
U n iv e rs ity o f A lb e r ta

M iz a r V e r if ic a t io n o f A l g o r it h m s f o r R e c o g n iz in g C h o r d a l G r a p h s

by

B ro d e ric k A rn eso n

A thesis subm itted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M a s te r o f Science.

Department of Computing Science

Edmonton, Alberta
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-29932-6
Our file Notre reference
ISBN: 978-0-494-29932-6

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives C anada to reproduce,
publish, archive, preserve, conserve,
com m unicate to the public by
telecom m unication or on the Internet,
loan, distribute and sell th ese s
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecom m unication ou par I'lnternet, preter,
distribuer et vendre d es th e se s partout dans
le m onde, a d es fins com m erciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the th esis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur con serve la propriete du droit d'auteur
et d es droits moraux qui protege cette th ese .
Ni la th ese ni d e s extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sa n s son autorisation.

In com pliance with the Canadian
Privacy Act so m e supporting
forms may have been rem oved
from this thesis.

While th ese forms may be included
in the docum ent page count,
their removal d o es not represent
any lo ss of content from the
thesis.

Conform em ent a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secon d aires
ont e te en lev es de cette th ese .

Bien que c e s formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The objective of this work is to test the suitability of the Mizar proof assistant for

automated proof checking of some select graph algorithms as they are published in

research papers and survey books.

We use Mizar to check the proof of a characterization of chordal graphs, as well

as the proofs of correctness of two algorithms for recognizing chordal graphs: Lex

icographic Breadth First Search and Maximum Cardinality Search. This required

the addition of some foundational results to the Mizar Mathematical Library. In the

process of formalizing the graph algorithms we discovered some small inaccuracies

in the published proofs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 Overview .. 1
1.2 Formalized M athem atics .. 1
1.3 M i z a r .. 2
1.4 Related Works .. 3
1.5 Organization of the P a p e r ... 3

2 T he MlZAR Graph Library 5
2.1 G rap h s ... 5
2.2 Labeled G ra p h s .. 7
2.3 S u bgraphs.. 8
2.4 Connectivity .. 10
2.5 Walks and P a t h s ... 10
2.6 Graph Sequences/A lgorithm s.. 11

3 Form alized Proofs 12
3.1 Characterization of Chordal G r a p h s ... 12

3.1.1 Definitions .. 12
3.1.2 C h arac te riz a tio n .. 15
3.1.3 D iscussion... 18

3.2 Vertex Numbering Graph S e q u e n c e s ... 18
3.3 Lexicographical Breadth-first Search A lg o rith m 22

3.3.1 Recognizing Chordal G r a p h s ... 22
3.3.2 The LexBFS algorithm ... 22
3.3.3 Formal Definitions of L exB FS ... 23
3.3.4 Proving Correctness of L ex B F S .. 27
3.3.5 D iscussion... 32

3.4 Maximum Cardinality S e a rc h .. 32
3.4.1 The MCS a lg o r i th m ... 32
3.4.2 Formal Definitions of MCS .. 33
3.4.3 Proving Correctness of MCS ... 36

3.5 D iscussion.. 40

4 C onclusion and Future W ork 41

Bibliography 42

A Introduction 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B Triangulated Graphs: Golum bic 45
1. In troduction ... 45
2. Characterizing Triangulated G r a p h s ... 45
3. Recognizing Triangulated Graphs by Lexicographic Breadth-First Search 49

C Triangulated Graphs: R evised 46
1. In troduction ... 46
2. Characterizing Triangulated G r a p h s ... 46
3. Recognizing Triangulated Graphs by Lexicographic Breadth-First Search 50
4. Addendum ... 57

D M iz a r abstracts 60
1. c h o rd .a b s .. 61
2. le x b fs .a b s .. 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Overview

This thesis tests the suitability of the M iz a r proof assistant for automated proof
checking of some graph algorithms as they are published in research papers and
survey books. We have chosen the development of chordal graphs as presented in
the well known book by Golumbic[10].

Our goal consists in M iz a r proof-checking for correctness two algorithms for rec
ognizing chordal graphs: Lexicographic Breadth First Search and Maximum Car
dinality Search. The starting point of our work was the M iz a r Graph Library
prepared by Gilbert Lee. His work in turn was based on the Mizar Mathematical
Library developed over the last twenty years by dozens of people.

We consider our effort a success — we needed to add some foundational develop
ments to the Graph Library and some minor facts to the Mathematical Library, but
encountered no insurmountable obstacles during our work. In the process of formal
izing the graph algorithms, we discovered some small inaccuracies in the published
proofs. While our ambition was to follow the published proofs as closely as possible,
we have departed from them at some places for the sake of simplicity. Indeed, infor
mal proofs sometimes tend to gloss over technical difficulties when closer inspection
reveals a simpler solution. The cost of M iz a r formalization, while substantial, is
not overwhelming: formal proofs usually contain around ten times the number of
tokens than their published counterparts.

1.2 Formalized M athem atics

One of the goals of formalized mathematics is to take mathematical knowledge and
express it in such a way tha t automated processing is possible. Not only are such
formalized proofs completely rigorous and verifiable by machine, but taken together
they form a searchable database. There is hope tha t such a database could be mined
for new, previously unknown results, or prove useful to automated theorem provers.
Currently, there are quite a number of automated proof assistants in use around the
world, such as ACL2[1], COQ[2], HOL[3], M iz a r [4], and PVS[5].

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 .3 M iz a r

M iz a r , the proof checker system used in this project, is one of the oldest such sys
tems still actively used. It was started in 1973 by Andrzej Trybulec. M iz a r consists
of two main components, the verifier and the M iz a r Mathematical Libarary (m m l).
The verifier takes a file written in M iz a r syntax and checks it for logical errors. The
MML is a database of M iz a r articles. The MML is built on the axioms of Tarski-
Grothendieck set theory, and M iz a r ’s proof checker is based on classical first-order
logic, furnished with some machinery for forming infinite schemes of statements.

We now present a simple proof, followed by a step by step explanation, to intro
duce the reader to MlZAR syntax. The proof shows tha t a complete graph is also
a chordal graph. A graph is complete if it contains an edge between every pair of
distinct vertices. A graph is chordal if every cycle with length greater than three
has a chord, tha t is, every cycle contains an edge between non consecutive vertices
of the cycle (see Definition 3.1.10 for the precise definition of a chord).

theorem
for G being complete .Graph holds G is chordal

proof
let G be complete .Graph;

for W being Walk of G such that W.length() > 3 & W is Cycle-like
holds W is chordal

proof
let W be Walk of G such that

A2: W.length() > 3 ft W is Cycle-like;

A: W is Path-like by A2,GLIB_001:def 31;
W.length() >= 3+1 by A2,NAT_1:38; then
2*W.length() >= 2*4 by XREAL_1:66; then
2*W.length() + 1 >= 8 + 1 by XREAL_1:9; then

A3: len W >= 9 by GLIB.001:113;

reconsider t3=2*l+l as odd natural number;
reconsider t7=2*3+l as odd natural number;
t3 <= len W by A3,XREAL_1:2; then
reconsider W3=W.t3 as Vertex of G by GLIB.001:8;

A5: t7 <= len W by A3,XREAL_1:2; then
reconsider W7=W.t7 as Vertex of G by GLIB.001:8;

W3 <> W7 by A, A5,GLIB.001:def 28;
then W3,W7 are.adjacent by DefComplete; then
consider e being set such that

A4: e Joins W3,W7,G by DefAdjacent;

t3+2 < t7 & t7 <= len W & not (t3=3 & t7 = len W) by A3,XREAL_1:2;
hence W is chordal by A, A4,ChordalPath01;

end;

hence G is chordal by DefChordalGraph;
end;

The statem ent we wish to prove follows the theorem keyword and says tha t for
any complete graph G it holds tha t G is chordal. The proof is contained in the code
block beginning after p roo f and ending before the last end. In the first line of the

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proof we consider an arbitrary complete graph G. In order to prove tha t G is chordal,
we need to show tha t every cycle with length greater than three possesses a chord,
in other words, tha t every such cycle is chordal. Notice tha t we can use attributes of
the same name on objects of different types with no difficulty (here we have chordal
graphs and chordal walks). To prove this new statement we open a new proof block.
In the first line of this new proof we consider an arbitrary cycle W of G with length
greater than three. W is defined as an alternating sequence of vertices and edges,
and so the elements with odd indices in W are vertices and the elements with even
indices are the edges joining these vertices. The le n g th () function returns the
number of edges in W, and the le n W function returns the number of vertices plus
the number edges. For a more precise discussion of how walks are implemented
please see Section 2.5. We show the two elements at indices 3 and 7 are vertices of
G and refer to them as W3 and W7 respectively. W3 does not equal W7 because a cycle
is assumed to repeat only the first and last vertices; since W3 and W7 are not the the
first and last vertices they are not equal. Since all distinct vertices are adjacent in
a complete graph, we can consider the edge e joining W3 and W7. But e is a chord
of W, and so W is chordal. Hence G is a chordal graph.

1.4 Related Works

In 1990, Hryniewiecki[ll] formalized some basic graph structures in M iz a r , which
was followed subsequently by articles from Rudnicki, Nakamura, and Chen[20, 21,
22, 23]. Chen also showed a proof of correctness for Dijkstra’s algorithm [8], using
an approach completely different from the type of approach we will use for graph al
gorithms. Chen simulates the effects of the algorithm on an array holding the graph
information. Our approach is to use basic graph operations to create a sequence of
graphs representing the steps of the algorithm through time. In 2004, Gilbert Lee
started the graph library tha t we will extend in this thesis, and proved the correct
ness of D ijkstra’s Single Source Shortest Path, Prim ’s Minimum Spanning Tree and
Ford/Fulkerson Max-Flow algorithms [12, 17, 18, 15, 16, 13, 14].

Abrial and Fraer used a B event-based approach to formalize P rim ’s algorithm
in [6, 9]. A HOL-based formalization of graph search algorithms was done in [26].
Moore and Zhang verified D ijkstra’s algorithm in ACL2[19]. Butler and Sjogren
developed a graph library in PVS [7]. This library contains definitions for graphs,
subgraphs, walks, paths, etc, as well as the proofs for Ramsay’s and Menger’s the
orems. Nipkow et al. verified in HOL an enumeration of tame graphs as defined in
Hales’ proof of the Kepler Conjecture[24],

1.5 Organization of the Paper

Chapter 2 introduces the M iz a r Graph Library tha t is used as a base for our
work. Chapter 3 is divided into four sections. The first introduces chordal graphs
and discusses the proof of a characterization for this class of graphs. The second
discusses a special class of graph algorithms we call vertex numbering algorithms.
The third and fourth discuss our formalization of two chordal graph recognition
algorithms: Lexicographic Breadth-First Search and Maximum Cardinality Search.
Chapter 4 contains a summary of the thesis and our conclusion. We also offer four

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

appendices. Appendix A contains an introduction, Appendix B contains a section
of Golumbic’s chapter on chordal graphs, Appendix C contains our version of the
same section edited to reflect the problems we encountered during our work, and
Appendix D contains the MlZAR abstracts of our formalization.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

The M iz a r Graph Library

In this chapter we discuss the MlZAR Graph Library (abbreviated as GLIB from now
on) created by Lee[12], We highlight the definitions and theorems from GLIB that
will be used throughout the remainder of this paper.

2.1 Graphs

A graph is a set with two elements, V and E. The set V contains the vertices of the
graph and E contains the edges of the graph. The notation G = (V, E) is commonly
used to denote a graph G with vertex set V and edge set E. We require tha t V
is not empty. If x and y are vertices of G, then we write the edge from x to y as
xy. Graphs can be directed or undirected. In a directed graph every edge in E has
an orientation - th a t is, we regard the edge as going from one vertex to another.
The first vertex of each edge is called the source and the second vertex is called
the target. We write xy for an edge from x to y and yx for an edge from y to x.
Note tha t in a directed graph these edges axe not the same. In an undirected graph
edges are viewed without orientation, and so xy and yx are treated as the same.
GLIB treats all graphs as directed graphs, but offers a simple mechanism to handle
undirected graphs (Section 2.4 discusses this in more detail). A graph is simple if
for each pair of vertices there is at most a single edge between them. Many of the
results in this paper were first proved for simple graphs, but wherever possible we
have done our formal proofs without this restriction.

Let G = (V , E). We say the order of G is equal to |V| and the size of G is equal
to |i?|. A graph is finite if both V and E are finite sets, tha t is, if its order and size
are both finite. The MlZAR graph library was designed to handle both infinite and
finite graphs, but we restrict our attention to finite graphs from now on.

A graph can be labeled. A label is a value associated with a vertex or an edge.
An example of a graph labeling is a weight added to an edge tha t is used to denote
distance, cost, or time. Another example is a flag set by an algorithm to mark tha t
a vertex has been already processed. There are many uses for labels, but the main
point is tha t labels are used to add extra information to a graph.

We will now discuss how g l ib defines a graph formally. Note tha t our goal here
is to place as few restrictions as possible on our graphs.

D efin ition 2.1.1 A G raphS truct is a function whose domain is a subset of the
natural numbers.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

definition
mode GraphStruct -> finite Function means :: GLIB_000:def 1

dom it c= NAT;
end;

NOTE: this definition is from the MML article glib_000 .miz, which is described
in Lee[17]. All definitions cited from it will contain the GLIBJDOO identifier as a
comment in the definiton, like above. Similarly, definitions with the GLIB_001,
GLIB_002, and GLIB_003 identifiers are described in Lee[18, 15, 16], respectively.

NOTE: the mode keyword is used to define an object tha t may not be unique.
The keyword i t refers to the object being defined. The functor dom is defined to
return the domain of a function. The c= operator is the “subset of” operator, C.

Informally, a G raphS truct is any function defined on a subset of the natural
numbers (NAT is the identifier used in the MML to refer to the set of naturals). Each
element in the domain of a G raphS truct will be used to store a “part” of the graph.
The elements of the domain are referred to from now on as selectors.

Any graph will require at least a set of vertices and a set of edges. All graphs in
glib are directed by default and so each graph will also need to store information
about which vertices are the sources and targets of each edge (how an undirected
graph can be obtained is explained in Section 2.4). The selectors for these four
properties are defined as follows:

definition
func VertexSelector -> natural number equals :: GLIB_000:def 2

l;
func EdgeSelector -> natural number equals :: GLIB_000:def 3

2 ;
func SourceSelector -> natural number equals :: GLIB_000:def 4
3;

func TargetSelector -> natural number equals :: GLIB_000:def 5
4;

end;

Users of GLIB may add their own selectors as long as they do not conflict with
those previously defined. The values used for a selector are completely arbitrary,
of course. We show them here so the reader has an idea of how the underlying
definitions are constructed.

More convenient and descriptive names for these selectors are defined:

definition let G be GraphStruct;
func the_Vertices_of G equals GLIB_000:def 7
G.VertexSelector;

func the_Edges_of G equals :: GLIB_000:def 8
G.EdgeSelector;

func the_Source_of G equals : GLIB_000:def 9
G .SourceSelector;

func the_Target_of G equals :: GLIB_000:def 10
G .TargetSelector;

end;

To refer to the vertices in a graph G, for example, one can now write “the_V ertices_of
G” instead of “G. V e rte x S e le c to r” . We found tha t this notation improves the read
ability of proofs written using GLIB, an im portant consideration when dealing with
thousands of lines of text.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Up to this point we have defined only the underlying structure of a graph, so let
us now define a graph.

D efin ition 2.1.2 A GraphStruct G is Graph-like z/V ertexSelector, EdgeSelector,
SourceSelector, and T argetSelector are in the domain of G, th e .V er tices .o f
G is a non empty set, and the_Source_of G and the.T arget.of G are both functions
of the_Edges_of G and the_V ertices_of G.

definition let G be GraphStruct;
attr G is [Graph-like] means :: GLIB_000:def 11
VertexSelector in dom G k EdgeSelector in dom G k
SourceSelector in dom G k TargetSelector in dom G k
the_Vertices_of G is non empty set k
the_Source_of G is Function of the_Edges_of G, the_Vertices_of G k
the_Target_of G is Function of the_Edges_of G, the_Vertices_of G;

A graph is then a [G raph-like] G raphS truct. A macro named .Graph is de
fined to make this shorter to write (the underscore is required because there is a
previously defined graph structure in the MML tha t uses the name Graph).

We can test if two graphs are equal on these graph selectors by using the ==
predicate.

D efin ition 2.1.3 G 1 = = G2 if and only i f the vertices, edges, source function, and
target function of G 1 equal those o f G2.

2.2 Labeled Graphs

The advantage of having graphs defined in the above way is tha t we can add labels
very easily. For example, GLIB contains three graph labelings:

definition
func WeightSelector -> natural number equals :: GLIB.003:def 1
5; coherence;

func ELabelSelector -> natural number equals : GLIB.003:def 2
6; coherence;

func VLabelSelector -> natural number equals : GLIB.003:def 3
7; coherence;

end;

end;

definition let G be GraphStruct;
attr G is [Weighted] means :: GLIB.003:def 4
WeightSelector in dom G k
G.WeightSelector is ManySortedSet of the_Edges_of G;

attr G is [ELabeled] means
ELabelSelector in dom G k

: GLIB.003: def 4

ex f being Function st G.ELabelSelector = f k
dom f c= the.Edges.of G;

attr G is [VLabeled] means
VLabelSelector in dom G k

:: GLIB.003:def 4

ex f being Function st G.VLabelSelector = f k
dom f c= the.Vertices.of G;

end;

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These labelings are edge weights, edge labels, and vertex labels, respectively
(a vertex weighting was not defined since it was not needed at the time GLIB was
written). The difference between edge weights and edge labels is tha t the former is
defined on all edges, and the later only on some subset of edges (a ManySortedSet
of I is a function whose domain is exactly I). This means tha t in a [Weighted]
graph every edge will have a weight, but in a [ELabeled] graph it is possible for
there to be an edge with no label. No restriction is made on what these labelings
map to. Each label is a function from the vertices or edges into some set.

A graph can have any combination of the above labels, and graphs with a subset
of these labels can be

definition
mode WGraph is
mode EGraph is
mode VGraph is
mode WEGraph is
mode WVGraph is
mode EVGraph is
mode WEVGraph is

end;

A WEGraph is a -Graph with edge weights and edge labelings, a VGraph is a graph
with only a vertex label, and so on. MlZAR can determine the relationships between
these types of graphs automatically since they are just attributes. This means it is
not necessary to prove tha t a WEGraph is also a WEVGraph, for example.

Note tha t a labeling does not affect the tru th of the == predicate defined above.
T hat is, == is true only if the graphs are equal on the four base selectors, whereas =
is true only if the graphs are exactly the same on all selectors. For example, let G \
and G2 be the same graph except tha t G2 contains a vertex label on some vertex
th a t G 1 does not. In this case, G 1 = = G2 is true because the vertex, edge, source,
and target functions are all the same. But it is not true tha t G 1 = G2 since G2
contains an extra label tha t G1 does not. Consequently, G 1 = G2 implies G1 = = G2
but G \ = = G2 does not imply G \ = G2. It is easy and convenient to informally
consider a graph with a label as the same graph as without the label—indeed, this
is the purpose behind having the == predicate—but, be aware tha t this is not the
case formally.

For the rest of this paper, we use only the vertex labeling property defined
above. The edge labels and weights are not used since they were not needed by the
algorithms we will be working with.

2.3 Subgraphs

A subgraph of a graph is defined as follows:

D efin ition 2.3.1 Let G = (Vg, E g) and H — (14, Eft) be graphs. H is a subgraph
of G if VhQVg and C E g.

definition let G be -Graph;
mode Subgraph of G -> -Graph means :: GLIB_000:def 34
the_Vertices_of it c= the_Vertices_of G &
the_Edges_of it c= the_Edges_of G &

8

e referred to by specific names.

[Weighted]
[ELabeled]

-Graph;
-Graph;

[VLabeled] -Graph;
-Graph;

[VLabeled] -Graph;
[ELabeled] [VLabeled] -Graph;

[Weighted] [ELabeled] [VLabeled] -Graph;

[Weighted] [ELabeled]
[Weighted]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for e being set st e in the_Edges_of it holds
(the_Source_of it).e = (the_Source_of G).e &
(the.Target_of it).e = (the.Target.of G).e;

end;

Notice tha t no mention is made of any extra labelings that may be present in
the subgraph or the original graph. For example, it would be possible for H to be
a subgraph of G and for H to have a vertex labeling defined on its vertices tha t
G lacks. The type of subgraph defined above is strictly on the initial four graph
selectors.

The notion of label-inheriting subgraphs was introduced to overcome this limi
tation.

definition let G be VGraph, G2 be [VLabeled] Subgraph of G;
attr G2 is vlabel-inheriting means :: GLIB.003:def 12
the.VLabel.of G2 = (the.VLabel.of G) I the.Vertices.of G2;

end;

The vertex label on the subgraph is the restriction of the original graph’s vertex
label to the subgraph’s vertices (the I operator restricts the function on the left-hand
side to the domain on the right-hand side).

It is necessary to introduce these types of label-inheriting subgraphs explicitly
for every graph labeling defined.

One final type of subgraph tha t is used frequently in this paper is the subgraph
induced by a set of vertices.

D efin ition 2.3.2 Let G = (V ,E) be a graph, S be a non-empty subset o f V . The
subgraph of G induced by S is the graph H = (S, F) where F is the set of edges with
both endpoints in S.

definition let G be .Graph, V, E be set;
mode inducedSubgraph of G,V,E -> Subgraph of G means :: GLIB_000:def 39
the.Vertices.of it = V & the.Edges.of it = E if

V is non empty Subset of the.Vertices.of G &
E c= G.edgesBetween(V)

otherwise it == G;

The G.edgesBetween(V) function returns those edges whose endpoints both lie
in V. Notice tha t the M iz a r version allows a subgraph to be induced on a set of
vertices and edges; to obtain a subgraph induced only on the vertices there is a macro
with the same name tha t accepts only the set V and substitutes G. edgesBetween(V)
for E automatically. The latter version is the most commonly used.

Note tha t this definition does not guarantee a unique subgraph. While it is true
there is only a single subgraph induced by any pair of V and E when considering
only the four original graph selectors, there are an infinite number of graphs induced
by V and E when we take into account any graph labelings present in the graph.

There are also label-inheriting versions of inducedSubgraph tha t are defined
similarly to the above.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 C onnectivity

We can talk about edge connectivity via the Joins predicate.

D efinition 2.4.1 The edge e Joins the two vertices x and y in G if one is the source
and the other is the target of e.

definition let G be _Graph, x,y,e be set;
pred e Joins x,y,G means :: GLIB_001:def 1

e in the_Edges_of G &
(((the_Source_of G).e = x & (the_Target_of G).e = y) or
((the_Source_of G).e = y & (the_Target_of G).e = x));

end;

Previously we mentioned tha t all graphs in GLIB are directed. It is in using the
Joins predicate tha t we can consider a graph to be undirected, since edge orientation
is ignored.

2.5 Walks and Paths

Various texts differ in what they mean by a walk, a trail, and a path. The glib
definitions of these notions are as follows; for a more in depth discussion about these
definitions see Lee[12],

D efin ition 2.5.1 A Walk is any odd length alternating sequence of vertices and
edges with the property that every edge in the sequence joins the preceeding and
succeeding vertices.

definition let G be _Graph;
mode Walk of G -> FinSequence of the.Vertices.of G V

the.Edges.of G means :: GLIB.001:def 3
len it is odd & it.l in the.Vertices.of G &
for n being odd natural number st n < len it
holds it.(n+l) Joins it.n, it.(n+2), G;

end;

Notice tha t a single vertex is a Walk, all odd indices in a walk map to vertices,
and all even indices map to edges.

D efin ition 2.5.2 A walk is T r a i l- l ik e i f no edge is repeated.

D efin ition 2.5.3 A walk is P a th -lik e i f it is T r a i l- l ik e and if no vertices are
repeated, except possibly the first and last vertices.

definition let G be .Graph, W be Walk of G;
attr W is Path-like means :: GLIB.001:def 28
W is Trail-like &
for m, n being odd natural number st m < n & n <= len W holds
W.m = W.n implies (m = 1 & n = len W);

end;

A Walk is c lo sed if its first and last vertices are equal and is open otherwise. A
walk with a single vertex is considered t r i v i a l ; otherwise it is n o n - t r iv ia l .

D efinition 2.5.4 A walk is C y c le -lik e i f it is closed and P a th -lik e and n o n -tr iv ia l .

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Graph Sequences/A lgorithm s

In g l ib , a graph algorithm is defined as an infinite sequence of graphs, each of which
corresponds to a single “step” of the algorithm. A typical step could include adding
a label to a vertex or changing the edge weights on a set of edges. All information
the algorithm requires must be stored as labelings - there is no support for outside
queues or stacks. Any such data structure must be simulated with a graph labeling
of some kind.

Because of these constraints, we have not considered talking about the true time
complexity of an algorithm in the traditional sense. We may state tha t a particular
algorithm will halt after a certain number of graph operations, but it is usually
difficult to say more.

We consider a sequence of graphs to be h a l t in g if there is some natural n such
tha t the n th and (n + l)s t graphs of the sequence are equal — this is true equality,
not equality according to the == predicate (Definition 2.1.3).

D efinition 2.6.1 A Graph Sequence G S is halting i f there exists a natural number
n such that GS.n = G S.(n + 1).

The first index where subsequent graphs in the sequence are the same is called
the lifespan of the sequence.

D efinition 2.6.2 Let G S be a graph sequence. The lifespan of G S equals n where
n is the smallest natural so that G S.n = G S.(n + 1) i f G S is h a l t in g and n = 0
otherwise.

definition let F be ManySortedSet of NAT;
func F.LifespanO -> natural number means : GLIB_000:def 57
F.it = F.(it+1) & for n being natural number

st F.n = F.(n+1) holds it <= n
if F is halting otherwise it = 0;

end;

Since we will be dealing with finite graphs, it is useful to consider graph sequences
tha t are composed of finite graphs.

D efinition 2 .6 .3 A Graph Sequence G S is finite i f fo r each natural n it is true
that GS.n is a finite graph.

This definition can be a little confusing since when used it looks like the graph
sequence itself is finite (i.e. contains a finite number of graphs), however, this is not
the case. Perhaps a better name for this attribute would have been finite-yielding.

GLIB contains the proofs of correctness for three well-known graph algorithms us
ing the above graph sequences: D ijkstra’s shortest path algorithm, Prim ’s Minimum
Spanning Tree algorithm, and Ford-Fulkerson’s Maxflow algorithm. See Lee[12] for
the proofs of correctness for these algorithms.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Formalized Proofs

We prove a characterization for the class of chordal graphs and define and verify the
correctness of two recognition algorithms. In our developments we follow closely the
chapter on triangulated graphs in Golumbic[10]. See Appendices B and C for the
original and revised versions of this chapter.

3.1 Characterization of Chordal Graphs

In this section we add some definitions to the graph library in order to work with the
class of chordal graphs. We then prove a characterization for this class of graphs.
All M i z a r code snippets in this section are from the file listed in D .l.

3 .1 .1 D e fin it io n s

We first discuss some miscellaneous definitions we found useful and then proceed
with the definitions leading up to the class of chordal graphs.

D efin ition 3.1.1 L e tv l andv 2 be vertices o f G . The predicate v l, v2 a re_ ad jacen t
holds i f there is an edge e that Jo in s v l and v2 in G.

definition let G be .Graph, a,b be Vertex of G;
pred a,b are.adjacent means : CHORD:def 3

ex e being set st e Joins a,b,G;
end;

This definition is redundant as it is only a wrapper for the Jo in s predicate;
however, using it results in theorems with nicer statements than those tha t use the
Jo in s predicate.

