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Abstract

Stereo image compression deals with compression of a pair of images with one image
being a left view and the second being a right view. These pairs of images are
commonly known as stereopairs and give better depth information on a scene than a
single image can provide. Ideally. stereopairs are viewed on a head mounted display
(HMD) to achieve the proper eftfect of depth perception. Since iIMNDs place tmages
close to the cves, one can attempt to take advantage of the human visual system
to try to achieve better compression results. To enhance depth perception for the
human visual system. the concept of vergence will be used to obtain stercopairs. ‘To
investigate the effects of non-uniform quality loss, the concept of soatially varving,
sensing will be used during compression. The lossy compression methods presented

will also use the discrete cosine transform (DCT).
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Chapter 1

Introduction

1.1 Motivation

Head mounted displays (HNDs) are excellent devices to view stereopairs. Already.
there are HMDs available for personal computers and. as they become more afford-
able, there may be a demand for efficient transmission and/or storage of stercopairs.
To reduce the amount of data that needs to be transferred or stored., some tyvpe of
compression must be used. Currently. there are no standard stereopair compression
schemes equivalent in popularity to a compression scheme such as the JPEG com-
pression standard for single images. The lack of a standard is mainly due to the fact
that there are not many HMDs in use with which to view stereopairs. This may
change in the near future if HMDs for personal computers become more popular. so
some exploration into the area of stereopair compression for HMDs needs to be done.
In the cases where stereopair quality loss is unavoidable. due to space or bandwidth
limitations, we would like the loss to occur in a way that least affects the appearance
of the stereopair through the HMD. Uniform loss of quality works very well for single
images viewed on a screen, but this may not be the case when viewing stereopairs
with a HMD. The possibility of using existing hardware to assist the compression
would be a good feature since there are compression cards available for personal com-
puters, and some personal computer packages already include compression hardware
such as MPEG (Motion Picture Experts Group) [11] boards. Parameters that con-
trol the amount of compression would also be desirable, since transmission speeds are
different depending on the hardware and connection speed available. This thesis will

present two methods of stereo image compression that allow control over the amount



of ceinpression and address the issue of quality loss that is less evident to the human

visual svstem when viewed through a HMD.

1.2 Thesis Organization

Chapter Two will provide the necessary background information for understanding
the reasoning behind the compression methods used in this thesis. This chapter

includes explanations of
e the goals of stereo image compression
o vergence and spatially varying sensing.
e the discrete cosine transform and its usefulness in image compression. and
e different evaluation methods of compression.

Chapter Three will describe three stereo compression methods. The first method will
be a base method used for comparison purposes against the other two compression
methods that combine spatially varying sensing and i discrete cosine transform.
Chapter Four will discuss issues invelving the addition of color support to the image
compression methods from Chapter Three. Chapter Five analyzes the performanee
of the three compression methods by presenting results of the compression for small,
medium. and high compression ratios, along with results from a simall user simvey.,
Chapter Six presents some conclusions from the results of the three compression
methods. Chapter Seven suggests some future work that may be attempted to exted

the compression methods in different wavs. or to improve their performance.



Chapter 2

Background Information

fmage compression comes in two forms: lossless and lossy. Lossless compression
compresses images so that the original image can be reconstructed exactly. Lossy
compression compresses images so that the original image can be reconstructed ap-
proximately. with some loss in image quality. This thesis will be concerned with lossy
compression.

The class of images being compressed are commonly called stereopairs. Stereopairs
consist of a pair of images that correspond to a left view and a right view of an object
or scene. Using single image lossy compression methods such as the JPEG (Joint
Photographic Experts Group) baseline standard {14, 17, 24], one can compress the
left and right images of a stereopair separately. Both compressed images would need
approximately the same storage space; however, there are redundancies in a stercopair
that can be used. In stereo image compression, the objective is to store the image in

less space than that required if the left and right images were compressed separately.

2.1 Vergence and spatially varying sensing

A stereopair was defined as lefi and right views of an object or scene. Assuming that
two cameras are used to create a stereopair. this definition allows for the possibility
of choosing the orientation of the cameras. Camera geometry [18] will be the term
used to describe the orientation of the cameras. Before describing camera geometries.
a few terms must be defined. The center of a camera’s lens will be referred to as the
camera’s focal center, and a plane parallel to the camera lens will be referred to as the

image plane. The image captured by the camera is a rectangular portion of the image



plane and is referred to as the nmage area. A ray extending from the focal center.
perpendicular to the image plane. is referred to as the camera’s focal ray. Figure 2.1
shows the top view of a commonly used crirera geometry for stereopairs called the

parallel axes geometry. In the paiallel axes geomatry, the left and right focal ravs are

Obhject

A A

l<<——— Focal ruyy ——=>

i N

/

Focal centers

N

Image plane

N
\

\\\

fmage areas

Figure 2.1: Parallel axes geometry

parallel, the left and right image planes are coplanar, and the bottom edge of the left
and right image areas are collinear. Ideally. the two cameras should be at the same
vertical distance from the ground. Stercopairs using the parallel axes geometry allow
depth perception. but there may be some uncertainties in the depth estimation. The
parallel axes geometry is a convenient camera geometry to use, but we would like to
reduce the depth estimation error.

Cameras capture images. which are transformed into discrete pixels. With most
cameras, these pixels are uniformly distributed over the camera’s image arca according
to some industry standard. In order to place the object or scene into the discrete
number of pixels, the projections of the 3D points must be approximated to the

nearest pixel. The approximations generate what is called discretization error and, in



stereopairs, discretization error leads to depth estimation error. Figure 2.2' illustrates
this depth estimation error which increases as the distance from the cameras increases.
As one can see, the error is not a simple function of distance since the diamonds have
different sizes, and orientations. When estimating the depth of the point. the depth
estimated can be any one of the four points defining the diamond, so reducing the

size of the diamonds around the point of interest would be desirable.

Figure 2.2: Depth estimation error with parallel axes geometry

Sahabi and Basu have used vergence and svatially varying sensing to reduce the
depth estimation error [20]. Vergence involves the use of a camera geometry which will
be referred to as the vergent axes geometry. In the vergent axes geometry. the left and
right focal rays converge on the object of interest, and this creates two image planes
with two image areas. The bottom edges of both image areas are no longer collinear.
but there is the requirement that the bottom edges of the image areas are on the
same plane. The angle that the left and right focal rays make to their corresponding
parallel ravs in the parallel axes geometry will be referred to as the vergence angle.
Figure 2.3 illustrates the top view of the vergent axes geometry with vergence angle
0. Spatially varving sensing deals with the fact that eyes have high resolution in some
arcas and low resolution in other areas of the visual field. The area around a point
called the fovea has high resolution, while the areas with low resolution are called

the periphery. In the case of the human eye, the field of view is very large (close

TFigure taken from [20)
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Figure 2.3: Vergent axes geometry with vergence angle 0

to 180°), but there is only one fovea in the center of the visual field. This means
that the human eve can focus sharply on a limited area of interest while everything
else appears blurred. The work done by Sahabi and Basu found that using cameras
with high resolution in the center and nonlinearly decreasing resolution further away
from the center reduces depth uncertainty when vergence is used. Figures 2.4 and
2.5% illustrate the difference between using vergence with a uniform resolution and
vergence with their non-uniform resolution. With the higher resolution used in the
region containing the point of interest (namely the center of both images), the depth
uncertainty is significantly reduced. Using vergence and spatially varying sensing, the
human visual system is modelled much better than using the parallel axes geometry
and uniform resolution. When we look at a nearby object, our eyes do not simply
look straight ahead as in the parallel axes geometry. Instead, the foci of both eyes
converge on the object of interest to give us more accurate depth information. Figures

2.6 and 2.7 show examples of a stereopair taken with the parallel axes geometry and

2Figures taken from {20]



Figure 2.1: Depth uncertainty using uniform resolution

94 [~]

Figure 2.5: Depth uncertainty using non-uniform resolution



the vergent axes geometry respectively. The angle of vergence used in F.gure 2.7 is

5°.

Figure 2.7: Vergent axes geometry stereopair

A transform called the variable resolution transform [1, 2] (from now on referred to
as the VRT) was used to implement the idea of compression based on spatially varying
sensing. The VRT has two parameters that control compression: one parameter
controls the expected compression ratio; the other controls the resolution around the
fovea. The first parameter will be referred to as scaling factor s, and the second
parameter will be referred to as a. Using the polar coordinate system, with the
center of an image being the origin, the transform maps a pixel with coordinates of

(r,0) to its new coordinates of (v,8). The equation for v is given in Equation 2.1 and



the inverse transform is given in Equation 2.2.

v= slnf or 1) (2.1)
exp(* -
r:——p—(;- -~ (2.2)
o
0 <a<l

The s value is calculated using the maximum dis « ... a pixel can be from the fovea
(Tmaz), and the maximum distance one would like this pixel to be from the fovea in
the transformed image (Vmar). 7..2. lepends on where the fovea is located in th~
image. For example, if the fovea is located in the center of a MxN image. Tmqx
would be y/ 5212 + %’2. Umaz i defined by the user to specify how much compression is
wanted. The closer v,,q is 10 Thhar, the less compression there is. Equation 2.3 gives

the equation for s.

v
= maxr 2.3
8 In(armaer +1) (2.3)

There is a small problem with the VRT in that the transformed image is not rect-
angular. When storage in a rectangular field is preferred — usually the case when
working with computers - clipping or padding with unused pixels may be necessary.
To overconie this problem, a modification of the VRT called the Cartesian variable
resolution transform (CVRT) has been used in [1]. Advantages of the CVRT is that it
is computationally less expensive than the VRT and it produces a rectangular trans-
formed image. A disadvantage is that the CVRT is less accurate than the VRT with
respect to the model of the human eye. The equations for the CVRT are given in
Equations 2.4 to 2.11. The CVRT uses the Cartesian coordinate system rather than
the polar coordinate system. The equations are basically the same as the VRT, but
now there are different scaling factors for the = and y directions while a remains the
same. Consider an image with the fovea located at (zo, yo). The distances from a pixel
(z,y) to the fovea are defined in the r and y directions as dz and dy, respectively,
given in Equations 2.4 and 2.5.

