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Abstract

At present, finite element models of turbomachine shafts use clements based on
beam theory. which are limited in ace'.: ~ when modelling discontinuities in shaft
sections such as abrupt changes in diametci. A new azisymmetric shaft clement has
been formulated based on threc-dimensional elasticity principles. Three dimensional
elements are better at representing these changes in shaft section, but with the added
expense of complexity and matrix size. Comparisons of the modelling »f rotating
machine shafts with traditional beam-shaft and axisymmetric shaft elements are

presented.

Also, assembling the finite element model using the novnal stilfness approach
may result in large global matrices requiring special ~olution techniques. A
continuous matrix condensation technique has been presented, resuiting in smaller
matrices during and after the assembly process. Results comparing the forced
response solution of the full global matrix system and the condensed matrix system

are given.

Refinement of finite element models is done using methods that compare
experimental spectral data or fre - iency response [unctions with calculated data.
The methods presently available require testing of a shaft under a varicty of support,
conditions or the measurement of accurate mode shapes. This thesis presents a new
method that performs moderate adjustments to a finite element model based only

on the comparison of selected calculated and measured natural frequencies.
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Nomenclature

A, cross-sectional area

C diametral clearance

K modulus of elasticity

F force

& modulus of rigidity

I second moment of area

1, polar moment of inertia
N shear correction coefficient

L Lagrangian, T" — U

M bending moment
N shaft speed, rev. per second
) Sommerfeld number
T kinetic energy
U potential (strain) energy
Wese external work done
W,V translational displacements
XY, 7 inertiul coordinate system
("] damping matrix
[D] elasticity matrix or dynamic matrix
[] gyroscopic matrix
(7] identity matrix
[/] Jacobian matrix
(K] stifflness matrix
[A] mass matrix

[T] transformation matrix



P
q

r,z. 0
U, v, w

w

bending detlection shape function
shear angle deflection shape function
bending angle deflection shape function
serendipity functions

mode shape

element correction factors

element length

number of eigenvalues to correct
number of element stiffnesses to correct
distributed external load

cylindrical coordinates system
displacements

total transverse deflection

transverse deflection due to bending

rotating coordinate system

matrix transpose
matrix inverse
in-plane bending component

out-of-plane bending component

imaginary components
real components
element nodal unknowns

cylindrical coordinate components, or derivatives



angular displacements

shaft speed

polynomial coefficients
shear coefficient, EI/KNGA,
small variation

strain

12,3/ 62

measured eigenvalue
dynamic viscosity

Poisson’s ratio

bending slope

stress

calculated eigenvalue or forcing frequency squared
angular velocity

shear angle



CHAPTER ]

lnﬂoducﬁon&

A Midsummer Night's Dream — Shakespeare [1]

In the last twenty years, increased costs and greater demands on performance
have forced a change in machine design. Modern machines are being built with
lighter shafts and support systems, and as a result, it is becoming more common
for turbomachines to be run at speeds near or above the first critical speed of
the machine shaft. In fact, some machines operate above several of their lower
critical speeds, requiring that the machine pass through those speeds on startup
and rundown. For safe operation, the damped response of the machine at the
critical must be known. As well, the advent of less expensive variable speed drive
systems has increased the number of machines operating over a wide range of speeds,
requiring that the critical speeds of the machine be well known 1o prevent sustained
operation at those speeds. The need, therefore, for more accurate tools for predicting
the critical speeds or natural frequencies of vibration and for analyzing the forced
response of a turbomachine shaft has increased. Many machines are designed using
long-standing engineering procedures, such as the transfer matrix method, which
can also be used to predict forced response. Although these may give estimates of
the natural frequencies, often the estimates are not accurate enough to ensure the

safe reliable operation of the machine because the intended operating speed may



be too close to a critical speed. Finite element methods for rotor dynamic analysis
exist, but for many of the complex geometries encountered the required accuracy

cannot be achieved.

The presence of shrunk-on wheels or disks, and step changes in shaft diameter
reduce the accuracy of beam finite element modelling of rotor dynamics. In
particular, abrupt changes in shaft section cause localized changes to the stiffness
of the shaft. In 1977, Sanderson and Kitching [2] examined the flexibility effects
of an abrupt change in shaft diameter for the case of a beam statically loaded in
pure bending. Their experimental beam with a four point loading system is shown
in Fig. 1.1. The stepped section was centered in the span, and the load was also
symmetrical about the mid-span of the beam. By measuring the actual deflection or
radius of curvature of the neutral axis at various longitudinal positions, and knowing
the local bending moment at the corresponding points, they were able to calculate
the local effective stifflness. Simple bending theory predicts that the stiffness is
proportional to the second moment of area, I. Therefore, the theoretical stiffness of
the shaft in static bending should have a step change in value proportional to the
second moment of area at the point the cross-section increases. The theoretical 7 is
indicated by the dashed lines in Fig. 1.1; the short dashes represent the values based
on the small diameter, d, and the long dashes represent those based on the large
diameter, D. A typical experimentally determined second moment of area curve,
I(x}, is shown as a solid line in the figure. Their experimental results show that the
actual effective second monient of area or stiffness is highly dependent on the ratio
of large to small diameter, as well as the ratio of the length of the step increase
to the small diameter. It can be seen that as a step increase in section height
is approached in the longitudinal direction, the effective stiffness goes through a
minimum and then peaks to a maximum value just after the increase in section.
The maximnm and minimum values, and curve shape are influenced by the ratios

as well. In fact, the peak may become quite narrow and approach infinity for large



I(x)

FIGURE 1.1: Stiffness Effects of a Step Change in C'ross-Section

diameter ratios with short step lengths. However, for most cases the local effect
of the discontinuity on stiffness takes place within x/d = £1.0, where = is the

longitudinal position from the discontinuity.

Beyond the design and manufacture stage of a machine, the need exists for a
reliable method or tool that will help the engineer in industry analyze the rotor
dynamics of a machine throughout its operating life. The tool may be used in
the diagnosis of vibration problems that may be encountered, as well as being
used to perform the balancing calculations necessary after routine maintenance, or
even to predict or check the possible dynamic consequences of altering the machine
shaft or support systems. Not only should the method be reliable, it must be
accessible to the industrial engineer. That is, the tool must not require an extremely
complicated, large degree of freedom mathematical model that would exceed the

storage or computational power of the desktop computer.



Having cstablished the need for a reliable cost-effective means of analyzing
the rotor dynamics, it is hoped that the improvements and extensions to the
finite element method developed in this thesis will help in this endeavour. This
thesis presents some improvement of the finite element method for rotor dynamic
analysis in three areas. First, a new shaft element formulated on the basis of three
dimensional elasticity is presented. Second, a condensation procedure for doing the
forced analysis and calculating the natural frequencies of a system, while using only
a small amount of computer memory, is presented. And finally, a method is given
tor improving or refining an existing finite element model to render any subsequent

forced response analysis more accurate.

These methods are independent and may be used individually or as a whole
to improve the finite clement method for rotor dynamics problems. However,
the condensation procedure and the refinement method in particular will lend
themselves to elasto-dynamics problems of any kind. It is hoped that the work
will lead to complete accurate finite element models of new turbomachines being
presented to users by the manufacturers as an integral part of the maintenance

manuals, and performance curves.

The remainder of this chapter gives brief descriptions of each of the following
chapters of this thesis.

Chapter 2 discusses the Timoshenko one-dimensional beam element that is in
widespread use today, and gives an introduction of its use to model shaft vibrations.
A non-rotating shaft or beam may be modelled as two uncoupled beams vibrating in
perpendicular transverse planes (i.e., in the horizontal and vertical planes). When
the shaft is rotating the gyroscopic effect couples the motion of the two planes,
and introduces the possibility of shaft whirl. That is, forces may cause the shaft
to whirl about its elastic center. When the frequency of whirl is the same as the
shaft rotation speed, any outl of balance forces may excite or increase the whirl

amplitude to an excessive or damaging level. Also included is a discussion of the



practical numerical difficulties encountered when using the Meiroviteh method for
finding eigenvalues of an undamped gyroscopic system.

In Chapter 3. the quasi-axisymmetric shaft element is developed. This element
is more accurate in that its formulation is based on three-dimensional clasticity
principles rather than the one-dimensional simple bending theory. The eclement is
developed first for the case of in-plane bending. and then the element. is given its
full two plane bending shaft implementation, and results are shown. One possible
method for joining a simple beam-shaft element to the axisymmetric element is
included.

The boundary conditions of a rotating shaft can have a profound effect on the
dynamic response of the machine and can be most difficult to model. Chapter 4
is a brief discussion of the state of the art of modelling of jonrnal bearings, and
how the journal bearings affect the dynamic characteristics of a rotating shaft. Also
included is a short description of the method for including the bearing support and
foundation system into a finite element model.

A model with complex geometry can take large amounts of storage space and
computational time when calculating the free vibration characteristics or the forced
vibration responses. Chapter 5 presents a method that is much like the transfer
matrix method; at cach frequency step over the range of interest, the dynamic
matrix for each element is formed and then assermbled or condensed into the global
dynamic matrix. At each stage of assembly the global dynamic matrix only retains
the desired nodes. That is, the interconnecting degrees of freedom between clements
are condensed out as the assembly takes place. In this manner the global dynamic
matrix for a particular vibration frequency can be formed having only the same
number of degrees of freedom as a single element, while providing the accuracy of
the full degree of freedom global model. The response of the dynamic matrix to
various frequencies may be examined to find the forced response of the systemn or

may be examined to find the free vibration characteristics of the system (natural



frequencies). Results for a variety of undamped and damped cases are presented
and comparisons of the accuracy of the condensed method to that of the full global
model are given.

A completed finite element model of a rotor may make predictions which are
different from those actually measured on a real system, and therefore a need to
modify the model further exists. This modification is known as system identification
or model refinement, and is a vital part of the modelling process. In Chapter 6 a
refinement 1aethod is presented that is based on Rayleigh’s Quotient. Using only the
first few measured eigenvalues of the shaft in the free-free or simply supported state,
ihe method calculates the correction factors for the individual element stiffnesses,
so that the analytical model will provide the same natural frequencies as measured.
After the model has been refined in this manner, it is then possible to use it for
further vibration analysis or long term machinery health monitoring. Results based
on numerical experiments, as well as the correction of a beam element model of a

real shaft are presented.



CHAPTER 2

Beam Elements

Once more unto the breach, dear friends, once more — Shakespeare

2.1 Introduction

At present, beam elements or shaft elements based on beas vibrating in two
perpendicular planes through the longitudinal axis arc the primary finite elements
used to model turbomachine shafts. This chapter presents an overview of the

modelling beams and shafts with Timoshenko beam finite clements.

Beams were first modelled using stiffness element matrices formulated on simple
Euler-Bernoulli bending theory, and with lumped mass matrices. Archer (3] first
presented the consistent mass matrix for uniform Euler-Bernoulli beam elements.
However, for higher vibration mode ior beams which are short in relation
to their depth, the predicted natural frequencies using simple bending theory are
inaccurate. In these cases, the shear deformation and rotatory inertia of the beams
cross-section have considerable effect on the dynamic characteristics, with the shear
deformation having the greater effect. Rayleigh [4] included the effect of rotatory
inertia into the vibration of beams. But Timoshenko [5], presented the differential
equation of motion for beams including both effects, and hence elements based on

this formulation are known as Timoshenko elements.



The Timnoshenko differential equation was solved for a variety of boundary
conditions using series solution techniques by Anderson [6] and Huang [7]. An
important addition to the accuracy of the solutions was given by Cowper [8], who
integrated the three-dimensional elasticity equations to get the Timoshenko beam
theory, and derived a new equation for the shear correction coefficient. The Cowper
shear correction coefficients are used throughout this thesis. A finite element using
the Timoshenko formulation was again presented by Archer [9], albeit with mistakes
in the consistent mass matrix as noted by Thomas, et al. [10]. Davis, Henshell
and Warburton [11] formulated an element using static equilibrium and assuming
constant shear force and angle for the element, which gave the same corrected
matrices as Archer. The Archer or Davis elements are simple elements with two
nodes, and the unknowns being the total transverse displacement and bending angle
at cach node. Numerous other researchers have presented enhanced versions of
the Timoshenko beam element with additional nodes, and/or unknowns for shear
displacement and shear angle (for example, Kapur [12]). However, the Archer/Davis

clement is still most widely used for the dynamic modelling of beams.

Section 2.2 of this chapter presents the Timoshenko beam element as formulated
by Davis et al. [11], however, the matrix equations are derived from Hamilton’s
Principle.

Section 2.3 expands the beam representation to that modelling a shaft. The
shaft is considered to be two Timoshenko beam elements vibrating in perpendicular
transverse planes. Coupling between the planes is due to the gyroscopic effects
of angular displacements of the spinning shaft sections, and the skew-symmetric
gyroscopic matrix is developed using Lagrange’s Equation. Although the notation
here is unique, the shaft matrices presented are well known (Nelson [13]). In
addition, a discussion of the solution of the eigenvalue problem when using the

Meirovitch method [14] for gyroscopic systems, and its inherent numerical difficulties

is presented.
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2.2 Beam Models

First, the Timoshenko governing differential equation f{or a beam undergoing
transverse vibration is derived. Details are given in Appendix A.1. Consider the
infinitesimal element undergoing flexural vibration, as shown in Fig. 2.1, where the
bending moment, shear force, and distributed load are designated by Af, ', and
g. The total transverse deflection is w, and the total angle is given by the bending
angle less the shear angle, i.e. w’ = 6 — 4. The bending transverse deflection is
denoted as wy, and the bending angle is 0. The strain energy, [/, the kinetic energy,
T, and the external work done by applied applied forces, W,,,, of a beam of length

¢ may be written as:

U=3Js ETw!(z,t)?de + L [EKGA, y(x,1)? da

T

%foﬂ pAz 72’2(1'7 t) dx + %f(:/)[ ()2(117, L) dx (2.1)

Wez, = f(f g(z,t)w(z,t)de,

where E is the modulus of elasticity, I is the second moment of arca, N is the shear
correction coeflicient, G is the modulus of rigidity, and A, is the cross-sectional area
of the shaft.

The total strain energy, U, as given, is the sum of the strain cnergy due to
bending deformation, and shear deformation of the beam. The kinetic cnergy
consists of the energy due to total transverse translation of the beam plus the energy
due to rotation of the beam cross-section caused by bending. The external work is
simply the product of the applied external forces and total transverse displacements
of the beam. The applied forces are considered to be conservative. That is, the work

done is dependent on the end points of the displacement rather than the path the

displacement takes.
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FIGURE 2.1: Infinitesimal Element

Hamilton’s Principle is written as:
t2
b (Were + T = U)dt = 0. (2.2)
t

Hamilton’s Principle states that the first variation of the Lagrangian has a stationary
value for the correct motion. Taking the first variation, é, of Eq. (2.2) inside the

time integral, and substituting in the relationships given by Eq. (2.1) results in:

12 2 . -
/ / (g + p A sihaii pl A — FLopl 5ol — K G Ak SV dedt =0, (2.3)
ty (0]

Using ¢» = 0 — ' = wj — ', Eq. (2.3) may be rewritten in terms of the total

transverse deflection and the bending angle, and their time and spatial derivatives.

Then. integrating g (2.3) by parts and following the rules of variational calculus

bl

the variation of the two deflections leads to the following:
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&3"'b . 8uvb dw ("):i(gvb
[ + NGA, TRy Cprdte oy
Morgr 0 (al‘ 01‘) dr (2.1)
i)'.’.“/, N ()2U?b (')21”) o
—pAS S KA, [ _CX) _
q r T A ( ( 01.2 (').1.), /

Manipulating Eq. (2.4) to eliminate the bending angle results in the Timoshenko
governing partial differential equation of transverse vibration of a beam, Eq. (2.5),

which includes the effects of rotatory inertia and shear deformation.

9% I w I pEl 9w [)2[ o
e + ozt ° Jdr2ot? KNG ox2ote + NG ot ( (2.5)

The first term of the Timoshenko equation on the left hand side represents
the translational inertia, the second the restoring force, the third the rotatory
inertia due to the bending of the element, the fourth the rotatory inertia due
to the shear deformation of the element. and the fifth is a mixed term which
is normally considered negligible. However, this equation does not lead to the
numerical solution required by the finite element method directly. But, Eq. (2.3)
can be used to get the matrix equation of motion if the appropriate approximate
equations for displacement are included. If shear deformation and rotatory inertia
are ignored, then only the first two terms on the right hand side remain, giving the
Euler-Bernoulli equation for a prisiatic beam in transverse vibration.

For a Timoshenko element, shown in Fig. 2.2, Davis, et al. [} 1] proposed that
static equilibrium be used to define a constant shear force and shear angie 1 along
an clement. The static equilibrium implies that the inertia of the element does not
change the value of the shear force from one node of the element to the other. This
approximation allows the use of only the total transverse displacement and bending
angle at each node as the element unknowns. Approximations other than static

equilibrium could also be used. Therefore, a third order polynomial is sufficient to
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FIGURE 2.2: Element in Bending

describe the displacemeiits, and the resulting equations are given by Eq. (2.6).

1 z3 x?
w(zr) = o (al 5 + QQT + a3T + ay)
) (2.6)
d 1
0(x) = = ’p— (C!lx + 0z + az) + P

The coeflicients (a;) are found by solving Eq. (2.6) in terms of the four nodal
displacements and axial positions as shown in Fig. 2.2 (see Appendix A.2 for details).
The nodal displacements (element unknowns) are the translational and angular
displacements at cach end of the clement. Note that the angular displacements arc

the bending angles, 0;, only. The displacements are then given by:

w(x,t) = {BO}T[T}{we(t)}
P(a,t) = {CY[TH{we(t)} (2.7)
O(z,t) = {D}T[T){we(t)}.

The vectors, {B,}7, {C}7, and {D}7, multiplied by the transformation matrix,
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(1], are the hermitian polynomials for approximating the displacements throughout

the element length. The vectors are.

1 2? £
By =g L 5 30
{cyr = ﬁ L 3 0 0 0 | (2.8)
- 1 2
DY = — | S+8 = 1 0 |,

where 8 = EI/KNGA,. The transformation matrix is:

| 12 6¢ 12 6¢ ]
. —6¢ —40% —123) 66 262 + 1253
[T]:pnglog ( B) 6 | ( | /%) (2.9)
(€2 +123) —~123 (3 +6536) 123 —63¢
i 06 4+ 1253) 0 0 0 |
The nodal unknown vector for one beamn element is:
{w(t)} = L owilt) Oi(t) walt) 0y(t) _II (2.10)

Substituting the relationships for displacements given by Eq. (2.7) into the
variational integral, Eq. (2.3), and assuming the forcing function, ¢ = 0, results
in Eq. (2.11) the matrix form of Hamilton’s Principle. Details of the procedure are

given in Appendix A.3.

/t"(—{swe}T[ME]{w,,} + Sw ) (K. {w.}) di = 0 (2.11)
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Integrating I2q. (2.11) by parts, setting the resulting integrand to zero, letting

w,} = {0} at ¢ = ¢{; and ¢ = {,, and remembering that {§w.}7 is arbitrary results
g

in the matrix equation of motion:

[MJ{36.} + [K.}{w.} = 0.

The stiffness matrix is represented by the following integral:

(K. =

[

Completing the integration results in the explicit stiffncss matrix:

[K¢]

El

T e ¥ 128)

12 66 ~12 6¢

6¢ 462 +128 —6¢ 20 —128
~12  —6¢ 12 —6¢

6 20° —123 —6¢ 42412 |

(ENTY{BLY{BLYIT] + KGA[TIT {CY{C)TIT)) da.

Similarly, the mass matrix integral of the beam element is given by:

(M) = [ ALTI{B.}{B.YTIT] + pI[TT{D}{ DYT(T)) d.

(2.12)

(2.13)

(2.14)

(2.15)

Again, completing the integration results in the following consistent mass matrix:

pALE

=T

My My

ms

sym.

mg my ] [ my g

—my g + pl ™mg

m; —Mmy €1 + ¢)? sym
ms | i

mio




(2.16)
where,

— 13 T 4142 N U B WY S T
m1 = FpF+pet+3e me = v 500 7769 ¢

— llg, 11 142 . _ s
me = g€+ 150 + 579°¢ m; = 3

= 9 4 3.4 1,2 — g lug
mg = 4550+ 50 mg = O — 26
my = — 2l — Tl — Lo mg = 04 10?4 Lae?

— L2 1 12, 1 2p2 — 12 1gp2 1 g2p2
ms = 5l + 5500 + 1556°¢ Mo = 36 s P + 50762,

and ¢ = 12EI/KRGA_¢.

The above formulation is based on bending theory, with the inclusion of rotatory
inertia, and the effects of shear deformation. But, because the shear force and shear
angle are considered constant along the length of an element, this beam clement does
not represent the higher modes of deep section beams as accurately as more refined
elements. This formulation of the Timoshenko beam element is, however, much
more accurate than a Euler-Bernoulli element at predicting the natural frequencies
of higher modes, without an increase in matrix element size. Therefore, the
Archer/Davis element represents a good compromise between mathematical and

computational complexity, and accuracy.

The angular displacement chosen was the rotation of the cross-section due to
pure bending of the beamn. At a fixed end, the kinematic boundary conditions are
met. That is, the bending angle at the end may be constrained to zero, and the

angle due to shear deformation is then v = F/KGA,.

Typical boundary conditions can be modelied quite easily with this element. For
a pinned position, extra stiffness is added to the translational degree of freedom at
that point, or that unknown is rigidly censtrained from the system. For a clamped

end, both the translational and rotational degrees of freedom are rigidly constrained.

'To model a complete beam, a number of discrete elements are connected to each

other end to end, as shown in Fig. 2.3. The inatrices for each finite element are



16

+ Element 1 kﬁ%ﬁ Eleracnt 3 __3

Common Nodes

FIGURE 2.3: Chain Assembled Finite Element Beam Model

assembled into global matrices, while maiutaining continuity of displacement and

force equilibrium at the end nodes, to form an overall system of equations:

[M]{z} + [K]{=z} = {f}. (2.17)

The matrices, {M] and [K], are now the global mass and stiffness matrices, and
{z} and {f}, are the global displacement unknown and force vectors, respectively.
The homogeneous form of the equations, Eq. (2.17), is solved to find the natural
frequencies of the beam in transverse vibration by assuming a harmonic solution

{r} = {X}sin(wt), to give the following eigenvalue problem.

(K] - 2[M]){X} = {0} (2.18)

In this cigenvalue problem, ":e matrices, [K] and [A], arc symmetric, with [Af]
positive definite, and [’} semi-positive or positive definite depending on the system
constraints. This type of eigenvalue problem can easily be solved using methods

such as Jacobi’s, or the power method.

2.3 Shaft Models

Non-rotating shafts can be modelled as two uncoupled beams vibrating in

perpendicular transverse planes as shown in Figure 2.4. The translational and
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Z

FIGURE 2.4: Shaft Finite Element

angular displacement unknowns in the ¥ X plane are given by W and I, while the

displacements in the ZX plane are V and B.

When the shaft is spinning with constant angular velocity ¢ along its axis,
then any angular displacement of the shaft section will introduce gyroscopic effects,
which couples the motion in both planes. This can be quantified by examining the
transformation from an inertial system of axes XY Z to hodyv fixed (rotating) axes
zyz as shown in Figure 2.5. The axis of the shaft is X. Note that the rotation
vector, B, points in the opposite direction to the Y axis. This allows the transverse
and angular nodal displacements in the two lateral planes to have the same relative
orientation, and hence the portions of the stiffness matrix relating to cach plane
will be the same, resulting in reduced computational time. The shaft element mass
and stiffness matrices are uncoupled, with the only coupling of the motions in the

two planes being provided by the gyroscopic matrix which will be developed. The

stiffness and mass matrices are of the form:
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FIGURE 2.5: Transformation of Inertial to Rotating Axes

[1\’e]sl|aﬂ = |: [I(e] [0] :| [Me]shaft = { [ME] [0] ] ’ (2]9)
[0] [K.] 0] [M]

where [K.] and [M.] are given by Eq. (2.14) and Eq. (2.16), the beam element
matrices.
The angular velocity in the inertial frame will be expressed in terms of a rotating

coordinate (body fixed) unit vectors using Cardan angles of the second kind.

