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Abstract 

Classification of objects in pre-defined classes is an important task in many applications. A 

classification model is learned from a set of objects with their classes. When a new object 

has to be classified the model is employed and one or more class labels are predicted for the 

new object. In this research we focus on associative classifiers, classification systems that 

use association rules in building their model. These classification systems learn patterns 

from data that are associated with the pre-defined classes. Associative classifier models 

have been recently proposed in the literature, thus their development is in an early stage. 

We investigate the current issues that influence their performance and propose several solu­

tions to overcome them. We study the performance of our classification model on real-life 

applications and we show that associative classifiers are competitive classification systems. 
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Chapter 1 

Introduction 

With the continuous growth of digital collections, the research field of Knowledge Discov­
ery and Data Mining has become very important. There is great demand for the data mining 
algorithms when discovery of useful knowledge is needed. Data Mining algorithms can be 
used in various domains including market basket analysis, medical applications, business 
management, space exploration and financial data analysis. 

Classification is one of the main tasks studied in data mining. A classifier is a sys­
tem that assigns, or predicts, one or more class labels for a given object. Classifica­
tion has multiple applications and has already been applied in many areas such as text 
categorization, medical analysis and space exploration. Besides decision trees [FB91, 
Qui93], Bayesian classifiers [Lew98], neural networks [HKP91, Bis95] and support vec­
tor machines [Vap95], associative classifiers started attracting attention in the last decade 
[LHM98, AZC01, LHP01, ZA02]. 

Associative classifiers are classification systems that build their rule-based model using 
association rule mining. An important advantage that these classification systems bring is 
that they are able to examine several features at a time using association rule mining, while 
other state-of-the-art methods, like decision trees or naive Bayesian classifiers, consider 
that each feature is independent of one another. However, in real-life applications, the inde­
pendence assumption is not necessarily true, and correlations and co-occurrence of features 
can be very important. In addition, the associative classifiers can handle a large number of 
features, while other classification systems do not work well for high dimensional data. The 
associative classification systems proved to be competitive with other techniques reported 
in the literature. 

The associative classifiers are models that can be read, understood, modified by hu­
mans and thus can be manually enriched with domain knowledge. Given the readability of 
the associative classifiers, they are especially suited to applications where the model may 
assist domain experts in their decisions. The medical field is a good example where such 
applications may appear. Let us consider an example where a physician has to examine 
a patient. There is a considerable amount of information associated with the patient (e.g., 
personal data and medical tests). A classification system can assist the physician in this 
process. The system can predict if the patient is likely to have a certain disease or present 
incompatibility with some treatments. Considering the output of the classification model, 
the physician can make a better decision on the treatment recommended for this patient. 
Given the transparency of associative classifiers, a health practitioner can understand how 
the classification model reached its decision. 
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The classification systems based on association rules have three main phases. First, 
classification rules are generated. Then, redundant or less interesting rules are pruned. The 
last stage deals with selecting the rules for the classification process. In this dissertation we 
show that associative classifiers can be improved on all fronts: rule generation, rule pruning, 
and rule selection, to outperform other classifiers on real datasets. 

1.1 Problem Definition 

Many classification systems exist. Nevertheless, the research on classification is not con­
cluded. Research in classification carries on and there are many reasons for this. There is no 
classification system that performs best over the entire range of real-life applications. Some 
of these systems take a long time to develop a model or to classify new objects. Many of the 
classifiers produce a model that is hard to understand. Another issue that may interfere with 
their performance is the class imbalance that characterizes many applications where some 
classes may have just a few representatives. Thus, while classification is a well studied 
subject, there are still many open problems. 

The associative classifier is a new type of classification system that has recently been 
proposed. One reason that the associative classifier systems attract researchers is that they 
are built upon association rule mining, which is a well-known and well-studied problem 
in the Data Mining community. This allows the fast discovery of classification rules, even 
from very large datasets. Another attractive point for these classifiers is that association rule 
mining allows them to examine several features at a time. In addition, the model that the 
associative classifiers construct is a rule-based one, which makes it easy to understand and 
is readable to humans. This allows experts in the application at hand to read, modify and 
improve the classification system with relative ease. The first classification systems were 
rule-based models. The difference is that those rules were not created automatically from 
data, but created by experts who were very familiar with the data. Given that associative 
classifiers are rule-based systems, there is the opportunity of incorporating additional do­
main knowledge after the model was created. Suppose that some domain knowledge was 
not expressed in the data given for the training set (it was not available in the training phase 
or it was not available for mining due to privacy issues). Missing data can be incorporated in 
the associative classifiers at the classification stage by using expert-created rules. Moreover, 
transparent systems are more trusted by end users in certain domains, such as the medical 
field. 

Although the associative classifiers started to attract attention, their development is at 
an early stage. Some of the existing classifiers have been tested only on small problems. 
Others have a very naive way of classifying a new object once the model has been built. 
In addition, these classifiers will produce a large number of rules under certain conditions. 
These problems are the very focus of this dissertation. 

1.2 Approach to the Problem 

In this section, we describe the issues we tackle in this dissertation. In building an associa­
tive classification model that is accurate and human readable we have two main goals. The 
first objective is to improve the performance of the classifier. To achieve it, we incorporate 
new types of rules in the model and develop a better scoring scheme in the classification 
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phase. The second goal is to reduce the number of rules in the model, so that human inter­
action is possible. Although the rules in the associative classification model are readable, 
an overwhelming number of rules may make the system hard to deal with. That is why 
reducing the number of rules in the model represents an important objective for this work. 
In addition, fewer rules will make the classification stage faster. However, these two goals 
are antagonistic. By incorporating new types of rules we will likely increase the number of 
generated classification rules. On the other hand, by cutting down the number of rules, we 
may reduce the performance of the classifier. 

1.2.1 Improving the Performance 

In this section we present the solutions proposed in this dissertation for improving the per­
formance of associative classifiers. Two of the proposed solutions deal with incorporating 
new types of association rules in the associative classifiers, while the third one tackles the 
use of rules in the classification stage. 

Negative Association Rules 

All the traditional association rule mining algorithms were developed to find positive as­
sociations between items. By positive associations we refer to associations between items 
existing in transactions (e.g., items bought). How about associations of the type: "customers 
that buy Coke do not buy Pepsi" or "customers that buy juice do not buy bottled water"? In 
addition to the positive associations, the negative associations can provide valuable informa­
tion in devising marketing strategies or making a classification decision. Interestingly, very 
few researchers have focused on negative association rules due to the difficulty in discover­
ing these rules. In Chapter 3 we show that absence of features can be a good discriminator 
in the case of associative classifiers. 

Association Rules with Re-occurring Items 

Most of the existing association-rule approaches consider that an item appears or does not 
appear in a certain transaction (i.e., they work only with binary transactions). They do not 
take into account the re-occurrence of items in transactions. However, there are applica­
tions where the re-occurrence of objects may play an important role. Let us consider that 
we have a collection of documents. In some documents the phrase "association rules" is 
repeated many times. Not surprisingly, by reading those documents we may find they are 
talking about techniques related to association rules. In the collection there are also some 
documents that rarely use the phrase "association rules" and they are describing data mining 
related issues. Another application where this type of rule may fit is image classification, 
where visual features may be repeating and their repetition could be a good classification 
indicator. In Chapter 4 we argue that by incorporating association rules with re-occurring 
items in the classification model, the classification accuracy is improved for some applica­
tions. 

Use of Rules in the Classification Stage 

Once developed, the purpose of a classification system is to classify new instances. In the 
case of associative classifiers, this step deals with using the rules to categorize a new ex­
ample. To classify an instance, an associative classifier proceeds in three steps. First, it 
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determines which of its rules apply to the object. Then, it selects a subset of the applicable 
rules (possibly all of them) based on some measure of their "strength" or precedence. Fi­
nally, if it chooses more than one rule, it combines the class predictions of all the selected 
rules to produce a final classification. A good scoring scheme is essential to the perfor­
mance of an associative classifier. Devising a scoring scheme is not an easy task given the 
factors that have to be taken into consideration (the number of rules that apply and their 
strength, combining their predictions, etc.). We investigate this problem in Chapter 5. 

1.2.2 Reducing the Number of Rules 

In this dissertation we argue that reducing the number of rules is important. Not only that the 
model becomes more readable, but other advantages may be reached with fewer association 
rules. The classification time is reduced using a smaller model. In addition, redundant rules 
that may hinder classifiers' performance are eliminated. We investigate the reduction of the 
rule redundancy in the model. 

Closed and Maximal Itemsets 

Association rule mining can lead to a very large number of generated rules. A considerable 
amount of redundancy is found in the typical frequent itemset collection. The redundancy in 
the frequent itemsets is translated into a very large set of rules discovered. To deal with the 
problem of redundancy, the closed and maximal patterns have been introduced. These types 
of patterns are a concise representation of frequent itemsets. Closed and maximal itemsets 
can be a few orders of magnitude smaller than the frequent itemsets. We investigate the 
effect of reducing rule redundancy on associative classifiers in Chapter 6. 

1.3 Contributions of this Thesis 

The contributions of this thesis are in two main directions. First, we focus on improving 
the performance of associative classifier by introducing new types of classification rules 
and by proposing a novel technique in the classification stage. Second, we investigate and 
propose solutions for reducing the number of classification rules. For this, we propose a 
pruning technique where rules that cause more errors than help in the classification process 
are eliminated. In addition, we investigate and discuss the redundancy reduction in the 
classification rule set. Figure 1.1 shows how the contributions of this thesis are incorporated 
in the general associative classification framework. The highlighted boxes represent areas 
where this thesis brings contributions. 

1.3.1 Associative Classifiers Using Negative Association Rules 

We introduce a new algorithm to generate positive and negative associations discovered in 
transactional data. The interestingness measure that our algorithm relies on is the correla­
tion coefficient. We demonstrated the potential of strong positive and negative correlated 
rules in the classification context. The results of the classification show that a much smaller 
set of positive and negative association rules can perform similar to or outperform existing 
categorization systems. Our findings on associative classifiers using negative association 
rules are published in [AZ04a, AZ04b]. 
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Figure 1.1: Associative Classification Framework 

1.3.2 Associative Classifiers Using Association Rules with Re-occuring Items 

We introduce the idea of combining associative classification and mining frequent itemsets 
with re-occurring items. We combine these two and we propose a new approach of as­
sociative classification with re-occuring items (ACRI). By comparing ACRI with existing 
associative classifiers we show that considering repetitions of observed features is benefi­
cial. Moreover, the accuracy of ACRI is less sensitive to the parameters used in associative 
classifiers, while most associative classifiers are typically very sensitive to these parame­
ters. Our results on combining associative classification and mining frequent itemsets with 
re-occurring items are published in [RSZA05]. 

1.3.3 Two Stage Architecture 

Rule-based classifiers use predefined weighted voting schemes to combine the class predic­
tions of the applicable rules. By contrast, the methods proposed in this thesis automatically 
learn the scoring scheme. We achieve this by developing a two-stage system, with a layer 
of feature definitions interposed between the output of the first learning model (i.e., the 
association rule-based model) and the input of the second. Our two stage classification 
system (2SARC) equals or outperforms state-of-the-art classifiers under rigorous statistical 
analysis. Our findings are published in [AZH06]. 

1.3.4 Associative Classifiers Using Association Rules from Closed and Maxi­
mal Itemsets 

We investigate the performance of associative classifiers when the classification rules are 
generated from frequent, closed and maximal itemsets. We show that maximal itemsets 
substantially reduce the number of classification rules without jeopardizing the accuracy of 
the classifier. Our extensive analysis demonstrates that the performance remains stable and 
even improves for some applications. Our analysis using cost curves also provides recom­
mendations on when it is appropriate to remove redundancy in frequent itemsets. Based 
on our thorough analysis we are confident that any investigation of associative classifiers 
should consider first and foremost classification rules generated from maximal patterns. 
This work was submitted to an international journal for review. 
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Overall, the contributions of this thesis are important because they advance the state-
of-the-art in associative classifiers. We show new ways in which associative classifiers 
can be used and that the associative classifiers can be competitive classification systems. 
In addition, we highlight new directions on associative classifiers research. The problems 
investigated in this thesis and their proposed solutions constitute significant progress toward 
improving the quality of associative classifiers. 

1.4 Outline 

This thesis is organized as follows. Chapter 2 introduces the background notions neces­
sary throughout this thesis and presents the related work relevant to our research. Chap­
ter 3 presents the integration of negative association rules with associative classifiers. In 
Chapter 4 we propose and study combining associative classification and frequent itemsets 
with re-occurring items. Chapter 5 introduces our two stage architecture for the classifi­
cation stage. In Chapter 6 we investigate the performance of associative classifiers when 
the classification rules are generated from frequent, closed and maximal itemsets. Chap­
ter 7 concludes our dissertation, discusses several limitations and proposes future research 
directions. 
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Chapter 2 

Background and Related Works 

This chapter introduces the background notions necessary throughout this dissertation and 
presents the related work relevant to our research. As stated in the introduction the main 
scope of this dissertation is to advance the state-of-the-art of associative classifiers. These 
systems integrate association rules with the classification process. Details on these two 
main components are presented along with some related work in these domains. 

2.1 Association Rules 

Mining association rules from data is the process of finding interesting relationships or 
associations that exist between objects/items in a collection of data. The dataset has to be 
modeled in a transactional format and association rule mining is the data mining process 
that discovers the associations between items. Association rules have been extensively 
studied in the literature. The efficient discovery of such rules has been a major focus in the 
data mining research community, given their popularity in market basket analysis and other 
application domains. 

A typical example of association rule mining application is market basket analysis. 
This process analyzes the behaviour of customers and discovers associations between items 
bought in the store (i.e., products placed in the customers' shopping baskets). The discovery 
of interesting patterns in this collection of data can lead to important marketing and strategic 
management decisions. For instance, if a customer buys bread, what is the probability 
that he/she will buy milk as well? Depending on the probability of such an association, 
marketing personnel can develop better planning of the shelf space in the store or they can 
base their discount strategies on such correlations found in data. Several efficient algorithms 
exist to discover this type of associations in the data. From the original apriori algorithm 
[AIS93] there have been a remarkable number of variants and improvements [BMUT97, 
Zak99, HPYOO, GZ03, ZEH05]. All these algorithms discover the same associations in 
the data given the same parameters, their main contribution being the improvement in the 
efficiency of the process. 

Formally, association rules are defined as follows. Let X = {h,ia, •••im} be a set of 
items. Let V be a set of transactions, where each transaction T is a set of items such that 
T C I . Each transaction is associated with a unique identifier TID. A transaction T is 
said to contain X, a set of items in X, if X C T. An association rule is an implication of 
the form "X => Y", where X C X, Y C X, and X n Y = 0. The rule X =4- Y has a 
support s in the transaction set V if s% of the transactions in V contain X UY. In other 
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words, the support of the rule is the probability that X and Y hold together among all the 
possible presented cases. It is said that the rule X => Y holds in the transaction set V with 
confidence c if c% of transactions in V that contain X also contain Y. In other words, the 
confidence of the rule is the conditional probability that the consequent Y is true under the 
condition of the antecedent X. The problem of discovering all association rules from a set 
of transactions V consists of generating the rules that have a support and confidence greater 
than given thresholds. These rules are called strong rules and represent interesting patterns 
in data. 

2.2 Classification 

Classification is an important task in many applications. A classifier is a system that as­
signs, or predicts, one or more class labels for a given object. It can be created by using a 
learning algorithm to construct a model from a training set of objects whose classifications 
are known. 

The main idea of the classification task is to discover interesting patterns in a train­
ing set of data that will be used later in classifying new objects. Classification has mul­
tiple applications and has already been applied in many areas such as text categorization, 
medical analysis and space exploration. Besides decision trees [FB91, Qui93], Bayesian 
classifier [Lew98], neural networks [HKP91, Bis95] and support vector machines [Vap95], 
classification based on association rule mining started attracting attention in recent years 
[LHM98, LHP01]. There are three steps in the classification process: the learning phase 
also known as training phase, the testing phase and the classification stage. In the training 
phase a classification model is developed based on a training set, where all the instances are 
given with their associated class label. The main purpose of the testing phase is to evaluate 
and eventually validate the model that was built in the previous step. Finally, the third phase 
uses the classification model to categorize new objects that have no class labels attached. 
Figure 2.1 shows an overview of the classification process. 

2.2.1 Training and Testing Sets 

Given a data collection for classification purposes, we have a training and a testing set. 
These datasets have associated to each example one or a set of classes. These sets (training 
and testing) are either generated thorough cross-validation or are given apriori with the 
application to solve. Cross-validation (or N-fold cross validation) is the process where the 
dataset is randomly split in N folds. In each fold the class distribution is approximately 
preserved as in the original dataset. Classification methods build a classification model 
from the training set. The testing set is typically used for evaluating the performance of the 
built model. It is very important that the objects in the testing set have not been used in 
any way in the training process. In the case of cross-validation the classification model is 
learned from N-l folds and tested on the remaining fold. The most common value for N is 
10. Extensive tests with several classification systems showed that this is the best value to 
get a good estimate about the performance of the classifier [WF05]. 

2.2.2 Single and Multiple Label Classification 

Let us assume that we have to learn a classification model on a dataset with m distinct 
classes {C\, C2--Cm}. The case when only one class has to be assigned to an object is 
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Figure 2.1: Overview of the classification process 

called single-label classification, while the case where any number of classes from 1 to m 
can be assigned to an object is called multi-label classification. 

The single-label case is the standard classification task studied in machine learning, 
and a variety of test datasets and systems are available for comparison. The UCI datasets 
[BM98] contain tasks requiring single label classification and are detailed in Section 2.6.1. 
For instance, the Diabetes dataset from the UCI repository deals with predicting if a patient 
has diabetes. Each patient can belong to only one class and a new patient will be predicted 
as being either diabetic or not. The single-label classification is not necessarily a two-class 
problem (also called binary classification). The Iris dataset, also from the UCI repository, 
is a three-class problem, but the objects are predicted as belonging to only one class, as the 
classes are mutually exclusive. 

In multiple label classification, an object can be assigned to several of the classes si­
multaneously, i.e. the classes are not mutually exclusive. The standard testbed for this task 
is classifying news articles into subject categories, where it is necessary for some news ar­
ticles to be assigned to multiple categories. For example, an article about selling a sports 
franchise should be put into at least two categories, "sports" and "business". The Reuters 
dataset [Reu08] is a typical collection used for multi-label classification and is detailed in 
Section 2.6.1. A multi-label classification problem can be transformed into m independent 
classification problems of binary single-label classification with categories {C,, -iCj} for 
i — l..m. 

2.2.3 Class Imbalance 

Although a plethora of classification algorithms has been developed, there are several as­
pects that influence and hinder their performances when applied to real-life applications. 
One of these issues that may interfere with the classification process is class imbalance. 
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This problem arises when some classes have a large number of examples in comparison 
with others. Class imbalance is very common in real-life applications when the events of 
interest are usually in a small number. As an example, let us consider a fraud detection 
problem in credit card usage. Although it is of great importance to detect and understand 
the patterns of fraud occurrence, it is a difficult task for the classifications systems, because 
the class of interest (i.e. fraudulent credit card usage) is heavily under-represented. The col­
lected data in fraud detection task can be overwhelming. However, the interesting examples 
are infrequent, thus called the minority class. Other applications with similar characteristics 
are oil spills and cancer detection. Most of the existing classification algorithms have been 
developed and tested on balanced class problems. That is why their performance suffers 
when rare classes exist among dominant classes. Although the class imbalance problem is 
not currently solved, nor completely understood, in the past few years there have been some 
methods proposed to deal with it, such as over-sampling, under-sampling or creating new 
systems to address this issue. For a survey of these methods see [JS02]. 

2.3 Associative Classifiers 

Association rule-based classifiers have recently emerged as competitive classification sys­
tems [AZC01, LHP01, LHM98]. These classification systems consist of a set of association 
rules, with each rule predicting that an object belongs to a specific class if it has certain prop­
erties. The rules are discovered using an association rule mining algorithm [AIS93]. The 
association rule mining problem has been thoroughly studied in the data mining community 
[BMUT97, Zak99, GZ03, HPYOO, ZEH05], thus there are several fast algorithms for dis­
covering these types of rules. An attractive characteristic that associative classifiers possess 
is their readability (the model created is rule-based thus being easily read and interpreted by 
domain experts). However, the number of classification rules they generate is quite large. 

The first reference to using association rules as classification rules is credited to [Bay97], 
while the first classifier using these association rules was CBA introduced in [LHM98] and 
later improved by CMAR [LHP01] and ARC [ZA02]. Given a training set modeled with 
transactions where each transaction contains all features of an object together with the class 
label of the object, we can constrain the mining process to generate association rules that 
always have as consequent a class label. In other words, the problem consists of finding the 
subset of strong association rules of the form X => C where C is a class label and X is a 
conjunction of features. 

The main steps in building an associative classifier from a training set are the following: 

1. Generate the set of association rules from the training set. In this phase association 
rules of the form set-of.features => class label are discovered by using a mining 
algorithm. This step of the algorithm can be completed in two ways: 

• Using an association rule mining algorithm, generate all the strong association 
rules. Once these are generated, filter them so that only the rules of interest 
are kept (those that have as consequent a class label and their antecedent is 
composed of features other than class labels). 

• Modifying an association rule mining algorithm by imposing a constraint dur­
ing rule generation. The constraint is that the association rules to have always 
as consequent a class label. In this way, a more efficient algorithm is employed 
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Transaction ID 

1 
2 
3 
4 
5 
6 
7 
8 

Age 

<25 
25..40 
25..40 
>40 
<25 

25..40 
<25 

25..40 

Income 

low 
low 

medium 
low 
high 

medium 
high 
high 

Credit (class label) 

bad 
bad 
good 
good 
good 
good 
good 
good 

Table 2.1: A transactional dataset 

since less candidate items are generated. All candidate itemsets generated con­
tain a class label and only the association rules with a class label on the right 
hand side are generated. 

2. Build the Classifier. In the previous phase a large set of association rules can be gener­
ated, especially when a low support is given. Rule pruning techniques are employed 
to discover the best set of rules that can cover the training set and weed out those 
rules that may introduce errors or are overfitting in the classification stage. Different 
pruning strategies for associative classifiers have been proposed in the literature and 
they will be presented later on in this section together with the associative classifier 
with which they were proposed. 

3. Classification Phase. At this level a system that can make a prediction for a new 
object is built. The challenge here is how to make use of the set of rules from the pre­
vious phase to give a good prediction. Using the rules to classify a new object means 
to have a good way of selecting one or more rules to participate in the prediction 
process. 

Let us consider the following banking application to illustrate how an associative clas­
sifier works. 

Example Associative Classifier. Let us consider the transactional dataset presented in 
Table 2.1. In the first stage of the associative classification a set of association rules are 
mined. The set of itemsets that were mined from the attributes in the transactional dataset 
are presented in Table 2.2. If we set the support threshold to 25% (2 transactions out of 8) 
and the confidence threshold to 50% we can observe that the rules numbered 1, 3, 5 and 
7 should be eliminated. The association rules that remain after the support and confidence 
thresholds have been taken into consideration are the result of the first step in building the 
associative classifier. 

The next step consists of applying pruning techniques to the remaining set. For the 
purpose of this example, no rules are pruned in this step. The associative classifier will 
consist of the rules listed in Table 2.3. 

The last step represents the classification phase where new objects are classified. For 
our example, let the new object be represented by the transaction in Table 2.4. According 
to the rules forming the associative classifier (Table 2.3), two rules apply to the new object: 
age=25..40 => credit-good with confidence 75% and income=medium =>• credit=good 
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1 -itemset 

age<25 

age=25..40 

age>40 
income=low 

income=medium 
income=high 

Support 

3 

4 

1 
3 

2 
3 

Rule id 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Association rules btw. 
the 1 -itemset and a class label 

age < 25 =*• credit=bad 
age < 25 =• credit=good 
age=25.A0 =4> credit=bad 

age=25..40 => credit=good 
age > 40 => credit=good 

income=low => credit=bad 
income=low => credit^good 

income=medium => credit-good 
income=high => credit=good 

Rule 
confidence 

33% 
67% 
33% 
75% 
100% 
67% 
33% 
100% 
100% 

Table 2.2: Mined 1-itemsets with their supports and possible associations with the class 
labels. 

Association rules 

age < 25 =$• credit=good 
age=25..40 => credit=good 
income=low => credit=bad 

income—medium =>• credit—good 
income-high => credit-good 

Rule confidence 

67% 
75% 
67% 
100% 
100% 

Table 2.3: The associative classifier. 

Transaction ID Age Income 

1 25..40 medium 

Table 2.4: New object to be classified. 
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with confidence 100%. Having two rules that apply and indicate a possible class for the 
new object, we need to combine their information and associate a class to the new object. 
As we shall see later, combining the rules' decisions is an important step for associative 
classifiers, with several strategies being proposed. For this example, we average for each 
class the confidence of the rules that applied to the new object, concluding that the new 
object should be considered under 'good' credit with 86% confidence. 