dr=x— 29 (2.4)

dy =y — yo (2.5)



This pixel, which is a distance of dz and dy away from the fovea. is now moved to
a distance of v, and v, away from the fovea. Equations 2.6 and 2.7 show how to
compute vz and v,.

vy = seln(adr + 1) (2.6)
vy, = syIn(ady + 1) (2.7)

To reverse the transform. compute dr and dy from v, and v, using Equations 2.8 and

2.9.
o) (2.8)
Q
oo(3) -
Q

dy

—_
[
-
=
Ny

The values of s, and s, are given in Equations 2.10 and 2.11. vzmar and vya, have
the same function as v, in the VRT, and d,,,> and dymqr have the same function

as Tmer In the VRT.

vrma.r (,) l())
S = 2.
T In(a drmer + 1)
Cymaz (2.11)

T In(a dymar + 1)
Pixels at the maximum z and y distance from the fovea in the original image are at
the maximuia possible r and y distance from the fovea in the trausformed nmage just
as with the VRT. Figure 2.8 shows the standard Lena image® that will be used to
illustrate how the CVRT works. Selecting the fovea location to be approximately the
center of the face, the image in Figure 2.9 is obtained after applying the CVR'T. An
a value of 0.1 and a compression ratio of 82% was used. The original file size is 65637
bytes and the compressed file size is 11554 bytes. Both images are in PGM format
which basically stores the width and height of the image followed by the actual pixel
values. Applying the regular VRT produces a circular “fish-eye lens™ type image,
but using the CVRT, it appears that the fish-eye image has heen stretched at the
corners. When reconstructing the image, many interpolation methods can he used,
depending on what is needed. If processing speed is a factor then nearest neighbour

interpolation is ideal, but the resulting image may be less appealing than if a more

3This image was obtained from the University of East Anglia Signal and Image Processing group’s
standard image page at http://www.sys.uea.ac.uk/research/resgroups/sip/images_ftp/index.htiml.

10



Figure 2.8: Original image

Figure 2.9: Compressed image (a = 0.1, 82% compression)

11



complicated interpolation method is used. Reconstructing the Lena example image

using bilinear interpolation produces ¢f: 2 image shown in Figure 2.10. As one can sce,

Figure 2.10: Reconstructed image

the area of interest, namely the face, retains higher resolution than the remainder
of the image. ‘I he result is a reconstructed image with the face remnaiuing clear at

approximately 82% compression.

2.2 The Discrete Cosine Transform

2.2.1 Choosing a good transform

An image can be considered as a two dimensional function with the values of the
function being the image intensities at their respective Cartesian coordinates x and
y. The image in this form is said to be in the spatial domain. Compression based on
the VRT is an example of a compression method in the spatial domain. Some lossy
compression methods make use of what is called transform coding [6]. In transfori
coding, the image is transformed from the spatial domain onto a set of “transform
coefficients™ using a reversible, linear transform. Some of these transform coefficients

may be very small in magnitude and simply discarded, or some could be quantized

12



without any noticeable loss in quality once the reverse mapping or transformation
is applied. The compression occurs through the discarding and quantization of the
transform coefficients. This ability to quantize and discard certain coeflicients makes
transform coding a good method of eliminating psychovisual redundancy from images.

The discrete cosine transform (from now on referred to as the DCT) is one of many
transforms that are used in lossy image compression. Other transforms, including the
discrete Fourier transform (DFT), the Walsh-Hadamard transform (WHT), and the
Karhunen-Loeve transform (KLT) can be used for image compression as well. Impor-
tant deciding factors when choosing a transform are how well the transform “packs”
information into a few coefficients, and how convenient the transform is to use. From
the viewpoint of minimizing the MSE with the fewest transform coefficients. the KLT
is known to be optimal [6, 19]. However, when convenience of use is considered. the
KLT is data dependent involving the finding of eigenvectors and their corresponding
eigenvalues. Because of the complexity of computing the KLT, it is rarely used in
practice for image compression, but it is used to compare other transforms to see
how close they come to being optimal. The WHT, DFT, and the DCT are all data
independent so they have fixed basis images. The DFT and DCT fit into a class
of transforms called “sinusoidal” transforms since their 1D basis functions resemble
sine waves. Sinusoidal transforms are closer approximations to the KLT [12] than
nonsinusoidal transforms for real world images because of the high inter-pixel corre-
lations. The WHT is a nonsinusoidal transform, so it does not work as well as the
DFT or DCT for the real world images being used. The DFT is a well known trans-
form and is valuable for spectral analysis and filtering. However, it is not popular
for transform coding of images mainly because of the possible discontinuities involved
when transforming a set of samples from an image. These discontinuities can be seen
for the 1D case in Figure 2.11. The DFT of the segment of 8 sample points is a
transform domain representation of the segment being repeated. The discontinuities
may produce spurious content in the high frequency components of the transform
coefficients. For image coding, the spurious information in the transform coefficients
combined with quantization may lead to visible boundaries between subimages with
the boundary pixels possibly becoming the mean values of the pixels involved in the

discontinuities. The DCT does not have the discontinuity problem that the DFT has

13



Figure 2.11: Discontinuities inherent in the DFT

since it makes the data to be transformed symmetric. This symmetry is illustrated in
the 1D case in Figure 2.12. The segment is folded about the vertical axis, so when this
new segment is repeated, the.< are no discontinuities. Because of the climination of

i
i

|
|
|
|
i
|
|
'
|
1
[

Figure 2.12: Elimination of discontinuities in the DCT

the discontinuities and the fact that the DCT involves only real numbers as opposed
to complex numbers in the DFT, the DCT has been the choice of many people when
using a transform for coding images. One of the more commonly known compression
methods that use the DCT is the JPEG baseline compression method [14, 17, 24].
The DCT has also been used to perform stereo image compression, with good results
[7, 8, 15]. Another deciding factor in using the DCT is the growing popularity of
MPEG compression hardware in personal computers. MPEG also uses the DCT and
it may be possible to take advantage of the hardware to quickly compute the DCT.
This thesis will use the DCT as its method of transform coding since it is a good

compromise between information packing efficiency and computational complexity.

2.2.2 Using the DCT

Consider an 8x8 block as a function f which depends on the two spatial dimensions

z and y - both in the range [0,7]. The forward DCT function C of an 8x8 block is

14



defined over the parameters u and v as in Equation 2.12. Both u and v are also in

the range [0,7].

C(u,v) = a(u)a(v) Z Zf z,y)cos ((21 -11—61)7ru> cos ((—2—3—/::61)‘-”) (2.12)

r=0y=0

oo

1 ___0
a(w)={7; ' Z#O

2
The 64 sample points in the 8x8 block f are in the spatial domain. The DCT trans-
forms the 64 sample points into 64 DCT coefficients in the 8x8 block C'. Each co-
efficient can be thought of as a weight to one of 64 cosine basis images. The basis
images are in the frequency domain with increasing “spatial frequency”™ as v and v
increases. Figure 2.13 illustrates the cosine basis images graphically in the spatial
domain with white being highest value and »lack being the lowest. The upper left
block corresponds to the lowest spatial frequency of zero. It is one constant value
because zero frequency means there is no change in the 8x8 block. Moving from the
upper left to the lower right basis images vields more vertica! =~ r,0ssings while
moving to the right. and more horizontal zero-crossings whil: minviie »0 the bottom.
When the bottom right basis image is reached, there is a maximum combination of
horizontal and vertical zero-crossings corresponding te a high frequency of change in
both the x and y directions in the spatial domain.
In the ideal case where all calculations are done with infinite precision. the 64
DCT coefficients can be used to reconstruct exactly the 64 sample points that were
transformed. The inverse DCT for a block of size 8x8 is given in Equation 2.13.

Z Z (u,v)cos (@—-;—Glm) Cos (Q_y%) (2.13)

u=0 v=0

®

1
(1) = 7B w=0
o(w) { % Cwo

One of the advantages of the DCT is that the forward and inverse transform are
so similar. This is a useful feature of any transform in terms of understanding and
implementation.

So far there has been no compression. What has been done is a transformation
from the spatial domain to the frequency domain. While this transformation does no

compression, it does compact the majority of the “signal energy” of the input block
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Figure 2.13: 8x8 DCT cosine basis images

into a few coefficients. Most computers have sufficient precision to reconstruet the
8x8 block back to its original state. The lossy part of the compression occurs when
the DCT coefficients are quantized. Some of the coefficients can be quantized more
coarsely than others. The human eye is less sensitive to high frequeney changes. so
referring to Figure 2.13 for our DCT basis images, the coefficients for the basis images
near the lower right corner can be quantized more coarsely than for those near the
upper left corner. The quantization usually results in a few non-zero coefficients for
the upper left corner basis images, and the rest of the coefficients end up quantized
to zero. The quantized coefficients can then he encoded using an encoding methaod
such as Huffman coding or arithmetic coding in order to try to minimize the mher
of bits necessary to store the coefficients. The amount of quality loss depends on how

heavily the DCT coefficients are quantized.
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2.2.3 DI T Example

An example of eomnpr ssion using the DCT is given in [12]. The example comes from
the JPEG baselir e standard. Consider a typical 8x8 block of pixels such as the one in
Figure 2.14(a). There are a possible 256 gray levels in this block. The process begins
by first level shifting the pixels of the block by —27 or -128 gray levels. Now the values
range from -128 to 127 instead of from 0 to 255 and the result of the shifting is in
Figure 2.14(b).  After th:» shii*iug the forward DCT (FDCT) is applied on the block

