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Abstract

Wireless relays offer benefits such as coverage extension and improving robustness.

Selection of relays may provide further benefits. The best relays are selected based

on the channel state information. However, due to feedback or scheduling delays,

in practise, the relay and/or the source node can have outdated channel state infor-

mation. This outdated information will cause a performance degradation, and in

this thesis its impact on dual-hop relay systems is investigated. The performance

of amplify-and-forward (AF) relays under partial relay selection and opportunistic

relay selection is analyzed. Both variable gain AF and fixed gain AF schemes are

considered. Expressions for the outage probability and the average bit error rate and

simplified high signal-to-noise ratio approximations are derived. The effect of pa-

rameters such as the number of relays, the rank of chosen relay, and the correlation

between the delayed and current channel state information are analyzed.
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Chapter 1

Introduction

1.1 Wireless Communications

Wireless communication field has its roots dated back in the late 19th century in

the times of Alexander Graham Bell, David E. Hughes, T.A. Edison and others.

Wireless systems are now ubiquitous and can be categorized based on the coverage

area of the network [1].

• Wireless Local Area Network (WLAN)

WLAN interconnects wireless devices in an area of a room or a building and

includes a distribution system, access points and portal entities [2]. IEEE

802.11 standard governs WLANs.

• Wireless Personal Area Networks (WPAN)

WPANs connect a private group of devices over short distances, and usually

do not have links to the outside world [3]. WPAN devices are standardized

by IEEE 802.15 standards.

• Wireless Metropolitan Area Networks (WMAN)

WMANs interconnect several Wireless LANs. Broadband WMANs are cov-

ered by the IEEE 802.16 standard, which is also known as WiMax.

• Wireless Wide Area Networks (WWAN)
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WWANs are wireless networks which cover large areas in the range of cities

and towns.

Wireless cellular systems have gained widespread adaption globally, and Inter-

national Telecommunication Union reported more than 5.3 billion mobile phone

subscribers were present in 2010, about 78 % of the world’s population [4]. This

strong growth is facilitated by the improvements in digital electronics, making

smaller devices with higher computational powers affordable for most users.

This chapter introduces basic concepts of wireless communications, including

fading, diversity and statistical models for wireless channels. Furthermore, an intro-

duction to relay systems, relay categories, relay selection and performance metrics

are presented. This chapter concludes with a summary of the contribution of this

work and an outline of the thesis.

1.2 Wireless Channel Basics

Understanding wireless channel behaviour is fundamental to performance analysis.

The wireless channel behaviour is dependent on multipath fading, the rate of time

variation and frequency selectivity.

Multipath Propagation

The wireless channel can be modeled as a linear time varying system [5]. The time-

varying behaviour arises due to the movement of the wireless terminals. Moreover,

due to reflections and scattering in the path of the signal, multiple copies of the

transmit signal will be received at the destination, with different delays and different

attenuation levels.

Due to these multiple copies, the transmitted signal x(t) and the signal received

over the wireless channel y(t) are related by [5, Eq. 2.37],

y(t) =
∑
i

ai(t)x(t− τi(t)) + w(t), (1.1)

where ai(t) is the attenuation factor from the ith path, τi(t) is the delay associated

with it, and w(t) is the additive noise.
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For narrow band signals, ai(t)s and τi(t)s can be assumed to be frequency inde-

pendent. But the channel response would be frequency dependent due to the phase

differences of each path associated with the different delays. These phase differ-

ences will also form constructive or destructive interferences of the copies of the

signal, creating rapid fluctuations in the received signal level [1].

Doppler effect and Channel Coherence Time

Doppler effect is a shift in the received signal frequency (from the original transmit

frequency), caused by the relative movement between the source and the destination

nodes. If they are stationary, the channel would be time invariant and the Doppler

shift would be zero. i.e. the ai(t)s and τi(t)s in (1.1) will be constants.

To be precise, if the relative velocity of the source with respect to the destination

is v (towards the destination) and the frequency of the signal at the source is f ,

there will be a Doppler shift (i.e a frequency change) of fv/c, where c is the speed

of light. i.e. the component of the signal with frequency f at the source would

be of frequency f + fv/c at the receiver. The range of Doppler shifts across the

bandwidth of the signal is called the Doppler spread (Ds).

Due to the Doppler effect, the channel varies with time. The coherence time

of a channel denotes the period of time within which the channel fading remains

correlated above a predetermined threshold. The coherence time is inversely pro-

portional to the Doppler spread of the wireless channel [1, Sec. 3.3.3]. In [5],

coherence time (Tc) is expressed as following,

Tc =
1

4Ds

. (1.2)

According to the uniform scattering model presented by Jakes in [6], the re-

ceived signal (given in (1.1)) in a time varying channel would have the following

autocorrelation [1]:

Ry = E[y(t)y(t+ τ)] = PyJ0 (πDsτ) , (1.3)

where Py is the received signal power,Ds is the Doppler spread, and J0 is the zeroth

order Bessel function of the first kind [7, Eq. 9.1.18]. Within the coherence time
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(i.e. τ < Tc), the channel would remain highly correlated, having a correlation

coefficient of above 0.85.

1.2.1 Small Scale Fading Models

Small scale fading refers to the rapid fluctuations in signal amplitude and phase as a

result of small changes (i.e. on the scale of half wavelength or more) in the distance

between the transmitter and receiver. These signal fluctuations are modelled by

several statistical distributions, which are described next.

Rayleigh Fading

Rayleigh fading occurs when there are multiple scattered paths from the source to

the destination and there is no direct (line-of-sight) path. The Probability Density

Function (PDF) of the received Signal to Noise Ratio (SNR) (γ) in this case is given

by [8],

fγ(x) =
x

γ̄
e−

x
γ̄ , x ≥ 0 (1.4)

where γ̄ is the average SNR.

Rician Fading

The Rician fading model is employed when there is a dominant non-fading path

between the source and the destination, in addition to the scattered paths. The PDF

of the SNR under Rician fading is as follows [8]:

fγ(x) =
2(1 +K)

γ̄
e−(K+

(1+K)x
γ̄ )I0

(
2

√
K(1 +K)x

γ̄

)
, x ≥ 0

(1.5)

where K, known as the ‘Rice factor’, is the ratio between the power of line-of-

sight (LOS) component to the power of multipath components, and γ̄ is the average

SNR. K is a measure of the fading in the channel, and the smaller the K, the more

severe the fading. K = 0 is when there is no LOS path and K = ∞ corresponds

to the case where only the LOS component is present (i.e. no fading). In a mixed

urban-suburban environment, at 915 MHz, the Rice factor was found to be between

2-4 dB in a 1.23 MHz bandwidth and 8-12 dB in a 20 MHz bandwidth [9].
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Nakagami-m Fading

Nakagami-m fading, first proposed in [10], is a more general distribution that can

be employed to model small scale fading in wireless channels. The PDF of the SNR

under Nakagami-m fading is given by

fγ(x) =
xm−1

Γ(m)

(
m

γ̄

)m

e−
mx
γ̄ , x ≥ 0,m ≥ 0.5 (1.6)

where m is the fading parameter . Rayleigh fading is a special case of Nakagami-

m fading, obtained when m = 1. m → ∞ corresponds to a non-fading Additive

White Gaussian Noise (AWGN) channel [8].

Other fading models developed to model different propagation environments

include Nakagami-q fading and Weibull fading. These fading models have been

generalized as the κ− µ distribution, η− µ distribution [11] and α− µ distribution

[12].

1.2.2 Performance Metrics

Performance analysis of wireless systems requires the averaging of performance

metrics over these fading models. In this work, the main performance metrics are

the average BER (Pb) and the outage probability (Po).

The outage probability is the probability that the instantaneous SNR will fall

below a predetermined threshold, below which the system performance is unac-

ceptable [1]. For example, in a mobile voice channel, this threshold would relate to

the minimum received SNR level, below which the sound from one node is imper-

ceptible at the other, or in a video streaming channel, the minimum SNR required

to maintain a seamless video. Hence, the outage probability is an important Quality

of Service (QoS) measure.

The average BER is the probability that a received bit would be in error at the

destination. The BER depends on the instantaneous SNR at the destination and the

modulation and coding schemes used for transmission. The average BER can be im-

proved using adaptive modulation schemes, which is recommended in the 4G stan-

dards. In the WiMAX standard, depending on the SNR level, modulation schemes
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from Binary Phase Shift Keying (BPSK) with a 1
2

code rate to 64-Quadrature Am-

plitude Modulation (QAM) with a 3
4

code rate are recommended [13]. In Long

Term Evolution (LTE) standard, conversational voice and conversational video has

maximum BERs of 10−2 and 10−3 respectively [14].

High SNR Approximations

Typically, the outage probability and the average BER expressions take complicated

forms, which hinder quick insights. Hence, simpler high SNR approximations may

show the impact of certain parameters on the performance of wireless systems.

Furthermore, these approximations are quite useful to compare different wireless

systems in the high SNR range or to analyze the influence of some parameters

on the system performance. They are sometimes an alternative to, or a validation

device of system simulations, which require a large number of simulation points to

estimate performance in the high SNR regime.

High SNR approximations are simplified functions of the average SNR, derived

taking the limits of the expression as the average SNR goes to infinity and keeping

the dominant term. For example, the average BER for BPSK modulation under

Rayleigh fading is given by [1, Eq. 6.58],

Pb =
1

2

(
1−

√
γ̄

1 + γ̄

)
(1.7)

where γ̄ is the average SNR. The high SNR approximation (P∞
b ) is obtained as

follows,

P∞
b = lim

γ̄→∞

1

2

(
1−

√
γ̄

1 + γ̄

)
=

1

4γ̄
. (1.8)

It is instructive to compare (1.8) with the average BER of BPSK in an unfaded

AWGN channel:

Pb = Q
(√

2γ̄
)
≤ e−γ̄, (1.9)

where Q(·) is the Gaussian Q-function and γ̄ is the SNR. To obtain the inequal-

ity, Chernoff bound is used [15]. It can be seen that, due to Rayleigh fading, the

BER has increased from e−γ̄ to 1
γ̄

. This dramatic increase shows the difficulty of

achieving reliable communication over fading channels.
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Diversity Gain

Diversity gain (Gd) is defined as [16],

Gd = − lim
γ̄→∞

log(Pb(γ̄))

log(γ̄)
. (1.10)

Gd is a measure of how many independently fading signal copies are combined

at the receiver [5]. The higher the diversity gain, the more robust the system would

be against the fading effects.

Coding Gain

Coding gain is a measure of the increase of SNR achieved due to coherent combin-

ing of multiple copies of the signal at the destination. Unlike the diversity gain, this

can be achieved even in a channel without fading [1]. Coding gain (Gc) is defined

as [17],

Gc = lim
γ̄→∞

(γ̄GdPb)
− 1

Gd . (1.11)

The high SNR approximation for the average BER can be written in terms of

the coding gain and the diversity gain as follows [17],

P∞
b = (Gcγ̄)

−Gd . (1.12)

For the example of the average BER of BPSK under Rayleigh fading considered

under high SNR approximations, the coding gain Gc = 4 and the diversity order

Gd = 1, as can be seen in (1.8).

1.3 Cooperative Diversity

As shown in (1.8), fading significantly degrades the reliability of communication.

One popular technique to mitigate this, is to send several copies of the data signal

over independent fading channels. This is called diversity. If the signal is transmit-

ted in two sufficiently separated time slots, time diversity is created. In the same

manner, frequency diversity or spatial diversity can be created, using separation in

frequency or space, respectively.
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Another approach is cooperative diversity, which was proposed in [18–20]. Co-

operative diversity is achieved by using relays that receive the source transmission

and forward to the destination. Such systems typically operate over two phases. In

the first phase signal transmission from source is received by multiple relays and

the destination. In the second phase, relays can use orthogonal (non-interfering)

channels. The destination combines the relayed signals and the direct signal in the

first phase to improve the SNR. This process creates multiple fading channels from

the source to the destination. Because the relays are generally located in different

physical locations, the spatial separation of the relays would enforce independent

fading, thus creating a diversity gain.

Cooperative diversity will be useful in cellular systems and wireless ad-hoc

networks [19]. In addition to the benefits of increased diversity, cooperative net-

works offer better coverage and lower power consumption than conventional net-

works [21].

1.3.1 Relay Categories

Relays can be user nodes or fixed terminals known as infrastructure relays. Re-

lays, according to their processing functionality, can be divided in to three major

categories [22], Amplify-and-Forward (AF) [18], Decode-and-Forward (DF) and

Code-and-Forward (CF).

Amplify-and-Forward

Amplify-and-Forward relay is the simplest form of the relays. As the name sug-

gests, it amplifies the received signal and retransmits [21]. Hence, there will be an

amplification of the noise as well. AF relays can be further categorized depending

on how the amplification gain is chosen:

• Variable Gain Relay

In Variable Gain (VG) relaying, the relay uses instantaneous Channel State

Information (CSI) of the received path, to choose the amplification gain [23].

Variable gain relaying generally performs better than fixed gain relaying sys-
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tems. However, the requirement of instantaneous channel information will

increase the cost and complexity of the relay.

• Fixed Gain Relay

In Fixed Gain (FG) relaying, the relay uses long term statistics of the inward

channel when choosing the amplification gain [24]. Hence, the instantaneous

CSI is not required for this. This is also known as ‘semi-blind’ relay. The ad-

vantage of fixed gain relaying is the lack of need for the relay to measure the

channel from the source, and hence has less system complexity and overhead.

Decode-and-Forward

Decode-and-Forward relays will sample, demodulate and decode the received sig-

nal [25]. The decoded and regenerated signal is then transmitted to the destination.

These relays do not have the drawback of noise amplification. Moreover, adap-

tive DF relaying offer path loss savings over conventional relaying and diversity

gains [26]. Reference [27] proposed a framework for maximum likelihood detec-

tion in decode-and-forward relay systems and [28] analyzed the performance of a

DF relay selection system under Rayleigh fading.

If the signal is decoded incorrectly at the relay, error propagation will result.

The effect of error propagation can be mitigated if the DF relays participate in

communication only under conditions that ensure high probability of correct de-

coding [29], e.g. with SNR above a predetermined threshold. In [30, 31], such

DF relay performance was analyzed. Cyclic redundancy check was used in these

systems to determine if the relays decoded the signal correctly.

Code-and-Forward

Code-and-Forward relays offer added functionality. These relays will decode the

received signal and will re-encode by using a network code before retransmission

to the destination [22]. Coded cooperation is an example of CF relaying [21], where

the relay, which is also a communicating user with the same destination, decodes

the signal from the source, and encodes it’s signal so that it contains information

9



RS D
γ1 γ2

Figure 1.1: A relay (R) connecting the source (S) and the destination (D)

about the codeword from the source.

1.4 Relay Selection

The ability of a relay to improve the overall communications performance depends

on the quality (i.e. the SNR) of the inward and outward communication channels

to and from the relay. Consider a dual hop network with a source (S), destination

(D) and a relay (R) in between (Figure 1.1). A low source-relay (S − R) link

SNR (γ1) would cause either decoding errors in DF relays or noise enhancement in

the AF relays. A low relay-destination (R − D) link SNR (γ2) would increase the

error rate at the destination. Since forwarding relays require power and bandwidth

resources, it is imperative to select relays with good link SNRs to participate in the

communication.

Another reason for relay selection is to increase the spectral efficiency. For

example, all participate relaying (APR) (shown in Figure 1.2) gives the best per-

formance in terms of the diversity gain and the coding gain [29]. But this requires

Nr + 1 (where Nr is the number of relays) orthogonal channels. The destination

can combine the Nr signals to obtain a diversity gain of Nr. But the use of Nr

orthogonal channels lowers bandwidth resource utilization.