D efin itio n 3.1.2 Given a set S and a graph G, G .A djacentSet(S) returns the
subset of the vertices not in S such that each element o f this set is adjacent to some
element of S.

definition let G be .Graph, S be set;
func G.AdjacentSet(S) -> Subset of the.Vertices.of G equals

:: CHORD:def 4
{u where u is Vertex of G :

not u in S & ex v being Vertex of G
st (v in S k u,v are.adjacent)};

end;

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efin ition 3.1.3 A subgraph of G is an Adj Graph of G and a set S , if it equals
the subgraph of G induced by G .AdjacentSet(S).

definition let G be .Graph, S be set;
mode AdjGraph of G,S -> Subgraph of G means : CHORD:def 5

it is inducedSubgraph of G,G .AdjacentSet(S)
if S is Subset of the.Vertices.of G;

end;

This notion is used only in the definition of a simplicial vertex (see Def 3 .1 .7).
We added a m inlength attribute for walks in finite graphs:

D efin ition 3 .1 .4 Let W be a walk from v to w in a graph G. Then W is minlength
i f every walk from v to w is at least as long as W .

definition let G be finite .Graph, W be Walk of G;
attr W is minlength means :: CHORD:def 2
for W2 being Walk of G st W2 is.Walk.from W.f irstO ,W.last()
holds len W2 >= len W;

end;

D efin ition 3.1.5 [10, p.82] A subset S of V is a vertex separator of non adja
cent vertices a and b if the removal o f S from G separates a and b into different
components.

definition let G be .Graph, a,b be Vertex of G;
assume AO: aob & not a,b are.adjacent;
mode VertexSeparator of a,b ->

Subset of the.Vertices.of G means : CHORD:def 8
not a in it & not b in it &
for G2 being removeVertices of G,it holds

not (ex W being Walk of G2 st W is.Walk.from a,b);

We say tha t S' is a minimal vertex separator of a and b if no proper subset of
S' is a vertex separator of a and b. If a and b are in different components of the
graph, then any subset of V — {a, b} is trivially a vertex separator of a and b and
the empty set is a minimal separator of a and b. Note tha t in a finite graph there
may be many minimal vertex separators for a pair of vertices th a t are distinct and
non adjacent (i.e. not connected by an edge), but tha t there is always at least one.

D efin ition 3.1.6 [10, p.5] A graph is complete i f every pair o f distinct vertices is
joined by an edge.

definition let G be .Graph;
attr G is complete means : CHORD:def 6
for u,v being Vertex of G st u <> v holds u,v are.adjacent;

end;

Notice this definition is concerned only with distinct vertices and so we are
making no assumptions about loops (edges with the same source and target).

D efin ition 3 .1 .7 [10, p.82] A vertex v is simplicial i f the subgraph induced by the
neighbors of v is a complete graph.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

definition let G be .Graph, v be Vertex of G;
attr v is simplicial means : DefSimplicial :
G.AdjacentSet({v>) <> O implies

for G2 being AdjGraph of G,{v> holds G2 is complete;
end;

NOTE: the symbol <> stands for “not equals.”
Recall tha t we have previously defined G .A djacentSet(S) as the vertices of G

tha t are adjacent to some member of S (Definition 3.1.2) and AdjGraph of G,S as a
subgraph of G induced by G. A d jacen tS et(S) (Definition 3.1.3). Note tha t we have
chosen to include isolated vertices as simplicial vertices and tha t these are handled
by a special case tha t arises because we cannot consider graphs with an empty vertex
set.

The algorithms we will be working with require the notion of a vertex scheme
(sometimes referred to as a vertex order), which is a total ordering of the vertices.

D efin itio n 3.1.8 A VertexScheme of a graph G is an ordering of the vertices of
G.

definition let G be finite .Graph;
mode VertexScheme of G -> FinSequence of the.Vertices.of G means

:: CHORD:def 12
it is one-to-one & m g it = the.Vertices.of G;

end;

Note: rng i t refers to the range of finite sequences we are defining.
The function fo llo w S e t(n) on a VertexScheme returns the set of vertices oc

curring after the n th index of the ordering. This allows us to define:

D efin itio n 3.1.9 [10, p.5] An ordering of the vertices a = [iq ,. . . ,v n] is a perfect
vertex elimination scheme i f for each 1 < i < n the vertex vt is simplicial in the
subgraph induced by the vertices {wj, Uj+i , . . . ,vn}.

definition let G be finite .Graph, S be VertexScheme of G;
attr S is perfect means :: CHORD:def 13
for n being non empty natural number st n <= len S
for Gf being inducedSubgraph of G,S.followSet(n)
for v being Vertex of Gf st v = S.n holds v is simplicial;

end;

To define the class of chordal graphs, we first introduce the notion of a chordal
walk.

D efin ition 3.1 .10 Let w be a walk in an undirected graph G = (V,E) . An edge
e € E is said to be a chord of w i f e is not in the edges o f w and e joins two distinct
non-consecutive vertices ofw.

definition let G be .Graph, W be Walk of G;
attr W is chordal means : CHORD:def 10
ex m, n being odd natural number st
m+2 < n & n <= len W & W.m <> W.n &
(ex e being set st e Joins W.m,W.n,G) &
for f being set st f in W.edgesO holds not f Joins W.m,W.n,G;

end;

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We consider w to be chordal if there exists a chord of w and chordless if there
is no chord in w.

Recall tha t a walk of G (Definition 2.5.1) is an alternating sequence of vertices
and edges of G. This is why the indices of the endpoints of the chord (here m and
n) are odd and n is not the next largest odd index (i.e. m + 1). Note this definition
disallows loops as chords. Since a cycle is a non trivial closed path we may also
consider chordal and chordless cycles.

When using the above definition on cycles we found it was convenient to consider
a slightly different and more technical version:

theorem ChordalWalkOl: :: CHORD:84
for G being .Graph, W being Walk of G st W is chordal
ex m,n being odd natural number st

m+2 < n & n <= len W k W.m <> W.n k
(ex e being set st e Joins W.m,W.n,G) k
(W is Cycle-like implies not (m=l & n = len W) k

not (m=l k n = len W-2) k
not (m=3 k n = len W))

This version explicitly disallows three edges tha t become a problem when work
ing with cycles (to see why these edges are a problem, notice tha t they should not
be regarded as chords since they join subsequent vertices of the cycle, but tha t the
numerical value of their indices pass the m + 2 < n condition).

A seemingly simple notion like a chord is actually quite tricky to state formally
in an accurate and useful way. Sometimes we must accept that the formal definition
will be ugly for it to be useful.

We are finally in a position to define the class of chordal graphs.

D efin ition 3.1.11 [10, p.81] A graph G is chordal i f every cycle of length greater
than three is chordal.

definition let G be .Graph;
attr G is chordal means :: CHORD:def 11
for P being Walk of G st P.lengthO > 3 k P is Cycle-like
holds P is chordal;

end;

We are now in a position to prove a characterization of this class of graphs.

3 .1 .2 C h a r a c ter iza tio n

We wish to verify the proof of the following classification theorem for chordal graphs
from Golumbic[10].

T heorem 3.1.12 [10, p.83] Let G be an undirected graph. The following statements
are equivalent:

(i) G is chordal.

(ii) G has a perfect vertex elimination scheme. Moreover, any simplicial vertex
can start a perfect scheme.

(Hi) Every minimal vertex separator induces a complete subgraph of G.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The theorem as stated above makes two hidden assumptions. First, G is finite.
This is fine, and we have already stated we are dealing exclusively with finite graphs.
Secondly, G is connected. If G were disconnected, then two vertices in separate
components would have an empty minimal vertex separator. This is fine if we
assume the empty graph is complete. In GLIB however, we have no way to deal with
empty graphs so we need to avoid this case by assuming G is connected.

We should mention tha t M izar does not support three-way equivalences like we
have in the statement of Theorem 3.1.12, so we treat each implication separately.

Let us first discuss (i) => (iii). The statement of the theorem in MlZAR is as
follows.

theorem Chordal41: :: Chordal41
for G being chordal _Graph,

a,b being Vertex of G
st a<>b k not a,b are_adjacent

for S being VertexSeparator of a,b
st S is minimal k S is non empty
for H being inducedSubgraph of G,S holds H is complete

This statement is longer than the textbook version for two reasons. The first is
tha t when we refer to a vertex separator we must mention which vertices it separates.
In order to state the theorem precisely we need to talk about all viable pairs of
vertices tha t can have vertex separators instead of just the separators themselves,
like the textbook version does. We also need to add the clause “S is non empty”
to avoid the problem of an empty set inducing a subgraph. Note also tha t we
cannot talk about the induced subgraph of S, but instead need to talk about any
induced subgraph of S. This is because of the way graphs are defined in the MlZAR
graph library. In particular, vertex and edge labelings on these graphs give rise to a
number of subgraphs induced by 5 , each with the same underlying graph structure,
but different nonetheless.

The textbook version of the proof is straightforward and proceeds as follows
(this is a verbatim copy from Golumbic[10]):

P ro o f, (i) => (iii) Suppose S is a minimal a —b separator with Ga and Gb being the
connected components of G y -s containing a and b, respectively. Since 5 is minimal,
each x € 5 is adjacent to some vertex in A and some vertex in B. Therefore, for
any pair x, y € S there exist paths [x, a \ , . . . , ar, y] and [y, b\ , . . . , 6*, x], where each
ai G A and bi G B , such tha t these paths are chosen to be of smallest possible
length. It follows tha t [x, a i , . . . , ar , y, bi, . . . , bt, x] is a simple cycle whose length is
at least 4, implying tha t it must have a chord. But aibj £ E by the definition of
vertex separator, and a^aj ^ E and bfij £ E by the minimality of r and t. |

It is worthwhile discussing a few aspects of how this proof was done in MlZAR
to illustrate some of the difficulties in writing graph theoretic proofs formally. The
proof above is followed almost verbatim in the formal proof; it is only how the
intermediate results are obtained tha t is interesting here.

One thing to mention is tha t the proof is a little stronger than it needs to be.
T hat is, we do not need to obtain the shortest paths connecting x and y through
Ga and Gb , we need only obtain two chordless paths connecting x and y through
Ga and Gb (any shortest path between two vertices will necessarily be chordless).

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is this chordless property tha t we need to finish the proof. Either way, it is trivial
to obtain a shortest (or chordless) path between two vertices in a finite connected
graph.

In the M iz a r proof, we first obtain the subgraph induced by G y -s and then
the connected components Ga and Gb of G y - s ■ We consider x and y in G s and
need to show they are adjacent. Now comes a slight problem: how do we obtain the
paths between x and y going through Ga in a nice fashion? We cannot just consider
x and y as vertices of G and ask for the shortest path between them, because this
would not guarantee the path going through G a or G b - The first solution we tried,
which follows the book, was to consider the points ax and ay adjacent to x and y
in Ga (this itself is a tricky little result to do nicely) and the shortest path between
ax and ay in G a - We do the same with G b - To construct the cycle needed in the
proof, it is then necessary to add the edge between ay and y to the path in Ga,
then the edge between y and by, then the path from by to bx in G b , then the edge
from bx to x, etc. At each step it is necessary to show the concatenated walk is
still a path and tha t it is still chordless (this can get quite tedious and lengthy).
This approach works but is quite ugly and long. A better way to do it is to simply
construct the subgraphs induced by Ga U { x , y} and Gb U { x , y}, show they are both
connected subgraphs, then take the shortest path between x and y in both of these
graphs. This leaves us with two paths tha t we concatenate together to obtain the
cycle. This approach is much shorter and cleaner than the first since we get most
of what we need for “free” .

Notice how the textbook proof implicitly implies the first approach by stating the
existence of ax and ay and how Ga is connected. No mention is made of which graph
this path comes from; in particular, there is no mention of the graphs Ga U { x , y}
and Gb U {x, y}. A proof tha t works well on paper may be very cumbersome and
long when done formally; in such cases it is often necessary to do the proof in a
fashion very different from the paper version.

The proof of (iii) => (i) is straightforward and there is little difficulty in writing
its formalized version. For completeness, the MlZAR statement of it is given here.

theorem :: DiracThm2:
for G being finite _Graph st
for a,b being Vertex of G st aob & not a,b are.adjacent holds

for S being VertexSeparator of a,b
st S is minimal & S is non empty

for G2 being inducedSubgraph of G,S
holds G2 is complete

holds G is chordal

The next step of the proof of Theorem 3.1.12 is to show the equivalence between
(i) and (ii). The M iz a r statement for (i) => (ii) is:

theorem
for G being finite chordal .Graph holds
ex S being VertexScheme of G st S is perfect;

end;

The statem ent of (ii) =>■ (i) is written as:

theorem :: Chordal41c:

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for G being finite _Graph holds
(ex S being VertexScheme of G st S is perfect)

implies G is chordal

Both of these proofs follow verbatim the proofs in Golumbic[10] with little diffi
culty.

There is one final thing to mention. In the proof of Lemma 4.2 in Golumbic[10,
p.83] we prove there is a simplicial vertex of G in the connected component A. The
textbook says, “Similarly B contains a simplicial vertex of G”. T hat is, the proof
of the existence of a simplicial vertex in component B is almost the same, except
for the names A and B , as the proof in component A. This is fine on paper, but to
do this in M iz a r we were required to replicate the entire section verbatim except
for the name changes.

3 .1 .3 D isc u ss io n

In order to prove Theorem 3.1.12 around 5000 fines of background definitions and
facts needed to be proved. The proof of Theorem 3.1.12 itself is an additional 1000
lines. There were no major obstacles to be overcome in formalizing this result. Most
of the machinery we needed was already present, and the facts tha t were not already
present were not difficult to add.

As a further test of the robustness of our formalization, we verified the proof of
two exercises from the section in Golubmic[10]. Both exercises deal with minimal
vertex separators. Let 5 be a minimal vertex separator of x and y. The first problem
asks to show tha t every path between x and y contains some element of S, and tha t
every element of S appears in some path between x and y as the lone element of
S in the path. The second problem asks to show tha t there is always a vertex in a
connected component of G — S adjacent to all of S. Both results were proved with a
modest amount of effort. All the machinery required to do the proofs was available
for us; tha t is, no extra formal machinery needed to be added in order to complete
these proofs.

3.2 Vertex Num bering Graph Sequences

We now introduce a class of graph sequences tha t we call v la b e l-n u m b e r in g se
quences (the name refers to the MlZAR implementation in which we number each
vertex via the vertex-label of GLIB). We define such sequences since they possess
several properties tha t both LexBFS and MCS algorithms require.

Before we do so, however, we need to add a few definitions dealing with graph
sequences. This is because the original halting attribute (Definition 2.6.1) is not
very useful, and the L ifesp an function (Definition 2.6.2) is not well defined on non
halting algorithms. To see this, consider two sequences: a constant sequence and a
random non-halting sequence. The first has a lifespan of 0 and the second also has
a lifespan of 0.

To overcome this problem, we introduced the notions of iterative and eventually-
constant sequences.

D efin itio n 3.2.1 A sequence is iterative i f whenever elements n and k are equal it
holds that elements n + 1 and k + 1 are also equal.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

definition let s be ManySortedSet of NAT;
attr s is iterative means

:: LEXBFS:def 15
for k, n being natural number st s.k = s.n holds s.(k+l) = s.(n+l);

end;

This property is asserting tha t the sequence behaves in a deterministic fashion
— tha t is, a state always leads to the same successor state.

D efin ition 3.2.2 A graph sequence is eventually-constant i f there is a natural num
ber n such that fo r all m > n it holds that elements n and m are equal.

definition let GS be ManySortedSet of NAT;
attr GS is eventually-constant means

:: LEXBFS:def 16
ex n being natural number
st for m being natural number st n <= m holds GS.n = GS.m;

end;

W ith th ese tw o defin itions w e can easily prove in MlZAR th e fo llow ing three
theorem s for a graph sequence S.

T heorem 3 .2 .3 I f S is halting and iterative then S is eventually-constant.

T heorem 3 .2 .4 I f S is eventually-constant then S is halting.

T heorem 3.2.5 I f S is iterative and eventually-constant, then all elements after
S.L ifespanO are equal (i.e. the natural number in the D ef 3.2.2 is the same as
S.L ifespanO).

W e are now in a p osition to define a v la b e l-n u m b e r in g sequence.

D efin ition 3.2.6 A graph sequence is vlabel-numbering i f it is iterative, eventually-
constant, composed of finite graphs whose vertices and edges are static throughout
the sequence, has a vertex-labeling that is empty to start, and with each step numbers
exactly one unnumbered vertex with a natural number that decreases by one on each
step.

definition let GS be VGraphSeq;
attr GS is vlabel-numbering means

:: LEXBFS:def 26
GS is iterative

eventually-constant
finite
fixed-vertices
natural-vlabeled
vlabel-initially-empty
adds-one-at-a-step;

end;

A VGraphSeq is a sequence of VGraphs, tha t is, graphs with vertex labels. The
f i n i t e property is the same as tha t of Definition 2.6.3. The f ix e d -v e r t ic e s
property means tha t every graph of the sequence is equal modulo any labelings,
tha t is, the vertices remain the same from step to step. The n atu ra l-v lab eled

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

property means tha t the vertex-label of each graph in the sequence maps to the
natural numbers. The a d d s -o n e -a t-a -s te p property ensures tha t at each step n
until the algorithm halts, there is some unnumbered vertex w tha t is numbered with
|V| — n and tha t the vertex-labeling of the subsequent step reflects this update.

There are a few useful properties of graph sequences with the v la b e l-n u m b e r in g
property tha t we prove here. Let G = (V, E) be the graph the sequences below are
defined on, so tha t |V| in the following lemmas refers to the number of vertices
in this graph (or to any graph of the sequence since they must all have the same
vertex set). Note tha t when we mention a step n of a sequence we make the implicit
assumption tha t n occurs before the sequence halts, tha t is, n < |F |. We will denote
the label of the n th step in the sequence by an . We write an(v) = k to mean that
in the n th step of the algorithm, vertex v is labeled with k. We use [a, b] to denote
the set of values from a to b, inclusive.

L e m m a 3 .2 .7 The total number of vertices that have been numbered by the end of
the nth step of a vlabel-numbering graph sequence is n.

theorem:
for GS being vlabel-numbering VGraphSeq, n being natural number
st n <= GS.LifespanO holds card ((GS.n) .labeledVO) = n

Proof. We proceed by induction on n for n < G S.LifespanQ . If n — 0 then an = 0
by Definition 3.2 .6 , and so the base case holds. Suppose that n vertices have been
numbered after step n. Again by Definition 3.2 .6 , we know there is a vertex w not
in the domain of cr„, but in the domain of <rn+i, so the inductive step holds. |

L e m m a 3 .2 .8 The range of numbers assigned to the first n numbered vertices of a
vlabel-numbering graph sequence is [|V| — n + 1, |V|].

theorem :: LEXBFS:16
for GS being vlabel-numbering VGraphSeq, n being natural number
holds rng the.VLabel.of (GS.n) =

(Seg GS.LifespanO) \ Seg (GS.Lifespan()-’n)

Note: th e M iz a r fu nction S eg n returns th e set [1, n] and th e backslash char
acter d en otes set subtraction .

Proof. We proceed by induction on n for n < G S.L ifespanQ . If n = 0 then the
base case holds by Definition 3.2.6. Suppose tha t the range of numbers assigned to
the n numbered vertices after step n is [|V| — n + 1, |F |]. By Definition 3.2.6, there
is a vertex w with number |V| — n at step n + 1, and so the range of values at step
n + i is [|y | _ n + i, |y |] u {\V\ - n } = [\V\ - n, \V\] = [\V\ - (n + 1) - 1, \V\]. |

L e m m a 3 .2 .9 The labeling function of the n th step of a vlabel-num bering graph
sequence is one-to-one.

theorem :: LEXBFS:20
for GS being vlabel-numbering VGraphSeq, n being natural number holds
the.VLabel.of (GS.n) is one-to-one

Proof. This follows directly from Definitions 3 .2 .7 and 3.2.8. |

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lem m a 3.2.10 Let m and n be so that m < n. Then am C on .

theorem :: LEXBFS:19
for GS being vlabel-numbering VGraphSeq,

m,n being natural number st m <= n
holds the_VLabel_of (GS.m) c= the_VLabel_of (GS.n)

Proof. We proceed by induction on k. For k = 0, it is trivially true tha t um C am+k-
Suppose for some k th a t am C &m+k- Let w be the vertex numbered in step rn + k.
Then w is not in the domain of crm+fc, but must be in the domain of <rm+(*.+i) by
Definition 3.2.6. All other labeled vertices of step m + k are also in the label of step
m + (k + 1), and so am C am+{k+ly |

Lem m a 3.2.11 A vertex with number n is chosen at step \V\ — n.

theorem :: LEXBFS:22
for GS being vlabel-numbering VGraphSeq, v being set,

m,n being natural number
st (v in (GS.m) .labeledVO k (the_VLabel_of (GS.m)).v = n)
holds GS.PickedAt(GS.LifespanO-’n) = v

Note: the function P ickedA t(n) returns the vertex chosen at step n.

P roof. Let v have the number n at some point late in the algorithm (say at step
m) and let w be the vertex chosen at step j = |F | — n. We need to show tha t v = w.
We know tha t j < m, since v would not have a number otherwise. Since w was
chosen in step j , it is in the domain of Gj+ 1 and has number |F | — (|F | — n) = n,
and so aj+\(w) = n. We know tha t C am by Lemma 3.2.10, so w is also in the
domain of <rm. Since am (w) = n = crm(v) and am is one-to-one by Lemma 3.2.9, it
follows tha t v = w. |

Lem m a 3.2.12 Let a and b be vertices such that b has a larger vertex label than a
at some point in the algorithm, then b was in the vertex label o f the step in which a
was chosen to be numbered.

theorem :: LEXBFS:25
for GS being vlabel-numbering VGraphSeq
for i being natural number, a,b being set
st a in (GS.i). labeledVO k b in (GS.i) .labeledVO k

(the_VLabel_of (GS.i)).a < (the_VLabel_of (GS.i)).b
holds b in (GS.(GS.Lifespan() -’

(the_VLabel_of (GS.i)) .a)) .labeledVO

Proof. Let a and b be numbered vertices of step i, and let n a and n^ be such that
crj(a) = na and cr,(6) = n^. Then a was chosen in step \V\ —na and b was chosen in
step \V\ — rift by Lemma 3.2.11. Since n a < n*,, we know that |V| — nj, < |F | — n a.
Then b is in the domain of a \v \-nb+i by Definition 3.2.6 and so is also in the domain
of G\v\-na by Lemma 3.2.9. |

There are several other small facts tha t we found useful but we omit them here
for brevity. The examples above should give an idea of the type of facts we will use
later and the nature of their proofs. To see all required facts see Appendix D.2.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Lexicographical Breadth-first Search Algorithm

3 .3 .1 R e c o g n iz in g C h ord a l G rap h s

We are interested in determining whether a given finite undirected graph belongs
to the class of graphs called chordal graphs. Recall tha t a chordal graph is a graph
which contains no chordless cycle of length greater than three.

In section 3.1 we showed tha t every chordal graph contains a simplicial vertex
(Theorem 3.1.12). If a vertex is simplicial then it cannot be on a chordless cycle with
length greater than three. These two facts combined imply tha t if v is a simplicial
vertex of G then G is chordal if and only if G — v is chordal. If we repeatedly find
and remove a simplicial vertex until the graph has fewer than four vertices then we
have proven the graph chordal. The order in which we remove the simplicial vertices
is then a perfect vertex elimination scheme. Theorem 3.1.12 guarantees tha t every
chordal graph has such an order and tha t any graph with such an order is chordal.
Also notice tha t it does not m atter which simplicial vertex we start with, so in order
to verify tha t a graph is chordal we need only find any simplicial vertex — we do
not have to try all orders of removal.

We can check if a vertex is simplicial in 0 (\V \2) time (simply check that all pairs
of neighbors are adjacent). We can then determine if a graph has a simplicial vertex
in 0 (|V |3) time, and so we can check if a graph is chordal in 0 (\V \A) time. It is
possible to do much better than this, however.

In the following section we discuss a linear time algorithm for chordal graph
recognition.

3 .3 .2 T h e L e x B F S a lg o r ith m

In this section we discuss a linear time algorithm for recognizing chordal graphs,
known as lexicographic breadth-first search.

The version of LexBFS tha t we translate and verify in M iz a r is found in
Golumbic[10] (see Algorithm 1 for pseudo-code). LexBFS takes any finite undi
rected graph G = {V,E) as input and returns an ordering a of the vertices of G.
We need to prove cr is a perfect vertex elimination order if G is chordal; the other
direction is handled by Theorem 3.1.12.

The algorithm itself is quite simple. Each vertex is assigned a label tha t is
initially empty; this label defines an ordering of the vertices tha t is used to determine
which frontier node to explore at each step of the algorithm. In addition to this
label, each vertex is also assigned a number when it is chosen. Vertices that have not
been chosen are said to be unnumbered, vertices tha t have been chosen numbered.
We say vertex v is numbered with n when o(n) = v , i.e. v is the n th vertex in the
ordering. Once a vertex is numbered it is never considered for numbering again.
The number a vertex receives is equal to |V| — i, where i is the number of vertices
numbered before it. Notice tha t the assigned numbers decrease from |V| to 1, so a
vertex with a larger number than another was chosen before.

The label can be implemented as an array of integers and these arrays are ordered
with the lexicographic ordering. T hat is, label L \ is said to be greater than label
Z/2 only if there is some index j such tha t for all positions i < j it is true tha t
L\{i) = £ 2 (2) and L i { j) > L 2 (j). In our case, when we add the number i to a label
in step 4 of the algorithm we are appending the new number to the end of the array

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o rith m 1 Lexicographic BFS
R eq u ire : Finite undirected graph G = (V, E)
E n su re : Ordering a of V

1: Assign the label 0 to each vertex
2: for i — \V\ downto 1 do
3: v <— any unnumbered vertex with largest label
4: cr(z) = v
5: fo r a ll unnumbered vertices w € A dj(v) d o
6: Add i to w’s label
7: e n d fo r
8: e n d fo r
9: r e tu r n a

(label). It so happens tha t this number will be smaller than all numbers currently
in the array (label).

How this labeling is implemented in practice will affect the runtime complexity
of the algorithm, since this will affect how the vertices are compared and stored in an
ordered list. A true 0(|V 'l + IE1]) worst-case runtime can be achieved by storing the
labeling implicitly, and for completeness sake we outline this idea below (a similar
idea is found on page 87 of Golumbic[10]).

We initialize a linked list of sets Q to be a single entry. This linked list will
contain subsets of the vertices tha t have the same label, that is, those vertices that
are equal with respect to the ordering. The first entry of Q contains the vertices
with highest ranking; later sets in Q contain vertices of lower ranking. At first, the
only set in Q contains all the vertices of the graph G. When we wish to number a
vertex, we choose any vertex x from the first set of Q and remove it from this set.
We now need to update the “label” on the neighbors of x. Any set T in Q th a t
contains a vertex adjacent to x is split into two sets Tj and T2 , where Tj contains
those members of T adjacent to x and T2 contains those not adjacent to x. In Q,
Tj comes directly before T2 . This can be done so tha t for each vertex we do work
proportional to the number of edges adjacent to it, so the total complexity is indeed
0 (|Vj + |E |), since we visit each vertex and each edge once.

From the way graph algorithms are handled in the M iz a r graph library, we have
no easy way to prove tha t the complexity of this algorithm is 0 (\V \ + |£ j), so the
above discussion does not affect us here. In particular, at the current state of the
formalization we have no way of stating how much work it takes to choose a vertex,
update its neighbors, and re-sort the unnumbered vertices at each step. The most
we can show is tha t the algorithm will term inate after exactly |Vj graph operations;
or simply, after each vertex has been numbered.

In th e n ex t section w e discuss th e form ulation o f th e algorithm in M iz a r .

3 .3 .3 F orm al D e fin it io n s o f L ex B F S

We will use the vertex-labeling mechanism provided by GLIB to number each vertex.
Recall tha t this vertex-labeling is simply a function from the vertices into some set;
in our case, the set is [|Vj — n, |F |] at step n. We show below tha t this function is a
bijection at each step of the algorithm, and we thus obtain the ordering a by taking

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the inverse of this labeling. At each step we will add one new vertex to this labeling
and so we can use the domain of the vertex label to determine how many vertices
we have numbered so far.

