IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON BLOCKCHAIN-ENABLED TRUSTWORTHY SYSTEMS

Received June 29, 2020, accepted July 11, 2020, date of publication July 17, 2020, date of current version July 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3010119

ChainFaa$: An Open Blockchain-Based
Serverless Platform

SARA GHAEMI"', (Graduate Student Member, IEEE), HAMZEH KHAZAEI?, (Member, IEEE),
AND PETR MUSILEK '3, (Senior Member, IEEE)

! Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, AB T6G 2R3, Canada
2Department of Electrical Engineering and Computer Science, York University, Toronto, ON M3J 1P3, Canada
3Department of Applied Cybernetics, University of Hradec Kralové, 50003 Hradec Kralové, Czech Republic

Corresponding author: Sara Ghaemi (sghaemi@ualberta.ca)

This work was supported in part by the Future Energy Systems Research Initiative under the Canada First Research Excellence
Fund (CFREF) at the University of Alberta, Canada, in part by the Compute Canada, and in part by the SAVI Testbed Cloud.

ABSTRACT Due to the rapid increase in the total amount of data generated in the world, the need for more
computational resources is also increasing dramatically. This trend results in huge data centers and massive
server farms being built around the world, which have a negative impact on global carbon emissions. On the
other hand, there are many underutilized personal computers around the world that can be used towards
distributed computing. To better understand the capacity of personal computers, we have conducted a survey
that aims to find their unused computational power. The results indicate that the typical CPU utilization of a
personal computer is only 24.5% and, on average, a personal computer is only used 4.5 hours per day. This
shows a significant computational potential that can be used towards distributed computing. In this paper,
we introduce ChainFaaS with the motivation to use the computational capacity of personal computers as well
as to improve developers’ experience of internet-based computing services by reducing their costs, enabling
transparency, and providing reliability. ChainFaaS is an open, public, blockchain-based serverless platform
that takes advantage of personal computers’ computational capacity to run serverless tasks. If a substantial
number of personal computers were connected to this platform, some tasks could be offloaded from data
centers. As a result, the need for building new data centers would be reduced with a positive impact on the
environment. We have proposed the design of ChainFaaS, and then implemented and evaluated a prototype
of this platform to show its feasibility.

INDEX TERMS Blockchain, distributed ledger technology, serverless computing, green computing, dis-

tributed computing.

I. INTRODUCTION

Due to the increasing need for more computational resources,
many data centers with massive server farms have been built
around the globe. Data centers around the world consumed
about 416 terawatts of electricity during 2016, which was
about 3% of the world’s electricity consumption. This amount
was also about 40% more than the consumption of the entire
United Kingdom in the same year. This energy expenditure
is expected to double every four years [1]. In another study,
Jones [2] has found the contribution of the data centers in the
global carbon emission to be about 0.3%, and the entire infor-
mation and communications technology (ICT) ecosystem’s
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contribution to be about 2%. It is hard to predict what the
future holds, but in a worrying recent study conducted by
Belkhir and Elmeligi [3], the information and communica-
tion industry’s global carbon footprint is estimated to reach
about 6-14% of the total worldwide footprint by 2040. This
calls for new solutions to reduce the carbon emission of this
industry.

On the other hand, hundreds of million units of personal
computers are manufactured worldwide every year, each
leaving their own share of emissions [4]. These computers
are highly underutilized both in industries and in households.
At any given time, they are either not being used at all or
running on a small fraction of their capacity. Based on our
survey, which is explained in Appendix, personal comput-
ers run on an average CPU utilization of 24.5%. Moreover,
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the survey also shows that, on average, personal computers
are only being used 4.5 hours per day. These numbers confirm
the initial assumption that personal computers are highly
underutilized.

The idea behind the proposed approach in this paper, called
ChainFaaS, is to use the untapped computational power of
the current computers as a serverless platform. In ChainFaaS,
regular computer users can rent out their unused computa-
tional power by connecting it to a large network of resources.
On the other hand, those who need computing resources can
rent from this vast pool of compute at scale. If enough per-
sonal computers were connected to ChainFaaS, the need for
building new data centers would decline. However, the goal
in ChainFaaS is not to replace the data centers and servers but
to only offload some of their tasks by reusing the idle cycles
of personal computers.

Another motivation for creating ChainFaaS is to improve
developers’ experience of internet-based computing ser-
vices. Currently, cloud giants, such as Amazon, Google, and
Microsoft, are the leading players in serverless computing.
Serverless computing platforms offered by these companies
are highly centralized, and such companies control every
single detail of the platforms. There is no way for the devel-
opers to verify the reported billing information. On the other
hand, ChainFaaS offers a low-price, transparent, reliable and
easy-to-use serverless platform which is not managed by
one entity. Anyone can join the network to participate in
the management of the platform as well as to observe the
transactions. Moreover, since in ChainFaa$S, functions run on
personal computers, it can be a great platform for edge and
fog computing. Developers who need to run IoT applications
closer to end-users can use this platform instead of other
computing services that run on servers.

For developers, one of the main incentives to use serverless
computing platforms is to reduce their costs. In serverless,
unlike in other cloud computing solutions, billing is based
on the program execution time rather than on the provisioned
capacity. In ChainFaaS, one of the motivations is to reduce
these costs even more by running the tasks on excess compu-
tation power of personal computers.

ChainFaaS is designed with the motivation to provide a
reliable and transparent serverless platform. Reliability is
achieved through the dispersion of nodes in the network.
Since the computing providers can be located anywhere in
the world, and a large number of computers are available,
ChainFaaS is reliable by design and sheer scale. Moreover,
transparency is achieved through the use of blockchain.
Every single transaction on the network is recorded on the
immutable ledger of the blockchain. Blockchain peers keep a
record of all the changes and every user can easily access this
information at any time and verify the transactions.

Rather than being managed by a central entity, the trans-
parent public network of ChainFaaS uses blockchain. At first,
this may seem to contrast with the initial motivation of Chain-
FaaS: to decrease carbon emissions of the ICT ecosystem.
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The main reason for this apparent conflict is that most
well-known blockchains, based on proof-of-work consensus
algorithms, require miners to complete computationally
intensive tasks. For instance, the carbon emissions corre-
sponding to the electricity consumption of Bitcoin is esti-
mated to be about 22.0 to 22.9 MtCO,, somewhere between
the amounts produced by the nations of Jordan and Sri
Lanka [5]. However, not all blockchains have such a nega-
tive impact on the environment. Many blockchain solutions
have been introduced that do not require computationally
intensive tasks and instead operate based on other consensus
algorithms such as proof-of-stake, delegated proof-of-stake,
practical Byzantine fault tolerance, and many others. The
blockchain used in the prototype of ChainFaaS is Hyper-
ledger Fabric, which works based on practical Byzantine
fault tolerance consensus algorithm. As a result, the use
of Hyperledger Fabric-based blockchain is in tune with the
design goals of ChainFaaS.

To sum up, ChainFaaS offers an open blockchain-based
serverless platform with the following features:

o It is public in the sense that anyone can be either a
developer, provider or both.

« Itis open and transparent to everyone.

« It is based on the excess computing power available on
personal computers.

« It is affordable for developers, especially compared to
similar centralized (in terms of management) cloud solu-
tions.

« Itis user-friendly and easy to use.

« Itembodies edge and fog computing by nature as Chain-
FaaS can get very close to the end-user.

In this paper, our objective is to design a public serverless
platform with the above mentioned features, and to investi-
gate the feasibility of the design. We first describe a high-level
architecture of the platform and introduce the stakeholders.
Then we assess the functional and non-functional properties
of the platform and present a more detailed design. To exam-
ine the feasibility of the proposed platform, we follow a
proof-of-concept approach by implementing a prototype of
ChainFaaS. The implementation is based on a microservices
architecture to better capture the needs of serverless comput-
ing. Finally, the performance of the prototype is evaluated in
a series of experiments.