By selecting only a subset of all available relays, the number of orthogonal

channels required for communication is reduced, thus increasing the spectral effi-

ciency. Hence methods for selecting relays become of interest. There are several

methods for the selection of relays discussed in the literature. Few such schemes

are discussed in the following subsections.
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Figure 1.2: All Participate Relaying (APR) system

1.4.1 Single Relay Selection

Consider a dual-hop system (shown in Figure 1.2) with a single Source (S), a single

destination (D) and Nr relays. γ1(ℓ), γ2(ℓ) are the S − R link SNR and the R − D

link SNR of the ℓth path respectively. In Single Relay Selection (SRS) systems,

only a single relay out of the available relays would be selected for communication.

Best Relay Selection

Best relay selection [32], is based on the end-to-end (e2e) SNR of the system. The

e2e SNR of the ℓth relay path in a AF VG system, depends on γ1(ℓ), γ2(ℓ). The relay

that offers the highest e2e SNR is selected for communication. This achieves the

optimal performance out of all the SRS schemes.

Opportunistic Relay Selection

Opportunistic Relay Selection (ORS) criteria from [30] is also known as best-worse

channel selection [33]. This scheme targets to maximize the minimum link SNR of

the system. As the link with the lowest SNR is the bottleneck in the system which

limits the performance, maximizing the minimum link SNR is desired. The selected

relay path under ORS will maximize min
(
γ1(ℓ), γ2(ℓ)

)
.
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The ORS scheme approaches the optimal performance at high SNR and this is

a simpler scheme than best relay selection. This can be applied to higher number

of hops without the complexity being significantly increased .

Partial Relay Selection

In [34], a new reduced complexity Partial Relay Selection (PRS) scheme using AF

VG relays was introduced. This selection method is based on the link SNR of the

S−R hop. The relay path selected is given by argmax
ℓ∈{1,2,...,Nr}

γ1(ℓ). This relay selection

scheme is discussed in detail in Chapter 2.

The performance of PRS is inferior to that of the ORS scheme, because the

channel information of the R −D links are not employed in the former. But, since

this requires only the local hop channel information, only the local channels need

to be estimated, which can be done by broadcasting the pilots from the source node.

The relays do no need to send pilots to estimate their channel with the destination,

unlike in the case of ORS. Hence, the CSI overhead in PRS system is much less

than that of the ORS system. This is more significant when the number of relay-

ing nodes increase in the network. Therefore the simple PRS approach finds wide

applicability especially in low complexity ad-hoc and sensor networks since such

networks may not have significant resources to implement complex relay selection

protocols [34]. Moreover, since only the local hop channel measurements are re-

quired for PRS, the relay selection process would take a shorter time than the ORS

process. This would ensure the channels would be less likely to vary significantly

during the relay selection process.

1.4.2 Multiple Relay Selection

In Multiple Relay Selection (MRS) systems, a subset of relays out of the total Nr

would participate in the communication for each data transmission (Figure 1.2),

thus aiming to improve the performance while keeping the system complexity and

resource utilization in acceptable levels. When the number of relays chosen for

communication is increased, the performance improves, but the system complexity

12
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(2) Relay estimates S −R channel

(5) Relay feedbacks
channel information
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(4) Relay estimates R−D channel

(6) S selects the relay

Figure 1.3: Relay selection process

increases as well. An optimal multiple relay selection scheme in the presence of or-

thogonal channels was proposed in [35], and optimal and suboptimal MRS systems

for shared channels was analyzed in [33]. A generalized selection combining based

MRS system was proposed in [36].

1.4.3 Practical issues in relay selection

Relay selection is based on the SNR of different relay paths. Hence, prior to relay

selection, the channels need to be estimated and the CSI need to be communicated

to a control node. The control node will select the relay and notify it. This thesis

does not focus on proposing an implementation mechanism for relay selection. But,

the following are possible processes for relay selection in PRS and ORS systems.

For ORS, both the S−R andR−D channels need to be estimated. The process

shown in Figure 1.3 may be used to select the relays. In this scheme, the source first

broadcasts pilots, and each relay estimates its S −R channel. Then the destination

broadcasts pilots and the relays estimates the R−D channel, assuming reciprocity

in the uplink and downlink. Relays then communicate the minimum of the two link

SNRs to the source. The source selects the relay, and broadcast the ID of the relay

chosen.

For PRS systems, only the S − R channel needs to be estimated in the relay

selection process. A process similar to that of Figure 1.3, excluding the steps (3)

and (4), can be used for PRS. In this scheme, the source initially broadcasts pilots.
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Each relay estimates the S − R channel and sends this information to the source.

Source selects the relay, and broadcasts the ID of the relay chosen. Alternatively, in

the PRS scheme, the relays can first broadcast the pilots. The source can measure

each S−R channel, select the relay and broadcast the ID of the relay. This would be

particularly useful in FG relay systems, where the relay does not need instantaneous

CSI of the S −R channel.

1.5 Relays in 4G standards

The fourth generation(4G) of cellular standards support speeds of up to 1Gbps and

Internet Protocol (IP) based mobile broadband for users. The two main candidates

for the upcoming 4G standards are Long Term Evolution-Advanced (LTE-A) and

Wireless MAN-Advanced (IEEE 802.16m) [37].

Relays in both these candidate standards can be divided in to two categories,

based on whether or not the relay has the control over managing resources. IEEE

802.16m classifies the former as ‘non-transparent relays’ and the latter as ‘transpar-

ent relays’, while LTE-A treats them as ‘type-1 relays’ and ‘type-2 relays’ respec-

tively.

Relays in IEEE 802.16m are stationary, decode-and-forward, non-transparent

relays [37]. They are limited to dual-hop and support both Time Division Duplexing

(TDD) and Frequency Division Duplexing (FDD).

In the LTE-A standard, type-1 relays are proposed for the purpose of coverage

extension. Two categories of relays are included in the standard, type-1a and type-

1b. Type-1b relays operates in the same frequency band as the base stations while

type-1a relays operate out-of the frequency band.

1.6 Motivation

Relay selection discussed above requires CSI to be available at the source, relays

and destination. To motivate the problem of outdated CSI, we first consider a simple

point-to-point channel between a source (S) and a destination (D) (Figure. 1.4). To
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Figure 1.4: Feedback process of CSI

estimate the channel between S andD, initially pilots are sent from the source. The

destination will use the received signal of these pilots to estimate the channel. This

estimation (i.e. CSI) is communicated back to the source via a feedback channel.

Assume this process of CSI estimation and feedback to the source takes a time

Td. The channel, due to its time varying nature caused by the Doppler and other

effects, would change during this time. Hence the CSI at the source would be

outdated. In this work, it is assumed that, the channel SNR calculated using the

outdated CSI, is correlated with the actual SNR of the channel. The central focus

of this thesis is to quantify the performance degradations due to outdated CSI.

1.7 Contributions and Outline of the Thesis

As discussed above, in relay selection systems, the source and relays may have

outdated CSI. Due to the estimation time of the S − R and R − D links, and

feedback delays in communicating this information back to source and relays, CSI

at the time of selection differs from the CSI at the time of actual data transmission.

This problem may be further enhanced by additional effects like scheduling delays.

This issue of outdated CSI has not been comprehensively investigated in the open

literature. For practical relay systems, understanding this effect is important and is

the main contribution of this work. The performance of dual hop AF relay systems

is the main focus of this thesis.
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Chapter 1

In this chapter, brief introductions to the basic concepts in wireless communica-

tion channels and small scale propagation effects were presented. The concepts of

cooperative diversity and relay communication were also briefly discussed.

Chapter 2

In Chapter 2, the system model is introduced and analyzed under Rayleigh fad-

ing. To understand the effect of outdated CSI, two relay selection schemes, PRS

and ORS are considered. PRS gives suboptimal performance under perfect CSI

case. However, since relay selection process under PRS will take less time due to

its lower complexity, it can be assumed that it will have less delay between relay

selection and data transmission. Hence the CSI at the relay selection would be bet-

ter correlated to the channel states at data transmission, and would have this as an

advantage over ORS system.

Also in this chapter, under partial relaying, both variable gain and fixed gain

relays are investigated. Outdated CSI at the relays will hinder the correct estimation

of amplification gain of relay systems. To investigate the impact of these effects,

in addition to the VG relaying systems which use instantaneous CSI to obtain the

amplification gain, this work also considers the FG relay systems which has lower

complexity. To quantify the performance loss only due to not having updated CSI

at the relays to estimate the amplification gain, a VG system which has perfect CSI

at the relays, but with relay selection based on outdated CSI is also analyzed.

Chapter 3

In this chapter, the analysis is extended to evaluate the performance under more

general Nakagami-m fading. PRS systems with both FG and VG relays are investi-

gated. The analysis is limited to Nakagami-m fading environments with an integer

fading parameter m.

In Chapters 2 and 3, exact expressions for the system outage probability and

average BER are derived. High SNR approximations of these expressions are also
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presented, to obtain further insights, in terms of the diversity order and the coding

gain. These results enable the comparison of dual hop relay systems, under the im-

pact of outdated CSI. The accuracy of the derived expressions are validated through

system simulations.

Chapter 4

The final chapter presents the conclusions and suggest directions for future work.
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Chapter 2

Amplify-and-Forward relaying with
outdated CSI in Rayleigh fading

2.1 Introduction

In this chapter, the effect of outdated CSI on the performance of a dual hop relay

system is analyzed under Rayleigh fading. The main contributions of this chapter

can be summarized as follows:

• The performance of PRS systems in the presence of outdated CSI is inves-

tigated. Selection of the k-th worst (equivalent to choosing the (Nr − k)-th

best relay) relay is analyzed.

– Performance of FG relaying is examined with outdated CSI for relay

selection.

– VG relaying performance is investigated when the relay selection and

amplification is done with outdated CSI.

– VG relaying performance is analyzed when the relay selection is per-

formed in the presence of outdated CSI, while perfect CSI is used for

amplification

• The performance of ORS VG systems is examined when relay selection is

based on outdated CSI. Two VG relaying systems are analyzed, where one

system performs amplification based on outdated CSI, while the other uses

perfect CSI for amplification.
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• New outage probability and average BER expressions are derived and their

accuracy is validated by using Monte Carlo simulations. These expressions

are general in the sense that they characterize the performance due to the k-th

worst relay selection and arbitrary correlation coefficient between the current

and outdated CSI.

• High SNR approximations are derived to obtain further insights of the sys-

tems. The impact of outdated CSI on the diversity order of the systems is

analyzed.

The performance of the ORS scheme in dual-hop transmissions has been an-

alyzed in the literature (see for e.g. [38–42] and references therein). The outage

performance is examined in [38], and the performance of ORS with VG AF relay-

ing under Rayleigh and Rician fading is analyzed in [39] and [40].

Among many works that cover PRS, in [34], the performance with VG AF

relaying has been analyzed. In [43] and [44], the performance of PRS with fixed-

gain AF relaying has been studied. Very recently in [45], diversity and coding gains

of PRS with FG relaying over Nakagami-m channels have been studied.

So far, only few papers have investigated the impact of outdated channel state

information on the performance of ORS and PRS schemes [46,47]. In time-varying

channels, outdated CSI could be used for relay selection due to feedback delay

[48]. Moreover, outdated CSI may also be used for signal amplification at the relay.

Although outdated CSI corresponds to several realistic scenarios, to the best of our

knowledge, the existing literature has not considered these issues.

The rest of the chapter is organized as follows. Section II introduces the PRS

system model with fixed and VG relaying schemes, and ORS system model with

VG relaying. The performance of PRS systems is investigated in Section III. Sec-

tion IV presents the performance analysis of ORS systems. Numerical and simula-

tion examples are presented in Section V. Finally Section VI concludes the chapter

with some remarks.
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Figure 2.1: The system model. In PRS, R(k) feed backs CSI of S − R(k) link to S.
In ORS, CSI of R(k) −D link is sent to S by D through R(k) in addition.

2.2 System Model

This work consider a dual-hop AF system, with a single source S, a single destina-

tion D and Nr relays. In this system (Fig. 2.1), it is assumed that S has no direct

link to D, which for example may result from high shadowing between S and D. S

periodically monitors the quality of its connectivity with the relays via transmission

of a local feedback, and selects a single relay, R(k), with the k-th worst S −R link.

It is assumed that there is a delay (Td) in the feedback. Hence this selection decision

is based on outdated channel information. During the first time slot, S communi-

cates with the selected R(k) relay. In the second time slot, the relay transmits its

received signal to D. The received signal at the selected relay can be written as

yR(k)
(t) =

√
PshS,R(k)

(t)x(t) + nR(k)
(t), (2.1)

where Ps is the transmit power at S, the complex channel between S and R(k)

is hS,R(k)
(t) and nR(k)

(t) is the additive white Gaussian noise (AWGN) satisfying

E
(
|nR(k)

(t)|2
)

= N01 with E (·) denoting the expectation. The relay multiplies

yk(t) by a gain, G and the output is transmitted to D. The received signal at D is

given by

yD(t) = hR(k),D(t)GyR(k)
(t) + nD(t), (2.2)

where hR(k),D(t) is the complex channel between R(k) and D, and nD(t) is the

AWGN satisfying E (|nD(t)|2) = N02.
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Let γ̃1(k) = |hS,R(k)
(t)|2η1 and γ̃2(k) = |hR(k),D(t)|2η2, where η1 = Ps

N01
, η2 =

Pr

N02
and Pr is the average transmit power ofR(k). Further, the link SNRs are defined

as γ1(k) = |hS,R(k)
(t− Td)|2η1 and γ2(k) = |hR(k),D(t− Td)|2η1. It is assumed that

the channels are Rayleigh fading channels, and hS,R(k)
(t), hR(k),D(t)∼ CN (0, 1) are

complex Gaussian with zero mean and unit variance. Note that the relay selection

would be based on γ1(k) and γ2(k). γ̃1(k) and γ̃2(k), the link SNRs experienced by

the signal, are delayed versions of γ1(k) and γ2(k) respectively. We assume γ1(k) and

γ̃1(k) are correlated with a correlation coefficient of ρ1, while γ2(k) and γ̃2(k) have a

correlation coefficient ρ2.

2.2.1 Partial Relay Selection

Let γ1(1) ≤ γ1(2) ≤ · · · ≤ γ1(Nr) be the order statistics obtained by arranging γ1(ℓ)

for ℓ = 1, . . . , Nr in an increasing order of magnitude. In PRS, the interest is in

γ1(k) and the respective relay R(k) is selected for communication.

Fixed Gain Relaying

Consider a PRS system in which relays will amplify the received signal using a

fixed gain factor [43, 44]. The relay does not require the instantaneous CSI of the

S−R link. Hence, this is a low complexity system, which offers practical relevance.

