 shows a comparison of

a measured and online composition estimation for various boilup rates. The result
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Figure 3.15: Steady state column composition profiles: experiment (∗); model (−).
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Figure 3.16: Steady state column temperature profiles: experiment (∗); model (−).
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Figure 3.17: Composition dynamics with a step input change in the vapor boilup:
experiment (∗); model (−).

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
64

66

68

70

72

74

76

time (hr)

Te
m

pe
ra

tu
re

,T
(0 C

)

 

 

Reboiler

stage 1

stage 2

stage 4

stage 5

stage 3

            Model 
+,o,x    Experiment
  

Figure 3.18: Stages temperature dynamics with a step input change in the vapor
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Table 3.2: Operating modes based on different vapor boilup rates.

Variables Mode I Mode II Mode III
Vapor boilup, V(kmol/hr) 0.78 1.14 1.44
Reflux flow rate, R(kmol/hr) 0.35 0.35 0.35
Feed flow rate, F(kmol/hr), 1.19 1.19 1.19
Distillate composition, x 0.8920 0.8091 0.7146
Feed composition, z 0.5613 0.5613 0.5613
Tray efficiency, Emv 0.85 0.59 0.55

Table 3.3: Operating modes based on different reflux flow rates.

Variables Mode I Mode II Mode III
Vapor boilup, V(kmol/hr) 1.16 1.16 1.16
Reflux flow rate, R(kmol/hr) 0.35 0.51 0.64
Feed flow rate, F(kmol/hr), 1.19 1.19 1.19
Distillate composition, x 0.8102 0.8532 0.8854
Feed composition, z 0.5613 0.5613 0.5613
Tray efficiency, Emv 0.72 0.68 0.60

clearly shows that the online estimator is able to estimate the composition profile

well under different operating modes. In the result shown in Figure 3.19, the reflux

flow rate is set constant, thus making the main source of operating mode changes

to be the vapor boilup rate. The estimator performance was also tested when the

source of the operating mode changes is a switch in the reflux flow rate created

by a faulty reflux valve (i.e., the noncontinuum state is unknown). The results are

summarized in Figure 3.20. The estimator performance is consistent in estimating

the column composition under different switching dynamics.
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Figure 3.19: State estimator performance under switch in vapor boilup rate (V).
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Figure 3.20: State estimator performance under switch in reflux flow rate (R).
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3.6 Conclusion

A state estimation technique, which has the capability to monitor composition pro-

files of a distillation process under switching dynamics using the available temper-

ature measurements, is investigated. A distillation process is modeled as a hybrid

nonlinear system with the column compositions considered as continuum states,

while the operating modes are modeled as noncontinuum states. A moving hori-

zon estimation algorithm is extended to incorporate a mode change detector and

an operating mode estimator in order to estimate the column compositions as well

as determine if and when there is a change (either desirably or undesirably) in the

system operating mode. The proposed method is shown to be effective by test-

ing it using both the simulation on a switching batch distillation process and the

experiment on a lab-scale methanol-isopropanol continuous distillation system.
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Chapter 4

A Moving Horizon Approach to a
Noncontinuum State Estimation

4.1 Introduction

Existing studies on state estimation have almost exclusively been devoted to a

continuous-valued system with very few exceptions. Many problems of academic

and industrial interests such as operating mode switching, feed quality change, pro-

cess fault diagnosis, and phase change analysis in a chemical process either take a

noncontinuum form, or can be represented by a discrete-valued state and be readily

solved. The state transition of a switching system can be captured by a hidden

Markov model (HMM)[29], and the noncontinuum state estimation problem in such

system can be posed as an optimization problem in which the set of decision variables

takes only a finite set of possible values [66, 35, 82].

This chapter focuses on the development of a noncontinuum state estimator,

which is based on a moving horizon approach for switching systems that follow a

HMM with either a discrete- or continuous-valued noisy measurements. We pro-

pose an arrival cost for a moving horizon estimation of noncontinuum state. The

performance of the proposed method is analyzed by addressing a mode estimation

problem in a reactor and leakage detection in a water tank system.

4.2 Preliminaries

4.2.1 Hidden Markov model

A hidden Markov model (HMM) shown in Figure 4.1 is a statistical model in which

the system being modeled is assumed to be a Markov process. The hidden noncon-

tinuum state sequence, m0:T = {m0, ...,mk, ...,mT}, and the observation sequence,

y0:T = {y0, ...yk, ..., yT}, are modeled by assuming that each observation depends on

the corresponding hidden noncontinuum state and that state at time k is condition-
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Figure 4.1: Hidden Markov model.

ally dependent only on the state at time k − 1. Let us consider a HMM λ defined

by

λ = HMM(P(i,j)
k−1,k, dj(yk), p0), (4.1)

where P(i,j)
k−1,k := P (mk = j|mk−1 = i), for i, j ∈ M . dj(yk) := P (yk|mk = j), is the

observation probability, p0 is the initial distribution, while mk ∈ M : M = {1 : M},
and yk ∈ Rq (if it is continuous-valued), or yk ∈ D : D = {1 : q} (if it is discrete-

valued). The main problem is to estimate the hidden state sequence given the

observed measurements.

One approach to noncontinuum state estimation is to find the sequence of states,

m̂0:T , that maximizes the joint probability of the hidden states, m0:T , and the mea-

surements, y0:T , or simply that solves the optimization problem of the form:

argmin
m̂0:T

{ϕ0:T} : ϕ0:T = − logP (m0:T , y0:T ), (4.2)

where P (m0:T , y0:T ) can be expanded as

P (m0:T , y0:T ) = P (m0)P (y0|m0)
T∏

k=1

P (mk|mk−1)P (yk|mk). (4.3)

Therefore,

− logP (m0:T , y0:T ) = −[logP (m0)+
T∑

k=1

logP (mk|mk−1)+
T∑

k=0

logP (yk|mk)]. (4.4)

By substituting Eq. (4.4) into Eq. (4.2), we have

argmin
m̂0:T

{ϕ0:T} : ϕ0:T = −[logP (m0)+
T∑

k=1

logP (mk|mk−1)+
T∑

k=0

logP (yk|mk)]. (4.5)

To parameterize the objective function of Eq. (4.5), each term on the right side

of Eq. (4.4) will have to be defined, interpreted and expressed as follows:
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1. logP (m0): This term is called the initial cost (at time k = 0) associated with

the initial probability distribution of state m0 = l and it is expressed as

logP (m0 = l) =
M∑
j=1

logα
(j)
0 p

(j)
0 , (4.6)

where p
(j)
0 is the jth element of p0 and α

(j)
k is defined by

α
(j)
k =

{1 if j=mk

0 if j ̸=mk

. (4.7)

2. logP (mk = l|mk−1 = s): This term represents the transition cost of a system

mode m transiting from state s at time time k − 1 to state l at the time k. If

we define a one-step transition probability by

P(s,l)
k−1,k := P (mk = l|mk−1 = s), for s, l ∈M, (4.8)

then, the transition cost from a state s at time k − 1 into a state l at time k

can be formulated as

logP (mk = l|mk−1 = s) =
M∑
i=1

M∑
j=1

log γ
(i)
k−1α

(j)
k P(i,j)

k−1,k, (4.9)

where γ
(i)
k−1 is defined as

γ
(i)
k−1 =

{1 if i=mk−1

0 if i̸=mk−1

. (4.10)

3. logP (yk|mk): This is termed as the observation cost, which is the cost associ-

ated with the uncertainties in the observation data and it can be defined using

the conditional distribution of observation yk given the state mk as

logP (yk|mk = l) = log dl(yk). (4.11)

The exact form of dl(yk) depends on whether the observation sequence is

discrete or continuous.

By substituting Eqs. (4.8)-(4.11) into Eq. (4.5), then, the generalized objective

function can be formulated as

argmin
m̂0:T

{ϕ0:T} : ϕ0:T = −
M∑
j=1

α
(j)
0 log p

(j)
0 −

T∑
k=1

M∑
i=1

M∑
j=1

γ
(i)
k−1α

(j)
k logP(i,j)

k−1,k

−
T∑

k=0

M∑
j=1

α
(j)
k log dj(yk), (4.12)
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subject to:

γ
(i)
k−1 =

{1 if i=m̂k−1

0 if i̸=m̂k−1

,

α
(j)
k =

{1 if j=m̂k

0 if j ̸=m̂k

,

m̂k ∈ {1, ...,M}, k = 0 : T.

(4.13)

It is obvious that Eqs. (4.12) and (4.13) constitute a batch optimization problem

and will become computationally expensive and numerically intractable as time T

increases. Besides, the total number of all possible trajectories of the noncontinuum

state sequences will increase with increase in time T according to the following

relation

υ0:T =MT+1. (4.14)

For instance, if M = 10 and T = 10, then total number of all possible trajectories

will be υ0:10 = 1011. Given a discrete observation sequence, an approximate recursive

solution to estimate a discrete state sequence has been provided by a famous Viterbi

algorithm (VA) [29]. In the sections that follow, a brief description of a VA algorithm

will be provided with the expectation to provide a necessary background to our work

as well as to elucidate the similarities and the differences between the VA algorithm

and our proposed method.

4.2.2 Viterbi algorithm (VA)

The Viterbi algorithm is typically an application of dynamic programming, which

is widely used for estimation and detection of a discrete-event problems in signal

processing, digital communication as well as character recognitions [70]. Given a

set of observation sequence y0:T , VA is an inductive and recursive algorithm, which

attempts to find the most likely state sequence m̂0:T in a given hidden Markov

process and the accumulated corresponding likelihood scores [70]. Based on the

different area of applications and method of implementations, there are generally two

types of VA algorithm that exist in the literature, which are offline VA algorithm [70]

and online VA algorithm [29]. In this section, the two algorithms are summarized.

Offline Viterbi algorithm

An offline VA algorithm uses a dynamic programming method to provide a recursive

solution to the optimization problem of the following form:

argmin
m0:T

{− logP (m0:T , y0:T )}, (4.15)

under the following conditions:
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• The observations are noncontinuum states represented with generated sym-

bols.

• All of the observation sequences must be available up to time T .

• The algorithm is implemented offline for a finite sequence of the observed data.