The rest of this article is organized as follows. Section II
explains serverless computing and blockchain as the two
main technologies used in ChainFaaS. It also outlines the
related work done in this field. Section III presents the design
details and architecture of ChainFaaS. Section IV explains
the implementation and deployment details of the proto-
type of ChainFaaS. Section V discusses the functional and
non-functional evaluation of this prototype. In Section VI,
the potential threats to the validity of the design and evalu-
ation of ChainFaaS are discussed. Section VII summarizes
the conclusions of this paper.
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Il. BACKGROUND AND RELATED WORK

Before describing the design and implementation details of
ChainFaaS, two main technologies used in this platform,
namely serverless computing and blockchain, and the related
work are explained in this section.

A. SERVERLESS COMPUTING

To understand serverless computing, we should first define
cloud computing. Cloud computing is defined as a model
in which a shared pool of configurable computing resources
can be accessed conveniently and on-demand through the
internet. These resources can be networks, servers, storage,
applications, or services that are provisioned and released
with minimal effort and service provider interaction [6].

Based on the developer’s control level over the cloud
infrastructure, a few service models are available for cloud
computing. In the infrastructure-as-a-service (IaaS) model,
the developer has control over both the application and the
cloud infrastructure. The developer should manage the virtual
machine provided by the cloud provider and the deployment
of the application on top of the underlying virtual machine.
In platform-as-a-service (PaaS), the developer manages the
application code, and the provider maintains the infrastruc-
ture. In software-as-a-service, full applications are delivered
over the internet to end-users via providers. Both the infras-
tructure and the application are managed by the provider [7].

Serverless computing (also known as function-as-a-service
or FaaS for short) is the latest paradigm in cloud computing
in which the developer deploys functions to the cloud and
delegates the operational and management tasks of servers
to the provider [8]. The developer can focus on designing
and implementing the application instead of spending time
on the management, operation, and maintenance of the infras-
tructure. This characteristic makes serverless similar to PaaS
solutions. However, in serverless, costs are truly event-based,
unlike in PaaS. This means that the developers only pay for
the execution time of their program. In other cloud computing
solutions, the developers are billed for the resource allocated
to their tasks, even if they are not used.

Another feature of serverless is autoscaling. When the
developer deploys a function to serverless computing, they do
not need to worry about how their code should scale. No mat-
ter how many times concurrent events to the function are
triggered, the serverless provider will serve them by running
new instances.

Moreover, in serverless computing, everything is based
on containers or similar concepts, i.e., lightweight, isolated
environments. Since containers are usually small in size and
fast to start, every time an event is triggered in serverless
computing, the cloud provider can spin up a new container on
a virtual machine. In a serverless platform, it can take a few
hundred milliseconds to a few seconds to serve a request. For
some use cases, such as consumer-facing applications, this
time is not acceptable. For instance, imagine a website that
wants to use serverless to serve requests. For each request,
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the users should wait at least a few hundred milliseconds for
the container to spin up and then a few more for the function
to run. Based on these characteristics, serverless computing
cannot currently be used for all types of workloads. Serverless
providers advise developers not to submit functions that are
time-sensitive since they cannot guarantee a fast response.

The above-mentioned features make serverless computing
a great solution for tasks that are not time-critical. Currently,
cloud giants are the main providers of serverless comput-
ing. Some examples of public serverless platforms are AWS
Lambda [9], Azure Functions [10], Google Cloud Func-
tions [11], and IBM Cloud Functions [12].

B. BLOCKCHAIN

For a public platform that anyone can join, there needs to
be a management system that everyone trusts. In most cases,
there is a company or entity that controls the transactions, and
people trust that company (for example, a bank). In the case
of ChainFaaS, blockchain is used instead of a trusted entity.
Blockchain is a type of distributed ledger technology that has
recently become extremely popular. It is mainly known for its
use in cryptocurrencies such as Bitcoin [13], Ethereum [14],
Ripple [15]. However, blockchains, and distributed ledger
technologies in general, are more than just cryptocurren-
cies. In a recent study [16], CB Insights has reported
55 industries that can be transformed by the distributed
ledger technology. Some examples are biomedical and health
care [17]-[19], energy [20], Internet of Things (IoT) [21],
[22], supply chain [23], [24], and cloud computing [25].

In terms of the data architecture, there are two main types
of distributed ledger technologies: blockchain and directed
acyclic graph (DAG). In a blockchain, transactions are bun-
dled in blocks of data that are linearly chained to each
other, just like a linked list. The blocks are connected in a
chronological order, which is unalterable. On the other hand,
in DAG, transactions are linked to each other in a graph.
Usually, there is no block in DAG, and transactions are the
components of the DAG [26]. In this paper, we mainly focus
on the features and characteristics of blockchains, since they
are used in ChainFaaS.

Distributed ledgers can be categorized as permissioned
and permissionless, based on whether the identities of the
participants are known. If the identity of everyone is known,
the ledger is permissioned, while if everyone participates
in the network anonymously, the ledger is permissionless.
Also, based on who can participate in the network, distributed
ledgers can be categorized as private and public. In private
ledgers, only those who are approved can participate in the
network. On the other hand, in public ledgers, anyone can
participate without the need to be validated. For example,
Bitcoin runs on a public permissionless blockchain.

Blockchain is a distributed database that is immutable,
transparent, verifiable, and managed by a set of partici-
pants who do not necessarily trust each other. At any point
in time, each transaction can be executed and verified by
the participants based on a consensus algorithm. In public
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permissionless blockchains, this consensus algorithm is usu-
ally a computationally expensive task that takes a lot of time
and energy. This type of consensus algorithm is called Proof-
of-Work (PoW), which limits the speed of the transactions.
Although other solutions for public blockchains have been
introduced, most of them are slow in terms of the number
of transactions that they can verify per second. On the other
hand, in permissioned blockchains, since the identities are
known, the consensus algorithm can be less costly, which
makes them dramatically faster. Usually, these blockchains
are used between participants who have the same goal but do
not necessarily trust each other. In a blockchain, each block
consists of many transactions bundled together and a header,
which consists of a hash. For each block, the hash is a unique
value that is created based on the data inside that block and
the previous block’s hash. The hash is the element that makes
blockchain an immutable chain of data. No one can change
the transactions in the blocks that have already been verified
because of this hash.

In blockchain, there is a concept called smart contract,
which allows customization of the contract between the
entities in the blockchain. Szabo first introduced the term
smart contract in 1994 as a computerized transaction protocol
that executes the terms of a contract [27]. Within blockchain,
smart contracts are the pieces of code that contain the
contract between entities and are stored on the blockchain.
Participants can trigger these contracts to use their function-
alities [28]. Using smart contracts on blockchains, trusted
distributed applications can be created.

In ChainFaaS, there is no need for the participants to
be anonymous. As a result, compared to a permissionless
blockchain, a permissioned blockchain is a better solution
since it is faster. Moreover, the goal of ChainFaaS is to help
decrease the carbon emission of the information and com-
munications technology ecosystem. Stoll et al. [5] recently
found the carbon emission corresponding to the electricity
consumption of Bitcoin to be 22.0 to 22.9 MtCO;. This means
the emission level of Bitcoin is somewhere between the
amounts produced by the nations of Jordan and Sri Lanka [5].
Therefore, blockchains that use PoW, such as Bitcoin, cannot
be used for ChainFaaS. In addition, the blockchain must sup-
port smart contracts since we need to implement customized
contracts for ChainFaaS. To sum up, for ChainFaaS, we need
a permissioned blockchain with a small carbon footprint that
supports smart contracts.

Hyperledger Fabric [29] has all the required features and
more. In Hyperledger Fabric, participants are identifiable,
the transaction throughput is high, transaction confirmation
is fast, smart contracts are supported, and all network details
are highly configurable [30].