Assuming that R(k) knows the statistics of the S − R channel, the relay can

choose the fixed gain, G =
√

Pr

PsE{|hS,R(k)
(t)|2}+N01

. Amplification gain calculated

in this manner would remain constant when the instantaneous value of the S − R

channel coefficient varies. It would also make the average output power of the relay

equal to Pr. It can be shown that the end-to-end (e2e) SNR is given by

γeq1 =
γ̃1(k)γ̃2(k)
C + γ̃2(k)

, (2.3)

where C = Pr

G2N01
[49]. From [46, Eq. (9)], it is known that the probability density

function (PDF) of γ̃1(k) is given by

fγ̃1(k)(x) = k

(
Nr

k

) k−1∑
m=0

(−1)m

η1

(
k − 1

m

)
1

(Nr − k +m)(1− ρ1) + 1
e
− (Nr−k+m+1)x

((Nr−k+m)(1−ρ1)+1)η1 ,

(2.4)
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where 0 ≤ ρ1 ≤ 1 is the correlation coefficient between γ̃1(k) and γ1(k), and
(
n
k

)
=

n!
k!(n−k)!

denotes the binomial coefficient. Using this result, the following expression

can be obtained for C:

C = E
{
γ̃1(k) + 1

}
= k

(
Nr

k

) k−1∑
m=0

(−1)m

η1

(
k − 1

m

)
1

(Nr − k +m)(1− ρ1) + 1

(2.5)

×
∫ ∞

0

(x+ 1)e
− (Nr−k+m+1)x

((Nr−k+m)(1−ρ1)+1)η1 dx

= 1 +k

(
Nr

k

) k−1∑
m=0

(−1)m
(
k−1
m

)
((Nr − k +m)(1− ρ1) + 1)η1

(Nr − k +m+ 1)2
.

VG Relaying I

VG relaying I system, considered in this section, is a PRS system in which each

relay only makes one channel measurement, based on which the selection of a relay

is made at S. Variable gain relays calculate the amplification gain using the instan-

taneous CSI of S − R link. Since the S − R channel is measured during the relay

selection process, the relay already have this information. But this CSI is outdated.

The selected relay also uses this same outdated information to amplify the signal,

yR(k)
(t). Hence the amplification gain factor at the relay can be expressed as [34]

G =

√
Pr

Ps|hS,R(k)
(t− Td)|2 +N01

. (2.6)

Plugging (2.6) into (2.2) and after some manipulations, the end-to-end SNR can

be written as

γeq2 =
γ̃1(k)γ̃2(k)

γ1(k) + γ̃2(k) + 1
. (2.7)

VG Relaying II

Here, a variable gain relaying system with the assumption that the relays will have

updated channel information to calculate the amplification gain is presented. Such

information can be obtained using superimposed pilots. This system was analyzed

in [46].
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This scheme has a higher implementation complexity compared to the VG I pre-

sented in previous section, since this system requires the relay to estimate hS,R(k)
(t−

Td) as well as hS,R(k)
(t).

Now the VG factor at the relay,

G =

√
Pr

Ps|hS,R(k)
(t)|2 +N01

. (2.8)

Substituting (2.8) into (2.2) and after some manipulations, the end-to-end SNR

can be written as

γeq3 =
γ̃1(k)γ̃2(k)

γ̃1(k) + γ̃2(k) + 1
. (2.9)

It is noted that in order to study the performance metrics of this system a novel

analysis is required. This is because the form of the instantaneous end-to-end SNR,

γeq3, is different from γeq2 in (2.7) and as a result new expressions must be derived.

2.2.2 Opportunistic Relay Selection

In this section a system with full relay selection, i.e. relay selection based on chan-

nel information on all S − R and R −D branches, is analyzed. It is assumed that

the instantaneous channel measurements of each S − R(l) and R(l) − D links are

transmitted back to the source, and these channel states would have changed by the

time of actual communication.

VG Relaying I

Let γ̂l = min(γ1(l), γ2(l)), and let γ̂k be the kth smallest among the γ̂ls. Then

S−R(k)and R(k)−D links will be chosen for the communication. The actual SNR

experienced during communication on S −R(k) and R(k) −D links would be γ̃1(k)

and γ̃2(k) respectively.

As VG relaying in this system is assumed, the gain G is given by (2.6), and the e2e

SNR(γeq4) is given by γeq4 =
γ̃1(k)γ̃2(k)

γ1(k)+γ̃2(k)+1
.
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VG Relaying II

In this system, it is assumed that the relay has instantaneous CSI of the S − R link

through pilot assisted channel estimation using packets received from the source,

and will select the amplification gain factor accordingly. Even in this case, there

could be a delay in feedback and the relay selection could be done using outdated

CSI. This is similar to the system analyzed in [46]. This analysis is undertaken in

order to observe the benefit of having perfect CSI at the relays. For this case, the

amplification gain factor, G =
√

Pr

Ps|hS,R(k)
(t)|2+N01

. The resulting e2e SNR can be

expressed as γeq5 =
γ̃1(k)γ̃2(k)

γ̃1(k)+γ̃2(k)+1
.

2.3 Analysis of Partial Relay Selection Systems

This section presents the derivations of important performance metrics; the outage

probability and the average BER for the dual-hop partial relay selection system with

fixed and VG relaying.

2.3.1 Fixed Gain Relaying
Outage Probability

The outage probability, Po, defined as the probability that the end-to-end SNR drops

below a predefined SNR threshold γT , is an important quality of service (QoS)

measure. Mathematically, the outage probability can be evaluated using

Fγeq1(γT ) = Pr(γeq1 < γT ) = Pr
(
γ̃1(k)γ̃2(k)
C + γ̃2(k)

< γT

)
, (2.10)

where Pr (·) denotes the probability. Eq (2.10) can be simplified as

Fγeq1(γT ) = 1−
∫ ∞

γT

Pr
(
γ̃2(k) >

CγT
x− γT

)
fγ̃1(k)(x)dx. (2.11)

Using (2.4) and the complementary cumulative distribution function (CCDF) of

γ̃2(k), with some algebraic manipulations, the following CDF is obtained.
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Fγeq1(γT ) = 1− k

(
Nr

k

) k−1∑
m=0

(−1)m

η1

(
k − 1

m

)
e
− (Nr−k+m)γT

((Nr−k+m)(1−ρ1)+1)η1

(Nr − k +m)(1− ρ1) + 1
(2.12)

×
∫ ∞

0

e
−CγT

η2y
− (Nr−k+m+1)y

((Nr−k+m)(1−ρ1)+1)η1 dy.

Finally using [50, Eq. (4.5.25)], the outage probability can be expressed as

Fγeq1(γT ) = 1− 2k

(
Nr

k

) k−1∑
m=0

(−1)m
(
k−1
m

)
((Nr − k +m)(1− ρ1) + 1)

e
− (Nr−k+m+1)γT

((Nr−k+m)(1−ρ1)+1)η1

(2.13)

×

√
((Nr − k +m)(1− ρ1) + 1)CγT

(Nr − k +m+ 1)η1η2
K1

(
2

√
(Nr − k +m+ 1)CγT

((Nr − k +m)(1− ρ1) + 1)η1η2

)
,

where Kν(x) is the νth order modified Bessel function of the second kind [7, Sec.

(9.6)]. The outage probability for the special case of ρ1 = 1 and Nr = k is given

by [43, Eq. (5)]. Although the above result(2.13) gives the exact outage probability,

a simpler high-SNR approximation is desirable in order to gain further insights,

in terms of the diversity order and the coding gain. Corollary 1 presents a simple

result for the outage probability at high SNR.

Corollary 1 The asymptotic outage probability for large η1 and η2 with fixed ratio,

µ = η2
η1

admits the first order approximation given by

Fγeq1(γT )≈
γT
η1

k−1∑
m=0

(−1)mk
(
Nr

k

)(
k−1
m

)
(Nr−k+m)(1−ρ1)+1

(
Λ

µ
ln

(
((Nr − k +m)(1− ρ1) + 1)η1

(Nr − k +m+ 1)

)
+ϕ

)
,

(2.14)

with ϕ defined as

ϕ = e−Λ + Λ (1− γ + Ei(−Λ)− ln(Λ)) , (2.15)

and Λ = k
(
Nr

k

)∑k−1
m=0 (−1)m

(
k−1
m

) ((Nr−k+m)(1−ρ1)+1)
(Nr−k+m+1)2

.

The proof is given in Appendix I.

In (2.15) γ = 0.57721... is the Euler–Mascheroni constant and Ei(x) is the

exponential integral function [7, Eq. (5.1.2)]. Note that the simpler form in (2.14)
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shows the impact of parameters such as k, ρ1 and Nr on the outage probability.

High SNR approximation for the special cases ρ1 = 0, 1 are given below.

Fγeq1(γT ) ≈


γT
η1

(
Λ
µ
ln(η1) + ν

)
ρ1 = 0,∑k−1

m=0

k(Nr
k )γT (−1)m(k−1

m )
η1

ln
(

η1
Nr−k+m+1

)
ρ1 = 1.

(2.16)

Average BER

The analysis then proceeds to the system’s average error performance. For many

modulation formats used in wireless applications, the average BER can be ex-

pressed as

Pb = α E[Q(
√
βγeq1)] =

α√
2π

∫ ∞

0

Fγeq1

(
t2

β

)
e−

t2

2 dt, (2.17)

where α, β > 0 are constants depending on the modulation scheme, and Q(x) =

1√
2π

∫∞
x
e−

y2

2 dy is the Gaussian Q-function. Eq. (2.17) can be evaluated with the

help of [50, Eq. (4.16.33)] and the following expression for the average BER is

arrived at.

Pb =
α

2
− α

√
βη1kC

2η2

(
Nr

k

) k−1∑
m=0

(−1)m
(
k−1
m

)
((Nr − k +m)(1− ρ1) + 1)

(2.18)

×
(

(Nr − k +m+ 1)

((Nr − k +m)(1− ρ1) + 1)
+ βη1

)− 3
2

eς3 (K1(ς3)−K0(ς3)) ,

where ς3 =
C(Nr−k+m+1)

η2(2(Nr−k+m+1)+βη1((Nr−k+m)(1−ρ1)+1))
. The average BER for the special

case with ρ1 = 1 and Nr = k is given in [43, Eq. (12)].

Substituting (2.14) into (2.17) and solving the integral, the average BER at high

SNR can be written as

P∞
b ≈ αk

2βη1

k−1∑
m=0

(−1)m
(
Nr

k

)(
k−1
m

)
(Nr−k+m)(1−ρ1)+1

(
Λ

µ
ln

(
((Nr − k +m)(1− ρ1) + 1)η1

(Nr − k +m+ 1)

)
+ ϕ

)
.

(2.19)
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2.3.2 Variable Gain Relaying I
Outage Probability

In order to derive the outage probability of VG relaying, it is convenient to obtain a

statistical distribution formula for the general form:

Y =
γ̃1(k)γ̃2(k)

γ1(k) + γ̃2(k) + c
. (2.20)

Note that c = 1 gives the exact expression for γeq2 in (2.7), while c = 0 can

be substituted to obtain an analytically feasible approximation. The cumulative

distribution function (CDF) of the random variable (RV) Y can be written as

FY (γT ) = Pr
(

γ̃1(k)γ̃2(k)
γ1(k) + γ̃2(k) + c

< γT

)
. (2.21)

After some mathematical manipulations, (2.21) can be written as follows

FY (γT ) = 1−
∫ ∞

0

∫ ∞

0

Pr
(
γ̃2(k) >

γT (y + c)

w

)
fγ̃1(k),γ1(k)(w + γT , y)dwdy.

(2.22)

It is important to note that, fγ̃1(k)|γ1(k)(x|y) = fγ̃(ℓ)|γ(ℓ)(x|y), where ℓ represents

unordered relays. Hence the joint PDF of γ̃1(k) and γ1(k) can be established from

fγ̃1(k),γ1(k)(x, y) =
fγ̃1(ℓ),γ1(ℓ)(x, y)

fγ1(ℓ)(y)
× fγ1(k)(y). (2.23)

Since γ̃1(ℓ) and γ1(ℓ) are two correlated exponentially distributed RVs, their joint

PDF

fγ̃1(ℓ),γ1(ℓ)(x, y) =
e
− x+y

(1−ρ1)η1

(1− ρ1)η21
I0

(
2
√
ρ1xy

(1− ρ1)η1

)
, (2.24)

where I0(x) is the zeroth order modified Bessel function of the first kind. W e

know that the PDF fγ1(k)(y) is given by fγ1(k)(y) = Nr!
(k−1)!(Nr−k)!

[Fγ1(ℓ)(y)]
k−1[1 −

Fγ1(ℓ)(y)]
Nr−kfγ1(ℓ)(y) where fγ1(ℓ)(y) =

1
η1
e
− y

η1 and Fγ1(ℓ)(y) = 1 − e
− y

η1 . Using

the above results in (2.23) and after some simplifications, the joint PDF of γ̃1(k) and

γ1(k), fγ̃1(k),γ1(k)(x, y), can be written as

fγ̃1(k),γ1(k)(x, y) =
k
(
Nr

k

)
e
− x

(1−ρ1)η1

(1− ρ1)η21
I0

(
2
√
ρ1xy

(1− ρ1)η1

) k−1∑
m=0

(−1)m
(
k − 1

m

)
e
− ((Nr−k+m)(1−ρ1)+1)y

(1−ρ1)η1 .

(2.25)
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Substituting (2.25) and the CCDF of γ̃2(k) into (2.22), the following expression is

obtained.

FY (γT ) = 1−
∫ ∞

0

∫ ∞

0

e
− γT (y+c)

η2w
k
(
Nr

k

)
e
− (w+γT )

(1−ρ1)η1

(1− ρ1)η21
I0

(
2
√
ρ1(w + γT )y

(1− ρ1)η1

)
(2.26)

×
k−1∑
m=0

(−1)m
(
k − 1

m

)
e
− ((Nr−k+m)(1−ρ1)+1)y

(1−ρ1)η1 dwdy.

Using the infinite series expansion I0(x) =
∑∞

p=0
x2p

22p(p!)2
from [51, Eq. (8.447.1)]

in (2.26) and [50, Eq. (4.5.29)], (2.26) can be expressed as

FY (γT ) = 1−
∞∑
p=0

k−1∑
m=0

p∑
n=0

(−1)m
(
k−1
m

)
k
(
Nr

k

)
ρ1

pe
− γT

(1−ρ1)η1

(1− ρ1)2p+1(p!)2pη2p+2
1

(
p

n

)
γp−n
T (2.27)

×
∫ ∞

0

ype
− ((Nr−k+m)(1−ρ1)+1)y

(1−ρ1)η1 2

(
γT (y + c)(1− ρ1)η1

η2

)n+1
2

Kn+1

(√
4γT (y + c)

η1η2(1− ρ1)

)
dy.

To the best of authors’ knowledge, the integral in (2.27) does not have a closed-

form solution. Hence, a tight lower bound for (2.27) is obtained substituting c = 0

and using [50, Eq. (4.16.37)].

Fγeq2(γT ) ≥ 1−
∞∑
p=0

k−1∑
m=0

p∑
n=0

(−1)m
(
Nr

k

)(
k−1
m

)(
p
n

)
kρ1

pγp+1
T (p+ n+ 1)!

(1− ρ1)p−n−1ηp−n
1 ηn+1

2 p!((Nr − k +m)(1− ρ1) + 1)p+n+2

(2.28)

× U
(
p+ n+ 2, n+ 2;

γT
η2((Nr − k +m)(1− ρ1) + 1)

)
e
− γT

η1(1−ρ1) ,

where U(a, b; z) is the confluent hypergeometric function of the second kind [7, Eq.

(13.1.3)].

In Section V, extensive simulation results to complement (2.28) are presented.

The outage probability predicted from (2.28) and simulations match perfectly even

at low SNRs as η1 = η2 = 5 dB. For the special case of ρ1 = 1 and Nr = k, the

outage probability is given in [34, Eq. (2)].

A high SNR approximation for the outage probability can be obtained and is

presented as Corollary 2 below.
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Corollary 2 The asymptotic outage probability for large η1 and η2 with fixed ratio,

µ = η2
η1

admits the first order approximation given by

Fγeq2(γT ) ≈ k

(
Nr

k

) k−1∑
m=0

(−1)m
(
k − 1

m

)(
p1 + p2

Nr − k +m+ 1
+

ln(η1/p1)

µω2(1− ρ1)

)(
γT
η1

)
.