To store the lexicographic label we extend the graph library to support two
different and independent vertex-labels. This second vertex-labeling will be used to
order the vertices. For now it is enough to know tha t this second vertex-labeling
will map to subsets of natural numbers. A graph with both vertex labels is referred
to as a VVGraph.

We completely specify the LexBFS computation sequence by supplying an initial
graph and a transition function. The initial graph is a VVGraph identical to the
supplied graph with respect to vertices and edges, but with both vertex labels set to
appropriate starting values. We completely ignore any edge-weights and edge-labels
present in the original graph.

We use cr-1 to denote the first vertex-label (in order words, the vertex label is
the inverse function of the ordering of the vertices). We will use L to denote the
second vertex-label. When necessary, subscripts will be used to denote the labels in
different steps of the algorithm. For example, a ^ x(v) = k means tha t vertex v has
number k in step j of the algorithm.

D efin ition 3.3.1 Given a graph G, the function LexBFS:INIT(G) is a VVGraph
whose vertices and edges are identical to G, but with <r_1 = 0 and L such that for
every v € V , L(v) = 0.

definition let G be _Graph;
func LexBFS:Init(G) -> natural-vlabeled finite-v21abeled

natsubset-v21abeled VVGraph equals
G .set(VLabelSelector, -Q)■set(V2LabelSelector,

the_Vertices_of G— >{});
end;

The attribute natural-vlabeled means the first vertex-labeling (i.e., cr-1) of the
graph returned by LexBFS: INIT maps vertices to natural numbers, finite-v2labeled
and natsubset-v2labeled ensure the second vertex-labeling (i.e. L) maps vertices to
finite subsets of naturals.

The transition function will need to choose an unnumbered vertex to be num
bered. This is done by the following function.

D efin ition 3.3.2 Given a finite VVGraph G whose L maps to finite subsets of the
naturals, i f the domain a ~ 1 equals the vertices o fG then LexBFS: PickUnnumbered(G)
returns an arbitrary vertex, otherwise it returns a vertex, v, such that L(v) is the
largest with respect to the lexicographic ordering.

definition let G be finite finite-v21abeled natsubset-v21abeled VVGraph;
assume A: dom the_V2Label_of G = the_Vertices_of G;
func LexBFS:PickUnnumbered(G) -> Vertex of G means
it = choose the_Vertices_of G

if dom the_VLabel_of G = the_Vertices_of G
otherwise
ex S being non empty finite Subset of bool NAT,

B being non empty finite Subset of Bags NAT,
F being Function

st S = rng F &

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F = ((the_V2Label_of G) I
(the_Vertices_of G \ dom the_VLabel_of G)) &

(for x being finite Subset of NAT
holds x in S implies ((x,l)-bag in B)) &

(for x being set holds x in B implies
ex y being finite Subset of NAT st y in S & x = (y,l)-bag) &

it = choose (F " {support max(B,InvLexOrder NAT)});
end;

By lexicographic ordering above, we are refering to the lexicographic ordering
on the subsets of natural numbers L. For example, let v and w be vertices such that
L{v) = {12,9,8} and L(w) = {12,9,7,4}. The numbers in the these sets correspond
to the numbers assigned to vertices adjacent to v or w by the algorithm on previous
steps. To compare two subsets under the ordering, we compare the two largest
elements, then the next two largest, etc, until there is a difference. In the above
example, L(v) > L(w), because 8 > 7 and the two subsets are equal on the first two
largest values. If L(v) = {12,9,8} and L(w) = {12,9,8,7,4}, then L(w) > L(v).

T h e M iz a r version o f th is defin ition is qu ite long and needs som e exp lanation .
T h e first case o f th is function handles th e s itu ation w here all th e vertices have been
num bered, th a t is, w hen th e algorithm is com plete. R ecall th a t a com p u tation
sequence is defined as an in fin ite sequence o f graphs and so it needs to return a
vertex even after th e algorithm is already “fin ished” . W e use th e M iz a r “choose”
fu nction to return an arbitrary vertex.

Everything after the “otherwise” in this definition is the heart of the algorithm.
We convert each L(v) for v € V into a bag of naturals (a bag in MlZAR is a multi
set). This is necessary because the lexicographic ordering we need is already defined
on bags and not on subsets of naturals. Using this ordering we obtain the largest
bag with respect to the ordering, and hence a vertex with the largest label.

Here is the entire process in more detail. We first restrict our attention to those
vertices th a t are unnumbered by restricting L to those vertices not already in the
domain of cr, this is the function F. The set S is the range of F and so contains
finite subsets of natural numbers, the labels of the unnumbered vertices. Note this
function is not one-to-one. We show tha t there is a set B containing exactly the
bags of each element of S. We order the bags with the InvLexOrder and obtain the
maximum bag with the max function. This bag is converted back into a finite subset
of naturals via the support function. We take the pre-image of this set in F (that
is, the vertices tha t map to this subset of naturals) and can now finally choose any
vertex from this pre-image.

After a vertex has been chosen by the algorithm, the labels of its unnumbered
neighbors are updated.

D efin ition 3.3.3 Given a finite VVGraph G, a set v, and a natural k, we define
LexBFS:LabelAdjacent(G, v , k) to be the function that returns a VVGraph with
k added to the L of each of the unnumbered neighbors of v in G.

definition let G be VVGraph, v be set, k be natural number;
func LexBFS:LabelAdjacent(G, v, k) -> VVGraph equals

G .set(V2LabelSelector,
(the_V2Label_of G) A/
((G.AdjacentSet({v>) \ dom the_VLabel_of G)— >{k}));

end;

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note: the . \ / function unions the images of elements in both functions.
After the neighbors of the chosen vertex have been updated we need to number

the chosen vertex. Both of these operations are combined by the following function.

D efin ition 3.3.4 Given an VGraph G, a vertex v, and a natural n, we define
LexBFS:Update(G, v , n) to be the function returning a VVGraph with n added to
the vertex-labeling of G and with n added to labels o f the neighbors o fv .

definition let G be finite natural-vlabeled
finite-v21abeled natsubset-v21abeled VVGraph,
v be Vertex of G, n be natural number;

set k = G.orderO-’n;
func LexBFS:Update(G, v, n) -> finite natural-vlabeled

finite-v21abeled natsubset-v21abeled
VVGraph equals

LexBFS:LabelAdjacent(G.labelVertex(v, k), v, k);
end;

Notice we number v with k, which is defined with k = G.order if) —' n. This is
because n is the number of the current iteration, and we begin numbering from n
and count down.

We are now in a position to define the transition function.

D efin ition 3 .3 .5 Given a VVGraph G, LexBFS: Step(G) returns G itself i f all ver
tices in G are numbered, otherwise it returns a graph equal to LexBFS: Update applied
on G and LexBFS :PickUnnumbered(G) .

definition let G be finite natural-vlabeled
finite-v21abeled natsubset-v21abeled VVGraph;

func LexBFS:Step(G) -> finite natural-vlabeled
finite-v21abeled natsubset-v21abeled
VVGraph equals

G if G.order() <= card (dom the_VLabel_of G) otherwise
LexBFS:Update(G,

LexBFS:PickUnnumbered(G),
card (dom the_VLabel_of G));

end;

W ith the initial graph and our transition function defined, we are now in a
position to define the computation sequence.

D efin ition 3 .3 .6 Given a finite graph G, we define LexBFS :CSeq(G) to be the se
quence of VVGraphs where the first element is LexBFS: I n it (G), and every subse
quent element in the sequence is obtained by applying LexBFS:Step to the element
before it.

definition let G be finite _Graph;
func LexBFS:CSeq(G) -> finite natural-vlabeled

finite-v21abeled natsubset-v21abeled
WGraphSeq means

it.0 = LexBFS:Init(G) &
for n being natural number holds it.(n+l) = LexBFS:Step(it.n);

end;

This concludes the formal definitions required for the LexBFS algorithm.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 .3 .4 P r o v in g C o r r e c tn e s s o f L e x B F S

We first show tha t LexBFS is a v label-num bering graph sequence. Let G be any
finite graph.

L em m a 3.3.7 LexBFS :CompSeq(G) is halting.

L em m a 3.3.8 LexBFS :CompSeq(G) is iterative.

Both of the above lemmas follow immediately from Definition 3.3.6.

L em m a 3.3.9 LexBFS :CompSeq(G) is eventually-constant.

P ro o f. Immediately from Lemmas 3.3.7, 3.3.8 and Theorem 3.2.3. |

L em m a 3.3.10 The L ife sp an () of LexBFS :CompSeq(G) is equal to G .o rderO .

P ro o f. Assume not, and let n < G. o rd e r () be the assumed lifespan. By Definitions
3.3.6, 3.3.5, and 3.3.4 there will be some vertex w th a t will receive a number; i.e.,
there is some unnumbered vertex at this step of the algorithm. This means tha t
the graphs at steps n and n + 1 are not equal, and so step n cannot be the lifespan.
Contradiction. |

We can now easily show:

L em m a 3.3.11 For any graph G, LexBFS :CompSeq(G) is vlabel-numbering.

P ro o f. Follows immediately from Definitions 3.3.1 to 3.3.6 and Lemmas 3.3.8, 3.3.9.
I

Since LexBFS: CompSeq(G) is v label-num bering , we can use all the results from
Section 3.2 to prove its correctness. However, in order to do that, we need to
introduce an im portant property of vertex orders in order to prove tha t the order
ing produced by LexBFS is a perfect vertex elimination scheme. This property is
referred to in Golumbic[10] as property L3; we use the same name here.

D efin ition 3.3.12 (P ro p e r ty L3) Let G = (V ,E) be a graph and a an ordering
of V . We say a has Property L3 i f for all vertices a, b, c such that cr_1(a) <
cr~l (b) < cr_1(c) and c G Adj(a) — Adj(b) there is a vertex d € Adj(b) — Adj(a) with
cr_1(c) < a ~ l (d).

definition let G be natural-vlabeled VGraph;
attr G is with_property_L3 means
for a,b,c being Vertex of G st

a in dom the_VLabel_of G & b in dom the_VLabel_of G St
c in dom the_VLabel_of G &
(the_VLabel_of G).a < (the_VLabel_of G).b &
(the_VLabel_of G).b < (the_VLabel_of G).c &
a,c are_adjacent & not b,c are_adjacent

ex d being Vertex of G st
d in dom the_VLabel_of G St
(the_VLabel_of G).c < (the_VLabel_of G).d &
b,d are_adjacent St not a,d are_adjacent;

end;

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the remainder of this section we prove two main results. The first is that
any ordering produced by LexBFS has property L3. The second is that any vertex
ordering with property L3 on a chordal graph must be a perfect vertex elimination
scheme.

To show tha t an order created by LexBFS has property L3 we need to prove a
few lemmas. This first lemma says tha t we can place bounds on what values appear
in a vertex’s label at each step of the algorithm.

Lem m a 3.3.13 For a finite graph G, vertex v, and natural i, it holds that L fiv) C
[\ V \ - i + l,\V \].

theorem tV202a:
for G being finite _Graph, i being natural number, v being set
holds (the_V2Label_of (LexBFS:CompSeq(G).i)).v c=

(Seg G.orderO) \ Seg (G.orderO i)

Note: function Seg n returns the set [l,n] when n is a natural.

Proof. Let x 6 V be a vertex of G. We proceed by induction on k, the current
step of the algorithm. For k = 0, L k(x) = 0 by Definition 3.2.6; so the base case
holds trivially. Suppose for i = k tha t L fix) C [|Vj — i + 1, |Vj]. Let v be the vertex
chosen at step i. Since [|Vj — i + 1, |F |] C [|F | — (i + 1) + 1, |Vj], we need only show
tha t any value we add to Lfix) is in [|Vj — (i + 1) + 1, |Vj]. If x is numbered at
step i or x is not adjacent to v, then L fix) = L{+i(x) by Definition 3.3.3. If x is
unnumbered at step i and adjacent to v, then Li+\(x) = L t(x) U (a _1(u)} again by
Definition 3.3.3, and since cr_1(u) = |V| — i £ [|F | — (i + 1) + 1, |Vj] the result is
proved. |

Once a value is added to a vertex’s label it is never removed. Consequently, a
vertex’s label in earlier steps of the algorithm will be a subset of its label in later
steps.

Lem m a 3.3.14 For any finite graph G and vertex x, Lfix) C Lj(x), where i < j .
That is, x ’s label is non-decreasing with respect to the lexicographic ordering as the
algorithm proceeds.

theorem V2Label3:
for G being finite _Graph, x being set,

i,j being natural number st i <= j
holds (the_V2Label_of (LexBFS:CompSeq(G).i)).x c=

(the_V2Label_of (LexBFS:CompSeq(G).j)) . x

Proof. The property is mentioned in Golumbic[10] where it is referred to as the LI
property. We proceed by induction on k. For k — 0, it is true tha t Lfix) C Li+k(x).
Suppose now tha t L l(x) C Ll+k(x). Let v be the vertex chosen at step i. If x is
numbered at step i or not adjacent to v then Li+k{x) = L i+(k+lfix) by Definition
3.3.3 and so Lfix) C L l+(k+ifix). If x is unnumbered at step i and adjacent to v,
then Li+(fc+1)(x) = L i+k(x) U (o--1 (u)} and so Lfix) C L i+{k+1)(x). Since i < j
there is some k such tha t i + k = j , and so it is true tha t Lfix) C Lj(x) . |

There is only one opportunity to store a specific value in a label.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L em m a 3.3.15 Let G be a finite graph, m , n, k be naturals such that k < n < m,
and let x be a vertex of G. I f \V\ — k ^ L n(x) then \V\ — k £ L m(x).

theorem V2Label4:
for G being finite .Graph,

m,n,k being natural number st k < n & n <= m
for x being set

st not G.orderO-’k in (the_V2Label_of (LexBFS:CSeq(G) .n)) .x
holds not G.order()-’k in (the_V2Label_of (LexBFS:CSeq(G).m)).x

Proof. We show by induction tha t if |F | — k ^ L^+i(x) then \V\ — k L/t+fix),
let this result be (*). The case when i = 1 is trivial. The inductive step follows
since for any step i + k > k we will either add |Vj — {i + k) to x ’s label or leave
it alone; in any case we certainly do not add the value |Vj — k. This proves (*).
Now, since L^+ifx) C Ln (x) by Lemma 3.3.14 and \V\ — k £ L n(x), it holds that
\V\ — k $ Lk+i(x). Hence by (*) it follows tha t |Vj — k ^ L m{x). |

Every value tha t appears in a vertex’s label corresponds to some vertex adjacent
to it tha t was given tha t value at an earlier step in the algorithm.

L em m a 3.3.16 For a finite graph G, vertex x, and natural numbers m and n such
that n 6 L m (x), there is a vertex w adjacent to x such that w was chosen in step
\ V \ - n .

theorem V2Label7al:
for G being finite .Graph, m,n being natural number
for x being Vertex of (LexBFS:CSeq(G).m)
st n in (the_V2Label_of (LexBFS:CSeq(G).m)).x
ex y being Vertex of (LexBFS:CSeq(G).m)
st y = ((LexBFS:PickUnnumbered(LexBFS:CSeq(G).(G.order()-’n)))
& not y in dom (the_VLabel_of (LexBFS:CSeq(G).(G.order()-’n)))
& x in G.AdjacentSetdy}))

Proof. Let w be the vertex chosen in step |V| — n, and assume tha t w is not
adjacent to x. Set j = |Vj — n. By Lemma 3.3.13, Lfix) C [|Vj — j + 1, |F |] =
[|F | — |Vj + n + 1,1^1] = [n + 1 , \V\], and so n ^ Lj(x) . Since we assumed x is not
adjacent to w, it follows tha t n ^ LJ+i(x) by Definition 3.3.3. Since j + 1 < rn
however, Lemma 3.3.15 implies tha t n L m (x). Contradiction. |

We are finally in a position to prove tha t an order produced by LexBFS has
property L3.

T h e o re m 3 .3 .17 Let G — (V, E) be a graph and an the ordering produced by
LexBFS up to the n th step. Then an has property L3.

theorem LexBFShasL3helper:
for G being finite .Graph, n being natural number

holds LexBFS:CompSeq(G).n is with_property_L3

P ro o f. Let a, b, c be so tha t cr_1(a) < cr- 1 (6) < <7-1 (c) and c S Adj(a) — Adj(b).
Assume towards contradiction tha t for any vertex d adjacent to b such tha t a~ 1 (c) <
cr-1 (rl) it holds tha t d is also adjacent to a.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let i be the step in which b was picked. It is then true that cr_1(c) 6 Li(a) and
a _1(c) Li(b) because c was chosen before both a and b and because c is adjacent
to a and not adjacent to b. If Lj(a) and L^b) contain the same numbers greater
than cr_1(c), then Li(a) > L{(b), a contradiction (note this includes the case where
Li(a) and Li(b) both contain no numbers larger than cr_1(c) as w ell). So there must
exist some z € Li{b) with c _1(c) < 2 and 2 ^ Li(a) in order for Li(a) < L{(b). But
this implies the existence of a vertex y such tha t cr~1 (y) = z tha t is adjacent to b
and not to a. This is a contradiction to our initial assumption.

This proves the existence of at least one such vertex. From the nonempty set
of these vertices choose the vertex x such tha t a ~ 1 (x) is the largest. This vertex is
guaranteed to meet the requirements of property L3. |

C o ro lla ry 3.3 .18 The ordering produced by LexBFS has property L3.

theorem LexBFShasL3:
for G being finite .Graph
holds (LexBFS:CompSeq(G)).Result() is with_property_L3

Before we can prove the final theorem of this section we need to prove a lemma
on open chordless paths.

L em m a 3.3.19 Let G be a chordal graph and P an open chordless path of G. I f
x & V is adjacent to the last vertex of P but not to the second last vertex o f P , then
P appended with x is also an open chordless path of G.

for G being chordal .Graph, P being Path of G
st P is open & P is chordless

for x,e being set st (not x in P.verticesO ft e Joins P.last(),x,G ft
not ex f being set st f Joins P.(len P-2),x,G)

holds P.addEdge(e) is Path-like ft P.addEdge(e) is open ft
P.addEdge(e) is chordless

P ro o f. Let G = (V, E) be a chordal graph, P = [p i,. . . ,pn] an open chordless path
of G. Let x € V be so tha t x is adjacent to pn but not to pn- i- We will show tha t
x is not adjacent to pi for i € [l,n — 1], thus showing tha t P appended with x is
also an open chordless path.

We proceed by complete induction backwards from the end of P. The base
case is complete, since for k — 1 it is true th a t x is not adjacent to all v% with
i E [n — k, n — 1].

Suppose it is true for j e [1, k], with 1 < k < n; th a t is x is not adjacent to
V{ for i 6 [n — k ,n — 1], and assume tha t x is adjacent to pn-(jfc+i)- We can then
construct the cycle C = [Pn-(fc+i)>Pn-fc, ■ • • , Pm x ,Pn-(k+i)] with length at least
four. Since G is a chordal graph, it follows tha t C must contain a chord e. By the
inductive hypothesis we know tha t e cannot have 3; as an endpoint, and so we are
forced to conclude tha t e has endpoints in the set {pn-k-,Pn-k+1 , • • • ,pn}• This is a
contradiction since P is a chordless path. |

We can now prove:

T h e o re m 3.3 .20 Let G be a finite chordal graph and a an ordering with property
L3. Then a is a perfect vertex elimination scheme.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

theorem :: Theorem 4.3, Golumbic p. 86
for G being finite chordal natural-vlabeled VGraph
st G is with_property_L3 &

dom the_VLabel_of G = the_Vertices_of G
for V being VertexScheme of G st V" = the_VLabel_of G
holds V is perfect

Note: here V" means the inverse of V, which we can take because V is defined to
be one-to-one.

P ro o f. Let G = (V, E) be a finite chordal graph, let n = |Vj, and let a = [iq ,. . . , vn]
be an ordering with property L3. Assume towards contradiction th a t a is not a
perfect vertex elimination scheme for G.

Since a is not a perfect vertex elimination scheme, there must be some vertex
Vi tha t is not simplicial in the subgraph induced by S = [vj, vl+i , . . . , u„]. Let this
vertex be v and let the subgraph induced by S be H. Since v is not simplicial in FT,
there must exist at least two neighbors of v which are non-adjacent to each other.
Choose such a pair a and b so tha t b is chosen with cr~l (b) as large as possible.

Now assume we have an open chordless path P = [pi,P2 > • • • i P k - i i P k] in G with
the following properties: cr~l (p i) > <J~l {pk) > <r_1(P2) > &~l {Pk- \)] for each Vi € P
it holds tha t < cr~1(pi); and for every vertex x of G such th a t x and P2 are
adjacent and x and P k - i are not adjacent and x / py holds cr~l (x) < a ~ 1{p\) .

We will show the following: given a path P\ with the above properties, we can
construct a new path P2 tha t is one vertex longer but which also has the same
properties. From this we may conclude tha t we can build an arbitarily long path
by iteration. This is clearly a contradiction since G is a finite graph. We will also
show th a t we do indeed have such a path in G: the path composed of v, a , b from
above along with another vertex tha t must exist from property L3. From all this
we must conclude tha t the assumption tha t a was not a perfect vertex elimination
scheme was erroneous, and hence tha t a is a perfect vertex elimination scheme.

Let P be a path tha t meets the requirements above. Then p\ and pk are not
adjacent since P is an open and chordless path. Then there is a vertex, call it Pk+i
th a t is adjacent to pk but not to P2 by property L3 on the vertices P2 , Pk, and p\
as a, b, and c, respectively. Property L3 also ensures tha t cr~1 (pi) < cr~1 (pk+1) and
tha t Pk+i has the largest cr~1 (pk+i) out of all vertices in G tha t are adjacent to pk
and not to p 2 - Now suppose Pk+i is adjacent to Pk-i] then by applying property
L3 on the vertices P k-i, P2 , and Pk+i we obtain a vertex d adjacent to P2 and not
adjacent to p k -i such tha t o ~ l (pk+\) < a ~ 1 (d), but this contradicts the assumed
maximality of cr-1 (pi) (the third property of P). Hence Pk+i is not adjacent to
P k-1 , and since P is an open chordless path P appended with Pk+i is also an open
chordless path by Lemma 3.3.19. Let Q be the reversal of P appended with Pk+i-
Routine verification shows tha t Q has the three properties listed above, but tha t Q
is a longer path than P.

We now show tha t such a path with these properties does exist in G. To do
this, construct the path P = [6, v, a}. P is an open chordless path of G since a
and b are not adjacent. Property L3 implies the existence of a vertex c such that
<7-1 (&) < cr_1(c) with c adjacent to a and not to v. Then by Lemma 3.3.19 we know
th a t P appended with c is an open chordless path. Let Q be the reversal of this
path, so th a t Q — [c,a,v,b]. Then it is easy to verify tha t Q satisfies all three of
the above properties.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This completes the proof since we have shown a contradiction. |

Combining Theorems 3.3.18 and 3.3.20 we obtain the following result.

C o ro lla ry 3.3.21 The ordering produced by LexBFS on a chordal graph G is a
perfect vertex elimination scheme for G.

for G being finite chordal VVGraph holds
(the_VLabel_of (LexBFS:CSeq(G)).Result())"
is perfect VertexScheme of G

This ends our formal proof of correctness for LexBFS.

3 .3 .5 D isc u ss io n

1200 lines of miscellaneous graph theorems needed to be proven as background
before we could begin formalizing LexBFS. An additional 800 lines were needed to
introduce the second vertex label and a few additional facts on graph sequences. The
vertex numbering facts took another 400 lines. To define and prove the correctness
of the LexBFS algorithm, 2000 lines were needed. In all, this is around 4500 lines
of M i z a r .

The proof of Theorem 3.3.20 took only 300 lines. This is simply because the
proof as presented by us is easy to write in M i z a r . Initially however, we followed
the proof presented in Golumbic[10] much more closely and it took over 1300 lines.
The general approach of the two proofs is the same: a contradiction is created by
generating an infinite one-to-one sequence in a finite graph. In the proof above, we
create an open chordless path of arbitrary length having a few key properties and
show we can extend it. Golumbic creates a sequence of arbitrary length having a few
key properties; these properties allow him to use property L3 to extend the sequence
and by building an open chordless path from this new sequence he shows tha t it also
has those key properties. It turns out this sequence of vertices is not really needed.
W ithout thinking about the m atter too seriously we formalized Golumbic’s proof
and it turned out to be a nightmare to work with. The bulk of this proof revolved
around extracting the path from the sequence (it was necessary to do this in three
parts and then concatenate them together, which is a lot of tedious work), adding
the new vertex, and then showing the path was chordless (to do this it is necessary
to check every pair of indices the chord could lie on). Our proof completely avoids
all this unpleasantness.

Again, the proof of a result tha t works nicely on paper can be a nightmare to do
formally. It is usually preferable in cases like this to either amend the proof slightly
so it is more suitable for formalization, or come up with an entirely new proof using
the key ideas of the original.

3.4 M aximum Cardinality Search

3 .4 .1 T h e M C S a lg o r ith m

In this section we discuss another 0 (|F | + \E\) algorithm for recognizing chordal
graphs known as Maximum Cardinality Search (MCS).

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The version of MCS tha t we will translate and verify in MlZAR is found in
Tarjan[25] (see Algorithm 2 for a pseudo-code version). MCS takes any finite undi
rected graph G = (V, E) as input and as output gives an ordering a of the vertices.
We need to prove cr is a perfect vertex elimination scheme only if G is chordal (the
other direction is handled by Theorem 3.1.12).

MCS is similar to LexBFS. Vertices are numbered in the same way as in the
LexBFS algorithm, the main difference is how the vertex to be numbered is chosen
at each step. Instead of sorting the unnumbered vertices lexicographically by their
labels and choosing a vertex with maximum label at each step, MCS stores a single
non-negative integer value for each vertex: the number of its neighbours tha t have
been numbered up to this point in the execution of the algorithm. Each vertex’s
label is initialized to zero, and all vertices are flagged as unnumbered. At each
step of the algorithm an unnumbered vertex with the most numbered neighbours is
chosen to be numbered and its neighbours’ labels are incremented by one.

A lgorithm 2 Maximum Cardinality Search
Require: Finite undirected graph G — (V, E)
Ensure: Ordering a of V

1 Assign the label 0 to each vertex
2 for i = \V\ downto 1 do
3 v <— unnumbered vertex with largest label
4 a(i) = v
5 for all unnumbered vertices w € Adj(v) do
6 label (w) = label (w) + 1
7 end for
8 end for
9 return cr

MCS is straightforward to implement. To obtain an 0 (\V \2) runtime, we can
keep the vertex labels in an array and simply run through it to find the vertex with
the largest label at each step.

Again, as in the case for LexBFS, these implementation details are of no concern
to us since we currently do not have the machinery to deal with their time complexity
issues in MlZAR. We simply show tha t the algorithm terminates after exactly | F |
steps, that is, after each vertex as been numbered.

We now discuss our formalization of MCS in MlZAR.

3 .4 .2 F orm al D e fin it io n s o f M C S

As with LexBFS, we will store all the information required during the algorithm in
vertex labels. We define MCS as a vertex numbering graph sequence as in Section
3.2. After the algorithm is complete, the vertex label will map each vertex to its
position in the ordering. The number of neighbors tha t have been numbered will
be stored in the second vertex-label tha t we used in LexBFS for the lexicographic
label; here, however, we need only store a natural number.

We completely specify the MCS computation sequence by supplying an initial
graph and a transition function. The initial graph is a VVGraph identical to the
supplied graph with respect to vertices and edges, but with both vertex labels erased

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and set to appropriate starting values. We completely ignore the edge-weighting and
edge-labeling present in the original graph.