C. RELATED WORK

1) PUBLIC-RESOURCE COMPUTING

The idea of using the excess resources of personal computers
in a distributed computing platform is not new. The first
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public-resource computing projects started in the mid-1990s.
Great Internet Mersenne Prime Search (GIMPS) [31] and dis-
tributed.net [32] were two of the very first project in this area.
Both projects started to work on solving research questions
on personal computers and they are still actively running.
In 1999, SETI@home [33] was released, attracting millions
of volunteers. These are just a few examples of many projects
running on personal computers. However, there are only a
few frameworks that enable the creation of such projects, and
most of them only focus on research projects.

Public-resource computing (also known as global comput-
ing) refers to any distributed computing platform that uses
the idle processing power of personal devices. Most known
public-resource computing platforms are based on volunteer
computing, a type of distributed computing in which volun-
teers contribute their idle computational power to perform
computationally expensive research tasks [34]. Because of
the heterogeneity of the computers in such a network, a task
scheduler is needed to properly distribute the chunks of a
research project on personal computers. This task distribution
allows a peer-to-peer network to be formed that enables
users to share their resources [35]. It is worth mentioning
that volunteer computing is different from grid computing.
In grid computing, the computing resources are managed and
owned by organizations, whereas, in volunteer computing,
the resources are highly unreliable and are managed by non-
expert individuals.

One of the most well-known volunteer computing frame-
works is the Berkeley Open Infrastructure for Network
Computing (BOINC) [36], [37], which was first introduced
in 2002. Currently, more than 700,000 devices participate in
the BOINC network, clearly demonstrating the potential that
personal computers hold. This framework consists of a central
server and clients run on the volunteers’ computers. Any
project that wants to use BOINC has to host their own server
and run the central BOINC server. This makes it extremely
hard for developers to use this platform. Moreover, volunteers
can choose the projects they would like to contribute to. As a
result, the developers have to ensure that their projects gain
enough visibility to attract volunteers. This makes it hard to
predict if the project receives enough resources.

XtremWeb [38] is another popular volunteer comput-
ing framework, which is the base of XtremWeb-HEP.
As explained in Section II-C2, XtremWeb-HEP is used in
the iExec project, which is a blockchain-based cloud com-
puting. In XtremWeb, collaborators can host their own vol-
unteer computing platform that can cooperate with the main
Xtremweb server. This framework has three main compo-
nents: the workers, the client, and the coordinator. The work-
ers are volunteer computers that are responsible for executing
the tasks. The client is the entity that submits the tasks to the
network. Finally, the coordinator distributes the tasks, assigns
workers to the tasks, and keeps track of them.

As another popular distributed computing framework,
Cosm [39] provides a set of tools and libraries for distributed
applications. This framework was introduced in 1995 and
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research projects such as Folding@Home [40], [41], and
Genome @Home [42] used this platform. Since 1999, Fold-
ing@Home project has been running protein folding on per-
sonal computers to find how proteins work and to find cures
for diseases. Genome@Home designed genes that match
existing proteins from 2000 to 2004.

In the recent years, the development of cryptocurrencies
has led to some interesting projects that enable payment
to volunteers in public-resource computing platforms. Some
research projects may choose to reward volunteers for partic-
ipation in their project. FoldingCoin [43] and CureCoin [44]
provide reward tokens for participants of the Folding@Home
network. GridCoin [45] offers reward to volunteers in the
BOINC platfrom.

Although the mentioned solutions are similar to Chain-
FaaS, there are some fundamental differences between them.
Most of the current solutions are based on volunteer com-
puting. In volunteer computing, the providers do not expect
any income for the computations they execute. Moreover,
the computing providers trust that the research tasks running
on their computer would not tamper with their files and
programs. This is mainly due to the fact that the research
owners are known universities. On the other hand, in Chain-
FaaS, there is no trust in the developers, and the computing
providers expect the income to be worth their time and effort.
Also, in most volunteer computing platforms, the developers
need to host their own servers and promote their projects to
gain popularity. This makes it hard for developers to adopt
such solutions. Nevertheless, since ChainFaaS is a serverless
computing platform, the developers only need to submit their
functions to the network through the web application, and
the network handles the rest. These characteristics make the
design and implementation of serverless platforms, such as
ChainFaaS, more challenging. Due to these fundamental dif-
ferences, these platforms cannot be compared to ChainFaaS
directly, especially in terms of performance.

The mentioned drawbacks of volunteer computing plat-
forms have prevented their large-scale adoption. Despite the
great potential that platforms such as BOINC have, they are
still only being used by a small group of people. As mentioned
earlier, the volunteers do not have any economic incentive
to participate in the network and the developers have to
spend much time modifying their program (i.e. high degree of
customization) to be suitable to run on these platforms. Since
these problems have been addressed in our design, ChainFaaS
has a good potential to receive attention from both developers
and providers.

2) BLOCKCHAIN-BASED CLOUD COMPUTING

Recently, there have been a number of research activities on
distributed cloud computing platforms that run on personal
computers. These distributed systems have many manage-
ment barriers that can be solved using blockchain. In this
section, we discuss some of the well-known blockchain-
based cloud computing platforms.
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The iExec [46] platform is a distributed cloud computing
infrastructure, which is based on XtremWeb-HEP [47] and
Ethereum smart contracts. XtremWeb-HEP is an open-source
desktop grid software that is developed by the same team.
The Ethereum blockchain provides the support for distributed
applications. For better performance, a new consensus algo-
rithm called Proof-of-Contribution (PoC) is proposed for use
in this platform. In iExec, there are three different types of
providers: application providers, computing providers, and
data providers. Application providers are developers who
want to use the platform to run their distributed applications.
Similar to ChainFaaS, computing providers rent out their
unused CPU cycles. Data providers can make their datasets
available to others and charge them for each use. In this
platform, the developers should divide their application into
tasks and send them to the scheduler.

Golem project [48] aims to create a decentralized super-
computer. Golem is designed to use excess computational
power on PCs to run heavy tasks such as deep learning
or video rendering. However, currently, the only tasks that
are accepted in this network are rendering tasks. In Golem,
developers specify their price suggestions, and providers bid
on the tasks. One of the limitations in the Golem network is
the fact that computing providers are required to have public
IPs, which prevents many from participating in the network.

Another project in this area is SONM [49], which is a
decentralized fog computing platform. Similar to the previous
two projects, in SONM, people in need of computational
power are connected to those with excess computational
capacity through a blockchain network. The main focus of
this project is on laaS, and the main applications are machine
learning and video rendering.

CloudAgora [50], [51] is an academic project that pro-
poses a blockchain-based platform providing access to stor-
age and computing infrastructure. In this platform, providers
bid on any incoming request in an auction-styled manner.
The provider that offers the lowest price will be selected to
execute the task. The current prototype of CloudAgora is
implemented on Ethereum blockchain.

In their paper, Uriarte and De Nicola [52] have surveyed
blockchain-based cloud computing solutions and explained
the projects in detail. They have also studied the chal-
lenges and standards in this field. In another recent research,
Yang et al. [53] have studied the challenges and research
issues of blockchain and edge computing integration. West-
erlund and Kratzke [54] surveyed the advantages and dis-
advantages of both centralized cloud computing platforms
and distributed ledger technologies. They then identified the
principles that a distributed cloud platform should follow
to use the advantages of both traditional clouds and DLTs.
ChainFaaS’s design is in accordance with these proposed
principles.

All the projects mentioned above are similar to Chain-
FaaS in the sense that they use personal computers to run
developers’ tasks in a blockchain-based network. However,
none of them are serverless platforms. The developers have
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to spend a lot of time modifying their applications for these
platforms. In some platforms, developers even have to spend
time selecting the provider for their job, which can be incon-
venient. Moreover, in most of these platforms, it is hard
for the providers to connect to the network. For instance,
in Golem, they need to have a public IP, which may not be
possible for most providers. In ChainFaaS, these problems are
addressed, making the new platform easy to use for everyone.
Unfortunately, none of the blockchain-based cloud comput-
ing solution providers have released performance analyses
of their platform, and they cannot be directly compared to
ChainFaaS.

