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Chapter 1

Introduction

The present thesis results form a series of papers [18], [19], [20], [21], [22], [23] 

appeared or submitted to scientific publications. The thesis consists of two parts, 

namely Chapters 2 and 3 form the first part, and Chapters 4 and 5 the second part.

In the first part, we focus on classification and prediction for nonlinear dynamical 

systems. Particularly, we are interested in applications to nonlinear aeroelasticity, 

which has been receiving considerable attention in the aerospace community in re­

cent years. The second part of the thesis deals with state-space models involving 

Markov switching. A nested Monte Carlo Expectation Maximization algorithm for 

learning the parameters of the model is developed. The effectiveness of the proposed 

method is demonstrated by testing the algorithm for simulated and experimental 

data.

1.1 Nonlinear aeroelastic models

An understanding of the nonlinear aeroelastic response is a crucial problem for the

aerospace community, since complex aeroelastic phenomena play an important role

in the safe design of an aircraft. Currently, a major effort is being focussed on

the prediction of limit cycle oscillation (LCO) and the flutter boundary. Classical

linear theory is not appropriate for studying LCO, and it may give inaccurate results

for predicting the flutter boundaries. For example, for flutter testing with several
1
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external store configurations of an F-16A aircraft, Denegri [3] reports the appearance 

of LCO as well as the flutter and some sudden high-amplitude oscillations. However, 

he shows that linear flutter analysis fails to determine the oscillation amplitude or 

the oscillation onset velocity.

In a nonlinear formulation, the aeroelastic problem has been studied by many re­

searchers via mathematical analysis and numerical simulations. In the recent survey 

paper [16], Lee, Price and Wong report different types of nonlinearities encountered 

in aeroelastic behavior of aircraft structures. Numerical simulations are used to 

study bifurcation and chaos for aeroelastic systems with structural nonlinearities. 

These nonlinearities are illustrated for a two-dimensional airfoil oscillating in pitch 

and plunge. The governing integro-differential equations of the airfoil motion are 

reformulated as a nonlinear system of ordinary differential equations (ODE). Numer­

ical and analytical methods for solving the aeroelastic system are reported, including 

Humbolt’s finite difference method, Runge-Kutta time-integrating scheme, and the 

describing function technique. The same problem is studied by Liu [17] using center 

manifold theory and the point transformation technique.

Several mathematical models are employed to study the LCO and flutter for var­

ious types of airfoils and nonlinearities. Tang and Dowell [26] apply an ONERA stall 

aerodynamic model for a non-rotating helicopter blade with a parabolic or cubic and 

freeplay torsional stiffness nonlinearity. A reduced-order model based upon Peters’ 

finite state model for a two-dimensional aerodynamic flow is applied by Tang, Dowell 

and Virgin [27] to study a three-degree of freedom aeroelastic model with freeplay. 

For a low-aspect-ratio delta wing structure at low sub-sonic flows, Tang, Henry and 

Dowell [28] propose the vortex lattice aerodynamic model and the reduced-order 

aerodynamic technique. In the previously cited papers, the mathematical models 

are based on nonlinear ordinary differential equations which can be expressed in a 

state-space form. The systems of nonlinear differential equations are studied using 

numerical approaches or the describing function technique. The results are found 

to be in a good agreement with the experimental investigations carried out in the 

wind tunnel at Duke University.
2
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For the nonlinear control of a prototypical wing section with torsional nonlin­

earity, Ko, Kurdila and Strganac [13] also consider a model based on a state-space 

form. The bifurcation structure and parametric stability of the resulting closed-loop 

dynamical systems are studied using the center manifold method [14]. The results 

are validated by experiments at Texas A&M University [15].

In order to solve the corresponding nonlinear ODE system analytically or numeri­

cally, the system parameters must be known. However, in practice, such as in ground 

vibration tests and actual flight tests, only the dynamical response corresponding 

to a given excitation is available. Hence, it is desirable to develop a technique such 

that one could predict the LCO and other complex aeroelastic phenomena from the 

given dynamical response.

Given a time series, X  — [xi,x2, ■ ■ ■ , r n], which contains a limited number of 

transient observations, we wish to predict the subsequent values [xn+\, xn+2, ...] . In 

a classical approach, linear time series models or the Kalman filter are commonly 

used to perform one step ahead predictions or short term predictions. The first 

part of this thesis proposes two new approaches for the long-term prediction of the 

aeroelastic response, namely nonlinear time series models and the unscented filter 

(UF) [11], The main feature of the two nonlinear approaches proposed in this thesis 

is the capability of making not only short term predictions, but also accurate long 

term predictions. Moreover, chapter 3 also presents a new and efficient method 

based on the UF and the expectation maximization (EM) algorithm for estimating 

the parameters of an aeroelastic model.

Preprocessing

Processing

Figure 1.1: Expert data mining system 

3
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The nonlinear time series approach and the UF method can be employed to 

develop an expert data mining system (EDMS) [19]. The basic structure of the 

EDMS is illustrated in Fig. 1.1. A typical expert system consists of two core 

components, namely the knowledge base and the reasoning engine. The EDMS, can 

be especially designed to deal with aeroelastic data with structural nonlinearities. 

The knowledge base involves data analysis reported in the first part of the thesis, 

in which the nonlinear time series models and the UF are used to process the input 

data. Before a long term prediction is presented as output, the information obtained 

from the knowledge base must be reasoned and certain rules have to be satisfied. 

In our system, a simple rule is applied, namely the long-term predictions and their 

classification as LCO, stable or unstable oscillations are given if the two predictions 

from two different approaches in the processing step agree.

1.2 Models with hidden Markov switching

The second part of this thesis studies models with the nonlinearities given by the 

hidden Markov switching. In Chapter 4, we start with a result concerning the 

simplest type of such model, namely the hidden Markov models (HMM). The HMMs 

are especially known for their applications in automatic speech recognition [24]. 

Nevertheless, they have been successfully applied to many fields, such as handwriting 

recognition [2], pattern recognition in molecular biology [1] and fault detection [25].

v

Figure 1.2: Hidden Markov Model

A HMM can be represented graphically by the Bayesian network [4] shown in 

Fig. 1.2. The figure displays a directed acyclic graph (DAG), in which each node

corresponds to a random variable. The shaded nodes and the unshaded nodes
4
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represent the observed variables and the hidden variables respectively. The condi­

tional independence is specified by the edges: each node is conditionally independent 

from its non-descendants given its parents. Hence, a HMM is formed by the ob­

served sequence {Yn,n  >  1} and the hidden Markov chain { Sn,n  >  1} such that 

P(F„|Sn,F„_i) =  P(F„|S„) and P {S n\Yn, Sn- i)  =  P (S „ |5n_i). Here, we suppose 

that { Sn, n >  1} is a finite homogeneous Markov chain with the transition matrix 

$  and the initial probability distribution p. An important feature in the inference 

algorithms for HMMs is the prediction filter pn — P (S n\Yn^ i , . . ., Fj), n >  2, and 

p 1 =  p. Under appropriate hypotheses, we present a new approach based on the 

Ionescu Tuleea - Marinescu ergodic Theorem [8] for proving the geometric ergodicity 

of the Markov chain {pn, n >  1}.

