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Abstract— There are many runway capacity estimation models 

currently available today, and developers usually claim that their 

models have been validated. However, information about the 

validation process is often limited, and different models are 

validated at different levels of complexity. As a result, this paper 

proposes two validation methodologies that can be used to test 

model predictions against reality. We demonstrate the methods 

on two models--the Airfield Capacity Model (ACM) and Runway 

Simulator (rS)--and two airports—SFO and LAX. The results 

indicate that both models tend to over-predict capacities under 

good visibility conditions, and predict wider ranges of capacities 

than are seen empirically. Overall, capacity estimates from rS are 
typically more accurate than those from ACM. 

Keywords-runway capacity; empirical estimation; capacity 

models; ACM; rS; validation; censored regression. 

I.  INTRODUCTION 

There are many runway capacity estimation models 
commercially available and in use today. These models span a 
wide range of types, scope, and capabilities. Model developers 
usually claim that their models have been validated, but there 
are several issues that arise with these validation claims. 
Firstly, information on the calibration and validation processes 
used is often vague or unclear. Secondly, model validations are 
performed at differing levels of complexity. Finally, validation 
exercises were often carried out by the developers themselves.  

In this paper, we propose and demonstrate two possible 
validation methods that can be used to compare the estimates 
from a runway capacity model against empirical counts of the 
number of operations. These methods account for the fact that 
capacity may not be directly observable, since it represents an 
upper limit rather than the actual number of operations. They 
are demonstrated on two models-- the Airfield Capacity Model 
(ACM) and Runway Simulator (rS). This paper will provide a 
description of the models and the validation methodology, 
describe the data used, present validation results and suggested 
directions for future work. 

II. BACKGROUND 

There are many phenomenon that can affect the number of 
aircraft able to land and depart at an airport. Those that 
commonly have the greatest effects are below [1]: 

• Weather (visibility, cloud ceiling, precipitation), and 
subsequent meteorological condition designation; 

• Air traffic control separation requirements; 

• State and performance of ATM system; 

• Number of runways in use and their geometric layout; 

• Aircraft fleet mix and performance; 

• Runway occupancy times; 

• Overall arrival/departure split; 

• Mix and sequencing of arrivals and departures on 
runways, and  

• Controller workload. 

Depending on their purpose, capacity models attempt to 
account for sets of the above factors. All factors, excluding the 
last, are typically included in a model. Controller workload is a 
subjective measure and therefore more difficult to account for.  

III. DESCRIPTION OF CAPACITY MODELS 

A. Overview 

The runway capacity models commercially available today 
span a wide range of scopes, capabilities, and complexities [2]. 
Models can be categorized in several ways; here we categorize 
them by three important aspects: calculation method, stochastic 
capability, and model scope. The first two are independent of 
one another; however, they serve to isolate key differences 
between models. 

Runway capacity models calculate capacity analytically or 
through simulation. Analytical models are mathematical 
representations of operations, and can be implemented using a 
calculator or spreadsheet. They rely on a set of key capacity-
affecting inputs and variables to quickly, simply, and 
efficiently estimate the average behavior of entities (in this 
case, aircraft). Simulation models attempt to characterize 
changing conditions over time. They can be further categorized 
as macroscopic, mesoscopic, and microscopic. Macroscopic 
models are like analytical models in that they rely on key 
variables to represent the average behavior of entities. 
However, they are updated with changing information in 
discrete time steps. In microscopic simulation, aircraft (for 
instance) are represented individually, and the model creates 
and records their interactions with one another and their 
environment. Microscopic models tend to be more 



comprehensive in accounting for capacity-affecting factors. 
Mesoscopic models combine elements of both macro and 
microscopic models. All the above models can be placed on a 
sliding scale of computational complexity, from the simple 
(analytical) to the highly complex (microscopic simulation). 

Models can be deterministic, or stochastic to varying 
degrees. The degree of stochasticity depends on how many 
parameters (that do vary in actual operations) are treated as 
random variables in a given model.  

Lastly, runway capacity models’ scopes can range from 
being able to represent runway operations only to aircraft 
operations at gates, on aprons, taxiways, and in airspace. Very 
sophisticated models can incorporate numerous complex 
factors and operations that affect capacity, even beyond those 
listed in the previous section. 