First rotate —B about Y (—B in the right-handed sense of the Y-axis):

E, cos(B) 0 —sin(B) 11
E, = 0 1 0 % , (2.20)
E, sin(B) 0 cos(B) A

XYZ a’’pe!!
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where E; are the inertial system unit vectors, and 17, are the unit vectors of the

a”b’c¢” coordinate system.

Second rotate I' about ¢”:

m cos(I') —sin(I') 0 17,
17 = sin(I")  cos(T") 0 Nty ) (2.21)
13 o 0 0 1 My .
where 17%; are the unit vectors in the a’b'¢’ coordinate system.
Lastly rotate ® about «’:
m;y 1 0 0 €l
My = 0 cos(®) —sin(d) (29 , (2.22)
M3 0 sin(®) cos(P) 29
ulblcl -

ryz

where ¢; are the unit vectors for the body fixed (rotating) coordinate system ry-=.

The total angular velocity for the infinitesimal element is given by:
O = —B[’jz + i + b7, . (2.23)
Transforming the angular velocity by converting the unit vectors to the rotating
frame vectors using the given rotation matrices, and assuming small angular

displacements for I' and B, (sin(I') = T, cos(I") = 1, sin(B) ~ B, and cos(B) ~ 1),

the angular velocity of the shaft element of length dz can be written as:

& = (® —BI)é + (I'sin® — Bcos ®)é; + (I cos ® + Bsin @) (2.24)
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The kinetic energy of the infinitesimal shaft element due to the angular velocities

can be written as:

dT o = %157 [dI] 5, (2.25)
dlf, 0 0
where [d1] = 0 dI, 0 |,dl,=dl,, and dl,=dI, =dl,.
0 0 dl.

Substituting in the angular velocity, the kinetic energy can be rewritten as:

d 711'0! =

(92 — 26Br)dI, + (I + B)d1,] . (2.26)

N -

The first term of Eq. (2.26) is the kinetic energy due to the spinning of the
shaft. Since the rotation of the shaft element is prescribed in that direction, this
component of the expression makes no contribution to the element matrices. The
gyroscopic kinetic energy for the infinitesimal element is given by the second term
of Eq. (2.26), and will be used to calculate the gyroscopic matrix for the element.
The final two terms of the equation represent the energy due to the angular velocity
of the shaft cross section. But these terms are already incorporated into the mass
matrix of the shaft element by the rotatory inertia terms. Taking only the gyroscopic
portion of the kinetic energy of an infinitesimal length of shaft, and integrating over

the element length, the total gyroscopic kinetic energy is given by:

e, .
Tyoro = — /0 SBI dJ,. (2.27)



The angular displacements are given by:

oW
NX) = ——=+v
() X 2.28)
. ov

where, ¢ and p are the shear angles in their respective planes.  The angular

displacements may be written in terms of the element nodal unknowns as:

=
i

L{D}T {0} J[T1]{e. }

B(X) = {&}T[N]"[{0}"{D}"}",

and, where:

(T,] = [ 71 10] } : (2.30)
[0] (7]

Also, {D} and [T] are defined by the single plane equations Eq. (2.8) and Eq. (2.9).

‘'he nodal unknown vector for the shaft element is:

{6} = | Wi In W Iy ¥, By W, By |7, (2.31)

Substituting in the angular displacement functions and expressing the gyroscopic

kinetic energy in matrix form gives:

Teyro = —2{6:}7 [A] {6.}, (2.32)
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where:

: [0] [0]
= dr,. 2.33
A=, [T {(DHDY?IT] [0 | ° (2:39)

Adding this gyroscopic kinetic energy term to the Lagrangian and working

through Lagrange’s equation results in the additional term:

;7;(—@[/1]{6,:}) — (—®[A]T {6.}) = ®([A]T — [A]){S.} = 0. (2.34)

Adding Eq. (2.34) to the equation of motion gives the new equation of motion with

the gyroscopic matrix:

[M]{2} + [G{z} + [K{=} = {F}, (2.35)

wliere the gyroscopic matrix for the shaft element is:

. . 0 A’
(ol = ST —(ap =6 | O AT (2.36)
~[47] (0]
The [A’] matrix is explicitly:
36 (3 — 15¢)¢ -36 (3 —15¢)¢
[A'] — pA; d? (3 — 15¢)¢ (4+5¢+1042)62 —~(3—15¢)¢ (—~1— 5¢+ 5¢2)¢ (2 37)
240(1 + ¢)2¢ ~36 —(3-15¢)¢ 36 —(3~15¢)¢ ’ )

(3-15¢) (—1—5¢+ 5¢2)62 —(3-15¢)¢ (44 5¢ + 10$2)¢2

12E1 _
KGA, & -

where A, = cross sectional area, d = diameter, and ¢ =

The gyroscopic element matrix is skew-symmetric and couples the motion of the

two perpendicular transverse planes of vibration. The three element matrices, mass,



23

stiffness, and gyrouscopic, now fully describe a shaft clement for undamped motion.
These shaft clements are again chain assembled, as the beam elements were, and any
additional effects of disks are added in to the global mass and gyroscopic matrices.

Solving the eigenvalue problem involves assuming a solution of the form {x} =

{X}e™“?, and results in the equation:

(([K] — W?[M]) + iw[G]){X} = {0}. (2.38)

As with the beam formulation, the mass and stiffness matrices are symimetric,
positive definite and semi-definite respectively. However, the skew-symmetric
gyroscopic matrix creates a complex eigenvalue problem. For conservative
gyroscopic systems, Meirovitch [14] recommends introducing a new state vector,

{q} = |{£}T {x}TJT, which adds the following identity to the homogeneous version

of Eq. (2.35):

[K]{@} — [K] {2} = {0}. (2.39)

Combining Eq. (2.35) and Eq. (2.39) results in a new equation of motion, K. (2.40),
which has twice the number of global degrees of frecdom as the original problen.

That is, if the original shaft model had n degrees of freedoin, the new equation has

2n.

[M~}{q} + [G"]{q} = {0} (2.10)
where:

] , "]
= | 40 (0 J S G |

(2.41)
[0] [K] —-[K} {0]
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stiffness, and gyroscopie, now fully describe a shaft element for undamped motion.
These shaft elements are again chain assembled. as the beam elements were. and any
additional effects of disks are added in to the global mass and gyroscopic matrices.

Solving the eigenvalue problem involves assuming a solution of the form {z} =

{X} ™, and results in the equation:

([K] = w?[M)) + iw[G){X} = {O}. (2.38)

As with the beam formulation, the mass and stiffness 1natrices are symmetric,
positive definite and semi-definite respectively. However, the skew-symmetric
gyroscopic matrix creates a complex eigenvalue problem. For conservative
gyroscopic systems, Meirovitch [14] recommends introducing a new state vector,
{q} = L{J}I {.::}TJT, which adds the following identity to the homogeneous version

of Eq. (2.35):

(K] {4} — [K] {¢} = {0} (2.39)

Combining Eq. (2.35) and Eq. (2.39) results in a new equation of motion, Eq. (2.40),
which has twice the number of global degrees of freedom as the original problem.
That is, il the osiginal shafl model iad o degrees of fieedom, the new equation lhas

2n.

(M~]{4} + [G"H{q} = {0} (2.40)
where:

= | P g 6 IRT (2.41)
[0] [K] —[K] 0]
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The new augmented mass matrix. [A/*]. ix symmetric and the augmented
yroscopic matrix, [G"], is skew-symmetric. The equation of motion, Eq. {(2.10), is
converted to an eigenvalue problem by substituting, {¢} = {Q} et. This eigenvalue
probleni results in pairs of purely imaginary complex conjugate pairs of cigenvalues
of the form s, = 4+w,,. The corresponding eigenvectors are also complex conjugate
pairs of vectors of the form {Q.} = {R.} + ¢ {Sn}. Complex conjugate pairs of
eigenvalues are expected. Consider a non-rotating cantilevered shaft with disk or
mass at the free end vibrating in its fundamental mode. The free end would follow
a conical (circular) orbit, with the precession occurring in either direction. The
angular speed or frequency of precession would be identical in either direction.
If the shaft were rotating. the gvroscopic moment of the disk would split the
frequency of precession into two. The lower frequency pair would equal backward
precession. That is, the disk would precess in a direction opposite to the shaft
rotation. The higher value frequency pair is the forward precession whirl speed,
where the precession is in the same direction as the shaft rotation. In practice,

backward precession is only excited when the stiffnesses in the two planes are not

equal.

Further, Meirovitch recommends that the problem be converted to a real and
symmetric set of matrices by, [K*] = [G-]T[M*]7'[G"]. A symmetric eigensolver
such as the Jacobi method could now be used with the new augmented stiffness and
mass matrices, giving repeated pairs of real « ‘venvalues. However, if the augmented

matrices are examined, it can be scen that they have the form:

(K] = [GPIANTNG) + (K] [T (MK
(KTAMITGT (KT (MA)
(2.42)
M} ¢
0 [K]

[A/['] =
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Unfortunately, the numerical order of the individual elements in the mass and
stiffness matrices in the augmented mass matrix are significantly different. Also the
terms in the lower right corner of the augmented stiffness matrix are much larger
than the gyroscopic terms in the upper left of the matrix. Therefore, if the shaft is
short and heavy, the stifflness terms overwhelm the problem numerically, producing
incorrect eigenvalues and vectors. For example, a stiff steel simply supported shaft
with a disk at the mid-span was modelled. The model was comprised of four
clements, each twelve inches long and six inches in diameter, and with a disk 24
inches in diameter and two inches thick. The stifflnesses in both planes were equal
and the shaft was not rotating. Hence, the problem was the same as two uncoupled
beams vibrating in their own planes. The expected eigenvalues in this case should
have been equal in both directions, and should have been the same as those of
a simply supported beam with a disk in the middle. Using Timoshenko beam
elements, and treating the model as a single plane beam, the predicted fundamental
natural frequency was 8120 CPM in bending. Using the above Meirovitch method
on the same configuration modelled with full Timoshenko shaft elements and double
precision, the natural frequencies for each plane were calculated, and are given in
Table 2.1. The natural frequencies calculated by the method described below (Gen.
Dyn. Sys.) are also given in Table 2.1. As shown, the Meirovitch gyroscopic system
method can lead to significant numcrical crrors cven when no gyroscopic effects
exist. With larger models (more degrees of freedom), the numerical problem is
exaggerated, making it difficult to calculat:- natural frequencies of a non-rotating or

low-speed shaft.

A more satisfactory method of solving the eigenvalue problem is to treat the

system as a general dynamic system. The equation of motion:

[M{} + [G]{z} + [K]{=} = {0}, (2.43)



Mode Meirovitch Method Gen. Dyn. Sys.
Plane 1 Planc 2 Plane 1 Plane 2

1 8121 8635 8120 3120
2 33447 35214 33447 33447
3 78642 80978 78642 78642

E =30 x 10° psi., v = 0.30, p = 0.283 1b./cu. in., A = 0.836

Is again transformed by introducing the state vector {¢} = L{r}l {.r}lJ r

case the equation of motion is now rewritten as:

[M){¢} + [K]{q} = {0},

where:

. Mi [0 . G K]
(¥] = (M} [0] [I\"]: ¢ [K] .
[0] [4] =1} [o]
The problem is further reduced to a single matrix problem:

(Al{z} = Az},
where:

-~ -

4] = Ry = | TG R ]

[7] [0]

TABLE 2.1: Natural Frequencies (CPM) of Simply Supported Shaft with Disk

. In this

(2.44)

(2.46)

(2.47)
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The [A] matrix is a non-symmetric real matrix of order 2n, which in general
has complex eigenvalues. The problem can be solved by transforming the matrix
to Hessenberg form, and solving for the complex eigenvalues using the Q R method.
TLe resulting eigenvalues occur in complex conjugate pairs and are of the form
A = a £ 8. Using this method, one can predict the natural frequencies of a shaft
as it spins about its axis. The forward and backward whirl speeds will come out of
the solution directly as the complex term . For a conservative gyroscopic system,
the cigenvalues are purely imaginary. When damping is included, the velocity term
becomes [(]+4[C]], and the eigenvalues are complex. The damping matrix is normaliy
symmetric, and in this case, « is the damping factor times the undamped natural

frequency and f is the damped natural frequency for that critical speed.

Boundary conditions are applied to a shaft model in a similar manner as to the
beam model, however the constraints are applied in both planes of vibration. Also,
if bearings are modelled, then cross-coupling stifiness and damping terms between

planes must be added at the bearing location.

To demonstrate the method, a mathematical model of a simply supported multi-
disk turbine was generated, as shown in Figure 2.6. The model consisted of seven
equal dimension circular Timoshenko shaft elements with six equal dimension disks.
The first three backward and forward whirl speeds are shown in Figure 2.7 for shaft
speeds of 0 to 11000 RPM. For the first mode, the shaft speed did not have significant
effect on the whirl speed of the shaft. However, for the second and third modes, the
shaft speed changed the whirl speed by up to 10 percent. That is, at a shaft speed
of 11000 RPM, the non-rotating third natural frequency of 21715 RPM split into
a backward whirl speed of 20442 RPM and a forward whirl speed of 22988 RPM.
In general, the gyroscopic effect is negligible unless the shaft has many disks on a

fairly flexible shaft, or a large disk is overhung on a flexible shaft.
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CHAPTER 3

AXxisymmetric Elements

Much Ado About Nothing — Shakespeare

3.1 Introduction

Traditionally, Euler-Bernoulli or Timoshenko beam theories have been used to
formulate finite element models of rotor-bearing systems as discussed in Chap. 2.
However, the elements so formed are restricted in accuracy; the primary assumption
made in the theory of simple bending is that planes perpendicular to the neutral
axis remain plane as the beam is bent. This works well when the structure being
modelled is prismatic and of an uniform section over its length. When the structure,
1s however, tapered or constructed of a number of uniform sections, then the planar
assumption is no longer valid. Consider the abrupt change of diameter illustrated
in Fig. 3.1. As shown, it is modelled with a beam or shaft element that results in
one node at the intersection of the two elements. The beam element unknowns only
allow lateral translation and change in the slope (rotation of the cross-section) of
the neutral axis. These conditions restrict both the small and larger cross-sectional
areas to a planar rotation at the junction. However, some warping must occur at
the junction. Also, beam finite element theory assumes that the stiffness increases

abruptly at the change in section in proportion to EI. But, since there is warping

29
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FIGURE 3.1: Abrupt Change of Beam Section

— Y- - — - — - -— - - - - —

FIGURE 3.2: Abrupt Change in Section Modelled with Axisymmetric Elements

of the section, it can also be seen that niaterial to the right of the section change
cannot contribute fully to the bending stiffness of the beam. Indeed, considering
the case from the perspective of elasticity, if the plane sections remained plane at a
step change in section while undergoing bending, and if the stiffness also increased
proportionally, then a surface traction over the annular area must exist. But since
there is no distributed force over this surface, the plane assumption violates the
boundary condition equations of elasticity. If the change in section is modelied
with axisymmetric elements based on three-dimensional displacements, as shown in
Fig. 3.2, then the junction has a number of nodes. Each node allows longitudinal,
radial and circumferential displacement, and therefore the degrees of freedom at the
intersection of the diameters allow the junction face to warp. As well, warping of
the larger diameter face, which reduces the ability of the material to resist bending
is modelled. In fact, the material at the outer radius of the large diameter face may

almost be neglected when calculating actual bending stiffness of the junction.

Most shafts or rotors of real machines have many changes in section, and

therefore the use of beam finite elements may be unsatisfactory when trying
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to predict natural frequencies, and any further dynamic analysis may also be
suspect. The primary modes of vibration in turbomachinery involve translational
displacement of the shaft away from the axis of rotation, and include the effects
of bending and shear. Therefore, a more satisfactory way of modelling the actual
clastic dynamic response of the shaft itself is required. The first improvement over
the beam-shaft type finite element was proposed by Geradin and Kill [15], and later
tested by Stephenson, Rouch and Arora [16].

The Geradin and Kill element is an axisymmetric dynamic element based on
full three-dimensional elasticity principles, and allows non-symmetric loads and
displacements by using a Fourier series displacement and loading approximation.
Since the element is axisymmetric, the nodes are actually nodal circles as shown in
Fig. 3.3, and the element itself forms a symmetric torus about the shaft axis. The
clement has twelve nodal circles, but uses only the four nodal circles at the corners
of the semimeridional plane to evaluate the element geometry, and is therefore
a subparametric element. The semimeridional plane is a plane cut through the
clement in the radial direction, with the other axis of the plane being the shaft
axis. An extension of the above element to a full isoparametric form is presented
here (see Eckert and Craggs (17]); that is, all twelve nodal circles are used to define
the undeformed geometrv and subsequent deformation of the element section. This
extension allows full continuity of all connected nodes, and also allows the modelling
of elements of different sections. The Geradin and Kill axisyminetric element
would only allow the semimeridional plane to be a quadrilateral section. The full
isoparametric axisymmetric element allows the sides of the semimeridional plane to
be curved, and therefore shaft sections that are barrel shaped in the direction of

the axis, as well as uniform and tapered, can be modelled.

The clement has been named axisymmetric in the published literature. Normally
axisymmetric elements only allow axisymmetric displacement and loading. Because

this element has an undeformed axisymmetric geometry, and is formulated to allow
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non-symmetric loading and displacement, it is more properly referred to as a quasi-
axisymmetric element. However, to maintain consistency with the literature, the

element will be referred to as an axisymmetric clement in this thesis.

3.2 Axisymmetric Beam Formulation

The axisymmetric element is pictured in Fig. 3.3. Each of the nodal lines
has three displacements u,v, and w, which are respectively radial, axial and
circumferential directions. The displacements can be expanded as a Fourier series in
the circumferential direction using (see Eq. (3.1)) two-dimensional shape functions
dependent on the radial and axial position (Zienkiewicz [18]). To allow bending, it
is only necessary to consider the first harmonic of the Fourier expansion; that is,
in Eq. (3.1) n = 1 with m = 0 for the symmetric plane of bending, and m = |
for the antisymmetric plane. Using these values of n and m, the displacements
can then be rewritten as Eq. (3.2). The shape functions superscripted with 0
represent the displacements symmetric about the r-z plane (0 = 0°), while those
superscripted with 1 represent displacements symmetric about the 8 = 90° plane
(antisymmetric about § = 0°). The symmetric and antisymmetric displacements
given by Eq. (3.2), are illustrated in Fig. 3.4. The bending that is described allows
some warping of the shaft cross-section. Simple bending theory assumes that the
cross-section remains plane during bending, and therefore the axisymmetric clernent,
is less constrained than beam-shaft elements. However, it must be noted that the
allowed displacements result in each individual nodal circle remaining plane during
bending. Relaxing the warping constraint further, so that individual nodal circles
could also warp, would require the addition of higher order trigonometric terms to
the Fourier series (i.e., n > 1), and the addition of nodal unknowns. The six nodal
displacements used, aliow the modelling of bending in two perpendicular transverse

planes of a shaft element.
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u = u%r,z)cos @ + u'(r,2)sind
v = v’(r,z)cos 6 + v'(r,z)sin b (3.2)

w = w(r,z)sin @ + wl(r,z) cos §

In this section, only bending in one plane will be considered, so that only the
first term of cach of Eq. (3.2) is needed. The two dimensional shape functions

(u®(r, =) etc.) can be expanded into the sum of serendipity functions times the

nodal displacements resulting in Eq. (3.3).
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u=|N|{ul}cosb
v=|N|{vl}cosO (3.3)
w= |N|{wl}sinb

The serendipity functions, |N]|, are used instead of simple polynomials to
climinate the need for inversion. In actuality, the simple polynomials were evaluated
and inverted once to explicitly form the serendipity functions, and with the

derivation given in Appendix A.4.
Since the element is isoparametric, the radial and axial positions at any point

in the element are defined with the same serendipity functions as the displacements

resulting in Eq. (3.4).

r= [N|{re}

(3.4)
= [N]{z}

N
|

Forming the mass, stiffness and gyroscopic matrices for the axisymmetric
clement requires a numerical integration to be performed over the element volume.
To facilitate the integration, the nodal coordinates are transformed from the global
coordinate system shown in Fig. 3.3 to the local coordinate system shown in Fig. 3.5
(semimeridional plane shown only). This ensures that the semimeridional plane of
any approximately quadrilateral shape can be easily integrated as a square shape.

The equation of motiou of a single axisymmetric element can be found using

Lagrange’s equation:

where £ is the Lagrangian, and is defined as the difference between kinetic

and potential energy (i.e.. £ = T — U). The variable ¢; represents a general
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coordinate, and for this element the general coordinate vector is the vector of nodal

displacements, {6.}. The Lagrangian for the element can be expressed as:
1 .. . . : 1 . .
L= 3{56}T[A46]{6e} + 9{58}7 [Gle] {66} - 3{66 }T[[\'c]{‘sc}a (3-6)

where the first term is the kinetic energy due to translational velocities, the second
term is the gyroscopic effect. and the iast term is the potential cnergy duc to
the stored strain in the element. Substituting Eq. (3.6) into Lagrange’s equation,

Eq. (3.5), and completing the differentiation for all the coordinates results in:
d ¢ 11 ’ ¢ - .
S(ME.} + QIGUT(6.)) - (QUGLE) — (K6 = {0}, (37)

or:

[M){é:} + QGLT — [GL) {6} + [K]{6.} = {0}. (3.8)
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The above equation of motion includes the gyroscopic eflect, which i1s examined
in detail in section 3.3, The ollowing <ubsections give the derivation of the stiffness
and mass matrices. and then compare the results of the non-rotating axisymmetric

clement to a beamn element.

3.2.1 Stiffness Matrix

1o find the stiffness matrix. the potential or strain energy must be expressed in
the same form as in the Lagrangian, Eq. (3.6). The strain energy for a volume

of material, where dvol = rdr d= df in the cylindrical coordinate system, may be

written as:

Strain Energy = é///{c}T{a} dvol. (3.9)

The strain vector for the cylindrical coordinate system is:

- (3.10)

and, the stress vector is given by:



{o} = [Di{c} = - (3.11)

I o% oty O 0 0 ]
) l (“1‘_—‘; 0 0 0
(D] = —EU =) -5 e ] ! 0 0 (3.12)
(14 v)(1 —2v) 0 0 0 25 0 {
0 0 0 0 =20
|0 0 0 0 0 375

Using equations (3.10). (3.11), and (3.12) the strain energy can now be written

in the matrix form:

1 e
Strain Energy = = / [ [{T (D) ey dr dz 0. (3.13)

However. to derive the stiffness matrix, the strain energy must be expressed in
terms of the nodal tnknowns. Using the general expressions for the displacements,

Eq. (3.3), the strain vector can be rewritten as:

{wl}
{c} =[B]S {29 ¢ =[BH8)}. (3.14)
{ult



[9%]
©w

where {6°} represents the symmetric nodal displacement vector, and [B] is the

"natrix given below:

[ |V, ] cos @ 0 0 ]
0 | V.| cosO 0
(3] = 1IN] cos @ 0 1| N|cos ' (3.15)
[N.] cos O [N, cos@ 0
—3|NV]sind 0 (IN,] — I N])sind
i 0 ~L|{N]sin6 |/V;] sin6 ]

The subscripts » and = represent the partial differentiation of the variable with

respect to the radial and axial coordinates as required by the strain vector.