Figure 1.3: Model with hidden Markov switching

We then study the ergodic properties of the model represented by the Bayesian 

network displayed in Fig. 1.3. The model is more complex and it is formed with the 

observed sequences {Yn,n  >  1} and {X „ ,n  >  1}, and the hidden, finite, homoge­

neous Markov chain n >  1}. We suppose that both {Yn, n >  1} and ( X n, n >  1} 

have continuous distributions, and {X„, n >  1} is a Markov chain. Now, the corre­

sponding prediction filter is given by wn =  P (S n\Yn^i, A „ _ i . . . ,  Fi, X i) ,  n >  2 and 

Wi =  p. We associate a random system with complete connections (RSCC) [9] with 

this model. Based on the properties of the RSCC, we show that the Markov chain 

{(wn+i , X n) ,n  >  1} is geometrically ergodic. Then we study the ergodic properties 

of the model with misspecified parameters, and we prove the exponential forgetting 

of the initial conditions.

In Chapter 5, we present a nested Monte Carlo EM (NMCEM) algorithm [22] for
5
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Figure 1.4: Switching State-Space Model

learning the parameters of the switching state-space model (SSM) introduced in [5]. 

Fig. 1.4. displays the Bayesian network corresponding to the SSM. Since it combine 

the state-space models and the HMMs, the SSM is regarded as a hybrid model. 

It can be viewed as an extension of the mixture of experts [10] or the switching 

regression models [6]. It is also closely related to models arising from economics 

([7], [12]). Here, {Yn, n >  1} are the observations, {X™, n >  1}, m =  1, . . . ,  M,  are 

the M  sequences of the hidden state variables, and {S n, n >  1} is the hidden, finite, 

homogeneous Markov chain. The NMCEM algorithm is based on the multi-move 

Gibbs sampler, but the convergence rate is improved by introducing nesting and the 

Rao-Blackwellised forms [29]. The performance of the algorithm is illustrated for 

experimental medical data.

6
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Chapter 2

Nonlinear Time Series M odels

2.1 Introduction

In recent years, there has been an increasing interest in the studies of nonlinear 

dynamics across broad ranges of disciplines. The main reason is that nonlinear dy­

namical systems could be used to model many complex phenomena, such as the 

jump discontinuity, amplitude dependent frequency profile, limit cycle oscillation, 

sub-harmonic motion, and even chaos. In particular, the ability to predict the re­

sponse of a dynamical system is essential in controlling a physical system. However, 

if observation data are the only available information in a given application, then it 

is important to construct a time-series model which is capable of characterizing the 

nonlinear dynamics.

In this chapter, we are concerned with the dynamics of a nonlinear aeroelastic 

system. The corresponding data are obtained either from numerical simulations or 

actual wind-tunnel experiments. One of the most important aspects in the study 

of nonlinear aeroelasticity is the appearance of limit cycle oscillations, which are 

characterized as sustained periodic oscillations with neither increasing nor decreasing 

amplitude over time for a given flight condition. It should be noted that limit cycle

The material presented in this chapter was previously published in [18], [19], [27].
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oscillations are an undesirable feature, since they can cause structural fatigue, and 

the vibrations can also induce pilot fatigue. Hence, an accurate prediction of limit 

cycle oscillations is of great interest to the aerospace industry. Another related topic 

is the prediction of oscillations in nonlinear flight dynamics. When information 

on possible unstable oscillations is provided to the pilot, certain controls may be 

activated in order to ensure a safe cruising performance.

The general form of an linear autoregressive (AR) model of order p  is given by

p
JC n  —■ ^  "] t t i X n —i  77. >  p .

i=l

Here, p  is a positive integer, a,, i — l , . . . , p  are the model coefficients, and e„, 

n >  p  +  1 are independent, identically distributed Gaussian variables with zero 

mean. A linear moving average (MA) model of order q is given in the following 

equation

X.n ”  ^   ̂bi&n—i ~F en, Tl >  q,
i —1

where q is a positive integer and bt , i =  1 , . . .  ,p  are the model coefficients. Com­

bining these two models we get an autoregressive moving average (ARMA) model 

of order (p, q):

p q
X n ~  ^   ̂oqJfyi—j T ^  ' biCji—i T Cni n >  q, n p.

i = l  1

Linear time series models [21], such as ARMA models, are often used for system 

identification of the aeroelastic system and flutter prediction. Torii and Matsuzaki 

([24], [25]) regard the response of the wing excited by the turbulence of an airstream 

as a random vibration, and use an ARMA model for the system identification. The 

flutter prediction parameter is calculated using the estimated AR coefficients. The 

results are validated by numerical simulations under non-stationary conditions and 

by experiments performed during the wind-tunnel flutter testing.

The ARMA models can be generalized to auto-regressive moving average with
12
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exogenous variable (ARMAX) models:

P Q

X n =  Aun +  ^ 2  diXn-i +  Y 2  bie«~i +  e«< n >  ™ > P>
i=1 i—1

where un is a vector of inputs (the exogenous variable). Andrighettoni and Man- 

tegazza [1] consider an ARMAX model for the identification of the model to be used 

in designing an adaptive flutter suppression system for a built-in wing model fitted 

with a leading- and trailing-edge control surface and two accelerometers.

However, the ARMA or ARMAX are linear models. Since the nonlinearities due 

to the aerodynamics or the structure of an aircraft can critically affect the aeroelas­

tic behavior, it is therefore desirable to develop models which are capable of incor­

porating information about the nonlinearities of the aeroelastic phenomena. Two 

nonlinear time series models are being considered, namely the amplitude-dependent 

exponential auto-regressive models (EXPAR) [10], and the self-exciting autoregres­

sive models (SETAR) [22]. The EXPAR models are suitable for polynomial struc­

tural nonlinearities, and the SETAR models include the threshold structure specific 

to freeplay or hysteresis.

The main difficulty associated with nonlinear time series models is the estimation 

of the model parameters, in which a complex nonlinear solver is usually needed. In 

the present EXPAR and SETAR models, we do not require any direct application 

of a nonlinear procedure because the problem is reformulated to the parameter 

estimation for AR models. Consequently, it can be solved by the well-known singular 

value decomposition method. Moreover, the selection of the best model can be 

done in a similar way to the selection of the best ARMA model using the Akaike 

information criterion (AIC) ([10]).

Another important aspect of the proposed approach is the capability to handle 

input data corrupted with noise. In [8], Dimitriadis and Cooper notice that the per­

formances of ARMA and ARMAX models are very sensitive to the measurements 

errors. Tests were carried out at the noise levels of 5, 10, 15 and 20%, and the

mean flutter prediction using ARMA-based methods was found to be acceptable
13
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only for the case with 5% noise level. To overcome this difficulty, we have imple­

mented wavelet de-noising methods as preprocessing. Consequently, the parameter 

estimating procedures are applied to the denoised data instead of the original noisy 

input data.

2.2 EXPAR models

The EXPAR models incorporate both the amplitude-dependent frequency and the 

limit cycle behavior. The basic form of an EXPAR model of order p  is given by

X n =  (<l>i +  'Kie~'lXn~1)X n- i  +  . . .  +  (<£p +  7rpe 7X"'-1)A'n_p +  en, (2.1)

where i =  1 , . .  .p  and 7  are constants and en, n >  p  +  1 are independent,

identically distributed Gaussian variables with zero mean. Such a model implies 

that X n is a symmetric process, although X n is not constrained to being Gaussian.