B. Airfield Capacity Model (ACM) 

The ACM was initially developed by a consortium in the 
late 1970s and then modified by the FAA and MITRE 
CAASD, with the last modification made in 1981. It is an 
analytic model that calculates the hourly capacity of runway 
systems given continuous demand [3]. It asks the user for basic 
information about capacity-affecting characteristics, which it 
then converts to numerical inputs for its calculations. The ACM 
can estimate capacities for 15 simple runway configurations, 
from a single runway to 4 runways in varying configurations. 
The model’s default assumption is that there is a 5% 
probability of violating separation standards, and this is used to 
determine runway aircraft spacing. 

The ACM was validated in the early 1980s by the FAA; 
capacity estimates for certain runway configurations were 
deemed to be reasonably accurate. More information on the 
validation work is difficult to obtain. It is mainly used by the 
FAA and their consultants [4]. 

C. Runway Simulator (rS) 

rS was developed by MITRE CAASD, and is an 
intermediate effort between a simple analytical model and a 
complex discrete event simulation model. rS simulates 
individual aircraft movements on runways and airspace in the 
immediate vicinity of the airport, under continuous demand. 
Like many simulation models, rS is based on “blocking” rules, 
meaning that it is built on a link-node system where each link 
can only hold a pre-specified maximum number of aircraft at 
any given time. rS is capable of estimating both capacity and 
delay (which requires input of a schedule). rS requires a basic 
set of operational inputs (not very different from ACM) 
although it does require more physical parameter inputs. Users 
can set up an analysis in rS relatively quickly in comparison to 
other more complex simulation models. 

rS was validated by MITRE by comparing capacity results 
from rS to those of ACM for a number of simple scenarios [5]. 
As basic calculations are found to be correct, they are assumed 
to remain so for more complex scenarios. In addition, the 
animation can be viewed to insure that all ATC rules specified 
are followed correctly. The program is mainly used for in-
house studies, although the Federal Aviation Administration 
(FAA) has begun using it as well. 

IV. DATA 

Data was obtained from the Aviation System Performance 
Metrics (ASPM) database, which is part of the FAA’s 
Operations and Performance Data system. Data from the 
“Download/Airport” section of the ASPM database was used 
for this analysis. This data includes hourly and quarter-hourly 
arrival and departure counts, demands, various weather 
conditions, and visibility conditions (either visual (VFR) or 
instrument (IFR) flight rules). It also provides detailed 
information on individual flights. ASPM count data are based 
on individual aircraft landing and take-off times as supplied 
through Airline Service Quality Performance (ASQP) data or 
Enhanced Traffic Management System (ETMS) messages. The 
data is available for 77 major airports in the United States. 

To understand our methodology and its results, it is 
necessary to understand the demand data in our data set. 
Conceptually it is the number of flights that “want” to perform 
an arrival or departure information within a particular time 
period. It is based on the updated flight plan just before a flight 
is due to take off at the origin airport. In most cases, a flight 
counts toward demand beginning in the time period it is 
planned to land or take-off, and continuing through the time 
period when it actually does so. The only exception is when it 
arrives or takes off in a time period earlier than planned, in 
which case it is counted toward the demand in this earlier time 
period. This procedure ensures that the count never exceeds the 
demand. When the count and demand are equal, no flights are 
forced to wait until the next time period to perform their 
desired operation, while when demand exceeds count, there is 
delay. A shortcoming of this method for determining demand is 
that  demand is not updated based on delays that are incurred 1) 
between the time the flight plan is filed and the aircraft is 
taxiing for take-off (departure demand) or 2) en route to the 
destination airport (arrival demand)1. The implication is that 
the airfield demand may in actuality be lower than the ASPM 
demand data reports. This can lead to incorrectly attributing a 
difference between count and demand to a capacity constraint. 
This is not taken into consideration in the ensuing analysis, but 
has been done so previously by Hansen [6]. 