D efinition 3.4.1 Given a graph G, the function MCS: Init(G) returns a VVGraph
in which ct-1 = 0 and for v € V , L (v) = 0.

definition let G be finite .Graph;
func MCS:Init(G) -> finite natural-vlabeled natural-v21abeled

VVGraph equals
G .set(VLabelSelector, {}).set(V2LabelSelector,

the_Vertices_of G — > 0);
end;

The n a tu ra l-v la b le d and n a tu ra l-v 2 1 a b e le d properties say the returned
graph’s vertex labels each map to the naturals. The first vertex label (cr-1) will
hold the position of each vertex in the vertex order, the second label (L) will hold
the current number of neighbors tha t have been numbered so far.

The transition function will need to pick an unnumbered vertex to be numbered.
The following function returns such a vertex.

D efinition 3.4.2 Given a finite VVGraph G whose second vertex labeling maps to
the naturals, i f the domain of the second labeling equals the vertices of G then
MCS:PickUnnumbered(G) returns an arbitrary vertex, otherwise it returns a vertex
with the largest label.

definition let G be finite natural-v21abeled VVGraph;
assume A: dom the_V2Label_of G = the_Vertices_of G;

func MCS:PickUnnumbered(G) -> Vertex of G means
it = choose the_Vertices_of G
if dom the_VLabel_of G = the_Vertices_of G

otherwise
ex S being finite non empty natural-membered set,
F being Function st S = rng F
& F = (the_V2Label_of G) I

(the_Vertices_of G \ dom the_VLabel_of G)
& it = choose (F " {max S});

end;

If all vertices have been numbered (the domain of the vertex label equals the
vertices of G) then some arbitrary is returned. If there are some unnumbered vertices
then we restrict the second vertex labeling to the unnumbered vertices and call this
restriction F. The range of F is a subset of the naturals, but the max function
requires a non empty set of naturals. So it is necessary to instantiate the set S with
the non empty attribute. M iz a r does not know automatically tha t the range of F
is non empty, but the justification follows in a single step (since the domain of F is
non empty the range must be as well). An arbitrary vertex in the pre-image of the
maximum value of S is returned.

After a vertex has been chosen each neighbor needs to have its label incremented
by one. The following function returns a new graph with the neighbors updated
appropriately.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efin ition 3 .4 .3 Given a finite graph G whose second vertex labeling maps to the
naturals and a set v, MCS:LabelAdjacent(G, v) returns the graph in which the
unnumbered neighbors of v have their labels incremented by one.

definition let G be finite natural-v21abeled VVGraph, v be set;
func MCS:LabelAdjacent(G, v) -> finite natural-v21abeled

VVGraph equals
G.set(V2LabelSelector,

(the_V2Label_of G).incSubset(G.AdjacentSet({v})
\ dom (the_VLabel_of G),l));

end;

This definition requires the incSubset function, which is defined as follows:

D efinition 3 .4 .4 Given a natural yielding function F , a set S , and a natural k,
the function in c S u b se t(S ,k) returns a function G such that fo r x ^ S G .x — F.x
and for x € S G .x = F.x + k.

definition let F be natural-yielding Function,
S be set, k be natural number;

func F.incSubset(S.k) -> natural-yielding Function
means :dlncSubset:

dom it = dom F &
for y being set holds (y in S k y in dom F implies it.y = F.y + k)

& (not y in S implies it.y = F.y);
end;

N ote th a t in M iz a r , if x is not in th e dom ain o f F th en F.x = 0 by defin ition .
MCS: LabelAdj acen t (G,v) uses defin ition 3 .4 .4 to increm ent th e set o f neighbors

restricted to th o se th a t are unnum bered.
MCS: LabelAdj acent updates the neighbors, but the chosen vertex still needs

to be numbered. The following function numbers the given vertex with the value
G.orderO n. Here n is assumed to be the current step of the algorithm and so
the vertices are numbered in decreasing order.

D efin ition 3 .4 .5 Given a finite graph G with natural yielding vertex labels, a vertex
v, and a natural n, MCS:Update(G, v , n) returns a graph with v numbered with
G .ord erO -’n and the labels of the neighbors o f v incremented.

definition
let G be finite natural-vlabeled natural-v21abeled VVGraph,

v be Vertex of G, n be natural number;
func MCS:Update(G, v, n) -> finite natural-vlabeled

natural-v21abeled VVGraph equals

MCS:LabelAdjacent(G.labelVertex(v, G.order()-’n), v);

end;

The next function is the actual transition function of MCS.

D efin ition 3 .4 .6 Given a finite graph G with natural yielding vertex labels and a
natural n, MCS:Step(G) returns G if all vertices have been numbered, otherwise it
returns MCS:Update(G, MCS:PickUnnumbered(G), n).

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

definition let G be finite natural-vlabeled
natural-v21abeled VVGraph,

n be natural number;
func MCS:Step(G) -> finite natural-vlabeled natural-v21abeled

VVGraph equals
G if G.orderO <= n otherwise
MCS:Update(G, MCS:PickUnnumbered(G), n);

end;

We can now define the MCS computation sequence.

D efin itio n 3 .4 .7 Given a finite graph G, MCStCSeq(G) returns the graph sequence
with the first element equal to MCS: In it(G) and with each subsequent element equal
to MCS: S tep applied on the element before it.

definition let G be finite _Graph;
func MCS:CSeq(G) -> finite natural-vlabeled

natural-v21abeled WGraphSeq means
it.O = MCS:Init(G) &
for n being natural number

holds it.(n+l) = MCS:Step(it.n);
end;

This concludes the formal definitions required for the MCS algorithm.

3 .4 .3 P r o v in g C o rrec tn ess o f M C S

This section will follow the proof layout of Section 3.3.4 closely. We first show MCS
is a v label-num bering graph sequence, introduce a property on vertex orders, show
th a t an order produced by MCS must have this property, and finally show tha t any
order with this property on a chordal graph is a perfect vertex elimination scheme.

The notational convention of Section 3.3.4 will be used here. The ordering on
the numbered vertices of the n th graph in the computation sequence will be denoted
with <rn, the subscript will be dropped if the particular step of the sequence is not
im portant. The m th vertex of an order is written as cr(m), and the number given to
a vertex x is then a~ 1 (x) (since the ordering is one-to-one). The number of adjacent
numbered vertices for a vertex x is written as L(x), and the step of the algorithm is
specified as a subscript (e.g. L n(x) for the label of x in the n th step of the sequence).

L em m a 3.4.8 For any graph G, MCS:CSeq(G) is v label-num bering .

P ro o f. The proof is very similar to tha t of Lemma 3.3.11. |

For the proof of correctness of MCS we follow the proof by Tarjan found in
Tarjan[25]. Tarjan defines the following property on vertex orders (he names it
Property P but we have given it the name Property T).

D efin itio n 3 .4 .9 (P ro p e r ty T) Let G = (V, E) be a graph and a an ordering
of V . We say a has Property T if for all vertices a, b, c such that a ~ 1 (a) <
cr_1(6) < <7_1(c) and c € Adj(a) — Adj(b) there is a vertex d € Adj(b) — Adj(a) with
cr_1(6) < a~ (d).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

definition let G be natural-vlabeled VGraph;
attr G is with_property_T means :dPropertyT:

for a,b,c being Vertex of G st a in dom the_VLabel_of G &
b in dom the_VLabel_of G k c in dom the_VLabel_of G &
(the_VLabel_of G).a < (the_VLabel_of G).b &
(the_VLabel_of G).b < (the_VLabel_of G).c k
a,c are_adjacent & not b,c are_adjacent

ex d being Vertex of G st d in dom the_VLabel_of G &
(the_VLabel_of G).b < (the_VLabel_of G).d &
b,d are_adjacent & not a,d are_adjacent;

end;

Notice this is almost exactly the same as Property L3 (Definition 3.3.12) except
tha t the clause “<r- 1 (6) < a ~ 1 (d)n has replaced “cr- 1 (c) < a~ l (d)". This means
tha t Property T is a generalization of Property L3, and hence:

C o ro lla ry 3.4.10 ForG being a finite graph, the order produced by LexBFS :CSeq(G)
has property T.

P ro o f. Immediate from the above definition and Corollary 3.3.18. |

Once we have proven the correctness of MCS, we will also have proven the
correctness of LexBFS, for the second time. This does not mean however, that
MCS is a generalization of LexBFS; there are orders produced by LexBFS tha t are
not produced by MCS and vice-versa.

The small difference between Property T and Property L3 necessitates a new
proof since the proof for LexBFS requires the assumption th a t vertex d (whose
existence is guaranteed by T and L3) be chosen before c (not just before b). This
is actually a good thing. We can stress test the robustness of our formalization and
fill in any gaps in facts tha t we have already developed.

L em m a 3.4.11 For an unnumbered vertex x in step n of the M CS algorithm, L n(x)
is the number of numbered vertices adjacent to x.

theorem MCSuV2Label2:
for G being finite _Graph, n being natural number, x being set
st not x in (dom the_VLabel_of (MCS:CSeq(G),n))
holds (the_V2Label_of (MCS:CSeq(G).n)).x =

card (G. AdjacentSet({x» /\
(dom the_VLabel_of (MCS:CSeq(G).n)))

P ro o f. This lemma is obvious to human readers, but takes a modest amount of work
to do formally. We proceed by induction on k, the step of the algorithm. The result
holds for k = 0 by Definitions 3.4.7 and 3.4.1. Suppose it is true for some k > 0. Let
w be the vertex chosen by the algorithm in step k. Let x be any unnumbered vertex
in step k + 1 (and so x w). Set and Nk+i to the sets of numbered vertices in
steps k and k + 1 respectively. Then we know that N^+i = U {w} by Defintion
3.4.5. By the induction hypothesis we know |IV*. Pi Adj(x) j = L^{x). Suppose now

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tha t x is adjacent to w. Then Lk+\{x) = Lk(x) + 1 by Definition 3.4.3. Then,

\Nk+ 1 n A d j(x)I = \{Nk u {w}) n Adj(x)\
= \(Nk n Adj(x)) U ({ w } n Adj(x))\
= \(Nk C A dj(x)) U {w}\
= \Nk n A d j(x)\ + 1
= L k(x) + 1
= L k+i(x).

Suppose instead tha t x is not adjacent to w. Then L k+i(x) = L k+\{x) by
Definition 3.4.3. And so

\Nk+i n Adj(x)\ = \(Nk U {w })D A d j(x)\
= \(Nk n A d j(x))U ({ w } n A d j(x)) \
= \(Nk nA dj(x))U ® \
= \Nk fl Adj(x)\
= L k(x)
= L k+i(x).

This proves the result. |

We can now show:

T h e o re m 3.4.12 Let G = (V , E) be a graph and an the ordering produced by MCS
at the nth step. Then an has property T.

theorem MCShasThelper:
for G being finite _Graph, n being natural number

holds MCS:CSeq(G).n is with_property_T

P ro o f. Let cr be an ordering produced by MCS and let a, b, c be such tha t cr_ 1 (a) <
cr_ 1 (6) < cr- 1 (c) and c € Adj(a) — Adj(b). Let X be the set of vertices chosen before
b, tha t is, those vertices x G X such tha t cr-1 (6) < a ~ 1 {x). Divide X into four
disjoint sets X \, X 2 , X 3 and X 4 , where X \ contains vertices adjacent to b and not
to a, X 2 contains vertices adjacent to a and not to b, X 3 contains vertices adjacent
to both a and b, and X 4 the remaining vertices. We know |A 2 I > 1 since c € X 2 .

Since cr_ 1 (a) < <j_ 1 (6), b was chosen before a and so |ATi| + I-X3 I > \X 2 \ + I-X3 I.
This implies tha t |X i| > 1 and so the result is proved. |

We prove a simple lemma on vertex schemes before the final result of this section.

L em m a 3.4.13 Let a be an ordering of G. Then a is a perfect vertex elimination
scheme of G if and only i f for any a, b, c such that ab € E , ac € E , a ~ l (a) < cr_ 1 (6)
and cr_ 1 (a) < a - 1 (c), it holds that be € E.

theorem :: CHORD:109
for G being finite _Graph, V being VertexScheme of G holds

V is perfect iff
for a,b,c being Vertex of G

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

st b<>c k a,b are_adjacent k a,c are_adjacent
for va,vb,vc being natural number

st va in dom V & vb in dom V & vc in dom V k
V.va = a k V.vb = b k V.vc = c k va < vb k va < vc

holds b,c are_adjacent;

P ro o f. For convenience, let Gx refer to the subgraph of G induced by x and all
vertices following x in cr. If cr is a perfect elimination scheme, then the neighborhood
of a in Ga is complete, and so be E E. Going the other way, if every such triplet has
the above property, then for any vertex x it is true tha t .r’s neighborhood in Gx is
complete, and hence a is a perfect vertex elimination scheme of G. |

We can now prove:

T h eo re m 3.4.14 Let G — (V ,E) be a chordal graph and let a be an ordering of G.
I f a has property T then a is a perfect vertex elimination scheme.

for G being finite chordal natural-vlabeled VGraph
st G is with_property_T k

dom the_VLabel_of G = the_Vertices_of G
for V being VertexScheme of G

st V" = the_VLabel_of G
holds V is perfect

P ro o f. This proof is from Tarjan[25]. Assume a has property T. Consider all
chordless paths of G with at least three vertices tha t have a certain property Q.
From these paths, let P = (vq, vi,V 2 , ■ ■ ■ ffc) be a path with maximum cr_ 1 (ufc). We
define property Q as follows: for some i in the interval [1, k — 1], it is true that

a~ l (vQ) > cr_1(ufc) > > a ~ l {v2) > cr-1 ^)

and
cr_1(ui) < cr-1 (uj_|_i) < < cr-1 (vfc)

hold.
Apply property T to vertices v%, v^, and vq to obtain a vertex x such tha t x is

adjacent to and a ~ l (vk) < a~ 1(x). Since there is at least one vertex adjacent to
x (ie, Ufc), let j > 1 be the minimum such tha t Vj is a vertex on P tha t is adjacent
to x (if j — 0 then we would have a chordless cycle of length more than three, ie,
[a:, no,. . . ,vk,x]; j ^ 1 from property T). Now, if cr_1(uo) > a ~ l (x), then the path
no, n i , . . . , V j,x has property Q. If a~ 1(x) > cr_1(no), then the path x, v j ,V j- 1 , . . . , no
has property Q. In both cases we have a contradiction (the last vertex would be
larger than n^ with respect to the ordering a) . From this we conclude tha t no path
has property Q.

Now consider any triplet of vertices a,b,c with ab E E , ac E E , and so tha t a
orders a before both b and c. If be ^ E, then one of bac or cab must have property
Q. But since we have shown there cannot be any paths with property Q, it follows
tha t no such triplets exist. Hence cr is a perfect vertex elimination scheme of G by
Lemma 3.4.13. |

Combining Theorems 3.4.12 and 3.4.14 we obtain the following result.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C o ro lla ry 3.4.15 The ordering produced by M CS on a chordal graph G is a perfect
vertex elimination scheme for G.

for G being finite chordal VVGraph holds
(the_VLabel_of (MCS:CSeq(G)).Result())"
is perfect VertexScheme of G

This ends our formal proof of correctness for MCS.

3.5 Discussion

To define and prove the correctness of MCS required only around 1600 lines of
M i z a r . This is mainly because the definition of MCS is much easier to deal with
than tha t of LexBFS. The fact tha t an ordering produced by MCS has property
T was also much easier to prove than tha t an ordering produced by LexBFS has
property L3 (around 90 lines compared to around 250 lines of code). The proof by
Tarjan (Theorem 3.4.14) is also quite nice, and led us to go back and re-do the proof
of Theorem 3.3.20 in a manner more suitable for M i z a r .

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Conclusion and Future Work

Extending the current library of graph functions and definitions was the main goal
of this paper. We formalized the notion of a chordal graph and proved a charac
terization for this graph class. We also defined and proved the correctness for the
Lexicograph-Breadth First Search and Maximum Cardinality Search algorithms,
which are used to recognize chordal graphs. The relative ease with which these no
tions were formalized shows tha t the graph library is robust and suitable for dealing
with graph algorithms.

There is much future work to be done. Proving tha t a chordal graph is the
intersection graph of a family of subtrees of a tree is the next interesting result in
the area of chordal graphs. Note tha t this would require the notion of intersection
graphs to be defined in M i z a r . Some other areas in graph theory tha t are feasible
for formalization include perfect graphs and graph isomorphism.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] ACL2. h t t p : / / p v s . c s l . s r i . c o m / .

[2] The COQ Proof Assistant, h t t p : / / c o q . i n r i a . f r / .

[3] The HOL Theorem Proving System, h t t p : / / h o l . s o u r c e f o r g e .n e t / .

[4] The Mizar Project, h t t p : / / m iz a r .o r g / .

[5] PVS Specification and Verification System, h t t p : / / p v s . c s l . s r i . c o m / .

[6] Jean-Raymond Abrial, Dominique Cansell, and Dominique Mry. Formal deriva
tion of spanning trees algorithms.

[7] R.W Butler and J.A. Sjogren. A PVS Graph Theory Library. 59 Mathematical
and Computer Sciences (General), February 1998.

[8] Jing-Chao Chen. D ijkstra’s Shortest Path Algorithm. Formalized Mathematics,
15, 2003.

[9] Ranan Fraer. Formal development in b of a minimum spanning tree algorithm.
Proceedings of the First B Conference, 1996.

[10] M artin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. Aca
demic Press, 111 Fifth Avenue, New York, New York, 1980.

[11] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2, 1990.

[12] Gilbert Lee. Verification of Graph Algorithms in Mizar. M aster’s thesis, Un-
versity of Alberta, 2004.

[13] Gilbert Lee. Proof of D ijkstra’s Shortest P ath Algorithm and Prim ’s Minnimum
Spanning Tree Algorithm. Formalized Mathematics, 16, 2005.

[14] Gilbert Lee. Proof of Ford/Fulkerson’s Maximum Network Flow Algorithm.
Formalized Mathematics, 16, 2005.

[15] Gilbert Lee. Trees: Connected, Acyclic Graphs. Formalized Mathematics, 16,
2005.

[16] Gilbert Lee. Weighted and Labeled Graphs. Formalized Mathematics, 16, 2005.

[17] Gilbert Lee and Piotr Rudnicki. Alternative Graph Structures. Formalized
Mathematics, 16, 2005.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://pvs.csl.sri.com/
http://coq.inria.fr/
http://hol.sourceforge.net/
http://mizar.org/
http://pvs.csl.sri.com/

[18] Gilbert Lee and Piotr Rudnicki. Walks in a Graph. Formalized Mathematics,
16, 2005.

[19] J Strother Moore and Qiang Zhang. Proof Pearl: D ijkstra’s Shortest Path
Algorithm Verified with ACL2. h ttp ://w w w .c s .u te x a s .e d u /u se rs /m o o re /
p u b l i c a t i o n s /d i j k s t r a / index .h tm l.

[20] Yatsuka Nakamura and Jing-Chao Chen. The Underlying Principle of Dijkstra’s
Shortest Path Algorithm. Formalized Mathematics, 15, 2003.

[21] Yatsuka Nakamura and Piotr Rudnicki. Vertex Sequence Induced by Chains.
Formalized Mathematics, 7, 1995.

[22] Yatsuka Nakamura and Piotr Rudnicki. Euler Circuits and Paths. Formalized
Mathematics, 9, 1997.

[23] Yatsuka Nakamura and Piotr Rudnicki. Oriented Chains. Formalized Mathe
matics, 10, 1998.

[24] Tobias Nipkow, Gertrud Bauer, and Paula Schultz. Flyspeck I: Tame Graphs.
In U. Furbach and N. Shankar, editors, Automated Reasoning (IJCAR 2006),
volume 4130 of LNCS, pages 21-35. Springer, 2006.

[25] Robert E. Tarjan and Mihalis Yannakakis. Simplie linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and and selectively re
duce acyclic hypergraphs. SIA M Journal of Computing, 13(3):566-569, August
1984.

[26] M itsuharu Yamamoto, Koichi Takahashi, Masami Hagiya, Shin-ya Nishizaki,
and Tetsuo Tamai. Formalization of Graph Search Algorithms and its Applic-
tions.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.utexas.edu/users/moore/

A ppendix A

Introduction

Appendices B and C contain two different versions of the first three sections from
the chapter on chordal graphs found in Golumbic[10]. The first version, Appendix
B, is the original version found in the book; the second version, Appendix C, is our
revised version. They have been interleaved so tha t the differences are more readily
apparent.

The motivation for this is to demonstrate the incompletness and subtle inac
curacies of typical non-formalized proofs, and to show how the chapter would look
once these considerations had been taken into effect.

Problems with the original version are marked with footnotes. Changebars mark
the location of changes in the revised version.

We have also added a few lemmas and theorems dealing with MCS to the revised
version tha t the original version noted only in passing.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Triangulated Graphs: Golumbic

1. Introduction

One of the first classes of graphs to be recognized as being perfect was the class
of triangulated graphs. Hajnal and Suranyi [1958] showed that triangulated graphs
satisfy the perfect property P2 (a-perfection), and Berge [1960] proved tha t they
satisfy Pi (%-perfection). These two results, in large measure, inspired the conjecture
tha t P\ and P2 were equivalent, a statement tha t we now know to be true (Theorem
3.3). Thus, the study of triangulated graphs can well be thought of as the beginning
of the theory of perfect graphs.

We briefly looked at the triangulated graph property in the sneak preview Section
1.3. For completeness’ sake, we shall repeat the definition here and mention a few
basic properties.

An undirected graph G is called triangulated if every cycle of length strictly
greater than 3 possesses a chord, tha t is, an edge joining two nonconsecutive vertices
of the cycle. Equivalently, G does not contain an induced subgraph isomorphic to Cn
for n > 3. Being triangulated is a hereditary property inherited by all the induced
subgraphs of G. You may recall from Section 1.3 tha t the interval graphs constitute
a special type of triangulated graph. Thus we have our first example of triangulated
graphs.

In the literature, triangulated graphs have also been called chordal, rigid-circuit,
monotone transitive, and perfect elimination graphs.

2. Characterizing Triangulated Graphs

A vertex x of G is called sim plicial if its adjacency set Adj{x) induces a complete
subgraph of G, i.e., A d j(x) is a clique (not necessarily maximal). Dirac [1961],
and later Lekkerkerker and Boland [1962], proved tha t a triangulated graph always
has a simplicial vertex (in fact at least two of them), and using this fact Fulkerson
and Gross [1965] suggested an iterative procedure to recognize triangulated graphs
based on this and the hereditary property. Namely, repeatedly locate a simplicial
vertex and eliminate it from the graph, until either no vertices remain and the graph
is triangulated or at some stage no simplicial vertex exists and the graph is not
triangulated. The correctness of this procedure is proved in Theorem 4.1. Let us
state things more algebraically.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix C

Triangulated Graphs: R evised

1. Introduction

One of the first classes of graphs to be recognized as being perfect was the class
of triangulated graphs. Hajnal and Suranyi [1958] showed that triangulated graphs
satisfy the perfect property P-i (a-perfection), and Berge [1960] proved tha t they
satisfy P i (y-perfection). These two results, in large measure, inspired the conjecture
tha t Pi and P 2 were equivalent, a statement tha t we now know to be true (Theorem
3.3). Thus, the study of triangulated graphs can well be thought of as the beginning
of the theory of perfect graphs.

We briefly looked at the triangulated graph property in the sneak preview Section
1.3. For completeness’ sake, we shall repeat the definition here and mention a few
basic properties.

An undirected graph G is called triangulated if every cycle of length strictly
greater than 3 possesses a chord, tha t is, an edge joining two nonconsecutive vertices
of the cycle. Equivalently, G does not contain an induced subgraph isomorphic to Cn
for n > 3. Being triangulated is a hereditary property inherited by all the induced
subgraphs of G. You may recall from Section 1.3 tha t the interval graphs constitute
a special type of triangulated graph. Thus we have our first example of triangulated
graphs.

In the literature, triangulated graphs have also been called chordal, rigid-circuit,
monotone transitive, and perfect elimination graphs.

2. Characterizing Triangulated Graphs

A vertex x of G is called simplicial if its adjacency set Adj(x) induces a complete
subgraph of G, i.e., Adj(x) is a clique (not necessarily maximal). Dirac [1961],
and later Lekkerkerker and Boland [1962], proved tha t a triangulated graph always
has a simplicial vertex (in fact at least two of them), and using this fact Fulkerson
and Gross [1965] suggested an iterative procedure to recognize triangulated graphs
based on this and the hereditary property. Namely, repeatedly locate a simplicial
vertex and eliminate it from the graph, until either no vertices remain and the graph
is triangulated or at some stage no simplicial vertex exists and the graph is not
triangulated. The correctness of this procedure is proved in Theorem 4.1. Let us
state things more algebraically.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a bvw y<>X

r
g f e

G \

Figure A .l: Two graphs, one triangulated and one not triangulated.

Let G — (V , E) be an undirected graph and let a = [v\.V2) • • •, vn] be an ordering
of the vertices. We say tha t a is a perfect vertex elimination scheme (or perfect
scheme) if each V{ is a simplicial vertex of the induced subgraph In other
words, each set

X i = {v j € A d j (v i) \ j > i }

is complete. For example, the graph Gi in Figure 4.1 has a perfect vertex elimination
scheme a = [a,g,b, f ,c ,e ,d \ . It is not unique; in fact Gi has 96 different perfect
elimination schemes. In contrast to this, the graph G2 has no simplicial vertex, so
we cannot even start constructing a perfect scheme — it has none.

A subset S C V is a vertex separator for nonadjacent vertices a and b (or an
a-b separator) if the removal of S from the graph separates a and b into distinct
connected components. If no proper subset of S is an a-b separator, then 5 is a
minimal vertex separator for a and b. 1 Consider again the graphs of Figure 4.1. In
G2 , the set {y, z} is a minimal vertex separator for p and q, whereas {x, y, z} is a
minimal vertex separator for p and r. (How is it possible tha t both are minimal
vertex separators, yet one is contained in the other?) In G i, every minimal vertex
separator has cardinality 2. This is an unusual phenomenon. However, notice also
tha t the two vertices of such a separator of Gi are adjacent, in every case. This
latter phenomenon actually occurs for all triangulated graphs, as you will see in
Theorem 4.1.

We now give two characterizations of triangulated graphs, one algorithmic (Fulk
erson and Gross [1965]) and the other graph theoretic (Dirac [1961]).

T h e o re m 4.1 Let G be an undirected graph. The following statements axe
equivalent:

(i) G is triangulated.

(ii) G has a perfect vertex elimination scheme. Moreover, any simplicial vertex
can start a perfect scheme.

(iii) Every minimal vertex separator induces a complete subgraph of G.

Proof, (iii) => (i) Let [a, x, 3 /1 , 2/2 , - - -, Vk-, a] (k > 1) be a simple cycle of G =
(V ,E). Any minimal a-b separator must contain vertices x and yi for some i, so
xyi € E, which is a chord of the cycle.

xSee our edition for som e additional properties o f vertex separators.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p
a b e d

g f e

x z

G\
r

G2

Figure B.2: Two graphs, one triangulated and one not triangulated.

Let G = (V, E) be an undirected graph and let a = \v\ , v2, , vn\ be an ordering
of the vertices. We say tha t a is a perfect vertex elimination scheme (or perfect
scheme) if each v\ is a simplicial vertex of the induced subgraph G{Vi... „n}. In other
words, each set

is complete. For example, the graph G\ in Figure 4.1 has a perfect vertex elimination
scheme a = [a,g, b, f , c, e, d\. It is not unique; in fact G\ has 96 different perfect
elimination schemes. In contrast to this, the graph G2 has no simplicial vertex, so
we cannot even start constructing a perfect scheme — it has none.

