
University of Alberta

STATE-INDEPENDENTDECODABLE DC-FREE CODES WITH
COMPLEX-VALUED SIGNALLING ALPHABETS

by

Craig Jamieson

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Communications

Department of Electrical and Computer Engineering

©Craig Jamieson
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarlyor scientific

research purposes only. Where the thesis is converted to, or otherwisemade available in
digital form, the University of Alberta will advise potential users of the thesisof these

terms.

The author reserves all other publication and other rights in association withthe copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

To my wife, Athena,
for her constant love and support.

Abstract

Traditionally, constrained sequence coding has been employed exclusively in codes

using binary or multilevel signalling. This thesis extendsthe procedure for con-

structing DC-free constrained sequence codes to alphabets that use signalling con-

stellations with complex-valued symbols. In particular, the codes are separated into

two types: i) constraints with independent logical signalling dimensions and ii)

constraints using dependent logical signalling dimensions. In both cases, constraint

modelling for the purpose of the evaluation of capacity is explored. Within the

case of dependent signalling dimensions, the state machines can contain a finite or

an infinite number of states, depending on the signalling constellation that is used.

Evaluation of capacity of these types of constrained systems is considered in detail.

Building upon the capacity analysis and constraint modelling techniques, DC-

free codes using complex-valued signalling constellations are constructed. The

three constellations that are considered in detail in this thesis are quadrature phase

shift keying (QPSK), 8 phase shift keying (PSK), and 16 quadrature amplitude mod-

ulation (QAM). A number of codes have been constructed for each of the three types

for various RDS spans. Further, it is shown that Justesen’s relationship for codes

using binary-valued symbols, which relates the value of thesum variance to the

width of the spectral notch around DC, also holds for codes using complex-valued

symbols.

To complete the code construction procedure for DC-free codes using complex-

valued signalling alphabets, which involves state-based encoding and decoding, an

algorithm was developed to construct codes that can be decoded at the receiver

without requiring state information. This algorithm was designed to execute in

polynomial time with respect to the size of the input and to beboth general and

flexible, so that it can operate on any family of constrained sequence codes. In

addition to codes with complex-valued symbols, a number of binary DC-free RLL

block codes are constructed using this algorithm, achieving the maximum possible

code rates with codeword lengths less than 20. This algorithm is also extended to

include the principles of weakly constrained coding.

Acknowledgements

I would first like to thank my supervisor, Dr. Ivan Fair, for his support, guidance,

and many suggestions throughout the course of my research.

I would like to express my appreciation for the scholarshipsI received from

National Sciences and Engineering Research Council (NSERC) andthe Alberta

Informatics Circle of Research Excellence (iCORE). This work would not have

been possible without their generous support.

I extend my thanks to all of the faculty members who have taught and assisted

me, especially Dr. Witold Krzymién, Dr. Vincent Gaudet, Dr. Hai Jiang, and Dr.

Ioanis Nikolaidis for their insightful comments on my research as the members of

my examining committee.

Finally, I am grateful to my family and friends for extendingtheir patience, sup-

port and love to me. Without them, this work would never have come into existence.

Edmonton, Alberta Craig Jamieson

July 9, 2011

Table of Contents

1 Introduction 1

1.1 Thesis Objective . 3

1.2 Thesis Organization . 5

2 Background 8

2.1 Information and Entropy . 9

2.1.1 Entropy of a Memoryless Information Source 9

2.1.2 Markov Chains . 10

2.1.3 Capacity of Constrained Channels 12

2.2 Code Construction . 14

2.2.1 Finite-State Machine Encoder Modelling and Block-type

Encoders . 15

2.2.2 Types of Block-type Encoders 16

2.2.3 Capacity of Constraints Modelled by an FSM 18

2.2.4 Franaszek’s Recursive Elimination Algorithm 18

2.2.5 State-Independent Decoding 19

2.2.6 Construction of State-Independent Decodable Codes 22

2.3 Spectral Analysis . 24

2.3.1 Stochastic Processes . 24

2.3.2 Spectral Analysis of Markov Information Sources 26

2.3.3 Spectral Analysis of Block Coded Signals 27

2.4 Types of Constrained Codes . 30

2.4.1 Run-length Limited Constrained Codes 31

2.4.2 DC-free Constrained Codes 32

2.4.3 DC-free RLL codes . 36

2.4.4 Multilevel Constrained Codes 38

2.4.5 Constrained Codes for Multi-Dimensional Media 39

3 State-Independent Decoding 42

3.1 Construction of State-Independent Codes43

3.2 Algorithm for State-Independent Decoding 43

3.2.1 Initial Construction of the Coding Table 44

3.2.2 Outline of the Algorithm 47

3.2.3 Structure of the Table . 48

3.2.4 Fitting Procedure . 51

3.2.5 Improved Fitting Procedure: Scoring 53

3.2.6 Re-numbering of States . 57

3.3 Algorithm Complexity . 59

3.4 Lookahead . 60

3.5 Example Codes . 61

3.6 Weakly Constrained Codes . 70

3.7 Summary . 78

4 Evaluation of the Capacity of Constrained Codes with Multiple Con-

strained Signalling Dimensions 80

4.1 FSM Encoders and State Variables 81

4.2 Digital Sum Variation and RDS Span 81

4.3 Constraint Modelling with Multiple Signalling Dimensions 82

4.3.1 Constraint Modelling with Independent Signalling Dimen-

sions . 82

4.3.2 Constraint Modelling with Dependent Signalling Dimensions 87

4.4 Capacity with Independently Constrained Signalling Dimensions . . 89

4.4.1 Examples: DC-free QPSK, 8PSK, and 16 QAM 90

4.5 Capacity with Dependently Constrained Signalling Dimensions . . . 92

4.5.1 Finite Number of States 92

4.5.2 Infinite Number of States 95

4.6 Summary . 99

5 DC-free Codes with Complex-Valued Signalling Constellations 101

5.1 RDS, DSV, and Sum Variance . 102

5.2 Constraint Modeling with DC-free Codes Using Multiple Signalling

Dimensions . 102

5.3 Construction of DC-free Codes Using QPSK Signalling Alphabets . 104

5.4 Construction of DC-free Codes Using 8PSK Signalling Alphabets . 109

5.5 Construction of DC-free Codes Using 16 QAM Signalling Alphabets 112

5.6 Summary . 114

6 Conclusions and Future Work 115

6.1 Thesis Contributions . 115

6.2 Suggested Future Work . 118

Bibliography 121

List of Tables

2.1 Sample block encoder . 17

2.2 Sample block-decodable encoder 18

2.3 Set of codewords partitioned into a group of alphabets. 20

2.4 Set of codewords that do not permit state-independent decoding. . . 21

2.5 Zero disparity codewords of lengthn and the corresponding code

rate in binary digits per symbol. 34

2.6 Capacity, in bits of information per symbol, of sequences{xi} as a

function of DSV,N . 35

3.1 Example table showing group of alphabets. 45

3.2 Codeword mapping ford = 1, k = 5, N = 7 with m = 4 andn = 8. 65

3.3 Code table ford = 1, k = 5, N = 7 with m = 4 andn = 8. 67

3.4 Portion of code table ford = 1, k = 3, N = 5 with m = 8 and

n = 20. 69

3.5 Code table ford = 3, k = 5, N = 8 with m = 3 andn = 13. 72

3.6 Codeword mapping ford = 3, k = 5, N = 8 with m = 3 andn = 13. 73

4.1 Maximum eigenvalue and capacity, in bits of informationper sym-

bol, of one-dimensional DC-free codes forN = 2 through9. 90

4.2 Maximum eigenvalue, capacity (in bits of information per symbol),

and number of states in 8PSK DC-free codes with four independent

signalling dimensions. 91

4.3 Maximum eigenvalue, and capacity, in bits of information per sym-

bol, for one-dimensional DC-free codes forN = 4 through9 with

multi-level signalling values of{±1,±3}. 92

4.4 Maximum eigenvalue and capacity, in bits of informationper sym-

bol, of QPSK DC-free codes with two dependent dimensions and

RDS bounded with circular-type bounds. 93

4.5 Maximum eigenvalue and capacity, in bits of informationper sym-

bol, of 16 QAM DC-free codes with six dependent dimensions and

RDS bounded with rectangular-type bounds. 93

4.6 Maximum eigenvalue and capacity, in bits of informationper sym-

bol, of 8 PSK DC-free codes with four dependent dimensions and

RDS bounded with rectangular-type bounds. 93

5.1 Codebook for QPSK DC-free code withm = 4, n = 3, and∆Zr =

∆Zi = 2 as a function of encoding stateσi. 105

5.2 Word index to codeword mapping for QPSK code with∆Zr,∆Zi =

2,m = 4 andn = 3. 106

5.3 Parameters of QPSK DC-free codes with∆Zr,∆Zi = 2, 4 and6. . . 107

5.4 Parameters of 8PSK DC-free codes with∆Zr,∆Zi between2 and4. 110

5.5 Parameters of 16 QAM DC-free codes with∆Zr,∆Zi between6

and15. 113

List of Figures

2.1 Example of a Markov chain represented by a directed graph. 11

2.2 Example of a finite state machine. 17

2.3 Venn diagram showing a set partitioning into regions fora three

state code. 23

2.4 Sample FSM for a DC-free RLL code with parametersN = 9, d =

2, k = 3 . 38

3.1 Example FSM used to demonstrate the process of translating an

FSM into the tabular representation. 46

3.2 PSD of DC-free RLL code withd = 1, k = 5 andN = 7. 66

3.3 Runlengths within a DC-free RLL code withd = 1, k = 5 andN = 7. 68

3.4 PSD of weakly constrained DC-free RLL code withd = 3, k = 5

andN = 8 using first approach. 74

3.5 RDS of a weakly constrained DC-free RLL code withd = 3, k = 5

andN = 8 for five million codewords for the first approach. 75

3.6 Runlengths of a weakly constrained DC-free RLL code withd =

3, k = 5 andN = 8 for five million codewords for the first approach. 75

3.7 PSD of weakly constrained DC-free RLL code withd = 3, k = 5

andN = 8 for the second approach. 76

3.8 Comparison of RDS for a weakly constrained DC-free RLL code

with d = 3, k = 5 andN = 8 with five million codewords for the

two approaches. 77

3.9 Comparison of PSD with two weakly constrained codes and a non-

weakly constrained code. 77

3.10 Comparison of RDS for a weakly constrained DC-free RLL code

with d = 3, k = 5 andN = 8 with five million codewords for the

two approaches zoomed in to show variability.79

4.1 One-dimensional FSMs with (a)N1 = 4 and (b)N2 = 3. A two-

dimensional FSM (c) is constructed by the Kronecker productof

FSMs (a) and (b) . 84

4.2 8PSK signalling constellation. .86

4.3 FSM for QPSK DC-free code withN1 = 4 andN2 = 3 and a

circular-type RDS bound. 88

4.4 Capacity, in bits of information per symbol, as a functionof RDS

span for DC-free 8PSK codes with dependence introduced by using

rectangular-type RDS bounds. 94

4.5 Steady-state probability of each of the 221 states in theFSM when
1√
2

is rounded to0.7. 97

4.6 Graphical representations of the regions which containa cluster of

states with the same steady-state probability. 98

5.1 PSD of DC-free QPSK codes with∆Zr,∆Zi = 2, 4 and6. 108

5.2 PSD of 8PSK DC-free codes with∆Zr,∆Zi between2 and4. . . . 111

5.3 PSD of 16 QAM DC-free codes with∆Zr,∆Zi between6 and15. . 113

List of Symbols

Au matrix specifying encoder output function for sourcewordu

B size of base set

C capacity

CX auto-covariance of a random process

Cx discrete-time auto-covariance function

D connection (adjacency) matrix

d d+ 1 specifies the minimum runlength in RLL codes

dC Cartesian distance between two points

E expected value

Eu matrix specifying valid state transitions for sourcewordu

F (w,P) set of states withinP from which codewordw can emanate

f encoder function that determines next state based on current state and output

G matrix that assists in calculation ofRk

g encoder function that determines next state based on current state and input

H entropy function

HX power spectral density of a random process

Hx discrete time power spectral density

h encoder function that determines output word

I identity matrix

K number of dimensions

k k + 1 specifies the maximum runlength in RLL codes

kc complementation index using Knuth’s complementation method

L total number of states

ld lookahead depth

M number of sequences

MX mean of a random process

Mx mean of discrete time process

m source word length

N digital sum variation

Ns number of sequences

n codeword length

P set of principal states

p probability

Q transition probability matrix

Q∞ matrix containing steady-state transition probabilitiesof each state across

each row

q size of alphabet in codes with multilevel alphabet

R code rate

Rk discrete time auto-correlation coefficients in matrix form

RX auto-correlation of a random process

Rx discrete time auto-correlation function

rf exponent controlling how constraint is measured for filled score

ro exponent controlling how constraint is measured for overlap score

rs(t) auto-correlation of shaping pulses(t)

S size of search set

Sf filled score

So overlap score

St overall score

s(t) shaping pulse used in communication track

s2z variance of running digital sum

T period

Tb period of bit

T transpose

t index indicating time

U set of states

u state index

V set of states

v state index

W set of words, or alphabet for a state

Wl number of words left in search rows of a given column

Ws number of spaces remaining in base rows of a given column

w codeword

X finite set of sequences

Xo size of output set

Xt stochastic process

x bit, sequence of bits

y state index

Z Markov random variable

z running digital sum

β source word

Γ source alphabet

∆ uniformly distributed random variable

∆Z largest RDS difference between any two valid RDS values

∆Zi RDS span in imaginary dimension

∆Zr RDS span in real dimension

ζ output function of Markov information source

λmax maximum eigenvalue of connection matrix

ν code efficiency

Π diagonal matrix with steady-state transition probabilities of each state on its

diagonal

π steady-state probability of state

Σ set of states

σ state

τ time difference

χ output word

ψ(σi, P) row sum for a possible principal state

Ω set of indices corresponding to non-eliminated principal states

ω frequency variable

List of Abbreviations

BD BluRay disc

CD compact disc

DSV digital sum variation

DVD digital versatile disc

ECC error control codes

EFM eight-to-fourteen modulation

FFT fast Fourier transform

FSK frequency shift keying

FSM finite state machine

ISI intersymbol interference

LFSW low frequency spectrum weight

NRZ non-return-to-zero

NRZI non-return-to-zero inverse

OFDM orthogonal frequency division multiplexing

PAPR peak-to-average power ratio

pdf probability density function

PSD power spectral density

PSK phase shift keying

QAM quadrature amplitude modulation

QPSK quadrature phase shift keying

RDS running digital sum

RLL runlength-limited

Chapter 1

Introduction

The field of digital communications has experienced tremendous growth in the past

few decades. This growth can be attributed to the emergence of new hardware tech-

nologies and advancements in signal processing, which haveenabled high data rate

transmission over a variety of mediums including optical fibre, satellites, and radio

links. Communication takes place not only across space, however, as in the conven-

tional channels listed above, but also from one time to another, such as in recording

systems. In both cases, the use of coding and the applicationof information theory,

motivated by Shannon’s work [1], has led to vast improvements in communication

systems and stimulated great interest in the field. In codingsystems, an encoder

performs the task of translating a block of user data, typically a binary sequence,

into another symbol sequence. The goal of the encoding procedure is to improve

the performance of the system, typically by making the system less prone to er-

rors occurring during transmission and detection. The focus of this thesis is on the

specific area of coding referred to as line coding or constrained sequence coding.

Constrained modulation codes used in data storage systems transform blocks of

m source symbols into blocks ofn coded symbols in a lossless manner such that the

encoded bit sequence satisfies specific constraints. These codes ensure satisfactory

performance despite limitations of the channel, encoding circuitry, and/or decoding

circuitry in digital storage and transmission systems [2].The set of words from

which the code sequences are selected is referred to as a constrained system. For

block codes, the code rate, given byR = m
n

, is a measure of the amount of infor-

mation a code conveys, typically specified binary digits persymbol. The quantity

1−R is referred to as the redundancy of the code.

To better describe the purpose of a constrained code, a few common applications

will be discussed. Constrained codes are widely used in recording systems, and for

this reason are sometimes referred to as recoding codes. Storage devices today, such

1

as hard drives, compact disc (CD) drives, digital versatile disc (DVD), and BluRay

disc (BD) drives all employ, or have employed, some form of constrained codes.

In fact, advances in storage capacities can be attributed not only to advances in

hardware technology, but to improvements in constrained codes. As an example of

a constrained code, consider the eight-to-fourteen modulation (EFM) [3] code used

in CD players. Data is written to the disc using pits and lands to represent binary

zeros and ones. The decoding circuity exhibits better performance if the durations

of the pits and lands are not too short or too long. Consequently, a runlength-

limited (RLL) code is employed to limit both the minimum and maximum number

of consecutive ones and zeros that can be written. Some redundancy is required to

enforce runlength limitations, which lowers the storage efficiency, but the improved

performance of the decoding circuitry allows more data to bepacked onto the disc,

resulting in a net increase in storage density. While constrained coding has been

traditionally deployed in the recording industry, there are also applications in other

digital communication systems, such as the peak-to-average power ratio (PAPR)

problem in orthogonal frequency division multiplexing (OFDM) systems, or the

ubiquitous scramblers used in most transmission systems.

Digital symbols are represented by physical quantities in order to be written to

a physical medium for storage or to be passed through a communication channel.

In digital communication systems, the symbols are assignedto one of a finite set

of continuous waveforms. These continuous waveforms are, for example, sinusoids

in wireless communication systems or pits and lands in optical storage systems.

When a single pulse is transmitted in a bandwidth-limited system, convolution of

the pulse with the impulse response of the channel can resultin the spreading of

the pulse over several signalling intervals [2]. This spreading is referred to as inter-

symbol interference (ISI) and can be the limiting factor, rather than additive-type

noise, in recording systems. While ISI can be reduced or removed using a lin-

ear filter at the receiver, there are a number of difficulties in recording systems

that prevent the straightforward application of filtering [2]. Rather than employing

complex adaptive equalization, a constrained code can be employed. For exam-

ple, the minimum runlength in a code controls the highest transition frequency in

the transmitted waveform and thus directly influences the effects of the ISI over a

bandlimited channel.

The guiding principle behind most constrained codes is thatparticular sequences

of bits are difficult or impossible for the communication track to handle. These se-

quences result in an erroneous version of the user data beingdetected. Constrained

2

coding aims to remove these vexatious sequences from the codebook, improving the

robustness of the communication track. Widely used classesof constrained codes

include RLL codes and balanced codes [2]. An RLL code imposes constraints on

the minimum and maximum runlengths allowable for consecutive 0’s and 1’s within

the coded sequence; this can be thought of as a constraint in the time domain. Bal-

anced codes generate sequences of bits with an equal number of 1’s and 0’s. These

sequences have a null at DC in their continuous spectral component, and therefore

are referred to as DC-free codes; this can be thought of as a constraint in the fre-

quency domain. It should be noted that while constrained codes can be developed

to satisfy many spectral constraints [4], the most common requirement is that the

code have no spectral content at DC.

A common procedure for encoding constrained sequence codesis to use the

current accumulated running digital sum (RDS) value or run-length as state infor-

mation. This state information is modelled using a finite-state machine (FSM) with

states, edges, tags, and labels. DC-free and RLL codes, along with methods of code

construction, are covered in more detail in the next chapter. Further, some varia-

tions of these two types of codes, including the codes satisfying both constraints,

employing multi-level signalling, or signalling on a two dimensional medium are

discussed in Chapter 2.

1.1 Thesis Objective

In this thesis, two major areas of constrained coding are addressed. For the first ma-

jor area, this thesis aims to extend existing theory of DC-free constrained codes to

the case where the signalling alphabet is larger than binaryand, in particular, uses

a complex-valued signalling alphabet. The construction ofcodes using complex-

valued signalling alphabets requires knowledge of capacity and the development

of constraint modelling techniques. Further, practical constrained codes have an

additional requirement that the code is decodable without requiring state informa-

tion, so that error propagation at the decoder is limited. Prior to the work in this

thesis, no methods were known for the construction of DC-freeconstrained codes

using complex-valued signalling alphabets. To address this, an approximation al-

gorithm for constructing constrained codes that permit state-independent decoding

is the second major area that is considered. The applicationof this algorithm is

not limited to DC-free constrained codes with complex-valued signalling alpha-

bets; instead, the algorithm is designed to function on any type of constrained code

3

and includes a number of parameters than can be adjusted based on the particular

family of codes.

For typical applications of DC-free and RLL codes, the communication sys-

tem uses only binary valued symbols since the channel or medium supports only

two values. However, in this thesis, the case where a larger,complex-valued al-

phabet is used for signalling is investigated, opening up the possibility for using

constrained codes in more diverse applications including,for example, those em-

ploying phase shift keying (PSK) or quadrature amplitude modulation (QAM) con-

stellations. While it is possible to use a constrained code onthe binary values prior

to mapping them onto other symbols for transmission, in general, the constraint will

no longer be satisfied. There are some cases where this is possible, for instance by

exploiting symmetry in the symbols in the signalling alphabet, however this will

not always be possible. For example, in the context of DC-freecodes, it is required

that the communication system have no frequency content at DC. Typically this is

performed by balancing the symbols used for transmission. Balancing a binary se-

quence prior to mapping it onto PSK symbols will not necessarily mean that the

PSK sequence is balanced. In general, balancing a code that uses multiple symbols

across two dimensions will be more difficult than balancing acode using binary

signalling over a single dimension.

The DC-free constraint is important in optical disc applications for minimizing

the effects of fingerprints and other low frequency noise, while the RLL constraints

exist in order to facilitate easier bit detection since limitations to the minimum and

maximum lengths of a pit or land enable simpler and more reliable demodulation

circuitry. However, these types of constraints could potentially be used in any sys-

tem that employs a larger signalling alphabet. Specifically, controlling the spectral

emissions of the communication system is important in a large number of appli-

cations, especially in systems that communicate using a shared medium. Further,

the system may require the insertion of a pilot tone at a particular frequency and

by using a constrained code it is possible to remove all information signal content

at the desired frequency. Maximum RLL constraints are used toforce transitions

in the data stream, for example, to aid in the recovery of timing information or

synchronization.

In this thesis, the DC-free constraint using complex-valuedsignalling alphabets

is explored. This constraint is modelled through the use of multiple constrained

signalling dimensions. Examples are provided using QPSK, 8PSK, and 16 QAM

signalling alphabets where the encoder divides the signalling constellation into a

4

number of independent logical dimensions and enforces the DC-free constraint on

each logical dimension separately. While these signalling constellations are used as

examples, this work is also more general, and the principlescan be applied to other

forms of communication where the signalling has some form ofindependence, such

as frequency shift keying (FSK).

To design DC-free constrained codes using complex-valued signalling alpha-

bets, important concepts from constrained codes using binary valued signalling are

extended. Typically, the constraint is modelled as an FSM and the capacity of the

constraint is evaluated. Capacity, in particular, is important because it provides an

upper limit on the rate that is achievable when designing thecode. In general, for

a particular constraint, the code designer should aim for the highest rate possible,

bounded by the maximum theoretical capacity, since this means that the coded se-

quences convey the most information. While it is sometimes possible to design a

constrained code without the use of an FSM, for example, by enumerating the to-

tal number of sequences that satisfy the constraint, for more complex constraints,

which are explored in this thesis, FSM encoder modelling is typically required.

By using an FSM, a DC-free code, for example, can ensure that codewords are

balanced over a slightly longer period of time than a single codeword interval by

having the encoder keep track of relevant state informationand concatenating the

codewords intelligently. FSM modelling is important because it allows the code

designer to have many tools with which to design efficient codes. This includes a

relatively simple means for evaluation of capacity, and a straightforward approach

to conduct spectral analysis in order to quantify the performance of a code. The

approximation algorithm for state-independent decoding that is developed in this

thesis implicitly assumes that the constraint has been modelled using an FSM and

then partitioned into a table. If the code is simple enough that states are not required

for its implementation, then the encoding is performed without state information

and so state-independent decoding is straightforward.

1.2 Thesis Organization

The thesis is organized as follows.

Chapter 2 presents the theoretical foundation for constrained codes. The chap-

ter begins by presenting a brief overview of the fundamentalidea of information,

entropy and capacity. A modelling tool called a Markov chainand the evaluation

of its capacity is discussed. Code construction is covered indetail, highlighting a

5

practical issue: state-independent decoding. The merits of state-independent de-

coding are highlighted briefly, and an overview of the existing related literature is

presented. The spectral analysis of codes is discussed, beginning with discussion of

a Markov information source, which serves as a starting point for the spectral anal-

ysis of both memoryless block codes and block codes with memory. The chapter

ends with a discussion of types of constrained codes that have been considered in

the literature. This includes the DC-free and RLL constraintsdiscussed earlier in

this chapter, and also constrained codes using multi-levelsignalling and constrained

codes for a two (or more) dimensional medium.

In Chapter 3, the construction of codes that permit state-independent decoding

is covered in more detail. The primary focus of the chapter isthe development of

a approximation algorithm that is able to construct codes that do not require state

information at the decoder. Using a representation based ona group of alphabets,

the algorithm is able to construct the codebook a single row at a time, using a

greedy procedure. Important points of the algorithm, such as optimizing the initial

construction of the table, and procedures for constructingthe rows are covered. The

algorithm has a number of parameters that can be tuned, such as scoring exponents

and thresholds, so that it can function for many families of codes. More advanced

techniques, such as lookahead and weakly constrained coding, are implemented

with the algorithm. Results of applying the algorithm to DC-free RLL codes are

presented, including those which employ lookahead or weakly constrained coding.

In Chapter 4, the evaluation of capacity and constraint modelling of DC-free

constrained codes using multiple constrained signalling dimensions is considered.

In particular, the chapter considers the DC-free constraintfor codes using quadra-

ture phase shift keying (QPSK), 8 PSK, or 16 QAM alphabets. Modelling and eval-

uation of the capacity of these systems is discussed. The signalling constellation is

considered as a number of independent signalling dimensions, where the encoder

can enforce the DC-free constraint on each of the dimensions separately. These

dimensions can then be transformed into a constrained code using dependently

constrained signalling dimensions by having the encoder re-consider the overall

DC-free constraint. Using this procedure, the constraint modelling and capacity

calculations are simplified.

In Chapter 5, the construction of DC-free constrained codes using QPSK, 8

PSK, and 16 QAM signalling alphabets is presented. Using theconstraint mod-

elling and capacity evaluation from the previous chapter, and the approximation

algorithm for the construction of a state-independent decodable code from Chap-

6

ter 3, a number of DC-free codes are constructed for each signalling alphabet. The

performance of these codes, in the form of the power spectraldensity (PSD), is

presented.

Finally, in Chapter 6, the thesis contributions are summarized and suggestions

for future work are offered.

7

Chapter 2

Background

This chapter discusses the theoretical foundation of constrained codes and its re-

lated literature. The first portion of the chapter presents the fundamental ideas and

tools required in the design of a constrained code. The ordering in which these

topics are discussed is similar to that used by the code designer in the process of

constructing a typical code, beginning with the idea of information and entropy,

then moving to modelling and encoder design. Spectral analysis is highlighted

thereafter. In the final portion of the chapter, the most common types of constrained

codes are discussed.

An overview of the concepts of information, entropy, and capacity is presented

in Section 2.1. Initially, the discussion is restricted to the entropy of information

sources without memory in subsection 2.1.1. The concept of aMarkov chain is

presented in subsection 2.1.2, and the capacity of a Markov information source

is discussed in subsection 2.1.3. In Section 2.2, importantelements of code de-

sign and construction are presented. This includes modelling of constraints with an

FSM, its capacity, and the design of an encoder that producessequences that satisfy

the desired constraint, discussed in subsections 2.2.1 through subsection 2.2.4. The

concept of state-independent decoding, the focus of the next chapter, is discussed in

subsection 2.2.5 and subsection 2.2.6. In Section 2.3, the spectral analysis of con-

strained modulation codes is presented. A brief discussionof stochastic processes

and stationarity is presented in subsection 2.3.1. The spectral analysis of a Markov

information source is discussed in subsection 2.3.2, whilethe spectral analysis of

block-coded signals is discussed in subsection 2.3.3. Common types of constrained

codes are discussed in Section 2.4. The two most popular constraints, RLL and DC-

free constrained codes are presented in subsections 2.4.2 and 2.4.1, respectively.

Additionally, codes satisfying both DC-free and RLL constraints simultaneously

are presented in subsection 2.4.3. Finally, codes employing multi-level signalling

8

are discussed in subsection 2.4.4, while codes designed to write sequences onto two

(or more) dimensional surfaces are discussed in subsection2.4.5.

2.1 Information and Entropy

In this section, a brief summary of the fundamental ideas of information and entropy

are presented. These concepts and their associated tools provide the code designer

with a guide for the construction of their initial design andmechanisms to assess the

performance of their overall design. In particular, this section quantifies how much

information is conveyed by an information source, which is related to its entropy.

The maximization of entropy for a particular channel constraint, called capacity, is

also discussed.

There are two major types of information sources, continuous and discrete.

In this thesis, the focus is on discrete information sources, which are information

sources that convey symbols from a finite set of letters, called an alphabet. Each

time the information source emits a message, some information is transmitted. To

measure the amount of information that has been conveyed, the concept of entropy

is used.