2.3.1 CBA: Classification Based on Associations 

Classification Based on Associations (CBA) [LHM98] is the first associative classifier pro­
posed in the literature. It integrates classification and association rule mining to develop 
a classifier based on association rules. It adopts an apriori-like algorithm [AIS93] in the 
rule generation phase and then it employs some pruning techniques to reduce the set of 
association rules. 

Generate the Set of Rules. Generating the association rules is the first phase of CBA. 
It consists of finding all CARs (class association rules) that satisfy minimum support and 
confidence requirements. CBA finds all the itemsets that exceed minimum support and they 
are of the following form: < F,c>, where F is a set of items and c is a class label. Each 
item that satisfies this format represents a rule: R : F —+ c. If the confidence of the rule is 
greater that the minimum confidence the rule belongs to the CAR set. 

Build the Classifier. The authors chose to employ a pruning technique in order to select 
the best representative association rules from the CAR set. This pruning technique is based 
on the database coverage. First, CBA sorts all the rules in CAR based on their rank where 
rank is defined as follows. 

Definition 1: Given two rules R\ and i?2, R\ is higher ranked than R2 if: 
(1) Ri has higher confidence than R2; 
(2) if the confidences are equal support(i?i) must exceed support(i?2); 
(3) both confidences and supports are equal but i?i has fewer attributes in the antecedent 

than i?2 
Next, it selects the most representative and high ranked rules according to the database 

coverage explained below: 

(1) foreach rule R in the set CAR=sort(CAR) 
(2) go over dataset D and find those transactions that are covered by the rule R 
(3) if R associates at least one transaction to its correct class 
(4) select R 
(5) remove those cases from D that were covered by R 
(6) create a default rule (i.e., a rule that selects majority 

class in the remaining tuples in database) 

The associative classifier consists of the set of rules that remains after database coverage 
was applied. 
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Classification Phase. In the classification phase, CBA searches the set of rules that rep­
resents the classifier starting with the highest ranked. It finds the first rule that matches the 
new object to be classified. When such a rule is found, its class label is associated with the 
new object. Otherwise, the default rule is applied. 

2.3.2 CMAR: Classification based on Multiple Association Rules 

Classification based on Multiple Association Rules (CMAR) [LHP01] was proposed two 
years after CBA. It outperforms CBA on the UCI datasets [BM98] on which both methods 
were tested. In the association rule mining phase it employs the FP-tree growth algorithm 
[HPYOO]. It proposes a new structure for rule storage and employs pruning techniques for 
selecting a high quality set of rules. The classification process is based on multiple rule 
analysis (the decision is made based on the analysis performed on a set of rules). 

Generate the Set of Rules. Based on the FP-tree growth algorithm in the rule generation 
phase, CMAR finds the complete set of rules in the form: R : F —> c, where F is a set of 
attributes and c is a class label. Only the rules that pass minimum support and minimum 
confidence thresholds are considered as candidates in building the classifier. The authors 
propose a new indexing structure for rule storage which is also used in the pruning phase. 

Build the Classifier. The classifier consists of a high quality set of rules that results after 
the pruning techniques are applied on the initial candidate set. CMAR employs three prun­
ing techniques: specific rule elimination, selecting positively correlated rules and database 
coverage. 

The rules are sorted according to the same ordering definition as in CBA. Then, lower 
ranked specific rules are eliminated as follows. 

Definition 2 Given two rules T\ =$• C and T2 => C we say that the first rule is more 
general rule w.r.t. the second rule iff Tj C T2. 

(1) sort the rules according to Definition 1 
(2) foreach rule in the set of candidate rules 
(3) find all those rules that are more specific (according to Definition 2) 
(4) prune those that have lower confidence 

The next pruning technique that is employed is selecting only those rules that have a 
positive correlation between their antecedent and the associated class label. This is done by 
using the chi-square test. 

The last pruning technique is the database coverage. It is similar to the one used in CBA, 
except that for CMAR the authors introduced a coverage threshold 5. Each transaction in 
the database has a count associated with it. The count increases when a rule covers the 
tuple that is associated with the count. The tuples are eliminated only when the count is 
greater than the coverage threshold. In CBA the tuples would be eliminated when the count 
equals 1. 

Classification Phase. The classification phase in CMAR is based on multiple association 
rules. Consider a new tuple T to be classified. CMAR chooses the subset of rules that 
match T. It divides the rules according to the class label and evaluates these groups based 
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on chi-square analysis [LHP01]. Then, CMAR chooses the strongest group based on the 
chi-square measure and classifies T in its corresponding class. The pseudocode for this 
classification stage is given below. 

(1) select the rules that match T and put them in prediction-set P 
(2) if all the rules in P indicate the same class label 

attach that label to the new tuple 
(3) else 
(4) divide P into subsets based on the class labels 
(5) in each group compute the weighted chi-square for each rule and sum them up 
(6) attach to T that class label that had the highest sum of weighted chi-square 

2.3.3 ARC: Association Rule-based Classification 

We introduced Association Rule-based Classification (ARC) in [AZC01, Ant02]. We pro­
posed two algorithms, ARC-AC (AC=A11 Classes) and ARC-BC (BC=By Class). 

Generate the Set of Rules. ARC algorithms generate all the constrained association rules 
in an apriori-like fashion. They discover all the rules of the form R : F —> c that exceed 
the support and confidence thresholds. The difference between ARC-AC and ARC-BC 
algorithms is on what dataset the apriori-like algorithm is applied. In ARC-AC, the rules 
are generated from the entire training set, similar to CBA and CMAR. In ARC-BC, the 
training set is divided into subsets by class. The mining algorithm is applied on each of 
these subsets and the generated rules are merged to form the final set of rules. Thus the set 
of rules generated is different than the one obtained by ARC-AC. The reason for mining 
by class is that of class imbalance. In some applications, there are classes of interest that 
are very small compared to the entire collection of data. Classification rules for these small 
classes may not be discovered when all the classes are mined together, if their support is 
smaller that the given threshold. 

Build the Classifier. Some pruning techniques are applied on the set of rules discovered 
in the first phase. Database coverage and removal of low ranked specialized rules were 
applied, similar to CBA and CMAR. We also studied the behaviour of conflicting rules. 
These are rules that have the same antecedent, but imply different classes. We found that 
removing these rules improved the accuracy of the classifier in the case of single-class 
classification. 

Classification Phase: ARC algorithms classify new objects based on confidence. Con­
sider a new tuple T to be classified. The algorithm chooses the subset S of rules that match 
T. This set is divided according to the class label. For each class the average confidence of 
the rules is computed, which will constitute the class score. The classifier classifies T in the 
class with the highest score. A pseudocode is given below. 

(1) divide S in subsets by category: Si, S2---Sn 

(2) foreach subset Si,S2---Sn 

(3) sum the confidences of rules and divide by the number of rules in Sk 
. . . y^r.conf 
(4) sc°™i = %^~ 
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Year of publi­
cation 
Rule generation 
phase 
Pruning phase 

Single-class 
classification 

Multi-class 
classification 

Reported 
experiments 

CBA 

1998 

Apriori-like on the 
entire set 
Database coverage 

Apply only the first 
raked rule 

N/A 

UCI datasets 

CMAR 

2001 

FP-growth on the 
entire set 
Database coverage 
and removal of low 
ranked specialized 
rules 

Analyze a set of 
rules and decide 
the winner us­
ing a weighted 
chi-square 

N/A 

UCI datasets 

ARC-AC 

2001 

Apriori-like on the 
entire set 
Database coverage, 
removal of low 
ranked specialized 
rules and elimina­
tion of conflicting 
rules 

Analyze a set of 
rules and decide the 
winner using the 
average of the con­
fidences 

Use the dominance 
factor to allow mul­
tiple classes as pre­
diction 
UCI datasets, med­
ical images and text 
documents 

ARC-BC 

2002 

Apriori-like on sub­
sets (by category) 

Database coverage, 
removal of low 
ranked specialized 
rules and elimina­
tion of conflicting 
rules 
Analyze a set of 
rules and decide the 
winner using the 
average of the con­
fidences 

Use the dominance 
factor to allow mul­
tiple classes as pre­
diction 
Medical images 
and text documents 

Table 2.5: Comparison between Associative Classifiers 

(5) put the new object in the class that has the highest confidence score 
(5) o <— d, with scorei = max{scorei..scoren} 

When single-class classification is performed the new object is associated to the class 
that has the highest score. When multi-class categorization is employed the new object is 
assigned to k classes using the notion of dominance factor that was introduced in [ZA02]. 
Dominance factor represents a percentage that allows us to classify an object in all the 
classes whose score exceeds this percentage from the maximum score. 

2.3.4 Comparison among Associative Classifiers 

Table 2.5 compares the associative classifiers presented above to emphasize their differ­
ences. 

A few other associative classifiers have been proposed in the literature. Harmony 
[WK05] is an associative classifier that generates rules in an instance-centric fashion. This 
approach assures that at least one high-confidence rule for each training instance is included 
in the final set of rules. The claim is that by employing an instance-centric approach more 
interesting rules are generated. A lazy associative classifier was introduced in [VJZ06]. The 
generation of classification rules is done at the time a new example has to be classified. To 
deal with the computational issue of the lazy associative classification some caching mech­
anisms are used. An extension to this system was proposed in [VJGZ07]. A multi-label 
associative classifier which deals with the issue of small disjuncts and takes into account 
the dependencies among class labels is proposed. The correlation among labels is consid­
ered by allowing the presence of multiple labels in the antecedent. To reduce the search 
space of the classification rules, the authors employ a heuristic called progressive label fo-
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* lA*3A*4 =>Cj 

<lA*2A*7=>Cj 
*lA*2A*4=»Cj 

Table 2.6: Examples of decision rules 

cusing. In [VWMC+06] an application driven lazy associative classifier that incorporates 
link-based evidence is proposed for document classification. 

2.4 Other Rule-based Classification Models 

Another approach to building rule-based classifiers comes from the Machine Learning com­
munity. Over the years, several rule induction algorithms have been proposed in the litera­
ture. Most of these algorithms are covering algorithms (i.e., they generate rules that reliably 
cover a subset of the data). The algorithms differ from one another in the searching em­
ployed and in the measures used to account for the interestingness of the discovered rules. 
In addition, different pruning techniques are used to avoid overfitting. In the following we 
briefly discuss several algorithms. 

2.4.1 Decision Rules 

Rule induction methods have been extensively discussed in the literature [Qui93, WK91]. 
A decision rule classifier consists of a set of rules in disjunctive normal form (DNF). The 
antecedent of the rule is formed by the presence or absence of terms in documents, while 
the consequent says whether to classify the object under class C; or not. An example of such 
a set of rules is given in Table 2.6 

The decision rules induction is done in a bottom-up fashion, while the induction in 
decision trees, as described below, is done in a top-down manner. When the building of 
a classifier for category c; starts, all the terms in each training document represents the 
antecedent of a rule. The consequent is either a, if the object is a positive example, or c,, 
if the object is a negative one. This process may lead to an overfitting set of rules. That is 
why, when a set of rules is induced, generalization and pruning criteria are employed. The 
heuristics for these two steps differ from one classifier to another. In the next paragraph we 
describe these two steps into more details. 

CN2 algorithm CN2 [CN89] is a rule induction algorithm that performs a general to 
specific search. To reduce the risk of finding a suboptimal set of rules, CN2 performs a 
general to specific beam search (i.e., a search where the algorithm keeps at every step a set 
of best candidates, rather than a single one). 

The induction of a set of rules starts with an empty set of rules. CN2 algorithm searches 
in the training set for the best pattern. Then, it eliminates from the training set the covered 
cases by this pattern and adds to the rule list a relationship between the pattern and the 
most common class covered by the pattern. It repeats this step until there are no more 
objects in the training set or no other pattern can be found. The patterns are discovered 
in the following way. Consider A as being the set of all attributes in the training set D. 
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Construct the candidate set to best rule by doing all the combinations between an element 
from best_set (besLset built using a heuristic) (rules that candidate to best_rule) and one 
from A. From the candidate set remove those tuples that are already in besLset or that are 
contradictory. Once the candidate set is built take each element one by one and if it is more 
informative than the existing best_rule, replace the best_rule with this element. When all 
the elements in candidate set were tested, return the best_rule. 

2.4.2 RIPPER algorithm 

RIPPER (Repeated Incremental Pruning to Produce Error Reduction) [Coh95] is built upon 
IREP (Incremental Reduced Error Pruning) algorithm [FW94]. RIPPER brings several 
modifications to IREP. The modifications keep the efficiency that IREP provided, while the 
performance of the classification model is improved. Following IREP's strategy, RIPPER 
splits the training set in two sets. One of them is used to grow the rules and the other to 
prune the rules. A rule is grown as follows: the algorithm starts with an empty rule and it 
repeatedly adds conditions that maximize the information gain criterion. Once the rule is 
grown, conditions are deleted to maximize a function during the pruning phase. When a 
rule has been discovered, all the examples that are covered by these rules are removed from 
the training set. The above process continues to learn rules for the remaining training set. 
In addition, RIPPER applies a rule optimization to refine the final set of rules. This refining 
is guided to minimize the error of the entire set of rules. 

2.4.3 CPAR - a hybrid between associative classifiers and rule-based classi­
fiers 

CPAR [YH03] (Classification based on Predictive Association Rules) is a hybrid between 
associative classifiers and rule-based classifiers that use greedy techniques. It uses a greedy 
algorithm to search the space of attributes. The main difference is that it keeps all close-
to-the-best attributes in rule generation, unlike rule-based methods which use only the best 
attribute. Thus, it creates more rules than traditional rule-based approaches, but much less 
than associative classifiers. In the classification stage the system uses the best k rules that 
satisfy the new object. To make the classification decision CPAR uses the expected accuracy 
measure. 

Although the rule induction algorithms generate rules in the same format as associative 
classifiers, they differ in several ways. First, the rule generation phase is completely dif­
ferent: rule-induction algorithms perform a search over the space to find optimal rules that 
distinguish between a set of positive examples and a set of negative ones (different search 
criteria are used to accomplish this step); associative classifiers search the space to find 
interesting associations between a set of conditions and a class label. In addition, the mea­
sures used are different: rule-learning systems use certain functions to be maximized (e.g., 
information gain), while associative classifiers discover associations that exceed a certain 
support and confidence threshold. Rule learning algorithms use post-pruning techniques to 
improve the set of rules. The associative classifiers may use pruning techniques as well. 
The difference is that while most rule learning algorithms remove conditions from the an­
tecedent of a rule in this phase, the associative classifiers remove only entire rules from the 
set. 
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Figure 2.2: Decision Tree 

2.5 Other Classification Systems 

This section introduces some well-known classification system that are used and/or com­
pared against throughout this dissertation. 

2.5.1 Decision Trees 

A decision tree is a tree structure where each internal node represents a test on an attribute, 
each branch is labeled by the outcome of the test and each leaf node represents a category. 
An example of such tree is given in Figure 2.2. Let d be a new instance to be classified. In 
order to classify it, all its attribute values d^ are tested against the decision tree. 

A procedure for building a decision tree is to apply a greedy algorithm in a top-down 
recursive divide-and-conquer manner. The basic algorithm is as follows: 

(1) create a node representing the training set 
(2) if all the samples belong to the same category 
(3) attach this label to the node, and it becomes a leaf 
(4) else 
(5) using a heuristic search find the attribute that best separates the samples 

into classes, and place each class in a subtree 

The algorithm is used recursively to form a decision tree for each partition. The recur­
sive process stops when: 

(a) all samples for a given node, belong to the same class 
(b) the samples cannot be further divided (no attributes left) 
(c) there are no samples for a certain branch. In this case a leaf is created with the 

majority class. 
Entropy is a common measure for how informative a node is in the tree. When a new 

tuple is presented to the system for classification, the attributes of this tuple are tested 
against the decision tree. Starting with the root node the attributes are tested until a leaf 
node is reached. At this point the value of the leaf node is attached to the tested tuple as 
class. There are some standard packages for creating a decision tree when a training set is 
given. Among the most popular are ID3 [FB91], C4.5 [Qui93, CH98, CS99, Joa98] and C5 
[LJ98]. 
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2.5.2 Probabilistic Classifiers 

Classifiers based on probabilistic models have been proposed in the literature and proved to 
perform well. Nai've-Bayes [Lew98] is a widely used probabilistic classifier. 

Probabilistic classifiers estimate the probability of each class given the features of the 
new object to be classified. To determine these probabilities, Bayes theorem is used. Let d 
be a new instance to be classified. Its class is unknown. Let CJ be the hypothesis that the 
object falls into category c%. 

Bayes theorem is given by the following formula: 

r-w , ̂  P(cj) * P(dlci) 
P ( C i | d ) =

 P ( d ) (2"1) 

The above equation states that the object d falls in class CJ with probability P(cj|d). 
However, the computation of this probability is difficult. As a consequence, it is common 
to make an independence assumption that will make the computation easier. It is assumed 
that there are no dependence relationships among the object attributes. The independence 
assumption presumes that the attributes when considered as random variables are statisti­
cally independent. Thus, the key term in the right-hand side of Equation 2.1 becomes: 

p(d|C i)=np(d*i c*) <2-2) 
where dk is the kth attribute of object d. 

Probabilistic classifiers that make use of this assumption and compute the probability 
according to equation 2.2 are called Naive Bayes classifiers. Despite the fact that the as­
sumption used is not entirely true in real applications Naive Bayes classifiers are effective. 
More details and a thorough survey of Bayesian classifiers is given in [Lew98]. 

2.5.3 Example-based Classifiers 

Example-based classification methods [DH73] do not build an actual classifier, but rather 
base their decision upon the training objects similar to the test ones. They are based on 
analogy, rather than learning. That is why these methods belong to the example-based class 
and they are called lazy learning systems. 

The best known classification method belonging to this class is k-NN (k nearest neigh­
bours) [CH67]. When a new object has to be classified using this method, k-NN finds the k 
training objects most similar to the new one. The similarity of two objects is usually defined 
in terms of Euclidean distance. In text categorization, often, the documents are represented 
in a vector model, the Euclidean distance being computed between each element of the vec­
tors associated to documents (i.e. the weights associated with each term). The Euclidean 
distance between two points is given by the formula in Equation 2.3. 

d(X,Y) = ^Y.^-Vi)2 (2-3) 

A decision is made on these k objects. If a large portion of the k nearest neighbors is 
classified in class d, then the new object falls in that class. The building of a k-NN classifi­
cation system also involves finding the threshold k. This is usually done experimentally by 
using a validation set. 
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Figure 2.3: 3-Layer Neural Network 

2.5.4 Neural Networks 

Artificial neural network models [RHW86, HKP91, Bis95] have been studied for many 
years in the hope of achieving human-like performance in fields like speech and image 
understanding. The networks are composed of many non-linear computational elements 
operating in parallel and arranged in patterns reminiscent of biological neural networks. 
Computational elements or nodes are connected in several layers (input, hidden and output) 
via weights that are typically adapted during the training phase to achieve high performance. 
Instead of performing a set of instructions sequentially, neural network models explore 
simultaneously many hypotheses using parallel networks composed of many computational 
elements connected by links with variable weights. A typical n-layer neural network is 
described in Figure 2.3. 

The weights of a neural network are set during the training phase. The attributes of a 
training sample are given to the input layer and the weights are automatically adjusted so 
that the output layer indicates the category assigned to the training object. This process is 
repeated for all training objects. The classifier is represented by the neural network with 
the weights adjusted during the training process. To classify a new object the attributes are 
assigned to the nodes in the input layer and the value given by the output layer indicates the 
class in which the object should fall. 

Given a set of training examples to be fed into a neural network the goal is to adjust 
the weights attached to the nodes in the network in such a manner that makes almost all the 
tuples in the training data classified correctly. 

Below are presented the basic steps in generating a trained neural network. 

Training a neural network: 
(1) initialize weights with random values 
(2) feed the training examples into the network one by one 
(3) foreach example 
(4) compute the input to the network as a linear combination of 

all the inputs to the input layer 
(5) compute the value for the output node using the activation function 
(6) evaluate the error between the expected outcome and 
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Figure 2.4: Support Vector Machine Classifier 

the predicted value 
(7) update the weights and the bias of the network 

2.5.5 Support Vector Machines 

The concept of support vector machines was introduced in 1995 by Vapnik [Vap95]. This 
method is based on the Structural Risk Minimization principle from computational learning 
theory. The main idea is to find in the space of data, the hyperplane h that discriminates 
best between two classes. The samples that lie closest to the hyperplane (both positive and 
negative examples) are called support vectors. Once the hyperplane is determined, new 
objects can be classified by checking on which side of the hyperplane they lie. A graphical 
representation is given in Figure 2.4. 

The problem is to find the h with the lowest error. The upper bound of the error is 
given in Equation 2.4, where n is the number of training examples and d is the Vapnik-
Chervonenkis dimension. The VC-dimension characterizes the complexity of the problem. 

P{error(h)) < train.error(h) + 2 * W s i 1 ^.4) 

The idea is to find the hypothesis that minimizes equation 2.4. When the optimal hy­
perplane is found for each class, the classification phase is trivial. For each new object 
to be classified it is checked on which side of the hyperplane it falls, and that category is 
assigned to it. SVM is a typical approach where the multi-class problem is divided into dis­
joint binary categorization tasks. To classify a new object all binary classifiers are invoked 
and their decisions are combined to predict the new classes associated with the object to be 
classified. 
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2.5.6 Boosting and Bagging 

The technique of combining the prediction of multiple classifiers to build a single classifier 
was studied by the researchers based on the idea that k classification systems can perform 
better than a single one. This general process is called voting. Such a classifier takes a 
learning method and a training set and builds multiple classifiers on different versions of 
the training set. These resulting classifiers are combined to generate the final one. Voting 
algorithms can be divided in two classes: boosting and bagging. 

Boosting. The boosting method [Sch99] builds a classifier by using multiple previously 
generated classifiers. By using the same learning method it induces k classifiers. The 
difference among these systems is the set used as training. It differs from one classifier to 
another. The method selects N samples from the training set when creating a new classifier. 
However, the probability of choosing a sample is not the same for all classifiers. It depends 
on how often the sample was misclassified with the previous created classifiers. Thus the 
boosting method attempts to create at each stage better classifiers in order to increase the 
performances of the final classifier. Many methods employing boosting algorithms were 
presented in the literature [Qui96, Elk97]. They differ in the way the samples are selected 
when a new classifier is to be generated. 

Bagging. The bagging method [Bre96], like boosting, takes as input a learning method 
and a training set of objects. The difference consists of how the samples are chosen for 
building the classifiers. The training sample has the same size for each classifier as the 
original training set. For each classifier, the algorithm makes a number of replacements in 
the training set by uniform probability random selection. This means that some samples 
could repeat in the training set, while others may not be present at all. 

To classify a new object, all the classifiers built are invoked. The new object falls in the 
class that obtained the most votes. 

2.6 Performance Evaluation 

Learning predictive systems is an important problem with many applications. However, 
the learning and developing of automatic classification systems is not the only task to be 
considered for a new application. The other issue to be taken into account is the classifiers' 
performance evaluation. We first present some datasets used throughout this dissertation for 
evaluating the performance of the proposed techniques, followed by evaluating measures 
that allow us to compare our proposed systems with previously proposed traditional or 
state-of-the-art systems. 

2.6.1 Datasets 

This section presents an overview of the datasets that were used throughout this dissertation. 
First, the characteristics of the datasets from the UCI repository [BM98] are presented. 
Then, the Reuters dataset [Reu08] is discussed. 
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dataset 
name 

annealing 
australian 
breast-w 

cleve 
crx 

diabetes 
german 

glass 
heart 

hepatitis 
horse 
iris 

labor 
led7 
pima 

tic-tac-toe 
vehicle 

waveform 
wine 
zoo 

number of 
instances 

898 
690 
699 
303 
690 
768 
1000 
214 
270 
155 
368 
150 
57 

3200 
768 
958 
846 

5000 
178 
101 

number of 
attributes 

38 
14 
10 
13 
15 
8 

20 
9 
13 
19 
21 
4 
16 
7 
8 
9 
18 
21 
13 
17 

number of 
numeric attributes 

9 
6 
10 
6 
6 
8 
7 
9 
6 
6 
7 
4 
8 
7 
8 
0 
18 
21 
13 
2 

number of 
classes 

6 
2 
2 
2 
2 
2 
2 
7 
2 
2 
2 
3 
2 
10 
2 
2 
4 
3 
3 
7 

percentage of instances 
in the majority class 

67.7 
55.5 
65.5 
54.4 
55.5 
65.1 
70.0 
35.5 
55.5 
79.4 
57.1 
33.3 
64.9 
10.6 
65.1 
65.3 
25.7 
33.3 
39.9 
40.6 

Table 2.7: Summary of the UCI datasets used throughout this dissertation 

UCI Datasets 

Table 2.7 shows the characteristics of the UCI datasets [BM98] that we used in our eval­
uation throughout this dissertation. It describes each dataset in terms of the number of 
instances, the number of attributes, how many of these attributes are numerical, the number 
of classes and the class distribution. 