A subset S C V is a vertex separator for nonadjacent vertices a and b (or an
a-b separator) if the removal of S from the graph separates a and b into distinct
connected components. Note tha t if a and b are already separated (in different
components of a disconnected graph) then the empty set is an a-b separator. If
no proper subset of S is an a-b separator, then 5 is a minimal vertex separator
for a and b. For any two nonadjacent vertices there is always at least one minimal
vertex separator. Consider again the graphs of Figure 4.1. In G2 , the set {x, y, z} is a
minimal vertex separator for p and q, whereas {x, y, z} is a minimal vertex separator
for p and r. (How is it possible tha t both are minimal vertex separators, yet one
is contained in the other?) In G i, every minimal vertex separator has cardinality
2. This is an unusual phenomenon. However, notice also tha t the two vertices of
such a separator of G\ are adjacent, in every case. This latter phenomenon actually
occurs for all triangulated graphs, as you will see in Theorem 4.1.

We now give two characterizations of triangulated graphs, one algorithmic (Fulk
erson and Gross [1965]) and the other graph theoretic (Dirac [1961]).

T h e o re m 4.1 Let G be an undirected graph. The following statements are
equivalent:

(i) G is triangulated.

(ii) G has a perfect vertex elimination scheme. Moreover, any simplicial vertex
can start a perfect scheme.

(iii) Every minimal vertex separator induces a complete subgraph of G.

Proof, (iii) => (i) Let [a ,x ,b ,y i,y 2, . . . ,yk,a] (k > 1) be a simple cycle of G =
(V ,E). Any minimal a-b separator must contain vertices x and yi for some i, so
xyi € E, which is a chord of the cycle.

X i = {vj e A dj(vi)\j > i}

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(i) =f> (iii) Suppose S' is a minimal a — b separator with Ga and Gb being the
connected components of G y -s containing a and 6, respectively. Since S is minimal,
each x £ S is adjacent to some vertex in A and some vertex in B . Therefore, for
any pair x, y £ S there exist paths [a:, 0 1 , . . . , ar , y] and [y, by, . . . , bt , x], where each
at £ A and 6, £ B , such tha t these paths are chosen to be of smallest possible
length. It follows tha t [x ,a i , . . . ,a r , y ,b \ , . . . ,bt ,x] is a simple cycle whose length is
at least 4, implying tha t it must have a chord. But d{bj ^ E by the definition of
vertex separator, and didj £ E and bibj <£ E by the minimality of r and t.2 Thus,
the only possible chord is xy £ E . □

R e m a rk . It also follows tha t r = t = 1, implying tha t for all x ,y £ S there
exist vertices in A and B which are adjacent to both x and y. A stronger result is
given in Exercise 12.3

Before continuing with the remaining implications, we pause for a message from
our lemma department.

L em m a 4.2 (Dirac [1961]). Every triangulated graph G — (V, E) has a simpli
cial vertex. Moreover, if G is not a clique, then it has two nonadjacent simplicial
vertices.

Proof. The lemma is trivial if G is complete. Assume tha t G has two nonadjacent
vertices o and b and tha t the lemma is true for all graphs with fewer vertices than
G. Let 5 be a minimal vertex separator for a and b with Ga and Gb being the
connected components of G y -s contain a and b, respectively.

By induction, either the subgraph Ga +s bas two nonadjacent simplicial vertices
one of which must be in A (since S induces a complete subgraph) or Ga +s is itself
complete and any vertex of A is simplicial in Ga+s • Furthermore, since Adj(A) C
A + 5, a simplicial vertex of Ga +s in A is simplicial in all of G. Similarly B contains
a simplicial vertex of G. This proves the lemma.

We now rejoin the proof of the theorem which is still in progress.

(i) => (ii) According to the lemma, if G is triangulated, then it has a simplicial
vertex, say x. Since G y_{x} is triangulated and smaller than G, it has, by induction,
a perfect scheme which, when adjoined as a suffix of x, forms a perfect scheme of G.

(ii) =>- (i) 4 Let C be a simple cycle of G and let x be the vertex of C with the
smallest index in a perfect scheme. Since \Adj(x)DC\ > 2 , the eventual simpliciality
of x guarantees a chord in C. □

3. Recognizing Triangulated Graphs by Lexicographic
Breadth-First Search

From Lemma 4.2 we learned tha t the Fulkerson-Gross recognition procedure affords
us a choice of at least two vertices for each position in constructing a perfect scheme

2Edges xa,i, xb i , y a i , and ybi are not m entioned in this proof.
3See our edition of this chapter for a proof o f th is result.
4 See our edition for a slightly more precise proof.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(i) => (iii) Suppose S is a minimal a — b separator with Ga and Gb being the
connected components of G y - s containing a and b, respectively. Since S is minimal,
each x E S is adjacent to some vertex in A and some vertex in B. Therefore, for
any pair x, y E S there exist paths [x ,a \ , . . . ,a r ,y] and [y, b i , . . . , bt , x), where each
dj E A and bi E B, such tha t these paths are chosen to be of smallest possible
length. It follows tha t [x, a i , . . . , ar , y, b \ , . . . , bt , x] is a simple cycle whose length is
at least 4, implying tha t it must have a chord. But aibj E by the definition of
vertex separator; xa,i £ E, xbi ^ E, ya,i ^ E, ybi ^ E, aiaj ^ E and bibj £ E by the
minimality of r and t. Thus, the only possible chord is xy E E.

R em ark . It also follows tha t r — t = 1, implying that for all x . y E S there
exist vertices in A and B which are adjacent to both x and y. A stronger result is
given in Exercise 12. 5

Before continuing with the remaining implications, we pause for a message from
our lemma department.

L em m a 4.2 (Dirac [1961]). Every triangulated graph G = (V,E) has a simpli
cial vertex. Moreover, if G is not a clique, then it has two nonadjacent simplicial
vertices.

Proof. The lemma is trivial if G is complete. Assume tha t G has two nonadjacent
vertices a and b and tha t the lemma is true for all graphs with fewer vertices than
G. Let S' be a minimal vertex separator for a and b with Ga and Gb being the
connected components of G y - s containing a and b, respectively.

By induction, either the subgraph Ga +s has two nonadjacent simplicial vertices
one of which must be in A (since S induces a complete subgraph) or Ga +s is itself
complete and any vertex of A is simplicial in Ga+s • Furthermore, since Adj(A) C
A + 5, a simplicial vertex of Ga +s in A is simplicial in all of G. Similarly B contains
a simplicial vertex of G. This proves the lemma.

We now rejoin the proof of the theorem which is still in progress.

(i) => (ii) According to the lemma, if G is triangulated, then it has a simplicial
vertex, say x. Since Gy_{x} is triangulated and smaller than G, it has, by induction,
a perfect scheme which, when adjoined as a suffix of x, forms a perfect scheme of G.

(ii) => (i) Let G be a chordless cycle of G with |G| > 3, a be a perfect scheme
of G, and x be the vertex of G with the smallest index in a. Then there must exist
vertices a and b such tha t ax E E, bx E E and ab E, since C is a cycle. However,
since a and b appear after x in <j, it is also true tha t ab E E. Contradiction. So
such a G cannot exist, and this means G is triangulated. □

3. Recognizing Triangulated Graphs by Lexicographic
Breadth-First Search

From Lemma 4.2 we learned tha t the Fulkerson-Gross recognition procedure affords
us a choice of at least two vertices for each position in constructing a perfect scheme

5See the Addendum at the end of this chapter for a proof.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for a triangulated graph. Therefore, we can freely choose a vertex vn to avoid
during the whole process, saving it for the last position in a scheme. Similarly,
we can pick any vertex vn- \ adjacent to vn to save the (n — l)s t position. If we
continued in this manner, we would be constructing a scheme backwards. This is
exactly what Lueker [1974] and Rose and Tarjan [1975] have done in order to give
a linear-time algorithm for recognizing triangulated graphs. This version presented
in Rose, Tarjan, and Lueker [1976] uses a lexicographic breadth-first search in which
the usual queue of vertices is replaced by a queue of (unordered) subsets of the
vertices which is sometimes refined but never reordered. The method (Figure 4.2)
is as follows:

b eg in
1. assign the label 0 to each vertex;
2. for i <— n to 1 s te p - 1 d o
3. select: pick an unnumbered vertex v with largest label;
4. a{i) +— v; c o m m e n t This assigns to v the number i.
5. update: for each unnumbered vertex w G Adj(v) d o add i to label(w);
en d

Figure A.3: Algorithm 4.1: Lex BFS.

A lg o rith m 4.1. Lexicographic breadth-first search.

Input: The adjacency sets of an undirected graph G = (V, E).
Output: An ordering a of the vertices.
Method: The vertices are numbered from n to 1 in the order tha t they are selected
in line 3. This numbering fixes the position of an elimination scheme a. For each
vertex x, the label of x will consist of a set of numbers listed in decreasing order.
The vertices can then be lexicographically ordered according to their labels. (Lexi
cographic order is just dictionary order, so tha t 9761 < 985 and 643 < 6432.) Ties
are broken arbitrarily.

E x am p le . We shall apply Algorithm 4.1 to the graph in Figure 4.3 . 6 The vertex
a is selected arbitrarily in line 3 during the first pass. The evolution of the labeling
and the numbering are illustrated in Figure 4.4. Notice tha t the final numbering
a = [c, d, e, b, a] is a perfect vertex elimination scheme. This is no accident.

For each value of i, let Li(x) denote the label of x when statement 4 is executed,
i.e. when the ith vertex is numbered. Remember, the index is decremented at
each successive iteration. For example, Ln(x) = 0 for all x and Ln_i(x) = {n} iff
x G Adj(a(n)). The following properties are of prime importance:

(LI) Li(x) < L j (x) if (j < i);

(L2) Li(x) < Li(y) => Lj(x) < Lj(y) if (j < i);

(L3) if a ~ 1(a) < cr_ 1 (6) < cr_ 1 (c) and c G Adj(a) — Adj(b), then there exists a
vertex d G Adj(b) — Adj(a) with cr_ 1 (c) < a ~ 1(d).

6 Edge be appears in the 2nd edition errata.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for a triangulated graph. Therefore, we can freely choose a vertex vn to avoid
during the whole process, saving it for the last position in a scheme. Similarly,
we can pick any vertex vn- \ adjacent to vn to save the (n — l)s t position. If we
continued in this manner, we would be constructing a scheme backwards. This is
exactly what Lueker [1974] and Rose and Tarjan [1975] have done in order to give
a linear-time algorithm for recognizing triangulated graphs. This version presented
in Rose, Tarjan, and Lueker [1976] uses a lexicographic breadth-first search in which
the usual queue of vertices is replaced by a queue of (unordered) subsets of the
vertices which is sometimes refined but never reordered. The method (Figure 4.2)
is as follows:

b eg in
1. assign the label 0 to each vertex;
2. for i <— n to 1 s te p - 1 do
3. select: pick an unnumbered vertex v with largest label;
4. a{i) <— v; co m m en t This assigns to v the number i.
5. update: for each unnumbered vertex w € Adj(v) d o add i to label(w);
en d

Figure B.4: Algorithm 4.1: Lex BFS.

A lg o rith m 4.1. Lexicographic breadth-first search.

Input: The adjacency sets of an undirected graph G = (V , E).
Output: An ordering a of the vertices.
Method: The vertices are numbered from n to 1 in the order tha t they are selected
in line 3. This numbering fixes the position of an elimination scheme a. For each
vertex x, the label of x will consist of a set of numbers listed in decreasing order.
The vertices can then be lexicographically ordered according to their labels. (Lexi
cographic order is just dictionary order, so tha t 9761 < 985 and 643 < 6432.) Ties
are broken arbitrarily.

E x am p le . We shall apply Algorithm 4.1 to the graph in Figure 4.3. The vertex
a is selected arbitrarily in line 3 during the first pass. The evolution of the labeling
and the numbering are illustrated in Figure 4.4. Notice tha t the final numbering
a = [c, d, e, b, a] is a perfect vertex elimination scheme. This is no accident.

For each value of i, let Li(x) denote the label of x when statement 4 is executed,
i.e. when the ith vertex is numbered. Remember, the index is decremented at
each successive iteration. For example, L n(x) = 0 for all x and Ln_i(x) = {n} iff
x € Adj(a(n)). The following properties are of prime importance:

(LI) Li(x) < Lj(x) if (j < i);

(L2) Li(x) < Li(y) =t> Lj(x) < Lj{y) if (.j < i);

(L3) if <7 - 1 (a) < o ~ l (b) < cr_ 1 (c) and c € Adj(a) — Adj(b), then there exists a
vertex d G Adj(b) — Adj(a) with <r- 1 (c) < <r_ 1 (d).

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A.5:

Property (LI) says tha t the label of a vertex may get larger but never smaller
as the algorithm proceeds. Property (L2) states tha t once a vertex gets ahead of
another vertex, they stay in tha t order. Finally, (L3) gives a condition under which
there must be a suitable vertex d which was numbered before c (in time) and hence
received a larger number . 7

lab n
a 0 5

b {5} 4

c { 4 ,2 } -

d { 4 ,3 } 2

e { 5 ,4 } 3

la b n
a 0 5

b {5} 4

c { 4 ,2 } 1

d { 4 ,3 } 2

e { 5 ,4 } 3

la b n
a 0 5

b {5} 4

c {4} -

d {4} -

e { 5 ,4 } -

lab n
a 0 5

b {5} 4

c {4} -

d { 4 ,3 } -

e { 5 ,4 } 3

la b n
a 0 5

b {5} -

c 0 -

d 0 -

e {5} -

la b n
a 0 -

b 0 -

c 0 -

d 0 -

e 0 .

Figure A.6 :

Lexicographic breadth-first search can be used to recognize triangulated graphs
as demonstrated by the next theorem.

T h e o re m 4.3 An undirected graph G = (V , E) is triangulated if and only if the
ordering a produced by Algorithm 4.1 is a perfect vertex elimination scheme.

Proof.8 If | F | = n = l, then the proof is trivial. Assume tha t the theorem is
true for all graphs with fewer than n vertices and let a be the ordering produced by
Algorithm 4.1 when applied to a triangulated graph G. By induction, it is sufficient
to show tha t x = cr(l) is a simplicial vertex of G.g

Suppose x is not simplicial. Choose vertices x\ ,X2 £ Adj(x) with X\X2 E
so tha t X2 is as large as possible (with respect to the ordering a). (Remember,
a increases as you approach the root of the search tree.10) Consider the follow
ing inductive procedure. Assume we are given vertices x i ,X 2 , ■ • ■ , x m with these
properties: for all i , j > 0 ,

7See our edition for the proofs o f these properties.
8See our edition for a proof better suited for formalization.
9The assum ption that the algorithm works on graphs w ith fewer than n vertices cannot be used

here since we are running it on a graph which does not have fewer than n vertices.
1 0 I.e, vertices numbered earlier by the algorithm are given larger numbers that those numbered

later.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure B.7:

Property (LI) says tha t the label of a vertex may get larger but never smaller
as the algorithm proceeds. Property (L2) states tha t once a vertex gets ahead of
another vertex, they stay in tha t order. Finally, (L3) gives a condition under which
there must be a suitable vertex d which was numbered before c (in time) and hence
received a larger number . 11

la b n
a 0 5

b {5} 4

c { 4 ,2 } -

d { 4 ,3 } 2

e { 5 ,4 } 3

ta b n
a 0 5

b {5} 4

c { 4 ,2 } 1

d { 4 ,3 } 2

e { 5 ,4 } 3

la b n
a 0 -

b 0 -

c 0 -

d 0 -

e 0 .

la b n
a 0 5

b {5} 4

c {4} -

d { 4 ,3 } -

e { 5 ,4 } 3

la b n
a 0 5

b {5} 4

c {4} -

d {4} -

e { 5 ,4 } -

la b n
a 0 5

b {5} -

c 0 -

d 0 -

e {5} -

Figure B.8 :

Lexicographic breadth-first search can be used to recognize triangulated graphs
as demonstrated by the next theorem.

T h e o re m 4.3. An undirected graph G = (V, E) is triangulated if and only if
the ordering a produced by Algorithm 4.1 is a perfect vertex elimination scheme.

Proof. Assume |Vj > j > 0 steps of LexBFS have been completed (and so
i = \V\ — j for the next step). Let V3 be the j vertices of G th a t have been
numbered so far, Gj the subgraph of G induced by V), and Gj the ordering of V3

produced by LexBFS. Assume tha t Gj is a perfect vertex elimination scheme for Gj.
We show th a t Vj+\ is a perfect elimination scheme for Gj+i-

Assume not. Then the first vertex of aj+1 , xo, is not simplicial in Gy+i- Choose
vertices xi , X2 G Adj(x) with x \X 2 £ E so tha t x -2 is as large as possible (with respect
to the ordering Gj). These three vertices and property L3 imply the existence of X3 ,
which is the largest vertex (with respect to Gj) adjacent to x \ and not adjacent to
x 0.

1 1 See th e addendum for the proofs o f these properties.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1) x,Xi G E <=> i < 2,

(2) x,Xj E E <=> \i — j\ = 2,

(3) cr_ 1 (xi) < cr_ 1 (x2) < • • • < cr_ 1 (a:m),

(4) Xj is the largest vertex (with respect to a such tha t Xj_2Xj G E but x j s X j ^
E.

(For notational reasons12 let xq = x and x_i = xi.) The situation for m = 2
was constructed initially.

The vertices xm- 2 ,x m_i, and x m satisfy the hypothesis of property (L3) as a,b,
and c respectively. Hence, choose xm+i to be the largest vertex (with respect to
a) larger than x m which is adjacent to xm- \ but not adjacent to xm_2. Now, if
x m+i were adjacent to xm_3 , then (L3) applied to the vertices xm_ 3 ,x m_ 2 ,x m+i
would imply the existence of a vertex larger than x m+i (hence larger than x m)
which is adjacent to xm _ 2 but not to xm_ 3 , contradicting the maximality of x m in
(4). Therefore, xm+i is not adjacent to xm_ 3 . Finally, it follows from (1),(2), and
chordality tha t XjXm+i ^ E for i = 0 ,1 , . . . , m — 4, m.

Clearly this inductive procedure continues indefinitely, but the graph is finite, a
contradiction. Therefore, the vertex x must be simplicial, and the theorem is proved
in one direction. The converse follows from Theorem 4.1. □

In an unpublished work, Tarjan [1976] has shown another method of searching
a graph tha t can be used to recognize triangulated graphs. It is called maximum
cardinality search (MCS), and it is described as follows:

MCS: The vertices are to be numbered from n to 1.
The next vertex to be numbered is always one which is adjacent to the most num
bered vertices, ties being broken arbitrarily.

Using an argument similar to the proof of Theorem 4.3, one can show tha t G is
triangulated if and only if every MCS ordering of the vertices is a perfect elimination
scheme. 13 It should be pointed out tha t there are MCS orderings which cannot be
obtained by Lex BFS, there Lex BFS orderings which are not MCS, and there exist
perfect elimination schemes which are neither MCS nor Lex BFS. Exercise 27 and
28 develop some of the results on MCS. [these are lemma 2 and theorem 4.4 above]
Both Lex BFS and MCS are special cases of a general method for finding perfect
elimination schemes recently developed by Alan Hoffman and Michel Sakarovich.

12W hat is Xj - 3 for j = 1?
13See our edition for the proof o f these results.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now, suppose there exists an open chordless path P of Gj+i with k > 4 vertices
such tha t <r_ 1 (pfc) > cr_ 1 (p i) > cr_ 1 (p fc_ 1) > cr- 1 (p 2); for every i < k we have

< &~1(Pk)', arid p \ is the largest vertex (with respect to <Tj tha t is adjacent
to p 2 and not adjacent to P k - i - (Such a path exists; for example, x2, xq. x\ , X3

meets these requirements.) Property L3 and P k - i , P i , Pk imply the existence of
Pk+i, which is the largest vertex adjacent to pk and not adjacent to p2. Note tha t
Pk+i is not adjacent to P k - i — if it was, then L3 and P k - i , P2 , Pk+i would give
us a vertex tha t is larger than p \ and adjacent to p 2 but not adjacent to P k - i , a
contradiction on the maximality of p \ . Since Pk+i is not adjacent to P k - i , it follows
from chordality tha t Pk+i is not adjacent to any pi with i < k. We create a new
path Q by appending Pk+i to P and then reversing this path. Q has the same
properties as P tha t we mentioned earlier, but contains one more vertex. We can
now inductively apply this procedure indefinetely. This is a contradiction, however,
since Gj is a finite graph. Hence xq is simplicial in Gj+1-

We have just shown tha t each step of the algorithm produces a perfect vertex
elimination scheme for the vertices numbered after the first j steps. Then after
numbering every vertex of G we have produced a perfect vertex elimination scheme
for G. The converse follows from Theorem 4.1. □

In an unpublished work, Tarjan [1976] has shown another method of searching
a graph tha t can be used to recognize triangulated graphs. It is called maximum
cardinality search (MCS), and it is described as follows:

MCS: The vertices are to be numbered from n to 1.
The next vertex to be numbered is always one which is adjacent to the most num
bered vertices, ties being broken arbitrarily.

b eg in
1. assign the label 0 to each vertex;
2. for i <— n to 1 s te p - 1 d o
3. select: pick an unnumbered vertex v with largest label;
4. a(i) <— v; c o m m e n t This assigns to v the number i.
5. update: for each unnumbered vertex w € Adj(v) d o add 1 to label(w);
en d

Figure B.9: Algorithm 4.2

Using an argument similar to the proof of Theorem 4.3, one can show tha t
G is triangulated if and only if every MCS ordering of the vertices is a perfect
elimination scheme. 14 It should be pointed out tha t there are MCS orderings which
cannot be obtained by Lex BFS, there are Lex BFS orderings which are not MCS,
and there exist perfect elimination schemes which are neither MCS nor Lex BFS.
Exercise 27 and 28 develop some of the results on MCS. [these are lemma 2 and
theorem 4.4 above] Both Lex BFS and MCS are special cases of a general method
for finding perfect elimination schemes recently developed by Alan Hoffman and
Michel Sakarovich.

14See the A ddendum for our treatm ent of MCS.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Addendum

We offer a few miscellaneous proofs in this section, as well as the proofs for the MCS
algorithm.

E xerc ise 12. For any minimal vertex separator S' of a triangulated graph
G = (V, E), there exists a vertex c in each connected component of G v - s such that
S C Adj(c).

Proof. Let a and b be nonadjacent vertices of G, and let 5 be a nonempty
minimal a-b separator. Let Ga be the connected component of G y - S tha t contains
a. Assume towards contradiction tha t Ga does not contain a vertex adjacent to all
of S.

Take any c 6 Ga with maximum \Adj(c) fl 5 |, and any y £ S with y £ Adj(c).
Take any shortest path between c and y in G^U{y} and call it P. Since S is minimal
there is some d £ Ga adjacent to y, otherwise we could remove y from 5 to get a
smaller a-b separator. There is a path between c and d since Ga is connected. Thus
the path P always exists and is given by c d15 —> y (d cannot equal c because y
was chosen to be nonadjacent to c and d £ Adj(y)). Now, it cannot be true tha t
(Adj(c) fl 5) C (Adj(d) fl S) because then \Adj(d) fl 5 | > \Adj(c) fl S\, which would
contradict the maximality of c. This means there is a vertex x £ S tha t is adjacent
to c but not adjacent to d. Consider the vertex on P tha t is nearest (wrt to the
path order) d and also adjacent to x; call it e. Since 5 is a clique we know x and y
are adjancent. Then e d —> y —> x —>e is a, chordless cycle with length at least
four, a contradiction. □

P ro p o s itio n 4.9. (LI) For every vertex x £ G, if j < i then L{(x) < Lj(x) .

Proof. We show tha t for any i > 0, Lj(x) < L j_i(x); the desired result then
follows by induction. So, to this end, let y be the vertex chosen to be numbered at
step i — 1. If y £ Adj(x) then L{(x) — Li - \ {x) and we are done. If y £ Adj(x), then
we add i — 1 to L,(x) to obtain L j_i(x). W hat this really means is tha t we append
1 — 1 to the end of Li(x), and so it impossible for Li(x) > Lj_i(x) to be true. This
proves the result. □

P ro p o s itio n 4.10. (L2) For all vertices x, y £ G, if j < i and Lj(x) < L{(y)
then Lj(x) < Lj{y).

Proof. We need only show tha t Lj(x) < Li(y) => L j_i(x) < Lj_i(y), as above.
Let z be the vertex tha t is numbered in step % — 1. If z is non adjacent to x and to
y, then we are done since both labels remain untouched. If z is adjacent to both,
then we append i — 1 to both labels and the ordering must remain the same. If
2 is adjacent to y and not to x, then L{(y) < Lj_i(y) and Lj(x) = L i - i(x), so
Lj_i(x) < Li-i (y) . Finally, if z is adjacent to x and not to y, then we append i — 1
to Li(x). This cannot make L j_i(x) > Lt (y) however, because there must be some
value j in Li(y) large enough in order for Lj(y) > L t (x). This value remains in
-Li-i(y), and so L ,_i(x) < L j-i(y). □

15the notation x y refers to a chordless path of length at least one between x and y

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ro p o s itio n 4.11. (L3) If a 1(a) < a 1(b) < a J(c) and c £ Adj(a) — Adj(b),
then there exists a vertex d £ Adj(b) — Adj(a) with cr_ 1 (c) < a ~ 1(d).

Proof. Let a, b, c be so tha t cr_ 1 (a) < cr_ 1 (6) < cr_ 1 (c) and c £ Adj(a) — Adj(b).
Assume towards contradiction tha t for any vertex chosen before c and adjacent to
b, it holds tha t it is also adjacent to a.

Let i be the step in which b was picked. It is then true that cr_ 1 (c) £ Lj(a) and
<7 _ 1 (c) Li(b) because c was chosen before both a and b and because c is adjacent
to a and not adjacent to b. If Li(a) and L l (b) contain the same numbers greater
than <7 - 1 (c), then Li(a) > Li(b), a contradiction (note this includes the case where
Li{a) and Li(b) both contain no numbers larger than a ~ 1(c) as w ell). So there must
exist some 2; £ Li(b) with <7- 1 (c) < 2 and 2 ^ Lj(a) in order for Lj(a) < Li(b). But
this implies the existence of a vertex y such tha t a~ l {y) = 2 th a t is adjacent to b
and not to a, a contradiction. □

D efin ition 4.5. Let a be an ordering of the graph G = (V, E). We say tha t o
has property T if the following is true: for any a, b, c such that a ~ 1(a) < cr_ 1 (h) <
(j- 1 (c) and c € Adj(a) — Adj(b), there is a vertex d £ Adj(b) — Adj(a) such tha t
a~ l (b) < a ~ 1(d). Note tha t this is very similar to property L3 above, except we only
require d to be chosen before b instead of c. This can be viewed as a generalization
of the L3 property, and in fact, the proof we give below for the correctness of MCS
can be applied to LexBFS without change.

L em m a 4.6. Any ordering produced by MCS has property T.

Proof. Let a be an ordering produced by MCS and let a, b, c be such tha t
<r- 1 (a) < cr_ 1 (6) < a _ 1 (c) and c € Adj(a) — Adj(b). Let X be the set of vertices
chosen before b, tha t is, those vertices x £ X such tha t c j _ 1(6) < a ~ 1(x). Divide X
into four disjoint sets X \ , X 2 , X 3 and X 4 , where X \ contains vertices adjacent to b
and not to a, X 2 contains vertices adjacent to a and not to b, X 3 contains vertices
adjacent to both a and b, and X 4 the remaining vertices. We know jAC2 1 > 1 since
c £ A2.

Since <7 _ 1 (a) < cr_ 1 (6), b was chosen before a and so |Wi| 1AC3 1 > IX2 I + |AC3 1.
This implies tha t |A i| > 1 and so the result is proved. □

L em m a 4.7. Let a be an ordering of G = (V, E). Then a is a perfect vertex
elimination scheme of G if and only if for any a, b, c such tha t ab € E, ac £ E,
cr_ 1 (a) < <j_ 1 (6) and cr- 1 (a) < cr- 1 (c), it holds tha t be £ E.