The information source conveys its information across a channel. In this the-

sis, the channels that are studied are those that do not permit a certain collection

of sequences, called forbidden sequences; this is referredto as an input-restricted

or constrained channel. As discussed in Chapter 1, certain sequences may be prob-

lematic for the detection circuitry, and so the channel restricts the usage of these

sequences. The particular types of constraints commonly used in constrained cod-

ing are discussed in more detail towards the end of this chapter.

2.1.1 Entropy of a Memoryless Information Source

A memoryless information source transmits symbols that arestatistically indepen-

dent. It is assumed that the particular symbol that is chosenfor transmission is

selected by the result of a random experiment. Consider a finite set of sequences

X = {x1, x2, . . . , xM}, with corresponding probabilitiesp1, p2, . . . , pM , such that
∑M

i=1 pi = 1. The symbol generated by the source at timet is indicated byXt.

In [1], Shannon develops the idea of the measurement of information, relating it to

entropy or uncertainty. The more unlikely a message is, the more information it

9

contains. Shannon adopted the definition:

H(p1, . . . pM) = −
M
∑

i=1

pi log pi, 0 ≤ pi ≤ 1 (2.1)

to measure the entropy of an information source. Setting thelogarithm to base 2

implies that the entropy is measuring the number of bits required to transmit the

sequences generated by the source, yielding units for entropy of bits of information

per symbol. Other base values for the logarithm can be used, but in this thesis, a

value of two is used, as is commonplace in the literature. It can be shown that the

entropy function achieves a maximum oflog2M bits of information per symbol

when the source symbols are equi-probable [5].

2.1.2 Markov Chains

It is often desirable to introduce correlation into a sequence of coded symbols. This

allows, for example, some spectral shaping, which is discussed later in this thesis.

In many cases, the appearance of a symbol is a function, in part, of the symbols that

appeared before it, and so the source is no longer memoryless, nor are the symbols

independent. To model these types of information sources, in this subsection the

idea of a Markov chain is discussed.

A Markov chain, withL states, is a discrete random process with dependent

discrete random variables,Zt, taking the form{. . . , Z−2, Z−1, Z0, Z1, . . .} from a

state alphabetΣ = {σ1, σ2, . . . σL}. These dependent discrete random variables

satisfy the Markov condition:

Pr(Zt = σit |Zt−1 = σit−1
, Zt−2 = σit−2

, . . .) = Pr(Zt = σit |Zt−1 = σit−1
) (2.2)

where Pr(A|B) is the probability of occurrence of eventA, given that eventB has

already occurred. This condition specifies that the variableZt is dependent only on

the past sampleZt−1 and independent of prior variables{Zt−2, . . .} in the Markov

chain. The Markov chain can then be described by its transition probability matrix,

Q, which specifies the probabilities of transitioning from a stateσi to another state

σj. Mathematically, the entries of the matrix are given by:

[Q]ij = Pr(Zt = σj|Zt−1 = σi), 1 ≤ i, j ≤ L. (2.3)

Notice that the Markov chain does not have any inputs; it is characterized by the

discrete random variable,Zt and the state transition probabilities.

10

 σ
2

 σ
3

 σ
1

1/2

1/4

1/2

1/2

1/2

1/4

1/2

Figure 2.1: Example of a Markov chain represented by a directed graph.

One popular representation of the transition probability matrix of a Markov

chain is to use a directed graph. The states form the verticesof the graph, while

the edges indicate valid transitions, i.e., transitions from statei to statej where

[Q]ij > 0. These edges are typically labelled with the value of[Q]ij corresponding

to the transitions. For example, for the transition probability matrix

Q =





0 1/2 1/2
1/4 1/4 1/2
1/2 0 1/2



 (2.4)

the directed graph representation is given in Fig. 2.1. Whileother representations

are possible, such as a trellis representation, only the directed graph representation

is presented here due to its similarity to the state machine representation discussed

in the next section.

In this thesis, only Markov chains that are irreducible and regular, also referred

to as ergodic, are considered. A Markov chain is irreducibleif from any state the

Markov chain can eventually reach any other state (in one or more steps) [6]. Reg-

ularity of a Markov chain refers to periodicity; specifically, a Markov chain that is

regular is non-periodic [6]. A state in a Markov chain is periodic if that state can

only be entered when the time index,t, is multiple of a specified periodT . If the

largest such value ofT is 1, then the Markov chain is non-periodic.

11

Entropy of Markov Information Sources

In this thesis, an information source with memory is modelled as a Markov infor-

mation source. Consider a finite Markov chain{Zt} and a functionζ whose domain

is the set of states and whose range is the alphabet,Γ. The set of sequences{Xt},
with Xt = ζ(Zt) is the output of a Markov information source corresponding to the

chain{Zt} and the functionζ. Since the symbols emitted by a Markov information

source are dependent, some redundancy is introduced, as each successive symbol is

partially predictable. The Markov information source produces correlated outputs,

Xt, based on its current state and the state transition probabilities.

To evaluate the entropy of a Markov information source, a simplification is

helpful. In this thesis, only unifilar Markov information sources are considered.

A Markov information source is unifilar if for every state,σi, the labels of itsni

successor statesσi1 , σi2 , . . . , σini
are distinct. A successor state ofσi is defined as

a state that can be reached in a single step with a transition probability greater than

zero. For example, in Fig. 2.1, the successor states of state2 are states 1, 2, and 3,

since each can be reached in a single step with probability greater than zero. For the

Markov information source to be unifilar, each of these successor states requires a

distinct label.

For a unifilar Markov information source the uncertainty of the successor of

stateσi is Hi = H([Q]i,i1 , [Q]i,i2 , . . . [Q]i,ini
), whereσi1 , σi2 , . . . , σini

are the suc-

cessor states ofσi. The value ofHi is calculated using the definition of entropy

from (2.1). Averaging the entropies of each of the states according to the probabil-

ity of being in that state gives the overall entropy of the unifilar Markov information

source:

H{X} =
L
∑

i=1

πiHi. (2.5)

whereπi is the steady-state probability of being in stateσi. The calculation of these

asymptotically steady state probabilities is considered in [5].

2.1.3 Capacity of Constrained Channels

Returning to the input-restricted or constrained channel, ameans to measure the

entropy of such a channel, or to calculate its capacity, is required. In [1], Shannon

defines the capacity, in bits of information per symbol, of a constrained channel as

C = lim
n→∞

1

n
log2Ns(n) (2.6)

12

whereNs(n) is the number of sequences of lengthn allowed by the channel. The

units for capacity are in bits of information per symbol since a base two logarithm

is used. Evaluation of the capacity of a constrained channelis important because it

indicates the upper-bound on the rate of a code that can be constructed that satisfies

the channel constraint. However, calculating the maximum number of sequences

permitted by a constraint channel is often a complex problem. In the following

subsection, another approach is considered.

Capacity of Markov Information Sources

A unifilar Markov source can be characterized in terms of its connection matrix,D.

The entries of this matrix,[D]ij, are constructed by examining the Markov source

and setting[D]ij to be equal to the number of transitions from statei to j, or zero if

there is no valid transition from statei to j. These transitions correspond to edges

of the directed graph that defines the Markov source. To find the capacity of this

Markov information source, the entropy given by:

H{X} =
N
∑

i=1

piHi (2.7)

must be maximized. This is done by choosing the transition probabilities,pi, such

thatH{X} is maximized. The state transition probabilities that givethe maximum

entropy for the Markov information source are called the maxentropic state transi-

tion probabilities and generate maxentropic sequences. The capacity is then given

by:

C = maxH{X} (2.8)

In this thesis, we consider only connection matrices representing strongly connected

graphs; therefore, the existence of a positive eigenvalue and corresponding eigen-

vector with positive elements is guaranteed by the Perron-Frobenius theorems [7].

Shannon [1] showed thatH{X} is a function of the connections inD. Since the

growth factor of the graph described byD is related to the maximum eigenvalue of

D, then the maximum number of sequences that can be generated asm → ∞ is

related to this maximum eigenvalue. A second method for calculating the capacity

is:

C = log2 λmax (2.9)

whereλmax is the maximum eigenvalue ofD [1]. Similar to before, taking the

logarithm to the base of two returns the capacity in bits of information per symbol.

13

2.2 Code Construction

This thesis focuses on the construction of codes for use witha constrained channel.

The constrained modulation codes used in data storage systems transform blocks

of m source bits into blocks ofn coded bits in a lossless manner such that the en-

coded bit sequence satisfies specific constraints. The set ofwords from which the

code sequences are selected is referred to as a constrained system. These codes en-

sure satisfactory performance despite limitations of the channel, encoding circuitry,

and/or decoding circuitry in digital storage and transmission systems [2].

The construction and design of constrained modulation codes can be quite in-

volved, and is usually application-specific. Often, the approaches used by code

design engineers are ad-hoc, but frequently successful. Despite some elegant math-

ematics, there is an art to the design of codes. The code designer must be aware of

the mathematics and be able to both quantify the trade-offs that are being made and

analyze the performance of the code.

While there are many design techniques or approaches used to produce con-

strained modulation codes, some elements are common to the majority of these

approaches. For example, prior to the design of an encoder, it is typical to model

the constraint using an FSM, choosing as state variables theimportant parameters,

such as the current run-length or the RDS. With a model for the constraint, the

capacity of the code is evaluated (or estimated if exact evaluation is not possible).

Capacity serves as an upper bound on the information that it ispossible to trans-

mit through the channel, and so provides a guide for the code designer to evaluate

their design. Next, an encoder is designed, with values chosen form andn. The

design of an encoder has a significant number of different approaches. This design

must satisfy the channel constraints, but may also be required to satisfy other con-

straints, such as the ability to be decoded at the receiver without the need for state

information, which is discussed later in this section. Finally, performance analysis

should be completed, so that the various trade-offs that have been made are clear.

This could be as simple as comparing the performance of the code relative to a code

using maxentropic sequences.

In this section, an overview of an FSM, including a method forcalculating their

capacity, is provided, along with a discussion of the block-type encoders that are

generated from these FSMs. Franaszek’s recursive elimination algorithm is then

discussed. This procedure is commonly used for determiningsuitable values form

andn for the block-type encoder, as well as finding a suitable set of encoding states

14

P . In the remainder of this section, the principles of state-independent decoding are

discussed, and their importance is highlighted.

2.2.1 Finite-State Machine Encoder Modelling and Block-type
Encoders

In this thesis an encoder is considered as a device with an input, a state, and an out-

put, whose operation can be modelled with an FSM. The FSM models the encoder

by using three sets: the inputs, the outputs, and the states,and two logical functions:

the output function and the next-state function. For each input to the encoder, the

corresponding output is generated according to the output function, which depends

on the value of the input and the current state of the encoder.The state of the en-

coder is updated using the next-state function, which also depends on both the input

and the current state of the encoder.

Block-type encoders, which are encoders where both the inputs and outputs are

partitioned into blocks, are perhaps the most common and most successful encoders

that transform arbitrary data from a user into constrained sequences that satisfy a

desired set of properties [2]. In particular, the input is grouped intom symbol

blocks, called source words, while the encoder produces an symbol output, called

a codeword, according to the encoder functions. In this thesis, all the codes that

have been constructed are restricted to a block-type encoder implementation.

The notation associated with an FSM encoder that will be usedin this thesis is

as follows. The input set consists ofM m-symbol words. A source word in this

set is denoted byβu, u = 0, 1, . . . ,M − 1. The set of states of sizeL is denoted

by Σ and consists of statesσi, i = 1, 2, . . . , L. The output set consists ofXo n-

symbol codewords and are doubly indexed asχiu, wherei corresponds to the state

of the encoder andu denotes the source word in the set. The output function of the

encoder specifies the mappingχiu = h(σi, βu). In general, recovery of the source

word from the codeword requires knowledge of the encoder state. Finally, the next-

state function determines which state the encoder enters after mapping a source

word into a codeword. If the next-state function is determined on the current state

and input, it is calledg(), however, if it depends on the current state and output, then

it is calledf(). The two functionsg() andh(), which describe the operation of the

FSM, are called the characterizing functions. In this thesis, these functions will be

specified in terms of a table, called a transition table, which defines the codebook

of the code. Typically, for the codes constructed in this thesis, only the table forh()

is included since the states are well-defined, and it is a straightforward exercise to

15

generate the functiong() which determines the next state of the encoder.

Similar to a Markov information source, an FSM encoder is an example of a

labelled directed graph. In this thesis, the presentation of a constraint is primarily

referred to in terms of a state machine, which is more common in the literature. A

graph is typically characterized by a set of vertices, whichare referred to as states.

This graph consists of a set of edges, which specify valid paths existing between

vertices, or states. Graphs may have an edge labeling, whichshall be referred to

as an alphabet. This edge labeling is often specified using “labels” or “tags.” In

this thesis, the word tag will be used with input edges, whilethe word label will

be used with output edges. While this thesis generally uses state machine specific

terminology, there are times, as indicated in the thesis, where results from graph

theory are applied to evaluate the capacity of a constraint or to construct a code.

2.2.2 Types of Block-type Encoders

The FSM encoder description presented in the previous subsection is similar to that

of a Markov information source. However, recall that a Markov information source

is a machine without inputs, while the block encoders considered in this thesis

transform blocks of input symbols into blocks of output symbols and therefore have

source words as inputs. When the source words are independent, as they are in all

codes considered in this thesis, the sequence of encoder states forms a stationary

Markov chain because the next state depends only on the previous state and the

input.

While all of the inputs are independent, the process of assigning tags to the input

edges and labels to the output edges transforms the Markov chain to an encoder,

whose operation can be captured with a codebook. There are a few classifications

for block-based encoders that are discussed in this thesis.The most general type

is the deterministic encoder, which is an FSM encoder with a deterministic output

labeling: each of the outputs is given a specific label, whichwe refer to as the

codeword. A block-decodable encoder is an FSM encoder whereany two edges

with the same output label have the same input tag. Finally, the most specific type

is a block encoder. This is an FSM encoder where any two edges that have the same

input tag must also have the same output label.

To illustrate the differences between the three types of encoders, consider the

example code based on the state machine presented in Fig 2.2.Assigning labels to

the output edges constructs a deterministic encoder. If these output edges are given

the input tags according to the Table 2.1, the result is a block encoder. In this table,

16

the codeword is selected based on the current stateσj, indicated by a column in the

table, and a source wordβu, indicated by a row in the table. For example, if the

encoder is in stateσ1 and source wordβ1 is selected, then the output word isw1,

the entry in the first row and first column of the table. However, it is not possible to

transmit some of the source words in particular states. For example, if the encoder

is in stateσ1, source wordsβ2 andβ3 have no mapping. Typically, a block encoder

would be able to transmit the same codeword for a given sourceword, no matter

which state is selected, i.e., each row in the table containsthe samewi across all

entries and so both the encoding and decoding do not depend onthe current state.

A block-decodable encoder, using the same state machine, ispresented in Ta-

ble 2.2. In this case, each source word is valid in each state,since it is possible to

assign two (or more) codewords to the same source word, provided that all edges

with the same output label have the same input tag. That is, each codeword can only

be listed horizontally in the same row in the table and cannotappear on two different

rows. In this way, all block encoders are block-decodable, all of which are deter-

ministic. Later in this section, the idea of block-decodable encoders is examined

in more detail to discuss the additional advantages that exists with block-decodable

encoders.

 σ
1

 σ
2

 σ
3

 σ
4

 w
4

 w
3

 w
4

 w
3

 w
1

 w
2

 w
1

 w
2

Figure 2.2: Example of a finite state machine.

Table 2.1: Sample block encoder
source σ1 σ2 σ3 σ4
β1 w1 w1

β2 w2 w2

β3 w3 w3

β4 w4 w4

17

Table 2.2: Sample block-decodable encoder
source σ1 σ2 σ3 σ4
β1 w1 w1 w2 w2

β2 w4 w3 w4 w3

2.2.3 Capacity of Constraints Modelled by an FSM

For the block-type encoders used in this thesis, the source symbols are always taken

from a binary alphabet, while the coded symbols are taken from the particular sig-

nalling constellation that is used. For example, in the caseof typical constrained

codes, such as binary codes enforcing a DC-free or RLL constraint, the coded sym-

bols are taken from{0, 1} (or equivalently{−1,+1}), however, in later chapters,

constrained codes are constructed using coded symbols taken from QPSK, 8 PSK,

or 16 QAM alphabets. In all cases, a fixed-length block code with words of length

m source bits and lengthn coded symbols has a rate ofR = m
n

binary digits per

coded symbol.

The capacity of a FSM is calculated in the same manner as it wasfor a Markov

information source. The connection matrix,D, (referred to as an adjacency matrix

for a graph), is calculated and the maximum eigenvalueλmax of D (the spectral

radius of a graph) is evaluated. Using (2.9), the capacity can be evaluated. The

capacity of this FSM (and the constrained system it models) is given in units of bits

of information per coded symbol.

2.2.4 Franaszek’s Recursive Elimination Algorithm

For a given FSM that models a particular constraint, Franaszek’s recursive elimi-

nation algorithm [8] finds a suitable set of principal states, P = {σ1, σ2, . . .}, for a

specific set of code parameters (m andn) and can be used as a basis to find a near-

capacity achieving code for this constraint. A principal state is a state in which the

FSM can exist at the end (or beginning) of each codeword. Thisset comprises a

subset of the original channel states of the FSM since some states might only occur

at other positions within codewords. Franaszek’s algorithm recursively eliminates

states in the FSM that have fewer than2m outgoing edges until a suitable set of

states is found such that each remaining state has a minimum of 2m outgoing edges.

For codewords of lengthn, the code designer is interested in how many paths of

lengthn exist between two states. Thenth power of the adjacency matrix,Dn, pro-

vides this information. To ensure that each source word has arepresentation in each

18

state, a valid code exists provided that each state has at least2m transitions or edges

leaving it, that is,
∑

j[D]ij ≥ 2m for each stateσi. If any state does not have enough

edges, that state is eliminated and the remaining states areconsidered the set of

principal states,P . Each of the remaining row sums ofDn, ψ(σi, P) =
∑

j∈Ω[D]nij,

whereΩ = {j : σj ∈ P}must be at least equal to2m for eachi. Each time a state is

eliminated from the set of principal states, this criterionis checked. The algorithm

continues, eliminating states recursively, until a set of principal states is found that

satisfies this criterion. With2m outgoing edges in each state, it is possible to assign

a unique sourceword to the outgoing edges in each state, creating a deterministic

encoder [9] that will, in general, require state-dependentdecoding. If the procedure

terminates successfully, the remaining states are principal states.

When the set of principal states is known, it is straightforward to trace through

the FSM, starting from each state, to enumerate all the codewords of lengthn. With

this information, it is possible to construct a deterministic encoder. The steps in

code construction using this approach are therefore as follows. An FSM is con-

structed to describe the code, and its capacity,C, is evaluated. Values form andn

of reasonable length (say,n < 20) are then selected such that their ratio,m/n, is

close to the value ofC. With these values ofm andn, the Franaszek algorithm is

run to determine if a state-dependent code can be constructed. If so, code tables are

constructed to facilitate both the encoding and decoding. If not, other values ofm

andn are chosen and Franaszek’s algorithm is run again.

2.2.5 State-Independent Decoding

A desirable property for codes is the capability to decode the received words with-

out requiring the use of state information at the receiver. This is important because

keeping track of state information at the receiver can be problematic. If errors are

made during decoding and the decoder determines the next state incorrectly, it may

continue advancing through states incorrectly and therefore incorrectly decode sub-

sequent words. There are at least two approaches to alleviate this problem: use of a

sliding block decoder and state-independent decoding. In asliding block decoder,

each codeword is decoded by either looking ahead or looking back a fixed number

of codewords, when ambiguity arises, in order to determine the state of the code.

In this way, error propagation is limited to the width of the block considered by the

sliding block decoder. State-independent decoding at the receiver eliminates the

problem by not requiring that the decoder keep track of any state information. This

requires that there be an unambiguous inverse to the output function,h(σi, βu), that

19

Table 2.3: Set of codewords partitioned into a group of alphabets.
σ1 σ2 σ3
w1 w1

w2 w2

w3 w3 w3

w4 w4

w5 w5 w5

has no dependence on the encoder stateσi. For a block-decodable code, any two

edges with the same output label have the same input tag. By examining only the

output labels, the encoder is then able to determine the input tag without requiring

knowledge of the stateσi, satisfying the need for state-independent decoding.

In order to determine whether or not it is possible to design astate-independent

decoder, in [8] Franaszek suggests partitioning the code into a representation based

on a group of alphabets. Each alphabet, describing a single state, contains code-

words that are listed vertically in a table. Codewords that exist in more than one

alphabet are placed in the same row in the table. The blank spaces in the table corre-

spond to codewords that violate the constraints for that particular state and therefore

do not exist in that particular alphabet. A simple example ofthis partitioning, con-

taining five codewords and three states in total, is presented in Table 2.3. Upon ar-

ranging the codewords in this manner, it is possible to see which areas may prevent

state-independent decoding. The “spaces” that exist between two codewords in a

vertical line are possibly problematic. To find codes that can be state-independently

decoded, the code designer must attempt to fit other codewords into these “spaces”,

creating a densely packed table of codewords with at least2m full rows of words. A

single row full of words will comprise the encoder’s output function,h(σ, βu), for

a particular source word,βu.

Based on this tabular representation of codewords, [8] describes the following

necessary and sufficient condition for the existence of state-independent decoding:

Condition 1 Condition for state-independent decoding [8]: LetW (σj) denote the

set of words, or alphabet, corresponding to stateσj. A necessary and sufficient con-

dition for the possibility of assigning binary words to the members ofW (σj), j =

1, 2, . . . J , whereL is the total number of states, so that decoding is independent of

j is that for1 ≤ u ≤ v ≤ y ≤ L and for each

wi1 ∈ W (σu)
⋂

W (σy)

20

Table 2.4: Set of codewords that do not permit state-independent decoding.
source σ1 σ2 σ3
β1 w1 w1 w2

β2 w2 w4 w4

β3 w3 w3 w3

β4 w5 w5 w5

such that

wi1 /∈ W (σv)

there exists awi2 ∈ W (σv) such that there exists noσi, 1 ≤ i ≤ L, for which

wi1 , wi2 ∈ W (σi).

Condition 1 states that whenever a codeword emanates from twostates,σu and

σy, but does not emanate from another state,σv, there must be another word,wi2 ,

that emanates from stateσv but does not emanate from eitherσu or σy. This condi-

tion simplifies to not having the same word in two different rows.

Consider the code in Table 2.4, which is one attempt at constructing a code table

for the encoding of four source words given the previous table of codewords. In

order to fill all the spaces, codewordw2 is split and copied into the rows containing

codewordsw1 andw4. Unfortunately, this code cannot be decoded without state

information since upon receipt of the wordw2, the decoder needs to know whether

it is currently in stateσ1 or σ3 in order to determine whether the source word was

β2 or β1.

Condition 1 implicitly allows for discarding some words fromthe table, should

they not be required. However, in the example above, wordw2 corresponding to

source wordβ2 cannot simply be discarded because there would not be enough

codewords (or equivalently, enough edges in the encoder FSM) to satisfy the code

construction when there are four source words to be represented. If there were

only three different source words, then it would be possibleto construct a table

permitting state-independent decoding by discardingw2, and usingw1 andw4 to

represent the same source word, where eitherw1 or w4 can be used in stateσ2.

While discarding codewords does lower the rate of that particular code, it must be

kept in mind that values form andn chosen during the implementation are often

already lower than the capacity of the code. That is, during evaluation of principal

states, it is standard practice to choosem andn such that their ratio is as close as

possible to the capacity of the code, but it is usually not possible to match that value

exactly. In the construction of most codes, the ability to discard some codewords

21

becomes a significant degree of freedom to be leveraged. In Chapter 3, we consider

in detail the construction of code tables that enable state-independent decoding.

2.2.6 Construction of State-Independent Decodable Codes

As discussed above, the steps to constructing a state-independent decodable code

are as follows.

1. Using Franaszek’s iterative procedure, suitable candidate values form, n, and

P are selected. Typically the values closest to achieving capacity are chosen

first.

2. The constraint is modelled using an FSM, and the designer generates a list of

sequences (codewords) that emanate from each state on the FSM.

3. Using the list of sequences, a tabular representation of the code is constructed

using the group of alphabets approach proposed by Franaszek.

4. The tabular representation is manipulated in such a manner that the condition

for state-independent decoding is not violated, while attempting to form a

sufficient number of complete rows such that each source wordcan be repre-

sented regardless of state.

5. If it is not possible to construct a codebook that does not violate the condition,

another set of candidate values form, n, andP are selected and the procedure

is started again.

In the next chapter, an approximation algorithm for the construction of codes that

permit state-independent decoding is proposed. This algorithm details a method for

performing step 4 in the list above. An alternate approach isconsidered below.

State-Independent Decoding: Set Partitioning and Covers

In [9] the authors consider, in detail, the determination ofan optimal set of prin-

cipal states. Along with their findings, they discuss the problem of constructing a

state-independent decodable code, which differs from the representation discussed

above. Initially, the authors perform a number of the same steps, including finding a

set of principal states using the Franaszek algorithm and choosing values form and

n, as in step 1 above. Step 2 proceeds in a similar fashion: labels are assigned to

output edges, and valid edges from each state are enumerated. Starting with step 3,

22

however, rather than examining the code in terms of a tabularrepresentation using a

group of alphabets, the authors present the problem in termsof sets. Codewords are

partitioned into these sets, according to the states from which a particular codeword

emanates, which the authors refer to as a partition of labels. The overall partitioning

can be thought of as a Venn diagram visually displaying the regions. Fig 2.3 shows

the set partitioning for a three state code. Regions 1, 2, and 3denote codewords

emanating only from states 1, 2, and 3, respectively. Region 4denotes codewords

that emanate from both states 1 and 2, region 5 denotes codewords common to both

states 2 and 3, while region 6 denotes codewords emanating from both states 1 and

3. Finally, region 7 denotes codewords that emanate from allthree states. For ex-

ample, if a codewordwi emanates from statesσ1, σ2, andσ3, then that codeword

wi would be placed in region 7. Upon the completed constructionof this Venn dia-

gram, all of the minimal covers are determined by solving a set covering problem.

For the three state code, one example of a cover is the union ofregions 1 and 5.

1 2

3

6 5

4

7

Figure 2.3: Venn diagram showing a set partitioning into regions for a three state
code.

With the set covering problem solved, the regions, minimal covers, and their

associated codewords are used as input to an integer programming problem. The

goal of the integer programming problem is to construct covers for P using the

regions in the Venn diagram; the details of the integer programming problem are

discussed in [9]. As an example of the construction of a coverfor P , consider again

the example discussed in the preceding paragraph. If the code contained only those

three states,σu, σv, andσy in P , then the wordwi would form a cover forP since

it contains all the states withinP . If there are additional states, then another word

23

would have to be combined withwi in order to construct a cover forP . Comparing

this to the tabular representation, a horizontal row in the table is a cover forP if

the row contains no spaces. While the two methods of presentation are similar, the

method used in [9] provides an alternate method for approaching the problem. In

general, both the set covering problem and an integer programming problem are

NP-complete. This will be revisited in Chapter 3 in more detail.

2.3 Spectral Analysis

The analysis of random signals can be found in [10], while theanalysis of block

coded signals is covered in [11]. In this section, a very brief summary of both topics

is covered. In general, the main purpose is to establish terminology and notation,

while presenting the important results, which is done without proof. Full proofs of

the results contained in this section can be found in the two references cited above.

A common constraint for a code designer is that of satisfyingparticular spectral

characteristics. A time-varying signal can be representedby its spectrum, a set

of frequency components that occupy a particular range of frequencies, which is

commonly evaluated by a Fourier transform. The most commonly used frequency

domain characteristic for a stochastic signal is its PSD function.

2.3.1 Stochastic Processes

A stochastic process,Xt, can be defined as an ensemble of sample functions consid-

ered at particular time instantst1, t2, . . . tn. The random variables of the stochastic

processXti have a joint probability density function (pdf)p(xt1 , xt2 , . . . xtn) or in-

dividual pdfsp(xti). The mean ofXti is given byMX(ti) = E{X(ti)}, where E{.}
is the expectation operator. When considering two random variables,Xt1 andXt2 ,

the relevant statistics are the auto-correlation function:

RX(t1, t2) = E{Xt1 , Xt2} (2.10)

the average power of the process,RX(t1, t2) whent1 = t2 = t:

RX(t, t) = E{X2
t } (2.11)

and the auto-covariance:

CX(t1, t2) = E{[Xt1 −MX(t1)][Xt2 −MX(t2)]}. (2.12)

24

Stationary Processes

A process is considered to be stationary in the strict sense if all of its statistics are

time invariant. That is, the joint probability density function, p(xt1 , xt2 , . . . xtn)

does not change when shifted in time, and sop(xt1+τ , . . . xtn+τ) = p(xt1 , . . . xtn)

for an arbitrary time shiftτ . In this case, since the pdf of(Xt1 , Xt2) is identical

to the pdf of(Xt1+t, Xt2+t), the autocorrelation function reduces toRX(t1, t2) =

RX(|t1 − t2|) = RX(|τ |), whereτ = t1 − t2. A slightly weaker form of station-

arity, wide-sense stationarity, occurs when at least the mean and auto-correlation

functions are time invariant, i.e., E{Xt} = MX and E{XtXt+τ} = RX(τ). When

a process is at least wide-sense stationary, the auto-covariance function is given by

CX(τ) = RX(τ)−M2
X . In this case, the PSD of the process is given by the Fourier

transform of the auto-correlation function:

HX(ω) =

∫ ∞

−∞
RX(τ)e

−jωτdτ. (2.13)

A stochastic process is said to be cyclo-stationary when itsstatistics, such as

probabilities or correlations, vary with some period. A process that is wide-sense

cyclo-stationary has the following properties:

MX(t) = E{X(t)} =MX(t+ T)

RX(t, t+ τ) = RX(t+ T, t+ T + τ) (2.14)

for some periodT . The block codes examined in this thesis are cyclo-stationary

processes, since their statistics vary with a period equal to the block length. Typi-

cally, cyclo-stationary processes are transformed into stationary processes, so that

the spectral analysis is tractable. To do this, a random variable∆ is added to the

argument of the process,X(t), so that:

X∆(t) = X(t−∆) (2.15)

where∆ is a uniformly distributed random variable over the interval 0 ≤ ∆ ≤ T .