On each UCI dataset we performed C4.5's shuffle utility [Qui93] for shuffling the 
datasets to ensure randomness in the training/testing splits. A 10-fold cross validation (de­
fined in Section 2.2.1) was performed on each dataset and the reported results are averages 
over the 10 folds. In addition, we used the same discretization method for continuous at­
tributes as in [LHM98] to have a fair comparison with other algorithms. 

Reuters Dataset 

In the last decades tasks dealing with textual information embedded in documents gained 
an important status in research and industrial fields. The main reason behind this increase is 
the growing number of documents available in digital format. Since the first automated text 
categorization system was proposed in the literature in 1961 [Mar61] there have been many 
direct applications to text classification, such as automatic indexing to assist information 
retrieval systems, document classification, text filtering and document routing. These are 
just a few applications that are highly dependent on a good classification system. Nowadays 
with the expansion of the Web, text classification is useful for web page categorization, e-
mail classification and filtering. Another application for text classification is word sense 
disambiguation, one of the most important problems in computational linguistics. For a 
thorough survey of the existing text classification systems see [Seb99]. 

We chose this application for our evaluation not only for its importance as discussed 
above, but because of its challenges as well. In this application we encounter a very high-
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Figure 2.5: Associative Classifier 

dimensional space due to the large number of words that appear in a text corpora. In addi­
tion, a very interesting and challenging problem is that this application requires multi-label 
classification. Each document in the collection may be classified into one or more classes. 
We are interested to see how our proposed approaches work in this context. 

In order to objectively evaluate our algorithm vis-a-vis other approaches we used the 
Reuters-21578 text collection [Reu08] as benchmark, like other researchers in the field 
of automatic text categorization. Text collections for experiments are usually split into 
two parts: one part for training or building the classifier and a second part, for testing the 
effectiveness of the system. 

There are many splits of the Reuters collection; we chose to use the ModApte version. 
This split leads to a corpus of 12,202 documents consisting of 9,603 training documents and 
3,299 testing documents. There are 135 topics to which documents are assigned. However, 
only 93 of them have more than one document in the training set and 82 of the categories 
have fewer than 100 documents. We tested our classifier on the ten categories with the 
largest number of documents assigned to them in the training set. 

A data cleaning phase is required to weed out those words that are of no interest in 
building the associative classifier. We consider stemming and stopwording as well as the 
transformation of documents into transactions as a pre-processing phase. Stopword removal 
is done according to the term frequency values and a given list of stopwords. Figure 2.5 
illustrates the phases of the association-rule-based text categorizer construction with the 
optional stemming and stopwording modules. Stopwords removal considerably reduces the 
dimensions of the transactional database and thus significantly improves the rule extraction 
time (i.e. training time). Moreover, while we use a common stopword list in English 
[Fox92], too frequent terms that are associated to all categories can be automatically added 
as words to reject. Note that the stopword lists from any language can be used as well. 

In our approach, we model text documents as transactions where items are words from 
the document as well as the categories to which the document belongs. On these docu­
ments we performed stopword elimination but no stemming. It is only after the terms are 
selected from the cleansed documents that the transactions are formed. The subsequent 
phase consists of discovering association rules from the set of cleansed transactions. 

2.6.2 Evaluation Measures 

The evaluation process is a very important step in building a good and reliable classification 
system. The measures and techniques used in the evaluation give us an insight into the 
reliability of our classification systems. These measures present us with an estimate of how 
well our classifier will perform and how it compares to other classification systems. 

The most common measure used in classification evaluation is accuracy, which repre­
sents the percentage of the correct classifications out of the total number of classifications 
performed. Its definition is given in the following equation: 
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predicted 
class 

Yes 
No 

actual class 
Yes 

TP 
FN 

No 

FP 
TN 

Table 2.8: Contingency table for a two-class problem 

accuracy •• 
TP + TN 

(2.5) 
TP + FP + TN + FN 

A two-class classification problem and its possible outcomes is presented in the contin­
gency table shown in Table 2.8. The TP (true positives) and TN (true negatives) are correct 
classifications. A FP (false positive) occurs when the outcome is incorrectly predicted as 
"yes". A FN (false negative) occurs when the outcome is incorrectly predicted as "no" 
when it is actually "yes". 

Accuracy is a good evaluation method in binary classification and balanced datasets. 
However, accuracy is not an appropriate measure in all classification cases. There are two 
well-known such cases. One of them is in the case of rare classes and the other one appears 
when multi-label classification is performed. In our experiments, we encounter both of 
these cases. This is why we need other evaluation measures. Some evaluation measures, 
as well as some used in our evaluation, can be defined in terms of precision and recall. 
Precision represents how many of the objects predicted as belonging to the "yes" class do 
belong to that class. Recall represents how many of the objects that belong to the "yes" 
class were predicted as such. The formulae for precision (P) and recall (R) are: 

P = 
TP 

TP + FP 

R = 
TP 

(2.6) 

(2.7) 
TP + FN 

Another evaluation measure is the break-even point (Equation 2.8). Breakeven point 
(BEP) is the point at which precision equals recall and it is obtained as reported in [BEYTW01]: 

BEP = 
R + P 

(2.8) 

Fl measure is another measure that combines precision and recall. Fl measure is a 
particular case of the Fp measure derived from van Rijsbergen's E measure [vR79]. This 
measure is a harmonic average of precision (P) and recall (R) and combines them as in the 
following formula: 

F, P 
(/?2 + 1) x P x R 

(2.9) 
R + 01 x P 

Fl measure is obtained when (3 equals 1. 
When dealing with multiple classes, as in the text classification application, there are 

two possible ways of averaging these measures, namely, macro-average and micro-average. 
In macro-averaging, one contingency table as in Table 2.8 per class is used, the perfor­
mance measures are computed for each class and then averaged over all classes. In micro-
averaging only one contingency table is used over all classes, the average of all the classes 
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Figure 2.6: An example of a classifier evaluation with a cost curve 

is computed for each cell and the performance measures are obtained therein. The macro-
average weights equally all the classes, regardless of how many documents belong to each 
one of them. The micro-average weights equally all the documents, thus favouring the 
performance on common classes. 

Predicting rare classes is an important issue in many domains as discussed in Sec­
tion 2.2.3. A way of evaluating a classification system when rare classes are involved is 
by using a Receiver Operating Characteristic (ROC) curve [PF97]. An ROC curve is a plot 
of the true positive rate against the false positive rate (formulas given in Equation 2.11) 
for the different possible thresholds. The ROC curve records various combinations of false 
positive and false negative errors, thus evaluating a classification system on a broader range 
by computing the area under the curve (AUC). The larger the area under the curve, the more 
accurate the test. 

Cost curves [DH06] are evaluation tools for classification systems that have been pro­
posed as an alternative to ROC curves [PF97]. Their advantage is that in their visualization 
one can easily see the performance of a classifier over the entire range of class frequencies 
and costs. Each classifier is represented by a straight line in the cost space. The y-axis is the 
normalized expected cost (NEC) of a classifier and is between 0 and 1. The x-axis (PC(+)) 
is the fraction of the total cost of using a classifier that is due to positive examples. 

The performance of a classifier is represented in the cost space by the following equa­
tion: 

NEC = (1 - TPR - FPR) x PC(+) + FPR (2.10) 

where TPR (true positive rate) and FPR (false positive rate) are defined as follows: 

TP FP 
TPR FPR = (2.11) 

TP + FN FP + TN 

An example of a classifier evaluation with a cost curve is shown in Figure 2.6. A line in 
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the cost space shows how the performance of the system varies when the class distribution 
or cost change. Ideally, one wants to have a classifier represented by a horizontal line at 
the normalized expected cost of 0. Thus, the best classifier for a probability cost value is 
the one whose normalized expected cost is the lowest. Visually, the lowest line in the graph 
represents the best classifier (the lower the line the better the classification system). From 
the graphs we can also directly see the difference in performance between two classifiers, 
which is their vertical height difference at some PC(+) value. 

The measures presented in this section are used throughout this dissertation in the eval­
uation of our proposed solutions. 
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Chapter 3 

Associative Classifiers Using 
Negative Association Rules 

This chapter presents the integration of negative association rules with associative classi­
fiers. Typical association rules consider only items enumerated in transactions. Such rules 
are referred to as positive association rules. Negative association rules also consider the 
same items, but in addition consider negated items (i.e. absent from transactions). Negative 
association rules are useful in market-basket analysis to identify products that conflict with 
each other or products that complement each other. Many other applications would benefit 
from negative association rules if it was not for the expensive process to discover them. 
Indeed, mining for such rules necessitates the examination of an exponentially large search 
space. Despite their usefulness, and while they are referred to in many publications, very 
few algorithms to mine them have been proposed to date. In this chapter we motivate the 
importance of negative association rules and propose a solution for mining these types of 
rules. First, an algorithm based on statistical correlation to discover classification rules with 
negations is proposed and discussed. Then, these types of classification rules are integrated 
with the associative classifier framework and the results are presented. The challenge here is 
in dealing with new types of classification rules and in integrating them in the classification 
process. 

3.1 Discovering Negative Association Rules 

All the traditional association rule mining algorithms were developed to find positive as­
sociations between items. By positive associations we refer to associations between items 
existing in transactions (i.e. items bought). What about associations of the type: "customers 
that buy Coke do not buy Pepsi" or "customers that buy juice do not buy bottled water"? 
In addition to the positive associations, the negative associations can provide valuable in­
formation in devising marketing strategies. Interestingly, very few studies have focused on 
negative association rules due to the difficulty in discovering these rules. Although some 
researchers have pointed out the importance of negative associations [BMS97], only a few 
groups of researchers [WZZ02, THC02, SON98] have proposed algorithms to mine these 
types of associations. This not only illustrates the novelty of negative association rules, but 
also the challenge in discovering them. 
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Table 3.1: Example 1 Data 

3.1.1 Motivation 

This section introduces a motivating example for the importance of negative association 
rules. 

Example 1. Suppose we have an example from the market basket data. In this exam­
ple we want to study the purchase of organic versus non-organic vegetables in a grocery 
store. Table 3.1 gives us the data collected from 100 baskets in the store. In Table 3.1 
"organic" means the basket contains organic vegetables and "-• organic" means the basket 
does not contain organic vegetables. The same applies for non-organic. On this data, let us 
find the positive association rules in the "support-confidence" framework. The association 
rule "non-organic —> organic" has 20% support and 25% confidence (support(non-organic 
A organic)/support(non-organic)). The association rule "organic —> non-organic" has 20% 
support and 50% confidence (support(non-organic A organic)/support(organic)). The sup­
port is considered fairly high for both rules. Although we may reject the first rule on the 
confidence basis, the second rule seems a valid rule and may be considered in the data anal­
ysis. Now, let us compute the statistical correlation between the non-organic and organic 
items. A more elaborated discussion on the correlation measure is given in Section 3.1.3. 
The correlation coefficient between these two items is -0.61. This means that the two items 
are negatively correlated. This measure sheds a new light on the data analysis on these spe­
cific items. It shows that the rule "organic —> non-organic" is misleading. The correlation 
measure brings new information that can help in devising better marketing strategies. 

The example above illustrates some weaknesses in the "support-confidence" framework 
and the need for the discovery of stronger interesting rules. The interestingness of an asso­
ciation rule can be defined in terms of the measure associated with it, as well as in the form 
an association can be found. 

Brin et. al [BMS97] mentioned for the first time the notion of negative relationships 
in the literature. Their model is chi-square based. They use the statistical test to verify the 
independence between two variables. To determine the nature (positive or negative) of the 
relationship, a correlation metric was used. In [SON98] the authors present a new idea to 
mine strong negative rules. They combine positive frequent itemsets with domain knowl­
edge in the form of a taxonomy to mine negative associations. However, their algorithm is 
hard to generalize since it is domain dependant and requires a predefined taxonomy. Wu 
et. al [WZZ02] derived another algorithm for generating both positive and negative associ­
ation rules. They add on top of the support-confidence framework another measure called 
mininterest for a better pruning of the frequent itemsets generated. In [THC02] the authors 
use only negative associations of the type X —>• -Y to substitute items in market basket 
analysis. 

We define as generalized negative association rule, a rule that contains a negation of an 
item (i.e a rule for which its antecedent or its consequent can be formed by a conjunction 
of presence or absence of items). An example for such association would be as follows: 
A A -ii? A -iC A D —> E A -i.F. To the best of our knowledge, there is no algorithm 
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that can determine all generalized negative association rules. Deriving such an algorithm is 
not an easy problem, since it is well known that the itemset generation in the association 
rule mining process is an expensive one. It would be necessary not only to consider all 
items in a transaction, but also all possible items absent from the transaction. There could 
be a considerable exponential growth in the candidate generation phase. This is especially 
true in datasets with highly correlated attributes. That is why it is not feasible to extend 
the attribute space by adding the negated attributes and use the existing association rule 
algorithms. We generate and use in the classification process a subset of the generalized 
negative association rules. We refer to them as confined negative association rules. A 
confined negative association rule is one of the follows: ->X - * F o r X - > -Y, where 
the entire antecedent or consequent is treated as an atomic entity and the entire entity is 
either negated or not. In this dissertation, we refer to the confined negative association rules 
simply as negative association rules, but they are in fact a subset of the generalized negative 
association rules. 

3.1.2 Our Approach to Discovering Classification Rules with Negations 

The most common framework in the association rules generation is the "support-confidence" 
one. Although these two parameters allow the pruning of many associations that are dis­
covered in the data, there are cases when many uninteresting rules may be produced. In our 
approach we consider another framework that adds to the support-confidence some mea­
sures based on correlation analysis. The next section introduces the correlation coefficient, 
which we add to the support-confidence framework in this chapter and then we present our 
algorithm to discover confined negative association rules. 

3.1.3 Correlation Coefficient 

The correlation coefficient measures the strength of the linear relationship between a pair of 
variables. It is discussed in the context of association patterns in [TKOO]. For two variables 
X and Y, the correlation coefficient is given by the following formula: 

OX&Y 

In Equation 3.1, Cov(X, Y) represents the covariance of the two variables (represents 
the strength of the correlation between two or more sets of random variables) and ax stands 
for the standard deviation of X. The range of values for p is between -1 and +1. If the 
two variables are independent then p equals 0. When p = +1 the variables considered are 
perfectly positive correlated. Similarly, when p = — 1 the variables considered are perfectly 
negative correlated. A positive correlation is evidence of a general tendency that when the 
value of X increases/decreases so does the value of Y. A negative correlation occurs when 
for the increase/decrease in X's value we discover a decrease/increase in the value of Y. 

Let X and Y be two binary variables. Table 3.2 summarizes the information about X 
and Y variables in a dataset in a 2x2 contingency table. The cells of this table represent the 
possible combinations of X and Y and give the frequency associated with each combination. 
N is the size of the dataset considered. 

Given the values in the contingency table for binary variables, Pearson introduced the 
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Table 3.2: 2x2 Contingency table for binary variables 

(j) correlation coefficient which is given in the equation 3.2: 

, _ /II/OO ~ /IO/OI 

V/+0/+1/1+/0+ 

We can transform this equation by replacing /oo, /oi, /io> /o+ a nd /+o a s follows: 

4> = 
/ I I ( J V - / I O - / O I - / I I ) - / I O / O 

\//+o/+i/i+/o+ 

/n^V — /n/io — /n/oi — /ii - /io/o 
V/+0/+1/1+/0+ 

^ _ / I I J V - ( / I I + / I O ) ( / U + / O I ) 

\//+o/+i/i+/o+ 

Nf 11 - h+ * //+i 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
y/f1+{N-f1+)f+1(N-f+1) ' 

We make this transformation to use values that we already have computed during the mining 
process. The measure given in Equation 3.6 is the measure that we use in the association 
rule generation algorithm to discover positive and negative confined rules. 

Cohen [Coh88] discusses about the correlation coefficient and its strength. In his book, 
he considers that a correlation of 0.5 is large, 0.3 is moderate, and 0.1 is small. The in­
terpretation of this statement is that anything greater than 0.5 is large, 0.5-0.3 is moderate, 
0.3-0.1 is small, and anything smaller than 0.1 is insubstantial, trivial, or otherwise not 
worth worrying about as described in [Hop02]. 

We use these arguments to introduce an automatic progressive thresholding process. We 
start by setting our correlation threshold to 0.5. If no strong correlated rules are found the 
threshold slides progressively to 0.4,0.3 and so on until some rules are found with moderate 
correlations. This progressive process eliminates the need for manually adjusted thresholds. 
It is well known that the more parameters a user is given, the more difficult it becomes to 
tune the system. Association rule mining is certainly not immune to this phenomenon. 

3.1.4 Our Algorithm 

Traditionally, the process of mining for association rules has two phases: first, mining 
for frequent itemsets; and second, generating strong association rules from the discovered 
frequent itemsets. In our algorithm, we combine the two phases and generate the relevant 
rules on-the-fly while analyzing the correlations within each candidate itemset. This avoids 
evaluating item combinations redundantly. Indeed, for each generated candidate itemset, 
we compute all possible combinations of items to analyze their correlations. In the end, 
we keep only those rules generated from item combinations with strong correlation. The 
strength of the correlation is indicated by a correlation threshold, either given as input or by 
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default set to 0.5 (see above for the rationale). If the correlation between item combinations 
X and Y of an itemset XY, where X and Y are itemsets, is negative, negative association 
rules are generated when their confidence is high enough. The produced rules have either 
the antecedent or the consequent negated: (->X —* Y and X —> -Y), even if the support 
is not higher than the support threshold. However, if the correlation is positive, a positive 
association rule with the classical support-confidence idea is generated. If the support is not 
adequate, a negative association rule that negates both the antecedent and the consequent is 
generated when its confidence and support are high. 

The algorithm generates all positive and negative association rules that have a strong 
correlation. If no rule is found, either positive or negative, the correlation threshold is auto­
matically lowered to ease the constraint on the strength of the correlation and the process is 
redone. Figure 3.1 gives the detailed pseudo-code for our algorithm. 

Initially both sets of negative and positive association rules are set to empty (line 1). 
After generating all the frequent 1-itemsets (line 2) we iterate to generate all frequent k-
itemsets, stored in Fk (line 8). F^ is verified from a set of candidate Ck computed in line 
4. The iteration from line 3 stops when no more frequent itemsets can be generated. Unlike 
the join made in the traditional Apriori algorithm to generate candidates at level fc, instead 
of joining frequent (k— l)-itemsets, we join the frequent itemsets at level k— 1 with the fre­
quent 1-itemsets (line 4). Please note that this is not a natural join. This is because we want 
to extend the set of candidate itemsets and have the possibility to analyze the correlation of 
more item combinations. The rationale will be explained shortly. Every candidate itemset 
generated this way is on one hand tested for support (line 7), and on the other hand used to 
analyze possible correlations even if its support is below the minimum support (loop from 
line 9 to 22). Correlations for all possible pair combinations for each candidate itemset are 
computed. For an itemset i and a pair combination (X, Y) such that i = X U Y, the cor­
relation coefficient is calculated (line 10). If the correlation is positive and strong enough, 
a positive association rule of the type X —> Y is generated, if the supp(X U Y) is above 
the minimum support threshold and the confidence of the rule is strong. Otherwise, if we 
still have a positive and strong correlation but the support is below the minimum support, 
a negative association rule of the type ->X —>• -Y is generated if its confidence is above 
the minimum confidence threshold (lines 15-16). On the other hand, if the correlation test 
gives a strong negative correlation, association rules of the types X —> -Y and -iX —> Y 
are generated and appended to the set of association rules if their confidence is adequate. 
The result is compiled by combining all discovered positive and negative association rules. 
Lines 26 onward illustrate the automatic progressive thresholding for the correlation coef­
ficient. If no rules are generated at a given correlation level, the threshold is lowered by 0.1 
(line 27) and the process is re-iterated. 

3.2 Related Work in Negative Association Rule Mining 

In this section, we discuss two algorithms [WZZ02, THC02] that generate some form of 
positive and negative association rules. We compare our approach with them in the experi­
mental section. 

33 



Algorithm Positive and Negative Association Rules Generation 
Input TD, minsupp, minconf, and pmin, respectively Transactional Database, 
minimum support, minimum confidence, and correlation threshold. 
Output AR: Positive and Negative Association Rules. 
Method: 
(0) if pmin is undefined then pmin - 0.5 
(1) positive AR <— 0; negativeAR <— 0 /*positive and negative AR sets*/ 
(2) scan the database and find the set of frequent 1-itemsets (F\) 
(3) for (k = 2, Ffc_j ? 0, k + +){ 
(4) Ck= Ffc_! ex. Fi 
(5) foreach i e Ck { 
(6) s=support(TD,i) /*support of item i is computed*/ 
(7) if s> minsupp then 
(8) Fk <- Ffe U {i} /*item i is added to Fk*/ 
(9) foreach X,Y (i = I U Y ) { 
(10) /o=correlation(X,Y) /* correlation btw X and Y is computed*/ 
(11) if p > pmin then 
(12) if s> minsupp then 
(13) if confidence(X —> Y) > minconf then 
(14) positiveAR <— positiveAR U {X —> y } 
(15) else if confidence(->X —> -IY") > minconf and 

swppor£(-iX->Y) > minsupp then 
(16) negativeAR <— negativeAR U {-i-X" —> ^Y} 
(17) if p < - p m i n then /*/? < 0 and |p| > p m i n */ 
(18) if con fidence(X —> -iY") > minconf then 
(19) negativeAR <— negativeAR U {X —> -iY} 
(20) i(confidence(-iX —>Y)> minconf then 
(21) negativeAR <— negativeAR U {->1 —> Y} 
(22) } 
(23) } 
(24) } 
(25) AR <— positiveAR U negativeAR 
(26) ifAR = 0then{ 
(Z/) Pmin = Pmin o.I 
(28) if pmin > 0 then go to step (3) 
(29) } 
(30) return AR 

Figure 3.1: Discovering positive and negative confined association rules 
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3.2.1 Negative Association Rule Algorithms 

The first algorithm we discuss is proposed by Wu et. al [WZZ02]. They add on top of the 
support-confidence framework another measure called mininterest (the argument is that a 
rule A —> B is of interest only if supp(A U B) — supp(A)supp(B) > mininterest). The 
authors consider as itemsets of interest those itemsets that exceed minimum support and 
minimum interest thresholds. Although, [WZZ02] introduces the "mininterest" parame­
ter, the authors do not discuss how to set it and what would be the impact on the results 
when changing this parameter. The approach differs from our algorithm in that we use 
the correlation coefficient as measure of interestingness, which was thoroughly studied in 
the statistics community. In addition, the value of our parameter is well defined and it is 
not as sensitive to the dataset as the mininterest parameter. In our algorithm (line 9) we 
compute the correlation coefficient for every pair X,Y of an itemset i where i = X UY. 
As described earlier, when such a pair is found correlated an association rule is generated 
from it. In [WZZ02], they compute the interest for every pair X,Y of the itemset i where 
i = X U Y. However, they extract rules from itemset i only if any expression i = X UY 
exceeds the minimum interest threshold. In addition, in our algorithm the candidate set Ck 
is generated as a join between Fk-i and Fi. In [WZZ02] the candidate set Ck is gener­
ated as a union of two frequent itemsets in Fi for 1 < i < k — 1. This turns out to be 
expensive. Since we all make the assumption that a k-itemset must have all its subsets in 
Ffc_i we prove in the next theorem that our join generates the same itemsets as in [WZZ02]. 

Theorem All candidate items c £ Ck generated by F M Fj, 1 < i, j < k — 1 for which 
3t € c such that t G Fk-i, can be discovered by Fk-\ txi F\ . 

Proof Let us suppose 3c G Ck such that c G Fi tx Fj,l < i,j < k — 1 and 
c ^ Fk-i M F\. Given the condition stated in theorem 3t G c such that t G Fk-\. Since 
c ^ Fk-i M F\ and t G Fk~\ it follows that c — t £ F\. This is false as c — t is of length 
one and c G Ck was generated from frequent itemsets. Thus Vc G Ck, c G Ffc_i cxi F\. 
Q.E.D 

The second algorithm we discuss was proposed in [THC02]. The algorithm is named 
SRM (substitution rule mining) by the authors. We refer to it in the same way throughout 
the chapter. The authors develop an algorithm to discover negative associations of the type 
X —> -Y. These association rules can be used to discover which items are substitutes for 
others in market basket analysis. Their algorithm discovers first what they call concrete 
items, which are those itemsets that have a high chi-square value and exceed the expected 
support. Once these itemsets are discovered, they compute the correlation coefficient for 
each pair of them. From those pairs that are negatively correlated, they extract the desired 
rules (of the type X —> -Y, where Y is considered as an atomic item). Although interesting 
for the substitution items application, SRM is limited in the kind of rules that it can discover. 

