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Abstract

In this paper, we explore the idea of using environmen-
tal cues as a control for a chain of sequential behaviours
which, when taken together, define a task achieving
group behaviour. Our approach is to define the col-
lective task, to be performed by multiple robots, as a
group behaviour. The group behaviour is a set of be-
haviours performed in sequence, each of which specify a
single step in the collective task. An environmental cue
1s used to control the transition between each behaviour,
thus allowing the progress of the collective task to self-
govern 1its execution. We propose to simplify the recog-
nition of the environmental cue by characterizing the
robot’s sensor input patterns as a classification prob-
lem, solved using an Adaptive Logic Network (ALN)
and implemented using simple combinational logic. We
provide a description of our Collective Robotic Intelli-
gence Project (CRIP) including our simulation results
and our multi-robot system on which these results will
be deployed.

1 Introduction

Can collective tasks be accomplished using group be-
haviours? Interest in accomplishing tasks by using mul-
tiple robots has resulted in systems designed using co-
operative behaviour [8, 5, 1, 4, 9]. Our previous work
[7] demonstrated that computationally simple control
mechanisms allowed multiple autonomous robots to per-
form simple tasks without centralized control or use of
explicit communication. In this paper, we explore the
idea of using environmental cues as a control for a chain
of sequential behaviours which, when taken together,
define a task achieving group behaviour.

Collective tasks are defined as a result of a group of
task achieving robots all with a common purpose. For
example, a group of robots designed to keep a table top
free from objects, will collectively locate and push to an

edge any object placed on the table. When the object
is heavier than a single robot can move, the cooperative
efforts of the group is required. Similarly, consider the
task of a group of fire fighting robots. A fire that quickly
spreads 1s easier to bring under control if a system of
multiple robots can physically distribute itself over the
area. Collective tasks of these forms are suitable to the
multiple robot approach.

Research projects are now beginning to investigate
the cooperative behaviour of multiple robot systems
necessary for collective tasks. Such tasks include sim-
ple retrieval tasks, flocking, and cooperative pushing

1,8, 3, 6].

Our own work has examined the problem of control-
ling multiple autonomous robots. Based on observa-
tions made from the study of social insects, we pro-
posed some simple mechanisms used to invoke group be-
haviour in simple mobile robots. The proposed mecha-
nisms allowed populations of behaviour-based robots to
perform tasks without centralized control or use of ex-
plicit communication. Some of these mechanisms have
been tested on a group of five homogeneous mobile

robots [7].

The remainder of this paper is organized as follows.
In section 2 we discuss collective tasks which are suit-
able for multiple robot systems. In section 3 we exam-
ine how a group behaviour can be constructed from a
sequence of individual task achieving behaviours, and
how environmental cues can be used to activate each
behaviour in sequence. In section 4 we present an ap-
proach we are investigating to simplify the recognition
of environmental cues. In section 5 we describe briefly
our Collective Robotic Intelligence Project (CRIP) and
both the simulation results and implementation of our
multiple mobile robot system. Finally, section 6 sum-
marizes our work to date.



2 Collective Tasks

Solving tasks with the use of multiple robot systems has
advantages researchers are just beginning to explore.
For example, tasks with an inherent parallel nature,
such as search, can be accomplished in a shorter time
frame using multiple searching robots. The multiple
robot approach also serves to increase the redundancy
and distribute the risk of single failure; an important
feature of any system working in a hazardous environ-
ments.

Distributing a task over multiple robots does not sim-
ply divide the time necessary for task completion by
the number of robots. Issues involving cooperation and
task progression must also be addressed when design-
ing a collective task suitable for execution by a multiple
robot system.

Cooperation comes into play when the collective tasks
involve several robots working together towards some
common goal. In these situations some mechanism must
exist which both allows for the cooperation to take place
and to regulate the progress of the cooperative task. In
the next section we discuss one possible approach using
group behaviours.

3 Group Behaviour

Collective tasks to be performed by multiple robots can
be defined using group behaviours. A group behaviour
is a set of behaviours performed in sequence, each spec-
ifying a single step in the collective task. An enwiron-
mental cue 13 used to control the transition between
each behaviour. This allows the progress of the col-
lective task to self-govern its execution. We propose
to simplify the recognition of the environmental cue by
characterizing the robot’s sensor input patterns as a
classification problem, solved using an Adaptive Logic
Network (ALN) and implemented using simple combi-
national logic.

A group behaviour can be defined as a sequential set
of behaviours each of which are activated by a specific
sensor pattern. For example, consider the simple task
depicted in Figure 1. The objective is to move the box
from its initial position at X to a position designated
as Y. The task can be specified with the following four
behaviours.

e find-Boz B.

o Move-to-Boxr Bs.
e Push-Boz Bs.

o Move-to-Y By.

Given that the box is too heavy for a single robot
to move, the task will require the cooperative efforts
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Figure 1: The robots (circles) must locate and collec-
tively push the box from position X to position Y.
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Figure 2: State transition diagram for the Transport
group behaviour, consisting of the four behaviours la-
belled By — Bs. The environmental cues which cause
transition are labelled as e, es, and es.

of at least two robots. The above four behaviours in
this example are simply ordered { By, Bs, Bs, B4 } and
define the transport group behaviour.

The transition between behaviours is specified by an
environmental cue. In this example, three cues are nec-
essary and are represented by three sensor patterns.
This could be implemented with three separate sensors,
but this does not have to be the case. The environmen-
tal cues are:

e box-pattern-sensor, ey, used to locate the box.
e box-contact-sensor, es, used to touch the box.

e [ocation-Y-sensor, ez, used to find position Y.