If we define δk(l), the accumulated cost along a single path, which accounts for

the first k observed data with final optimum state m̂k = l at a time k, by

δk(l) := min
m̂0:k

{− logP (m0:k, y0:k)}, (4.16)

then, the complete procedure of the offline Viterbi algorithm as adapted from the

work of [70] is summarized as follows:

1. Given observation sequence:

y0:T = {y0, y1, ..., yT}. (4.17)

2. Initialization at time k = 0 and for i ∈ {1 :M}:

δ0(i) = − log p
(i)
0 − log di(y0), (4.18)

ψ0(i) = 0, (4.19)

where ψk(i) denotes the state at time k − 1, which has the lowest cost corre-

sponding to the mode transition to state i at time k.

3. Recursion: For k ∈ {1 : T} and for l ∈ {1 :M}:

δk(l) = min
i∈{1:M}

{δk−1(i)− logP(i,l)
k−1,k − log di(yk)}, (4.20)

ψk(l) = arg min
i∈{1:M}

{δk−1(i)− logP(i,l)
k−1,k}, (4.21)

4. Termination:

Ĵ = min
i∈{1:M}

{δT}, (4.22)

m̂T = arg min
i∈{1:M}

{δT}, (4.23)

where Ĵ and m̂T are the optimum accumulated cost and state at the final time

T respectively.

5. Back tracking the optimal state sequence for k = T − 1, T − 2, ..., 0 as:

m̂k = ψk+1(m̂k+1). (4.24)
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It is obvious that the implementation of the VA algorithm summarized in Eqs.

(4.16)-(4.24) is offline. However, many process monitoring and control applications

will demand a state estimation that can be implemented online. Besides, this al-

gorithm can only be applied to estimate a noncontinuum state sequence from the

offline data obtained from a batch system, or from a continuous system with the

observed data obtained and analyzed in batch mode. Even if VA is to be used for

a batch system, a large memory will be required for storage (i.e., as shown through

the Eq. (4.14) given a large observed data sequence.

Online Viterbi algorithm

Given the observation yk at any given time k, the online Viterbi algorithm provides

a recursive optimal solution to the problem of estimating the noncontinuum state

mk based on the smallest cumulative cost δk(mk) among the M surviving costs up

to time k. Therefore, the online Viterbi algorithm provides a recursive solution to

the integer optimization problem of the following form:

argmin
mk

{− logP (mk, y0:k)}, (4.25)

If we define δk(m̂k) such that

δk(m̂k) := min
m̂k

{− logP (mk, y0:k)}, (4.26)

then, the online VA algorithm is summarized as follows:

1. Initialization at time k = 0 and for i ∈ {1 :M}:

δ0(i) = − log p
(i)
0 − log di(y0), (4.27)

m̂0 = arg min
i∈{1:M}

{δ0(i)} (4.28)

2. Recursion: For k ∈ {1 : T} and for l ∈ {1 :M}:

δk(l) = min
i∈{1:M}

{δk−1(i)− logP(i,l)
k−1,k − log di(yk)}, (4.29)

m̂k = arg min
i∈{1:M}

{δk(i)}, (4.30)

Even though, the On-VA is a viable option for a real-time implementation, we will

later demonstrate through simulation studies that the On-VA is less accurate than

the Off-VA as expected. In the next section, we will develop a new noncontinuum

state estimator, which is based on a moving horizon estimation approach that will

be shown to be as accurate as the Off-VA, and as efficient as On-VA for online

implementation.
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Figure 4.2: Moving horizon scheme.

4.3 Moving Horizon Estimation Approach

In order to develop a state estimator that is computationally feasible to be im-

plemented online, a new optimality criterium for a moving horizon estimation of

noncontinuum state (MHENS) is defined as

arg min
m̂T−N :T

{ϕMHE} : ϕMHE = − logP (mT−N :T , y0:T ). (4.31)

In this way, we solve for a finite set of the optimum state sequence over a moving

window as shown in Figure 4.2. At each time step, the oldest observation sample will

be eliminated upon the arrival of the newest sample, thus keeping a fixed horizon

length N with N+1 observation samples available at each time T for the estimation.

By making use of Markov properties, ϕMHE in Eq. (4.31) can be reformulated

as follows:

ϕMHE = − logP (mT−N :T , y0:T ),

= − log[P (mT−N , y0:T−N)P (mT−N+1:T , yT−N+1:T |mT−N)],

= − log[P (mT−N , y0:T−N)]− log[P (mT−N+1:T , yT−N+1:T |mT−N)],

= − log[P (mT−N , y0:T−N)]−
T∑

k=T−N+1

logP (mk|mk−1)−
T∑

k=T−N+1

logP (yk|mk).

(4.32)

If ϕT−N(j) := − log[P (mT−N = j, y0:T−N)], at time T , for which T ≥ N , the
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optimization problem in Eq. (4.31) becomes

arg min
m̂T−N :T

{ϕMHE} : ϕMHE =
M∑
j=1

α
(j)
T−NϕT−N(j)−

T∑
k=T−N+1

M∑
i=1

M∑
j=1

γ
(i)
k−1α

(j)
k logP(i,j)

k−1,k

−
T∑

k=T−N+1

M∑
j=1

α
(j)
k log dj(yk), (4.33)

subject to:

γ
(i)
k−1 =

{1 if i=m̂k−1

0 if i̸=m̂k−1

,

α
(j)
k =

{1 if j=m̂k

0 if j ̸=m̂k

,

m̂k ∈ {1, ...,M} k = T −N : T.

(4.34)

where ϕT−N(j) is termed the arrival cost, which accounts for the cost of arriving at

state j at time T −N given all of the past observed data.

4.3.1 Arrival cost development

Arrival cost is important to a moving horizon estimation implementation because it

summarizes the effect of the past data on the estimation of the current state [72]. In

order to achieve a computationally tractable solution to the optimization problem

posed in Eqs. (4.33) and (4.34), we must formulate the arrival cost in a recursive

form. Using a forward procedure technique [70], the arrival cost is derived as:

ϕT−N(j) = − log
[
P (mT−N = j, y0:T−N)

]
,

= − log

[
M∑
i=1

P (yT−N ,mT−N = j|yT−N−1{mT−N−1 = i})P (yT−N−1{mT−N−1 = i})

]

= − log

[
M∑
i=1

P (yT−N |mT−N = j, yT−N−1{mT−N−1 = i})

P (mT−N = j|yT−N−1{mT−N−1 = i})P (yT−N−1|mT−N−1 = i)P (mT−N−1 = i)

]

= −
M∑
i=1

log{P (yT−N−1|mT−N−1 = i)P (mT−N−1 = i)} −

M∑
i=1

logP (mT−N = j|mT−N−1 = i)− logP (yT−N |mT−N = j),

=
M∑
i=1

[
ϕT−N−1(i)− logP(i,j)

T−N−1,T−N

]
− log dj(yT−N). (4.35)
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4.3.2 The MHENS algorithm

Once the arrival cost ϕT−N(j) at time T −N is derived, the final form of a moving

horizon estimation for noncontinuum state (MHENS) is obtained by substituting

the arrival cost function of Eq. (4.35) into Eq. (4.33) to give

arg min
m̂T−N :T

{ϕMHE} : ϕMHE =
M∑
j=1

M∑
i=1

α
(j)
T−Nγ

(i)
T−N−1

[
ϕT−N−1(i)− logP(i,j)

T−N−1,T−N

]
−

T∑
k=T−N+1

M∑
i=1

M∑
j=1

γ
(i)
k−1α

(j)
k logP(i,j)

k−1,k −
T∑

k=T−N+1

M∑
j=1

α
(j)
k log dj(yk),

(4.36)

subject to:

γ
(i)
k−1 =

{1 if i=m̂k−1

0 if i̸=m̂k−1

,

α
(j)
k =

{1 if j=m̂k

0 if j ̸=m̂k

,

m̂k ∈ {1, ...,M} k = T −N : T.

(4.37)

The objective function of Eqs. (4.36) and (4.37) constitutes an integer optimi-

zation problem. In this study, we have employed an enumerative combinatorial

optimization method [14] to provide the solution to the integer optimization prob-

lem of Eq. (4.36). Combinatorial optimization is an integer-based method in which

the set of feasible solutions is discrete or can be reduced to a discrete one, with

the objective of finding the best possible solution [14]. Unlike linear programming

for a continuous-valued optimization, whose feasible region is a convex set and the

optimum solution can be obtained using the calculus-based derivative approaches,

in combinatorial problems, one must search a lattice of feasible points or, in the

mixed-integer case, a set of disjoint line segments, to find an optimal solution.

When N = 0, Eqs. (4.36) reduces to

argmin
m̂T

{ϕMHE} : ϕMHE =
M∑
j=1

M∑
i=1

α
(j)
T γ

(i)
T−1

[
ϕT−1(i)−logP(i,j)

T−1,T

]
−

M∑
j=1

α
(j)
T log dj(yT ),

(4.38)

subject to Eq. (4.37). It is interesting to note from Eq. (4.37) ) that when N = 0,

the MHENS reduces directly to a point estimation problem, the solution of which

is the same as that provided by online Viterbi algorithm (On-VA).

MHENS for a discrete-event system

In this section, we consider a hidden Markov process in which the measurements are

discrete symbols. In this case, the observation can only take on a set of finite obser-

61



vation symbols (i.e., yk = z such that z ∈ {1, ..., q}). The probability distribution

can be characterized by observation matrix D such that

P (yk = z|mk = j) = Dj,z for z ∈ {1, ..., q} and j ∈ {1, ...,M}. (4.39)

Therefore, Eq. (4.39) can be substituted into Eq. (4.36) to give a simplified integer

optimization problem of the form:

arg min
m̂T−N :T

{ϕMHE} : ϕMHE =
M∑
i=1

M∑
j=1

γ
(i)
T−N−1α

(j)
T−N

[
ϕT−N−1(i)− logP(i,j)

T−N−1,T−N

]
−

T∑
k=T−N+1

M∑
i=1

M∑
j=1

γ
(i)
k−1α

(j)
k logP(i,j)

k−1,k

−
T∑

k=T−N

M∑
j=1

q∑
z=1

σ
(j,z)
k logDj,z, (4.40)

subject to:

γ
(i)
k−1 =

{1 if i=m̂k−1

0 if i ̸=m̂k−1

,

α
(j)
k =

{1 if j=m̂k

0 if j ̸=m̂k

,

σ
(j,z)
k =

{1 if j=m̂k, z=yk

0 if j ̸=m̂k, z ̸=yk

,

m̂k ∈ {1, ...,M}.