Using the next example, we present some of the differences among the three algorithms. 
Example 2. Let us consider the small transactional table with 10 transactions and 6 

items shown in Table 3.3. To illustrate the challenges in mining negative association rules 
we create another transactional database where for each transaction, the complement of 
each missing item is appended to it. The new created dataset is shown in Table 3.4. This 
new database can be mined with the existing association rule mining algorithms. However, 
there are a few drawbacks of this naive approach. In practice, the data collections are 
very large, thus adding all the complemented items to the original database requires a large 

35 



TID 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Items 
A,C,D 

B,C 
C 

A,B,F 
A,C,D 

E 
B,F 

B,C,F 
A,B,E 
A,D 

TID 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Items 
A,->B,C,D,->E,-<F 

->A, B, C, - J } , ^ F , - .F 
- .4 , - . 5 , C, -.£>, - F , -.F 

A,B,-nC,->D,-<E,F 
A,-iByC,D.-iE,->F 

->A, -iB, -,C, ->D, E, ^F 
-IA, B, -.C, ->D, ->E, F 
-A, B, C, -.£>, - .F, F 
A F , -.C, -.£>, F , -iF 

A,^B,^C,D,^E,^F 

Equivalent bit vector 
(101100) 
(011000) 
(001000) 
(110001) 
(101100) 
(000010) 
(010001) 
(011001) 
(110010) 
(100100) 

Table 3.3: TD Table 3.4: TD 

Correlation 
AD 
BF 

BD 
CE 

Interest 
AD 
BF 

BD 
CE 
DF 

Concrete 
AD 
BF 

BD 

Correlation 
ACD 

ABC 
ABD 
BCD 

Interest 

ABC 

Concrete 
ACD 

ABD 

Table 3.5: 2-itemsets 
Table 3.6: 3-itemsets 

storage space. Not only the storage space has to increase considerably, but the execution 
times as well, in particular when the number of unique items in the database is very large. 
In addition, many association rules would be generated, many of them being of no interest 
to the applications at hand. 

Using a minimum support of 0.2, the following itemsets are discovered using the three 
discussed algorithms. For this example the correlation coefficient was set to 0.5, and the 
minimum interest to 0.07. In Table 3.5 and Table 3.6, the first column presents the results 
when our approach was used. The second column uses the algorithm from[WZZ02], while 
in the third one the results are obtained using the approach in [THC02]. In both tables the 
positive itemsets are separated by the negative ones by a double horizontal line. The positive 
itemsets are in the upper part of the tables. As it can be seen, for the 2-itemsets all three 
algorithms find the same positive ones. The differences occur for the negative itemsets. The 
itemset DF has a minimum interest of 0.09, but it has a correlation of only 0.42. That is 
why it is not found by our approach or by the SRM algorithm. The itemset CE is not found 
by SRM because their condition is that the itemset should have higher correlation than the 
minimum value. In our approach the condition is to be greater or equal. Since the itemset 
CE has a correlation of 0.5 it is discovered by our algorithm, but not by SRM. 

In Table 3.6 there are differences for both, the positive and the negative ones. The 
algorithm that uses the minimum interest parameter discovers only the ABC itemset because 
it is the only one that has all the pairs X,Y of the item ABC where ABC — XL)Y above the 
parameter. Although all the other itemsets discovered by the other algorithms have at least 
two strong pairs they are not considered of interest. Our approach and SRM generate the 
same positive 3-itemset. The itemsets BCD and ABC are not discovered by SRM because 
none of its subsets of two items are generated as concrete during the process. 

From the itemsets that were shown in Table 3.5 and Table 3.6 a set of association rules 
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Correlation 

Interest 

SRM 

0.3 
0.4 
0.5 
0.05 
0.07 
0.09 
all 

#rules 

285 
235 
219 
295 
219 
93 

297 

support 

0.23±0.03 
0.23±0.03 
0.22±0.02 
0.23±0.03 
0.23±0.03 
0.23±0.04 
0.22±0.03 

confidence 
0.77±0.19 
0.79±0.16 
0.80±0.15 
0.76±0.20 
0.79±0.18 
0.79±0.17 
0.76±0.20 

PS 
0.12±0.03 
0.14±0.02 
0.14±0.01 
0.12±0.03 
0.13±0.02 
0.13±0.02 
0.12±0.03 

Q 
0.84±0.26 
0.84±0.28 
0.85±0.29 
0.82±0.27 
0.85±0.27 
0.84±0.30 
0.82±0.27 

IS 
0.75±0.10 
0.78±0.08 
0.79±0.07 
0.74±0.10 
0.76±0.09 
0.77±0.08 
0.73±0.10 

J 
0.58±0.15 
0.63±0.12 
0.65±0.11 
0.57±0.15 
0.61±0.14 
0.62±0.11 
0.57±0.15 

Table 3.7: Results for rules of type X —> Y 

can be generated. Here we show, some of the rules that were generated from the itemsets 
that were discovered by one algorithm, but not by others. From itemset CE, the association 
rule -iE —> C can be found with support 0.5 and confidence of 62%. This rule seems to 
be strong, but it is missed by the SRM algorithm. From itemset DF, which is discovered 
only by the mininterest algorithm, the association rules ->£) —> F and D —> ->F can be 
discovered. However, both rules have support 0.3 and confidence of 42%. These rules 
could have been eliminated when the confidence threshold is set to 50%, thus our approach 
and SRM do not miss much by not generating them. In addition, our approach generates 
the 3-itemset BCD. From this itemset the rule B —> -iC->D is discovered and it has support 
of 0.2 and confidence of 60%. 

3.2.2 Experimental Results 

We conducted our experiments on a real dataset to study the behaviour of the compared 
algorithms. We use the Reuters-21578 text collection [Reu08] considering only the ten 
largest categories. 

We compare the three algorithms discussed in the previous sections. For each algorithm 
a set of values for their main interestingness measure was used in the experiments. Our 
algorithm and SRM [THC02] had the correlation coefficient set to 0.5, 0.4 and 0.3. In 
[WZZ02] the authors used the value 0.07 in their examples. We used this value and two 
others in its vicinity (0.05, 0.07 and 0.09). Each algorithm was run to generate a set of 
association rules. Throughout this section we will refer to our algorithm as Correlation, to 
the approach proposed in [WZZ02] as Interest and to the algorithm introduced in [THC02] 
as SRM. 

In [TKS02] a set of measures for evaluating the interestingness of a patterns are com­
pared and discussed. These measures apply to a single rule and they measure the strength 
between the antecedent and the consequent. The measures are clustered with respect to their 
similarity. We chose to compute a few measures from different clusters on the generated 
rules to ensure the diversity of evaluation: support, confidence, Piatetsky-Shapiro measure 
(PS), Yule's Q (Q), cosine measure (IS) and the Jaccard measure (J). For more details on 
these measures for frequent patterns see [TKS02]. 

Tables 3.7, 3.8, 3.9 and 3.10 show the results obtained for the Reuters dataset. We 
conducted the experiments with 20% support threshold and no constraint on the confidence 
threshold. In each table a subset of the obtained rules are compared. Table 3.7 reports the 
results for rules of the type X —> Y, Table 3.8 for rules of the type X —>• —Y, Table 3.9 for 
rules of the type ->X —> Y and Table 3.10 for rules of the type ->X —> -Y. In each table 
the average of the measurement and the standard deviation are reported. The value in bold 
represents the best value for each measure. 
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Correlation 

Interest 

SRM 

0.3 
0.4 
0.5 

0.05 
0.07 
0.09 
0.3 
0.4 
0.5 

#rules 
118 
6 
2 
10 
4 
1 

116 
6 
2 

support 
0.25±0.04 
0.33±0.10 
0.34±0.13 
0.27±0.04 
0.25±0.01 
0.25±0.0 

0.19±0.09 
0.33±0.10 
0.34±0.13 

confidence 
0.99±0.02 
0.99±0.0 
0.99±0.0 

0.95±0.05 
0.98±0.02 
0.99±0.0 

0.74±0.37 
0.99±0.0 
0.99±0.0 

PS 
0.10±0.02 
O.lliO.Ol 
O.lliO.O 

0.07±0.01 
0.08±0.01 
O.lliO.O 

0.10±0.01 
O.lliO.Ol 
O.lliO.O 

Q 
0.50±0.47 
0.99±0.0 
0.99±0.0 

0.75±0.29 
0.70±0.47 
0.99±0.0 

0.49±0.47 
0.99±0.0 
0.99±0.0 

IS 
0.67±0.04 
0.72±0.05 
0.72±0.07 
0.60±0.04 
0.62±0.03 
0.67±0.0 

0.67±0.04 
0.72±0.05 
0.72±0.07 

J 
0.46±0.06 
0.52±0.08 
0.52±0.09 
0.38±0.05 
0.39it0.03 
0.45±0.0 

0.46±0.06 
0.52±0.08 
0.52±0.09 

Table 3.8: Results for rules of type X -> -Y 

Correlation 

Interest 

0.3 
0.4 
0.5 
0.05 
0.07 
0.09 

#rules 
118 
6 
2 
10 
4 
1 

support 
0.25±0.04 
0.33±0.10 
0.34±0.13 
0.28±0.06 
0.34±0.06 
0.44±0.0 

confidence 
0.35±0.05 
0.49±0.08 
0.52±0.10 
0.40±0.08 
0.46±0.09 
0.59±0.0 

PS 
0.10±0.02 
O.lliO.Ol 
O.lliO.O 

0.07±0.01 
0,08±0.01 
O.lliO.O 

Q 
0.49±0.47 
0.99±0.0 
0.99±0.0 

0.75±0.29 
0.70±0.47 
0.99±0.0 

IS 
0.67±0.04 
0.72±0.05 
0.72±0.07 
0.61±0.06 
0.67±0.06 
0.77±0.0 

J 
0.46±0.06 
0.52±0.08 
0.52±0.09 
0.39±0.07 
0.45±0.08 
0.59±0.0 

Table 3.9: Results for rules of type -.X -> Y 

Table 3.7 shows that for positive association rules our approach tends to generate a 
more interesting set of rules compared to the other methods. SRM generates the same set 
of positive rules for all parameters, since it produces the same set of association rules as 
the algorithms that use the support-confidence framework. Based on confidence, Piatetsky-
Shapiro, cosine and Jaccard measures, our algorithm generates the most interesting set of 
rules. Based on support, both Correlation and Interest generate equally interesting rules, 
with SRM generating a slightly less interesting set of rules. Yule's Q measure indicates that 
Interest generates the most interesting rules, followed closely by Correlation with the same 
rule set interestingness, but a slightly higher standard deviation. 

For rules of type X —> -Y our approach and SRM perform best based on the interest­
ingness measures, as shown in Table 3.8. They produce the same set of rules for correlation 
values of 0.5 and 0.4, the interestingness measures having the same values for the two algo­
rithms. When the correlation threshold is lowered to 0.3 our algorithm finds better rules than 
SRM as expressed by the interestingness measures. When compared against Interest, Cor­
relation generates equally interesting set of rules based on three of the measures. However, 
the support, cosine and Jaccard measure indicate that the rules generated by Correlation are 
more interesting by a large margin than those generated by Interest. 

Table 3.9 and Table 3.10 compare our approach with Interest only, since SRM does not 
generate rules of the types -<X —>• Y and -<X —> -Y. 

In Table 3.9 the symmetric rules of the ones in Table 3.8 are generated, since the con­
fidence threshold is not applied during rule generation and the correlation and minimum 
interest are computed for the XY itemset. According to the interestingness measures, the 
best set of rules is generated for the Interest algorithm. However, the measures are calcu­
lated over one rule, which makes a conclusion more difficult. If we consider only the sets 
with more than 2 rules, the rule sets generated by Correlation are more interesting by a 
large margin according to five of the six measures. 

For the rules of type ->X —> -Y, Interest generates a smaller set of rules than Corre­
lation with higher values on five of the six interestingness measures. Based on Yule's Q 
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Correlation 

Interest 

0.3 
0.4 
0.5 
0.05 
0.07 
0.09 

#rules 
2006 
1474 
1088 
818 
148 
105 

support 

0.31 ±0.08 
0.31 ±0.09 
0.31 ±0.09 
0.31±0.10 
0.49±0.09 
O.S4±0.04 

confidence 
0.41±0.13 
0.41 ±0.13 
0.41±0.14 
0.44±0.16 
0.67±0.13 
0.74±0.08 

PS 
0.14±0.03 
0.15±0.02 
0.16±0.02 
0.14±0.04 
0.16±0.05 
0.17±0.04 

Q 
0.79±0.24 
0.84±0.20 
0.88±0.18 
0.82±0.29 
0.81±0.39 
0.87±0.31 

IS 
0.77±0.08 
0.80±0.06 
0.82±0.06 
0.80±0.10 
0.87±0.08 
0.90±0.05 

J 
0.62±0.12 
0.66±0.10 
0.69±0.09 
0.66±0.14 
0.77±0.11 
0.82±0.08 

Table 3.10: Results for rules of type -*X —> -Y 

measure, Correlation generates a slightly more interesting set of rules. 
Overall, none of the three algorithms generates sets of rules that are more interesting 

that those generated by the other methods based on all measures. SRM does not generate 
two of the four types of rules considered, limiting its applicability. Our algorithm gener­
ates more interesting sets of rules for rules of types X —» Y, X —> -Y and ->X —* Y, 
while interestingness measures suggest that Interest generated more interesting rule of type 
- X - • -Y. 

3.2.3 Summary 

In summary, we introduced a new algorithm to generate both positive and negative associa­
tion rules. Our method adds to the support-confidence framework the correlation coefficient 
to generate stronger positive and negative rules. We compared our algorithm with other ex­
isting algorithms on a real dataset. We discussed their performances on a small example 
for a better illustration of the algorithms and we presented and analyzed experimental re­
sults for a text collection. The results prove that our algorithm can discover strong patterns. 
In addition, our method generates all types of confined rules, thus allowing it to be used 
in different applications where all these types of rules could be needed or just a subset of 
them. 

3.3 Using Negative Association Rules in Associative Classifiers 

3.3.1 Associative Classification 

The set of rules that were generated as discussed in the previous section represent the actual 
classifier. This categorizer is used to predict to which classes new objects are attached. 
Given a new object, the classification process searches in this set of rules for those classes 
that are relevant to the object presented for classification. The set of positive and negative 
rules discovered as explained in the previous section are ordered by confidence and support. 
This sorted set of rules represents the associative classifier ARC-PAN (Association Rule 
Classification with Positive And Negative). This subsection discusses the approach for 
labeling new objects based on the set of association rules that forms the classifier. 

In the algorithm (Classification of a new object), a set of applicable rules is selected 
within a confidence margin. The interval of selected rules is between the confidence of 
the first rule and this confidence minus the confidence margin as checked in line 7. The 
prediction process starts at line 10. The applicable set of rules is divided according to the 
classes in line 10. In lines 11-12 the groups are ordered according to the average confidence 
per class. In line 13 the classification is made by assigning to the new object the class that 
has the highest score. 
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Algorithm Classification of a new object 
Input A new object to be classified o; 

The associative classifier (ARC-PAN); 
The confidence margin r ; 

Output Category attached to the new object 
Method: 
(1) S <— % /*set of rules that match o*l 

(2) foreach r in ARC-PAN /*the sorted set of rules*/ 
(3) if (r C o) { count++ } 
(4) if (count ==1) 
(5) fr.conf <— r.conf /*keep the first rule confidence*/ 

(6) S^-SUr 
(7) else if (r.conf > fr.conf-r) 
(8) S^-SUr 
(9) else break 
(10) divide S in subsets by category: Si,S2--Sn 

(11) foreach subset Si,S2--Sn 

(12) scare, = ^ 
(13) o <— d, with score, = •max{score\..scoren} 

The association rules of the type X —> C and -\X —> C can be treated in the same way. 
Both of them have a confidence attached and they have an association with the class label. 
These types of rules can be considered together and their confidence can be added to the 
C class total. However, the rules of the type X —> ->C have to be treated differently. We 
chose to subtract their confidences from the total confidence of their corresponding class. 

3.3.2 Experimental Results 

We tested our algorithm on some datasets from UCI ML Repository [BM98]. On each 
dataset we performed C4.5's shuffle utility [Qui93] for shuffling the datasets. The shuffle 
ensures a more accurate classification as observations become randomized. A 10-fold cross 
validation was performed on each dataset and the results are given as average of the errors 
obtained for each fold. In addition, to have a fair comparison with the other algorithms that 
we wanted to compare, we used the same discretization method for continuous attributes 
as in [LHM98]. The parameters for C4.5 were set to their default values. For all three 
association rule based methods the minimum support was set to 1% and the minimum 
confidence to 50%. In our approach the confidence margin was set at 10%. 

The experimental results are shown in Table 3.11. The average error results for CBA and 
C4.5 are taken from [LHM98]. The last three columns give the results for our classification 
method. Column rules+ presents the results when only strong positive rules are considered 
for classification. Column rules+- shows the results when positive rules and negative rules 
of the form -\X —> C are considered. Column rulesall lists the results when all rules as 
described in the previous sections are considered for categorization. 

As presented in Table 3.11 the results for classification with the classifier based on the 
positive and negative rules (ARC-PAN) are encouraging. When all types of rules are used 
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Datasets 

breast 
diabetes 

heart 
iris 
led7 
pima 

c4.5 rules 

3.9 
27.6 
18.9 
5.5 

26.5 
27.5 

CBA 
w/o prun prun 

4.2 4.2 
24.7 25.3 
18.5 18.5 
7.1 7.1 

27.8 27.8 
27.4 27.6 

ARC-PAN 
rules+ rules+- rules_all 

5.5 4.8 3.8 
23.3 25.4 25.1 
16.3 17.0 16.2 
6.6 6.6 6.0 

28.7 28.7 28.9 
27.4 27.1 26.9 

Table 3.11: Classification Results (Error rates) 

Datasets 

breast 
diabetes 

heart 
iris 
led7 
pima 

strong rules 
#rules 
17000 
4000 

200000 
140 

4000 
4000 

error 
5.0 

21.8 
24.7 
7.3 
34.3 
22.0 

correlated rules 
#rules 
1000 
40 
80 
60 

500 
50 

error 
5.5 
23.3 
16.3 
6.6 
28.7 
27.4 

Table 3.12: Comparison in number of rules 

the classification accuracy increases on three datasets when compared with the state-of-
the-art classifier C4.5 and with CBA. The first column under ARC-PAN shows that the 
classification accuracy can be improved as well with only the generation of positive associ­
ation rules that are strongly correlated. We ran classification with the negative rules only as 
well, but the results decreased in this case. The results are not presented in the table. 

Table 3.12 shows the drastic reduction in number of rules when the correlation measure 
is used to derive interesting rules. The second column in the table shows the approximate 
(averaged over 10-folds) number of rules derived in the "support-confidence" framework. 
As one can see from the table, when compared to the fourth column (where the number 
of rules discovered in the correlation framework are listed), there is a large decrease in the 
number of rules from one framework to the other. Moreover, as observed from the error 
results presented in the third and fifth columns, the error rate remains in the same range, or 
even decreases in some cases. 

A small number of classification rules is very desirable. When a small set of strong 
classification rules is presented, the classification phase is faster, which can be important 
for some applications. Another advantage is that a small set becomes human readable. It 
is realistically feasible to read, edit and augment hundreds of rules, but thousands of rules 
is impractical. Because of the transparency of the associative classifier, manually updating 
some rules is favorable and practical in many applications. 

3.3.3 Summary 

In this chapter we introduced a new algorithm to generate positive and negative associations 
discovered in transactional data. The interestingness measure that our algorithm relies on 
is the correlation coefficient. We demonstrated the potential of strong positive and negative 
correlated rules in the classification context. The results of our experiments show that a 

41 



much smaller set of positive and negative association rules can perform similar or outper­
form existing categorization systems. 
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Chapter 4 

Associative Classifiers Using 
Association Rules with Re-occuring 
Items 

Given the binary nature of association rules, associative classifiers do not take into account 
repetition of features when categorizing. In this chapter, we enhance the idea of associative 
classifiers with associations with re-occurring items and show that this mixture produces a 
good model for classification when repetition of observed features is relevant in the data 
mining application at hand. We motivate the importance of re-occurrence, we discuss the 
rule generation in this context and we present a classifier based on this type of rule. This 
work was published in [RSZA05] in a collaboration with Rafal Rak and Wojciech Stach. 

4.1 Introduction 

One considerable limitation of associative classifiers is that they do not handle observations 
with repeated features. In other words, if a data object is described with repeated features, 
only the presence of the feature is considered, but not its repetition. However, in many 
applications such as medical image categorization or other multimedia classification prob­
lems, the repetition of the feature may carry more information than the existence of the 
feature itself [ZHZOO]. Also in text mining and information retrieval, it is widely recog­
nized that the repetition of words is significant and symptomatic, hence the common use of 
TF/IDF (i.e. the frequency of a term in a document relative to the frequency of the term in 
a collection) for feature representation in text classification. 

Associative classifiers use association rule mining to build a classification model. How­
ever, association rule mining typically considers binary transactions; transactions that in­
dicate presence or absence of items. Binary transactions simply do not model repetitions. 
A few approaches to mining association rules with re-occurring items have been proposed, 
such as MaxOccur [ZHZOO], FP'-tree [ONL01] and WAR [WYY04]. Association rules 
with re-occurring items differ from quantitative association rules [SA96, AL99] as follows: 
association rules with re-occurring items are discovered from discrete attributes and the oc­
currences of the attributes are taken into account, while quantitative association rules are 
discovered from continuous attributes. Quantitative association rules discover associations 
among discrete intervals of the continuous attributes. The focus of this chapter is to devise a 
classifier that combines the idea of associative classification and association rules with reoc-
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curring items. Our contributions presented in this chapter exploit, combine, and extend the 
ideas mentioned above, especially ARC-BC [ZA02] and MaxOccur [ZHZOO] algorithms. 
We also suggest new strategies to select rules for classification from the set of discovered 
association rules. Our hypothesis is that associative classifiers with recurrent items have 
more discriminatory power since they maintain and exploit more information about both 
objects and rules. 

A delicate issue with associative classifiers is the use of a subtle parameter: support. 
Support is a difficult threshold to set, inherited from association rule mining. It indicates the 
proportion of the database transactions that support the presence of an item (or object). The 
support threshold is hard to tune in practice and its value depends on the application at hand. 
In the associative classification literature it has been commonly and arbitrarily set to 1%. 
However, the accuracy of the classifier can be very sensitive to this parameter. In the case of 
re-occurring items, there are two ways of calculating support: transaction-based support and 
object-based support [ZHZOO] (i.e. either the proportion of transactions or the proportion 
of objects that support the existence of an object in the database). Our experiments show 
that an associative classifier that considers re-occurrence of features is considerably less 
sensitive to the variation of support. This leads to more practical applications and eventually 
the possibility to automatically determine and tune this parameter. 

4.2 Problem Statement and Related Work 

Current associative classifiers use transactions in the form of < {ii,i2,...in},c>, where ik 
is an item in a transaction and c is a class label. Our task is to combine the associative clas­
sification with the problem of recurrent items. More formally, it can be stated that our goal is 
to modify the original approach using transactions to the form of < {oiii,02i2, • ••onin},c >, 
where Ok is the number of the occurrences of the item ik in the transaction. 

Association rules have been recognized as a useful tool for finding interesting hid­
den patterns in transactional databases. Several different techniques have been introduced. 
However less research has been done considering transactions with re-occurrence of items. 
In [WYY04], the authors assign weights to items in transactions and introduce the WAR 
algorithm to mine the rules. This method has two steps: in the first step frequent itemsets 
are generated without considering weights and then weighted association rules (WARs) are 
derived from each of these itemsets. MaxOccur algorithm [ZHZOO] is an efficient Apriori-
based method for discovering association rules with recurrent items. It reduces the search 
space by effective usage of joining and pruning techniques. The FP'-tree approach pre­
sented in [ONL01] extends the FP-tree design [HPYOO] with a combination from the Max­
Occur idea. For every distinct number of occurrences of a given item, a separate node is 
created. When a new transaction is inserted into the FP'-tree, it might increase support 
count for the different path(s) of the tree as well. This is based on the intersection between 
these two itemsets. Given the complete tree, the enumeration process to find frequent pat­
terns is similar to that of the FP-tree approach [HPYOO]. In spite of the existing work on 
generating association rules with re-occurring items, ACRI (the system presented in this 
chapter) is the first associative classifier using such rules. Recently, Rak at al. [RKR07] 
developed an application-specific associative classifier. The system is based on ACRI and it 
assigns MeSH keywords to articles in a multilabel classification task. Another work on gen­
erating and using association rules with re-occurring items is presented in [RKR08]. The 
authors propose a new algorithm for generation of classification rules that generates rules 
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with one or more class labels in the consequent and takes into account recurrent items. Al­
though the paper's main contribution is in the rule generation phase, the authors also show 
and discuss a classification system based on these rules. 