Quarter-hour and individual flight data from 2006 was 
obtained for both SFO and LAX. However, the runway 
configurations identified in the LAX ASPM data were found to 
be incorrect, so it was replaced with runway configuration data 
from Performance Data Analysis and Reporting System 
(PDARS). PDARS is joint NASA-FAA effort developed by 
ATAC Corporation. The database is fed by radar track and 
flight plan information directly from Automatic Radar 
Terminal System (ARTS) computers at Terminal Radar 
Approach Control (TRACON) facilities, and from the host 
computers at Air Route Traffic Control Centers (ARTCCs), 
which provide precise state information for each aircraft every 
2 seconds. As PDARS data was readily available for January 
through March 2005, ASPM data for the corresponding time 
period was used instead of 2006 data. Also, the meteorological 

                                                        
1  On the opposite end, the demand does not include the effects of 

ground delay programs (GDP), the effects of air traffic management (ATM), 

plus other mechanisms that would cause a flight to deviate from its schedule. 



condition for each quarter hour was determined by checking 
the weather data against known thresholds at each airport [7]. 

V. METHODOLOGY 

A. Experimental Procedure 

Several steps were taken to perform the validation exercise. 
The first step involves choosing the hours to be analyzed, by 
grouping the quarter-hourly ASPM data into hourly bundles 
starting on the hour. Complete candidate hours for analysis 
were identified by filtering the hours through several criteria: 

• The predominant runway configuration was in use for 
the entire hour (28L,28R | 1L,1R at SFO, 24R,25L | 
24L,25R at LAX); 

• The weather designation was VMC or IMC for the 
entire hour, and  

• The hour falls within the period of the day with the 
highest average demands (which, based on the data, 
was found to be between 9 am and 2 pm at both 
airports). 

The second step involves randomly drawing 50 hours 
(approximately half VMC and half IMC) from each filtered set. 
After filtering, the number of IMC hours at both SFO and LAX 
were low enough such that only 20 IMC hours were available 
for analysis. However, about 30 VMC hours were available. 

The next step is to obtain capacity estimates from both 
ACM and rS for each of the 50 hours. Each hour can be 
distinguished from one another by meteorological condition, 
fleet mix, and arrival/departure split (in %), while runway 
configurations are held fixed at each airport’s predominant 
configuration. As the purpose of this work was to assess model 
performance using minimal to no calibration, no additional 
edits were made after all inputs were complete. 

The result is data set containing predicted capacities, 
observed counts, and other relevant variables for each of 50 
hours at LAX, and likewise for SFO. These data serve as the 
basis for our two validation methods, which we now discuss. 

B. Comparison of Predicted Capacities with Demand-

unconstrained Counts 

The first validation method is based on a simple 

comparison of the realized counts and the capacities predicted 

by the models. Recognizing that counts may reflect demand 

rather than capacity constraints, we selected those 

observations in which the demand exceeded the capacity. 

Since we chose hours during busy periods of the day, this 
turned out to be the majority of our observations. In addition 

to plotting demand-unconstrained counts against capacity, we 

calculated the Theil [8] inequality coefficient and its 

components for each model. Given a predicted and realized 

value for observation i, Pi and Ai, the coefficient is calculated 

as: 

� = ∑ (�� − ��)
�
∑ ��
�

 (1)

The inequality coefficient may be decomposed into three 

parts: bias or error in central tendency, Um; unequal variation, 

Us; and incomplete covariation, Uc. These components, 

normalized so that they sum to 1, are given by: 
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)
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In these expressions ��  and ��  are the standard deviations 
of the predicted and actual values, r is the correlation 
coefficient between P and A, and n is the sample size. 

C. Censored Regression Model 

We also used censored regression to evaluate the two 
models. A censored regression model is equivalent to an 
ordinary least squares (OLS) regression model in that it relates 
a dependent random variable Y to a set of independent variables 
X1, X2,…, Xn [9]. However, in censored regression it is assumed 
that Y cannot be observed beyond some minimum or maximum 
threshold value (or both). For instance, if a value of Y is larger 
than the maximum threshold value Ymax, then only Ymax is 
observed. The true value of Y - the latent variable Y* - cannot 
always be observed due to this censoring effect, although X1, 
X2,…, Xn are always observable. Tobit regression accounts for 
this by ensuring that the parameters of the regression model 
estimate the effects of X1, X2,…, Xn. on the latent variable Y* 
and not on the censored (observed) variable Y. In this analysis 
the dependent observed variable Y is the airport’s arrival or 
departure capacity. We are limited in our ability to measure 
capacity in that aircraft counts from our data cannot exceed the 
demand in any given time period t, despite the fact that 
capacity may actually be greater than the demand in that time 
period. Nor can throughput or capacity be less than zero. As a 
result, the observed throughput in t is censored from above, and 
there are two situations that can arise [6].  