(2.29)

The proof is relegated to Appendix II with p1, p2 and ω defined.

Average BER

Using (2.17), and [50, Eq (4.22.16)], the average BER of the PRS system with VG

relaying can be derived.

Pb ≥
α

2
− αk√

8π

∞∑
p=0

k−1∑
m=0

p∑
n=0

(−1)m
(
Nr

k

)(
k−1
m

)(
p
n

)
(p+ n+ 1)!ρ1

pβ
n
2
−p

(1− ρ1)p−n−1ηp−n
1 η

n
2
2 p!((Nr − k +m)(1− ρ1) + 1)p+1+n

2

(2.30)

×
Γ(p+ 3

2
)Γ(p− n+ 1

2
)ς

n
2
+1

2

Γ(2p+ 5
2
)(ς1 +

ς2
2
)p+

3
2

2F1

(
p+

3

2
, p+ n+ 2, 2p+

5

2
;
ς1 − ς2

2

ς1 +
ς2
2

)
,

where ς1 = 1
βη1(1−ρ1)

− 1
2η2((Nr−k+m)(1−ρ1)+1)β

+ 1
2

, ς2 = 1
βη2((Nr−k+m)(1−ρ1)+1)

and

2F1(a, b; c; x) is the Gauss hypergeometric function [7, Eq. (15.1.1)]. The average

BER for the special case with ρ1 = 1, Nr = k and BPSK modulation is given

in [34, Eq. (14)].

Consider the average BER at high SNR. Following a similar approach as in the

case of FG relaying, the average BER for the VG relaying, in the high SNR regime

can be written as

P∞
b ≈

αk
(
Nr

k

)
2βη1

k−1∑
m=0

(−1)m
(
k − 1

m

)(
p1 + p2

Nr − k +m+ 1
+

ln(η1/p1)

µω2(1− ρ1)

)
.

(2.31)

The average output power at the relay in the case of VG relaying would be different

from Pr due to selecting the amplification gain factor using outdated CSI. Hence,

for a fair comparison of the fixed and VG schemes, an average power normalization

is made so that the average output power at the relay is equal to Pr. In order to do
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so, a modified amplification gain factor, G =

√
Pr/ξ

Ps|hS,R(k)
(t−Td)|2+N01

is introduced,

where

ξ = E

{
γ̃1(k) + 1

γ1(k) + 1

}
=

k
(
Nr

k

)
(1− ρ1)η21

k−1∑
m=0

(−1)m
(
k − 1

m

)∫ ∞

0

∫ ∞

0

(
x+ 1

y + 1

)
× I0

(
2
√
ρ1xy

(1− ρ1)η1

)
e
−
(

x
(1−ρ1)η1

+
((Nr−k+m)(1−ρ1)+1)y

(1−ρ1)η1

)
dxdy.

(2.32)

Using [52, Eq. (9)] and [50, Eq. (4.2.6)], (2.32) can be evaluated to arrive at the

expression for the scaling factor given by

ξ = k

(
Nr

k

) k−1∑
m=0

(−1)m
(
k − 1

m

)
(2.33)

×
(

ρ1
Nr − k +m+ 1

− (1− ρ1)

(
1 +

1

η1

)
e

Nr−k+m+1
η1 Ei

(
−Nr − k +m+ 1

η1

))
.

2.3.3 Variable Gain Relaying II
Outage Probability

The outage probability of the system can be derived by using the approach shown

in Appendix III.

Fγeq3(γT ) = 1− 2k

(
Nr

k

) k−1∑
m=0

(−1)m
(
k − 1

m

)
(2.34)

×

√
γ2T + cγT

(Nr − k +m+ 1)((Nr − k +m)(1− ρ1) + 1)η1η2

× e
−
(

Nr−k+m+1
((Nr−k+m)(1−ρ1)+1)η1

+ 1
η2

)
γTK1

(
2

√
(Nr − k +m+ 1)(γ2T + cγT )

((Nr − k +m)(1− ρ1) + 1)η1η2

)

Outage Probability at High SNR

Although the outage probability in (2.34) is exact and valid for arbitrary SNRs, it

is difficult to use (2.34) to get direct insights. For example, it is interesting to know

how system and network parameters such as Nr, ρ1 and SNR imbalance influence

the system’s outage performance. Since such insight can not be directly obtained
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from (2.34), a simple outage probability expression valid for high SNR is devel-

oped.

In the asymptotic SNR regime, η1, η2 → ∞. Applying a Bessel function ap-

proximation for small arguments of x, 0 < x <<
√
ν + 1, given by

Kν(x) ≃
2ν−1Γ(ν)

xν
, (2.35)

using this in (2.34), it is seen that

Fγeq3(γT ) ≈ 1− k

(
Nr

k

) k−1∑
m=0

(−1)m

Nr − k +m+ 1

(
k − 1

m

)
e
−
(

Nr−k+m+1
((Nr−k+m)(1−ρ1)+1)η1

+ 1
η2

)
γT

(2.36)

Let η2 = µη1 and Fγeq3(γT ) can be re-expressed as

Fγeq3(x) = 1− k

(
Nr

k

) k−1∑
m=0

(−1)m

Nr − k +m+ 1

(
k − 1

m

)
e
−
(

Nr−k+m+1
(Nr−k+m)(1−ρ1)+1

+ 1
µ

)
x
,

(2.37)

where x = γT
η1

. Using the Maclaurin series representation for the exponential func-

tion in (2.37) one gets

Fγeq3(x) = 1− k

(
Nr

k

) k−1∑
m=0

(−1)m

Nr − k +m+ 1

(
k − 1

m

)
(2.38)

×
∞∑
p=0

(−1)p

(
Nr−k+m+1

(Nr−k+m)(1−ρ1)+1
+ 1

µ

)p
p!

xp.

Simplifying further and collecting only the first order terms yield an outage proba-

bility approximation given by

Fγeq3(x) = k

(
Nr

k

) k−1∑
m=0

(−1)m

Nr − k +m+ 1

(
k − 1

m

)(
Nr − k +m+ 1

(Nr − k +m)(1− ρ1) + 1
+

1

µ

)
x.

(2.39)

Finally, substituting x = γT
η1

, the outage probability can be written as

Fγeq3(γT ) = k

(
Nr

k

) k−1∑
m=0

(−1)m
(
k − 1

m

)
γT

((Nr − k +m)(1− ρ1) + 1)η1
+

γT
µη1

.

(2.40)
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It follows from (2.40) that in the special cases of ρ1 = 0 and ρ1 = 1, for k = Nr,

the outage becomes

Fγeq3(γT ) =

{ (
1 + 1

µ

)
γT
η1

ρ1 = 0,
γT
µη1

ρ1 = 1.
(2.41)

Average BER

We now derive expressions for the system’s average BER. For many modulation for-

mats (see below) used in wireless applications, the average BER can be expressed

as

Pb = α E[Q(
√
βγeq3)], (2.42)

where α, β > 0, and Q(x) = 1√
2π

∫∞
x
e−

y2

2 dy is the Gaussian Q-function. For

binary phase shift keying (BPSK) (α, β) = (1, 2), quadrature phase shift keying

(QPSK) (α, β) = (1, 1) gives the exact BER and for M -PSK (α, β) =
(

1
log2 M

,

log2M sin2 π
M

)
can be used to approximate the BER.

Using integration by parts it can be shown that (2.42) can be re-expressed as

Pb =
α√
2π

∫ ∞

0

Fγeq3

(
t2

β

)
e−

t2

2 dt. (2.43)

To the best of author’s knowledge, (2.43) does not have a closed-form solution for

Fγeq3 given in (2.34). To overcome this challenge, the following approximation is

considered, γeq3 =
γ̃1(k)γ2
γ̃1(k)+γ2

, since it is a tight upper bound for γeq3 in the regimes

of medium-to-high SNR. Extensive simulation results are provided in Section IV to

complement the bounds. Thus, after substituting (2.34) with c = 0 into (2.43) we

obtain (2.44).

Pb ≈
α

2
− αk

β

√
2

πη1η2

(
Nr

k

) k−1∑
m=0

(−1)m
(
k−1
m

)√
(Nr − k +m+ 1)((Nr − k +m)(1− ρ1) + 1)

(2.44)

×
∫ ∞

0

t2e
−
(

Nr−k+m+1
((Nr−k+m)(1−ρ1)+1)βη1

+ 1
βη2

+ 1
2

)
t2
K1

(
2t2

β

√
(Nr − k +m+ 1)

((Nr − k +m)(1− ρ1) + 1)η1η2

)
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The integral in (2.44) can be solved with the help of [51, Eq. (6.621.3)] to yield

(2.45).

Pb ≈
α

2
− 3παk√

2β2η1η2

(
Nr

k

) k−1∑
m=0

(−1)m
(
k−1
m

)
((Nr − k +m)(1− ρ1) + 1)

(2.45)

×
2F1

(
5
2
, 3
2
, 2;

Nr−k+m+1
((Nr−k+m)(1−ρ1)+1)βη1

+ 1
βη2

+ 1
2
− 2

β

√
(Nr−k+m+1)

((Nr−k+m)(1−ρ1)+1)η1η2

Nr−k+m+1
((Nr−k+m)(1−ρ1)+1)βη1

+ 1
βη2

+ 1
2
+ 2

β

√
(Nr−k+m+1)

((Nr−k+m)(1−ρ1)+1)η1η2

)
(

Nr−k+m+1
((Nr−k+m)(1−ρ1)+1)βη1

+ 1
βη2

+ 1
2
+ 2

β

√
(Nr−k+m+1)

((Nr−k+m)(1−ρ1)+1)η1η2

)2.5
Average BER at High SNR

Substituting (2.40) into (2.43) the average BER at high SNR (P∞
b ) can be written

as

P∞
b =

α√
2πη1β

(
k

(
Nr

k

) k−1∑
m=0

(−1)m
(
k − 1

m

)
(2.46)

× 1

(Nr − k +m)(1− ρ1) + 1
+ µ−1

)∫ ∞

0

w2e−
w2

2 dw

Simplifying the integral in (2.46) with the help of [51, Eq. (3.381.4)] yields

P∞
b ≈ α

2

(
k

(
Nr

k

) k−1∑
m=0

(−1)m
(
k − 1

m

)
1

(Nr − k +m)(1− ρ1) + 1
+ µ−1

)
(βη)−1

(2.47)

2.4 Analysis of Opportunistic Relay Selection Systems

2.4.1 Variable Gain Relaying I
Outage Probability

To derive the outage probability, the distribution functions of γ̃1(k) and γ̃2(k) are re-

quired. In order to that, the distribution functions of γ1(k) and γ1(k) must be obtained
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first. The CDF of γ1(k) can be written as

Fγ1(k)(γT ) = Pr
(
γ1(l) < γT ∩ γ1(l) > γ2(l) ∩ l = k

)
+ Pr

(
γ1(l) < γT ∩ γ1(l) < γ2(l) ∩ l = k

)
=

∫ γT

0

fγ1(l)(x)

∫ x

0

fγ2(l)(y)Nr

(
Nr − 1

k − 1

)
(Fγ̂l(y))

k−1 (1− Fγ̂l(y))
Nr−k dydx

+

∫ γT

0

fγ1(l)(x)Nr

(
Nr − 1

k − 1

)
(Fγ̂l(x))

k−1 (1− Fγ̂l(x))
Nr−k

∫ ∞

x

fγ2(l)(y)dydx.

(2.48)

Since γ1(i) and γ2(i) are exponential RVs, Fγ̂i(x) = 1−Pr
(
min(γ1(l), γ2(l)) > x

)
=

1− e−
x
η̄ , with η̄ = η1η2

η1+η2
. Employing the binomial expansion yields (Fγ̂l(x))

k−1 =∑k−1
m=0

(
k−1
m

)
(−1)me−

mx
η̄ . Using these results along with the exponential PDF in

(2.48), the integrals in (2.48) can be evaluated. After further simplifications, Fγ1(k)(γT )

can be expressed as

Fγ1(k)(γT ) = 1−
k−1∑
m=0

(−1)mk
(
Nr

k

)(
k−1
m

)
1+ η2

η̄
(Nr−k+m)

(2.49)

×
(
e
− γT

η1 +
η2(Nr − k +m)

η1(Nr − k +m+ 1)
e−

γT
η̄

(Nr−k+m+1)

)
.

Taking the derivative with respect to γT of the above CDF, the PDF of γ1(k) can be

obtained and is given by

fγ1(k)(y) =
k−1∑
m=0

(−1)mk
(
Nr

k

)(
k−1
m

)
1 + η2

η̄
(Nr − k +m)

(
1

η1
e
− y

η1 +
η2(Nr − k +m)

η1η̄
e−

y
η̄
(Nr−k+m+1)

)
.

(2.50)

Using the relationship in (2.23), the joint PDF of γ̃1(k) and γ1(k) can be expressed as

fγ̃1(k),γ1(k)(x, y) =
k
(
Nr

k

)
e
− x

(1−ρ1)η1

(1− ρ1)η21
I0

(
2
√
ρ1xy

(1− ρ1)η1

) k−1∑
m=0

(
k−1
m

)
(−1)m

1 + η2
η̄
(Nr − k +m)

(2.51)

×
(
e
− y

(1−ρ1)η1 +
η2(Nr − k +m)

η̄
e
−y
(

(Nr−k+m+1)
η̄

+
ρ1

(1−ρ1)η1

))
.
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Now the analysis proceeds to derive the PDF of γ̃1(k) as follows:

fγ̃1(k)(x) =

∫ ∞

0

fγ̃1(k),γ1(k)(x, y) dy =
k

η1

(
Nr

k

) k−1∑
m=0

(
k−1
m

)
(−1)m

(1 + η2
η̄
(Nr − k +m))

(2.52)

×
(
e
− x

η1 +
(Nr − k +m)η2

ρ1η̄ + (1− ρ1)(Nr − k +m+ 1)η1
e
− (Nr−k+m+1)x

ρ1η̄+(1−ρ1)η1(Nr−k+m+1)

)
.

Since the relay selection criteria is symmetric, by interchanging η1 and ρ1 with η2

and ρ2 respectively, the PDF of γ̃2(k) can be obtained. An expression for the CDF

of γ̃2(k) can be obtained by integrating the PDF and is given by

Fγ̃2(k)(y) = 1− k

(
Nr

k

) k−1∑
m=0

pm

2∑
i=1

qm,ie
−

rm,i
η1

y
, (2.53)

where pm =
(k−1

m )(−1)m

(1+
η1
η̄
(Nr−k+m))

, qm,1 = 1, qm,2 = (Nr−k+m)η1
(Nr−k+m+1)η2

, rm,1 = η1
η2

and

rm,2 = (Nr−k+m+1)η1
ρ2η̄+(1−ρ2)η2(Nr−k+m+1)

. Observing that the above distribution is a sum of

exponentials makes the further derivations much convenient. Having derived all

the required distributions, the next step is deriving the analytic result for the outage

probability, using γeq4 ≈
γ̃1(k)γ̃2(k)
γ1(k)+γ̃2(k)

.