RZ]BA 61 ] 66 T | 61 [64 | 7] 76 | 73 | 67 | -62 | -58 | -67 [ -64 | -5%
6y 1 h e | 9o i o, 85 {69 | 72 -65 | -69 | -62 | -38 | -19 | -43 | -59 | -56
GZ [ 50 | 68 | 113 | 44 | 104 | oo | 73 266 | -69 | -60 | -15 | 16 | -24 | -62 | -55
GV SR T | 122 § 54 | 106 | 76 ¢ 64 ] €5 | -70 | -57 | -6 | 26 | -22 | -58 | -59
6T {61 | GK | 104 | 126 | 88 | 68 | 70 61 | 67 | -60 | -24 | -2 | -40 | -60 | -58
70166 |60 | 70 | 17 | 63 | 58 | 75 49 | 63 | <68 | -58 | -51 | -65 | -70 | -53
Bh | 71 |64 | 50 | 56 | 61 | 65 | &3 | 43 | 57 | -64 | -69 | -73 | -67 | -63 | -45
.74 7Y 69 68 6hH 76 78 _‘_ j -41 -49 -59 -60 -63 | -52 -50 -34
(a) Original 8x8 block (b) Shifted 8x8 block
Figure 2.14: Typical 88 block of pix- -
A [ TN T AR T 113 16 | 11 [ 10 ] 16 | 24 40 | 51 61
FT 2062 9 |1 | -+ 66 12 |12 | 14 [ 19 | 26 | 58 | 60 | 55
46 | K | vl -m w075 14 1 13 [ 16 | 24 | 40 | 57 | 69 | 56
RO YA [ 38 [ 15 | -a 6 |0 3 a4, T 22|29 51 | 87 | 80 | 62
11 N8 2] 4 171 41 |18 | 22 | 37 | 56 | 68 | 109 | 103 | -7
10 1 3 3] -1 ] 0 ] 214 2t | 35 | 55 | 64 | 81 | 104 | 113 | 92
4 -1 2 | -1 2 31 ] -2 49 | 64 | 78 | &7 | 103 | 121 | 120 ] 101
-1 gl a0 21 7 fJola 72| 92 | 95 | 98 | 112 | 100 | 103 | 99
(a) Results of FDC'T (b) Quantization matrix

Figure 2.15: FDCT results and its quantizer

of pixels. resulting in the coelficients in Figure 2.15(a). Using the JPEG recommended
quantization matrix in Fizure 2.15(b), the DCT coefiicients are quantized to the set
of coeflicients in Figure 2. 5 Note that mosi of the non-zero coefficients are in the
upper left, while the lower right coefficients have all bren quantized to zero. The
large numbers of zeros can be taken advantage of whea encoding the coefficients, and
this encoding is where the majority of the compression tzkes place.

When encoding the 8x8 block in the order seen in Figure 2.17(a), one could take
advantage of the runs of zeros that accur, but bec wse of the distribution of non-zero
coefficients. the normal order is not the most efficient. To get longer runs of zeros, the

JPEG baseline standard encodes the 8x8 block in the zig-zag order shown in Figure
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Figure 2.16: Quantized DCT coefficients

2.17(b). In the exampl: block of quantized coefficients, the zig-zag order would resnlt

in the following coefficients (with 0(n) denoting a run of n zeros):

-26 -31-3-2-62-41-4115020(2) -120(5) -1-10(38)

0|1 {23145 ]6]T7 O 1 |5 |6 [ 1415|2712
819 {1011 }12}13 |14 |15 2014 17 [ 13162612912
16 |17 [ 18 (19|20 |21 22|23 318 121171253041 {43
24 12512627 (28(29{30]31 9 |11 | 18|24 |31 [40 4173
3213331435136 {37]38139 10 {19 (2313239145 52|51
40 | 41 {42 |43 |44 | 45 | 46 | 47 20 {22 13313814651 {5560
48 149 | 50 | 51 {52 |53 54155 21 [ 34 |37 [ 47 { 50 | 56 | 59 | 6]
56 | 57 {538 | 59 | 60 | 61 | 62 | 63 35 136 |48 | 49 | 57 | 58 | 62 ] 63
(a) Normal (b) Zig-zag

Figure 2.17: Normal and zig-zag orders

To reconstruct the new 8x8 block, the quantized coefficients are first unquantized
resulting in the block in Figure 2.18(a). The inverse DCT (IDCT) is then applied
which produces the block in Figure 2.18(b). Level shifting the values by 128 gives the
reconstructed block in Figure 2.19. Note that most of the values in the reconstructed
block do not match the original values in Figure 2.14(a), but the values should be
close enough so that the difference would not be subjectively objectionable.

The DCT has become very popular in the field of image compression. Chips have
been made to perform the DCT quickly and, in the absence of DCT specific hardware,
the DCT can be computed in many ways. Computing the DCT via the DIF'I" can bhe
done if one has a fast DFT algorithm [5]. Computing the DCT can also be done via

matrix multiplications [3]. A recursive method of the DCT also exists, as well as an
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(a) Unquantized DCT coefficients (b) Results of IDCT

Figure 2.18: Unquantized coefficients and their IDCT

58164 167 | 64 | 59 | 62 | 70| 78
56 155167 | 89 | 98 | 88 | 74 | 69
60 | 50 | 70 | 119 | 141 | 116 | 80 | 64
69 | 51 | 71 {128 | 149 | 115 | 77 | 68
7453164105115 84 65|72
76 | 57 |56 | 74 | 75 | 57 |57 | 74
83169 (59| 60 { 61 | 61 |67 |78
93 |81 |67 | 62 | 69 | 80 |84} 84

Figure 2.19: Reconstructed 8x8 block

implementation using several one dimensional DCTs. These and other methods of
computing the DCT can be found in [19]. Depending on the available hardware or

algorithms, the DCT can be quickly computed.

2.3 Evaluation of compression

When evaluating the results of image compression, there are two types of fidelity
criteria that can be used. One type are called objective fidelity criteria. Objective
fidelity criteria use numerical measures of how close the original image is to the
reconstructed image. Two examples of objective fidelity criteria are the mean squared
error (MSE) and the mean absolute error (MAE). Consider the original image to be
a function f of the two coordinates z and y and the reconstructed image to be
the function f. Assuming the image has dimensions MxN, the MSE is defined in
Equation 2.14 and the MAE in Equation 2.15.

AIQE 1 M-1N-1 2
SE = ——TV- > yz_% [f (z,y) )] (2.14)
] M-1N-1 X
MAE = = g 2 |f(z,y) — f(z,y)] (2.15)

19



While these objective measures of error are easy and convenient to use, they do not
accurately measure the appearance of the reconstructed image to the human eye.
This is especially true for objective fidelity criteria biased on uniform quality since
it has already been established that the human eye does not have uniform resolution
nver its field of view. Minimizing error measures such as the MSE and MAF are good
for images that are needed for computer processing. However. .nany images will be
viewed by humans so a different fidelity criterion is needed to assess how successful
a compression method is. The second type of fidelity criteria are called subjective
fidelity criteria. Subjective fidelity criteria are not as attractive as objective fidelity
criteria, since they usually involve displaying the reconstructed image to test subjects
who then provide a subjective evaluation of the image quality compared to the original
image. An example of a subjective fidelity criterion is the subjective impairment scale
shown in Figure 2.20. This point scale represents the degree of impairment of the
original image the reconstructed image appears to have. The higher the points, the
smaller perceptible difference there is between the original and the reconstructed

image. After showing the images to the test subjects, an average is taken of the total

Opinion Points
Not perceptible T
Barely perceptible 6
Definitely perceptible but only slight impairment of the image 5
Impairment to the image but not objectionable 4
Somewhat objectionable X
Definitely objectionable 2
Extremely objectionable |

Figure 2.20: Subjective impairment scale

points over the test subjects to obtain a mean opinion score (MOS). Other scales can
be used to obtain a MOS as long as the same scale is used when comparing the MOS
for different compression methods.

There are different ways to approach stereo image compression. One approach
is to try to minimize some quantitative error measure, such as the MSE and MAE,
between a reconstructed image and an original image. This approach places more

importance on objective fidelity criteria and is used in [18, 21]. Another approach
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is to take advantage of the human visual system when compressing images, so that
image quality is lost in a way that would be least objectionable to the human eve
when the image is reconstructed. This approach places more importance on subjective
fidelity criteria and is used in [7, 8, 12, 18]. In this thesis, the approach taken will be

the one that takes advantage of the human visual system.



Chapter 3

Compression Schemes

Three stereopair compression methods will be discussed in this chapter. The first is
a straightforward method of using the DCT to do sterco compression. The next two
methods add spatially varying sensing in two different ways to improve the compres.

sion.

3.1 Uniform DCT

The uniform DCT is an intuitive approach to stereo compression using the DC. T
has been shown that an optimal way to compress stereopairs is to compress one side
first, and then compress the other side using redundant information from the first
side [18]. Using the left side or right side of the stercopair as the first side should not
matter. The problem is in defining what is meant by redundant information. Since
the DCT is done in blocks, it is logical to define redundant information as blocks
that match. For the uniform DCT, an arbitrary decision was made to encode the lefi
image first and encode the right image using matches to the left image. Figure 3.
gives an overview of the compression part of the uniform DCT. The left and right
images are first partitioned into 8x8 blocks. If the image does not have dimensions
that are multiples of 8, the blocks are padded on the edges so that they are 8x§
blocks. Next. we shift the pixel values by -128 as in the JPEG baseline COmpression
standard. The forward DCT is applied to all the blocks to obtain 8x8 blocks of DC"I
coefficients. These blocks of coefficients are then quantized using a scaled version of
the quantization matrix shown in Figure 2.15(h). After the quantization of all the

blocks, the left blocks are encoded, as is, by using the default Huffman code tables
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Right image
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8x8 blocks 8x8 blocks
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Encode Search for Encode matches
quantized 3|  and quantized
blocks block maiches blocks

\

Right stream

Figure 3.1: Uniform DCT compression scheme

Left stream




for the JPEG baseline compression standard. For the right image, there s a category
added to the Huffman tables to accommodate block matching. The right image
blocks are encoded as matches to the left image blocks if they exist, otherwise they
are encoded as they are, using the new Huffman code tables. To reduce the number
of bits required to encode a match, the search area for the block matches must he
restricted. Using trial stereopairs and several scaling factors for the quautization
matrix, most matches were found to appear at either the same location in the left
image or within a few blocks of the same locatiou. The majority of the matching
blocks came from within three horizontal blocks and appear either at the same row
or one row above or below the block location in the left image. The scarch arvca is

shown in Figure 3.2. In deciding what constitutes a match. the MAL is used as a

T
]

Figure 3.2: Search area in left image for right block

quantitative measure of how large the difference between two blocks is. The difference
1s then compared to a threshold value and the blocks are said to match if the difference
falls below the threshold.