 ��(�) = ���∗(�),  �� 0 < ��∗(�) < ��!(�)
��!(�), �� ��∗(�) ≥ ��!(�) # (5) 

Where  

Co(t) is the “observed” capacity for operation type o 
(arrivals or departures) in time interval t, 

C*o(t) is the true (or latent) capacity for operation type o 
in time t, and  

C
U

o(t) is the upper bound of observable capacity (i.e. 
demand) for operation type o in time t. 

In the first scenario of (5) counts are less than the demand 
(Cu

o(t)); in this case capacity can be equated to the count. The 
second scenario is the upper censor where counts equal 



demand, and therefore capacity is measured to be this demand 
(although it could in reality be higher, therefore the censoring 
effect). 

The basic model specification is introduced here. 

 ��(�) = $% + $' ∗ ()*+,�(�) + , (6) 

 -�(�) = .�� [0�(�), ��(�)] (7) 

Where  

β0, β1, and σo are estimated parameters, 

Modx,o(t) is the capacity estimate from model x (ACM or 
rS), for operation o in t,  

Qo(t) is the throughput for operation o in t, 

Do(t) is the demand for operation o in t, and 

ε is the iid error term, distributed Normal with mean 0 

and variance σo
2. 

The model parameters are estimated from the data using 
maximum likelihood estimation (MLE).  

If a given model yielded perfect capacity predictions, we 

would expect βo→0, β1→1, and σo
2
→0. Thus the coefficients 

yielded by estimating these regressions provide a basis for 
scoring the validity of the models. Before moving on, it should 
be clarified that the subjects of this discussion are capacity 
estimates from three models: ACM and rS, as well as the 
empirical capacity regression model. As seen, the ACM and rS 
model estimates are obtained and then used as explanatory 
variables in the regression model. To avoid confusion, the 
capacity regression model will be referred to as the empirical or 

regression model, while the ACM and rS models (if not 
referred to by name individually) will be called the test models. 

D. Results 

1) Predicted Capacities versus Unconstrained Counts: 

Figs. 1 and 2 compare predicted capacities and realized counts 

for each model and each airport. The rS model yields better 

agreement with observed counts in the case of SFO (Fig. 1), 

while neither model does very well for LAX (Fig. 2). 
 

Table I presents the Theil analysis results. For SFO, the rS 
arrival and departure inequality coefficients are much less than 
those of ACM, confirming its better predictive capability. The 
primary sources of inequality are also different, with bias (Um) 
the major one for the ACM model as opposed to incomplete 
covariation (Uc) for the rS model. In the case of LAX, the 
inequality coefficients for the two models are comparable, as 
are the inequality proportions. In general, unequal variation 
(Us) is the smallest contributor to the inequality of the predicted 
and actual data sets. Aggregating across the two airports, the rS 
model emerges as the better predictor, primarily because it 
exhibits less bias. 

Arrival and departure capacity predictive performance 
appears to be highly correlated. Inequality coefficients for 
arrivals and departures are generally of very similar 
magnitudes, as are the inequality proportions. 

2) Regression Model I: The results of the basic model 

(Equations 6 & 7) for ACM and rS are reported in Tables II, 

III, and IV. Table II contains results for SFO, Table III for 

LAX, and Table IV for a model that contains data from both 

airports. Recall that the empirical model results are based on 

about 30 VMC and 20 IMC observations at each airport.  
 