4.3 The Proposed Approach 

Our approach, ACRI (Associative Classifier with Reoccurring Items), consists of two mod­
ules: rule generator and classifier. We decided to base our algorithm for mining associa­
tions with reoccurring items on Apriori-based MaxOccur. The building of the classification 
model follows the ARC-BC approach detailed in Section 2.3.3. The rationale is based on 
the efficiency of this method in the case of non-evenly distributed class labels. Indeed other 
associative classification methods are biased towards dominant classes in the case when 
rare classes exist. Running MaxOccur on transactions from each known class separately 
makes the core of our rule generator module. It mines the set of rules with reoccurring 
items from the training set. These rules associate a condition set with a class label such 
that the condition set may contain items preceded by a repetition counter. The classification 
process might be considered as plain matching of the rules in the model to the features of 
an object to classify. Different classification rules may match, thus the classifier module 
applies diverse strategies to select the appropriate rules to use. In addition, simple matching 
is sometimes not possible because there is no rule that has the antecedent contained in the 
feature set extracted from the object to classify. With other associative classifiers, a default 
rule is applied, either the rule with the highest confidence in the model or simply assigning 
the label of the dominant class. Our ACRI approach has a different strategy allowing partial 
matching or closest matching by modeling antecedents of rules and new objects in a vector 
space. The following elaborates on both modules. 

4.3.1 Rule generator 

This module is designed for finding all frequent rules of the form < {o\i\,02i2, •. • ,onin},c > 
from a given set of transactions. The modules's general framework is based on ARC-BC 
[ZA02]: transactions are divided into N subsets - each for one given class (N is the num­
ber of classes); once rules are generated for each individual class, the rules are merged 
to form a classification model. The rule generator for each class Cx is an Apriori-based 
algorithm for mining frequent itemsets that extends the original method by taking into ac­
count reoccurrences of items in a single transaction a la MaxOccur [ZHZOO]. In order to 
deal with reoccurrences, the support count was redefined. Typically, the support count is 
the number of transactions that contain an item. In our approach, a single transaction may 
increase the support of a given itemset by more than one. The formal definition of this 
approach is as follows. A transaction T —< {o\ii, 0212, • • •, onin}, c > supports itemset 
I = {hH,hi2, • • •, In^n} if and only if Vi = l..n Zi < o\ A I2 < 02 A . . . A ln < on. The 
number t by which T supports I is calculated according to the formula: t = minify] \/i = 
l..n,k^0/\Oi^0. 

4.3.2 The Classifier 

This module labels new objects based on the set of mined rules obtained from the rule 
generator. An associative classifier is a rule-based classification system, which means that 
an object is labeled on the basis of a matched rule (or set of rules in case of multi-class 
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Accuracy vs. support (confidence = 90%) 
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Figure 4.1: Accuracy of rule selection strategies versus support for the Mushroom dataset. 

classification). This task is simple if there is an exact match between a rule and an object. 
The model, however, often does not include any rule that matches a given object exactly. 
In such a case, in order to make the classification, all rules are ranked according to a given 
strategy and the best one (or several) is matched to a given object. Rule ranking might be 
performed following different strategies, which associate each rule to a number that reflects 
its similarity to a given object. These strategies may be used either separately or in different 
combinations. We have tested cosine measure, coverage, dominant matching class, support 
and confidence. Let us consider the rule < {o\i\, 02I2, • • •, onin}, c > and the object to 
be classified < hh,^^, • • •, Wn >• The corresponding n-dimensional vectors can be de­
noted as 0 = [01,02,..., on] and I = [I1J2, • • •, In}- The Cosine measure (CM) assigns a 
similarity value that is equal to the angle between these two vectors, i.e. The smaller the CM 
value is, the smaller the angle, and the closer these vectors are in the n-dimensional space. 
Coverage (CV) assigns a similarity value that is equal to the ratio of the number of common 
items in the object and rule to the number of items in the rule (ignoring re-occurrences). In 
this case, the larger the CV ratio is, the more items are common for the rule and the object. 
CV=1 means that the rule is entirely contained (ignoring re-occurrences) in the object. With 
Dominant matching class, the class label is assigned to the object by choosing the one being 
the most frequent from the set of rules matching the new object. Notice that dominance can 
be counted by simply enumerating the matching rules per class or a weighted count using 
the respective confidences of the matching rules. The support and confidence are used to 
rank rules. They refer to the rule property only and do not depend on the classified object. 
Thus, they have to be used with other measures that prune the rule set. 

4.4 Experiments 

We tested ACRI on different datasets to evaluate the best rule selection strategy as well as 
compare ACRI with ARC-BC. Experiments were run on the Mushroom dataset from the 
UCI repository [BM98]. Our experimental evaluation shows that rule selection strategies 
have roughly similar performance in terms of accuracy. However, the accuracy varies with 
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Accuracy vs. number of rules (confidence = 90%) 
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Figure 4.2: Accuracy of rule selection strategies versus number of rules for the Mushroom 
dataset. 

the support threshold. The lower the support, the more rules are discovered allowing a bet­
ter result using selection based on the cosine measure for example. Using the dominant 
matching class also did well, confirming the benefit of the dominance factor introduced in 
[ZA02]. We also observed that coverage (CV) gave better results when set to 1. Thus all 
results reported herein have CV set to 1. The other measures are comparable in perfor­
mance and trend, except for best confidence. When the support threshold is high, fewer 
rules are discovered and confidence tends to provide better results while the cosine measure 
returns matches that have big angles separating them from the object to classify, hence the 
lower accuracy. Figure 4.1 shows the superiority of the rule selection strategy dominant 
matching class up to a support threshold of 25%, beyond which best confidence becomes a 
winning strategy. Figure 4.2 shows how the more rules are discovered the more effective in 
terms of accuracy the strategies dominant matching class and cosine measure becomes in 
comparison to best confidence approach. The number of rules is correlated with support. 

We compare ACRI with ARC-BC using the Reuters-21578 text collection using the top 
10 biggest topics [Reu08], We produced several different sets of rules to be used in the 
classifier. For ARC-BC we varied the support threshold range from 10 to 30% with a step 
of 5%; and 15 to 65% support range with the same step for ACRI. The difference between 
the support thresholds lies in the definition of support for mining rules with recurrent items. 
A single document can support a set of words more than once. Therefore, if we consider 
support as the ratio of support count to the total number of transactions, as it was introduced 
in [ONL01], we may encounter support more than 100% for some itemsets. On the other 
hand, if we use the definition presented in [ZHZ00], i.e., the ratio of support count to 
the number of distinct items (words), the support will never reach 100%. In practice, the 
latter support definition requires setting very small thresholds to obtain reasonable results. 
Hence, we decided to use the first definition as it is more similar to the "classical" definition 
of support. It is important to notice that no matter which definition we choose, it eventually 
leads to setting the same support count with ARC-BC. For each support threshold we set 
three different confidence thresholds: 0, 35, and 70%. The latter threshold was used in 
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Accuracy vs. support (confidence = 35%) 
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Figure 4.3: Accuracy of ACRI and ARC-BC with high support 
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Figure 4.4: Effectiveness at low support 

[ZA02] as minimum reasonable threshold for producing rules; the first one (no threshold) 
was introduced to observe the reaction of the classifier for dealing with a large number of 
rules; and the threshold of 35% is simply the middle value between the two others. For each 
single experiment we tried to keep the level of more then 98% of classified objects, which 
resulted in manipulating the coverage CV from 0.3 to 1. We discarded cases for which it was 
not possible to set CV to satisfy the minimum number of classified objects. More than 90% 
of the remaining results had CV = 1. We also performed experiments without specifying 
CV (using different methods of choosing applicable rules); however, they produced lower 
accuracy than those with CV > 0.3. 

We used different classification techniques for choosing the most applicable rule match­
ing the object. Best confidence and dominant matching class matching methods were uti­
lized for both ARC-BC and ACRI approaches. Additionally, ACRI was tested with the 
cosine measure technique. For all reported experiments the coverage (CV) is set to 1. In 
other words, for a rule to be selected for classification, all features expressed in the an-
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Ft vs. number of rules (confidence=40%) 

- ACRt best confidence »' ACRI- best cosine ACRt dormant class 

ARC-BC. best confidence —*— ARC-BC dominant class 

•1000 1500 2088 2500 

number of rules 

Figure 4.5: Effectiveness versus size of model 
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Figure 4.6: Number of rules with confidence > 0% 

tecedent of the rule have to be observed in the new object to classify. We also performed 
tests with combination of matching techniques with different tolerance factors for each test. 
An example scenario in Figure 4.3, combines cosine measure, dominant matching class and 
best confidence: (1) choose top 20% of rules with the best cosine measure, then (2) choose 
50% of the remaining rules with the highest confidence, and then (3) choose the rule based 
on the dominant class technique. We also did a battery of tests using relatively low sup­
ports. This significantly increases the number of classification rules. We varied the support 
between 0 and 0.1% and compared the harmonic average of precision and recall (Fl mea­
sure) for the same cases as before: best confidence and dominant matching class for both 
ARC-BC and ACRI approaches, and the cosine measure technique for ACRI (Figures 4.4 
and 4.5). 

Categorizing documents from the Reuters dataset was best performed when the con­
fidence level of the rules was at the 35% threshold for both the ACRI and ARC-BC ap­
proaches. For the ARC-BC classifier, the best strategy was to use dominant factor, whereas 
in case of ACRI combination of cosine measure and confidence factors worked best. Figure 
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Figure 4.7: Number of rules with confidence > 35% 

4.3 shows the relationship between support and accuracy for these approaches. Comparing 
the best-found results, ARC-BC slightly outperforms the ACRI using the dominant match­
ing class strategy at the 20% support level. However, ARC-BC seems to be more sensitive 
to changes of the support threshold. The accuracy of ACRI virtually does not depend on the 
support threshold and is stable. In the case of ARC-BC the accuracy decreases significantly 
when this support is greater than 20%. 

Figures 4.6 and 4.7 show the number of generated rules with and without recurrent 
items. Considering recurrences results in having more rules, this has its origin in the dif­
ferent support definition. The other interesting relationship is that by increasing the con­
fidence threshold from 0% to 35%, the difference between the number of rules decreases 
more rapidly for ACRI. 

Experiments using low support thresholds confirm the stability of ACRI with regard to 
support. When varying the support from 0% to 0.1% ARC-BC loses in precision and recall 
while ACRI remains relatively consistent or loses effectiveness at a slower pace. Figure 4.4 
also shows that ACRI outperforms ARC-BC at these lower support thresholds. Using the 
cosine measure for selecting rules appears to be the best strategy. The cosine measure is 
also the best rule selection strategy when considering the number of rules discovered. In 
addition, the more rules that are available the more effective the cosine measure becomes at 
selecting the right discriminant rules. 

Figure 4.8 shows the relationship between running time for the rule generator with and 
without considering recurrent items ('multiple support' refers to considering re-occurrences). 
The algorithm with recurrences is slower, since it has to search a larger space, yet the dif­
ferences become smaller when increasing the support threshold. 

The best results for ACR-BC were found in [ZA02] for confidence threshold greater 
than 70%. However, our experiments show that effectiveness is better on lower confidence 
for both ARC-BC and ACRI approaches. In other words, some classification rules with low 
confidence have more discriminant power and are selected by our rule selection strategies. 
This discrepancy with previous results may be explained by the use of the different method 
of counting support and confidence or/and by the fact that our classifier ACRI with re-
occurring items and without re-occurrence consideration to simulate ARC-BC is using a 
different setup for rule selections. 
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Figure 4.8: Algorithms CPU time efficiency 

4.5 Summary 

In this chapter we introduced the idea of combining associative classification and mining 
frequent itemsets with recurrent items. We combined these two and presented ACRI, a new 
approach to associative classification with recurrent items. We also suggest new strategies 
to select classification rules during the classification phase. In particular, using the cosine 
measure to estimate the similarity between the objects to classify and the available rules 
is found very effective for associative classifiers that consider re-occurrence. When com­
paring ACRI approach with ARC-BC we found that considering repetitions of observed 
features is beneficial. In particular in the case of text categorization, repetition of words has 
discriminant power and taking these repetitions into consideration can generate good classi­
fication rules. Our experiments also show that ACRI becomes more effective as the number 
of rules increases in particular with the cosine measure for rule selection. Moreover, the 
accuracy of ACRI seems to be less sensitive to the support threshold, while most associa­
tive classifiers are typically very sensitive to the support threshold which is very difficult to 
determine effectively in practice. 
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Chapter 5 

Two Stage Architecture 

The classification stage in associative classifiers is a very important step in the entire system. 
This is the step where the system uses the discovered classification rules to make new 
predictions. Several approaches have been considered with different systems. However, 
there are several limitations to these approaches. A detailed discussion of these schemes 
and their limitations will be presented in this chapter. Given the limitations of the existing 
scoring schemes, the focus of this chapter is to investigate this problem and develop a 
better scheme for rule usage. This chapter introduces our two stage architecture for the 
classification stage which represents the solution that we propose to address this problem. 

5.1 Introduction 

One deficiency of current associative classifiers is the selection and use of rules in the 
classification stage. Current systems assign classes to new objects based on the best rule 
applied or on some predefined scoring of multiple rules. In this chapter we propose a 
new technique where the system automatically learns how to select and use the rules. We 
achieve this by developing a two-stage classification model. First, we use association rule 
mining to discover classification rules. Second, we employ another learning algorithm to 
model the use of these rules in the prediction process. Our two-stage approach outperforms 
C4.5, RIPPER and the other associative classifiers (ARC, CBA, CMAR, CPAR) on the 
UCI datasets. The versatility of our method is also demonstrated by applying it to text 
classification, where it equals the performance of the best known systems for this task, 
SVMs. 

To classify a given object, an associative classifier proceeds in three steps. First, it deter­
mines which of its rules apply to the object. Then it selects a subset of the applicable rules 
(possibly all of them) based on some measure of their "strength" or precedence. Finally, if 
it chooses more than one rule, it combines the class predictions of all the selected rules to 
produce a final classification. 

For example, CBA [LHM98] classifies an object using only the highest ranking rule 
that applies to the object, where rank is defined by the rule's confidence on the training set. 
This method has two shortcomings. The first is that by basing its classification on only the 
highest ranking rule, CBA might be ignoring a large number of high ranking, applicable 
rules that might agree with each other and disagree with the highest ranking rule. Second, 
because each rule predicts just a single class, CBA is incapable of assigning a given object 
to multiple classes simultaneously, which is essential in some applications. 
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CMAR [LHP01] and ARC [AZ02] overcome CBA's shortcomings by selecting the 
K highest ranking applicable rules, not just the first. The key issue in this case is how to 
combine the class predictions of the selected rules to produce a final classification? While 
both systems use a weighted voting scheme, they differ in the details of how weights are cal­
culated. CMAR uses a chi-square weighting scheme, while ARC weighs classes based on 
the average confidence of the selected rules that predict that class. These systems trade part 
of their comprehensibility inherited from the association rules for improved performance. 
This trade-off is the result of using a weighting score on the rules. 

In this chapter we also use a weighted voting scheme to combine the class predictions 
of the selected rules to produce a final classification, but instead of pre-defining the way in 
which weights are computed, we use a second learning algorithm to determine the weights. 
Therefore, in our system learning takes place in two stages. First, an associative classifier 
is learned using standard methods. Second, predefined features computed on the outputs 
of the rules in the learned associative classifier are used as the inputs to another learning 
system, which is trained (using a separate training set) to weigh the features appropriately 
to produce highly accurate classifications. 

This two-stage system, with a layer of feature definitions interposed between the output 
of the first learned system and the input of the second, is the focus of this chapter. Further 
on, we investigate two types of features that can be used between the first and second 
learning stage. We evaluate the proposed approach through an extensive experimental study, 
followed by a statistical analysis of the results. 

The performance of our two-stage system is evaluated experimentally on two distinct 
classification tasks, single label classification and multiple label classification. In single 
label classification, the task is to assign an object to exactly one of the classes. This is 
the standard classification task studied in machine learning, and a variety of test datasets 
and systems are available for comparison. We use twenty of the UCI datasets[BM98], 
and compare our approach to seven existing systems. Our two-stage approach outperforms 
C4.5, RIPPER and the other associative classifiers (ARC, CBA, CMAR, CPAR) on the UCI 
datasets. We prove that the performance increase is due to the automatically learned scoring 
scheme. 

In multiple label classification, an object can be assigned to several of the classes si­
multaneously. The standard testbed for this task is classifying news articles into subject 
categories, where it is necessary for some news articles to be assigned to multiple cate­
gories. For example, an article about selling a sports franchise should be put into at least 
two categories, "sports" and "business". The best known algorithms for this text classifi­
cation task are SVMs [Joa98]. Our experiments using the Reuters dataset establishes our 
two-stage system as the first classification method to equal the performance of SVMs on 
this task. 

5.2 A Two-Stage Approach to Classification 

Most of the classification techniques work as follows: given a set of examples with cate­
gories attached, a learning model is developed from a subset of the data (training set); the 
model created is then tested and validated on the remaining data (testing set). 

Once developed, the purpose of a classification system is to classify new instances. In 
the case of associative classifiers, this step deals with using the rules to categorize a new 
object. To demonstrate the importance of the classification stage we show an example of 
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Rl: D => Class 1 - confidence 95% 
R2: B A E => Class 2 - confidence 90% 
R3: A A D => Class 1 - confidence 90% 
R4: B A C =» Class 3 - confidence 90% 
R5: A => Class 1 - confidence 85% 
R6: A A B => Class 2 - confidence 85% 
R7: B => Class 2 - confidence 80% 
R8: C =>• Class 2 - confidence 80% 
R9: A A C => Class 3 - confidence 70% 

Table 5.1: Example of a rule-based model 

R5: A =» Class 1 - confidence 85% 
R6: A A B =» Class 2 - confidence 85% 
R7: B => Class 2 - confidence 80% 
R8: C => Class 2 - confidence 80% 
R4: B A C => Class 3 - confidence 90% 
R9: A A C => Class 3 - confidence 70% 

Table 5.2: Rules that apply to an object with features A, B, and C. 

a rule-based model and the classification result when different classification strategies are 
used. 

Example 1. Table 5.1 shows a hypothetical rule-based model that was generated from a 
training set using an association rule learning method. Each rule may have several measures 
attached, such as confidence in our example. Suppose we are given an object O to classify 
that has features A, B, and C. The subset of rules that apply to object O is shown in Table 
5.2. 

Associative classifiers use different strategies to classify a new instance based on the 
subset of rules that apply to it. In our example let us consider three different approaches for 
classifying object O: 

• Approach 1: classification based on highest ranking rule. If we classify by the highest 
confidence ranked rule that applies we have to predict Class 3 for object O, based on 
rule R4 with 90% confidence; 

• Approach 2: classification based on average confidence. If we predict the class whose 
applicable rules have the highest average confidence, object O will be classified as 
Class 1 (Average of 85% for Class 1; 81.6% for Class 2 and 80% for Class 3); 

• Approach 3: classification based on number of applicable rules. If the new object 
is put into the class that has the largest number of applicable rules, object O will be 
classified as Class 2. 

The preceding classification schemes are just simple examples to illustrate that there 
is not a unique way to combine the individual conclusions of a set of rules to create a 
final classification. The actual schemes used by existing systems are as follows. CBA 
[LHM98] classifies a new object with the class of the highest confidence-based ranked rule. 

54 



( trainSta 

I Set 

trainStage2 

^ SM J 
— > • 

^n , 
J 

Figure 

ARC 
Model 

Association 

Rule Mining 

ARC 

Model 

Figure 5.1: First stage of learning 

Figure 5.2: Second stage of learning 

In [LHP01], the authors use a weighted chi-square over the rules that apply and chooses the 
class with the highest score. In [AZ02], we base our prediction on a set of rules by using 
the average of the confidences. We also experimented with other measures such as cosine 
measure, laccard coefficient, etc. [RSZA05]. Some have also considered the size of the 
rule [CL04]. 

Bagging [Bre96] and boosting [Sch99] are two ensemble methods that achieve a better 
classification performance by combining the conclusion of multiple classifiers. These clas­
sifiers are generated by using the same learning method on different distributions of data. 
Bagging uses different replicas of the training set, while boosting uses the same training 
examples for all the classifiers but attaches different weights to them. The generated classi­
fiers are combined by voting to obtain a final decision. In bagging, all classifiers have equal 
weight in the voting process. Boosting weighs each classifier's vote by its accuracy on the 
training set. 

All these methods can be thought of as weighted voting schemes, where the weights 
for each rule, or class, are defined by specific scoring schemes. In this chapter we propose 
to automatically learn the scoring scheme for weighted voting after first learning the set of 
rules. Thus we propose a two stage learning process. The first stage is standard association 
rule mining. In this stage an association rule classification model (i.e., a set of classification 
rules) is generated. When applied to a given object, the first model produces as output a 
set of rules that apply to the object (possibly a subset selected from among all the rules 
that apply), along with each rule's conclusion and associated measures such as the rule's 
confidence. The second learning stage consists of a learning system whose input is a set of 
features derived from the first stage output. 

Our method that learns to use the generated rules and selects the appropriate ones works 
as follows: 

1. split the training set into two subsets: trainStagel and trainStage2; given that we 
have two learning stages in our technique we need to have enough examples for both 
stages; we split the initial training set into two disjoints subsets; this ensures the 
ability of our second stage to improve the performance of the overall model without 
overfitting by learning on the same set as the first stage; 

2. generate classification rules from trainStagel using an association rule mining algo­
rithm; we denote with ARC Model the discovered set of rules; Figure 5.1 shows this 
step of the algorithm; 
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Figure 5.3: Evaluation and classification 

3. for each instance in trainStage2, use ARC Model to generate a new set of features; 

4. apply a new learner in this new feature space to learn how to use the rules in the 
prediction process; denote the model generated by the second learning algorithm as 
2nd Stage Model; Figure 5.2 shows this step of the algorithm; 

5. classify the objects in the testing set using ARC Model and 2nd Stage Model com­
bined (this system is called 2SARC) (see Figure 5.3); when a new object has to be 
classified the ARC Model generates the features for the 2nd Stage Model, which in 
turn makes the classification decision. 

As one may see from Example 1, to score and make a decision for a new object is a 
difficult task. The second learning method in our technique learns a scoring scheme. The 
advantage of using this second step is twofold: it takes into account more information than 
using just one or few rales for prediction; treating the scoring scheme as a learning problem 
we create an automated process to learn the scheme from data (different scoring schemes 
are automatically generated for different applications and different datasets). 

Given a classification problem that has C classes to be learned, we use association rule 
mining in the first stage of our system to discover classification rules. Let us consider that 
our discovered ARC model consists of a set R with N rules, ordered by their confidence and 
support (ordering is important when only a subset of rules is considered for classification). 
Each rule Ri,i = 1..N has an associated support CTJ and a confidence C;. When a new 
instance O is to be classified, a subset Ro (Ro C R) of K rules (K < N) applies Ro = 
U Ri, i = 1..K. A rule is applicable to the new instance if the antecedent of the rule matches 
the new object and its confidence is within the confidence margin [AZ02]. Naturally, a 
scoring scheme has to be used in order to make the classification decision. This scoring 
scheme has to be a function that represents the strength of the decision and it has to take 
into account all rules. The rules are characterized by support, confidence and their class. 
The scoring scheme has to produce a score for all the classes to be considered. 

We have developed and tested two approaches for devising automatically learned scor­
ing schemes. They differ in the type of features generated for the second stage. In our first 
approach, we use the rules directly, the feature space consisting of rules' characteristics. 
Each rule in our model applies or not to a new object and indicates its contribution with a 
certain confidence. Thus we learn a classification model from these characteristics. Given 
that the number of classification rules can be quite large for some applications (especially 
at low support thresholds), the rule-based feature space can become large. The large di­
mensionality of the feature space is a challenge for many learners. Thus, we introduce our 
second approach where instead of rule characteristics we use class-based aggregate mea­
sures as features. This approach reduces considerably the feature space since the number 
of features is a multiple of the number of classes in the application which is very small in 
general. The two approaches that we propose are as follows. 
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Rl 
95 0 

R2 
90 0 

R3 
90 0 

R4 
90 1 

R5 
85 1 

R6 
85 1 

R7 
80 1 

R8 
80 1 

R9 
70 1 

Table 5.3: Sample rule features characterizing object O when 2SARC-RF is used 

Class 1 
avg conf 

85 
# rules 

1 

Class 2 
avg conf 

81.6 
#rules 

3 

Class 3 
avg conf 

80 
#rules 

2 

Table 5.4: Sample class features characterizing object O when 2SARC-CF is used 

2SARC-RF: Two Stage Classification with Rule-based Features. In this approach the 
feature space is represented by the rules. Given our rule-based ARC model, we input into 
the second learning method the characteristics of each rule Ri in R with respect to the new 
object O. For each object O, a rule either applies or not. We introduce this information 
along with the rule's confidence into the model for the second stage. 