Including the uniformly distributed random variable removes the time reference,

a process which is referred to as phase-averaging [12]. The PSD of the cyclo-

stationary process is then equal to the Fourier transform ofthe auto-correlation of

the new stationary process,X∆(t).

In particular, a code designer constructing a constrained code is often interested

in shaping the PSD. When a set of symbols{xj} are transmitted with pulse shape

s(t) with periodTb, the PSD is given by:

HX∆
(ω) = Hx(ω)Hs(ω) (2.16)

25

with Hx(ω) =
∑∞

k=−∞Rx(k)e−jkωTb andHs(ω) =
∫∞
−∞ rs(t)e−jωtdt, wherers(t)

is the autocorrelation of the pulse shape, that isrs(t) =
1
Tb

∫∞
−∞ s(τ)s(t + τ)dτ . In

other words, the PSD of the overall process is related to the auto-correlation of the

symbols that are being transmitted, throughHx(ω), and the pulse shape that is used,

throughHs(ω). The design of constrained codes involves carefully constructing the

symbols sequence{xj} such that the desired spectral properties are satisfied, by

virtue of the auto-correlation functionRx(k).

2.3.2 Spectral Analysis of Markov Information Sources

Consider anL-state ergodic Markov information source, with transitionmatrixQ.

Its auto-correlation is given by [13]:

Rx(k) = E{XtXt+k} (2.17)

while the mean is given by:

Mx = E{Xt} =
L
∑

i=1

ζ(σi)πi (2.18)

whereζ(σi) is the symbol emitted when the Markov chain visits stateσi, andπi
is the steady-state probability of stateσi as defined in subsection 2.1.2. The auto-

covariance is then equal to:

Cx(k) = E{XtXt+k} −M2
x

=
N
∑

i=1

N
∑

j=1

πiζ(σi)ζ(σj)[Q]
k
ij − (

N
∑

i=1

ζ(σi)πi)
2

=
N
∑

i=1

N
∑

j=1

πiζ(σi)([Q]
k
ij − πj)ζ(σj) (2.19)

where[Q]kij is the entry in thekth power of the transition matrix when the Markov

chain transitions from stateσi to stateσj, separated byk intervals. (2.19) can be

simplified by writing all variables in matrix form. The symbol outputs are written

as a vector, according toζT = (ζ(σ1), ζ(σ2), . . . , ζ(σL)), whereT denotes the

matrix transpose. The steady-state transition probabilities are written in a diagonal

matrixΠ = diag{π1, π2, . . . , πL}, where diag{.} corresponds to creating a matrix

with those entries along the diagonal and with all other entries being zero. Finally,

Q∞ = 1π, where1 is an all ones column vector andπ is a vector containing the

steady-state transition probabilities. The auto-covariance can now be written as:

Cx(k) = ζT Π(Qk −Q∞)ζ. (2.20)

26

The PSD of the Markov information source is then given by:

Hx(ω) =
∞
∑

k=−∞
Rx(k)e

−jkω

=M2
x2πδ(ω) + Cx(0) + 2

∞
∑

k=1

Cx(k) cos(kω) (2.21)

where the second line follows from use of (2.17), (2.19), and(2.20). This formula-

tion separates the equation for the PSD into two portions: one related to the mean

and auto-covariance at zero, and the other being a summationof the remaining

terms in the auto-covariance. The usefulness of writing theequation for the PSD in

this manner is discussed in the following subsection.

2.3.3 Spectral Analysis of Block Coded Signals

Similar to the case of a Markov information source, the equation defining the PSD

of block-coded signals is somewhat difficult to work with; however, it can be sim-

plified using matrix notation. In particular, consider a block code with source word

lengthm and codeword lengthn, wherexj = (xj,1, xj,2, . . . xj,n) is thejth trans-

mitted codeword. The block coded sequence, using a pulse shape s(t), is given

by:

X(t) =
∞
∑

j=−∞

n
∑

i=1

xj,is[t− (jn+ i− 1)] (2.22)

Block coded signals can exhibit two types of periodicity: onerelated to the channel

bit interval and a second related to the block length. The phase-averaging process

takes place over the longer of the two periods,n. Following the procedure in [11],

the auto-correlation coefficients can be written in matrix notation using ann × n

matrix,Rk, given by:

Rk = E{xTt xt+k}, k = 0,±1,±2, . . . (2.23)

The PSD is simply the Fourier transform of the auto-correlation function:

Hx(ω) =
∞
∑

i=−∞
Rx(i)e

−jiω. (2.24)

In this equation, the PSD depends on the phase-averaged correlations,Rx(i), rather

than the codeword correlations,Rk. While it is possible to evaluate the values

27

for Rx(i) (see [11]), (2.24) can be re-written usingRk. Definingω as the vector

ω = ((e)jw, (e)j2w, . . . , (e)jnw), (2.24) can be re-written as:

Hx(ω) =
1

n

∞
∑

k=−∞
ωRkω

∗e−jknω (2.25)

whereω∗ is the conjugate transpose ofω. This formulation performs the phase-

averaging process while accepting the codeword correlations as input.

It is desirable to have the PSD written in a form similar to:

Hx(ω) = Hxc(ω) +Hxd(ω)
∞
∑

k=−∞
2πδ(ω − 2πk/n) (2.26)

so that the PSD consists of two separate contributions: the continuous component,

Hxc(ω), and a series of discrete components,Hxd(ω), which are commonly re-

ferred to as spectral lines. The spectral lines, if non-zero, emerge at multiples of1
n
.

Recall that in (2.21), the PSD could be split into two parts. The first part, which

is given byM2
x2πδ(ω) + Cx(0), denotes the discrete components, which are re-

lated to the mean and auto-covariance at zero. The second portion, the summation,

2
∑∞

k=1Cx(k)cos(kω), uses the remainder of the auto-covariance, defining the con-

tinuous portion of the spectrum. This representation is preferred since it allows the

code designer to isolate the effects of two contributions ofthe spectrum. Generally,

a code designer wishes to minimize the discrete components while controlling the

shape of the spectrum with the continuous component.

Re-writing (2.25) so that it appears in the form (2.26) gives

Hxc(ω) =
1

n
ω(R0 −R∞)ω∗ +

2

n
Re

∞
∑

k=1

ω(Rk −R∞)ω∗e−jknω (2.27)

and

Hxd(ω) =
1

n2
ωR∞ω∗ (2.28)

whereR∞ is the limit of the correlation matrices,Rk, ask tends to∞. Notice that

the discrete components are related only to the correlationmatrix, R∞, which is

related only to the mean value of the codewords. Evaluating the continuous spectral

components requires the evaluation of all of the correlation matrices,Rk, and so the

problem of shaping the spectrum of a code appears difficult. Fortunately, most of

the FSM encoders for constrained codes can be modelled as a Markov process, for

which the above analysis holds, but which also have structure that makes the above

analysis tractable. In the next subsection, the spectral analysis of FSM encoders

with memory is considered, and a method to evaluate theRk is given.

28

Spectral Analysis of FSM Encoders

Consider anL-state FSM encoder with transition probability matrix,Q, where each

state accepts2m input words, outputting a codeword based on the current state and

input word. The codewords of lengthn, χiu, are doubly indexed by the encoder

stateσi and the input wordβu. A matrixAu, with dimensionL× n, is constructed

for each source word,βu, with output codewords comprising each row so that

Au =

















χ1u

χ2u

.

.

.
χNu

















. (2.29)

In other words, the collection of these matrices specifies the encoder’s output func-

tion,h() in matrix notation.

Similarly, the encoder’s next state function,g(), is also written in a matrix no-

tation. For each input word,βu, a square matrixEu is constructed. The entries

of this matrix, [Eu]ij, are set to unity if for sourcewordβu there is a valid tran-

sition from stateσi to stateσj. As in subsection 2.3.2, define the matrixΠ =

diag{π1, π2, . . . πL} to be the diagonal matrix with the steady state transition prob-

abilitiesπ1, π2, . . . , πL on its diagonal and zeros elsewhere. Similarly,Q∞ = 1π

so thatQ∞ has each of its rows set to be equal to the steady-state probabilities in

vector formπ.

With this notation, along with derivations contained in [11], the first correlation

matrix can be calculated according to

R0 =
2m
∑

u=1

pβu
AT

uΠAu (2.30)

wherepβu
is the probability of input wordβu. The remainder of the correlation

matrices(k ≥ 1) are calculated according to

Rk = GT
1 Q

k−1G2 (2.31)

whereG1 =
∑2m

u=1 pβu
ET

u ΠAu,G2 =
∑2m

u=1 pβu
Au, andQk−1 is the(k−1)th power

of the transition probability matrix. The zeroth power of the transition probability

matrix,Q0, is set to equal the identity matrix. The final correlation matrix is given

by:

R∞ = GT
1 Q∞G2 (2.32)

29

The PSD of the block code is then calculated using (2.27) and (2.28) by substituting

the values for theRk evaluated using the method outlined in this subsection.

Generally speaking, in this thesis, when evaluating the PSDof the codes that

have been constructed, a relatively simple code in the family of constructed codes

is chosen and a full analytical spectral analysis is completed using the procedure

above. This is compared to a PSD evaluation obtained via simulation to confirm the

validity of the results. Upon verification, the remaining codes constructed within

that family of codes have their PSD evaluated through simulation.

To obtain the PSD of a code through simulation, random sourcedata is gener-

ated and fed through the encoder, which outputs a series of codewords. For work in

this thesis, to generate accurate PSD plots with an acceptable execution time, five

million codewords were analyzed. The codewords are concatenated serially into a

vector and that vector is split into a number of equal segments. A fast Fourier trans-

form (FFT) is applied to each segment and the FFT results are averaged to form

the PSD. Rather than splitting the codeword vector into a number of equal, non-

overlapping segments, it is possible to have the segments overlap. To improve the

spectral results further, prior to calculating the FFT of each segment, a windowing

function can be applied first. In this thesis, the spectral results obtained via simula-

tion are calculated using non-overlapping segments of length 2048 with a Hamming

window used as a windowing function.

2.4 Types of Constrained Codes

In this section, a brief summary is given of the most common types of constrained

codes that appear in the literature. This includes both RLL codes and DC-free

codes. As the names suggest, RLL codes are designed under the constraint that the

run-lengths of the symbols in the coded sequence are restricted in some manner,

while a DC-free code is a code that is designed under the constraint that there is a

null in the spectrum of the code at DC. These two constraints are not necessarily

mutually exclusive; merging the two together into a DC-free RLL constraint is also

discussed. In most typical DC-free or RLL codes, the output alphabet is considered

to be binary. Constrained codes employing multi-level signalling also exist in the

literature, typically to satisfy a spectral constraint, and are also discussed in this

section. Finally, multi-dimensional codes, where the constrained code employs

binary signalling but is written to a two or more dimensionalmedium, are discussed

briefly.

30

The overview of common constrained codes presented in this section serves

two main purposes. First, the performance of the approximation algorithm devel-

oped in the next chapter was tested on a family of codes with a large number of

states, those satisfying the the DC-free and RLL constraints.Second, while codes

have been developed that use multi-level signalling or write to multi-dimensional

surfaces, little work has been completed on codes using two or more dimensional

signalling alphabets (natively allowing for multi-level signalling). Capacity calcu-

lations for constrained codes with multi-dimensional symbol alphabets is the focus

of Chapter 4, while Chapter 5 applies the algorithm for code design to these types

of codes.

2.4.1 Run-length Limited Constrained Codes

RLL codes date back to the 1960’s, when several authors developed the theoreti-

cal foundation of these codes [14]- [17]. The field still remains an active area of

research, as researchers continue to search for new codes and design techniques.

RLL codes have become a mainstay in the optical storage industry, from the CD

to the DVD, as well as the newer BluRay Disc. The EFM code was developed for

and used in CDs [18], while its successor EFMPlus was used in DVDs [19]. These

codes have also found use in Super Audio CDs and some miniDisc standards. Be-

ginning in the 1980’s, RLL codes were widely used in the floppy and hard disk

drive storage area for many years. Hard disk drives have employed a synchronous

variable length(2, 7) RLL code [20].

RLL codes impose a minimum and/or maximum runlength constraint on the bit

sequence that is being communicated across the channel, or equivalently, written to

the storage medium. This runlength is usually measured in channel bits between

transitions. A minimum runlength loosens the requirementson the detection cir-

cuitry by controlling the highest transition frequency. Inthe case of optical storage

devices, such as a CD, the data is stored by a series of tiny indentations, knows

as pits, while the areas between these pits are referred to aslands. Increasing the

minimum runlength increases the size of these pits and lands, thereby easing the re-

quirements of the detection circuitry that reads the data. In general, in a bandwidth-

limited channel, ISI results when the data is transmitted; increasing the length of

a symbol will reduce this ISI if the system bandwidth remainsconstant [2]. The

maximum runlength ensures an adequate number of transitions in the data stream.

These transitions are used by a phase-locked loop to recovertiming information or

by the decision threshold in the detection circuitry, to prevent them from drifting

31

and losing synchronization with the received symbol sequence.

In the literature, the minimum runlength is specified byd, while the maximum

runlength is specified byk; together these two parameters specify a(d, k) code. For

example, the(2, 7) code used in hard drives hasd = 2 andk = 7. The correspond-

ing minimum and maximum runlengths are equal tod + 1 andk + 1 respectively.

RLL sequences are often designed using another sequence, called a(dk) sequence.

A (dk) sequence is characterized by two logical ones separated by at leastd zeros,

while the maximum runlength of logical zeros between ones isat mostk. A (dk)

sequence can be converted to a conventional RLL sequence by a simple process. A

logical zero in the(dk) sequences specifies that there is no bit transition (zero to

one or one to zero) in the RLL sequence, while the presence of a one indicates that

there is a bit transition. Satisfying thed andk parameters in the(dk) sequence cor-

responds to an RLL sequence with minimum and maximum runlengths ofd+1 and

k + 1, respectively. Rather than designing an RLL sequence, the code designer can

choose to work with(dk) sequences when convenient, as it often is. Additionally,

depending on the storage medium, the data written to the storage medium may be

written out directly as a(dk) sequence, which is referred to as non-return-to-zero

(NRZ) notation. If the(dk) sequence is mapped onto an RLL sequence prior to

being written to the storage medium, it is said to be in non-return-to-zero inverse

(NRZI) notation.

2.4.2 DC-free Constrained Codes

Similar to RLL codes, DC-free codes have an extensive history [21]- [23]. DC-

free codes, also termed DC-balanced or spectral null codes, are constrained codes

that are designed to have zero spectral content at and aroundzero frequency in the

continuous component of their PSD. The receiver in the system can leverage this

knowledge and employ filtering prior to decoding. This filtering can be used to

remove unwanted low frequency disturbances caused by otherelements in the com-

munication track, such as fingerprints on CDs, or can be an inherent part of the

system, as when components are AC-coupled. Similar to RLL codes, the balanced

nature of these codes assists with demodulation. For example, the frequent tran-

sitions in the data stream can be used for timing informationfor clock recovery,

and the balanced nature assists with establishing reliablethresholds with which to

determine the values of the received symbols [2].

DC-free codes with output symbols taken from a complex signalling alphabet,

discussed in the later chapters of this thesis, have some additional advantages. The

32

position of this null in the frequency response of the code can be shifted by altering

the complex values of the coded symbols [24]. This is useful for avoiding inter-

ference at a given frequency or for creating a signal-free frequency band for the

insertion of a pilot tone.

Any code designed with balanced codewords (i.e., codewordswith equal num-

ber of zeros and ones) will have a spectral null at DC in the continuous component

of its spectrum. In this case, if antipodal signalling is employed, the code will also

not have a discrete component in its spectrum at DC. The majority of DC-free codes

are designed in this way because content in the discrete components of a spectrum

is often viewed as “wasted” power because this power is not being used to carry

information. Where possible, the spectrum of the DC-free codes designed in this

thesis are kept free of tones. It is, however, generally a straightforward, but time-

consuming, process to re-design the code slightly to removethese tones.

A common design technique to ensure that a code contains a null at DC is to use

balanced codewords. Another way of stating this constraintis by considering the

RDS of a codeword. The RDS,zi, of a codeword,{xi} = {x1, x2, . . . xn} is defined

as the cumulative summation of the bipolar representation of the bits in the word

on a bit-by-bit basis. Using binary antipodal signalling values where the logic one

has a value of+1 and a logic zero has a value of−1, that is, when{xi} ∈ {−1, 1},
RDS is evaluated as:

zi =
i

∑

j=−∞
xj = zi−1 + xi. (2.33)

Generally speaking, only DC-free codes with codewords usinga value ofn that is

even are considered. Codes with odd length codewords can alsobe balanced, for

example by ensuring that each codeword has the same number ofones as all other

codewords and the same number of zeros as all other codewords. For example, a

lengthn = 13 code could be constructed where each codeword has seven onesand

six zeros. These codes, however, will contain discrete components in their PSD and

are not considered here. The RDS of a codeword is often referred to as its disparity,

with an RDS of zero indicating a zero disparity codeword. A codeword with an

equal number of zeros and ones will have a zero disparity, anda code containing

only such codewords will have a spectral null at DC in both thecontinuous and

discrete components of its spectrum assuming that antipodal signalling is used.

To determine the possible code rates for codes using zero disparity codewords,

or balanced words, a method similar to (2.6) is used. The number of sequences

that satisfy this constraint,Ns(n), for a codeword length ofn is found using the

33

Table 2.5: Zero disparity codewords of lengthn and the corresponding code rate in
binary digits per symbol.

n Ns(n) R
2 2 0.500
4 6 0.646
6 20 0.720
8 70 0.766
10 252 0.798
12 924 0.821
14 3432 0.839
16 12870 0.853
18 48620 0.865
20 184756 0.875

binomial coefficientNs(n) =
(

n
n/2

)

. If each of the symbols in theNs(n) sequences

are binary, lengthm = ⌊log2Ns(n)⌋ source sequences can be represented. The

maximum code rate is thenRmax = 1
n
⌊log2Ns(n)⌋ with units of binary digits per

symbol. Table 2.5 lists values ofNs(n) andR for several values ofn. Clearly, as

n increases, so does the rate of the code. This table presents only achievable rates,

but does not address how the encoding or decoding is performed. Notice that the

overall code rate is relatively low, even asn increases.

The code rate of DC-free codes can be increased by relaxing theconstraint

that each codeword have a zero-valued RDS. Codewords with disparities other than

zero can be used, provided that the RDS of the overall coded sequence remains

bounded [25]. For example, forn = 6 the word010010, which has disparity -2,

can be included along with the word110110, which has disparity +2. If these two

codewords were transmitted sequentially, the combined RDS would be zero and

so it is possible for the overall RDS to remain bounded. Therefore, with a proper

encoder design it is possible to use words of non-zero disparity. This encoder would

choose the sequence of codewords so that the RDS value is bounded, typically

by forcing this RDS to as close to zero as possible after each encoding interval.

Commonly, codewords with low disparity,{±2,±4,±6, . . .} are chosen, which we

refer to as low-disparity codewords. The advantage of this approach is that more

binary sequences are included in the codebook, increasing the number of different

sequences that are possible, which increases the amount of information that can be

carried by the coded sequence. The disadvantage is that since each codeword no

longer has a zero RDS, the spectral performance around DC, specifically the width

of the spectral notch, will suffer. Typically, the larger the disparity of the words that

34

Table 2.6: Capacity, in bits of information per symbol, of sequences{xi} as a
function of DSV,N .

N C(N)
3 0.500
4 0.694
5 0.792
6 0.895
7 0.886
8 0.910
9 0.928
10 0.940
11 0.950

are included in the code, the greater the degradation in the spectral performance of

the code.

More generally, a code is DC-free when the RDS is bounded by a finite value [25].

Rather than ensuring every codeword is balanced, ensuring that the RDS is bounded

is often a much simpler constraint to satisfy.

For codes using symbols from complex-valued alphabets, constructed later in

this thesis, the definition of RDS is extended in a straightforward manner, using the

symbol values in the complex baseband representation of thesignalling alphabet

in the RDS summation on a symbol-by-symbol basis. Provided that the RDS is

bounded, as is the case when using symbols that are binary valued, the code will be

DC-free [25]. A DC-free code with symbols from a complex baseband representa-

tion implies a null at the carrier frequency of the corresponding bandpass system.

If the RDS,zi, of a sequence of bits,{xi}, is bounded to a maximum,N2,

and minimum,N1 value, the digital sum variation (DSV), which is the number

of different values of RDS that can occur in the bit sequence, is given byN =

N2 − N1 + 1. It should be noted that the DSV is calculated on a bit-by-bitbasis

and not only at the end of the codeword. This means that a code employing zero

disparity codewords will still exhibit a non-zero DSV within each codeword, as it

is only constrained to zero at the end of each word. The capacity of this constraint

can be calculated as a function of the DSV. This is determinedby the eigenvalues of

the connection matrix of the resulting finite state machine [21]. Table 2.6 shows the

results of the capacity, in bits of information per symbol, for a given DSV,N [2].

It is not surprising that as the DSV is allowed to increase, the resulting capacity

increases as more bit sequences are included in the codebook.

The variance of the RDS, called the sum variances2z = E{z2i }, gives an indi-

35

cation of the width of the spectral null around DC [22]. The width of the spectral

notch is important, for example, since it relaxes the constraints imposed on the sys-

tem designer when applying a high-pass filter to remove unwanted low frequency

spectral content, i.e., noise or other signal distortion. Under the assumption that

the auto-correlation function of the code decays exponentially, a useful relation be-

tweens2z and the width of the spectral notch,ω0, has been developed. This relation

is concise and simple [22]:

2s2zω0 ≃ 1. (2.34)

In other words, the width of the spectral notch around DC is inversely proportional

to the sum variance. In [22] several examples of codes that obey this relationship are

presented. From a system design perspective, this result isof importance as it may

be easier to design a code based on the sum variance of the codewords, rather than

doing a full spectral analysis, knowing that codewords withminimal sum variance

will result in good spectral performance.

2.4.3 DC-free RLL codes

Many of the constrained codes used in practical systems, such as the EFM and

EFMPlus codes discussed before, are designed to satisfy both DC-free and RLL

constraints simultaneously. There are many design techniques that can be used.

For example, in the EFM code, three merging bits are added to the fourteen coded

bits. While the addition of these bits was originally intended to ensure that the RLL

constraint is satisfied, in some cases there are multiple choices for the three merging

bits. In those cases, the merging bits are chosen such that the absolute value of

the RDS is minimized at the end of the codeword. While this does not guarantee

that the RDS is bounded, the infrequent violations of the constraint are not severe

enough to be problematic. In the case of EFMPlus, the code hasbeen designed as

a sliding block code to guarantee that both the DC-free and RLL constraints have

been satisfied while using a higher code rate. In the case of EFMPlus, there are

extra words (or surplus edges) emanating from many of the states on the FSM. The

additional words are used to satisfy both constraints simultaneously.

Another approach commonly used for constructing a DC-free RLLcode is

Guided Scrambling [26]. Instead of designing a code with a number of states,

the encoder is able to generate a number of alternative codewords based on an in-

put source word and a number of scrambling bits. The encoder then chooses the

“best” codeword, which in this particular case is the codeword which best satisfies

36

the DC-free RLL constraints.

In the next Chapter, an approximation algorithm is developedthat designs codes

that can be decoded at the receiver without the need for stateinformation. To quan-

tify the performance of this algorithm, it is used to construct DC-free RLL codes

for a wide variety of parameters for both the DC-free and RLL constraints. The

encoder enforces both the RLL and DC-free constraints simultaneously, while the

surplus edges emanating from a number of the states on the FSMare used to ensure

that the code permits state independent decoding.

In DC-free RLL codes, the DC-free constraint is often specified by the max-

imum number of allowable RDS values,N , while the RLL constraint is usually

specified in terms ofd andk, as before. These constraints are specified simulta-

neously using the notation(d, k,N). However, in this case, constructing an FSM

model is somewhat difficult when(dk) sequences are used. Instead, a simpler FSM

model can be constructed by using states which have state variables indicating the

current value forN , the current runlength, and whether the current runlength con-

sists of zeros or ones. To construct this FSM, the constraints are portrayed in two

dimensions where one constraint, which in this case is chosen to be the DC-free

constraint, is modelled in the horizontal direction, whilethe other constraint, the

runlength limit constraint, is shown in the vertical direction. The movement in the

vertical direction is further divided into two halves, as the runlength constraint ex-

ists for both zeros and ones. The top half of the FSM is arbitrarily chosen to contain

the runlength constraint for ones, while the bottom half represents the runlength

constraint for zeros.

An example of such an FSM is presented in Fig. 2.4 for the case where the

running digital sum is bounded to values -4 through +4, the maximum runlength is

limited to 4, and the minimum runlength is 3. In this FSM, the output of a logic

0 results in movement downwards and to the left; the output ofa logic 1 results in

movement upwards and to the right. The states indicated withdashed circles do not

need to be included in the model since they can never be entered and therefore will

never be included as primary states; however, their inclusion might facilitate easier

computer programming. Tightening or loosening the RDS constraints results in di-

minishing or increasing the number of states in the horizontal direction; decreasing

or increasing the maximum runlength has a similar effect in the vertical direction.

Changing the minimum runlength is accomplished by removing or inserting edges

as necessary between states in the FSM.

37

 - 4 - 3 - 2 - 1 0 1 2 3 4

RDS

4

3

2

1

1

2

3

4

Number of

Consecutive

Ones

Number of

Consecutive

Zeros

Figure 2.4: Sample FSM for a DC-free RLL code with parametersN = 9, d = 2,
k = 3

2.4.4 Multilevel Constrained Codes

Constrained codes are commonly designed with a binary alphabet since the codes

are generally employed on a medium where binary signalling is used. However,

constrained codes have been extended to multilevel alphabets [27]. Multilevel codes

are commonly designed to satisfy not only the DC-free constraint, with a null occur-

ring at DC, but are also designed to have nulls occurring at certain other frequencies

as well. For completeness, these codes can also be designed to satisfy runlength pa-

rameters, although they have more often focused on the design of spectral nulls.

Examples of such codes can be found in [28] [29] [30]. Multilevel codes afford

the code designer some additional advantages over codes using binary signalling

alphabets, such as a wider variety of parameters, leading tobetter codes.

A qary balanced code, with codewords of lengthn and source alphabet specified

with Γq = {0, 1, . . . q− 1}, is a code where the weight of each codeword is equal to

⌊(q − 1)n/2⌋. The weight of each codeword is calculated by taking the sum each

of the symbols of the codeword. Note that whenq = 2, we require codewords with

weight⌊(2−1)n/2⌋ = n/2. Thus, for a lengthn = 10 code, the symbols must sum

to n/2 = 5, which can only be achieved by transmitting the symbol “0” five times

and the symbol “1” five times, in any order, creating the same balanced codewords

38

that were considered previously.

Perhaps the simplest method of constructing a multilevel code which contains

only balanced codewords is to use Knuth’s complementation method [31]. In this

method, every sequence of symbols is balanced using a simpleprocedure. This

method was originally designed to be used with bit-valued sequences, and was later

extended to multi-level sequences. The process for bit-valued sequences is as fol-

lows. A sequence of bits is mapped onto a balanced word by complementing the

first (or equivalently the last)kc bits of each source word for an appropriate choice

of kc. For every sequence of bits, at least one valid choice forkc exists, while a

number of sequences may have more than one choice forkc. The value ofkc is

encoded in the coded sequence by appending its appropriate representation to the

source sequence as parity bits so that the decoder can undo the mapping. Further,

the parity bits must be chosen in such a manner that the overall codeword remains

balanced. This method is suitable for very large sequence lengths and when the

sequence lengths are long, results in a high code rate.

Extending Knuth’s method to non-binary sequences involvesgeneralizing the

procedure. In the case of binary sequences, complementation is the bitwise addition

of the source sequence with a flipping sequence. For example,complementing

the first two bits of a length 8 sequence is the bitwise addition of the sequence

11000000. For multilevel sequences, appropriate “complementation” or balancing

sequences are constructed as outlined in [32], one of which is the all zeros sequence.

For every source sequence, at least one of the balancing sequences can be added

such that a balanced sequence is generated. Examples of efficient codes using this

method of design can be found in [33].

2.4.5 Constrained Codes for Multi-Dimensional Media

Recent advances in holographic storage technologies have led to the recording of

two-dimensional arrays of data becoming an active area of research. The informa-

tion stored on hard disk drives, as well as traditional optical drives, is written along

a series of tracks, which can be visualized as a one-dimensional sequence. On these

surfaces, an adequate length between transitions was important, ensuring an ade-

quate number of transitions for the detection circuitry wasrequired, and robustness

to low frequency noise, i.e., fingerprints, was desirable. Some research has been

conducted in two-dimensional RLL codes for these surfaces [34]; however, un-

like their one-dimensional counterparts where RLL and DC-free constrained codes

are commonly used, the two-dimensional media often employ more complex con-

39

straints. Codes designed for use on these media are referred to as two-dimensional

codes and the underlying constraints are referred to as two-dimensional constraints.