Ill. SYSTEM DESIGN

A. HIGH-LEVEL ARCHITECTURE

Fig. 1 shows a high-level architecture of ChainFaaS. This
platform has three main parts. The blockchain network con-
sists of all the blockchain peers who are responsible for keep-
ing track of the transactions on the platform. The serverless
controller manages the cloud portal and the job scheduling
task. The computing resource providers cooperate to shape
the execution network.

ChainFaa$ Platform

/ Blockchain Network

Blockchain Peer

Blockchain Peer

Serverless Controller

: : ChainFaaS 3
. Cloud Portal '
: i | Job Scheduler :

Computing Resource
Provider

Computing Resource
Provider

Execution Environment

)|

FIGURE 1. High-level architecture of ChainFaaS. The blockchain network
stores and confirms all the transactions. The serverless controller is a
blockchain peer itself and handles the cloud portal and scheduling the
jobs. The execution network consists of all the computing resource
providers.

Blockchain Peer Blockchain Peer

1) BLOCKCHAIN NETWORK

The blockchain network has two main tasks: keeping records
of all transactions and managing payments. From now on,
we will refer to the record-keeping ledger and payment man-
agement ledger as monitoring ledger and monetary ledger,
respectively. Every single transaction is stored and kept by all
blockchain peers on the monitoring ledger. Any user can eas-
ily access the information of a job and see how it has evolved
over time. Information such as the owner of the job, the com-
puting resource provider who has been responsible for the
job, the time it has taken to run the job, and its cost, are acces-
sible through the monitoring ledger. The transparency feature
of ChainFaaS is achieved through the monitoring ledger. The
monetary ledger stores the financial account information and
account balances of the users. Every time a job is successfully
executed by a provider (i.e., a personal computer owner),
this monetary ledger automatically transfers the cost from the
developer’s account to the provider’s account.
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The blockchain network comprises many peers that can be
owned by different proprietors. Each peer keeps records of
all the transactions occurring in the network. To add a new
transaction to the ledger, the peers should reach a consensus
on whether to accept the transaction or not. The peers receive
a commission for each transaction because of their contribu-
tion to the network. It is worth mentioning that a blockchain
peer can also act as a computing resource provider in the
execution network, which results in having two sources of
income from ChainFaaS. The execution network is described
in Section III-A3.

2) SERVERLESS CONTROLLER

The serverless controller acts as the gateway and is responsi-
ble for providing the portal of ChainFaaS, publicly available
here.! This portal is designed to help all users easily interact
with the platform. Based on their enrolment in the system,
users can submit new jobs, observe the status of their job,
and monitor their contribution to the network. Moreover,
the controller handles the job scheduling by finding a com-
puting resource provider for each job. The job scheduling is
based on a selection algorithm that may take into account
many criteria to choose the provider, including the provider’s
availability and the computational power needed for the job.
The serverless controller also acts as one of the blockchain
peers and, just like any other blockchain peer, it receives a
commission for the transaction.

3) EXECUTION NETWORK

The execution network consists of all computing resource
providers. Anyone can easily connect their extra computa-
tional resources or their underutilized online computers to
this network. This includes but is not limited to, personal
computers, servers, and cloud resources. These providers get
paid based on the time they spend on running the job to which
they are assigned. Each job runs in an isolated execution
environment on the provider’s computer to ensure that it
does not interfere with the provider’s programs. This is also
required to prevent different jobs from interfering with each
other.

B. STAKEHOLDERS OF ChainFaaS

1) DEVELOPER

A developer, or software owner, is an individual or a company
that wants to submit a function to the serverless platform.
In this role, the user wants to use an affordable function-
as-a-service system to decrease their infrastructure costs and
server management overhead.

2) COMPUTING PROVIDER

A provider is someone who wants to rent out their computer’s
idle CPU cycles and memory to earn money. The goal of this
user is to serve as many jobs as possible to increase their
income.

1 https://chainfaas.com
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3) BLOCKCHAIN PEER

Any computer with public IP address could act as a
blockchain peer. The peers are responsible for running and
storing the blockchain on their computers. Other blockchain
users send requests to these peers to interact with the
blockchain. As an incentive to participate in the network,
these peers receive a portion of the transactions when they
serve requests. In addition, the blockchain peers can also
participate in ChainFaaS as computing providers to increase
their income from the platform.

C. FUNCTIONAL PROPERTIES

A detailed architecture of ChainFaaS with a complete
description of the process of serving a request is shown
in Fig. 2. The developer is the owner of the function who can
have clients sending requests to their function. These clients
can be the developer themselves, a program owned by the
developer, or anyone else. The developer can also choose to
store the result of their function in a separate storage. This
can be specified in the container they upload to the system.
The result storage block in Fig. 2 represents this storage unit.

Developer End User Result Storage
(10) Results

(2) Sends a Request

(1) Submits the

function in network Blockchain Network

Serverless Controller

Container

Monetary Ledger

Scheduler

(3) Wraps function in
new container

Function

>
—

MM [ sig.

(9) Transfer funds

(4) Assigns a
provider
Active Compute Providers

(5) Record job Monitoring Ledger

Hovcel Selected Provider
(8) Monitoring module

records job time

(6) Pulls and runs the

Provider 5 .
function container

(7) Result J

Provider

(

FIGURE 2. The detailed architecture of ChainFaaS and the way a request
is served in the network (MM stands for monitoring module and Sig.
stands for signature.)

The scheduler in the serverless controller is responsible for
scheduling the jobs, i.e., functions, and computing providers.
It creates a new container that includes the function, a mon-
itoring module (MM), and the controller’s signature (Sig.).
The module is designed to send back the run-time metrics
of the job to the monitoring ledger. The signature is used to
verify the container’s creator to be the controller and not a
malicious entity. When an appropriate provider is found for
the job, the controller asks the monitoring ledger to keep a
record of the job. The job ID stored there should be the same
as the one the monitoring module later uses to record the job
service time. The assigned provider is the only one who can
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have the job’s run time recorded on the ledger. A detailed
explanation of each step in Fig. 2 follows:

1) For a function to be available in the system, the devel-
oper first needs to submit it to ChainFaaS. To do so,
the developer sets the access link and characteristics
of the function in the ChainFaaS cloud portal. From
the moment the function is submitted, others can send
requests for that function to the serverless controller.

2) As soon as the controller receives a request for a func-
tion, a job is created, and the process starts.

3) The scheduler then adds the monitoring module (MM)
to the function and wraps it in a new container with
the controller’s signature. The monitoring module is
responsible for sending the job processing time to the
monitoring chain in step 8. The signature is used in
the provider to verify that the job has been sent from
the controller.

4) The next step is for the scheduler to assign an appro-
priate provider to the job. This assignment is done
based on a selection algorithm that takes into account
the computational capability of the provider and its
availability.

5) When a computing provider is found for the func-
tion, the controller sends a record-request to the mon-
itoring ledger. In this request, the controller asks the
blockchain network to add a new job to their records.
The information added to the record includes the job
ID, the developer of the job, and the provider assigned
to the job. The detailed explanation of the information
stored about each job in our implementation can be
found in Section IV-C.

6) The selected provider then pulls the container from the
registry and runs it.

7) In the next step, the provider sends back the results to
the target storage.

8) The monitoring module then uses the job ID received
from the controller to ask the monitoring ledger to keep
a record of the job’s run time metrics.

9) Inthe next step, the monitoring chain charges the devel-
oper’s account by transferring the amount of bill to the
provider’s account on the monetary ledger.

10) Finally, the result storage, which is managed and owned
by the developer, sends back the results to the end-user.
The developer can have the end-user manually get the
result from the results storage or have the storage share
the results with end-user whenever available.

D. NON-FUNCTIONAL PROPERTIES

This section evaluates the most important non-functional
properties of ChainFaaS: performance, availability, security,
and usability.