The left and right streams resulting from the encoding can be stored separately
or combined into one stream. The uniform DCT decompression scheme is outlined in
Figure 3.3. The left hand side (LHS) stream is first decoded into its 8x8 blocks. Then
the right hand side (RHS) stream is decoded into its 8x8 blocks by either decoding an
encoded block (as in the LHS stream) or by copying a block from the LHS blocks that
matched with the RHS block when the image was compressed. Next, all the blocks
are unquantized using the same scaling factor of the quantization matrix in Figure
2.15(b) that was used for compression. The inverse DCT is then performed on all the

blocks. and the resulting pixel values are shifted by 128 to obtain the reconstructed
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Left stream Right stream

Decode Decode matches
8x8 blocks and 8x8 blocks
Unquantize Unquantize

blocks blocks

Perform IDCT Peiform IDCT
on unquantized on unquantized
blocks blocks
Combine blocks Combine blocks
into image into image
Left image Right image

Figure 3.3: Uniform DCT decompression scheme

There are two formal parameters given to the uniform DCT to control the image
quality. One is the scaling factor used to scale the quantization matrix for the DCT
coeflicients found in Figure 2.15(b). Values [or the scaling factor may be any number
greater than or equal to zero. A value of 0.25 usually gives images that are almost
indistinguishable from the original. A value of zero for the scaling factor is a special
case where there will be no quantization of coefficients. A value of one usually gives
subjectively acceptable reconstructed images, and values larger than three usually
give reconstructed images containing noticeable quality loss. The other parameter
given to the uniform DCT is the threshold value for block matching. The threshold
is the largest value for the MAE that is acceptable for blocks to match and may be

any integer greater than or equal to zero. A value of zero is generally used. but the
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and the amount of compression desired. The two parameters may be adjusted to
achieve the desired compression ratio but. due to the nature of compression based on
the DCT., an exact compression ratio cannot be specified. When high compression
ratios are used, the quality loss occurs uniformly and when the reconstructed images

are viewed on a HMD, the details of the object of interest in the image may appear

blurred.

3.2 Spatially Varying DCT

One of the methods of combining spatially varying sensing and the DCT is to use
the concept of spatially varying sensing while performing the quantization of the
DCT coefficients. This combination will be referred to as the spatially varying DC'I’
(SVDCT). The overviews of the SVDCT for compression and decompression look the
same as for the uniform DCT in Figure 3.1 and Figure 3.3. The difference between
the uniform DCT and the SVDCT is in the step where the DCT coeflicients are quan-
tized. The uniform DCT uses the same quantization matrix to uniformly quantize
both images, but the SVDCT uses a different quantization matrix depending on the
location of the block being quantized. The quantization matrix is modificd so that
the fovea in the stereopair retains its good quality while the periphery can aflford to
lose some quality. The stereopairs with vergence are convenient for use with spatially
varving sensing because in both the left and right images. the fovea is located in the
center.

Given a base quantization matrix, there must be some maximum limit on the
quality loss moving from the fovea to the periphery. This limit will be in the form of
a maximum scaling factor for the quantization matrix. Values for this limit can be
any number greater than 1, but should not be very high if the quality of the image
is to remain acceptable. The maximum limit on the scaling factor will be referred to
as (). At the fovea. the base quantization matrix is scaled by 1. so the matrix stays
the same at the center of the image. At the extreme periphery, the base quantization
matrix is scaled by the maximum scaling factor. As the blocks from the fovea to the

extreme periphery are quantized, the quantization matrix should be scaled so that
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VRT loses in:ore .ation exponentially moving from the fovea to the periphery. so it is
logical to make the scaling factor approach Q exponentially. The scaling factor will be
referred Lo as S and is dependent on the distance the block is from the center of the
image, which will be denoted by z. The z value is normalized against the maximum
distance a block can possibly be froin the fovea. Given that the fovea is the center of a
MxN image, the maximum distance is (%1)2 + (%)2 Since the VRT has expected
savings and the a value as parameters to control the compression, a similar set of
parameters should also be used for S to control the SVDCT compression. Along with
the maximum scaling factor Q. two more parameters which will be referred to as n

and (' will be used to control the exponential loss of quality. The equation for S is

shown in Equation 3.1 along with the restrictions on the various parameters.
S(z) =exp((Cx)" In(Q)) (3.1)
c>1
0<r <l
n>1

Q21

The n parameter is used in a similar way to o in the VRT. A value of one gives a
normal exponential curve and, as the value of n gets higher, an increasing area around
the fovea will retain goord quality. This matches the behaviour from higher values of
« giving a more defined fovea in compression using the VRT. The second parameter
(* is called the curve compression factor. C is used to make the exponential loss
of Guality reach the maximum limit before the extreme periphery is reached. The
iz the value of C, the faster the scaling factor S reaches Q. A value of one for
(" res.dicin the scaling factor reaching @ exactly at the extreme periphery, but if a
iarger value s used then S reaches @ before the extreme periphery is reached. Since
' 1+ oor maximum scaling factor, in the cases where the calculation of S results in
a.oover value ¢ an @, the value of Q will be used instead of the calculated S value.

1 ara ¢ o value is placed on S for the cases where the curve compression factor is

2t ader than one. Examples of the effects of modifying n and C are shown in Figures
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exponential curve Ior the scaling tactor as we move trom the tovea {(r = ) to the
extreme periphery (r = 1). Both n and C are 1 for this curve. In Figure 3.5, the
value of n is 4, and this produces a low scaling factor for a longer distance from the
fovea .ompared to the normal graph. In Figure 3.6, the value of n is set back to | and
the -alue of C is set to 2. The resulting scaling factor reaches the maximum of five
. if way to the extreme periphery and remains at five until the extreme periphen
.s reached. Comparing Figure 3.4 to Figure 3.6, it is evident why the (7 parameter
is called the curve compression factor. Figure 3.7 shows an examiple of the resulting

scaling factor combining the use of n and (" with n = 3 and (" = 1.5,

5 T T i T

y
a5t | / 1
A /o

Scaling factor (S(x))
w
T
1

25

15| -

1 L I 1 1

0.4 0.6
Normalized distance from fovea (x)

Figure 3.4: S(r) = exp(«rIn(5))

In total, there are five formal parameters that must be given to the SVDCT com:
pression method. The first parameter is the initial scaling factor of the quantization
matrix in Figure 2.15(b). This first parameter gives us the base gquantization ma-
trix, so useful values may be anywhere from 0.25 to 1. Like the uniforin DC'T, the
value of 0 for the scaling factor is the special case where no quantization of DCT

coefficients is performed. The second parameter is the maximum scaling factor () for
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Figure 3.5: S(r) = exp(a*In(")
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Figure 3.6: S(z) = exp((2z)In(5))
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the quantization matrix. The third and fourth parameters are the v oand € vadues
which were just described. Useful values for n range from 1 to 10, and those for ¢
from 1 to 2. The final parameter is the thresholt value for block matehing. It s
identical in function to the matching threshold used in the uniform DCT in deciding
what constitutes a block match. The main objective of the SVDC'T is to reduce the
storage space necessary for the blocks in the periphery so that more space can he
dedicated to keeping the quality high at and around the fovea. The storage savings
occur because the quantization produces longer runs of zeros, which usually take Jess
space to encode than a string of non-zero cocfficients  Additional storage savings may
occur because the larger number of coefficients quantized to zero in the periphery can
make block matching more successful. The extra storage space can then he used
to enhance the quality of the blocks around the fovea. by either allowing the hase
quantization matrix to contain smaller values or by modifving the compression curve
to produce a more defined fovea area. Stereopairs compressed with the SVDCT have
better quality in the center of both images so the object of interest is clearer than the

area surrounding the object of interest. This clarity is preferred when using o HAD.
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so although the SVDCT requires a small amount of extra processing than does the

aniformn DCTL it produces stereopairs more suited for use with a HMD.

3.3 Spatially Varying Sensing Followed by DCT

Another way of combining spatially varying sensing with the DCT is to first perform
the CVRT on the stercopair images and then use the uniform DCT to compress
the resalting smaller images. This spatially varying sensing and the DCT will be
referred to as the SVSDCT. Figure 3.8 shows an overview of the SVSDCT compression
method. CVRT compression is used to preprocess the images given to the uniform
DC L The uniform DCT is used instead of the SVDCT because the CVRT has already
taken into account that the area around the fovea should take precedence over :he
periphery. There is no need to further enhance the area around the periphery in the

preprocessed image with the SVDCT. Decompression using the SVSDCT is outlined

Left image Right image
CVR compress CVR compress
image \ image
t
Uniform
DCT

Compression

Left stream Right stream

Figure 3.8: SVSDCT compression scheme

in Figure 3.9. The left and right streams are fiist decompressed using the uniform
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DCT, and the results are given to the CVRT decompression algorithm to reconstruct

the left and right images.