Using the Jacobian matrix, [J] given by Eq. (3.16), the coordinates are
transformed from the r, =, 6 coordinates of the global system to the £,77, 0 coordinates
of the local system. This also transforms the semimeridional area of arbitrary shape
to the square arca centered on the origin. After transformation, the strain energy
15 given by Eq. (3.18), where the limits of integration due to the transformation are

—1 and | for both the £ and 7 (r and z) directions.

or 8z
— a9 o€

[J] = o o (3.16)
T 2y

a
} =[J] ¢ % (3.17)

QJl’ID 3)'&3

H

AY
B

Strain Buergy = {6y ([T [\ [ r(BV (D118 111 de dy d8) {82} (3.18)
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The strain energy equation is now in terms of the nodal displacements of the
element, as was done in the Lagrangian (Eq. (3.6)). Therefore, the portion of the
expression inside the brackets is the stiffness matrix. It should be noted, that
[B’] is matrix [B] of Eq. (3.15) transformed by Eq. (3.17) to the local coordinate
. . tem, and is dependent on 6. However, when the matrix multiplication in
Eq. (3.18) is carried out, all non-zero Lerms contain cither a cos? 0 or sin? 0, and since
foz"' cos?0 df = f;" sin?0d0 = =, the integration in the circumferential direction may

be completed by merely multiplying by 7. The stiffness matrix as extracted from

Eq. (3.18) is:

. 1ot T
(K] =7r[_l/_l r(E.) [BE, m)]T (DB (&) 1€ )| dE o, (3.19)

where [B”] is now the matrix [B’] from Eq. (3.18) with the trigonometric terms

explicitly integrated out of the matrix.

Evaluating Eq. (3.19) using Gauss quadrature results in:

77.5 ny

[Ke] =73 > wiw;r(&.m;) [B"(&e )T D] B (&) 1/ (E: 1) (3.20)

t=1 j=1

where n¢, n,. and w;, w; are the number of points, and weighting factors for Gauss
quadrature in the £ and 7 directions respectively. The Gauss quadrature used four

integration points in each of the £ and 75 directions.

3.2.2 Mass Matrix

The translational kinetic energy of an infinitesimal element of material is given by:
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The strain energy cquation is now in terms of the nodal displacements of the
clement, as was done in the Lagrangian (Eq. (3.6)). Therefore, the portion of the
expression instde the brackets is the stiffness matrix. It should be noted, that
[£3'] is matrix [B] of Eq. (3.15) transformed by Eq. (3.17) to the local coordinate
system, and is dependent on 8. However, when the matrix multiplication in
Eq. (3.18) is carried out, all non-zero terms contain either a cos? 8 or sin? 8, and since
Ji" cos? 0d9 = [{"sin® 0 df = =, the integration in the circumferential direction may
be completed by merely multiplying by 7. The stiffness matrix as extracted from

Eq. (3.18) is:

(K] = 7-'/_11 /_]1 r(&,n) [B"(&, )T iDI[B" (&, M) | J (&, )| d€ dn, (3.19)

where [B”] is now the matrix [B’] from Eq. (3.18) with the trigonometric terms

explicitly integrated out of the matrix.

Lvaluating Eq. (3.19) using Gauss quadrature results in:

716 Ty

[5e) =733 wiw;r(&m) [B"(&n)]T [D) B (€)1 (Eoms)ll, (3.20)

=1 j=1

where ng. n,,, and w;i. w; are the number of points, and weighting factors for Czuss
quadrature in the € and 5 directions respectively. The Gauss quadrature used four

integration points in each of the £ and 7 directions.

3.2.2 Mass Matrix

The translational kinetic energy of an infinitesimal element of material is given by:
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T
u i
. 1
djtra.ns = 3,0 3] 'y dvol. (-;.21 )
0 w

But the translational velocities may be written in terms of nodal displacements

using kq. (3.3). Note again, that only the symmetric components are being used

here. [.e.:

7]
o » = [A]{°}. (3.22)
w
where:
[V] cos@ 0 0
[A] = 0 |V cos 0 : (3.23)
0 0 |_NJ sin f)

Therefore, the total kinetic energy stored in an axisymmetric element of material

undesgoing translation of the nodal circles may be written as:

1 - ../ f2n o, :
Tirane = — {6917 rA]? Irdz ¢ . 3.2
wons = 58V ([ [ [rotal a1 dr dz a0) (62) (3.21)

Since the translational kinetic energy is now expressed in the same form as the

Lagrangian, the portion of the triple integral that is in the brackets is the mass

matrix for the element. Again, the ouly non zcro terms in the resultant of the

matrix multiplication contains squared trigonometric terms that can be integrated
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separately.  After transforming the coordinate system to the local system using

{3.16) and (3.17), the mass matrix may be expressed as:

S
(M =mp [ [ rEm AT AEDIIIEDNdEdn.  (3:25)
Evaluating Eq. (3.25) using Gauss quadrature gives:

g nn

(M) =wpD>_ > wiw; (&, ;) [A' (& n)]T [A (&) I (&)l (3.26)

i=1 j=1

where n¢, n,, and w;, w; are the number of points, and the weighting factors for
Gauss quadrature in the £ and 7 directions respectively. The mass matrix was
also evaluated using four integration points for each of the £ and 7 directions.
The matrix, [A’], is given by Eq. (3.23) where the trigonometric terms have been

integrated out, and the coordinate system transformed.

3.2.3 Beuam Type Resuits

Before the element can be used to model beam behaviour two further steps must
be performed. First, at nodes that are on the axis of symmetry and therefore have
a radius of zero, the strain components containing 1/r terms will have an infinite
magnitude. The treatment for this condition is given later undei the full shaft
formulation in Section 3.3.3. The same treatment can be applied to a bending
behaviour in one plane by applying it 1o only the in-plane degrees of freedom.
Second, the typical beam boundary conditions of clamped and pinned ends can
be applied by introducing large stiffnesses at the appropriate in-plane degrees of
freedom as also discussed under the full shaft formulation in Section 3.3.2. At a
clamped end all the nodal degrees of freedom can be constrained, and at a pinned

end the radial displacement of the innermost node is constrained. When bending in
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one plane is considered, any cross-coupling stiffesses between planes; as presented
in Section 3.3.2 can also be ignored.

The first test of the axisymmetric element is how well it models beam type
behaviour. The uniform simply supported beam as shown in Fig. 3.6, was modelled
with both the axisymmetric isoparametric element derived in this chapter and with
the Timoshenko beam element discussed in Chap. 2. The natural frequencies
for both models and those calculated using the series solution to the Timoshenko
equations by Anderson [6] (exact) are compared in Table 3.1, and it can be seen
that the axisymmetric element does indeed model simply beam behaviour correctly.
The error was calculated based on the exact Timoshenko (Anderson) values. Both
finite element models had approximately 150 degrees of freedom for this test. The
Timoshenko beam clement model gave natural frequencies that were within 0.05%
of the exact solution of the Timoshenko equations. The axisymmetric element gave
results that were within 2% of the exact solution, but were all lower than that
solution. The exact solution and the Timoshenko beam element are both based
on beam theory, while the axisymmetric element allows displacements that are not
accounted for in beam theory. The Timoshenko solutions are effectively constrained
more in comparison to the axisymmetric model, and it is therefore reasonable for the
axisymmetric natural frequencies to be lower than those predicted by Timoshenko
beam theory.

The elements were also compared by modelling a simply supported beam with
a taper and a step in depth as shown in Fig. 3.7. In this particular case, the
Timoshenko element was a tapered element with constant shear angle along the
element length. The results of the two are given in Table 3.2. Here, the percentage
difference calculated was based on the axisymmetric model being correct. For the
Timoshenko beam model, the first and third natural frequencies were slightly higher
than those calculated with the axisymmetric element. Considering the mode shapes

for these frequencies, it can be scen that the first and third modes had a greater
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FIGURE 3.6: Uniform Simply Supported Beam

TABLE 3.1: Natural Frequencies (CPM) of Simply Supported Uniform Beam

"Mode Exact Timo. Error (%) Axisym. | Error (%)
1 9473 5474 0.02 5465 -0.15
2 21375 21378 001 21257 -0.55
3 46356 46368 0.03 45844 -1.10
H 78692 78730 0.05 77334 -1.73
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TABLE 3.2: Natural Frequencies (CPM) of Simply Supported Tapered Beam

Mode Timoshenko Axisymmetric Difference (%)
1 2238 2230 0.4
2 22263 22268 -0.02
3 50800 49820 2.0
4 74416 79497 -6.4

change in bending slope along the middle length of the beam than the second mode.
That is, a greater portion of the strain energy was being stored in the beam in the
middle section while undergoing bending. Since that length has the taper and step,
where the beam theory assumption of perpendicular planes remaining plane does not
hold true, the Timoshenko beam model exhibited the greatest percentage difference
for those modes. The second and fourth natural frequercies of the Timoshenko
model were lower than those of the axisymmetric element. This is because the
larger diameter section and taper of the beam were very stiff in bending, and as

a result, the shear deformation dominated the bending deformation, giving lower

natural frequencies.
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A simply supported beam with an abrupt change in section depth at mid-span
was also modelled (see Fig. 3.8). The natural frequencies were calculated using the
Timoshenko element and the axisymmetric element for values of D;/D, ranging
from 1 (uniform beam) to 2. Note, that an abrupt change of diameter to twice
the diameter implies an abrupt change in section stiffness of 16 times the base
stiffness (for circular cross-sections) when using simple beam theory. Figures 3.9
and 3.10 compare the first and second natural frequencies of the models. The
first frequency calculated with the axisymmetric element was slightly higher than
predicted by the Timoshenko model, when the beam was uniform (D,/D; = 1).
As the step ratio was increased to 2, the axisymmetric model predicted a slightly
lower fundamental frequency, implying that not all of the material was effective in
resisting bending. Again, the larger error exhibited in the first natural frequency
was due to the larger strain energy (change in bending angle) across the abrupt
change in section diameter. This is consistent with previous work by Sanderson and
Kitching [2] which shows that some of the added section thickness at the diameter
change has no actunal effect on the stiffness of the beam in static bending. As
well, the first natural frequency peaks at a diameter ratio of about 1.3, and then
falls. The natural frequency increases for 1 < D,;/D; < 1.3 because increasing the
diameter, D,, increases the stiffness of the beam more than the mass is increased.
When 1.3 < Dy/D; < 2.0 the right hand end of the beam has become so stiff, that
very little bending can occur in that portion. The increased diameter merely added
mass and diametral moment of inertia to the end of the smaller diameter section,
resulting in a natural frequency that dropped as the diameter increased. The second
frequency calculated with the axisymmetric model was consistentiy higher than that

predicted by the Timoshenko model.

The two different element types were also tested for bending of a hollow
cantilever beam with an internal abrupt change in section diameter, as shown in

Fig. 3.11. The small diameter D, was varied so that the ratio D,/ D, ranged from 1
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FIGURE 3.8: Simply Supported Beam, With Varying Step of Section

to 2. See Figures 3.12 and 3.13 for a comparison of the first two natural frequencies.
For both the first and second modes, the axisymmetric and Timoshenko models

predicted essentially the same natural frequencies, as the step ratio was varied.

3.3 Axisymmetric Shaft Element

The previous section dealt with a formulation of the axisymmetric element that oniy
allowed bending in one plane. The element was restricted to essentially only beam
type behaviour, but the elastic formulation allowed warping of the cross-section
during bending. This section develops and tests the axisymmetric clement as a full
shaft model. That is, the element allows bending in two perpendicular planes, and

accounts for the full gyroscopic effect of a spinning shaft on whirl speeds.

The isoparametric axisymmetric shaft element was tested on a simple overhung
shaft with a disk, and the calculated whirl speeds are compared to those calculated
with a Timoshenko shaft element. The axisymmetric shaft element was also tested
on the Nelson and McVaugh rotor [19], and a comparison of the whirl speceds with
those calculated using a Timoshenko shaft model, and those published by Nelson is

given below.



7000

—o— Axisym. Model
E —»— Timo. Model
o
2 6500
=
s
g
&2
=
g 6000
2
&
[
5500 , I T i
1 1.2 1.4 1.6 1.8 2

D,/D,

FIGURE 3.9: First Natural Frequency, Simply Supported Step
36000

34000

W
I\
o
I8

30000

28000

—6— Axisyn. l\;iodel
—»— Timo. Model

Second Natural Frequency, CPM

2
2
1

24000 T T T T [
1 1.2 1.4 1.6 1.8 2
D,/D,

FIGURE 3.10: Second Natural Frequency, Simply Supported Step



19

< 3¢ 36" >
%
7 W/ N

Dl= 3", 4", 5" 6" D2= 6"

0\ Vi

6 3
30x 10 psi.,, p=0.2831bs./in.”, v=0.287, K=0.885

= NN

FIGURE 3.11: IIollow Cantilevered Beam, With Stepped Section

3.3.1 Shaft Element Formulation

To allow bending in two perpendicular planes, the generalized displacements u, v,
and w must be given by Eq. (3.2), where the displacement superscripted with 0 and
1 represents the contribution to the displacement from each of the bending planes
(symmetric and antisymmetric to § = 0°). First consider the kinetic energy of an
infinitesimal element of mass in an inertial cartesian coordinate system x;y;z;. The

kinetic energy is then:

T = /WI (z'f. -+ 7.)3 + v;‘) pdvol. (3.27)

Geradin and Kiil [15] performed the following steps to calculate the gyroscopic
portion of the kinetic energy in the axisymmetric coordinate system. Assume
that the deformation of a point is given by u;, v;, and w; in the inertial cartesian
coordinate system. Let there be a deformed cartesian coordinate system that can
be derived from the inertial system by; a small rotation 6; about the y-axis; small
rotation 7; about the z;-axis; and a rotation of wt about the shaft axis, the z-axis.
The velocity can then be expressed in terms of the inertial velocity and position

components, but using the deformed unit vectors. Substituting this expression into
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the Kkinetic energy expression Fq. (3.27). and extracting the portion resulting in

inertial effects gives:

I'= —-SZ/ w, (0,y; + vir) pdeol. (3.28)
veid

The inertial position components may  be related to  the axisynmnetric

components byv:

£, = rcosf)
Y = rsinf (3.29)

And. the displacements can be related by:

U, = wucosl —uwsinf

v, = wusin. - wcosf

w, = r {:3.30)

0, = D.cosl+d,sinb

v, = —b_ sind + ¢4 cos0.

As well:
du Juw
P, = — Py= . (3.3

dz 7 iz )

Substituting LEq. (3.29). Eq. (3.30) and Fq. (3.31) into Eq. (3.28) gives the

following kinetic cnergy:

I 2 .9 . £
I = --/ (i + &%+ i?) pdvol — sz/ v pdrol. (3.32)
2 vol vaol
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The gyroscopic portion of the kinetic energy is the second term of the right hand

side of Fq. (3.32). Rewriting the second term by substituting @4 = %"; results in

the kinetic energy due to the gyroscopic effects of an axisymmetric shaft section

Eq. (3.33).

Ioyeo = Q///v— —%u—)rp(lvol (3.33)

The displacements. v and w. are given by the expressions Eq. (3.2). and the

symmetric and antisymmetric components are given by:

W= ANYT ) wt = (N7 {ul)
= (NS} el = ()T () (3.34)

= (NP {w?} w!'= —{N}T{w!}.

Note that the antisymmetric component of the axial displacement is defined
as the negative sum of the serendipity functic..s times the antisymmetric axial
displacements. This allows both the symmetric and antisymmetric portions of the

stiffness and mass matrices to be the ~ame, simplifying the computational effort.

The displacement in the axial and tangential directions can be written as:

r h' 7' 4 3
{ul} 0
{vC} |V ] cos 0
DS 4 Ol sgmay (3.35)
{ul} 0
{1 |N]sin@
[ {w!} J { 0 )




w =

d dw _
' T s =

where:

0

{N.}sin0
0
0

—{N.}cos 0

(6,1 = 4

[ (%} )
{0}
{u)
ful}
(e}

[ {we} )

{u?}
{r}
{uil’}
{i/}
{4
J [ {@) )

s = {12}7{8, ).

Substituting Eq. (3.36) and Eq. (3.37) into Eq. (3.33) results in:

Tyro = Q{a,_.}"'(///rp{A}.{u}”' dvol) {3, }.

(3.36)

(3.37)

(3.3%)

(3.39)
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The portion of the Eq. (3.39) in brackets is the matrix [G1], which is the gyroscopic
portion of the Lagrangian defined by Eq. (3.6). Note that forming the product
{A} B} results in all non-zero elements of the matrix having trigonometric terms.
Since [T cost0d0 = [T sin®0dg = 7. and [¢" cos 0sinf df = 0, the full gyroscopic

matrix [(7,] = Q[G1])T — [(3']), in the equation of motion, Eq. (3.8). is given by:

] = er//r2p lg(7.2)]drd-=, (3.40)
where:
0 0 0 0o 0 o |
0 0 0 0 0 {NV V-]
0 0 0 0 {N_}N 0
[glr, )] = (V3N (3.41)
0 0 0 0 0 0
0 0 —{N}|N:] © 0 0
| 0 —{N.}V] 0 0 0 0 ]

The subscript = represents differentiation with respect to the axial coordinate.
The gyroscopic matrix for the isuoparametric axisymmetric element afier

transforming the coordinate system is:

1
Gl=amp [ [ ’1 P& ) (g (€I (E.n) ! dE dn, (3.42)

where [¢'] is the mairix given in Eq. (3.41), but transformed to the local coordinate

svstem.
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FIGURE 3.14: Displacements in the Cartesian and Cylindrical Coordinate Systems
Evaluating Eq. (3.42) using Gauss quadrature gives:

g my,

(G = Qrpd D wow; v (&) [0 (&) I (60l (3.13)
=1 =1
where ng, n,. and we. w, are the number of points, and the weighting factors
for Gauss quadrature in the § and 5 directions respectively.  Again, four point
integration was used in both the £ and 7 directions.
The axisymumetric gyroscopic matrix is both sparse and skew-syimmetric, and as
a resuit. considerable computational efficiencies can be attained by only calculating

the duplicated non-zero components.

3.3.2 Boundary Conditions

The displacements in the cartesian and cylindrical coordinate systems at a particular
axial and radial position are shown in Fig. 3.14. Note that w! is shown in the
negative direction as given by the negative sum of equation Fq. (3.34). Boundary
conditions for shafts are usually given as spring and damping coeflicients in the

cartesian coordinate system, which relate the effects of bearings and bearing
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supports to shaft motion.  The application of these boundary conditions is
demonstrated by the transformation of the bearing stiffnesses at one particular
point to stiffnesses applicable to the cylindrical coordinate system.

Referring again to Fig. 3.14, the displacement in the Y direction of the cartesian
coordinate systen: is given by w. The displacements in the cvlindrical coordinate
system at a particular position are defined either at § = 0° or § = 90° as shown. By

inspection, the following relationships can be written for the nodal displacements:

U = w w = —-w
(3.44)

U =v w" = —v.

A bearing stiffness in the cartesian system, K., represents a force in the w
direction (the first subscript) due to a unit displacement in the w direction (second
subscript). Using the relationships of Eq. (3.44), it can be seen from inspection that
the additional stiffness K, can be translated to the cylindrical coordinate system

by adding or subtracting the bearing stiffness from the appropriate axisymmetric

stiflnesses:

Kyopo = Koo + Ky,

(3.45)
KW 0,0 = No0,0 — K.
Sinuilarly, the effects of K,,., A, and K,,, can be expressed as:
Npgpgw=RKan+ K,
(3.46)

Nyotgr = K0 — Ky
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(3.18)

Any damping coefficients that were expressed in the cartesian coordinates system

could also be applied to the axisymmetric element model by using the same

transformation of the displacements.

3.3.3 Zero Radius

At nodal circles with a radius of zero, the strain components containing 1/7 terms,

as given by Eq. (3.10), will have infinite magnitudes. To eliminate these strain

components. the cocfficients multiplyving these 1/ terms must he zero (Belvtsehko

[20]). This results in the following restrictions on displacements at zero radius:

(3.49)

Combining. Eq. (3.49) with the displacement relations given by Eq. (3.2), and

collecting like trigonometric terms results in the following constraints at zero radius
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(these constraints were given incorrectly by Geradin and Kill [15], and Stephenson

and Rouch [21]):

u? = —w®
v’ =0
1 1 (3.50)
u' =w
v! = 0.

These zero radius constraints have been applied for all the following shaft tests,

and were also applied for all beam type tests.

3.3.4 Shaft Results

This section discusses the test of the full axisymmetric shaft element. However,
the models in this section were calculated assuming that the shaft whirl and shaft
running speed were synchronous, and that the orbit of the shaft was circular. The

matrix equation of motion, where [G° is the gyroscopic matrix due to the symrmetric

displacement components only, is:

) for pp ey | o 6] | {e)
o} [ || {1} (-G [o] {e1}
(3.51)
(K] [o] {62} {0}
[0] (K] ]| {61 {0}

Letting the antisymmetric displacements lag the symmetric displacements by

m/2, and assuming a circular orbit results in the following relationships:
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I

{60} {&Feve {8} = —j{afer
{80} = Jwtares ) = wqa e (13.52)
{8} = w2 fere {8} = jor s e

Since from Eq. (3.52), {69} = —:;{(5,'} and {6:} = —':{c‘?:’}, then Eq. (3.51) can be

i

rewritten as:

[M.] - L {69 [0] {60}
0] [AL] - L (GY {61}

(K] [0] {62} {0}
[0 [w ] {8} {0}

As shown by Eq. (3.53), assuming synchronous circular whirl uncouples
the symmetric and antisyminetric displacements of the shaft. Also, since the
stiflness, mass, and gyroscopic matrices are the same for both the symimetric and
antisymmetric unknowns of the element, only the mode shapes and frequencies
for either the symmetric or antisymmetric displacements need to be caleulated.
Therefore, the degrees of freedom of a problem can be limited to the same number

as that of the simple beam type representation using the axisymmetric elemnent.

The element was first tested on the overhung shaft model shown in Fig. 3.15.
The model was steel, and natural frequencies for zero shaft speed, and synchronous
forward and backward whirl were calculated. The same idealization was also
modelled using Timoshenko shaft elements and the whirl speed results are compared
in Table 3.3. For the first whirl speed, the Timoshenko and axisyminetric models
gave nearly equal results. However, for the second and third whirl speeds, the
zero shaft speed, and forward whirl of the axisymmetric model were considerably

different.
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FIGURE 3.15: Overhung Shaft Model

TABLE 3.3: Whirl Speeds of Overhung Shaft (CPM)

60

Timoshenko Axisymmetric
Mode Back. No Shaft For. Back. No Shaft For.
Whirl Speed Whirl Whirl Speed Whirl
1 2773 30660 3406 2811 3110 3489
2 10832 16720 73696 10651 13516 56609
3 75750 76832 184000 84413 85860 151900
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The axisymmetric shaft element was also tested on the Nelson-McVaugh {19)]
rotor, as shown in Fig. 3.16. Since, modeclling the rotor as one complete system
using axisymmetric elements would have required too many degrees of freedom,
the shaft was split into four subsections as shown in Fig. 3.17. 'The matrices for
each subsection were then reduced in size using component mode reduction, and ten
normal modes were retained for each. The master nodes for cach subsection are also
indicated in the diagram. Geradin also analyzed the rotor using component mode
reduction, with the model being split into similar components, with a total of forty
modes retained. A comparison of the first three whirl speeds predicted using the
axisymetric element, the Timoshenko clement, the Nelson’s beam-shalft clement,,
and the Geradin axisymmetric element is given in Table 3.5. The Timoshenko
model was broken down into the cightcen elements shown in Fig. 3.16. The shaded
section of the shaft was an added aisk with an outside diameter of 0.1032m, an
inside diameter of 0.0406m, and a thickness of 0.0254m. There are a number of
discrepancies between the dimensions of the rotor as given by Nelson-MeVaugh and
Geradin. For instance. the shaft radii listed by Nelson are actually diameters, and
the added disk data is inconsistent (mass, polar and diametral moment of inertia).
The dimensions used in this thesis are given in Table 3.4. The supports were
transverse springs with the following stiffness: 1.378 x 107N/m.