Let Yn =  (X n, . . . ,  X„_p+1)*, E n =  (e„, 0 , . . . ,  0)*, f (Y n^ )  =  AYn^i +  F(F„_i),

A =

$ 2 ••• V i  ^

1 0 . . .  0 0

0 0 . . .  1 0

^ 'K\Xn—\  +  • • • +  TTpXn-j^

Here 1 denotes the transpose of a matrix or a vector. Notice that we have

Yn ^ f ( Y n^ )  +  En. (2 .2 )

From (2.2), we can easily see that Yn is a homogeneous Markov chain, and without

the noise term En

Yn =  f(Yn-l) (2.3)

is an autonomous deterministic difference equation. The equilibrium states (i.e. the
14
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solutions of f ( Y )  =  Y )  are Y\ — ( 0 , . . . ,  0)*, and

if 0 <  (1 — XX=i ^*) /  (5Z?=i TTj) <  1- Now we recall the following classical definition 

(see, e.g. [9], pp. 166)

D efin ition  2.1 The equilibrium state Y  is

1. Stable, if for any given e >  0, there exists 8 >  0 such that for any | |T i-F || <  8,

we have ||F„ -  F || <  e for the solution Yn\

2. Attractive, if there exists 8 >  0 such that, for any ||Yi -  F || <  8, we have

lim Yn =  Y ;
TL-YO O

3. Asymptotically stable, if it is stable and attractive;

4. Exponentially stable, if there exists 8 >  0, K  >  0, and 0 <  c <  1, such that if 

||Fi -  Y\\ <  8, then

\\Yn -  Y\\ <  K\\YX -  F ||cn.

The stability condition for the equilibrium states of (2.3) is given as follows.

T heorem  2.1 1. The zero solution Y\ is exponentially asymptotically stable, if all 

the solutions of the equation

Ap -  ($ i +  7Ti)Ap -1  -  ttp =  0 (2.4)

are inside the unit disc.

2. The non-null solution Y2 is exponentially asymptotically stable, if all the solutions 

of the equation

Ap -  hxAp- 1  =  0 (2.5)
15
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are inside the unit disc,where

h i  =  ( i r i  +  $1  ~  E $ J) / E 7ri +  2 ( 1 - E ^ | ln ^  “  E $ ^ /
\  j=l j= 1 /  3 —1 V 3 = 1  /  3 = 1

E ffi
3 = 1  ■

k = [ f l i + ^ i E 71* _ 7riE ^ ' ) / E ^  = 2>3>--- )̂-V 3 = 1  3 = 1  /  3 = 1

P r o o f . Elementary calculations give the Jacobian matrix d f /d Y ( Y n- i )  =  A  +  

where:

0 0

V 0 0

It is easy to verify that the equation (2.4) gives the eigenvalues of d f /d Y (Y i ) ,  and 

equation (2.5) gives the eigenvalues of d f  /d Y (Y 2). Hence, the conclusion of the 

theorem is a consequence of Corollary 4.7.2 in [12]. D

R em ark 2.1 The same result is reported as Condition A in [16] using a slightly 

different terminology.

A limit cycle of (2.3) is a periodic solution with period q >  1. Analogously with 

Definition 2.1 we have

D efin ition  2.2 A limit cycle Yn, n >  n0 >  p  is asymptotically stable if the orbit 

r  =  {?no+i , . . . ,  F„0+9}, is asymptotically stable; that is

1 . for any neighborhood AT of E, there exists a neighborhood U of E such that, if 

Y\ G U then the solution Yn 6  Af, for n large enough;

2 . there exists a neighborhood AT of E such that, if Y\ e  Ji, then for the solution
16
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Y„ we have

lim d(Yn, T) =  0.
n-YOQ

We have the following theorem concerning the stability of a limit cycle of (2.3) 

(see Proposition 2.2 in [17]).

T h eorem  2.2 A limit cycle of period q, {Yn0+1, . . . ,  Yno+q\ ,  no >  p, of the model 

(2.3) is asymptotically stable when all the eigenvalues of the matrix,

M  =  d f /d Y ( Y no+q) • d f /d Y ( Y no+g_ 0  • • • d f /d Y ( Y no+1)

are inside the unit disk.

P r o o f .  To study what happens to the solutions in a neighborhood of T =  

{Yno+i, • • •, Yn0+9}, we introduce the variable Zn — Yn — Yn, n >  no +  1. Then, we 

have

Zn =  f ( Y n - 1) -  f (Y n- 1) -  d f / d Y ( Y n^ ) Z n^  +  0{\\Zn^ f ) .

Hence, we can associate the following difference equation with periodic coefficients

Zn == d f /d Y { Y n- i ) Z n-x, n >  n0 +  1 . (2 .6)

The zero solution of the equation (2.6) is asymptotically stable if the eigenvalues 

of the matrix M are inside the unit disk (Theorem 4.4.1, in [12]). This proves the 

theorem, since the limit cycle is asymptotically stable if Zn —> 0 as n —$■ oo. Q 

The conditions in Theorems 2.1 and 2.2 can replace the usual stability conditions 

for the ARMA models, and they can be used to generalize the approach in [25] for 

finding the flutter margin.

For complex dynamic predictions, the EXPAR model (2 .1) can be extended [16] 

to the following form

=  (#! +  f x i X n - J e - ^ - ^ X n - x  +  . . .  +  (%  +  fp(Xn^ ) e - ^ ) X n„p +  en (2.7)
17
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where f i (X n- 1), i =  1, . . .  ,p, are the polynomials:

(2.8)

The model given in (2.7) admits more sophisticated nonlinear dynamics. For exam­

ple, if the order of the polynomials /i(X „_i) are odd, then X n is not constrained 

to being a symmetric process.

We now briefly present an efficient procedure for estimating the coefficients of the 

EXPAR model (2.7). In general, the estimation of the order p, and the coefficients 

{7 , ( $ j ,  7r ^ ;  j  =  0 , . . . ,  77, i =  1, . . .  ,p ) }  requires a nonlinear optimization procedure. 

However, this optimization problem can be reduced to fitting a linear regression [10]. 

For n =  m  +  1 , . . . ,  N,  we rewrite (2.7) as

is different from both 0 and 1 for most values of X„_i. For each value of 7 , /3 is 

estimated using a singular value decomposition in (2.9). The choice of the maximum 

order m  is subjective and it depends on the sample size. The order p  of the fitted 

model is determined using the AIC criterion [10], i.e.,

X w  =  A /3+  e, (2.9)

where

First, the parameter 7  is selected from a grid in a range such that e tX«-i

p

(2 .10)

where dp is the least square estimate of the residual variance of the model. The last
18
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term in (2 .10) represents the double of the number of the estimated parameters in 

the model, including the fitted mean. For each 7 , the fitted models are compared 

using the AIC criterion, and the model with the smallest AIC is chosen.

The complexity of the singular value decomposition method is proportional to

(N  -  m)(2p  +  ^ 2  r<)2 +  (2P +  X ! r'')3-
t = l  2=1

Thus, the estimation method is computationally efficient for models of reasonably 

large order.

