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Abstract

Traditionally, constrained sequence coding has been gm@glexclusively in codes
using binary or multilevel signalling. This thesis exteridle procedure for con-
structing DC-free constrained sequence codes to alphdiztage signalling con-
stellations with complex-valued symbols. In particulbg todes are separated into
two types: i) constraints with independent logical siginglldimensions and ii)
constraints using dependent logical signalling dimersidmboth cases, constraint
modelling for the purpose of the evaluation of capacity iplesed. Within the
case of dependent signalling dimensions, the state machbarecontain a finite or
an infinite number of states, depending on the signallingi@ation that is used.
Evaluation of capacity of these types of constrained sysisroonsidered in detail.

Building upon the capacity analysis and constraint modgiflechniques, DC-
free codes using complex-valued signalling constellatiare constructed. The
three constellations that are considered in detail in thesis are quadrature phase
shift keying (QPSK), 8 phase shift keying (PSK), and 16 gaade amplitude mod-
ulation (QAM). A number of codes have been constructed fohedthe three types
for various RDS spans. Further, it is shown that Justeselatiorship for codes
using binary-valued symbols, which relates the value ofsiln@® variance to the
width of the spectral notch around DC, also holds for codesgusomplex-valued
symbols.

To complete the code construction procedure for DC-freesadimg complex-
valued signalling alphabets, which involves state-based@ng and decoding, an
algorithm was developed to construct codes that can be ddcatithe receiver
without requiring state information. This algorithm wassdgmed to execute in

polynomial time with respect to the size of the input and tdbbé general and



flexible, so that it can operate on any family of constrainequence codes. In
addition to codes with complex-valued symbols, a numberirddy DC-free RLL

block codes are constructed using this algorithm, achgethe maximum possible
code rates with codeword lengths less than 20. This algonshalso extended to

include the principles of weakly constrained coding.
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Chapter 1

Introduction

The field of digital communications has experienced treroesdjrowth in the past
few decades. This growth can be attributed to the emergdmmohardware tech-
nologies and advancements in signal processing, whichdvaagled high data rate
transmission over a variety of mediums including opticaidjlsatellites, and radio
links. Communication takes place not only across space,yewas in the conven-
tional channels listed above, but also from one time to aTp#uch as in recording
systems. In both cases, the use of coding and the applicatioformation theory,
motivated by Shannon’s work [1], has led to vast improvem@ntommunication
systems and stimulated great interest in the field. In codysems, an encoder
performs the task of translating a block of user data, tylyi@abinary sequence,
into another symbol sequence. The goal of the encoding guveds to improve
the performance of the system, typically by making the sydtess prone to er-
rors occurring during transmission and detection. Thedafuhis thesis is on the
specific area of coding referred to as line coding or constichsequence coding.

Constrained modulation codes used in data storage systans$darm blocks of
m source symbols into blocks efcoded symbols in a lossless manner such that the
encoded bit sequence satisfies specific constraints. Thedss ensure satisfactory
performance despite limitations of the channel, encodirgyitry, and/or decoding
circuitry in digital storage and transmission systems [Zhe set of words from
which the code sequences are selected is referred to as taaooed system. For
block codes, the code rate, given By= ™, is a measure of the amount of infor-
mation a code conveys, typically specified binary digits genbol. The quantity
1 — Ris referred to as the redundancy of the code.

To better describe the purpose of a constrained code, a femon applications
will be discussed. Constrained codes are widely used indeupeystems, and for
this reason are sometimes referred to as recoding codeag8tevices today, such

1



as hard drives, compact disc (CD) drives, digital versaide (DVD), and BluRay
disc (BD) drives all employ, or have employed, some form ofst@ined codes.
In fact, advances in storage capacities can be attribute@mlyp to advances in
hardware technology, but to improvements in constrainel#soAs an example of
a constrained code, consider the eight-to-fourteen madoléEFM) [3] code used
in CD players. Data is written to the disc using pits and ladsepresent binary
zeros and ones. The decoding circuity exhibits better padace if the durations
of the pits and lands are not too short or too long. Conseqyeatiunlength-
limited (RLL) code is employed to limit both the minimum andxmaum number
of consecutive ones and zeros that can be written. Somedaday is required to
enforce runlength limitations, which lowers the storadeeincy, but the improved
performance of the decoding circuitry allows more data tpdéeked onto the disc,
resulting in a net increase in storage density. While com&tdacoding has been
traditionally deployed in the recording industry, there also applications in other
digital communication systems, such as the peak-to-aeepagver ratio (PAPR)
problem in orthogonal frequency division multiplexing (D) systems, or the
ubiquitous scramblers used in most transmission systems.

Digital symbols are represented by physical quantitiesdento be written to
a physical medium for storage or to be passed through a coiatiom channel.
In digital communication systems, the symbols are assigoadhe of a finite set
of continuous waveforms. These continuous waveforms arexample, sinusoids
in wireless communication systems or pits and lands in apstorage systems.
When a single pulse is transmitted in a bandwidth-limitedesyis convolution of
the pulse with the impulse response of the channel can restlie spreading of
the pulse over several signalling intervals [2]. This sdneg s referred to as inter-
symbol interference (ISI) and can be the limiting factothea than additive-type
noise, in recording systems. While ISI can be reduced or rechasing a lin-
ear filter at the receiver, there are a number of difficultreseicording systems
that prevent the straightforward application of filterir®#j. [Rather than employing
complex adaptive equalization, a constrained code can Ipoged. For exam-
ple, the minimum runlength in a code controls the highestsitaon frequency in
the transmitted waveform and thus directly influences thecesf of the 1SI over a
bandlimited channel.

The guiding principle behind most constrained codes istadtcular sequences
of bits are difficult or impossible for the communicationdkeio handle. These se-
guences result in an erroneous version of the user data etagted. Constrained



coding aims to remove these vexatious sequences from tieéook, improving the
robustness of the communication track. Widely used clagkesnstrained codes
include RLL codes and balanced codes [2]. An RLL code imposestrnts on
the minimum and maximum runlengths allowable for consgeuiis and 1's within
the coded sequence; this can be thought of as a constrairé tmte domain. Bal-
anced codes generate sequences of bits with an equal nufribeaad 0’s. These
sequences have a null at DC in their continuous spectral ocoemd, and therefore
are referred to as DC-free codes; this can be thought of assdraont in the fre-
guency domain. It should be noted that while constraineeésaan be developed
to satisfy many spectral constraints [4], the most commaouirement is that the
code have no spectral content at DC.

A common procedure for encoding constrained sequence désdesuse the
current accumulated running digital sum (RDS) value or ength as state infor-
mation. This state information is modelled using a fini@esmachine (FSM) with
states, edges, tags, and labels. DC-free and RLL codes, altngethods of code
construction, are covered in more detail in the next chagtarther, some varia-
tions of these two types of codes, including the codes yatgiboth constraints,
employing multi-level signalling, or signalling on a twonaensional medium are
discussed in Chapter 2.

1.1 Thesis Objective

In this thesis, two major areas of constrained coding aressdéd. For the first ma-
jor area, this thesis aims to extend existing theory of D@-frenstrained codes to
the case where the signalling alphabet is larger than bigady in particular, uses
a complex-valued signalling alphabet. The constructionaafes using complex-
valued signalling alphabets requires knowledge of capamtl the development
of constraint modelling techniques. Further, practicalstaained codes have an
additional requirement that the code is decodable withegtiring state informa-
tion, so that error propagation at the decoder is limitedorRo the work in this
thesis, no methods were known for the construction of DC-émestrained codes
using complex-valued signalling alphabets. To address #mn approximation al-
gorithm for constructing constrained codes that permtesitadependent decoding
is the second major area that is considered. The applicafitinis algorithm is
not limited to DC-free constrained codes with complex-velgegnalling alpha-
bets; instead, the algorithm is designed to function on gpg bf constrained code



and includes a number of parameters than can be adjusted tagsbe particular
family of codes.

For typical applications of DC-free and RLL codes, the comroaton sys-
tem uses only binary valued symbols since the channel orumedupports only
two values. However, in this thesis, the case where a laogenplex-valued al-
phabet is used for signalling is investigated, opening @ppbssibility for using
constrained codes in more diverse applications includimgexample, those em-
ploying phase shift keying (PSK) or quadrature amplitudelatation (QAM) con-
stellations. While it is possible to use a constrained codenerinary values prior
to mapping them onto other symbols for transmission, in genehe constraint will
no longer be satisfied. There are some cases where this iblpo$sr instance by
exploiting symmetry in the symbols in the signalling alpegkhowever this will
not always be possible. For example, in the context of DCdoekes, it is required
that the communication system have no frequency contenCaflipically this is
performed by balancing the symbols used for transmissiolanBang a binary se-
guence prior to mapping it onto PSK symbols will not necebsarean that the
PSK sequence is balanced. In general, balancing a codesttatnultiple symbols
across two dimensions will be more difficult than balancingode using binary
signalling over a single dimension.

The DC-free constraint is important in optical disc appli@as$ for minimizing
the effects of fingerprints and other low frequency noisdlexthe RLL constraints
exist in order to facilitate easier bit detection since tations to the minimum and
maximum lengths of a pit or land enable simpler and morebkdidemodulation
circuitry. However, these types of constraints could ptiédig be used in any sys-
tem that employs a larger signalling alphabet. Specificatintrolling the spectral
emissions of the communication system is important in aelangmber of appli-
cations, especially in systems that communicate using medhmaedium. Further,
the system may require the insertion of a pilot tone at a @der frequency and
by using a constrained code it is possible to remove all m&dion signal content
at the desired frequency. Maximum RLL constraints are usddrte transitions
in the data stream, for example, to aid in the recovery ofrigrinformation or
synchronization.

In this thesis, the DC-free constraint using complex-vakigdalling alphabets
is explored. This constraint is modelled through the use oltipie constrained
signalling dimensions. Examples are provided using QPSKSKE, and 16 QAM
signalling alphabets where the encoder divides the siggatlonstellation into a



number of independent logical dimensions and enforces Gwdr&e constraint on
each logical dimension separately. While these signallomgtellations are used as
examples, this work is also more general, and the princigdese applied to other
forms of communication where the signalling has some formagpendence, such
as frequency shift keying (FSK).

To design DC-free constrained codes using complex-valwgtbaBing alpha-
bets, important concepts from constrained codes using\buadued signalling are
extended. Typically, the constraint is modelled as an FSttha capacity of the
constraint is evaluated. Capacity, in particular, is imgortecause it provides an
upper limit on the rate that is achievable when designingctige. In general, for
a particular constraint, the code designer should aim fethighest rate possible,
bounded by the maximum theoretical capacity, since thisns\dzat the coded se-
guences convey the most information. While it is sometimessibte to design a
constrained code without the use of an FSM, for example, bynemnating the to-
tal number of sequences that satisfy the constraint, foermomplex constraints,
which are explored in this thesis, FSM encoder modellingyscally required.
By using an FSM, a DC-free code, for example, can ensure thawswds are
balanced over a slightly longer period of time than a singldesvord interval by
having the encoder keep track of relevant state informadiwh concatenating the
codewords intelligently. FSM modelling is important besaut allows the code
designer to have many tools with which to design efficientesodrhis includes a
relatively simple means for evaluation of capacity, andraightforward approach
to conduct spectral analysis in order to quantify the pentorce of a code. The
approximation algorithm for state-independent decodireg ts developed in this
thesis implicitly assumes that the constraint has been lealdesing an FSM and
then partitioned into a table. If the code is simple enoughskates are not required
for its implementation, then the encoding is performed authstate information
and so state-independent decoding is straightforward.

1.2 Thesis Organization

The thesis is organized as follows.

Chapter 2 presents the theoretical foundation for congtdadodes. The chap-
ter begins by presenting a brief overview of the fundameided of information,
entropy and capacity. A modelling tool called a Markov chamd the evaluation
of its capacity is discussed. Code construction is coveratbtail, highlighting a



practical issue: state-independent decoding. The medrissate-independent de-
coding are highlighted briefly, and an overview of the ergtielated literature is
presented. The spectral analysis of codes is discussdadniegwith discussion of

a Markov information source, which serves as a startingtgoirthe spectral anal-
ysis of both memoryless block codes and block codes with nmgmidhe chapter

ends with a discussion of types of constrained codes tha begn considered in
the literature. This includes the DC-free and RLL constradii¢sussed earlier in
this chapter, and also constrained codes using multi-sgehlling and constrained
codes for a two (or more) dimensional medium.

In Chapter 3, the construction of codes that permit statepaddent decoding
is covered in more detail. The primary focus of the chapténésdevelopment of
a approximation algorithm that is able to construct codes dlo not require state
information at the decoder. Using a representation basedgyoup of alphabets,
the algorithm is able to construct the codebook a single row #ime, using a
greedy procedure. Important points of the algorithm, sicbimizing the initial
construction of the table, and procedures for construd¢tiegows are covered. The
algorithm has a number of parameters that can be tuned, sisdoang exponents
and thresholds, so that it can function for many familiesafes. More advanced
techniques, such as lookahead and weakly constrainedg;oalia implemented
with the algorithm. Results of applying the algorithm to D@drRLL codes are
presented, including those which employ lookahead or weakhstrained coding.

In Chapter 4, the evaluation of capacity and constraint niingebf DC-free
constrained codes using multiple constrained signallingedsions is considered.
In particular, the chapter considers the DC-free constfaintodes using quadra-
ture phase shift keying (QPSK), 8 PSK, or 16 QAM alphabetsdélling and eval-
uation of the capacity of these systems is discussed. ThalBigy constellation is
considered as a number of independent signalling dimessiehere the encoder
can enforce the DC-free constraint on each of the dimensieparately. These
dimensions can then be transformed into a constrained csithg dlependently
constrained signalling dimensions by having the encod&onsider the overall
DC-free constraint. Using this procedure, the constraintieimg and capacity
calculations are simplified.

In Chapter 5, the construction of DC-free constrained codesgyu9PSK, 8
PSK, and 16 QAM signalling alphabets is presented. Usingctmstraint mod-
elling and capacity evaluation from the previous chapted #he approximation
algorithm for the construction of a state-independent dabte code from Chap-



ter 3, a number of DC-free codes are constructed for eachlkignalphabet. The
performance of these codes, in the form of the power spedtasity (PSD), is
presented.

Finally, in Chapter 6, the thesis contributions are sumnearand suggestions
for future work are offered.



Chapter 2

Background

This chapter discusses the theoretical foundation of cansd codes and its re-
lated literature. The first portion of the chapter preseémesfindamental ideas and
tools required in the design of a constrained code. The mglén which these
topics are discussed is similar to that used by the code mesig the process of
constructing a typical code, beginning with the idea of infation and entropy,
then moving to modelling and encoder design. Spectral arslg highlighted
thereafter. In the final portion of the chapter, the most camitgpes of constrained
codes are discussed.

An overview of the concepts of information, entropy, andamaty is presented
in Section 2.1. Initially, the discussion is restricted be entropy of information
sources without memory in subsection 2.1.1. The conceptMagov chain is
presented in subsection 2.1.2, and the capacity of a Marki@mrmation source
is discussed in subsection 2.1.3. In Section 2.2, impodberents of code de-
sign and construction are presented. This includes madedli constraints with an
FSM, its capacity, and the design of an encoder that prockespgences that satisfy
the desired constraint, discussed in subsections 2.2Gdhrsubsection 2.2.4. The
concept of state-independent decoding, the focus of thiechepter, is discussed in
subsection 2.2.5 and subsection 2.2.6. In Section 2.3 pibetral analysis of con-
strained modulation codes is presented. A brief discussi@iochastic processes
and stationarity is presented in subsection 2.3.1. Thetsgpemalysis of a Markov
information source is discussed in subsection 2.3.2, whiespectral analysis of
block-coded signals is discussed in subsection 2.3.3. Contypes of constrained
codes are discussed in Section 2.4. The two most populatraoris, RLL and DC-
free constrained codes are presented in subsections 2d.2.4.1, respectively.
Additionally, codes satisfying both DC-free and RLL consitaisimultaneously
are presented in subsection 2.4.3. Finally, codes emgayulti-level signalling
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are discussed in subsection 2.4.4, while codes designedtessquences onto two
(or more) dimensional surfaces are discussed in subsetddh

2.1 Information and Entropy

In this section, a brief summary of the fundamental ideasfofmation and entropy
are presented. These concepts and their associated tovidepthe code designer
with a guide for the construction of their initial design andchanisms to assess the
performance of their overall design. In particular, thistse quantifies how much
information is conveyed by an information source, whichekted to its entropy.
The maximization of entropy for a particular channel caastr;, called capacity, is
also discussed.

There are two major types of information sources, contisuand discrete.
In this thesis, the focus is on discrete information souregsch are information
sources that convey symbols from a finite set of lettersedadin alphabet. Each
time the information source emits a message, some infoomitransmitted. To
measure the amount of information that has been conveyedptiicept of entropy
is used.

The information source conveys its information across awskh In this the-
sis, the channels that are studied are those that do nottpermertain collection
of sequences, called forbidden sequences; this is refesrad an input-restricted
or constrained channel. As discussed in Chapter 1, certquesees may be prob-
lematic for the detection circuitry, and so the channelriestthe usage of these
sequences. The particular types of constraints commolg usconstrained cod-
ing are discussed in more detail towards the end of this ehapt

2.1.1 Entropy of a Memoryless Information Source

A memoryless information source transmits symbols thastatstically indepen-
dent. It is assumed that the particular symbol that is chdgetransmission is
selected by the result of a random experiment. Consider & feit of sequences
X = {x,x9,..., 27}, With corresponding probabilitigs,, ps, . . ., pas, such that
Zﬁlpi = 1. The symbol generated by the source at time indicated byX;,.
In [1], Shannon develops the idea of the measurement ofrirdbion, relating it to
entropy or uncertainty. The more unlikely a message is, tbeermformation it



contains. Shannon adopted the definition:

M
H(pr,...pm) =— > pilogp;,0<p; <1 (2.1)
=1
to measure the entropy of an information source. Settindad@rithm to base 2
implies that the entropy is measuring the number of bitsirequo transmit the
sequences generated by the source, yielding units forgntidoits of information
per symbol. Other base values for the logarithm can be usedn lthis thesis, a
value of two is used, as is commonplace in the literaturearitloe shown that the
entropy function achieves a maximum lof, M bits of information per symbol
when the source symbols are equi-probable [5].

2.1.2 Markov Chains

It is often desirable to introduce correlation into a seaesof coded symbols. This
allows, for example, some spectral shaping, which is dssdiater in this thesis.
In many cases, the appearance of a symbol is a function, ingbéine symbols that
appeared before it, and so the source is no longer memoyylasare the symbols
independent. To model these types of information sourcet)i$ subsection the
idea of a Markov chain is discussed.

A Markov chain, with L states, is a discrete random process with dependent
discrete random variableg,, taking the form{...,Z 5, 7 1,7y, Z;,...} from a
state alphabet = {o0y,0,...0.}. These dependent discrete random variables
satisfy the Markov condition:

PI‘(Zt = O-it‘thl = O',L't_l, thQ = O-it_m .. ) = PI‘(Zt = ait‘thl = Uif,—l) (22)

where P(A|B) is the probability of occurrence of evert given that evenB has
already occurred. This condition specifies that the vagiabis dependent only on
the past sampl&,;_; and independent of prior variablé¢g; », ...} in the Markov
chain. The Markov chain can then be described by its tramsgirobability matrix,
@, which specifies the probabilities of transitioning fromtatso; to another state
o,;. Mathematically, the entries of the matrix are given by:

[Q]U =Pr(Z, = Uj|Zt—1 =0;),1<i,57<L. (2.3)

Notice that the Markov chain does not have any inputs; it eratterized by the
discrete random variablg;; and the state transition probabilities.
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Figure 2.1: Example of a Markov chain represented by a dgicegtaph.

One popular representation of the transition probabiligtnm of a Markov
chain is to use a directed graph. The states form the veric#se graph, while
the edges indicate valid transitions, i.e., transitiomsrfrstate; to state; where
[Q];; > 0. These edges are typically labelled with the valuégf; corresponding
to the transitions. For example, for the transition proligtinatrix

0 1/2 1/2
Q=1|1/4 1/4 1/2 (2.4)
/2 0 1/2
the directed graph representation is given in Fig. 2.1. Wititeer representations
are possible, such as a trellis representation, only tleeid graph representation
is presented here due to its similarity to the state macl@peesentation discussed
in the next section.

In this thesis, only Markov chains that are irreducible aggltar, also referred
to as ergodic, are considered. A Markov chain is irredudibleom any state the
Markov chain can eventually reach any other state (in oneaversteps) [6]. Reg-
ularity of a Markov chain refers to periodicity; specifigalh Markov chain that is
regular is non-periodic [6]. A state in a Markov chain is pelit if that state can
only be entered when the time index,is multiple of a specified period. If the
largest such value df is 1, then the Markov chain is non-periodic.
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Entropy of Markov Information Sources

In this thesis, an information source with memory is modkfs a Markov infor-
mation source. Consider a finite Markov chéiry } and a functiorf whose domain
is the set of states and whose range is the alph&bédthe set of sequencds; },
with X, = {(Z;) is the output of a Markov information source correspondothe
chain{Z,} and the functiorg. Since the symbols emitted by a Markov information
source are dependent, some redundancy is introduced,laswaessive symbol is
partially predictable. The Markov information source piods correlated outputs,
X, based on its current state and the state transition prictiesgoi

To evaluate the entropy of a Markov information source, ap$ftoation is
helpful. In this thesis, only unifilar Markov information w@es are considered.
A Markov information source is unifilar if for every state;, the labels of its;
successor states, , 0;,, ..., 0, are distinct. A successor state®fis defined as
a state that can be reached in a single step with a transitadrapility greater than
zero. For example, in Fig. 2.1, the successor states of 3tate states 1, 2, and 3,
since each can be reached in a single step with probabiétegr than zero. For the
Markov information source to be unifilar, each of these sssgestates requires a
distinct label.

For a unifilar Markov information source the uncertainty lé tsuccessor of
stateo; is H; = H([Qlii, [Qliigs - - - [Q]m-ni), whereo;,, 0iy, . .., 04, are the suc-
cessor states af;,. The value ofH; is calculated using the definition of entropy
from (2.1). Averaging the entropies of each of the statesralieg to the probabil-
ity of being in that state gives the overall entropy of thefilaxi Markov information
source:

L
H{X} =) mH, (2.5)
=1
wherer; is the steady-state probability of being in stateThe calculation of these
asymptotically steady state probabilities is considend@].
2.1.3 Capacity of Constrained Channels

Returning to the input-restricted or constrained channeheans to measure the
entropy of such a channel, or to calculate its capacity,qsired. In [1], Shannon
defines the capacity, in bits of information per symbol, obastrained channel as

1
C = lim —log, Ns(n) (2.6)

n—oo N
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where N¢(n) is the number of sequences of lengtlallowed by the channel. The
units for capacity are in bits of information per symbol sracbase two logarithm
is used. Evaluation of the capacity of a constrained chasnelportant because it
indicates the upper-bound on the rate of a code that can Istraoted that satisfies
the channel constraint. However, calculating the maximumimer of sequences
permitted by a constraint channel is often a complex problémthe following
subsection, another approach is considered.

Capacity of Markov Information Sources

A unifilar Markov source can be characterized in terms ofatsnection matrixD.
The entries of this matrix,D];;, are constructed by examining the Markov source
and settingD};; to be equal to the number of transitions from stet, or zero if
there is no valid transition from state¢o j. These transitions correspond to edges
of the directed graph that defines the Markov source. To fieccHpacity of this
Markov information source, the entropy given by:

N
H{X} = ZpiHi 2.7)

must be maximized. This is done by choosing the transitiobabilities,p;, such
that H{ X'} is maximized. The state transition probabilities that ghemaximum
entropy for the Markov information source are called the emwopic state transi-
tion probabilities and generate maxentropic sequences.c@pacity is then given
by:

C' =max H{X} (2.8)
In this thesis, we consider only connection matrices regrsg strongly connected
graphs; therefore, the existence of a positive eigenvaildecarresponding eigen-
vector with positive elements is guaranteed by the Perrobdnius theorems [7].
Shannon [1] showed thdf{ X} is a function of the connections iR. Since the
growth factor of the graph described byis related to the maximum eigenvalue of
D, then the maximum number of sequences that can be genesated-a oo is
related to this maximum eigenvalue. A second method forutating the capacity
is:

C = logy Amax (2.9

where \nax is the maximum eigenvalue d? [1]. Similar to before, taking the
logarithm to the base of two returns the capacity in bits tdnmation per symbol.
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2.2 Code Construction

This thesis focuses on the construction of codes for useantthnstrained channel.
The constrained modulation codes used in data storagensystansform blocks
of m source bits into blocks af coded bits in a lossless manner such that the en-
coded bit sequence satisfies specific constraints. The setrds from which the
code sequences are selected is referred to as a constrgstechsThese codes en-
sure satisfactory performance despite limitations of tienael, encoding circuitry,
and/or decoding circuitry in digital storage and transmissystems [2].

The construction and design of constrained modulation £cde be quite in-
volved, and is usually application-specific. Often, therapphes used by code
design engineers are ad-hoc, but frequently successfgpif@esome elegant math-
ematics, there is an art to the design of codes. The coderdesigust be aware of
the mathematics and be able to both quantify the tradefuditsare being made and
analyze the performance of the code.

While there are many design techniques or approaches useddage con-
strained modulation codes, some elements are common to djeity of these
approaches. For example, prior to the design of an encddstyipical to model
the constraint using an FSM, choosing as state variablasihertant parameters,
such as the current run-length or the RDS. With a model for trestraint, the
capacity of the code is evaluated (or estimated if exacuetin is not possible).
Capacity serves as an upper bound on the information thapissible to trans-
mit through the channel, and so provides a guide for the cedeyder to evaluate
their design. Next, an encoder is designed, with valueseshé® m andn. The
design of an encoder has a significant number of differentcgmes. This design
must satisfy the channel constraints, but may also be redjtir satisfy other con-
straints, such as the ability to be decoded at the receivtiowui the need for state
information, which is discussed later in this section. Fip@erformance analysis
should be completed, so that the various trade-offs thad baen made are clear.
This could be as simple as comparing the performance of tithe i@ative to a code
using maxentropic sequences.