Left stream Right stream

L
¢

Unif.
DCT
Decompression

T

CVR decompress CVR decompress
image image
Left image Right image

Figure 3.9: SVSDCT decompression scheme

The SVSDCT combines a spatial domain compression method (the CVRT) and a
frequency domain compression method (the uniform DCT). The major advantage that
the SVSDCT method has over the uniform DCT and the SVDCT is speed  CVRT
compression has linear complexity and produces a smaller image for the uniform DC'T
to compress. Assuming that there is no DC'T hardware present, the smaller imaees
significantly reduce the compression times of the uniform DCT. For decompression,
the processing time for the uniform DCT portion is about the same as for compression,
but the CVRT can use different types of interpolation to generate the unknown pixel
values. If nearest neighbour interpolation is used then CVRT decompression is linear,
making SVSDCT compression and decompression use relatively the same amount of
processing time.

There are four formal parameters that must be supplied in order to use the SVS-

DCT compression method. The first two parameters are the expected savings and the
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o value that are normally used in CVRT compression. The other two parameters are
the scaling factor and the matching threshold used for the uniform DCT compression
portion of the SVSDCT. The practical value for the scaling factor in this case, how-
ever, will not be the same as for the uniform DCT. Since there is already information
being lost using CVRT compression, it is necessary to choose a scaling factor that
would keep the images at a high quality. Practical values for the scaling factor for use
with the SVSDCT would usually lie between 0.25 and 1. The same reasoning applies
to the matching threshold. Remember that in the CVRT decompression, one pixel
may contribute to many pixels around it. The matching threshold should be set very
low so that block matches that are not exact will not become too obvious once the
CVRT decompression is done. Stereopairs using the SVSDCT smooth out the blocky
appearance of the uniform DCT and the SVDCT at high compression ratios and may

he more appealing to the human eye.
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Chapter 4

Color Support

Greyscale images are helpful to illustrate the quality loss when compression is high.
but most images are in color. In this chapter we look at how to add color support to
the greyscale compression methods. Color models (also known as color spaces) will
first be discussed, and th-n the choice of color model and how we use it to compress

color stereopairs will be presented.

4.1 Color Models

In order to display an image from a computer, the image is usually stored as triplets in
the RG B color model. Each pixel in the image has a triplet of numbers corresponding
to the amount of red, green, and blue present in the pixel. This color model is
convenient for display devices, but it is not intuitive to think of colors in the RG I3
color model, nor is it ideal for compression purposes since each number in the triplets
have equal importance to represent the pixel on the screen.

A more intuitive way to think of colors is in the HSB color model. The three
letters stand for hue, saturation, and brightness. The H.SB color model is also known
as HSV. Like the RG B color model, the HS B color model has triplets of numbers
representing the pixels in the image. The three numbers represent the hue, saturation,
and intensity of a pixel. The HSB color model is a good one for artists since hue,
saturation, and brightness are more closely related to a painter’s palette than is the
RGB color model. Operations such as darkening, brightening, and tinting are more
easily described and, while the H.SB color model is more intuitive, each value in a

HSB triplet is equally important in representing a pixel’s color.
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A color model used by many color television broadcasts is YU'V'. It also goes by
the name Y I(Q). The Y stands for luminance and the UV’ both stand for chrominance.
As with the previous two color models, pixels in the YUV color model are triplets.
The triplets represent a luminance value and two chrominance values for each pixel
in the image. The luminance component of an image represents what the image
would look like if it were in greyscale. The chrominance components add the color
information to the image. The human eye detects differences in luminance, however.
much more than differences in chrominance. Thus the Y value has more importance
than either of the two chrominance values, making the Y1’V color model a good

candidate for use with compression methods.

4.2 RGB versus YCC.

If an image is left in the RGB color model. or converted to the HSB color model
for compression. each component of the triplets would have to be weighted cqually
for the appropriate effect that the component has on the pixel value. Converting to
the YUV color model would give the advantage of being able to reduce the quality
of the chrominance components without noticeable loss in color iality to the human
eve. However, there is another color model closely related to the YUV miodel called
Y (., which 1s used in JPEG. The formnlas for converting from the RGB to the
Y (', (' color model are given in Equations 4.1 to 4.3, and the formulas for converting
back from the Y (',C', to the RG B color model are given in Equations 4.4 to 4.6. All
these cquations assume that the RGB components have been normalized so that the
lowest possible RG B value is 0 and the largest pussible RGB valueis 1. R. G. and B
will stand for the red, green, and blue values, respectively, while Y, C. and C, will

stand for the luminance and the two chrominance values, respectively.

Y =0.29897 + 0.5866G + 0.11458 (4.1)

Cy = —0.1687TR — 0.3312G + 0.50008 (4.2
', = 0.5000R — 0.4183G — 0.0816 B (4.3)
R =Y +0.0000C, + 1.4022C, (4.4)
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G =Y —0.3456C, — 0.7145C, (1.5
B =Y +1.7710C, — 0.0000C, (-1.6)

The luminance component of the Y'I'V" and the Y C,(, color models range from 0 to
1. The main advantage of the Y CpC, color model over the YUV color model is that
the chrominance values have a more convenient range of values. The chrominance
values for the Y (,C, range from -0.5 to 0.5 which, when denormalized, would be
the preferred range of values over the denormalized YU’V chrominance valnes when

performing the DCT.

4.3 Modifications for Color Support

There are two modifications to be made when adding color support to all three
grevscale compression methods. Both modifications are meant to take advantage
of the fact that the chrominance values of the images can lose quality more than the
luminance values without a major drop in perceivable color quality. One of the mod-
ifications is to quantize the chrominance images more coarsely than the luminance
image. The quantization matrix used to quantize both the 'y and (', components is
shown in Figure 4.1, and the luminance or Y component is quantized as il it were
a grevscale image using the matrix from Figure 2.15(b). Like the greyscale quan-
tization matrix. the color quantization matrix also comes from the JPEG bascline
compression standard. Comparing the two quantization matrices, it is clear that the

chrominance values are quantized much more heavily than the luminance values. The

17 118 124 {47 (99199 {99 |99
18 |21 |26 166 |99199 |99 |99
24 126 (56 |99 199199199 |99
47 [ 66 199 199 (99799 |99 |99
99 (9919919999199 (99199
99 (99199199 (991999999
99 (9919919999199 1]99 199
99199199199 ]99199(99 199

Figure 4.1: Quantization matrix for C,C,

second modification made to the chrominance portions of the image is to subsample

the chrominance images by a factor of two. This modification also comes from the
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JPEG baseline compression standard. The subsampling reduce. the -pace taken by
cach of the chrominance images to 25% of the original image, with subjectively little
change in color quality.

Since the chrominance components are already quantized so heavily, the SVDCT
will modify only the luminance quantization matrix during the compression. The color
quantization matrix will remain constant for the SVDCT just as with the uniform
DCT. For the SVSDCT, the luminance component will be treated as a greyscale
image compressed with the SVSDCT. For the chrominance components, the VRT
is performed first, and the resulting images are then subsampled by a factor of two
hefore being compressed using the uniform DCT as if they were greyscale images.
Figure 4.2 illustrates the compression process for both the uniform DCT and the
SVDCT, and Figure 4.3 illustrates the compression process for the SVSDCT.

Left and right R Leftand right G Leftand right B Left and right R Left and right G Left and right B

I

RGBto YC C  conversion RGBto YC,C  conversion
Y Cy C, Y Cy c,
Subsample Subsample
y
. . SVDCT
Uniform DCT compression . Uniform DCT compression
compression
Left and right streams Left and right streams
(a)} Uniform DCT (b) SVDCT

Figure 4.2: Color compression with the uniform DCT and SVDCT
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Left and right R Left and right G Left and right B

RGBto YC bC . conversion

VRT compression

Subsample

Uniform DCT compression

Left and right streams

Figure 4.3: Color compression with the SVSDC'I
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Color decompression of stereopairs via the uniform DCT and SVDCT is shown in
Figure 4.4, and decompression via the SVSDCT is shown in Figure 4.5. All three de-
compression methods are basically the reverse of their respective compression method.
The portion of the Figures that may need clarification is the expanding of the chromi-
na:. - images. When expanding the subsampled chrominance components. there is
no fixed method of interpolation that is required. It is up to the programmer to
decide which interpolation method to use, depending on the quality preferred. For

the purposes of this thesis, nearest neighbour interpolation was used.

Left and right streams Left and right streams

\ \
SVDCT
decompression

| |

Uniform DCT decompression Uniform DCT decompression

Expand chrominance images Expand chrominance images
Y C, C, Y c, C,
YC,C, 1o RGB conversion YC,C 1o RGB conversion
Y

Left and right R Left and nght G Left and right B Left and right R Left and right G Left and right B
(a) Uniform DCT (b) SVDCT

Figure 4.4: Color decompression with the uniform DCT and SVDCT

The only extra formal parameter that is added for color support is the scaling
factor of the color quantization matrix. The usual value of the color scaling factor is
1. If very high color quality is needed then the scaling factor may be reduced to around

0.25. Values larger than 1 may end up quantizing the chrominance components too

39



Left and right streams

)

Uniform DCT decompression

VRT decompression

Expand chrominance images

C

YCbC . o RGB conversion

Left and right R Left and right G Left and right B

Figure 4.5: Color decompression with the SVSDC'T
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much and thus produce a stereopair that appears to be grevsccle because much of

the color information would be eliminated.
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Chapter 5

Analysis of Compression

The uniform DCT, SVDCT, and SVSDCT will be analyzed according to their per
formance under low, medium, and high compress’on ratios. Results of the three com
pression methods will be shown, followed by results of subjective evalnation surveys

for the images produced by the three compression methods.