Fγeq4(γT ) ≈ 1− Pr
(

γ̃1(k)γ̃2(k)
γ1(k) + γ̃2(k)

> γT

)
= 1−

∫ ∞

γT

∫ ∞

0

fγ̃1(k),γ1(k)(x, y)

(
1− Fγ̃2(k)

(
yγT
x− γT

))
dydx. (2.54)

By modifying the limits of the outer integral, and substituting results from (2.51)

and (2.53) Fγeq4(γT ) can be written as

Fγeq4(γT ) ≈ 1− k2

(1− ρ1)η21

(
Nr

k

)2 k−1∑
m=0

pm

k−1∑
n=0

p′n

2∑
i=1

qm,i

2∑
j=1

q′n,j (2.55)

×
∫ ∞

0

∫ ∞

0

e
− x+γT

(1−ρ1)η1 e
− y

η1
(r′n,j+

rm,iγT
x

)
I0

(
2
√
ρ1(x+ γT )y

(1− ρ1)η1

)
dydx.

Simplifying (2.55) yields

Fγeq4(γT ) ≈ 1−
k2
(
Nr

k

)2
(1− ρ1)η21

k−1∑
m=0

pm

k−1∑
n=0

p′n

2∑
i=1

qm,i

2∑
j=1

q′n,j (2.56)

×
∫ ∞

0

e
− x+γT

(1−ρ1)η1

(
1− ρ1

(1−ρ1)(r
′
n,j

+
rm,iγT

x )

)

(
r′n,j

η1
+

rm,iγT
η1x

)
dx,
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where p′n =
(k−1

n )(−1)n

1+
η2
η̄
(Nr−k+n)

, q′n,1 = 1, q′n,2 = η2(Nr−k+n)
η̄

r′n,1 = 1
1−ρ1

and r′n,2 =(
(Nr−k+n+1)η1

η̄
+ ρ1

(1−ρ1)

)
. Since a closed-form solution with standard mathematical

functions does not exist for the integral in (2.56), the analysis resorts to finding a

high SNR approximation for Fγeq4(γT ). Substituting

x+ γT
(1− ρ1)η1

− ρ1x(x+ γT )

(1− ρ1)2η1(r′n,jx+ rm,iγT )
= x

(
1

(1− ρ1)η1
− ρ1

(1− ρ1)2η1r′n,j

)
(2.57)

+
γT

(1− ρ1)η1

(
ρ1(rm,i − r′n,j)

(1− ρ1)r′2n,j
+ 1

)
+

γ2Tρ1rm,i(r
′
n,j − rm,i)

r′2n,jη1(1− ρ1)2(γT rm,i + r′n,jx)
,

using the Maclaurin series expansion of e
−

γ2T ρ1rm,i(r
′
n,j−rm,i)

r′2
n,j

η1(1−ρ1)
2(γT rm,i+r′

n,j
x) and ignoring higher

order terms of γT
η1

yields the following approximation given by

Fγeq4(γT ) ≈ 1−
k2
(
Nr

k

)2
(1− ρ1)η1

k−1∑
m=0

pm

k−1∑
n=0

p′n

2∑
i=1

qm,i

2∑
j=1

q′n,je
− γT

(1−ρ1)η1

(
ρ1(rm,i−r′n,j)

(1−ρ1)r
′2
n,j

+1

)

(2.58)

×
∫ ∞

0

e
−x

(
1

(1−ρ1)η1
− ρ1

(1−ρ1)
2η1r

′
n,j

)(
1

r′n,j
− γT rm,i

r′n,j(r
′
n,jx+ rm,iγT )

)
dx+ o

((
γT
η1

)2
)
.

Using [49, Eq. (11)], Fγeq4(γT ) can be expressed as

Fγeq4(γT ) ≈ 1− k2
(
Nr

k

)2 k−1∑
m=0

pm

k−1∑
n=0

p′n

2∑
i=1

qm,i

2∑
j=1

q′n,je
− γT

(1−ρ1)η1

(
ρ1(rm,i−r′n,j)

(1−ρ1)r
′2
n,j

+1

)

(2.59)

×

 1

r′n,j

(
1− ρ1

(1−ρ1)r′n,j

) +
γT rm,i

(1− ρ1)η1r′2n,j
ln

(
1

(1− ρ1)η1
− ρ1

(1− ρ1)2η1r′n,j

) .
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Average BER

The average BER can be now derived substituting (2.59) in (2.17). Through sim-

plifications after the integration, Pb can be expressed as

Pb ≈
α

2
− αk2

2

(
Nr

k

)2 k−1∑
m=0

pm

k−1∑
n=0

p′n

2∑
i=1

qm,i

2∑
j=1

q′n,j

√√√√ β

β + 2
(1−ρ1)η1

(
ρ1(rm,i−r′n,j)

(1−ρ1)r′2n,j
+ 1
)

(2.60)

×

 (1− ρ1)(
r′n,j(1− ρ1)− ρ1

) − rm,i ln
(

1
(1−ρ1)η1

− ρ1
(1−ρ1)2η1r′n,j

)
r′2n,jβ(1− ρ1)η1 + 2

(
ρ1(rm,i−r′n,j)

(1−ρ1)
+ r′2n,j

)
 .

The average output power at the relay will be different from Pr due to using out-

dated CSI to estimate the amplification gain. Hence, a modified amplification gain

factor ξ2 is introduced, for a fair comparison among the systems. Using a similar

approach as earlier, ξ2 can be expressed as

ξ2 = E

{
γ̃1(k) + 1

γ1(k) + 1

}
=

k−1∑
m=0

(−1)mk
(
Nr

k

)(
k−1
m

)
1 + η2

η̄
(Nr − k +m)

2∑
i=1

q′m,i

(
ρ1
si

− (1− ρ1)

(
1 +

1

η1

)
e

si
η1 Ei

(
− si
η1

))
,

(2.61)

where s1 = 1 and s2 =
(Nr−k+m+1)η1

η̄
.

2.4.2 Variable Gain Relaying II
Outage Probability

Fγeq5(γT ) = 1−
∫ ∞

0

fγ̃1(k)(x+ γT )

(
1− Fγ2(k)

(
γT (x+ γT + 1)

x

))
dx

= 1− 2k2

η1

(
Nr

k

)2 k−1∑
m=0

pm

k−1∑
n=0

p1n

2∑
i=1

qm,i

2∑
j=1

qn,1je
−(rm,i+rn,1j)

γT
η1

×

√
rm,i(γT + γ2T )

rn,1j
K1

(
2

η1

√
rm,irn,1j(γT + γ2T )

)
, (2.62)

where p1m =
(k−1

m )(−1)m

(1+
η2
η̄
(Nr−k+m))

, qn,11 = 1, qn,12 = (Nr−k+n)η2
ρ1η̄+(1−ρ1)(Nr−k+n+1)η1

, rn,11 = 1

and rn,12 = (Nr−k+n+1)η1
ρ1η̄+(1−ρ1)η1(Nr−k+n+1)

. A simple high SNR approximation can be
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obtained using K1(x) ≈ 1
x

as x → 0 in the above result. Therefore, as η1, η2 tends

to ∞, Fγeq5(γT ) can be expressed as

Fγeq5(γT ) ≈
γTk

2

η1

(
Nr

k

)2 k−1∑
m=0

pm

k−1∑
n=0

p1n

2∑
i=1

qm,i

2∑
j=1

qn,1j

(
1 +

rm,i

rn,1j

)
. (2.63)

Average BER

The average BER can be now derived substituting (2.62) in (2.17). But as the re-

sulting integral does not have a solution in standard mathematical functions, the

approximation γeq5 ≈
γ̃1(k)γ̃2(k)
γ̃1(k)+γ̃2(k)

is used. Using [51, Eq 6.621.3] and further simpli-

fications, the average BER is derived, which is given by

Pb ≈
α

2
− 3παk2√

2β2η21

(
Nr

k

)2 k−1∑
m=0

pm

k−1∑
n=0

p1n

2∑
i=1

qm,irm,i

2∑
j=1

qn,1j(
1
2
+

(
√
rm,i+

√
rn,1j)2

βη1

) 5
2

× 2F1

(
5

2
,
3

2
; 2;

βη1 + 2(
√
rm,i −

√
rn,1j)

2

βη1 + 2(
√
rm,i +

√
rn,1j)2

)
. (2.64)

Using (2.63) in (2.17), as η1, η2 → ∞ a high SNR approximation for the above

BER can be obtained and is given by

Pb ≈
αk2

2βη1

(
Nr

k

)2 k−1∑
m=0

pm

k−1∑
n=0

p1n

2∑
i=1

qm,i

2∑
j=1

qn,1j

(
1 +

rm,i

rn,1j

)
. (2.65)

2.5 Numerical and Simulation Results

2.5.1 Partial Relay Selection

Figures 2.2-2.4 show the performance of the three systems investigated in Section

III of this chapter. The variable gain relaying systems investigated in this chapter

are labelled as VG I and VG II in the figures, and the fixed gain relaying system

is labelled as FG. VG II system has perfect CSI at the relay to estimate the am-

plification gain, while the VG I system uses the outdated CSI for the same. All

investigated cases revealed an excellent agreement between analytical and Monte

Carlo simulation results.

Effect of relay rank on outage probability: Figure 2.2 shows the outage prob-
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Figure 2.2: The outage probability with best and worst relay selection (Nr =
5, ρ1 = 0.8, η1 = η2).

ability against η1 in dB (Nr = 5, µ = 1, ρ1 = 0.8). Two cases where the best

(k = 5) and worst (k = 1) relay is chosen is presented. It can be seen that, when

the best relay is chosen, the VG relaying performs better than fixed relaying. In the

case of worst relay selection, at low SNR the VG relaying outperforms FG relay-

ing, while at high SNR it becomes worse. The simple high SNR approximations

obtained shows good proximity to the exact results. Simulation results not included

here showed for higher values of k (e.g. best relay) and ρ1, the overlap of the high

SNR approximation with the exact result happens as early as 15 dB, while for low

k and ρ1 values it happens around 40 dB.

Effect of correlation on outage probability: Figure 2.3 shows the influence

of the correlation ρ1 on the outage probability. When the best relay is chosen, i.e.

k = 5, the performance improves with increasing ρ1 in all systems, as expected.

The performance of the VG systems is better than the FG system at high ρ1 (> 0.3).

In the case of worst relay selection, the FG relaying performs better than the “VG
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Figure 2.3: Outage probability versus ρ1, for best (k = 5) and worst (k = 1) relay
selection (Nr = 5, γT = 1, η1 = η2 = 20 dB).

I” system in ρ1 < 0.8 region and the performance of the FG and VG II systems

improve with decreasing ρ1. The performance of ’VG I’ under worst relay selection,

in contrast, degrades with decreasing ρ1, as the influence of incorrectly selecting the

amplification gain factor at the relay becomes more significant. The performance

gaps between best and worst selection curves in FG and VG II systems vanishes as

ρ1 → 0. If the decision and actual link SNR values are not correlated, the ranking

of relays would have no effect on the performance.

Effect of correlation on BER: Figure 2.4 presents the average BER with quadra-

ture phase shift keying (QPSK) modulation (α = β = 1), for two cases where the

correlation between the outdated channel estimate and the actual channel is high

(ρ1 = 0.8) and low (ρ1 = 0.1). The best relay (k = 5) out of all the (Nr = 5) relays

was chosen and η1 = η2. The infinite series in (2.30) was truncated at 45 terms for

calculations. In low SNR regions, the VG systems outperform the FG counterparts.

When the correlation is high (ρ1 = 0.8), VG relaying outperforms FG relaying. If
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Figure 2.4: The average BER under different values of correlation ρ1.(Nr = 5,
k = 5, η1 = η2)

the correlation is low (ρ1 = 0.1), at high SNR, the FG system outperform VG sys-

tem. In all cases, the reference “VG II” system demonstrates better performance.

A reference curve for variable gain relaying with ρ1 = 1 is plotted to observe the

performance loss due to not having perfect information at the relay.

2.5.2 Opportunistic Relay Selection

Figures 2.5-2.7 show the performance of the two systems investigated in Section

IV of this chapter. The figures include plots of the high SNR approximation for

performance metrics of the system VG I, exact analytic results obtained for the sys-

tem VG II and its high SNR approximations where appropriate labeled accordingly.

The exact results offered excellent agreement with Monte Carlo simulation results

in all investigated cases, while the approximations were admissible.

Effect of relay rank on outage probability: Figure 2.5 shows the outage prob-

ability of the opportunistic relay system for best(k = 5) and worst(k = 1) relay
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Figure 2.5: The outage probability of opportunistic relay selection with best and
worst relay selection (Nr = 5, γT = 1, ρ1 = 0.8, ρ2 = 0.7, η1 = η2).

selection, with Nr = 5, γT = 1, ρ1 = 0.8, ρ2 = 0.7 and η1 = η2. The VG I sys-

tem with perfect information at the relay performs better than VG II, in both cases.

However, in the case of k = 1, i.e. the worst relay, the performance loss due to

imperfect information at the relay is higher. It is further observed that the diversity

gain of the systems are one, except for VG II at k = 1, in which it is slightly less.

The performance degradation is enhanced by the power factor correction ξ2 (2.61)

applied to maintain the average power at the relay constant. It is important to note

that ξ2 is higher for low k values and increases with η1. One important thing to note

is that, even though there are Nr(= 5) relays, the diversity is not equal to Nr as it

would be in the case of having perfect CSI at the source and the relays.

Effect of correlation on outage probability: Figure 2.6 shows the variation of

outage probability with the correlation coefficients at η1 = η2 = 20 dB, for the best

and worst relay selection scenarios. When the best relay is selected (k = 5), the

outage probability of both VG I and II systems decreases as the correlation ρ1 and

ρ2 increase, as one would expect. It is important to note that as ρ → 1, there is a
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Figure 2.6: Outage probability versus ρ1, for best (k = 5) and worst (k = 1) of
opportunistic relay selection (Nr = 5, γT = 1, η1 = η2 = 20 dB).

significant change in outage performance. i.e., a small delay causing the decision

link SNRs and actual link SNRs to be different, although highly correlated, there is a

significant loss in the performance. If the worst relay was selected, an improvement

of outage performance in VG II system is observed as the correlation decreases.

This is as one would expect, because at low correlation there is high likelihood that

the worst relay chosen is not the actual worst. But in contrast, the performance

degrades in VG I system as the correlation decrease. This is caused by the increase

of ξ2 as ρ1 → 0, and the effect of incorrect selection of gain factor G is apparent.

The performance gap between systems VG I and VG II narrows as ρ1, ρ2 → 1 for

both cases k = 1 and k = 5. As ρ1, ρ2 → 0, in the VG II system, the performance

gap between best and worst relay selection scenarios gets reduced. As expected, if

the decision and actual link SNRs are not correlated, the ranking of the relays does

not make a difference. But for the VG II system, this does not happen due to the

effect of incorrect selection G.
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Figure 2.7: The average BER for QPSK under different values of correlation ρ1, ρ2
for opportunistic relay selection.(Nr = 5, k = 5)

Effect of correlation on BER: Figure 2.7 has the plots of average BER vs the

SNR of the links η1 and η2. Here situations of low correlation(ρ1 = 0.2, ρ2 = 0.1)

and high correlation(ρ1 = 0.8, ρ2 = 0.7) are compared, selecting the best relay

(Nr = k = 5) with QPSK modulation. As expected, the average BER of the VG II

system is lower than that of VG I in both cases, and the performance gap between

the systems reduces as ρ1, ρ2 increases. A reference curve for the case of ρ1 = ρ2 =

1 is plotted in the same figure, and from that the major performance degradation due

to incorrect CSI becomes apparent. With perfect CSI, the diversity gain is equal to

the number of relays, however with imperfect CSI, it is unity, irrespective of the

number of relays.