In this section, an overview of an FSM, including a methodcflculating their
capacity, is provided, along with a discussion of the blogle encoders that are
generated from these FSMs. Franaszek’s recursive elimimatgorithm is then
discussed. This procedure is commonly used for determsuitgble values fom
andn for the block-type encoder, as well as finding a suitable sehooding states
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P. In the remainder of this section, the principles of statependent decoding are
discussed, and their importance is highlighted.

2.2.1 Finite-State Machine Encoder Modelling and Block-type
Encoders

In this thesis an encoder is considered as a device with an, iagtate, and an out-
put, whose operation can be modelled with an FSM. The FSM tadide encoder
by using three sets: the inputs, the outputs, and the statds$yo logical functions:
the output function and the next-state function. For eaphtimo the encoder, the
corresponding output is generated according to the outymation, which depends
on the value of the input and the current state of the encddes.state of the en-
coder is updated using the next-state function, which agedds on both the input
and the current state of the encoder.

Block-type encoders, which are encoders where both thesrgnd outputs are
partitioned into blocks, are perhaps the most common andsnosessful encoders
that transform arbitrary data from a user into constrairegfiences that satisfy a
desired set of properties [2]. In particular, the input isugred intom symbol
blocks, called source words, while the encoder produeesyanbol output, called
a codeword, according to the encoder functions. In thisished the codes that
have been constructed are restricted to a block-type encog&ementation.

The notation associated with an FSM encoder that will be usé#uls thesis is
as follows. The input set consists 6f m-symbol words. A source word in this
set is denoted by, u = 0,1,..., M — 1. The set of states of size is denoted
by > and consists of states,: = 1,2,..., L. The output set consists of, n-
symbol codewords and are doubly indexedyas where: corresponds to the state
of the encoder and denotes the source word in the set. The output function of the
encoder specifies the mapping, = h(o;, 5.). In general, recovery of the source
word from the codeword requires knowledge of the encodés.skanally, the next-
state function determines which state the encoder entes rabpping a source
word into a codeword. If the next-state function is detemdiion the current state
and input, itis called (), however, if it depends on the current state and output, then
itis called f(). The two functiong;() andh(), which describe the operation of the
FSM, are called the characterizing functions. In this thesiese functions will be
specified in terms of a table, called a transition table, Wwiiefines the codebook
of the code. Typically, for the codes constructed in thisiheonly the table foh()
is included since the states are well-defined, and it is &siifarward exercise to
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generate the functiog() which determines the next state of the encoder.
Similar to a Markov information source, an FSM encoder is xangle of a
labelled directed graph. In this thesis, the presentatiaapnstraint is primarily
referred to in terms of a state machine, which is more commadhe literature. A
graph is typically characterized by a set of vertices, wiaighreferred to as states.
This graph consists of a set of edges, which specify validgakisting between
vertices, or states. Graphs may have an edge labeling, whalhbe referred to
as an alphabet. This edge labeling is often specified usadgef$” or “tags.” In
this thesis, the word tag will be used with input edges, wtiike word label will
be used with output edges. While this thesis generally usés stachine specific
terminology, there are times, as indicated in the thesigrev/inesults from graph
theory are applied to evaluate the capacity of a constraita construct a code.

2.2.2 Types of Block-type Encoders

The FSM encoder description presented in the previous stibseas similar to that
of a Markov information source. However, recall that a Markdiormation source
is a machine without inputs, while the block encoders cared in this thesis
transform blocks of input symbols into blocks of output syitstand therefore have
source words as inputs. When the source words are indepergehey are in all
codes considered in this thesis, the sequence of encodies sbtams a stationary
Markov chain because the next state depends only on theopeesgtate and the
input.

While all of the inputs are independent, the process of asgjgags to the input
edges and labels to the output edges transforms the Marlam th an encoder,
whose operation can be captured with a codebook. There ane eldssifications
for block-based encoders that are discussed in this th@kis.most general type
is the deterministic encoder, which is an FSM encoder witktarninistic output
labeling: each of the outputs is given a specific label, whighrefer to as the
codeword. A block-decodable encoder is an FSM encoder wdrgydwo edges
with the same output label have the same input tag. Finakymost specific type
is a block encoder. This is an FSM encoder where any two etigebave the same
input tag must also have the same output label.

To illustrate the differences between the three types ob@exs, consider the
example code based on the state machine presented in Fi§saigning labels to
the output edges constructs a deterministic encoder. $ethatput edges are given
the input tags according to the Table 2.1, the result is ak@ocoder. In this table,
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the codeword is selected based on the current statadicated by a column in the
table, and a source word,, indicated by a row in the table. For example, if the
encoder is in state; and source word; is selected, then the output wordus,
the entry in the first row and first column of the table. Howeitas not possible to
transmit some of the source words in particular states. ¥amele, if the encoder
is in stater;, source wordg), and /33 have no mapping. Typically, a block encoder
would be able to transmit the same codeword for a given souced, no matter
which state is selected, i.e., each row in the table conthmsamew,; across all
entries and so both the encoding and decoding do not depethe aarrent state.

A block-decodable encoder, using the same state machipegsented in Ta-
ble 2.2. In this case, each source word is valid in each satee it is possible to
assign two (or more) codewords to the same source word,dedvthat all edges
with the same output label have the same input tag. Thatdh, @aeword can only
be listed horizontally in the same row in the table and caappear on two different
rows. In this way, all block encoders are block-decodabllegfavhich are deter-
ministic. Later in this section, the idea of block-deco@abhcoders is examined
in more detail to discuss the additional advantages thatsewiith block-decodable
encoders.

W,

W1 m. W2
Wy

Figure 2.2: Example of a finite state machine.

Table 2.1: Sample block encoder

source| oy | 02 | 03 | 04
B wy | Wy
65 W2 | W2
B3 w3 w3
N Wy Wy
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Table 2.2: Sample block-decodable encoder
source| o1 | oy | 03 | 04
B Wy | Wy | W2 | W2
Bo | wy | ws | wy | ws

2.2.3 Capacity of Constraints Modelled by an FSM

For the block-type encoders used in this thesis, the soyrobds are always taken
from a binary alphabet, while the coded symbols are taken tie particular sig-
nalling constellation that is used. For example, in the addgpical constrained
codes, such as binary codes enforcing a DC-free or RLL constthe coded sym-
bols are taken frord0, 1} (or equivalently{—1, +1}), however, in later chapters,
constrained codes are constructed using coded symbols fiake QPSK, 8 PSK,
or 16 QAM alphabets. In all cases, a fixed-length block codb wbrds of length
m source bits and length coded symbols has a rate 8f = * binary digits per
coded symbol.

The capacity of a FSM is calculated in the same manner as ifawvasMarkov
information source. The connection matrix, (referred to as an adjacency matrix
for a graph), is calculated and the maximum eigenvalyg of D (the spectral
radius of a graph) is evaluated. Using (2.9), the capacitylmevaluated. The
capacity of this FSM (and the constrained system it modgigiven in units of bits
of information per coded symbol.

2.2.4 Franaszek’s Recursive Elimination Algorithm

For a given FSM that models a particular constraint, Fragldszecursive elimi-
nation algorithm [8] finds a suitable set of principal states= {01, 05, ...}, for a
specific set of code parameters &ndn) and can be used as a basis to find a near-
capacity achieving code for this constraint. A principailtstis a state in which the
FSM can exist at the end (or beginning) of each codeword. 3étisomprises a
subset of the original channel states of the FSM since saabessmnight only occur

at other positions within codewords. Franaszek’s algoritecursively eliminates
states in the FSM that have fewer th2iih outgoing edges until a suitable set of
states is found such that each remaining state has a minirh2fhautgoing edges.
For codewords of length, the code designer is interested in how many paths of
lengthn exist between two states. Théh power of the adjacency matrik)”, pro-
vides this information. To ensure that each source word In@grasentation in each
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state, a valid code exists provided that each state hassa2fe&ransitions or edges
leaving it, thatis _,[D];; > 2™ for each state;. If any state does not have enough
edges, that state is eliminated and the remaining statesoaedered the set of
principal statesP”. Each of the remaining row sums bf', ¢(o;, P) = >, [D]};,
whereQ = {j : 0; € P} must be at least equal 2" for eachi. Each time a state is
eliminated from the set of principal states, this critefi@ehecked. The algorithm
continues, eliminating states recursively, until a setragig@pal states is found that
satisfies this criterion. With™ outgoing edges in each state, it is possible to assign
a unigue sourceword to the outgoing edges in each statdingreadeterministic
encoder [9] that will, in general, require state-dependesbding. If the procedure
terminates successfully, the remaining states are pahstptes.

When the set of principal states is known, it is straightfadua trace through
the FSM, starting from each state, to enumerate all the codsof lengthn. With
this information, it is possible to construct a determigigncoder. The steps in
code construction using this approach are therefore aswsll An FSM is con-
structed to describe the code, and its capacityis evaluated. Values for andn
of reasonable length (say, < 20) are then selected such that their ratio/n, is
close to the value of’. With these values af: andn, the Franaszek algorithm is
run to determine if a state-dependent code can be consirutsm, code tables are
constructed to facilitate both the encoding and decodihgot, other values ofn
andn are chosen and Franaszek’s algorithm is run again.

2.2.5 State-Independent Decoding

A desirable property for codes is the capability to deco@eréteived words with-
out requiring the use of state information at the receivérs s important because
keeping track of state information at the receiver can bélproatic. If errors are
made during decoding and the decoder determines the nexirstarrectly, it may
continue advancing through states incorrectly and thezefworrectly decode sub-
sequent words. There are at least two approaches to aflékiatproblem: use of a
sliding block decoder and state-independent decoding.sliding block decoder,
each codeword is decoded by either looking ahead or lookaey b fixed number
of codewords, when ambiguity arises, in order to deterntigestate of the code.
In this way, error propagation is limited to the width of tHedk considered by the
sliding block decoder. State-independent decoding ateheiver eliminates the
problem by not requiring that the decoder keep track of aateshformation. This
requires that there be an unambiguous inverse to the outpctién,/ (o, 5,), that
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Table 2.3: Set of codewords partitioned into a group of dhela

01 | 02 | 03

wy | W

w2 w2

w3 | w3 | w3
Wy | Wy

W5 | Wy | Ws

has no dependence on the encoder statd-or a block-decodable code, any two
edges with the same output label have the same input tag. Byiexa only the
output labels, the encoder is then able to determine thd taguvithout requiring
knowledge of the state;, satisfying the need for state-independent decoding.

In order to determine whether or not it is possible to desigtate-independent
decoder, in [8] Franaszek suggests partitioning the cadesinepresentation based
on a group of alphabets. Each alphabet, describing a sitafie, €ontains code-
words that are listed vertically in a table. Codewords thatar more than one
alphabet are placed in the same row in the table. The blamdespathe table corre-
spond to codewords that violate the constraints for thdiquéar state and therefore
do not exist in that particular alphabet. A simple exampléhdf partitioning, con-
taining five codewords and three states in total, is predant@able 2.3. Upon ar-
ranging the codewords in this manner, it is possible to seehndreas may prevent
state-independent decoding. The “spaces” that exist legtwego codewords in a
vertical line are possibly problematic. To find codes thatloa state-independently
decoded, the code designer must attempt to fit other codevwrthese “spaces”,
creating a densely packed table of codewords with at #astll rows of words. A
single row full of words will comprise the encoder’s outpunhttion,i(e, 3,), for
a particular source wordg,,.

Based on this tabular representation of codewords, [8] deescthe following
necessary and sufficient condition for the existence oéstatependent decoding:

Condition 1 Condition for state-independent decoding [8]: U&t(c,) denote the
set of words, or alphabet, corresponding to stafeA necessary and sufficient con-
dition for the possibility of assigning binary words to themieers ofiV (o,), j =
1,2,...J, whereL is the total number of states, so that decoding is indeperafen
jisthatforl <u <wv <y < L and for each

w;, € W(oy) ﬂ W(oy)
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Table 2.4: Set of codewords that do not permit state-indégeindecoding.

source| oy | oy | O3
B wy | wy | wy
Ba | we | wy | wy
B3 w3 | W3 | W3
Ba Ws | Wy | Ws
such that
wy, ¢ W (o)

there exists av;,, € W (o,) such that there exists ng;,1 < ¢ < L, for which
wil,wig € W(O'Z)

Condition 1 states that whenever a codeword emanates froretétes o, and
gy, but does not emanate from another statge there must be another word,,,
that emanates from state but does not emanate from eitheror o,,. This condi-
tion simplifies to not having the same word in two different/so

Consider the code in Table 2.4, which is one attempt at castgtigia code table
for the encoding of four source words given the previousetatflcodewords. In
order to fill all the spaces, codeword is split and copied into the rows containing
codewordsw; andw,. Unfortunately, this code cannot be decoded without state
information since upon receipt of the woud, the decoder needs to know whether
it is currently in stater; or o3 in order to determine whether the source word was
2 Or 3.

Condition 1 implicitly allows for discarding some words frdtre table, should
they not be required. However, in the example above, werdorresponding to
source wordB, cannot simply be discarded because there would not be enough
codewords (or equivalently, enough edges in the encoder) E&batisfy the code
construction when there are four source words to be represenf there were
only three different source words, then it would be possibleonstruct a table
permitting state-independent decoding by discardingand usingw; andw, to
represent the same source word, where eitheor w, can be used in state,.
While discarding codewords does lower the rate of that pdeiccode, it must be
kept in mind that values fom andn chosen during the implementation are often
already lower than the capacity of the code. That is, duruaduation of principal
states, it is standard practice to choas@ndn such that their ratio is as close as
possible to the capacity of the code, but it is usually nosjiids to match that value
exactly. In the construction of most codes, the ability tecdrd some codewords
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becomes a significant degree of freedom to be leveraged. Ipt&tz we consider
in detail the construction of code tables that enable statependent decoding.

2.2.6 Construction of State-Independent Decodable Codes

As discussed above, the steps to constructing a stateendept decodable code
are as follows.

1. Using Franaszek’s iterative procedure, suitable cateidalues forn, n, and
P are selected. Typically the values closest to achievinga@pare chosen
first.

2. The constraint is modelled using an FSM, and the desigmergtes a list of
sequences (codewords) that emanate from each state onlthe FS

3. Using the list of sequences, a tabular representatidreafdde is constructed
using the group of alphabets approach proposed by Franaszek

4. The tabular representation is manipulated in such a ndhnaethe condition
for state-independent decoding is not violated, whilenapting to form a
sufficient number of complete rows such that each source wamde repre-
sented regardless of state.

5. Ifitis not possible to construct a codebook that does idate the condition,
another set of candidate values forn, andP are selected and the procedure
is started again.

In the next chapter, an approximation algorithm for the tmasion of codes that
permit state-independent decoding is proposed. Thisi#igodetails a method for
performing step 4 in the list above. An alternate approaciomsidered below.

State-Independent Decoding: Set Partitioning and Covers

In [9] the authors consider, in detail, the determinatioranfoptimal set of prin-
cipal states. Along with their findings, they discuss thebpgm of constructing a
state-independent decodable code, which differs fromepeesentation discussed
above. Initially, the authors perform a number of the sampsstincluding finding a
set of principal states using the Franaszek algorithm andsthg values forn and

n, as in step 1 above. Step 2 proceeds in a similar fashionislalbe assigned to
output edges, and valid edges from each state are enumesadeting with step 3,
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however, rather than examining the code in terms of a tabepaesentation using a
group of alphabets, the authors present the problem in tefsets. Codewords are
partitioned into these sets, according to the states fromhwparticular codeword
emanates, which the authors refer to as a partition of lalbéks overall partitioning
can be thought of as a Venn diagram visually displaying theres. Fig 2.3 shows
the set partitioning for a three state code. Regions 1, 2, atheh8te codewords
emanating only from states 1, 2, and 3, respectively. Regidenbtes codewords
that emanate from both states 1 and 2, region 5 denotes codiea@mmmon to both
states 2 and 3, while region 6 denotes codewords emanatingfoth states 1 and
3. Finally, region 7 denotes codewords that emanate fronhiade states. For ex-
ample, if a codewordy; emanates from states, o, andos, then that codeword
w; would be placed in region 7. Upon the completed construaifdhis Venn dia-
gram, all of the minimal covers are determined by solvingtaceeering problem.
For the three state code, one example of a cover is the uni@gmins 1 and 5.

Figure 2.3: Venn diagram showing a set partitioning intaoeg for a three state
code.

With the set covering problem solved, the regions, mininmadecs, and their
associated codewords are used as input to an integer progngnproblem. The
goal of the integer programming problem is to construct c®ver P using the
regions in the Venn diagram; the details of the integer @ogning problem are
discussed in [9]. As an example of the construction of a ctoreP, consider again
the example discussed in the preceding paragraph. If thre@mutained only those
three statessy,, o, ando, in P, then the wordv; would form a cover forP since
it contains all the states withifr. If there are additional states, then another word
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would have to be combined with; in order to construct a cover fégr. Comparing
this to the tabular representation, a horizontal row in Hiset is a cover forP if
the row contains no spaces. While the two methods of presemtte similar, the
method used in [9] provides an alternate method for appingdhe problem. In
general, both the set covering problem and an integer pmograg problem are
NP-complete. This will be revisited in Chapter 3 in more detai

2.3 Spectral Analysis

The analysis of random signals can be found in [10], whileahalysis of block
coded signals is covered in [11]. In this section, a veryflatienmary of both topics
is covered. In general, the main purpose is to establishitetogy and notation,
while presenting the important results, which is done withmroof. Full proofs of
the results contained in this section can be found in the eéferences cited above.

A common constraint for a code designer is that of satisfpiagicular spectral
characteristics. A time-varying signal can be represebieds spectrum, a set
of frequency components that occupy a particular rangeeafuencies, which is
commonly evaluated by a Fourier transform. The most comynosgd frequency
domain characteristic for a stochastic signal is its PS[2tion.

2.3.1 Stochastic Processes

A stochastic processy;, can be defined as an ensemble of sample functions consid-
ered at particular time instants t¢,, . . . t,,. The random variables of the stochastic
processX;, have a joint probability density function (pds) i, , z4,, . .. x:,) Or in-
dividual pdfsp(x;,). The mean ofX,, is given byMx (t;) = E{X(t;)}, where .}

is the expectation operator. When considering two randomivas, X;, and.X,,,

the relevant statistics are the auto-correlation function

Rx(t1,t2) = E{X,,, X3, } (2.10)
the average power of the proces; (¢, t2) whent; =ty = t:
Rx(t,t) = E{X?} (2.11)
and the auto-covariance:

Cx(ti,ta) = E{[Xs, = Mx (t)][Xs, = Mx(L2)]}- (2.12)
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Stationary Processes

A process is considered to be stationary in the strict sdradedf its statistics are
time invariant. That is, the joint probability density fuiom, p(zy,, x4, . .. x4,)
does not change when shifted in time, an&o,, ., ... 2, ) = p(z4, ... 24,)
for an arbitrary time shift-. In this case, since the pdf ¢¥,,, X;,) is identical
to the pdf of(X,, .+, Xi,+¢), the autocorrelation function reduces®q (t1,t2) =
Rx(|ty — t2|) = Rx(|7]), wherer = t; — t5. A slightly weaker form of station-
arity, wide-sense stationarity, occurs when at least thamasd auto-correlation
functions are time invariant, i.e. {K;} = Mx and EX;X;,,} = Rx(7). When
a process is at least wide-sense stationary, the autotangarfunction is given by
Cx (1) = Rx (1) — M%. In this case, the PSD of the process is given by the Fourier
transform of the auto-correlation function:

Hx(w) = /00 Rx(7)e79“7dr. (2.13)

o0

A stochastic process is said to be cyclo-stationary whest#sstics, such as
probabilities or correlations, vary with some period. Agess that is wide-sense
cyclo-stationary has the following properties:

Mx(t) = E{X(t)} = Mx(t+T)
Rx(t,t+7)=Rx(t+T,t+T+7) (2.14)

for some periodl’. The block codes examined in this thesis are cyclo-statyona
processes, since their statistics vary with a period equgidd block length. Typi-
cally, cyclo-stationary processes are transformed irgtiostary processes, so that
the spectral analysis is tractable. To do this, a randonabkri\ is added to the
argument of the procesX;(¢), so that:

Xa(t) = X(t — A) (2.15)

whereA is a uniformly distributed random variable over the intétva< A < 7.
Including the uniformly distributed random variable reraswthe time reference,
a process which is referred to as phase-averaging [12]. Bi2 & the cyclo-
stationary process is then equal to the Fourier transfortheofiuto-correlation of
the new stationary processn (t).

In particular, a code designer constructing a constrainee ¢s often interested
in shaping the PSD. When a set of symbfis} are transmitted with pulse shape
s(t) with periodTy, the PSD is given by:

Hx,(w) = H,(w)Hs(w) (2.16)
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with H,(w) = Y07 R.(k)e ™% and Hy(w) = [_r(t)e7“dt, wherer(t)

is the autocorrelation of the pulse shape, that i) = 7 [~ s(7)s(t + 7)d7. In
other words, the PSD of the overall process is related touktee @orrelation of the
symbols that are being transmitted, through(w), and the pulse shape that is used,
throughH(w). The design of constrained codes involves carefully coostrg the
symbols sequencér;} such that the desired spectral properties are satisfied, by

virtue of the auto-correlation functioR,, (k).

2.3.2 Spectral Analysis of Markov Information Sources

Consider anL-state ergodic Markov information source, with transitraatrix ).
Its auto-correlation is given by [13]:

R.(k) = E{X, X 11} (2.17)
while the mean is given by:
L
M, = E{X;} = ((oi)m (2.18)
=1

where((o;) is the symbol emitted when the Markov chain visits stateandr;
is the steady-state probability of stateas defined in subsection 2.1.2. The auto-
covariance is then equal to:

=> > ml@)@)Ql; — QO lom)?

i=1 j=1 i=1

= > ml(e)(Qlf ~ m)(oy) (2.19)

i=1 j=1

where[Q]’; is the entry in thé:ith power of the transition matrix when the Markov
chain transitions from state; to states;, separated by intervals. (2.19) can be
simplified by writing all variables in matrix form. The symlbautputs are written
as a vector, according @’ = (((o1),((02),...,¢(o1)), whereT denotes the
matrix transpose. The steady-state transition probisildgre written in a diagonal
matrix IT = diag{m, 7o, ..., 7}, Where diad.} corresponds to creating a matrix
with those entries along the diagonal and with all otheriesitbeing zero. Finally,
R~ = 1lm, wherel is an all ones column vector antlis a vector containing the
steady-state transition probabilities. The auto-covemgacan now be written as:

Ca(k) = ¢TIHQ" — Que)C. (2.20)
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The PSD of the Markov information source is then given by:

— i R, (k)e 7k

k=—o00

= M2276(w) )+ 2 Z C, (k) cos(kw) (2.21)

where the second line follows from use of (2.17), (2.19), @&0). This formula-
tion separates the equation for the PSD into two portions: retated to the mean
and auto-covariance at zero, and the other being a summaititire remaining
terms in the auto-covariance. The usefulness of writingetheation for the PSD in
this manner is discussed in the following subsection.

2.3.3 Spectral Analysis of Block Coded Signals

Similar to the case of a Markov information source, the equadefining the PSD
of block-coded signals is somewhat difficult to work withweyer, it can be sim-
plified using matrix notation. In particular, consider adk@ode with source word
lengthm and codeword length, wherex; = (x;1,x;2,...2;,) is thejth trans-
mitted codeword. The block coded sequence, using a pulgeeska, is given

by:

= ) wslt— (in+i—1)] (2.22)

j=—00 =1

Block coded signals can exhibit two types of periodicity: oslated to the channel
bit interval and a second related to the block length. Thes@taveraging process
takes place over the longer of the two periodsFollowing the procedure in [11],
the auto-correlation coefficients can be written in mati@tation using am x n
matrix, Ry, given by:

=E{z] v}, k=0,%1,42, ... (2.23)

The PSD is simply the Fourier transform of the auto-corretatunction:

Z Ra(i)e /™. (2.24)

1=—00

In this equation, the PSD depends on the phase-averagetatioms, R, (i), rather
than the codeword correlation®,. While it is possible to evaluate the values
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for R.(i) (see [11]), (2.24) can be re-written usiig. Definingw as the vector

w = ((e)™, (e)?*, ..., (e)’™), (2.24) can be re-written as:
1 « :
H,(w) =~ g 2.25
»(w) - k;oo wRiw*e ( )

wherew* is the conjugate transpose @f This formulation performs the phase-
averaging process while accepting the codeword correlsas input.
It is desirable to have the PSD written in a form similar to:

H,(w) = Hoe(w) + Hoa(w) Y 2m8(w — 21k/n) (2.26)
k=—00
so that the PSD consists of two separate contributions: dhénzious component,
H,.(w), and a series of discrete components,;(w), which are commonly re-
ferred to as spectral lines. The spectral lines, if non-zemterge at multiples o}f
Recall that in (2.21), the PSD could be split into two partse Tihst part, which
is given by M?276(w) + C,(0), denotes the discrete components, which are re-
lated to the mean and auto-covariance at zero. The secotidpdhe summation,
2> 07, Cu(k)cos(kw), uses the remainder of the auto-covariance, defining the con
tinuous portion of the spectrum. This representation iggpred since it allows the
code designer to isolate the effects of two contributionthefspectrum. Generally,
a code designer wishes to minimize the discrete compondrite wontrolling the
shape of the spectrum with the continuous component.
Re-writing (2.25) so that it appears in the form (2.26) gives

1 2 & A
H,o(w) = Ew(RO — R )w* + ERe§ ‘w(Ry, — Ry )w e ik (2.27)
k=1

and .
Hpg(w) = S wReow” (2.28)
n

whereR, is the limit of the correlation matrice®};,, ask tends toco. Notice that
the discrete components are related only to the correlatiatnix, R, which is
related only to the mean value of the codewords. Evaluatiegontinuous spectral
components requires the evaluation of all of the corratatiatrices ., and so the
problem of shaping the spectrum of a code appears difficalttuRately, most of
the FSM encoders for constrained codes can be modelled askawaocess, for
which the above analysis holds, but which also have stra¢hat makes the above
analysis tractable. In the next subsection, the spectrdysis of FSM encoders
with memory is considered, and a method to evaluatehis given.
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Spectral Analysis of FSM Encoders

Consider an.-state FSM encoder with transition probability matiix,where each
state accept®™ input words, outputting a codeword based on the currere stad
input word. The codewords of lengih y;,, are doubly indexed by the encoder
stateo; and the input word,,. A matrix A,,, with dimension x n, is constructed
for each source wordj,, with output codewords comprising each row so that

X1u
X2u

A= . (2.29)

XNu

In other words, the collection of these matrices specifieseticoder’s output func-
tion, 2() in matrix notation.