Several different types of constraints that help to reduce ISI in two-dimensional

recording channels have been proposed [35], [36]. One popular constraint in two-

dimensional recording systems is the hard-square model, which is a(d, k) = (1,∞)

RLL constraint extended to two dimensions. In this constraint, there cannot be

neighboring pairs of 1’s, either horizontally or vertically [37]. These types of con-

strained codes have proven to be difficult to study for several reasons. First, ex-

act capacities are often not known for most types of constraints, only upper and

lower bounds. Second, modelling the constraints with an FSMhas proven to be

difficult. Third, codewords are no longer sequential in nature but are given by

two-dimensional shapes. The shapes themselves can be different, such as rectan-

gles or parallelograms, and the methods for tiling them can vary [38]. Similar to

one-dimensional codes, while the shapes themselves may notviolate the condition,

when tiling shapes together to construct a code, their concatenation at the edges

may cause the constraint to be violated. In the one-dimensional case, the concate-

nation of sequences is easily solved with merging bits, suchas in the case of EFM,

but in the two-dimensional case, the solution is more complex. Research has been

conducted in the study of the capacities of these constraints, along with the design

of low complexity encoders and decoders [36].

Consider the case of the hard-square model, where in no place can there be two

neighboring ones. The capacity of such a constraint is knownto be approximately

0.58789 [39]. A very simple code, called the checkerboard code, satisfies this con-

straint and has a rate of one half, which is reasonably close to capacity. For the

checkerboard code, the two-dimensional surface is partitioned into adjacent white

and black squares, with each row beginning alternately witha white and then a

black square, resembling a checkerboard. One of squares, arbitrarily chosen to be

the black squares, is written with all zeros. The other set ofsquares can now con-

tain the user’s data, since, even when the user’s data is a one, it is guaranteed to be

surrounded by black squares, which contain zeros. The elegance in the simplicity

of this code demonstrates a common scenario in code design. That is, an extremely

simple code may come relatively close to achieving capacity; however, researchers

are interested in designing codes as close as possible to capacity and will spend

significant effort doing so, to achieve an0.08789
0.50000

= 17.6% gain in the amount of

information that can be written to the medium.

The constrained codes discussed in this subsection are commonly referred to as

40

two-dimensional codes or more generally as multi-dimensional codes. In this case,

the dimensionality refers specifically to the medium, generally an optical storage

device, upon which the coded data is written. In this thesis,constrained codes in

multiple dimensions are investigated, but the concept of dimensionality is not the

same. Rather than being written to a two-dimensional storagemedium, the coded

symbols are written to a one dimensional medium as a series oftracks, or equiva-

lently transmitted on a symbol-by-symbol basis as in any conventional transmission

system. Dimensionality instead occurs in the sense that thesignalling constellation

can have multiple dimensions. The encoder can constrain a number of signalling di-

mensions simultaneously, tracking the constraint on each dimension independently

of the others. Examples of these types of multi-dimensionalconstrained codes are

those employing QPSK, 8 PSK, or 16 QAM signalling constellations.

41

Chapter 3

State-Independent Decoding

In this chapter, the construction of constrained codes thatare decoded at the receiver

without the use of state information is considered. This property is important to

limit error propagation at the decoder. In particular, thischapter focuses on block-

decodable encoders, which are finite state encoders such that any two edges with the

same output label have the same input tag [9]. Examining onlythe output sequence

of such an encoder, the decoder can unambiguously determinethe input sequence.

The construction of block-decodable encoders that admit state-independent de-

coding is considered in detail in [9]. The authors develop analgorithm to find the

globally optimal solution to this problem by partitioning the codewords into regions,

solving a set covering problem, and finally solving an integer programming prob-

lem. Both the set covering problem and integer programming problem are known

to be NP-complete [40]. In this chapter, a simplified approach is considered; an

approximation algorithm is developed that finds a constrained code that can be de-

coded without state information by using a simplified set covering procedure that

constructs the codebook one mapping at a time. This procedure operates by find-

ing locally optimal solutions based on a greedy approach. Despite the limitations

of employing locally optimal solutions [41], it has been found that the approxima-

tion algorithm works very well for typical constraints, such as DC-free RLL codes.

Further, since the set covering problem is avoided, the algorithm proposed in this

chapter is able to run in polynomial time with respect to the size of the input.

The approximation algorithm proposed in this chapter is flexible, with a number

of parameters that can be adjusted based on the needs of the code designer. Further,

should the algorithm have difficulty finding a solution, moreadvanced methods,

such as lookahead, can be introduced into the algorithm. Theprinciples of weakly

constrained codes are discussed and applied to an example code in a situation where

neither the proposed algorithm, nor the algorithm in [9] is able to construct a code

42

that can be decoded at the receiver without the need for stateinformation.

The approximation algorithm presented is based on a representation proposed

by Franaszek [8]. In Section 3.2, an algorithm is developed for generating a code

that permits state-independent decoding based on an FSM model of the encoder.

This section covers the important aspects in the proper construction of the table

based on Franaszek’s representation in subsections 3.2.1 and 3.2.3. The cover

construction method, referred to as the fitting procedure, is discussed in subsec-

tions 3.2.4 and 3.2.5, with a simplification discussed in subsection 3.2.6. In Sec-

tion 3.3, the complexity of the algorithm is discussed. Section 3.4 presents looka-

head as it can be used by the algorithm, along with a discussion of its complexity.

In Section 3.5, the use of this algorithm for the construction of DC-free RLL code-

books is illustrated, including two example codes. Weakly constrained codes, along

with the construction of a code using these principles, is presented in Section 3.6.

A summary is offered in Section 3.7.

3.1 Construction of State-Independent Codes

Using Franaszek’s tabular representation of the FSM describing movement among

the principal states as a starting point, the goal is to construct a codebook with a

complete row for each source word, where the same codeword does not appear in

two or more different rows. This goal is accomplished by combining rows from

Franaszek’s table such that all “spaces” in the table are filled and as few of the

entries as possible are discarded. Now considered, in detail, is the construction of a

code table that enables state-independent decoding.

3.2 Algorithm for State-Independent Decoding

In this section, the approximation algorithm for the construction of a constrained

code that can be decoded without the need for state information is discussed. The

optimal solution to this problem is NP-complete, as both a set covering problem

and an integer programming problem must be solved [40].

The method proposed in this chapter is a simplified approach to the algorithm

presented in [9], which explores the full problem space. Thesolution presented

in this chapter is an approximation algorithm, since the full problem space is not

explored to maintain polynomial complexity with respect tothe size of the input.

While the solution is more precisely a heuristic, in the remainder of this thesis, it is

43

referred to as an “algorithm” for the sake of brevity. In particular, both the scoring

functions and the base set selection procedures are based onan intuitive under-

standing of the problem. While this algorithm is an approximation, it demonstrates

excellent performance on both codes commonly used in constrained coding, as well

as the new family of codes developed later in this thesis.

Prior to presenting the proposed algorithm, Franaszek’s recursive elimination

algorithm and the initial construction of the coding table are revisited; this cod-

ing table serves as a starting point for the algorithm. Subsection 3.2.2 provides

a general overview of the major steps of the algorithm. In thethree subsequent

subsections, major design decisions of the algorithm are discussed in more detail.

Subsection 3.2.3 discusses the structure of the coding table and how it can be used

advantageously, subsection 3.2.4 contains information about the fitting procedure

used in the algorithm, and subsection 3.2.6 outlines how states can be reordered to

reduce the time required to complete the algorithm. The complexity of the algo-

rithm is discussed in Section 3.3.

3.2.1 Initial Construction of the Coding Table

The first step in constructing a code table is to find suitable values form, the

source word length,n, the codeword length, andP , the set of principal states, us-

ing Franaszek’s iterative procedure. Generally, the set ofparameters that is closest

to achieving capacity is chosen first. As the procedure worksby making locally

optimal decisions, it may not be able to arrive at a suitable solution for a given con-

straint with the initial set of parameters ofm, n, andP . In such a case, the set of

values form, n, andP that are the next closest to capacity can be tried.

Once Franaszek’s algorithm terminates successfully and a set of values form,

n, andP is chosen, a coding table is generated in the same fashion as in [8]. In

this table, the set of principal states,P = {σj, j = 1, 2, ...|P |}, denote the columns,

while each different codeword, labeled by an index,i, is given its own row. If a

codeword emanates from a given stateσj then an entrywi is entered into the table

at theith row andjth column. Thus, each row in the table indicates the set of

principal states from which the wordwi emanates. Using a terminology similar to

that in [9], this set of states is referred to by:

F (wi, P) = {σu ∈ P : wi ∈ W (σu, P)} (3.1)

whereσu is a state andW (σu, P) is the set of all words in the FSM starting in state

σu and ending in any state inP . As discussed in [9], theF (wi, P) define a number

44

of regions that can be visualized in terms of a Venn diagram. Anumber of words

may populate each of these regions if their values forF (wi, P) are equal. Find-

ing the globally optimal solution to code construction involves finding all of the

minimal covers forP using those regions. In the proposed algorithm, examining

the global constraints is avoided so that the algorithm doesnot need to know all of

the minimal covers forP formed by those regions. This reduces the complexity of

the problem significantly; however, it can no longer be guaranteed that the glob-

ally optimal solution will be found. In many cases, however,it is still possible to

find a suitable constrained code that can be decoded at the receiver without state

information.

For example, consider the state machine shown in Fig. 3.1. Tocomplete the

coding table using the group of alphabets approach, consider the process begin-

ning with stateσ1. Wordw1 emanates from stateσ1, and sow1 is placed in the

first row and first column of the table. Further, wordsw2, w3, andw4 emanate

from stateσ1 and so those entries are placed in the second, third, and fourth rows

of the first column, respectively. This completes the codewords leaving stateσ1
and so blank entries are left in the fifth, sixth, seventh, andeighth rows of the first

column. Moving to stateσ2, the words emanating from that state arew1, w3, w5,

andw6. Hence, the first row, second column is filled withw1, the third row, sec-

ond column is filled withw3 and so on. This process is continued for statesσ3 to

σ6. The finished result is show in Table 3.1. Using the notation presented above,

F (w1, P) = {σ1, σ2, σ3, σ4} since wordw1 emanates from statesσ1, σ2, σ3, andσ4.

As a second example,F (w6, P) = {σ2, σ5, σ6}.

Table 3.1: Example table showing group of alphabets.
σ1 σ2 σ3 σ4 σ5 σ6
w1 w1 w1 w1

w2 w2 w2

w3 w3 w3

w4 w4 w4 w4

w5 w5 w5 w5

w6 w6 w6

w7 w7 w7

w8 w8

Rather than partitioning the codewords into regions and finding minimal covers,

the alternate procedure starts as follows. First, completethe table as noted above

and notice that there will, in general, be open areas since a word, wi, may not

45

 σ
1

 σ
2

 σ
4

 σ
5

 w
1

 w
4

 w
1

 w
8

 w
3 w

7

 w
7

 w
6

 σ
3

 σ
6

 w
1

 w
2

 w
7

 w
5

 w
4

 w
5

 w
3

 w
6

 w
2 w

1

 w
4

 w
5

 w
4

 w
8

 w
3

 w
5

 w
6

Figure 3.1: Example FSM used to demonstrate the process of translating an FSM
into the tabular representation.

emanate from every state inP . In other words, each region does not form a cover

for P by itself. These open areas are referred to as “spaces.” Generating a code that

admits state-independent decoding requires that several rows (i.e., severalF (w,P))

be joined together such that they form a cover forP , eliminating the spaces in

the table. If all the spaces in at least2m rows of the table are filled, then a code

that admits state-independent decoding has been generated. In the example above,

F (w1, P) andF (w6, P) form a cover forP since the combination of those two rows

would leave no spaces in the table, or equivalently, the union of the states contains

all states inP . However,F (w1, P) andF (w8, P) and several other combinations

also form a cover forP usingF (w1, P).

While it is possible to examine the code using only Condition 1 to determine

if state-independent decoding is possible, it is advantageous to not only determine

if the code admits state-independent decoding, but to simultaneously find the code-

book. In fact, the solution from [9] uses the condition from [8] to guide the integer

programming solution and also, if a code exists, generate the codebook. A sim-

ilar approach is followed here, without having to solve the set covering problem

and integer programming problem to explicitly determine whether Condition 1 is

satisfied.

The solution in the proposed algorithm aims to complete a single row (a source

46

word to codeword mapping) in the codebook at a time. Codewordsthat exist in sub-

sets ofP are combined together intelligently such that they coverP and Condition 1

is not violated.

3.2.2 Outline of the Algorithm

The algorithm begins after an initial table is constructed as outlined above. In its

most basic version, the major steps of the algorithm are:

1. By combining appropriate rows in the table to form a cover for P , the algo-

rithm attempts to fill as many spaces as possible. Initially the algorithm aims

to construct covers forP such that there is no overlap amongst the states. That

is, when combining two rows, no stateσu in the set of statesU correspond-

ing toF (wi1 , P) for the first row exists in the set of statesV corresponding

to F (wi2 , P) for the second row, wherei1 andi2 are the indices of the two

codewords being combined together in the coding table. If, at the completion

of this step, there are2m complete rows (covers), skip to Step (4).

2. Pass through the table again to combine rows to form coversfor P , now

considering rows where overlap exists amongst the states. Combining rows

in this fashion will result in codewords being discarded from positions of

overlap. The choice of which codeword to discard can be arbitrary or, for

example, can be chosen to reduce the complexity of the decoder. If, at the

conclusion of this step, there are2m complete rows, skip to Step (4).

3. The algorithm has determined it cannot complete any further covers forP

amongst the remainingF (wi, P), and so the procedure is stopped. This does

not guarantee that it is impossible to decode this code without state informa-

tion, but it requires that the algorithm re-trace some of itsearlier decisions

and change the outcome of decisions that were thought to be arbitrary. Alter-

natively, a solution based on globally optimum decisions, such as that found

in [9], could be used instead.

4. If there are2m complete rows, then any other (possibly incomplete) rows are

discarded and source words are assigned to each row. The simplest construc-

tion involves a table look-up, consisting of arbitrary assignment, although an

attempt can be made during the assignment to limit the numberof decoded

errors that occur as a result of errors in the channel. If the mapping is to

be performed using combinatorial logic, then the word assignment could be

47

made in a manner that results in the lowest gate count. However, discussion

of how this mapping would take place is beyond the scope of this thesis.

These steps are discussed in more detail in the subsections that follow. Additionally,

in subsection 3.2.5, the amalgamation of steps 1 and 2 into a single step with an

appropriate scoring mechanism is considered.

3.2.3 Structure of the Table

In order to construct the original table, one state inP is arbitrarily selected as the

“first” state, and in the first column, the codewords are listed that emanate from that

state and terminate in any state inP . Codewords emanating from the second state

are then listed in the second column, where codewords that emanate from both the

first and second states are placed horizontally in the same row, and codewords that

start in the second but not the first state are listed in additional rows appended to the

bottom of the table. This procedure is then repeated for the third and subsequent

states. The states can be numbered in any order; it is important only that all of the

words emanating from a state be listed prior to considering the next state.

Given this approach to constructing the original table, in general, the set of

words starting from the first state will comprise the densestportion of the table.

To understand why, consider that a particular codewordwi often emanates from

several different states. Whenwi emanates from state one, theith row and first

column is filled in withwi. If this codeword also exists in some other state,σj,

then theith row andjth column will also be filled in withwi. Thus, each time the

algorithm examines a new state during initial table construction, it will, in general,

append fewer new rows, since rows corresponding to a number of the codewords

emanating from that state will already exist in the table dueto consideration of

other states. When the final state is reached, only the codewords unique to that state

remain to be added to the table. For example, consider Table 3.1. Four rows are

created in the first state, while only two rows are created in the second state, even

though four words emanated from stateσ2. This is because rows related to two of

the words fromσ2, namelyw1 andw3 have already been added to the table. State

σ3 adds no new rows, while statesσ4 andσ5 add one new row each.

Recall that in order to construct a valid codebook, it is required that at least2m

rows be filled. Rows in the original table corresponding to codewords emanating

from first state are selected as the “base set,” and on a row-by-row basis, the other

rows are searched to fill the spaces in these base rows (to forma cover forP). These

48

rows are selected as base rows since the table has been constructed such that the top

portion of the table is the densest, and therefore, in general, fewer other rows will

have to be combined to coverP , which simplifies the search. The remaining rows

are referred to as the search set. This is because for each rowin the base set, the

algorithm searches through rows in the search set for the best fit.

A minimum of2m rows must be chosen as base rows, however, there are gener-

ally significantly more than2m possible candidates. For the codes generated in this

thesis, the procedure outlined above was followed, that is,one state is chosen as the

first state and all codewords emanating from the first state are chosen as base rows.

In particular, the state chosen as the first state was the state containing the fewest

number of edges, which, in general, yields excellent results. However, it should be

noted that there is a significant number of valid selections for the base rows that rep-

resents a large degree of freedom for the algorithm. While notexplored further in

this thesis, depending on the particular application of thecode designer, this degree

of freedom may be helpful.

All of the rows with codewords emanating from first state are selected to be the

base set even though this often results in the selection of slightly more than2m rows.

This is not problematic for two reasons. Firstly, in Step (4)of the algorithm some

of these rows may not contain a full cover ofP and these rows can be eliminated

or added to the search set. Secondly, because all of words in the base set share

a common state (the first), they cannot be copied onto each other directly without

having some overlap in the cover forP . It is possible, however, to place any rows

fitting this criteria into the search set and re-run Step (2) of the algorithm, provided

that at least2m rows remain in the base set.

Returning to the example from Table 3.1, if the value ofm is set to two, then we

require that22 = 4 rows be selected as base rows. In this case, rows one through

four must be selected as base rows, since there are only four in total, while the

remainder of the rows, in this case five through eight, are selected as the search set.

While the selection of the first state is arbitrary, as it is desired to have that state

be the densest portion of the table, the ordering of codewords within that state does

not need to be completely arbitrary. In many codes, the success of local decisions

can be sensitive to the order in which rows are examined. In general, the algorithm

makes the best decisions when attempting to first find matchesfor the rows with the

fewest number of spaces, leading to better overall results.This is because these rows

often have fewer possible matches compared to a row with a significant number of

spaces. While this is not always the case, it serves as a good starting point and is

49

very simple to modify should a code not be generated. In some rare cases, beginning

with states with the most number of spaces or even a purely random assignment

may work better. To reduce the algorithm’s dependence on factors such as this,

lookahead can be used, which is discussed in a later section.

As the algorithm progresses, it copies rows from the search set into the base set

attempting to create covers forP . If 2m full rows are constructed, then the code is

complete and permits state-independent decoding at the receiver. However, after all

base rows have been iterated through several times (Step (1)of the algorithm), it is

likely that there will not be2m full rows and that there will exist a number of rows

in the search set that have not yet been placed. This occurs because the set of states,

U , in F (wi, P) for one row has some overlap with the set of states,V , in F (w,P)

for all other rows remaining in the search set. Fortunately,there is another degree

of freedom that can be exploited (Step (2) of the algorithm).There are often more

words (or edges on the FSM diagram) than the minimum number that is required.

Selectively allowing some overlap betweenU andV is then possible, such that

the total amount of overlap across all entries in the column corresponding to state

σj does not exceed the total amount of surplus edges that are in stateσj. Stating

this in another way, edges from the FSM can be selectively discarded since they

cannot be used. Step (2) of the algorithm proceeds in an identical fashion to Step

(1), on a row-by-row basis using a greedy algorithm to find a row or set of rows

which forms a cover forP . In this case, overlap between the states inU andV is

permitted provided that the loss of that edge on the FSM does not reduce the number

of available edges in any state inP below2m. The solution which has the smallest

amount of overlap amongst the states inU andV is chosen by the algorithm.

In the context of the designed code, the overall informationflow is not lowered,

since the code rate is given bym
n

. This occurs because there is not an exact match

between spaces in a base row and words in rows in the search space; sometimes

there are more codewords in the searchable row than spaces inthe base row. This

means that it is possible to discard some of the words from a particular state (or

column in the table). In general, this is avoided initially because it is desirable to

save this potential freedom to employ a more intelligent encoding/decoding proce-

dure if possible. However, if2m full rows cannot be generated without discarding

words, then this degree of freedom must be leveraged to attempt to complete the

codebook. Therefore, step (2) of the algorithm attempts to discard words from

some of the states in order to allow more rows from the search set to be copied into

base rows. The algorithm iterates through each of the “spaces” in the base rows,

50

attempting to fill them by discarding as few words in a particular column (state) as

possible. At any point in time, every state must have at least2m words left, so it is

important to check, before discarding words, that this minimum is still met.

Finally, in the larger codes that were considered, the size of the search set was

often significant. Typically, this search set contains a large number of rows with the

same spaces, and so the algorithm benefits from grouping these rows together. This

allows the algorithm to compare a base row to many search rowsin the set at a time

since they have the same structure, effectively reducing the number of candidates

it must attempt to try. Compressing the table in this manner can sometimes reduce

the size of the search set significantly, allowing for more complex operations, such

as lookahead, to be used on these large codes.

3.2.4 Fitting Procedure

When combiningF (wi, P) (rows in the table) to form a cover forP in Steps (1)

and (2) of the algorithm, it is necessary to determine how to fit rows together. The

algorithm will combineF (wi, P) until it has constructed at least2m complete rows

or has determined that it is impossible to do so. Note that several rows in the table

may have the sameF (w,P); therefore, the same cover forP may be used multiple

times. In other words,2m unique covers are not required, only that each column

in the table must exist in2m covers so that a sufficient number of edges leave each

state.

With row-by-row decisions, at least two approaches can be used to find suitable

covers forP . First, the algorithm could consider a row corresponding toa wordwi

with a set of statesU ⊆ P and find another row with a set of statesV ⊆ P to copy

the initial row into such that for each stateσu ∈ U , σu /∈ V . This corresponds to

focusing on a row that contains entries in certain columns, and searching for another

row with spaces in these columns. Alternatively, for each row with a F (wi1 , P)

consisting of states denoted byU and hence a set of spacesU ′ given by{σu′ ∈
P : σu′ /∈ U}, the algorithm can find another rowF (wi2 , P), with a set of states

denoted byY , such thatY ⊆ U ′, and copy that row into the spaces of the first

row. This corresponds to focusing on the spaces in a certain row, and finding a

second row that fills as many of these spaces as possible. The second approach is

preferred because it integrates smoothly with the state re-numbering procedure that

is discussed in a later subsection. In either case, the two rows “fit” together. Spaces

in the table are filled by copying rows of the table into other rows. In Step (1) of

the algorithm, rows are copied such that there is no overlap of codewords when the

51

rows are combined together; in Step (2), the algorithm seeksto combine rows with

minimal overlap.F (w,P) for the aggregate row is the union of theF (w,P) values

for the two rows that have been copied together. As the rows are merged, and full

rows are formed, the states inF (w,P) form covers forP .

Another important consideration is how the fitting should becompleted, which

for a row-by-row approach, has at least the following two possibilities:

1. First fit, which involves copying a row into the first row in which the algo-

rithm determines it would fit; or

2. Best fit, which involves copying a row into the “best” row that it finds, where

“best” is determined according to some predefined criteria.

In other fields, it has been reported [42] [43] that the advantages of a first fit ap-

proach often include results very close to the best fit, in terms of utilization, with

less overall time to complete. A best fit approach, however, should produce a higher

overall utilization (i.e., more filled spaces) at the cost ofexecution time. In this

application, a best fit approach is chosen because it is required that a row be com-

pletely filled (i.e. a cover forP is needed) in order to be used in the codebook. Even

a single empty state remaining in a row prevents the assignment of a source word,

so a higher emphasis is placed on utilization (filling rows) than the execution time

of the algorithm. Further, because filling all the spaces in arow is essential, when

copying a row withF (wi, P), corresponding to a set of statesY , into another row

with F (wi, P), corresponding to a set of statesU , the best fit is defined as the one

in which the size of the set of remaining spaces, i.e., the setof statesY ′, given by

Y ′ = {σy′ ∈ P : σy′ /∈ U : σy′ /∈ Y }, is the smallest. In essence, the algorithm

comprises a greedy algorithm solution on a row-by-row basis. As the rows in the

table are iterated through, the locally optimum solution that will leave the fewest

number of spaces remaining in the table is chosen. While it is known that a greedy

algorithm finds the globally optimal solution only when the optimal solution to the

problem contains optimal solutions to the local problems [41], it has been found

that the algorithm does perform very well in the cases that were examined, such as

the DC-free RLL codes that are considered in Section 3.5.

When determining the best fit for the set of spaces in a row, there are often situa-

tions where the row will not be entirely filled and at least onemore row would have

to be copied to generate a cover. However, there might be two or more alternatives

that would leave the same number of spaces, but the set of spaces remaining are dif-

ferent. In this case, according to the best fit criteria, a tieexists, and it is difficult to

52

determine which is the better of the alternatives. One option is to create a tree-like

structure to keep track of these decisions. If the algorithmcompletes and a code to

permit state-independent decoding is not found, then the algorithm could return to

this tree, going up levels and trying alternate solutions. Note that with this addition,

the search is still not exhaustive since decisions remain based on locally optimum

solutions. The converse of this solution, lookahead, is considered in a later section.

The pseudocode listed as Algorithm 1 demonstrates a simple implementation of

step one of the proposed algorithm, whereB is the size of the base set andS is the

size of the search set. Note that theF (w,P) have been separated into the base and

search sets viaFB(w,P) andFS(w,P), respectively.

Algorithm 1 Implementation of step one of the algorithm.
while go= truedo

placed← 0
for i = 1→ B do

if FB(wi, P) = completethen
continue

end if
U ← FB(wi, P)
U ′ ← {σu′ ∈ P : σu′ /∈ U}
for j = 1→ S do
Y ← FS(wj, P)
filled(j)← |U ′ ⋂Y |

end for
word =max(filled)
if word 6= ∅ then
FB(wi, P)← FB(wi, P)

⋂

FS(wword, P)
placed← placed+1

end if
end for
if placed= 0 then

go← false
end if

end while

3.2.5 Improved Fitting Procedure: Scoring

Rather than splitting the consideration of filled rows with and without overlap sep-

arately, it is possible to consider both these constraints simultaneously. In other

words, steps 1 and 2 in subsection 3.2.2 are combined into a larger step, using a

more sophisticated procedure. Implicit in the design of theproposed algorithm is

53

the use of two simple scoring mechanisms when selecting rowsto be combined in

the table. Previously, during the first pass, rows are selected which maximize a

filled row score,Sf , and during the second pass, rows are selected which minimize

an overlap score,So. A single combined scoring metric that considers filling and

overlap simultaneously is now proposed, along with new definitions forSo andSf .

To find an appropriate balance between the advantage of filling and the disad-

vantage of overlap, the following overall scoreSt is proposed:

St = Sf − So (3.2)

andSf andSo are defined as outlined below.

In many codes, there are often some states with very few extraedges, while

other states more central to the FSM have a large number of excess edges. Remov-

ing an edge from a state with a larger number of surplus edges is generally much

less constraining than removing an edge from a state with fewsurplus edges. When

combining two rowsF (wi1 , P) andF (wi2 , P) with overlapUo = F (wi1 , P) ∩
F (wi2 , P), the following overlap scoring metric has been adopted:

So =
∑

σuo∈Uo

(
Wsuo

Wluo

)ro (3.3)

whereWsuo is the number of spaces remaining in the base rows of a given column

andWluo is the number of words left in the search rows of a given column. The

metric (
Wsuo

Wluo

) ranges in value from zero to one and is a measure of how tightly

a column is constrained, and thus the algorithm is less likely to discard an edge

from a state that is already significantly constrained. The exponentro, restricted

to positive values, allows the code designer to control the separation from highly

constrained columns to columns that are not very constrained. For example, a fully

constrained column that has as many words left as there are spaces receives a score

of one. Alternatively, a column that is not very constrainedwill have many words

left and few spaces to fill, receiving a score of much less thanone.

Using a value ofro greater than unity preserves the value of a fully constrained

column, while lowering the value of columns that are not significantly constrained.

However, using a value forro less than unity increases the weighting of a column

that is not significantly constrained relative to a fully constrained column. Consider

the case where one column has three spaces remaining to be filled and three words

left with which to fill those spaces, while another column hasthree spaces remaining

to be filled and twelve words left to fill those spaces with. Situations like this are

54

common in the constrained codes that have been constructed as there are often a

few states that are significantly constrained, while other states have a significant

number of surplus edges. In this example,(
Wsuo

Wluo

) evaluates to unity for the first

example column, while it evaluates to0.25 for the second. Clearly, choosing a

value of ro = 1 will preserve the values of 1 and 0.25 for the first and second

columns in consideration, respectively. Using a value ofro = 2, however, changes

the scored values to 1 and 0.0625, and so actions in the first column now carry more

weight both with respect to the other column and also compared to the case when

ro = 1. Conversely, changing the value ofr0 to 0.5 results in the two scored values

becoming 1 and 0.5 and so the second column is now twice as significant as it was,

relative to usingr0 = 1.