 

 

Figure 1.  Model Capacity Estimates versus Unconstrained Counts, SFO 
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Figure 2.  Model Capacity Estimates versus Unconstrained Counts, LAX 

 

 

 

TABLE I.  PREDICTION-REALIZATION ANALYSIS 

ACM RMS error 
Inequality 

Coefficient (U) 

Inequality Proportions 

Arr Dep 

Air MC Arr Dep Arr Dep Um Us Uc Um Us Uc 

SFO VMC 21.3 20.6 0.646 0.657 0.941 0.000 0.059 0.924 0.013 0.063 

 
IMC 3.9 4.3 0.138 0.145 0.360 0.061 0.579 0.323 0.088 0.589 

SFO Total 16.8 16.4 0.536 0.536 0.478 0.255 0.268 0.474 0.218 0.309 

LAX VMC 19.9 17.8 0.375 0.303 0.763 0.092 0.145 0.799 0.061 0.140 

 
IMC 10.4 11.1 0.197 0.201 0.244 0.407 0.348 0.279 0.404 0.318 

LAX Total 16.8 15.4 0.317 0.269 0.555 0.017 0.428 0.586 0.190 0.224 

Total 16.8 15.9 0.389 0.350 0.514 0.028 0.458 0.524 0.092 0.384 

rS RMS error 
Inequality 

Coefficient (U) 

Inequality Proportions 

Arr Dep 

Air MC Arr Dep Arr Dep Um Us Uc Um Us Uc 

SFO VMC 6.6 6.9 0.200 0.220 0.461 0.003 0.536 0.578 0.038 0.385 

 
IMC 3.8 3.4 0.133 0.115 0.006 0.059 0.935 0.006 0.059 0.935 

SFO Total 5.6 5.8 0.180 0.190 0.211 0.077 0.712 0.261 0.000 0.739 

LAX VMC 16.8 19.6 0.318 0.333 0.744 0.105 0.151 0.813 0.073 0.114 

 
IMC 6.0 6.4 0.113 0.116 0.373 0.145 0.482 0.403 0.018 0.578 

LAX Total 13.6 15.6 0.256 0.272 0.561 0.096 0.343 0.601 0.002 0.397 

Total 10.3 11.6 0.238 0.255 0.371 0.224 0.405 0.403 0.128 0.468 
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TABLE II.  MODEL I RESULTS FOR SFO 

ACM 
Departure  Arrival  

Estimate  Error  t-stat  Estimate  Error  t-stat  

βo  20.95 2.604 8.04 22.18 2.004 11.06 

β1  0.23 0.055 4.22 0.21 0.052 4.03 

σo  1.71 0.100 17.12 1.59 0.105 15.08 

rS 
Departure  Arrival  

Estimate  Error  t-stat  Estimate  Error  t-stat  

βo  7.79 2.579 3.02 12.41 3.023 4.10 

β1  0.69 0.080 8.61 0.56 0.093 5.98 

σo  1.56 0.096 16.20 1.38 0.078 17.80 

 

TABLE III.  MODEL I RESULTS FOR LAX 

ACM 
Departure  Arrival  

Estimate  Error  t-stat  Estimate  Error  t-stat  

βo  22.66 2.712 8.35 60.68 13.709 4.43 

β1  0.50 0.043 11.58 -0.12 0.212 -0.56* 

σo  1.69 0.082 20.52 2.18 0.082 26.66 

rS 
Departure  Arrival  

Estimate  Error  t-stat  Estimate  Error  t-stat  

βo  20.97 5.565 3.77 22.29 3.558 6.27 

β1  0.52 0.090 5.82 0.49 0.057 8.53 

σo  2.12 0.085 24.84 1.83 0.091 20.10 

* Results are not significant at the 95% confidence level. 

TABLE IV.  MODEL I RESULTS FOR BOTH SFO AND LAX 

ACM 
Departure  Arrival  

Estimate  Error  t-stat  Estimate  Error  t-stat  

βo  8.59 1.933 4.44 11.73 2.247 5.22 

β1  0.64 0.031 20.48 0.57 0.046 12.30 

σo  2.14 0.056 38.24 2.28 0.067 33.84 

rS 
Departure  Arrival  

Estimate  Error  t-stat  Estimate  Error  t-stat  

βo  7.86 1.714 4.59 10.04 1.358 7.40 

β1  0.71 0.040 17.69 0.66 0.032 20.82 

σo  1.93 0.070 27.53 1.72 0.074 23.29 

 

From the results, it can be observed that all βo estimates are 

much greater than 0, and all β1 estimates are smaller than 1. 