Similarly, the encoder’s next state functiai,), is also written in a matrix no-
tation. For each input word3,, a square matrixs, is constructed. The entries
of this matrix, [E,];;, are set to unity if for sourceword, there is a valid tran-
sition from stateo; to states;. As in subsection 2.3.2, define the matfix =
diag{m, ms, ... 7} to be the diagonal matrix with the steady state transitiabpr
abilities my, 7o, ..., m, on its diagonal and zeros elsewhere. Similafly, = 1x
so that()., has each of its rows set to be equal to the steady-state plibbaln
vector formsr.

With this notation, along with derivations contained inJlthe first correlation
matrix can be calculated according to

2m
Ry =) ps AJIA, (2.30)
u=1
wherepg, is the probability of input word3,. The remainder of the correlation
matrices(k > 1) are calculated according to

R, =GTQ"'aG, (2.31)

whereG, = 3227 ps, ETTIA,, Gy = Y227 pg, Au, andQ* ' is the(k—1)th power
of the transition probability matrix. The zeroth power oéttnansition probability
matrix, Q°, is set to equal the identity matrix. The final correlationtmxas given
by:

Roo = GT QoG (2.32)
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The PSD of the block code is then calculated using (2.27) 2r28) by substituting
the values for theé?;, evaluated using the method outlined in this subsection.

Generally speaking, in this thesis, when evaluating the BSbe codes that
have been constructed, a relatively simple code in the Yaofitonstructed codes
is chosen and a full analytical spectral analysis is coregletsing the procedure
above. This is compared to a PSD evaluation obtained viaatmon to confirm the
validity of the results. Upon verification, the remainingdes constructed within
that family of codes have their PSD evaluated through sitrmrla

To obtain the PSD of a code through simulation, random sodate is gener-
ated and fed through the encoder, which outputs a serieslefnards. For work in
this thesis, to generate accurate PSD plots with an acdepaecution time, five
million codewords were analyzed. The codewords are conatdd serially into a
vector and that vector is split into a number of equal segmekfast Fourier trans-
form (FFT) is applied to each segment and the FFT results\aeaged to form
the PSD. Rather than splitting the codeword vector into a rarmob equal, non-
overlapping segments, it is possible to have the segmeetapv To improve the
spectral results further, prior to calculating the FFT affeaegment, a windowing
function can be applied first. In this thesis, the spectrsliite obtained via simula-
tion are calculated using non-overlapping segments othe?@48 with a Hamming
window used as a windowing function.

2.4 Types of Constrained Codes

In this section, a brief summary is given of the most commaes$yof constrained
codes that appear in the literature. This includes both RLdescand DC-free
codes. As the names suggest, RLL codes are designed undentteamnt that the
run-lengths of the symbols in the coded sequence are testriic some manner,
while a DC-free code is a code that is designed under the eomisthat there is a
null in the spectrum of the code at DC. These two constraigsnat necessarily
mutually exclusive; merging the two together into a DC-fred.Rbnstraint is also
discussed. In most typical DC-free or RLL codes, the outputatet is considered
to be binary. Constrained codes employing multi-level digiaalso exist in the
literature, typically to satisfy a spectral constraintdaare also discussed in this
section. Finally, multi-dimensional codes, where the t@amsed code employs
binary signalling but is written to a two or more dimensiomeddium, are discussed
briefly.
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The overview of common constrained codes presented in duos serves
two main purposes. First, the performance of the approximatlgorithm devel-
oped in the next chapter was tested on a family of codes witdrgelnumber of
states, those satisfying the the DC-free and RLL constraBgsond, while codes
have been developed that use multi-level signalling oreatot multi-dimensional
surfaces, little work has been completed on codes using tvmooe dimensional
signalling alphabets (natively allowing for multi-levagealling). Capacity calcu-
lations for constrained codes with multi-dimensional spihddphabets is the focus
of Chapter 4, while Chapter 5 applies the algorithm for codégaet® these types
of codes.

2.4.1 Run-length Limited Constrained Codes

RLL codes date back to the 1960’s, when several authors qeetltihe theoreti-
cal foundation of these codes [14]- [17]. The field still rensaan active area of
research, as researchers continue to search for new codetesign techniques.
RLL codes have become a mainstay in the optical storage ingdisim the CD
to the DVD, as well as the newer BluRay Disc. The EFM code wasldped for
and used in CDs [18], while its successor EFMPIlus was used iD4J¥9]. These
codes have also found use in Super Audio CDs and some minifaisdards. Be-
ginning in the 1980’s, RLL codes were widely used in the floppg &ard disk
drive storage area for many years. Hard disk drives have@magla synchronous
variable length(2, 7) RLL code [20].

RLL codes impose a minimum and/or maximum runlength congtoai the bit
sequence that is being communicated across the channgljigakently, written to
the storage medium. This runlength is usually measured amrodl bits between
transitions. A minimum runlength loosens the requirememtshe detection cir-
cuitry by controlling the highest transition frequency.tie case of optical storage
devices, such as a CD, the data is stored by a series of tinptatttns, knows
as pits, while the areas between these pits are referredlém@s. Increasing the
minimum runlength increases the size of these pits and Jaéineleby easing the re-
guirements of the detection circuitry that reads the datgeheral, in a bandwidth-
limited channel, 1SI results when the data is transmittadraasing the length of
a symbol will reduce this ISl if the system bandwidth remaiosstant [2]. The
maximum runlength ensures an adequate number of trarsitidihe data stream.
These transitions are used by a phase-locked loop to retiouag information or
by the decision threshold in the detection circuitry, toverg them from drifting
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and losing synchronization with the received symbol segeen

In the literature, the minimum runlength is specifieddyyvhile the maximum
runlength is specified by; together these two parameters specify.&) code. For
example, thé2, 7) code used in hard drives hds= 2 andk = 7. The correspond-
ing minimum and maximum runlengths are equadlt¢ 1 andk + 1 respectively.
RLL sequences are often designed using another sequeried, @alk) sequence.
A (dk) sequence is characterized by two logical ones separateddgsad zeros,
while the maximum runlength of logical zeros between oned imostk. A (dk)
sequence can be converted to a conventional RLL sequenceiiple process. A
logical zero in the(dk) sequences specifies that there is no bit transition (zero to
one or one to zero) in the RLL sequence, while the presence é endicates that
there is a bit transition. Satisfying thleandi parameters in thglk) sequence cor-
responds to an RLL sequence with minimum and maximum ruresrafi/ + 1 and
k + 1, respectively. Rather than designing an RLL sequence, thedesigner can
choose to work with{dk) sequences when convenient, as it often is. Additionally,
depending on the storage medium, the data written to thagganedium may be
written out directly as &dk) sequence, which is referred to as non-return-to-zero
(NRZ) notation. If the(dk) sequence is mapped onto an RLL sequence prior to
being written to the storage medium, it is said to be in ndofreto-zero inverse
(NRZI) notation.

2.4.2 DC-free Constrained Codes

Similar to RLL codes, DC-free codes have an extensive hist@3j-[[23]. DC-
free codes, also termed DC-balanced or spectral null codesoastrained codes
that are designed to have zero spectral content at and arenadrequency in the
continuous component of their PSD. The receiver in the aysian leverage this
knowledge and employ filtering prior to decoding. This filbgr can be used to
remove unwanted low frequency disturbances caused by elfreents in the com-
munication track, such as fingerprints on CDs, or can be arrentigart of the
system, as when components are AC-coupled. Similar to RLLs;dHe balanced
nature of these codes assists with demodulation. For exarti@ frequent tran-
sitions in the data stream can be used for timing informatoorclock recovery,
and the balanced nature assists with establishing reliabdsholds with which to
determine the values of the received symbols [2].

DC-free codes with output symbols taken from a complex slgmphlphabet,
discussed in the later chapters of this thesis, have somtaadd advantages. The
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position of this null in the frequency response of the codelmashifted by altering
the complex values of the coded symbols [24]. This is usefulioiding inter-
ference at a given frequency or for creating a signal-freguency band for the
insertion of a pilot tone.

Any code designed with balanced codewords (i.e., codewsittisequal num-
ber of zeros and ones) will have a spectral null at DC in thdisoaus component
of its spectrum. In this case, if antipodal signalling is éogpd, the code will also
not have a discrete component in its spectrum at DC. The ma@iDC-free codes
are designed in this way because content in the discreteaoengs of a spectrum
is often viewed as “wasted” power because this power is nioigbesed to carry
information. Where possible, the spectrum of the DC-free satisigned in this
thesis are kept free of tones. It is, however, generallyagtforward, but time-
consuming, process to re-design the code slightly to rerttmse tones.

A common design technique to ensure that a code contain$ @t (T is to use
balanced codewords. Another way of stating this constraiby considering the
RDS of a codeword. The RDS,, of a codeword{z;} = {x1, zs,...z,} is defined
as the cumulative summation of the bipolar representatiadheobits in the word
on a bit-by-bit basis. Using binary antipodal signallingues where the logic one
has a value of-1 and a logic zero has a value ofi, that is, wher{z;} € {—1,1},
RDS is evaluated as: i

Z; = Z Tj = 2i_1+ ;. (2.33)

j=—o0

Generally speaking, only DC-free codes with codewords uaiuglue ofn that is
even are considered. Codes with odd length codewords carbalbalanced, for
example by ensuring that each codeword has the same numbee®fs all other
codewords and the same number of zeros as all other codewendexample, a
lengthn = 13 code could be constructed where each codeword has seveamhes
six zeros. These codes, however, will contain discrete corapts in their PSD and
are not considered here. The RDS of a codeword is often reftoras its disparity,
with an RDS of zero indicating a zero disparity codeword. Aea@drd with an
equal number of zeros and ones will have a zero disparityaacmtle containing
only such codewords will have a spectral null at DC in both ¢batinuous and
discrete components of its spectrum assuming that antigagelling is used.

To determine the possible code rates for codes using zepartts codewords,
or balanced words, a method similar to (2.6) is used. The eurabsequences
that satisfy this constrainty,(n), for a codeword length of is found using the

33



Table 2.5: Zero disparity codewords of lengtland the corresponding code rate in

binary digits per symbol.

n | Ns(n) R

2 2 0.500
4 6 0.646
6 20 0.720
8 70 0.766
10| 252 |0.798
12| 924 |0.821
14 | 3432 | 0.839
16 | 12870 | 0.853
18 | 48620 | 0.865
20| 184756| 0.875

binomial coefficientV,(n) = (n’}z) If each of the symbols in th&;(n) sequences
are binary, lengthm = [log, Ns(n)| source sequences can be represented. The
maximum code rate is theR,,,.. = +|log, N,(n)] with units of binary digits per
symbol. Table 2.5 lists values df,(n) and R for several values ofi. Clearly, as

n increases, so does the rate of the code. This table presépntaahievable rates,
but does not address how the encoding or decoding is perébridetice that the
overall code rate is relatively low, evenasncreases.

The code rate of DC-free codes can be increased by relaxingaihgtraint
that each codeword have a zero-valued RDS. Codewords witardisp other than
zero can be used, provided that the RDS of the overall codagkeseg remains
bounded [25]. For example, for = 6 the word010010, which has disparity -2,
can be included along with the woitd0110, which has disparity +2. If these two
codewords were transmitted sequentially, the combined Rb&dibe zero and
so it is possible for the overall RDS to remain bounded. Tloeegfwith a proper
encoder design itis possible to use words of non-zero dtgpdhis encoder would
choose the sequence of codewords so that the RDS value is dnhutygically
by forcing this RDS to as close to zero as possible after eacbdamg interval.
Commonly, codewords with low disparit{;£2, +4, +6, ...} are chosen, which we
refer to as low-disparity codewords. The advantage of thig@ach is that more
binary sequences are included in the codebook, increasengumber of different
sequences that are possible, which increases the amounfibohation that can be
carried by the coded sequence. The disadvantage is that saoh codeword no
longer has a zero RDS, the spectral performance around DUfisgkcthe width
of the spectral notch, will suffer. Typically, the largeettisparity of the words that

34



Table 2.6: Capacity, in bits of information per symbol, of seqces{z;} as a
function of DSV, V.

()
0.500
0.694
0.792
0.895
0.886
0.910
0.928
0.940
0.950

PP
PFBBoo~N~ouob~w=

are included in the code, the greater the degradation inphetial performance of
the code.

More generally, a code is DC-free when the RDS is bounded byta fialue [25].
Rather than ensuring every codeword is balanced, ensuangh#RDS is bounded
is often a much simpler constraint to satisfy.

For codes using symbols from complex-valued alphabetsstngsted later in
this thesis, the definition of RDS is extended in a straightéod manner, using the
symbol values in the complex baseband representation ddigiialling alphabet
in the RDS summation on a symbol-by-symbol basis. Providatittite RDS is
bounded, as is the case when using symbols that are binargdsahe code will be
DC-free [25]. A DC-free code with symbols from a complex baseb@presenta-
tion implies a null at the carrier frequency of the corresphog bandpass system.

If the RDS, z;, of a sequence of bitsfz;}, is bounded to a maximumys,
and minimum,N; value, the digital sum variation (DSV), which is the number
of different values of RDS that can occur in the bit sequensgjiven by N =
N, — Ny + 1. It should be noted that the DSV is calculated on a bit-bybbgis
and not only at the end of the codeword. This means that a aogéoging zero
disparity codewords will still exhibit a non-zero DSV witheach codeword, as it
is only constrained to zero at the end of each word. The cgpaicthis constraint
can be calculated as a function of the DSV. This is determiryetie eigenvalues of
the connection matrix of the resulting finite state machitig.[ Table 2.6 shows the
results of the capacity, in bits of information per symbaok, & given DSV,V [2].

It is not surprising that as the DSV is allowed to increase, résulting capacity
increases as more bit sequences are included in the codebook

The variance of the RDS, called the sum variaste= E{2?}, gives an indi-
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cation of the width of the spectral null around DC [22]. Thelthi of the spectral
notch is important, for example, since it relaxes the caists imposed on the sys-
tem designer when applying a high-pass filter to remove utedlow frequency
spectral content, i.e., noise or other signal distortiomdé&f the assumption that
the auto-correlation function of the code decays expoaliyta useful relation be-
tweens? and the width of the spectral notah,, has been developed. This relation
is concise and simple [22]:
252wy ~ 1. (2.34)

In other words, the width of the spectral notch around DCveligely proportional
to the sum variance. In [22] several examples of codes theyt thlis relationship are
presented. From a system design perspective, this resflingortance as it may
be easier to design a code based on the sum variance of thearaderather than
doing a full spectral analysis, knowing that codewords wiiihimal sum variance
will result in good spectral performance.

2.4.3 DC-free RLL codes

Many of the constrained codes used in practical systems$y asiche EFM and
EFMPIlus codes discussed before, are designed to satidiyOi®tfree and RLL
constraints simultaneously. There are many design teakrithat can be used.
For example, in the EFM code, three merging bits are addduktfourteen coded
bits. While the addition of these bits was originally intedde ensure that the RLL
constraint is satisfied, in some cases there are multipleestor the three merging
bits. In those cases, the merging bits are chosen such thatbolute value of
the RDS is minimized at the end of the codeword. While this daggnarantee
that the RDS is bounded, the infrequent violations of the traitg are not severe
enough to be problematic. In the case of EFMPIlus, the codéders designed as
a sliding block code to guarantee that both the DC-free and Ridsitaints have
been satisfied while using a higher code rate. In the case bIFHFs, there are
extra words (or surplus edges) emanating from many of thesstan the FSM. The
additional words are used to satisfy both constraints samebusly.

Another approach commonly used for constructing a DC-free Rbde is
Guided Scrambling [26]. Instead of designing a code with mlper of states,
the encoder is able to generate a number of alternative ardevibased on an in-
put source word and a number of scrambling bits. The encoaer ¢hooses the
“best” codeword, which in this particular case is the codelwshich best satisfies
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the DC-free RLL constraints.

In the next Chapter, an approximation algorithm is develdpatidesigns codes
that can be decoded at the receiver without the need foristatenation. To quan-
tify the performance of this algorithm, it is used to constrDC-free RLL codes
for a wide variety of parameters for both the DC-free and RLLst@ints. The
encoder enforces both the RLL and DC-free constraints simetdtasly, while the
surplus edges emanating from a number of the states on theaFSibed to ensure
that the code permits state independent decoding.

In DC-free RLL codes, the DC-free constraint is often specifigdhie max-
imum number of allowable RDS valued, while the RLL constraint is usually
specified in terms offl andk, as before. These constraints are specified simulta-
neously using the notatiofil, &, N'). However, in this case, constructing an FSM
model is somewhat difficult whefalk) sequences are used. Instead, a simpler FSM
model can be constructed by using states which have stasbles indicating the
current value forV, the current runlength, and whether the current runlength c
sists of zeros or ones. To construct this FSM, the conssrairg portrayed in two
dimensions where one constraint, which in this case is chusée the DC-free
constraint, is modelled in the horizontal direction, white other constraint, the
runlength limit constraint, is shown in the vertical diiect The movement in the
vertical direction is further divided into two halves, ag tlunlength constraint ex-
ists for both zeros and ones. The top half of the FSM is aridifrehosen to contain
the runlength constraint for ones, while the bottom halfregpnts the runlength
constraint for zeros.

An example of such an FSM is presented in Fig. 2.4 for the cdseravthe
running digital sum is bounded to values -4 through +4, thg&imam runlength is
limited to 4, and the minimum runlength is 3. In this FSM, theput of a logic
0 results in movement downwards and to the left; the outpatlofjic 1 results in
movement upwards and to the right. The states indicateddashed circles do not
need to be included in the model since they can never be edrdacktherefore will
never be included as primary states; however, their inafusiight facilitate easier
computer programming. Tightening or loosening the RDS caimgs results in di-
minishing or increasing the number of states in the horalaitection; decreasing
or increasing the maximum runlength has a similar effechewertical direction.
Changing the minimum runlength is accomplished by removinigserting edges
as necessary between states in the FSM.
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Figure 2.4: Sample FSM for a DC-free RLL code with parameférs 9, d = 2,
k=3

2.4.4 Multilevel Constrained Codes

Constrained codes are commonly designed with a binary adpplsaiice the codes
are generally employed on a medium where binary signalkngsed. However,
constrained codes have been extended to multilevel alphgtyd. Multilevel codes
are commonly designed to satisfy not only the DC-free coimgtnaith a null occur-
ring at DC, but are also designed to have nulls occurring &iceother frequencies
as well. For completeness, these codes can also be desigsettsty runlength pa-
rameters, although they have more often focused on therdesigpectral nulls.
Examples of such codes can be found in [28] [29] [30]. Muwitlecodes afford
the code designer some additional advantages over codes hisiary signalling
alphabets, such as a wider variety of parameters, leadibgtter codes.

A gary balanced code, with codewords of lengthnd source alphabet specified
withT', = {0, 1,...¢— 1}, is a code where the weight of each codeword is equal to
| (¢ — 1)n/2]. The weight of each codeword is calculated by taking the sach e
of the symbols of the codeword. Note that whegs 2, we require codewords with
weight|(2—1)n/2| = n/2. Thus, for alengtiu = 10 code, the symbols must sum
ton/2 = 5, which can only be achieved by transmitting the symbol “O&flimes
and the symbol “1” five times, in any order, creating the saalarced codewords

38



that were considered previously.

Perhaps the simplest method of constructing a multileveeaghich contains
only balanced codewords is to use Knuth’s complementatiethad [31]. In this
method, every sequence of symbols is balanced using a sipnpéedure. This
method was originally designed to be used with bit-valuepisaces, and was later
extended to multi-level sequences. The process for biteecabequences is as fol-
lows. A sequence of bits is mapped onto a balanced word by leongmting the
first (or equivalently the las. bits of each source word for an appropriate choice
of k.. For every sequence of bits, at least one valid choicek faxists, while a
number of sequences may have more than one choick. forhe value ofk. is
encoded in the coded sequence by appending its appropjatesentation to the
source sequence as parity bits so that the decoder can umdaaibping. Further,
the parity bits must be chosen in such a manner that the beexddéword remains
balanced. This method is suitable for very large sequenugtie and when the
sequence lengths are long, results in a high code rate.

Extending Knuth’s method to non-binary sequences invogeaseralizing the
procedure. In the case of binary sequences, complemenistize bitwise addition
of the source sequence with a flipping sequence. For exaropiaplementing
the first two bits of a length 8 sequence is the bitwise additbthe sequence
11000000. For multilevel sequences, appropriate “complementaioralancing
sequences are constructed as outlined in [32], one of whitieiall zeros sequence.
For every source sequence, at least one of the balancingrseszgican be added
such that a balanced sequence is generated. Examples @frefliodes using this
method of design can be found in [33].

2.4.5 Constrained Codes for Multi-Dimensional Media

Recent advances in holographic storage technologies hdue ke recording of
two-dimensional arrays of data becoming an active areasefareh. The informa-
tion stored on hard disk drives, as well as traditional @ptitrives, is written along
a series of tracks, which can be visualized as a one-dimesissequence. On these
surfaces, an adequate length between transitions was tempoensuring an ade-
guate number of transitions for the detection circuitry weguired, and robustness
to low frequency noise, i.e., fingerprints, was desirablem8& research has been
conducted in two-dimensional RLL codes for these surfacdg [Bowever, un-
like their one-dimensional counterparts where RLL and D@-trenstrained codes
are commonly used, the two-dimensional media often emplosernomplex con-

39



straints. Codes designed for use on these media are referasdwo-dimensional
codes and the underlying constraints are referred to aslimensional constraints.

Several different types of constraints that help to red&tén two-dimensional
recording channels have been proposed [35], [36]. One popohstraint in two-
dimensional recording systems is the hard-square modahiga(d, k) = (1, c0)
RLL constraint extended to two dimensions. In this constrdimere cannot be
neighboring pairs of 1's, either horizontally or vertiga]87]. These types of con-
strained codes have proven to be difficult to study for séwve@sons. First, ex-
act capacities are often not known for most types of comggabnly upper and
lower bounds. Second, modelling the constraints with an Ffakl proven to be
difficult. Third, codewords are no longer sequential in natbut are given by
two-dimensional shapes. The shapes themselves can beediffsuch as rectan-
gles or parallelograms, and the methods for tiling them aay {88]. Similar to
one-dimensional codes, while the shapes themselves mayohate the condition,
when tiling shapes together to construct a code, their agena#ion at the edges
may cause the constraint to be violated. In the one-dimaabktase, the concate-
nation of sequences is easily solved with merging bits, sisan the case of EFM,
but in the two-dimensional case, the solution is more compResearch has been
conducted in the study of the capacities of these conssraafdng with the design
of low complexity encoders and decoders [36].

Consider the case of the hard-square model, where in no paciere be two
neighboring ones. The capacity of such a constraint is krtowae approximately
0.58789 [39]. A very simple code, called the checkerboadk¢eatisfies this con-
straint and has a rate of one half, which is reasonably closapacity. For the
checkerboard code, the two-dimensional surface is paréd into adjacent white
and black squares, with each row beginning alternately withhite and then a
black square, resembling a checkerboard. One of squalesadly chosen to be
the black squares, is written with all zeros. The other sesofres can now con-
tain the user’s data, since, even when the user’s data is,at@guaranteed to be
surrounded by black squares, which contain zeros. The metega the simplicity
of this code demonstrates a common scenario in code dedigiisl an extremely
simple code may come relatively close to achieving capgleayever, researchers
are interested in designing codes as close as possible &ittapnd will spend
significant effort doing so, to achieve %@% = 17.6% gain in the amount of
information that can be written to the medium.

The constrained codes discussed in this subsection are aolyneferred to as
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two-dimensional codes or more generally as multi-dimeradicodes. In this case,
the dimensionality refers specifically to the medium, galtgran optical storage
device, upon which the coded data is written. In this thesstrained codes in
multiple dimensions are investigated, but the concept wfedisionality is not the
same. Rather than being written to a two-dimensional stomaggium, the coded
symbols are written to a one dimensional medium as a serigaaks, or equiva-
lently transmitted on a symbol-by-symbol basis as in anyentional transmission
system. Dimensionality instead occurs in the sense thaigimalling constellation
can have multiple dimensions. The encoder can constraimbdaof signalling di-
mensions simultaneously, tracking the constraint on eanbkrsion independently
of the others. Examples of these types of multi-dimensicoaktrained codes are
those employing QPSK, 8 PSK, or 16 QAM signalling constwita.
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Chapter 3

State-Independent Decoding

In this chapter, the construction of constrained codesaiteatiecoded at the receiver
without the use of state information is considered. Thigprty is important to
limit error propagation at the decoder. In particular, thapter focuses on block-
decodable encoders, which are finite state encoders sudmnghtwo edges with the
same output label have the same input tag [9]. Examining thilputput sequence
of such an encoder, the decoder can unambiguously deteth@neput sequence.

The construction of block-decodable encoders that adatiéshdependent de-
coding is considered in detail in [9]. The authors develo@lgorithm to find the
globally optimal solution to this problem by partitionirfggt codewords into regions,
solving a set covering problem, and finally solving an intgg@gramming prob-
lem. Both the set covering problem and integer programmioflpm are known
to be NP-complete [40]. In this chapter, a simplified apphoicconsidered; an
approximation algorithm is developed that finds a constidicode that can be de-
coded without state information by using a simplified setecing procedure that
constructs the codebook one mapping at a time. This proeezherates by find-
ing locally optimal solutions based on a greedy approactspide the limitations
of employing locally optimal solutions [41], it has been falthat the approxima-
tion algorithm works very well for typical constraints, $uas DC-free RLL codes.
Further, since the set covering problem is avoided, therilfgo proposed in this
chapter is able to run in polynomial time with respect to tize sf the input.

The approximation algorithm proposed in this chapter isiflexwith a number
of parameters that can be adjusted based on the needs ofiihdesigner. Further,
should the algorithm have difficulty finding a solution, m@@vanced methods,
such as lookahead, can be introduced into the algorithm pfiheiples of weakly
constrained codes are discussed and applied to an exansiglécasituation where
neither the proposed algorithm, nor the algorithm in [9]b¢edo construct a code

42



that can be decoded at the receiver without the need forisfatenation.