The value chosen forro, then, controls the significance the algorithm places

upon fully constrained columns, relative to the largely unconstrained columns, when

considering the significance of the overlap. In general, thefully constrained columns

have little flexibility, and therefore more significance should be placed on complet-

ing them. Setting the value ofro to two provided a good compromise between

ensuring that the fully constrained columns are weighted with importance, but not

so much so that it prevents the algorithm from combining rows.

The filled row score has been re-defined in a similar fashion. This is because

filling a space in a highly constrained column is more valuable than filling a space

in a loosely constrained column. The filled row score for two rowsF (wi1 , P) and

F (wi2 , P) is defined as:

Sf =
∑

σyf
∈Yf

(
Wsyf

Wlyf

)rf (3.4)

whereYf is the set of spaces filled by combiningF (wi1 , P) andF (wi2 , P), andrf
is a positive exponent. For the codes that have been considered, it has been found

that the algorithm works well when the value ofrf matches that ofro.

The procedure for calculatingSf andSo discussed above were found to gen-

erate excellent results for the cases upon which the algorithm was tested. In the

initial version of the algorithm, step 1 assumes that the value of a space to one, or

equivalently the value of that column to be one, and maximizes the number of filled

spaces. The second step of the algorithm assumes that the value of each discarded

edge is one and attempts to minimize the total, using the criteria in the first step as

a tiebreaker when necessary. The limitations of this approach are apparent, since

the algorithm assumes all spaces are equal, which is not true. Initially, a combined

scoring approach was tried where only the overlap score in (3.3) was used, while

55

the filled row score was calculated assuming using the initial approach, assuming

that all spaces are equal. Only the overlap score was updatedinitially, since it was

assumed to be the most restrictive constraint. However, it was found that the algo-

rithm had some difficulty combining together rows in some circumstances and that

the filled row score was also significant. Consequently, a similar definition to the

overlap score was applied to the filled row score as well, using (3.4). The inclusion

of scoring exponents arose in a similar fashion, in order to help the algorithm com-

bined together rows with greater precision. In many cases, aclever code designer

can adjust the scoring criteria and form slightly to producea better result after a

quick examination of the initial coding table along with a few key decisions made

by the algorithm.

The scoring approach outlined above is flexible and can be changed depending

on the needs of the code designer. In particular, the code designer could use a

parameter of interest, such as distance properties of the codewords, when selecting

between two potential search rows that have the same score, as calculated using the

equations above. Further, the code designer could add additional terms to the score

computation to accommodate for any additional parameters of interest, depending

on their application. The procedure outline in this subsection is intended to be a

general solution that works for any family of codes, however, it is flexible enough

that it can be modified to accommodate the needs of the code designer.

Using (3.3) and (3.4),St is calculated using (3.2). Two potential problems can

arise withSt that can be solved with a scoring threshold. First, because the base

rows are considered sequentially in order, sometimes theremay be no attractive

F (wi, P) to combine with a particular row, forcing it to be combined with a row

that would be better suited elsewhere. To adjust for this, a scoring threshold has

been introduced. This scoring threshold ensures that only scores above a particular

value will be acted upon. Second, as the algorithm progresses, the scores evaluated

at each step will, in general, become lower. This is because more spaces in the table

are filled, lowering the filled row score, while discarding words leads to a larger

overlap score. Thus, sometimes it is necessary to lower the scoring threshold as the

algorithm proceeds. This enables the algorithm to combineF (wi, P) that may have

initially been unattractive. Typically, choosing an initial scoring threshold of zero

is sufficient. With this threshold, each time rows are combined, the value of filling

the row, given bySf , outweighs the consequences of any overlap, given bySo, that

might exist. After an iteration where no rows can be further combined, the scoring

threshold is lowered, and the process repeats until the table completes or no more

56

combinations can be formed.

Appropriate selection of the scoring metric, exponents, and thresholds allows

for the algorithm to make row-by-row decisions that will lead to a state-independent

decodable mapping with high probability. While other methods exist to prevent

the algorithm from making locally optimal decisions that lead it away from the

globally optimal solution, for example using the lookaheadprocedure discussed in

Section 3.4, careful implementation of the scoring procedure can often produce the

same result without the need for additional complexity. Forexample, of the 70 test

cases that were tried, after some optimization of parameters, only7% of those cases

required lookahead to find an acceptable solution.

The pseudocode listed as Algorithm 2 demonstrates an implementation of the

proposed algorithm with the scoring procedure.

3.2.6 Re-numbering of States

Consider that as the table grows in size, it may become difficult to efficiently find

a suitable row in the search set to copy into a row in the base set. In this section, a

simplification to the search procedure is discussed to more efficiently locate suitable

pairs of rows that can be combined to form a cover forP . This simplification is

amenable to computer implementation. This procedure is most useful when the

algorithm operates with steps 1 and 2 separated, that is, without the use of scoring.

Recall that the numbering of the states is not unique, which implies that it is

possible to re-number them as necessary. The following approach was found to be

helpful. Each time the algorithm attempts to fill a row withF (wi, P) (correspond-

ing to a set of statesU) the states are renumbered such that all of the states inU are

moved to the left-most portion of the table. The algorithm then searches for a row

which fills as many of the right-most empty positions as possible. This enables an

efficient search procedure, as the following example demonstrates.

Consider the code based on Table 3.1, in particular wordw2, which is a base row

that contains statesU = {σ1, σ3, σ5}. These states can be temporarily re-numbered

such that state three is mapped onto state two and state five ismapped into the

third position. The presence of codewords in this row is represented with the binary

sequence{1, 1, 1, 0, 0, 0}, where the ones correspond to the (re-numbered) states

where the codeword exists, and the zeros correspond to the states from which the

codeword does not emanate. This binary sequence can be represented by its integer

equivalent, the number 56. As the algorithm searches the other rows in the table to

form a cover forP , with this state re-numbering it now need only look for a row

57

Algorithm 2 Implementation of the algorithm with scoring.
while go= truedo

placed← 0
for i = 1→ B do

if FB(wi, P) = completethen
continue

end if
U ← FB(wi, P)
U ′ ← {σu′ ∈ P : σu′ /∈ U}
for j = 1→ S do
Y ← FS(wj, P)
Yf ← U ′ ⋂Y
Uo ← U

⋂

Y
Sf ← 0
for all yf ∈ Yf do
Sf (j)← Sf (j) + (

Ws(yf)

Wl(yf)
)rf

end for
So ← 0
for all uo ∈ Uo do
So(j)← So(j) + (Ws(uo)

Wl(uo)

ro

end for
St(j) = Sf (j)− So(j)

end for
word =max(St)
if word 6= ∅ and St(word) ≥ thresholdthen
FB(wi, P)← FB(wi, P)

⋂

FS(wword, P)
Y ← FS(wword, P)
Yf ← U ′ ⋂Y
Uo ← U

⋂

Y
for all yf ∈ Yf do
Ws(yf)← Ws(yf)− 1

end for
for all uo ∈ Uo do
Wl(uo)← Wl(uo)− 1

end for
placed← placed+1

end if
end for
if placed= 0 then

go← false
end if

end while

58

whose integer representation of the binary sequence is 7 or less. To form a cover

for P , it first searches for a row with value equal to 7. If no row withthe value of

7 exists, then it instead searches for a row that would fill twoof those three spaces,

which becomes a bit more difficult since the two spaces to be filled need not be

consecutive. When the best fit is found, then the states are reordered, again moving

the spaces to the far right of the binary sequence and anotherpossible row, which

would complete the cover ofP , is sought. This re-numbering and binary mapping

executes quickly on a computer.

3.3 Algorithm Complexity

The main loop of the algorithm consists of searching, updating of state variables,

updating of tables, and re-numbering of states, all of whichrun in polynomial time.

At most, a base row can choose betweenS different F (wi, P) candidates to be

combined with to come closer to forming a cover forP , whereS is the size of the

search set. For one complete iteration through the algorithm, B base rows must

choose a candidate, meaning that the overall complexity of asingle loop isO(BS),

and that each loop through the algorithm maintains a polynomial complexity. For

most codes considered in this thesis, the algorithm ran through this loop eight to

10 times at most, owing to the implementation of a scoring threshold. Without a

scoring threshold, in a worse case, if only a single row is combined with another

on each pass through the entire search set, the algorithm would complete the loop

S times in total. This gives an overall complexity ofO(BS2), which maintains a

polynomial running time with respect to the size of the input. Generally, the number

of operations is significantly less. This compares favorably with the method in [9]

since both the set covering problem and the integer programming problem do not

run in polynomial time.

The algorithm is centred around the computation of a scoringmetric, even in

the more sophisticated version employing lookahead discussed in the next section.

Fortunately, the score of a particular row in the search set is independent of all other

rows in the search set, and so the algorithm lends itself wellto an implementation

that includes parallelization. Additionally, in terms of overall complexity, the most

significant factor is generally the size of the search set,S, sinceS scores must be

computed for each base row andB is typically much smaller thanS. However, all

of these scores can easily be computed in parallel, speedingup the operation of the

algorithm significantly.

59

In both cases, there is a set of operations with its own complexity that runs prior

to the algorithm. This includes operations to generate the initial coding table by

walking through the finite state machine to determine which codewords are valid

in each of the states. This set of steps to generate the input matrix is required for

both the algorithm proposed in this section and the method in[9]. In both cases, it

is assumed that this partitioning is completed before either algorithm begins. The

complexity of this sets of steps is, however, significant in that it is exponential in

the codeword length,n. For each principal state, each of the2n codewords must be

checked to determine whether that codeword emanates from that state and ends in

a valid principal state.

3.4 Lookahead

While it has been found that (3.2) gives a good estimate of which rows should

be combined, there may be cases where the algorithm remains unsuccessful. In

Sec. 3.2.4, it is suggested that one approach to improving the algorithm is to main-

tain a decision tree, which can be unraveled if the algorithmis unsuccessful. In

practice, the use ofld-step lookahead is often more successful. The steps involved

in the lookahead that has been implemented in the algorithm are as follows.

1. Select a potentialF (w,P) to combine with a particular base row to attempt

to form a cover forP . Lookahead is only performed if another row must be

selected to form the cover, i.e., if the cover is not already complete.

2. With this possible selection, iterate through all other base rows, selecting the

bestF (w,P) for each row, until the algorithm returns to the base row in step

(1).

3. From the rows still remaining in the search set, check to see whether another

F (w,P) exists for the base row in step (1) with a score above the scoring

threshold to move closer to finding a cover forP .

4. If no F (w,P) exists, the lookahead returns unsuccessful and theF (w,P)

with the next highest score is selected from the list of candidates. If another

F (w,P) exists, the lookahead returns successful.

These steps can be repeatedld times for each step of the lookahead. In this partic-

ular lookahead implementation, if at any depth the lookahead fails, it returns to the

initial potentialF (w,P) and re-selects from the list of candidates. For example,

60

consider a particular code the algorithm is designing with five levels of lookahead.

The algorithm selects a candidate and looks ahead one step, selecting candidates

for all other base rows. The lookahead algorithm then selects another candidate

for the base row and all other base rows, but no further candidates remain for the

base row in question. The lookahead algorithm then returns to the initial candidate

from the first step and re-selects the next best candidate. Inother words, the looka-

head algorithm returns to the top-most level of the tree eachtime, regardless as to

where the lookahead fails. The pseudocode listed as Algorithm 3 demonstrates an

implementation of the lookahead procedure.

One variation for the lookahead procedure is to only go back one level when the

lookahead fails, rather than always returning to the initial level. The advantage of

using this approach is that more of the problem space is explored. However, that

approach has significantly higher complexity than the approach that is proposed. In

general, it was found that, for the codes that required lookahead, returning to the

top-most level was sufficient to achieve a code design.

While lookahead increases the complexity of the algorithm, the overall com-

plexity remains polynomial with respect to the size of the input. In step (2) above,

the lookahead algorithm must select anF (wi, P) from the search set for each row

in the base set and so the complexity for each row isO(S), similar to the previous

section. The overall complexity of step (2) is thenO(BS). Step (2) can be com-

pleted approximatelyS times, assuming every candidate in the search set is tried,

and thus the complexity of one step of lookahead isO(BS2). Since, if the looka-

head fails on any iteration, the algorithm elects to revert to the top-most decision

and try anotherF (wi, P) instead, the lookahead step factor is multiplicative, and so

the overall lookahead complexity isO(BS2ld), which is polynomial in bothB and

S. In the codes that were considered, a depth of three to five levels was found to be

sufficient, and sold is significantly smaller thanB andS.

3.5 Example Codes

The algorithm described in the previous sections has several parameters that can be

adjusted when applying it to code construction. The code designer has flexibility

when selectingrf andro, as well as implementing scoring thresholds. While op-

timum selection of these parameters is dependent on the code, a quick glance at

the coding table and the first round of selections with the recommended parameters

from the previous sections (rf , ro = 2, scoring threshold = 0) can provide a good

61

Algorithm 3 Implementation of the lookahead procedure.
success← true{default flag to true}
for i = 1→ ld do
F ′
S(w,P)← FS(w,P) {Create a copies ofFS,Ws,Wl to simulate algorithm}
W ′

s ← Ws

W ′
l ← Wl

row← contents ofFB(w,P) for the base row in question
LB ← set of all other base rows
for all lB ∈ LB do

Compute Scores for allF ′
S(w,P), storing inSt

word =max(St)
if word 6= ∅ and St(word) ≥ thresholdthen

removeFS(wword, P) from F ′
S(w,P)

updateW ′
s,W

′
l

end if
end for
Compute scores for allF ′

S(w,P) for row, storing inSt

word =max(St)
if word 6= ∅ and St(word) ≥ thresholdthen

row← row
⋂

F ′
S(wword, P)

removeF ′
S(wword, P) from F ′

S(w,P)
updateW ′

s,W
′
l

if row = completethen
break

end if
else

success← false
break

end if
end for

62

guide for fine tuning these parameters. In the art of code design, examining the

code on this level can be very helpful for fine-tuning the parameters of the algo-

rithm, and for better understanding of the code that is beingdesigned. Further, the

code designer can rearrange the order of the base rows or select which base rows to

complete should there be more than2m such rows. As with the other parameters,

reviewing the first round of matches with the default ordering of base rows pro-

vides a good guide. Finally, the designer can choose to use one or more levels of

lookahead to improve the decision-making process of the algorithm. Appropriate

selection of these parameters is an important aspect of the art of code design.

To demonstrate the usefulness of the proposed algorithm, the construction of

DC-free RLL codes is considered. This particular constraint was chosen for two

main reasons. First, this is a constraint that is quite familiar to researchers in the

area of constrained codes, since it is widely considered. Second, satisfying both the

DC-free and RLL constraints simultaneously is difficult and ifthe algorithm is able

to perform well with this particular constraint, it is anticipated that it will perform

well for many other types of constraints. Values of0 ≤ d ≤ 3, d+ 1 ≤ k ≤ 7, and

5 ≤ N ≤ 9, whereN is the digital sum variation, were considered. These codes

have a range in capacities fromC = 0.15678 to C = 0.92760 bits of information

per symbol(see [1], pg. 280 Table 11.1). In each case, the algorithm attempted to

construct a valid codebook that can be decoded at the receiver in the absence of state

information for the parameters returned by the Franaszek algorithm with the highest

code rate forn ≤ 20. Of the 70 constraints that were considered, the algorithm was

able to successfully construct codes for all but one case. Close examination of the

one exception,(d, k,N) = (3, 5, 8) withm = 3 andn = 13, showed that it is in fact

impossible to construct a code that can be decoded without state information with

this set of parameters. The algorithm was able to successfully construct a code for

the parameters returned by the Franaszek algorithm with thesecond highest code

rate, withm = 4 andn = 18.

Of the 69 codes that the algorithm was able to construct, there were five in-

stances where use of lookahead was necessary. These codes were (3, 5, 9), (3, 6, 8),

(2, 4, 7), (2, 5, 8), and(1, 5, 7), and required between one and five steps of looka-

head. The remaining 64 codes were constructed using only thescoring improve-

ments in (3.2), (3.3), and (3.4). For example, the(0, 5, 9) code has parameters

m = 18 andn = 20. There are 793028 valid codewords across 50 primary states.

Upon completion of the algorithm, 263277 covers forP , slightly more than the

minimum requirement of218 = 262144, were generated. Subsequent simulation

63

confirmed the code to be DC-free, satisfying both the RLL and RDS constraints.

Two examples of the algorithm successfully designing DC-free RLL codes are

presented below. The algorithm designed a state-independent decodable code with

(d, k) constraints of(1, 5), along with a DC-free constraint enforced by having a

maximum ofN = 7 different RDS values{−3,−2,−1, 0, 1, 2, 3}. The capacity of

this code isC = 0.5497 bits of information per symbol and forn ≤ 20, Franaszek’s

recursive elimination algorithm finds viable coding parameters that are closest to

capacity to bem = 4 andn = 8, giving a coding rate of0.5000 binary digits

per symbol for an efficiency of 0.91 binary digits per bit of information. Table 3.2

shows the binary representation for each codeword used in the constructed code,

while Table 3.3 presents a mapping that will admit state-independent decoding at

the receiver. Since this code hasm = 4, at least 16 full rows are required. Although

this code has 16 primary states, it is straightforward to perform the algorithm by

hand since the number of words in each state is small. By inspecting the resulting

table, it is evident that row 22 and row 1 together form a coverfor P . Similarly,

row 23 and row 2 form another cover ofP . Continuing downwards, notice that

rows 5, 19, and 35 form a cover forP . Row 19 was copied without any overlap,

however, four edges were discarded when joining rows 35 and 5. This process was

continued for the remainder of the rows in the table. Recall that the requirement for

state-independent decoding is that no word exists on two different rows in the table.

Careful examination of the table will verify that this constraint has been satisfied.

To verify that the first example code was indeed a DC-free RLL code, a sim-

ulation of five million codewords was used to generate the code spectrum, along

with analyzing the minimum and maximum runlengths on the entire sequence of

codewords. Figure 3.2 shows the PSD of this code, which bearsthe characteris-

tics of a DC-free code, showing a clear null at DC. In Figure 3.3,the runlengths

within the coded sequence are plotted, where the first runlength has been ignored

to remove the dependence on initial conditions. A new runlength is marked and

“indexed” each time there is a transition from a zero to a one,or vice versa. The

figure demonstrates that the runlength stays between 2 and 6,which matches the

design specifications of the code.

A second, more complex code, with(d, k) constraints of(1, 3) and a DC-free

constraint ofN = 5 different RDS values was also constructed. The capacity of

this code isC = 0.4248 bits of information per symbol and the Franaszek algo-

rithm determined that the closest set of code parameters to achieving capacity with

n ≤ 20 ism = 8 andn = 20 for a code rate of0.4000 binary digits per symbol and

64

Table 3.2: Codeword mapping ford = 1, k = 5, N = 7 with m = 4 andn = 8.
Label Codeword Label Codeword
w1 1 1 0 0 0 1 1 1 w27 0 0 1 1 0 0 1 1
w2 1 1 0 0 1 1 0 0 w28 0 0 1 1 1 0 0 0
w3 1 1 0 0 1 1 1 0 w29 1 0 0 0 0 0 0 1
w4 1 1 1 0 0 0 0 1 w30 1 0 0 0 0 0 1 1
w5 1 1 1 0 0 0 1 1 w31 1 0 0 0 0 1 1 0
w6 1 1 1 0 0 1 1 0 w32 1 0 0 0 0 1 1 1
w7 1 1 0 0 1 1 1 1 w33 1 0 0 0 1 1 0 0
w8 1 1 1 0 0 1 1 1 w34 0 0 0 1 1 1 1 1
w9 1 1 1 1 0 0 0 0 w35 0 0 1 1 1 0 0 1
w10 1 1 1 1 0 0 0 1 w36 0 0 1 1 1 1 0 0
w11 1 1 1 1 0 0 1 1 w37 0 0 1 1 1 1 1 0
w12 1 1 1 1 1 0 0 0 w38 1 0 0 0 1 1 1 1
w13 1 0 0 1 1 0 0 1 w39 1 1 0 0 0 0 0 1
w14 1 0 0 1 1 1 0 0 w40 1 1 0 0 0 0 1 1
w15 1 0 0 1 1 1 1 0 w41 1 1 0 0 0 1 1 0
w16 1 0 0 1 1 1 1 1 w42 1 1 1 0 0 0 0 0
w17 0 0 0 0 0 1 1 1 w43 0 1 1 0 0 0 0 1
w18 0 0 0 0 1 1 0 0 w44 0 1 1 0 0 0 1 1
w19 0 0 0 0 1 1 1 0 w45 0 1 1 0 0 1 1 0
w20 0 0 0 0 1 1 1 1 w46 0 1 1 0 0 1 1 1
w21 0 0 0 1 1 0 0 0 w47 0 1 1 1 0 0 0 0
w22 0 0 0 1 1 0 0 1 w48 0 1 1 1 0 0 0 1
w23 0 0 0 1 1 1 0 0 w49 0 1 1 1 0 0 1 1
w24 0 0 0 1 1 1 1 0 w50 0 1 1 1 1 0 0 1
w25 0 0 1 1 0 0 0 0 w51 0 1 1 1 1 1 0 0
w26 0 0 1 1 0 0 0 1 w52 0 1 1 0 0 0 0 0

65

10
−3

10
−2

10
−1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

Normalized Frequency

P
S

D
 (

dB
)

Figure 3.2: PSD of DC-free RLL code withd = 1, k = 5 andN = 7.

an efficiency of0.94 binary digits per bit of information. This code has 16 primary

states, and the complete code table has 286 rows (slightly more than the minimum

requirement of 256) of which the first 15 are presented in Table 3.4. While the al-

gorithm completed the procedure for all 286 rows, they are not all presented here as

the table would be very lengthy. The majority of these rows have been constructed

through the combination of several rows from the initial table. For example, the

second row contains words from four different initial rows:rows 2, 535, 621, and

983. This particular code contains 1658 unique codewords intotal. Similar to the

previous case, simulations were performed to verify that this code satisfied both the

DC-free and runlength constraints.

66

Table 3.3: Code table ford = 1, k = 5, N = 7 with m = 4 andn = 8.
σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σ14 σ15 σ16

β1 w1 w22 w1 w22 w1 w22 w22 w1 w22 w1 w1 w1 w1 w1 w1 w22

β2 w2 w23 w2 w23 w2 w23 w23 w2 w23 w2 w2 w2 w2 w2 w2 w23

β3 w3 w17 w3 w17 w3 w17 w17 w3 w47 w3 w3 w3 w3 w3 w3 w17

β4 w4 w18 w4 w18 w4 w18 w18 w4 w34 w4 w4 w4 w4 w4 w4 w18

β5 w5 w19 w5 w19 w5 w19 w19 w5 w35 w5 w5 w5 w5 w5 w5 w19

β6 w6 w20 w6 w20 w6 w20 w20 w6 w36 w6 w6 w6 w6 w6 w6 w20

β7 w7 w24 w24 w24 w24 w24 w24 w38 w24 w7 w7 w24 w7 w24 w7 w24

β8 w8 w26 w26 w26 w26 w26 w26 w39 w26 w8 w8 w26 w8 w26 w8 w26

β9 w9 w27 w27 w27 w27 w27 w27 w41 w27 w9 w9 w27 w9 w27 w9 w27

β10 w10 w28 w28 w28 w28 w28 w28 w42 w28 w10 w10 w28 w10 w28 w10 w28

β11 w11 w21 w40 w21 w40 w21 w21 w40 w49 w11 w11 w40 w11 w40 w11 w21

β12 w12 w25 w37 w25 w37 w25 w25 w33 w37 w12 w12 w37 w12 w37 w12 w25

β13 w13 w29 w13 w29 w13 w29 w29 w13 w46 w46 w46 w46 w46 w46 w46 w45

β14 w14 w31 w14 w31 w14 w31 w31 w14 w48 w48 w48 w48 w48 w48 w48 w52

β15 w15 w30 w15 w30 w15 w30 w30 w15 w43 w50 w50 w43 w50 w43 w50 w43

β16 w16 w32 w32 w32 w32 w32 w32 w32 w44 w51 w51 w44 w51 w44 w51 w44

67

0 2 4 6 8 10 12

x 10
6

1

2

3

4

5

6

7

Index

R
un

le
ng

th

Figure 3.3: Runlengths within a DC-free RLL code withd = 1, k = 5 andN = 7.

68

Table 3.4: Portion of code table ford = 1, k = 3, N = 5 with m = 8 andn = 20.
σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σ14 σ15 σ16

β1 w1 w1 w1 w1 w1 w1 w874 w874 w1 w1 w874 w874 w1 w874 w874 w874

β2 w2 w2 w2 w535 w2 w2 w983 w621 w535 w2 w983 w983 w535 w983 w983 w983

β3 w3 w3 w3 w786 w3 w3 w985 w786 w1115 w3 w985 w985 w786 w985 w985 w985

β4 w4 w4 w4 w536 w4 w4 w986 w622 w536 w4 w986 w986 w536 w986 w986 w986

β5 w5 w5 w5 w787 w5 w5 w991 w787 w1116 w5 w991 w991 w787 w991 w991 w991

β6 w6 w6 w6 w537 w6 w6 w992 w623 w537 w6 w992 w992 w537 w992 w992 w992

β7 w7 w7 w7 w788 w7 w7 w994 w788 w1119 w7 w994 w994 w788 w994 w994 w994

β8 w8 w8 w8 w538 w8 w8 w995 w624 w538 w8 w995 w995 w538 w995 w995 w995

β9 w9 w9 w9 w789 w9 w9 w1009 w789 w1121 w9 w1009 w1009 w789 w1009 w1009 w1009

β10 w10 w10 w10 w539 w10 w10 w1010 w625 w539 w10 w1010 w1010 w539 w1010 w1010 w1010

β11 w11 w11 w11 w790 w11 w11 w1012 w790 w1122 w11 w1012 w1012 w790 w1012 w1012 w1012

β12 w12 w12 w12 w540 w12 w12 w1013 w626 w540 w12 w1013 w1013 w540 w1013 w1013 w1013

β13 w13 w13 w13 w791 w13 w13 w1014 w791 w1123 w13 w1014 w1014 w791 w1014 w1014 w1014

β14 w14 w14 w14 w541 w14 w14 w1019 w627 w541 w14 w1019 w1019 w541 w1019 w1019 w1019

β15 w15 w15 w15 w792 w15 w15 w1020 w792 w1124 w15 w1020 w1020 w792 w1020 w1020 w1020

69

3.6 Weakly Constrained Codes

While the algorithm has been overwhelmingly successful in generating DC-free

RLL codes for various values ofd, k, andN , it is possible that for some code

tables, even modifying the parameters of the algorithm willnot generate a state-

independent decodable code. It may be the limitation of the algorithm relying on

making locally optimum decisions, or it could simply be thatit is not possible to

find a code that can be decoded at the receiver without state information for the

set of parameters with the highest code rate returned by the Franaszek algorithm.

Of the 70 DC-free RLL codes for which the algorithm attempted toconstruct a

code table, no codes fell into the former category, while only one code fell into

the latter category. That is, for that code, it is not possible to find a code that can

be decoded without state information for the set of parameters with the highest

code rate. Without lowering the code rate, an alternative approach is to consider

the design of a weakly constrained code [44]. For a weakly constrained code, the

code designer no longer guarantees that the constraints arenot violated, instead, the

code designer relaxes the constraints somewhat by allowingthem to be violated.

Ideally, the violations are few and infrequent. When the algorithm is unsuccessful,

generally speaking, few spaces remain in the table. If the algorithm is able to choose

a codeword in such a manner that the violation is minimal, a reasonable code should

be able to be constructed.

The weakly constrained process is implemented as follows. For each space

remaining in the table, the code designer can insert any codeword already existing

in that row or any codeword that is not used in the table. In these cases, a next

state fromP that approximates what would have been the actual next statemust

be assigned. No codeword will exist in two different rows, sothe condition for

state-independent decoding has not been violated.

This approach complements the proposed algorithm well because the output of

the algorithm meshes well with the input required for a weakly constrained coding

algorithm. That is, the proposed algorithm runs as it would normally, attempting

to construct a code. If no set of parameters work, the best output is chosen and

the principles of weakly constrained coding are applied after that point. The spaces

remaining in the table are filled in according to the criteriachosen by the code

designer, which can be implemented via a computer program. It is not necessary

to re-design the proposed algorithm to handle weakly constrained coding, instead

another module can be run thereafter.

70

While the code rate is not lowered, there will be a penalty incurred. For ex-

ample, in the case of a DC-free code, its spectral performancewill suffer, possibly

through the appearance of a flooring effect at low frequencies in the spectrum. By

using the algorithm described above to first complete the coding table as thoroughly

as possible, however, this penalty should not be significant.

In particular, return to the case where(d, k,N) = (3, 5, 8) with m = 3 and

n = 13. For the sake of clarity the eight values representing theN constraint will be

denoted by{−3,−2,−1, 0, 1, 2, 3, 4} in the discussion below. To keep this example

simple, only words already existing in the current row in thetable are considered to

be valid candidates to fill the remaining spaces. Recall that any unused codeword

also constitutes a valid alternative, but to make the example easier to follow, this

has been omitted as a possibility.

For this code, the algorithm generates the codebook shown inTable 3.5 without

using any lookahead. Note that this table is shown in two parts for the purposes of

presentation. There are two spaces remaining, indicated by“X” in the table, both

occurring in the eighth row. The words used in this row include words 8, 10, 19,

34, 38, 41, and 50. The mapping of these codewords into bits isshown in Table 3.6.