The zero shaft whirl speeds (natural frequencies) for the isoparametric
axisymmetric element were lower than all the other models, except for the first. This
suggests that the stiffness of the axisymmetric model was somewhat less than that
of the beam type element models. The first natural froquency for the isoparametric
axisymmetric model was higher than that predicted by the Timoshenko shaft model.
This is due to the shaded disk only adding mass to the Timoshenko model, while
for the axisymmetric model the disk added stiffness as well. In the first mode of
vibration, the left end of the rotor acts essentially as a cantilever beam, so that the

section with the disk underwent a large bending deflection. Therefore, the extra
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FIGURE 3.16: Nelson-McVaugh Rotor

stiffness of the disk in the axisymmetric model discretization increased the first
natural frequency significantly. For the second mode, the right end of the rotor
underwent the greatest deflection. While for the third mode, the middle section
between the two supports underwent the greatest deflection. Hence, for these modes
the suiffness of the disk in the axisymmetric niodel did not increase the predicted
natural frequencies above those of the Timoshenko model. The Nelson-McVaugh
rotor has a number of step changes, so that it is reasonable to expect that the
stiffness of the rotor modelled with the axisymmetric elements would not be as
high as predicted by bending theory. This agrees with the introductory discussion
that at a step change in diameter the material on the larger diameter side of the
change may not contribute fully to the bending stiffness. Some error is also inherent
in the component mode reduction technique. With component mode reduction
the model is partitioned into master and slave degrees of freedom, with the slave
degrees of freedom being defined in terms of the master degrees of freedom using
a static condensation technique. However, component mode reduction increases
the accuracy of a dynamic analysis over that using a purely static condensation by
retaining extra modes for each component, where the mode shapes are found by

constraining the component master degrees of freedom.
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E=2x10 N/m, p=7806kg/m , v=0.287, K=0.885

FIGURE 3.17: Axisvinmetric Element Model of Nelson-McVaugh Rotor

TABLE 3.4: Nelson-Nc¢Vaugh Rotor Dimensions

Elem. Len. Inner Outer Elem. Len. fnner Quter
No. Dia. Dia. No. Dia. Dia.
m. m. m. m. . m.
1 0.0127 - 0.0102 10 0.0305 - 0.0254
2 0.0381 - 0.0203 11 0.02534 - 0.U0254
3 0.0254 - 0.0152 12 0.0381 - 0.0305
4 0.0127 - 0.0406 13 0.:381 - (.0305
5 0.0127 - 0.0406 | 1 0.0203 - 0.0254
6 0.0051 - 0.0660 15 0.0178 - 0.0254
7 0.0076 | 0.0305 | 0.0660 16 0.0102 - 0.0762
8 0.0127 | 0.0356 | 0.0508 17 0.0305 - 0.0406
9 0.0076 - 0.0508 18 0.0127 { 0.0305 | 0.0406




TABLE 3.5: Whirl Speeds of Nelson-McVaugh Rotor

“t

Mode Axisyin. Timo. Neis.-McV. Ger.-Kill
(CPAD) (CPM) (CPM) (CPA)

15902 B 15571 B 151470 B 14987 B

1 16619 N 16358 N 16267 N 16119 N
17169 F 7228 I 17159 F 17164 F

13503 B 17235 B 16612 13 15570 13

2 15121 N 17357 N 48384 N 17761 N
7205 F 47107 F 19983 F 19597 F

63T B 65712 B 64752 B 62450 B

3 T0027 N 76871 N 76382 N 5155 N
NH22Y K 91350 F 96457 F 92210 F

I |
B = Backward Whirl. N = No Shaft Speed, F = Forward Whir]
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FIGURE 3.18: Transformation of Nodes

3.4 Coupling of Axisymmetric o Beam-Shaft Elements

Since the axisymmetric element has a large number of degrees of freedon, modelling
a whole rotor system with the element may require large amonits of computer
memory and time to caleulate. The process may be simplified by using  a
condensation technique such as component mode reduction to make the problem
a manageable size in terms of computer memory.  However. fairly long sections
of a rotor systewn are often uniform in size. and can be modelled adequately with
just a Timoshenko shaft element. The axisymmetric element is necessary when
modelling sections of the rotor system that have nnmerous diameter chianges, tapers.
or perhaps a number of wheels or disks. It would be advantageons to use hoth
elements in one model thereby combining the simplicity and mininm meme:
recquirenente of the Timochenko clement it}

4 ‘.' DR '
ih\‘ aXlay i

: the accuracy of
clement {or the more complex geometry sections. This section deseribes a mcetho,
for linking the two kinds of elements. and gives the results for a test of the method

on a sample rotor.
The coordinate systems and displacenments for the Timoshenko shaft element
and the axisymmetric element were previously shown in Fig. 3.14. From this figure,

the translations as defined in the two coordinate systems are related by w = w9 at

0 = 0° and w = —u” at 6 = 90°. The slope of the element faces can be related
by I' = —-%"rg at 6 = 0° and B = "'E,{)U,’ at 0 = 90“. Since the displacements
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in three dimensions at cach of the nodal circles for the axisymmetric element must
coincide with the translations and slopes at the single node of the Timoshenko shaft
clement as shown in Fig. 3.18. the relationships between the two are not unique. To
join a shaft subsystem modelied with axisymmetric elements to one modelled with
Tinoshenko elements the number of nodal unknowns at the junction must be the
same. The transformation chosen sets the lateral translation of all four nodal circles
in the axisyminetric domain equal to the translation of the single node in the beam-
shaft domain. Also. the axial displacement of the nodal circles can be calculated
by mmltiplving the angle I') by the radius of the noda! circle. This constrains the
imterconnecting surface of the axisynmimetric component to a planar translation and

rotation as defined by bending theory, and can be written as:

( ul ‘ [ 0
e} 0 0
wy -1 0
ul 1 0
vl 0 —r
Jes - o ot (3.54)
uy 1 0 I’
0y 0 -—r3
w -1 0
ul 1 0
vy 0 —ry
. | -1 0

The transformation is performed at any axisymmetric nodes to be connected
to beam type nodes, which would normally occur at one or two places on the

axisymmetric subsection. The intermediate nodal unknowns carn be transformed
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from the cyindrical coordinate system 1o the cartesian coordinate system by oa
simple one to one correspondence (i.e. qn identity matrix).

This technique was tested on a simply supported shaft svstem as shown in
Fig. 3.19.  The results comparing modelling the subsections with Timoshenkoe
and axisymmetric elements. and with either axisymmetric or Timoshenko elements
totally. are given in Table 3.6. For the coupled element test, Sections and 11 of the
shaft were modelled with nine and three Timoshenko shaft elements respectively.
and Section Il was modelled with sevep axisvmmetric elements for a combined
model of 150 degrees of freedom. When the shaft was completely mnodelled with
axisymmetric elements. Sections I had two elements. Scetion 1 had seven elements,
and Section I had a single element {or a total of 191 degrees of freedom. The shalt
was also completely modelled with cighteen, six and nine Timoshenka elements
for the thiree sections respectively. As can be seen. the results hetween the three
different modelling methods compare well.  The lowest natural frequency using
the combined axisymmetric and Timoshenko shaft clement model was less than
2.0%. different from that caleulated with the completely axisvinmetric model. The
axisymmetric clement is kws constrained than the Timoshenke shaft element, and
hence the natural frequencies of the axisymmetric model are lower than those of the
Timoshenko model. However. the combined axisymmetrie an | Tinoshenko shaft
element model had a combination of the constraints of the other two models, and
should predict natiiral frequencies between those of the other models, As shown, the
combined model predicted natural frequencies less than those of the axisymmetric
model. suggesting that the combined model is less constrained. The reason for this
is unknown at the present time, and these results suggest that the coupling method

presented here requires further investigation.
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TABLE 3.6: Nat:
Mode \xisyvimimetric Timoshenko Axi + Timo
(C'PM) (CPM) (CPM)
1 TH28 7610 7398
2 28294 28657 28149
3 78516 79016 78267




(1Y)
3.5 Conclusions

Although the axisyvmmetric element allows greater freedom in modelling of shaft
shapes, and includes the ability to represent torsional and axial vibration modes,
the increased complexity and larger number of unknowns tend to outwetgh the
advantages. The axisymmetric element does provide better accuracy as well, but
should be limited to use where the number of steps, tapers, ete., may introduce
limitations in the accuracy of the Timoshenko type shait elements. For the cases
tested. the axisymmetric element did not provide results that were significantly
different from those calculated with the Timoshenko shaft element s, Considering
the large matrices generated when modeclling shafts with the axisvinmetric element.,
the use of the element is not justified for most sitnations. That is. the axisynunetric
element should only be used where a non-aiifo.m shaft section may severely limit
the higher mode predictions of the Timoshenko element .

The axisymmetric element may provide a suitable basis for modelling and
studying the stiffening effects of shrink fit wheels and disks. The modification o the

clement to accommodate thermal expansion is a suitable area of future research,



CHAPTERA4

On the Application of Bearings

Methinks it is [iKe a weasel. — Shakespeare

4.1 introduc.:.on

This chapter dies not introduce new material, but instead recognizing the
importance of the supports to the dynamics of the total rotor system, presents
an overview ol bearing and support modelling methods.

The classical boundary conditions for shafts and beams, as shown in Fig. 4.1,
are approximations of the actual boundary conditicus exhibited in turbomachines.
A pinned end is similar to a spring or short bhearing with an infinite translational
stiffness; and a clamped end is similar to a support or long bearing with both
infinite translational and rotational stiffnesses. Of course, these boundary conditions
are normally modelled by constraining out the appropriate degrees of freedom
representing the translational or angular stiffnesses, or by applying springs of several
orders of magnitude greater stiffness than the flexible stiffness of the rotor being

modelled.

However, these simple methods may not model actual bearings and their
supports adequately, and as is well known, the actual boundary conditions can

have a significant effect un th~ < ynamic characteristics and response of a complete

70
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rotor-bearing systen.

Rolling element bearings have high stiffuesses, and cau often be modelled well
as pinned or clamped boundary conditions. As well, the bearing can be modelled
with linear stiffness and damping terins, although these may have to be determined
expertnentally.

Journal (hydrodynamic) bearings are not well represented in this manner. The
bearing. have cross-coupling stiffnesses; that is, a vertical motion of the journal in
the bearing will cause a horizontal reaction force. Also. journal bearings are often
modelled with linear stiffness and damping terms, but for many possible motions of
the journal in the bearing, the actual stiffness and damping introduced is highly non-
linear. This chapter will discuss the hydrodynamic bearing model normally used,
and also the eflect of the bearing on the dynamic characteristics of the rotor-bearing

system.
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FIGURE 4.2: Hydrodynamic Bearing

4.2 Hydrodynamic Bearings: Steady Running

The simplest type of hydrodynamic bearing has a circular bearing shell made in
two halves, that fit around the shaft (journal) with some diametral clearance (see
Fig. -1.2). The ratio of the axial length of the bearing to the shaft diameter is
normally in the range of 0.5 to 1.0. Oil is supplied to the bearing through two
axial grooves at the beuring shell joints in the horizontal plane, and the oil exits the
bearing by leaking out the bearing ends. The oil supply pressure is much lower than
the pressure of the load on the journal projected over the bearing area, and as a
result, hydrodynarmic hearings rely on the pumping action of the spinning journal to
create a fluid film tiat supports the rotor, and prevents metal to metal contact. In
a few cases, the bottom half of the bearing may have holes to provide high-pressure
Jacking oil which lifts the journal away from the bearing shell only at low speeds,

or when the rotor is not spinning.

When the rotor has reached some minimum speed, the pumping action of the
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journal will form a convergent wedge of oil (oil film) which lifts the rotor out of
contact with the bearing shell. The oil wedge starts at or near the position of
maximum clearance, and continues around the journal in the direction of journal
rotation to the position of minimum clearance. Qutside of the oil wedge is a broken
or aerated oil film which is ay atmospheric pressure. The journal center, (), is
displaced from the bearing ~enter, Og , and the ratio of center displacement to
radial clearance is known as the cccentricity, €. The angle from the vertical to the
diameter through the nsaximum and minimum clearances is known as the attitude
angle, é¢. The displacement of the journal center from the bearing center must fall
on the attitude line.
The external load, W

. . . .
» Woresults in & mican pressure on the projected area of the

journal given by:

W
p = — 1.1
P DI (1.1)

where D = the journal diameter, and L = the journal length.

A dimensionless pressure may be defined by:

/ D 2
P = -[TI;T/- (‘CT) . (’1.2)

‘Taking the reciprocal of Eq. (4.2) gives the Sommerfeld duty parameter (as given
by Eq. (4.3)), which determines the attitude angle and cceentricity of the journal.
The Sommerfeld number is used as a similarity number betwec: bearings of similar
shape. Here, N = the shaft speed in revolutions per second, u = the dynamic

viscosity, and C' = the diametral clearance.

. uDLN (9)2 14
S=—\c (4:3)



journal will form a convergent wedge of oil (o1l film) which lifts the rotor out of
contact with the bearing shell. The oil wedge starts at or near the position of
maximnum clearance, and continues around the journal in the direction of journal
rotation to the position of minimum clearance. Outside of the oil wedge is a broken
or acrated oil film which is at atmospheric pressure. The journal center, Oy, is
displaced from the bearing center, Og , and the ratio of center displacement to
radial clearance is known as the eccentricity, . The angle from the vertical to the
diameter through the maximum and minimum clearances is known as the attitude
angle, ¢. The displacement of the journal center from the bearing center must fall

on the attitude line.

The external load, W, results in a mean pressure on the projected area of the

Journal given by:

, W (4.1)
p '_'DLH .

where 1) = the journal diameter, and L = the journal length.

A dimensionless pressure may be defined by:

7 D 2

Taking the reciprocal of Eq. (4.2) gives the Sommerfeld duty parameter (as given
by Eq. (:1.3)), which determines the attitude angle and eccentricity of the journal.
The Sommerfeld number is used as a similarity number between bearings of similar
shape. Here, N = the shaft speed in revolutions per second, g = the dynamic

viscosity, and C = the diametral clearance.

 uDLN /D\?
§=" W (Z?‘) (4.3)
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For many turbomachines under steady state running conditions, the load exerted
on the bearing has a constant magnitude and direction. The greatest component,
of bearing load is normally the weight of the rotor system, with hydraulic forces
adding smaller components in the non-vertical directions. As shown in Fig. 1.2
the vertical load W causes a downward and horizontal displacement of the journal
relative to the shell center. The journal will attain an cccentric cquilibrium position
for a steady load. A small perturbation in load will cause a small displacement with
both horizontal and vertical components from the equilibrium position, but the
Journal motion will normally reattain the equilibrium position. Hence, the bearing
can be considered stable under most steady-state conditions. However, when lightly
loaded, the eccentricity of thic journal is sinall, and the reaction forces due to a light
constant load may include a significant component in the direction of shaft rotation.
When this occurs, the journal will orbit about the bearing on a circular path, the
amplitude of which is controlled by the damping introduced by the bearing, but
which may still be excessive. The bearing then, is not considered stable under

steady state conditions.

4.3 Hydrodynamic Bearings: Non-Steady Running

As was discussed in the steady running section, applying a steady vertical load to
the bearing journal will cause it t» move to an equilibrium position as shown in
Fig. 4.2, where the center of the journal Oy has moved downward and horizontally
along the attitude line (at an angle ¢ from the vertical). For dynamic loads, the
motion of the journal in the bearing and the structure of the oil filin can have a
variety of regimes. If a small additional rotating load, caused by imbalance or fluid-
rotor dynamics (harmonic with the shaft rotation speed), is applied to the journal,
the journal will whirl in a small elliptical orbit about its equilibrium position (sce

Fig. 4.3). As well, the position of the con..rgent fluid film in the bearing will
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FIGURE 4.3: Oscillating Fluid Film

oscillate slightly. If the transient load amplitude is increased, the whirl orbit of the
journal will increase in size, and the oscillation of the fluid film will increase. When
the load amplitude is large enough the oscillation of ¢/ : fluid film will cease, and
instead the fluid film (and its position of minimum thickness) will whirl around the
bearing with the journal in essentially a circular orbit with constant eccentricity.
If the whirl frequency is less than one-half the shaft rotation frequency then the
fluid film will trail the journal motion (as shown in Fig. 4.4). And when the whirl
frequency is greater than one-half of the shaft ro:. .ion frequency, the fluid film will
lead the journal motion (see Fig. 4.5). Note that for rotating film cases the attitude
line and resultant force exerted on the journal by th= fluid filin rotate around the

inside of the bearing at the whirl frequency.

For the trailing rotating fluid film regime, the resultant force due to the fluid
film pressure has a component normal to the attitude line that is in the direction
of whirl. Therefore, energy is supplied to the whirl, and a trailing rotating fluid

film is usually considered unstable. The resulting orbit may be limited by the non-
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linearity of the stiffnesses of the bearing when the eccentricities are large, and by the
damping introduced by the hearing. The instability is worse for journals subject to
light steady loads. When the steady load is light. the journal eccentricity is small,
and the resultant fluid film force is nearly perpendicular to the attitude line. In this
case, the rotating force does not need to be large to induce the rotating fluid film
and whirl of the shaft. When the steady load is large, the eccentricity of the journal
will also be large, and the resulting fluid force on the journal will be nearly parallel
to the attitude line. As a consequence, the heavily loaded bearing is much less likely

to attain the rotating fluid film regime. and hence the condition of unstable whirl

is not a concern.

For the leading rotating fluid filin regime, the resultant fluid film force on the
journal has a component normal to the attitude line pointing in the direction

opposite to whirl, and as a result the force resists the whirling motion of the journal.

4.4 Bearing Models

To determine the stiffness and damping coefficients that would model a journal
bearing a number of assumptions must be made. The common assumptions for

conventional hydrodynamic theory are given by Smith [22], and ar: as follows:

1) The lubricating film thickness is small compared with the journal

dimensions.

2) The journal is cylindrical and of known diameter, and the bearing is

of known shape and dimensions.
3) The journal axis is paralle] to the bearing axis.

4) The inertia of the lubricating film is negligible.



5) The film is unable 1o sustain sub-atmospheric pressures. And the
film pressure is ambient alorg the supply and drain boundaries, and

wherever the film is broken or cavitated.
6) The filin flow is laminar.
7) The lubricating fluid is a simple Newtonian fluid.
8) The wviscosity and density of the fluid is uniform throughout the

bearing.

In an oil film for which the above assumptions are valid, and under conditions of
steady load and speed, the pressure distribution in the film is given by the Reynold’s

cquation for lubrication in a channel:

%) S ad R 9 Oph
Y [pr  9p + — E___p_ =6U_p_. (4_4)
Os \ p Os oz \ p Oz Os
where b — the filim thickness, s = the distance in the tangential direction,
= = the distauce in the axial direction, p = the oil density, ¢ = the dynamic

viscosity, and UU = the peripheral speed of the journal. To determine the stiffness
and damping provided by the bearing, Eq. (4.4) is non-dimensionalized, and a
siall perturbation from the equilibrium position is imposed on the journal. The
perturbation displacement has components in both the horizontal and vertical
directions. and a first order linear perturbation analysis is done upon the Reynold’s
equation to calculate the resulting changes in reaction force. If Z and Y are the
horizontal and vertical directions then the reaction force components on the journal

are non-linear functions of the displacement and velocities in those directions. That

is:



Fz = Fi(ZY.Z.Y) L3
. . L)
Yy = B (ZY.Z.Y).

However, using first order terms of Taylor series near the journal equilibrium
position, these functions can be linearized. The total force is the sum of the static
reaction force at equilibrium (subscript o), and the incremental reaction force due

to the small perturbation from the equilibrivm position. That is:
F=F +AF, (1.6)

where, the incremental force is given by:

. _ JAVA . YAV N
AF = [K] + [C] . (14.7)
AY AY
And, the stiffiiess and damping matrices can be written as:
8F; 9Fy o ‘e
[1\,] _ EVA 3Y _ KNzz I\J)
aFy OFy - 4
5% v Ryz HKyy
(4.8)
C]=1| 92 & _ Czz Cazy
9Fy  2Fy My vy
7 v |, Cyz Cyy

A diagrammatic representation of the normal bearing model is shown in Fig. 4.6.
The diagram shows a bearing of a shaft rotating at speed Q, and looking along the
X axis. Hydrodynamic bearings are not well modelled as simple springs, as the
bearing has cross-coupled stiffnesses. The hydrodynamic bearing can also introduce

a significant amount of damping to the system.
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FIGURE 4.6: Bearing Dynamic Model

Note, it is generally the case that Kzy # Ky z. In fact, Kzy is usually negative
(except for very large eccentricity ratios) with a magnitude considerably different
from Ky . Because of these large cross-coupling stiffnesses, a load in one direction
causes a displacement of the journal in that direction, as well as in the orthogonal
direction. These displacements in return cause a restoring force in the direction of
the load and an additional force orthogonal to it. The result is an elliptical orbit of
the journal inside the bearing. The orbit may be circular if the displacement of the
journal in the bearing is large. Then the journal will orbit about the inside diameter
of the bearing, with an almost constant clearance between the journal and bearing,.
The orbit is generally in the same direction as shaft rotation, but may be in the
opposite divrection (backward whirl) if the stiffnesses of the shaft and/or bearing are

not the same in both Z and Y directions.

The damping matrix has positive components and is symmetric, resulting in a
complex solution, when examining the forced response of the system; and in complex

cigenvalues and eigenvectors when calculating the natural frequencies of the system.
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Calculated and measured non-dimensionalized dynamic coetlicients for a number
of bearing types may be found in references such as Someya [23] and MT1 [21]. It
must be noted that bearing coefficients must be calculated at cach rotation sperd of
the shaft, as the journal eccentricity, and the stiffuesses and damping of the bearing
are dependent on the shaft speed.

The effect of the bearing damping on the rotor-bearing system depends on the
ratio of the stiffness of the bearings to the shaft flexural stiffness. If the bearings are
much stiffer than the shaft, then the displacements at the bearings Hiecome small
in comparison to the shaft bending deflections, and hence the velocities and energy
dissipated at the bearings are small. Therefore, the bearing damping will not have
much effect on the system. If bearing stiffnesses are small in comparison to shaft
flexural stiffnesses, then the displacements at the bearings become large relative to
the bending deflections, and the rotor motion is essentially that of a rigid body.
Therefore, the damping due to the bearings will be effective at dissipating energy.