The approximation algorithm presented is based on a reqss proposed
by Franaszek [8]. In Section 3.2, an algorithm is develomed)énerating a code
that permits state-independent decoding based on an FSMImbthe encoder.
This section covers the important aspects in the propertaat®n of the table
based on Franaszek’s representation in subsections $1d.8.2.3. The cover
construction method, referred to as the fitting procedwaliscussed in subsec-
tions 3.2.4 and 3.2.5, with a simplification discussed inssghion 3.2.6. In Sec-
tion 3.3, the complexity of the algorithm is discussed. BecB.4 presents looka-
head as it can be used by the algorithm, along with a disaussids complexity.
In Section 3.5, the use of this algorithm for the constructdDC-free RLL code-
books is illustrated, including two example codes. Weaklystrained codes, along
with the construction of a code using these principles, és@nted in Section 3.6.
A summary is offered in Section 3.7.

3.1 Construction of State-Independent Codes

Using Franaszek’s tabular representation of the FSM de#agrmovement among
the principal states as a starting point, the goal is to coast codebook with a
complete row for each source word, where the same codewasl it appear in
two or more different rows. This goal is accomplished by comnlyg rows from
Franaszek’s table such that all “spaces” in the table ardféind as few of the
entries as possible are discarded. Now considered, in,dstie construction of a
code table that enables state-independent decoding.

3.2 Algorithm for State-Independent Decoding

In this section, the approximation algorithm for the comstion of a constrained
code that can be decoded without the need for state infosméagidiscussed. The
optimal solution to this problem is NP-complete, as both tacegering problem
and an integer programming problem must be solved [40].

The method proposed in this chapter is a simplified approachet algorithm
presented in [9], which explores the full problem space. Jblation presented
in this chapter is an approximation algorithm, since thé gubblem space is not
explored to maintain polynomial complexity with respecthe size of the input.
While the solution is more precisely a heuristic, in the rerder of this thesis, it is
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referred to as an “algorithm” for the sake of brevity. In partar, both the scoring
functions and the base set selection procedures are basad iotuitive under-
standing of the problem. While this algorithm is an approxiorg it demonstrates
excellent performance on both codes commonly used in @nstt coding, as well
as the new family of codes developed later in this thesis.

Prior to presenting the proposed algorithm, Franaszeksrseve elimination
algorithm and the initial construction of the coding tabte eevisited; this cod-
ing table serves as a starting point for the algorithm. Sctivse 3.2.2 provides
a general overview of the major steps of the algorithm. Inttiree subsequent
subsections, major design decisions of the algorithm aeudsed in more detalil.
Subsection 3.2.3 discusses the structure of the coding #adal how it can be used
advantageously, subsection 3.2.4 contains informatiautaihe fitting procedure
used in the algorithm, and subsection 3.2.6 outlines hotgstaan be reordered to
reduce the time required to complete the algorithm. The dexity of the algo-
rithm is discussed in Section 3.3.

3.2.1 |Initial Construction of the Coding Table

The first step in constructing a code table is to find suitalaleias form, the
source word lengthyp, the codeword length, an8l, the set of principal states, us-
ing Franaszek’s iterative procedure. Generally, the spacdmeters that is closest
to achieving capacity is chosen first. As the procedure wbgkeaking locally
optimal decisions, it may not be able to arrive at a suitablet®n for a given con-
straint with the initial set of parameters of, n, and P. In such a case, the set of
values form, n, and P that are the next closest to capacity can be tried.

Once Franaszek’s algorithm terminates successfully ard af values form,
n, and P is chosen, a coding table is generated in the same fashion[8§ iln
this table, the set of principal statd3,= {0;,j = 1,2, ...|P|}, denote the columns,
while each different codeword, labeled by an indgxs given its own row. If a
codeword emanates from a given stajghen an entryw; is entered into the table
at theith row andjth column. Thus, each row in the table indicates the set of
principal states from which the word; emanates. Using a terminology similar to
that in [9], this set of states is referred to by:

F(w;, P) ={0, € P:w; € W(o,,P)} (3.1)

whereo, is a state andll’(o,,, P) is the set of all words in the FSM starting in state
o, and ending in any state iR. As discussed in [9], thé'(w;, P) define a number
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of regions that can be visualized in terms of a Venn diagranmu#ber of words
may populate each of these regions if their valuesH¢w;, P) are equal. Find-
ing the globally optimal solution to code construction ilwas finding all of the
minimal covers forP using those regions. In the proposed algorithm, examining
the global constraints is avoided so that the algorithm do¢seed to know all of
the minimal covers folP formed by those regions. This reduces the complexity of
the problem significantly; however, it can no longer be gngred that the glob-
ally optimal solution will be found. In many cases, howevers still possible to
find a suitable constrained code that can be decoded at thiweegvithout state
information.

For example, consider the state machine shown in Fig. 3.1cohmplete the
coding table using the group of alphabets approach, cantigeprocess begin-
ning with states;. Word w; emanates from state;, and sow; is placed in the
first row and first column of the table. Further, words, ws, andw, emanate
from states; and so those entries are placed in the second, third, anth frows
of the first column, respectively. This completes the codewdeaving stater;
and so blank entries are left in the fifth, sixth, seventh, eigtith rows of the first
column. Moving to state,, the words emanating from that state arg ws, ws,
andwg. Hence, the first row, second column is filled with, the third row, sec-
ond column is filled withws and so on. This process is continued for stateto
oe. The finished result is show in Table 3.1. Using the notati@sented above,
F(wy, P) = {01, 09,03, 04} Since wordw; emanates from states, o», o3, andoy.
As a second examplé;(wg, P) = {03, 05, 06}

Table 3.1: Example table showing group of alphabets.

01| 02 | 03 | 04 | 05 | Op
wy | Wy | W1 | W
w2 w2 w2
w3 | w3 | W3
Wy Wy | Wy Wy
Ws Ws | W5 | Ws
We We | We
wr | Wy | Wy
Wg | Ws

Rather than partitioning the codewords into regions andrgppdiinimal covers,
the alternate procedure starts as follows. First, completg¢able as noted above
and notice that there will, in general, be open areas sincerd,w;, may not
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Figure 3.1: Example FSM used to demonstrate the procesardlaiting an FSM
into the tabular representation.

emanate from every state fA. In other words, each region does not form a cover
for P by itself. These open areas are referred to as “spaces.’r@emgea code that
admits state-independent decoding requires that sewsval(i.e., several'(w, P))
be joined together such that they form a cover fgreliminating the spaces in
the table. If all the spaces in at le&8t rows of the table are filled, then a code
that admits state-independent decoding has been genehath@ example above,
F(wy, P)andF(wg, P) form a cover forP since the combination of those two rows
would leave no spaces in the table, or equivalently, theruafdhe states contains
all states inP. However,F'(w;, P) and F'(wg, P) and several other combinations
also form a cover fo’ using F'(w,, P).

While it is possible to examine the code using only Conditiom Hetermine
if state-independent decoding is possible, it is advamtag¢o not only determine
if the code admits state-independent decoding, but to samebusly find the code-
book. In fact, the solution from [9] uses the condition fro8h fo guide the integer
programming solution and also, if a code exists, generaetaebook. A sim-
ilar approach is followed here, without having to solve tleé covering problem
and integer programming problem to explicitly determinesttier Condition 1 is
satisfied.

The solution in the proposed algorithm aims to complete glsirow (a source
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word to codeword mapping) in the codebook at a time. Codewbatsxist in sub-
sets of P are combined together intelligently such that they cavand Condition 1
is not violated.

3.2.2 Outline of the Algorithm

The algorithm begins after an initial table is constructedatlined above. In its
most basic version, the major steps of the algorithm are:

1. By combining appropriate rows in the table to form a coverfpthe algo-
rithm attempts to fill as many spaces as possible. Initiiydlgorithm aims
to construct covers faP such that there is no overlap amongst the states. That
is, when combining two rows, no state in the set of state& correspond-
ing to F'(w;,, P) for the first row exists in the set of statéscorresponding
to F'(w,,, P) for the second row, wherg andi, are the indices of the two
codewords being combined together in the coding tablet theacompletion
of this step, there ar&™ complete rows (covers), skip to Step (4).

2. Pass through the table again to combine rows to form cdeer$, now
considering rows where overlap exists amongst the statesb{Dong rows
in this fashion will result in codewords being discardednirpositions of
overlap. The choice of which codeword to discard can be raryitor, for
example, can be chosen to reduce the complexity of the dectidat the
conclusion of this step, there && complete rows, skip to Step (4).

3. The algorithm has determined it cannot complete any éartiovers forP
amongst the remaining(w;, P), and so the procedure is stopped. This does
not guarantee that it is impossible to decode this code witbtate informa-
tion, but it requires that the algorithm re-trace some oedaslier decisions
and change the outcome of decisions that were thought tdoiteaay. Alter-
natively, a solution based on globally optimum decisionshsas that found
in [9], could be used instead.

4. If there ar&™ complete rows, then any other (possibly incomplete) rows ar
discarded and source words are assigned to each row. Thkestropnstruc-
tion involves a table look-up, consisting of arbitrary gssnent, although an
attempt can be made during the assignment to limit the numibeecoded
errors that occur as a result of errors in the channel. If thppimg is to
be performed using combinatorial logic, then the word assignt could be
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made in a manner that results in the lowest gate count. Howegeussion
of how this mapping would take place is beyond the scope efth@sis.

These steps are discussed in more detail in the subsedtatrisitow. Additionally,
in subsection 3.2.5, the amalgamation of steps 1 and 2 inbogéesstep with an
appropriate scoring mechanism is considered.

3.2.3 Structure of the Table

In order to construct the original table, one state”ims arbitrarily selected as the
“first” state, and in the first column, the codewords are tisteat emanate from that
state and terminate in any statefln Codewords emanating from the second state
are then listed in the second column, where codewords thahat® from both the
first and second states are placed horizontally in the sameara codewords that
start in the second but not the first state are listed in additirows appended to the
bottom of the table. This procedure is then repeated fortilid and subsequent
states. The states can be numbered in any order; it is immpantdy that all of the
words emanating from a state be listed prior to considehegiext state.

Given this approach to constructing the original table, émeyal, the set of
words starting from the first state will comprise the dengestion of the table.
To understand why, consider that a particular codewordften emanates from
several different states. When emanates from state one, tftb row and first
column is filled in withw;. If this codeword also exists in some other statg,
then theith row and;jth column will also be filled in witho,;. Thus, each time the
algorithm examines a new state during initial table corts$ton, it will, in general,
append fewer new rows, since rows corresponding to a nunflibea@odewords
emanating from that state will already exist in the table tueonsideration of
other states. When the final state is reached, only the codeswoique to that state
remain to be added to the table. For example, consider TableRdur rows are
created in the first state, while only two rows are createdhénsecond state, even
though four words emanated from state This is because rows related to two of
the words fronv,, namelyw; andws have already been added to the table. State
o3 adds no new rows, while states andos; add one new row each.

Recall that in order to construct a valid codebook, it is regglithat at least™
rows be filled. Rows in the original table corresponding toexords emanating
from first state are selected as the “base set,” and on a rengvyasis, the other
rows are searched to fill the spaces in these base rows (tafoaver forP). These
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rows are selected as base rows since the table has beenuctetssuch that the top
portion of the table is the densest, and therefore, in gérfev@er other rows will
have to be combined to covét, which simplifies the search. The remaining rows
are referred to as the search set. This is because for eadhn tbe base set, the
algorithm searches through rows in the search set for thdibes

A minimum of 2™ rows must be chosen as base rows, however, there are gener-
ally significantly more thal™ possible candidates. For the codes generated in this
thesis, the procedure outlined above was followed, thahis,state is chosen as the
first state and all codewords emanating from the first sta&telaosen as base rows.
In particular, the state chosen as the first state was the abataining the fewest
number of edges, which, in general, yields excellent restdbwever, it should be
noted that there is a significant number of valid selection#ife base rows that rep-
resents a large degree of freedom for the algorithm. Whileerplored further in
this thesis, depending on the particular application otthee designer, this degree
of freedom may be helpful.

All of the rows with codewords emanating from first state aslested to be the
base set even though this often results in the selectiombitiyl more thar™ rows.
This is not problematic for two reasons. Firstly, in Step@#jhe algorithm some
of these rows may not contain a full cover Bfand these rows can be eliminated
or added to the search set. Secondly, because all of worde ibase set share
a common state (the first), they cannot be copied onto eaehn difectly without
having some overlap in the cover &Y. It is possible, however, to place any rows
fitting this criteria into the search set and re-run Step {2he algorithm, provided
that at leas2™ rows remain in the base set.

Returning to the example from Table 3.1, if the valuerois set to two, then we
require that? = 4 rows be selected as base rows. In this case, rows one through
four must be selected as base rows, since there are onlyrfdotal, while the
remainder of the rows, in this case five through eight, arecsed as the search set.

While the selection of the first state is arbitrary, as it iSiekto have that state
be the densest portion of the table, the ordering of codeswwithin that state does
not need to be completely arbitrary. In many codes, the sscoklocal decisions
can be sensitive to the order in which rows are examined. heige, the algorithm
makes the best decisions when attempting to first find matonése rows with the
fewest number of spaces, leading to better overall reslitis.is because these rows
often have fewer possible matches compared to a row withrefisignt number of
spaces. While this is not always the case, it serves as a gadthgtpoint and is
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very simple to modify should a code not be generated. In saneecases, beginning
with states with the most number of spaces or even a purejorarassignment
may work better. To reduce the algorithm’s dependence diofasuch as this,
lookahead can be used, which is discussed in a later section.

As the algorithm progresses, it copies rows from the seatimt® the base set
attempting to create covers fét. If 2™ full rows are constructed, then the code is
complete and permits state-independent decoding at teevezcHowever, after all
base rows have been iterated through several times (Steptfig algorithm), it is
likely that there will not be2™ full rows and that there will exist a number of rows
in the search set that have not yet been placed. This occeasibethe set of states,
U, in F(w;, P) for one row has some overlap with the set of statésn F(w, P)
for all other rows remaining in the search set. Fortunatelte is another degree
of freedom that can be exploited (Step (2) of the algorithijere are often more
words (or edges on the FSM diagram) than the minimum numlagiigirequired.
Selectively allowing some overlap betwe&hand V' is then possible, such that
the total amount of overlap across all entries in the colupmnesponding to state
o, does not exceed the total amount of surplus edges that atatevs. Stating
this in another way, edges from the FSM can be selectivelyadied since they
cannot be used. Step (2) of the algorithm proceeds in anigdashion to Step
(1), on a row-by-row basis using a greedy algorithm to findva oo set of rows
which forms a cover folP. In this case, overlap between the state§iandV is
permitted provided that the loss of that edge on the FSM doe®duce the number
of available edges in any state fhbelow2™. The solution which has the smallest
amount of overlap amongst the stateg¢/imndV’ is chosen by the algorithm.

In the context of the designed code, the overall informattion is not lowered,
since the code rate is given BY. This occurs because there is not an exact match
between spaces in a base row and words in rows in the searcé; gmmetimes
there are more codewords in the searchable row than spattes lbmse row. This
means that it is possible to discard some of the words fromricpkar state (or
column in the table). In general, this is avoided initiallgclause it is desirable to
save this potential freedom to employ a more intelligenbeiy/decoding proce-
dure if possible. However, @#™ full rows cannot be generated without discarding
words, then this degree of freedom must be leveraged to pttentomplete the
codebook. Therefore, step (2) of the algorithm attemptsigoadd words from
some of the states in order to allow more rows from the seattode copied into
base rows. The algorithm iterates through each of the “§janehe base rows,
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attempting to fill them by discarding as few words in a pataceolumn (state) as
possible. At any point in time, every state must have at Igastords left, so it is
important to check, before discarding words, that this mum is still met.

Finally, in the larger codes that were considered, the dizkeosearch set was
often significant. Typically, this search set contains gdarumber of rows with the
same spaces, and so the algorithm benefits from grouping tbes together. This
allows the algorithm to compare a base row to many searchirothie set at a time
since they have the same structure, effectively reduciaghtimber of candidates
it must attempt to try. Compressing the table in this mannerscemetimes reduce
the size of the search set significantly, allowing for mormptex operations, such
as lookahead, to be used on these large codes.

3.2.4 Fitting Procedure

When combiningF'(w;, P) (rows in the table) to form a cover fa? in Steps (1)
and (2) of the algorithm, it is necessary to determine howt tmivs together. The
algorithm will combineF’(w;, P) until it has constructed at lea&t complete rows
or has determined that it is impossible to do so. Note thagrs¢vows in the table
may have the samg(w, P); therefore, the same cover férmay be used multiple
times. In other words2™ unique covers are not required, only that each column
in the table must exist ia™ covers so that a sufficient number of edges leave each
state.

With row-by-row decisions, at least two approaches can bd tsfind suitable
covers forP. First, the algorithm could consider a row corresponding veordw;
with a set of state& C P and find another row with a set of staésC P to copy
the initial row into such that for each statg € U, o, ¢ V. This corresponds to
focusing on a row that contains entries in certain columng searching for another
row with spaces in these columns. Alternatively, for eaalw waith a F'(w;,, P)
consisting of states denoted byand hence a set of spac€s given by {o, €
P : o, ¢ U}, the algorithm can find another rof(w;,, P), with a set of states
denoted byY’, such that” C U’, and copy that row into the spaces of the first
row. This corresponds to focusing on the spaces in a ceramnand finding a
second row that fills as many of these spaces as possible.eEbadapproach is
preferred because it integrates smoothly with the stateinebering procedure that
is discussed in a later subsection. In either case, the twe ‘fiit” together. Spaces
in the table are filled by copying rows of the table into othexs. In Step (1) of
the algorithm, rows are copied such that there is no ovefl@pdewords when the

51



rows are combined together; in Step (2), the algorithm see&embine rows with
minimal overlap.F'(w, P) for the aggregate row is the union of thgw, P) values
for the two rows that have been copied together. As the rowsrarged, and full
rows are formed, the states if(w, P) form covers forP.

Another important consideration is how the fitting shouldcbenpleted, which
for a row-by-row approach, has at least the following twogiloities:

1. First fit, which involves copying a row into the first row irhieh the algo-
rithm determines it would fit; or

2. Best fit, which involves copying a row into the “best” row thtdinds, where
“best” is determined according to some predefined criteria.

In other fields, it has been reported [42] [43] that the adsges of a first fit ap-
proach often include results very close to the best fit, imseof utilization, with
less overall time to complete. A best fit approach, howevenikl produce a higher
overall utilization (i.e., more filled spaces) at the cosegécution time. In this
application, a best fit approach is chosen because it isrefjthat a row be com-
pletely filled (i.e. a cover foP is needed) in order to be used in the codebook. Even
a single empty state remaining in a row prevents the assighofe source word,
so a higher emphasis is placed on utilization (filling rowsrt the execution time
of the algorithm. Further, because filling all the spacesriovais essential, when
copying a row withF(w;, P), corresponding to a set of stat€s into another row
with F'(w;, P), corresponding to a set of statésthe best fit is defined as the one
in which the size of the set of remaining spaces, i.e., thefsstatesY”’, given by
Y ={oy, € P:0oy, ¢ U:o0, ¢ Y} is the smallest. In essence, the algorithm
comprises a greedy algorithm solution on a row-by-row ba&sthe rows in the
table are iterated through, the locally optimum solutioat thill leave the fewest
number of spaces remaining in the table is chosen. While nasvk that a greedy
algorithm finds the globally optimal solution only when thatimal solution to the
problem contains optimal solutions to the local problenty,[#4 has been found
that the algorithm does perform very well in the cases thaew&amined, such as
the DC-free RLL codes that are considered in Section 3.5.

When determining the best fit for the set of spaces in a rowe thier often situa-
tions where the row will not be entirely filled and at least omare row would have
to be copied to generate a cover. However, there might be twtoee alternatives
that would leave the same number of spaces, but the set efspamaining are dif-
ferent. In this case, according to the best fit criteria, @xists, and it is difficult to
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determine which is the better of the alternatives. One aop8do create a tree-like
structure to keep track of these decisions. If the algoritompletes and a code to
permit state-independent decoding is not found, then theriéhm could return to
this tree, going up levels and trying alternate solutionsteNhat with this addition,
the search is still not exhaustive since decisions remasedan locally optimum
solutions. The converse of this solution, lookahead, isit|red in a later section.

The pseudocode listed as Algorithm 1 demonstrates a simmpliementation of
step one of the proposed algorithm, whétes the size of the base set afids the
size of the search set. Note that théw, P) have been separated into the base and
search sets vid’s (w, P) andFg(w, P), respectively.

Algorithm 1 Implementation of step one of the algorithm.
while go = truedo
placed« 0
fori=1— Bdo
if Fp(w;, P) = completethen
continue
end if
U+ FB(UJZ‘, P)
U/<—{UU/EP:O‘UI¢U}
forj=1— Sdo
Y «+ Fs(w;, P)
filled(y) < |[U'NY]
end for
word =max(filled)
if word # () then
Fg(w;, P) + Fg(w;, P) Fs(wword, P)
placed« placed+1
end if
end for
if placed= 0 then
go « false
end if
end while

3.2.5 Improved Fitting Procedure: Scoring

Rather than splitting the consideration of filled rows witld anithout overlap sep-
arately, it is possible to consider both these constrainsiltaneously. In other
words, steps 1 and 2 in subsection 3.2.2 are combined intmerlatep, using a
more sophisticated procedure. Implicit in the design ofggheposed algorithm is
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the use of two simple scoring mechanisms when selecting t@Wwe combined in
the table. Previously, during the first pass, rows are sedeathich maximize a
filled row score,S;, and during the second pass, rows are selected which mimiz
an overlap score$,. A single combined scoring metric that considers filling and
overlap simultaneously is now proposed, along with new defirs for S, andS;.

To find an appropriate balance between the advantage offdind the disad-
vantage of overlap, the following overall sca¥gis proposed:

St - Sf - So (32)

andS; andS, are defined as outlined below.

In many codes, there are often some states with very few exigas, while
other states more central to the FSM have a large number esxages. Remov-
ing an edge from a state with a larger number of surplus edggsrierally much
less constraining than removing an edge from a state wittstaplus edges. When
combining two rowsF(w;,, P) and F(w;,, P) with overlapU, = F(w;,,P) N
F(w,, P), the following overlap scoring metric has been adopted:

Wso s,
So= ) (===) (3.3)
Ouo€Uo luo
wherelV,, is the number of spaces remaining in the base rows of a givemeo
andW;,  is the number of words left in the search rows of a given colurfine

. W . . .
metric (=) ranges in value from zero to one and is a measure of how tightly

wi,

a columnluios constrained, and thus the algorithm is lessylikeldiscard an edge
from a state that is already significantly constrained. Txmoaentr,, restricted
to positive values, allows the code designer to control gmasation from highly
constrained columns to columns that are not very consulairer example, a fully
constrained column that has as many words left as there acespeceives a score
of one. Alternatively, a column that is not very constraingtl have many words
left and few spaces to fill, receiving a score of much less tran

Using a value of-, greater than unity preserves the value of a fully constdhine
column, while lowering the value of columns that are not Bigantly constrained.
However, using a value for, less than unity increases the weighting of a column
that is not significantly constrained relative to a fully stmined column. Consider
the case where one column has three spaces remaining tceldeafildl three words
left with which to fill those spaces, while another column tinee spaces remaining

to be filled and twelve words left to fill those spaces with.u&itons like this are
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common in the constrained codes that have been construstdtbiee are often a
few states that are significantly constrained, while otliates have a significant
number of surplus edges. In this examp(l%‘#:) evaluates to unity for the first
example column, while it evaluates €025 for the second. Clearly, choosing a
value ofr, = 1 will preserve the values of 1 and 0.25 for the first and second
columns in consideration, respectively. Using a value,cf 2, however, changes
the scored values to 1 and 0.0625, and so actions in the fitshoacow carry more
weight both with respect to the other column and also contpré¢he case when
r, = 1. Conversely, changing the value:gfto 0.5 results in the two scored values
becoming 1 and 0.5 and so the second column is now twice aificign as it was,
relative to using, = 1.

The value chosen for,, then, controls the significance the algorithm places
upon fully constrained columns, relative to the largelyamstrained columns, when
considering the significance of the overlap. In generalfulyconstrained columns
have little flexibility, and therefore more significance gltbbe placed on complet-
ing them. Setting the value of, to two provided a good compromise between
ensuring that the fully constrained columns are weighteati wnportance, but not
so much so that it prevents the algorithm from combining rows

The filled row score has been re-defined in a similar fashidms & because
filling a space in a highly constrained column is more valaabhn filling a space
in a loosely constrained column. The filled row score for twavs F'(w;,, P) and
F(w,,, P) is defined as:

Wi,
Sp= 2 ()" (3.4)
Ty €Yy lyf

whereY; is the set of spaces filled by combinitgw;,, P) and F (w;,, P), andry
is a positive exponent. For the codes that have been cosedidéhas been found
that the algorithm works well when the valuergfmatches that of,.

The procedure for calculating; and S, discussed above were found to gen-
erate excellent results for the cases upon which the afgornivas tested. In the
initial version of the algorithm, step 1 assumes that theevalf a space to one, or
equivalently the value of that column to be one, and maxisiike number of filled
spaces. The second step of the algorithm assumes that tleeofadach discarded
edge is one and attempts to minimize the total, using ther@itn the first step as
a tiebreaker when necessary. The limitations of this ampre@ae apparent, since
the algorithm assumes all spaces are equal, which is notltritially, a combined
scoring approach was tried where only the overlap score.B) (8as used, while
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the filled row score was calculated assuming using the iraparoach, assuming
that all spaces are equal. Only the overlap score was uputhtiedly, since it was
assumed to be the most restrictive constraint. However# found that the algo-
rithm had some difficulty combining together rows in somewmstances and that
the filled row score was also significant. Consequently, alaimdiefinition to the
overlap score was applied to the filled row score as well,gi63m). The inclusion
of scoring exponents arose in a similar fashion, in ordeetp the algorithm com-
bined together rows with greater precision. In many case\wer code designer
can adjust the scoring criteria and form slightly to prodadeetter result after a
quick examination of the initial coding table along with avfkey decisions made
by the algorithm.