PRS and ORS performance comparison: Comparing plots shown in Figs. 2.3

and 2.6, it is observed that the outage probability of ORS at 20 dB, shows higher

variation with changing ρ than PRS. For the case of best relay selection, it can be

seen that at low correlation (ρ < 0.25) the performance of PRS is slightly better than
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its ORS counterparts. However as correlation value increases, ORS systems show

significantly better performance than PRS systems. With worst relay selection, PRS

systems show better performance than respective ORS counterparts. The PRS FG

system shows better performance than opportunistic relay VG I system, but is worse

than VG II.

2.6 Conclusions

This chapter presents the analysis of the effect of outdated CSI at the source and the

relay for relay selection in dual-hop systems. New analytical expressions and high

SNR approximations for the outage probability and the average BER were derived

for the case where the kth worse relay is selected. The high SNR approximations

give a simple expression that provides quick insights on the influence of system

parameters on the performance. It was found that in PRS systems, for low correla-

tion values and with best relay selection, FG relaying gives better performance than

VG relaying. However as correlation increases, VG relaying outperforms FG relay-

ing, while VG relaying considered in [46] shows the best performance in all cases.

Further insights obtained showed that, PRS schemes perform better than ORS coun-

terparts, when the decision CSI and actual CSI has low correlation. However, as ρ

increases, the opportunistic relay systems shows far superior performance. The di-

versity gain of ORS systems reduces to one with imperfect CSI, which shows the

significance of focusing on the CSI errors in dual hop-relay systems.
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Chapter 3

PRS Amplify-and-Forward Relaying
with outdated CSI in Nakagami-m
Fading

3.1 Introduction

In this chapter a dual hop relay system is analyzed under Nakagami-m fading. We

employ a system model similar to that of Chapter 2. In Chapter 2, the system

performance was analyzed under Rayleigh fading, and in this chapter we extend

the analysis to the more general Nakagami-m fading.

The new contributions in this chapter can be summarized as follows:

• The performance of a PRS system when relay selection performed based on

the outdated CSI is analytically investigated. Moreover, instead of only con-

sidering the best relay selection criterion, our analysis considers the most

general case of kth worst relay selection [53]. Hence, the presented results

can be directly applied to a large set of situations and fading scenarios.

• Exact closed-form expressions were derived for the outage probability and

the average BER of relays systems equipped with either fixed gain or variable

gain relays.

• The impact of outdated CSI on the performance is investigated, for both

variable gain and fixed gain relaying using high SNR approximations. The

achievable diversity order of PRS systems is investigated. This result proves
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that both cases relaying yield the same diversity order and is equal to either

the first hop or the second hop Nakagami-m fading parameter, irrespective of

the relay selection rank.

3.2 System Model

A system model similar to that of Chapter 2 (Fig 2.1) is used in this chapter as well.

It is assumed that each of the S → R(ℓ) and each of theR(ℓ) → D, ℓ = 1, . . . , Nr

channels experience Nakagami-m fading with parameter m1 ∈ Z+ and m2 ∈ Z+

respectively.

The received signal at R(k) is given by

YR(k)
(t) =

√
PshS,R(k)

(t)x(t) + nR(k)
(t), (3.1)

where Ps is the transmit power at S, the complex fading channel from S to R(k) is

denoted by hS,R(k)
(t) and nR(k)

(t) is the additive white Gaussian noise (AWGN) at

R(k) satisfying E
(
|nR(k)

(t)|2
)
= N01 with E (·) denoting expectation. A scaling

gain, G is applied by R(k) to YR(k)
(t) and the output is re-transmitted to D. The

received signal at D is given by

YD(t) = hR(k),D(t)GYR(k)
(t) + nD(t), (3.2)

where hR(k),D(t) is the complex channel betweenR andD, and nD(t) is the AWGN

at D satisfying E (|nD(t)|2) = N02.

Let γ̃1(k) = |hS,R(k)
(t)|2η1 and γ2 = |hR(k),D(t)|2η2, where η1 = Ps

N01
, η2 =

Pr

N02
and Pr is the average transmit power of R. The link SNRs are defined as

γ1(k) = |hS,R(k)
(t − Td)|2η1. With the assumption of Nakagami-m fading, γ1(ℓ) ∼

G
(
m1,

η1
m1

)
and γ2 ∼ G

(
m2,

η2
m2

)
where G (λ, θ) is the gamma distribution with

scale parameter θ and shape parameter λ and ℓ = 1 . . . Nr represents unordered

relays. For simplicity, it is assumed that γ1(ℓ)s are i.i.d distributed. A generalization

to non-identical fading is straightforward. Note that the relay selection is based on

γ1(k) while γ̃1(k), the link SNR experienced by the signal, is a delayed version of

γ1(k).

47



Fixed Gain Relaying: Consider the case where R(k) uses a fixed scaling gain

such that a constant average transmit power at R(k) is maintained. Assuming that

R(k) has the statistics of the S → R(k) link, the following amplification gain can be

selected.

GF =

√
Pr

PsE{|hS,R(k)
(t)|2}+N01

, (3.3)

to apply to YR(k)
(t). Therefore, at R, fixed gain relaying can avoid the task of

continuous monitoring of the S → R link.

Variable Gain Relaying: At R(k) CSI-based variable gain relaying aims to

maintain a constant instantaneous output power for the retransmitted signal. As-

suming thatR(k) has the S → R(k) link instantaneous CSI knowledge, the following

gain factor GV is selected.

GV =

√
Pr

Ps|hS,R(k)
(t)|2 +N01

. (3.4)

3.3 Analysis of Fixed Gain Relaying

In this section the outage probability and the average BER using fixed gain relaying

is analyzed.

It can be shown that the instantaneous end-to-end SNR is given by

γeq1 =
γ̃1(k)γ2
γ2 + C

, (3.5)

whereC = Pr

G2
FN01

. After some manipulations, it is easy to show that, C = E
{
γ1(k)

}
+1.

Using a result from order statistics, and since the outdated CSI model adapted

is similar to that used in [54], the PDF of γ̃1(k) can be written as

fγ̃1(k)(x) =

∫ ∞

0

fγ̃1(k)|γ1(k)(x|y)fγ1(k)(y) dy (3.6)

=

∫ ∞

0

m1

(
x
ρy

)m1−1
2

e
−m1(ρy+x)

(1−ρ)η1

(1− ρ)η1
Im1−1

(
2m1

√
ρxy

(1− ρ)η1

)
fγ1(k)(y)dy (3.7)

48



where Iν(z) denotes the νth order modified Bessel function of the first kind [7, Sec.

(9.6)]. Since the relay with the kth lowest SNR is selected, the PDF of γ1(k) is given

by

fγ1(k)(y) = k

(
Nr

k

)
[Fγ1(ℓ)(y)]

k−1[1− Fγ1(ℓ)(y)]
Nr−kfγ1(ℓ)(y) (3.8)

Since γ1(ℓ) ∼ G
(
m1,

η1
m1

)
, by substituting the respective PDF and CDF into (3.8)

the following expression is obtained.

fγ1(k)(y) = k

(
Nr

k

) Nr−1∑
p1=Nr−k

(−1)p1+k−Nr
(

k−1
p1+k−Nr

)
(m1 − 1)!

e
−m1y(p1+1)

η1 (3.9)

×
p1(m1−1)∑

r1=0

ϕm1−1
p1(r1)

(
m1

η1

)r1+m1

yr1+m1−1,

where the coefficient ϕa
b(t) is defined as

(∑a
t=0

xt

t!

)b
=
∑ab

t=0 ϕ
a
b(t)x

t. The value of

ϕa
b(t) can be found recursively as [54]

ϕa
b(t) =

ι2∑
ι=ι1

ϕa
b−1(ι)

(t− ι)!
, (3.10)

where ι1 = max(0, t− a) and ι2 = min(t, (b− 1)(a− 1)). Using the infinite series

expansion of for Im1−1

(
2m1

√
ρxy

(1−ρ)η1

)
[7, Eq. (9.6.10)], and following an approach

similar to [54], an expression for fγ̃1(k) is obtained, which is given by

fγ̃1(k)(x) =
k−1∑
q1=0

k
(
Nr

k

)
(−1)q1

(
k−1
q1

)
(m1 − 1)!

e
−m1(p1+1)x

(p1(1−ρ)+1)η1

p1(m1−1)∑
r1=0

ϕm1−1
p1(r1)

(3.11)

×
r1∑

s1=0

(r1 +m1 − 1)!
(

m1

η1

)s1+m1 (
r1
s1

)
ρs1(1− ρ)r1−s1xs1+m1−1

(p1(1− ρ) + 1)r1+s1+m1(s1 +m1 − 1)!

where p1 = Nr − k + q1.

The next step in the analysis is calculating the value of C defined in (3.5).

C = E{γ1(k)}+ 1

=
k−1∑
q1=0

k
(
Nr

k

)
(−1)q1

(
k−1
q1

)
(m1 − 1)!

e
−m1(p1+1)x

(p1(1−ρ)+1)η1

p1(m1−1)∑
r1=0

ϕm1−1
p1(r1)

(r1 +m1 − 1)!

×
r1∑

s1=0

(
r1
s1

)
ρs1(1− ρ)r1−s1(s1 +m1)

(p1(1− ρ) + 1)r1−1(p1 + 1)s1+m1+1

(
m1

η1

)
(3.12)
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3.3.1 Outage Probability

The outage probability, Po, defined as the probability that the end-to-end SNR drops

below a predefined threshold γT , is an important QoS measure. It is equal to the

cumulative distribution function (CDF) value of the end-to-end SNR evaluated at

γT , i.e., Po = Fγeq1(γT ). Mathematically,

Fγeq1(γT ) = Pr
(
γ̃1(k)γ2
γ2 + C

< γT

)
(3.13)

= 1−
∫ ∞

γT

Pr
(
γ2 >

CγT
x− γT

)
fγ̃1(k)(x) dx (3.14)

= 1−
∫ ∞

γT

F γ2

(
CγT
x− γT

)
fγ̃1(k)(x) dx (3.15)

= 1−
∫ ∞

0

F γ2

(
CγT
x

)
fγ̃1(k)(x+ γT ) dx (3.16)

where Pr (·) denotes probability and F γ2(x) is the complementary cumulative dis-

tribution function of γ2 and fγ̃1(k)(x) is the probability density function of γ1(k).

Since γ2 ∼ G
(
m2,

η2
m2

)
,

F γ2

(
CγT
x

)
=

Γ
(
m2,

m2CγT
η2x

)
Γ(m2)

. (3.17)

Using [7, Sec.(6.5)] for m2∈Z+, (3.17) can be re-expressed as

F γ2

(
CγT
x

)
= e

−m2CγT
η2x

m2−1∑
p2=0

mp2
2 γ

p2
T C

p2

p2!η
p2
2 x

p2
(3.18)

Using (3.11), it can be seen that,

fγ̃1(k)(x+ γT ) =
k−1∑
q1=0

k
(
Nr

k

)
(−1)q1

(
k−1
q1

)
(m1 − 1)!

e
−m1(p1+1)(x+γT )

(p1(1−ρ)+1)η1

p1(m1−1)∑
r1=0

ϕm1−1
p1(r1)

(3.19)

×
r1∑

s1=0

(r1 +m1 − 1)!
(

m1

η1

)s1+m1 (
r1
s1

)
ρs1(1− ρ)r1−s1

(p1(1− ρ) + 1)r1+s1+m1(s1 +m1 − 1)!

×
s1+m1−1∑

t1=0

(
s1 +m1 − 1

t1

)
γs1+m1−1−t1
T xt1

50



Now substituting (3.18) and (3.19) into (3.16) and simplifying, the CDF can be

obtained as,

Fγeq1(γT ) = 1−
k−1∑
q1=0

k
(
Nr

k

)
(−1)q1

(
k−1
q1

)
(m1 − 1)!

e
− m1(p1+1)γT

(p1(1−ρ)+1)η1

p1(m1−1)∑
r1=0

ϕm1−1
p1(r1)

(3.20)

×
r1∑

s1=0

(r1 +m1 − 1)!
(

m1

η1

)s1+m1 (
r1
s1

)
ρs1(1− ρ)r1−s1

(p1(1− ρ) + 1)r1+s1+m1(s1 +m1 − 1)!

s1+m1−1∑
t1=0

(
s1 +m1 − 1

t1

)

× γs1+m1−1−t1
T

m2−1∑
p2=0

mp2
2 γ

p2
T C

p2

p2!η
p2
2

∫ ∞

0

e
−
(

m2CγT
η2x

+
m1(p1+1)x

(p1(1−ρ)+1)η1

)
xt1−p2 dx

Using result from [50, Eq. (4.5.29)] to perform the integration, the following ex-

pression is arrived at, for the outage probability.

Fγeq1(γT ) = 1− 2k

(
Nr

k

) k−1∑
q1=0

(−1)q1
(
k−1
q1

)
(m1 − 1)!

e
− m1(p1+1)γT

(p1(1−ρ)+1)η1

p1(m1−1)∑
r1=0

ϕm1−1
p1(r1)

(3.21)

×
r1∑

s1=0

(r1 +m1 − 1)!
(

m1

η1

)s1+m1 (
r1
s1

)
ρs1(1− ρ)r1−s1

(p1(1− ρ) + 1)r1+s1+m1(s1 +m1 − 1)!

s1+m1−1∑
t1=0

(
s1 +m1 − 1

t1

)

×
m2−1∑
p2=0

mp2
2 C

p2γ
s1+m1+

p2−t1−1
2

T

p2!η
p2
2

(
(p1(1− ρ) + 1)m2Cη1

m1(p1 + 1)η2

) t1−p2+1
2

×Kt1−p2+1

(
2

√
(p1 + 1)m1m2CγT
(p1(1− ρ) + 1)η1η2

)
,

where Kν(z) is the νth order modified Bessel function of the second kind [7, Sec.

(9.6)].

In the high SNR region with η1, η2 → ∞, for ρ < 1, a power series expres-

sion for (3.20) can be obtained substituting the series expansion of Kν(·) [51, Eq.

(8.446)] and the Maclaurin series expansion of the exponential function. After

mathematical manipulations, an asymptotic approximation for Fγeq1(γT ) can be ob-

tained as

Fγeq1(γT ) =


(
τ1 + τ2 ln(

m1m2CγT
η1η2

)
)(

m1m2C
η1η2

)m1

γm1
T (a)

τ3

(
m1m2C
η1η2

)m2

γm2
T (b)

(3.22)
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where (a) = m1 ≤ m2 and (b) = m1 > m2. In (3.22), τ1, τ2 and τ3 are given by

τ1 =
k
(
Nr

k

)
(m1 − 1)!

k−1∑
q1=0

(
k − 1

q1

) p1(m1−1)∑
r1=0

ϕm1−1
p1(r1)

r1∑
s1=0

(r1 +m1 − 1)!

(s1 +m1 − 1)!
(3.23)

×
(
r1
s1

)
ρs1(1− ρ)r1−s1

(p1(1− ρ) + 1)r1+m1(p1 + 1)s1

s1+m1−1∑
t1=0

(
s1 +m1 − 1

t1

)

×
m2−1∑
p2=0

min(r2,|t1−p2+1|−1)∑
t2=0

(−1)q1+r2+1(|t1 − p2 + 1| − t2 − 1)!

p2!(r2 − t2)!t2!

(
m2C

η2

)min(p2,t1+1)+t2−m1

+
k
(
Nr

k

)
((m1 − 1)!)2

k−1∑
q1=0

(
k − 1

q1

) p1(m1−1)∑
r1=0

ϕm1−1
p1(r1)

(r1 +m1 − 1)!(1− ρ)r1

(p1(1− ρ) + 1)r1+m1

×
m1−1∑
t1=0

(
m1 − 1

t1

)min(t1+1,m2−1)∑
p2=0

(−1)t1−p2+q1+1

(t1 − p2 + 1)!p2!