The magnitudes of the β1 estimates indicate that the ranges of 
capacity estimates from ACM and rS are both wider than the 

corresponding ranges of actual capacities. The βo estimates are 
relatively large due to the same reason. The implication of 
these results is that for a set of conditions where the predicted 
capacity is low, the actual capacity is likely to exceed the 
prediction, while when the predicted capacity is high, it is 
likely to exceed the realized capacity. At SFO, the rS 

regressions’ β0 estimates are lower and β1 estimates are higher 

than those of the ACM regressions, suggesting that the rS 
capacity model performs better. The standard deviations in the 
ACM regression model are also higher than those of the rS 
regression model. At LAX it appears that the estimates from 
the ACM and rS regressions are comparable, except those of 
the ACM arrivals regression. The ACM arrival capacity 
predictions proved very insensitive to the different input 
conditions of the 50 hourly samples in IMC and VMC. As a 

result, the β1 estimate is insignificant and β0 simple reflects the 
average empirical capacity for the entire 50 hour sample.  

Similar patterns are observed in the results for the 

combined airport model (Table IV). The β0 values tend to be 

smaller and the β1 values larger than those of the other two 
models. Moreover, the rS and ACM coefficients are quite 
similar in the combined model. This implies that both models 
do fairly well in predicting the difference in capacity between 
SFO and LAX in their primary configurations. Where the rS 
prevails, at least for SFO, is in its ability to predict variations in 
capacity for a particular airport and configuration. . 

3) Regression Model II: The basic empirical model was 

modified to include another parameter that distinguishes 

between VMC and IMC test model capacity estimates. This 

serves to isolate the effect of visibility condition has on the 

test models’ predictive peformance. 

 ��(�) = $% + $' ∗ ()*+,�(�) + $
 ∗ 2�(3(� = 1) + , (8) 

 -�(�) = .�� [0�(�), ��(�)] (9) 

Where 

β2 is an estimated parameter, and 

Io(VMC=1) is an indicator variable set to 1 if operation 
type o in time t occurs under VMC conditions, and 0 if it 
occurs in IMC.  

The results of this model are contained in Tables V, VI, and 
VII as well as Figs. 3 through 5. Each figure contains the 
regression model capacity predictions plotted against 
predictions obtains directly from the test models. Overall, the 
inclusion of the VMC indicator variable improves the estimates 

for β0 and β1. This suggests that the test models are not 
particularly accurate in predicting differences between IMC 

and VMC capacities. β2 is an estimate of the adjustment that 
must be made to VMC test model capacity estimates to reflect 

actual capacities. With its addition, β0 decreases in most of the 

regressions, while β1 increases towards 1. This implies that the 
test models can more accurately predict variations in capacity 
given a particular visibility condition, rather than the effect that 
visibility condition has on capacity. 

 The β2 values in Tables V, VI and VII are each less than 
zero (except that of the ACM arrivals regression at LAX, 
which is subject to the same problems that were discussed in 
the previous section). This implies that both models 
overestimate the difference between VMC and IMC capacities. 
Figures 3-5 show that this is because they overestimate VMC 
results. 



TABLE V.  MODEL II RESULTS FOR SFO 

ACM 
Departure Arrival 

Estimate Error t-stat Estimate Error t-stat 

βo 11.88 2.692 4.41 12.93 4.022 3.22 

β1 0.66 0.096 6.87 0.60 0.152 4.00 

β2 -14.21 2.778 -5.12 -12.26 3.780 -3.24 

σo 1.45 0.092 15.72 1.44 0.105 13.77 

rS 
Departure Arrival 

Estimate Error t-stat Estimate Error t-stat 

βo 1.35 3.255 0.42* 11.36 3.172 3.58 

β1 0.99 0.121 8.20 0.62 0.109 5.64 

β2 -6.20 1.695 1.69* -1.51 1.319 -1.15* 

σo 1.42 0.082 0.08* 1.37 0.081 16.85 

* Results are not significant at the 95% confidence level. 