5.1 Compression results for greyscale images

The original stereopair used % r the sreyscale image compressien methods is shown in
Figure 5.1. The left and right images have dimensions of 320x240 pixels cach and are
taken with a vergence angle of 5°. Each pixel is a value between 0 and 255, inclusive,
with 0 beiug the d=i"- s* and 255 being the brightest. The left and right images are

stored in PGM fer .+ " 2" is a simple format containing basically the width and

height of the image i+ 2d by the pixel values

Figure 5.1: Original greyscale stereopair
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5.1.1 Low compression ratios

For the low compression ratios, the reconstructed stereopairs should be practically
indistinguishable from the original. For the highest image quality, the uniform DCT
was applied with no quantization of the coefficients, so that the only reconstruction
error was from the lack of precision of the floating point number operations. The
matching threshold was set to zero so that every block match that would occur would
be an exact match. Both original images have dimensions 320x240, which means each
image contains 76800 pixels for a total of 153600 pixels per stereopair. Since the values
of the pixels are between 0 and 255, one byte (8 bits) is required to represent one
pixel and therefore 8 bits/pixel are needed to represent the stereopair (not including
header information). When the uniform DCT is used to compress the stereopair, the
amount of space taken by the two images totals to 86644 bytes (including header
information), which averages out to approximately 4.51 bits/pixel. The compression
ratio works out to be approximately 1.77:1. This result is a good illustration of the
information packing ability of the DCT. The results of the compression are the same
for all three compression methods, since the SVDCT and SVSDCT can both be made
to behave like the uniform DCT. Because there was hardly any loss in quality, there

were no block matches achieved for this particular stereopair. Figure 5.2 shows the

reconstructed stereopair for comparison with the original in Figure 5.1.

Figure 5.2: Low compression stereopair
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5.1.2 Medium compression ratios

For the medium compression ratios, the reconstructed stereopairs should keep accept-
able image quality, but not necessarily be indistinguishable from the original. The
main goal of the medium compression ratios is to find a good compromise between
good reconstructed image quality and small compressed file sizes.

The uniform DCT was considered first, and a value of 0.8 was used as the scaling
factor, with zero as the mat s threshold so that block matches would be exact. The
resulting file size total of the .t and right images was 9288 bytes, which averages to
approximately 0.48 bits/pixel. The compression ratio is approximately 16.51:1, and

the number of block matches found were 136. Figure 5.3 shows the reconstructed

stereopair of the uniform DCT using the medium compression parameters.

Figure 5.3: Medium compression stereopair from uniform DCT

The SVDCT was the second compression method considered. Parameters for the
SVDCT were chosen to produce a compressed file size total which was very close to
the r-ulting total in the uniform DCT. After some experimentation with different
values, the parameters chosen were 0.5 for the base quantization matrix scaling factor,
3 for the value of n, 9 for the maximum quantization value, 1 for the CCF, and 0
for the matching threshold. The resulting file size total was 9280 bytes, averaging
to approximately 0.48 bits/pixel as in the uniform DCT. The compression ratio for
the SVDCT compression is approximately 16.55:1, and the number of block matches
found were 95. The compression curve for the scaling factor of the base quantization

matrix is shown in Figure 5.4, and the reconstructed stereopair using the SVDC'T is
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Figure 5.4: S(r) = exp(2®1In(9))

The SVSDCT was the final compression method considered. Like the SVDCT, the
parameters chosen for the SVSDCT were selected so that the resulting file size total
would be almost the same as for the uniform DCT. After experimenting with different
values, the chosen parameters were 0.45 for the scaling factor of the quantization ma-
trix. 75% for the expected compression, and 0.81 as the value of a. These parameter
values resulted in a total file size of 9224 bytes, which works out to approximately
0.48 bits/pixel - the same as the uniform DCT and the SVDCT. The compression
ratio is approximately 16.65:1, and the number of block matches achieved was 13.

Iigure 5.6 shows the reconstructed stereopair for the SVSDCT.

5.1.3 High compression ratios

For the high compression ratios, there is noticeable loss in image quality. The main
goal here is to find the method which produces a reconstructed stereopair that is more

appealing than the others.



Figure 5.5: Medium compression stereopair from SVDCT

Figure 5.6: Medium compression stereopair from SVSDCT
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As in the previous two sections, the uniform DCT was the first method considered.
In order to illustrate how the uniform DCT loses quality, a value of 2.5 was used for
the quantization matrix scaling factor, and a value of 0 was chosen for the matching
threshold. These values produced a total file size of 4813 bytes, which averages to
approximately 0.25 bits/pixel. The compression ratio is approximately 31.91:1, and
the number of block matches found was 548. The reconstructed stereopair using

the uniform DCT is shown in Figure 5.7. The whole image, including the object of

intevest, seems uniformly blocky in appearance.

Figure 5.7: High compression stereopair from uniform DCT

Consistent with the previous section, the SVDCT was the next compression
method to be considered. The parameter values were chosen to give a total file
size very close to that of the uniform DCT. After experimenting with different values.
the parameters chosen were 1 for the base quantization matrix scaling factor, 3 for
the value of n, 6 for the maximum quantization value, 1.5 for the CCF, and 0 for the
matching threshold. These parameters resulted in a total file size of 4875 bytes, which
averages to approximately 0.25 bits/pixel, as in the uniform DCT. The compression
ratio was approximately 31.51:1, and the number of block matches found was 530.
The compression curve for the scaling factor of the base quantization matrix is shown
in Figure 5.8, and the reconstructed stereopair using the SVDCT is shown in Figure
5.9. The object of interest is now clearer than the rest of the image which begins to
get more blocky at the edges of the images.

The final co:npression method looked at was the SVSDCT. As before, the values
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Figure 5.9: High compression stereopair from SVDCT
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of the parameters chosen for the SVSDCT were selected so that the resulting total
file size would be very close to that of the uniform DCT and the SVDCT. After
experimenting with different values, the parameters chosen were 0.5 for the scaling
factor of the quentization matrix, 89% for the expected compression, 0.2 for the value
of a, and 0 for the matching threshold. These values resulted in a total file size of 4796
bytes, which averages to approximately 0.25 bits/pixel, as in the uniform DCT and
SVDCT. The compression ratio is approximately 32.03:1, and the number of block
matches found was 11. The reconstructed stereopair using the SVSDCT is shown
in Figure 5.10. The blocky appearance present in both the uniform DCT and the
SVDCT appears to be smoothed out, with the object of interest at the center having

better quality than the other areas of the image.

Figure 5.10: High compression stereopair from SVSDCT

5.2 Compression results for color images

For the color compression of stereopairs, the stereopair used also has left and right
images with dimensions of 320x240 pixels. The vergence angle used was 5°, and the
RG B components are all values between 0 and 255 inclusive. The format of the color
images used was the PPM format which basically stores the width and height of the
image followed by the RGB triplets representing the pixel colors.
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5.2.1 Low ~ompression ratios

As with the low compression ratio for the greyscale stereopair, we do not quantize the
DCT coefficients. However, the loss in accuracy is no longer from the lack of precision
in floating point operations only. Since we subsample the chrominance images before
applyiug the DCT, there is reconstruction error in the expanding of the subsampled
chrominance images. However, because the reconstruction error of the chrominance
images has a lesser effect on the human eve, the reconstructed stercopair should still
be indistinguishable from the original, from a subjective point of view. Both the left
and right images have RGB components which range from 0 to 255, meaning cach
pixel needs three bytes for storage (8 bits per RGB comiponent). In total, a color
stereopair needs 460800 bytes to store the raw image information at 21 bits/pixel.
When the uniform DCT is applied to the color stereopair, the resulting space needed
to store the image is 121947 bytes. This averages out to approximately 6.35 bits/pixel.
and gives a compression ratio of about 3.78:1. Because there was hordly any loss in
quality, no block matches were found for this particular stereopair. The SVD(Y]
and SVSDCT can be made to behave like the uniform DCT, so the compression
results are the same for all three methods. Even though the chrominance images
were subsampled, there was no noticeable loss in color quality or iinage quality from
the original, just as there was no noticeable loss in quality for the low compression

ratio and the greyscale stereopair.

5.2.2 Medium compression ratios

For the medium compression ratios, reconstructed stercopairs do not have the same
quality as the original, but the important details of the image should be preserved.
Acceptable quality loss with a good compression ratio is the main goal.

Using the uniform DCT, a va ie of 0.275 was used as the quantization matrix
scaling factor for the luminance image, 1 was used as the quantization matrix scaling
factor for the chrominance images, and 0 was used as the block matching threshold.
The resulting storage needed for the compressed stereopair was 22191 bytes, which
averages to approximately 1.16 bits/pixel. The compression ratio was approximately

20.77:1, and no block matches were found for the particular stercopair used.
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For the SVDCT, a value of 0.2 was used as the base quantization matrix scaling
factor for the luminance image, 1 was used as the quantization matrix scaling factor
for the chrominance images, 3 was used as the value of n, 8§ was used as the maximum
quantization factor, 1 was used as the CCF, and 0 was used as the matching threshold.
The resulting storage needed for the compressed stereopair was 22485 bytes, which
averages to approximately 1.17 bits/pixel. The compression ratio was approximately
20.49:1, and again no block matches were found. The compression curve for the

SVDCT medium compression parameters is shown in Figure 5.11.
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Figure 5.11: S(z) = exp(2*In(8))

For the SVSDCT, a value of 0.2 was used as the quantization matrix scaling factor
for the luminance image, 1 was used as the quantization matrix scaling factor for the
chrominance images, 70% was used as the expected compression, 0.1 was used as the
value for a, and 0 was used as the matching threshold. The resulting storage needed
for the compressed stereopair was 22292 bytes, which averages to approximately 1.76
bits/pixel. The compression ratio was approximately 20.67:1, and no block mat-hes
were found.

The resulting images from all three compression methods used here produced
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images of the same quality as did the medium compression ratios for the grevscale
images; however, the compression ratios are higher than that of the grevscale images

because of the smaller size of the chrominance images.

5.2.3 High compression ratios

For the high compression ratios, there is a noticeable loss in image quality, so the
goal here is to find the stereopair that is the most appealing, from the 3 compression
methods.