To complete a valid weakly constrained code, the encoder requires two things: a

codeword for the table and a valid next state. A well-designed weakly constrained

code will use codewords in each of the two remaining spaces, which will have a

minimal impact on the overall operation of the code so that the constraints will be

violated as infrequently as possible.

The first space is in state 15, which represents the state witha current runlength

of a single logic one and a value ofN = 0. Looking at the list of candidates

in Table 3.6, the best two choices are words 19 and 34. Transmitting word 19

places the encoder in a state where it has two consecutive zeros and a value of

N = 1, which corresponds to a next state of 20. However, the minimum runlength

is violated as there are only three consecutive ones when theprevious word and

word 19 are concatenated together. Transmitting word 34 places the encoder in a

state where it has three consecutive ones and a value ofN = 3. Unfortunately, no

principal state meets these requirements, the closest state being state 9, which has a

current runlength of three consecutive ones and a value ofN = 2. In this case, the

code designer can choose to violate either the runlength condition or the DC-free

condition, depending on which may be more valuable in the particular application.

71

Table 3.5: Code table ford = 3, k = 5, N = 8 with m = 3 andn = 13.
σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σ14 σ15

β1 w1 w1 w1 w1 w1 w1 w17 w17 w17 w29 w29 w17 w29 w29 w29

β2 w2 w2 w2 w2 w2 w2 w18 w18 w18 w30 w30 w18 w30 w30 w30

β3 w3 w3 w3 w14 w3 w3 w26 w26 w20 w26 w26 w26 w32 w26 w26

β4 w4 w4 w4 w15 w4 w4 w27 w15 w15 w27 w27 w15 w27 w27 w27

β5 w5 w12 w5 w16 w16 w5 w21 w16 w16 w28 w28 w16 w35 w28 w28

β6 w6 w9 w6 w9 w9 w6 w23 w23 w11 w22 w23 w23 w33 w33 w23

β7 w7 w13 w7 w13 w13 w7 w25 w13 w13 w25 w25 w24 w31 w25 w25

β8 w8 w10 w8 w19 w10 w8 w19 w19 w10 w19 w19 w19 w34 w34 X

σ16 σ17 σ18 σ19 σ20 σ21 σ22 σ23 σ24 σ25 σ26 σ27 σ28 σ29 σ30
β1 w1 w1 w1 w44 w1 w1 w44 w44 w44 w29 w29 w29 w29 w29 w29

β2 w2 w2 w2 w43 w2 w2 w43 w43 w43 w30 w30 w30 w30 w30 w30

β3 w40 w3 w3 w42 w42 w42 w53 w42 w42 w32 w53 w42 w32 w53 w32

β4 w39 w4 w4 w39 w39 w47 w51 w39 w39 w54 w51 w51 w54 w51 w54

β5 w37 w37 w5 w37 w37 w37 w49 w37 w37 w35 w28 w28 w35 w28 w35

β6 w9 w9 w6 w46 w9 w9 w46 w46 w48 w33 w33 w46 w33 w33 w33

β7 w36 w36 w36 w45 w36 w36 w45 w45 w36 w55 w45 w45 w55 w52 w55

β8 w38 w38 w41 X w38 w38 w50 w50 w38 w34 w34 w50 w34 w34 w34

72

Table 3.6: Codeword mapping ford = 3, k = 5, N = 8 with m = 3 andn = 13.
Label Codeword
w8 0 0 0 0 0 0 1 1 1 1 1 1 0
w10 1 0 0 0 0 0 0 1 1 1 1 1 0
w19 1 1 0 0 0 0 1 1 1 1 1 0 0
w34 1 1 1 1 1 0 0 0 0 0 1 1 1
w38 0 0 0 1 1 1 1 1 0 0 0 0 0
w41 0 0 0 1 1 1 1 0 0 0 0 0 0
w50 0 1 1 1 1 0 0 0 0 0 1 1 1

The second space occurs in state 19, which has a current runlength of two con-

secutive zeros and a value ofN = 0. Candidates include words 38 and 41. Consid-

ering word 38, the encoder ends in a state corresponding to five consecutive zeros

andN = −3. The closest state to meeting these requirements is state 28, which

matches the five consecutive zeros but hasN = −2. For word 41, the encoder

moves to a state with six consecutive zeros andN = −5. Recall that the low-

est validN constraint is−3, however, and thus the code must violate the DC-free

constraint by at least−2. The state with six consecutive zeros andN = −3 is

not a principal state and so the closest state is state 30 withsix consecutive zeros

andN = −2, which violates the DC-free constraint by−3. In this case, word 38

comprises the best selection.

There are two possible approaches to completing the weakly constrained code

in this section. The first approach is to select word 19 for thefirst space, along

with a next state of 20, which violates the runlength condition, then select word

38 to fill the second space, along with a next state of 28, whichviolates the DC-

free condition. This particular mapping is chosen to demonstrate what the effects

of violating each of the constraints. Another code designermay recognize that

choosing word 34 for the first space, along with a next state of9, causes the value

of N to be one lower than the actual value ofN . Selecting word 38 for the second

space, along with a next state of 28, causes the value ofN to be one higher than the

actual value forN . Since the two violations oppose each other, optimistically, the

weakly constrained code will perform very well. Weakly constrained codes were

constructed for both options and are presented below.

The codebook has been completed with word 19 in the first spaceand a next

state of 20, violating the runlength condition, along with word 38 in the second

space and a next state of 28, which violates the DC-free condition. A simulation

of five million codewords was performed to find the PSD of this code, as shown

73

10
−3

10
−2

10
−1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

Normalized Frequency

P
S

D
 (

dB
)

Figure 3.4: PSD of weakly constrained DC-free RLL code withd = 3, k = 5 and
N = 8 using first approach.

in Fig. 3.4 using the codebook in Table 3.5 with the spaces filled in as specified.

The flooring effect becomes somewhat visible at frequenciesbelow10−3. To show

the DC-free and runlength constraint violations, both the RDSand runlengths were

plotted on a bit-by-bit basis through the simulation. The RDSvalues during the

simulation are shown in Fig. 3.5, while a portion of the runlengths are shown in

Fig. 3.6. The RDS violation is a summation of each time the wordin row 8, col-

umn 19 is transmitted. This violation is fairly minor, causing an error on the scale

of 104 over nearly 70 million bits. The plot of the runlengths is zoomed in to a

particular segment to better show how infrequent the violations are. The segment

was chosen randomly, as all of the segments demonstrate comparable performance.

Attempting to show all of the runlengths simultaneously results in a plot that ob-

scures the results. In both cases, the constraints are violated in 1 of 240 positions

or approximately0.417% of the time, on average, with equi-probable source words

and assuming that each state is entered with roughly the sameprobability.

For the second weakly constrained code, the codebook has been completed with

word 34 in the first space and a next state of 9, and word 38 in thesecond space

with a next state of 28, violating the DC-free constraint only. Fig. 3.7 shows the

74

1 2 3 4 5 6

x 10
7

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4

Index

R
D

S

Figure 3.5: RDS of a weakly constrained DC-free RLL code withd = 3, k = 5 and
N = 8 for five million codewords for the first approach.

1 1.005 1.01 1.015 1.02

x 10
6

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Index

R
un

le
ng

th

Figure 3.6: Runlengths of a weakly constrained DC-free RLL codewith d = 3, k =
5 andN = 8 for five million codewords for the first approach.

75

10
−3

10
−2

10
−1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

Normalized Frequency

P
S

D
 (

dB
)

Figure 3.7: PSD of weakly constrained DC-free RLL code withd = 3, k = 5 and
N = 8 for the second approach.

PSD of this code using a simulation of five million codewords.To better illustrate

the DC-free violation, the RDS was plotted on a bit-by-bit basis throughout the

simulation, as shown in Fig. 3.8. To illustrate the difference between the two codes,

the RDS for both codes is included in this figure. Notice that, in the case of the

second code, the error accumulated in the RDS is much lower overall. Also, the

runlength does tend negative, and so it can be concluded thatthe state machine is

more likely to be in state 19 than state 15. A plot of the runlengths is not included,

since the constraint has not been violated, however, it was verified in the simulation

that this was indeed the case.

For comparison purposes, the algorithm constructed a(d, k,N) = (3, 5, 8) code

with the set of parameters giving the second highest code rate,m = 4 andn = 18.

The PSD of all three codes is shown in Fig. 3.9, demonstratingthat the weakly

constrained codes have a PSD very similar to that of them = 4, n = 18 code,

with the advantage that their rate is roughly4% higher. With this in mind, the

code designer can now evaluate the tradeoffs between code rate and frequency of

constraint violation.

While the accumulated error of the second method is lower thanthat of the

76

1 2 3 4 5 6

x 10
7

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4

R
D

S

Index

approach 1
approach 2

Figure 3.8: Comparison of RDS for a weakly constrained DC-free RLL code with
d = 3, k = 5 andN = 8 with five million codewords for the two approaches.

10
−3

10
−2

10
−1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

Normalized Frequency

P
S

D
 (

dB
)

m = 4, n = 18
m = 3, n = 13 approach 1
m = 3, n = 13 approach 2

Figure 3.9: Comparison of PSD with two weakly constrained codes and a non-
weakly constrained code.

77

first, the actual spectral performance is slightly worse, indicating that the spectral

performance is not solely related to the slope of the accumulated RDS error. The

spectrum of a code can be written as a Taylor expansion [45]. In this expansion, as

frequency values decrease, different terms in the expansion become significant.

Between frequency values of8×10−3 and1×10−2, the spectral performance is

dominated by a term related to the low frequency spectrum weight (LFSW), which

is related to the spectrum of the first derivative of the RDS evaluated at zero [45].

The RDS of this code can be estimated byzoverall = zoriginal + z∆. Constructing

a weakly constrained code does not change the original RDS bounds, rather the

change in RDS can be represented using thez∆ term. The LFSW is given largely

by zoriginal and so the three codes look similar in this region.

Below frequency values of about1 × 10−3, another term, which is influenced

largely by the RDS errorz∆, begins to dominate the Taylor expansion. If the RDS

error was the same in each encoding interval, the RDS error would be given by a

straight line. In the actual coded sequence, this does not happen, since the RDS

error accumulates only when one of the words that violates the constraint is trans-

mitted. However, based on Fig. 3.8, it is reasonable to approximate the RDS error

with a linear function. However, a second term, related to the variance of the error

term around that line is needed, that is,z∆ ≈ z∆line+z∆var. Fig. 3.10 shows a portion

of Fig. 3.8 that has been zoomed in to more clearly demonstrate this variance. The

spectral performance at frequencies below1 × 10−3 is dominated byz∆, and so is

influenced by not only the slope of the error line, but also thevariability of the line.

While the second weakly constrained code improves the first term in the RDS error,

z∆line, the second term,z∆var, is more significant. As a result, the second approach

has slightly worse spectral performance at very low frequencies than the first ap-

proach, but only violates the DC-free constraint, while the first approach violates

both the DC-free and RLL constraints.

3.7 Summary

The construction of constrained codes that permit decodingwithout state informa-

tion was discussed in this chapter. In particular, an algorithm that makes locally op-

timum decisions to maintain reasonable complexity was proposed. Building upon

previous work by Franaszek, a code table containing a group of alphabets is con-

structed in such a manner that the spaces within the table areeliminated through

intelligent searching and scoring techniques. This algorithm has a number of pa-

78

1 2 3 4 5 6 7 8 9 10

x 10
5

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

R
D

S

Index

approach 1
approach 2

Figure 3.10: Comparison of RDS for a weakly constrained DC-freeRLL code with
d = 3, k = 5 andN = 8 with five million codewords for the two approaches
zoomed in to show variability.

rameters, such as scoring exponents, scoring thresholds, and the selection of base

rows that can be adjusted based on the type of codes being constructed by the code

designer. Further, the scoring implementation allows the code designer freedom

and flexibility to change the criteria according to their specific application. A num-

ber of optimizations were discussed, such as lookahead, state re-numbering, and

weakly constrained coding. Finally, the usefulness of thisalgorithm was demon-

strated with the construction of DC-free RLL codes that admit state-independent

decoding. Many codes that fulfill all constraints were designed, and an example

was also given of a code that follows the principles of weaklyconstrained codes.

79

Chapter 4

Evaluation of the Capacity of
Constrained Codes with Multiple
Constrained Signalling Dimensions

In this chapter, constrained codes using a signalling alphabet that is larger than bi-

nary, which can be regarded as containing symbols from multiple signalling dimen-

sions, are considered. Representative systems that are considered include QPSK,

8 PSK, and 16 QAM. Note that this is a different situation thanconsideration of

systems with signalling constrained in multiple physical dimensions, such as bi-

nary digits written on the two-dimensional surface of a discor in three-dimensional

volumetric holographic storage [46] [47] [48].

In the process of code design, the first major step is to evaluate the system

capacity; in this chapter, the evaluation of the capacity ofconstrained codes with

constraints in multiple signalling dimensions is considered. First, consider the case

when signalling dimensions are independently constrained. This independence may

occur naturally, as is the case of QPSK, or can be the result ofan encoding process

that regards the signalling constellation as several logical sub-constellations and

enforces constraints on each logical sub-constellation independently. Evaluation of

capacity is straightforward in this case.

Moving to more complex situations, analysis of the capacityof codes with mul-

tiple dependently constrained dimensions is considered. In these codes, there exists

at least one state in which at least one symbol is impacted by or impacts the con-

straints in at least two dimensions simultaneously. It is demonstrated how the ca-

pacity of some of these systems can be accurately evaluated,and how the capacity

of others can be estimated and upper bounded.

An overview of this chapter is as follows. State variables are reviewed in Sec-

80

tion 4.1, while DSV is discussed in more general terms as an RDSspan in Sec-

tion 4.2. The difference between multiple independently constrained logical di-

mensions and multiple dependently constrained logical dimensions is discussed in

Section 4.3. In Section 4.4 the evaluation of the capacity ofDC-free codes when

the signalling alphabet consists of independently constrained logical dimensions is

outlined. Presented in Section 4.5 are capacity calculations for the case where the

signalling constellation has one or more signalling pointsthat leads to dependently

constrained logical dimensions. Finally, a summary is provided in Section 4.6.

4.1 FSM Encoders and State Variables

The state machines commonly used in constrained codes characterize their current

state with one or more state variables. For example, in DC-free codes, all allow-

able RDS values, on a symbol-by-symbol basis, are enumeratedand given a state,

and encoding can be performed by tracking the current RDS and mapping the cur-

rent source word to a codeword such that the RDS bounds are maintained. RLL

codes can use a similar method, tracking the current state bythe number of consec-

utive ones and zeros that have occurred. An example of a code with multiple state

variables is a DC-free RLL code, where both the DC-free and RLL constraints are

enforced by the encoder. In this case, the transmission of a one or zero changes the

value of both state variables simultaneously, and so the twoconstraints cannot be

easily separated. A method to model this type of constraint is given in Section 4.3.

4.2 Digital Sum Variation and RDS Span

One-dimensional FSMs for DC-free codes are commonly characterized by their

DSV, N , which is the maximum number of different RDS values that the code

can take on. A more general model, which is useful when considering multi-

dimensional FSMs, is to consider the RDS bounds on the DC-free constrained code.

In the one-dimensional case, for a given value ofN , RDS bounds can be computed

by associating each state with its RDS. To calculate the RDS associated with a state,

a value is assigned to one particular state as a starting point (typically zero) and the

RDS associated with all other states is computed by adding thevalue of the com-

plex baseband representation of the symbol that has been transmitted. For example,

for a binary code using symbols{+1,−1} with a value ofN = 5, where the middle

(third) state is denoted as the zero point, states one and twohave RDS values of−2

81

and−1, respectively, while states four and five have RDS values of+1 and+2,

respectively.

To characterize the overall RDS bound, the largest span between RDS values is

calculated, which is referred to as∆Z. In the previous example,∆Z = 2− (−2) =
4, which is one less than the number of RDS values permissible. When considering

the two-dimensional RDS plane, the RDS span can be characterized in terms of

∆Z, which is the largest overall span between permissible RDS values, or in terms

of ∆Zr and∆Zi, which is the largest RDS span in the real or imaginary dimensions,

respectively. In general, it is the RDS span that is significant, not the actual RDS

values since the initial state is arbitrarily assigned. It is also well established that

the smaller the RDS span of the DC-free code, the greater the suppression of the

continuous spectrum at low frequencies [2].

In this thesis,N , ∆Zr, ∆Zi, and∆Z are used where appropriate. Typically,

when describing a one-dimensional constraint, a value for the DSVN will be given.

When describing multi-dimensional constraints simultaneously a characterization

using the RDS span∆Z is useful. However, when considering constraints in the

real and imaginary dimensions separately,∆Zr and∆Zi are used.

4.3 Constraint Modelling with Multiple Signalling Di-
mensions

In this section, state machine models for constrained codeswith multiple con-

strained signalling dimensions are considered. Two different types of constrained

codes are considered: those with independently constrained dimensions and those

with dependently constrained dimensions. These two cases are discussed and sev-

eral examples of each are presented to provide context. Further, recall that the

dimensions can occur as a result of natural independence in the signalling constel-

lation, as in QPSK, or through the partitioning of a signalling constellation into a

number of logical sub-constellations or dimensions for theencoder.

4.3.1 Constraint Modelling with Independent Signalling Dimen-
sions

When modelling a constrained code with multiple signalling dimensions using an

FSM, the overall operation of the FSM is described through multiple state variables.

If, for all states, each dimensional constraint can be tracked with separate state

82

variables, and if each symbol affects the values of the statevariables from only one

dimension, the constraints are said to be modelled with independent dimensions.

Consider such a code modelled withK dimensions,{k = 1, 2, . . . , K}, when

the constraint in each dimension can be modelled with its ownFSM with a con-

nection matrixDk. To construct the FSM describing the overall constraint, with

connection matrixD, the FSMs for each dimension can be combined through a

Cartesian product. This construction preserves the state transition structure of the

constituent FSMs, allowing the states and state variables for each dimension to re-

main independent of one another. The Cartesian product creates “copies” of the

FSM describing one dimension, joining these copies in accordance with the FSM

of another dimension. The overall connection matrix can be found by consider-

ing the connections in the overall FSM, or by evaluating the Kronecker sum of the

constituent connection matrices according to:

D =
K
∑

k=1

In1
⊗ . . .⊗ Ink−1

⊗Dk ⊗ Ink+1
⊗ . . .⊗ Ink

, k = 1, 2, . . . K (4.1)

whereDk are the connection matrices for each of the dimensions,K is the total

number of dimensions, and theInk
are appropriately sized identity matrices [49].

For example, forK = 3, the relationship becomesD = D1 ⊗ In2
⊗ In3

+ In1
⊗

D2 ⊗ In3
+ In1

⊗ In2
⊗D3.

Example: DC-free QPSK

A straightforward extension of a binary DC-free code is a DC-free QPSK code,

where the running digital sum is constrained in both the realand imaginary dimen-

sions of the complex baseband representation. Note that a null at DC in the complex

baseband representation implies a null at the carrier frequency of the transmitted

signal. This code is an example of a signalling constellation with two independently

constrained signalling dimensions. The signalling points{+1,−1} and{+j,−j}
naturally form two orthogonal signalling dimensions, whenone state variable is de-

fined to track the RDS in the real dimension and a second state variable is defined

to track the RDS in the imaginary dimension. Each signalling point in the constel-

lation affects only one of the state variables. A maximum DSVcan be chosen for

the number of different RDS values in each of the dimensions independently. These

DSV values, which are denotedN1 andN2, dictate the size of the one-dimensional

FSMs that describe the constraints in each of the independent dimensions, as de-

picted in Fig. 4.1 a) and b) whenN1 = 4 andN2 = 3, respectively. The connection

83

765

 11109

 321

8

12

4

 321

 321 4

a)

b)

c)

Figure 4.1: One-dimensional FSMs with (a)N1 = 4 and (b)N2 = 3. A two-
dimensional FSM (c) is constructed by the Kronecker productof FSMs (a) and (b)

matrices for these one-dimensional FSMs are:

D1 =









0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









. (4.2)

and

D2 =





0 1 0
1 0 1
0 1 0



 (4.3)

The FSM describing the overall constraint is depicted in Fig. 4.1 c) with overall

84

connection matrix:

D =









































0 1 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0
0 0 1 0 0 1 0 1 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 0









































. (4.4)

This connection matrix can be found by inspection of the FSM,or by using the

two-dimensional Kronecker sum result:

D = D1 ⊗ In2
+ In1

⊗D2 (4.5)

whereIn1
andIn2

are appropriately sized identity matrices (in this case, 3 by 3 and

4 by 4, respectively) and⊗ is the Kronecker product operation. This is an example

of a rectangular-type RDS bound since bounding the DSV on eachdimension inde-

pendently results in a rectangular FSM structure. In this example, the RDS span in

the real dimension is∆Zr = 3 and in the imaginary dimension is∆Zi = 2. This

gives an overall RDS span of∆Z =
√
13 for this code.

Example: DC-free 8PSK

The concept of independent signalling dimensions can be extended to larger sig-

naling alphabets that are commonly used in communications.Consider the 8-PSK

constellation shown in Fig. 4.2. If the state variables are defined in the same manner

as in the QPSK case, the signalling points that are not on either axis alter the state

variables of both dimensions simultaneously. This is an example of dependently

constrained signalling dimensions, which is considered inthe next subsection.

However, the manner in which the encoder operates can be changed to create a

constrained code with multiple independently constrainedlogical dimensions. The

encoder can construct a DC-free code by separating the signalling constellation into

four logically independent dimensions by constraining theRDS of the following

four pairs of points independently:{+1,−1}, {+j,−j}, {+ 1√
2
+j 1√

2
,− 1√

2
−j 1√

2
},

{+ 1√
2
− j 1√

2
,− 1√

2
+ j 1√

2
}. This creates four independent logical dimensions,

85

Im

Re

j

-j

-1 1

Figure 4.2: 8PSK signalling constellation.

with respect to the RDS constraints, where the state variablefor each of the log-

ical dimensions is the accumulated RDS in that dimension. Starting with a one-

dimensional FSM that describes the constraint in each dimension, the overall FSM

can be constructed as a four-dimensional FSM with an overallnumber of states

equal to the product of the number of states in each dimension. The connection

matrix of this FSM can be found using (4.1). The RDS span can be evaluated by

determining the maximum distance between the complex RDS values represented

by the four dimensional FSM. For example, if the DSV in each dimension isN = 5,

then the RDS span is 4 for that dimension. Taking into consideration all four di-

mensions simultaneously, it can be shown that the overall RDSspan for the code is

∆Z = 10.453.

Example: DC-free 16 QAM

Consider the 16 QAM constellation, centered at the origin, with neighboring sig-

nalling points separated by a distance of two. Similar to the8PSK case, defining

two state variables to track the RDS values in the real and imaginary dimensions

causes all signalling points to affect both state variables, and results in two depen-

dently constrained dimensions. However, the encoder can bedesigned to regard the

16 QAM constellation as consisting of multiple independentlogical signalling di-

mensions, and can bound the DSV independently on each of the logical dimensions.

86

There are at least two ways in which the encoder can partitionthe constellation into

logical dimensions. In a manner similar to the approach for 8PSK, the code can

be partitioned into eight independently constrained dimensions by separating the

signalling points into pairs with odd symmetry about the origin. A second parti-

tioning consists of only six independently constrained logical dimensions. Note

there are two sets of four points each that exist on straight lines through the origin:

{−3−3j,−1−j, 1+j, 3+3j} and{−3+3j,−1+j, 1−j, 3−3j}. The remaining

eight points lie on four different signalling lines in pairswith odd symmetry about

the origin:{1+3j,−1− 3j}, {3+ j,−3− j}, {−1+3j, 1− 3j}, {−3+ j, 3− j}.
These six sets of points can be regarded as six independent dimensions, and the en-

coder can bound the DSV of each of these dimensions independently. With either

approach, the overall connection matrixD can be calculated through the Cartesian

product of the connection matrices representing the constituent FSMs.

4.3.2 Constraint Modelling with Dependent Signalling Dimen-
sions

Dependent signalling dimensions arise when the state variables from different di-

mensions cannot be tracked separately or at least one symbolfrom at least one

state affects the state variables assigned to two or more different dimensions. The

FSMs describing these types of constrained codes can be significantly more com-

plex to construct than the state machines which model independently constrained

signalling dimensions. In general, FSMs describing dependently constrained sig-

nalling dimensions cannot be constructed simply through the use of Cartesian prod-

ucts; instead, care must be taken to ensure that the dependence between dimensions

is modelled appropriately.

A drawback of codes using independently constrained signalling dimensions is

that the RDS span is often larger than that of their dependently constrained counter-

parts. For example, consider again the 8PSK constellation using four independently

constrained signalling dimensions, each with digital sum variationN = 5. It can

be shown that this code has an RDS span in the real and imaginarydimensions

of ∆Zr = ∆Zi = 9.657, and as mentioned above, it has an overall RDS span of

∆Z = 10.453, whereas the RDS span on each of the independent dimensions is4.

However, the independently constrained model is useful to first generate an initial

FSM, from which some states can be removed to enforce a tighter RDS span. Some

examples are considered below.

87

543

 87

 21

6

Figure 4.3: FSM for QPSK DC-free code withN1 = 4 andN2 = 3 and a circular-
type RDS bound.

Example: DC-free QPSK

In the previous section, a QPSK code with a rectangular-typeRDS bound was

considered. However, this approach results in an overall RDSspan that exceeds

the constituent RDS spans owing to the magnitude of the statesat the corners of

the overall rectangular FSM. A circular-type (or elliptical) RDS bound produces a

smaller overall span. To enforce a circular-type RDS bound, an FSM is constructed

as described above, but all states that violate the prescribed RDS span are removed.

This introduces a dependence into the signalling dimensions since, for example, the

number of states in the horizontal direction is limited whenthe RDS of the vertical

constraint is large, as compared to the number of states in the horizontal direction

when the RDS in the vertical direction is small. This relationship is depicted in

Fig. 4.3 for an RDS constraint ofN1 = 4 andN2 = 3, when the corner states of the

rectangular FSM are removed. The RDS span of this code is∆Z = 3.

Example: DC-free 8PSK

An 8PSK signalling constellation, using state variables totrack the real and imag-

inary RDS values, naturally forms two dependently constrained signalling dimen-

sions since the off-axis points in this constellation alterthe values of both state

variables. To construct a state machine that models the operation of the constrained

code, an initial value for each of the state variables is chosen (typically zero), mini-

88

mum and maximum bounds on the RDS in both the real and imaginarydimensions

are selected, and the RDS values (i.e. states) that can exist within the bounds are

enumerated. Since the values of the constellation points are incommensurable in the

real and imaginary dimensions, however, there exists an infinite number of states

within the RDS span. Therefore, the straightforward approach of finding the con-

nection matrixD and its maximum eigenvalueλmax to evaluate the capacity of such

a code cannot be used. In the next section, the estimation andupper bounding of

the capacity of this type of constrained code is considered.

Example: DC-free 16 QAM

In the case of 16 QAM, two state variables are used, the RDS in the real and imag-

inary dimensions, to construct a code with two dependently constrained signalling

dimensions. In this case, every signalling point has both real and imaginary compo-

nents and therefore each symbol simultaneously affects both state variables. Since

the signalling points are commensurable, then given a finiteRDS span, the result-

ing state machine is described by a finite number of states. This state machine is

constructed by choosing an initial starting state and enumerating all possible valid

transitions. For example, starting at the state with zero accumulated RDS in both

dimensions, selection of each of the 16 signalling points isconsidered. If the se-

lection of a symbol results in an RDS value that lies within theRDS span, a new

state is created, this transition is entered into the connection matrix, and the proce-

dure is repeated at each new state until no additional statesare created. During this

process, new states are numbered and the connection matrix is constructed. The

RDS constraint can be enforced using either rectangular-type or circular-type RDS

bounds.

4.4 Capacity with Independently Constrained Signalling
Dimensions

In this section, the evaluation of the capacity of a code withindependently con-

strained signalling dimensions is considered. As described previously, when the

dimensions are independent and the constraint imposed on the kth dimension by

the encoder is modelled by an FSM with a connection matrixDk, the overall con-

nection matrixD is constructed by using (4.1). The largest eigenvalueλmax of this

connection matrix can then be found. Takinglog2 of this value gives the capacity

C of the code in bits of information per symbol.

89

Table 4.1: Maximum eigenvalue and capacity, in bits of information per symbol, of
one-dimensional DC-free codes forN = 2 through9.

N λmax C
2 1.000 0.000
3 1.414 0.500
4 1.618 0.694
5 1.732 0.793
6 1.802 0.850
7 1.848 0.886
8 1.879 0.910
9 1.902 0.928

Alternatively, it is straightforward to evaluateλmax if the maximum eigenvalues

of theDk are known. SinceD is a Kronecker sum of theDk, it can be shown that

the eigenvalues ofD are given by the summation of all possible combinations of

eigenvalues from theDk matrices [49]. As a consequence,λmax, the maximum

eigenvalue ofD, is given by:

λmax =
K
∑

k=1

λmaxk
(4.6)

whereλmaxk
is the maximum eigenvalue for connection matrixDk. Takinglog2 of

this value gives the capacity of the code in bits of information per symbol.

4.4.1 Examples: DC-free QPSK, 8PSK, and 16 QAM

It is straightforward to use the second approach when evaluating the capacity of the

DC-free example codes in Section 4.3.1. Table 4.1 lists the maximum eigenvalue

of the connection matrixD and capacity for several one-dimensional FSMs that

model DC-free sequences with running digital sum variationN . Such tables are

commonplace in the literature [cf. 2]. Eigenvalues listed in this table can be used to

efficiently calculate the capacity of DC-free codes with independently constrained

signalling dimensions.