A further improvement in terms of parameters estimation can be achieved by 

replacing by exp(—7 /X2), where P2 =  is estimated by the sample

second moment ([22], page 328).

To conclude this section, we mention the following modified EXPAR models:

X n =  ($1 +  / i (X ’„_i)e~7X™-1)A n_i +  . . .  +  (<3>p +  fp(Xn- p)e jXn-p)Xn^p +  en,

where / , ,  i =  1, . . .  ,p are given in (2.8). Proceeding as in Example 4.3, page 129 in 

[22], we can easily prove that the Markov chain formed with Yn =  (X n, . . .  ,X n~p+i)J 

is ergodic, provided that all the solutions of the equation

Ap -  $ 1Ap- 1  $ p =  0

are inside the unit disc.

2.3 SETAR models

The essential idea underlying the SETAR models is a piece-wise linearisation of the 

nonlinear models over the state space with the introduction of thresholds.

Let . . .  , t [ }  denote the thresholds, i.e. a linearly ordered subset of real

numbers, such that to <  h  <  . . .  <  ti, where to — — 00 and ti =  + 00 . A self-exciting

threshold autoregressive model of order (Z;p,. . .  ,p) or SETAR (2;p,. . . ,  p) where p
19
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is repeated I times, is a univariate time series { X n}  of the form

p
X n =  a^Xn^i  +  e„,  t 3- _ i  <  X n-d <  t j ,  ( 2 . 1 1 )

i - 1

for j  =  1 ,2  where d is a fixed integer belonging to { 1, 2 , . .  - ,p} ,  and {en} 

is a Gaussian, independent, identically distributed white noise sequence. If for 

j  — 1, 2 , . . . ,  Z, we have =  0 for i — pj +  1, pj +  2 , . . . ,  p, then {X „} is known as 

a SETAR(Z;pi,p2, ■ ■ ■ ,Pi )  model. Hence, a SETAR (l,p) model is equivalent to a 

linear autoregressive (AR) model of order p. To specify the terminology for the rest 

of this thesis, we give the following definition:

D efin itio n  2.3 A Markov chain (1^) defined on the probability space (Q, E, P)  

with values in (E , £) is

1. ergodic, if there exists a probability p  on {E, £) such that, for all y  6  E,

lim \\Pn{y, •) — p(-)|| =  0.
n -A o o

2. geometric ergodic, if there exists a probability p  on (E, £), a constant 0 <  r  <  1

and a function M  defined on E  with positive real values, such that

[  \M(x)\p(dx) <  oo, \\Pn(y,-) -p (-)tl <  M (y )r n,
Je

for any positive integer n, and all y  €  E.

Here, P n+1{y, A)  =  P(Yn G A\Yi =  y), A  G £, and for any signed measure p  on

(E, £), ||ju|| denotes the total variation:

M \ = p ( E +) - p ( E ~ ) ,

where E =  E + U E~ is a Hahn decomposition of E  with respect to p.

The ergodicity implies the existence of a unique stationary measure. It has also

many applications in statistical inference. For example, we can get asymptotic
20
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results, such as versions of the central limit theorem or the law of large numbers.

Let Yn =  (X n , . . . , I n- p+i)‘. Then, we have Yn =  /(T„_i) +  E n, where E n -  

(en, 0 , . . . ,  0) \  /(r„_x) =  (h(Yn- 1), X n_ i , X n^p+l) \  and h(Yn„ x) is given in the 

right side of the equation (2.11). Obviously (Yn) is a homogeneous Markov chain. 

Moreover, we have

T h eorem  2.3 The Markov chain (Yn) is geometrically ergodic if

max <  L

P roof . See Lemma 3.1 in [2],

We now briefly describe the parameter estimation [23] for a SETAR(2;p1;p2) 

model. First, let d and m  be predefined, where m  is the maximum regression order 

of the two linear AR models, and let no be the maximum of d and m.  The choice of 

m  is subjective and usually depends on the sample size. To find the threshold t x, we 

try some of the sample quantiles - e.g. { Q 0 .3 0 ,  Qoaq, Qo.so, Qo.eo, Q0 .7 0 }  where by 

definition, for any 0 <  q <  1, exactly 100g% of the data are less than Qq. For each 

choice of t x, the data set is re-arranged into two subsets and two sub-systems of linear 

autoregressive equations are set up. The first subset contains the observations less 

than or equal to t x, and the second subset contains the observations greater than 

t \ .  The coefficients are then estimated using a singular value decomposition for 

each of the corresponding matrices. For each value of t x and d, we apply Akaike’s 

Information Criterion to determine p x and the orders of the two linear AR’s. 

Specifically, if N x is the number of observations less than or equal to t\  and d\  (pi) 

is their residual sum of squares, then the estimated p x corresponds to the minimum 

AIC(pi) ,  where

A IC{p i ) =  Ni  ln(<7i(pi)/JVi) +  2(p! +  1).

The most difficult task for these models is to find the thresholds and the delay 

parameter d. Apart from trying some of the sample quantiles for finding the thresh­

olds, we have also used some exploratory data analysis. The method presented in

[22], Chapter 7.2.3, suggests to study the non-parametric lag regression estimates.
21
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SN{z) =  -

Let rrij(x) — E ( X n \ X n+j). A  non-parametric kernel estimate rhj(x) for m,j(x) is 

given by
N  N

riij(x) =  ^ 2  -  X i+j) f  ^ 2  -  X i+j), (2.12)
i=-j+1 i=-j+1

for j  =  —p, . . . ,  —1, where p  is a positive integer much smaller than the size N  of the 

data set (see page 218 in [22] and Chapter 4.1.5 in [26]). Here, SN(-) is a function 

defined by
f

(1 -  |z \ / h N) /h N if \z\ <  hN

0 otherwise,

where is chosen such that -*  0 as N  —> oo. A similar formula can be written 

for the non-parametric estimates i i j (x)  of the variance Vj (x)  =  V A R ( X n \X n+j ) . 

Analysing the plots of rhj(x) and Vj (x)  for several values of j ,  we can determine the 

thresholds and the delay parameter. In addition to the simple kernels there

are also other possible choices for the kernels (see [26], page 139), e.g the Gaussian or 

the Epanechnikov kernels. The bandwidth hx  can be chosen using the leave-on-out 

cross-validation ([26], page 141). Asymptotic properties of rhj(x) are given in [20].

To predict the aeroelastic response of a system with freeplay, we use a combi­

nation of a SETAR and an EXPAR model. To construct this model, we replace 

the linear autoregressive models in (2.11) with the EXPAR models given by (2.7). 

The parameters are estimated combining the algorithms for EXPAR and SETAR 

models.

2.4 Applications

In this section we present the results obtained using EXPAR models and combined 

EXPAR and SETAR models. We consider three classes of data

1. simulated data from mathematical functions;

2 . numerically generated aeroelastic data corresponding to polynomial and 

freeplay structural nonlinearities;

3. experimental aeroelastic data recorded during wind tunnel tests.
22
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To measure the accuracy of a long-term prediction, the available input data are 

divided into two subsets: the training set and the test set. The training set is used 

to estimate the parameters of the models to be used for predictions. The test set 

is used for checking the accuracy of the predictions. The performance assessment 

is based on the study of the residuals on both the training and the test sets. An 

advantage of this method is that it emphasizes the predictive aspect of the model 

selection.