Proof. For convenience, let Gx refer to the subgraph of G induced by x and all
vertices following x in a. If a is a perfect elimination scheme, then the neighborhood
of a in Ga is complete, and so be £ E. Going the other way, if every such triplet has
the above property, then for any vertex x it is true tha t x ’s neighborhood in Gx is
complete, and hence a is a perfect vertex elimination scheme of G.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h e o re m 4.8 (Tarjan [1984]). Let G = (V, E) be a chordal graph and let a be
an ordering of G. If a has property T then a is a perfect vertex elimination scheme.

Proof. Assume a has property T. Consider all paths of G with at least three
vertices tha t have a certain property Q. From these paths, let P = (vq, v\. w2, ■ ■ . Vk)
be the path with maximum <r_1(ufc). We define property Q as follows: for some i in
the interval [1, k — 1], it is true that

cr_ 1 (u 0) > cr_ 1 (u fc) > a ~ l { v i) > cr_ 1 (u 2) • • • > <?~l { v i)

and
<7~l {Vi) < (J ~ l { v i + 1) < • < <T~l {V k)

hold.
Apply property T to vertices t>i, Vk, and vq to obtain a vertex x such tha t x is

adjacent to vy. and and not to v\ and <j~l (vk) < <J~l (x). Since there is at least one
vertex adjacent to x (ie, Vk), let j > 1 be the minimum such tha t Vj is a vertex on
P tha t is adjacent to x (if j = 0 we would have a cycle of length more than three;
j / 1 from property T). Now, if cr-1 (vo) > then the path vo, v \ , . . . , Vj, x
has property Q. If <j-1 (x) > <r_1(uo), then the path x ,V j ,V j - 1 , . . . ,vo has property
Q. In both cases we have a contradiction (the last vertex would be larger than Vk
with respect to the ordering a). From this we conclude that no path has property
Q-

Now consider any triplet of vertices a,b,c with ab € E, ac € E, and so tha t a
orders a before both b and c. If be £ E, then one of bac or cab must have property
Q. But since we have shown there cannot be any paths with property Q, it follows
tha t no such triplets exist. Hence a is a perfect vertex elimination scheme of G by
Lemma 4.7. □

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix D

Mizar abstracts

This appendix contains the M iz a r abstracts for our two source files. The first
section contains the M iz a r code for the formalization of Section 3.1 and the sec
ond section contains the code for the formalization of Sections 3.3 and 3.4. These
are abstracts, which means tha t the proofs are omitted, but the statements of all
definitions and theorems are present.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

: Chordal Graphs
by Broderick Arneson and Piotr Rudnicki

: Received August 16, 2006
: Copyright (c) 2006 Association of Mizar Users

environ

vocabularies ARYTM, ARVTM_1, BOOLE, CARD_1, CAT_1, ORDINAL2, FINSET_1,
FUNCT_1, FINSEQ_1, FINSEQ_4, GRAPH_1, GLIB_000, GLIB_001, GL1B_002,
MATRIX_2, MSAFREE2, XREAL_0, NAT_1, INT_1, PRE_TOPC, REALSET1, RELAT_1,
RELAT_2, CHORD, TOPGEN_l, SQUARE_1, GRAPH_2, MEMBERED, BHSP_3;

notations TARSKI, XBOOLE_0, CQC_SIM1, SUBSET_1, ORDINAL1, XCMPLX_0, XXREAL_0,
DOMAIN_l, RELAT_1, FUNCT_1, FUNCT_2, FINSEQ_1, CARD_1, FINSET_1, INT_1,
NAT_1, GLIB_000, GLIB_001, GLIB_002, ZFMISC_1, CQC_LANG, ASIAN, ENUMSET1,
FINSEQ_4, NUMBERS, GRAPH_2, PRE_CIRC, MEMBERED;

constructors DOMAIN_l, NAT_1, AMISTD_2, BINARITH, FINSEQ_4, GLIB_001,
GLIB_002, CQC_SIMl, GRAPH_2, PRE_CIRC, XXREAL_0;

registrations RELSET_1, NAT_1, XBOOLE_0, MEMBERED, GLIB_000, FINSEQ_1,
GLIB_001, GLIB_002, SUBSET_1, FINSET_1, 1NT_1, ABIAN, JORDAN1D, ORDINALl,
RELAT_1, PRE_CIRC, PNPROC_l, HEYTING3;

requirements ARITHM, BOOLE, NUMERALS, REAL, SUBSET;

begin : Preliminaries

theorem :: CHORD:1 :: NatOO
for n being non zero natural number holds n-1 is natural number & 1 <=

theorem :: CHORD;2 :: Nat02
for n being odd natural number holds n-1 is natural number & 1 <= n;

theorem :: CHORD:3 : EvenOdd02
for n,m being odd Integer st n < m holds n <= m-2;

theorem :: CHORD:4 :: EvenOdd03:
for n,m being odd Integer st m < n holds m+2 <= n;

theorem :: CHORD:5 :: EvenOdd04:
for n being odd natural number st 1 <> n
ex m being odd natural number sc m + 2 ■ n;

theorem :: CHORD:6 :: OddlOO
for n being odd natural number st n<=2 holds n=l;

theorem :: CHORD:7 :: OddlOl
for n being odd natural number st n<=4 holds n=l or n=3;

theorem :: CHORD:8 :: Oddl02
for n being odd natural number st n<=6 holds n=l or n=3 or n=5;

theorem :: CHORD:9
for n being odd natural number st n<=8 holds n=l or n=3 or n=5 or n=7;

theorem :: CHORD:10 :: EvenlOO
for n being even natural number st n<=l holds n=0;

theorem :: CHORD:11 : EvenlOl
for n being even natural number st n<=3 holds n=Q or n=2;

theorem :: CHORD:12 :: Evenl02
for n being even natural number st n<=5 holds n=0 or n=2 or n=4;

theorem :: CHORD:13 :: Evenl03
for n being even natural number st n<=7 holds n=0 or n=2 or n=4 or n=6;

theorem :: CHORD:14
for p being FinSequence, n being non zero natural number
st p is one-to-one & n <= len p holds (p.n)..p = n;

theorem :: CHORD:15 :: IndexOl
for p being non enqpty FinSequence, T being non empty Subset of rng p
ex x being set st x in T & for y being set st y in T holds x..p <= y..p;

definition let p be FinSequence, n be natural number;
func p.followSet(n) -> finite sec equals

:: CHORD:def 1
rng (n.len p)-cut p;

end;

theorem :: CHORD:16 :: FollowOO
for p being FinSequence, x being set, n being natural number
st x in rng p & n in dom p & p is one-to-one
holds x in p .followSet(n) iff x..p >= n;

theorem :: CHORD:17 :: Follow03
for p, q being FinSequence, x being set st p = <*x*>-'q
for n being non zero natural number holds p .followSet(n+1) = q.followSet(n);

theorem :: CHORD:18 :: FinSubseqOO
for X being set, f being FinSequence of X, g being FinSubsequence of f
st len Seq g = len f holds Seq g = f;

begin :: Miscellany on graphs

theorem :: CHORD:19 :: :: JoinsOl:
for G being _Graph, S being Subset of the_Vertices_of G
for H being inducedSubgraph of G,s
for u,v being set st u in S & v in S
for e being set st e Joins u,v,G holds e Joins u,v,H;

theorem :: CHORD:20
for G being _Graph, W being Walk of G
holds W is Trail-like iff len W = 2*<card W.edges{))+1;

theorem :: CHORD:21 : Walk02
for G being _Graph, S being Subset of the_Vertices_of G
for H being removeVertices of G,S
for w being Walk of G
st (for n being odd natural number st n <= len w holds not w.n in S)
holds W is Walk of H;

theorem :: CHORD:22 :: Walk03
for G being _Graph, a,b be set st a<>b
for W being Walk of G st W.verticesO = {a,b}
holds ex e being set st e Joins a,b,G;

theorem :: CHORD:23 :: Walk04

chord.abs

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Cor G being _Graph, S being non empty Subset of the_Vertices_of G
for H being inducedSubgraph of G,S
for W being Walk of G st W.verticesO c= S holds W is Walk of H;

theorem :: CHORD:24 :: CyclelikeOl
for G1.G2 being _Graph st GI *■ G2
for W1 be Walk of GI, W2 being Walk of G2
st wl = W2 holds W1 is Cycle-like implies W2 is Cycle-like;

theorem :: CHORD:25 :: PathOl
for G being _Graph, P being Path of G, m, n being odd natural number
st m <= len P & n <= len P & P.m = p.n
holds m = n or (m = 1 & n = len P) or (m = len P & n = 1);

theorem :: CHORD:26
for G being _Graph, P being Path of G st P is open
for a,e,b being set
st not a in P.verticesO & b = P.firstO & e Joins a,b,G
holds G.walkOf(a,e,b).append(P) is Path-like;

theorem :: CHORD:27 :: PathLike03
: A similar theorem is needed for obtaining non closed Path

for G being _Graph, P,H being Path of G
st P.edgesO misses H.edgesO &

P is non trivial & P is open & H is non trivial & H is open &
P.verticesO /\ H.vertices() = { P.firstO, P.lastO) &
H. first () = P.lastO & H.lastO = P.firstO

holds P.append(H) is Cycle-like;

theorem :: CHORD:28 :: FathLike04
for G being _Graph, Wl,W2 being Walk of G st Wl.lastO = W2. first ()
holds Wl. append (W2). length O = Wl. length O + W2. length O;

theorem :: CHORD:29 :: SubgraphOl
for G being _Graph, A,B being non empty Subset of the_Vertices_of G st B c=
for Hi being inducedSubgraph of G,A
for H2 being inducedSubgraph of H1,B
holds H2 is inducedSubgraph of G , B

theorem :: CHORD:30 :: SubgraphOla
for G being _Graph, A,B being non empty Subset of the_Vertices_of G st B c=
for HI being inducedSubgraph of G,A
for H2 being inducedSubgraph of G,B
holds H2 is inducedSubgraph of H1,B;

theorem :: CHORD:31 :: Subgraph02
for G being _Graph, S,T being non empty Subset of the_Vertices_of G st T c=
for G2 being inducedSubgraph of G,S
holds G2.edgesBetween(T) = G .edgesBetween(T);

: : we do not consider infinite graphs
scheme :: CHORD:sch 1
FinGraphOrderCompInd{P[set)>:

for G being finite _Graph holds P[G]
provided

for k being non zero natural number st
(for Gk being finite _Graph st Gk.orderO < k holds P(Gk]) holds
(for Gkl being finite _Graph st Gkl.orderO * k holds PtGkll);

:: should be in GLIBs
theorem :: CHORD:32 :: PDistinct
for G being _Graph, W being Walk of G
st W is open & W is Path-like holds W is vertex-distinct;

:: should be in GLIB
theorem :: CHORD:33 :: PathLikel5
for G being _Graph, P being Path of G st P is open & len p > 3
for e being set
st e Joins P.last(),P.first(),G holds P.addEdge(e) is Cycle-like;

begin :: Shortest topological path

definition let G be _Graph, w be Walk of G;
attr w is minlength means

:: CHORD:def 2
for W2 being Walk of G st W2 is_Walk_from W.first(),W.last ()
holds len W2 >= len W;

end;

theorem :: CHORD:34 :: WalkSubwalkOO
for G being _Graph, W being Walk of G, S being Subwalk of W
st S.first() = w.first() & S.edgeSeq() = W.edgeSeq() holds S = W;

theorem :: CHORD:35 :: LenSubwalkOO
for G being _Graph, W being Walk of G, S being Subwalk of W
st len S = len W holds S = W;

theorem :: CHORD:36
for G being _Graph, W being Walk of G st W is minlength holds W is Path like;

theorem :: CHORD:37
for G being _Graph, W being Walk of G st W is minlength holds W is Path like;

theorem :: CHORD:38 :: TopPathOl
for G being _Graph, W being Walk of G
holds (for P being Path of G

st P is_Walk_from W .first(),W .last(> holds len P >= len W)
implies W is minlength;

theorem :: CHORD:39 :: TopPath02
for G being _Graph, W being Walk of G

ex P being Path of G st P is__Walk_f rom W.first(),W.last() & P is minlength;

theorem ;: CHORD:40 :: TopPath03
for G being _Graph, W being Walk of G st W is minlength
holds for m,n being odd natural number st m+2 < n & n <= len w

holds not ex e being set st e Joins w.m,w.n,G;

theorem :: CHORD:41 :: TopPath04
for G being _Graph, S being non empty Subset of the_Vertices_of G
for H being inducedSubgraph of G,S
for W being Walk of H st W is minlength
for m,n being odd natural number st m + 2 < n & n <= len w
holds not ex e being set st e Joins w.m,w.n,G;

theorem :: CHORD:42 :: TopPath05
for G being _Graph for W being Walk of G st W is minlength
for m,n being odd natural number st m<=n & n<=len W

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

holds W.cut(m,n) is minlength;

theorem :: CHORD:43
for G being _Graph st G is connected
for A,B being non empty Subset of the_Vertices_of G st A misses B holds
ex P being Path of G st P is minlength 4 P is non trivial &
P.firstO in A & P.lastO in B 4
for n being odd natural number st 1 < n 4 n < len P
holds not P.n in A & not P.n in B;

begin :: Adjacency and complete graphs

definition let G be _Graph, a,b be Vertex of G;
pred a,b are_adjacent means
: CHORD:def 3 :: DefAdjacent

ex e being set st e Joins a,b,G;
symmetry;

end;

theorem :: CHORD:44 :: VAdjacentOO
for G1,G2 being _Graph st GI == G2
for ul.vl being Vertex of Gl st ul,vl are_adjacent
for u2,v2 being Vertex of G2 st ul-u2 4 vl=v2 holds u2,v2 are_adjacent;

theorem :: CHORD:45 :: VAdjacentOl
for G being _Graph, S being non empty Subset of the_Vertices_of G

C O for H being inducedSubgraph of G,S
for u, v being Vertex of G, t, w being Vertex of H

s t u = t 4 v = w holds u,v are_adjacent iff t,w are_adjacent;

theorem :: CHORD:46 :: PathLike05
for G being _Graph, W being Walk of G
st w. first () <> W.lastO & not W.first(),W.last() are_adjacent
holds W.length() >= 2;

theorem :: CHORD:47 :: PathBuilderOO
: add sequences of vertices and edges

for G being _Graph, vl,v2,v3 being Vertex of G st
vl<>v2 4 vl<>v3 4 v2<>v3 & vl,v2 are_adjacent 4 v2,v3 are_adjacent

ex P being Path of G, el,e2 being set st
P is open 4 len P = 5 & P.length() = 2 4
el Joins vl,v2,G 4 e2 Joins v2,v3.G & P.edges() = (el,e2) &
P.verticesO = (vl,v2,v3) & P.l = vl 4 P.3 = v2 & P.5 = v3;

theorem :: CHORD:48 :: PathBuilderOl
for G being _Graph, vl,v2,v3.v4 being Vertex of G st
vl<>v2 4 vl<>v3 4 v2<>v3 4 v2<>v4 4 v3<>v4 4
vl,v2 are_adjacent 4 v2,v3 are_adjacent 4 v3,v4 are_adjacent

ex P being Path of G st len P = 7 4 P. length () = 3 4
P.verticesO * {vl,v2,v3,v4} 4 P.l = vl 4 P.3 = v2 4 P.5 = v3 4 P.7 = v4;

definition let G be _Graph, S be set;
func G .AdjacentSet(S) -> Subset of the_Vertices_of G equals

:: CHORD:def 4
{u where u is Vertex of G :

not u in S 4 ex v being Vertex of G st (v in S 4 u,v are_adjacent)};
end;

theorem :: CHORD:49

for G being _Graph, S, x being set st x in G .AdjacentSet(S) holds not x in S;

theorem :: CHORD:50 :: AdjacentOO
for G being _Graph, S being set
for u being Vertex of G
holds u in G .AdjacentSet(S) iff

not u in S 4 ex v being Vertex of G st (v in S 4 u,v are_adjacent);

theorem :: CHORD:51 :: AdjacentOl
for G1,G2 being _Graph st Gl == G2 for s being set
holds Gl.AdjacentSet(S) = G2.AdjacentSet(S);

theorem :: CHORD:52 : AdjacentVOO
for G being _Graph, u,v being Vertex of G
holds u in G .AdjacentSet((v)) iff (u <> v 4 v,u are_adjacent};

theorem :: CHORD:53
for G being _Graph, x,y being set
holds x in G .AdjacentSet{(y)) iff y in G .AdjacentSet((x));

theorem :: CHORD:54
for G being _Graph, C being Path of G st C is Cycle-like 4 C.length() > 3
for x being Vertex of G st x in C.verticesO

ex m, n being odd Nat st m+2 < n 4 n <= len C 4 not (m=l 4 n = len C) 4
not (m=l 4 n = len C-2) 4 not (m=3 4 n = len C) 4

C.m <> C.n 4 C.m in G.AdjacentSet{{x}) 4 C .n in G-AdjacentSet({x});

theorem :: CHORD:55 :: CycleOla
for G being _Graph, C being Path of G st C is Cycle-like 4 c.lengthO > 3
for x being Vertex of G st x in C.vertices()
ex m,n being odd natural number st m+2 < n 4 n <= len C 4

C.m <> C.n 4 C.m in G.AdjacentSet<(x)) 4 C.n in G.AdjacentSet((x)) 4
for e being set st e in C.edgesO holds not e Joins C.m,C.n,G;

Gilbert's definition of isolated does not allow a vertex to have a
:: loop and a vertex just with a loop on it is NOT isolated.
:: This needs to be fixed, e.g.
:: v is isolated means G.AdjacentSet((v)) = (}
:: But we can keep the old one and the new one can be expressed just
:: by G.AdjacentSet((v)) = {}. Should this be revised?
:: Ask Lorna and Ryan. For loopless graphs it
:: does not matter, see below.

theorem :: CHORD:56 :: AdjacentVOl; : :: AdjacentVOl
for G being loopless _Graph, u being Vertex of G
holds G.AdjacentSet<{u)) * O iff u is isolated;

theorem :: CHORD:57 :: ConnectedO
for G being _Graph, GO being Subgraph of G,

S being non empty Subset of the_Vertices_of G,
x being Vertex of G,
Gl being {inducedSubgraph of G,S),
G2 being (inducedSubgraph of G,S\/{x})

st Gl is connected 4 x in G.AdjacentSet(the_Vertices_of Gl)
holds G2 is connected;

theorem :: CHORD:58 :: Simplicial2a
for G being _Graph for S being non empty Subset of the_Vertices_of G
for H being inducedSubgraph of G,s

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

for u being Vertex of G st u in S & G.AdjacentSet((u)) c= S
for v being Vertex of H st u=v holds G.AdjacentSet({u)) « H .AdjacentSet({v});

:: Adjacency set as a subgraph of G
definition let G be _Graph, S be set;

mode AdjGraph of G,s > Subgraph of G means
:: CHORD:def 5

it is inducedSubgraph of G,G.AdjacentSet(S)
if S is Subset of the_Vertices_of G;

end;

theorem CHORD:59 :: AdjGraphOO
for Gl, G2 be _Graph st Gl G2
for ul being Vertex of Gl, u2 being Vertex of G2 st ul = u2
for HI being AdjGraph of Gl,{ul}, H2 being AdjGraph of G2,(u2) holds HI == H2;

theorem :: CHORD:60 :: Simplicial2b
for G being _Graph for s being non empty Subset of the_Vertices_of G
for H being inducedSubgraph of G,S
for u being Vertex of G

st u in S & G .AdjacentSet({u}) c= S & G.AdjacentSet({u>) <> {}
for v being Vertex of H st u=v
for Ga being AdjGraph of G,{u}, Ha being AdjGraph of H,{v} holds Ga == Ha;

definition let G be _Graph;
0 5 attr G is complete means

: : CHORD:de f 6
for u,v being Vertex of G st u <> v holds u,v are_adjacent;

end;

theorem :: CH0RD:61 :: Completetr
for G being _Graph st G is trivial holds G is complete;

registration
cluster trivial -> complete _Graph;

end;

registration
cluster trivial simple complete _Graph;

cluster non trivial finite simple complete _Graph;
end;

theorem :: CHORD:62 :: CompleteOO
for G1.G2 being _Graph st Gl == G2 holds Gl is complete implies G2 is complete;

theorem :: CHORD: 63 :: Completed
for G being complete _Graph, S being Subset of the_Vertices_of G
for H being inducedSubgraph of G,S holds H is complete,-

begin :: simplicial vertex :: Golumbic p. 81

definition let G be _Graph, v be Vertex of G;
attr v is simplicial means
: CHORD:def 7
G.AdjacentSet{(v)) <> {} implies

for G2 being AdjGraph of G,{v) holds G2 is complete;
end;

theorem :: CHORD:64 :: SimplicialO
for G being complete _Graph, v being Vertex of G holds v is simplicial;

theorem ;: CHORD:65 :: SimplicialOl
for G being trivial _Graph, v being Vertex of G holds v is simplicial;

theorem :: CHORD:66 :: simpliciall
for G1,G2 being _Graph st Gl == G2
for ul being Vertex of Gl, u2 being Vertex of G2
st ul=u2 & ul is simplicial holds u2 is simplicial;

theorem :: CHORD:67 :: Simplicial2
for G being _Graph for S being non empty Subset of the_Vertices_of G
for H being inducedSubgraph of G,S
for u being Vertex of G st u in S & G .AdjacentSet({u)) c= S
for v being Vertex of H st u=v holds u is simplicial iff v is simplicial;

theorem :: CHORD:68 Simplicial03
for G being _Graph, v being Vertex of G st v is simplicial
for a,b being set st a<>b & a in G.AdjacentSet{{v)) & b in G .AdjacentSet ({
holds ex e being set st e Joins a.b.G;

theorem :: CHORD:69 :: Simplicial03a
for G being _Graph, v being Vertex of G
st not v is simplicial

ex a,b being Vertex of G st a<>b & v<>a & v<>b &
v,a are_adjacent & v,b are_adjacent & not a,b are_adjacent;

begin : : Vertex separator : : Golumbic, p. 84

definition let G be _Graph, a,b be Vertex of G;
assume a<>b & not a,b are_adjacent;
mode VertexSeparator of a,b -> Subset of the_Vertices_of G means
:: CHORD:def 8
not a in it & not b in it &
for G2 being removeVertices of G,it holds

not (ex W being Walk of G2 st W is_Walk_from a.b);
end;

theorem :: CHORD:70 :: VS01
for G being _Graph, a,b being Vertex of G st a o b & not a.b are_adjacent
for s being VertexSeparator of a,b holds s is vertexseparator of b,a;

:: alternate characterization of vertex Separator
theorem :: CH0RD:71 :: VS02
for G being _Graph, a,b being Vertex of G st a<>b & not a.b are_adjacenc
for S being Subset of the_Vertices_of G holds

S is Vertexseparator of a,b iff
(not a in S & not b in S &
for W being Walk of G st W is_Walk_from a,b holds

ex x being Vertex of G st x in S & x in W.vertices());

theorem :: CHORD:72 :: VS07
for G being _Graph, a,b being Vertex of G st a o b & not a.b are_adjacent
for S being Vertexseparator of a,b
for W being Walk of G st W is_Walk__f rom a,b

ex k being odd Nat st 1 < k & k < len W U W.k in S;

theorem :: CHORD:73 :: VS08a

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

for G being _Graph, a.b being Vertex of G st a<>b & not a.b are_adjacent
for S being Vertexseparator of a.b
st S = {) holds not ex W being Walk of G st W is_Walk_from a.b;

theorem :: CHORD:74
for G being _Graph, a.b being Vertex of G
st a<>b ¬ a.b are_adjacent & not ex W being Walk of G st W is_Walk_from a.b
holds {) is Vertexseparator of a.b;

theorem :: CHORD:75 :: VS11
for G being _Graph, a.b being Vertex of G st a<>b & not a.b are_adjacent
for S being Vertexseparator of a.b, G2 being removeVertices of G.S
for a2 being Vertex of G2 st a2=a holds G2.reachableFrom(a2) /\ s = {};

theorem :: CHORD:76 :: VSllb
for G being _Graph, a.b being Vertex of G st a<>b & not a,b are_adjacent
for S being Vertexseparator of a.b. G2 being removeVertices of G.S
for a2,b2 being Vertex of G2 st a2=a & b2=b holds

G2.reachableFrom(a2) A G2.reachableFrom(b2) • {);

theorem :: CHORD:77 :: VS10
for G being _Graph, a.b being Vertex of G st a<>b & not a,b are_adjacent
for S being Vertexseparator of a.b for G2 being removeVertices of G.S
holds a is vertex of G2 & b is Vertex of G2;

definition let G be _Graph, a.b be vertex of G;
let S be Vertexseparator of a.b;
attr S is minimal means

:: CHORD:def 9
for T being Subset of S st T <> S holds not T is Vertexseparator of a.b;

end;

theorem :: CHORD:78 :: VSOOO
for G being _Graph, a.b being Vertex of G
for S being Vertexseparator of a.b st S * {) holds S is minimal;

theorem :: CHORD:79 :: minVSexistance
for G being finite _Graph for a.b being Vertex of G
ex S being Vertexseparator of a.b st S is minimal;

theorem :: CHORD:80 :: VS13
Property "symmetry" for 2 argument modes could be used if we had it
as Vertexseparator of a.b is a Vertexseparator of b.a

: then this theorem would not be needed
for G being _Graph, a.b being Vertex of G st a<>b & not a.b are_adjacent
for s being Vertexseparator of a.b st S is minimal
for T being Vertexseparator of b.a st S=T holds T is minimal;

theorem :: CHORD:81 :: VS06: :: VS06
for G being _Graph, a.b being Vertex of G st a<>b & not a.b are_adjacent
for S being Vertexseparator of a.b st S is minimal
for x being Vertex of G st x in S

ex W being Walk of G st W is_Walk_from a.b & x in W.vertices();

theorem :: CHORD:82 :: VertexSepO
for G being _Graph
for a.b being Vertex of G st a<>b & not a.b are_adjacent
for S being Vertexseparator of a.b st S is minimal
for H being removeVertices of G.S for aa being Vertex of H st aa=a

for x being Vertex of G st x in S
ex y being Vertex of G st y in H.reachableFrom(aa) & x.y are_adjacent;

theorem :: CHORD:83 :: VertexSepOl
:: Property "symmetry" for 2 argument modes could be used if we had it
:: as Vertexseparator of a.b is a Vertexseparator of b,a
for G being _Graph
for a.b being Vertex of G st a<>b & not a,b are_adjacent
for S being Vertexseparator of a.b st S is minimal
for H being removeVertices of G.s for aa being Vertex of H st aa=b
for x being Vertex of G st x in S

ex y being Vertex of G st y in H .reachableFrom(aa) & x,y are_adjacent;

begin :: Chordal graphs :: Golumbic, p. 81

:: The notion of a chord. Is it worthwhile having it?