(4.41)

MHENS for a stochastic continuous dynamic system

Let us consider a switching discrete-time linear system given as

xk = F (mk)xk−1 +B(mk)uk−1 + wk−1, wk ∈ N(0, Qk),

yk = H(mk)xk + vk, vk ∈ N(0, Rk),
mk = η(mk−1, λ)

(4.42)

where xk ∈ Rn, uk ∈ Rp, yk ∈ Rq denote state, input, and observation vectors

respectively. Both the additive process noise, wk, and measurement noise, vk, are

assumed to be Gaussian with the covariance matrices of Qk and Rk respectively.

Therefore the continuous observation density function dj(yk) = P (yk|mk = j) follows

a Gaussian distribution with the mean of H(mk)xk and covariance matrix Rk. If we

express P (yk|mk) as

P (yk|mk = j) = (2/π)−
q
2R

− 1
2

k exp{−1

2
vTkR

−1
k vk}, (4.43)
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where vk = yk − H(mk=j), the MHENS algorithm for a stochastic dynamic system

with a continuous observation function is derived as

arg min
m̂T−N :T

{ϕMHE} : ϕMHE =
M∑
i=1

M∑
j=1

γ
(i)
T−N−1α

(j)
T−N

[
ϕT−N−1(i)− logP(i,j)

T−N−1,T−N

]
−

T∑
k=T−N+1

M∑
i=1

M∑
j=1

γ
(i)
k−1α

(j)
k logP(i,j)

k−1,k

+
1

2

T∑
k=T−N

M∑
j=1

α
(j)
k v̂TkR

−1
k v̂k, (4.44)

subject to:

v̂
(m̂k)
k = yk −H(m̂k)xk,

γ
(i)
k−1 =

{1 if i=m̂k−1

0 if i ̸=m̂k−1

,

α
(j)
k =

{1 if j=m̂k

0 if j ̸=m̂k

,

m̂k ∈ {1, ...,M}.

(4.45)

The MHENS is designed to estimate the sequence, m̂k−N :T . Therefore, at any

given time T , the estimates comprise both the smoothing part (i.e., m̂k−N :T−1 ) and

the filtering part (i.e., m̂T ). For online implementation, only m̂T is used. However,

the estimated m̂T depends on the most updated smoothing estimates. In order to

solve for m̂T−N :T from Eqs. (4.44) and (4.45), we need to know the continuum state

sequence xT−N :T a priori. If these continuum states are not measurable or they can

only be measured with some degree of uncertainties, The MHENS algorithm will

have to be combined sequentially with an optimum continuous-valued filter, i.e., a

Kalman filter [85], to provide the continuum state estimates. For a hybrid linear

system, a switching Kalman filter of the following form

x̄k = F (m̂k)x̂k−1 +B(m̂k)uk−1,

ȳk = H(m̂k)x̄k,

Pk = F (m̂k−1)Pk−1(F
(m̂k−1))T +Qk,

Kk = Pk(H
(m̂k))T{H(m̂k)Pk(H

(m̂k))T +Rk}−1,
x̂k = x̄k +Kk(yk − ȳk),

(4.46)

can be constructed and embedded as an intermediate step to provide the continuum

state estimate.

Constraint handling in noncontinuum state estimation

A moving horizon estimator has the natural ability to handle constraints. Con-

straints are typically required when modeling bounded variables (i.e., state, input
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or disturbance). Besides, other additional information about a system can be easily

casted in the form of constraints to aid a state estimator performance. Constraint

handling on a continuum state estimation through a moving horizon optimization

has been well studied [12, 72]. In this work, we demonstrate that additional informa-

tion about a system measured input can be used to constrain the system operating

mode space (i.e., noncontinuum state space). For illustration purposes, we consider

the following additional constraints based on the available information about the

system inputs:

uk ∈ U, Mi = f(uk), mk ∈ {1, ...,Mi}. (4.47)

In this case, the system operating mode space Mi is time varying as its value at any

given time k depends on the control input uk. Therefore, the combination of Eqs.

(4.44) - (4.46) with Eq. (4.47) completes a MHENS formulation for a constrained

stochastic dynamic system.

4.3.3 Performance index

In this study, the performance of MHENS will be analyzed by using a Monte Carlo

simulation method [79] with the following defined performance index:

Missing Rate (MR) =
# of false estimation

# of sampling instants
%. (4.48)

Missing rate (MR) quantifies the MHENS performance, in term of percentage, how

well the noncontinuum state sequence is estimated. For instance, a MR of 0% means

we have a perfect estimation with no missing point, while a MR of 100% implies all

of the states are incorrectly estimated.

4.4 Case Studies

4.4.1 Case study I: Leakage detection in a water tank sys-
tem

Let us consider a storage water tank system with water level indicators installed on

it as shown in Figure 4.3. The water level indicator readings are characterized as

discrete symbols chosen from a finite set of alphabets (i.e., {a, b, c}, which indicate

different height (m) of water in the tank as shown in Figure 4.3). The aim is to

determine if there is a leakage from the tank given the water level indicator readings.

In this case, we cast the problem as two discrete-event states such that state “1”

represents “leakage”, while state “2” represents “No leakage”. This problem can

be represented by using a hidden Markov model as shown in Figure 4.4. We have

assumed that the hidden Markov parameters given in Figure 4.4 are available as
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Figure 4.3: Leakage detection in a storage water tank system.

these can be obtained using different system identification methods [70] from the

historical observation data of the system.

Using the performance index defined in Section (4.3.3), we compare the perfor-

mances of the three algorithms, which are the offline Viterbi algorithm (Off-VA)

[70], the online Viterbi algorithm (On-VA), and our proposed method, the moving

horizon estimation for noncontinuum state (MHENS). Note that only the On-VA

and MHENS can be implemented online, while Off-VA can only be implemented

offline and it is considered for a performance assessment analysis only.

Figure 4.5 compares the performance of the online MHENS with those of the

offline Viterbi algorithm (Off-VA) and the online Viterbi algorithm (On-VA). The

results show that MHENS has the same level of accuracy with the Off-VA with the

missing rate MR = 3%, while MHENS is implemented online in the same way with

On-VA, which has a lower estimation accuracy (i.e., MR = 10%).

In order to see the effect of the horizon length N on the performance of the

MHENS, we have used a Monte Carlo simulation analysis [79] to simulate 10, 000

random samples with 100 iterations in each case studied. This analysis is repeated

for a varying horizon length N and the results are shown in Figure 4.6. The MR for

Off-VA and On-VA remain fairly constant at 5.84% and 10.45% respectively since

they are independent of horizon length N . However, it is interesting to see from

Figure 4.6, how the MR of the MHENS decreases rapidly as the horizon length

increases and then converges to the MR of the Off-VA from the point when N = 5.

4.4.2 Case study II: Continuous stirred tank reactor

The continuous stirred tank reactor (CSTR) shown in Figure 4.7 is one of the most

common and important chemical processes, which often exhibits complex behavior

such as steady-state multiplicities. The possibility of steady-state multiplicity im-
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Figure 4.4: Hidden Markov model and parameters for a leakage detection in a storage
water tank system.

plies that the process dynamics can easily switch between multiple operating regions

at the slightest change in the system conditions either due to process fault or an

undesirable disturbance input [83].

To achieve an effective operation, monitoring, and control of such system, which

has tendency to switch in between multiple operating regions,a state estimator that

has the capability to estimate a real-time operating mode is required. Besides, safety

analysis of CSTR towards undesirable changes in operating conditions will demand

a noncontinuum state estimator that will be able to estimate the active system

operating mode based on the available measurement data.

A CSTR model

Different types of models with various levels of complexities have been developed

for CSTR in the literature. In this work, we consider a CSTR model presented in

Senthil et al. (2006) [83]. The process involves an irreversible, exothermic reaction

A → B, which occurs in a constant volume reactor cooled by a coolant stream q.

The process dynamics equations are summarized as follows:

dCA

dt
=

q

V
(CA0 − CA)− k0CAe

−E/RT , (4.49)

dT

dt
=

q

V
(T0−T )− (−∆HCAk0)

ρCp

e−E/RT +
ρcCpcqc
ρCpV

[1− e−hA/qcρCp ]{Tc0−T}, (4.50)

where CA, q and T are the concentration (mol/L), flow rate (L/min), and temper-

ature (K) inside the reactor respectively. V is the reactor volume, k0 is the reaction
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Figure 4.5: Noncontinuum state estimation in a water tank system.
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Figure 4.7: A continuous stirred tank reactor (CSTR).
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Table 4.1: System parameters

Parameters, (units) Values
Reactor volume, V (L) 100
Specific heats, Cp, Cpc (cal/gK) 1
Heat of reaction, −∆H (cal/mol) −2× 105

Activation energy term, E/R (K) 1× 104

Reaction rate constant, k0 (min−1) 7.2× 1010

Heat transfer term, hA (cal/minK) 7× 105

Liquid density, ρc, ρ (g/L) 1× 103

Table 4.2: Multiple operating modes

Process variables, (units) 1 2 3 4 5
Reactor conc., CA(mol/L) 0.0795 0.0885 0.0989 0.1110 0.1254
Reactor temp.,, T (K) 443.46 441.15 438.78 436.31 433.69
Coolant flowrate, qc(L/min) 97 100 103 106 109
Feed conc., CA0(mol/L) 1 1 1 1 1
Feed temp., T0(K) 350 350 350 350 350
Coolant temp., Tc0(K) 350 350 350 350 350
Process flowrate, q(L/min) 100 100 100 100 100
Damping factor, DF , 0.661 0.540 0.416 0.285 0.141
Frequency, Fr(rad/s) 3.93 3.64 3.34 3.03 2.71

rate, ∆H is the reaction heat, ρ is the density, Cp is the specific heat, while U and

A are the effective heat transfer coefficient and area respectively.