Present models for hydrodynamic bearings are deficient in two major arcas.
The first is that the angular displacement of the jonrnal relative to the bearing shell
(assumption (3)) in the axial direction does not cause any restoring moments or
have any damping effect. This may be an acceptable error for bearings which are
short (i.e., the length of the bearing shell over the diameter of the journal < 0.5).
For long bearings, however, this is definitely a problem. For bearings that are
very long (L/D > 1.0) the effect of the bearing begins to approach that of the
clamped boundary condition. As well, the coefficients as they arc now calculated
assume that the oil film thickness is constant in the axial direction. Solutions of
the Reynold’s lubrication equation and calculation of the translational stiffness and
damping coefficients must account for the angular misalignment of the shaft. In
addition the calculation of the resultant angular stiffness and damping effects of

misalignment is a worthy area of future research.
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Second, beating stiffness and damping coefficients are determined by examining
the effect of small displacements of the journal from its equilibrium positien. If
a rotating foree is applied which causes a large change in the eccentricity of the
bearing, then the actual stiffness and damping of the bearing are highly non-
lincar. As a result, the linear spring and damping models in current use can only
model the dynamics of the rotor-bearing system where the displacements from the
cquilibrium position are not too large. As noted by Taylor and Craggs [25], it is
common for turbommachines to have journals with orbits taking up 60 — 70% of the
bearing clearances, whicl: is a large violation of the small perturbation assumption.
From Eq. (4.3), the Sommerfeld number depends on shaft speed and external
load. Since the eccentricity and attitude angle (equilibrium position) depend on
the Sommerfeld number, an! the stifiness and damping coefficients are determined
in relation to a specific equilibrium position, the coeflicients should be determined
for each possible load and running speed of the machine. That is, the non-linearity
of the coefficients require that the coefficients used should be calculated based on the
predicted response of the journal to an applied external force. But, since the rotor
response is dependent on the coefficients used, modelling a rotor-bearing system
accurately would require that the bearing coefficients and response of the rotor be
calculated iteratively for a certain rotating applied force, until a complementary set

of coeflicients and responses are determined.

4.5 Bearing Supports

Not only do the bearings themselves add flexibility and darmping to the system, but
so also do the bearing supporis. That is, the bearing pedestals and foundations
of the machine influence the rotor dynamic characteristics of the machine. And of
course, the pedestals may also be modelled as beams which branch into the shaft,

introducing additional degrees of freedom into the system. See Fig. 4.7.
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This assumes that the bearing support/pedestal is essentially a beam undergoing

bending and axial loading. The support itself offers very little additional damping,

but it does have mass, and very high bending and axial stiffnesses.

and axial stiffnesses of the bearing support are uncoupled.

The bending

The foundation of a machine physically ties the bearing supports together, and

as a result, the foundation causes the modelled structure or degrees of freedom to

loop.



FIGURE 4.7: Bearing and Support Model
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4.6 Conclusions

As has been discussed, hydrodynamic bearings and bearing supports can complicate
the modelling of a rotor system considerably. The bearing coeflicients are highly
non-linear. and the coeflicients and the rotor response are strongly interrelated.
The model generally used is one of simple springs and viscous damping in both
horizontal and vertical directions with some cross-coupling springs and damping
as well. This model is valid only for calculating the dynamic characteristics and
response of the rotor-bearing syvstem in a very limited sense. Usually, the stiffness
and damping matrices for a particular bearing are caleulated for a particular load
and shaft speed representing an intermediate value in the possible range. This is
then used to evaluate the rotor response, and gives some idea of the expected rotor

behavior.
Because no other model is presently available, the boundary conditions used in
this work either model hydrodynamic bearings as given by Eq. (1.8), or the bearings

are modelled as simple springs and damping as shown in Fig. 4.1.



CHAPTERS

Continuous Coordinate
Condensation

Al that glisters is not gold — ShaKespeare

5.1 Introduction

When calculating the critical speeds of machine shafts using the finite element
method, one often needs to solve an eigenvalue problem. The solution of an
cigenvalue problem of any significant size can be time consuming. and computational
truncation can often lead to erroneous eigenvalues. Even with the use of static
condensation, or component mode reduction, an eigenvalue problem still must
be solved. This chapter introduces a new method of continuous coordinate
condensation to reduce the matrix size, essentially combining the best features of

the transfer matrix and the finite element methods.

Also. when examining the forced response of a structure, banded matrix solvers
can be used to reduce computer memory or storage required. However, for branched
or looped structures, such as a turbine-generator system with bearing supports and
foundations included in the model, the global matrices may lose their bandedness,
or the bandwidth may become quite large. The continuous coordinate condensation

procedure presented allows the modelling of branched and looped structures while

36
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FIGURE 5.1: Transfer Matrix Method

maintaining a small matrix size.

With the transfer matrix method, the structure is discretized into sections of
appropriate dimensions, as shown in Fig. 5.1. A state vector is defined which
contains hoth the forces and the displacements at cach end of the section. The
state vectors at the opposite ends of a section are related using the principles of
dynamics and strength of materials, resulting in a transfer matrix. Fq. (5.1) gives

a sample matrix equation relating the state vector at node 7 to that at node i — 1.

X | x
o =11
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i -1

The transfer matrix, [7i], relates the forces and displacements at one end of a
discrete section to those at the other end. To model the whole structure, the
transfer matrices for adjacent sections are pre-multiplied giving a single global
transfer matrix for the entire structure. This global matrix is frequency dependent,
for problems of harmonic vibration, and has the same order as a single transfer
matrix, even though it may represent the characteristics of several hundred discrete
components. To find the natural frequency of the dynamic system, the natural and
kinematic boundary conditions are applied at the ends of the structure reducing
the order of the global transfer matrix, and the determinant of the reduced matrix
is calculated. The determinant is iteratively calculated for a number of response

frequencies. and a frequency which gives a zero value of the determinant represents
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a natural frequency of the modelled system. The determinant being equal to zero
is a requirement for satisfying the applied boundary conditions. The transfer
matrix method is a matrix mathematics form of the Prohl-Myklestad method
[26], which used a tabular procedure to arrive at the same natural frequencies.
The disadvantage of the transfer matrix method is that for higher mode natural
frequencies the determinant becomes the difference between two large numbers, and

as a result, the higher mode natural frequencies cannot be accurately calculated.

The condensation method presented was first used in finite element modelling of
acoustics (Craggs [27], and Christianson and Krenk [28]). Here, an application to
shaft dynamics with the effect of gyroscopic moments and damping forces included
is given (Eckert and Craggs [29], and Craggs and Eckert [30]). It uses finite elements
to discretize the dynamic systein, but, the elements are assembled into a condensed
matrix that has the same order as a single element matrix, thereby combining the
efficient computer storage of the transfer matrix method with the ability to calculate

high mode natural frequencies of the finite element method.

Using the condensation procedure, the eigenvalues of a dynamic probiem may
be found Ly examining the forced harmonic response of a reduced finite element
model. As cach of the finite element matrices is assembled into the global matrices,
the interconnecting nodal degrees of freedom are condensed out of the system. As
a result, only the input and output nodes are retained, limiting the number of
degrees of freedom of the global matrices to that of a single element of the model.
However, this resulting superelement retains all the dynamic characteristics of the
full finite element model. As with the trausfer matrix method the condensation is
performed iteratively for discrete forcing frequencies over the range of interest, and
the resulting response to the input function clearly indicates the natural frequencies
or critical speeds as well as giving an accurate estimate of the off resonant response.

Both of these parameters are important in system identification as will be discussed

in the next chapter.
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5.2 Theory of Matrix Condensation
5.2.1 Simple Condensation

Let the structure of a dynamic system be modelled with discrete elements, and
consider the equation of motion of a single element where damping and gyroscopic

cffects are ignored or are negligible. The equation of motion is:

[M]{g} + [K){q} = {/}, (5.

]
(8]
o

where [M] and [A] are the mass and stiffness matrices, and {¢} and {f} arc
the general coordinate and forcing vectors of the element. Assuming a harmonic

vibration of the element with a circular frequency of w, the dynamic matrix, [D],

can be defined as:

[D] = [K] — w?[M]. (5.:

o1
-
~—

Now, consider two colinear elements that are chain assembled. The coordinates
of the two element system can be defined as the input, center, and output
coordinates (subscripted ¢, ¢, and o respectively). The equation of motion of the
two element system undergoing forced harmonic vibration can then be written in

the following partitioned form:

Dii Dic Dy Q: F;
Dc-.-.l Dcc Dca Qc = 0 (5 4)
Doi Doc Doa Qo ["o

The matrices are normally in a banded form. That is, the output coordinates have

no inertial or stiffness coupling to the input coordinates of the system. Therefore,
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the banded equation of motion is given by =q. {5.3).
i g )

l)u Dic 0 Qz F;
I)Ci Dcc Dco Qc = 0 (55)
0 Doc Doo Qo Fo

If the second equation of the matrix equation Eq. (5.3) is solved for the center
coordinates, and assuming that no input forces exist at those coordinates then the

center coordinates can be written in terms of the input and output coordinates.

{(20} = _{Dcc]—l([Dci]{Qi} + [Dco]{Qo}) (5'6)

Substituting Eq. (5.6) back into the first and third equations of the

matrix Eq. (5.5) results in the reduced equation of motion:

(/)i; —‘[)ic])c—chci) (—DICD;}DCO) Qi _ Fi (5 7)
(=D, D'D.) (Doy — Doc DI D) Q, F | o

This reduced dynamic matrix for two elements can be considered to be the
matrix of a superelement that retains the dynamic properties of the two elements at
a particular forcing frequency. The total structure is modelled by assembling a single
clement to the model. and then performing the coordinate condensation procedure
to give a uew superelement dynamic matrix. When all the element dynamic matrices
have been assembled and condensed into the reduced global dynamic systemn of the
model, the corresponding response (at one of the retained coordinates) may be
calculated. Whesr this is performed iteratively over a forcing frequency range, and a
response curve is plotted, the peak responses for an undamped system correspond to

the natural frequencies of the system. A more accurate method for determining the
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natural frequencies is the evaluation of the global dynamic matrix determinant. As
with the transfer matrix method, when the determinant is zero. a natural frequencey
has been found. When damping is included. the response peaks and the phase of

the response should also be plotted, or polar plots should be examined to find the

critical frequencies.

If the frequency used is equal to the natural frequency of a subassembly of the
total system, it is possible for the submatrix [D..] to be singular. Normally, the
forcing frequency will not be equal to a subsystem natural frequency exactly, but

a small response peak may appear at values of the forcing frequency close to that

natural frequency.

Using this method a superelement dynamic matrix that represents all the degrees
of freedom of the model, but only being of the order of one clement matrix can he
used to model the entire system. The method is therefore very efficient in termns of
the memory used to store the global dynamic matrix. However, some memory must
also be set aside to store the individual element matrices. as they are used again
for the condensation procedure for each forcing frec -+ calrulated. But again,
the memory to store the element matrices is a fractiic: of 11t memory needed to
store the full assembled model. Also. storine the individual element matrices offers
a computational speed advantage over reforming the element matrices for every
forcing frequency.

This continuous coordinate condensation procedure produces a dynasic matrix
that only has the beginning and final degrees of freedom available for inputting a
force and calculating the response. If for instance, the user desires the placement
of an input force, or the calculation of a response at an intermiediate degree of
freedom, then the condensation procediure must be modified somewhat. Instead of
condensing the entire model into one superelement dynamic matrix, the systen: is

broken into appropriate subcomponents with the interfaces occurring at the desired

nodes. An example of a generic shaft system being modelled as subcomponents
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FIGURE 5.2: Shaft Modelled As Components

is shown in Fig. 5.2. The subcomponents are then condensed into surereleinent
matrices for each component. The respective superelements are then assembled into
a global dynamic matrix using the normal stiffness method (satisfving continuity
at the interfaces). The resulting global matrix is then somewhat larger than for a

single matrix, but the needed nodes and degrees of freedom are retained.

5.2.2 Condensation With Gyroscopic Effects

For a system that includes the gyroscopic effect of a spinning shaft undergoing

angular displacement, the equation of motion is as follows:

[M){g} + [GH{q} + [K1{q} = {/}- (5-8)
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Eqg. (5.8) can be expanded into two planes of vibration. as was done in Chapters 2

and 3, giving the equation of motion:

Myy 0O qy N 0 G(Q)y 2 Gy
0 Alzz qz L G (Q)yz 0 qz
(5.9)
ro. .
RNy 0 - f;
4 Y'Y ’ 1 )] _ ]
0 Azz || 9z Sz

Assuming that the forcing function is a harmonic rotating force, and that the

two planes of vibration are orthogonal, then the force vector can written as:

Sy Fy ot
= eIt (5.10)
[z —jFz
Also, assuming that the response vector is of the same form as the force vector, it

can be written as:

for ] [ o 1 .

— ,, (5.11)
qz l —jQz |
The equation of motion, Eq. (5.9), can then be rewritten as:
K YY 0 2 .-‘11)" ¥ 0
—w
0 1\’ZZ 0 ]‘422
(H.12)

+w =
G(Q)yz 0 Qz Iz
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Now in Iq. (5.12), the gyroscopic matrix is symmetric and the whole equation is
real. This allows the response to be solved without complex algebra. The dynamic

matrix for the gyroscopic system is the term in brackets in Eq. (5.12), and is:

[D] = [K] — W?[M] + «[G]. (5.13)

5.2.3 Condensation With Damping

When damping is included, the forced response solution to the equation of motion
can no longer be reduced to a purely real equation, and therefore the problem must
be solved using complex algebra. The full equation of motion including damping

and gyroscopic effects can be written as:

(Mg} + ([G] + [CD{q¢} + [K]{q} = {/}. (5.14)

Assuming an arbitrary harmonic forcing function vector and response vector,

both with complex amplitudes, as shown:

{f}={F}g+37{Flg)e’™ (5.15)

{¢} = ({Q}x +J {Q}a), (5.16)

the equation of motion can be written as:

(K] =2 M) + (G +C)) ({Q)n + 7 {Q)e) = {Fla +i {Flg.  (5.17)
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Let [A] = [K] — «?*[M] and [B] = [(/] + [C’], which are the real and imaginary

matrices respectively, and then collect real and imaginary terms to arrive at:

(4] (8] {Q}s _ {F}s _ (5.18)

[B]  [4] {Q}s {F'}s
The matrix in Eq. (5.18) is now the dynamic matrix for the system with damping,
and the system of equations is now real, albeit with a dynamic matrix of twice the
degrees of freedom of [A] or [B]. The systemn response to a input force can be
calculated with an algorithm for the solution of a set of real linear equations, such

as Gaussian climination.

As with the undamped case the center coordinates of the two clements to be
condensed are solved for in terms of the input and output coordinates. But in this
case the center coordinates consist of real and imaginary components, i.c. {Q.}»
and {Q.}s. The real and imaginary input and output responses are coupled by the
damping terms and hence the phase between the input force and response may be

any value between 0 and 360 degrees.

5.3 Resulls

In this section results of quantitative tests of the continuous coordinate condensation

method are given.

An uniform steel beam with simple supports was modelled as shown in Fig. 5.3.
The responcte of the beam to a forced harmonic input with a frequency range of
0 to 25000 CPM was calculated using 4, 16, and 512 elements condensed to one
superelement using continuous coordinate condensation. The response measured
was the angular displacement of the beam neutral axis at the right hand support,
and the calculated curves are shown in Fig. 5.4. The three cases gave the same first

three peak responses, with the fourth peak response frequency for the 4 clement
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FIGURE 5.3: Simply Supported Beam Model

model being too high to appear on the plot. The condensation procedure therefore
behaved as the full finite element model would. That is, as more elements were
condensed into the model the natural frequencies (response peaks) converged to
lower values. However, the 512 element condensed model did not predict the
lowest peak response. This occurred because each individual element was so short
that differences between numerical magnitudes of the element stiffness and mass
matrices caused significant round-off error. When the forcing frequency was set to
a high enough value for the difference in magnitude to become less significant, the
round-off error was negligible. That is an opposite situation to a full matrix finite
element solution technique, where using more elements would refine the solution;
with the condensation procedure, however, using more elements does refine the
solution to a certain point. DBeyond that, increcasing the number of clements is
counterproductive in both computational time and accuracy. Unlike the transfer
matrix method however, the condensed finite element method can be used to predict

higher natural frequencies of a system.

The actual peak frequency values for a 32 element mode! of the uniform beam
using the condensation method, and the full matrix eigensolution metliod (Jacobi’s)
are compared in Table 5.1. The continuous coordinate condensation procedure

natural frequencies agree well with those from the full matrix eigenvalue solution.

An uniform cantilevered steel beam, as shown in Fig. 5.5, was modelled to

demonstrate the method with different boundary conditions. The response of the
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TABLE 5.1: Natural Frequencies of Simply Supported Beamn
Continuous Coordinate Full Matrix Solution
Mode Condensation (32 el.) Using Jacobi’s Method
Peak Resonance (CPM) (CPM)
1 1428 1429
2 5698 5697
3 12750 12751
4 22499 22508
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FIGURE 5.5: Cantilevered Beamn Model

TABLE 5.2: Natural Frequencies of Cantilevered Beam

Continuous Coordinate Full Matrix Solution
Mode Condensation (32 el.) Using Jacobi’s Method
Peak Resonance (CPM) (CPM)
1 517 509
2 3183 3182
3 8864 8867
4 17244 17256

beam to a harmonic force with a frequency range of 0 to 20000 CPM was calculated
for 2, 128, and 512 condensed elements, with the responses measured being the
lateral displacement of the free end, and the resuitant curves are shown in Fig. 5.6.
Again, the frequency peaks converged to lower values as the number of condensed
clements in the model was increased. As in the previous case, the 512 element
model was inaccurate at the lower forcing frequencies, and the 16 or 32 element
model was more than sufficient in terms of accuracy. The numerical values of the
first four frequency peaks for a 32 element model calculated with the normal full
eigensolution and the condensation method are compared in Table 5.2. Again, there

was excellent agreement between the two methods.
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FIGURE 5.8: Tapered Beam Response

A tapered cantilevered steel beam shown in Fig. 5.7 was modelled using twenty
condensed tapered beam elements. The response curve is shown in Fig. 5.8, and
the numerical values for the natural frequencies using the full eigenvalue solution
and the condensation method are given in Table 5.3. Again, excellent agreement

Hetween the two methods is evident.

To demonstrate the ability of the method to calculate the natural frequencies
of a system with subcomponents, the beam in Fig. 5.9 was modelled in three
subcomponents with each containing an equal number of condensed elements. The
response curves were calculated with 2, 4, and 32 beam elements condensed into
one subcomponent, superelement, and are shown in Fig. 5.10. The curves for the
4 and 32 elemcut models are nearly indistinguishable for forcing frequencies less
than 3500 CPM. The natural frequencies are given in Table 5.4 for the case of

subcomponents modelled with 32 elements each. The frequencies were calculated
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TABLE 5.3: Natural Frequencies of Tapered Beam

Continuous Coordinate Full Matrix Solution
Mode Condensation Using Jacobi’s Method
Peak Resonance (CPM) (C'PNY)
1 233 239
2 982 983
3 2437 2436
4 4593 4590

with three different methods. First, the three subcomponents were condensed into
one superelement dynamic i rix each, and then the superelements were assembled
using the normal stiffness method for a total of 8 retained degrees of freedom. The
natural frequencies were found by seeking the peak responses for a forced vibration.
Second, the superelements were again formed, but were then condensed together also
for a global dynamic matrix of 4 degrees of freedom, and the peak responses were
examined. And third, the full matrix eigenvalue solution was performed with all 194
degrees of freedom. The numeric values given in Table 5.4 show excellent agreement,
between all three methods. The condensation method gave excellent results with a
saving in computer memory and computational time required. I'he fully condensed
model only required storage of 'ement stiffness and mass matrix, and a global
dynamic matrix of the same siz« \ « DOF), while the full matrix solution required
storage of global stiffness and mass matrices of 194 DOF. The solution time for the

fully condensed system was less than half of the time required for the full matrix

system.

The previous models have been simple beam systems. When modelling shafts,
vibration in two perpendicular planes is allowed, and if the shaft rotates, the angular

displacement of the shaft sections and disks introduce gyroscopic effects into the
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TABLE 5.4: Natural Frequencies of Assembled Superclement Beam
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Cont. Coord. Cont. Coord. Iull Matrix
Condensation Condensation Solution
Mode Peak Resonance Peak Resonance Using Jacobi’s
Assembled S.E. Method
(CEM) (CPM) (CPM) ‘i’(

1 664 663 662

2 844 838 345

3 1239 1238 i238

4 2645 2638 2646

5 3014 3012 3013

6 3693 3688 3695

dynamic characteristics of the shaft. If the shaft is not spinning, and the shaft and
support stiffnesses are isotropic, then the shaft natural frequencies in either plane
are equal to those of a beam vibrating in one plane. A full matrix eigenvalue routine
will give two pairs of natural frequencies; one pair for each plane and all four values
will be the same for zero rotation speed. However, as the shaft speed is increased
the eigenvalues split into two pairs of different values. The lower value will be the
natural frequency of the shaft in the backward whiri mode. That is, for an overhung
shaft with a disk at the free end, the shaft and disk will precess or whirl in an orbit,
opposite to the shaft rotation. The higher value is the natural frequency of the
shaft in the forward whirl mode, where the disk precesses in the direction of shaft
rotation. Again, for the isotropic case, the pairs of values calculated will be the
same for both planes. The gyroscopic matrix is skew-symmetric, and as a result the
full matrix solution of the eigenvalue problem must be solved using a non-symmetric

method such as the Householder-QR method.

To show that the continuous coordinate condensation method would excite and

find both forward and backward critical speeds of a shaft, an overhung disk was
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FIGURE 5.11: Overhung Shaft Model

modelled as shown in Fig. 5.11. The model consisted of seven Timoshenko shaft
clements each twelve inches in length, and a disk was added to the free end. The
entire model was condensed to one superelement dynamic matrix with the forcing
function being applied to the retained angular displacement degree of ireedom at
the free end. The response was also measured at this point. The condensed peak
response frequencies (whirl speeds) are shown in Fig. 5.12 and compared to the whirl
speeds calculated from the full matrix model using the Householder-QR method.
The speeds calculated with the condensation procedure are shown as discrete points
marked by hollow circles and squares, while the full matrix solution speeds are given
as continuous solid and dashed lines. As the figure shows, the zero shaft rotation
speed split into forward and backward whirl speeds, and the values matched the full
solution values aimost exactly. The lowest whirl speed did not appear to split into

forward and backward modes only because of the scale of the plot.

The responses for the overhung shaft to a range of forcing frequencies for a shaft
rotation speed of @ and 2000 RPM is also shown in Fig. 5.13. The response plotted
was the lateral displacement of the disk center. Again, the zero shaft speed resulted
in single response peaks or natural frequencies. Setting the shaft rotation speed to
2000 RPM split those peaks into pairs of peaks that straddled the zero speed peaks.
The effect was most apparent at the higher forcing frequencies, and is exactly what

is predicted by theory.
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FIGURE 5.14: Prohl Rotor
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FIGURE 5.15: Prohl Rotor Finite Element Model

The continuous coordinate condensation procedure therefore, will excite forward
and backward whirl modes, and can be used to predict both. Although, in real
situations the backward whirl mode can only be excited if the stiffnesses of the
shalt or bearings are not isotropic. The calculation procedure will give both modes
because the forcing function used is general, and the input and direction can be

specified by the analyst to give the responses sought.

The Prohl [26] rotor, as shown in Fig. 5.14, was also modelled with the
condensation mcthod. The seventeen Timoshenko shaft element model is shown
in Fig. 5.15, and the element and disk dimensions are given in Table Table 5.5.
Young's modulus was 30 x 10°%, density was 0.283 lb./cu.in., and Poisson’s ratio
was 0.30. The model was again condensed to one superelement, with the response
measured and the forcing function applied at the translational degree of freedom

at the right end in the vertical plane, and the response curves for shaft speeds of 0



TABLE 5.5: Prohl Rotor Element Dimensions
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Elem. Len. Dia. Elem. Len. Dia.
No. in. in. No. in. in.
1 S.13 1.66 10 6.13 2.19
2 3.63 2.06 11 2.38 2.00
3 1.56 2.34 i2 3.69 2.19
4 3.63 2.34 13 4.25 2.19
5 1.59 5.78 14 2.00 1.94
6 5.29 5.78 15 3.81 2.19
7 5.25 5.78 16 4.25 2.19
3 0.75 5.78 17 5.56 2.19
9 4.25 2.34
Disk Dia Thick. Disk Dia. Thick.
No. n. in. No. in. in.
A 9.63 0.63 E 16.78 0.50
B 9.45 0.63 J 5.75 1.25
C 12.42 0.63 G 7.1 1.00
D 9.45 0.63 H 6.03 1.00

RPM (Fig. 5.16) and 11780 RPM (Fig. 5.17) are given. The 0 RPM response curve
was very clean, and the peak responses and frequencies were casily determined. The
response curve for 11780 RPM was much less smooth, and a number of additional
pcaks appeared. Off resonant responses, unfortunately, cluttered the response curve.
To find the peak responses, the analyst must carefully determine the proper force

input nodes, and desired response nodes to reduce the influence of unwanted modes.