2.4.1 Preprocessing

Generally speaking, all real data are contaminated by noise. However, the noise ef­

fect may vary. For instance, the noise content from a typical ground vibration test in 

aerospace industry is usually small and the majority is caused by the measurement 

noise. On the other hand, in a flight flutter test, the amount of noise corruption due 

to turbulence is often significant. Since the nonlinear time series models are very 

sensitivity to noise, it is important to reduce the noise effects. In this study, we 

apply a wavelet filtering1. ([14], Chapter 10), which uses a transform-based thresh­

olding working in the following steps:

1. Transform the noisy data into an orthogonal domain.

2. Apply soft or hard thresholding to the resulting coefficients, thereby suppress­

ing those coefficients smaller than a certain amplitude.

3. Transform back into the original domain.

The wavelet transform is based on a multiresolution analysis [7]. By multireso­

lution, a wavelet transform can be organized as a ladder of component stages, such 

that each involves simply the application of digital filtering to certain discrete time 

“signals”. Consequently, this leads to a fast and efficient orthogonal transform of 

order 0 ( N ) .

De-noising using hard and soft thresholding and orthogonal maximally decimated 

wavelets transforms can cause certain visual artifacts, some of them due to the lack

1Our C ++ implementation of the wavelets filters is based on the Mat lab programs of WAVE­
LAB, available online at http://www-stat.stanford.edu/ wavelab/.
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of translation invariance of the wavelet basis. To overcome these difficulties, we 

apply translation invariant transformations [3]: the noisy signal is shifted, then de­

noised with wavelet thresholding and finally unshifted. The implementation of this 

method over the range of all circulant shifts is of order 0 ( N  log2 N).

Wavelet bases are not well-suited to representing signals containing sinusoidal 

oscillations of moderate duration. Coifman and Meyer [4] have proposed local cosine 

bases and Coifman, Meyer, and Wickerhauser [5] have introduced wavelet packets. 

There are many orthogonal bases, a method of selecting the best basis that minimizes 

a certain measure of the entropy is reported in [6] and [14], Chapter 8 .

In addition to the de-noising step, the input data is transformed to the interval 

[—1,1], and we work with the mean deleted time series. Moreover, we apply the 

standard linearity, stationarity and gaussianity tests to the input data ([22], Chapter 

5).

2.4.2 Simulated data

Data from a typical flight test usually include responses from more than one mode 

of vibrations, and they can be expressed as a combination of exponential and sine 

functions. In Fig. 2.1 we display three discrete signals simulated according to the 

formula

X t =  e~°'4t sin (2ttt  +  0.1 sin (67rt)) +  eat sin (107rt +  0.1 sin (4ttt ) ) , (2.13)

where the parameter a  =  —1,0 ,1  and the step 5t =  27r/128.

Figure 2.1: Simulated data:’- ’(a  =  —1), ’- -’(a =  0),’-.-’(a  =  + 1)

It is clear that the differences between these data sets are small during the
24
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Figure 2.2: Last 200 simulated data:1- ’^  =  —1), - ’{a — 0),’-.-’(o: =  +1)

initial states (i.e. the first 130 data points). However, their asymptotic behaviors 

are quite different as shown in Fig. 2.2, and they correspond to a damped oscillation 

(a =  — 1), a limit cycle oscillation (a — 0) and a divergent oscillation (a  =  + 1).

The EXPAR models have been successfully applied to study nonlinear random 

vibrations ([15]). Hence, it is natural to fit EXPAR models for this class of simulated 

data. Indeed, using only the first 130 points in Fig. 2.1 to estimate the parameters 

for the EXPAR model (2.7), we obtain a very accurate prediction of the nonlinear 

response. In Figs. 2.3-2.5, we compare the simulated and the predicted signals for 

the last 500 simulated data, from 1500 to 2000, for a  =  —1,0 and 1, respectively. 

Despite the fact that it is difficult to guess the asymptotic state looking only at 

the first 130 data points in Fig. 2.1, not only we are able to correctly classify 

the oscillations as damped, limit cycle and divergent, but we also actually achieve 

excellent long term predictions. The structural parameters used in equation (2.7) 

are reported in Table 2.1.

a -1 0 1
P 28 18 28
7 18.02 3.11 9.08

maxi<j<„ r; 0 1 0

Table 2.1: EXPAR model parameters for simulated data

To test the proposed nonlinear time series models with more realistic data, we 

introduce an additive random Gaussian white noise in equation (2.13), such that 

the signal to noise ratio is 5, and we generate data according to the formula:

X t — e~0,4t sin (27rt +  0.1 sin (67rf)) +  eat sin (107rf +  0.1 sin (47rt)) +  et , (2.14)
25
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Figure 2.3: EXPAR prediction and simulated damped oscillation ’-’(a — — 1)

Figure 2.4: EXPAR prediction and simulated limit cycle oscillation ’- ( a  — 0)

Figure 2.5: EXPAR prediction and simulated divergent oscillation ’-’(a  =  1)

Figure 2.6: Simulated noisy data set:’-’(a =  —1), - ’(a  =  0),’-.-’(a =  +1)
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r» ?i

-■? /• A A A n  ^ A A /I  !\

Apy
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Figure 2.7: Last 200 simulated noisy data:’- ’(a  — —1), -’(cc =  0),’-.-’(a =  +1)
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where again the parameter a  — -1 ,0 ,1  and the step 5t — 2tt/128. The differences 

between these noisy data sets are small during the first 250 data points, but the 

asymptotic states are very different (see Figs. 2.6 and 2.7).

The EXPAR model (2.7) fails to estimate the parameters when taking the noisy 

data directly as training set. However, to overcome this difficulty, a de-noising based 

on a local cosine base wavelet package is first applied to the noisy data. For the 

limit cycle oscillation (a  =  0), this leads to smooth initial data as illustrated in Fig. 

2 .8 .

Figure 2.8: Clean (’-’) and filtered (’- -’) signals (a =  0, additive noise)

Figure 2.9: Noisy (’- -’) and predicted (’-’) signals (a =  0, additive noise)

Using the filtered data, the EXPAR model can accurately predict the long-term 

nonlinear behavior. In Fig. 2.9, we compare the noisy and the predicted signal 

for the limit cycle oscillation. Similar results are obtained for the noisy signals 

corresponding to a  =  —1,1. In all three cases the training set contains the filtered 

observations from 126 to 250. The structural parameters are reported in Table 2.2. 

Compared to the clean signals, we need more complicated models for the noisy 

signals.

The same approach works well even if the noise is added within the sine function. 

For example, Fig. 2.10 displays simulated data according to the formula

xt — e~°'4t sin (27rt +  0.1 sin (hnt)) +  e* sin (107rt +  et) , (2.15)
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a -1 0 1
p 16 16 14
7 24.18 21.5 7.35

maxi <i<p Tj 4 3 0

Table 2.2: EXPAR model parameter for noisy simulated data 

where e* is Gaussian white noise such that the signal to noise ratio is again 5.