(
m2C

η2

)t1+1−m1

×
(
ln

(
(p1 + 1)

(p1(1− ρ) + 1)

)
− ψ(1)− ψ(t1 − p2 + 2)

)
,

τ2 =
k
(
Nr

k

)
((m1 − 1)!)2

k−1∑
q1=0

(
k − 1

q1

) p1(m1−1)∑
r1=0

ϕm1−1
p1(r1)

(r1 +m1 − 1)!(1− ρ)r1

(p1(1− ρ) + 1)r1+m1
(3.24)

×
m1−1∑
t1=0

(
m1 − 1

t1

)(
m2C

η2

)t1+1−m1 min(t1+1,m2−1)∑
p2=0

(−1)t1−p2+1+q1

(t1 − p2 + 1)!p2!
,

and

τ3 =
k
(
Nr

k

)
(m1 − 1)!

k−1∑
q1=0

(
k − 1

q1

) p1(m1−1)∑
r1=0

ϕm1−1
p1(r1)

r1∑
s1=0

(r1 +m1 − 1)!

(s1 +m1 − 1)!
(3.25)

×
(
r1
s1

)
ρs1(1− ρ)r1−s1

(p1(1− ρ) + 1)r1+m2(p1 + 1)s1+m1−m2

s1+m1−1∑
t1=0

(
s1 +m1 − 1

t1

)

×
min(t1+1,m2−1)∑

p2=0

min(s2,t1−p2)∑
t2=0

(−1)q1+s2+1(t1 − p2 − t2)!

p2!(s2 − t2)!t2!

(
m2C

η2

)p2+t2−m2

where r2 = max(0, t1 − p2 + 1)− s1, s2 = t1 − p2 + 1 +m2 −m1 − s1 and ψ(x)

is the digamma function [7, Eq. (6.3.1)].

Remark 1: It is noted that when ρ < 1 (outdated CSI), the diversity order of

the system is given by min(m1,m2). The diversity order, if S had perfect CSI is

min(m1k,m2). If m2 < m1, the impact of outdated CSI is not very significant, as
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the R → D link acts as the performance bottleneck. However, if m1 > m2, and for

large Nr and k, the impact of outdated CSI is large, particularly so in the high SNR

region. This is due to the potential loss of the system’s diversity order, compared to

the perfect CSI case.

In the special case of Rayleigh fading, by substituting m1 = m2 = 1 in (3.22)

yields

Fγeq1(γT ) = k

(
Nr

k

) k−1∑
q1=0

(−1)q1
(
k−1
q1

)
(p1(1− ρ) + 1)

(
1− C

η2
(3.26)

×
(
ln

(
(p1 + 1)CγT

(p1(1− ρ) + 1)η1η2

)
− ψ(1)− ψ(2)

))(
γT
η1

)
.

3.3.2 Probability Density Function

Since the CDF of the end-to-end SNR of the system had been already derived, its

derivative is taken to obtain the PDF (fγeq1):

fγeq1(x) = 2k

(
Nr

k

) k−1∑
q1=0

(−1)q1
(
k−1
q1

)
(m1 − 1)!

e
− m1(p1+1)x

(p1(1−ρ)+1)η1

p1(m1−1)∑
r1=0

ϕm1−1
p1(r1)

(3.27)

×
r1∑

s1=0

(r1 +m1 − 1)!
(

m1

η1

)s1+m1 (
r1
s1

)
ρs1(1− ρ)r1−s1

(p1(1− ρ) + 1)r1+s1+m1(s1 +m1 − 1)!

s1+m1−1∑
t1=0

(
s1 +m1 − 1

t1

)

×
m2−1∑
p2=0

mp2
2 C

p2xs1+m1+
p2−t1−3

2

p2!η
p2
2

(
(p1(1− ρ) + 1)m2Cη1

m1(p1 + 1)η2

) t1−p2+1
2

×

((
m1(p1 + 1)x

(p1(1− ρ) + 1)η1
− s1 −m1 − p2 + t1 + 1

)
Kt1−p2+1

(
2

√
(p1 + 1)m1m2Cx

(p1(1− ρ) + 1)η1η2

)

+

√
(p1 + 1)m1m2Cx

(p1(1− ρ) + 1)η1η2
Kt1−p2

(
2

√
(p1 + 1)m1m2Cx

(p1(1− ρ) + 1)η1η2

))
.

The effect of the correlation coefficient ρ on the PDF of γeq1 can be investigated

using this result.

In Fig 3.1, the PDF of γeq1 at ρ = 0.1, 0.5 and 0.9 is plotted. It can be seen that

the peak of the PDF of shifts towards the left as ρ increases. Hence, a reduction in

the expected value of γeq1 is expected as ρ reduces. Additionally, it is seen that, as
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Figure 3.1: The probability density function of γeq1, for different ρ. (Nr = 5, k =
5,m1 = 2,m2 = 5, η1 = η2 = 10dB).
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ρ reduces, the portion of the area under the PDF close to zero is increasing. This

means that the system outage probability will increase as ρ goes down.

3.3.3 Average BER

The analysis then proceeds to the system’s average BER. For many modulation

formats used in wireless applications, the average BER can be expressed as

Pb = α E[Q(
√
βγeq1)] =

α√
2π

∫ ∞

0

Fγeq1

(
t2

β

)
e−

t2

2 dt, (3.28)

where α, β > 0 are constants depending on the modulation scheme, and Q(x) =

1√
2π

∫∞
x
e−

y2

2 dy is the Gaussian Q-function. Using the result of (3.20) and [51, Eq.

(6.631.3)] the following expression for the BER given by (3.29) is arrived at, where

Wµ,ν(·) is the Whittaker hypergeometric function W [7, Eq. (13.1.33)].

Pb =
α

2
− αk√

2π

(
Nr

k

) k−1∑
q1=0

(−1)q1
(
k−1
q1

)
(m1 − 1)!

p1(m1−1)∑
r1=0

ϕm1−1
p1(r1)

(3.29)

×
r1∑

s1=0

(r1 +m1 − 1)!
(

m1

η1

)s1+m1 (
r1
s1

)
ρs1(1− ρ)r1−s1

(p1(1− ρ) + 1)r1+s1+m1(s1 +m1 − 1)!

s1+m1−1∑
t1=0

(
s1 +m1 − 1

t1

)

×
m2−1∑
p2=0

mp2
2 C

p2

p2!η
p2
2

(
(p1(1− ρ) + 1)m2Cη1

m1(p1 + 1)η2

) t1−p2+1
2 ωt1−p2+1−s1+m1

1 e
ω2
2

8ω1

ω2

× Γ

(
1

2
+ s1 +m1

)
Γ

(
1

2
+m2 − s2

)
W t1+1−p2−2s1−2m1

2
,
t1−p2+1

2

(
ω2
2

4ω1

)
.

ω1 =
m1(p1+1)γT

(p1(1−ρ)+1)βη1
+ 1

2
and ω2 = 2

√
(p1+1)m1m2CγT
(p1(1−ρ)+1)βη1η2

.

Substituting (3.22) in (3.28), the following high SNR approximation is obtained

for the average BER.

As η1, η2 → ∞,

Pb =

 2m1−1 αΓ(m1+
1
2
)√

π

(
τ1 + τ2

(
ln(2m1m2C

βη1η2
) + ψ(m1 +

1
2
)
))(

m1m2C
βη1η2

)m1

(a)

2m2−1τ3Γ(m2 +
1
2
) α√

π

(
m1m2C
βη1η2

)m2

(b)

(3.30)

where (a) = m1 ≤ m2 and (b) = m1 > m2.

55



3.4 Analysis of Variable Gain Relaying

In the case of variable gain relaying, the instantaneous end-to-end SNR of the se-

lected relay (γeq2) is given by

γeq2 =
γ̃1(k)γ2

γ̃1(k) + γ2 + 1
. (3.31)

Therefore, for further analysis, it is desirable to define a new RV of the form: Y =
γ̃1(k)γ2

γ̃1(k)+γ2+c
, where c ≥ 0 is a constant. Note that c = 1 gives the exact form of γeq2

in (3.31), while c = 0 gives a mathematically more tractable tight approximation

for γeq2 in the medium-to-high SNR region.

3.4.1 Outage Probability

The CDF of Y given by Pr
(

γ̃1(k)γ2
γ̃1(k)+γ2+c

< γT

)
can be evaluated as

FY (γT ) =

∫ γT

0

fγ̃1(k)(x)dx+

∫ ∞

γT

Pr
(
γ2 <

x(γT + c)

x− γT

)
fγ̃1(k)(x)dx

= 1−
∫ ∞

0

Γ
(
m2,

m2γT (x+γT+c)
η2x

)
Γ(m2)

fγ̃1(k)(x+ γT )dx. (3.32)

Use of the series expansion for Γ
(
m2,

m2γT (x+γT+c)
η2x

)
[7, Sec. (6.5)],and subse-

quent binomial expansions and substituting (3.11) and c = 1, results in the expres-

sion (3.33) for Fγeq2(γT ).

Fγeq2(γT ) = 1−
2k
(
Nr

k

)
(m1 − 1)!

m2−1∑
p1=0

mp1
2

p1!η
p1
2

p1∑
q1=0

(
p1
q1

) k−1∑
q2=0

(−1)q2
(
k − 1

q2

) p2(m1−1)∑
r2=0

ϕm1−1
p2(r2)

× (r2 +m1 − 1)!

r2∑
s2=0

(
r2
s2

) (
m1

η1

)s2+m1

ρs2(1− ρ)r2−s2e
−γT

(
m2
η1

+
m1(p2+1)

(p2(1−ρ)+1)η2

)
(p2(1− ρ) + 1)r2+s2+m1(s2 +m1 − 1)!

×
s2+m1−1∑

q2=0

(
s2 +m1 − 1

q2

)(
(p2(1− ρ) + 1)m2η1

(p2 + 1)m1η2

) q2−q1+1
2

γ
m1+p1+s2− (q2+q1+1)

2
T

× (1 + γT )
q2+q1+1

2 Kq2−q1+1

(
2

√
(p2 + 1)m1m2(γT + 1)γT

(p2(1− ρ) + 1)η1η2

)
. (3.33)
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Although (3.33) gives the exact outage probability, asymptotic results are also of

interest due to the insights they offer on high SNR behavior of the systems.

It has been shown that in high SNR, the system performance is governed by the

weakest link [55]. Since γ2 ∼ G
(
m2,

η2
m2

)
,

fγ2(x) =
mm2

2 xm2−1

ηm2Γ(m2)
e
−m2x

η2 (3.34)

=
mm2

2

ηm2
2 Γ(m2)

xm2−1 + o(xm2).

From (3.11) substituting the Maclaurin series expansion for the exponential

function and selecting only the lowest power of γT with a non-zero coefficient,

yields

fγ̃1(k)(x) =
κ

ηm1
1

xm1−1 + o(xm1), (3.35)

where

κ =
k
(
Nr

k

)
m1

m1

((m1 − 1)!)2

k−1∑
q2=0

(−1)q2
(
k − 1

q2

)

×
p2(m1−1)∑

r2=0

ϕm1−1
p2(r2)

(r2 +m1 − 1)!(1− ρ)r2

(p2(1− ρ) + 1)r2+m1
. (3.36)

Using the results of [55], the following asymptotic result is derived for the out-

age probability. As η1, η2 → ∞, for ρ < 1

Fγeq2(γT ) =


κ

m1η
m1
1

γm1
T m1 < m2,(

m
m2
2

η
m2
2 m2!

+ κ
m2η

m2
2

)
γm2
T m1 = m2,

m
m2
2

η
m2
2 m2!

γm2
T m1 > m2.

(3.37)

Remark 2: Similar to the fixed gain case, it is observed that the diversity order of

the system is min(m1,m2). As discussed in Section III, the performance loss due

to outdated CSI will be most significant in the case m1 < m2, as imperfect CSI

would cause a reduction in the achievable diversity order for the considered dual

hop relay network.

An asymptotic approximation for outage probability in Rayleigh fading can be

found by substituting m1 = m2 = 1 in (3.37). Under Rayleigh fading, as η1, η2 →
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∞, Fγeq2(γT ) can be approximated as

Fγeq2(γT ) =
γT
η2

+
k−1∑
p=0

k
(
Nr

k

)
(−1)p

(
k−1
p

)
γT

((Nr − k + p)(1− ρ) + 1)η1
. (3.38)

3.4.2 Probability Density Function

As in the analysis of the FG relaying, the derivative of 3.33 with respect to γT can

be taken to obtain the PDF of γeq2.

fγeq2(x) =
2k
(
Nr

k

)
(m1 − 1)!

m2−1∑
p1=0

mp1
2

p1!η
p1
2

p1∑
q1=0

(
p1
q1

) k−1∑
q2=0

(−1)q2
(
k − 1

q2

) p2(m1−1)∑
r2=0

ϕm1−1
p2(r2)

× (r2 +m1 − 1)!

r2∑
s2=0

(
r2
s2

) (
m1

η1

)s2+m1

ρs2(1− ρ)r2−s2e
−x
(

m2
η1

+
m1(p2+1)

(p2(1−ρ)+1)η2

)
(p2(1− ρ) + 1)r2+s2+m1(s2 +m1 − 1)!

×
s2+m1−1∑

q2=0

(
s2 +m1 − 1

q2

)(
(p2(1− ρ) + 1)m2η1

(p2 + 1)m1η2

) q2−q1+1
2

xm1+p1+s2− (q2+q1+1)
2

× (1 + x)
q2+q1+1

2

(
Kq2−q1+1

(
2

√
(p2 + 1)m1m2(x+ 1)x

(p2(1− ρ) + 1)η1η2

)
(3.39)

×
(
(1 + x)

(
m2x

η1
+

m1(p2 + 1)x

(p2(1− ρ) + 1)η2
+ q2 + 1−m1 − p1 − s2

)
− q1x

)
+ (2x+ 1)

√
(p2 + 1)m1m2(x+ 1)x

(p2(1− ρ) + 1)η1η2
Kq2−q1

(
2

√
(p2 + 1)m1m2(x+ 1)x

(p2(1− ρ) + 1)η1η2

))
.

Using the result above the effect of ρ on the distribution of γeq2 can be analyzed.

In Fig 3.2, the PDF of γeq2 is plotted at ρ = 0.1, 0.5 and 0.9 at 10 dB unfaded hop

SNR η1, η2.

It is seen that,as ρ reduces, γeq2 tend to be more concentrated on lower values.

The peak of the curve shifts to the left. i.e. the mode of γeq2 reduces with ρ. From

fig 3.2 it can be seen that the expected value of γeq2 also seem to reduce as ρ → 0.