If we define x := [CA, T ]
T as the continuum states; u = q as the controlled input

variable; e = qc as the disturbance variable, and by denoting the operating mode at

time k as (mk ∈M), then the nonlinear CSTR model of Eqs. (4.49) and (4.50) can

be discretized and linearized around different set of operating conditions to conform

to the switching linear system of Eq. (4.42)

The system parameters as well as the five sets of operating modes considered

in this work as summarized in Tables 4.1 and 4.2 are obtained from the work of

Senthil et al. (2006) [83]. The switch in system operating modes is based on the

variation of the coolant flow rate (qc). The switching transition function that defines

the changes from one operating mode into the other is not known a priori, but it

follows a hidden Markov model (HMM).
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Figure 4.8: Operating mode estimation: m.
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Figure 4.9: Concentration and temperature estimates.
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Table 4.3: Effect of the horizon length (N) and the incorporating constraints

No Constraint MR CPU time (sec)
N=1 17.67% 5.89
N=2 16.67% 27.17
N=3 14.50% 176.49
Constraint MR (%) CPU time (sec)
N=1 17.00% 5.21
N=2 16.67% 22.15
N=3 13.67% 117.40

Noisy temperature and concentration measurements

In this section, we will assume that both the temperature and concentration are

measurable, but with some degree of uncertainties. The process and measurement

noise covariance matrices are assumed to be

Qk =

(
0.0012 0

0 0.12

)
, Rk =

(
0.0052 0

0 1.502

)
. (4.51)

The errors in initial conditions for both temperature and concentration are as-

sumed to be 1% of their true values. The simulation results of the operating mode

estimation as well as estimated temperature and concentration dynamics are shown

in Figure 4.8 and Figure 4.9. It can be seen from Figure 4.8 that the estimator

is able to estimate well the operating mode. The results clearly demonstrate that

the developed state estimator can be effective in estimating the switching operating

modes as a function of time.

Effect of the horizon length and incorporating constraints

Among several advantages of a state estimator development, which is based on a

moving horizon approach is the ability to use horizon length (N) as an additional

degree of freedom to improve state estimation accuracy and the effectiveness in

handling system constraints. As shown in Table 4.3, increasing the horizon length,

while keeping other factor constant, will lead to a lower missing rate (MR) for

noncontinuum state estimation. However, as shown in Table 4.3, the computational

time can be rapidly increased with increase in the horizon length.

By observing critically an unconstrained noncontinuum state estimation shown

in Figure 4.8, one can easily see that from time k = 100 to k = 200, the real non-

continuum state m switches only between operating mode 1 to 3. This observation

occurs, each time when the change in the control input signal is positive. This ad-

ditional information from the control input can be casted as constraints to improve
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Figure 4.10: Operating mode estimation with constraints: m.
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Figure 4.11: Operating mode estimation with no constraints: m.
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Figure 4.12: Concentration and temperature estimates.
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the MHENS performance. In order to assess the performance of the MHENS when

this information is taken into consideration, the following constraints are considered

and incorporated in the MHENS algorithm:

∆uk > 0, mk ∈Mi : Mi = 3, (4.52)

∆uk ≤ 0, mk ∈Mi : Mi = 5. (4.53)

∆uk is the change in input at time k and Mi denote sets of operating conditions.

Figure 4.10 shows a real-time performance of MHENS in estimating the system op-

erating mode when the constraints are included. The MHENS makes use of the

additional information provided by the constraints to improve the estimation. Be-

tween the time interval, k = 100 : 233, during which ∆uk > 0, the MHENS imposes

the constraints as defined in the Eqs. (4.52)-(4.53) to limit the noncontinuum state

domain (i.e., Mi = 3). If we quantitatively compare the state estimation results

when there are no constraints with those when the constraints are imposed as sum-

marized in Table 4.3, we can clearly see that the missing rate (MR), as well as

the computational time, is much lower when the constraints are imposed. This

indicates that the switching operating mode has been better estimated with less

computational time.

Effect of using noisy temperature measurement only

In a practical situation, the online measurement of the reactor concentration is often

difficult, while the measurement of temperature is relatively easy and available. In

this section, the performance of the developed state estimator is tested when the only

observation available is a noisy temperature measurement. In this case, the standard

deviation of the temperature measurement noise is assumed to be δv,1 = 1.50K. The

state estimator performances in estimating the switching operating mode as well as

the reactor concentration and the temperature are shown in the Figure 4.11 and

Figure 4.12. If the constraints given in the form of Eqs. (4.52)-(4.53) are imposed,

Figure 4.13 and Figure 4.14 show that switching operating mode as well as the

reactor concentration and the temperature are better estimated.

4.5 Conclusion

An online noncontinuum state estimation, which is based on a moving horizon ap-

proach for switching systems that follow a HMMwith either a discrete- or continuous-

valued noisy measurements, is proposed in this study. The arrival cost, which sum-

marizes the effect of past and a prior information on the current states, is developed.

The effects of horizon length as well as constraints handling on MHENS performance
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Figure 4.13: Operating mode estimation with constraints: m.
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Figure 4.14: Concentration and temperature estimates.
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are quantitatively analyzed. The simulation studies on a water tank system for a

leakage detection problem as well as on a continuous stirred tank reactor for an

operating mode estimation problem have shown that the developed noncontinuum

state estimator is effective.
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Chapter 5

Development of a Simultaneous
Continuum and Noncontinuum
States Estimator

5.1 Introduction

1Most of the hybrid state estimation methods that exist in the literature use se-

quential approach largely because it is intuitively the easier of the two approaches

to develop or formulate. Besides, combination of different types of filters can be

tried to achieve one form of improvement or the other. However, the major setback

of this method is the interaction effects of two filters, especially if there are other

external constraints desired to be satisfied by the system [72]. Besides, a hybrid

state estimation that uses such an approach often poses different implementation

challenges. Another approach to a hybrid state estimation development is called

a simultaneous approach, in which a single filter with a single objective function

is formulated to simultaneously estimate both the continuum and noncontinuum

states. The development of such a filter is non trivial, but it has the advantage of

addressing a hybrid state estimation problem in a unified and systematic way. The

work presented in this chapter belongs to the simultaneous approach. A moving

horizon estimation (MHE) is one of the few methods, which provides a platform

to develop a simultaneous continuum and noncontinuum states estimation largely

because a state estimation problem can be casted as an optimization problem and

be readily solved [72, 12, 25, 26, 67].

Although, a moving horizon estimation reduces the computational burden of

solving a full information estimation problem by considering a finite horizon of the

measurement data, however, the process of summarizing and updating the prior

1. This chapter has been published as “M.J. Olanrewaju, B. Huang, and A. Afacan. Development
of a simultaneous continuum and noncontinuum state estimator with application on a distillation
process, AIChE Journal, 2011, DOI 10.1002/aic, Vol.00, No. 0.”
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information from the past data (i.e., arrival cost), is non-trivial [72, 68, 91]. The

problem of the arrival cost development will surely be further complicated by the

presence of noncontinuum states. This is because the arrival cost for a hybrid moving

horizon estimator must not only summarize the past data based on the continuum

state evolution, but also must be able to account for the past history of the system

mode transition trajectory. In Chapter 4, a moving horizon estimation method was

used to develop noncontinuum state estimator for a class of switching dynamical

system. A detailed derivation of an arrival cost for noncontinuum state moving

horizon estimation was provided. When applying the noncontinuum state estimator

to the switching dynamic system, a Kalman filter is recommended to approximately

reproduce the continuum state in order to sequentially estimate the noncontinuum

state (i.e., switching sequence).

In this chapter, a generalized hybrid state estimation technique, which is based

on a moving horizon approach to achieve a simultaneous estimation of both the

continuum and noncontinuum states from a single objective function, is developed.

Arrival cost for a hybrid moving horizon estimator (HMHE) will be derived. The

effects of constraints, process and measurement noise levels, and a moving horizon

length on the simultaneous estimation of both the continuum and noncontinuum

states will be studied. To test the practical reliability of the proposed estimation

method, a detailed experimental work will be carried out on a distillation process to

estimate the top product composition as well as the operating mode change due to

the switching dynamics in the vapor boilup using the available noisy temperature

measurements.

5.2 A Hybrid Process Model

Consider once again, the following switching discrete process model:

mk = η(mk−1;λ),
xk = fmk

{xk−1, uk−1; θ}+ wk−1,
yk = gmk

(xk; β) + vk,
mk ∈ M : M = {1, ...,M},

(5.1)

where xk ∈ Rn denotes the continuum state, uk ∈ Rp is the input and yk ∈ Rq

denotes the observed output from the system. mk is the noncontinuum state, which

denotes the system operating mode. fmk
is a transition function determining the

mean of xk given xk−1 and mk, while gmk
is an output function determining the

mean of the yk given xk and mk. wk ∈ N(0, Qk) and vk ∈ N(0, Rk) are assumed to

be the additive process noise and measurement noise respectively, while the initial

condition is also assumed to be Gaussian, i.e., x0 ∈ N(x̄0, P0). θ and β denote the

system parameters. Change in the system operating mode can be due to either a
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Figure 5.1: A switched dynamic system with continuum and noncontinuum states.

change in the system internal states, a case that is common in chemical systems

with steady state multiplicities [43], or an unknown external disturbance input [96].

This work focuses only on state estimation of a switched system given that both the

output y and input u are known.