For the rule model in Table 5.1 and an object O with features {A, B, C}, the set of 
rule-based features that is generated is presented in Table 5.3. For each rule, the first value 
represents the rule's confidence and the second shows if the rule applied (value 1) or not 
(value 0) to object O. In its second stage our system learns how to use the rules given this 
set of features and the class for each object in trainStage2. 

Although the architecture of 2SARC-RF may seem similar to stacking [Wol92] they 
differ as follows. In stacking level one is represented by one or more classification methods. 
Their classification results represent the input space for the second level classifier. In our 
approaches, the first level is a rule-based method that discovers classification rules. The 
input to the next level are features generated using the model built in the first level. The 
feature layer is what mostly distinguishes our technique from the stacking approach. 

2S ARC-CF: Two Stage Classification with Class-based Features. From the set of rules 
Ro that apply to a new object O, M measures m,j, j — 1..M can be computed over Ro 
for each class Ci,i = 1..C: {mi(ci), ...,mM(ci),?ni(c2), ...mjvf(cc)}- For instance, these 
measures could be the average confidence, the number of applicable rules and the maximum 
confidence. All these aggregations are done by class. At this stage each class would have 
several measures associated with it. All these measures are the input to the second learning 
method. 

Considering Example 1, the features collected for object 0{A, B, C} are average con­
fidence and number of rules per class as shown in Table 5.4. For each class a set of features 
is generated (e.g., Classl: average confidence is 85%, # rules supporting this class is 1). 
In its second stage our system learns how to use the rules given this set of features and the 
class for each object in trainStage2 set. 

The next section presents the evaluation of our proposed system with the two types of 
feature spaces used in our second stage. 
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5.3 Experiments 

We evaluated our proposed system against other associative classifiers and rule-based clas­
sification methods on 20 UCI datasets [BM98]. In addition, we studied the performance of 
our system in the text classification context. This type of application is more challenging 
given that the feature space is very large and it requires multi-label classification (i.e., one 
or more class labels are attached to each object to be classified). UCI datasets are single-
label classification problems. The next section describes the setup of our system followed 
by the experimental results. 

5.3.1 Experimental Setup 

The goal of 2SARC is to improve the classification stage for associative classifiers. Thus 
the output model of our first stage is a rule-based model generated with an association 
rule mining algorithm. Any association rule mining algorithm would produce the same 
classification rules given the same support and confidence thresholds. To automatically 
learn the scoring scheme we use another learner in the second stage. To determine the 
best architecture for our proposed system we experimented with three different learning 
algorithms in the second stage. Background on these classification systems are given in 
Section 2.5. The reasons behind our choices and the setup for our experiments are discussed 
below. 

Neural Network (NN): Since we have to learn a numerical scoring scheme in the second 
stage of our system, the use of a neural network is a natural choice. Our neural network is a 
standard 3-layer feedforward network whose inputs are the set of features derived from the 
first stage output. The number of outputs equals the number of classes in the application, 
each output neuron corresponding to a class. The number of neurons in the hidden layer 
was the average number between the input and output neurons. A logistic function is used 
to compute the weights inside the network. The output of the function ranges from 0 to 1. 
When a single class has to be predicted for an object the output neuron (i.e., class) with 
the highest value is chosen as the winner. If multiple classes have to be predicted every 
class above a threshold is considered a winner. A drawback of neural networks is that they 
cannot handle well large numbers of inputs. For most applications association-based models 
generate a large number of rules, thus creating a very large feature space for 2SARC-RF. 
The 2SARC-RF technique used 10, 25, 50 or 100 rules per class. In our evaluation we use 
backpropagation learning for the neural network [Bor08b]. 

k Nearest Neighbour (kNN): Our second choice for the second stage learner is K Nearest 
Neighbour. Compared to Neural Networks, it is a fast learner and it can handle very well 
large feature spaces. We have the following measures to compute the inter-object distances: 
Manhattan distance, weighted Manhattan distance, Euclidean distance, weighted Euclidean 
distance, cosine measure and weighted cosine measure. To decide the class of a new object 
we use k nearest neighbours with k varying between 1 and 20. The 2SARC-RF technique 
used 2000 rules per class. 

Naive Bayes (NB): We chose to experiment with Naive Bayes in the second stage of our 
system since it is a widely used learner which shows good performance for many applica­
tions. In our evaluation we used Borgelt's implementation [Bor08b]. 
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dataset 
anneal 

australian 
breast-w 

cleve 
crx 

diabetes 
german 

glass 
heart 

hepatitis 
horse 
iris 

labor 
led7 
pima 

tic-tac-toe 
vehicle 

waveform 
wine 
zoo 

2SARC-CF 

kNN 
97.31 
87.67 
97.27 
85.10 
87.24 
76.53 
74.40 
71.19 
84.68 
86.45 
84.68 
95.86 
92.19 
72.73 
75.77 
99.59 
68.22 
79.23 
96.75 
93.11 

NB 
96.72 
86.80 
96.62 
84.44 
86.45 
75.65 
72.24 
71.28 
83.57 
83.81 
84.56 
95.33 
89.40 
73.37 
74.78 
97.56 
61.90 
78.39 
95.30 
88.76 

NN 
97.41 
87.35 
97.14 
84.58 
87.29 
76.53 
74.54 
70.81 
84.12 
86.81 
84.50 
95.62 
93.57 
72.57 
75.44 
99.57 
67.74 
79.64 
96.74 
91.73 

2SARC-RF 

kNN 
97.71 
87.27 
97.43 
85.04 
86.60 
75.94 
73.36 
69.03 
83.54 
87.30 
84.18 
95.99 
88.67 
73.94 
75.22 
100.00 
66.86 
82.58 
97.07 
97.87 

NB 
96.87 
86.43 
97.40 
83.30 
86.19 
75.24 
73.72 
69.25 
82.24 
85.33 
82.23 
95.33 
87.93 
73.76 
74.04 
98.55 
61.81 
76.50 
94.83 
94.34 

NN 
90.91 
80.74 
95.02 
80.09 
80.54 
75.55 
72.46 
68.64 
80.02 
84.47 
81.22 
95.60 
90.02 
73.64 
74.64 
100.00 
56.04 
78.28 
95.80 
95.93 

Table 5.5: Accuracy on 20 UCI datasets for 2SARC-RF and 2SARC-CF with dif­
ferent learners in the second stage; results in bold represent the best accuracy for a 
dataset/classifier pair 

5.3.2 Single Label Classification - UCI Datasets 

We evaluated our system against other associative classifiers (CBA [LHM98], CMAR [LHP01]) 
on 20 UCI datasets [BM98]. In addition we compared our method with two rule-based clas­
sification methods (C4.5 rules [Qui93] and RIPPER [Coh95]), a boosting algorithm [Sch99] 
and a hybrid between rule-based methods and associative classifiers (CPAR) [YH03]. 

On each UCI dataset we performed C4.5's shuffle utility [Qui93] for shuffling the 
datasets. A 10-fold cross validation was performed on each dataset and the reported results 
are averages of the accuracies over the 10 folds. In addition, we used the same discretization 
method for continuous attributes as in [LHM98] to have a fair comparison with the other 
algorithms. 

All classification methods should be evaluated on the same randomly generated folds to 
ensure a fair comparison of the methods. As the code for CPAR has the cross validation in­
corporated and it does not allow one to specify the folds we could not guarantee that CPAR 
was evaluated on the same folds as the other algorithms. CMAR code is not available. Thus 
the results presented in our table are the best results for CPAR [YH03] and CMAR [LHP01] 
as reported by their authors. All the other results were obtained in our study. For CBA we 
used the code provided by their authors, while for the other algorithms (C4.5, RIPPER, 
boosted RIPPER) we used their Weka [WF05] implementations (Weka version 3.4.8). The 
parameters for all the algorithms were set to their default values. Weka's default settings 
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dataset 

anneal 
australian 
breast-w 

cleve 
crx 

diabetes 
german 

glass 
heart 

hepatitis 
horse 
iris 

labor 
led7 
pima 

tic-tac-toe 
vehicle 

waveform 
wine 
zoo 

average 

2SARC-CF 

97.31 
87.67 
97.27 
85.10 
87.24 
76.53 
74.40 
71.19 
84.68 
86.45 
84.68 
95.86 
92.19 
72.73 
75.77 
99.59 
68.22 
79.23 
96.75 
93.11 

85.30 

2SARC-RF 

97.71 
87.27 
97.43 
85.04 
86.60 
75.94 
73.36 
69.03 
83.54 
87.30 
84.18 
95.99 
88.67 
73.94 
75.22 
100.00 
66.86 
82.58 
97.07 
97.87 

85.28 

C4.5 

89.87 
86.96 
94.71 
80.52 
85.36 
74.21 
71.60 
71.47 
80.74 
79.25 
85.04 
94.00 
81.00 
74.19 
73.70 
85.60 
67.04 
75.08 
92.12 
92.18 

81.73 

RIPPER 

94.66 
85.80 
95.28 
80.19 
85.80 
74.34 
71.60 
69.70 
81.85 
76.04 
84.23 
94.00 
86.33 
69.31 
73.19 
97.71 
64.31 
75.04 
92.12 
89.09 

82.03 

BooR 

99.33 
85.80 
95.85 
83.51 
84.78 
73.95 
71.90 
69.70 
83.33 
80.08 
82.89 
94.67 
91.33 
69.31 
73.84 
98.33 
68.67 
78.92 
96.67 
96.09 

83.95 

ARC 

97.11 
86.23 
96.42 
82.16 
85.36 
74.22 
73.20 
71.13 
80.74 
81.13 
84.23 
95.33 
80.67 
71.91 
74.87 
98.65 
65.02 
78.28 
88.79 
95.09 

83.03 

CBA 

97.91 
85.38 
96.28 
82.83 
85.38 
74.45 
73.50 
73.90 
81.87 
81.82 
82.36 
94.67 
86.33 
72.06 
72.90 
99.59 
68.92 
79.68 
94.96 
96.78 

84.08 

CMAR 

97.30 
86.10 
96.40 
82.20 
84.90 
75.80 
74.90 
70.10 
82.20 
80.50 
82.60 
94.00 
89.70 
72.50 
75.10 
99.20 
68.80 
83.20 
95.00 
97.10 

84.38 

CPAR 

98.40 
86.20 
96.00 
81.50 
85.70 
75.10 
73.40 
74.40 
82.60 
79.40 
84.20 
94.70 
84.70 
73.60 
73.80 
98.60 
69.50 
80.90 
95.50 
95.10 

84.17 

Table 5.6: Accuracy on 20 UCI datasets for several classification methods; results in bold 
represent the best accuracy on a dataset 

follow the best parameter setup as proposed by their respective authors [Coh95, Qui93]. 
It is well-known that the support threshold plays a fundamental role in association rule 

discovery. Since associative classifiers are based on association rule mining they inherit the 
sensitivity to the support threshold. It is hard to know apriori the best support threshold 
and its value is usually set experimentally. In our evaluation, we ran our algorithms with 
support values of 1%, 5% and 10% for each dataset and we reported the best result. The 
minimum confidence was set to 50%. In our experiments we used a split ratio of 50/50 or 
75/25 between trainStagel and trainStage2 sets. To eliminate any bias caused by the split 
we ran our methods over 5 splits and averaged the results. To reduce the dimension of the 
feature space to a manageable size for the neural network, we experimented with using only 
10, 20 or 30 best rules per class (for instance, if only the two best rules per class are used in 
Example 1 we have: Rl, R3 for Class 1; R2 and R5 for Class 2; R8 and R9 for Class 3) to 
generate the feature space for the second stage. 

The results for 2SARC-CF and 2SARC-RF with 3 different learners in the second stage 
are shown in Table 5.5. The results show that both 2SARC-CF and 2SARC-RF perform 
best when kNN is used in the second stage (12 wins and 17 wins respectively). This is the 
reason why we chose this combination when we compare our system with other classifiers. 

Table 5.6 presents the accuracy of the following methods: C4.5, RIPPER, boosted 
RIPPER (booR), CBA, CMAR, CPAR, ARC and the results for the proposed techniques 
(2SARC-CF and 2SARC-RF). The standard deviation is not reported as our statistical anal­
ysis (presented next) uses non-parametric tests. 

2SARC-CF obtains best overall performance for 7 datasets, followed by 2SARC-RF (6 
datasets), CMAR, C4.5 and CPAR (2 datasets each) and boosting (1 datasets). Ripper, CBA 
and ARC are the algorithms that do not have any overall win. 

On some datasets the differences in accuracy between the winner and the second best 
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2SARC-CF vs. ARC* 
2SARC-CF vs. 2SARC-RF 
2SARC-CF vs. c4.5* 
2SARC-CF vs. Ripper* 
2SARC-CF vs. BoostingR* 
2SARC-CF vs. CBA* 
2SARC-CF vs. CMAR* 
2SARC-CF vs. CPAR 

wins 

19 
11 
17 
20 
17 
14 
16 
14 

losses 

1 
9 
3 
0 
0 
5 
4 
6 

ties 

0 
0 
0 
0 
0 
1 
0 
0 

Table 5.7: Method 2SARC-CF compared to the rest of the algorithms on UCI datasets; (*) 
indicates statistically significant difference 

2SARC-RF vs. ARC* 
2SARC-RF vs. 2SARC-CF 
2SARC-RF vs. c4.5* 
2SARC-RF vs. Ripper* 
2SARC-RF vs. BoostingR* 
2SARC-RF vs. CBA* 
2SARC-RF vs. CMAR* 
2SARC-RF vs. CPAR* 

wins 

18 
9 
16 
18 
16 
16 
15 
15 

losses 

2 
11 
4 
2 
4 
4 
5 
5 

ties 

0 
0 
0 
0 
0 
0 
0 
0 

Table 5.8: Method 2SARC-RF compared to the rest of the algorithms on UCI datasets; (*) 
indicates statistical significant difference 

are quite small (e.g., german), while for other the improvement in the performance is large 
(e.g., hepatitis, heart, cleve). 

2SARC-CF has the best overall performance, as it can be see from Table 5.6. Table 
5.3.2 shows the count of wins, losses and ties for 2SARC-CF when compared to the rest of 
the methods, while the performance of 2SARC-RF in terms of wins, losses, ties is shown 
in Table 5.3.2. Table 5.3.2 shows that 2SARC-RF significantly outperforms all the other 
classification methods except 2S ARC-CF. If we consider the win to loss ratio, the algorithm 
second in performance to 2SARC-CF is 2SARC-RF, followed by CPAR. 

Statistical Analysis 

The results presented in Table 5.6 give some insight into the performance of the algorithms. 
However, those results do not provide enough support for drawing a strong conclusion in 
favour or against any of the studied methods. There is no overall dominance over the entire 
range of datasets. 

To better understand the results of our techniques when compared to the other classifica­
tion approaches we performed a statistical analysis of our results. In our experimental study 
we collected classification results for 9 classification methods on 20 datasets. In this type 
of experimental design a careful consideration has to be given to choosing the appropriate 
statistical tools. When a large number of comparisons is made (i.e., 180 in our design) the 
likelihood of finding significance by accident increases. The significance level has to be 
controlled so that it accounts for the multiple comparisons. This issue is known in statistics 
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dataset 

anneal 
australian 
breast-w 

cleve 
crx 

diabetes 
german 

glass 
heart 

hepatitis 
horse 
iris 

labor 
led7 
pima 

tic-tac-toe 
vehicle 

waveform 
wine 
zoo 

average rank 

2SARC-CF 

5 
1 
2 
1 
1 
1 
2 
4 
1 
2 
2 
2 
1 
4 
1 

2.5 
5 
5 
2 
7 

2.575 

2SARC-RF 

4 
2 
1 
2 
2 
2 
5 
9 
2 
1 
6 
1 
4 
2 
2 
1 
7 
2 
1 
1 

2.85 

C4.5 

9 
3 
9 
8 

6.5 
8 

8.5 
3 

8.5 
8 
1 
8 
8 
1 
7 
9 
6 
8 

7.5 
8 

6.75 

Ripper 

8 
7.5 
8 
9 
3 
6 

8.5 
7.5 
7 
9 

3.5 
8 

5.5 
8.5 
8 
8 
9 
9 

7.5 
9 

7.475 

BooR 

1 
7.5 
7 
3 
9 
9 
7 

7.5 
3 
6 
7 

5.5 
2 

8.5 
5 
7 
4 
6 
3 
4 

5.6 

ARC 

7 
4 
3 
6 

6.5 
7 
6 
5 

8.5 
4 

3.5 
3 
9 
7 
4 
5 
8 
7 
9 
6 

5.925 

CBA 

3 
9 
5 
4 
5 
5 
3 
2 
6 
3 
9 

5.5 
5.5 
6 
9 

2.5 
2 
4 
6 
3 

4.875 

CMAR 

6 
6 
4 
5 
8 
3 
1 
6 
5 
5 
8 
8 
3 
5 
3 
4 
3 
1 
5 
2 

4.55 

CPAR 

2 
5 
6 
7 
4 
4 
4 
1 
4 
7 
5 
4 
7 
3 
6 
6 
1 
3 
4 
5 

4.4 

Table 5.9: Ranking of the systems based on their accuracies 

as controlling the family-wise error [Dem06]. 
Demsar discusses in [Dem06] the issue of multiple hypothesis testing and recommends 

the use of several statistical procedures for this problem. Following Demsar's recommen­
dation, we first tested if there is any significant difference among the studied classification 
methods. Demsar recommends the use of Friedman test to compare several classifiers on 
multiple datasets. 

Let us assume that we have k algorithms to compare on N datasets. The Friedman test 
can be applied as follows: 

• find r\ - the rank of the algorithm j on the ith dataset; (the computed ranks for UCI 
results are shown in Table 5.9, when ties occur the average rank is considered) 

• compute the average rank R of algorithm j : 

**=4l>* (5.1) 

• the null hypothesis states that all algorithms have the same average rank; 

• compute the Friedman statistic: 

2 _ 12N v 2 fc(fc+l)2 

XF-WTY)^^ 4— } (5'2) 

• if XF exceeds the critical value (available in statistics tables) we can reject the null 
hypothesis otherwise we accept it; 
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• if the null hypothesis has been rejected a post-hoc test must be applied to determine 
the nature of the difference. 

By applying Friedman test [Dem06] we concluded that there is a significant difference 
among the methods. Since the null hypothesis is rejected we have to proceed with fur­
ther analysis to better understand the behaviour of the classification algorithms. We are 
interested in the performance of our proposed technique. Thus, we perform a series of 
Wilcoxon signed ranked tests between our best method (2SARC-CF) and the other classi­
fication methods. The Friedman and Wilcoxon tests are non-parametric tests, they do not 
make any assumptions about the distributions of the values. 

For single-label classification results the Friedman test finds significant difference among 
the studied classification methods. The only strong conclusion that we can draw when 
paired Wilcoxon signed ranked tests are performed is that 2SARC-CF performs signifi­
cantly better than all other classifiers except 2SARC-RF and CPAR. This is how the statis­
tical evaluation was performed for the results presented in Tables and 

Further analysis 

In this chapter we have proposed a new scoring scheme for associative classifiers. We 
have argued that the new system performs better than existing associative classifiers due to 
the automatically learned scoring scheme. To further support this claim we performed an­
other experiment where we try to tie the performance increase to the automatically learned 
scoring scheme, isolating it from other changes introduced by our new system. For that, 
we compare the performance of 2SARC-CF and 2SARC-RF against ARC (described in 
Section 2.3.3). There are two main differences between 2SARC and ARC. First, they use 
different scoring schemes, which is exactly what we are interested in comparing. Second, 
the classification rules are generated from different subsets of the training dataset. When 
running 2SARC and ARC over the entire training set, ARC discovers rules from the entire 
set {trainStagel + trainStage2 sets), while 2SARC uses rules generated from trainStagel 
only. We are interested in understanding if 2SARC's performance improvement over ARC 
is due to the automatically learned scoring scheme or it is caused by the different training 
sets used for generating rules in 2SARC and ARC. To eliminate the difference in gener­
ated rules between 2SARC and ARC, we measured the performance of ARC using rules 
generated from trainStagel only. The experiment confirms that 2SARC's increase in perfor­
mance comes from learning the scoring scheme. Over all UCI datasets 2SARC performed 
better than ARC when ARC generated rules from either trainStagel or the entire training 
set. On several datasets the difference in performance was significantly large, which shows 
that learning the scoring function from the data is beneficial to the classification process. 

Our system has two stages and uses for training two subsets {trainStagel and train-
Stage!) of the original training set. Considering that we split randomly the original training 
set we need to understand how the split affects the interestingness of a rule. Our assump­
tion is that the changes in the rule measures are small between different splits. To test this 
hypothesis, we performed the following experiment: we generated 100 random splits of 
the original training set into trainStagel and trainStagel sets with a fixed split ratio; we 
selected at random a rule generated by mining the original training set and we recorded 
its support and confidence when generated from trainStagel set of each of the 100 splits. 
A summary of the results is presented in Table 5.10. The results are presented as average 
confidence and standard deviation over 100 runs. Smaller datasets show bigger changes 
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dataset size 

small(<200 transactions) 

medium(200-1000 transactions) 

large(>1000 transactions) 

dataset 

labor 
hepatitis 

cleve 
pima 
led7 

waveform 

avg conf 

86.1 
90.6 
93.8 
94.5 
65.1 
69.4 

std 

±1.52 
±2.95 
±0.85 
±0.85 
±1.26 
±0.59 

Table 5.10: Average confidence and standard deviation recorded over 100 split runs 

in the rule confidence as indicated by the the standard deviation. This effect was expected 
since it is more difficult to preserve the initial distribution of data during the split with less 
examples in the original training set. In the case of larger datasets, the variation in the rule 
confidence is small, confirming that the the random split has little effect on the confidence 
of the generated rules. This result indicates that the randomness of the split has little effect 
on the quality of the generated rules. 

5.3.3 Discussion 

Rule-based classification systems classify a new instance based on a set of rules that apply 
to the new object. In previous works, the scoring schemes under which the system takes a 
classification decision are predefined. In this work we proposed a two-stage classification 
method. Our system (2SARC) learns automatically the scoring scheme in the second stage. 
In addition, we investigate two techniques. 2SARC-CF learns the scoring scheme from 
class features while 2SARC-RF learns it from rule features. 

2SARC-CF performs best on most UCI datasets or it ranks very close to the best as Ta­
ble 5.6 shows. There are only 2 datasets where the performance is much lower than the best 
(waveform and zoo), zoo is a very small datasets with 101 examples. Small datasets may 
hinder the performance of our system given that it needs enough examples to train the mod­
els for the two stages. Waveform is a dataset where all the initial attributes are numerical. 
Association rules are more suitable for nominal attributes, thus for this particular dataset the 
mining has to rely on the discretization process. The influence of the discretization process 
on the performance of association-rule based systems needs further study. 

Our method has two stages, each stage employing a classification algorithm. It may 
appear at first that the training time is higher than for each algorithm applied alone or for 
other algorithms. This is not necessarily the case, as each stage uses only a partition of the 
data (according to the split ratio). In addition the k-nearest neighbour which we choose as 
the second learner has virtually no training time. 

5.3.4 Multi Label Classification - Text Categorization 

Associative classifiers are more suitable for categorical data rather than numerical given 
that these systems are based on association rules techniques. Association rules have been 
developed to discover associations/relationships among items/objects in categorical data. 
Therefore, text classification is a good application to study the performance of our method. 