The scoring approach outlined above is flexible and can beggthdepending
on the needs of the code designer. In particular, the codgrascould use a
parameter of interest, such as distance properties of thewards, when selecting
between two potential search rows that have the same ssaralaulated using the
equations above. Further, the code designer could add@ualiterms to the score
computation to accommodate for any additional parametergerest, depending
on their application. The procedure outline in this sulisacis intended to be a
general solution that works for any family of codes, howgeitas flexible enough
that it can be modified to accommodate the needs of the codgnees

Using (3.3) and (3.4)$, is calculated using (3.2). Two potential problems can
arise with.S; that can be solved with a scoring threshold. First, becausdase
rows are considered sequentially in order, sometimes tmexg be no attractive
F(w;, P) to combine with a particular row, forcing it to be combinediwa row
that would be better suited elsewhere. To adjust for thigoairsg threshold has
been introduced. This scoring threshold ensures that @olyes above a particular
value will be acted upon. Second, as the algorithm progsefise scores evaluated
at each step will, in general, become lower. This is because spaces in the table
are filled, lowering the filled row score, while discardingra® leads to a larger
overlap score. Thus, sometimes it is necessary to lowerctireng threshold as the
algorithm proceeds. This enables the algorithm to combife;, P) that may have
initially been unattractive. Typically, choosing an iaitscoring threshold of zero
is sufficient. With this threshold, each time rows are coratlirthe value of filling
the row, given byS, outweighs the consequences of any overlap, gives,bthat
might exist. After an iteration where no rows can be furth@mbined, the scoring
threshold is lowered, and the process repeats until the tadshpletes or no more

56



combinations can be formed.

Appropriate selection of the scoring metric, exponentsl, tamesholds allows
for the algorithm to make row-by-row decisions that willdga a state-independent
decodable mapping with high probability. While other methexist to prevent
the algorithm from making locally optimal decisions thaadeit away from the
globally optimal solution, for example using the lookah@adcedure discussed in
Section 3.4, careful implementation of the scoring procedan often produce the
same result without the need for additional complexity. &ample, of the 70 test
cases that were tried, after some optimization of parametety7% of those cases
required lookahead to find an acceptable solution.

The pseudocode listed as Algorithm 2 demonstrates an inguigation of the
proposed algorithm with the scoring procedure.

3.2.6 Re-numbering of States

Consider that as the table grows in size, it may become diffiougfficiently find

a suitable row in the search set to copy into a row in the baseérsthis section, a
simplification to the search procedure is discussed to nfbcgeatly locate suitable
pairs of rows that can be combined to form a cover For This simplification is
amenable to computer implementation. This procedure ig mseful when the
algorithm operates with steps 1 and 2 separated, that isoutithe use of scoring.

Recall that the numbering of the states is not unique, whigbli@s that it is
possible to re-number them as necessary. The followingoagprwas found to be
helpful. Each time the algorithm attempts to fill a row wittiw;, P) (correspond-
ing to a set of statel) the states are renumbered such that all of the statésaire
moved to the left-most portion of the table. The algorithmrtisearches for a row
which fills as many of the right-most empty positions as gdaesiThis enables an
efficient search procedure, as the following example deitmates.

Consider the code based on Table 3.1, in particular wgravhich is a base row
that contains statd$ = {0y, 03, 05}. These states can be temporarily re-numbered
such that state three is mapped onto state two and state fimapped into the
third position. The presence of codewords in this row isespnted with the binary
sequencg1,1,1,0,0,0}, where the ones correspond to the (re-numbered) states
where the codeword exists, and the zeros correspond toates $tom which the
codeword does not emanate. This binary sequence can beeapwé by its integer
equivalent, the number 56. As the algorithm searches trex otlwvs in the table to
form a cover forP, with this state re-numbering it now need only look for a row
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Algorithm 2 Implementation of the algorithm with scoring.

while go = truedo
placed«+ 0
fori=1— Bdo
if Fig(w;, P)=completethen
continue
end if
U+ FB(U}Z,P)
U+ {ow€P: o, ¢ U}
for j =1— Sdo
Y « Fg(wj, P)
Y« U'NY
U, <~ UNY
Sf ~—0
forall y; € Yy do
S¢(j)  S1(5) + ()
f f Wilyy)
end for
S, <0
forall u, € U, do .
Solj) ¢ Sol) + (ele)™
end for
Si(4) = S5(5) = So(4)
end for
word =max(S;)
if word # () and S;(word) > thresholdthen
FB(wz’7 P) — FB(wi; P) ﬂ Fs(wword, P)
Y < Fs(wword, P)
Yf — U mY
U, < UNY
forall y; € Yy do
Wilyy) < Wi(yy) — 1
end for
forall u, € U, do
Wi(uo) <= Wi(u,) — 1

end for
placed« placed+1
end if
end for
if placed= 0 then
go « false
end if
end while
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whose integer representation of the binary sequence isé&ser [To form a cover
for P, it first searches for a row with value equal to 7. If no row wtile value of

7 exists, then it instead searches for a row that would fill bivthose three spaces,
which becomes a bit more difficult since the two spaces to lelfihleed not be
consecutive. When the best fit is found, then the states aréenesal, again moving
the spaces to the far right of the binary sequence and anptissible row, which
would complete the cover d?, is sought. This re-numbering and binary mapping
executes quickly on a computer.

3.3 Algorithm Complexity

The main loop of the algorithm consists of searching, updatif state variables,
updating of tables, and re-numbering of states, all of whichin polynomial time.
At most, a base row can choose betwegndifferent F'(w;, P) candidates to be
combined with to come closer to forming a cover férwheresS is the size of the
search set. For one complete iteration through the algorith base rows must
choose a candidate, meaning that the overall complexitysofgle loop isO(BS),
and that each loop through the algorithm maintains a polyaboomplexity. For
most codes considered in this thesis, the algorithm rarugirahis loop eight to
10 times at most, owing to the implementation of a scoringghold. Without a
scoring threshold, in a worse case, if only a single row is lwioed with another
on each pass through the entire search set, the algorithrd womplete the loop
S times in total. This gives an overall complexity ©6f BS?), which maintains a
polynomial running time with respect to the size of the ingbé&nerally, the number
of operations is significantly less. This compares favgrabth the method in [9]
since both the set covering problem and the integer progiaghproblem do not
run in polynomial time.

The algorithm is centred around the computation of a scamegyic, even in
the more sophisticated version employing lookahead dészlig the next section.
Fortunately, the score of a particular row in the searchssatiependent of all other
rows in the search set, and so the algorithm lends itself iwedh implementation
that includes parallelization. Additionally, in terms ofevall complexity, the most
significant factor is generally the size of the search SesinceS scores must be
computed for each base row aBds typically much smaller tha. However, all
of these scores can easily be computed in parallel, speagitite operation of the
algorithm significantly.
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In both cases, there is a set of operations with its own caoxitpldhat runs prior
to the algorithm. This includes operations to generate ttit@al coding table by
walking through the finite state machine to determine whictiesvords are valid
in each of the states. This set of steps to generate the ingixns required for
both the algorithm proposed in this section and the methdd]irin both cases, it
is assumed that this partitioning is completed before eilgorithm begins. The
complexity of this sets of steps is, however, significanthattit is exponential in
the codeword length;. For each principal state, each of ttiecodewords must be
checked to determine whether that codeword emanates franstiite and ends in
a valid principal state.

3.4 Lookahead

While it has been found that (3.2) gives a good estimate of lwhievs should
be combined, there may be cases where the algorithm remasuceessful. In
Sec. 3.2.4, itis suggested that one approach to improvmgltorithm is to main-
tain a decision tree, which can be unraveled if the algorithmnsuccessful. In
practice, the use df;-step lookahead is often more successful. The steps irdolve
in the lookahead that has been implemented in the algoriterasfollows.

1. Select a potentiat’(w, P) to combine with a particular base row to attempt
to form a cover forP. Lookahead is only performed if another row must be
selected to form the cover, i.e., if the cover is not alreaniyglete.

2. With this possible selection, iterate through all oth&sdrows, selecting the
bestF(w, P) for each row, until the algorithm returns to the base row @pst

().

3. From the rows still remaining in the search set, check éordeether another
F(w, P) exists for the base row in step (1) with a score above the rggori
threshold to move closer to finding a cover for

4. If no F(w, P) exists, the lookahead returns unsuccessful andithe, P)
with the next highest score is selected from the list of cdaugis. If another
F(w, P) exists, the lookahead returns successful.

These steps can be repeatgtimes for each step of the lookahead. In this partic-
ular lookahead implementation, if at any depth the lookdltads, it returns to the
initial potential F'(w, P) and re-selects from the list of candidates. For example,
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consider a particular code the algorithm is designing with kevels of lookahead.
The algorithm selects a candidate and looks ahead one sfeptisg candidates
for all other base rows. The lookahead algorithm then selacbther candidate
for the base row and all other base rows, but no further catesdremain for the

base row in question. The lookahead algorithm then returtiset initial candidate

from the first step and re-selects the next best candidatghér words, the looka-
head algorithm returns to the top-most level of the tree ¢aoh, regardless as to
where the lookahead fails. The pseudocode listed as Algorg demonstrates an
implementation of the lookahead procedure.

One variation for the lookahead procedure is to only go baeklevel when the
lookahead fails, rather than always returning to the ihigeel. The advantage of
using this approach is that more of the problem space is exghlaHowever, that
approach has significantly higher complexity than the agagindghat is proposed. In
general, it was found that, for the codes that required lbekd, returning to the
top-most level was sufficient to achieve a code design.

While lookahead increases the complexity of the algorithme, dverall com-
plexity remains polynomial with respect to the size of theun In step (2) above,
the lookahead algorithm must select &tw;, P) from the search set for each row
in the base set and so the complexity for each ro@(i§), similar to the previous
section. The overall complexity of step (2) is théB.S). Step (2) can be com-
pleted approximatelys times, assuming every candidate in the search set is tried,
and thus the complexity of one step of lookahea®{#5?). Since, if the looka-
head fails on any iteration, the algorithm elects to rewvethe top-most decision
and try anothef’(w;, P) instead, the lookahead step factor is multiplicative, and s
the overall lookahead complexity i3( BS?1,), which is polynomial in both3 and
S. In the codes that were considered, a depth of three to fiedslevas found to be
sufficient, and s@, is significantly smaller tha® andsS.

3.5 Example Codes

The algorithm described in the previous sections has sgvarameters that can be
adjusted when applying it to code construction. The codédes has flexibility
when selecting; andr,, as well as implementing scoring thresholds. While op-
timum selection of these parameters is dependent on the eoggck glance at
the coding table and the first round of selections with themenended parameters
from the previous sections (, 7, = 2, scoring threshold = 0) can provide a good
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Algorithm 3 Implementation of the lookahead procedure.
success— true {default flag to trug
fori=1-—1;do
F{(w, P) < Fs(w, P) {Create a copies dfs, W, W, to simulate algorithrh
W! < Wi
W« W,
row <— contents ofF’z(w, P) for the base row in question
Lp < set of all other base rows
forall [z € L do
Compute Scores for ali(w, P), storing inS;
word =max(.S;)
if word # () and S;(word) > thresholdthen
removeFs(wworg, P) from F§(w, P)
updateW;, W/
end if
end for
Compute scores for alf§,(w, P) for row, storing inS;
word =max(.S;)
if word # () and S;(word) > thresholdthen
row <— row () £ (wword, P)
removeF{(wworg, P) from Fi(w, P)
updatel!, W/
if row = completehen
break
end if
else
success— false
break
end if
end for
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guide for fine tuning these parameters. In the art of codegdegixamining the
code on this level can be very helpful for fine-tuning the peaters of the algo-
rithm, and for better understanding of the code that is bdegigned. Further, the
code designer can rearrange the order of the base rows ot a#lieh base rows to
complete should there be more thzifh such rows. As with the other parameters,
reviewing the first round of matches with the default ordgrai base rows pro-
vides a good guide. Finally, the designer can choose to us@omore levels of
lookahead to improve the decision-making process of therigihgm. Appropriate
selection of these parameters is an important aspect oftloé @de design.

To demonstrate the usefulness of the proposed algorithencdhstruction of
DC-free RLL codes is considered. This particular constraias whosen for two
main reasons. First, this is a constraint that is quite famib researchers in the
area of constrained codes, since it is widely considerechr®k satisfying both the
DC-free and RLL constraints simultaneously is difficult anthé algorithm is able
to perform well with this particular constraint, it is anpated that it will perform
well for many other types of constraints. Valueof d < 3,d+1 < k <7, and
5 < N <9, whereN is the digital sum variation, were considered. These codes
have a range in capacities frafi= 0.15678 to C' = 0.92760 bits of information
per symbol(see [1], pg. 280 Table 11.1). In each case, tlweitdg attempted to
construct a valid codebook that can be decoded at the redeives absence of state
information for the parameters returned by the Franaszgki#hm with the highest
code rate for < 20. Of the 70 constraints that were considered, the algoritlas w
able to successfully construct codes for all but one caseseGdgamination of the
one exception(d, k, N) = (3, 5,8) with m = 3 andn = 13, showed that it is in fact
impossible to construct a code that can be decoded withatg stformation with
this set of parameters. The algorithm was able to succéssfuistruct a code for
the parameters returned by the Franaszek algorithm witkseéhend highest code
rate, withm = 4 andn = 18.

Of the 69 codes that the algorithm was able to constructethere five in-
stances where use of lookahead was necessary. These codé3,wg)), (3,6, 8),
(2,4,7), (2,5,8), and(1,5,7), and required between one and five steps of looka-
head. The remaining 64 codes were constructed using onlgcibreng improve-
ments in (3.2), (3.3), and (3.4). For example, te5,9) code has parameters
m = 18 andn = 20. There are 793028 valid codewords across 50 primary states.
Upon completion of the algorithm, 263277 covers for slightly more than the
minimum requirement of!® = 262144, were generated. Subsequent simulation
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confirmed the code to be DC-free, satisfying both the RLL and R@fstraints.

Two examples of the algorithm successfully designing D@-fRé&.L codes are
presented below. The algorithm designed a state-indepéddeodable code with
(d, k) constraints of(1,5), along with a DC-free constraint enforced by having a
maximum of N = 7 different RDS value§—3, —2, —1,0, 1,2, 3}. The capacity of
this code is”' = 0.5497 bits of information per symbol and fer < 20, Franaszek’s
recursive elimination algorithm finds viable coding parsene that are closest to
capacity to ben = 4 andn = 8, giving a coding rate 00.5000 binary digits
per symbol for an efficiency of 0.91 binary digits per bit ofarmation. Table 3.2
shows the binary representation for each codeword useceicdhstructed code,
while Table 3.3 presents a mapping that will admit stateepehdent decoding at
the receiver. Since this code has= 4, at least 16 full rows are required. Although
this code has 16 primary states, it is straightforward tdgoer the algorithm by
hand since the number of words in each state is small. By itisigeihe resulting
table, it is evident that row 22 and row 1 together form a cdoerP. Similarly,
row 23 and row 2 form another cover éf. Continuing downwards, notice that
rows 5, 19, and 35 form a cover fét. Row 19 was copied without any overlap,
however, four edges were discarded when joining rows 35 afithis process was
continued for the remainder of the rows in the table. Recalitie requirement for
state-independent decoding is that no word exists on tvierdiiit rows in the table.
Careful examination of the table will verify that this coraiit has been satisfied.

To verify that the first example code was indeed a DC-free RLLe¢c@dsim-
ulation of five million codewords was used to generate theecgimectrum, along
with analyzing the minimum and maximum runlengths on thérersequence of
codewords. Figure 3.2 shows the PSD of this code, which kibarsharacteris-
tics of a DC-free code, showing a clear null at DC. In Figure &8, runlengths
within the coded sequence are plotted, where the first rgtielmas been ignored
to remove the dependence on initial conditions. A new rugtleris marked and
“indexed” each time there is a transition from a zero to a amejice versa. The
figure demonstrates that the runlength stays between 2 antiéh matches the
design specifications of the code.

A second, more complex code, with, k) constraints of 1,3) and a DC-free
constraint of N = 5 different RDS values was also constructed. The capacity of
this code isC' = 0.4248 bits of information per symbol and the Franaszek algo-
rithm determined that the closest set of code parametexghievang capacity with
n < 20ism = 8 andn = 20 for a code rate 0of.4000 binary digits per symbol and
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Table 3.2: Codeword mapping fdr= 1,k =5, N = 7 with m = 4 andn = 8.

Label Codeword | Label Codeword

wq 11000111 weyy [00110011
wy | 11001100 we |00111000
w3 11001110 weg 10000001
wy 11100001 wy |10000011
ws 11100011 ws; 10000110
we [11100110 w3, |10000111
wy; (11001111 wss 10001100
wg (11100111 wyy |00011111
wg [11110000 wy; |00111001
wyp (11110001 wy |00111100
wy; 11110011 ws; 00111110
wi [ 11111000 w3 |10001111
wiz 10011001 wy |11000001
wiy 10011100 wy |11000011
wys 10011110 wy; 11000110
wiy; 00000111 wys 01100001
wig 00001100 wy |01100011
wy (00001110 wys |01100110
wyy 00001111 wye |01100111
we; 00011000 wy; |01110000
wes 00011100 wy |01110011
wey (00011110 ws |01111001
wes 00110000 ws; 01111100
wey [ 00110001 ws, |01100000
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Figure 3.2: PSD of DC-free RLL code with= 1,k =5andN = 7.

an efficiency 0).94 binary digits per bit of information. This code has 16 prignar
states, and the complete code table has 286 rows (slightlg than the minimum
requirement of 256) of which the first 15 are presented ind&b4. While the al-
gorithm completed the procedure for all 286 rows, they atahpresented here as
the table would be very lengthy. The majority of these rowmgehaeen constructed
through the combination of several rows from the initialléabFor example, the
second row contains words from four different initial rowsws 2, 535, 621, and
983. This particular code contains 1658 unique codewordstal. Similar to the
previous case, simulations were performed to verify thatdbde satisfied both the
DC-free and runlength constraints.
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Table 3.3: Code table fat =1,k =5, N = 7withm = 4 andn = 8.

01 02 03 04 %] ] % g 09 | 010 | 011 | 012 | 013 | 014 | 015 | O16
Io Wy | W2 | W1 | Wo2 | W1 | Wo2 | W2 | W1 | Wa2 | Wi wy wy wq wq Wy | W22
B Wy | Wo3 | W2 | W3 | W2 | Wo3 | W3 | W2 | W23 | W2 Wy | W2 | W2 Wa Wz | Wa3
Bs | ws | wir | w3 | wir | w3 | wir | Wiy | w3 | war | w3 | w3 | ws | ws | wz | w3 | Wiy
Ba | wy |wig | Wy | Wig | Wy |Wig | Wig | Wy | W34 | W4 | Wy | Wy | Wy | Wy | Wy | Wig
Bs Ws | W19 | Ws | Wi9 | W5 | W19 | W19 | W5 | W35 | Ws Ws | Ws | Ws Ws | Ws | Wi9
Be | we | wa | we | Wa | We | Wy | Wao | We | W3s | We | We | We | We | We | We | Wap
Br | wr | Way | Woy | Way | Wag | Wog | Woyg | W | Way | Wy | Wy | Woy | W7 | Wy | Wy | Woy
Bs | wsg | was | Wag | Wag | Wag | Wae | Wae | Wag | Wag | Wy | Wg | W | W | Wae | W | Wag
Bo | wy | woy | Wwar | Wor | War | Wy | Woy | W41 | Woy | Wy | Wy | Wy | Wy | Woy | Wy | Wor
Bro | Wi | Wag | Wag | Wag | Wag | Wag | Wag | Wiz | Wag | Wig | Wig | Wag | Wio | Was | Wip | Wag
Bri | Wi | wor | Wao | War | Wao | War | War | Wap | Wag | Wi1 | Wiy | Wao | W1 | Wao | Wit | Wy
Bz | Wiz | Wos | War | Was | Way | Wos | Wos | W3z | Wiy | Wiz | Wiz | W3y | Wiz | Wiy | Wiz | Was
P13 | w1z | wag | Wiz | Wag | Wiz | Wag | Wag | W13 | Wae | Wae | Wae | Wag | Wae | Wag | Wie | Was
Pra | Wia | W31 | Wig | W31 | Wia | W31 | W31 | Wig | Wag | Wag | Wag | Wag | Wag | Wag | Wag | Wi
Bis | wis | w3 | wis | Wag | Wis | W3p | W30 | Wis | Waz | Wso | Wso | W4z | Wso | W43 | W | Was
Bi6 | Wi | W3z | W3z | W3p | W3z | W32 | W32 | Wap | Wag | W51 | Ws1 | Was | W1 | Wag | W51 | Wag




Runlength

Index X 106

Figure 3.3: Runlengths within a DC-free RLL code with= 1,k = 5 andN = 7.
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Table 3.4: Portion of code table fdr= 1, k = 3, N = 5 with m = 8 andn = 20.

01 032 %] 04 05 O6 %4 ] 09 010 011 012 013 014 015 016
B wy wy w1y wn w1y wy Wgr4 | Wgr4 wy wy Wgr4 | Wg74 w1y Wgr4 | Wgr4 | Wgr4
Bo Wz | W2 | W2 | Ws3s | W2 C%; Wog3 | We21 | Ws35 C%; Woyg3 Wog3 | Ws35 | Wegs | Wgg3 | Woss
Bs | ws | w3 | w3 | wrge | W3 | W3 | Woss | Wrsge | Wiils | W3 Woygs Wogs | Wrge | Woss Wogs Woygs
Ba | Wy | wy | Wy | Ws3e | W4 | W4 | Wogs | We22 | Wsze | Wi | Woge Wogs | Ws36 | Woge | Wose | Wage
Bs | ws | ws | ws | wrgy | Ws | Ws | Wogr | Wrsgy | Wiie | Ws | Wegr | Wog1 | Wrsy | Wog1 | Wagr | Wogr
Bs | we | ws | we | wszr | we | We Wog2 | We23 | Ws37 | We | Wog2 Wog2 | Ws37 | W92 Wo92 Wo92
Br | wr | wr | wy | wrsg | Wy | Wy | Wogs | Wrss | Wii1g | W7 | Wogs | Wogs | Wrsg | Wogs | Wogs | Woos
Bg | wg | wg | wg | Wws3g | Wg | Wg | Wogs | Weas | Ws3g | Ws Wy95 Wogs5 | Ws38 | W99s Wy9s Wy9s
Bo | wo | wy | wy | wrgg | Wy | Wy | Wioog | Wrgy | Wii21 | W | Wigoe | Wioo9 | Wiy | Wio09 | Wio09 | Wi009
Bro | wio | wio | wio | Wszg | Wip | Wio | Wiolo | We2s | Ws39 | Wio | Wioio | Wiolo | Ws39 | Wiolo | Wioio | Wioio
Pui | win | win | win | Wreo | Wit | Wit | Wioi2 | Wrgo | Witz2 | Wii | Wioi2 | Wioi2 | Wrgo | Wiol2 | Wio12 | Wioi2
Pra | wig | Wiz | Wiz | Wsio | Wiz | Wiz | Wi013 | We26 | Wsao | Wi2 | Wip13 | Wi013 | Wsao | Wio13 | Wio13 | Wio13
P13 | wig | wiz | Wiz | Wre1 | Wiz | Wi3 | Wioa | Wror | Wii23 | Wiz | Wiola | Wiola | Wre1 | Wiola | Wiola | Wiol4
Pra | wis | Wig | Wig | Wsa1 | Wig | Wig | Wiolg | We27 | Wsa1 | Wi4 | Wio1g | Wiolg | Wsa1 | Wiole | Wio19 | Wiolg
Bis | wis | wis | wis | Wrea | Wis | Wis | Wig20 | Wro2 | Wit2a | Wis | Wio20 | Wio20 | Wro2 | Wio20 | Wio20 | Wio20




3.6 Weakly Constrained Codes

While the algorithm has been overwhelmingly successful inegating DC-free
RLL codes for various values af, k£, and N, it is possible that for some code
tables, even modifying the parameters of the algorithm moll generate a state-
independent decodable code. It may be the limitation of therghm relying on
making locally optimum decisions, or it could simply be tlitas not possible to
find a code that can be decoded at the receiver without stetemation for the
set of parameters with the highest code rate returned byrdmreaBzek algorithm.
Of the 70 DC-free RLL codes for which the algorithm attempteatadostruct a
code table, no codes fell into the former category, whileyame code fell into
the latter category. That is, for that code, it is not posstblfind a code that can
be decoded without state information for the set of parareetéth the highest
code rate. Without lowering the code rate, an alternatiyg@gch is to consider
the design of a weakly constrained code [44]. For a weaklsitamed code, the
code designer no longer guarantees that the constraimeevelated, instead, the
code designer relaxes the constraints somewhat by allothieng to be violated.
Ideally, the violations are few and infrequent. When the athm is unsuccessful,
generally speaking, few spaces remain in the table. If thersthm is able to choose
a codeword in such a manner that the violation is minimalaaeaable code should
be able to be constructed.

The weakly constrained process is implemented as follows. ech space
remaining in the table, the code designer can insert anywardiealready existing
in that row or any codeword that is not used in the table. Is¢heases, a next
state fromP that approximates what would have been the actual next stast
be assigned. No codeword will exist in two different rows,tke condition for
state-independent decoding has not been violated.

This approach complements the proposed algorithm wellusecthe output of
the algorithm meshes well with the input required for a wgakinstrained coding
algorithm. That is, the proposed algorithm runs as it wouwddmally, attempting
to construct a code. If no set of parameters work, the begubus chosen and
the principles of weakly constrained coding are appliedrdftat point. The spaces
remaining in the table are filled in according to the critesfebsen by the code
designer, which can be implemented via a computer prograis. not necessary
to re-design the proposed algorithm to handle weakly camstd coding, instead
another module can be run thereatfter.
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While the code rate is not lowered, there will be a penalty irei For ex-
ample, in the case of a DC-free code, its spectral performaiicsuffer, possibly
through the appearance of a flooring effect at low frequeniciehe spectrum. By
using the algorithm described above to first complete thengadble as thoroughly
as possible, however, this penalty should not be significant

In particular, return to the case whefé &, N) = (3,5,8) with m = 3 and
n = 13. For the sake of clarity the eight values representing\ttfemnstraint will be
denoted by{—3, —2,—1,0, 1,2, 3,4} in the discussion below. To keep this example
simple, only words already existing in the current row intidlgle are considered to
be valid candidates to fill the remaining spaces. Recall thatuaused codeword
also constitutes a valid alternative, but to make the exarapkier to follow, this
has been omitted as a possibility.