5.3 Hybrid Moving Horizon Estimator (HMHE)

If we define x0:T = {x0, ..., xT} and m0:T = {m0, ...,mT}, then, a hybrid batch state

estimation can be formulated as the optimum sequences of the continuum and non-

continuum states for which the conditional joint probability density function (jpdf )

P (m0:T , x0:T |y0:T ) is maximized or equivalently, for which the negative logarithm of

the jpdf P (m0:T , x0:T , y0:T ) is minimized:

min
m̂0:T , x̂0:T

JT : JT := − lnP (m0:T , x0:T , y0:T ). (5.2)

However, instead of using all of the available measurements y0:T to solve for the

optimum state sequence m̂0:T and x̂0:T through a batch optimization, we propose

a rigorous formulation of a hybrid moving horizon estimator (HMHE) objective

function, which seeks to optimize the negative logarithm of the joint distribution of

the states xT−N :T and mT−N :T given all of the measurement data up to time T as

min
m̂T−N :T , x̂T−N :T

{JT} : JT = − ln{P (xT−N :T ,mT−N :T , y0:T )}. (5.3)
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JT can also be expressed as

JT = − ln{P (xT−N ,mT−N , y0:T−N)} −

ln{P (xT−N+1:T ,mT−N+1:T , yT−N+1:T |xT−N ,mT−N , y0:T−N)}. (5.4)

However, given the fact that xT−N+1:T ,mT−N+1:T and yT−N+1:T are conditionally

independent on y0:T−N , given xT−N andmT−N (see Figure 5.1, and using the Markov

property), Eq. (5.4) can be reduced to

JT = − ln{P (xT−N ,mT−N , y0:T−N)} −

ln{P (xT−N+1:T ,mT−N+1:T , yT−N+1:T |xT−N ,mT−N). (5.5)

If we define each term of Eq. (5.5) as follows:

ϕT−N = − ln(P (xT−N ,mT−N , y0:T−N), (5.6)

and

JT−N+1:T = − ln{P (xT−N+1:T ,mT−N+1:T , yT−N+1:T |xT−N ,mT−N), (5.7)

then, Eq. (5.3) can be simplified to

min
m̂T−N :T , x̂T−N :T

{JT} : JT = ϕT−N + JT−N+1:T , (5.8)

Using Markov properties [70], the HMHE objective function can be derived from

Eq. (5.8) as shown in Appendix A to give

min
{m̂T−N :T , ŵT−N :T }

JT : JT = ϕT−N −
T∑

k=T−N+1

M∑
i=1

M∑
j=1

γ
(i)
k−1α

(j)
k lnP(i,j)

k−1,k

+
T−1∑

k=T−N

M∑
j=1

α
(j)
k ŵT

kQk
−1ŵk +

T∑
k=T−N+1

M∑
j=1

α(j)v̂TkRk
−1v̂k, (5.9)

subject to:

x̂k = fm̂k
(x̂k−1, uk−1; θ) + ŵk−1, k = T −N : T − 1,

v̂k = yk − gm̂k
(x̂k; β), k = T −N : T,

γ
(i)
k−1 =

{1 if i=m̂k−1

0 if i ̸=m̂k−1

,

α
(j)
k =

{1 if j=m̂k

0 if j ̸=m̂k

,

m̂k ∈ M : M = {1, ...,M}.

(5.10)

ϕT−N in Eq. (5.9) is the cost at time T − N , given all of the observations up to

time T −N . The term ϕT−N will be referred to as the the arrival cost, which means
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the cost associated with the uncertainty of continuum and noncontinuum states at

time T − N , given all the observed outputs up to time T − N , the beginning of

the horizon phase. By examining Eqs. (5.9) and (5.10), one can interpret a moving

horizon estimation as an approach that tries to preserve the old information through

the description of the uncertainty in the first term of Eq. (5.9) while using the most

recent N+1 measurements over a sliding horizon window as shown in Figure 5.2 to

achieve the desired optimum estimation of all the states within the window.

5.3.1 Arrival cost

Arrival cost is important to a moving horizon estimation approach because it sum-

marizes the effect of the past processed data on the estimation of the current states

[72]. Intuitively, the arrival cost as defined in Eq. (5.6) accounts for two things:

(1) the cost associated in part with the uncertainty in the estimated noncontinuum

state m̂T−N being in mode l ∈ {1, ...,M} and (2) the cost associated in part with

the uncertainties in the estimated continuum state x̂T−N .

The arrival cost in Eq. (5.6) can be expanded as follows:

ϕT−N = − ln[P (xT−N |mT−N , y0:T−N)P (mT−N , y0:T−N)] = ϕx
T−N + ϕm

T−N , (5.11)

where ϕx
T−N = − lnP (xT−N |mT−N , y0:T−N), is the arrival cost in part, due to the

uncertainty in the continuum state and ϕm
T−N = − ln(P (mT−N , y0:T−N), is the arrival

cost in part, due to the uncertainty in the noncontinuum state at time T −N .

Arrival cost: ϕm
T−N

While various forms of arrival cost of a moving horizon estimation for a continuous-

valued system have been well explored in the literature [72, 68, 91], little attention

has been given to arrival cost development of a moving horizon based approach to

noncontinuum state estimation. In this section, we will present the arrival cost due

to the noncontinuum state transition by considering the second term of Eq. (5.11)

as follows:

ϕm
T−N(j) = − ln(P (mT−N , y0:T−N), (5.12)

where ϕm
T−N(j) is the cost of arriving at state mT−N = j at time T − N given all

of the measurements up to time T − N . A recursive solution of Eq. (5.12) can be

derived using a forward procedure technique as derived in Chapter 4 to obtain

ϕm
T−N(j) =

M∑
i=1

[
ϕT−N−1(i)− lnP(i,j)

T−N−1,T−N

]
− lnP (yT−N |mT−N = j).

(5.13)
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Figure 5.2: Batch and horizon phases.

Under the assumption of a Gaussian distribution, the conditional distribution den-

sity function P (yT−N |mT−N = j) from the Eq. (5.13) can be expressed as

P (yT−N |mT−N) = (2π)−
q
2R

− 1
2

T−N exp
[
− 1

2
{yT−N − gmT−N

(xT−N ; β)}T

R−1
T−N{yT−N − gmT−N

(xT−N ; β)}
]
. (5.14)

Therefore, the last term in Eq. (5.13) will become

− lnP (yT−N |mT−N = j) = CT−N +
1

2
vTT−NR

−1
T−NvT−N , (5.15)

where CT−N = − ln(2π)−
q
2R

− 1
2

T−N and vT−N = yT−N − gmk
(xT−N ; β). By substituting

Eq. (5.15) into Eq. (5.13), we have the following cost function:

ϕm
T−N(j) =

M∑
i=1

[
ϕT−N−1(i)− lnP(i,j)

T−N−1,T−N

]
︸ ︷︷ ︸
Arrival cost based on past data

+

1

2
vTT−NR

−1
T−NvT−N + CT−N .︸ ︷︷ ︸

Cost based on current data at T −N

(5.16)

85



Arrival cost:ϕx
T−N

In this section, we shall derive the first term of Eq. (5.11), which is given as follows

ϕx
T−N = − lnP (xT−N |mT−N , y0:T−N). (5.17)

The derivation of an equivalent but recursive optimum solution of Eq. (5.17) for

a constrained dynamic system is difficult to achieve analytically. However, for an

unconstrained hybrid linear system, the recursive form of Eq. (5.17) is a well known

switching Kalman filter [17, 72]. Let us first consider an unconstrained switching

linear system of the form

xk = F (mk)xk−1 + wk wk ∈ N(0, Qk),

yk = H(mk)xk + vk vk ∈ N(0, Rk). (5.18)

At any given time k and the noncontinuum state mk, Eq. (5.17) reduces to

ϕx
k = − lnP (xk|mk, y0:k). (5.19)

where ϕx
k is the cost due to the uncertainties in the continuum state given the

observation sequence up to time k. Following the work of Rao and Rawlings (2002)

[72], we can derive the cost function of Eq. (5.19) at any given time k as

ϕx
k =

1

2
ŵT

k−1P
−1
k ŵk−1︸ ︷︷ ︸

Arrival cost based on past data

+
1

2
v̂TkR

−1
k v̂k︸ ︷︷ ︸

Observation cost at time k

+ Ek.

(5.20)

The derivation of Eq. (5.20) from Eq. (5.19) as well as the definition of the param-

eter Ek are detailed in Appendix B. For a nonlinear hybrid system, an approximate

extended switching Kalman filter has to be employed and the Pk will be evaluated

according to the following equations [72]:

Pk = FkPk−1F
T
k +Qk−1 − FkPk−1Hk(HkPk−1H

T
k +Rk)

−1HkPk−1F
T
k , (5.21)

where Fk and Hk are evaluated along the estimated trajectories according to the

following equations:

Fk =
∂fm̂k

(x̂k−1, uk−1; θ)

∂xk
. (5.22)

Hk =
∂gm̂k

(x̂k; β)

∂xk
. (5.23)

In a similar way, the cost function at the time T −N , which is a recursive form

of Eq. (5.20) can be written as

ϕx
T−N =

1

2
ŵT

T−N−1P
−1
T−N ŵT−N−1︸ ︷︷ ︸

Arrival cost based on past data

+

1

2
v̂TT−NR

−1
T−N v̂T−N︸ ︷︷ ︸

Observation cost at k = T −N

+ ET−N , (5.24)
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5.3.2 A generalized HMHE

By substituting Eqs. (5.16) and (5.24) into the Eq. (5.9), a generalized hybrid

moving horizon estimator can be formulated as

min
{m̂T−N :T , ŵT−N−1:T−1}

JT : JT =
M∑
j=1

M∑
i=1

α
(j)
T−Nγ

(i)
T−N−1

[
ϕT−N−1(i)− logP(i,j)

T−N−1,T−N

]
+ŵT

k−N−1P̄
−1
k−N ŵk−N−1 −

T∑
k=T−N+1

M∑
i=1

M∑
j=1

γ
(i)
k−1α

(j)
k lnP(i,j)

k−1,k

T−1∑
k=T−N

M∑
j=1

α
(j)
k ŵT

k Q̄
−1
k ŵk +

T∑
k=T−N

M∑
j=1

α(j)v̂Tk R̄
−1
k v̂k, (5.25)

subject to:

x̂k = fm̂k
(x̂k−1, uk−1; θ) + ŵk−1, k = T −N : T − 1,

v̂k = yk − gm̂k
(x̂k; β), k = T −N : T,

γ
(i)
k−1 =

{1 if i=m̂k−1

0 if i ̸=m̂k−1

,

α
(j)
k =

{1 if j=m̂k

0 if j ̸=m̂k

,

m̂k ∈ M : M = {1, ...,M}.

(5.26)

where P̄−1
k−N = 1

2
P−1
k−N , Q̄

−1
k = 1

2
Q−1

k and R̄−1
k = 1

2
R−1

k . Note that the parameters

CT−N and ET−N have been neglected in the final form of HMHE in Eq. (5.25) because

they are independent of the decision variables in the optimization function. The

objective function of Eqs. (5.25) and (5.26) constitutes a mixed integer nonlinear

programming (MINLP) problem.