:: definition let G be _Graph, W be Walk of G, e be set;
:: pred e is_chord_of w means
:: ex m, n being odd Nat st m < n & n <= len w 4 w.m <> w.n 4
:: e Joins W.m.W.n.G 4
:: for f being set st f in W.edgesO holds not f Joins W.m.W.n.G;
:: end;

:: More general notion of a chordal Walk. Is such a notion useful? Or
: should we stick with chordal Path?

definition let G be _Graph, W be Walk of G;
attr W is chordal means
: CHORD:def 10
ex m, n being odd natural number st m+2 < n 4 n <= len W & W.m <> W.n 4

(ex e being set st e Joins W.m.W.n.G) &
for f being set st f in W.edgesO holds not f Joins W.m.W.n.G;

end;

notation let G be „Graph, W be Walk of G;
antonym w is chordless for w is chordal;

end;

:: The other characterization of chordal is 'more' technical and
:: sometimes more convenient to work with. Is this really true?
:: I have tried to save as much as possible of what Broderic has already done.
: Need separate theorems for walks and paths! They cannot be put as an iff.

theorem :: CHORD:84 :: ChordalWalkOl
for G being _Graph, W being Walk of G
st W is chordal
ex m, n being odd natural number st m+2 < n & n <= len W 4 w.m <> W.n 4

(ex e being set st e Joins W.m.W.n.G) 4
(W is Cycle-like implies not (m=l 4 n = len W) 4

not (m=l 4 n = len w-2) 4
not (m=3 & n = len W));

theorem :: CHORD:85 :: ChordalPathOl
for G being _Graph, P being Path of G
st ex m,n being odd natural number st m+2 < n & n <= len P 4

(ex e being set st e Joins P.m.P.n.G) 4
(P is Cycle-like implies not (m*l & n = len P) Sc

not (m=l 4 n = len P-2) 4

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

not (m=3 & n = len P))
holds P is chordal;

theorem :: CHORD:86 :: ChordalWalk02
for G1.G2 being _Graph st Gl == G2
for wl being Walk of Gl, W2 being Walk of G2
sc Wl=W2 holds Wl is chordal implies W2 is chordal;

theorem :: CHORD:87 ChordalWalk03
for G being _Graph, S being non empty Subset of the_Vertices_of G,

H being (inducedSubgraph of G.S), Wl being walk of G, w2 being Walk of H
st Wl * W2 holds W2 is chordal iff Wl is chordal;

theorem :: CHORD:88
for G being _Graph, W being Walk of G
st w is Cycle-like & W is chordal & W.length()=4

holds ex e being set st e Joins W.1.W.5.G or e Joins W.3.W.7.G;

theorem :: CHORD:89 :: MinChordalOl
for G being _Graph, W being Walk of G st w is minlength holds W is chordless;

theorem :: CHORD:90
for G being ..Graph, W being Walk of G
st W is open & len W = 5 & not W.first{),W.last() are_adjacent
holds W is chordless;o

theorem :: CHORD:91
for G being _Graph, w being Walk of G
holds w is chordal iff W.reverseO is chordal;

theorem :: CHORD:92 ;: CPath03
for G being _Graph, P being Path of G st P is open & P is chordless

for m. n being odd natural number st m < n & n <= len P holds
(ex e being set st e Joins P.m,P.n,G) iff m+2 = n;

theorem :: CHORD:93
for G being _Graph, P being Path of G st P is open & P is chordless
for m.n being odd natural number st m < n & n <= len P
holds P.cut(m.n) is chordless & P.cut(m.n) is open;

theorem :: CHORD:94
for G being _Graph, S being non empty Subset of the_Vertices_of G,

H being (inducedSubgraph of G.S), W being Walk of G, V being Walk of H
st W = V holds W is chordless iff V is chordless;

definition let G be _Graph;
attr G is chordal means
:: CHORD:de f 11
for P being Walk of G st P.lengthO > 3 & P is Cycle-like holds P is chordal;

end;

theorem :: CHORD:95 :: ChordalOl
for G1.G2 being _Graph st Gl == G2 holds Gl is chordal implies G2 is chordal;

theorem :: CHORD:96 :: Chordal02
for G being finite _Graph st card the_Vertices_of G <* 3 holds G is chordal;

registration
cluster trivial finite chordal _Graph;

cluster non trivial finite simple chordal _Graph;

cluster complete -> chordal _Graph;
end;

registration let G be chordal _Graph, V be set;
cluster -> chordal inducedSubgraph of G,V;

end;

theorem :: CHORD:97
for G being chordal _Graph, P being Path of G st P is open & P is chordless
for x.e being set st (not x in P.verticesO & e Joins P.lastO.x.G &

not ex f being set st f Joins P.(len P-2),x,G)
holds P.addEdge(e) is Path-like & P.addEdge(e) is open &

P.addEdge(e) is chordless;

:: Golumbic, page 83. Theorem 4.1 (i) ==> (iii)
theorem :: CHORD:98 :: :: Chordal41: PR
for G being chordal _Graph, a,b being Vertex of G
st a<>b & not a,b are_adjacent
for s being Vertexseparator of a,b st S is minimal & S is non empty
for H being inducedSubgraph of G,S holds H is complete;

:: Golumbic, page 83, Theorem 4.1 (iii)->(i)
theorem :: CHORD:99 ::: DiracThm2: :: : DiracThm2
for G being finite _Graph
st for a.b being Vertex of G st a o b & not a.b are_adjacent

for s being Vertexseparator of a.b st S is minimal & s is non empty
for G2 being inducedSubgraph of G.S holds G2 is complete

holds G is chordal;

:: Exercise 12, p. 101.
:: This needs “finite-branching", we do it for finite though
theorem :: CHORD:100 :: tExercisel2
for G being finite chordal _Graph, a, b being Vertex of G
st a o b & not a.b are_adjacent
for S being Vertexseparator of a.b st S is minimal
for H being removeVertices of G.S, al being Vertex of H st a = al
ex c being Vertex of G st c in H.reachableFrom(al) &

for x being Vertex of G st x in S holds c.x are_adjacent;

theorem :: CHORD:101 : Remark p. 83
for G being finite chordal _Graph, a, b being Vertex of G
st a <> b & not a.b are_adjacent
for S being Vertexseparator of a.b st S is minimal
for H being removeVertices of G,S, al being Vertex of H st a = al
for x, y being Vertex of G st x in S & y in S holds
ex c being Vertex of G
st c in H.reachableFrom(al) & c,x are_adjacent & c.y are_adjacent;

Golumbic, page 83, Lenma 4.2.
theorem :: CHORD:102 :: DiracLemma2
for G being non trivial finite chordal _Graph
st not G is complete
ex a.b being Vertex of G
st a o b & not a.b are_adjacent & a is simplicial & b is simplicial;

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

theorem :: CHORD:103 :: DiracLemmal
for G being finite chordal _Graph ex v being Vertex of G st v is simplicial;

begin :: Vertex Elimination Scheme :: Golumbic, p. 82

definition let G be finite _Graph;
mode VertexScheme of G -> FinSequence of the_Vertices_of G means

:: CHORD:def 12
it is one-to-one & rng it = the_Vertices_of G;

end;

registration
let G be finite _Graph;
cluster -> non empty VertexScheme of G;

end;

theorem :: CHORD:104
for G being finite _Graph, S being VertexScheme of G
holds len S = card the_Vertices_of G;

theorem :: CHORD:105
for G being finite _Graph, S being VertexScheme of G holds 1 <= len S;

theorem :: CHORD:106
for G, H being finite _Graph, g being VertexScheme of G
st G == H holds g is VertexScheme of H;

* ^ I
definition let G be finite _Graph, S be VertexScheme of G, x be Vertex of G;

redefine func x..S > non zero Element of NAT;
end;

definition let G be finite _Graph, s be VertexScheme of G, n be Nat;
redefine func S .followSet(n> > Subset of the_Vertices_of G;

end;

theorem :: CHORD:107 :: NeVSChFol:
for G being finite _Graph, S being VertexScheme of G,

n being non zero natural number st n <■ len S
holds S.followSet(n) is non empty;

definition let G be finite _Graph, S be VertexScheme of G;
attr S is perfect means

:: CHORD:def 13
for n being non zero natural number st n <= len S
for Gf being inducedSubgraph of G,S.followSet(n>
for v being Vertex of Gf st v = S.n holds v is simplicial;

end;

:: finite is needed unless we add loopless
theorem :: CHORD:108 :: PerSchemeOl
for G being finite trivial _Graph, v being Vertex of G
ex S being VertexScheme of G st S = <*v*> & S is perfect;

theorem :: CHORD:109
for G being finite _Graph, v being VertexScheme of G holds
V is perfect iff
for a,b,c being Vertex of G st b<>c & a.b are_adjacent & a,c are_adjacent
for va,vb,vc being natural number
st va in dom V & vb in dom V & vc in dom V & V.va =* a &

v .vb = b & v . v c = c & v a < vb & va < vc
holds b,c are_adjacent;

:: Golubmic pg 83-84, Theorem 4.1 (i) ==> (ii)
registration let G be finite chordal _Graph;

cluster perfect VertexScheme of G;
end;

theorem :: CHORD:110
for G, H being finite chordal _Graph, g being perfect VertexScheme of
st G == H holds g is perfect VertexScheme of H;

:: Golubmic pg 83-84, Theorem 4.1 (ii) ==> (i)
theorem :: CHORD:lll :: Chordal41c:
for G being finite _Graph
st ex S being VertexScheme of G st S is perfect holds G is chordal;

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Js5

Recognizing chordal graphs: Lex BFS and MCS
Broderick Arneson and Piotr Rudnicki
August 2 00 6

envir

registration
cluster non empty with_finite-elements set;
cluster non empty finite with_finite-elements Subset of bool NAT;

end;

G i
00

vocabularies AMI_1, ARYTM, ARYTM^l, BOOLE, CARD_1, CAT_1, FINSEQ_1,
FINSET_1, FUNCOP_l, FUNCT_1, FUNCT_4, GRAPH_1, GLIB_000, GLIB_001,
GLIB_002, GLIB_003, MATRIX_2, MSAFREE2, NEWTON, MEMBERED, ORDXNALl,
ORDINAL2, PARTFUN1, PBOOLE, POLYNOMl, PRE_TOPC, SQUARE_1, DICKSON,
REALSET1, RELAT_1, RELAT_2, SEQM_3 , CHORD, BAGORDER, UPROOTS, TOPGEN_l,
FINSEQ_4, NAT_1, ARYTM—3, WELLORD1, ALGSEQ_1, LEXBFS, CARD_FIN;

notations TARSKI, XBOOLE_0, ZFMISC_1, NUMBERS, SUBSET_1, XXREAL_0, XREAL_0,
RELAT_1, RELAT_2, WELLORD1, MEMBERED, PARTFUN1, FUNCT_1, FUNCT_2,
BINARITH, PBOOLE, ORDINALl, CARD_1, SEQM_3, POLYNOMl, FINSET_1, XCMPLX_0,
NAT_1, CQC_LANG, FUNCT_4, GLIB_000, GLIB_001, GLIB_002, PRE_CIRC,
GLIB_003, BAGORDER, TERMORD, UPROOTS, CHORD, FINSEQ_1, FINSEQ_4,
DOMAIN_l, ABIAN, RELSET_1, CARD_FIN;

constructors DOMAIN_l, AMISTD_2, UPROOTS, BAGORDER, TERMORD, GLIB_002,
GLIB_003, CHORD, WELLORDl, PRE_CIRC, XXREAL_0, CARD_FIN;

registrations RELSET_1, FINSET_1, NAT_1, INT_1, GLIB_000, GLIB_001.
GLIB_002, GLIB_003, CARD_FIN, CHORD, POLYNOMl, FINSEQ_1, FUNCT_1,
XREAL_0, TERMORD, BAGORDER, XBOOLE_0, ABIAN, PRE_CIRC, MEMBERED,
ORDINALl, HEYTING3, XXREAL_0;

requirements NUMERALS, SUBSET, BOOLE, REAL, ARITHM;
definitions GLIB_000, GLIB_001, GLIB_002, GLIB_003, FINSEQ_1;
theorems AXIOMS, CARD_1, CARD_2, CARD_4, CQC_LANG, FINSEQ_1, FINSEQ_2,

FINSEQ_3, FINSET_1, FUNCOP_l, FUNCT_1, FUNCT_2, FUNCT_4, GLIB_000,
GLIB_001, GLIB_002, GLIB_003, HEYTING3, INT_1, NAT_1, BAGORDER,
TERMORD, ORDINALl, PARTFUN1, PBOOLE, REAL_1, RELAT_1, RELSET_1,
SCM_1, TARSKI, XBOOLE_0, XBOOLE_l, XREAL_1, ZFMISC_1, PEPIN, ENUMSET1,
SEQM_3, CHORD, BINARITH, NECKLACE, FINSEQ_4, WELLORDl, UPROOTS,
KNASTER, CARD_FIN, POLYNOMl, ORDINAL3, TREES_1, PRE_CIRC, MEMBERED,
NAT_2;

schemes BINARITH, NAT_1, FUNCT_1, RECDEF_1, GOBOARD1, FRAENKEL;

begin :: Preliminaries

:: More general than GRAPH_2:4

theorem :: LEXBFS:1
for A.B being Element of NAT, X being non empty set
for F being Function of NAT, X st F is one-to-one
holds Card (F.w where w is Element of NAT: A <* w & w <= A ♦ B) * B+l;

theorem :: LEXBFS:2
for n,m,k being natural number st m <= k & n < m holds k ' m < k -' n;

theorem :: LEXBFS:3
for n,k being natural number st n < k holds k ' (n+1) + 1 = k n;

theorem :: LEXBFS:4 :: DivOO
for n,m,k being natural number st k <> 0 holds (n + m*k) div k = (n div k) + m;

definition let S be set;
attr s is with_finite-elements means

:: LEXBFS:def 1
for x being Element of s holds x is finite;

end;

registration let S be with_finite-elements set;
cluster -> finite Element of S;

end;

definition let f,g be Function;
func f .\/ g -> Function means

:: LEXBFS:def 2
dom it = dom f \/ dom g &
for x being set st x in dom f \/ dom g holds it.x = f.x \/ g.x;

end;

theorem :: LEXBFS:5
for m,n,k being natural number holds
m in ((Seg k) \ Seg (k -' n)) iff k n < m & m <= k;

theorem :: LEXBFS:6
for n,k,m being natural number st n <= m holds

<(Seg k) \ Seg (k -' n)) c=* ((Seg k) \ Seg (k m)) ;

theorem :: LEXBFS:7
for n,k being natural number st n < k holds

{(Seg k) \ Seg (k n)) \/ {k -' n} = (Seg k) \ Seg (k ' (n+l));

definition let f be Relation;
attr f is natsubset-yielding means

:: LEXBFS:def 3
rng f c= bool NAT;

end;

registration
cluster finite-yielding natsubset -yielding Function;

end,-

definition let f be finite-yielding natsubset-yielding Function, x be set;
redefine func f.x -> finite Subset of NAT;

end;

theorem :: LEXBFS:8
for x being Ordinal, a, b be finite Subset of x st a <> b
holds <a,l)-bag <> (b,l) bag;

definition let F be natural-yielding Function, S be set, k be natural number;
func F .incSubset(S,k) -> natural-yielding Function means

: LEXBFS:def 4
dom it = dom F &
for y being sec holds (y in S & y in dom F implies it.y = F.y + k) &

(not y in S implies it.y = F.y);
end;

definition let n be Ordinal, T be connected TermOrder of n,
B be non empty finite Subset of Bags n;

func max(B,T) -> bag of n means
:: LEXBFS:def 5

lexbfs.abs

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

it in B & for x being bag of n st x in B holds x <= it,T;
end;

registration let o be Ordinal;
cluster InvLexOrder O > connected;

end;

begin ;: Miscellany on graphs

registration let G be ..Graph;
cluster non empty one-to-one VertexSeq of G;

end;

definition
let G be _Graph, V being non empty VertexSeq of G;
mode Walk of v -> Walk of G means

:: LEXBFS:def 6
it.vertexSeqO = V;

end;

registration
let G be _Graph, V being non empty one-to-one VertexSeq of G;
cluster -> Path-like Walk of V;

end;

Oi theorem :: LEXBFS:9 :: PathLike20
for G being _Graph, W1,W2 being Walk of G
st Wl is trivial & Wl.lastO ■ W2.first() holds W l .append(W2) = W2;

theorem :: LEXBFS:10
for G, H being _Graph. A, B, C being set,

Gl being (inducedSubgraph of G,A), Hi being (inducedSubgraph of H,B),
G2 being (inducedSubgraph of G1,C), H2 being (inducedSubgraph of H1,C)

st G == H & A c= B & C c® A & c is non empty Subset of the_Vertices_of G
holds G2 == H2;

definition let G be VGraph;
attr G is natural-vlabeled means
: LEXBFS:def 7

the_VLabel_of G is natural-yielding;
end;

begin :: Graphs with two vertex labels

definition
func V2LabelSelector -> natural number equals
: LEXBFS:def 0

8 ;
end;

definition let G be GraphStruct;
attr G is [V2Labeled] means

:: LEXBFS:def 9 ::dV2LABELED
v2LabelSelector in dom G &
ex f being Function st G .V2LabelSelector = f & dom f c* the_Vertices_of G;

end;

registration
cluster [Graph-like] [Weighted] [ELabeled] [VLabeled] [v2Labeled]

GraphStruct;
end;

definition
mode V2Graph is [V2Labeled] _Graph;
mode WGraph is (VLabeled) [V2Labeled] _Graph;

end;

definition let G be V2Graph;
func the_V2Label_of G -> Function equals

:: LEXBFS:def 10
G.V2LabelSelector;
end;

theorem :: LEXBFS:11
for G being v2Graph holds dom the_V2Label_of G c= the_Vertices_of G;

registration let G be _Graph, x be set;
cluster G -set{v2LabelSelector, X) -> (Graph-like];

end;

theorem :: LEXBFS:12
for G being _Graph, X being set holds G .set(V2LabelSelector, x) == G;

registration let G be finite _Graph, X be set;
cluster G - set(V2LabelSelector, X) > finite;

end;

registration let G be loopless _Graph, X be set;
cluster G . set (V2LabelSelector, X) -> loopless,-

end;

registration let G be trivial _Graph, X be set;
cluster G.set(V2LabelSelector, X) -> trivial;

end;

registration let G be non trivial _Graph, x be set;
cluster G .set(V2LabelSelector, X) -> non trivial;

end;

registration let G be non-multi _Graph, X be set;
cluster G .set(V2LabelSelector, X) -> non-multi;

end;

registration let G be non Dmulti _Graph, x be set;
cluster G •set(V2LabelSelector, X) -> non-Dmulti;

end;

registration let G be connected _Graph, x be set;
cluster G •set(v2LabelSelector, X) -> connected;

end;

registration let G be acyclic _Graph, x be set;
cluster G •set(V2LabelSelector, X) -> acyclic;

end;

registration let G be VGraph, x be set;
cluster G .set(V2LabelSelector, X) - > [VLabeled];

end;

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

registration let G be EGraph, X be set;
cluster G .set(V2LabelSelector, X) -> [ELabeled];

end;

registration let G be WGraph, x be set;
cluster G .set(v2LabelSelector, X) [Weighted];

end;

registration let G be V2Graph, x be set;
cluster G .set<VLabelSelector, X) --» [V2Labeled];

end;

registration let G be _Graph, Y be set, X be PartFunc of the_Vertices_of G,Y;
cluster G .set(V2LabelSelector, X) -> [V2Labeled] ,-

end;

registration let G be _Graph, X be ManySortedSet of the_Vertices_of G;
cluster G .set(V2LabelSelector, X) -> [V2Labeled];

end;

registration let G be _Graph;
cluster G .set(V2LabelSelector, {}) -> [V2Labeled]»

end;

*Sj definition let G be V2Graph;
attr G is natural-v21abeled means

:: LEXBFS:def 11
the_V2Label_of G is natural-yielding;

attr G is finite-v21abeled means
:: LEXBFS;def 12

the_V2Label_of G is finite-yielding,-
attr G is natsubset-v21abeled means

:: LEXBFS:def 13
the_V2Label_of G is natsubset-yielding;

end;

registration
cluster finite natural-vlabeled finite-v21abeled natsubset-v21abeled chordal

([Weighted] [ELabeled} [VLabeled] [V2Labeled] _Graph);

cluster finite natural-vlabeled natural-v21abeled chordal
([Weighted] [ELabeled] [VLabeled] [V2Labeled] „Graph);

end;

registration let G be natural-vlabeled VGraph;
cluster the_VLabel_of G -> natural-yielding;

end;

registration let G be natural-v21abeled v2Graph;
cluster the_v2Label_of G -> natural -yielding;

end;

registration let G be finite-v21abeled V2Graph;
cluster the_V2Label_of G ~> finite-yielding;

end;

registration let G be natsubset-v21abeled V2Graph;
cluster the_v2Label_of G •> natsubset yielding;

end;

registration let G be WGraph, v,x be set;
cluster G .labelVertex(v,x) -> [v2Labeled] ,-

end;

theorem :: LEXBFS:13
for G being WGraph, v,x being set
holds the_V2Label_of G = the_V2Label_of G .labelVertex(v,x);

registration
let G be natural-vlabeled WGraph, v be set, x be natural number;
cluster G .labelVertex(v,x) -> natural-vlabeled;

end;

registration
let G be natural-v21abeled WGraph, v be set, x be natural number;
cluster G.labelVertex(v,x) -> natural-v21abeled;

end;

registration
let G be finite-v21abeled WGraph, v be set, x be natural number,-
cluster G .labelVertex(v,x) -> finite-v21abeled;

end;

registration
let G be natsubset-v21abeled WGraph, v be set, x be natural number;
cluster G .labelVertex(v,x) -> natsubset-v21abeled;

end;

: Subgraphs and inheritence

registration let G be _Graph;
cluster [VLabeled] [V2Labeled] Subgraph of G;

end;

definition let G be V2Graph, G2 be [V2Labeled] Subgraph of G;
attr G2 is v21abel-inheriting means

:: LEXBFS:def 14
the_V2Label_of G2 = (the_V2Label_of G) | the_Vertices_of G2;

end;

registration let G be v2Graph;
cluster v21abel-inheriting ([V2Labeled] Subgraph of G);

end;

definition let G be V2Graph;
mode V2Subgraph of G is v21abel-inheriting ([V2Labeled] Subgraph of G);

end;

registration let G be WGraph;
cluster vlabel-inheriting v21abel-inheriting

([VLabeled] [V2Labeled] Subgraph of G);
end;

definition let G be WGraph;
mode WSubgraph of G is vlabel-inheriting v21abel-inheriting

([VLabeled] [v2Labeled] Subgraph of G) ,-
en d ;

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

registration let G be natural-vlabeled VGraph;
cluster -> natural-vlabeled vsubgraph of G;

end;

registration
let G be _Graph, v,E be set;

cluster [Weighted] [ELabeled] [VLabeled] [V2Labeled] inducedSubgraph of G,v,E;
end;

registration
let G be WGraph, V, E being set;
cluster vlabel inheriting v21abel inheriting

([VLabeled] [V2Labeled] inducedSubgraph of G,V,E);
end;

definition let G be WGraph, V,E be set;
mode inducedWSubgraph of G,V,E is vlabel-inheriting v21abel-inheriting

([VLabeled] [v2Labeled] inducedSubgraph of G,v,E);
end;

definition let G be WGraph, v be set;
mode inducedWSubgraph of G,V is inducedWSubgraph of G, V, G. edgesBetween (V) ;

end;

begin :: More on Graph Sequences
H

:::::::::::::: this Should go into glib
definition let s be ManySortedSet of NAT;

attr s is iterative means
:: LEXBFS:def 15 ::dGSITERATIVE:

for k, n being natural number st s.k = s.n holds s.(k+l) * s.(n+l);
end;

definition let GS be ManySortedSet of NAT;
attr GS is eventually-constant means
: LEXBFS:def 16

ex n being natural number
st for m being natural number st n <= m holds GS.n = GS.m;

end;

registration
cluster halting iterative eventually-constant ManySortedSet of NAT;

end;

theorem :: LEXBFS:14
for Gs being ManySortedSet of NAT
st Gs is halting & Gs is iterative holds Gs is eventually-constant;

registration
cluster halting iterative -> eventually-constant ManySortedSet of NAT;

end;

theorem :: l e x b f s =15
for Gs being ManySortedSet of NAT
st Gs is eventually-constant holds Gs is halting;

registration
cluster eventually-constant > halting ManySortedSet of NAT;

end;

theorem :: LEXBFS:16
for Gs being iterative eventually-constant ManySortedSet of NAT
for n being natural number st Gs.Lifespan() <= n
holds Gs.(Gs.Lifespan()) = Gs.n;

theorem :: LEXBFS:17
for Gs being iterative eventually-constant ManySortedSet of NAT
for n,m being natural number st Gs.Lifespan() <= n & n <= m
holds Gs.m = Gs.n;

I:;:::::;:::::::::::::; Stuff needed here
definition let GS be VGraphSeq;

attr GS is natural-vlabeled means
;; LEXBFS:def 1 1 : : dGSEQVNATVL:

for x being natural number holds GS.x is natural-vlabeled;
end;

definition let GS be GraphSeq;
attr GS is chordal means

:: LEXBFS:def 18 ::dGSEQCHORDAL
for x being natural number holds GS.x is chordal;

attr GS is fixed-vertices means
:: LEXBFS:def 19

for n,m being natural number holds
(the_Vertices_of (GS.n)) = (the_Vertices_of (GS.m));

attr GS is [v2Labeled] means
:: LEXBFS;def 20 ::dGSEQV2LABEL

for x being natural number holds GS.x is [V2Labeled];
end;

registration
cluster [Weighted] [ELabeled] [VLabeled] [V2Labeled] GraphSeq;

end;

definition
mode v2GraphSeq is [V2Labeled] GraphSeq;
mode WGraphSeq is [VLabeled] [v2Labeled] GraphSeq;

end;

registration let GSq be v2GraphSeq, x be natural number;
cluster GSq.x -> [V2Labeled] _Graph;

end;

definition let GSq be v2GraphSeq;
attr GSq is natural-v21abeled means

:: LEXBFS:def 21 ::dGSEQNATV2L
for x being natural number holds GSq.x is natural-v21abeled;

:: attr GSq is finite-natsubset-v21abeled means :dGSEQNATSUB: ::dGSEQNATS
UB
:: for x being natural number holds GSq.x is finite-natsubset v21abeled;

attr GSq is finite-v21abeled means
:: LEXBFS:def 22 ::dGSEQNATSUB

for x being natural number holds GSq.x is finite-v21abeled;
attr GSq is natsubset-v21abeled means

:: LEXBFS:def 23 ::dGSEQNATSUB
for x being natural number holds GSq.x is natsubset-v21abeled;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

;s
be

na
tu

ra
l-
vl

ab
el

ed

WG
ra

ph
Se

q,

n

be
na
tu
ra
l

nu
mb
er
,-

cl
us
te
r

vl
ab

el
-n

um
be
ri

ng

->

ev
en

tu
al

ly
-c

on
st

an
t V
Gr
ap
hS
eq
,-

na
tu
ra
l-

vl
ab

el
ed

WG

ra
ph

;
cl
us
te
r

vl
ab

el
-n

um
be

ri
ng

->

fi
ni
te

VG
ra
ph
Se
q,
-

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

cluster vlabel-numbering -> fixed-vertices VGraphSeq;
cluster vlabel-numbering -> natural-vlabeled VGraphSeq;
cluster vlabel-numbering -> vlabel-initially-empty VGraphSeq;
cluster vlabel-numbering -> adds-one-at-a-step VGraphSeq;

end;

definition
mode VLabelNumberingSeq is vlabel-numbering VGraphSeq;

end;

definition let GS be VLabelNumberingSeq, n be natural number;
func GS.PickedAt(n) -> set means

:: LEXBFS:def 27
it = choose (the__Vertices_of (GS.O)) if n >= GS.LifespanO otherwise
not it in dom (the_VLabel_of (GS.n)) & the_VLabel_of (GS.(n+l)) =

(the_VLabel_of (GS.n)) +* (it .--> (GS.Lifespan()-'n));
end;

theorem :: LEXBFS;18
for GS being VLabelNumberingSeq,

n being natural number st n < GS.Lifespan()
holds GS.PickedAt(n) in (GS.(n+1)).labeledv() &

(GS. (n+1)) . labeledv () (GS. n) . labeledV () \/ (GS. PickedAt (n)) ,•

theorem :: LEXBFS:19
*■“•4 for GS being VLabelNumberingSeq, n

being natural number st n < GS.Lifespan()
holds (the_VLabel_of (GS.(n+1))).(GS.PickedAt(n)) = GS.LifespanO--

theorem :: LEXBFS:20
for GS being VLabelNumberingSeq, n being natural number
st n <= GS.Lifespan() holds card ((GS.n).labeledv()) = n;

theorem :: LEXBFS:21
for GS being VLabelNumberingSeq, n being natural number holds
rng the_VLabel_of (GS.n) = (Seg GS.Lifespan()) \ Seg (GS.Lifespan()-'n);

theorem :: LEXBFS:22
for GS being VLabelNumberingSeq, n being natural number, x being set
holds (the_VLabel_of (GS-n)).x <= GS.Lifespant) &