1) PERFORMANCE
One of the most important properties of a software system
is performance. To understand the performance metrics of
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FIGURE 3. The timeline for submitting a function to ChainFaa$S from the
developer’s point of view.
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FIGURE 4. The lifetime of a request in ChainFaaS.

ChainFaaS, consider the timelines shown in the following two
figures. Fig. 3 shows the timeline for submitting a function to
ChainFaaS. From the developer’s point of view, the time it
takes for the function to become ready in the system after it
has been submitted is a critical factor. It is called setup time
Tstp = trd — Lsub-

A new job is created in the system as soon as a request
for a function is received by the controller, as shown by 7.,
in Fig. 4. The time it takes for the result storage to receive the
result of the request is called response time Ty = tyg — treq-
This time depends on both the request processing time of
ChainFaaS and the completion time. The request processing
time, Ty, is defined as the time it takes for the provider to
receive the job after the controller receives a request for the
function. It corresponds to the time the serverless controller
requires to schedule the job. The time it takes for the provider
to pull and run the function is called completion time, T¢p.
This time depends heavily on the size of the developer’s
container, the network delay, and the job itself. Since response
time depends on the function, it can only be measured for
a specific workload and not in general. Response times of
sample workloads are shown in Section V.

Another important performance metric in this system is the
provisioning time, T),,. Itis the time it takes for the job to start
when a request is received. The provisioning time consists
of the request processing time and the container pull time.
Finally, from the provider’s point of view, the time it takes
for them to receive the payment after the job is finished, 7,
is of great importance.

The most important performance metrics of ChainFaaS are
summarized below:
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o Setup time (Tyy) is the time it takes for the function to
become available in the system after it is submitted.

o Request processing time (Ty.) is the time it takes for the
provider to receive the job after the serverless controller
receives a request.

e Provisioning time (Tyy,) is the time it takes for the job
to start running after the serverless controller receives a
request.

o Completion time (T.np) is the time it takes for the
provider to pull and run the job’s container.

o End-to-end response time (T) is the time it takes for
the result to be available in the result storage after the
serverless controller receives a request.

o Billing time (Tp;) is the time it takes for the provider
to receive payments after they are finished running
the job.

2) AVAILABILITY

In a software system, availability is defined as the probability
that the user receives a response for their request at a given
time. There could be two main causes for jobs to be blocked in
ChainFaaS: insufficient computing resources and job queue
being full. When a new job is created in the network, there
should be an available computing provider who has enough
resources for the job. If the scheduler is unable to find a
provider, the job request will be blocked.

In ChainFaaS, requests to functions will be queued until a
provider is found; requests are served according to a queuing
policy. When the queue is full, the serverless controller will
block the new incoming requests. If the queue size is too big,
some end-users may experience long response times. In such
cases, the usual approach is to limit the queue size to prevent
that from happening by immediate blocking.

3) SECURITY

Since ChainFaaS is open to the public, security is of
paramount concern. As a computing provider, the user needs
to be assured that the code running on their computer is not
going to harm their system or access their personal data.
An open platform such as ChainFaaS should run completely
isolated from the rest of the programs on the provider’s com-
puter. For this isolated environment, access to data and infor-
mation should be restricted. The way ChainFaaS achieves this
quality is explained in detail in Section IV.

Moreover, all stakeholders are storing important infor-
mation, such as their account balance, on this platform.
Everyone should trust the system to be secure. ChainFaaS
uses blockchain to ensure the security of shared information.
Since blockchain is immutable, transparent, and secure, it can
be used for this platform. No one, not even the controller,
can change the information stored on the blockchain, and
every single member can see all the transactions in the
blockchain and verify their validity. All these characteristics
make blockchain a great solution to open public platforms
such as ChainFaaS.
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4) USABILITY

ChainFaaS is designed to be used by anyone. Although it is
a sophisticated platform based on the state of the art tech-
nology, the users are not necessarily computer professionals.
Therefore, this system needs to be user-friendly. It should
be designed in such a way that anyone, including users
with no background in computer science, can easily become
a computing provider or blockchain peer. To achieve this
goal, ChainFaaS has a web portal along with easy-to-setup
agents to be installed on computing nodes, as explained in
Section IV.

E. BUSINESS MODEL

ChainFaaS has a few stakeholders that may benefit from
this platform: the computing providers, the blockchain peers,
and the serverless controller. When designing the system,
their benefit should be considered an important factor. The
computing providers get paid based on the computational
power they contribute to the platform and the time they
spend on running functions. Since the providers contribute
their idle computing cycles, whatever they make is consid-
ered profit. Providers can easily connect their computers
to ChainFaaS and rent out their excess cycle without any
interference in their usual work. As the network extends in
size, the providers’ profit is likely to increase.

The blockchain peers get a portion of the transaction fees as
an incentive for running the blockchain network. The reason
blockchain peers are separate from the computing providers
is the necessity to have a public IP for blockchain peers. All
the peers should be accessible by a public IP so that everyone
can send requests to them. Anyone can own a blockchain peer
in the network and help keep the blockchain network secure
and transparent.

IV. IMPLEMENTATION AND DEPLOYMENT

To demonstrate the feasibility of our design, we have imple-
mented a prototype of ChainFaaS as a proof-of-concept.
In this section, we present the details of the implementa-
tion and deployment of this prototype. Details of ChainFaaS
implementation, including the complete code base, can be
found on GitHub .> Fig. 5 shows the implementation and
deployment view of ChainFaaS. The end-user represents the
person who sends a request to a function. The end-users are
FaaS users that can be the developers themselves, or their
users who want to access the functions provided by the devel-
oper on ChainFaaS.

A. SERVERLESS CONTROLLER

As explained earlier in Fig. 1, the controller has three main
parts: cloud portal, job scheduler, and blockchain peer. The
cloud portal is responsible for all interactions between the
controller and the users. At the back-end of the web applica-
tion, the job scheduler is also implemented. We have imple-
mented a simple scheduler that randomly selects a provider

2https:// github.com/pacslab/ChainFaaS
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FIGURE 5. Deployment diagram of ChainFaaS showing the technologies
and components used in different parts of the platform

from the available providers that can fit the request. The
blockchain peer is just like other blockchain peers described
in Section IV-C.

In our implementation of ChainFaaS, the serverless con-
troller is running on an instance with 4 VCPUs, 15GB RAM,
and 83GB disk with Ubuntu 18.04. The cloud portal is written
in Python using the Django web framework [55]. The job
scheduler is also implemented in the backend of the cloud
portal. Gunicorn is used as the application server, and Nginx
is used as a reverse proxy. Gunicorn is a Python Web Server
Gateway Interface (WSGI) HTTP server that communicates
with the Python application. Gunicorn optimally creates as
many instances as needed from the web application, dis-
tributes the requests between them, and restarts them if nec-
essary. Nginx is used as a reverse proxy to Gunicorn to handle
all incoming requests.

New users can use the ChainFaaS cloud portal to regis-
ter. Each user should select what role they want to play in
the platform: developer, provider, or blockchain peer. After
registration is complete, the user can start interacting with
the platform. As a developer, the user can submit the link
to their Docker container in the Docker registry and set its
characteristics.

When the scheduler matches a provider with a job, there
should be a way for the serverless controller to inform the
provider of the link to the function and all its information.
Since providers are personal computers, they are not directly
accessible by the controller. As a result, in ChainFaaS, a mes-
saging queue has been implemented to manage the interac-
tions between the serverless controller and each provider.
RabbitMQ has been chosen as the messaging broker for this
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system since it is a lightweight open-source broker that can be
customized for different applications. During the registration
step, the providers are also registered in the messaging broker
to be able to access the appropriate queue. Each provider
has its own queue that only the serverless controller and the
provider can access. The serverless controller puts the jobs
in the provider’s queue, and the provider fetches it from the
queue.