-*

o 1 oo soo 300   «t-00 ___
D ISC RETE NON — DIMENSIONAL. TIME

Figure 2.10: Simulated data with non-additive noise (a  =  0)

Figure 2.11: Clean and filtered (’- -’) signals(a =  0, non-additive noise)

Figure 2.12: Noisy (’- -’) and predicted signals (a =  0, non-additive noise)

In Fig. 2.11, we compare the clean signal and the filtered signal. In formula 

(2.15) the Gaussian noise is not additive and comparing Fig. 2.8 with Fig. 2.11, 

we notice a slightly better performance for removing the additive noise in formula 

(2.14). The performances of the implemented de-noising algorithms determine the 

goodness of the fit. The predictions are compared to the noisy signal, in Fig. 2 .12 . 

The training set contains again the observations from 126 to 250, 7  =  6.1, p =  15

and we use a model (2.7) with polynomials of degree 3.
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2.4.3 Simulated aeroelastic data

Now, we apply the non-linear time series models to an aeroelastic system with 

structural concentrated nonlinearities. The mathematical model associated with 

a two-degree-of-freedom airfoil oscillating in pitch and plunge is expressed by a 

nonlinear system [13]:

e" + x j ' +

+  a ” +  2 +  — M(a)  =
(2.16)

The plunging deflection is denoted by f , and a  is the pitch angle about the elastic 

axis. (7(f) and M(a)  are the nonlinear plunge and pitch stiffness terms, respectively. 

C'i(t), CmM are the lift and pitching moment coefficients, and they are expressed 

by integral terms for the subsonic flows. By introducing four new variables, the 

integro-differential system (2.16) can be reformulated [13] as

X't = A X t +  F ( X t), (2.17)

where A  is the matrix containing the system coefficients, and F  is a nonlinear 

function, X  =  [a, a , f ,  f^w i,w 2, ^3,^ 4]*, where oji, u>2, w3, W4 are the four new 

variables being introduced to eliminate the integral terms due to Cz,(f) and CmCO-

The nonlinearities in the function F  are resulting form the nonlinear plunge and 

pitch stiffness term. For a cubic spring model M ( a ) =  j3aa  +  j3a3a 3, where /3a and 

/3q3 are the spring constants. For a freeplay model, M (a )  is given by

M(a)  =

M q +  ct — OLf a  <  df ,

M0 +  M f ( a  — af )  a f  <  a  < a f  +  6, (2.18)

M q +  a  — a f  +  S(Mf  — 1) a  >  a f  +  6,

where M0, S, af,  and M / are the freeplay constants. Similar expressions can be 

obtained for (7(f) by replacing a  by f  in the above formulas.
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In order to demonstrate the effectiveness of the nonlinear time series models, 

we present results for two case studies. In each test case, the data set is generated 

by solving the eight dimensional nonlinear ODE system (2.17) using a fourth-order 

Runge-Kutta time integration scheme. The system parameters are chosen so that 

the aeroelastic responses correspond to LCO. A typical input data consists of the 

150-400 transient observations. The majority of these input data is used as training 

set, and the remaining data constitutes the test set. In the following figures, the x- 

axis displays the non-dimensional time and the y- axis the pitch angle measured in 

radians, or the non-dimensional plunging deflection.

C ubic spring m odel

In Figs. 2.13-2.14, we display the pitch and the plunge motions for the aeroelastic 

system with cubic springs applied to both G(£) and M{a) .  In order to investigate a 

more realistic test case, we add an extra white noise with variance 0.053 and 0.082, 

respectively. Figs. 2.13-2.14 show also the noisy data with the signal-to-noise ratio 

5 (the dot-dashed signals).

Figure 2.13: Cubic spring model, pitch motion: clean, noisy

Figure 2.14: Cubic spring model, plunge motion: clean, noisy

The EXPAR-models can be applied directly to the clean signals shown in Figs. 

2.13 - 2.14. In order to obtain accurate predictions for the noisy signals, we first 

perform a de-noising procedure in the preprocessing step. In Fig 2.15, we compare
30
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Figure 2.15: Cubic spring model: clean and - ’filtered signals

the clean signals (solid line) with the de-noised signals (dashed line) using the cosine 

bases filters. Without giving any information about the structure or the parameters 

of the associated aeroelastic system, excellent results are obtained applying these 

filters.

Figure 2.16: Cubic spring model, pitch motion: clean, predicted
o.

o

Figure 2.17: Cubic spring model, plunge motion: clean, predicted

Using the filtered signals, we obtain the predictions displayed in Figs. 2.16-2.17. 

For the pitch angle a,  the training set is taken from n =  75 to n =  274 and the 

prediction starts at n =  275 (see Fig. 2.16). For the plunging motion, the training 

set is taken from n — 75 to n — 229 and the prediction starts at n =  230 (see Fig. 

2.17). For both case studies, we fit the EXPAR models (2.7) with polynomials of 

degree 4 and 7  =  16.9, p =  16, for the pitch, and 7  =  32.62, p — 5, for the plunge, 

respectively. We notice that even for these noisy signals, the amplitude and the 

frequency of the LCO are correctly predicted. Excellent predictions are observed

when the EXPAR models are applied using the clean data given in Figs. 2.13 - 2.14.
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F reep lay  m odel

In Figs. 2.18 - 2.19 (solid line), we display the initial time history for the pitch 

and plunge motions corresponding to an aeroelastic system with a freeplay in M (a) 

and a linear spring in &(£)• The asymptotic state is again a LCO. The aeroelastic 

response is more complex compared to the first example. The first 375 observations 

represent the transient of the plunge and pitch motion. In Figs. 2.18 - 2.19 (dot- 

dashed line), we also display the data corrupted with white noise with variances

0.078 and 0.25, respectively (the signal-to-noise ratio is 5).

Figure 2.18: Freeplay model, pitch motion: clean, noisy

Figure 2.19: Freeplay model, plunge motion: clean, noisy

Figure 2.20: Freeplay model, pitch motion: clean, predicted

Firstly, we fit the EXPAR models for the clean signals shown in Figs. 2.18 - 2.19.

The EXPAR models are selected with polynomials of degree 3, 7  =  16.3, p — 16

and the training set from n — 40 to n — 219 for the pitch, and 7  =  11.1, p  — 8 and

the training set from n =  70 to n =  219 for the plunge. In Fig. 2.20, we display the

results for the simulated pitch motion (solid line) and the predicted motion (dashed
32
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line). The predictions are excellent and they begin at n — 220. The results for the 

simulated plunge motion are similar.

IMa

Figure 2.21: Freeplay model: clean and -’filtered signals

Figure 2.22: Freeplay model,noisy pitch motion: clean, predicted

Figure 2.23: Freeplay model, noisy plunge motion: clean, predicted

Since the predictions for the clean signals are very accurate, we now consider the 

noisy data given in Figs. 2.18 - 2.19. For the pitch data, we first apply a de-noising 

procedure using a translation invariant hard thresholding with the Daubechies or­

thogonal wavelets. For the noisy plunge data, we apply a local cosine-bases de- 

noising. In Fig. 2.21, we compare the clean signals (solid line) with the filtered 

signals (dashed line). Using the de-noised signal for the pitch data, we fit an EX­

PAR model with polynomials of degree 3, 7  =  11.89, p  =  20 and training sets from 

n — 40 to n  =  294. For the corresponding de-noised plunge data, we fit an EXPAR 

model with polynomials of degree 3, 7  =  42.1, p  =  20 and training sets taken from 

n =  105 to n =  294. The predictions, starting at n =  295, are displayed in Figs. 