TABLE VI.  MODEL II RESULTS FOR LAX 

ACM 
Departure Arrival 

Estimate Error t-stat Estimate Error t-stat 

βo 21.96 2.479 8.8 95.43 32.732 2.92 

β1 0.54 0.043 12.64 -0.74 0.572 -1.29* 

β2 -3.56 1.559 -2.28 8.87 7.176 1.24* 

σo 1.63 0.087 18.86 2.16 0.080 27.07 

rS 
Departure Arrival 

Estimate Error t-stat Estimate Error t-stat 

βo -5.11 6.61 -0.77* 19.61 3.331 5.89 

β1 1.02 0.118 8.69 0.59 0.056 10.59 

β2 -13.69 2.634 -5.12 -6.69 1.747 -3.83 

σo 1.97 0.099 19.78 1.69 0.077 22.05 

* Results are not significant at the 95% confidence level. 

TABLE VII.  MODEL II RESULTS FOR BOTH SFO & LAX 

ACM 
Departure Arrival 

Estimate Error t-stat Estimate Error t-stat 

βo 8.62 1.488 5.80 5.83 2.065 2.82 

β1 0.77 0.036 21.73 0.84 0.059 14.24 

β2 -11.89 1.580 -7.53 -14.69 2.064 -7.12 

σo 1.88 0.061 30.81 2.04 0.075 27.31 

rS 
Departure Arrival 

Estimate Error t-stat Estimate Error t-stat 

βo 9.41 1.695 5.55 11.37 1.320 8.61 

β1 0.75 0.037 20.12 0.70 0.031 22.88 

β2 -6.59 1.140 -5.78 -4.96 1.110 -4.47 

σo 1.82 0.076 23.97 1.62 0.062 26.17 

 

According to Table V ACM overestimates VMC capacities 
at SFO but underestimates lower IMC capacities. The rS model 
appears to do a better job of estimating capacities than ACM, 
although again it seems to slightly overestimate VMC 
capacities. The standard deviations for both the ACM and rS 
regressions are about the same. 

At LAX it again appears that capacity estimates from rS 
more closely reflect empirical values than do the ACM results 
(Table VI). The complete failure of ACM to predict arrival 
capacities is apparent, while on the departure side it slightly 
overestimates the difference between VMC and IMC capacities 
and, as in the previous results, exaggerates capacity variability. 
rS greatly exaggerates the capacity difference between IMC 
and VMC at LAX, but aside from that does very well at 

predicting capacity variation, as implied by the β1 coefficient 
matching the ideal value of 1. 

From the combined airports regression (Table VII), the 
performance of ACM and rS are more comparable. The rS 
model does a better job on the whole at predicting the 
difference in capacity between VMC and IMC. The models do 
equally well in predicting capacity variation from other 

sources, based on the β1 results. There remains a tendency for 
the models to exaggerate capacity variation compared to what 
is actually observed. These results, like those in Table IV, are 
greatly influenced by the difference in capacity between SFO 
and LAX, and it is the ability of ACM to accurately predict that 
difference that makes it appear competitive with rS. 

VI. CONCLUSIONS & FUTURE WORK 

This paper has introduced two methodologies for validating 
capacity model results against empirical data. The validation 
results indicate that ACM and rS predict greater differences 
between average VMC and IMC capacity than the data 
indicates, as they typically appear to over-predict VMC 
capacities. The regression results also indicate that the models 
predict wider ranges of capacities than are seen empirically, as 

the β1 coefficients are less than 1 in the majority of cases 
tested. Also, LAX arrivals capacities from ACM were 
insensitive to changing conditions, in comparison to the 
corresponding empirical capacities. Overall, it appears that rS 
estimates are typically better than those of ACM. 

The work discussed in this paper can be continued and 
improve upon in several directions. It would be of interest to 
test other capacity models, particularly one of the more 
complex microscopic simulation models that are often used 
today. Capacities for additional runway configurations and 
other busy airports could be estimated and the regression model 
re-specified to include these. Also, arrival and departure 
capacity estimates could be tested together in one empirical 
model, to account for and assess their interaction effects. 
Finally, the capacity model estimation results could be 
compared against empirical capacity estimates based on other 
data sources such as PDARS.  

A similar methodological framework is currently under 
development to assess empirically-derived en route capacity 
estimates against capacity predictions from existing controller 
workload models.  



 

Figure 3.  Model II Results for SFO 

 

Figure 4.  Model II Results for LAX 

 

Figure 5.  Model II Results for Both SFO & LAX 
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