B. COMPUTE PROVIDER

On providers’ computers, ChainFaaS runs a program that is
written in the Python programming language. As long as the
program is running on the provider’s computer, it receives
new jobs from the serverless controller, runs them, and waits
for other jobs. Jobs run in isolated environments using Docker
containers to keep them from interfering with the provider’s
computer and accessing their files. In ChainFaaS, having
isolated environments for the jobs is particularly important
since the provider may not necessarily trust the source of the
job. Moreover, there may be more than one job running on
the provider’s computer at the same time. Using sandboxing
solutions, we can ensure there is no conflict between the
dependencies and resources of the jobs.

A popular solution for isolating the execution environment
of software is using virtual machines. In this solution, a guest
operating system runs on top of a host operating system
and has virtual access to the system’s underlying hardware.
Another solution is using containers, which also provide an
isolated environment for running a software service. Unlike
virtual machines that virtualize the hardware stack, containers
provide the developers with a logically isolated operating
system by virtualizing the computer resources at the OS-
level. As a result, compared to virtual machines, containers
are far more lightweight, faster to start, and use far less
memory.

In the current implementation of ChainFaaS, the security
and privacy concerns of providers are addressed using con-
tainers as the sandboxing solution. The reason for this choice
is that the providers should be able to start using the plat-
form with minimal effort and overhead. As discussed earlier,
containers are fast, lightweight, and they provide the required
isolated execution environment. Other open distributed com-
puting platforms have different solutions to this security chal-
lenge. In BOINC [36], [37], the provider can choose to run
the project applications under an unprivileged account on the
operating system, which cannot access or modify data other
than its own. This is called account-based sandboxing. This
type of sandboxing is less scalable and secure compared to
containers since it does not virtualize at the OS-level. This
may not be a problem for volunteer computing platforms
since there is some notion of trust between the researchers
and the providers. However, in ChainFaaS, the providers do
not necessarily trust the developers, and there could even exist
a malicious entity in the network. In iExec [46], computing
providers, which are called workers, can choose to run the
program with a virtual machine, with a Docker container,
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or just running the script. Golem [48] uses a WebAssembly
sandbox for this purpose. Both Golem and iExec are work-
ing on using Intel Software Guard Extensions (SGX) for
isolation. Intel SGX offers hardware-level isolation, which
is the most secure level. However, it is only supported on
some modern Intel CPUs. Since this solution is hardware-
specific and still experimental, it cannot be extended to all
computers. Although beyond the scope of this paper, the secu-
rity and privacy of providers and developers in an open dis-
tributed computing platform are important topics for future
research.

C. BLOCKCHAIN PEER

The blockchain used in ChainFaaS is implemented using
Hyperledger Fabric V1.4. When choosing the blockchain
solution, one of the most important criteria was its energy
consumption. As mentioned in Section I, one of the initial
motivations for developing this platform was to decrease
the carbon emission of the ICT ecosystem by increasing
the usage of personal computers. However, blockchains that
use proof of work as their consensus mechanism, such as
Bitcoin, require computationally powerful computers to solve
meaningless puzzles to get rewards. On the other hand,
in Hyperledger Fabric, there is no need for solving such
problems since the consensus algorithm is not based on proof
of work. Moreover, Hyperledger Fabric has been designed
explicitly for enterprises and takes into account their needs.
In Hyperledger Fabric, everything is highly configurable and
can be customized for different use cases. These features
make it an excellent choice for ChainFaaS. The reason for
selecting V1.4 is its stability and long term support. It is the
first version with long term support, while V2.0 is still under
development.

Hyperledger Fabric uses an execute-order-validate archi-
tecture for transactions. In this architecture, transactions
are first executed and checked for correctness. Then, via
a pluggable consensus algorithm, transactions are ordered.
Finally, the transactions are validated against an application-
specific endorsement policy and added to the ledger. Other
blockchains that support smart contracts, such as Ethereum,
Tendermint, and Quorom, use an order-execute architecture
in which the transactions are validated and ordered first
and only then executed by all peers. In order-execute based
blockchains, smart contracts must be deterministic. As a
result, these blockchains require smart contracts to be written
in a domain-specific language to ensure that their operations
adhere to this requirement. On the other hand, in Hyperledger
Fabric smart contracts can be written in standard program-
ming languages such as Go or Node.js. Also, since in order-
execute blockchains all nodes execute the transactions, these
blockchains face performance and scalability issues. Hyper-
ledger Fabric’s architecture enables applications to specify
which peers and how many of them need to execute the trans-
action. As a result, only a subset of peers that are specified by
the endorsement policy execute the transaction. This feature
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enables parallel execution of transactions which increases the
performance and scalability of the network [30].

The Hyperledger Fabric’s network is managed by a collec-
tion of organizations that come together to form a blockchain.
As a permissioned blockchain, Hyperledger Fabric needs
a membership component to overlook the participants in
the network. A trusted Membership Service Provider (MSP)
is used for this purpose. Similar to other components in
Hyperledger Fabric, the MSP is configurable by the network
designer. In ChainFaa$, the default Fabric Certificate Author-
ity (CA) is used as the MSP. Peers are important components
of the blockchain network that are responsible for hosting the
ledgers and smart contracts. They receive transactions, invoke
corresponding smart contracts, and endorse the results. Each
peer belongs to an organization and each organization can
have many peers in the network. In Fabric, an ordering service
is required which is responsible for collecting the endorsed
transactions from the peers, ordering them and creating the
blocks. The ordering service consists of one or more orderer
nodes which reach consensus among each other based on a
pluggable consensus algorithm. Currently, Hyperledger Fab-
ric supports Raft, Kafka, and Solo consensus algorithms [30].
The implemented prototype of ChainFaaS uses one Solo
orderer.

In the current implementation of ChainFaa$S, all compo-
nents of the Hyperledger Fabric network have been deployed
on an instance with 8 VCPUs, 16GB RAM, and 160GB
disk with Ubuntu 18.04. There is one Fabric Certificate
Authority (CA), one Solo orderer, and two organizations,
each with two peers. In the future version of ChainFaaS,
there can be included more of these components, each
running on different computers. Anyone with a public IP
can run the blockchain peers. Each peer stores all the
latest information about the ledgers and verifies the new
transactions.

We are using chaincodes, which are Hyperledger Fabric’s
smart contracts, to implement the functionalities needed for
ChainFaaS in the blockchain. There are two main chain-
codes: monitoring and monetary. The monitoring chaincode
is responsible for keeping track of every job that has been
served in ChainFaaS. Fig. 6 shows the monitoring ledger
with an example. Anything that is stored on Hyperledger
Fabric blockchain is shown by a key-value pair. In the case
of monitoring ledger, the key is the job ID, and the value
is its developer, provider, function ID, time, cost, received,
and payment-is-done information. The time shows the time
the provider spends on running the function, received shows
whether the end-user has received the result, and payment-
done shows whether the payment has successfully taken
place. In Fig. 6, monitoring ledger keeps track of all changes
that happen to each job. Consider JOB7 as an example. Right
now, the job has finished, but the end-user has not yet received
the result. As soon as the end-user receives it, a new transac-
tion is created that consists of the change of JOB7’s received
value from False to True. The world state database is part of
the Hyperledger Fabric structure and stores the latest version
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FIGURE 6. Details of the monitoring ledger. Blockchain stores changes to
each job in terms of transactions. World state stores the latest version of
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FIGURE 7. Details of the monetary ledger. Blockchain stores changes in
each account in terms of transactions. World state stores the latest
version of every account.

of every job. In other words, if anyone follows all the changes
in the blocks from genesis to the last block, they will reach
the value inside the world state. This implementation makes
it easy to query the latest values very fast.