Most of the research in text categorization comes from the machine learning and in­
formation retrieval communities. Rocchio's algorithm [Hul94] is the classical method in 
information retrieval, being used in routing and filtering documents. Researchers tackled 
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category 

acq 
corn 
crude 
earn 
grain 

interest 
moneyfx 

ship 
trade 
wheat 

weighted avg 
macro avg 

2SARC-CF 
NN 

93.7 
88.4 
83.0 
95.4 
91.1 
72.8 
78.7 
83.1 
84.9 
88.7 

90.61 
85.98 

kNN 

84.3 
85.1 
87.6 
93.3 
90.4 
77.0 
72.0 
75.6 
84.9 
88.2 

87.09 
83.84 

2SARC-RF 
NN 

81.5 
83.3 
83.5 
87.2 
87.9 
73.9 
73.8 
77.3 
86.7 
85.3 

82.34 
82.04 

kNN 

93.8 
75.6 
88.6 
96.7 
91.9 
82.0 
83.3 
81.0 
89.7 
85.3 

92.08 
86.79 

Table 5.11: Accuracy on Reuters dataset for 2SARC-CF and 2SARC-RF with kNN and NN 
in the second stage 

category 

acq 
corn 
crude 
earn 
grain 

interest 
money-fx 

ship 
trade 
wheat 

weighted-avg 
macro-avg 

#rec 

719 
56 
189 

1087 
149 
131 
179 
89 
118 
71 

Bayes 

91.5 
47.3 
81.0 
95.9 
72.5 
58.0 
62.9 
78.7 
50.0 
60.6 

84.25 
65.21 

Rocchio 

92.1 
62.2 
81.5 
96.1 
79.5 
72.5 
67.6 
83.1 
77.4 
79.4 

87.94 
79.14 

C4.5 

85.3 
87.7 
75.5 
96.1 
89.1 
49.1 
69.4 
80.9 
59.2 
85.5 

85.14 
77.78 

k-NN 

92.0 
77.9 
85.7 
97.3 
82.2 
74.0 
78.2 
79.2 
77.4 
76.6 

89.68 
82.05 

SVM 

95.2 
85.2 
88.7 
98.4 
91.8 
75.4 
75.4 
86.6 
77.3 
85.7 

92.15 
86.01 

ARC 

89.9 
82.3 
77.0 
89.2 
72.1 
70.1 
72.4 
73.2 
69.7 
86.5 

84.12 
78.24 

2SARC-CF 

93.7 
88.4 
83.0 
95.4 
91.1 
72.8 
78.7 
83.1 
84.9 
88.7 

90.61 
85.98 

2SARC-RF 

93.8 
75.6 
88.6 
96.7 
91.9 
82.0 
83.3 
81.0 
89.7 
85.3 

92.08 
86.79 

Table 5.12: Precision/Recall-breakeven point on ten most populated Reuters categories for 
most known classifiers and our new methods 

the text categorization problem in many ways. Classifiers based on probabilistic models 
have been proposed starting with the first presented in literature by Maron [Mar61] and 
continuing with Nai've-Bayes [Lew98] that proved to perform well. C4.5 is a well-known 
package whose core is making use of decision trees to build automatic classifiers [Qui93]. 
K-nearest neighbor (k-NN) is another technique used successfully in text categorization 
[Yan99]. In the last decade neural networks and support vector machines (SVM) were used 
in text categorization and they proved to be powerful tools [Joa98]. 

We used the Reuters-21578 text collection [Reu08] as benchmark. There are several 
splits of the Reuters collection; we chose to use the ModApte version. This split leads to 
a corpus of 12,202 documents consisting of 9,603 training documents and 3,299 testing 
documents, and is the most used split in the literature. We tested our classifiers on the ten 
categories with the largest number of documents assigned to them in the training set. On 
these documents we performed stop word elimination but no stemming. 
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Several measurements have been used in previous studies for text classification evalua­
tion. In our evaluation we use the breakeven point (BEP) and Fl measure discussed in detail 
in Section 2.6.2. When dealing with multiple classes there are two possible ways of aver­
aging these measures, namely, macro-average and micro-average. In the macro-averaging, 
one contingency table per class is used, the performance measures are computed on each 
of them and then averaged. In micro-averaging only one contingency table is used for all 
classes, a total of all the classes is computed for each cell and the performance measures 
are obtained therein. The macro-average weights equally all the classes, regardless of how 
many documents belong to a class. The micro-average weights equally all the documents, 
thus favoring the performance on common classes. 

In our experiments, we ran our algorithms with support values of 10%, 15% and 20% 
and we reported the best result. The minimum confidence was set to 50% and the confi­
dence margin was set at 10%. Our proposed technique used a split ratio of 80/20 between 
trainStage 1 and trainStage2 sets. Details on the neural network and k-nearest neighbour 
setup are given in Section 5.3.1. 

In the first experiment, we evaluated the performance of our approaches with neural 
network and k-nearest neighbour classifiers in the second stage. The results are presented 
in Table 5.11 with the best performance for each algorithm presented in bold. In the case 
of 2SARC-CF the use of neural network in the second stage is most beneficial, while for 
2SARC-RF k-nearest neighbour is the best choice. Thus for the rest of our evaluation we 
use these combinations. 

Table 5.12 shows the performance for several well-known text categorizers and our 
algorithms. The evaluation is done using precision/recall break-even point. Results are 
presented by category for the ten most populous categories in Reuters collection. Except 
for our algorithms, the results are presented as reported in [Joa98, TWL02]. Given that 
the micro-average value for the other algorithms was computed on a different set of classes 
we used a weighted average scheme to approximate the micro-average. The formula for 
weighted average is: 

WA = ^=1
N (5.3) 

where N stands for the number of classes, test, represents the number of test examples in 
class i and BEPi is the breakeven point for class i. 

Both SVM and 2SARC-RF perform best for 4 out of 10 classes in the Reuters col­
lection. 2SARC-CF wins in 2 classes, while the other algorithms don't have any overall 
wins. SVM ranks first based on weighted-average and 2SARC-RF ranks first based on the 
macro-average. 

Table 5.13 shows the count of wins, losses and ties over the 10 classes in Reuters for 
2SARC-CF when compared to the other algorithms. 2SARC-CF loses on six categories to 
SVM and on seven categories to 2S ARC-RF. When compared to the rest of the algorithms 
2SARC-CF outperforms each one of them, winning in at least 7 out of the 10 classes. 

Table 5.14 shows the count of wins, losses and ties over the 10 classes for 2SARC-RF 
when compared to the other algorithms. 2SARC-RF loses on six categories to SVM. When 
compared to the rest of the algorithms 2SARC-RF outperforms each one of them, winning 
in at least 7 out of the 10 classes. 
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2SARC-CF vs. Bayes* 
2SARC-CF vs. Rocchio* 
2SARC-CF vs. C4.5* 
2SARC-CF vs. kNN 
2SARC-CF vs. SVM 
2SARC-CF vs. ARC* 
2SARC-CF vs. 2SARC-RF 

wins 

9 
8 
9 
7 
4 
10 
3 

losses 

1 
1 
1 
3 
6 
0 
7 

ties 

0 
1 
0 
0 
0 
0 
0 

Table 5.13: Method 2SARC-CF compared to the rest of the algorithms on Reuters collec­
tion; (*) indicates statistical significant difference 

2SARC-RF vs. Bayes* 
2SARC-RF vs. Rocchio* 
2SARC-CF vs. C4.5* 
2SARC-RF vs. kNN* 
2SARC-RF vs. SVM 
2SARC-RF vs. ARC* 
2SARC-RF vs. 2SARC-CF 

wins 

10 
9 
8 
8 
4 
8 
7 

losses 

0 
1 
2 
2 
6 
2 
3 

ties 

0 
0 
0 
0 
0 
0 
0 

Table 5.14: Method 2SARC-RF compared to the rest of the algorithms on Reuters collec­
tion; (*) indicates statistical significant difference 

Statistical Analysis 

We performed the same statistical analysis as discussed in Section 5.3.2 to the text classifi­
cation results. Friedman's test indicates that the methods evaluated are not equal. When 
the Wilcoxon tests are applied to the results of text classification for pairwise compar­
isons between 2SARC and the rest of the algorithms, we can conclude the following: both 
2SARC-CF and 2SARC-RF are significantly better than Bayes, Rocchio, C4.5, ARC at a 
significance level of 0.05. In addition 2SARC-RF is significantly better than kNN. When 
compared with SVM, the test can not reject the null hypothesis, thus it can be stated that 
2SARC-RF and SVM perform statistically similar on the Reuters dataset. 

5.4 Summary 

Rule-based classifiers use predefined weighted voting schemes to combine the class predic­
tions of the applicable rules. By contrast, the methods described in this chapter automat­
ically learn the scoring scheme. We achieve this by developing a two-stage system, with 
a layer of feature definitions interposed between the output of the first learning model and 
the input of the second. Our two stage classification system (2SARC) shows a good perfor­
mance both for UCI datasets and text classification, under rigorous statistical analysis. 
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Chapter 6 

Associative Classifiers Using 
Association Rules from Closed and 
Maximal Itemsets 

An attractive characteristic that associative classifiers possess is their readability. However, 
the number of classification rules discovered is quite large. In addition, these rules contain 
redundant information since classification rules are obtained from mined frequent itemsets 
and the latter are known to be repetitive. In this chapter we investigate the performance of 
associative classifiers when the classification rules are generated from frequent, closed and 
maximal itemsets. Closed and maximal itemsets are concise representations of frequent 
itemsets. We show that maximal itemsets substantially reduce the number of classification 
rules without jeopardizing the accuracy of the classifier. Our extensive analysis demon­
strates that the performance remains stable and even improves in some cases. Our analysis 
using cost curves also provides recommendations on when it is appropriate to remove re­
dundancy in frequent itemsets. 

6.1 Introduction 

Typically, associative classifiers generate classification rules from frequent patterns (i.e., 
all patterns that are seen frequently in the training data). Closed [PBTL99] and maximal 
[Bay98] patterns are compressed representations of all the frequent patterns. They have 
been proposed to substantially reduce the number of frequent patterns. This reduction is 
achieved by eliminating redundancy present in the frequent patterns set. Closed patterns are 
a lossless form of compression, as the frequent patterns and their respective supports can be 
reproduced from this representation. On the other hand, maximal patterns represent a lossy 
compression since the support measures of the frequent patterns have to be recomputed. 

Several research studies [PCT+03] demonstrate the usefulness of closed and maximal 
itemsets in different applications. In the case of classification, the use of these patterns has 
not been thoroughly explored. Closed and maximal frequent patterns reduce the number 
of association rules, but it is not clear that they reduce the number of classification rules 
as well. We hypothesize that they do and probably even improve the performance of the 
classification when these types of classification rules are used. 

In this chapter we investigate the performance of associative classifiers when the clas­
sification rules are generated from closed and maximal itemsets. Through our analysis we 
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Figure 6.1: Frequent, closed and maximal itemsets 

answer the following critical questions: 

• How substantial is the reduction in the number of classification rules? It is known 
that closed and maximal representations reduce the number of patterns, but how does 
this translate to classification rules? 

• What is the effect of rules extracted from closed and maximal itemsets on the classifi­
cation performance? Are closed and maximal itemsets a good substitute for frequent 
itemsets in associative classifiers? 

In the framework proposed in this chapter, we integrate several associative classifiers 
with classification rules generated from frequent, closed and maximal patterns. Our hy­
pothesis is that the use of closed and maximal is advantageous to associative classifiers. 
The benefit is twofold: first, the set of classification rules generated from closed and maxi­
mal itemsets is smaller; second, the performance level of the classifier stays the same or it 
improves. We test our hypothesis with an extensive experimental study and we show that 
this hypothesis holds over a large range of applications. 

6.2 Prerequisites 

Formally, frequent pattern mining is defined as follows. Let I — {i\, ii, ...im} be a set of 
items. Let V be a set of transactions, where each transaction T is a set of items such that 
T C I . A transaction T is said to contain X, a set of items in J , if X C T. We define in 
the following the types of patterns that we study in this chapter. 

Definition 1. Frequent itemset: An itemset / C I is said to be frequent if its support 
s (i.e., the percentage of transaction in T> that contain / ) is greater than or equal to a given 
minimum support threshold (denoted as minsupp throughout the chapter). 

Definition 2. Frequent closed itemset: A frequent itemset c C / is said to be frequent 
closed if and only if there is no frequent itemset d such that c C c' and the support of c 
equals the support of c'. 

Definition 3. Maximal frequent itemset: A frequent itemset m C l i s said to be 
maximal frequent if there is no other frequent itemset that is a superset of in. 

Note that the set of maximal frequent patterns is included in the set of frequent closed 
patterns which is in turn included in the set of frequent patterns (Figure 6.1). Figure 6.2 
presents a token example to illustrate the concepts with a transactional dataset of 5 transac­
tions. The pattern lattice represents all possible itemsets. The pattern mining is done with an 
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Figure 6.2: Frequent, closed and maximal patterns in the itemset lattice 

absolute support threshold of 2. The number next to each itemset in Figure 6.1 represents its 
support. The border, shown as a dotted line, separates frequent patterns from non-frequent 
patterns (the frequent patterns are above the border). The set of frequent closed itemsets is: 
C={D, AC, DE, ABC, ACD} and the set of maximal frequent itemsets is: M={DE, ABC, 
ACD}. D is a frequent closed itemset because none of its supersets has the same support, 
although they are frequent. CD is neither frequent closed nor maximal frequent because its 
superset ACD is frequent and it has the same support. In the following we simply refer to 
these three types of itemsets as frequent, closed and maximal itemsets. 

Associative classifiers have the advantage over other rule-based classification systems 
that they guarantee to find all interesting rules (in the support-confidence framework). How­
ever, this property also guarantees that the number of classification rules will be quite large. 
In this chapter, we focus our efforts on lowering the number of rules by mining closed and 
maximal itemsets. In addition to reducing the size of the system (i.e., the number of classi­
fication rules), redundant information is also eliminated. The next section gives a detailed 
description of our framework. 

6.3 Integrating Associative Classifiers with Closed and Maximal 
Patterns 

Our hypothesis is that the use of closed and maximal patterns is beneficial to associative 
classifier. The benefit is twofold: first, the set of classification rules generated from closed 
and maximal itemsets is smaller; second, the performance level of the classifier stays the 
same or it improves. In our framework we integrate several associative classifiers with 
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classification rules generated from frequent, closed and maximal patterns to investigate our 
hypothesis. 

The classification stage is what most distinguishes one associative classifier from an­
other. That is why we integrate in our framework several classification schemes. We in­
vestigate these systems when classification rules are generated from frequent, closed and 
maximal itemsets. The goal of our study is to find out the effect that closed and maximal 
patterns produce when integrated with associative classifiers. 

The modules of our framework are as follows: 

• Discover frequent, closed and maximal itemsets. Let F be the set of all frequent 
itemsets, F={(J f such that f C I , and supp(f) > minsupp}. Let C be the set of all 
closed itemsets, C={U c such that c C I, it is closed and supp(c) > minsupp}. Let 
M be the set of all maximal itemsets, M={|J m such that m C I, it is maximal and 
supp(c) > minsupp}. 

• Generate classification rules from the mined itemsets. From one set of patterns (F, C 
or M) find all rules such that the consequent of the rule is a class label. Let R be the 
set of all classification rules, R={U r such that r is of the form X —> Y, where Y is a 
class label and conf(r) > minconf}. Let us consider that Rf, Rc and Rm are the rule 
sets generated from frequent, closed and maximal itemsets. Order classification rules 
in Rf, Rc and i?m by confidence and support. 

• Classify a new object using the set of classification rules (Rf, Rc or Rm). The 
classification decision is made according to a scoring scheme. The scoring schemes 
that we investigate are as follows: 

1. Classify a new object according to the highest ranked rule that applies. This 
scheme is used in CBA [LHM98]. We denote this method as FR (first rule) 

2. Classify a new object based on average of the confidences. Let us assume that 
k rules apply to a new object. Let S be the set of k rules. Divide S in subsets 
by class label: Si,S2---Sn. For each subset Si sum the confidences of rules and 
divide by the number of rules in Si, this is the score that is associated to class 
i. The object is classified in the class with the highest score [AZ02]. We denote 
this method as AvR (average the confidences of the rules that apply). 

3. Classify a new object using a two stage classification approach (see Chapter 5). 

- for each instance in the training set, use Rf, Rc or Rm to collect a set of 
features (class-features or rule-features as defined in Chapter 5); 

- apply a learning method in this new feature space to learn how to use the 
rules in the prediction process; denote the model generated by the second 
learning algorithm as 2SARC; 

- classify the objects in the testing set using Rf, Rc or i?m and 2SARC com­
bined; 

We denote these systems as follows: 2SARC-CF is the system that uses class 
features in the two stage classification approach; 2SARC-RF is the system that 
uses rule features in the two stage classification approach. 
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dataset 

anneal 
australian 
breast-w 
cleve 
crx 
diabetes 
german 
glass 
heart 
hepatitis 
horse 
iris 
labor 
led7 
pima 
tic-tac-toe 
vehicle 
waveform 
wine 
zoo 

Average 

supp=l% 
Frequent 
(# rules) 

10500.10 
19457.20 
3153.80 
7898.80 
24353.30 
635.60 

31688.40 
958.60 
2242.10 

25074.90 
31909.10 

92.50 
4790.90 
258.10 
577.20 

6362.80 
48465.50 
34886.30 
17860.30 
25084.20 

14812.49 

Closed 
(% saved) 

27.92 
15.30 
9.14 
11.11 
16.84 
13.09 
14.71 
44.12 
7.33 
14.96 
20.66 
57.19 
34.25 
0.46 
13.60 
5.04 
16.26 
0.01 
20.77 
17.67 

18.02 

Maximal 
(% saved) 

29.61 
23.83 
41.66 
26.80 
22.31 
51.64 
24.38 
48.26 
32.74 
18.51 
27.52 
87.03 
37.36 
38.09 
53.59 
37.07 
17.71 
27.67 
23.81 
17.67 

34.36 

Table 6.1: Number of classification rules generated from frequent itemsets at 1% support 
and the percentage of rules dropped when closed and maximal itemsets are used 

6.4 Experimental Study 

To test our hypothesis and to study our framework we performed an extensive experimental 
study in which we evaluated all four classification systems in our framework on several 
datasets. The details of the datasets and the evaluation techniques used are described in the 
following sections. 

6.4.1 Datasets and Experimental Setup 

We evaluated our framework on 20 UCI datasets [BM98]. In addition, we studied the per­
formance of associative classifiers in the classification of several challenging microarray 
datasets. In our evaluation we used the following experimental setup. We used an apriori-
like algorithm to mine frequent, closed and maximal itemsets [Bor08a]. We generated 
classification rules from these patterns and we integrated them with the associative classi­
fiers discussed in Section 6.3. A k-nearest neighbour algorithm is used in the second stage 
of the 2SARC system. In Chapter 5 we evaluated 2SARC using neural networks, Naive 
Bayes and k-nearest neighbour algorithms as second stage learners and we concluded that 
the k-nearest neighbour algorithm is the best choice. 

For UCI datasets we set the support threshold to 1%, 5% and 10%. The confidence 

72 



dataset 

anneal 
australian 
breast-w 
cleve 
crx 
diabetes 
german 
glass 
heart 
hepatitis 
horse 
iris 
labor 
led7 
pima 
tic-tac-toe 
vehicle 
waveform 
wine 
zoo 

Average 

supp=5 % 
Frequent 
(# rules) 

2783.20 
4765.20 
894.90 

2730.90 
6180.80 
233.90 
5328.60 
321.00 
1074.20 

10493.30 
2706.50 

65.50 
684.90 
237.60 
232.70 
411.10 

9854.00 
610.20 

5586.50 
10963.30 

3307.92 

Closed 
(% saved) 

33.28 
13.76 
2.56 
5.31 
19.07 
9.79 
8.54 

48.69 
3.84 
17.91 
19.38 
54.81 
49.06 
0.00 
10.10 
0.02 
20.51 
0.00 
27.39 
22.38 

18.32 

Maximal 
(% saved) 

38.88 
34.49 
49.46 
38.18 
31.89 
66.61 
37.01 
58.60 
47.77 
26.19 
52.32 
88.55 
65.02 
39.69 
67.98 
35.13 
25.24 
37.30 
34.16 
22.38 

44.84 

Table 6.2: Number of classification rules generated from frequent itemsets at 5% support 
and the percentage of rules dropped when closed and maximal itemsets are used 

threshold was set to 50%. On each UCI dataset we performed C4.5's shuffle utility [Qui93] 
for shuffling the datasets. A 10-fold cross validation was performed on each dataset and the 
reported results are averages over the 10 folds. In addition, we used the same discretization 
method for continuous attributes as in [LHM98]. The support threshold was harder to set 
for the microarray datasets. Across the set of datasets the support threshold ranged from 
10% for Prostate Cancer dataset to 75% for Lung Cancer dataset. The confidence threshold 
was set to 50%. For each dataset we report the best result obtained under this parameter 
setting. We evaluated the performance of the classifiers based on accuracy and cost curves 
[DH06]. 

6.4.2 Results 

This section presents the results that we obtained in our study. Our hypothesis has two com­
ponents: first, we anticipate that the number of classification rules is significantly reduced 
when rules are obtained from closed and maximal itemsets; second, we expect to keep the 
same level or improve the performance of associative classifiers when the classification 
rules generated from closed and maximal patterns are used. The findings of our empirical 
studies clearly support our first hypothesis for the case of maximal frequent itemsets and in 
most cases of closed frequent itemsets. Indeed, in some cases the closed itemsets generated 
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dataset 

anneal 
australian 
breast-w 
cleve 
crx 
diabetes 
german 
glass 
heart 
hepatitis 
horse 
iris 
labor 
led7 
pima 
tic-tac-toe 
vehicle 
waveform 
wine 
zoo 

Average 

supp=10% 
Frequent 
(# rules) 

1259.10 
1942.90 
484.80 
1161.30 
2597.10 
94.90 

1746.00 
199.20 
547.10 

5208.40 
482.90 
50.20 
137.30 

NA 
94.90 
104.40 
1781.70 
47.80 

2490.30 
5817.60 

1381.47 

Closed 
(% saved) 

33.40 
13.10 
1.98 
3.01 

22.53 
6.74 
5.54 
50.10 
2.07 
16.69 
11.14 
53.19 
42.32 
NA 
7.80 
0.00 
23.72 
0.00 
32.29 
25.50 

17.56 

Maximal 
(% saved) 

43.47 
42.92 
51.20 
48.28 
40.04 
67.44 
47.15 
62.00 
52.90 
29.81 
63.88 
91.04 
72.10 
NA 

68.81 
21.26 
36.53 
21.97 
40.06 
25.50 

46.32 

Table 6.3: Number of classification rules generated from frequent itemsets at 10% support 
and the percentage of rules dropped when closed and maximal itemsets are used 

almost the same rules as those obtained from frequent patterns, but when maximal itemsets 
were used the number of classification rules always decreased. However, for our second hy­
pothesis, the findings were not conclusive and further analysis (statistical and visual) with 
cost curves was necessary. In the remainder we will highlight these findings using different 
datasets and show how the rales were effectively reduced without putting the classification 
accuracy in jeopardy. 

UCI Datasets 

Tables 6.1, 6.2 and 6.3 show the number of classification rules generated from frequent 
itemsets for 1%, 5% and 10% supports. Next to the number of rules, the percentage of 
rules reduced when they are obtained from closed and maximal is given. It can be observed 
from these tables that our first hypothesis is correct. The number of classification rules is 
substantially reduced when closed and maximal patterns are employed. In addition, it can 
be observed that the use of maximal patterns is the most beneficial. 

When closed patterns mined at support 1% are used, the set of classification rules is 
reduced up to 57.19% (iris dataset). Under the same support condition, the set of classifi­
cation rules generated from maximal patterns is up to 87.03% (iris dataset) smaller than the 
rules obtained from frequent patterns. Similar trends are observed for supports of 5% and 
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dataset 

anneal 
australian 
breast-w 
cleve 
crx 
diabetes 
german 
glass 
heart 
hepatitis 
horse 
iris 
labor 
led7 
pima 
tic-tac-toe 
vehicle 
waveform 
wine 
zoo 

Average 

Frequent 

93.74 
85.53 
95.41 
84.52 
85.37 
74.32 
71.1 

72.02 
82.24 
80.56 
84.25 
94.67 
86.34 
71.81 
74.2 

97.92 
59.72 
81.86 
91.03 
86.18 

82.64 

Closed 

93.74 
85.53 
95.4 
84.52 
85.37 
74.32 
71.1 

72.95 
82.24 
80.56 
83.98 
94.67 
86.34 
71.81 
74.2 

97.92 
59.72 
81.86 
91.59 
86.18 

82.7 

Maximal 

93.96 
85.53 
95.99 
83.85 
85.37 
75.5 
71.1 

72.95 
82.24 
80.56 
85.05 
89.33 
91.66 
71.81 
75.25 
98.02 
59.6 
82.0 

89.37 
86.18 

82.77 

Table 6.4: Accuracy with FR scoring scheme 

10%. For three of the datasets (led7, tic-tac-toe and waveform) the set of classification rules 
generated from closed patterns is less than 0.5% smaller than the set obtained from frequent 
patterns. However, the use of maximal patterns for these datasets is still advantageous as 
it reduces the set of rules between 21.26% (tic-tac-toe dataset) and 39.69% (led7 dataset). 
Note that for led7 dataset no classification rules are generated at 10% support. Although the 
reduction in number of rules is sometimes small for closed patterns, the maximal patterns 
produce a substantial reduction in most cases. For instance, when heart dataset is mined 
at support 10% closed patterns reduce the number of rules by only 2.07%, while the use of 
maximal itemsets lowers the number of rules by 52.9%. The averages provided in Tables 
6.1, 6.2 and 6.3, shows that closed patterns reduce the number of rules by around 18% for 
all support thresholds, while the use of maximal patterns lowers the number of rules be­
tween 34.36% and 46.32% for the range of supports. Thus our hypothesis that the number 
of classification rules is substantially reduced by the use of closed and maximal patterns 
holds. 

The second component of our hypothesis is about the level of performance of the clas­
sification systems. The results for the four associative classifiers investigated in our study 
are shown in Tables 6.4 to 6.7: Table 6.4 presents the accuracies of the FR method; Ta­
ble 6.5 shows the accuracies of the AvR method; Table 6.6 presents the accuracies of the 
2SARC-CF method; and Table 6.7 presents the accuracies of the 2SARC-RF method. 