2.22 - 2.23. Compared to the results obtained for a clean signal (Fig. 2.20), the

predictions are less accurate. Thus, the goodness of the fit is sensitive to the signal-
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to-noise ratio. However, the predicted frequencies and amplitudes of LGOs are in 

good agreement with the simulated data.

-
9

i 1~ L i i i i 1 I 1

r 1i 1 f ——| r I '

•t OO EOO 300
D ISCRETE NON — DIMENSIONAL. TIME

Figure 2.24: Freeplay model,4th order difference

Figure 2.25: Thresholds for the freeplay model

The EXPAR models do not require any information about the threshold struc­

ture of the freeplay nonlinearity. However, from the study of the fourth order dif­

ferences of the data for the pitch motion, we notice periodically changes in the 

dynamics of the model (see Fig. 2.24). This is caused by the non-differentiability 

of the function M ( a )  near the switching points. The values corresponding to the 

peaks shown in Fig. 2.24 are plotted in Fig. 2.25. Indeed, these values correspond 

to the exact locations of the switching points in the freeplay model, where a  =  .25 

and a  =  .75 in the present case study. Thus, for a clean signal, from studying the 

differences, we can determine whether we have a freeplay nonlinearity and we can 

also estimate the thresholds.

Since the Gaussian noise is non-differentiable, the study of the differences is not 

very helpful for a noisy signal. To find the thresholds, we perform an exploratory 

data analysis as presented in Section 2.3. Hence, we estimate the conditional means 

nij(x) — E ( X n\Xn+j)  and the conditional variances Vj (x)  =  V A R ( X n \Xn+j ) , j  — 

—80, -3 0 , —20, —18, —8 . . .  -  1, using an non-parametric approach (see equation 

2 .12 ).

Fig. 2.26 shows the results for the non-parametric lag-regressions estimates
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Figure 2.26: The non-parametric lag-regression estimates of the conditional mean 
fhj(x) — E(xn\xn+j ) as a function of x. The values of 'j' are shown in parentheses.
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Figure 2.27: The non-parametric lag-regression estimates of the conditional variance 
Vj (a;) =  VAR {x n |x n+j)  as a function of x.  The values of 'j' are shown in parentheses.
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rhj  (x ). The values of x  and rhj  (x ) are represented on the x  and the y  axes, respec­

tively. We notice a gradual shift from an almost linear function to a curve with 

two main inflexion points back to an almost linear function. The inflexion points 

are approximately at 0.25 and 0.75. Thus, they corresponds to the values of the 

thresholds. They are visible first for the values of j  around —5, —4. Hence, the 

delay parameter for the SETAR model can be d =  4 or d =  5 (we have tried both 

values and obtained similar results).

The non-parametric estimates of the variances 6 j ( x )  give the same informations 

about the threshold structure. In Fig. 2.27, the values of x  and Vj {x)  are represented 

on the x  and the y  axes, respectively. The thresholds are most transparent for 

j  =  —1, when we have a two-hump curve with the turning points at 0.25 and

0.75. The rest of the pictures shows two-hump curves or one-hump curves with the 

inflexion points around 0.25 and 0.75.

To improve our nonlinear prediction, we implement the threshold structure into 

the nonlinear time series model by combining the SETAR and the EXPAR models. 

We use an EXPAR model (2.1) for the first region, and extended EXPAR models

(2.7) with polynomials of degrees 3 and 2, respectively, for the other two regions. 

The results are very similar to those displayed in Figs. 2.22 - 2.23, but the model 

becomes more complicated.

2.4.4 Experimental aeroelastic data

With the success obtained for the simulated aeroelastic data, we investigate the 

performances of the EXPAR models for experimental wind tunnel data2 recorded at 

the Texas A&M University. We consider two case studies, one corresponds to a LCO 

(data from the file DN04J.dat) and the other corresponds to a steady state (data 

from the file DN04A.dat). The mathematical model associated with the experimen­

tal data contains a nonlinear spring stiffness term, approximated by a fourth order 

polynomial [11]. Since the noise effect is not too severe, no de-noising procedure is 

necessary when fitting EXPAR models.

2The data are available online at http://aerounix.tamu.edu/aeroel.
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The results for the LCO case are displayed in Figs. 2.28 and 2.29 for the pitch 

and the plunge motions, respectively. For the pitch motion, we fit an EXPAR model

(2.7) with polynomials of degree 3, p  =  18 and 7  =  46.1. The training set contains 

the observations from n =  100 to n — 349, and the prediction starts at n =  350. For 

the plunge motion, the prediction starts at n — 350, but the training set contains 

only the observations between n =  200 and n =  349. In the EXPAR model (2.7) 

polynomials of degree 3 are employed with p =  12 and 7  — 43.1.

O ~t OO 3SO OOO SOO 1 OOO
DISCRETE NOM — DIMEIMSIONAL-

Figure 2.28: Experimental LCO: pitch motion, EXPAR prediction

Figure 2.29: Experimental LCO: plunge motion, EXPAR prediction

From the first 350 transient observations, the prediction leading to an LCO is 

not obvious. However, the results presented in Figs. 2.28 and 2.29 demonstrate that 

the fitted EXPAR models are capable to provide excellent long term predictions for 

the pitch angle and the plunge displacement.

Figure 2.30: Experimental damped oscillation: pitch motion, EXPAR pre­
diction

Now, we present the results obtained for the pitch motion when the aeroelastic
38
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system exhibits a steady damped oscillation. For the plunge motion, the quality of 

the prediction is similar and they are not reported here. The predictions (dashed 

line) starting at n =  410 and the measured signal (solid lines) are compared in Fig. 

2.30. In this model, polynomials of degree 1 are used with j  — 0.1 and p  =  2. 

The training set contains the observations corresponding to n =  260 to n — 409. 

The EXPAR model is capable of providing accurate predictions of the damped 

oscillations.
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Chapter 3

Nonlinear State-Space M odels

3.1 Introduction

In this chapter, we propose an alternative approach to the nonlinear time series 

models. Many mathematical models corresponding to aeroelastic systems are based 

on nonlinear ordinary differential equations (ODE) that can be expressed in a state- 

space form. Here, our approach is based on the state-space form of the associated 

aeroelastic models. For aeroelastic systems with polynomial or freeplay nonlinear­

ities, we compare the performances of the unscented filter (UF) [10] against the 

extended Kalman filter (EKF) ([7], Chapter 9). Not only are these filters used for 

noise removal, but they also can be employed for estimation and prediction.