The monetary chaincode is responsible for keeping track
of user account balances. The key in this ledger is the user-
name of the user, and the value is how much they own in
ChainFaaS. Fig. 7 shows the details of the monetary ledger.
Similar to the monitoring ledger, the blockchain keeps track
of changes that happen in accounts, and the world state stores
the latest version of account balances. To better understand
the functionality of the two ledgers, consider the examples
shown in Fig. 6 and Fig. 7. Imagine that before JOB6 and
JOB7, Bob, Alice, James, and Kate all had 600 units of money
in their accounts. As soon as JOBG is finished and received
by the end-user, the cost (12 units) is deducted from Bob’s
account and added to Alice’s account. Since the end-user has
not yet received JOB7, the account balance of James and Kate
has not changed.
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V. EXPERIMENTAL EVALUATION

In this section, the functional and non-functional properties of
the implemented prototype of ChainFaaS are evaluated. This
prototype can be accessed through ChainFaa$S’s website.>

A. FUNCTIONAL
We have discussed how each unit in ChainFaaS is imple-
mented. In this part, we will show how all the units work
together to achieve the functional properties of the platform,
described in Section III-C. The sequence diagram shown
in Fig. 8 describes the process in which the prototype of
ChainFaaS serves a request from an end-user. In the current
implementation, the result storage is the serverless controller.
When the serverless controller receives a request to run a
function, the scheduler first finds an active provider capable
of serving the request. When a provider is found, the con-
troller asks the blockchain network to store the job on the
monitoring ledger. In this step, the job is created in the ledger
and information such as the developer, the provider who is
supposed to execute the job, and the function ID is set. The
controller then puts the job in the provider’s messaging queue.
The provider fetches the job from the queue, runs the Docker
container, and sends back the results to the controller to be
accessed by the end-user. As mentioned earlier, the serverless
controller is set as the result storage for the prototype imple-
mentation. In the future versions of ChainFaaS, the result
storage will be chosen by the developer. After receiving the

3 https://chainfaas.com
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result, the controller confirms that the result has been received
by setting the status of the job in the blockchain network.
In the meantime, the provider also sets the time it took to
run the function. The provider is only able to set the run
time if the job has already been created by the controller in
the blockchain network. Moreover, only the provider that has
been assigned to the job can set the run time metrics. This
ensures that others cannot tamper with the job’s information
in the blockchain network. When the monitoring chaincode
receives both the confirmation from the controller and the run
time from the provider, the service fee will be transferred to
the provider’s account from the developer’s wallet.

B. NON-FUNCTIONAL

In this section, we evaluate the non-functional properties of
the prototype, most importantly, its performance. Our goal is
to shed some light on the system response time for various
use cases. This baseline evaluation will help to enhance the
platform’s performance in future versions.

To evaluate the system, we have selected a sample function
to run on the prototype of ChainFaaS. We have created a
Docker container that gets the node’s information, such as
its operating system, number of CPUs, and uptime. Two sets
of experiments have been conducted. One focuses on virtual
machines running on clouds as providers, and another focuses
on personal computers as providers. From now on, we will
refer to the first and second experiments as the cloud deploy-
ment and the personal computers deployment, respectively.
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In the first experimental evaluation, the serverless con-
troller, along with four computing power providers, run
on virtual machines in the Compute Canada cloud. The
blockchain network runs on a virtual machine on the SAVI
testbed cloud. In the second set of experiments, the same
serverless controller and blockchain network are used. How-
ever, the providers are two different personal computers.
Table 1 summarizes the characteristics of the ChainFaaS
components in the cloud deployment.

TABLE 1. Experimental evaluation setup in cloud deployment.

Component Size CPU RAM Disk

Serverless Controller 1 4vCPU 15GB 20 GB
Computing Network 4 2vCPU 7.5GB 20 GB
Blockchain Network 1 8vCPU 16GB 160 GB

The workload generated for the cloud deployment is shown
in Fig. 9a. Based on a recent research by Shahrad et al. [56],
81% of applications running on Microsoft Azure Functions
are invoked, on average, once per minute or less. This infor-
mation shows that most applications are invoked infrequently,
and the generated workload selection, i.e. the number of
requests sent to the function, is reasonable for serverless plat-
forms. During a one-hour period, exponentially distributed
requests are sent to the serverless controller to invoke the
sample function, and the performance metrics of the platform
are recorded.

For all experiments, we use a client running on an instance
in the Compute Canada cloud with 8§ vCPUs, 30 GB of
memory, and 186 GB of disk, with less than 10 milliseconds
latency to the controller server. A Python 3.7 script sends
exponentially distributed requests to a function on Chain-
FaaS. The results, the request time, and the response time
are stored in CSV files, and later processed to extract the
response time. On the serverless controller, for each request,
two times are stored: the time that the provider has received
the job and the time the provider has spent to finish it. Finally,
the blockchain server records the billing time for each job.

The most important metric for the end-user is the end-to-
end response time, Ty, shown as response time in Fig. 9b.
During this time, the scheduler finds a provider for the job,
the provider pulls the Docker container, runs it, sends back the
result to the end-user, and the blockchain network keeps track
of every change in the job’s status. As expected, Ty increases
when the number of requests to the function is increased.

As can be seen in Fig. 9b, the response time (7)) and
provisioning time (7)) follow the same pattern as the pro-
cessing time (Ty,¢). This behaviour is expected since T is
included in both other metrics. The completion time (T¢pp)
contains the pull and run time of the Docker container. Since
all four compute providers are in the same network with the
same computational capacity, and they run the same function,
completion time should remain nearly constant. Fig. 9b con-
firms this assumption.
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From the provider’s point of view, it is crucial to know
the billing time (7p;). Fig. 9c shows the average value of
Tpir in a given minute in the cloud deployment. The billing
time usually falls between 5-10 seconds and remains below
20 seconds.

Finally, for developers, it is crucial to know how fast
they can deploy a new function. Initially, a developer who
wants to submit a function to ChainFaaS needs to register
on the platform. During the registration process, an account
is created for the user in the blockchain. This process takes
about 5 seconds, which is a one-time-only wait. After that,
the developer can create and submit a function in a matter of a
few milliseconds by providing the controller with the Docker
registry path.

In the second set of experiments, we focus on personal
computers as providers. In these experiments, the serverless
controller and the blockchain network are the same as the
cloud deployment, but the providers are personal computers
instead of virtual machines. Table 2 shows the hardware
specifications of the PCs used in the personal computers
deployment.

TABLE 2. Hardware specifications of providers in personal computers
deployment.

Component CPU RAM  Disk
Core i7-6700HQ 12GB  1TB
Core i7-6700HQ 16GB  1TB

Provider 1
Provider 2

The results of this experiment are shown in Fig. 10. It is
interesting to see how the two experiments differ from each
other. The completion time is almost doubled in the second
set of experiments. This is mainly due to networking delays.
In the cloud deployment, both the controller and provider
were running on the same network (Compute Canada cloud),
which makes communications much faster. Moreover, vir-
tual machines running on cloud generally have more stable
networks compared to personal computers. The provisioning
time and response time are also influenced by the networking
delay. The average response time in the cloud deployment
is 10.2 seconds. This value is 16.8 seconds in the personal
computers deployment.

Since the processing time is not influenced by the network
delays, it is expected to be similar in both experiments when
running on the same request rate. This expectation is shown
to be true in Fig. 9b and Fig. 10b. The average processing
time in personal computer deployment is 2.8 seconds. In the
cloud deployment, during the time the request rate is less than
five requests per minute, the processing time is around the
same value (2.5 seconds). Similar to the cloud deployment,
the billing time, which is shown in Fig. 10c, for the personal
computer deployment, is still between 5-10 seconds.

VI. DISCUSSIONS AND THREATS TO VALIDITY
In this section, we discuss potential threats to the validity
of the design implementation, and evaluation of ChainFaaS,
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FIGURE 9. The trend of various performance metrics of ChainFaa$ in the cloud deployment. (a) Workload generated to evaluate ChainFaa$S over
time. (b) Average processing time, completion time, provisioning time, and response time; averaged over a minute. (c) Average billing time in a

given minute.

as well as possible improvements of the platform. Although
the implementation and evaluation of ChainFaaS confirm that
the proposed platform is feasible, there is still much potential
for its improvement.