For simplicity, the general form of the MINLP problem can be posed as

min
x,m

JT = f(x,m), (5.27)

subject to:
g(x,m) ≤ 0,
x ∈ X,
m ∈ M, (Integer).

(5.28)

The function f(x,m) is a nonlinear objective function and g(x,m) is a nonlinear

constraint function. The variables x and m are the decision variables, where m is

required to be integer taking discrete values in the space M = {1, ...,M}. Any deci-

sion variables {x,m} satisfying the constraints of Eq. (5.28) is called a feasible point

of Eq. (5.27) [28]. Any feasible point, whose objective function value is less than or

equal to that of all other feasible points, is called optimal solution. The continuous

variables in Eq. (5.27) could, for instance, describe the states (i.e. concentration,
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temperature and pressure), flow rates or design parameters of a chemical process.

The discrete variables, may be used to describe a change in system operating modes,

the existence or non-existence of process faults, and stiction or nonstiction of control

valves.

There are different methods that have been developed in the literature to solve

MINLP problems. Some of the solution methods include branch-and-bound (B&B)

[32], combinatorial mixed-integer optimization [28, 14], outer approximation (OA)

[22, 94], extended cutting plane [28], and a generalized benders decomposition

(GBD) [33]. Most of these approaches generally rely on the successive solutions

of closely related nonlinear problems (NLP) [28]. In this work, we have employed a

combinatorial mixed-integer optimization approach [28, 14] to provide the solution

for MINLP problem of Eqs. (5.27) and (5.28).

5.3.3 State constraints

One of the major advantages of a moving horizon state estimation formulation is

the ability to handle system constraints. Constraints are typically used to model

bounded variables (i.e., states, input or disturbance). Besides, other additional

information about a system can be easily casted in the form of constraints to improve

state estimation performance. Constraint handling on a continuum state estimation

through a moving horizon optimization has been well studied. In this work, we

demonstrate that additional information about a system can be used to constrain the

system operating modes space. For illustration purposes, we consider the following

additional constraints as

uk ∈ U, Mi = f(uk), mk ∈ {1, ...,Mi}, (5.29)

xk ∈ X, (5.30)

wk ∈ W. (5.31)

In this case, the system operating modes space Mi is time varying as its value at

any given time k depends on the control input sequences.

5.3.4 Hybrid state estimator performance index

To quantify the performance and accuracy of the developed HMHE, two different

types of error criteria are used, which are:

• Average Missing Rate (AMR): This factor quantifies the performance of the

HMHE with respect to noncontinuum state estimation. It expresses, in term
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of percentage, how well the state estimation is able to capture the change in

system modes. The AMR is defined as

Average Missing Rate (AMR) =
Total number of false estimations

Total number of sampling instants
%.

(5.32)

For instance, an AMR of 0% means we have a perfect estimation with no

misclassified points, while 100% implies all of the state operating modes at all

sampling instances are identified incorrectly.

• Root Mean Square Error (RMSE): This factor quantifies the differences be-

tween estimated and the true values of continuum states. The RMSE is defined

as

RMSE =

√∑i=T
k=1(xk − x̂k)2

T
. (5.33)

5.4 Simulation Studies

5.4.1 A hybrid linear system

In this section, the performance of the developed HMHE will be assessed through a

simulation example on a simple linear system switching between two modes as

mk = η(mk−1;λ),

xk = F (mk)xk−1 +B(mk)uk−1 + wk, wk ∈ N(0, Qk),

yk = H(mk)xk + vk, vk ∈ N(0, Rk).

(5.34)

The system parameters as well as the hidden Markov parameters are given in the

Appendix C. In order to assess the performance of the HMHE in presence of con-

straints, the following constraints are incorporated:

uk < 0, mk ∈Mi : Mi = {1, 2},
uk ≥ 0, mk ∈Mi : Mi = {1, 2, 3},
−Lδw ≤ wk ≤ Lδw.

(5.35)

where L ≥ 1 is a tuning parameter for the continuum state constraint and the last

inequality specifies constraint on continuum disturbances.

In this example, the objective is to simultaneously estimate the continuum state

x̂k as well as the noncontinuum state m̂k given noisy measurements. The measure-

ment noise covariance matrix Rk and state noise covariance matrix Qk are given

as

Qk =

(
δ2w,1 0
0 δ2w,2

)
, Rk =

(
δ2v,1 0
0 δ2v,2

)
, (5.36)

where δw,i and δv,i are the standard deviation of the process and measurement noise

respectively.
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Figure 5.3: Noncontinuum state estimation: m; δw = [3.0; 3.0]; δv = [3.0; 3.0],
N = 2.

The simulated results in Figures 5.3 - 5.6 show the performance of the developed

hybrid moving horizon estimator. Figures 5.3 and 5.4 show the estimation perfor-

mance with both process and measurement noise being the standard deviation of 3,

while Figures 5.5 and 5.6 show that the hybrid state estimation performance when

the standard deviation of the process is increased from 3 to 10. It can be seen

that the state estimator tracks well the continuum state dynamics, while correctly

estimating the change in the system operating modes. However, in order to quan-

titatively assess the performance of a simultaneous continuum and noncontinuum

state estimator developed, the effect of the noise level (in both the process and mea-

surements), the horizon length N and the constraints on the noncontinuum state

space Mi are further examined.

Using the performance index defined in Eqs. (5.32)-(5.33), the HMHE perfor-

mances are analyzed and summarized in Table 5.1. The results indicate that using

the additional known information of the system to constrain the noncontinuum state

space will improve both the accuracy of continuum and noncontinuum states esti-

mation. Besides, we can also see from the results of Table 5.1 that constraining the

noncontinuum state space leads to a reduction in the computational time.

A moving horizon estimation naturally offers us one more degree of freedom,

which is the availability of the horizon length N as a tuning parameter. From the

results in Table 5.1, it is clear that increasing the horizon length will increase the

state estimation performance, though it comes at the expense of the computational
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Figure 5.4: Continuum state estimation: x; δw = [3.0; 3.0]; δv = [3.0; 3.0], N = 2.

Table 5.1: Effects of the noise level, horizon length and constraint handling on the
HMHE performance.

Noise N=1 N=2
parameters AMR, RMSE, Time AMR, RMSE, Time
δw , δv (%), (x) ,(min) (%),(x), (min)

Constraint. 3 , 3 1.987, 0.2848, 0.90 1.987, 0.2848, 3.41
{Mi} is varying 3 , 10 16.55, 0.7407, 0.76 13.24 , 0.6814, 2.76

10 , 3 19.86, 0.3604, 1.09 18.54, 0.3602, 4.54
Unconstraint. 3 , 3 1.987, 0.2848, 1.08 1.987, 0.2848, 4.32
{Mi} is fixed 3 , 10 18.54, 0.7964, 0.91 14.56, 0.7273, 3.48

10 , 3 20.53, 0.3566, 1.31 18.55, 0.3562, 5.88
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Figure 5.5: Noncontinuum state estimation: m; δw = [10.0; 10.0]; δv = [3.0; 3.0],
N = 2.
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Figure 5.6: Continuum state estimation: x; δw = [10.0; 10.0]; δv = [3.0; 3.0], N = 2
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time. Therefore, a trade-off has to be reached in selecting the horizon length N to

give the desired level of state estimation accuracy for which an acceptable compu-

tational time is feasible.

5.5 Conclusion

A hybrid moving horizon estimator for simultaneous continuum and noncontinuum

state estimation in a constrained switching dynamic system is developed. We have

shown that a hybrid state estimator, which is based on a moving horizon optimi-

zation technique, is a powerful tool in which further information about the system

can be incorporated in estimation through constraints on both the continuum and

noncontinuum states. A generalized arrival cost, which accounts for the cost due to

the mode transition states as well as due to the continuum state dynamics, is derived

for hybrid moving horizon estimator. A series of simulation studies have shown that

HMHE performs well in estimating both the continuum and noncontinuum states

simultaneously.
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Chapter 6

Online State Estimation in a
Distillation Process Using a
Hybrid Moving Horizon
Estimator: Experimental Studies

6.1 Introduction

1In order to establish the practical reliability, the capabilities, and limitations of a

hybrid moving horizon estimator (HMHE) , it is important test the HMHE per-

formance through a comparison with the actual data measured in an experimental

apparatus. State estimation problems can be verified from pilot-scale experiments

owing to relatively easy measurement of state variables in pilot scale processes.

In this chapter, we study the performance of a hybrid moving horizon estimator

(HMHE) for a simultaneous estimation of continuum and noncontinuum states from

a distillation process.

There have been a lot of research interests on the application of state estimation

to composition monitoring in a distillation process. But only few papers have veri-

fied their developed state estimators on the actual experimental data [57, 9, 10, 65].

Besides, the demand in achieving simultaneous estimation of column composition

profiles, operating mode change detection, and fault detection and isolation, are

among several factors that necessitate the application of advanced hybrid filters to

a distillation process monitoring and control. A hybrid state estimator will also

provide a better estimates of the key process variables in an industrially operated

distillation column with steady state multiplicities [43, 95] and unmeasured distur-

bance inputs[75].

1. This chapter is a part of the manuscript that has been published as “M.J. Olanrewaju, B. Huang,
and A. Afacan. Development of a simultaneous continuum and noncontinuum state estimator with
application on a distillation process, AIChE Journal, 2011, DOI 10.1002/aic, Vol.00, No. 0.”
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6.2 Experimental Setup and Operation

In Chapter 3, we conducted an experimental studies to test the practical reliability

of applying a sequential moving horizon estimator to infer both the composition

dynamics as well as the process operating mode as a function of time in a distillation

column with diameter 0.157m . In this Chapter, we consider a different distillation

process set up. It is an industrial type distillation column with 0.300m in diameter.

A schematic diagram of the experimental setup is shown in Figure 6.1. Unlike the

previous distillation column studied in Chapter 3, this column has higher production

capacity, and higher tray efficiency, and has about 10 times the energy input. The

column contains five identical sieve trays and spaced 0.457m apart. Each tray is

made of stainless steel and equipped with thermocouple and liquid sampling point

at the outlet of the tray. The top two sections of the column are made of Pyrex

glass to enable observation of the vapor/liquid phenomena; the rest are made of

stainless steel. Detailed dimensions of the column and tray are shown in Table 6.1.