For this code, the algorithm generates the codebook showeile 3.5 without
using any lookahead. Note that this table is shown in twosfartthe purposes of
presentation. There are two spaces remaining, indicatéX’by the table, both
occurring in the eighth row. The words used in this row in€lwabrds 8, 10, 19,
34, 38, 41, and 50. The mapping of these codewords into kstsoan in Table 3.6.
To complete a valid weakly constrained code, the encodernegjtwo things: a
codeword for the table and a valid next state. A well-desilgrneakly constrained
code will use codewords in each of the two remaining spacaghawill have a
minimal impact on the overall operation of the code so thatabnstraints will be
violated as infrequently as possible.

The first space is in state 15, which represents the stateaveitinrent runlength
of a single logic one and a value 6f = 0. Looking at the list of candidates
in Table 3.6, the best two choices are words 19 and 34. Tramsgnivord 19
places the encoder in a state where it has two consecuties zad a value of
N = 1, which corresponds to a next state of 20. However, the mimimunlength
is violated as there are only three consecutive ones wheprtéwous word and
word 19 are concatenated together. Transmitting word 3gepl#éhe encoder in a
state where it has three consecutive ones and a valte-ef3. Unfortunately, no
principal state meets these requirements, the closestistatg state 9, which has a
current runlength of three consecutive ones and a valié ef 2. In this case, the
code designer can choose to violate either the runlengtditbam or the DC-free
condition, depending on which may be more valuable in théqudar application.
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Table 3.5: Code table fat = 3,k = 5, N = 8 withm = 3 andn = 13.

01 02 03 Oy 05 06 % g 09 | 010 | 011 | 012 | 013 | 014 | O15
B | wy wy w1 wy wy Wy | Wiy | Wi | Wi | W29 | W29 | Wi7 | Wo9 | Wo9 | W29
Bo | we | wy | wy Wy | Wz | Wz | Wig | Wig | Wig | W3p | W30 | Wig | W3p | W3p | W30
B3| ws | wz | w3 | wyg | w3 | W3 | Was | Was | Wao | Wag | Woe | Wae | Wiz | Wag | Wag
Ba| wy | wy | wy | wis | Wy | Wy | Wor | Wis | Wis | Wor | Wy | Wis | Wor | Way | War
Bs | ws | Wiz | ws | Wie | Wie | Ws | Wor | Wig | Wig | Wag | Wag | Wi | W3s | Wag | Wag
Be | we | wy | we | wy W9 | We | Wo3 | Wo3 | Wy1 | Wa2 | Wa3 | Wa3 | W33 | W3z | Wa3
Br | wr | wiz | wr | wiz | Wiz | Wy | Wos | Wiz | Wiz | Was | Wos | Wy | W3y | Was | Wos
Bs | ws | wig | ws | wig | Wi | Wg | Wig | Wig | Wig | Wig | Wig | Wig | Was | wag | X

O16 | O17 | 018 | 019 | O20 | O21 | O22 | 023 | O24 | O25 | O2 | O27 | 028 | 029 | 030
Br | w w1 Wy | Waq | W1 W1 | Wyq | Wyq | Wyq | W29 | Wo9 | W29 | Wo9 | Wo9 | W29
Bo | wo | wy | wy | wWaz | Wo | Wy | Waz | W3z | Waz | W3p | W3o | W3p | W30 | W3p | W3
B3 | wa | w3 | w3 | Wi | Wao | Wao | Wsz | Wap | Wa2 | W32 | Ws3 | Wi | W3z | Ws3 | W32
Ba | wag | Wy | wy | W3 | W39 | Way | W51 | W39 | W39 | Wss | Ws1 | W51 | Wss | W51 | Wss
Bs | wsr | war | ws | way | Wy | W3y | Wag | W3y | Wy | W35 | Wag | Wag | W35 | Wag | Was
Be | wyg | wyg | W | Was | We | Wy | Wae | Wae | Wag | W33 | W33 | Wye | W3z | W3z | W33
B7 | w3e | W3s | W3p | Was | W3 | W3e | Was | Was | W3g | Ws5 | Was | Was | Wss | Ws2 | Wss
Bs | wag | wsg | Wi X W3g | Wag | Wsp | W50 | W3g | Wag | W3g | W50 | W34 | W3g | W34




Table 3.6: Codeword mapping far= 3,k = 5, N = 8 with m = 3 andn = 13.
Label Codeword

wg [000000111111¢(
wyp [100000011111¢(
wye (1100001111100
wy, (1111100000111
wsg (0001111100000
wy, (0001111000000
wsg (0111100000111

The second space occurs in state 19, which has a currenngtilef two con-
secutive zeros and a value 8f= 0. Candidates include words 38 and 41. Consid-
ering word 38, the encoder ends in a state correspondinga@dmsecutive zeros
and N = —3. The closest state to meeting these requirements is statehzéh
matches the five consecutive zeros but has= —2. For word 41, the encoder
moves to a state with six consecutive zeros ahd= —5. Recall that the low-
est valid N constraint is—3, however, and thus the code must violate the DC-free
constraint by at least2. The state with six consecutive zeros aNd= —3 is
not a principal state and so the closest state is state 30siittonsecutive zeros
and N = —2, which violates the DC-free constraint by3. In this case, word 38
comprises the best selection.

There are two possible approaches to completing the weakigtained code
in this section. The first approach is to select word 19 forfitet space, along
with a next state of 20, which violates the runlength cooditithen select word
38 to fill the second space, along with a next state of 28, whiglates the DC-
free condition. This particular mapping is chosen to derrates what the effects
of violating each of the constraints. Another code designay recognize that
choosing word 34 for the first space, along with a next sta® causes the value
of N to be one lower than the actual value/éf Selecting word 38 for the second
space, along with a next state of 28, causes the valdetofbe one higher than the
actual value forV. Since the two violations oppose each other, optimisycéile
weakly constrained code will perform very well. Weakly ctvagied codes were
constructed for both options and are presented below.

The codebook has been completed with word 19 in the first spadea next
state of 20, violating the runlength condition, along witbrd/ 38 in the second
space and a next state of 28, which violates the DC-free dondiA simulation
of five million codewords was performed to find the PSD of thesl€, as shown
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Figure 3.4: PSD of weakly constrained DC-free RLL code wita 3,k = 5 and
N = 8 using first approach.

in Fig. 3.4 using the codebook in Table 3.5 with the spacexdfilh as specified.
The flooring effect becomes somewhat visible at frequermiésv 103, To show
the DC-free and runlength constraint violations, both the RB&runlengths were
plotted on a bit-by-bit basis through the simulation. The R2&ies during the
simulation are shown in Fig. 3.5, while a portion of the rungjths are shown in
Fig. 3.6. The RDS violation is a summation of each time the wonbw 8, col-
umn 19 is transmitted. This violation is fairly minor, caugian error on the scale
of 10* over nearly 70 million bits. The plot of the runlengths is mud in to a
particular segment to better show how infrequent the vimtatare. The segment
was chosen randomly, as all of the segments demonstrateacabi@ performance.
Attempting to show all of the runlengths simultaneouslyutessin a plot that ob-
scures the results. In both cases, the constraints ardedala 1 of 240 positions
or approximately).417% of the time, on average, with equi-probable source words
and assuming that each state is entered with roughly the geohability.

For the second weakly constrained code, the codebook hasba®leted with
word 34 in the first space and a next state of 9, and word 38 is¢hend space
with a next state of 28, violating the DC-free constraint orfiyg. 3.7 shows the
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Figure 3.5: RDS of a weakly constrained DC-free RLL code with 3,k = 5 and
N = 8 for five million codewords for the first approach.
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Figure 3.6: Runlengths of a weakly constrained DC-free RLL coidled = 3,k =
5andN = 8 for five million codewords for the first approach.
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Figure 3.7: PSD of weakly constrained DC-free RLL code wita 3,k = 5 and
N = 8 for the second approach.

PSD of this code using a simulation of five million codewordis.better illustrate
the DC-free violation, the RDS was plotted on a bit-by-bit bakiroughout the
simulation, as shown in Fig. 3.8. To illustrate the differetetween the two codes,
the RDS for both codes is included in this figure. Notice thatthie case of the
second code, the error accumulated in the RDS is much lowealovélso, the
runlength does tend negative, and so it can be concludedhthatate machine is
more likely to be in state 19 than state 15. A plot of the rugtla is not included,
since the constraint has not been violated, however, it waBed in the simulation
that this was indeed the case.

For comparison purposes, the algorithm constructed/a N) = (3, 5, 8) code
with the set of parameters giving the second highest coderrat= 4 andn = 18.
The PSD of all three codes is shown in Fig. 3.9, demonstrahag the weakly
constrained codes have a PSD very similar to that ofrthe- 4, n = 18 code,
with the advantage that their rate is roughlif higher. With this in mind, the
code designer can now evaluate the tradeoffs between cteland frequency of
constraint violation.

While the accumulated error of the second method is lower thahof the
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Figure 3.8: Comparison of RDS for a weakly constrained DC-frek Biide with
d =3,k =5andN = 8 with five million codewords for the two approaches.
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Figure 3.9: Comparison of PSD with two weakly constrainedesodnd a non-
weakly constrained code.
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first, the actual spectral performance is slightly worsdjdating that the spectral
performance is not solely related to the slope of the accat@dIRDS error. The
spectrum of a code can be written as a Taylor expansion [A3hi$ expansion, as
frequency values decrease, different terms in the expam&oome significant.

Between frequency values ®k 1072 and1 x 10~2, the spectral performance is
dominated by a term related to the low frequency spectrurght€L FSW), which
is related to the spectrum of the first derivative of the RDSuaitad at zero [45].
The RDS of this code can be estimated Ryeran = Zoriginal + 2a. Constructing
a weakly constrained code does not change the original RDS8dsouather the
change in RDS can be represented using:théerm. The LFSW is given largely
by zoriginat @Nd S0 the three codes look similar in this region.

Below frequency values of abolitx 10~3, another term, which is influenced
largely by the RDS errot, begins to dominate the Taylor expansion. If the RDS
error was the same in each encoding interval, the RDS erroldwaigiven by a
straight line. In the actual coded sequence, this does nudm since the RDS
error accumulates only when one of the words that violatectmstraint is trans-
mitted. However, based on Fig. 3.8, it is reasonable to aqymiatte the RDS error
with a linear function. However, a second term, related éwvriance of the error
term around that line is needed, thatids,~ za,,, + 2a.- Fi9. 3.10 shows a portion
of Fig. 3.8 that has been zoomed in to more clearly demoestingt variance. The
spectral performance at frequencies below 10~3 is dominated by, and so is
influenced by not only the slope of the error line, but alsovidugability of the line.
While the second weakly constrained code improves the firstitethe RDS error,
Zaes the second terme,,,,, IS more significant. As a result, the second approach
has slightly worse spectral performance at very low fregiemnthan the first ap-
proach, but only violates the DC-free constraint, while tist fapproach violates
both the DC-free and RLL constraints.

3.7 Summary

The construction of constrained codes that permit decoditigput state informa-
tion was discussed in this chapter. In particular, an algerithat makes locally op-
timum decisions to maintain reasonable complexity was gsed. Building upon
previous work by Franaszek, a code table containing a gréatpbabets is con-
structed in such a manner that the spaces within the tablelianagated through
intelligent searching and scoring techniques. This algorihas a number of pa-
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Figure 3.10: Comparison of RDS for a weakly constrained DC{REk code with
d = 3,k = 5and N = 8 with five million codewords for the two approaches
zoomed in to show variability.

rameters, such as scoring exponents, scoring thresholdgha selection of base
rows that can be adjusted based on the type of codes beintjuied by the code
designer. Further, the scoring implementation allows thdecdesigner freedom
and flexibility to change the criteria according to theirape application. A num-

ber of optimizations were discussed, such as lookaheat#, iganumbering, and
weakly constrained coding. Finally, the usefulness of #ég@rithm was demon-
strated with the construction of DC-free RLL codes that adnatesindependent
decoding. Many codes that fulfill all constraints were desilj and an example
was also given of a code that follows the principles of weakigstrained codes.

79



Chapter 4

Evaluation of the Capacity of
Constrained Codes with Multiple
Constrained Signalling Dimensions

In this chapter, constrained codes using a signalling dkphihat is larger than bi-
nary, which can be regarded as containing symbols from pielsignalling dimen-
sions, are considered. Representative systems that arel@@usinclude QPSK,
8 PSK, and 16 QAM. Note that this is a different situation tltansideration of
systems with signalling constrained in multiple physicahensions, such as bi-
nary digits written on the two-dimensional surface of a dism three-dimensional
volumetric holographic storage [46] [47] [48].

In the process of code design, the first major step is to etaliee system
capacity; in this chapter, the evaluation of the capacitgafstrained codes with
constraints in multiple signalling dimensions is consaerfirst, consider the case
when signalling dimensions are independently constraifbs independence may
occur naturally, as is the case of QPSK, or can be the resalt ehcoding process
that regards the signalling constellation as several &gab-constellations and
enforces constraints on each logical sub-constellatidependently. Evaluation of
capacity is straightforward in this case.

Moving to more complex situations, analysis of the capaaftyodes with mul-
tiple dependently constrained dimensions is considerethdse codes, there exists
at least one state in which at least one symbol is impacted bypmacts the con-
straints in at least two dimensions simultaneously. It imdestrated how the ca-
pacity of some of these systems can be accurately evaluatddjow the capacity
of others can be estimated and upper bounded.

An overview of this chapter is as follows. State variablesraviewed in Sec-
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tion 4.1, while DSV is discussed in more general terms as an &8 in Sec-
tion 4.2. The difference between multiple independentlgst@ined logical di-
mensions and multiple dependently constrained logicakdsions is discussed in
Section 4.3. In Section 4.4 the evaluation of the capacitiGffree codes when
the signalling alphabet consists of independently coim&alogical dimensions is
outlined. Presented in Section 4.5 are capacity calculatior the case where the
signalling constellation has one or more signalling poih&t leads to dependently
constrained logical dimensions. Finally, a summary is jgled in Section 4.6.

4.1 FSM Encoders and State Variables

The state machines commonly used in constrained codesctdiaza their current
state with one or more state variables. For example, in DE-doales, all allow-
able RDS values, on a symbol-by-symbol basis, are enumeaiatbdiven a state,
and encoding can be performed by tracking the current RDS amgimg the cur-
rent source word to a codeword such that the RDS bounds ardammaid. RLL
codes can use a similar method, tracking the current statesayumber of consec-
utive ones and zeros that have occurred. An example of a citlenwultiple state
variables is a DC-free RLL code, where both the DC-free and RLIstamts are
enforced by the encoder. In this case, the transmission né@ozero changes the
value of both state variables simultaneously, and so thectwstraints cannot be
easily separated. A method to model this type of constraigivien in Section 4.3.

4.2 Digital Sum Variation and RDS Span

One-dimensional FSMs for DC-free codes are commonly cheriaet! by their
DSV, N, which is the maximum number of different RDS values that thdec
can take on. A more general model, which is useful when cenisig multi-
dimensional FSMs, is to consider the RDS bounds on the DC-&restmined code.
In the one-dimensional case, for a given valué\ofRDS bounds can be computed
by associating each state with its RDS. To calculate the RD&rded with a state,
a value is assigned to one particular state as a starting (gincally zero) and the
RDS associated with all other states is computed by addingatue of the com-
plex baseband representation of the symbol that has bewmtithed. For example,
for a binary code using symbo{s-1, —1} with a value ofN = 5, where the middle
(third) state is denoted as the zero point, states one andawe®RDS values of 2
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and —1, respectively, while states four and five have RDS values bind 42,
respectively.

To characterize the overall RDS bound, the largest span batR®S values is
calculated, which is referred to ds7. In the previous examplé\Z = 2 — (—2) =
4, which is one less than the number of RDS values permissiblenvibnsidering
the two-dimensional RDS plane, the RDS span can be charadedrizterms of
AZ, which is the largest overall span between permissible RI&saor in terms
of AZ, andAZ;, which is the largest RDS span in the real or imaginary dinoarssi
respectively. In general, it is the RDS span that is significaot the actual RDS
values since the initial state is arbitrarily assignedslaliso well established that
the smaller the RDS span of the DC-free code, the greater thgresgion of the
continuous spectrum at low frequencies [2].

In this thesis,N, AZ,, AZ;, andAZ are used where appropriate. Typically,
when describing a one-dimensional constraint, a value®bDISV N will be given.
When describing multi-dimensional constraints simultarsipa characterization
using the RDS spai\Z is useful. However, when considering constraints in the
real and imaginary dimensions separatdly;. andAZ; are used.

4.3 Constraint Modelling with Multiple Signalling Di-
mensions

In this section, state machine models for constrained cedts multiple con-
strained signalling dimensions are considered. Two diffetypes of constrained
codes are considered: those with independently constfaimeensions and those
with dependently constrained dimensions. These two casadiscussed and sev-
eral examples of each are presented to provide context.hdtumecall that the
dimensions can occur as a result of natural independente isignalling constel-
lation, as in QPSK, or through the partitioning of a sigmajliconstellation into a
number of logical sub-constellations or dimensions forgheoder.

4.3.1 Constraint Modelling with Independent Signalling Dimen-
sions

When modelling a constrained code with multiple signallimpehsions using an
FSM, the overall operation of the FSM is described throughipie state variables.
If, for all states, each dimensional constraint can be &rdokith separate state
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variables, and if each symbol affects the values of the statables from only one
dimension, the constraints are said to be modelled withgeddent dimensions.

Consider such a code modelled withdimensions{k = 1,2,..., K}, when
the constraint in each dimension can be modelled with its B&M with a con-
nection matrixD,. To construct the FSM describing the overall constrainthwi
connection matrixD, the FSMs for each dimension can be combined through a
Cartesian product. This construction preserves the sttsition structure of the
constituent FSMs, allowing the states and state variablesgich dimension to re-
main independent of one another. The Cartesian productesréappies” of the
FSM describing one dimension, joining these copies in atammre with the FSM
of another dimension. The overall connection matrix candaandl by consider-
ing the connections in the overall FSM, or by evaluating ther€cker sum of the
constituent connection matrices according to:

K
D= I1,®.. 0L, D&, 6 ©. . . &L k=12 K (41)
k=1
where D,, are the connection matrices for each of the dimensiéhss the total
number of dimensions, and tlg, are appropriately sized identity matrices [49].
For example, for’ = 3, the relationship becomds = D, ® I, ® I,,, + [,,, ®
Dy® I, + 1, ® I, ® Ds.

Example: DC-free QPSK

A straightforward extension of a binary DC-free code is a D&fQPSK code,
where the running digital sum is constrained in both the aedlimaginary dimen-
sions of the complex baseband representation. Note thditat R.C in the complex
baseband representation implies a null at the carrier &g of the transmitted
signal. This code is an example of a signalling consteltatidh two independently
constrained signalling dimensions. The signalling pofntd, —1} and{+7, —j}

naturally form two orthogonal signalling dimensions, wlogre state variable is de
fined to track the RDS in the real dimension and a second statbiais defined
to track the RDS in the imaginary dimension. Each signalliompin the constel-
lation affects only one of the state variables. A maximum D% be chosen for

the number of different RDS values in each of the dimensiodspendently. These
DSV values, which are denotéd, and N,, dictate the size of the one-dimensional
FSMs that describe the constraints in each of the indep¢mlileensions, as de-
picted in Fig. 4.1 a) and b) wheN,; = 4 and N, = 3, respectively. The connection

83



Figure 4.1: One-dimensional FSMs with (&) = 4 and (b) N, = 3. A two-
dimensional FSM (c) is constructed by the Kronecker prodtiE&tSMs (a) and (b)

matrices for these one-dimensional FSMs are:

0100
1 010

D1_0101 (4.2)
0010

and

010

D,=|101 (4.3)
010

The FSM describing the overall constraint is depicted in Bid c) with overall

84



connection matrix:

01001000000 0]
101001000000
010100100000
001000010000
100001001000
010010100100
P=1l00100101001 0 (4.4)
000100100001
000010000100
000001001010
000000100101
(000000010010 |

This connection matrix can be found by inspection of the F&Mby using the
two-dimensional Kronecker sum result:

D=D® I, +1I, ® D, (4.5)

wherel,, andl,, are appropriately sized identity matrices (in this casey 3 Bnd

4 by 4, respectively) ang is the Kronecker product operation. This is an example
of a rectangular-type RDS bound since bounding the DSV on éaobnsion inde-
pendently results in a rectangular FSM structure. In thisygde, the RDS span in
the real dimension i&Z, = 3 and in the imaginary dimension 87, = 2. This
gives an overall RDS span &fZ = /13 for this code.

Example: DC-free 8PSK

The concept of independent signalling dimensions can bended to larger sig-
naling alphabets that are commonly used in communicatiGossider the 8-PSK
constellation shown in Fig. 4.2. If the state variables a&fenéd in the same manner
as in the QPSK case, the signalling points that are not oeregtkis alter the state
variables of both dimensions simultaneously. This is ammgta of dependently
constrained signalling dimensions, which is consideratiémnext subsection.
However, the manner in which the encoder operates can bgetida create a
constrained code with multiple independently constraiogital dimensions. The
encoder can construct a DC-free code by separating the kgnadnstellation into
four logically independent dimensions by constraining Ri2S of the following
four pairs of points independently:+-1, =13, {+4, =i}, {+ 5 +7 J5: — o5~ o5}
{—i-\% — j%, —\/% + j\/%}. This creates four independent logical dimensions,
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Figure 4.2: 8PSK signalling constellation.

with respect to the RDS constraints, where the state varfableach of the log-
ical dimensions is the accumulated RDS in that dimensionrtiSgawith a one-
dimensional FSM that describes the constraint in each diirnenthe overall FSM
can be constructed as a four-dimensional FSM with an ovatatiber of states
equal to the product of the number of states in each dimensite connection
matrix of this FSM can be found using (4.1). The RDS span carvakiated by
determining the maximum distance between the complex RD&sakpresented
by the four dimensional FSM. For example, if the DSV in eachetision iV = 5,
then the RDS span is 4 for that dimension. Taking into conatder all four di-
mensions simultaneously, it can be shown that the overall 828 for the code is
AZ = 10.453.

Example: DC-free 16 QAM

Consider the 16 QAM constellation, centered at the originhweighboring sig-
nalling points separated by a distance of two. Similar to8R&K case, defining
two state variables to track the RDS values in the real andimaagdimensions
causes all signalling points to affect both state varigldes results in two depen-
dently constrained dimensions. However, the encoder caesigned to regard the
16 QAM constellation as consisting of multiple independengical signalling di-
mensions, and can bound the DSV independently on each afgieal dimensions.
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There are at least two ways in which the encoder can partti@onstellation into
logical dimensions. In a manner similar to the approach f&SK, the code can
be partitioned into eight independently constrained dsiars by separating the
signalling points into pairs with odd symmetry about thegori A second parti-
tioning consists of only six independently constraineddabdimensions. Note
there are two sets of four points each that exist on straigés through the origin:
{-3-3j,—-1—4,1+4,3+3j} and{—3+3j, —1+7j,1—75,3—35}. The remaining
eight points lie on four different signalling lines in pawsth odd symmetry about
the origin:{1+35,—1—-35},{3+4,-3—7} {-1+3j,1-35},{-34+4,3—7j}.
These six sets of points can be regarded as six independeansions, and the en-
coder can bound the DSV of each of these dimensions indepgynd&/ith either
approach, the overall connection matfixcan be calculated through the Cartesian
product of the connection matrices representing the doesii FSMs.

4.3.2 Constraint Modelling with Dependent Signalling Dimen-
sions

Dependent signalling dimensions arise when the stateblasdrom different di-
mensions cannot be tracked separately or at least one syfrobolat least one
state affects the state variables assigned to two or mdexetit dimensions. The
FSMs describing these types of constrained codes can biéicagily more com-
plex to construct than the state machines which model int#gly constrained
signalling dimensions. In general, FSMs describing depatig constrained sig-
nalling dimensions cannot be constructed simply throughute of Cartesian prod-
ucts; instead, care must be taken to ensure that the dependetween dimensions
is modelled appropriately.

A drawback of codes using independently constrained diggalimensions is
that the RDS span is often larger than that of their depengeatistrained counter-
parts. For example, consider again the 8PSK constellamgudiour independently
constrained signalling dimensions, each with digital samation N = 5. It can
be shown that this code has an RDS span in the real and imagimagnsions
of AZ. = AZ; = 9.657, and as mentioned above, it has an overall RDS span of
AZ = 10.453, whereas the RDS span on each of the independent dimensions is
However, the independently constrained model is usefulsb gienerate an initial
FSM, from which some states can be removed to enforce a tigim& span. Some
examples are considered below.
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Figure 4.3: FSM for QPSK DC-free code wifty = 4 and N, = 3 and a circular-
type RDS bound.

Example: DC-free QPSK

In the previous section, a QPSK code with a rectangular-p& bound was
considered. However, this approach results in an overall Bi® that exceeds
the constituent RDS spans owing to the magnitude of the statde corners of
the overall rectangular FSM. A circular-type (or ellipicRDS bound produces a
smaller overall span. To enforce a circular-type RDS boundr,%M is constructed
as described above, but all states that violate the prestRIDS span are removed.
This introduces a dependence into the signalling dimessoite, for example, the
number of states in the horizontal direction is limited witie® RDS of the vertical
constraint is large, as compared to the number of stategihdhzontal direction
when the RDS in the vertical direction is small. This relasioip is depicted in
Fig. 4.3 for an RDS constraint éf; = 4 and N, = 3, when the corner states of the
rectangular FSM are removed. The RDS span of this codeZis= 3.

Example: DC-free 8PSK

An 8PSK signalling constellation, using state variablesack the real and imag-
inary RDS values, naturally forms two dependently conséisignalling dimen-
sions since the off-axis points in this constellation attex values of both state
variables. To construct a state machine that models thebpeof the constrained
code, an initial value for each of the state variables is ehdty/pically zero), mini-

88



mum and maximum bounds on the RDS in both the real and imagthagnsions
are selected, and the RDS values (i.e. states) that can ath#t whe bounds are
enumerated. Since the values of the constellation poiatmseommensurable in the
real and imaginary dimensions, however, there exists anit@fnumber of states
within the RDS span. Therefore, the straightforward apgraddinding the con-
nection matrixD and its maximum eigenvalug,... to evaluate the capacity of such
a code cannot be used. In the next section, the estimationgpel bounding of
the capacity of this type of constrained code is considered.