For example, for the DC-free QPSK code with bounds ofN1 = 4 andN2 = 3,

the maximum eigenvalue isλmax = 1.618 + 1.414 = 3.032, andC = 1.600 bits

of information per symbol. Consider the 8PSK code with four independent logical

signalling dimensions with a DSV ofN = 5 on each of the dimensions. This code

has a maximum eigenvalue ofλmax = 4 × 1.732 = 6.928 andC = 2.792 bits of

information per symbol. Table 4.2 lists the capacity of a fewDC-free codes for an

90

Table 4.2: Maximum eigenvalue, capacity (in bits of information per symbol), and
number of states in 8PSK DC-free codes with four independent signalling dimen-
sions.

N λmax C L
3 5.657 2.500 81
4 6.472 2.694 256
5 6.928 2.793 625
6 7.208 2.850 1296
7 7.391 2.886 2401
8 7.518 2.910 4096
9 7.609 2.928 6561

8PSK constellation considered as four independent dimensions, as well as the total

number of statesL. In this table, for simplicity, only results for codes when the

DSV is the same in each dimension are listed.

Capacities for DC-free codes with symbols from the 16 QAM constellation de-

pends on the partitioning that is chosen for the constellation. In the case of the eight

dimension partitioning, the maximum eigenvalue for each ofthe dimensions can be

obtained from Table 4.1 above. Care should be taken when selecting the appropri-

ate value ofN in each dimension because of the difference in RDS span due to the

differing signalling amplitudes.

The six dimension partitioning resolves the difference in amplitudes in a differ-

ent fashion. For the same DSV, the logical dimensions containing four points have

different capacities than the dimensions with two signalling points. It is straight-

forward to calculate capacities of one-dimensional DC-freecodes with four evenly-

spaced signalling points; some results are listed in Table 4.3. The remaining four

logical dimensions, each with two signalling points, are modelled as in the previous

examples. The maximum eigenvalue of each dimension is obtained from Tables 4.1

and 4.3, and these values are summed together to findλmax and the corresponding

capacity. For example, if the dimensions with four signalling points are constrained

toN = 7 and the dimensions with two signalling points are constrained toN = 3,

the overall maximum eigenvalue is11.581, and the capacity is3.533 bits of in-

formation per symbol. For this code, the largest RDS value in either the real or

imaginary dimensions is14, and so∆Zr = ∆Zi = 28. The overall RDS span is

∆Z = 28. In this particular case, the real and imaginary RDS spans areequal to

the overall RDS span since the worst case RDS span exists on the axes.

91

Table 4.3: Maximum eigenvalue, and capacity, in bits of information per symbol,
for one-dimensional DC-free codes forN = 4 through9 with multi-level signalling
values of{±1,±3}.

N λmax C
4 2.000 1.000
5 2.450 1.293
6 2.732 1.450
7 2.962 1.567
8 3.140 1.651
9 3.274 1.711

4.5 Capacity with Dependently Constrained Signalling
Dimensions

In the previous section, it was shown how the capacity of a DC-free code using sig-

nalling constellations consisting of multiple independently constrained dimensions

can be evaluated. In this section, the evaluation of capacity for constrained codes

with multiple dependently constrained dimensions is presented. These codes are

characterized by state machines that have either a finite or infinite number of states,

which are considered in turn in this section.

4.5.1 Finite Number of States

When a constrained code with dependently constrained signalling dimensions is

described with an FSM, exact capacity analysis is possible through the methods

detailed previously in this chapter. That is, the FSM and correspondingD matrix is

constructed and its maximum eigenvalue is evaluated to find the capacity.

In Section 4.3.2, codes with dependently constrained signalling dimensions,

which were constructed by first forming FSMs with rectangular bounds and then

removing states that exceeded the RDS span, were considered.DC-free codes con-

structed in this manner with commensurable signalling points, such as QPSK or

16 QAM, tend to have significantly fewer states than their incommensurable coun-

terparts. Tables 4.4 and 4.5 list the capacity of DC-free QPSKwith circular-type

RDS bounds and 16 QAM codes with rectangular-type RDS bounds and the six di-

mension partitioning. The relatively small number of states in these codes is due to

the fact that many states along different dimensions have the same complex-valued

RDS values and can be merged since they describe the same state. This simplifies

the FSM. In the case of 8 PSK, however, the codes generally have a significantly

92

Table 4.4: Maximum eigenvalue and capacity, in bits of information per symbol,
of QPSK DC-free codes with two dependent dimensions and RDS bounded with
circular-type bounds.

N ∆Z λmax C L
3 2 2.000 1.000 5
5 4 3.000 1.585 13
7 6 3.482 1.800 29
9 8 3.690 1.884 49

Table 4.5: Maximum eigenvalue and capacity, in bits of information per symbol,
of 16 QAM DC-free codes with six dependent dimensions and RDS bounded with
rectangular-type bounds.

N ∆Zr,∆Zi λmax C L
3 6 8.772 3.133 25
5 12 12.902 3.690 85
7 18 14.333 3.841 181
9 24 14.968 3.904 313

higher number of states. Table 4.6 lists the capacity of DC-free 8 PSK codes for

several rectangular-type RDS bounds.

Fig. 4.4 shows a plot of the capacity of DC-free 8PSK codes using a signalling

constellation split into four independent logical dimensions with rectangular-type

two-dimensional RDS bounds on∆Zr,∆Zi, forcing dependent dimensions. Note

that even for reasonably small RDS spans (for example∆Zr = ∆Zi = 8, giv-

ing C = 2.877 bits of information per symbol) the capacity of the unconstrained

system,log2 8 = 3, is approached. The short plateaus visible on the graph, forex-

ample from3.0 to 3.4, exist because increasing the RDS span in this range does not

increase the number of states in the FSM. There are a number ofstates with RDS

values of
√
2, which results in a significant jump between2.82 and2.83, but no new

states are added until the RDS span exceeds3.42.

Table 4.6: Maximum eigenvalue and capacity, in bits of information per symbol,
of 8 PSK DC-free codes with four dependent dimensions and RDS bounded with
rectangular-type bounds.

N ∆Zr,∆Zi λmax C L
3 2 4.168 2.060 37
5 4 6.110 2.611 289
7 6 6.955 2.798 1161
9 8 7.349 2.878 3301

93

2 3 4 5 6 7 8
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

∆ Z
r
, ∆ Z

i

C
ap

ac
ity

 (
bi

ts
 o

f i
nf

or
m

at
io

n
pe

r
sy

m
bo

l)

Figure 4.4: Capacity, in bits of information per symbol, as a function of RDS span
for DC-free 8PSK codes with dependence introduced by using rectangular-type
RDS bounds.

94

4.5.2 Infinite Number of States

In cases where two or more signalling points are incommensurable, construction of

a state machine that enumerates all valid RDS values requiresan infinite number of

states. This type of situation arises with 8 PSK when the contribution of each point

to the RDS in the real and imaginary dimensions is tracked. This subsection consid-

ers estimating the capacity of such systems through rounding, and upper bounding

the capacity by partitioning the states into regions.

Estimating Capacity Using Rounding

In this approach, the number of states is limited by roundingthe value of one or

more of the signalling points to ensure that all signalling point values are commen-

surable. Using the rounded constellation points, an FSM is constructed by choosing

an initial, valid state. From this state, all possible transitions are considered, and

those that satisfy the constraint are retained. Valid transitions may correspond to a

new state in the FSM, which is later analyzed in the same manner for all possible

valid transitions. This process continues until no new states are created. TheD

matrix is constructed, its maximum eigenvalue is evaluated, and the correspond-

ing capacity, which serves as an estimate of the capacity of the original system, is

found.

For example, consider the 8PSK constellation where the realand imaginary

dimensions are each bounded with an RDS span. Since the RDS contribution of

the signalling points± 1√
2
± j 1√

2
is incommensurable with the points on the axes,

an infinite number of states arise. The capacity is estimatedby rounding the value

of 1√
2

to 0.7, 0.71, and 0.705 to show the effect of increasing the number of states

used in the approximate FSM. A rectangular-type bound is imposed on the RDS,

extending from -1 to 1 in the real dimension and -1 to 1 in the imaginary dimension.

While the resulting FSMs have a reasonably large number of states (221, 20201, and

80401 states, for rounding values 0.7, 0.71 and 0.705 respectively), it is possible to

find the exact value of capacity for these systems. The corresponding maximum

eigenvalues in these three cases areλmax = 4.2526, 4.2502, and4.2502, giving rise

to capacity estimates of2.0883, 2.0875, and2.0875 bits of information per symbol.

Note that there is not a significant difference amongst thesevalues, and so it can be

inferred that the estimation of the capacity of this system is reasonably accurate.

To further validate this approach, consider Fig. 4.5, whichshows a plot of the

probability of being in each of the 221 states, in ascending probability, for the case

95

when a rounding value of 0.7 is used. These probabilities were obtained from sim-

ulation assuming equiprobable output symbols from each state. Notice the appear-

ance of six distinct plateaus. These six plateaus correspond to six major regions of

the FSM, with each state within these regions having approximately the same prob-

ability of occurrence. The states within each of these regions have similar probabil-

ities of occurrence because they all share a common number ofentry points; they

also have the same number of output edges. These regions are presented visually in

Fig. 4.6. Region 1 consists of a single point,(0, 0); this is the only state with eight

incoming edges. Region 2 consists of all points within(±(1 − 1√
2
),±(1 − 1√

2
))

lying on the axes; each state in this region has seven incoming edges. Region 3

consists of all points within(±(1− 1√
2
),±(1− 1√

2
)) excluding all points along the

axes; these states have six incoming edges. Region 4 consistsof all states along the

axes with at least one coordinate having an absolute value greater than(1 − 1√
2
);

these states have five incoming edges. Region 5 consists of allpoints not along

the axes which have one coordinate with an absolute value smaller than(1 − 1√
2
)

and one coordinate with an absolute value larger than(1 − 1√
2
); these states have

four incoming edges. Finally, region 6 consists of all remaining states, where each

state has three incoming edges. Regions 1 through 6 correspond to the plateaus of

decreasing probability of occurrence in Fig. 4.5. Rounding the value of (1√
2
) dif-

ferently adjusts the size of these regions, but only slightly, and does not change the

number or type of the regions. Further, the probability of being in any given region

changes only slightly as the rounded value is adjusted.

In Chapter 2, it is shown that the entropy of a system is given bya summation

of a sequence of terms, as in (2.5) on page 12. Recall that in the8PSK example

above, all states within each region have the same number of allowable output sym-

bols, so they share a commonHi, and that there is a nearly uniform probability

distribution across all the states in each region. Therefore, each of the six different

regions contributes a term to this summation:H{X} =
∑6

i=1 πiHi, whereπi is

the probability of being in a particular region andHi is the entropy associated with

that region. Since neither the size of the regions nor the probability of being in a

particular region changes significantly as different values for rounding are chosen,

the overall entropy of the system,H{X}, will not change significantly, nor will its

maximization over the region probabilities, which is the capacity. For these reasons,

it is concluded that the estimate obtained through the rounding approach provides a

good approximation to the actual capacity of the code.

Recall that in subsection 4.5.1, above a DC-free 8PSK code withindepen-

96

0 50 100 150 200
3

4

5

6

7

8

9

x 10
−3

State Number

P
ro

ba
bi

lty

Figure 4.5: Steady-state probability of each of the 221 states in the FSM when1√
2

is rounded to0.7.

97

-1 0 1
-1

0

1

5 5

6 6

3

6 6

2

4

1 {0,0}

5

5

Figure 4.6: Graphical representations of the regions whichcontain a cluster of states
with the same steady-state probability.

dently constrained signalling dimensions is considered, with states lying outside of

a rectangular-type RDS span∆Zr = ∆Zi = 2 being removed, forcing dependence

among the four signalling dimensions. The result was a code with dependently

constrained dimensions, 37 states, and a capacity of2.060 bits of information per

symbol. Note that this is within1.5% of the estimated capacity of the DC-free 8PSK

code constructed using the rounding approach with the same RDS span in both the

real and imaginary dimenions. Given the similar capacities, the code with only37

states might prove more practical. In that code, states havebeen removed from the

FSM, but these states would not have provided a significant increase in the overall

system capacity because they would have been entered with very low probability

and had few exit paths.

Upper Bounding Capacity Using Regions

As outlined above, in some cases it is possible to partition states into regions if

these groups of states have similar characteristics and properties. Each group of

states can be represented by a “meta-state” and valid transitions among the meta-

states can be considered. An edge from one meta-state to another is included if

there is at least one state in the first meta-state that transitions to a state in the

second meta-state. Therefore, the transitions among the meta-states may not be

98

valid for every state within the meta-states, but may represent a surplus of edges

in the actual state machine. Since capacity is a function of the number of options

available at any point in time, it is affected by the number ofoutgoing edges from

the states. The system capacity will then be upper bounded ifthe outgoing edges

from each meta-state represent at least all of the outgoing edges from every state

they represent.

For example, if each of these six regions is represented witha meta-state in the

DC-free 8PSK case considered above, and the outgoing transitions from these six

states are constructed, the following connection matrix isobtained:

D =

















0 0 0 1 0 1
0 0 0 1 1 1
0 0 0 0 1 1
1 1 0 1 1 1
0 1 1 1 1 1
1 1 1 1 1 1

















. (4.7)

Note, however, that this connection matrix overestimates the number of edges

in the actual state machine. For example, no state in region 6can transition to all

six regions, only five. Some of the states within region 6 can transition to regions

1, 2, 3, 4 and 6, while other states in region 6 can transition to regions 1, 2, 3, 4 and

5. Overestimating the number of edges in this manner resultsin an upper bound on

capacity. The maximum eigenvalue of this connection matrixis 4.322, giving an

upper bound on the capacity of2.111 bits of information per symbol. Note that the

earlier estimate using the rounding approach is within 1.5%of this upper bound.

4.6 Summary

This chapter presented state machine modelling and capacity evaluation of con-

strained codes using larger-than-binary signalling alphabets. Two different methods

for state machine modelling are outlined: codes using independently or dependently

constrained signalling dimensions. In the case of independently constrained sig-

nalling dimensions, a straightforward approach for evaluation of the exact capacity

of the system based on the summation of maximum eigenvalues of the connection

matrices representing each independent signalling dimension was presented. In the

case of dependently constrained signalling dimensions, both the evaluation and es-

timation of the system capacity were considered. Estimation was achieved using

three methods:i) the removal of states from the state machine which contribute

99

insignificantly to the overall capacity and evaluation of the capacity of the result-

ing model,ii) rounding of constellation points so that symbols are commensurable,

resulting in FSMs whose analysis is tractable, andiii) upper bounding the system

capacity by partitioning the state machine into regions. A number of examples

throughout this chapter were presented to provide context and show the applica-

bility of this work to DC-free codes with signalling constellations using complex-

valued symbols.

100

Chapter 5

DC-free Codes with Complex-Valued
Signalling Constellations

In this chapter, DC-free codes using complex-valued signalling alphabets, including

QPSK, 8PSK, and 16 QAM, that are state-independent decodable are constructed.

Capacity analysis of such codes was considered in detail in Chapter 4. The FSMs

constructed in that chapter serve as a starting point for generating the codebook

of the codes presented in this chapter. Franaszek’s algorithm [8] is used to find a

suitable set of coding parameters for a state-dependent code, and to generate an en-

coding table. This encoding table is manipulated accordingto the approximation al-

gorithm described in Chapter 3 to construct a code that will admit state-independent

decoding at the receiver.

The encoding process that bounds the RDS is modelled with a finite state ma-

chine, where the state variables of this FSM are RDS values, since the encoder

outputs codewords in response to the current RDS value and theinput word. To

calculate the capacity of such codes, the maximum eigenvalue of the connection

matrix that describes this FSM is found [2] and the capacity,C = log2 λmax [1],

is evaluated, which has units of bits of information per symbol. Constructing a

state-dependent encoder is straightforward when the edgesof the FSM are used to

enumerate all valid codewords for each state. To prevent error propagation at the

receiver, the code is designed so that it is state-independently decodable, in that the

code can be decoded at the receiver without the need for stateinformation.

An overview of this chapter is as follows. In Section 5.1, theDSV and RDS

span conventions used in this thesis are reviewed and sum variance is discussed,

while a brief review of constraint modelling is given in Section 5.2. Section 5.3

presents several examples of DC-free QPSK codes, including their spectral plots.

In Section 5.4, DC-free codes using 8PSK signalling alphabets are constructed,

101

while in Section 5.5, codes using the 16 QAM signalling alphabet are constructed.

A summary is offered in Section 5.6.

5.1 RDS, DSV, and Sum Variance

As in the previous chapter, the DSV and RDS span are used to model the constraint

imposed by the code. The conventions remain the same in this chapter: DSV is

typically used when referring to a one-dimensional code, while ∆Zr,∆Zi, and∆Z

are used when referring to codes with a two-dimensional RDS, depending on the

type of RDS bound used.

It has been shown that for binary DC-free codes, the variance of the RDS,s2z,

is a good indication of the spectral performance of the code [22]. The variance of

the RDS is commonly referred to as the sum variance [2]. In particular, [22] shows

that for most one-dimensional codes,2s2zω0 ≈ 1, whereω0 is defined as the cut-off

frequency, which is the frequency where the PSD is equal to one half, that is, the

value ofω0 whenHx(ω0) = 1/2. In the case of two-dimensional DC-free codes,

the variance of a zero-mean sequence of complex-valued RDS values is given by

s2z = E[d2C] wheredC is the Cartesian distance of the RDS values from the origin.

In other words, the variance of the RDS is related to the average squared distance of

the RDS from the origin of the code. Note that the evaluation ofthe sum variance

for binary codes is just a special case of this more general definition.

5.2 Constraint Modeling with DC-free Codes Using
Multiple Signalling Dimensions

In the previous chapter, methods to calculate the capacity of DC-free codes us-

ing QPSK, 8PSK, and 16 QAM alphabets were developed. To find the capacity

of these types of codes, FSMs modelling the constraints of the codes were gener-

ated. The FSMs generated during that process now serve as a starting point for the

code construction process. These codes are separated into two categories: those

with independently constrained signalling dimensions andthose with dependently

constrained signalling dimensions. Dependent signallingdimensions arise when

the state variables from two or more dimensions cannot be tracked separately, or

at least one symbol from at least one state affects the state variables assigned to

two or more different dimensions. Conversely, codes using independent signalling

dimensions are those in which every symbol affects the valueof the state variables

102

from only one signalling dimension at a time. These independent signalling dimen-

sions could result from the signalling constellation, suchas the real and imaginary

dimensions in the complex plane, or as a result of the encoding process, where the

signalling constellation is subdivided into several logical sub-constellations.

Capacity evaluation and FSM construction of codes using QPSKalphabets is

largely straightforward since the constellation consistsof two independent sub-

constellations, one on the real axis and the second on the imaginary axis. Therefore,

in their simplest form these codes naturally fit the independently constrained dimen-

sions model. Additional constraints can be imposed on the FSM that may cause this

independence to be lost.

Capacity evaluation and FSM construction of 16 QAM codes is slightly more

complex, since the signalling constellation does not have the independence inher-

ent in QPSK codes. Each signalling point on the traditional 16 QAM constellation

affects the RDS in both the real and imaginary dimensions simultaneously. How-

ever, it is possible to construct an FSM for these codes usingthe independently

constrained dimensions method as a starting point. It is done so by partitioning the

signalling constellation into several logically independent dimensions, highlighted

in the previous chapter. For example, one dimension is composed of the signalling

points{3 + j3, 1 + j1,−1 − j1,−3 − j3}; the five other dimensions also consist

of sets of points that exist on lines through the origin. If the encoder enforces the

RDS constraint on each of the dimensions independently, thenthese dimensions are

independent of one another. An FSM is constructed that models this operation. If

required, to enforce a tighter overall RDS span, states that violate this constraint are

removed from the overall FSM, introducing dependence into the code.

Codes using 8PSK alphabets can be more difficult to model because of the pres-

ence of signalling points whose values are incommensurable, and therefore a model

that tracks all possible RDS values requires an infinite number of states. While it is

possible for the encoder to consider the 8PSK constellationas four independently

constrained logical dimensions, the overall RDS span with that approach is sig-

nificantly larger than the dependently constrained case. Inthis thesis, only 8PSK

codes using dependently constrained signalling dimensions and a finite number of

states are considered. These FSMs are constructed using oneof two methods. First,

rounding of signalling points so that their values are commensurable to ensure that

there is a finite number of states is considered. Second, construction of the FSM

starts with independently constrained logical dimensionsas a starting point. Then a

tighter RDS span is enforced by removing states that violate the desired RDS span

103

constraint at the cost of introducing dependence between the dimensions.

5.3 Construction of DC-free Codes Using QPSK Sig-
nalling Alphabets

In this section, the construction of DC-free codes using the QPSK signalling alpha-

bet is considered. These codes have the simplest construction of the cases consid-

ered in this thesis because the signalling constellation naturally forms two indepen-

dent sub-constellations. QPSK DC-free codes using rectangular-type RDS bounds

have independently constrained dimensions. Other types ofRDS bounds, such as a

circular bound that restricts the magnitude of the RDS from the zero point, introduce

dependence into the signalling dimensions, but use the independently constrained

model as a starting point.

Constructing a DC-free QPSK code starts by choosing a desired RDS span

on each of the real and imaginary dimensions, and modelling symbol-by-symbol

movement in each of the two dimensions with individual one-dimensional FSMs.

To construct the FSM describing the overall code, the FSMs oneach of the two

dimensions are combined through a Cartesian product. This construction results in

rectangular-type RDS bounds. If circular (or other) bounds are required, states that

violate these bounds are removed from the overall FSM at thispoint. As shown

in the previous chapter, it is straightforward to calculatetheD matrix, maximum

eigenvalue, and capacity of such a code. TheD matrix describing the FSM is used

as an input to Franaszek’s algorithm, which will return the set of parameters that

give the highest code rate of a viable state-dependent decodable code. Finally, us-

ing these parameters, a state-independent decodable code is constructed using the

approximation algorithm in Chapter 3.

For illustration purposes, consider a DC-free QPSK code withrectangular bounds

∆Zr = ∆Zi = 2 such that∆Z = 2
√
2. Using the approaches outlined in Chapter 4,

it is straightforward to find that this code has a capacity of1.5 bits of information

per symbol. Franaszek’s algorithm determines that, forn ≤ 10, the highest code

rate is given bym = 13 andn = 9. The tables specifying the codebook for such

a code, however, would be lengthy. Instead, Franaszek’s algorithm continues un-

til a simpler code emerges, one for which it is practical to list the codebook. The

construction of this simple code has parametersm = 4 andn = 3, which has a

code rate ofR = 1.333 binary digits per symbol. This code has an efficiency of

ν = 0.889, where efficiency is evaluated asν = R
C

with units binary digits per bit

104

Table 5.1: Codebook for QPSK DC-free code withm = 4, n = 3, and∆Zr =
∆Zi = 2 as a function of encoding stateσi.

source σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9
β1 w1 w1 w27 w1 w1 w27 w1 w1 w27

β2 w2 w2 w2 w2 w2 w2 w51 w51 w51

β3 w3 w3 w21 w3 w44 w44 w50 w44 w44

β4 w4 w4 w29 w4 w42 w42 w52 w42 w42

β5 w5 w5 w24 w5 w5 w41 w38 w41 w41

β6 w6 w19 w19 w6 w45 w45 w32 w45 w45

β7 w7 w7 w26 w7 w7 w43 w53 w43 w43

β8 w8 w8 w30 w8 w8 w46 w39 w39 w46

β9 w9 w17 w17 w9 w17 w17 w9 w17 w17

β10 w10 w10 w10 w34 w34 w34 w34 w34 w34

β11 w11 w18 w18 w11 w18 w18 w37 w37 w48

β12 w12 w20 w20 w36 w36 w47 w36 w36 w47

β13 w13 w22 w22 w31 w22 w22 w31 w55 w55

β14 w14 w25 w25 w40 w25 w25 w40 w56 w56

β15 w15 w15 w23 w33 w33 w23 w33 w33 w54

β16 w16 w16 w28 w35 w35 w28 w35 w35 w49

of information. Franaszek’s algorithm has determined thatthere are nine principal

states. The minimum number of codewords in any state is 16, and so the approxi-

mation algorithm attempts to fill the code table with 16 wordsacross 9 states. After

placing the 16 words of state one in the table, the table contains 90 spaces in the

16×9 = 144 total entries, which the algorithm successfully fills. Table 5.1 presents

the codebook for one possible implementation of such a code that has nine princi-

pal states denotedσi = 1, 2, . . . 9. Codewords are denoted aswj, j = 1, 2, . . . 56;

source words are denoted asβk, k = 1, 2, . . . 16. The three-symbol sequence for

each codeword is presented in Table 5.2; the mapping of four-bit binary sequence

to source word tag is arbitrary. It can be verified that regardless of the source statis-

tics this code is DC-free and, because each codeword appears in only one row of

the code table, the code does not require state information in order to be decoded.

Table 5.3 lists parameters of a few DC-free QPSK codes, using both rectangular

and circular RDS bounds, that were constructed using this method. The parameters

listed include the RDS span, capacity,R, ν, as well as values form, n, and number

of principal states,|P |. In Table 5.3, as well as all subsequent tables in this chap-

ter, the units for capacity, rate, and efficiency are bits of information per symbol,

binary digits per symbol, and binary digits per bit of information, respectively. For

rectangular bounds, the highest efficiency codes that have been constructed using

105

Table 5.2: Word index to codeword mapping for QPSK code with∆Zr,∆Zi = 2,
m = 4 andn = 3.

Label Codeword Label Codeword
w1 −1 +1 −1 w29 +1 −j +1
w2 −j +j −j w30 −j +1 +1
w3 −1 +1 −j w31 +j −1 +1
w4 −1 −j +1 w32 +j −1 −1
w5 −1 −j +j w33 +j −1 −j
w6 −j +j −1 w34 +j −j +j
w7 −j −1 +1 w35 +j −j −1
w8 −j −1 +j w36 −1 +1 +j
w9 −1 −1 +1 w37 −1 +j +1
w10 −j −j +j w38 −1 +j −1
w11 −1 −1 −j w39 −1 +j −j
w12 −1 −j −1 w40 −1 −1 +j
w13 −1 −j −j w41 +1 +j −1
w14 −j −1 −1 w42 +1 +j −j
w15 −j −1 −j w43 +1 −1 +j
w16 −j −j −1 w44 +j +1 −1
w17 +1 −1 +1 w45 +j +1 −j
w18 +1 −1 −j w46 +j −j +1
w19 +1 −j +j w47 +1 +1 +j
w20 +1 −j −1 w48 +1 +j +1
w21 +1 −j −j w49 +j +1 +1
w22 −j +1 +j w50 +j +j −1
w23 −j +1 −1 w51 +j +j −j
w24 −j +1 −j w52 +j −1 +j
w25 −j +j +1 w53 −1 +j +j
w26 −j −j +1 w54 +1 +j +j
w27 +1 +1 −1 w55 +j +1 +j
w28 +1 +1 −j w56 +j +j +1

106

Table 5.3: Parameters of QPSK DC-free codes with∆Zr,∆Zi = 2, 4 and6.
Rectangular Bounds

∆Zr∆Zi m n R C ν |P | s2z f0
2 4 3 1.333 1.500 0.889 9 1.021 0.0824
2 10 7 1.429 1.500 0.952 9 1.009 0.0895
4 10 6 1.667 1.793 0.930 21 2.286 0.0343
6 16 9 1.778 1.886 0.943 25 3.763 0.0222

Circular Bounds
∆Z m n R C ν |P | s2z f0
4 3 2 1.500 1.585 0.946 4 1.250 0.0715
6 10 6 1.667 1.807 0.923 21 2.397 0.0362

∆Zr,∆Zi = 2, 4, and6 have efficiencies of95.2%, 93.0%, and92.8%, respectively.

Using circular bounds, DC-free QPSK codes with∆Z = 4 and6 with effiencies of

94.6% and92.3% have been constructed.

Fig. 5.1 shows the spectral performance of each of these codes based on a sim-

ulation of five million codewords, assuming equi-probable source symbols. The

validity of the simulations for the simpler codes has been confirmed through com-

parison with analytical results computed using the approach of [11] extended to

include consideration of complex-valued coded symbols. Values of sum variance,

s2z, and cutoff frequency,f0, were also obtained from these simulations. As ex-

pected, as the RDS span increases, the width of the spectral notch at DC decreases.

Also note that for the same∆Zr,∆Zi, the codes using circular bounds exhibit bet-

ter spectral performance than those using rectangular bounds. In particular, when

∆Z = 4, the code using circular bounds has approximately5 dB more spectral

suppression than the code with rectangular bounds, while the code with∆Z = 6

has approximately3 dB more spectral suppression than its rectangular bound coun-

terpart.

When comparing the spectral performance of these QPSK codes,notice that,

similar to one-dimensional codes, the variance of the RDS gives a very good indi-

cation of the spectral performance. For example, the codes constructed with circular

RDS bounds have lower sum variance than those constructed with rectangular RDS

bounds for the same∆Z, which evidences itself in terms of better spectral perfor-

mance. Taking the values fors2z andf0 and calculating2s2zω0 gives values ranging

from 1.014 to 1.135, indicating that Justesen’s relationship holds for QPSK DC-free

codes.