The total pressure drop for two trays is measured using a Rosemount differential

pressure cell. A total condenser and a thermosiphon partial reboiler complete the

distillation system.

The column is instrumented for continuous unattended operation. An Opto-22

process I/O subsystem interface with a personal computer running LabView (Ver-

sion 7.1) software was used for process control and data acquisition. Multi-loop

single-input-single-output (SISO) control structures for input streams, levels, and

column pressure in a LabView platform are shown in Figure 6.2. The pressure is

controlled by the heat removal from condenser. The assignment of manipulated vari-

ables for level controllers is based on the principle of choosing the stream with most

direct impact. The base level is controlled by manipulating the bottoms flowrate,

while the reflux drum level is controlled by manipulating the distillate flowrate.

The controllers are tuned using the Tyreus-Luyben tuning method [90] and the con-

trollers’ parameter settings obtained are shown in Figure 6.2. The liquid samples

were analyzed using a Hewlett Packard 5790A series II gas chromatograph with a

thermal conductivity detector having a column (3.17mm -i.d.) packed with Car-

bopack.

The column was started with total reflux operation and was then switched to

continuous mode by introducing feed to the column and withdrawal of two products

from the top and bottom of the column. In this study, a total of three different steady

state operating modes were carried out under ambient pressure using methanol-

isopropanol mixture. For each operating mode, the reflux flow rate, Rm, feed flow

rate, Fm, and methanol composition in the feed, zm, were kept constant while the

only vapor boilup rate was varied. Table 6.2 shows the operating variables for three
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Figure 6.1: A continuous distillation column setup.

steady state operating modes. When the flow rate and temperature profiles shown

by the software (LabView) remained constant for a period of 60 minutes, steady

state condition was assumed for that particular mode. Triplicate liquid samples

from each tray outlet and condenser bottom as well as one from the reboiler were

taken and analyzed to minimize the measurement error. The liquid samples were

also taken at 3 minutes time intervals only from the bottom of the condenser during

the transition period between operating modes. For the steady state and transition

period between two mode runs, the sampling time was set to 10 seconds, except the

liquid samples that were .

6.3 Process Modeling and Validation

The development of a state estimation requires a process model. In Chapter 3,

the nonlinear process model of the distillation process was developed from the first

principle. Because we are considering a different distillation column, the process

parameters, such as column and tray dimensions, tray efficiency, pressure drops,
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Figure 6.2: A distillation column multi-loop control system.

Table 6.1: Detailed dimensions of the column and trays.

Column diameter 0.3m
Tray active area 0.0537m2

Hole diameter 4.76× 10−3m
Open hole area 0.00537m2

Tray thickness 3.0× 10−3m
Outlet weir height 0.063m
Inlet weir height 0.051m
Weir length 0.213m
Liquid path length 0.202m
Tray spacing 0.457m
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Table 6.2: Operating modes based on different vapor boilup rates.

Variables Mode 1 Mode 2 Mode 3
Vapor boilup, Vm(kmol/h) 5.33 6.20 6.91
Reflux flow rate, Rm(kmol/h) 3.51 3.51 3.51
Distillate flow rate, Dm(kmol/h) 1.44 2.80 4.02
Feed flow rate, Fm(kmol/h) 5.89 5.89 5.89
Distillate composition of MeOH, xD 0.8877 0.8577 0.8217
Feed composition of MeOH, zm 0.6269 0.6269 0.6269

and production capacity will be different. However, the summarized hybrid process

model of the distillation column under consideration will be of the following general

form:

dxi,j
dt

= fm(xi,j, yi,j, Vm, Rm, Fm, zm; θ),

Ti = gm(xi,j, β),
m = {1, 2, ..., l, ...,M}, i = {1, ..., Ns}, j = {1, ..., Nc− 1},

(6.1)

where xi,j and Ti are the liquid composition of MeOH (mole fraction) and tempera-

ture on the stage i respectively. Vm (kmol/h) is the vapor boil up; Rm (kmol/h) is

the reflux flow rate; Fm (kmol/h) is the feed flow rate; zm is the feed composition

while Ti is the temperature on stage i. By selecting a suitable sampling time, the

hybrid dynamic model of a distillation process can be discretized and expressed in

the form of Eq. (5.1).

The state estimation problem in this experimental work is to infer the composi-

tion of the methanol (i.e. the continuum state) in the distillate product using the

available stage temperature measurements. In this study, a change in the system

operating mode is caused by a change in the vapor boil up (V, kmol/h) with an

unknown switching transition function. However, this transition function follows

a hidden Markov model during the experiment. Figures 6.3 and 6.4 compare the

steady state conditions of the three different operating modes as obtained from the

experiment to those predicted by the process model. The results show that the

predicted steady state profiles are able to capture the change in the system oper-

ating modes with a change in the column vapor boil up. The operating condition

parameters for these three different modes are given in Table 6.2, while the hidden

Markov model parameters are provided in Appendix D.
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Figure 6.3: Steady state MeOH composition profiles for different operating modes.
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Figure 6.5: Noncontinuum state estimation: operating mode (m).

6.4 Results

6.4.1 HMHE performance

In order to test the performances of the proposed HMHE, measurements of tempera-

tures from the thermocouple located on all of the column stages except the condenser

are obtained at every 10 seconds and fed into the estimator online. Figures 6.5 to 6.8

show the performance of the HMHE in estimating the distillate product composition

as well as the unknown switching operating modes. The continuum state dynamics

shown in Figure 6.6 corresponds to the switch in operating modes shown in Figure

6.5, while the continuum state dynamics of Figure 6.8 follows a different switching

modes shown in Figure 6.7. If we compare the two switching patterns, one can see

that the HMHE performance is better (i.e., lower AMR(m)) in the results shown in

Figures 6.5 and 6.6 than those shown in Figures 6.7 and 6.8. This is because the

switching time is fairly constant and much longer in Figure 6.5 than that in Figure

6.7.

The HMHE performance is also tested using a different HMM parameters (see

Appendix E), in which the switching pattern is much irregular with a faster switching

time. The results are shown in Figures 6.9 and6.10. Even though the HMHE is

able to capture the general trend of MeOH composition dynamics as well as the

switching operating mode, the MHE performance in this case, is poorer than the

previous results. The reason for this is because the rate of switching between one

operating mode and another, in some instances, becomes faster than the natural

system dynamics, i.e. switching occurs before the process settles to a steady state.
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Figure 6.6: Continuum state estimation: Composition of MeOH in the distillate
product.
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Figure 6.7: Noncontinuum state estimation: operating mode (m).

101



0 0.5 1 1.5 2 2.5
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

Time (h)

x D(M
eo

H 
m

ol
e 

fra
ct

io
n)

 

 

RMSE(x)=3.1480e−004

x
D

: Experiment

x
D

: Estimated

Figure 6.8: Continuum state estimation: Composition of MeOH in the distillate
product.
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Figure 6.9: Noncontinuum state estimation: operating mode (m).
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Figure 6.10: Continuum state estimation: Composition of MeOH in the distillate
product.

Under this condition, the assumption of treating a change vapor boil up as a discrete-

event state (i.e., sudden jump with no transition between operating modes) will no

longer be valid. From practical point of view, HMHE will perform well as long as the

rate of switching from one operating mode into another is slower than the system

dynamics.

6.4.2 Effect of incorporating constraints

In order to assess the performance of the HMHE when using the available infor-

mation about the controlled input variable (i.e., Reflux flow rate) and the process

states (i.e., stage compositions) in constraining the continuum state as well as the

noncontinuum state space, the following constraints are considered in HMHE im-

plementation:

1. Continuum state constraint:

0 ≤ xi,j ≤ 1, (6.2)

2. Noncontinuum state space constraint:

Rm(k) < R̄m, mk ∈Mi : Mi = 2, (6.3)

Rm(k) ≥ R̄m, mk ∈Mi : Mi = 3. (6.4)
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Figure 6.11: Noncontinuum state estimation: operating mode (m).
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Figure 6.12: Continuum state estimation: Composition of MeOH in the distillate
product.
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Table 6.3: Effects of constraints on the HMHE performance.

AMR(%) RMSE(x) CPU Time(min)
Constraints. 6.54 3.9281× 10−4 54

No constraints. 7.25 3.9692× 10−4 81

where R̄m is the steady state reflux flow rate given in Table 6.2. Figures 6.11

and 6.12 show the performance of HMHE in estimating the operating mode (i.e.,

noncontinuum state) and the distillate composition (i.e., continuum state) when

the constraints are included. The performance of HMHE when the constraints are

incorporated are quantitatively compared with when there are no constraints and

the results are summarized in Table 6.3. The Average Missing Rate (AMR), Root

Mean Square Error (RMSE), as well as the computational time are much lower with

better estimate of the states when the constraints are imposed.

6.5 Conclusion

In this chapter, extensive experimental investigation studies are carried out on a

distillation process separating methanol-isopropanol mixture. This experimental

work is aimed at examining the practical reliability of the developed hybrid moving

horizon estimator that has the capability to estimate the composition of methanol in

the distillate product as well as the operating modes using the available temperature

measurements. The HMHE is shown to be effective not only in estimating a real-time

liquid composition dynamics, but also in estimating a change in the operating mode

as a function of time. The effect of constraints presence, process and measurement

noise levels as well as horizon length variation on the estimation of the continuum

and noncontinuum states are analyzed.
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Chapter 7

Conclusion and Future Work
Recommendations

7.1 Conclusion

In this work, the development and application of a noncontinuum state estimator,

sequential hybrid estimator as well as simultaneous continuum and noncontinuum

state estimator, which are based on a moving horizon estimation framework, are

carried out for complex chemical processes. The success of this work shows that

many process monitoring problems of a chemical process can be formulated as state

estimation problems and be readily solved.