Example: DC-free 16 QAM

In the case of 16 QAM, two state variables are used, the RDSireill and imag-

inary dimensions, to construct a code with two dependemthstrained signalling

dimensions. In this case, every signalling point has bathared imaginary compo-
nents and therefore each symbol simultaneously affectsdiate variables. Since
the signalling points are commensurable, then given a fRIRS span, the result-
ing state machine is described by a finite number of stategs Skate machine is
constructed by choosing an initial starting state and ematimg all possible valid

transitions. For example, starting at the state with zeowtilated RDS in both

dimensions, selection of each of the 16 signalling pointsoissidered. If the se-
lection of a symbol results in an RDS value that lies within RI2S span, a new
state is created, this transition is entered into the cdiorematrix, and the proce-
dure is repeated at each new state until no additional sae@esreated. During this
process, new states are numbered and the connection nsatoastructed. The
RDS constraint can be enforced using either rectangular-aygircular-type RDS

bounds.

4.4 Capacity with Independently Constrained Signalling
Dimensions

In this section, the evaluation of the capacity of a code wittependently con-
strained signalling dimensions is considered. As desdrjireviously, when the
dimensions are independent and the constraint imposedeoithirdimension by
the encoder is modelled by an FSM with a connection mdlixthe overall con-
nection matrixD is constructed by using (4.1). The largest eigenvalyg, of this
connection matrix can then be found. Takiig, of this value gives the capacity
C of the code in bits of information per symbol.
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Table 4.1: Maximum eigenvalue and capacity, in bits of infation per symbol, of
one-dimensional DC-free codes fr = 2 through9.

N | Amax C
1.000| 0.000
1.414| 0.500
1.618| 0.694
1.732| 0.793
1.802| 0.850
1.848| 0.886
1.879| 0.910
1.902| 0.928
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Alternatively, it is straightforward to evaluate,, if the maximum eigenvalues
of the D, are known. Sincé is a Kronecker sum of th®,,, it can be shown that
the eigenvalues ob are given by the summation of all possible combinations of
eigenvalues from thé, matrices [49]. As a consequenceg,,,., the maximum
eigenvalue oD, is given by:

K
Amaa: - Z Amazk (46)
k=1
where, .., is the maximum eigenvalue for connection mattix. Takinglog, of
this value gives the capacity of the code in bits of informagper symbol.

4.4.1 Examples: DC-free QPSK, 8PSK, and 16 QAM

It is straightforward to use the second approach when etmafuthe capacity of the
DC-free example codes in Section 4.3.1. Table 4.1 lists tharman eigenvalue
of the connection matriX) and capacity for several one-dimensional FSMs that
model DC-free sequences with running digital sum variathon Such tables are
commonplace in the literature [cf. 2]. Eigenvalues listethis table can be used to
efficiently calculate the capacity of DC-free codes with ipeledently constrained
signalling dimensions.

For example, for the DC-free QPSK code with boundsvef= 4 and N, = 3,
the maximum eigenvalue is,,,, = 1.618 4+ 1.414 = 3.032, andC' = 1.600 bits
of information per symbol. Consider the 8PSK code with fouleipendent logical
signalling dimensions with a DSV @¥ = 5 on each of the dimensions. This code
has a maximum eigenvalue &f,., = 4 x 1.732 = 6.928 andC' = 2.792 bits of
information per symbol. Table 4.2 lists the capacity of a {@@-free codes for an

90



Table 4.2: Maximum eigenvalue, capacity (in bits of infotima per symbol), and
number of states in 8PSK DC-free codes with four independgnalling dimen-
sions.

N | Amax C L

5.657| 2.500| 81

6.472| 2.694| 256
6.928| 2.793| 625
7.208| 2.850| 1296
7.391| 2.886| 2401
7.518| 2.910| 4096
7.609| 2.928| 6561
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8PSK constellation considered as four independent diraeasas well as the total
number of stated.. In this table, for simplicity, only results for codes whéret
DSV is the same in each dimension are listed.

Capacities for DC-free codes with symbols from the 16 QAM celfegion de-
pends on the partitioning that is chosen for the constetiatin the case of the eight
dimension partitioning, the maximum eigenvalue for eactnefdimensions can be
obtained from Table 4.1 above. Care should be taken whertisgj¢lse appropri-
ate value of/V in each dimension because of the difference in RDS span dbe to t
differing signalling amplitudes.

The six dimension partitioning resolves the differencenpétudes in a differ-
ent fashion. For the same DSV, the logical dimensions comigifour points have
different capacities than the dimensions with two signgllpoints. It is straight-
forward to calculate capacities of one-dimensional DC-émaes with four evenly-
spaced signalling points; some results are listed in Talde Bhe remaining four
logical dimensions, each with two signalling points, aredelted as in the previous
examples. The maximum eigenvalue of each dimension isreatdrom Tables 4.1
and 4.3, and these values are summed together to\findand the corresponding
capacity. For example, if the dimensions with four sigmagjlpoints are constrained
to N = 7 and the dimensions with two signalling points are consa@ito N = 3,
the overall maximum eigenvalue id.581, and the capacity i8.533 bits of in-
formation per symbol. For this code, the largest RDS valuetimreethe real or
imaginary dimensions i$4, and soAZ, = AZ; = 28. The overall RDS span is
AZ = 28. In this particular case, the real and imaginary RDS spang@ual to
the overall RDS span since the worst case RDS span exists ordbe a
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Table 4.3: Maximum eigenvalue, and capacity, in bits of infation per symbol,
for one-dimensional DC-free codes fdr = 4 through9 with multi-level signalling
values of{+1, £3}.

N | Amax C

2.000| 1.000
2.450| 1.293
2.732| 1.450
2.962| 1.567
3.140| 1.651
3.274| 1.711
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4.5 Capacity with Dependently Constrained Signalling
Dimensions

In the previous section, it was shown how the capacity of a B€-fode using sig-

nalling constellations consisting of multiple indepenttienonstrained dimensions
can be evaluated. In this section, the evaluation of capé&mitconstrained codes

with multiple dependently constrained dimensions is prest These codes are
characterized by state machines that have either a finitdinite number of states,

which are considered in turn in this section.

4.5.1 Finite Number of States

When a constrained code with dependently constrained $iiggpalimensions is
described with an FSM, exact capacity analysis is possileugh the methods
detailed previously in this chapter. That is, the FSM andespondingD matrix is
constructed and its maximum eigenvalue is evaluated to fiedapacity.

In Section 4.3.2, codes with dependently constrained Biggadimensions,
which were constructed by first forming FSMs with rectangllaunds and then
removing states that exceeded the RDS span, were consid@¥efilee codes con-
structed in this manner with commensurable signalling fsoisuch as QPSK or
16 QAM, tend to have significantly fewer states than theiommensurable coun-
terparts. Tables 4.4 and 4.5 list the capacity of DC-free QR&HK circular-type
RDS bounds and 16 QAM codes with rectangular-type RDS bourditharsix di-
mension partitioning. The relatively small number of stdtethese codes is due to
the fact that many states along different dimensions havedime complex-valued
RDS values and can be merged since they describe the sameTstatsimplifies
the FSM. In the case of 8 PSK, however, the codes generally daignificantly
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Table 4.4: Maximum eigenvalue and capacity, in bits of infation per symbol,
of QPSK DC-free codes with two dependent dimensions and RD8dsamliwith
circular-type bounds.

N | AZ | Amax C L
2.000| 1.000| 5
3.000| 1.585| 13
3.482| 1.800| 29
3.690| 1.884| 49

3
5
7
9
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Table 4.5: Maximum eigenvalue and capacity, in bits of infation per symbol,
of 16 QAM DC-free codes with six dependent dimensions and RDusidbed with
rectangular-type bounds.

N | AZ, ,AZ; | Amax C L
3 6 8.772 | 3.133| 25
5 12 12.902| 3.690| 85
7

9

18 14.333| 3.841| 181
24 14.968| 3.904 | 313

higher number of states. Table 4.6 lists the capacity of @-8 PSK codes for
several rectangular-type RDS bounds.

Fig. 4.4 shows a plot of the capacity of DC-free 8PSK codesguaisignalling
constellation split into four independent logical dimems with rectangular-type
two-dimensional RDS bounds akZ,, AZ;, forcing dependent dimensions. Note
that even for reasonably small RDS spans (for example = AZ; = 8, giv-
ing C = 2.877 bits of information per symbol) the capacity of the uncoaisied
systemJog, 8 = 3, is approached. The short plateaus visible on the graplextor
ample from3.0 to 3.4, exist because increasing the RDS span in this range does not
increase the number of states in the FSM. There are a numisgaites with RDS
values ofy/2, which results in a significant jump betwe282 and2.83, but no new
states are added until the RDS span excéetds

Table 4.6: Maximum eigenvalue and capacity, in bits of infation per symbol,
of 8 PSK DC-free codes with four dependent dimensions and RI&dsx with
rectangular-type bounds.

N | AZ,,AZ; | Amax C L
2 4.168| 2.060| 37
6.110| 2.611| 289
6.955| 2.798| 1161
7.349| 2.878| 3301

3
5
7
9

o b~
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Figure 4.4: Capacity, in bits of information per symbol, asiaction of RDS span
for DC-free 8PSK codes with dependence introduced by usiotamgular-type
RDS bounds.
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4.5.2 Infinite Number of States

In cases where two or more signalling points are incommextelr construction of
a state machine that enumerates all valid RDS values reauiredinite number of
states. This type of situation arises with 8 PSK when therdmriton of each point
to the RDS in the real and imaginary dimensions is trackeds Jibsection consid-
ers estimating the capacity of such systems through rogndimd upper bounding
the capacity by partitioning the states into regions.

Estimating Capacity Using Rounding

In this approach, the number of states is limited by roundiegvalue of one or
more of the signalling points to ensure that all signallimgpvalues are commen-
surable. Using the rounded constellation points, an FSMrnstructed by choosing
an initial, valid state. From this state, all possible transs are considered, and
those that satisfy the constraint are retained. Valid tti@ns may correspond to a
new state in the FSM, which is later analyzed in the same migonall possible
valid transitions. This process continues until no newestare created. The
matrix is constructed, its maximum eigenvalue is evaluated the correspond-
ing capacity, which serves as an estimate of the capacityeobtiginal system, is
found.

For example, consider the 8PSK constellation where theaedlimaginary
dimensions are each bounded with an RDS span. Since the RD$bataoh of
the signalling pointsJ:\/L5 + j\/% is incommensurable with the points on the axes,
an infinite number of states arise. The capacity is estimayedunding the value
of \/% to 0.7, 0.71, and 0.705 to show the effect of increasing thebmr of states
used in the approximate FSM. A rectangular-type bound iosed on the RDS,
extending from -1 to 1 in the real dimension and -1 to 1 in thagmary dimension.
While the resulting FSMs have a reasonably large number t&fssfa21, 20201, and
80401 states, for rounding values 0.7, 0.71 and 0.705 ragplyg, it is possible to
find the exact value of capacity for these systems. The qmurebng maximum
eigenvalues in these three cases)ag, = 4.2526, 4.2502, and4.2502, giving rise
to capacity estimates @f0883, 2.0875, and2.0875 bits of information per symbol.
Note that there is not a significant difference amongst thakees, and so it can be
inferred that the estimation of the capacity of this systemeasonably accurate.

To further validate this approach, consider Fig. 4.5, whsbbws a plot of the
probability of being in each of the 221 states, in ascendnodgbility, for the case
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when a rounding value of 0.7 is used. These probabilitiegwbtained from sim-
ulation assuming equiprobable output symbols from eadb.skotice the appear-
ance of six distinct plateaus. These six plateaus corr&sfmosix major regions of
the FSM, with each state within these regions having apprately the same prob-
ability of occurrence. The states within each of these regimve similar probabil-
ities of occurrence because they all share a common numbetf points; they
also have the same number of output edges. These regioneaenfed visually in
Fig. 4.6. Region 1 consists of a single poiftt,0); this is the only state with eight
incoming edges. Region 2 consists of all points witfi(1 — \/Li), +(1 — \/%))
lying on the axes; each state in this region has seven ingpeulges. Region 3
consists of all points withif+(1 — \/%), +(1 - \/%)) excluding all points along the
axes; these states have six incoming edges. Region 4 carfsaditstates along the
axes with at least one coordinate having an absolute vakegegrthan1 — \/%);
these states have five incoming edges. Region 5 consists pbialis not along
the axes which have one coordinate with an absolute valuesrttzan (1 — \/%)
and one coordinate with an absolute value larger than \/%); these states have
four incoming edges. Finally, region 6 consists of all remrag states, where each
state has three incoming edges. Regions 1 through 6 corm$paone plateaus of
decreasing probability of occurrence in Fig. 4.5. Roundh\talue of %) dif-
ferently adjusts the size of these regions, but only shglid does not change the
number or type of the regions. Further, the probability ahben any given region
changes only slightly as the rounded value is adjusted.

In Chapter 2, it is shown that the entropy of a system is givea bymmation
of a sequence of terms, as in (2.5) on page 12. Recall that iBRBK example
above, all states within each region have the same numb#owgdle output sym-
bols, so they share a commdfy, and that there is a nearly uniform probability
distribution across all the states in each region. Theeefeach of the six different
regions contributes a term to this summatidif{ X} = >°° | 7, H;, wherer; is
the probability of being in a particular region ahf is the entropy associated with
that region. Since neither the size of the regions nor thegbility of being in a
particular region changes significantly as different valte¥ rounding are chosen,
the overall entropy of the systerf,{ X }, will not change significantly, nor will its
maximization over the region probabilities, which is thpaaty. For these reasons,
it is concluded that the estimate obtained through the rimgrapproach provides a
good approximation to the actual capacity of the code.

Recall that in subsection 4.5.1, above a DC-free 8PSK code imitepen-
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97



-1 0 1

Figure 4.6: Graphical representations of the regions wticttain a cluster of states
with the same steady-state probability.

dently constrained signalling dimensions is considereth states lying outside of
a rectangular-type RDS spayw, = AZ; = 2 being removed, forcing dependence
among the four signalling dimensions. The result was a coitle dependently
constrained dimensions, 37 states, and a capaci2y066 bits of information per
symbol. Note that this is withih.5% of the estimated capacity of the DC-free 8PSK
code constructed using the rounding approach with the sang&dpBn in both the
real and imaginary dimenions. Given the similar capagcities code with only37
states might prove more practical. In that code, states ba®e removed from the
FSM, but these states would not have provided a significan¢@se in the overall
system capacity because they would have been entered witHove probability
and had few exit paths.

Upper Bounding Capacity Using Regions

As outlined above, in some cases it is possible to partittates into regions if
these groups of states have similar characteristics amuefres. Each group of
states can be represented by a “meta-state” and valid ticarsseamong the meta-
states can be considered. An edge from one meta-state theanstincluded if

there is at least one state in the first meta-state that ti@msito a state in the
second meta-state. Therefore, the transitions among the stetes may not be
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valid for every state within the meta-states, but may regmea surplus of edges
in the actual state machine. Since capacity is a functioh@humber of options
available at any point in time, it is affected by the numbeowofgoing edges from
the states. The system capacity will then be upper boundibe ibutgoing edges
from each meta-state represent at least all of the outgalggsefrom every state
they represent.

For example, if each of these six regions is representedanitieta-state in the
DC-free 8PSK case considered above, and the outgoing toarssftom these six
states are constructed, the following connection matrobisiined:

0

4.7)

= e N e i )
_ == OO

__0 O O O
R RO e
e a =)
e

Note, however, that this connection matrix overestimatesnumber of edges
in the actual state machine. For example, no state in regman@ransition to all
six regions, only five. Some of the states within region 6 candition to regions
1, 2, 3, 4 and 6, while other states in region 6 can transitaegions 1, 2, 3, 4 and
5. Overestimating the number of edges in this manner reisuts upper bound on
capacity. The maximum eigenvalue of this connection masri&.322, giving an
upper bound on the capacity ®fl 11 bits of information per symbol. Note that the
earlier estimate using the rounding approach is within 1d6%is upper bound.

4.6 Summary

This chapter presented state machine modelling and cgpa@tuation of con-
strained codes using larger-than-binary signalling ddelts Two different methods
for state machine modelling are outlined: codes using iaddpntly or dependently
constrained signalling dimensions. In the case of indepethyl constrained sig-
nalling dimensions, a straightforward approach for evabmeof the exact capacity
of the system based on the summation of maximum eigenvafuites connection
matrices representing each independent signalling diimemgas presented. In the
case of dependently constrained signalling dimensiorth, the evaluation and es-
timation of the system capacity were considered. Estimatias achieved using
three methodsi) the removal of states from the state machine which congibut
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insignificantly to the overall capacity and evaluation o ttapacity of the result-
ing model,ii) rounding of constellation points so that symbols are consueable,
resulting in FSMs whose analysis is tractable, andupper bounding the system
capacity by partitioning the state machine into regions. ulmber of examples
throughout this chapter were presented to provide contextshow the applica-
bility of this work to DC-free codes with signalling constdibns using complex-
valued symbols.
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Chapter 5

DC-free Codes with Complex-Valued
Signalling Constellations

In this chapter, DC-free codes using complex-valued sigrggdliphabets, including
QPSK, 8PSK, and 16 QAM, that are state-independent des@dablconstructed.
Capacity analysis of such codes was considered in detail ipt€hd. The FSMs
constructed in that chapter serve as a starting point foergéing the codebook
of the codes presented in this chapter. Franaszek’s digof#] is used to find a
suitable set of coding parameters for a state-dependeat aod to generate an en-
coding table. This encoding table is manipulated accortinige approximation al-
gorithm described in Chapter 3 to construct a code that witliastate-independent
decoding at the receiver.

The encoding process that bounds the RDS is modelled withta fitate ma-
chine, where the state variables of this FSM are RDS valuase she encoder
outputs codewords in response to the current RDS value anidighe word. To
calculate the capacity of such codes, the maximum eigeewafiuhe connection
matrix that describes this FSM is found [2] and the capacity= log, Amax [1],
is evaluated, which has units of bits of information per spinbConstructing a
state-dependent encoder is straightforward when the exdgbee FSM are used to
enumerate all valid codewords for each state. To preveat propagation at the
receiver, the code is designed so that it is state-indepeiydecodable, in that the
code can be decoded at the receiver without the need foristateation.

An overview of this chapter is as follows. In Section 5.1, B8V and RDS
span conventions used in this thesis are reviewed and suanearis discussed,
while a brief review of constraint modelling is given in Seat5.2. Section 5.3
presents several examples of DC-free QPSK codes, inclutigig gpectral plots.
In Section 5.4, DC-free codes using 8PSK signalling alplsabet constructed,
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while in Section 5.5, codes using the 16 QAM signalling alpgtaare constructed.
A summary is offered in Section 5.6.

5.1 RDS, DSV, and Sum Variance

As in the previous chapter, the DSV and RDS span are used tol thedsonstraint
imposed by the code. The conventions remain the same in ltlster: DSV is
typically used when referring to a one-dimensional codelenh 7, AZ;, andAZ
are used when referring to codes with a two-dimensional R28endding on the
type of RDS bound used.

It has been shown that for binary DC-free codes, the variahteedRDS, s?,
is a good indication of the spectral performance of the c@@¢ [The variance of
the RDS is commonly referred to as the sum variance [2]. Iriqudatr, [22] shows
that for most one-dimensional codes?w, ~ 1, wherewy is defined as the cut-off
frequency, which is the frequency where the PSD is equal éohatf, that is, the
value ofwy when H,(wy) = 1/2. In the case of two-dimensional DC-free codes,
the variance of a zero-mean sequence of complex-valued RD8sv& given by
s? = E[d%] whered is the Cartesian distance of the RDS values from the origin.
In other words, the variance of the RDS is related to the aeesggared distance of
the RDS from the origin of the code. Note that the evaluatiothefsum variance
for binary codes is just a special case of this more genefalitien.

5.2 Constraint Modeling with DC-free Codes Using
Multiple Signalling Dimensions

In the previous chapter, methods to calculate the capatiyGfree codes us-
ing QPSK, 8PSK, and 16 QAM alphabets were developed. To fiacc#pacity

of these types of codes, FSMs modelling the constraintseottues were gener-
ated. The FSMs generated during that process now serve adiagpoint for the

code construction process. These codes are separatedvinttategories: those
with independently constrained signalling dimensions #uode with dependently
constrained signalling dimensions. Dependent signallimgensions arise when
the state variables from two or more dimensions cannot lokeéchseparately, or
at least one symbol from at least one state affects the stai@bles assigned to
two or more different dimensions. Conversely, codes usidgpendent signalling
dimensions are those in which every symbol affects the vafltlee state variables
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from only one signalling dimension at a time. These indepahdignalling dimen-
sions could result from the signalling constellation, sastthe real and imaginary
dimensions in the complex plane, or as a result of the engqatincess, where the
signalling constellation is subdivided into several l@jisub-constellations.

Capacity evaluation and FSM construction of codes using Q&fHKabets is
largely straightforward since the constellation consaftswo independent sub-
constellations, one on the real axis and the second on trggnarg axis. Therefore,
in their simplest form these codes naturally fit the indegerigl constrained dimen-
sions model. Additional constraints can be imposed on thé &t may cause this
independence to be lost.

Capacity evaluation and FSM construction of 16 QAM codesightdly more
complex, since the signalling constellation does not hhedridependence inher-
ent in QPSK codes. Each signalling point on the traditioaQAM constellation
affects the RDS in both the real and imaginary dimensions lsameously. How-
ever, it is possible to construct an FSM for these codes usieagndependently
constrained dimensions method as a starting point. It i€ dorby partitioning the
signalling constellation into several logically indepentidimensions, highlighted
in the previous chapter. For example, one dimension is ceppof the signalling
points{3 + 53,1 + j1,—1 — j1,—3 — j3}; the five other dimensions also consist
of sets of points that exist on lines through the origin. B #ncoder enforces the
RDS constraint on each of the dimensions independentlyttiese dimensions are
independent of one another. An FSM is constructed that rsdded operation. If
required, to enforce a tighter overall RDS span, states thktte this constraint are
removed from the overall FSM, introducing dependence iméocbde.

Codes using 8PSK alphabets can be more difficult to model beazuhe pres-
ence of signalling points whose values are incommensuyrabtetherefore a model
that tracks all possible RDS values requires an infinite nurobstates. While it is
possible for the encoder to consider the 8PSK constellasfour independently
constrained logical dimensions, the overall RDS span wigt #pproach is sig-
nificantly larger than the dependently constrained casehignthesis, only 8PSK
codes using dependently constrained signalling dimessaon a finite number of
states are considered. These FSMs are constructed usiod wemethods. First,
rounding of signalling points so that their values are comsneable to ensure that
there is a finite number of states is considered. Secondtractien of the FSM
starts with independently constrained logical dimensama starting point. Then a
tighter RDS span is enforced by removing states that violeelesired RDS span
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constraint at the cost of introducing dependence betwesedithensions.

5.3 Construction of DC-free Codes Using QPSK Sig-
nalling Alphabets

In this section, the construction of DC-free codes using tR&R) signalling alpha-
bet is considered. These codes have the simplest conetrgitthe cases consid-
ered in this thesis because the signalling constellatituraly forms two indepen-
dent sub-constellations. QPSK DC-free codes using rectantype RDS bounds
have independently constrained dimensions. Other typB®& bounds, such as a
circular bound that restricts the magnitude of the RDS froerz#ro point, introduce
dependence into the signalling dimensions, but use thegemtently constrained
model as a starting point.

Constructing a DC-free QPSK code starts by choosing a desirefl $§an
on each of the real and imaginary dimensions, and modelingosl-by-symbol
movement in each of the two dimensions with individual oimeahsional FSMs.
To construct the FSM describing the overall code, the FSMgamh of the two
dimensions are combined through a Cartesian product. Th&tmration results in
rectangular-type RDS bounds. If circular (or other) boungsraquired, states that
violate these bounds are removed from the overall FSM atpibiist. As shown
in the previous chapter, it is straightforward to calculédte D matrix, maximum
eigenvalue, and capacity of such a code. Thmatrix describing the FSM is used
as an input to Franaszek’s algorithm, which will return teé &f parameters that
give the highest code rate of a viable state-dependent dbmdode. Finally, us-
ing these parameters, a state-independent decodablescodestructed using the
approximation algorithm in Chapter 3.