The critical speeds of the shaft are given in Table 5.6 for the condensation
method, and for Prohl’s pubiished results. Prohl calculated the critical speeds
using a tabular form of the transfer matrix method. Again, the results agreed fairly
well, although some differences were apparent. Since Prohl did not supply all the
disk dimensions in his paper some of the diameters were estimated, and this is the

most probable source of error.

A damped model with gyroscopic effects was also tested, as shown in Fig. 5.18.
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TABLE 5.6: Critical Speeds of the Prohl Rotor

Continuous Coordinate Natural Frequency
Mode Condensation Using Prohl’s Method
Peak Resonance (CPM) (CPM)
1 2200 2230
2 4400 1230
3 11600 11790
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The model of the overhung shaft included the translational stiffnesses and damping

of a hydrodynamic bearing. The rotational stiffnesses of the bearing were set very

high to effectively clamp the angular degrees of freedom at the bearing, and no

angular damping was included. The bearing translational stiffnesses and damping

were as shown below.

(K] =

2.54 x 10% 2.54 x 10* | |1,

2.51 % 10° 7.62 x 10% | [t

03.5  Y3.1
[C] =

93.1 360.0

1. — sec.

ft.

The overhung shaft model was rotating at a speed of 2000 RPM, and therefore

included gyroscopic effects as well as damping. The forced response of the shaft

was first calculated using the full global matrices, and the response at the disk

end of the shaft in the horizontal plane was plotted. A Bode plot (magnitude

and phase of response) for a forcing frequency range of 0 to 5000 RPM is given in

Fig. 5.19. The gyroscopic effect of the disk split the natural frequency peak into two

distinct peaks, one at 2675 RPM and the other at 3050 RPM. A polar plot for the
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full matrix solution is also shown in Fig. 5.20. Again the two natural frequencies
can be seen as two connected loops.  The forced response using the continuous
coordinate condensation procedure is shown in Fig. 5.21 and Fig. 5.22. The curves
were identical to those derived from the full matrix solution, and the solution time

for the condensation procedure was only 50% of the computer time needed for the

full solution.

A more complex machine shaft model was tested as shown in Fig. 5.23. The
steel model consisted of a three span machine supported on four journal bearings.
The bearing loads were found by forming a finite element model of the shaft with
Timoshenko beam elements and added disks, and then calculating the static reaction
loads on very stiff supperts at the bearing positions. The resultant loads were then
used to calculate the bearing stitffness and damping coeflicients from the data given
in {23]. Unfortunately, the damping coeflicients produced in this manner resulted
in an overdamped system. Subsequently, the model was modified and run with
the damping coefficients at the bearings being divided by one hundred, and are
tabulated in Table 5.7. An additional case, where the bearing damping matrices
were ten times those given in Table 5.7 was also run. This still resulted in a heavily
damped rotor, and the results are given later. In both cases, the running speed
of the machine was 1800 RPM, and the first span of the machine was modelled

with four elements of eighteen inches length, the second span with four elements
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TABLE 5.7: Bearing Coclfficients of Machine Model

Bearing Load Stiffness Matrix Damping Matrix
1b. % 10% 1b./ft. Ib.-sec. /L.
N It ] TR
5| sos [ 3% Von | || Sese siwo]
o | e | [z ]| [l e
N U el B et

Cylindrical bearings “with 2 axial grooves, N= 1800 rpm,
p = 2.88 x 107" lb.-sec./ft?, Cp, = 0.003 in., and 1./D= 0.5

of twenty-four inches length, and the third span with five elements of thirty inches

length.

Fig. 5.24 shows the Bode plot for the vertical plane of the machine without
damping, and not rotating. The forcing function was input at the node in the center
span as shown in the model diagram, and response measured at the node in the third
span. Also shown in Fig. 5.25 are the first three undamped modes of the machine.
As is typical of large turbogenerator sets, the first mode consists primarily of motion
in the generator section (right-most span), while the second and third modes excite
the high pressure and low pressure turbine sections respectively (middle and left-
most spans). The natural frequencies for the undamped non-rotating shaft in the

vertical plane were: 778, 1283, 2121, and 2747 CPM.

Fig. 5.26 shows the polar plot for the damped machine calculated using the

condensation technique, for a forcing frequency that was varied from 0 to 3000
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C'PM, and covered the first five natural frequencies of the machine. The damping
coefficients for this model were as given in Table 5.7. The plot displays the response
of the machine with light damping and rotating at 1800 RPM, and the damped
natural frequencies with gyroscopic effects included were: 778, 1266, 2120, 2752,
and 2870 CPM.

Shown in Fig. 5.27, is the polar plot for the first natural frequency, which was
the largest diameter loop in Fig. 5.26. The damped natural frequency of the shaft
occurred between 778 and 780 CPM, because this step change in frequency resulted
in the largest arc of the circle being drawn. The damped natural frequency was
found by locating the frequency interval that resulted in the largest change in phase,
which is equivalent to the largest arc of the circle. Note that the maximum response
magnitude does not necessarily occur at the damped natural frequency. As well,

the point at which the curve crosses the imaginary axis (real component is zero) is
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the undamped natural frequency of the rotor. The fact that this circle had portions
of its arc above the imaginary axis indicates that some additional residual response

from the other modes was present.

Fig. 5.28 is the second natural frequency polar plot, which had a responsc
amplitude slightly smaller than thal of the first natural frequency. The residual
contribution from the other modes was considerably smaller than for the first mode.

The damped natural frequency was approximately 1266 CPM.

The response curve shown in Fig. 5.29, was for damping coefficients which
were ten times those in Table 5.7, and the peaks were very broad and the first
natural frequency almost disappeared into the second peak. This also can he seen
in Fig. 5.30 where the first resonant loop of the polar plot was incomplete. This

indicates that the machine was heavily damped.
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5.4 Conclusions

The continuous coordinate condensation method provides an excellent means to
caleulate the forced response of 2 dynamic systern while retaining a reduced need
for storage memory and computational time. As well, the procedure can also be used
to determine the natural frequencies of a dynamic system where the fuilly assembled
giobal model wor!ld have a large number of degrees of freedlom. The method is
especially useful for chain assembled finite element systems where the algorithm to
condense intermediate degrees of freedom is simple, and where only a few select
coordinates are needed to represent the system motion.

The systems presented here included damping and gyroscopic effects. With only
gyroscopic matrices, the system can still be reduced to a set of real equations, and

the responses may be calculated by solving the set of linear equations using real
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algebra. However, with the addition of damping, the set of equations is complex,
and the solution must use a complex equation solver. or the degrees of freedon.
may be doubled and treated as a real systermn of equations. The solution of fuli
matrix finite element models with cither gyroscopic or damping matrices requiss ¢ be
use of non-symmetric eigenvalus ~olvers with increased memory and time required.
For the case of damping, the condensation procedure must also look at the phase
change to find the natura! frequencies. As a result, rather than just plotting the
frequency response function, the analyst must also plot the phase or plot the real

and imaginary components of the response on a polar plot.

Again, the analyst has wide latitude in where the forcing function is input,
and on how the response is measured. Some engincering judgment and foresight
is required to prevent having the input force or response degree of freedom at a

vibration node for a particular mode. These points may have to be moved for the
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various modes 1o find the natural frequencies.

The analyst also can influence the speed of solution greatly, by specifying a coarse
frequency step size when calculating the frequency response curves over the desired
total range. The peak frequencies can then be refined by using finer frequency step

sizes over a tighter frequency range about each of the peak frequencies.



CHAPTER 6

System ldentification

Measure For Measure — Shakespeare

6.1 Introduction

Once a mathematical model of a dynamic system has been created, the accuracy
of the model may still be somewhat in doubt. For instance, the presence of step
changes in diameter, shrink fit wheels and hubs, and laminated shafts may introduce
some stiffness effects that are not modelled well. That is, the local “effective”
stiffness of the shaft may be different from the stiffness predicted by the actual
shaft diameter. It may then be desirable to refine the model so that the predicted
dynamic characteristics calculated with the mathematical model are closer to those
that are actually measured. For example, if the calculated and measured natural
frequencies of a modelled structure are significantly different, then any subsequent
numerical analysis with an uncorrected model, such as the forced response of the
structure, will be in error. Refinement usually requires the calculation of some
adjustment factor of individual numerical parameters of the model by using the
differences between experimentally measured and mathematically modelled dynamic

characteristics. This process is known as system identification, or model refinement.

An accurate finite element mo:lel is useful in the arca of turbomachinery
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dynamics for vibration analysis, balancing, and dynamic design of proposed rotor
system changes. In addition, a system identification technique can also be used
for examining the change in vibration of a machine over a period of time, and
identifying what physical parameters of the system have changed. For example, a
change in vibration signature of a particular machine may be due to a change in
balance or bearing condition. A refinement procedure may predict the location or
nature of the problem, allowing a safe, planned maintenance shutdown.

System identification is essentially a subset of the inverse problem, where the
physical properties of a system are calculated from the behaviour of the system.
In terms of vibrations and dynamics, the inverse problem is one of calculating the
mass, stiffness and damping distribution of a system from its measured dynamic
responses. Normally the measured data is in the frequency domain; that is, the
natural frequencies and mode shapes or the frequency response curves are known
rather than the vibration time signal.

Many methods for the solution of the inverse problem have been presented which
create complete mass, stiffness and damping matrices. Gladwell [31] showed that
to create complete pentadiagonal matrices, such as those produced by beam finite
clement discretization, requires the measurement of three spectral data sets under
different beam boundary conditions. Althcugh the objectives are the same, the
work of this chapter is concerned with the optimization or refinement of an already
existing finite element model rather than the formulation of a complete model from

experimental data.

[ 1976, Stetson and Palma [32] presented a method which used the inversion of
first-order perturbation theory to improve an already existing model. The method
calculated the necessary changes to a mathematical model to perturb mode shapes a
known amount. The method could be used to refine an existing finite element model
by iteratively perturbing the calculated mode shapes and correcting the model until

the mode shapes were the same as those measured experimentally.
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And in 1680, Thomas and Littlewood [33] gave a method for calculating the
axial stiffness distribution or profile of a rotor. The method used assumed a lumped
mass model and calculated the moments of a Euler- Bernoulli beam at various axial
positions in the rotor as the rotor was excited. From the bending moment at a
particular location and the local curvature as measured from the mode shapes,
the local effective stiffness and diameter were determined.  Using this method
Thomas predicted the axial position of a crack in a generator rotor, which was
subsequently confirmed using non-destructive testing. In 1989, Vest and Darlow [31]
expanded the Thomas method to include the rotatory inertia and shear deformation

of Timoshenko beam theory, and zlso allowed a continuous mass distribution.

All the published methods require the input of measured mode shapes. 'This
can present considerable difficulties in that the displacements of a shaft must be
measured at the same locations as the nodes of the mathematical model, or curve
fitting routines must be used to get the displacements at the required locations.
Since the nodes frequently occur at changes in diameter, ctc., it may be nearly
impossible to accurately measure the displacement at these locations. As well, the
angular displacement or slope of the neutral axis of the shaft is needed, and this can
be difficult to measure even for an uniform shaft. and even more so for a shaft-disk

system of complex geometry. Also inherent in the measured mode shapes is some

amount of measurement noise which puts some numerical limitations on their use.

This chapter will present a simpler procedure for refining a mathematical model
using Rayleigh’s Quotient which does not require the use of complete or incomplete
measured mode shapes (see Eckert and Craggs [35] [36]). The procedure was
designed to be used to improve an existing finite element model that is not greatly
in error by only comparing the analytically calculated and experimentally measured
eigenvalues of the system. As well, the method is presented from the engineering
point of view, in that it gives a usable mathematical model, but does not specifically

address the problems of solution existence and uniqueness. The assurmnptions behind



the method are as follows:

1) The error in the model is mostly present in the stiffness matrix of

3)

1)

the finite element model. That is, the stiffness effects of step changes
ctc., create the most uncertainty, or are the most difficult to model
accurately. The material properties of the shaft and the dimensions
of the shaft are usually well known, or are easily measured, and as
a result, the mass matrix is a good representation of the physical
distribution of mass in the actual shaft. Therefore, only the stiffness

matrix of the model will be corrected by the algorithm.

The error that is present in the finite element stiffness matrix is not
extremely large. The local “effective” stiffness diameter of the shaft
is not more than 20% to 50% different than the modelled sziffness
diameter. That is, the effective stiffness of the element varies by a

factor of 0.5-5.0 times the original element stiffness.

The first six natural frequencies or fewer of the shaft or shaft section
are to be corrected, and that the equivalent number of actual natural

frequencies of the component have been measured in the free-free

or simply-supported state. Normally modes higher than the sixth

contribute negligible amounts to the response of a shaft, and therefore,

higher modes are not corrected.

The analyst has some idea or is able to calculate which of the finite
clements in the model contribute most to the error, and therefore
decides a priori which elements are to be refined or corrected to

improve the overall model.

The method must not change the bandedness of the original model.

That is, the procedure must not introduce values into the global
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stiffness matrix that were originally zero. As well, the method must
only correct the model by adjusting the stiffnesses of individual finite
elements of the model, thereby keeping the same quality or structure

in the global matrix as that of the original finite clement model.

6) Only the natural frequencies need to be measured. Since the assumed
corrections of the finite element model are small adjustments to the
stiffness matrix, the calculated mode shapes of the structure are close
to actual. The natural frequencies of the structure are more sensitive
to small errors in the stiffness matrix than the mode shapes, and
hence measured mode shapes are not needed reducing the practical

difficulties of measurement. zioatly.
Sy J

Assumption 5) states that adjustment of the model shall only be done on
the individual element matrices. However, the refinement method given in this
chapter does not require specifically that only the element matrices be adjusted.
For instance, several element stiffness matrices may be assembled together as a
system component with that stiffness submatrix being corrected. The choice of
which element matrices to adjust, and which element matrix corrections should be
corrected as a submatrix is not part of the refinement algorithm presented. It is,

however, up to the modeller to use engineering judgiment in making those decisions.

To justify the use of calculated mode shapes instead of measured mode shapes,
as stated in assumption 6), a numerical experiment was conducted. The first
six eigenvalues and mode shapes of an uniform cantilever beam modelled with
simple Euler-Bernoulli beam elements were calculated, and then compared to those
calculated whien the “stiffness” diameter of the center elements, as shown in Fig. 6.1,
was doubled. Doubling the diameter increased the stiffness of the center elements
by sixteen times the uniform diameter stiffness, which is a grecater correction than

the refinement algorithm would be expected to calculate.
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The first six eigenvalues versus the diameter ratio of the center elements are
plotted on a log-lincar plot in Fig. 6.2. Increasing the stiffness of the center
elements to sixteen times the uniform stiffness resulted in the first natural frequency
increasing by 20% (eigenvalue by 44%). The second natural frequency increased by
58% (eigenvalue by 150%). The other four natural frequencies increased by similar
or greater amounts. Therefore, doubling the stiffness diameter of the center section
of the beam resulted in significant increases in the eigenvalues, ensuring that an

algorithm which corrects the stiffnesses on the basis of the eigenvalues is stable for

this particular case.

T'he hirst two mode shapes for the uniform stitiness diameter and for double
the stiffness diameter are shown in Fig. 6.3. The mode shapes can be seen to be
essentially the same. The second mode shows the most variation in the center of
the beam, where the change in bending angle and hence tiie greatest storage of
strain energy occurs in the stiffened elements. Since the mode shapes are relatively
close for a large increase in stiffness of the center elements, it was decided that the
calculated modes shapes were an acceptable alternative to measured mode shapes
in the refinement procedure. This numerical experiment demonstrated that the

mode shapes are much less sensitive to changes in element stiffnesses than are the

eigenvalues.
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The refinement algorithm is used by measuring the required cigenvalues with the
shaft suspended in the free-free or simply-supported state. The free-free boundary
condition can be accomplished by hanging the shaft from cables and exciting it
in the horizontal plane. The rigid body modes introdnced have very low natnral
frequencies, and can be easily separated from the flexible modes of the shaft. The
excitation frequency should be swept through the frequency band of interest, and the
resulting response curve measured with an accelerometer. The frequencies at which
the response is a peak, and the corresponding response-to-excitation phasc shifts
by 180° are natural frequencies. Acceptable measurement, accuracy of the natural
frequencies should be readily attainable. The algorithm then compares the measured
eigenvalues to those calculated by the uncorrected finite element model and gives
the needed stiffness correction factors for the specified elements. The factors are

applied and the correlation between the measured and analytical eigenvalues is
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FIGURE 6.3: Stiffness Effect On Mode Shapes

checked. The corrections proceed iteratively until the eigenvalues match within a

specified tolerance.

The number of eigenvalues correlated by the refinement algorithm does not need
to be the same as the number of elemental stiffnesses to be corrected. The methods
necded to correct the model when the number of eigenvalues are greater or less than

the element corrections are discussed later.

6.2 Theory Of System Identification

Assuming that an undamped structure is bzing modelled, the matrix equation of

motion for that structure in free vibration is:

[M]{&} + [K] {=} = {0}. (6.1)
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Now, let the solution to Eq. (6.1) be a harmonic solution and recast the equation

of motion as an eigenvalue problem.

(IK] - w?M]) {X} = {0} (6.2)

In Eq. (6.2) the eigenvalue, w?, is the square of the natural frequency of the modelled
structure, while the eigenvector, {X}, is the mode shape of the +'ructure when

vibrating at the natural frequency.

For a conservative system vibrating with the single mode shape, {X}, the
maximum kinetic energy due to the motion of the system must be equal to the
maximum potential energy due to the elastic displacement of the system. This can

be written in the following matrix form assuming the system is vibrating with the

natural frequency w.

<

W {X)T [M]{X} = 5 {X)7 [K]{X) (6.3)

o) o—

Rearranging Eq. (6.3) to get the eigenvalue alone on one side of the equality results

in the well known Rayleigh’s Quotient [4]:

L2 XY KX}
(X} [M]{xX)

(6.4)

Rayleigh’s Quotient has been used historically to predict the natural frequency of
a dynamic system. If the mass and stiffiness distribution of the system are known,
and the mode shape of vibration is estimated, then the natural frequency given
by Eq. (6.4) is an upper bound approximation of the first natural frequency of the
system. As the error between the approximate mode shape and the real mode shape

is reduced the calculated natural frequency approaches the real natural frequency.
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If the exact mode shape is known, then Rayleigh’s Quotient will result in the exact
natural frequency of the dynamic system for that mode.

Suppose that the eigenvalue equation as given by Eq. (6.2) represents the system
of equations for a model of chain assembled finite elements as shown in Fig. 6.4.
‘Then assume that the global stiffness matrix in Rayleigh’s Quotient is given by
the following equation, where the individual element stiffness matrices are properly

placed in the global stiffness matrix.

[1\’81]
(K] = + [K.2) + et (6.5)
[I{es]

Now if the theoretical stiffness of the jth element of the model is incorrect by

the fraction sj, then the jth element actual stiffness matrix may be written as:

[](ej]actual = (1 + a‘j)[l(cj]theoretical- (6'6)

Substituting Fq. (6.5) and Eq. (6.6) into Rayleigh’s Quotient Eq. (6.4), results in:

AXH K {X)
XA IMY{X:}

Mx~w!+a

(6.7)

where A? is the ith measured or actual eigenvalue of the system, w? is the ith
calculated eigenvalue from the uncorrected model, a; is the stiffness correction factor

for the jth element of the model, and {X;} is the ¢th calculated eigenvector of the
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uncorrected model. Note that [[A;]] is the jth element stiffness matrix properly

placed inside a null matrix of global order. Rearranging Eq. (6.7) gives:
(XX

X M (X P T (6.8)

The right hand term in Eq. (6.8) represents the error between the ith calculated
and measured eigenvalues. The left hand term is the correction factor, a;, for the jth
element times its corresponding coefficient. Suppose that the number of element
stiffness matrices to be corrected is p, then to account for the effects of all the
possible elemental corrections on the ith ecigenvalue, Eq. (6.8) must be modified to

sum over all p elements.

i { X" [[Ke;)) {X:) WM

S (XM (X YT e T (6.9)

Eq. (6.9) is one equation representing the effects of all the p corrected element,
stiffnesses on the ith eigenvalue. Writing similar equations for the other eigenvalues

to be corrected, n in total, results in the following matrix equation with n equations

in p unknowns.

[C] {e} = {é}

nxp

(6.10)

The matrix [C], represents the coefficients of all the elemental corrections for cach
individual eigenvalue error. The vector, {¢}, is a column of the correction factors
for each element to be modified, and the vector, {6}, is a column of the errors
for each eigenvalue to be correlated. The calculated mode shapes together with the
element stiffness matrices and global mass matrix give each coefficient in the matrix,
[C]. The error vector is easily calculated from the difference between the calculated

and measured eigenvalues. Assuming that the number of elemental stiffnesses to
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be corrected, and the number of measured eigenvalues of the system are the same,
the resuliing n linear equations in n unknowns can solved for the correction factor
vector.

The refinement process for the systemn is an iterative one. First, the uncorrected
finite clement model of the system is assembled. Then the required number of
cigenvalues and cigenvectors are calculated from this original model. The calculated
cigenvalues are compared to the experimentally measured eigenvalues, and the
corresponding correction factors are calculated for the finite element stiffnesses.
The elements to be corrected are specified by the analyst before the refinement
procedure begins. The element stifinesses are then adjusted by the calculated
correction factors (applying an underrelaxation factor to the corrections seems to
improve the convergence) and a new adjusted finite element model is assembled.
T'his model is now used to calculate a new set of eigenvalues and vectors, and the
correction procedure is continued in this manner until the calculated eigenvalues
are within an acceptable tolerance of the measured eigenvalues.

I the number of element stiffnesses. p, to be adjusted is nnot equal to the number
of measured eigenvalues to be matched, n, then a systerm of n equations in p
unknowns is formed. This may be solved in a number of ways. First, a linear
regression mav be performed by pre-multiplving Eo. (6.10) by the transpose of

matrix [C]. This gives a new system of p equations in p unknowns as shown below.

[T (€] {f:} = [C]" {s | (6.11)

pxn nxp pxn n

2. {6.11) may be rewritten as:

(] {a} = {&'} (6.12)

pxp p P
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If the number of elements to be adjusted are less than the number of eigenvalues
to be matched, that is p < n, then adjustment correction factors may also be
calculated by solving the system of equations with groups of p cigenvalues to
be matched. That is, the first p measured cigenvalues are used as input to the
refinement algorithm. After the process has converged to a set of correction factors,
the model is then adjusted and used as the starting model for the next set of
adjustment factors. The input for the next set of correction factors is the set of p
eigenvalues starting with the second measured value. The second newly correcied
model is then used as the starting point for matching the set of p eigenvalues starting
with the third measured value and so on, until all 1 measured and calealated
eigenvalues are egual. This method will be demonstrated with a beam element

model, with the results given later in this chapter.

When the number of elements are greater than the number of eigenvalues to be
corrected, that is p > n. then instead of linear regression the analyst may reduce
the number of elements tc be adjusted. Or, the analyst may reexamine the model
and constrain a number of the elements to be adjusted the same amonnt, thereby

reducing the number of correction factors p to the number of measured cigenvalues

available.