A sequential state estimation technique, which has the capability to monitor

composition profiles of distillation processes under switching dynamics using the

available temperature measurements, is investigated in Chapter 3. A distillation

process is modeled as a hybrid nonlinear system with the column compositions

considered as continuum states, while the operating modes are modeled as noncon-

tinuum states. A moving horizon estimation algorithm is extended to incorporate

a mode change detector and an operating mode estimator in order to estimate the

column compositions as well as determine if and when there is a change (either desir-

ably or undesirably) in the system operating modes. The proposed method is shown

to be effective by testing it using both the simulation on a switching batch distil-

lation process and the experiment on a lab-scale methanol-isopropanol continuous

distillation system

An online noncontinuum state estimator, which is based on a moving horizon

approach for switching systems that follow a HMM with either noncontinuum or

continuum noisy measurements, is proposed in Chapter 4. The arrival cost, which

summarizes the effect of past and a prior information on the current states, is

developed. The effects of horizon length as well as constraints handling on MHENS

performance are quantitatively analyzed. The simulation studies on a water tank

system for a leakage detection problem as well as on a continuous stirred tank
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reactor for an operating mode estimation problem have shown that the developed

noncontinuum state estimator is effective.

A hybrid moving horizon estimator for simultaneous continuum and noncontin-

uum state estimation in a constrained switching dynamic system is developed in

Chapter 5. We have shown that a hybrid state estimation, which is based on a mov-

ing horizon optimization technique, is a powerful tool in which further information

about the system can be incorporated in estimation through constraints on both

the continuum and noncontinuum states. A generalized arrival cost, which accounts

for the cost due to mode transition states as well as due to the continuum state

dynamics, is derived for hybrid moving horizon estimator. A series of simulation

studies have shown that HMHE performs well in estimating both the continuum

and noncontinuum states simultaneously.

In the last chapter, extensive experimental investigation studies are carried out

on a distillation process separating methanol-isopropanol mixture. This experimen-

tal work is aimed at examining the practical reliability of the developed hybrid

moving horizon estimator to infer a composition of the methanol in the distillate

product as well as the operating modes using the available temperature measure-

ments. The HMHE is shown to be effective not only in estimating a real-time liquid

composition dynamics, but also in estimating a change in the operating mode as

a function of time. The effects of constraints presence, process and measurement

noise levels as well as horizon length variation on the estimation of the continuum

and noncontinuum states are analyzed.

7.2 Future Work Recommendations

This work raises some challenging and unresolved problems that are potential can-

didate of further research interests. The future research directions that have been

identified from this dissertation are as follows:

• Computational issues: The computational issues involved in implementing

this technology have not been considered in this work. The main weakness of

MHE and the associated algorithms that have been developed and discussed in

this work such as MHENS, SHMHE, and HMHE lies on their online implemen-

tation issues when considering the enormous optimization steps involved. For

nonlinear systems, computational difficulties often arise when one attempts

to solve the optimization problems online. However, for most linear systems,

the optimization problems can be reliably solved within a few seconds on a

desktop computer using standard software.

• Stability and convergence: In this work, major efforts are directed into
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the algorithm development with the stability and convergence examined only

through simulation and experimental studies. The convergence of HMHE has

not been theoretically proven and would need to be explored.

• Industrial application: Efficient implementation of MHENS as well as

HMHE on large-scale industrial processes is of great practical importance.

There is a need to further examine the practical reliability of a hybrid state

estimator on actual industrial process data.

• Hybrid state estimation in control system design and implementa-

tions: One of the major needs of a state estimator is to be able to provide an

immeasurable measurements to the controllers as in the case of a typical feed-

back control system. The practicality and implementation issues of combining

a hybrid state estimator with a control system would have to be studied.

• Estimator-based control of a hybrid system: This thesis focuses mainly

on the state estimation of a switching hybrid system given that both the output

y and input u are known. We have not considered the control system design

for a switching hybrid system. We have considered an open loop switching

system in most of our simulation and experimental studies. However, in the

last section of this work, we considered a situation where information were

to be available from a change in the manipulated variable (i.e., input u) and

showed how such information can be incorporated in the design of a hybrid

moving horizon estimator in the form of a constraint. The Lyaounov-based

model predictive controller (MPC) developed in the work of Mhaskar at. al

(2005) [58] can be used in combination with a moving horizon based estima-

tion technique proposed in this work, to develop a more effective nonlinear

multivariable control system for a switched system.
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Appendix A

HMHE Objective Function Derivation

Given Eq. (5.8) as

min
m̂T−N :T , x̂T−N :T

{JT} : JT = ϕT−N + JT−N+1:T , (1)

where

JT−N+1:T = − lnP (xT−N+1:T ,mT−N+1:T , yT−N+1:T |xT−N ,mT−N), (2)

the joint probability distribution of the noncontinuum state mT−N+1:T and the con-

tinuum state xT−N+1:T with the available measurement data yT−N+1:T can be ex-

pressed as

P (xT−N+1:T ,mT−N+1:T , yT−N+1:T |xT−N ,mT−N) =
T∏

k=T−N+1

P (mk|mk−1)

T∏
k=T−N+1

P (xk|xk−1,mk)
T∏

k=T−N+1

P (yk|xk,mk). (3)

If we take the logarithm of Eq. (3) and make use of JT−N+1:T as defined in Eq. (2),

then, Eq. (1) we become

min
m̂T−N :T , x̂T−N :T

{JT} : JT = ϕT−N −
T∑

k=T−N+1

lnP (mk|mk−1)

−
T∑

k=T−N+1

lnP (xk|xk−1,mk)−
T∑

k=T−N+1

lnP (yk|xk,mk). (4)

If we assume that the continuum state xk and the observation state yk follow a

Gaussian distribution, Eq. (4) can further be subdivided and defined as follows:

• Given the modemk and the state xk−1, the conditional probability distribution

of the state xk with mean of fmk
(xk−1, uk−1; θ) and covariance matrix of Qk is:

P (xk|xk−1,mk) = (2π)−n/2Qk
−1/2 exp

[
− 1

2
{xk − fmk

(xk−1, uk−1; θ)}T

Qk
−1{xk − fmk

(xk−1, uk−1; θ)}
]
, (5)

• Conditioned on the mode mk and xk, the probability distribution of the ob-

servation yk with the mean of gmk
(xk; β) and covariance matrix of Rk is:

P (yk|xk,mk) = (2π)−q/2Rk
−1/2 exp

[
− 1

2
{yk

−gmk
(xk; β)}TRk

−1{yk − gmk
(xk; β)}

]
. (6)
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If we define the following terms:

ŵk−1 = x̂k − fm̂k
(x̂k−1, uk−1; θ), (7)

v̂k = yk − gm̂k
(x̂k; β),

and by taking the negative logarithm of Eqs. (5) and (6), we have

− lnP (xk|mk) = Bk +
1

2
ŵT

k−1Qk
−1ŵk−1, (8)

− lnP (yk|xk,mk) = Ck +
1

2
vTkRk

−1vk, (9)

where Bk = − ln(2π)−n/2Qk
−1/2 and Ck = − ln(2/π)−

q
2R

−1/2
k . If we define γ

(i)
k−1, α

(j)
k

and P(i,j)
k−1,k as

γ
(i)
k−1 =

{1 if i=m̂k−1

0 if i ̸=m̂k−1

, (10)

α
(j)
k =

{1 if j=m̂k

0 if j ̸=m̂k

, (11)

and

P(i,j)
k−1,k := P (mk = j|mk−1 = i), for i, j ∈ M, (12)

respectively, we can obtain Eq. (5.9) by substituting Eqs. (8)-(12) in Eq. (4) as

min
{m̂T−N :T , ŵT−N :T }

JT : JT = ϕT−N −
T∑

k=T−N+1

M∑
i=1

M∑
j=1

γ
(i)
k−1α

(j)
k lnP(i,j)

k−1,k

+
T−1∑

k=T−N

M∑
j=1

α
(j)
k ŵT

kQk
−1ŵk +

T∑
k=T−N+1

M∑
j=1

α(j)v̂TkRk
−1v̂k +Ak, (13)

where Ak = Bk + Ck. Note that Ak is independent of the decision variables m̂T−N :T

and ŵT−N :T , and can be neglected in Eq. (13).

Appendix B

Arrival Cost Derivation

Given the following:

ϕx
k = − lnP (xk|mk, y0:k). (14)

Proof:

Using Bayesian rule, P (xk|mk, y0:k) can be written as

P (xk|y0:k,mk) =
P (xk|mk)P (y0:k|xk,mk)

P (y0:k|mk)
, (15)
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which can also be written as

P (xk|y0:k,mk) = DkP (xk|mk)P (y0:k|xk,mk), (16)

where Dk = P (y0:k|mk)
−1. Using the conditional independency properties (see Fig-

ure 5.1):

P (xk|y0:k,mk) = DkP (xk|mk)P (yk|xk,mk). (17)

Then, Eq. (14) becomes

ϕx
k = − lnDk − lnP (xk|mk)− lnP (yk|xk,mk). (18)

Following the same derivations and analysis in Appendix A, it is straight forward

to see that both the second and the third term of Eq. (18) will become

− lnP (xk|mk) = Bk +
1

2
ŵT

k−1Pk
−1ŵk−1, (19)

and

− lnP (yk|xk,mk) = Ck +
1

2
vTkRk

−1vk, (20)

Hence,

ϕx
k =

1

2
wT

k−1Pk
−1wk−1 +

1

2
vTkRk

−1vk + Ek, (21)

where Ek = Bk + Ck − lnDk.

Appendix C

Switching System Parameters

The parameters of the switching linear system of Section (5.4.1) are given as

follows:

F (1) =

(
−0.211 0

0 0.521

)
, F (2) =

(
0.691 0
0 −0.310

)
,

F (3) =

(
0.153 0
0 0.410

)
, (22)

B(1) = B(2) = B(3) =

(
−2
1

)
, (23)

H(1) = H(2) = H(3) =

(
1 0
0 1

)
. (24)
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The transition probability matrix P is given as,

P =

 0.90 0.05 0.05
0.05 0.90 0.05
0.05 0.05 0.90

 . (25)

when the constraint on the space span Mi as given in Eq. (5.35) is not active and

P =

(
0.95 0.05
0.05 0.95

)
. (26)

when the constraint on the space span Mi as given in Eq. (5.35) is active.

Appendix D

Hidden Markov Model Parameters

P =

 0.9914 0.0058 0.0029
0.0083 0.9875 0.0042
0.0048 0.0048 0.9905

 . (27)

Appendix E

Hidden Markov Model Parameters

P =

 0.9805 0.0078 0.0117
0.0196 0.9706 0.0098
0.0184 0.0061 0.9755

 . (28)
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