An example of a transition between the Find-Boz and
Move-to-Box behaviour is given by: T : e;&—ey. Fig-
ure 2 is a state diagram of the transport behaviour, with
the environmental cues labelled as e;.

Environmental cues allow the progress of the collec-
tive task to self-govern its execution. Consider the task
of building an archway, illustrated in Figure 3, by a
group of construction robots. The archway collective
task consists of three steps:

1. Construct a free standing pillar of blocks of type b.
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Figure 3: The archway collective task

2. Construct a free standing pillar in close proximity
to a pillar.

3. Place a beam of type a on top of the pillars.

The last step will require an environmental cue that
recognizes two adjacent pillars, before activating a
place-beam behaviour. Likewise, in order to construct a
pillar an environmental cue will have to recognize a par-
tially complete pillar; allowing a block-placing behaviour
to continue constructing the pillar. As the construction
task proceeds its progress governs the execution of the
task, as environmental cues recognize the completion of
each step.

In attempting to implement the environmental cues,
e; , we are faced with the pragmatic problem of how to
implement this recognition in a computationally simple
manner, given that we may not be able to easily charac-
terize the sensor inputs that specify e; programatically.
Our proposed solution is to employ a simple, computa-
tionally efficient, pattern recognition mechanism called
an Adaptive Logic Network (ALN) [2]. By characteriz-
ing the sensor input pattern as a classification problem,
which the ALN can be trained to recognize, we hope
to simplify the recognition of the environmental cues.
Implementation of the ALN is possible in simple com-
binational logic, making then fast and computationally
efficient. In the next section we describe ALNs and our
simulation approach.

4 Simulation Approach

Our robot population simulator, SimbotCity, described
in [6] allows us to model a robot as a collection of sen-
sor systems and actuator resources. Populations can be
created which consist of autonomous robots and sim-
ple collective tasks specified. Our approach is to train
an ALN on the robot’s sensor pattern resulting in one
ALN tree to recognize each different environmental cue.

The single output of the ALN tree will then be used to
activate a behaviour in the robot’s controller.

4.1 Adaptive Logic Networks

ALNs are a type of neural network constructed using
binary trees. Each node in the tree is assigned a boolean
function from the set { AND, OR, LEFT or RIGHT } .
At the base of the tree are the leaves to which the input
vector is presented.

A tree begins with a random node assignment and
is trained, resulting in an assignment of the correct
boolean function to non-leaf nodes using a simple train-
ing algorithm explained in [2]. Once trained, the ALN
classify new input vectors into one of the classes estab-
lished during training.

ALNs offer speed and implementation advantages im-
portant in our approach. Both can be attributed to the
boolean nature of each node in an ALN binary tree.
For example, a node whose assigned boolean function is
AND is both quick to evaluate if one input is zero and
easy to implement in VLSI circuit technology.

Our main (tentative) conclusion is that, ALNs can be
trained to recognize a given sensor input pattern and
classify the correct environmental cue, thereby serving
as a computationally efficient and fast method to ac-
tivate behaviour transitions. As our simulation work
proceeds, we will see if this approach applys over a wide
range of sensor modalities. In the next section we briefly
discuss some of the results from our Collective Robotic
Intelligence Project (CRIP).

5 Experiments

Our previous work has been looking for suitable control
mechanisms with which to control multiple robot sys-
tems without using a centralized supervisory approach.
As a first step, our research proposed five control mecha-
nisms suitable for controlling populations of behaviour-
based robots. Our approach to controlling multiple
robots involves the use of group behaviours which may
be invoked using several sensory-based mechanisms.
The mechanisms proposed have resulted from the study
of social insects which exhibit collective task achieving
behaviours. To test our control mechanisms we created
a simulator, called SimbotCity, which allowed us to cre-
ate configurations of multiple robots designed to achieve
simple collective tasks. Once satisfied the control strate-
gies were feasible, we then constructed a system of five
physical robots designed for a simple collective task con-
sisting of locating a brightly lit box and pushing it in
their environment. The task was such that it could not
be accomplished without the cooperative efforts of at
least two robots pushing on the same side of the object.

[6, 7).
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SimbotCity - The Robot Population Simulator
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Figure 4: Initial robot configuration. Robots must lo-
cate and collectively push the black box.

The approach, employed to control the group of five
robots, involved having the robots work toward a com-
mon goal (see Figure 4). Using noninterference as a
simple form of cooperation, the robots were able to col-
lectively locate and push a brightly lit box in their envi-
ronment (see Figure 5). The system demonstrated that
the common task control mechanism was a feasible ap-
proach to controlling a small group of robots using a
non-interference cooperation strategy.

An important feature of the system 1s that simple re-
flexive behaviours can be used to control the individual
robot in a goal directed manner using equally simple
binary sensors. The behaviours and their arbitration
mechanism are constructed using simple combinational
logic. Animportant implication of this simplicity is that
the control architecture could be scaled down to fit on a
small silicon chip. This would allow for the creation of
a large number of small cost effective robots to be used
in areas too small for more traditional robots.

6 Summary

In this paper we have presented our approach towards
implementing environmental cues, a mechanism used
to control a group of multiple robots and their progress
towards executing a collective task. We are exploring
the use of Adaptive Logic Networks as a means to im-
plement the environmental cues by characterizing the
robot’s sensor input patterns as a classification prob-
lem. Should the (tentative) simulation results demon-
strate the soundness of the approach, we will then im-
plement the results in combinational logic on our system
of five physical robots and continue our exploration of
cooperative robotic behaviour.

Figure 5: Robot 1 overtakes robot 2 to avoid a colli-
sion, while progressing towards the box. Robots 1 and
3 pushing the box forward
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