({x in (GS.n).labeledv()> implies 1 <= (the_VLabel_of (GS.n)).x);

theorem :: LEXBFS:23
for GS being VLabelNumberingSeq, n,m being natural number
st GS.LifespanO n < m & m <= GS. Lifespan ()
ex v being Vertex of GS.n
st v in (GS.n).labeledv() & (the_VLabel_of (GS.n)).v = m;

theorem :: LEXBFS:24
for GS being VLabelNumberingSeq, m,n being natural number st m <= n
holds the_VLabel_of (GS.m) c= the_VLabel_of (GS.n);

theorem :: LEXBFS:25
for GS being VLabelNumberingSeq, n being natural number
holds the_VLabel_o£ (GS.n) is one-to-one;

theorem :: LEXBFS:2 6
for GS being VLabelNumberingSeq, ro,n being natural number
for v being set st v in (GS.m).labeledv() & v in (GS.n).labeledv()

holds (the_VLabel_of (GS.m)).v = {the_VLabel_of (GS.n)),v;

theorem :: LEXBFS:27
for GS being VLabelNumberingSeq, v being set, m,n being natural number
st (v in (GS.m).labeledV() & (the_VLabel_of (GS.m)).v = n)
holds GS.PickedAt(GS.Lifespan()-*n) * v;

theorem :: LEXBFS:28
for GS being VLabelNumberingSeq, m,n being natural number
st n < GS.LifespanO & n < m

holds GS.PickedAt(n) in (GS.m).labeledv() &
<the_VLabel_of (GS .m)). (GS . PickedAt (n)) = GS. Lifespan () ' n,-

:: Inequalities relating the vlabel and the current iteration
theorem LEXBFS:29
for GS being VLabelNumberingSeq, m being natural number, v being set
st v in (GS.m) .labeledVO
holds GS.LifespanO -' (the_VLabel_of (GS.m)).v < m &

GS.LifespanO -' m < <the_VLabel_of (GS.m)).v;

:: if a vertex has a larger vlabel than we do at some point in the
:: algorithm, then it must have been in the vlabel when we were picked
theorem :: LEXBFS:30
for GS being VLabelNumberingSeq
for i being natural number, a,b being set
st a in (GS.i).labeledv{) & b in (GS.i>-labeledv(> &

{the_VLabel_o£ (GS.D).a < (the_VLabel_of (GS.i)).b
holds b in (GS.(GS.LifespanO ' (the_VLabel_of (GS.i)>.a)).labeledv{);

theorem :: LEXBFS:31
for GS being VLabelNumberingSeq
for i being natural number, a,b being set
st a in (GS.i).labeledv() & b in (GS.i)•labeledv() &

(the_VLabel_of (GS.iH.a < (the_VLabel_of (GS.i)).b
holds not a in (GS.(GS.LifespanO -‘ (the_VLabel_of (GS.i)).b)).labeledv();

begin :: Lexicographical Breadth First Search

definition let G be _Graph;
func LexBFS:Init(G) ~>

natural-vlabeled finite-v21abeled natsubset v21abeled
WGraph equals

:: LEXBFS:def 28
G.set(VLabelSelector, {}).set(V2LabelSelector, the_Vertices_of G > (});

end;

definition let G be finite _Graph;
redefine func LexBFS:Init(G)

-> finite natural-vlabeled
finite-v2labeled natsubset-v21abeled WGraph;

end;

definition let G be finite finite-v21abeled natsubset-v21abeled WGraph;
assume dom the_V2Label_of G = the_Vertices_of G;
func LexBFS:PickUnnumbered(G) -> Vertex of G means

:: LEXBFS:def 29
it = choose the__Vertices_of G if dom the_VLabel_of G = the__Vertices_of G
otherwise
ex S being non empty finite Subset of bool NAT,

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

B being non empty finite Subset of Bags NAT,
F being Function

st S = rng F &
F = ((the_v2Label_of G) | <the_Vertices_of G \ dom the_VLabel_of G)) &
(for x being finite Subset of NAT holds x in S implies ((x,l)-bag in B)) &
(for x being set holds x in B implies

ex y being finite Subset of NAT st y in S & x = (y.l)-bag) &
it = choose (F " (support max(B,InvLexOrder NAT)});

end;

definition let G be WGraph, v be set, k be natural number;
func LexBFS:LabelAdjacent(G, v, k) -> WGraph equals
:: LEXBFS:def 30
G .set(V2Labe1Selector, (the_V2Label_of G) .A/

((G.AdjacentSet((v}) \ dom the_VLabel_of G)-->(k)));
end;

theorem :: LEXBFS:32
for G being WGraph, v,x toeing set, k being natural number
st not x in G.AdjacentSet((v))
holds (the_V2Label_of G) .x * (the_V2Label_of LexBFS:LabelAdjacent(G, v, k)) .x;

theorem :: LEXBFS:33
for G being WGraph, v,x being set, k being natural number
st x in dom (the_VLabel_of G) holds

(the_v2Label_of G).x = (the_V2Label_of LexBFS: LabelAdjacent (G, v, k)). x;

theorem :: LEXBFS:34
for G toeing WGraph, v,x being set, k being natural number
st x in G .AdjacentSet(tv)) & not x in dom (the_VLabel_of G)
holds (the_V2Label_of LexBFS:LabelAdjacent(G,v,k)).x =

(the_v2Label_of G) .x \/ (k);

theorem :: LEXBFS:35
for G being WGraph, v being set, k being natural number
st dom (the_v2Label_of G) = the_Vertices_o£ G
holds dom (the_v2Label_of LexBFS:LabelAdjacent(G,v,k)) = the_Vertices_of G;

definition let G be finite natural-vlabeled finite-v21abeled
natsutoset-v21abeled WGraph,

v be Vertex of G, k be natural number;
redefine func LexBFS:LabelAdjacent(G, v, k) ->

finite natural-vlabeled
finite-v21abeled natsubset-v21abeled WGraph;

end;

definition let G be finite natural-vlabeled
finite-v21abeled natsubset-v21abeled WGraph,

v be Vertex of G, n be natural number;
func LexBFS:Update(G, v, n) ->

finite natural-vlabeled
finite-v21abeled natsubset-v21abeled WGraph equals

:: LEXBFS:def 31
LexBFS:LabelAdjacent(G.labelvertex(v, G .order{)-'n), v, G .order()-'n);

end;

definition let G be finite natural-vlabeled
finite-v21abeled natsubset-v21abeled WGraph;

func LexBFS:Step(G) ->

finite natural-vlabeled
finite-v21abeled natsubset-v21abeled WGraph equals

:: LEXBFS:def 32
G if G.orderO <= card (dom the_VLabel_of G)

otherwise LexBFS:Update(G,
LexBFS:PickUnnumbered(G),
card (dom the__VLabel_of G)) ,-

end;

definition let G be finite _Graph;
func LexBFS:CSeq(G) ->

finite natural-vlabeled
finite-v21abeled natsubset-v21abeled WGraphSeq means

: LEXBFS:def 33
it.0 = LexBFS:Init(G) &

for n being natural number holds it.(n+1) = LexBFS:Step(it.n);
end;

theorem :: LEXBFS:36
for G being finite _Graph holds LexBFS:CSeq(G) is iterative;

registration let G be finite _Graph;
cluster LexBFS:CSeq(G) -> iterative;

end;

theorem :: LEXBFS:37 :: tLexBFSINITOl:
for G being _Graph holds the_VLabel_of LexBFS: init (G) = (),-

theorem :: LEXBFS:38 :: tLexBFSINIT02:
for G being _Graph, v being set
holds dom the_V2Label_of LexBFS:init(G) = the_Vertices_of G &

(the_v2Label_of LexBFS:Init(G)).v = {);

theorem :: LEXBFS:39 :: tLexBFSINIT03:
for G being _Graph holds G LexBFS:Init(G);

:: the vertex picked has the largest v21abel
theorem :: LEXBFS:40 :: tLexBFSPiCkOl:
for G being finite £inite-v21abeled natsubset v21abeled WGraph, x being set
st not x in dom the_VLabel_of G &

dom the_V2Label_of G = the_Vertices_of G &
dom the_VLabel_of G <> the_Vertices_of G

holds ((the_V2Label_of G).x,l)-bag <=
((the_V2Label_of G).(LexBFS:PickUnnumbered(G)),1) bag, InvLexOrder NAT;

:: the vertex picked is not currently in the vlabel
theorem :: LEXBFS:41 :: tLexBFSPick02:
for G being finite finite-v21abeled natsubset-v21abeled WGraph
st dom the_V2Label_of G = the_Vertices_of G &

dom the_VLabel_o£ G <> the_Vertices_of G
holds not LexBFS:PickUnnumbered(G) in dom the_VLabel_of G;

theorem :: LEXBFS:42
for G being finite _Graph, n being natural number
holds (LexBFS:CSeq(G)).n == G;

:: show lexbfs has static vertices
theorem LEXBFS:43
for G being finite _Graph, m,n being natural number

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

holds (LexBFS:CSeq(G)>.m == <LexBFS:CSeq(G)).n;

theorem :: LEXBFS:44
for G being finite _Graph, n being natural number
st card (dom the_VLabel_of ((LexBFS:CSeq(G)) . n) > < G.orderO

holds
the_VLabel_of ((LexBFS:CSeq(G)).(n+1)) =
(the_VLabel_of ((LexBFS:CSeq(G)).n)) +*
(LexBFS: PickUnnumbered ((LexBFS :CSeq (G)) .n) . - ••>

(G. order ()-'(card (dom the__VLabel_of ((LexBFS:CSeq(G)).n)))));

theorem :: LEXBFS:45
for G being finite _Graph, n being natural number
holds dom (the_V2Label_of ((LexBFS:CSeq(G)).n)) =

the_Vertices_of ((LexBFS; CSeq(G)) .n>

theorem : LEXBFS:4 6
for G being finite _Graph, n being natural number st n <= G.orderO
holds card dom the_VLabel_of ((LexBFS:CSeq(G)).n) = n;

theorem :: LEXBFS:47
for G being finite _Graph, n being natural number st G.orderO <= n
holds (LexBFS:CSeq(G)).(G.order()) * (LexBFS:CSeq(G)).n;

theorem :: LEXBFS:48
for G being finite _Graph, m,n being natural number st G.orderO <= m & m < =
holds (LexBFS:CSeq(G)) .m = (LexBFS:CSeq(G)).n;

theorem :: LEXBFS:49
for G being finite _Graph holds LexBFS:CSeq(G) is eventually-constant;

registration let G be finite _Graph;
cluster LexBFS:CSeq(G) -> eventually-constant;

end;

theorem :: LEXBFS:50
for G being finite _Graph, n being natural number holds

dom the_VLabel_o£((LexBFS:CSeq(G)).n) = the_Vertices_of((LexBFS;CSeq(G))•
iff G .order() <= n;

theorem :: l e x b f s :51
for G being finite _Graph holds (LexBFS: CSeq (G)) . Li fespan O = G.orderO;

registration let G be finite chordal _Graph, i be natural number;
cluster (LexBFS: CSeq (G)) . i -> chordal WGraph;

end;

registration
let G be finite chordal _Graph;
cluster LexBFS:CSeq(G) •> chordal;

end;

theorem :: LEXBFS:52
for G being finite _Graph holds LexBFS:CSeq(G) is vlabel-numbering;

registration let G be finite _Graph;
cluster LexBFS:CSeq(G) -> vlabel-numbering;

end;

theorem :: LEXBFS:53
for G being finite _Graph, n being natural number st n < G.orderO
holds (LexBFS:CSeq(G)).PickedAt(n) »

LexBFS:PickUnnumbered((LexBFS:CSeq(G)).n);

theorem :: LEXBFS:54
for G being finite __Graph, n being natural number st n < G.orderO
ex w being Vertex of (LexBFS:CSeq(G)).n

st w = LexBFS:PickUnnumbered((LexBFS:CSeq(G)).n) &
for v being set holds
((v in G.AdjacentSet((w)) &
not v in dom (the_VLabel_of ((LexBFS:CSeq(G)).n))
implies
<the_V2Label_o£ ((LexBFS:CSeq(G)>.(n+1))) . v =
(the_V2Label_of ((LexBFS:CSeq(G)) .n)) .v \/ (G.orderO ' n}) &

((not v in G .AdjacentSet({w}) or
v in dom (the_VLabel_of ((LexBFS:CSeq(G)).n)))

implies
(the_V2Label_of ((LexBFS:CSeq(G)).(n+1))).v =
{the_V2Label_of ((LexBFS:CSeq(G)).n)).v));

theorem :: LEXBFS:55
for G being finite _Graph, i being natural number, v being set holds
(the_V2Label_of ((LexBFS: CSeq(G)) . i)) . v c= (Seg G.orderO) \ Seg (G. order ()-' i)

:: LexBFS: Property LI
theorem :: LEXBFS:56
for G being finite _Graph, x being set, i,j being natural number st i <= j
holds (the_V2 Labe1_o f ((LexBFS:CSeq(G)) .i)).x

c= (the_V2Label_of ((LexBFS:CSeq(G)).j)}.x;

theorem :: LEXBFS:57
for G being finite _Graph, m,n being natural number, x, y being set
st n < G.orderO & n < m & y = LexBFS: PickUnnumbered ((LexBFS: CSeq (G)) . n) &

not x in dom (the_VLabel_of ((LexBFS:CSeq(G)).n)) & x in G .AdjacentSet((y))
holds (G.orderO n) in (the_V2Label_of ((LexBFS;CSeq(G)).m)).x;

theorem :: LEXBFS:58
for G being finite _Graph, m,n being natural number st m < n
for x being set
st not G.orderO-'m in (the_V2Label_of ((LexBFS ; CSeq (G)) . (m+1)) > . x
holds not G.orderO 'm in (the_V2Label_of ((LexBFS:CSeq(G)) .n)> .x;

:: More general version of the above:
if the value added during step k doesn't appear in a later step (n),

: then that value cannot appear in an even later step (m)
theorem :: LEXBFS:59
for G being finite _Graph, m,n,k being natural number st k < n & n <= m
for x being set
st not G.orderO-'k in (the_V2Label_of ((LexBFS: CSeq(G)) . n)) . x
holds not G.orderO-'k in (the_V2Label_of ((LexBFS : CSeq (G)) • m)) . x;

:: relates a value in a vertex's v21abel to the vertex chosen at that time
theorem :: LEXBFS:60
for G being finite _Graph, m,n being natural number
for x being Vertex of ((LexBFS:CSeq(G)) .m)
st n in (the_V2Label_o£ ((LexBFS:CSeq(G>) .m)) . x

ex y being Vertex of ((LexBFS:CSeq(G)).m)

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

st ((LexBFS:PickUnnumbered((LexBFS:CSeq(G)).(G.orderO-'n))) = y &
not y in dom (the__VLabel_of ((LexBFS: CSeq(G)). (G. order ()-'n))) &
x in G.AdjacentSet((y)));

definition let Gs be finite natural-vlabeled WGraphSeq;
redefine func Gs.ResultO -> finite natural-vlabeled WGraph;

end;

theorem :: LEXBFS:61
for G being finite _Graph holds

((LexBFS;CSeq(G)).Result()>.labeledv() * the_Vertices_of G;

theorem :: LEXBFS:62 :: CLexBFS05:
for G being finite _Graph
holds (the_VLabel_of (LexBFS:CSeq(G)).Result()>* is VertexScheme of G;

: A vertex with a vlabel of k must have had the largest v21abel when chosen
theorem :: LEXBFS:63
for G being finite _Graph, i,j being natural number,

a,b being Vertex of (LexBFS:CSeq(G)).i
st a in dom the_VLabel_of (<LexBFS:CSeq{G)) . i) &

b in dom the_VLabel_of ((LexBFS:CSeq(G)> . i) &
(the_VLabel_of ((LexBFS:CSeq(G)).i)).a <

(the_VLabe1_of ({LexBFS:CSeq(G)) .i)).b &
j » G.orderO -' (the_VLabel_of < (LexBFS: CSeq(G)) . i))-b

holds ((the_V2Label_of ((LexBFS:CSeq(G)).j)).a,l)-bag < -
((the_V2Label_of ((LexBFS:CSeq(G)).j)).b,1)-bag, InvLexOrder NAT;

: Any value in our v2label corresponds to a vertex that we are
: adjacent to in our in our vlabel

theorem :: LEXBFS:64
for G being finite _Graph, i,j being natural number,

v being Vertex of (LexBFS:CSeq(G)).i
st j in (the_V2Label_of {(LexBFS:CSeq(G)).i)).v
ex w being Vertex of (LexBFS:CSeq(G)).i st

w in dom the_VLabel_of {(LexBFS:CSeq(G)).i) &
(the_VLabel_of ((LexBFS:CSeq(G)).i)).w = j & v in G.AdjacentSet(w);

definition let G be natural-vlabeled VGraph;
attr G is with property L3 means
: LEXBFS:def 34

for a,b,c being Vertex of G st a in dom the_VLabel_of G &
b in dom the_VLabel_of G & c in dom the_VLabel_of G &
(the_VLabel_of G).a < (the_VLabel_of G).b &
(the_VLabel_of G).b < (the_VLabel_of G).c &
a,c are_adjacent U not b,c are_adjacent

ex d being Vertex of G st d in dom the_VLabel_of G &
(the_VLabel_of G).c < (the_VLabel_of G).d &
b,d are_adjacent & not a,d are_adjacent &
for e being Vertex of G
st e <> d & e,b are_adjacent & not e,a are_adjacent
holds (the_VLabel_of G).e < (the_VLabel_of G).d;

end;

theorem :: LEXBFS:65
for G being finite _Graph, n being natural number
holds (LexBFS:CSeq(G)).n is with_property_L3;

theorem :: LEXBFS:66 :: Theorem 4.3, Golumbic p. 86

for G being finite chordal natural vlabeled VGraph
st G is with_property_L3 & dom the_VLabel_of G = the_Vertices_of G
for V being VertexScheme of G st V" = the_VLabel_of G holds V is perfect;

theorem : LEXBFS:67 :: Theorem 4.3, Golumbic p. 86
for G being finite chordal WGraph holds

(the_VLabel_of (LexBFS:CSeq(G)>.Result()>" is perfect VertexScheme of G;

begin :: The Maximum Cardinality Search algorithm

definition let G be finite _Graph;
func MCS:Init(G) -> finite natural vlabeled natural-v21abeled WGraph equals

:: LEXBFS:def 35
G .set(VLabelSelector, {}).set(V2LabelSelector, the_Vertices_of G >01;

end;

definition let G be finite natural•v21abeled WGraph;
assume dom the_V2Label_of G = the_Vertices_of G;
func MCS:PickUnnumbered(G) -> Vertex of G means

:: LEXBFS:def 36
it = choose the_Vertices_of G if dom the_VLabel_of G = the_Vertices_of G
otherwise ex S being finite non empty natural-membered set, F being Function

st S = rng F
& F = (the_V2Label_of G> j (the_Vertices_of G \ dom the_VLabel_of G)
St it = choose (F " {max S));

end;

definition let G be finite natural-v21abeled WGraph, v be set;
func MCS:LabelAdjacent(G, v) -> finite natural-v21abeled WGraph equals
:: LEXBFS:def 37
G.set(V2LabelSelector, (the_V2Label_of G) .incSubset(G.AdjacentSet ({v})

\ dom (the_VLabel_of G),1));
end;

definition let G be finite natural-vlabeled natural-v21abeled WGraph,
v be Vertex of G;

redefine func MCS:LabelAdjacent(G, v) -> finite natural-vlabeled
natural-v21abeled WGraph;

end;

definition
let G be finite natural-vlabeled natural-v21abeled WGraph,

v be Vertex of G, n be natural number;
func MCS:Update(G, v, n) -> finite natural-vlabeled natural-v21abeled

WGraph equals
:: LEXBFS:def 38

MCS:LabelAdjacent(G.labelVertex(v, G .order()-’n), v);
end;

definition let G be finite natural-vlabeled natural v21abeled WGraph;
func MCS:Step(G)

-> finite natural-vlabeled natural v21abeled WGraph equals
: LEXBFS:def 3 9

G if G.orderO <= card {dom the_VLabel_of G>
otherwise MCS:Update(G,

MCS:PickUnnumbered(G),
card (dom the_VLabel__of G >) ;

end ;

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

definition let G be finite _Graph;
func MCS:CSeq(G)

-> finite natural-vlabeled natural-v21abeled WGraphSeq means
:: LEXBFS:def 40

it.0 * MCS:Init(G) &
for n being natural number holds it.(n+1) = MCS:Step(it.n);

end;

theorem :: LEXBFS:68
for G being finite _Graph holds MCS:CSeq(G) is iterative;

registration let G be finite _Graph;
cluster MCS:CSeq(G) -> iterative;

end;

theorem :: LEXBFS:69
for G being finite _Graph holds the_VLabel_of MCS:lnit(G) = {);

theorem :; LEXBFS:70
for G being finite _Graph, v being set
holds dom the_V2Label_of MCS:Init(G) = the_Vertices_of G &

(the_V2Label_of MCS:Init(G)).v = 0;

theorem :: LEXBFS:71
for G being finite _Graph holds G == MCS: Ini t (G) ,•

theorem :: LEXBFS:72
for G being finite natural-v21abeled WGraph, x being set
st not x in dom the_VLabel_of G &

dom the_V2Label_of G * the_Vertices_of G &
dom the_VLabel_of G <> the_Vertices_of G

holds (the_V2Label_of G).x <= (the_v2Label_of G).(MCS:PickUnnumbered(G));

theorem :: LEXBFS:73
for G being finite natural-v21abeled WGraph
st dom the_V2Label_of G = the_Vertices_of G &

dom the_VLabel_of G <> the_Vertices_of G
holds not MCS:PickUnnumbered(G) in dom the_VLabel_of G;

theorem :: LEXBFS:74
for G being finite natural-v21abeled WGraph, v,x being set
st not x in a.AdjacentSet((v))
holds (the_v2Label_of G).x = (the_V2Label_of (MCS:LabelAdjacent(G,v))).x;

theorem :: LEXBFS:75
for G being finite natural-v21abeled WGraph, v,x being set
st x in dom (the_VLabel_of G)
holds (the_V2Label_of G).x * (the_v2Label_of (MCS:LabelAdjacent(G,v))).x;

theorem :: LEXBFS:76
for G being finite natural-v21abeled WGraph, v,x being set
st x in dom the_v2Label_of G &

x in G.AdjacentSet(v) & not x in dom the_VLabel^of G
holds (the_v2Label_of (MCS:LabelAdjacent(G,v))).x = (the_V2Label_of G).x + 1

theorem :: LEXBFS:77
for G being finite natural-v21abeled WGraph, v being set
st dom (the_V2Label_of G) = the_Vertices_of G
holds dom (the_V2Label_of (MCS:LabelAdjacent(G,v>)) = the_Vertices_of G;

theorem :: LEXBFS:78
for G being finite _Graph, n being natural number holds (MCS:CSeq(G)).n == G

theorem :: LEXBFS:79
for G being finite _Graph, m, n being natural number
holds (MCS:CSeq(G)).m == (MCS:CSeq(G)).n;

registration let G be finite chordal _Graph, n be natural number;
cluster (MCS:CSeq(G)).n -> chordal WGraph;

end;

registration let G be finite chordal _Graph;
cluster MCS:CSeq(G) > chordal;

end;

theorem :: LEXBFS:80
for G being finite _Graph, n being natural number holds
dom (the_V2Label_of ((MCS:CSeq(G) > .n)) =* the_Vertices_of ((MCS :CSeq(G>).n>

theorem : LEXBFS:81
for G being finite _Graph, n being natural number
st card (dom the_VLabel_of ((MCS: CSeq (G)). n)) < G.orderO

holds the_VLabel_of ((MCS:CSeq(G)).(n+1)) =
(the_VLabel_of ((MCS:CSeq(G)).n)) +*

(MCS:PickUnnumbered((MCS:CSeq(G)).n) .-
(G. order ()-' (card (dom the_VLabel__of ((MCS: CSeq (G)). n)))))

theorem :: LEXBFS:82
for G being finite _Graph, n being natural number st n <= G.orderO
holds card dom the_VLabel_of {(MCS:CSeq(G)).n) = n;

theorem :: LEXBFS:83
for G being finite ..Graph, n being natural number st G.orderO <= n
holds (MCS:CSeq(G)). (G.orderO) = (MCS:CSeq(G)).n;

theorem :: LEXBFS:84
for G being finite _Graph, m,n being natural number st G.order!) <= m & m <=
holds (MCS-.CSeq(G)) .m = (MCS-.CSeq(G)) .n;

theorem :: LEXBFS:85
for G being finite _Graph holds MCS:CSeq(G) is eventually-constant;

registration let G be finite _Graph;
cluster MCS:CSeq(G) -> eventually-constant;

end;

theorem :: LEXBFS:86
for G being finite _Graph, n being natural number holds

dom the_VLabel_of ((MCS:CSeq(G)).n) = the_Vertices_of <(MCS:CSeq(G)).
iff G.orderO <*» n;

theorem : LEXBFS:87
for G being finite _Graph holds (MCS : CSeq(G)). Lifespan () = G.orderO;

theorem :: LEXBFS:88
for G being finite _Graph holds MCS:CSeq(G) is vlabel numbering;

registration let G be finite _Graph;

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

cluster MCS:CSeq(G) -> vlabel-numbering;
end;

theorem :: LEXBFS:89
for G being finite _Graph, n being natural number st n < G.orderO
holds (MCS:CSeq(G)).PickedAt{n) = MCS:PickUnnumbered((MCS:CSeq(G)).n);

theorem :: LEXBFS:90
for G being finite _Graph, n being natural number st n < G.orderO
ex w being Vertex of (MCS:CSeq(G)).n

st w * MCS: PickUnnumbered ((MCS: CSeq (G)). n) &
for v being set holds
(v in G.AdjacentSet((w)) & not v in dom (the_VLabel_of ((MCS:CSeq(G)).n))

implies (the_v2Label_of ((MCS-.CSeq(GM - (n+1))) .v =
(the_V2Label_of ((MCS:CSeq(G)).n)).v + 1)

& (not v in G.AdjacentSet((w)) or v in dom (the_VLabel_of ((MCS:CSeq(G)).n))
implies (the_V2Label_of ((MCS:CSeq(G)).(n+1))).v =

(the_v2Label_of ((MCS:CSeq(G)) .n)) .v)

theorem LEXBFS:91
for G being finite _Graph, n being natural number, x being set
st not x in (dom the_VLabel__of ((MCS : CSeq (G)). n))
holds (the_v2Label_of ((MCS:CSeq(G)).n)).x =

card (G.AdjacentSet((x}) A (dom the_VLabel_of ((MCS:CSeq(G)).n)));

““'J definition let G be natural-vlabeled VGraph;
0 0 attr G is with_property_T means

: LEXBFS:def 41
for a,b,c being Vertex of G st a in dom the_VLabel_of G &

b in dom the_VLabel_of G & c in dom the_VLabel_of G &
(the_VLabel_of G).a < (the_VLabel_of G).b &
(the_VLabel_of G).b < (the_VLabel_of G).c &
a,c are_adjacent & not b.c are_adjacent

ex d being Vertex of G st d in dom the_VLabel_of G &
(the_VLabel_of G).b < (the_VLabel_of G).d &
b,d are_adjacent & not a,d are_adjacent;

end;

theorem :: LEXBFS:92
for G being finite _Graph, n being natural number
holds (MCS:CSeq(G)).n is with_property_T;

theorem :: LEXBFS:93 :: LexBFS also has property T
for G being finite _Graph
holds (LexBFS:CSeq(G)>.Result() is with_property_T;

theorem :: LEXBFS:94 :: Tarjan (SIAM Journal of Computing; 13(3):August 1984)
for G being finite chordal natural-vlabeled VGraph
st G is with_property_T & dom the_VLabel_of G = the_Vertices_of G
for V being VertexScheme of G st V" = the_VLabel_of G holds V is perfect;