As the distribution of γeq2 gets concentrated near lower values as ρ reduces, and

hence higher system outage probability is expected as ρ reduces.
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Figure 3.2: The probability density function of γeq2, for different ρ. (Nr = 5, k =
5,m1 = 2,m2 = 5, η1 = η2 = 10dB).
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3.4.3 Average BER

(3.33) is substituted into (3.8) to derive the average BER. However, since there

is no closed-form solution, c = 0 is substituted in (3.32). Hence, with the help

of [51, Eq.(6.621.3)], a tight lower bound for the average BER can be obtained as

(3.40),

Pb ≥
α

2
−
α
√
βk
(
Nr

k

)
(m1 − 1)!

m2−1∑
p1=0

mp1
2

p1!η
p1
2

p1∑
q1=0

(
p1
q1

) k−1∑
q2=0

(−1)q2
(
k − 1

q2

) p2(m1−1)∑
r2=0

ϕm1−1
p2(r2)

(3.40)

× (r2 +m1 − 1)!

r2∑
s2=0

(
r2
s2

) (
m1

η1

)s2+m1

ρs2(1− ρ)r2−s2

(p2(1− ρ) + 1)r2+s2+m1(s2 +m1 − 1)!

s2+m1−1∑
q2=0

(
s2 +m1 − 1

q2

)

×
(
(p2(1− ρ) + 1)m3

2η1
(p2 + 1)m1η32

) q2−q1+1
2 22q2−2q1+

3
2Γ
(
r1 + q2 − q1 +

3
2

)
Γ
(
r1 − q2 + q1 +

1
2

)(
m2

η2
+ m1(p2+1)

(p2(1−ρ)+1)η1
+ 2
√

(p2+1)m1m2

(p2(1−ρ)+1)η1η2
+ 1

2

)
(r1)!

× 2F1

r1 + q2 − q1 +
3

2
, q2 − q1 +

3

2
; r1 + 1;

m2

βη2
+ m1(p2+1)

(p2(1−ρ)+1)βη1
− 2

β

√
(p2+1)m1m2

(p2(1−ρ)+1)η1η2
+ 1

2

m2

βη2
+ m1(p2+1)

(p2(1−ρ)+1)βη1
+ 2

β

√
(p2+1)m1m2

(p2(1−ρ)+1)η1η2
+ 1

2

 ,

where r1 = p1+s2+m1 and 2F1(a, b; c;x) is the Gauss hypergeometric function [7,

Eq. (15.1.1)].

Substituting (3.37) in (3.28), the following high SNR approximation is derived

for the average BER (P∞
b ).

As η1, η2 → ∞,

P∞
b =


2m1−1ακΓ(m1+

1
2
)

√
πm1βm1η

m1
1

m1 < m2,(
m

m2
2

η
m2
2 m2!

+ κ
m2η

m2
2

)
2m2−1αΓ(m2+

1
2
)√

πβm2
m1 = m2,

2m2−1m
m2
2 αΓ(m2+

1
2
)

√
πβm2η

m2
2 m2!

m1 > m2.

(3.41)

3.5 Numerical and Simulation Results

Figures 3.3,3.4 and 3.5 show the performance of the fixed gain (FG) and variable

gain(VG) relaying schemes discussed earlier.

Effect of relay rank on outage probability: Figure 3.3 shows the outage prob-

60



0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

η
1
 = η

2
 (dB)

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

FG
VG
High SNR aprx.
Simulations

k=5

k=1
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Figure 3.4: The effect of correlation on the outage probability, for different fading
parameters m1,m2. (Nr = 5, k = 5, γT = 1, η1 = η2 = 10 dB).

ability of the systems for the best (k = 5) and worst (k = 1) relay selection, with

Nr = 5, ρ = 0.8, γT = 1,m1 = 3 and m2 = 2. The VG scheme outperforms

the FG scheme with respect to the outage probability. It is seen that at high SNR,

for VG, the performance is the same for both best and worst relay selection. This

is so since the system has m1 > m2 and the high SNR performance is dependent

only on the R − D link which has identical fading for all relays. The simulations

and asymptotic results shows excellent agreement with the analytical results. It is

observed that the outage diversity order is equal to m1 in all cases.

Effect of correlation on outage probability: Figure 3.4 shows the outage

probability of FG, VG systems with varying correlation ρ, with Nr = k = 5 and

η1 = η2 = 10 dB. Under all conditions, the VG relaying outperforms FG relaying.

A more important observation to notice is that, the highest variation with ρ is shown

for m1 < m2. With m1 > m2, the performance loss with reducing ρ is small, par-
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Figure 3.5: The average BER for QPSK (α = β = 1), under high (ρ = 0.9) and
low(ρ = 0.1) correlation.

ticularly for the VG scheme. The performance bottleneck in the case ofm1 > m2 is

theR → D link. As such the impact of outdated CSI is not so significant. However,

in the case of m1 < m2, there is a reduction in the diversity order due to outdated

CSI, and hence has a highly negative impact on the system’s performance.

Effect of correlation on BER: Figure 3.5 shows the average BER of the two

schemes under QPSK modulation with Nr = k = 5, m1 = 1 and m2 = 2. It can

be seen that the VG scheme outperforms the FG scheme, exhibiting a performance

gain of approximately 3 dB in the high SNR region. It is further observed that there

is an increase in the coding gain at high correlation (ρ = 0.9) over low correlation

(ρ = 0.1). As expected, the diversity gain with imperfect CSI is equal to m1.
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3.6 Conclusion

This chapter presents new expressions for the outage probability and the average

BER of an AF based PRS system over Nakagami-m fading channels, when relay

selection is performed using outdated CSI. The derived expressions quantify the

performance degradation in the presence of outdated CSI for both fixed gain and

variable gain AF relaying protocols. Additionally, high SNR approximations for

the outage probability and the average BER were presented. By doing so, this work

quantifies the diversity order and the coding gain of the considered relay systems.

All the results obtained in this chapter are verified using extensive Monte-Carlo

simulations.
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Chapter 4

Conclusions

This thesis has investigated impact of outdated channel information at the relays for

dual hop relay systems. Outdated or stale CSI occurs because of the time taken for

the relay selection process and the variations of the channel during that time.

In Chapter 2, the system model was introduced. Performance of the partial

relay selection and opportunistic relay selection schemes under Rayleigh fading

was derived. Both fixed gain and variable gain relaying systems were analyzed and

compared. The diversity gain in the opportunistic relay selection scheme decreases

to unity under imperfect CSI, whilst with perfect CSI it is equal to k, the rank of

the relay selected. Fixed gain systems tend to perform better than variable gain

systems when the actual channel SNR is less correlated with the channel estimate

at the relay, and vice versa.

In Chapter 3, the system performance was analyzed under more general Nakagami-

m fading. The performance of the partial relay selection scheme is presented, and

expressions for the outage probability and the average BER of the system were de-

rived. With perfect channel information, the diversity gain of the system would

be min(m1,m2k). But there is a diversity gain reduction to min(m1,m2) in both

variable gain and fixed gain systems under imperfect CSI.

4.1 Future Research Directions

This work investigated the impact of outdated channel state information on relay

system performance.

65



This study assumed the perfect CSI is available at the destination. In future,

the effect of imperfect CSI at the destination can be investigated. As well as the

performance impact of these effects, coding schemes, and CSI estimation method

and feedback schemes to successfully mitigate the performance degradations can

be studied.

In this work we have only considered dual-hop single antenna SRS systems. The

analysis can be extended to multihop systems, MRS systems and multiple antenna

systems.
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Appendix I : High SNR Approximation - Fixed Gain
Relaying

Let γu = min
{
γ̃1(k),

γ̃1(k)γ2(k)
C

}
. It is claimed that γu is an upper bound for γeq1 in

(2.3) [49].

F γu(γT )=Pr{γu>γT}=Pr
{
γ2γ̃1(k)
C

> γT ∩ γ̃1(k) > γT

}
=

∫ ∞

γT

fγ̃1(k)(x)F γ2(CγT/x)dx, (4.1)

where FX(·) denotes the CCDF of the RV, X . Since the above distributions are

known, F γu(γT ) can be expressed as

F γu(γT ) = k

(
Nr

k

) k−1∑
m=0

a

η1
I, (4.2)

where I =
∫∞
γT
e
−
(

CγT
η2x

+ bx
η1

)
dx, a =

(−1)m(k−1
m )

(Nr−k+m)(1−ρ)+1
and b = Nr−k+m+1

(Nr−k+m)(1−ρ)+1
.

Then I simplifies to

I =
∞∑
i=0

(−1)iCiγiT
i!ηi2

∫ ∞

γT

e
− bx

η1

xi
dx =

∞∑
i=0

(−1)iCi

i!ηi2
e
− bγT

η1

∫ ∞

0

e
− bx

η1(
x
γT

+ 1
)i dx.

(4.3)

For large η1 and η2, I can be approximated using [49, Eq. (11)] as

I ≈ e
− bγt

η1

(
∞∑
i=2

(−1)iCiγT
(i− 1)i!ηi2

+
η1
b
+
CγT
η2

ln

(
b

η1

))
. (4.4)

Substituting (4.4) into (4.2), using CDF of γu, Fγu(γT ) = 1 − F γu(γT ), and after

further simplifications, the following can be obtained.

Fγu(γT ) ≈ k

(
Nr

k

)
γT
η1

k−1∑
m=0

(−1)m
(
k−1
m

)
((Nr − k +m)(1− ρ) + 1)

(4.5)

×

(
1−

∞∑
r=2

(−1)rCr

η2rr!(r − 1)
− C

η2
ln

(
(Nr − k +m+ 1)

((Nr − k +m)(1− ρ) + 1)η1

))
.

With further simplifications, the approximation given in (2.14) can be obtained.

67



Appendix II : High SNR Approximation - Variable Gain
Relaying

Let γu2 = min
{
γ̃1(k),

γ̃1(k)γ2(k)
γ1(k)

}
. It can be shown that γu2 ≈ γeq2 given by (2.7)

in high SNR region. Following a similar approach as in Appendix I, the following

expression is arrived at.

F γu2(γT ) =

∫ ∞

γT

∫ ∞

0

fγ̃1(k),γ1(k)(x, y)e
− γT y

η2x dydx (4.6)

=
k
(
Nr

k

)
(1− ρ)η21

k−1∑
m=0

(−1)m
(
k − 1

m

)∫ ∞

γT

e
− x

(1−ρ)η1

×
∫ ∞

0

e
−y
(

ω
η1

+
γT
η2x

)
I0

(
2
√
ρxy

(1− ρ)η1

)
dy dx

where ω = ((Nr−k+m)(1−ρ)+1)
(1−ρ)

.

Using [50, Eq 4.16.14], substituting η2 = µη1, and further simplification results

in,

F γu2(γT ) =
k
(
Nr

k

)
(1− ρ)η1

k−1∑
m=0

(−1)m
(
k − 1

m

)
(4.7)

×
∫ ∞

γT

µx

ωµx+ γT
exp

(
− x

(1− ρ)η1

(
1− ρµx

(1− ρ)(ωµx+ γT )

))
dx.

Using partial fractions, the argument of the exponential function can be re-

expressed as

x

(1− ρ)η1

(
1− ρµx

(1− ρ)(ωµx+ γT )

)
=
p1
η1
x+

p2γT
η1

+
p3

η1(γT + ωµx)
, (4.8)

where p1 = Nr−k+m+1
(Nr−k+m)(1−ρ)+1

, p2 =
ρ

µ((Nr−k+m)(1−ρ)+1)2
and p3 =

−γ2
T ρ

µ((Nr−k+m)(1−ρ)+1)2
.

Substituting (4.8) into (4.7) yields

F γu2(γT ) =
k−1∑
m=0

(−1)mk
(
Nr

k

)(
k−1
m

)
(1− ρ)η1

e
− p2γT

η1

∫ ∞

γT

µx

ωµx+ γT
e

(
− p1x

η1
− p3

η1(γT+ωµx)

)
dx.

(4.9)
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Using a variable transformation to modify the range of the above integral to (0,∞),

and the Maclaurin series expansion of exp
(

p3
η1(γT+ωµx)

)
yields

F γu2(γT ) =
k
(
Nr

k

)
(1− ρ)

k−1∑
m=0

(−1)m
(
k − 1

m

)
e
− (p1+p2)γT

η1

∞∑
i=0

(−1)ipi3µ

i!ηi+1
1

(4.10)

×
∫ ∞

0

x+ γT
(ωµx+ γT (1 + ωµ))i+1

e
− p1

η1
x
dx.

With further simplifications, using approximation from [49, Eq. (11)] and ignoring

higher order terms of η−1
1 , one can obtain the following high SNR approximation

for the CCDF. As η1 → ∞,

F γu2(γT ) ≈
k
(
Nr

k

)
(1− ρ)

k−1∑
m=0

(−1)m
(
k−1
m

)
ω

e
− (p1+p2)γT

η1

(
1

p1
− γT ln(η1/p1)

µωη1

)
. (4.11)

Using the above result, the following approximation is obtained for the CDF as

η1 → ∞

Fγu2(γT ) ≈
k
(
Nr

k

)
γT

η1

k−1∑
m=0

(−1)m
(
k − 1

m

)(
p1 + p2

Nr − k +m+ 1
+

ln(η1/p1)

µω2(1− ρ)

)
.

(4.12)

Appendix III - Outage Probability - Variable gain re-
laying II

To derive the CDF of γeq3, a new random variable (RV), Z, is defined as

Z =
γ̃1(k)γ̃2(k)

γ̃1(k) + γ̃2(k) + c
, (4.13)

where c ≥ 0 is a constant.

The CDF of Z can be written as

FZ(z) =

∫ ∞

0

Pr
(

xγ̃2(k)
x+ γ̃2(k) + c

< γT

)
fγ̃1(k)(x)dx (4.14)

where Pr(·) denotes the probability and fγ̃1(k)(x) is the probability density function

of γ̃1(k). After applying some algebraic manipulations to (4.14), it can be shown

that

FZ(γT ) = 1−
∫ ∞

0

fγ̃1(k)(γT + x)

(
1− Fγ̃2(k)

(
γT +

γ2T + cγT
x

))
dx, (4.15)
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where Fγ̃2(k)(x) = 1− e
− x

η2 is the CDF of γ̃2(k). In order to simplify (4.15) further,

an expression for fγ̃1(k)(x) is required.

According to the principles of concomitants or induced order statistics, the PDF

of γ̃1(k), denoted by fγ̃1(k)(x), is given by

fγ̃1(k)(x) =

∫ ∞

0

fγ̃1(k)|γ1(k)(x|y)fγ1(k)(y)dy (4.16)

where fγ̃1(k)|γ1(k)(x|y) =
fγ̃1(ℓ),γ1(ℓ) (x,y)

fγ1(ℓ)(y)
is the PDF of γ̃1(k) conditioned on γ1(k).

Since γ̃1(ℓ) and γ1(ℓ) are two correlated exponentially distributed RVs, their joint

PDF is given by

fγ̃1(ℓ),γ1(ℓ)(x, y) =
1

(1− ρ)η21
e
− x+y

(1−ρ)η1 I0

(
2
√
ρxy

(1− ρ)η1

)
, (4.17)

where I0(x) is the modified Bessel function of the first kind.

The PDF fγ1(k)(y) is given by

fγ1(k)(y) =
Nr!

(k − 1)!(Nr − k)!
[Fγ1(ℓ)(y)]

k−1[1− Fγ1(ℓ)(y)]
Nr−kfγ1(ℓ)(y) (4.18)

where fγ1(ℓ)(y) =
1
η1
e
− y

η1 and Fγ1(ℓ)(y) = 1− e
− y

η1 . Following the approach in [56]

and simplifying yields

fγ̃1(k)(x) = k

(
Nr

k

) k−1∑
m=0

(−1)m

η1

(
k − 1

m

)
1

(Nr − k +m)(1− ρ) + 1
e
− (Nr−k+m+1)x

((Nr−k+m)(1−ρ)+1)η1

(4.19)

Now substituting (4.19) into (4.15), the integral can be solved in closed-form

using [51, Eq. (3.478.4)]. Therefore, FZ(γT ) is given by (2.34) where K1(x) is the

first order modified Bessel function of the second kind. Finally, the exact outage

probability follows by substituting c = 1 in (2.34).
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