Using simple lnear regression and solving Fq. (6.12) for a set of adjustment
factors works satisfactorily for uncomplicated finite element models with few degrees
of freedom. If however, the model is quite large. then the matrix, [("], may become
singular or nearly singular, and therefore the solution of the equation using matrix
inversion or Gaussian elimination becomes impossible. For these cases, it is more
useful to recast the equations slightly and use singular value decomposition routines
to solve for the least squares solution. Suppose, that instead of calculating a small
adjustment factor «a, for the jth cloment, as in Eq. (6.6), an overall multiplier for

the jth element stiffness 1s calculated. That is:
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If the number of elements to be adjusted are less than the number of eigenvalues
to be matched, that is p < n, then adjustment correction factors may also be
calculated by solving the system of equations with groups of p eigenvalues to
be matched. That is, the first p measured eigenvalues are used as input to the
refinement algorithm. After the process has converged to a set of correction factors,
the model is then adinsted and used as the starting model for the next set of
adjustment factors. The input for the next set of correction factors is the set of p
cigenvalues starting with the second measured value. The second newly corrected
model is then used as the starting point for matching the set of p eigenvalues starting
with the third measured value and so on, until all n measured and calculated
cigenvalues are equal. This method will be demonstrated with a beam element

model, with the results given later in this chapter.

When the number of elements are greater than the number of eigenvalues to be
corrected, that is p > n, then instead of linear regression the analyst may reduce
the number of elements to be adjusted. Or, the analyst may reexamine the model
and constrain & ~umber of the elements to be adjusted the same amount, thereby
reducing the number of correction factors p to the number of measured eigenvalues
available.

Using simple linear regression and solving Eq. (6.12) for a set of adjustment
factors works satisfactorily for uncomplicated finite element models with few degrees
of frecdom. If however, the model is quite large, then the matrix, [C’], may become
singular or nearly singular. and therefore the solution of the equation using matrix
mversion or Gaussian elimination becomes impossible. For these cases, it is more
useful to recast the equations slightly and use singular value decomposition routines
to solve for the least squares solution. Suppose, that instead of calculating a small
adjustment factor a, for the jth element, as in Eq. (6.6), an overall multiplier for

the jth element stiflness is calculated. That is:



[1\’ej]au(ual = b_;[1\‘r_)]ll\(-()rc'tiral~ (()' 1 ';)
where b; = 1 +a;. Then Eq. (6.7) becomes:

sz (X [Wune {X:} (X3 (IR XD
oG IMIXGY T (XTI

(6.1.1)

where [I\']ync. represents the remaining uncorrected portion of the global matrix that

will not be adjusted. Let:

(X (A e {X0)
(X} (M) {X)

=77, (6.15)

where 7 represents the contribution to the ith cigenvalue of the clements that will
not be corrected. Since this portion of the equation is known, it can be taken to
the other side of the equation. Then, accounting for the effects of all the elements

to be corrected on the ith eigenvalue, gives the following equation:

Z (X7 (K0 LX)

b, = A% — ~2, 6.16
= {\, I[A[]{Y J H |4 (’ ))

Writing the equations for the other measured eigenvalues to be matched results in

the following:

[ {6y = {&"}

(6.17)

nxp F 4 Ti
Eq. (6.17) is now a set of n equations in p unknowns where the vector {47}
is now almost constant from one iteration to the next. The only components of

the vector that change are the calculated mode shapes, and these do not change
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greatly. With the previous formulation of Eq. (6.12) the vector {¢’} tends to become
a null vector as the difference between the calculated and measured eigenvalues
gets smaller on subsequent iterations. As well, with the previous formulation the
matrix {C’] becomes singular or nearly singular, resulting in a singular homogeneous
system of equations. A non-zero vector is a possible solution for a singular set of
homogencous equations. However, after a number of iterations, the desired solution
vector is the null vector, or trivial solution. Therefore, any other solution will lead to
an incorrect adjustment of the element stiffness matrices. The new solution vector,
{b} of Eq. (6.17) tends to become a column of numbers close to 1.0 . Since the
number of unknowns is not generally the same as the number of equations, singular
value decomposition [37] should be used for the determining the best fit solution.

Singular value decomposition can be used to solve the following, where m > n:

(4l {=} = {y} (6.18)

mXn m

The matrix [A] is decomposed as follows:

(4] = (U] W] VT

mxn mxn nxn nxn

(6.19)

where [W] is a diagonal matrix, [U] is column-orthogonal, and [V] is column and

row-orthogonal. Then the solution can be found by:

{r} = [VI W' [U)" {y} , (6.20)
n nxmn nxn nxm m

where the inverse of {W] is simply given by taking the reciprocal of the diagonal

clements. The reciprocal of any zero diagonal element of [W] is simply set to zero.

When [A] is originally square and nearly singular, and therefore ill-conditioned,

before back substitution takes place the diagonal values of [W] which are relatively
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FIGURE 6.5: Example of a Simply-Supported Model

small are zeroed. This is the same as discarding a linear combination of the sct of
equations used. When the number of equations is less than the number of unknowns,
then both the [A] matrix and the {y} vector are augmented with rows of zeros at
the bottom, so that m = n. Before back substitution, at least the same number of
diagonals of [I#7] as rows added will be zero or negligible. In both these cases, the
matrix [A] is singular, and therefore an unique solution is not expected. Singular
value decomposition gives the solution vector with the smallest value in the least
squares sense. When there are more equations than unknowns, then no diagonals

of (W] need be set to zero before solution.

The adjustment vector, {b}, calculated by the singular value decomposition of
Eq. (8.17) will be the one with the smallest numerical values. Since, the solution
may not be unique, the soluticn with the least amount of correction to the element

stiffnesses is assumed to be the correct engineering solution.

An additional problem that can be cncountered is synunctry of the model.
Suppose the model is of a simply-supported system as shown in Fig. 6.5, with
elements of equal size, and that the two center clements are to be corrected on the
basis of the first two measured eigenvalues. Then, the symmetry and antisymimetry
of the first and second mode shapes about the center of the model would result in

the correction algorithm having to solve the following equation:

¢, C a é
b P Tty (6.21)
Cy (7 ar o2
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Since Eqg. (6.21) is not an independent set of equations, it is not possible to solve
for the correction factors. Therefore, the analyst must be careful to model the shaft
with elements of different lengths. However, since real shafts generally have more
complex geometries, it is not likely that this problem would be encountered when

modelling the shaft of an actual machine.

6.3 Resulls

6.3.1 Torsional Model Test

The element chosen for the torsionai refinernent test was a simple one-dimensional
shaft element with distributed mass which was chain assembled to form an overall
system model. A single torsional shaft element is shown in Fig. 6.6, and has an
applied torque, T, and an angular displacement, 8, at each end of the element. The

element mass (polar mass moment of inertia) and stiffness matrices are:

2 o .
(m) = 2LE k) =1¢ , (6.22)
6 1 Ly 1

[

where p=mass density, I=polar moment of inertia, L=length of element, and
(=shear mwodulus.

The particular steel shaft mocdelled is shown in Fig. 6.7. All six elements,
including the disks were modelled as torsional elements, and as a result, the disks
acted as extremely stiff torsional components, effectively leaving the model with
only three flexible elements and degrees of freedom. Since a real shaft was not
available for measurement of the eigenvalues, the “measurements” were created by
calculating the system eigenvalues after adjusting the stiffnesses of the shaft sections
by known factors. The eigenvalues calculated from the adjusted model were input

into the refinement algorithm as the measured eigenvalues to perform a totally
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FIGURE 6.6: Torsional Shaft Element

numerical experiment. The adjusted stiffness diameters are represented in Fig. 6.7
as the dashed lines. The “actual” or target model had the stiffness of element 1
decreased to 70.61% of the original stiffness, while clements 3 and 5 were increased
by 85.26% and 37.74%. The mass of the measured model was calculated using the
uncorrected diameters, and the theoretical model was started as three uniform shaft

elements of equal dimensions, with three disks of equal dimensions.

Since the model only had three torsional shatt elements to be corrected (elements
1. 3, and 5), but six corrected eigenvalues were desired, the refinement algorithm
was tested by correlating the eigenvalues in groups of three only. That is, a set of
three linear equations in three unknowns were formed and solved iteratively. The
algorithm was tested by calculating three sets of corrections on the basis of matching
the eigenvalues in the following groups: 1, 2, and 3; 2, 3, and 4; and 3, 4, and 5. The
results of the tests are given in Table 6.1. The upper portion of the table compares
the eigenvalues of the original uncorrected model, the measured or target shaft, and

the eigenvalues of the three corrected models. The two upper 4t colummns give the
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FIGURE 6.7: Torsional Model

TABLE 6.1: Torsional Model Correction
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Uncorrected Measured Corrected On Basis Of Eigenvalues

Model Shaft 1,2,3 2,3,4 3.4,5

| (5 Iter.) (3 Iter.) (2 I1ter.)
Eigenvalues

1.9780 x 10° 4.7115 x 10° 4.7089 x 10° 3.9875 x 10° 4.2665 x 10°
3.9208 x 107 | 4.7556 x 107 4.7455 x 107 | 4.7389 x 107 | 4.6478 x 107
R2i97 % 107 1.2889 % 108 1.2900 x 108 1.2906 x 108 1.2943 > 108
1.4423 x 10" | 4.4423 x 10 f 4.4423 x 10" | 4.4423 x 101! | 4.4423 x !

4.5369 x 10!
1.6301 x 10"

4.5378 x 10!
4.6310 x 10"

4.5378 x 10!
4.6310 x 10!

4.5377 x 10"
4.6311 x 10"

4.5378 - 10"
4.6310 % 10"

Stiffness Relative To Uncorrected Stiffness

El.
L
ElL
El.
ElL
El

SOV N —
[ S

0.7061
1.0000
1.8526
1.0000
1.3774
1.0000

0.7049
1.0000
1.8585
1.0000
1.3721
1.0000

0.5723
1.0000
1.8283
1.0000
1.4538
1.0000

0.6211
1.0000
1.8866
1.0000
1.3663
1.0000
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six eigenvalues of the original uncorrected model and of the measured shaft, and
only the first three eigenvalues showed any significant numerical differences.

remaining three upper columns give the calculated eiy.-mvalues from the corrected
finite element models. The first test case based on eigenvalues I, 2, and 3 corrected
the first three eigenvalues of the model to within an acceptable tolerance (1%). The
fourth, fifth and sixth eigenvalues of the uncorrected model were already correct,
and remained so after the correction. The second test case corrected the model so
that the second and third eigenvalucs were correct. As cxpected however, because
this test case used the fourth measured eigenvalue, which was already correct, as
input data the resulting corrected model did not predict the first eigenvalue within
tolerance. The third test case used the fourth and fifth measured eigenvalues which
the original model already gave exactly, and hence the adjusted model did not

predict the first two eigenvalues correctly.

The lower columns of Table 6.1 give the stiffness ratios relative to the stiffnesses
of the elements of the original uncorrected model. The values in the second column
are the measured stiffness ratios or correction factors that the algorithm should have
produced. For example, element number 1 of the measured model had a stiffness
of 70.61% of the original model stiffness. The three columns on the lower right
hand side of the table give the stiffness ratios of the model after correction by the
refinement algorithm. As with the eigenvalues, the refinement algorithm gave the
correct adjusted model when the first three measured eigenvalues were used as input.
But, the other correction cases did not work well because of the use of uncorrected

and measured eigenvalues of equal numerical value.

6.3.2 Beam Model Test

The Rayleigh’s Quotient refinement algorithm was also tested on a beam model,

as shown in Fig. 6.8, that was formed of Euler-Bernoulli beam clements (element
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FIGURE 6.8: Euler-Bernoulli Beam Model

matrices are given by Eq. (6.23)) with the same degrees of freedom as shown in
Fig. 2.2. Each of the six elements were twelve inches in length and three inches in
diameter and where modelled as steel. As shown by the dashed lines in Fig. 6.8
the stiffness diameters of elements 2, 3, and 4 were increased when calculating the
eigenvalues of the “measured” beam to again create a set of target eigenvalues for a
numerical experiment. The stiffnesses of the target beam were adjusted as follows:
clement 2 was increased to 2.5 times the original stiffness; element 3 was increased
to 2.0 times; and element 4 was increased to 1.5 times. The uncorrected model,
which is the starting point for the refinement algorithm, is shown as the uniform

beam (solid lines) in Fig. 6.8.

13 11L 9 =13L
35 210 70 420
1L L? 13L -L2?
210 105
[M]=pAL| * 420
9 13L 13 -—11L
7G 420 35 210
=13L -L* -1L L2
L. 420 140 210 105

(6.23)

. Ei 6L 4L* —-6L 2L?
[N] = —

6L 2L* —6L 4L?




TABLE 6.2: Beam Model Correction

Uncorrected Measured || Cotrect(d On Basis Of EFigenvalues
Model Shaft 1,2,3 231 3,45
“ (3 Iter.) 5 Iter.). 1,5,6
Elgenvaluc‘s o
1.0602 x 10° 1.4215 x 10° 1.4109 x 10° 1.4210 x 10° 1.4210 x 10°
4.1647 x 10° 5.7692 x 10° 5.7245 x 10¢ | 5.7686 x 10¢ 5.7686 x 10°
3.2755 x 107 | 4.5047 x 107 4.4711 x 107 | 4.5028 x 107 4.5028 x 107
1.2694 x 10® 1.7479 x 108 2.0005 x 103 1.7474 x 10° 1.7474 x 10®
3.5283 x 108 4.7442 x 108 5.0528 x 10® | 4.7433 x 10® | 4.7433 x 10®

7.8990 x 108 1.0666 x 10° 1.0759 x 10Y 1.0663 x 10Y 1.0663 x 10¥
Stiffness Relative To Uncorrected Stiffness
El. 1: 1 1.0 1.0000 1.0000 1.06000
El. 2: 1 2.5 4.0970 2.4954 2.4954
El 3: 1 2.0 0.9708 1.9986 1.9986
El 4: 1 1.5 4.2447 1.5005 1.5005
El. 5: 1 1.0 1.0000 1.0000 1.0000
El. 6: 1 1.0 1.0000 1.0000 1.0000

This numerical test differed from the torsion model test, in that the algorithm
was only allowed to correct the stiffnesses of elements 2, 3, and 4, but was required
to match the first six measured and calculated eigenvalues. This is equivalent to
setting up a system of six linear equations with three unknowns (the correction
factors). The solution could have been arrived at using linear regression, but instead
the correction factors were first calculated by comparing measured cigenvalues 1,
2, and 3 to those calculated. The results of this correction were then used as
the starting point or uncorrected model for calculating the correction factors by
matching eigenvalues 2, 3, and 4. The corrections were then contilued on the basis
of matching the next group of three eigenvalues, until all six were within the specified

tolerance. The results of the test are shown in Table 6.2.

The first set of correction factors, on the basis of the lowest three cigenvalues,

resulted in a correction considerably different from the “target” or measured shaft.
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The system was underconstrained, meaning that the available data was not enough
to ensure an unique solution. Note that, although the correction factors were in
crror, the first three corrected eigenvalues were calculated within the specified
tolerance of 1% of the measured eigenvalues. Therefore, a corrected or adjusted
finite element model was created by the refinement algorithm that had the same
lowest three eigenvalues, but had different actual stiffnesses from the measured
shaft. The second set of correction factors, based on eigenvalues 2, 3, and 4, and
using the first correction as the starting point, matched the measured shaft almost
exactly within five iterations. As a result, the last two sets of corrections based
on cigenvalue groups 3, 4, and 5, and 4, 5, and 6, did not provide any additional

correction to the beam model.

As an additional test, since there are six elements in the cantilever beam model,
and six measured eigenvalues, the correction algorithm was run allowing some
adjustment of all the elements. That is, there were six equations in six unknowns.
The starting model was the uniform diameter cantilever beam as shown in Fig. 6.8,
and the target beam with its measured eigenvalues are as given in Table 6.2.
The algorithm gave the correct stiffness adjustments and eigenvalues (with 0.5%
tolerance) within 9 iterations. The method worked well for this case, in that the

elements to be corrected were not specified prior to the correction.

6.3.3 Step Test

The finite element mode! refinement procedus:- was also tested on a simply supported
beam with step change in section miodelled with Euler-Bernoulli beam elements as
shown in Fig. 6.9. The test was done to evaluate the amount of stiffness correction
that could be accurately found by the Rayleigh’s Quotient method. Again the
starting model was an uniform beam, and the target beam had the stiffnesses

of elements three and four increased over the uniform beam stiffnesses by up to
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FIGURE 6.9: Step Change Beam Model

twenty times. In this tesi case, only clements three and four were specified to
be corrected, and the first six measured cigenvalues were to be matched. The
algorithm was limited to correcting the elements by matching two cigenvalues at a
time as with the previous beam model, rather using the linear regression solution
method. The corrected model at this point then became the starting model for
subsequent matching subsequent eigenvalue pairs. At clement stiffness ratios of 12
to 1, the algorithm gave the correct element adjustment on the basis of matching the
first two measured eigenvalues. Further correction on the remaining four measured
eigenvalues was not needed. For a stiffness ratio of 14 to 1, the method also correctly
adjusted the stiffnesses, but a small additional correction was made by matching
the second pair of measured eigenvalues. When the stiffness ratio was raised higher,
the algorithm did not converge to a solution within the allowed twenty iterations.
The calculated element adjustments were large, and the solution vector tended to
oscillate. The eigenvalues of target beam, uncorrected model, and corrected model,

and the element stiffness ratios are give in Table 6.3.

The correction of elements three and four was also attempted by using the simple
linear regression method of Eq. (6.11). The first six measured ecigenvalues were
matched as a group. The correct stiffness adjustment was calculated within seven

iterations for a target stiffness fifty times the starting stiffness, and the corrected



TABLE 6.3: Step Test Correction (14:1 Stiffness Ratio)

Target Uncorrected Corrected On Basis Of Eigen.
Beam Model 1.2 2.3
(11 Iter.) (2 Iter.)
Eigenvalues
41.5818 = 10° 1.7332 < 10° 4.6125 x 10° | 1.5849 x 10°
1.3440 % 107 | 2.7955 x 108 1.3434 x 107 | 1.3442 x 107
5.0023 x 107 1.5119 x 107 4.8485 x 107 | 5.0023 x 107
2.3851 %108 | 5.3144 x 107 || 2.3762 x 10® | 2.3852 x 10®
5.2165 x 108 1.4887 x 108 5.2103 x 10® | 5.2172 x 10®
1.6130 = 10° | 3.6043 x 108 1.6180 < 10° | 1.6132 x 10°
Stiffness Relative To Uncorrected Stiffness

L1 ] 1.0000 1.0090 1.0000

Flo2: 1 1.6000 1.6000 1.0000

L 3 14 1.0000 15.551 14.009

| DF K SR | 1.0000 12.201 13.996

cigenvalues matched the measured eigenvalues with a tolerance of 0.1%. Table 6.4
compares the eigenvalues of the target beam and uncorrected and corrected models.

and the corresponding element stiffness ratios.

Additionally. the correction was done on all four elements bv solving the
equations with the simple linear regression method where the target beam had the
stitfnesses of elements 3 and 4 multiplied by a factor of five. The first case started
with the uniform beam as in the previous case. However, after running the maximum
of HU iterations the algorithim had adjusted the stiffnesses of all four elements to a
set of unexpected values, and matched the first six eigenvalues within 9% as shown
in Table 6.5, After the fifth iteration the stifiness multipliers were changing in the
fourth or fifth decimal places onlyv. The second least squares correction of all four
clements started with a different uncorrected model. The new uncorrected model
was formed by multiplying the stiffnesses of the original finite element model by

the following factors: element 1 by 1.0, element 2 by 0.8, element 3 by 2.0, and



TABLE 6.4: Step Test Least Squares Correction of Flements 3 and 4

Target Uncorrected Corrected
Beam Model Model
(7 lter.)
Eigenvalues
4.9927 % 10° 1.7332 % 10° 1.9929 x 10°
2.0963 x 167 | 2.7955 x 10¢ 2.0962 x 107
1.6700 < 10% 1.5119 =< 107 1.0690 x 108
3.1096 < 10% | 5.3144 x 107 3.1085 = 10%
1.3464 =~ 10" | 1.1837 < 10% 1.3456 = 10°
2.0616 < 10Y 3.6013 > 10% 2.0610 = 10
Stiffness Relative To Uncorrected Stiflness
EL 1: 1 1.0000 1.O000
El 2. 1 1.€000 10000
El. 3: 50 1.0000 50018
El. 1. 30 1.0000 19840

TABLE 6.5: Step Test Least Squares Correction of Entire Model

Target " Corrected Corrected
Beam Model | Model 2
(50 1ter) (6 Iter.)
Eigenvalues _
3.7793 < 107 [[ 3.8828 < 10™ [ 3.7783 ~ 107
7.1021 =< 10¢ 6.7763 - 10% 7.0970 » 10°
3.4147 x 107 3.5065 = 107 | 3.1138 » 107
1.3621 < 108 1.2378 = 10% 1.3610 ~ 10°
3.2940 > 10° 3.5034 x 107 3.2920 108
8.6054 x 10* | 8.9250 < 10% | 8.5992 x 10"
Stiffness Relative To U ncorrected Stifines s
EL 1: 1 2 2884 0.9961
EL 2. 1 2.6473 1.001s
El.3: 5 2.0234 1.9751
EL 4 5 25447 5.0222

Ll
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FIGURE 6.10: Scale Turbine Finite Element Model

clement 4 by 4.0, This new starting model gave the correct model stiffness ratios
and eigenvalues within 6 iterations. The results are given as the corrected model 2

in Table 6.5.

6.3.4 Turbine Model

All the previous examples have been numerical experiments where the measured
cigenvalues were calculated by manually adjusting some of the stiffnesses of a
tinite element model. These measur~d eigenvalues were then used as input to the
correction algorithm. However. a test of a correction of a finite element model of a
real shaft was also done. In this case the shaft was the scale turbine model designed
and built for Roberson™s Master's thesis [38]. The finite element inodel of the shaft
is shown in Fig. 6.10. with the dimensions given in Table 6.6. The scale model
consists of a steel shaft with thirteen shrunk on disks suspended in four journal
bearings and is driven by a variable speed motor through a flexible coupling at the
fr - of element 1. The first five eigenvalues were measured tor the non-rotating
s.. hile being simply supported at the bearing locations A and D, and being

excited near the middle of element 6 (shaker location 2, Table 3.1 of [38]).

The shaft was modelled with thirty-three Timoshenko beam elements, and all
the disks were included as short stiff beam elements contributing both mass and

stiffness to the model. The diameter used to calculate the starting stiffness matrix



YABLE 6.6: Scale Turbine Model Element Dimensions

:;_ Elem. Dia. Len. Elem. Dia. Len.

( No. in. in. No. 1. 1.
1 1.75 1.25 18 1.75 3.00
2 1.75 3.50 19 =.00 1.50
3 6.00 0.50 20 1.75H 6.50
1 1.75 D.25 21 6.00 0.50
D 9.50 1.00 22 175 7.50
§] 1.75 3.25 23 1.75 =00
N 6.00 0.50 2] 6.00 0.50
S 1.75 5.25 25 1.5 5.5H0
Y S.00 1.00 26 S.00 .50
10 1.75 6.38 27 1.75 3.00
11 1.75 6.38 25 10.0 1.50
12 1.75 5.50 29 1.7H 3.00
13 6.00 0.50 10 120 150
14 1.75 2.50 31 1.75 1.50
15 12.0 1.50 32 L.7hH 1.50
16 1.75 3.00 33 1.7H 6.25
17 10.0 1.50

LS
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for cach individual element of the 1miodel was 1.75in., while the mass diameter was
the actual diameter listed in Table 6.6. The correction procedure was performed for
two different cases.