For the uniform DCT, 2 was used as the quantization matrix scaling factor for
the luminance image, 1 was used as the quantization matrix scaling factor for the
chrominance images. and 0 was used for the matching threshold. The resulting storage
needed for the compressed stereopair was 7192 bytes, which averages to approximately
0.37 bits/pixel. The compression ratio was approximately 64.07:1, and 388 block
matches were found. The reconstructed stereopair displays the same type of uniform
blockiness as its greyscale equivalent for high compression ratios using the uniform
DCT.

For the SVDCT, 0.8 was used as the base quantization matrix scaling factor for the
luminance image, 1 was used as the quantization matrix scaling factor for the chromi-
nance images. 6 was used as the value for n. 6 was used as the maximum guantization
factor, 1.9 was used as the CCF, and 0 was used as the matching threshold. The re-
sulting storage needed for the compressed stereopair was 7130 bytes, which averages
to approximately 0.37 biis/pixel. T.e compression ratio was approximately 64.6:3:1,
and 423 block matches were found. The compression curve for the SVDCT high
compression parameters is shown in Figure 5.12, and the resonstructed stereapair
contains similar characteristics to the greyscale SVDCT at a high compression 1.ile,
with the images being clear at the center and getting blockier at the edges.

For the SVSDCT, 0.5 was used as the quantization matrix scaling factor for the
luminance image, 1 was used as the quantization matrix scaling factor for the chromi-
nance images, 86% was the expected compression, 0.15 was used as the value for o,
and 0 was used as the matching threshold. The resulting storage needed for the com-
pressed stereopair was 7020 bytes, which averages to approximately 0.37 bits/pixcl.

The compression ratio was approximately 65:64:1, and 7 block matches were found.
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The reconstructed stereopair for the SVSDCT did not have the blocky appearance
that the uniform DCT and the SVDCT had, which matches the behaviour of the

SVSDCT for the grevscale image at a high compression ratio.

5.3 User survey results

The HMD used in the small user survey was the “I-glasses” from Virtual I/0O. Since
the stereopairs are taken with vergence, some of the subjects’ eyes may not be able
to adjust to a vergent stereopair. In these cases, the images are adjusted so that the
images appear to have been taken with a parallel camera geometry. The adjusted
stereopair is meant to simulate a parallel axes camera geometry where the left and
right cameras have a wider field of view than the actual field of view of the cameras,
and :ien the vergent stereopair is mapped onto the new image areas. A calibration
stage was performed first with the parallel version of the vergent stereopair, as well
as the vergent stereopair, shown to the subject to see which one he or she preferred

to look at. Figure 5.13 illustrates the adjusted vergent stereopair for simulating a
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Figure 5.13: Adjusted vergent stereopair for parallel stereopair

The survey was meant to test the quality of the reconstructed stercopairs on the
HMD using the uniform DCT, SVDCT, and SVSDCT with different compression
ratios. Questions on how the reconstructed stereopairs appeared compared to the
original stereopair were asked in random order, but the same random order was used
for every user surveyed. The users were also asked to give the order of preference
for the medium and high compression ratio stereopairs, if they felt that there were
advantages to some reconstructed images over others in identifying a possible defect
in the main object in the stereopair. There were 19 people surveyed in total. The
questions in the questionnaire are provided in Appendix A. The same questionnaire

was used for both the greyscale and color stereopairs.

5.3.1 Greyscale

The first part of the survey dealt with the Jow compression ratio. The person was
asked to rank the difference according to the subjective impairment scale in Figure
5.14. This is the same scale shown from the discussion of subjective fidelity criteria,
but instead of the word “points”, the word “rank” was chosen. The results are given
in Figure 5.15 and the MOS (mean opinion score) from those results is 6.5. This
high MOS supports the fact that the low compression ratio produces an image that
is almost indistinguishable from the original.

The second part of the survey dealt with the medium compression ratios. The
rankings for the reconstructed stereopairs from the uniform DCT, SVDCT, and SV5-

DCT are shown in Figure 5.16. The mean opinion scores for the three compression
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Opinion Rank
Not perceptible 7
Barely perceptible 6
Definitely perceptible but only slight impairment of the image 5
Impairment to the image but not objectionable 4
3
2
1

Somewhat objectionable
Definitely objectionable
Extremely objectionable

Figure 5.14: Subjective impairment scale used in survey

Rank | Occurrences
7 11
6 6
5 2
4 0
3 0
2 0
1 0

Figure 5.15: Low compression ratio scores

methods are 6.1 for the uniform DCT, 6.1 for the SVDCT, and 5.7 for the SVSDCT.
Only 9 people thought the stereopairs needed an order of preference, and of those 9
people, 3 preferred the uniform DCT over the others, 4 preferred the SVDCT, and
2 preferred the SVSDCT. So, the survey results for the medium compression ratios
seem to support the idea that the medium compression ratios do have some difference
from the original, but not a very significant difference.

The third and final part of the survey dealt with the high compression ratios. The
rankings for the uniform DCT, SVDCT, and SVSDCT are shown in Figure 5.17. The
mean opinion scores for the three compression methods are 3.5 for the uniform DCT,
3.6 for the SVDCT, and 3.7 for the SVSDCT. This is consistent with the fact that
the high compression ratios do produce images with a loss in image quality. There
were 14 people that felt the stereopairs needed an order of preference according to
which one would be most appealing to identify a possible defect in the object of
interest. Of these 14 people, no one chose the stereopair from the uniform DCT over

the others, 9 people chose the SVDCT stereopair, and 5 people chose the SVSDCT
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Rank e DCT TSVDCT [ SVSDCT
7 8 7 7
6 6 6 3
5 3 6 7
2 T 0 1
3 0 0 1
) 0 0 0
1 0 0 0

Figure 5.16: Medium compression ratio scores

stereopair. The preferences suggest that the compression methods using spatially
varying sensing at high compression ratios produce more appealing images than the

conventional uniform DCT method for a HMD.

Rank Occurrences ]
Uniform DCT | SVDCT | SVSDCT
7 0 0 0
6 2 3 2
5 1 3 2
4 5 4 6
3 7 4 7
2 4 3 1
1 0 2 1

Figure 5.17: High compression rz: o scores

5.3.2 Color

As in the greyscale survey, the first part of the color survey dealt with the low compres-
sion ratio. Each person was asked to rank the difference according to the subjective
impairment scale in Figure 5.14. The results are given in Figure 5.18 and the MOS
(mean opinion score) from those results is 6.8. This high MOS supports the fact that
the low compression ratio produces an image that is almost indistinguishable from
the original, just as in the greyscale survey.

The second part of the survey dealt with the high compression ratios. The rankings

for the reconstructed stereopairs from the uniform DCT, SVDCT, and SVSDCT are
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Figure 5.18: Low compression ratio scores

shown in Figure 5.19. The mean opinion scores for the three compression methods
are 5.1 for the uniform DCT, 5.0 for the SVDCT, aud 4.7 for the SVSDCT. There
were 13 people that felt the stercopairs needed an order of preference. Of these
13 people, 2 chose the uniform DCT stereopair over the others, 7 people chose the
SVDCT stereopair, and 4 people chose the SVSDCT stereopair. The preferences seem
to suggest that the compression methods using spatially varying sensing produce a
more appcaling inage for high compression ratios than the conventional uniform DCT

method for the HMD.

Rank Occurrences
Uniform DCT | SVDCT | SVSDCT
7 3 1 2
6 4 5 4
5 5 8 7
4 6 3 i
3 1 2 3
2 0 0 2
1 0 0 0

Figure 5.19: High compression ratio scores

The third and final part of the survey dealt with the medium compression ratios.
The rankings for the uniform DCT, SVDCT, and SVSDCT are shown in Figure
5.20. The mean opinion scores for tt three compression methods are 6.4 for the
uniform DCT, 6.4 for the SVDCT, anu .2 for the SVSDCT. Only 4 people thought
the stereopairs needed an order of preference. and of those 4 people, 2 preferred the

uniform DCT over the others, 1 preferred the SVDCT over the others, and 1 preferred
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seem to support the idea that the medium compression ratios do have some difference

from the original, but not a significant difference.

Rank Occurrences
Uniform DCT | SVDCT | SVSDCT
7 10 10 9
6 7 7 5
) 1 | 14
4 1 1 1
3 0 0 0
2 0 0 0
1 0 0 0

Figure 5.20: Medium compression ratio scores

The results of  he survey suggest that there are no major differences between the
uniform DCT, the SVDCT, and the SVSDCT for the low and medium compression
ratios. For the high compression ratios, there does seem to be a difference in guality
for the stereopairs. The SVDCT seems to be the most preferred in the case of high
compression ratios. The SVSDCT is the second most preferred. followed by the

uniform DCT which is least preferred.



Chapter 6

Conclusion

Iu this thesiv. we try to enhance stercopair compression for use with a HMD in two

ways:
e using a new type of stereopair called a vergent stereopair and
o integrating spatially varving sensing into the compression.

The first is meant to improve the depth information present in a stereopair. The
second is intended to improve upon the conventional uniform loss of quality that many
lossy compression methods use. The DCT is chosen as the transform for transform
coding, and a straightforward stercopair compression method called the uniform DCT
is deseribed. To improve upon the uniform DCT, the concept of spatially varving
sensing is used to create the SVDCT and the SVSDCT compression methods. All
three compression methiods have parameters that can be set to control the amount
of compression in order to achieve low to high compression ratios. Compression of
grevscale stereopairs was considered first, followed by compression of color stereopairs.
Color stereopair compression used the Y CpC, color model instead of the RGB color
model to compress color information more efficiently. The results of a small user
survey suggest that the SVDCT and SVSDCT compression methods are relatively the
same, in terms of image quality, as the uniform DCT for low to medium compression
ratios. When high compression ratios are used, the results of the survey suggest that
the SVDCT and the SVSDCT produce better quality stereopairs than the uniform
DCT. While uniform quality loss works well for lossy compression of single images

viewed on a screen, spatially varying quality loss seems to work better than uniforin
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quality loss for lossy compression of stereopairs viewed on a HMD. This improved
compression performance was the intended result and could be a step in the right
direction in creating a stereopair compression standard to prepare for the possible

time when HMD devices become common.
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ClLapter 7
Future Work

Currently, the uniform DCT, SVDCT, and SVSDCT all have static Huffman code
tables for all quantized coefficient blocks. For the higher compression ratios, it might
be advantageous to allow for the specification of the Huffman code table used for a
particular stereopair. There is a tradeoff between the Huffman code table size and
the amount of storage space saved, but in some cases a custom Huffman code table
yields a smaller compressed file size.