The results for FR method are presented in Table 6.4. When first rule scoring scheme 
FR is employed, the variation in the performance of the systems using closed and maxi­
mal patterns compared to the system built with frequent patterns is as follows: for closed 
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dataset 

anneal 
australian 
breast-w 
cleve 
crx 
diabetes 
german 
glass 
heart 
hepatitis 
horse 
iris 
labor 
led7 
pima 
tic-tac-toe 
vehicle 
waveform 
wine 
zoo 

Average 

Frequent 

94.86 
87.27 
96.56 
83.54 
86.38 
75.75 

72 
70.62 
81.87 
84.59 
84.22 
94.66 

88 
71.53 
75.64 
93.85 
58.17 
78.64 
96.09 
92.09 

83.32 

Closed 

94.97 
87.26 

96 
83.15 
86.55 
75.49 

72 
71.08 
81.87 
84.49 
84.49 
95.33 

88 
71.53 
75.5 

93.85 
58.18 
78.64 
93.8 

91.09 

83.16 

Maximal 

94.64 
87.12 
96.42 
83.86 
86.53 
75.76 

72 
71.54 
82.98 
84.59 
84.25 
89.33 

90 
71.58 
75.51 
93.75 
58.18 
77.86 
92.69 
91.09 

82.98 

Table 6.5: Accuracy with AvR scoring scheme 

patterns it ranges from -0.27% to 0.93%; for maximal itemsets it ranges from -5.36% to 
5.32%. It can be observed that the biggest variation in accuracy occurs for iris for which 
the accuracy went down due to the fact the number of rules discovered was very small to 
start with, and labor for which the accuracy went up substantially. When iris and labor 
datasets are discarded, the range is much smaller (-1.66% to 1.18%). On average, both 
closed and maximal patterns improve by a small margin the classification performance. 

The accuracy results for average rules scoring scheme AvR is shown in Table 6.5. The 
difference in performance for closed patterns when compared to frequent patterns ranges 
from -2.29% to 0.66%; for maximal itemsets it ranges from -5.33% to 1.11%. On average, 
both closed and maximal patterns slightly decrease the classification performance. 

The performance of 2SARC-CF system is presented in Table 6.6. The use of closed 
patterns decreases the performance by up to 1% and increases it by up to 1.66%; the varia­
tion in performance for maximal itemsets ranges from -3.34% to 3.33%. Note that, again, 
for maximal itemsets the range is much smaller (-1% to 0.58%) when the difference is com­
puted without iris and labor datasets. On average, the performance increases slightly when 
closed patterns are used and decreases slightly when classification rules are generated from 
maximal patterns. 

When 2SARC-RF scoring scheme (results shown in Table 6.7) is considered the varia­
tion in the performance of the system for closed patterns ranges from -1.33% to 1.8%; for 
maximal itemsets it ranges from -3.99% to 3.67%. Note that for maximal itemsets the range 
is much smaller (-1.24% to 0.48%) when iris and labor datasets are discarded. On average, 
both closed and maximal patterns decrease insignificantly the classification performance. 
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dataset 

anneal 
australian 
breast-w 
cleve 
crx 
diabetes 
german 
glass 
heart 
hepatitis 
horse 
iris 
labor 
led7 
pima 
tic-tac-toe 
vehicle 
waveform 
wine 
zoo 

Average 

Frequent 

98.45 
87.27 
97.28 
84.84 
86.97 
77.05 
74.9 
70.99 
85.2 
87.08 
84.78 
95.34 
93.33 
73.85 
75.51 
99.69 
66.91 
79.7 

96.64 
95.09 

85.54 

Closed 

98.01 
87.41 
97.29 
84.5 

86.84 
77.18 
74.7 
70.68 
84.83 
86.42 
84.53 
95.33 
94.99 
73.85 
75.11 
100 

68.21 
79.8 

97.73 
94.09 

85.58 

Maximal 

98.01 
87.85 
97.28 
84.18 
86.83 
76.14 

74 
71.13 
84.46 
86.41 
84.25 

92 
96.66 
73.87 
74.86 
98.85 
67.38 
79.06 
96.06 
94.09 

85.17 

Table 6.6: Accuracy for 2SARC-CF scoring scheme 

These very small increases or decreases in accuracy do not seem to be significant, but 
a verification is required to support our hypothesis. We performed a series of Wilcoxon 
signed ranked tests between the classifier built from frequent patterns and the model built 
from maximal patterns. In addition, we tested the classifier built from frequent patterns 
versus the model built from closed patterns. There was indeed no statistically significant 
difference in the performance. The Wilcoxon test is a non-parametric test [Dem06], it 
does not make any assumptions about the distributions of the values. Based on average 
performance we can conclude that using maximal patterns is advantageous because the 
reduction in the number of rules is significant, while the improvement or the drop in the 
performance level is not statistically significant. 

Table 6.8 shows on how many datasets the use of maximal patterns performs better 
(wins), as well as (ties) or worse (losses) than when frequent patterns are used. 

The use of maximal patterns is more beneficial to FR and AvR systems. This is due to 
their naive scoring schemes and thus reducing the redundancy in the rule set is beneficial. 
2SARC-CF and 2SARC-RF use scoring schemes that are learned automatically from data 
and thus making the system less sensitive to the redundancy in the set of rules. 

This empirical study shows that there is no significant effect on the accuracy of clas­
sifiers with different rule selection schemes when closed or maximal frequent patterns are 
used instead of all frequent itemsets. The gain, however, is in the reduction of classification 
rules. It remains to see whether this observation is still true with more challenging datasets 
such as microarray data which contain a relatively small set of samples. 
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dataset 

anneal 
australian 
breast-w 
cleve 
crx 
diabetes 
german 
glass 
heart 
hepatitis 
horse 
iris 
labor 
led7 
pima 
tic-tac-toe 
vehicle 
waveform 
wine 
zoo 

Average 

Frequent 

99.01 
88.28 
97.43 
84.19 
86.97 
75.49 
73.6 
71.97 
85.94 
85.84 
83.98 
95.99 
92.99 
74.28 
74.86 
100 

71.99 
80.8 

97.77 
98.33 

85.98 

Closed 

99.01 
87.86 
97.29 
83.52 
86.39 
75.36 
73.8 
71.52 
85.94 
87.64 
85.04 
96.65 
91.66 
74.09 
74.33 
100 

71.15 
80.88 
97.22 
97.09 

85.82 

Maximal 

99.12 
87.84 
97.42 
84.21 
86.96 
74.33 
73.8 

71.57 
85.94 
85.8 

83.42 
92 

96.66 
74.08 
73.82 
100 

70.92 
81.28 
97.74 
97.09 

85.7 

Table 6.7: Accuracy for 2SARC-RF scoring scheme 

M vs. F 

FR 
AvR 
2SARC-CF 
2SARC-RF 

wins 

9 
8 
5 
5 

losses 

4 
9 
14 
13 

ties 

7 
3 
1 
2 

Table 6.8: Maximal versus frequent on UCI datasets 

Microarray Datasets 

Microarray data contains measurements of a large number of genes for a particular sample. 
Due to high acquisition costs, there is generally a small number of samples in microarray 
datasets. The large feature space (given by the number of genes) and the small number of 
samples make the construction of a good classifier difficult. We have access to microarray 
data for breast cancer, lung cancer, leukemia1 and prostate cancer. A method for reduc­
ing the dimensionality of the feature space for these microarray data has been proposed in 
[AG07]: first, find biclusters in data (a bicluster represents a subset of genes that are similar 
for a subset of samples); second, transform the original data based on bicluster member­
ship. This transformation reduces dramatically the feature space. In addition, the new 
features are binary, representing the membership in a bicluster. This new representation is 
highly suitable for association rule mining. Thus we investigated our framework on these 

'Microarray data for leukemia is also referred as AML-ALL in the literature. 
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dataset 

Breast Cancer 
Lung Cancer 
Leukemia 
Prostate Cancer 

Frequent 
(# rules) 

11304 
10139 

40441.4 
95307.8 

Closed 
(% saved) 

20.21 
22.6 
15.23 
14.28 

Maximal 
(% saved) 

20.25 
22.6 
15.23 
14.28 

Table 6.9: Average number of classification rules generated from frequent itemsets and the 
percentage of rules dropped when closed and maximal itemsets are used 

microarray datasets and the results are presented in Tables 6.9 and 6.10. All the datasets are 
obtained from [AG07] in this new representation. For each instance its membership to 30 
bi-clusters is considered. All the results are average accuracies over 5-fold cross validation. 
It is relevant to notice that while the authors of [AG07] claim to have reached the best known 
classification results on these microarray datasets, our results using 2SARC with maximal 
patterns outperforms their classification results on Lung Cancer and Leukemia datasets (the 
best results reported in [AG07] for these datasets are as follows: Breast Cancer: 90.79, 
Lung Cancer: 96.13, Leukemia: 84.72 and Prostate Cancer: 86.77). 

Table 6.9 shows the number of classification rules and their reduction when rules are 
generated from closed and maximal patterns. For all the microarray datasets the reduction 
in the number of rules is almost the same for closed and maximal, indicating yet again that 
using maximal patterns is indeed a winning strategy. The accuracy results for FR, AvR 
and 2SARC-RF methods (shown in Table 6.10) remain the same when closed and maximal 
patterns are used instead of frequent ones. The only variation occurs for 2SARC-CF for 
Lung Cancer dataset: the performance insignificantly decreases for the approaches using 
closed and maximal patterns. 

The results on microarray data and UCI datasets confirm our hypothesis, that the use of 
closed and maximal patterns maintains the level of performance while reducing the number 
of classification rules. Thus, based on our results so far, we can conclude that the use of 
maximal patterns is advantageous. However, we want to study when exactly is the use 
of maximal patterns more advantageous than closed patterns and vice-versa. We use cost 
curve analysis for this purpose. 

Cost Curve Analysis 

In the previous sections we presented and discussed the accuracy obtained for all the studied 
methods. To gain a better insight into the examined framework we perform an analysis 
based on cost curves. 

Cost curves [DH06] are evaluation tools for classification systems that have been pro­
posed as an alternative to ROC curves [PF97]. Their advantage is that in their visualization 
one can easily see the performance of a classifier over the entire range of class frequencies 
and costs. 

In our analysis we are interested to see under what conditions the use of closed and 
maximal patterns is advantageous to an associative classifier. Cost curves allow us to easily 
visualize and detect these conditions. Each classifier is represented by a straight line in the 
cost space. The y-axis (NEC) is the expected cost of a classifier normalized to be between 
0 and 1. The x-axis (PC(+)) is the fraction of the total cost of using a classifier that is due 
to positive examples. 
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dataset Frequent Closed Maximal 

FR scoring scheme 
Breast Cancer 
Lung Cancer 
Leukemia 
Prostate Cancer 

58.0 
96.1 

75.72 
79.82 

58.0 
96.1 
75.72 
79.82 

58.0 
96.1 

75.72 
79.82 

AvR scoring scheme 
Breast Cancer 
Lung Cancer 
Leukemia 
Prostate Cancer 

58.0 
96.1 

77.16 
84.34 

58.0 
96.1 

77.16 
83.6 

58.0 
96.1 

77.16 
83.64 

2SARC-CF scoring scheme 
Breast Cancer 
Lung Cancer 
Leukemia 
Prostate Cancer 

81.58 
97.24 
92.88 
86.6 

81.58 
96.7 

92.88 
86.6 

81.58 
96.7 

92.88 
86.6 

2SARC-RF scoring scheme 
Breast Cancer 
Lung Cancer 
Leukemia 
Prostate Cancer 

85.5 
96.72 
91.44 
86.6 

85.5 
96.72 
91.44 
86.6 

85.5 
96.72 
91.44 
86.6 

Table 6.10: Accuracy on microarray datasets 

The performance of a classifier is represented in the cost space by the following equa­
tion: 

NEC = (l-TPR-FPR)xPC(+) + FPR (6.1) 

where TPR (true positive rate) and FPR (false positive rate) are defined as follows: 

TPR = 
TP 

FPR 
FP 

(6.2) 
TP + FN FP + TN 

The true positives (TP) and true negatives (TN) are correct classifications, while false 
positives (FP) and false negatives (FN) are misclassifications. A false positive occurs when 
an object is incorrectly classified as positive, while a false negative occurs when a positive 
object is classified as negative. 

The definition of the probability cost function (PC(+)) is given in Equation 6.3, where 
p(+) is the probability of a given object being in the positive class and C(+\—) is the cost 
incurred if an object in the negative class is misclassified as being in the positive class. Note 
that when there are no costs associated with the classification decision (as it is the case for 
our empirical study), PC(+) reduces to p(+). 

PC{+) 
p(+) x C ( + | - ) 

(6.3) 
p ( + ) x C ( - | + ) + p ( - ) x C ( + | - ) 

A line in the cost space shows how the performance of the system varies when the class 
distribution or cost change. Ideally, one wants to have a classifier represented by a hori-
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Breast Dataset - FR method 
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Figure 6.3: Cost curve performance for FR method on Breast-w dataset: frequent patterns 
- long-dashed line; closed patterns - dashed line; maximal patterns - dotted line; trivial 
classifiers - solid lines. Note that the dashed and long-dashed lines are overlapping. 

zontal line at the normalized expected cost of 0. Thus, the best classifier for a probability 
cost value is the one whose normalized expected cost is the lowest. Visually, the lowest 
line in the graph represents the best classifier (the lower the line the better the classification 
system). From the graphs we can also directly see the difference in performance between 
two classifiers, which is their vertical height difference at some PC{+) value. 

Figures 6.3 to 6.6 show the performance of classification for several datasets. All the 
graphs show the performance of a classification method when classification rules are gen­
erated from frequent, closed and maximal patterns. Thus, three classifiers are compared 
in each graph. The classifier built from frequent patterns is represented by a long-dashed 
line. The one built from closed itemsets is shown with a dashed line. The dotted line cor­
responds to the classification system built from maximal patterns. The two solid lateral 
lines represent the trivial classifiers: the leftmost line represents the classifier that always 
predicts the negative class, while the rightmost line represents the classifier that always 
predicts positives. Note that cost curve evaluation can be done only for 2-class datasets. 

Let us analyze the Breast-w dataset. As shown in Tables 6.1, 6.2 and 6.3 the use of 
closed patterns reduces only slightly (2%-9%) the set of classification rules, while the set 
of classification rules generated from maximal patterns is substantially smaller (40% to 
50% smaller) than the one generated from all frequent itemsets. The accuracy for frequent 
and closed patterns is almost identical, while for maximal patterns it increases with 0.58%. 
Based on this information, one may conclude that the use of maximal patterns with FR 
method is the best choice. The cost curve shown in Figure 6.3 confirms this choice since the 
dotted line representing the maximal is indeed the lowest across the full range of possible 
PC(+) values. Note that the dashed and long-dashed lines are overlapping, indicating that 
the classifier based on closed and frequent patterns have the same performance. Let us 
now look at the same dataset when 2SARC-CF method is used. The reduction in number of 
rules is the same as with FR. However, the performance in terms of accuracy is identical for 
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Breast Dataset - 2SARC-CF method 
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Probability Cost 

Figure 6.4: Cost curve performance for 2SARC-CF method on Breast-w dataset: frequent 
patterns - long-dashed line; closed patterns - dashed line; maximal patterns - dotted line; 
trivial classifiers - solid lines 

Diabetes Dataset - FR method 
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Figure 6.5: Cost curve performance for FR method on Diabetes dataset: frequent patterns 

- long-dashed line; closed patterns - dashed line; maximal patterns - dotted line; trivial 
classifiers - solid lines 
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Heart Dataset - AvR method 
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Figure 6.6: Cost curve performance for AvR method on Heart dataset: frequent patterns 
- long-dashed line; closed patterns - dashed line; maximal patterns - dotted line; trivial 
classifiers - solid lines 

frequent, closed or maximal. Thus one may assume again, that the use of maximal patterns 
(they lead to the smallest set of classification rules) would be the best choice. However, the 
analysis with cost curves sheds new light on this choice (see Figure 6.4). It can be observed 
from the graph that maximal patterns should be used only for a probability cost higher than 
0.65, while for a smaller probability, closed patterns should be preferred. The use of closed 
patterns reduce only slightly the set of classification rules. This would be an indication 
that also the performance should not vary too much between frequent and closed. This 
assumption is validated by both figures (Figure 6.3 and 6.4). In Figure 6.3 frequent and 
closed have exactly the same performance over the entire range of class frequencies, while 
in Figure 6.4 there is only a maximum difference of 0.0015 in the normalized expected cost. 

Diabetes is another interesting dataset to be studied. The trend in rule reduction is 
similar to the Breast-w dataset, but the performance of the classifiers on this dataset is 
much poorer. The performance of FR method for Diabetes dataset is shown in Figure 6.5. 
Contrary to the classification systems in Figure 6.4, the classifiers do not perform well on 
the entire range of class frequencies. Indeed, the trivial classifier can outperform those 
classifiers. They should be used only on a smaller range of PC(+) ([0.35-0.85]). Outside 
this interval trivial classifiers perform better. The use of maximal patterns is advantageous 
in the [0.35-0.7] range, while any of the frequent or closed patterns should be used in the 
[0.7-0.85] interval. Again, the classifiers built from frequent and closed patterns overlap in 
this graph. 

Figure 6.6 presents the performance of AvR method for Heart dataset. AvR method 
performs better than the trivial classifiers in the [0.18-0.86] interval. Maximal patterns are 
more beneficial than frequent or closed patterns in the PC(+) range [0.18-0.64]. Frequent 
patterns or even closed itemsets should be favored on the remaining interval of PC(+). 

In this section we have analyzed with cost curves several interesting cases. In general, 
our investigations using cost curves suggest that the use of maximal patterns leads to the 
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best classification performance over most of the probability ranges. In applications were 
the class distribution changes, one may want to use the cost curves to determine the best 
classifier. 

6.5 Summary 

In this chapter we investigated the performance of associative classifiers when the classi­
fication rules are generated from frequent, closed and maximal itemsets. We showed that 
maximal itemsets substantially reduce the number of classification rules without jeopardiz­
ing the accuracy of the classifier. Our extensive analysis demonstrates that the performance 
remains stable and even improves in some cases. Our analysis using cost curves also pro­
vides recommendations on when it is appropriate to remove redundancy in frequent item-
sets. Based on our thorough analysis we are confident that any investigation of associative 
classifiers should consider first and foremost classification rules generated from maximal 
patterns. 
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Chapter 7 

Conclusions 

7.1 Summary 

This dissertation has focused on improving associative classifiers in two directions. The first 
direction has dealt with improving the performance of associative classifiers by introducing 
new types of classification rules (Chapters 3 and 4) and by proposing a novel technique in 
the classification stage (Chapter 5). The second direction has dealt with solutions for reduc­
ing the number of classification rules (Chapter 6). In Chapter 6 we studied the redundancy 
reduction in the classification rule set through the use of maximal and closed patterns. In 
this dissertation we made contributions to all three stages of associative classifiers: rule 
generation in Chapters 3 and 4, rule pruning in Chapter 6 and rule selection in Chapter 5. 

In Chapter 3, we introduced a new algorithm to generate both positive and negative 
association rules. Our method adds to the support-confidence framework the correlation 
coefficient to generate stronger positive and negative rules. We compared our algorithm 
with other existing algorithms on a real dataset. We discussed their performances on a 
small example for a better illustration of the algorithms and we presented and analyzed 
experimental results for a well-known text collection. The results proved that our algo­
rithm can discover strong interesting patterns. In addition, our method generates all types 
of confined rules, thus allowing to be used in different applications where all these types of 
rules, or just a subset of them, could be needed. We demonstrated the potential of strong 
positive and negative correlated rules in the classification context. The results of the classi­
fication show that associative classifiers using a much smaller set of positive and negative 
association rules can perform similar or outperform existing classification systems. 

Chapter 4 introduced the idea of combining associative classification and mining fre­
quent itemsets with re-occurring items. We combined these two and presented ACRI, a 
new approach of associative classification with re-occurring items. We also suggest new 
strategies to select classification rules during the classification phase. In particular, using 
the cosine measure to estimate the similarity between objects to classify and available rules 
is very effective for associative classifiers that consider re-occurrence. When comparing 
ACRI approach with ARC-BC we found that considering repetitions of observed features 
is beneficial. In particular in the case of text categorization, repetition of words has discrim­
inant power and taking these repetitions in consideration can generate good classification 
rules. Our experiments also showed that ACRI becomes more effective as the number of 
rules increases, in particular with our cosine measure for rule selection. Moreover, the ac­
curacy of ACRI seems to be less sensitive to the support threshold, while most associative 
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classifiers are typically very sensitive to the support threshold, which is very difficult to 
determine effectively in practice. 

In Chapter 5 we proposed a novel technique in the classification stage. Rule-based 
classifiers use predefined weighted voting schemes to combine the class predictions of the 
applicable rules. By contrast, the methods described in Chapter 5 automatically learn the 
scoring scheme. We achieve this by developing a two-stage system, with a layer of feature 
definitions interposed between the output of the first learning model and the input of the 
second. Our two stage classification system (2SARC) showed a good performance both for 
UCI datasets and text classification, under rigorous statistical analysis. 

In Chapter 6 we investigated the performance of associative classifiers when the clas­
sification rules are generated from frequent, closed and maximal itemsets. We showed that 
maximal itemsets substantially reduce the number of classification rules without jeopardiz­
ing the accuracy of the classifier. Our extensive analysis demonstrates that the performance 
remains stable and even improves in some cases. Our analysis using cost curves also pro­
vides recommendations on when it is appropriate to remove redundancy in frequent item-
sets. Based on our thorough analysis we are confident that any investigation of associative 
classifiers should consider first and foremost classification rales generated from maximal 
patterns. 

7.2 Limitations and Future Directions 

Although we address and present solutions to interesting problems for associative classi­
fiers, there are some limitations in our solutions. 

We introduced a new algorithm to generate confined positive and negative association 
rules. Our solution discovers a subset of all the possible positive and negative associations 
in the data. To mine all possible positive and negative associations in the data, it would be 
necessary not only to consider all items in a transaction, but also all possible items absent 
from the transaction. There could be a considerable exponential growth in the candidate 
generation phase. This is especially true in datasets with highly correlated attributes. That 
is why it is not feasible to extend the attribute space by adding the negated attributes and use 
the existing association rule mining algorithms. Although we presented a solution to this 
problem, generating negative association rules still remains an interesting and challenging 
open problem. A limitation of our solution is that it adds a new parameter based on the 
correlation measure to the rule mining phase. This increases the complexity of the system 
and adds an additional parameter to the associative classifier that has to be set and tuned for 
the application at hand. 

We proposed and discussed the integration of rules with re-occurring items in the asso­
ciative classifier framework. These types of rules can be very beneficial to the associative 
classifiers in some applications such as text categorization, image classification, etc. How­
ever, given that we have to take into account re-occurring items and to incorporate this 
information in the classification rules, it increases the complexity of the classification rule, 
thus making it more complicated to match rules to new objects. Some measures of similar­
ity have to be used to calculate the rule matching. 

We proposed a novel technique in the classification stage. We achieved this by develop­
ing a two-stage system, with a layer of feature definitions interposed between the output of 
the first learning model based on association rule mining and the input of the second learner. 
Although our solution increases the performance of the associative classifier, it reduces its 
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readability: it is more complicated to trace the categorization result to a small subset of rules 
that applied to the new object. The trade-off is between readability and performance. The 
complexity of the system is increased as well with the addition of the second level learner. 
In our experiments we found that the best choice for the second level learner is the k nearest 
neighbour algorithm. However, any classification system can be used and with the contin­
uous research in this field better classification system will be developed. It is feasible that 
2SARC could perform better with a different second stage classifier on some applications. 
Thus the user may choose to deal with selecting the most appropriate second stage learner 
for the application at hand. In applications with small training data, the performance of 
2SARC is possibly hindered by the number of training examples, which are further reduced 
by the split of the training set into two subsets, one for each of the learning stages. 

7.3 Final Word 

This dissertation has focused on improving associative classifiers in two directions. The 
first direction was on improving the performance of associative classifiers by introducing 
new types of classification rules (negative association rules and association rules with re­
occuring items) and by proposing a two stage architecture for the classification stage . The 
second direction was on finding solutions for reducing the number of classification rules. 
We investigated the redundancy reduction in the classification rule set through the use of 
maximal and closed patterns. We made new contributions in all the stages involved in 
building an associative classifier: rule generation, rule pruning and classification. 

Overall, the contributions of this dissertation are important because they advance the 
state-of-the-art in associative classifiers. We showed new ways in which associative clas­
sifiers can be used and that the associative classifiers can be competitive classification sys­
tems. In addition, we highlighted new directions on associative classifiers research. The 
problems investigated in this dissertation and their proposed solutions constitute significant 
progress toward improving the quality of associative classifiers. 
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