For the first correction case it was decided to allow the stiffnesses of all the
clements to be corrected except for elements 1 and 33. Since these were short shaft
clements outside the supports, their stiffness would have very little effect on the
shaft natural frequencies. Correcting 31 elements with five measured eigenvalues
resulted in a system of five equations in 31 unknowns. The correction was first
applicd using the simple linear regression technique of Eq. (6.12). However, it
was found that the resulting square matrix was very nearly singular. Gaussian
climination with pivoting produced a solution vector with large numerical values.
Substituting the solution back into the equation did give the correct right hand side
vector, however, the resulting stiffness corrections were so large that the procedure
was unable to converge to a final stifflness correction. Singc  t +:alue decomposition
was then used on the [C"] matrix of Eq. (6.17) with the matrix L:-ing augmenied by
additional rows of zeros at the bottom to achieve a square matrix of order 31. The
resulting solution vector had numerical values in the order of 1.0, and the procedure
was able to converge to a solution in six iterations with a tolerance of 2% of the
measured cigenvalues. The final corrections or faciors that the element stiffnesses
were multiplied by are given in Table 6.7 as corrected model 1, and elements with
a correction factor of 1 were restricted from adjustment by the algorithm. Shaft
clements near the middle of the shaft. especialiy those between the disks, such as
clements 18 and 20 had large corrections. As an example, the stiffness of shaft
clement 20 was maltiplied by 1.2 over its starting stiffness. The disk elements
received a variety of corrections. The smaller disk 3 had its stiffness multiplied by
03, while disk 17 had its stiffness multiplied by 1.3.

To check if the corrections were reasonable, the ratio of each elements strain

cnergy to overall model kinetic energy for each of the first five modes of the original
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uncorrected model was calculated as follows:

{X:} AN
w? {X T M]{X0)

= element contribution. (6.2.1)

As expected the sum of the ratios for all the elements divided by the corresponding
eigenvalue did result in unity, and the shaft elements in the mid-span of the shaft
contributed most for the first five modes. Therefore, it was expected that the
middle shaft scections would be the most effective element stiffnesses to adinst
to achieve the corrected model as found by the correction procedure.  Also, the
clements modelling the disks contributed the least to the overall strain energy and
would have little or no effect on the correction of the model. This was because
the shaft elements representing the disks were short and relatively stiff, and had a
small change in bending angle along the element length. This lead to attempting a
second element adjustment where only the shaft sections. excluding, elements 1 and

31. were correct ('(l.

For this second correction case, the procedure was also able to converge to a
corrected model with eigenvalues within 2% of those measured. The corresponding
correction factors (Corr. Fact. 2) are also given in Table 6.7. Again, the shaft
elements in the mid-span had their stiffnesses greatly increased, while the elements
near the supports had their stiffnesses decreased. There is reasonable agreement
Letween the correction factors of the two cases for those elements that were allowed
to be adjusted, although the two different correction sets indicated that there was

no unique solution to the problem.

Table 6.8 compares the natural frequencies measured, and calculated from the
uncorrected model, and corrected models 1 and 2. Also, the percentage change in
natural frequencies from the uncorrected values to final corrected values are given.

The change required for the first three natural frequencies were substantial with



TABLE 6.7: Model Element Stiffness Clorrections

Elem. Start. Corr. Corr. Elem. Start. Corr. Corr.
No. Fact. Fact. 1 | Fact. 2 No. Fact. Fact. 1 | Fact. 2
l 1 1 1 18 1 2.666 2.068
2 1 0.076 0.066 19 1 1.285 1
3 1 0.032 1 20 1 4.178 3.665
1 1 0.845 0.619 21 1 0.233 1
5 1 0.284 1 22 1 2.585 1.888
§ 1 1.757 0.848 23 1 2.712 1.622
7 ! 0.199 1 24 1 0.220 1
S | 2.497 1.311 25 1 2.822 2.301
9 i 0.570 1 26 1 0.855 1
10 1 3.460 2.901 27 1 1.518 1.460
11 ] 3.040 3.393 28 1 0.623 1
12 1 2.529 2.899 29 1 0.974 0.731
13 1 0.243 1 30 1 0.433 1
14 1 1.293 1.214 31 1 0.826 0.502
15 1 0.898 1 32 1 0.161 0.114
16 1 2.210 1.406 33 1 1 1
17 ! 1.290 1|
TABLE 8.8: Scale Turbine Model Natural Frequencies
Meceasured | Uncorrected | Corrected Change Cerrected Change
Model Model 1 Modsl 2
Hz. Hz. Hz. % Hz. %
| 8.00 6.17 7.97 29.2 3.02 29.9
29.7 26.88 29.59 10.1 29.44 9.5
H55.5 50.51 55.32 9.5 55.09 9.1
1122 106.10 111.95 5.5 11 .67 5.3
170.0 166.19 169.36 1.9 169.57 2.0
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the first natural frequency being 30% higher than the original uncorrected models.
The second and third natural frequencies were about 10% higher than those of the
uncorrected model. The final corrected natural frequencies for both corrections were
almost identical to those measured, indicating a successful correction of the original

finite element model.

6.4 Conclusions

The Rayleigh’s Quotient refinement algorithim has been shown to be a reliable
method for modifying a preliminary finite element model so that the calenlated
dynamic characteristics of the model closely match the real shaft. The method
has been successfully applied to beam and torsional element models, and does not
require measured mode shape data. With some modes, the resulting equations
were ill-conditioned, but this could be avoided by using a different trial model, and
selecting different modes as a basis for the correction procedure.

The method was also tested on o step change in beam stiffness, and was able
to correct the stiffness of thie original model by up to fourteen times the original
element stiffness easily, far exceeding the required stiffness corrections envisioned
for the procedure.

The Rayleigh’s Quotient system identification method was also used Lo correct.
the finite clement model of a real machine shaft and was able to adjust the celement
stiffnesses so that the first five eigenvalues of the model were the same as those
measured. The test case also showed that the different correction solutions can
be achieved by rerunning the model refinement algorithm with different elements

selected for adjustment.

One problem this method does not address is the uniqueness of the solution.
Because only a limited number of measured eigenvalies are used, the method

may make adjustments or corrections to the model that are unexpected or not
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anigue. That is, for a given set of measured data, there may exist several different
corrected models that would predict the desired eigenvalues, and different starting
or uncorrected models may lead to different correction solutions. The analyst should
compare the calculated mode shapes to the approximate actual mode shapes to see
if there are unacceptable differences. Or, a comparison of actual to calculated forced
response curves over the frequency range of interest would indicate the validity of
the corrects -, mnodel. Tt is possible, that a corrected model would give the proper
forced response of the dynamic system if the frequency range of interest is covered by
the corrected eigenvalues that were input into the algorithm. Although, it is very
probable that the model would not give acceptable results for frequencies much

outside of that range.

The manufacturer of a particular rotating machine could use this method to
provide a corrected finite element model of the machine rotor to the end user. The
user would then have an accurate finite element model to use in future balancing,
and vibration analysis of the rotor. The correction factors for the rotor model
would be done on the basis of measured eigenvalues of the rotor, with the rotor
being suspended in the free-free or simply-supported state.

The refinement method does however, require that the finite element analyst
performing the procedure have some knowledge of which elements require correction.
That is, the analyst must predetermine the most likely areas of error in the model.
Some clues as to the correction areas may be found by examining the mode shapes
for eigenvalues to be corrected. The areas of the mode shape that exhibit the
greatest change in slope of the neutral axis would certainly be the most sensitive
to small changes in element stiffness. If incomplete measured mode shape data is
available, then algorithms do exist to locate the areas of error in the stiffness matrix.
See, for example, Sidhu and Ewins [39] for a method that localizes the error using

reduced stiffness matrices from mode shape data over the frequencies of interest.

T'his method can be used to refine a system model by correcting components first.
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That is, the model could be refined by experimentally measuring the cigenvalues
of the rotor system components separately and correcting the corresponding
component models. Then with the system physically assembled the cigenvalues

would be experimentally measured, and then used to correct the mathematical

overall model coupling stiffuesses to give a corrected global tinite element modet.



CHAPTER 7

Conclusions

All's Well That Ends Well — Shakespeare

This thesis has presented three specific methods for improving the modelling
of machinery rotor dynamics, using the finite element technique. First, an
isoparametric axisymmetric shaft element based on three-dimensional elasticity,
rather than one-dimensional beam theory was developed. Second, a matrix
condensation procedure for forced analysis and calculation of natural frequencies
of a shaft system needing only a small amount of computer memory was presented.
And third, a model refinement method based on Rayleigh’s Quotient using the
measured free-free cigenvalues was given. The following is a short synopsis of each

of the chapters of the thesis.

In the second chapter background into the beam elements normally used
to model turbomachinery shafts was given. Additionally, a brief description
of numerical difficulties that may be encountered when modelling shafts with
gyroscopic effects, and one solution were presented

The third chapter presented an extension of an element for the modelling of shaft
dynamics from a subparametr. - . an isoparametric formulation. This axisymmetric
clement was based on three di'ii sional elasticity theory, and was therefore not

restricted by the assumptions of simple beam theory. For example, the element
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allows the perpendicular cross-sections of a shaft to warp at abrupt changes in
section when loaded in bending. Unfortunately, the added accuracy of this element
comes at the expense of element matrix size and computational time. The element
should be used for shaft sections that have a wide variety of section diameters. This
element may also provide some advantage in modelling the coffects of shrunk on
wheels, where the interference fit has some physical stiffening effect on the shaft.
The application of this element for the modelling of an interference fit wheel on a

shaft is a suitable area of future research.

An overview of present techniques for modelling the behaviour of journal
bearings was also presented. The linear stiffness and damping models for journal
bearings are of use only for small perturbation from the journal equilibrium position.
However, unbalance, hydrodynamic and acrodynamic forces can often cause large
motions of the shaft journal inside the bearing. As a result, accurate dynamic
analyses of rotor-bearing systems are difficult. Suitable models based on large
perturbations of the journal should be explored. This will most probably require
the use of non-linear models and solution techniques, and may also require the

introduction of the mathematics of chaos into rotor dynamics.

Chapter 5 gave the continuous coordinate condensation technique for calculating
the forced response of a shaft system. The method allows the assembly of a global
finite element model which retains the number of degrees of freedom of a single
element matrix. This allows the use of very little computer memory, and essentially
combines the memory advantages of the transfer matrix method with the accuracy
at higher frequencies of the finite element method. Coordinate condensation can be
used to great advantage for sections of structure that are modelled with a number of
elements of like size and material properties. Two similar elements can be condensed
to form a superelement. T'wo of the superelements can then be used te form a new
superelement having the accuracy of four elements, but the same matrix size as a

single element. Applied recursively, each condensation step can then double the
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effective mumber of equal size elements in that section of the model. This method
has had some use in the area of finite element modelling of acoustics, and the results
presented clearly indicate the suitability and ease of use for the modelling of rotor

dynamics as well.

Chapter 6 introduced an entirely new system identification procedure that allows
moderate adjustment of individual element stiffnesses on the basis of correlating
certain calculated and measured eigenvalues of a shaft. The method uses Rayleigh’s
Quotient to calculate the correction factors, with linear regression and singular
value decomposition being applied for solution of the linear systems of equations.
A major advantage of this method is that only the first few measured eigenvalues
of the actual shaft are needed. The difficulty of measuring accurate mode shapes is
thereby avoided. The successful . Hplication of a correction to the model of z real
machine was presented. Further work needs to be done on automating a procedure
for the selection of elements for correction. Also, the modification of the Rayleigh’s
Quotient system identification method for the correction or creation of the bearing

stiffness and damping matrices should be also be examined.

It is hoped that the methods and discussion presented by this work will be of
some value for future analysis of rotor dynamics and perhaps for the dynamics of
structures in general. Listings of computer programs used will be published as a

department report.
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APPENDIX A

Derivations

‘Double. double toil and trouble;
Fire, burn; and, caldron, bubble. — Shakespeare

A.1 Timoshenko Differential Equation For Beaoms

The strain energy, {70 kinetic energyv. 7. and the external work, W, . of a beam

clement nndergoing flexural vibration, as shown i Figo AL are:

. | Y L \ | A Y
("= - / E 1wy j<dr + +——/ KNGA (. t)* dr
2 Jo 2 Ju
i

1= g [, e ey de 5 [Opl 0%t da (A1)

f
W, = / g(or,H)w(o.t)dr,
0
where F s the modulus of elasticity. [ is the second moment of area. K is the shear

correction coctlicient, (7 1s the modulus of rigidity, and A, is the cross-sectional area

of the element.

Hamilton's Principle is written as (with the variation taken inside the integral):

£
(6Wope + 6T — 8U)d/ = 0. (A.2)
t
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q{x.r)
% F+ %Ed.t
Do
M+—(§; dx
w+ %i dx
< g )

FIGURE A.1: Moments and Forces on an Infinitesimal Element

The first variation of the ener--ies is found by varving the displacements by an

arbitrary mfinitesimal amount. for exammple v + du. The ditference between the

varied energy expression and the normal expression is the variation of that cnergy

(variations squared are considered negligible), The variations of Fo. (A1) are given

by

i §
ol = / ey dwyl dar -+ / KNOSA e édedr
Ju

Cae)

I3 / . . .
&l = / pAy b de / pl 880 (A3)
i Ju

i
oW, = / qéudr.
Ji)

Substituting Fq. (A3) into Fq. (A.2) gives:

¢ ¢ ..
/ ’ / (qéw + pAw b+ pl06) — Elw! buwy) — NCGA b dpyededt =0, (AA)
ty 0

Rewriting Eq. (A.4) by substituting @ = wj and ¥ = w; — ' results in:



ty 3
/ / (q&w+ pA b+ play ey’ — ETwy buy)
[ O
~NGA, (w) —w') (6w — éuw'))drdt = 0.
The function being integrated in Eq. (A.5) is an explicit function of w and wy,
and their time and spatial derivatives only. Integrating the éu and 6w’ terms by

parts with respect to time, and letting dw = dwy’ = 0 at t = ¢, and ¢ = {3 results

m:

1, pr
/ / (qow — pAL & dw — pl &) dwy’ — E1 ) duy)
h 7o (A.6)

— WA, (w) — ') (dwy — duw'))du dt = 0.

Now integrating the fw) terms wort. &, and letting dw) = 0 at ¥ = 0 and r = (

gives:
t,
/f /U (qdw — pALCdw — pl iy dwy + 21wy duwyy
—~KNGA; (wy — ') (wy — dw'))dadt = 0.
Integrating &’ terms worit. x, and letting dw = 0 at © = 0 and r = € results in:
[ ’ . ) .
/ / gouw — pA,wbw — pl oy duwy + Elw) duwy
Joy Jo
—NGA (wy, —w)bwy — NGAL (wy) —w")ébw)dadt =0.

The fundamental lemma of the calculus of variations states that where
i) Girydr = 0, and G(x) is a continuous function over the interval z; <

o< . awd s} e an arbitrary continuously differentiabie function over the
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same interval with p(ry) = np(ry) = 0. then () = 0 over the interval.
Rearranging Eq. (A.8) to group duf and & terms and remembering that these
virtual displacements are arbitrary and independent. the fundamental lemma can

be used to show that:

J*wy J Juy Ju
El—= —pl — — NG A (— — —) =0 ALY
o Plorar — 0 e o) (A-9)
( e, 7 u
g — po S N ] ALY
! P jor- e ( )

Differentiating Eq. (A9) with respect 1o o and rearranging gives:

e, 7w by, AT
Neia, |28 Sy Sl B AL
P ( o’ e;.ﬂ) T VT (A1)
dFue Fu, e
= pA NG’ A - —1. AN B
ARG TR (z).,-'z (').,-2> (A1)
Substitute Eq. (A1) into Eq. (A.12) 1o give:
e AT Ay,
oy =pA— =4 l—— — pl ——. AW
abe) = pA et B = el s (A1)

Consider Eq. {A.12) under free vibration (i.e.. ¢ = 0). and rearvanging gives:

(i)2 w), i)z-w> p

o — —— . (A 14
O dx? KN igt? ‘
Rearranging 2q. (A.14) and differentiate with respect to o twice:
dw atw e _
= LT (A.17)
dxz dzt KG dz? ot
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And differentiating g, (A.11) with respect to time twice:

Suy Jw p J'w
—_ - ] A.16
dr? Jt? dJx? ot? NG gt? ( )

Substituting Fq. (A.15) and Eq. (A.16) into Eq. (A.13) (where ¢(z,t) = 0) gives the

Timoshenko governing partial differential cquation for a beam undergoing lateral

vibration:

Pl FARTL e plg I Pw /)2 I Jd'w
ALY Ll L 2. AT
P oo M aror T RG oo Y RG o ( )

The first term of the left hand side of Eq. (A.17) is due to the inertia of the
clement, the second term is the restoring or elastic force; and these two terms
together give the Buler-Bernoulli equation. The third term is the contribution of
the rotatory inertia due to the bending of the element, and the fourth term is the
rotatory inertia due to shear deformation of the element. The fifth and final term

is & mixed term which is small and is usually considered negligible.

A.2 Beam Equations

The forces and moments acting on an infinitesimal element are as shown in Fig. A.1.
The element considered is under static equilibrium, and has a constant shear force

and slope such that g() = 0. The shear stress-strain relationship is:

=GRy (A.18)
Suwinming tnhe forces on the element:
dF dF
F—(F + —dz) = =0 (A.19)
dx dr



Summing the moments on the eieiment:

dN! s
M= (M + =2de) + (F + (—[—(l.r)tl.r _
. .
1A , o
= ~(——{‘ + Fdor + (—[—L—(l.l"’ = ()
d.r dr
1\]
= ‘ =/
dr

Integrating Fq. (A19):

[utegrating L. (A.20):

dM

—— =
d.r

= A = o+ .
The moment curvature relationship is:

d?wy d*w di Al

dr? — da? + dr T

Combining Eq. (A.22) and Eq. (A.23) (but % = 5, and integrating gives:

n

| I’ £

w(r) = (y = + az— + ayr + «y).

51 6 2
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(A.20)

(A.21)
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/
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FiIGURE A.2: Beam Llemc:.

And the bending angle is the sumn of the derivative of Eq. (A.24) and the shear

slope, Fq. (A.21):

0(r) =~ (v + gz + g + a3 o) (A.25)
.Q - ——— (! — -y ‘] ] ——— - - -
OEpTI Gy Tt T as T ey, '
Rewriting Fq. (A.25), where 3 = Gllf'.{tx:

1 z?

Flquating the displacement equations Eq. (A.24) and Eq. (A.26) with the element
nodal unknowns at & = 0 and o = € as shown in Fig. A.2 gives the following matrix

equation:

wy ] | 0 0 0 1 IN| oG )
0 1 1 0 «

b= B ] ¢y (A.27)
w,y k1 % % ¢ 1 Qs

L 0, | L (5+8) €1 0] | a4



t7o

Solving Eq. (A27) for the unknown alpha coeflicient vector results in:

{a} = [T){w,}. (A.28)
where:
[ 12 6( —12 6l ]
o —6( 0 123) GO (=20 4 1253
7= ( S o IR
(2 +123) 123 (63 4+ 630) 123 —GA(
€02 + 12:3) 0 0 0

L

Combining Eq. (A.28). Eq. (A.29) into the displacement approximate equations

gives:
wia,t) = {I)’U}T['/‘]{w,.(l)}
Dl t) = {CYT{w. (1)) (A.30)
oue,t) = {0y},
wlere:
p 1 s a2
1 — P —
Bk = 51 L5 ; © b
IR i o
N T = —_— 5 (Ac‘l)
{C) o, | 0 0 0 |

(_

(DY = | S+4 « 10 |

—
Kty
S~
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A.3 Hamilton’s Principle In Matrix Form

Substituting Feq. (A30) into Eq. (A1) gives:

!
t) 0

/ / ({6 3 (1) {Bo} g + pA {6t} (TT7 {Bo} { B} [T] {bc}
+pol {60} [T)T {D}Y{D}" [T] {w.}
(A.32)
—E1 (8w YT [T {B}{BJ}" [T] {w.}
—KGA{Sw Y [1T{CY{CY [T] {we}) dedt = 0.

Integrate {6}’ terms w.r.t. time, and letting {§w,}" = {0} at t =¢; and t = ¢,

gives:

[ /( (6w} [T)T ({BoYq + (—pA{B.} {B,} — pI {D}{D}")[T}] {d.}

H(= BB B — KGA{CH{CY)[T] {w,}) dx dt = 0.

(A.33)
Define:

{Q} = /D [q[.'I‘]T {B,} dx

(M) = /()((pA[T]T{Bo}{BO}T[T]+p1[T]T{D}{D}T[:r])dw (A.34)

(K] = [T (2) (BT 1T+ KGAITIT (CY{C) T)) da.

Then Eq. (A.33) becomes:

7 80T (@) - (M. {8} - (K] {we}) dt = 0. (A.35)
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Since {dw.} " is arbitrary, the fundamental lenima of variational caleulus states that

the portion of Eq. (A.35) in parentheses must be equal to zevo. That is:
[M] {0} + [WNe] (e} = {Q}. (A.36)

A.4 Serendipity Functions

The serendipity functions are formed by using the simple polynomials. A general
displacement ¢ anywhere in the element can be delined as the following polynomial

equation:

q=q+ @E+ @+ ..+ qubin+ quin’ = L) {g.}, (A.37)

where {q,} is the vector of the coefficients, and the simple polynomials are:

LPI=11 & n & € 92 &y &2 & 7* &y &P | (A.38)

The vector of the nodal displacements, {¢.}, is defined by evaluating . (A.37)

at the nodal locations shown in Fig. A.3. The matrix [T], is 12 by 12,

LP(&. )]
[Foieit
{g-:} = {92} = [T {q.} (A.39)
Pl a)l

L [P0 om2)] J
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o 1 oo (1L1)
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FIGURE A.3: Nodal Pos:tions

Solve Eq. (A.39) for the vector of coefficients, {¢,}, and substitute back into

Eq. {A.37) to give:
¢ =[PIT "] {q.}. (A.10)
The serendipity functions are now given by:
(V] = [P){T~1). (A.41)
The serendipity functions have been calculated explicitlyv and incinded in the

element algorithm, thereby avoiding the need for a matrix inversion operation for

every element formed.



table A1 gives the values of € and 5 at each node.

TABLE A.1: Local Variable Values
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Node £ 7
1 -1 -1
2 1 -1
3 -1 1
4 1 1
5 -1/3 -1
G 1/3 -1
T 1 -1/3
S -1 1/3
9 1 -1/3
10 1 1/3
Il -1/3 1
12 1/3 1
The inverse of matrix [T7] is:
[ -10 -10 -10 -10 09 09 09 09 09 09 09 09
1.0 -1.0 1.0 —1.0 -27 27 -09 -09 08 09 -27 27
1.0 1.0 —-10 —10 -09 ~09 -27 27 -27 27 0o 09
-10 1.0 10 —1.0 27 -27 2.7 -2.7 -25 27 -27 2.7
09 09 09 09 -09 -09 00 00 006 00 -09 -09
N U4 B9 U9 0Y 00 00 -09 —-09 —-09 -09 00 00 (A.42)
71 —09 -09 09 09 09 09 00 00 00 00 -09 -09
-09 09 -09 09 00 00 09 09 -09 -09 00 09
-0 09 -09 09 2.7 -27 00 00 00 00 2.7 -2.7
-09 -09 69 09 00 00 2.7 -27 27 ~27 00 00
09 -09 -09 09 -27 27 00 00 00 00 2.7 -2.7
09 08 —0% 09 0O 00 -27 2T 27 -27 00 00