The MPEG standard for compression of a sequence of images is closely related
to the three compression methods presented, since all use the DCT on 8x8 blocks.
and all use block matching [19]. MPEG could be combined with any or all of the
three compression methods presented to compress a sequence of stereopairs. With
the growing popularity of MPEG hardware, it may be possible to use the DCT and
block matching capabilities of the existing MPEG hardware in order to improve the
performance of the stereo compression methods, and to implement a format for motion
stereopairs.

There has been success using the wavelet transform to perform image compression.
Wavelet compression is similar to compression using the DCT since both produce coef-
ficients that are quantized and then encoded efficiently. The major difference between
wavelet compression and DCT compression is the generation of the transform coeffi-
cients. The wavelet transform used in wavelet compression involves the selection of a
wavelet function which has certain properties to try to efficiently pack image informa-
tion into the fewest number of coefficients. Selection of a good wavelet function is not

a trivial task, and a good discussion of the factors involved can be found in [10]. The
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wavelet function determines a set of basis functions or images which can be thought
of as dilated and translated versions of the original wavelet function when in 1D. To
illustrate the dilation and translation of the wavelet function, we will use a popular
wavelet called the Haar wavelet in Figure 7.1. The first § basis functions in 1) are

shown in Figure 7.2. In 2D, the wavelet transform produces a set of coefficients

Figure 7.1: Haar wavelet
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Figure 7.2: First 8 Haar bases

corresprnding to basis images. and these coefficients can then be quantized for com-
pression purpos~s. 't he wavelet transform can either be applied to the whole image
or applied to subimages such as the 8x8 blocks used in this thesis. For the purposes

of stereo image compression, the 8x8 blocks would most likely be used since it wonld
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allow for block matching and for the spatially varying quantization of blocks. The
current problem with using wavelet compression is that there is no wavelet function
that is considered the “best wavelet”. In the future, there may be a consensus as
to which wavelet is generally best to use for most real world images. If a consensus
is reached, then the option of using the wavelet transform instead of the HCT to
generate coefficients may become more attractive. Using wavelet compression will
have the disadvantage of not being able to take advantage of MPEG hardware but.
depending on which wavelet is chosen, the processing time of the wavelet transform
could be significantly less than that required of the DCT when there is no hardware
assistance.

There is a property of the human visual system that has not been addressed using
any of the three compression methods in this thesis. It is called the singleness of
vision property [13] and is used in [7, 8]. Basically, this property suggests that when
both eyes are given the two different images, only one side is perceived to have good
resolution in an area while the same area in the other side is suppressed. Theoretically
one side could have compression parameters to preserve much image quality. while
the other side would have compression parameters that would eliminate much of the
image qualivy, but still keep enough information for depth perception. Since the
dominant eye is not on the same side for everyone and the degree of dominance is
also not the same, it is difficult to apply the singleness of vision propertyto stereopair
compression. For personal use, however, it may be useful to modify the stereopair

compression m thods to support different compression parameters for each side.
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Appendix A

Questionnaire for (h+ user survey

Instructions

It is probably best to read this en...: thing before you put the headset on and
begin. The images are viewed by pressing the key for the image you would like to view
(for example, o for image O, b for image B, etc). When finished viewing an image,
press escape or space bar to return to the prompt where you can select another image.

A.1 First section

The original stereopair is image O. Compare the original to image A and rank the
difference between the two images according to the following table:

Opinion Rank
Not perceptible

Barely perceptible

Definitely perceptible but only slight impairment of the image
Impairment to the image but not objectionable

Somewhat objectionable

Definitely objectionable

Extremely objectionable

=1

— D W o Ot OY

The difference between the original and image A is

A.2 Second section

For this section, you will be using the same original image and the three images
B, C, and D. You will be ranking the difference between the original and the three
irages according to the table above. All the rankings may be the same. There is no
requirement that the rankings be unique.
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The difference between the original and image B is
The difference between the original and image C is
The difference between the original and image D is

If you were to try to identify a defect in the main object in the image, would B, C,
and D be equally appealing to identify the defect?

Yes No

If not, then list the order of preference of B, C, and D.

A.3 Third section

For this section, you will be using the original image O again and the three images
E, F, and G. You will be ranking the difference between the original and the three
images according to the table in the first section. All the rankings may be the same.
There is no requirement that the rankings be unique.

The difference between the original and image E is
The difference between the original and image F is
The difference between the original and image G is

If you were to try to identify a defect in the main object in the image, would ki, I,
and G be equally appealing to identify the defect?

Yes No

If not, then list the order of preference of E, F, and G.
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quality loss for lossy compression of stereopairs viewed on a HMD. This improved
compression performance was the intended result and could be a step in the right
direction in creating a stereopair compression standard to prepare for the possible

time when HMD devices becomme common.
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Chapter 7
Future Work

Currently, the uniform DCT, SVDCT, and SVSDCT all have static Huffman code
tables for all quantized coefficient blocks. For the higher compression ratios, it might
be advantageous to allow for the specification of the Huffman code table used for a
particular stereopair. There is a tradeofl between the Huffman code table size and
the amount of storage space saved, but in some cases a custom Huffman code table
yields a smaller compressed file size.

The MPEG standard for compression of a sequence of images is closely related
to the three compression methods prescnted, since all use the DCT on 8x8 blocks.
and all use block matching [19]. MPEG could be combined with any or all of the
three compression methods presented to compress a sequence of stereopairs. With
the growing popularity of MPEG hardware, it may be possible to use the DCT and
block matching capabilities of the existing MPEG hardware in order to improve the
performance of the stereo compression methods, and to implement a format for motion
stereopairs.

There has been success using the wavelet transform to perform image compression.
Wavelet compression is similar to compression using the DCT since both produce coef-
ficients that are quantized and then encoded efficiently. The major difference between
wavelet compression and DCT compression is the generation of the transforin coeffi-
cients. The wavelet transform used in wavelet compression involves the selection of a
wavelet function which has certain properties to try to efficienily pack image informa-
tion into the fewest number of coefficients. Selection of a good wavelet function is not

a trivial task, and a good discussion of the factors involved can be found in [10]. The
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of as dilated and translated versions of the original wavelet function when in 1D. To
illustrate the dilation and translation of the wavelet function, we will nse a popular
wavelet called the Haar wavelet in Figure 7.1. The first 8 basis functions in 1) are

shown in Figure 7.2. In 2D, the wavelet transform produces a set of coeflicients

Figure 7.1: Haar wavelet
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corresponding to basis irnages. and these coefficients can then be quantized for com-
pression purposes. The wuvelet transform can either be applied to the whole image
or applied to subinages such as the 8x8 blocks used in this thesis. For the purposes

o stereo image compression, the 8x8 blocks would most likely be used since it would
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current problem with using wavelet compression is that there is no wavelet function
that is considered the “best wavelet”. In the future, there may be a consensus as
to which wavelet is generally best to use for most real world images. If a consensus
is reached, then the option of using the wavelet transform instead of the ICT to
generate coefficients may become more attractive. Using wavelet compression will
have the disadvantage of not being able to take advantage of MPEG hardware but.
depending on which wavelet is chosen, the processing time of the wavelet transform
could be significantly less than that required of the DCT when there is no hardware
assistance.

The e is a property of the human visual system that has not been addressed using
any of the three compression methods in this thesis. It is called the singleness of
vision property [13] and is used in [7, 8]. Basically, this property suggests that when
both eyes are given the two different images, only one side is perceived to have good
resolution in an area while the same area in the other side is suppressed. Theoretically
one side could have compression parameters to preserve much image quality. while
the other side would have compression parameters that would eliminate much of the
image quality, but still keep enough information for depth perception. Since the
dominant eve is not on the same side for everyone and the degree of dominance is
also not the same, it is difficult to apply the singleness of vision propertyto stereopair
compression. For personal use, however, it may be useful to modify the stereopair

compression methods to support different compression parameters for each side.
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Appendix A

Questionnaire for the user survey

Instructions

It i, 1 bably best to read this entire thing before you put the headset on and
begin. ‘L ne images are viewed by pressing the key for the image you would like to view
(for example, o for imagze O, b for image B, etc). When finished viewing an image,
press escape or space ba. to return to the prompt where you can select another image.

A.1 First section

The original stereopair is image O. Compare the original to image A and rank the
difference between the two images according to the following table:

Opinion Rank
Not perceptible

Barely perceptible

Definitely perceptible but only slight impairment of the image
Impairment to the image but not objectionable

Somewhat objectionable

Definitely objectionable

Extremely objectionable

-1
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The difference between the original and image A is

A.2 Second section

For this sertion, you will be using the same original image and the three images
B, C, and D. You will be ranking the difference between the original and the three
images according to the table above. All the rankings may be the same. There is no
requirement that the rankings be unique.
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If you were to try to identify a defect in the main object in the image, would B, ',
and D be equally appealing to identify the defect?

Yes No

If not, then list the order of preference of B, C, and D.

A.3 Third section

For this section, you will be using the original image O again and the three images
E, F, and G. You will be ranking the difference between the original and the three
images according to the table in the first section. All the rankings may be the same.
There is no requirement that the rankings be unique.

The difference between the original and image I is
The difference between the original and image F is
The difference between the original and image G is

If you were to try to identify a defect in the main object in the image, would ki, I,
and G be equally appealing to identify the defect?

Yes No

If not, then list the order of preference of E. I', and G.
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