For illustration purposes, consider a DC-free QPSK code reittangular bounds
AZ, = AZ; = 2suchthat\Z = 2/2. Using the approaches outlined in Chapter 4,
it is straightforward to find that this code has a capacity.6fbits of information
per symbol. Franaszek’s algorithm determines thatpfet 10, the highest code
rate is given byn = 13 andn = 9. The tables specifying the codebook for such
a code, however, would be lengthy. Instead, Franaszeksitigh continues un-
til a simpler code emerges, one for which it is practical b the codebook. The
construction of this simple code has parameters= 4 andn = 3, which has a
code rate ofR = 1.333 binary digits per symbol. This code has an efficiency of
v = 0.889, where efficiency is evaluated as= g with units binary digits per bit
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Table 5.1: Codebook for QPSK DC-free code with= 4,n = 3, andAZ, =
AZ; = 2 as a function of encoding state.
source| o, 09 o3 04 05 Og o7 of} 09

Io wy wyp | wor | Wy wy | Wor | Wy w1 | W7
B2 Wa Wa wWa Wa Wa Wz | Ws1 | Ws1 | Ws1
B3 w3 W3 | W1 | W3 | Wyq | Wyq | W50 | Wyq | Wyq
B Wy Wy | W9 | Wyq | Wy2 | Wy2 | Ws2 | Wy2 | Wy2
Bs | ws | ws | Woy | Ws | W5 | Way | Wsg | War | Wy
Bs We | W19 | W19 | We | Wys | Wy5 | W32 | W45 | Wys
Br Wr | Wy | Woe | W7 | Wy | W43 | W53 | W43 | W43
Ps Wg | Wg | W3p | Wg | Wg | Wye | W39 | W39 | Wye
Bo Wy | Wy7 | Wir | Wy | W7 | W17 | W9 | Wi7 | W17

Bro Wi | Wio | Wip | W34 | W34 | W34 | W34 | W34 | W34
B Wy | Wig | Wig | W11 | Wig | Wig | W37 | W37 | W4s
B2 Wig | W2 | W20 | W36 | W3 | Wa7 | W36 | W36 | W4t
B3 Wiz | W22 | W22 | W31 | W22 | W22 | W31 | Wss | Wss
B4 Wig | W25 | W25 | Wy | W25 | W25 | Weo | Wse | Wse
P15 Wys | W15 | W2z | W33 | W33 | W3 | W3z | W33 | Wsy
Bie Wi | Wie | Wag | W35 | W35 | Wag | W35 | W35 | Wa9

of information. Franaszek’s algorithm has determined thete are nine principal
states. The minimum number of codewords in any state is Xbsarthe approxi-
mation algorithm attempts to fill the code table with 16 waadsoss 9 states. After
placing the 16 words of state one in the table, the table am&0 spaces in the
16 x 9 = 144 total entries, which the algorithm successfully fills. T@bl1 presents
the codebook for one possible implementation of such a duatehias nine princi-
pal states denotedi, = 1,2,...9. Codewords are denoted as,j = 1,2, ...56;
source words are denoted ds £ = 1,2,...16. The three-symbol sequence for
each codeword is presented in Table 5.2; the mapping oftfbdninary sequence
to source word tag is arbitrary. It can be verified that relgasiof the source statis-
tics this code is DC-free and, because each codeword appeantyi one row of
the code table, the code does not require state informatiordier to be decoded.
Table 5.3 lists parameters of a few DC-free QPSK codes, usitigrbctangular
and circular RDS bounds, that were constructed using thisedefThe parameters
listed include the RDS span, capacii, v, as well as values fan, n, and number
of principal states|P|. In Table 5.3, as well as all subsequent tables in this chap-
ter, the units for capacity, rate, and efficiency are bitsnédrimation per symbol,
binary digits per symbol, and binary digits per bit of infation, respectively. For
rectangular bounds, the highest efficiency codes that haea bonstructed using
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Table 5.2: Word index to codeword mapping for QPSK code With., AZ; = 2,

m = 4 andn = 3.

Label Codeword | Label Codeword
w1 —1 —|—1 —1 W29 +1 —j +1
wy | =3 +Jj —J| wz | —J +1 +1
Wy -1 —7 41| ws +7 -1 -1
ws | =1 —j +j| ws | +j -1 —j
we | —J +j —1| ws | +3 —J +J
wr | =7 —1 41| w3 | +3 —3 -1
wg | =y -1 47| wg | -1 +1 +j
Wy -1 =1 41| wsy -1 +5 —+1
wyp | —J —J +j| wss | -1 45 -1
wpp | =1 =1 —j| w3 | -1 45 —j
w2 | =1 —j —1| wy | -1 =1 +j
wg | -1 —j =7 wn |+l +5 -1
wy | —J -1 —1| wye | +1 +5 —J
wis | =7 —1 —j | wy | +1 -1 +j
wi | —J —J —1] wy | +j +1 -1
w17 -+ 1 —1 + 1 Wys +j + 1 —j
wig | 1 =1 =7 wee | +) —J +1
wi |+l —j +j | wer |+ +1 4y
Wag +1 —7 —1| wg +1 +5 +1
wy |+l =y —J| wy | +5 +1 +1
Wo2 —j —|—1 +] Ws0 +j ‘|—j —1
we | —J +1 —1| ws | +7 +5 —J
wy | —J +1 —j | wsy | +7 -1 +j
wys | —j +j 1| wsy | -1 +j5 +j
we | —J —J 1| wsy | +1 45 +J
War —|—1 +1 —1 Wss5 +j +1 ‘|—]
wys | +1 +1 —j | wse | +) +75 +1
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Table 5.3: Parameters of QPSK DC-free codes with., AZ; = 2,4 and6.
Rectangular Bounds

azeaz, | m | n| R C v | |P]| s? fo
2 4 | 3|1.333|1.500| 0.889| 9 | 1.021| 0.0824
2 10| 7 | 1.429| 1.500| 0.952| 9 | 1.009| 0.0895
4 10| 6 | 1.667| 1.793| 0.930| 21 | 2.286| 0.0343
6 16| 9| 1.778| 1.886| 0.943| 25 | 3.763| 0.0222

Circular Bounds

AZ |m|n| R C v |P| | s? fo
3 |12|1.500| 1.585|0.946, 4 | 1.250| 0.0715
6 10| 6 | 1.667| 1.807| 0.923| 21 | 2.397| 0.0362

AZ,., AZ; = 2,4, and6 have efficiencies d¥5.2%, 93.0%, and92.8%, respectively.
Using circular bounds, DC-free QPSK codes wkly = 4 and6 with effiencies of
94.6% and92.3% have been constructed.

Fig. 5.1 shows the spectral performance of each of thesesdzateed on a sim-
ulation of five million codewords, assuming equi-probalderse symbols. The
validity of the simulations for the simpler codes has beemficmed through com-
parison with analytical results computed using the appra#Ed11] extended to
include consideration of complex-valued coded symboldudé&of sum variance,
s, and cutoff frequencyy,, were also obtained from these simulations. As ex-
pected, as the RDS span increases, the width of the spectchlatcDC decreases.
Also note that for the sam&Z,., AZ;, the codes using circular bounds exhibit bet-
ter spectral performance than those using rectangulardsoun particular, when
AZ = 4, the code using circular bounds has approximatet§B more spectral
suppression than the code with rectangular bounds, wheledlde withAZ = 6
has approximatelg dB more spectral suppression than its rectangular bouna-cou
terpart.

When comparing the spectral performance of these QPSK cadése that,
similar to one-dimensional codes, the variance of the RD8sgasvery good indi-
cation of the spectral performance. For example, the canlestiticted with circular
RDS bounds have lower sum variance than those constructedegiingular RDS
bounds for the samA Z, which evidences itself in terms of better spectral perfor-
mance. Taking the values fef and f, and calculatin@sw, gives values ranging
from 1.014 to 1.135, indicating that Justesen’s relationship holds for QP SKfixe-
codes.
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Figure 5.1: PSD of DC-free QPSK
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5.4 Construction of DC-free Codes Using 8PSK Sig-
nalling Alphabets

The construction of DC-free codes using an 8PSK signallipgatbet is considered
in this section. This is the most complex case of the thremadligg constellations
considered in this chapter because it contains signallmgt that are incommen-
surable. As a result, there exist an infinite number of states state machine
that accurately tracks bounded RDS values, making the caugraation process
difficult.

One possible solution to limiting the state machine to adiniimber of states
is to round the values of some of the signalling points. Inphevious chapter,
the problematic value of/2 is rounded to a rational number, such(es or 0.71,
and this value is used during the construction of an FSM.Algh the resulting
FSMs have a significant number of states, the FSMs, in theary,be used for
code construction. As the number of significant digits indpgroximation of the
symbol value increases, however, the number of states gapidly, and soon it
becomes impractical to use this approach as a basis for coséraction.

Instead, to simplify the code construction procedure, peehelently constrained
dimensions are used as a starting point. The signallingtelbeison is considered
to consist of four logical dimensions, instead of only th&l Bnd imaginary dimen-
sions. Each point on the signalling constellation is paw#t its reflection across
the origin to form the four logical dimensions. An RDS bounthisn enforced on
each of these dimensions independently. The benefit ofpipioach is a significant
reduction in the number of states while maintaining a cdpadleat is very close to
that of the rounding approach described above.

To construct the required FSM, the procedure outlined inpitevious chap-
ter is followed. First, the constellation is split into itsgical dimensions that are
considered to be independent of one another. Second, an RIdSssphosen for
each dimension of this signalling constellation and a aongedsional FSM is con-
structed for each dimension corresponding to this boundxt,Nlee overall FSM
is constructed by taking the Cartesian product of all fourhef dne-dimensional
FSMs. The RDS for each state on this overall FSM is then catedilaFinally,
based on the desired RDS span for this code, states reprgs&iiS values that
would violate this RDS span are removed from the FSM. Thisdean FSM that
contains only states that satisfy the desired RDS span. €hisval of states also
results in dimensions that are no longer independent.
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Table 5.4: Parameters of 8PSK DC-free codes with., A Z; betweer2 and4.
Rectangular Bounds

azeaz, |m | n| R C v | |P]| s fo

20 |11 6|1.800|2.083|0.880| 29 | 0.738| 0.124
24 | 8 | 42000 2.136| 0.936| 16 | 0.698| 0.125
3.0 [11|5]2.200| 2.413| 0.912| 141 | 1.048| 0.0822
3.6 | 14| 6| 2.333| 2.547| 0.916| 145 | 1.353| 0.0749
4.0 | 14| 6| 2.333| 2.647| 0.882| 25 | 1.572| 0.0508

Circular Bounds

AZ |m|n| R C v |P| | s? fo

3.0 | 8 |4]2000| 2.315|0.864| 121 | 0.842| 0.124
35 [11|5]2.200| 2.439| 0.902| 145 | 1.039| 0.0873

Table 5.4 summarizes codes that have been constructed thsimgethod de-
scribed above along with the approximation algorithm pmesein Chapter 3. As
shown in the table, DC-free codes using an 8PSK alphabet heste ¢enerated
with rectangular RDS bounds that have efficiencies rangiom 88 to over 93%.
Additionally, two DC-free 8PSK codes using circular RDS basihdve been con-
structed with efficiencies a86% and90%. In general, the number of encoding
states increases dsZ increases. There is one exception however. Observe that
the 8PSK DC-free code with 7., AZ; = 4 has significantly fewer principal states
than the code witl\Z,., AZ;, = 3.6. This behaviour results from the fact that both
codes are constructed with the same rate, while the codeMithAZ; = 4.0 has
a higher capacity. Thus, there are significantly more edgaable in each state
for the code withAZ,, AZ; = 4.0 and Franaszek’s algorithm is able to use this
to eliminate a significant number of states from the set ofqypal states. There-
fore, while the number of encoding states typically incesasignificantly as\ 7
increases, it is sometimes possible to offset this increastates with a reduction
in efficiency.

The power spectral density of each of the codes listed ineTéld is presented
in Fig. 5.2. One unusual case emerges in the PSD plots. Tloé&rapeerformance
of the 8PSK DC-free code fahZ,, AZ; = 2.4 is actually better than that of the
code withAZ,., AZ; = 2.0. The primary reason for this is that while the RDS span
is larger, the code spends less of its time in states with R sdhat are further
from the origin. This can be seen by comparing the sum vagiafiche RDS for
the two codes, which measures the average squared distencede is from the
origin. For the case of thAZ,, AZ; = 2.0 code,s? is 0.738, while s? = 0.698 for
the case of the\Z,., AZ; = 2.4 code. Itis concluded that whilAZ,, AZ; specify
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the RDS span used in the FSM design, the code constructioeguoe that occurs
thereafter is still of great importance in order to obtaimgcode performance.
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Figure 5.2: PSD of 8PSK DC-free codes wit¥,., A Z; betweer2 and4.

Using the values fos? and f, for the codes that have been designed, the values
for Justesen’s relationship were computed. In the case dirB&€eodes using 8PSK
signalling alphabets, the value 2f)s? falls betweenl.005 and1.314, indicating
that the relationship holds.

When comparing the QPSK DC-free codes to the 8PSK DC-free codeise
same values oA Z, notice that the 8PSK DC-free codes have better spectral sup-
pression. For example, when considerigg = 4, the 8PSK DC-free code has
approximately 3 dB more spectral suppression than the QPSHrée code at low
frequency values. This superior spectral suppressiorflected in the variance of
the RDS for these codes.
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5.5 Construction of DC-free Codes Using 16 QAM
Signalling Alphabets

In this section, the construction of DC-free codes using dadsymbols from the
16 QAM signalling alphabet is considered. Similar to the ®HBC-free codes,
the symbol values in the signalling constellation are comsneable and the code
construction process is simpler than for 8PSK.

The code construction process begins by partitioning tinstetlation into sev-
eral independent logical sub-constellations, where an Ri2® & enforced upon
each dimension. The overall FSM is constructed by takingdwtesian product of
the FSMs describing the operation of each of the sub-cdastels. The overalD
matrix, its maximum eigenvalue, and capacity can then bmitasted, using the con-
straint modelling from the previous chapter. Using thisrapph, the overall RDS
span will be larger than the RDS span on each of the sub-ctaigint, but this can
be adjusted by enforcing an RDS span constraint on the oW by removing
states that violate this overall constraint. Thematrix describing the final FSM is
used as an input to Franaszek’s algorithm, which returns af garameters fom,

n andP. The large alphabet size, however, places practical liraita on the set of
parameters that can be used since axreases, the size of the codebook increases
significantly. Upon fixing the values fon, n, and P, the approximation algorithm

in Chapter 3 is used to construct a code that can be decodesl rackiver without
the need for state information.

Table 5.5 lists parameters for DC-free codes that have bewstraoted using a
16 QAM signalling alphabet for various RDS spans. As showrettble, these
codes have efficiencies ranging fras®8% up to almosto6%. Note thatAZ, and
AZ; are larger than in other codes considered in this paper becathen the 16
QAM constellation has distance pbetween adjacent points, the smallest possible
bound isAZ, = AZ;, = 6. Fig. 5.3 shows the spectral performance of each of
these codes based on a simulation of five million codewordisaRair comparison
of spectra with the QPSK and 8PSK DC-free codes, the symba¢sdiave all been
divided by+/10, so that the average energy per symbol in each consteliatazual
to one. Trends similar to the QPSK and 8PSK DC-free codes cabderved. In
particular, observe that the value f*w, is between 0.958 and 1.080, indicating
that Justesen'’s relationship holds.
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Table 5.5: Parameters of 16 QAM DC-free codes witH,, AZ; betweers and15.
Rectangular Bounds
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AZr,AZiZQ
AZ=9

azpnaz; | M| N R C 14 |P| 82 fo
6 12| 4| 3.000| 3.133 | 0.958| 21 | 0.565| 0.141
9 13| 4 | 3.250| 3.422 | 0.950| 16 | 0.872| 0.0939
12 | 13| 4| 3.250| 3.690 | 0.881| 81 | 1.701| 0.0501
15 | 14| 4| 3.500| 3.758 | 0.931| 77 | 1.769| 0.0486
Circular Bounds
AZ |m|n| R C v |P| | s? fo
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Figure 5.3: PSD of 16 QAM DC-free codes with,., AZ; betweert and15.

113




5.6 Summary

In this chapter, several examples of QPSK, 8PSK, and 16 QAMfre€-codes
have been constructed for various RDS spans. The various stegved in the
code construction procedure were discussed, from consimradelling to using
Franaszek’s algorithm and the approximation algorithncdiesd in Chapter 3 to
generate a state-independent decodable code. The cotleavbdeen constructed
with complex-valued signalling alphabets have efficiesg@nging from88% to
96%. The spectral performance of these codes was presented amag shown
that, similar to codes using one-dimensional consteliatithe variance of the RDS
provides a good indication of the spectral performance thiéar values oRs?w,
were evaluated, and it was shown that Justesen’s relatmprsfuw, ~ 1, holds for
DC-free codes using these complex-valued signalling akgisab
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Chapter 6

Conclusions and Future Work

In this chapter, an overview of this thesis is provided, glanth suggestions for
possible future work. Section 6.1 details the three majatridautions of this thesis,
while Section 6.2 suggests potential future work.

6.1 Thesis Contributions

The first major contribution of this thesis is the introdoatiof an approximation
algorithm to construct constrained codes that permit stetependent decoding at
the receiver. This algorithm was designed with all typesaistrained codes in
mind, although it is applied to two specific types in this tkeFhe major goals of
the design of the algorithm were i) to have a reasonable ctatipnal complexity
(at most polynomial running time), ii) to be flexible so thais applicable to a
wide range of codes, and iii) to be able to handle simplistides, for example,
codes with less than 100 total codewords and 10 or fewer ipahstates, and to
also handle significantly more complex codes, for exampldes with up t@!8 =
262144 codewords and 150 or fewer principal states. The algoritbueldped in
this thesis was able to meet all three of these targets. Thasidom was tested
first upon a well-known class of codes, DC-free RLL constraioedes, and then
applied to a new class of codes, DC-free codes using siggadliphabets with
points taken from complex alphabets.

The second major contribution of this thesis is the devekapnof techniques
to model the constraints of DC-free codes using signallippabets with symbols
taken from a complex signalling alphabet. This constraiodetling, typically in
terms of a state machine, allows for the determination otHyacity of such sys-
tems. Of the representative systems that were studied, @yorrtypes emerged:
signalling alphabets with commensurable symbols, leatbng finite number of
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states, and signalling alphabets with incommensurabldseignleading to an in-
finite number of states. In both cases, it was demonstratectiin® constraint can
be modelled and the capacity calculated or an estimatioraphaty made. The
constraint modelling techniques are used in conjunctidh thie approximation al-
gorithm developed in the first portion of this thesis to dedifC-free codes using
QPSK, 8 PSK, and 16 QAM signalling alphabets.

The specific contributions of this thesis are described inendetail below.

1. An approximation algorithm for constructing state-independent decod-
able codes

While many techniques exist for the construction of a conms#icode, an
important property, in order to prevent an unbounded swingrrors, is that
the code be decodable at the receiver without requiring stdbrmation.
Previous work includes an algorithm that develops codesdbhieve this
property, but at the expense of significant (NP-complete)matational com-
plexity. An algorithm for generating constrained codes fiermit decoding
without state information was developed in this thesis.sTdigorithm was
designed to run in polynomial time and be able to construasttained codes
that are complex, both in terms of the number of required wodds and the
number of principal states. Further, this algorithm is téxiand includes a
number of parameters that can be adjusted to achieve comdesiuding
scoring thresholds, scoring exponents and the selectitvasd rows. More
advanced techniques, such as lookahead and weakly coesticding were
also discussed and implemented. While lookahead and weakbtrained
coding are reasonably generic principles, it was shown ihéte case of the
algorithm developed in this thesis, both of these techraquesh well with
the algorithm. The successful design of this algorithm weshahstrated
through its application to DC-free RLL codes using binary alfing. This
algorithm was applied to a number of DC-free RLL codes, two ofciwh
were presented in detail. In the one case where it was noigp@$s find a
code that permits state-independent decoding for the nffaseat set of pa-
rameters returned by Franaszek’s algorithm, a weakly cainsd code was
constructed and presented in detail.

2. Constraint modelling and evaluation of capacity for constained codes
using multiple signalling dimensions
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Constrained codes constructed for a one-dimensional $igghatedium have
usually been constructed using binary digits or with meNl signalling. In
this thesis, constrained codes are extended to include-diiensional sig-
nalling alphabets written to a one-dimensional signalimgdium. In par-
ticular, representative systems using QPSK, 8 PSK, and 1d @Are used
as examples to illustrate the techniques for evaluatingsbmating the ca-
pacity of these constrained systems. Techniques wereapmelto model
constraints using these signalling alphabets to consstaté machine repre-
sentations. For the case of codes using both QPSK and 16 Qémalsng
alphabets, since the signalling points are commensurtidestate machines
describing these constraints were limited to a finite nundjestates, and
SO exact capacity analysis was possible. Constraint madedind capacity
evaluation in the case of 8 PSK codes is more difficult sinegthints in the
signalling constellation are incommensurable, leadingrtonfinite number
of states. The capacity of these systems was estimatedsesiegal different
methods, including rounding of signal point values and ujyoeinding.

3. Construction of highly efficient DC-free constrained codesvith multiple
signalling dimensions

While there exist many examples of DC-free codes in the libeeatcf. 2],
these DC-free codes use a one-dimensional signalling adpltiadt is typi-
cally binary. Further, there exist many codes designedwor(br more) di-
mensional media [34]- [39]. However, to date, there are fewd examples
of codes using multi-dimensional signalling. Using the stasint modelling
techniques developed in this thesis, constrained codeg two-dimensional
signalling alphabets, including QPSK, 8 PSK, and 16 QAM veergstructed.
The capacity analysis demonstrates that the codes thableaveconstructed
are highly efficient, in most cases greater thaf9®SD plots of the codes
that have been constructed were presented, and it was gehfieJustesen’s
relationship,2s2wy =~ 1, which was developed for one-dimensional codes,
holds also for these multi-dimensional codes.

The content of the individual chapters of this thesis canumrsarized as fol-
lows:

Chapter 3 proposed an approximation algorithm for the coostm of con-
strained codes that permit state-independent decodingldiBgiion Franaszek’s
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work [8], which organizes the constraint in a tabular forntla¢ important consid-
erations for the design of the algorithm were considerech a8 advantageous table
construction and the fitting procedure used to combine ravisa table. Advanced
techniques, such as lookahead and weakly constrainedg;adare discussed and
integrated into the algorithm. Highly efficient DC-free RLLd=s were presented
for a wide range ofl, k, and N values, along with an example of a weakly con-
strained DC-free RLL code.

Chapter 4 proposed constraint modelling techniques andcitg@nalysis of
codes with multiple constrained signalling dimensionsarfaples of these types of
constraints were presented, using QPSK, 8 PSK, and 16 QAMMKilgg constel-
lations. For the case when state machine modelling of thetrint resulted in
an infinite number of states, the capacity of the constragystem was estimated
through rounding and upper bounding.

Chapter 5 used the constraint modelling techniques dewélopthe previous
chapter to construct DC-free constrained codes with QPSIKSI8, Rnd 16 QAM
signalling constellations. The spectral performance ek¢éhcodes was evaluated
and simulated, to both demonstrate that the codes are DGtifickeerify that Juste-
sen’s relationship holds.

6.2 Suggested Future Work
In this section, some related topics for future researcisaggested.

1. Improving the values of scoring exponents and scoring thrdmlds for
code construction

The approximation algorithm for state-independent daaptias a number of
parameters that can be adjusted to improve its ability t@ttoat a code. In
the majority of cases that were tried, values pfr, = 2 with an initial scor-
ing threshold of zero produced the best results. While effayies calculated
directly using the values for andn that are chosen, sometimes the algo-
rithm cannot complete the codebook. In some cases, thisisodine lack of
surplus edges constraining the algorithm’s freedom. A ncoremon trend
is that as the number of principal states increases to ov&rtthé algorithm
has some trouble finding efficient codes. Below 100 princizdeés, efficien-
cies close to 9% are generally possible, but efficiencies drop to arogGid
to 88% as the number of principal states increases significantprt 100.
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In other words, as the number of principal states gets latgealgorithm

is unable to construct a code for the set of parameters (P) returned by

the Franaszek algorithm with the highest code rate. It noes trying the
next most efficient set of parameters, eventually constrget code, but the
efficiency lowers each time a new set is tried. In those cdkers are a sig-
nificant number of columns in the code tables, and so fine guthie scoring

parameters might give better results. In the simpler cdsesxample 30 to
50 principal states, it is somewhat easier to examine a nuafliee decisions
the algorithm makes and adjust the parameters slightly.ddewwith a large
number of principal states, this analysis becomes diffichther families of

constrained codes might benefit from a deeper look at theseneders.

. Weakly constrained codes

In Chapter 3, the weakly constrained coding approach waseapia a par-
ticular DC-free RLL code where it is impossible to constructoale that
permits state-independent decoding for the set of paraseith the highest
code rate returned by the Franaszek algorithm. The coddroatisn algo-
rithm is amenable to this approach because it does not eeqay changes
to allow a weakly constrained coding algorithm to run théeFaThat is, the
algorithm fills as many spaces as possible so that the contssaiolated as
infrequently as possible, and the few remaining spaceaip0.1 — 1% of
the table, are filled by the weakly constrained coding atbori Construct-
ing a weakly constrained code does not require that the @ideée lowered
and, as indicated by the example in this thesis, with caddaign, the spec-
tral performance need not suffer significantly. A floorinfeet does appear
in the case of weakly constrained DC-free codes, but only 3t losv fre-
guencies. Prior to that point, the PSD of a weakly constchowle is very
similar to that of a non-weakly constrained code. In palicu-ranaszek’s
algorithm returns the set of parameters with the highest catk for a given
constraint. In the case of a weakly constrained code, onelesign a code
that has a higher code rate since the constraint is beingtembl For the same
reason, a clever code designer can construct a code withearatelthat is
above capacity since the capacity calculation is specifibgéaconstraint not
being violated. In that sense, Franaszek’s algorithm isomgér required;
however, it does provide an excellent guide to which states the most
edges and are thus best suited to being principal statesaitticipated that
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an improved version of Franaszek’s algorithm, designediBpally for the
subsequent design of weakly constrained codes, would wveghe final code
construction results for weakly constrained codes.

. Improved code construction techniques

There has not been a significant amount of research in theaceastrained
codes using complex-valued signalling. This thesis seagea preliminary
work in this area, outlining some techniques for the comsion of DC-free
codes using complex-valued signalling alphabets. In @aer, these tech-
niques use a lookup table approach for encoding and decoaleg a large
number of states. Further, the capacity evaluation andi@nsmodelling is
formulated based on the idea of independent and dependenityrained sig-
nalling dimensions. Itis of interest to consider other ¢ariion techniques,
which, for example, would not require a table-based lookéjernatively,
more sophisticated graph-based operations could be uagdyparly in the
case where encoding initially requires an infinite numbestates. Improv-
ing these code construction techniques allows the codgmiesio have more
options with which to build their communication system.

. Spectral null coding

In this thesis, the codes using complex-valued signallipgabets are all de-
signed to be DC-free. Recall from (2.16) that the spectrum @fcmence of
symbols can be shaped by introducing correlation into tine®y} sequence.
This procedure is not mutually exclusive with pulse shapfagilitating an
implementation with many existing communication systerirsparticular,
these codes can be used as a starting point to construct watties mov-
able notch in their spectrum. By multiplying the coded syndexjuence by
a set of complex values, the spectral null can be shifted yavhere in the
spectrum. Since the shifting values will be complex, thisnsethat the sym-
bols entering the channel will be complex-valued, evenefititial symbol
sequence was not. These types of codes could have appigatioommuni-
cation systems where the transmitter may wish to avoid aagtsg content
at a particular frequency or a range of frequencies. Furitiraay be possible
to construct codes, using techniques similar to those thestim this thesis,
with multiple spectral nulls.
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