From the computing providers’ and the blockchain peers’
point of view, their income from this platform should be
worth their time and effort. They also need to consider the
increased electricity consumption of their computers result-
ing from their participation in the network. Moreover, to moti-
vate the developers to switch from public cloud providers to
ChainFaaS, the platform should be reliable and cost-efficient.
While the initial design of ChainFaaS indicates a sustainable
income for the providers and the peers and a low-cost for the
developers, a more in-depth cost analysis is needed to confirm

VOLUME 8, 2020

this. It is necessary to take into account the cost efficiency of
the platform for the developers as well as any possible costs
for the providers and the blockchain peers.

Based on qualitative analysis, we have concluded that the
use of ChainFaaS can have a positive impact on the environ-
ment by reusing the available computational capacity of per-
sonal computers. Although this statement appears reasonable,
a quantitative analysis of power consumption is needed. This
analysis should compare the consumption of public serverless
platforms with the prototype of ChainFaaS using different
scenarios and report the consumption values. However, this
evaluation would be difficult to conduct since we do not have
access to the underlying infrastructure of public serverless
platforms.
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In the current prototype of ChainFaaS, the scheduler ran-
domly selects one of the available providers with enough
CPU and RAM for the request. The scheduler can be
improved to take into account other relevant factors. For
instance, it can consider the reputation of the providers: those
with a higher successful job completion score may get a
higher priority in scheduling compared to others. Moreover,
instead of having the providers delete the Docker images that
they have run, they could cache the images of recent requests
they served. The scheduler can then take into account the
images that each provider has stored when distributing new
tasks. This way, the impact of cold starts will be minimized.

The compute provider’s agent has been deployed as a
Docker container to prevent the code from tampering with
the provider’s programs and files. However, there are still
some concerns about the security of Docker containers [57].
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An interesting research direction on open platforms could be
to increase the security for providers while maintaining the
performance and usability of the platform.

Any blockchain-based platform faces performance barri-
ers, and ChainFaaS is not an exception. Hyperledger Fabric
performs faster than most blockchains, especially those with
a proof-of-work consensus algorithm. Nevertheless, as can
be seen from the experiments, sometimes it can take up
to 20 seconds to complete a task. The blockchain network
could be optimized to enhance the overall performance of the
platform.

Current implementation of ChainFaaS lacks a policy man-
agement component that defines different policies for the
system such as fault tolerance, update and change, as well
as workload aggregation policies. Since each provider node
is an unreliable personal computer, the system’s reliability
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per node is low. On the other hand, sine a large number
of providers participate in the network, the system achieves
reliability by number. A fault tolerance policy is needed to
specify what the system should do in case a provider node
is unable to respond to a request. Also, an update policy is
needed to specify the update and upgrade mechanisms of the
system. This policy should include how the nodes are notified
of the updates and what they should do if an update is received
in the middle of a task. Finally, a workload aggregation policy
would be helpful. With such policy, the network can accept
large tasks and divide them into smaller subtasks that can
run on individual personal computers. In the end, using the
aggregation policy, it could merge the results from different
nodes.

In the current experiments, the number of providers in
the network, and the number of blockchain peers are fixed.
Changing the scale of the system may influence the perfor-
mance. A possible future research direction is to identify the
bottlenecks of the system by changing the parameters and
conducting different experiments. Knowing the bottlenecks
would help scale the system in the future versions.

VIi. CONCLUSION

Personal computers around the world are highly underuti-
lized, and their computational power is being wasted every
day. We have conducted a survey to gather more details and
quantify this information. The results show that the typical
CPU utilization of a personal computer is only 24.5% and,
on average, a personal computer is only used 4.5 hours
per day. Motivated by this, we have designed, implemented
and evaluated an open blockchain-based serverless plat-
form called ChainFaaS that uses the untapped computational
power of personal computers. This platform can be used
by developers to run tasks in a scalable environment with
minimal infrastructure management overhead and a reason-
able price. Any individual can rent out their extra compu-
tational power on ChainFaaS to make a profit. As proof of
concept, we have implemented and evaluated a prototype
of the proposed platform which is publicly available.* Also,
the source code, documentations, and user guides are avail-
able on GitHub.’> The prototype uses Hyperledger Fabric
as the blockchain solution which enables decentralized and
transparent management of the platform. Moreover, to ensure
the security of computing providers, this platform runs jobs in
isolated environments using containerization techniques. The
evaluation process indicates the feasibility of the idea with
satisfactory performance.

APPENDIX

PERSONAL COMPUTER SURVEY

The ChainFaaS platform is based on the assumption that
personal computers are highly underutilized. However, there
are no recent studies to verify this premise. In 2005,

4https://chainfaas‘com
5 https://github.com/pacslab/ChainFaaS

VOLUME 8, 2020

B Under 20 years old

M 20 - 29 years old

™ 30 - 39 years old
40 - 49 years old

50 - 59 years old

M 60 years or older

H Female
H Male
m Other

Prefer not to say

(b)

M Less than a high school
diploma

M High school diploma

M Bachelor's degree

Master's degree

HPhD

fc)

FIGURE 11. Demographic information of the participants in the personal
computer survey. (a) Age (b) Gender (c) Highest level of education

Domingues et al. [58] studied the resource usage of Windows
10 machines from classroom laboratories. The results show
an average CPU idleness of 97.9%. Although this study
shows much wasted computational capacity, it focuses only
on laboratory computers, and it was conducted about 15 years
ago. Therefore, to provide stronger support of the idleness
assumption, we conducted a survey and asked participants to
report their computer’s CPU utilization and unused memory
when running their regular programs.

In this survey, we first gathered some demographic infor-
mation about the participant, such as their age, gender, and
level of education. The rest of the survey questions were
aimed to find the amount of computational power that is not
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FIGURE 13. Average main computer’s usage time per day, CPU utilization,
and unused memory for each of the age groups.

being used. The participants first state the number of personal
computers that they own. Then they answer the following
questions for each of their computers:

« On average, how many hours per day do you work with
your personal computer?

o What is the primary operating system that you use on
your computer?

o What is your computer’s average CPU utilization when
running regular programs?

o What is the amount of unused memory, in gigabytes,
on your computer when running regular programs?

About 700 people participated in this survey, mostly
university students of computer science or computer engi-
neering. Fig. 7 shows the demographic information of the
participants. Most of them are 20 - 29 years old, male, with a
high school diploma. In total, we gathered information about
the utilization of about 1150 computers. The gathered data in
this survey is available publicly on GitHub.®

To get a better understanding of the gathered data, the aver-
age usage time per day, CPU utilization, and unused memory
of the participants’ main computer for the education groups
and age groups are shown in Fig. 12 and Fig. 13, respectively.
Since there were less than 10 participants with an education
level of less than a high school diploma, it was not possible to
calculate a reliable average value for this group. The situation

6https:// github.com/pacslab/PC-Survey
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TABLE 3. Average usage time, CPU utilization, and unused memory for
the main computers and all the computers in the survey.

Time (Hours) CPU (%) Memory (GBs)
Main Computers 6.34 25.72 8.6
All Computers 4.53 24.54 791

is similar for the age groups of 50-59 years old, and 60 years
and older.

It is also interesting to see the popularity of different oper-
ating systems among the participants. About 73.8% of the
computers are running on Windows, which shows the popu-
larity of this operating system. 16.6% run on macOS, 8.4%
on Linux, and the remaining 1.2% run on other operating
systems.

Finally, Table 3 shows the average usage time per day, CPU
utilization, and unused memory for the main computers and
all the computers in the survey. It can be seen that the average
CPU utilization for all the personal computers in this survey
is 24.54%. Since most participants are computer engineering
and computer science students, the average CPU utilization
for a more general audience is expected to be even less than
this number. This result confirms our initial assumption that
personal computers are highly underutilized.
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