107

10
−3

10
−2

10
−1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency

P
S

D

∆Z
r
,∆Z

i
 = 6

∆ Z = 6

∆Z
r
,∆Z

i
 = 4

∆ Z = 4

∆Z
r
,∆Z

i
 = 2 (R = 10/7)

∆Z
r
,∆Z

i
 = 2 (R = 4/3)

Figure 5.1: PSD of DC-free QPSK codes with∆Zr,∆Zi = 2, 4 and6.

108

5.4 Construction of DC-free Codes Using 8PSK Sig-
nalling Alphabets

The construction of DC-free codes using an 8PSK signalling alphabet is considered

in this section. This is the most complex case of the three signalling constellations

considered in this chapter because it contains signalling points that are incommen-

surable. As a result, there exist an infinite number of statesin a state machine

that accurately tracks bounded RDS values, making the code construction process

difficult.

One possible solution to limiting the state machine to a finite number of states

is to round the values of some of the signalling points. In theprevious chapter,

the problematic value of
√
2 is rounded to a rational number, such as0.7 or 0.71,

and this value is used during the construction of an FSM. Although the resulting

FSMs have a significant number of states, the FSMs, in theory,can be used for

code construction. As the number of significant digits in theapproximation of the

symbol value increases, however, the number of states growsrapidly, and soon it

becomes impractical to use this approach as a basis for code construction.

Instead, to simplify the code construction procedure, independently constrained

dimensions are used as a starting point. The signalling constellation is considered

to consist of four logical dimensions, instead of only the real and imaginary dimen-

sions. Each point on the signalling constellation is pairedwith its reflection across

the origin to form the four logical dimensions. An RDS bound isthen enforced on

each of these dimensions independently. The benefit of this approach is a significant

reduction in the number of states while maintaining a capacity that is very close to

that of the rounding approach described above.

To construct the required FSM, the procedure outlined in theprevious chap-

ter is followed. First, the constellation is split into its logical dimensions that are

considered to be independent of one another. Second, an RDS span is chosen for

each dimension of this signalling constellation and a one-dimensional FSM is con-

structed for each dimension corresponding to this bound. Next, the overall FSM

is constructed by taking the Cartesian product of all four of the one-dimensional

FSMs. The RDS for each state on this overall FSM is then calculated. Finally,

based on the desired RDS span for this code, states representing RDS values that

would violate this RDS span are removed from the FSM. This leaves an FSM that

contains only states that satisfy the desired RDS span. This removal of states also

results in dimensions that are no longer independent.

109

Table 5.4: Parameters of 8PSK DC-free codes with∆Zr,∆Zi between2 and4.
Rectangular Bounds

∆Zr∆Zi m n R C ν |P | s2z f0
2.0 11 6 1.800 2.083 0.880 29 0.738 0.124
2.4 8 4 2.000 2.136 0.936 16 0.698 0.125
3.0 11 5 2.200 2.413 0.912 141 1.048 0.0822
3.6 14 6 2.333 2.547 0.916 145 1.353 0.0749
4.0 14 6 2.333 2.647 0.882 25 1.572 0.0508

Circular Bounds
∆Z m n R C ν |P | s2z f0
3.0 8 4 2.000 2.315 0.864 121 0.842 0.124
3.5 11 5 2.200 2.439 0.902 145 1.039 0.0873

Table 5.4 summarizes codes that have been constructed usingthe method de-

scribed above along with the approximation algorithm presented in Chapter 3. As

shown in the table, DC-free codes using an 8PSK alphabet have been generated

with rectangular RDS bounds that have efficiencies ranging from 88% to over 93%.

Additionally, two DC-free 8PSK codes using circular RDS bounds have been con-

structed with efficiencies of86% and90%. In general, the number of encoding

states increases as∆Z increases. There is one exception however. Observe that

the 8PSK DC-free code with∆Zr,∆Zi = 4 has significantly fewer principal states

than the code with∆Zr,∆Zi = 3.6. This behaviour results from the fact that both

codes are constructed with the same rate, while the code with∆Zr,∆Zi = 4.0 has

a higher capacity. Thus, there are significantly more edges available in each state

for the code with∆Zr,∆Zi = 4.0 and Franaszek’s algorithm is able to use this

to eliminate a significant number of states from the set of principal states. There-

fore, while the number of encoding states typically increases significantly as∆Z

increases, it is sometimes possible to offset this increasein states with a reduction

in efficiency.

The power spectral density of each of the codes listed in Table 4.2 is presented

in Fig. 5.2. One unusual case emerges in the PSD plots. The spectral performance

of the 8PSK DC-free code for∆Zr,∆Zi = 2.4 is actually better than that of the

code with∆Zr,∆Zi = 2.0. The primary reason for this is that while the RDS span

is larger, the code spends less of its time in states with RDS values that are further

from the origin. This can be seen by comparing the sum variance of the RDS for

the two codes, which measures the average squared distance the code is from the

origin. For the case of the∆Zr,∆Zi = 2.0 code,s2z is 0.738, while s2z = 0.698 for

the case of the∆Zr,∆Zi = 2.4 code. It is concluded that while∆Zr,∆Zi specify

110

the RDS span used in the FSM design, the code construction procedure that occurs

thereafter is still of great importance in order to obtain good code performance.

10
−3

10
−2

10
−1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency

P
S

D

∆Z
r
,∆Z

i
 = 4

∆Z
r
,∆Z

i
 = 3.6

∆ Z = 3.5

∆Z
r
,∆Z

i
 = 3

∆ Z = 3

∆Z
r
,∆Z

i
 = 2.4

∆Z
r
,∆Z

i
 = 2

Figure 5.2: PSD of 8PSK DC-free codes with∆Zr,∆Zi between2 and4.

Using the values fors2z andf0 for the codes that have been designed, the values

for Justesen’s relationship were computed. In the case of DC-free codes using 8PSK

signalling alphabets, the value of2ω0s
2
z falls between1.005 and1.314, indicating

that the relationship holds.

When comparing the QPSK DC-free codes to the 8PSK DC-free codes for the

same values of∆Z, notice that the 8PSK DC-free codes have better spectral sup-

pression. For example, when considering∆Z = 4, the 8PSK DC-free code has

approximately 3 dB more spectral suppression than the QPSK DC-free code at low

frequency values. This superior spectral suppression is reflected in the variance of

the RDS for these codes.

111

5.5 Construction of DC-free Codes Using 16 QAM
Signalling Alphabets

In this section, the construction of DC-free codes using encoded symbols from the

16 QAM signalling alphabet is considered. Similar to the QPSK DC-free codes,

the symbol values in the signalling constellation are commensurable and the code

construction process is simpler than for 8PSK.

The code construction process begins by partitioning the constellation into sev-

eral independent logical sub-constellations, where an RDS span is enforced upon

each dimension. The overall FSM is constructed by taking theCartesian product of

the FSMs describing the operation of each of the sub-constellations. The overallD

matrix, its maximum eigenvalue, and capacity can then be calculated, using the con-

straint modelling from the previous chapter. Using this approach, the overall RDS

span will be larger than the RDS span on each of the sub-constellations, but this can

be adjusted by enforcing an RDS span constraint on the overallFSM by removing

states that violate this overall constraint. TheD matrix describing the final FSM is

used as an input to Franaszek’s algorithm, which returns a set of parameters form,

n andP . The large alphabet size, however, places practical limitations on the set of

parameters that can be used since asn increases, the size of the codebook increases

significantly. Upon fixing the values form, n, andP , the approximation algorithm

in Chapter 3 is used to construct a code that can be decoded at the receiver without

the need for state information.

Table 5.5 lists parameters for DC-free codes that have been constructed using a

16 QAM signalling alphabet for various RDS spans. As shown in the table, these

codes have efficiencies ranging from88% up to almost96%. Note that∆Zr and

∆Zi are larger than in other codes considered in this paper because, when the 16

QAM constellation has distance of2 between adjacent points, the smallest possible

bound is∆Zr = ∆Zi = 6. Fig. 5.3 shows the spectral performance of each of

these codes based on a simulation of five million codewords. For a fair comparison

of spectra with the QPSK and 8PSK DC-free codes, the symbol values have all been

divided by
√
10, so that the average energy per symbol in each constellationis equal

to one. Trends similar to the QPSK and 8PSK DC-free codes can beobserved. In

particular, observe that the value of2s2zω0 is between 0.958 and 1.080, indicating

that Justesen’s relationship holds.

112

Table 5.5: Parameters of 16 QAM DC-free codes with∆Zr,∆Zi between6 and15.
Rectangular Bounds

∆Zr∆Zi m n R C ν |P | s2z fo
6 12 4 3.000 3.133 0.958 21 0.565 0.141
9 13 4 3.250 3.422 0.950 16 0.872 0.0939
12 13 4 3.250 3.690 0.881 81 1.701 0.0501
15 14 4 3.500 3.758 0.931 77 1.769 0.0486

Circular Bounds
∆Z m n R C ν |P | s2z fo
9 13 4 3.250 3.3978 0.956 16 0.825 0.0923
12 13 4 3.250 3.6062 0.901 61 1.274 0.0612

10
−3

10
−2

10
−1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency

P
S

D

∆Z
r
,∆Z

i
 = 15

∆Z
r
,∆Z

i
 = 12

∆ Z = 12

∆Z
r
,∆Z

i
 = 9

∆ Z = 9

∆Z
r
,∆Z

i
 = 6

Figure 5.3: PSD of 16 QAM DC-free codes with∆Zr,∆Zi between6 and15.

113

5.6 Summary

In this chapter, several examples of QPSK, 8PSK, and 16 QAM DC-free codes

have been constructed for various RDS spans. The various steps involved in the

code construction procedure were discussed, from constraint modelling to using

Franaszek’s algorithm and the approximation algorithm described in Chapter 3 to

generate a state-independent decodable code. The codes that have been constructed

with complex-valued signalling alphabets have efficiencies ranging from88% to

96%. The spectral performance of these codes was presented and it was shown

that, similar to codes using one-dimensional constellations, the variance of the RDS

provides a good indication of the spectral performance. Further, values of2s2zω0

were evaluated, and it was shown that Justesen’s relationship, 2s2zω0 ≈ 1, holds for

DC-free codes using these complex-valued signalling alphabets.

114

Chapter 6

Conclusions and Future Work

In this chapter, an overview of this thesis is provided, along with suggestions for

possible future work. Section 6.1 details the three major contributions of this thesis,

while Section 6.2 suggests potential future work.

6.1 Thesis Contributions

The first major contribution of this thesis is the introduction of an approximation

algorithm to construct constrained codes that permit state-independent decoding at

the receiver. This algorithm was designed with all types of constrained codes in

mind, although it is applied to two specific types in this thesis. The major goals of

the design of the algorithm were i) to have a reasonable computational complexity

(at most polynomial running time), ii) to be flexible so that it is applicable to a

wide range of codes, and iii) to be able to handle simplistic codes, for example,

codes with less than 100 total codewords and 10 or fewer principal states, and to

also handle significantly more complex codes, for example, codes with up to218 =

262144 codewords and 150 or fewer principal states. The algorithm developed in

this thesis was able to meet all three of these targets. This algorithm was tested

first upon a well-known class of codes, DC-free RLL constrainedcodes, and then

applied to a new class of codes, DC-free codes using signalling alphabets with

points taken from complex alphabets.

The second major contribution of this thesis is the development of techniques

to model the constraints of DC-free codes using signalling alphabets with symbols

taken from a complex signalling alphabet. This constraint modelling, typically in

terms of a state machine, allows for the determination of thecapacity of such sys-

tems. Of the representative systems that were studied, two major types emerged:

signalling alphabets with commensurable symbols, leadingto a finite number of

115

states, and signalling alphabets with incommensurable symbols, leading to an in-

finite number of states. In both cases, it was demonstrated how the constraint can

be modelled and the capacity calculated or an estimation of capacity made. The

constraint modelling techniques are used in conjunction with the approximation al-

gorithm developed in the first portion of this thesis to design DC-free codes using

QPSK, 8 PSK, and 16 QAM signalling alphabets.

The specific contributions of this thesis are described in more detail below.

1. An approximation algorithm for constructing state-independent decod-

able codes

While many techniques exist for the construction of a constrained code, an

important property, in order to prevent an unbounded stringof errors, is that

the code be decodable at the receiver without requiring state information.

Previous work includes an algorithm that develops codes that achieve this

property, but at the expense of significant (NP-complete) computational com-

plexity. An algorithm for generating constrained codes that permit decoding

without state information was developed in this thesis. This algorithm was

designed to run in polynomial time and be able to construct constrained codes

that are complex, both in terms of the number of required codewords and the

number of principal states. Further, this algorithm is flexible and includes a

number of parameters that can be adjusted to achieve code design, including

scoring thresholds, scoring exponents and the selection ofbase rows. More

advanced techniques, such as lookahead and weakly constrained coding were

also discussed and implemented. While lookahead and weakly constrained

coding are reasonably generic principles, it was shown that, in the case of the

algorithm developed in this thesis, both of these techniques mesh well with

the algorithm. The successful design of this algorithm was demonstrated

through its application to DC-free RLL codes using binary signalling. This

algorithm was applied to a number of DC-free RLL codes, two of which

were presented in detail. In the one case where it was not possible to find a

code that permits state-independent decoding for the most efficient set of pa-

rameters returned by Franaszek’s algorithm, a weakly constrained code was

constructed and presented in detail.

2. Constraint modelling and evaluation of capacity for constrained codes

using multiple signalling dimensions

116

Constrained codes constructed for a one-dimensional signalling medium have

usually been constructed using binary digits or with multilevel signalling. In

this thesis, constrained codes are extended to include multi-dimensional sig-

nalling alphabets written to a one-dimensional signallingmedium. In par-

ticular, representative systems using QPSK, 8 PSK, and 16 QAM were used

as examples to illustrate the techniques for evaluating or estimating the ca-

pacity of these constrained systems. Techniques were developed to model

constraints using these signalling alphabets to constructstate machine repre-

sentations. For the case of codes using both QPSK and 16 QAM signalling

alphabets, since the signalling points are commensurable,the state machines

describing these constraints were limited to a finite numberof states, and

so exact capacity analysis was possible. Constraint modelling and capacity

evaluation in the case of 8 PSK codes is more difficult since the points in the

signalling constellation are incommensurable, leading toan infinite number

of states. The capacity of these systems was estimated usingseveral different

methods, including rounding of signal point values and upper bounding.

3. Construction of highly efficient DC-free constrained codeswith multiple

signalling dimensions

While there exist many examples of DC-free codes in the literature, [cf. 2],

these DC-free codes use a one-dimensional signalling alphabet that is typi-

cally binary. Further, there exist many codes designed for two (or more) di-

mensional media [34]- [39]. However, to date, there are few to no examples

of codes using multi-dimensional signalling. Using the constraint modelling

techniques developed in this thesis, constrained codes using two-dimensional

signalling alphabets, including QPSK, 8 PSK, and 16 QAM wereconstructed.

The capacity analysis demonstrates that the codes that havebeen constructed

are highly efficient, in most cases greater than 90%. PSD plots of the codes

that have been constructed were presented, and it was verified that Justesen’s

relationship,2s2zω0 ≈ 1, which was developed for one-dimensional codes,

holds also for these multi-dimensional codes.

The content of the individual chapters of this thesis can be summarized as fol-

lows:

Chapter 3 proposed an approximation algorithm for the construction of con-

strained codes that permit state-independent decoding. Building on Franaszek’s

117

work [8], which organizes the constraint in a tabular format, the important consid-

erations for the design of the algorithm were considered, such as advantageous table

construction and the fitting procedure used to combine rows in the table. Advanced

techniques, such as lookahead and weakly constrained coding, were discussed and

integrated into the algorithm. Highly efficient DC-free RLL codes were presented

for a wide range ofd, k, andN values, along with an example of a weakly con-

strained DC-free RLL code.

Chapter 4 proposed constraint modelling techniques and capacity analysis of

codes with multiple constrained signalling dimensions. Examples of these types of

constraints were presented, using QPSK, 8 PSK, and 16 QAM signalling constel-

lations. For the case when state machine modelling of the constraint resulted in

an infinite number of states, the capacity of the constrainedsystem was estimated

through rounding and upper bounding.

Chapter 5 used the constraint modelling techniques developed in the previous

chapter to construct DC-free constrained codes with QPSK, 8 PSK, and 16 QAM

signalling constellations. The spectral performance of these codes was evaluated

and simulated, to both demonstrate that the codes are DC-freeand verify that Juste-

sen’s relationship holds.

6.2 Suggested Future Work

In this section, some related topics for future research aresuggested.

1. Improving the values of scoring exponents and scoring thresholds for

code construction

The approximation algorithm for state-independent decoding has a number of

parameters that can be adjusted to improve its ability to construct a code. In

the majority of cases that were tried, values ofrf , ro = 2 with an initial scor-

ing threshold of zero produced the best results. While efficiency is calculated

directly using the values form andn that are chosen, sometimes the algo-

rithm cannot complete the codebook. In some cases, this is due to the lack of

surplus edges constraining the algorithm’s freedom. A morecommon trend

is that as the number of principal states increases to over 100, the algorithm

has some trouble finding efficient codes. Below 100 principal states, efficien-

cies close to 95% are generally possible, but efficiencies drop to around86%

to 88% as the number of principal states increases significantly beyond 100.

118

In other words, as the number of principal states gets large,the algorithm

is unable to construct a code for the set of parameters (m,n, P) returned by

the Franaszek algorithm with the highest code rate. It continues trying the

next most efficient set of parameters, eventually constructing a code, but the

efficiency lowers each time a new set is tried. In those cases,there are a sig-

nificant number of columns in the code tables, and so fine tuning the scoring

parameters might give better results. In the simpler cases,for example 30 to

50 principal states, it is somewhat easier to examine a number of the decisions

the algorithm makes and adjust the parameters slightly. However, with a large

number of principal states, this analysis becomes difficult. Other families of

constrained codes might benefit from a deeper look at these parameters.

2. Weakly constrained codes

In Chapter 3, the weakly constrained coding approach was applied to a par-

ticular DC-free RLL code where it is impossible to construct a code that

permits state-independent decoding for the set of parameters with the highest

code rate returned by the Franaszek algorithm. The code construction algo-

rithm is amenable to this approach because it does not require any changes

to allow a weakly constrained coding algorithm to run thereafter. That is, the

algorithm fills as many spaces as possible so that the constraint is violated as

infrequently as possible, and the few remaining spaces, typically 0.1− 1% of

the table, are filled by the weakly constrained coding algorithm. Construct-

ing a weakly constrained code does not require that the code rate be lowered

and, as indicated by the example in this thesis, with carefuldesign, the spec-

tral performance need not suffer significantly. A flooring effect does appear

in the case of weakly constrained DC-free codes, but only at very low fre-

quencies. Prior to that point, the PSD of a weakly constrained code is very

similar to that of a non-weakly constrained code. In particular, Franaszek’s

algorithm returns the set of parameters with the highest code rate for a given

constraint. In the case of a weakly constrained code, one candesign a code

that has a higher code rate since the constraint is being violated. For the same

reason, a clever code designer can construct a code with a code rate that is

above capacity since the capacity calculation is specific tothe constraint not

being violated. In that sense, Franaszek’s algorithm is no longer required;

however, it does provide an excellent guide to which states have the most

edges and are thus best suited to being principal states. It is anticipated that

119

an improved version of Franaszek’s algorithm, designed specifically for the

subsequent design of weakly constrained codes, would improve the final code

construction results for weakly constrained codes.

3. Improved code construction techniques

There has not been a significant amount of research in the areaof constrained

codes using complex-valued signalling. This thesis servesas a preliminary

work in this area, outlining some techniques for the construction of DC-free

codes using complex-valued signalling alphabets. In particular, these tech-

niques use a lookup table approach for encoding and decoding, over a large

number of states. Further, the capacity evaluation and constraint modelling is

formulated based on the idea of independent and dependentlyconstrained sig-

nalling dimensions. It is of interest to consider other construction techniques,

which, for example, would not require a table-based lookup.Alternatively,

more sophisticated graph-based operations could be used, particularly in the

case where encoding initially requires an infinite number ofstates. Improv-

ing these code construction techniques allows the code designer to have more

options with which to build their communication system.

4. Spectral null coding

In this thesis, the codes using complex-valued signalling alphabets are all de-

signed to be DC-free. Recall from (2.16) that the spectrum of a sequence of

symbols can be shaped by introducing correlation into the symbol sequence.

This procedure is not mutually exclusive with pulse shaping, facilitating an

implementation with many existing communication systems.In particular,

these codes can be used as a starting point to construct codeswith a mov-

able notch in their spectrum. By multiplying the coded symbolsequence by

a set of complex values, the spectral null can be shifted to anywhere in the

spectrum. Since the shifting values will be complex, this means that the sym-

bols entering the channel will be complex-valued, even if the initial symbol

sequence was not. These types of codes could have applications in communi-

cation systems where the transmitter may wish to avoid any spectral content

at a particular frequency or a range of frequencies. Further, it may be possible

to construct codes, using techniques similar to those described in this thesis,

with multiple spectral nulls.

120

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,”Bell Syst. Tech.
J., vol. 27, pp. 379–423, July 1948.

[2] K. A. S. Immink, Codes for Mass Data Storage Systems 2nd Ed.Shannon
Foundation, 2004.

[3] K. A. S. Immink and H. Ogawa, “Method for encoding binary data,” U.S.
Patent 4,501,000, Feb., 1985.

[4] D. Slepian, “On maxentropic discrete stationary processes,”Bell Syst. Tech.
J., vol. 51, no. 3, pp. 629–653, Mar. 1972.

[5] R. Togneri and C. J. S. deSilva,Fundamentals of Information Theory and
Coding Design. Chapman and Hall/CRC, 2002.

[6] J. G. Kemeny and J. L. Snell,Finite Markov Chains. Van Nostrand, 1960.

[7] R. S. Varga,Matrix Iterative Analysis. Prentice-Hall, Inc., 1962.

[8] P. A. Franaszek, “Sequence-state encoding for digital transmission,”Bell Syst.
Tech. J., vol. 47, pp. 143–157, Jan. 1968.

[9] P. Chaichanavong and B. H. Marcus, “Stabilization of block-type-decodability
properties for constrained systems,”SIAM J. Discrete Math, vol. 19, no. 2, pp.
321–344, 2005.

[10] A. Papoulis, Probability, Random Variables, and Stochastic Processes.
McGraw-Hill Book Company, 1965.

[11] G. L. Cariolaro and G. P. Tronca, “Spectra of block coded digital signals,”
IEEE Trans. Commun., vol. 28, no. 10, pp. 1555–1564, Oct. 1974.

[12] K. W. Cattermole and J. J. O’Reilly,Problems of Randomness in Communi-
cation Engineering. Pentech Press, 1984, vol. 2.

[13] P. Galko and S. Pasupathy, “The mean power spectral density of Markov chain
driven signals,”IEEE Trans. Inf. Theory, vol. 27, no. 6, pp. 746–754, Nov.
1981.

[14] P. A. Franaszek, “Sequence-state encoding for digitaltransmission,”Bell Syst.
Tech. J., vol. 47, pp. 143–157, Jan. 1968.

[15] M. Berkoff, “Waveform compression in NRZI magnetic recording,” Proc.
IEEE, vol. 52, pp. 1271–1272, Oct. 1964.

121

[16] A. Gabor, “Adaptive coding for self-clocking recording,” IEEE Trans. Elec-
tron. Comput., vol. EC-16, pp. 866–868, Dec. 1967.

[17] W. H. Kautz, “Fibonacci codes for synchronization control,” IEEE Trans. Inf.
Theory, vol. 11, no. 2, pp. 284–292, Apr. 1965.

[18] J. P. J. Heemskerk and K. A. S. Immink, “Compact disc: System aspects and
modulation,”Philips Techn. Review, vol. 40, no. 6, pp. 157–164, 1982.

[19] K. A. S. Immink, “The digital versatile disc (DVD): System requirements and
channel coding,”SMPTE Journal, vol. 105, no. 8, pp. 483–489, Aug. 1996.

[20] T. D. Howell, “Analysis of correctable errors in the IBM 3380 disk file,”IBM
J. Res. Develop., vol. 28, no. 2, pp. 206–211, Mar. 1984.

[21] T. M. Chien, “Upper bound on the efficiency of DC-constrained codes,”Bell
Syst. Tech. J., vol. 49, pp. 2267–2287, Nov. 1970.

[22] J. Justesen, “Information rates and power spectra of digital codes,” IEEE
Trans. Inf. Theory, vol. 28, no. 3, pp. 457–472, May 1982.

[23] J. Justesen and T. Hoholdt, “Maxentropic Markov chains,” IEEE Trans. Inf.
Theory, vol. 30, no. 4, pp. 665–667, July 1984.

[24] I. J. Fair, “Construction and characteristics of codewords and pulse shapes
that satisfy spectral constraints,”IEEE Trans. Commun., vol. 56, no. 10, pp.
1585–1590, Oct. 2008.

[25] G. Pierobon, “Codes for zero spectral density at zero frequency,”IEEE Trans.
Inf. Theory, vol. 31, no. 7, pp. 853–861, March 1984.

[26] I. Fair, W. Grover, W. Krzymien, and R. MacDonald, “Guided scrambling: a
new line coding technique for high bit rate fiber optic transmission systems,”
IEEE Trans. Commun., vol. 39, no. 2, pp. 289–297, Feb. 1991.

[27] E. Gorog, “Redundant alphabets with desirable frequency spectrum proper-
ties,” IBM J. Res. Develop., vol. 12, no. 3, pp. 234–241, May 1968.

[28] A. R. Calderbank, M. A. Herro, and V. Telang, “Redundant alphabets with
desirable frequency spectrum properties,”IEEE Trans. Inf. Theory, vol. 35,
no. 3, pp. 579–583, May 1989.

[29] L. Botha, H. C. Ferreira, and I. Broere, “New multilevel line codes,” inProc.
IEEE GLOBECOM ’90, San Diego, CA, Dec. 1990, pp. 714–719.

[30] ——, “Multilevel sequences and line codes,” inIEE Proc. I Communications,
Speech, and Vision, Aug. 1993, pp. 255–261.

[31] D. E. Knuth, “Efficient balanced codes,”IEEE Trans. Inf. Theory, vol. 32, no.
1, pp. 51–53, Jan. 1986.

[32] A. Baliga and S. Boztas, “Balancing sets of non-binary vectors,” inProc. IEEE
Int’l Symp. Inform. Theory (ISIT’2002), Lausanne, Switzerland, June 2002, p.
300.

[33] L. G. Tallini and U. Vaccaro, “On efficientmary balanced codes,” inProc.
IEEE Int’l Symp. Inform. Theory (ISIT’1997), Ulm, Germany, June 1997, p.
217.

122

[34] E. Soljanin and C. N. Georghiades, “Coding for two-head recording systems,”
IEEE Trans. Inf. Theory, vol. 41, no. 3, pp. 794–755, May 1995.

[35] J. J. Ashley and B. H. Marcus, “Two dimensional low-pass filtering codes,”
IEEE Trans. Commun., vol. 46, no. 6, pp. 724–727, June 1998.

[36] R. M. Roth, P. H. Siegel, and J. K. Wolf, “Efficient coding schemes for the
hard-square model,”IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 1166–1176,
March 2001.

[37] A. Sharov and R. M. Roth, “Two-dimensional constrained coding based
on tiling,” in Proc. IEEE Int’l Symp. Inform. Theory (ISIT’2008), Toronto,
Canada, July 2008, pp. 1468–1472.

[38] W. Weeks and R. E. Blahut, “The capacity and coding gain of certain checker-
board codes,”IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1193–1203, May
1998.

[39] S. Forchhammer and J. Justesen, “Entropy bounds for constrained 2-D random
fields,” IEEE Trans. Inf. Theory, vol. 45, pp. 118–127, Jan. 1999.

[40] S. Cook, “The complexity of theorem proving procedures,” in Proc. 3rd An-
nual ACM symposium on Theory of Computing, Shaker Heights, OH, May
1971, pp. 151–158.

[41] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms.
McGraw-Hill, 2002.

[42] D. E. Knuth,The Art of Computer Programming. Vol. 1: Fundamental Algo-
rithms. Addison-Wesley, 1973.

[43] R. P. Brent, “Efficient implementation of the first-fit strategy for dynamic stor-
age allocation,”ACM Transactions on Programming Languages and Systems,
vol. 11, no. 3, pp. 388–403, July 1989.

[44] K. A. S. Immink, “Weakly constrained codes,”Electronic Letters, vol. 33, no.
23, pp. 1943–1944, Nov. 1997.

[45] Y. Xin and I. J. Fair, “A performance metric for codes with a high-order spec-
tral null at zero frequency,”IEEE Trans. Inf. Theory, vol. 50, no. 2, pp. 385–
394, Feb. 2004.

[46] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codesfor digital
holographic data storage,”J. Opt. Soc. Am. A, vol. 12, pp. 2432–2439, Nov.
1995.

[47] R. M. Roth, P. H. Siegel, and J. K. Wolf, “Efficient coding schemes for the
hard-square model,”IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 1166–1176,
Mar. 2001.

[48] S. Halevy, J. Chen, P. H. Siegel, and J. K. Wolf, “Improvedbit-stuffing bounds
on two-dimensional constraints,”IEEE Trans. Inf. Theory, vol. 50, no. 5, pp.
824–838, May 2004.

[49] R. Bellman,Introduction to Matrix Analysis. SIAM, 1997.

123