Generally speaking, the implementation of nonlinear time series models is an 

illustration of Takens’ [24] remarkable theorem which proves that for almost any 

deterministic nonlinear system with a d dimensional space, the state can be effec­

tively reconstructed by observing 2d +  1 time lags of its outputs. Hence, instead 

of building a state-space model, we can construct an autoregressive model directly 

on the observations that nonlinearly relates the previous outputs and the current 

output. The main advantage is the possibility to work with only one dimensional

The material presented in this chapter was previously published in [18], [19], [20]
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signals. However, unlike the noise-free case of the Takens’ theorem, when the dy­

namics are noisy, the optimal prediction of the observation would depend on the 

entire history of past observations. Any truncation of this time history could throw 

away potentially valuable information about the unobserved state. The state-space 

formulation of nonlinear dynamical systems allows us to overcome the limitations of 

the nonlinear autoregressive models. The price needed to be paid is that it requires 

more informations regarding the nature of the nonlinearities.

Kalman estimators have a long history in the study of aeroelastic phenomena

[14], The EKF was often applied as a real-time parameter identifier. For example, 

Roy and Walker [22] use the EKF to improve the estimation of the damping for 

identification of the flutter stability; Block and Strganac [5] use Kalman estimators 

with a linear quadratic regulator to control the plunge and pitch motions of a wing.

The UF was introduced by Julier and Uhlmann [10]. This filter does not require 

the calculation of the Jacobians, and it is computationally at most as expensive as 

the EKF. Thus, the UF can be applied for continuous non-differentiable nonlinear­

ities such as the freeplay model.

3.2 The Filters

Consider a general nonlinear discrete system

™ f[%ki f̂c+l] 1)
(3.1)

V k + l  ~  h [ X k - 4-1, W/c+l] +  W k + X .

Here /[■, •] is the process model, xk is the state of the system at the k-time step, uk is 

the input vector, yk is the observation vector, h[-, •] is the observation model, vk is the 

noise process and wk is the additive measurement noise. We assume that the noise 

vectors, vk and wk, are Gaussian and from uncorrelated white sequences: E[vk\ — 

E[wk] — 0, for all k , and E[vivj] =  E[wiWj] =  E[viWJ] =  0, for all i , j ,

where is the Kronecker symbol. We use the notations x, =  E[xi\yx, . . . , y i \  and

Xi+X — E[xi+i\yx, y2 , . . .  ,yi] for the filtered and the predicted values, respectively.
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The corresponding conditional covariances are Pi =  E  [(x; — Xj)(xj -  x*)%i, 

and jPj+i =  E  [(xi+i -  xi+1)(xi+i -  x i + i f ^ i , 2fi]. The classical Kalman update 

equations ([3], Chapter 4) at time A; +  1 are

% k + 1 =  £ f c + l  +  G f t + x ^ j f e + i ,

-Pfc+i — Pk+i ~ G k+iPVh+lVk+1Gk+1.

Here, vk+i — Uk+\ — j/*+i is the innovation, PVk+lUh+1 is its conditional covariance 

and Gk+i =  Pxk+lVk̂ 1P i ^ 1uk+1 is the Kalman gain. With this updating scheme, 

the remaining problem is to determine the optimal predictions x*+i and Pk+i- In 

the linear case, the Kalman filter calculates these quantities exactly. For nonlinear 

models, both the EKF and the UF require approximations of these quantities.

3.2.1 The Extended Kalman Filter (EKF)

For the EKF, we suppose that the estimated mean xk is approximately equal to the 

true state xk, and then

xk+i =  f ( x k,u k+i). (3.2)

Similarly, the predicted observation is given by

Vk+i =  h(xk+i, Ufc+i). (3.3)

The covariances are then determined by linearizing the equations (3.1) using Taylor 

series expansions and neglecting the second and higher order terms:

Pk+i =  |^(5fc)Pfc| ^  (xk) +  Qk+1, (3.4)

P"k+lvk+l ~  Qx i^k+l)Pk+l (%k+l) P  Rk+1- (3-5)

The cross-covariance is given by

dh ̂
P̂ k+lVk+l =  Pk+1— (xfc+i). (3.6)
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Since the estimates in (3.2)-(3.6) are based on a first order approximation of the 

nonlinear terms, the EKF is generally sub-optimal for nonlinear systems. However, 

second order versions of the EKF can be developed, but they are usually computa­

tionally expensive.

Based on the available observations y \ .  ■ ■ Vn , smoothed values x f  =  E[xi\yi 

. . . y N] and P f  — E[(xi -  x f ) (x{ -  x f  )* \ y i . . .  yN] can be calculated. Using the 

linearized system

3 f
Xk+1 =  f(Xk, Wfc+l) +  fa.(%k)(Xk -  X k )  +  Vk+1, 

Vk =  h(xk, uk) +  -  xk) +  w k,
(3.7)

we have the following backward recursions

xf_x =  +  Jk- i ( x f  - x k), (3.8)

P f .i =  Pk-i  +  Jk-i(PkN -  P k ) 4 - v  (3-9)

where
d f  

1 dxJh- i -  P k - i - i  {xk- i ) P k l . (3 -10)

3.2.2 The Unscented Filter (UF)

Both the EKF and the UF approximate the state distribution with a Gaussian 

one. However, instead of using the EKF linearization approach, the UF employs 

a deterministic sampling. The sample points completely capture the true mean 

and the true covariance. In contrast to the first-order accuracy of the EKF, the 

UF is capable to accurately capture the true posterior mean and the covariance 

up to the third order for a nonlinear system. Moreover, the UF is computationally 

attractive, it does not require the calculations of the Jacobians, and it can be applied 

to aeroelastic systems with structural nonlinearities given by freeplay and hysteresis 

models.

In order to state the UF equations, let us define the 2n-dimensional augmented

state vector X% =  (x\, vtk+l)t , where n is the dimension of the state space, and
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denote F[(xl,  vl+l f ,  uk+i) =  f [xk,uk+i] +  vk+1 and H [ ( x l , w i y , u k] =  h[xk,uk] + w k. 

For the UF filtering algorithm, the following steps must be carried out [8]:

1. Compute the set of the translated sigma points from the augmented covariance 

matrix Pg

af(k\k) +- 2(n +  n) rows or columns from ±  s j (2n  +  T )P£,

Xo(k \k )  =  X I  

Xi(k\k) =  a ? ( k \ k ) + X ak-

2. Evaluate Xi{k +  l\k) =  F[xi(k\k), uk+i], for i — 0 , . . . ,  4n.

3. Compute the predicted mean as

£*+i =  ~ — {lXo{k  +  l \k) +  +  1 | k)}.An +  y  l‘ i=i

4. Compute the predicted covariance as

Pk+i =  i— (7[Xo(fc +  1|*0 -  xk+i][xo(k +  1 |k) -  xk+1f2n +  7
, 4n

+  +  ~^+iH x*(*: +  i|*0 - i f c + i f }
i=  1

5 . Predict the expected observation yk+\ and the innovation covariance Pvit+1vk+1 

using similar formulas and Yi(k +  1 |&) =  H[xi{k  +  l|fc), uk+i].

6 . Predict the cross-correlation matrix PXk+1yk+1 using Fi(fc +  1|A:) and Xi(k +  l\k).

Using the multi-dimensional Taylor series expansions, it can be shown that the new

filter estimate the mean and the covariance exactly up to the third order terms (see

Theorem 2 in [8]). Choosing 7  — 3 — 2n we minimizes the difference between the

moments of the standard Gaussian and the sigma points up to the fourth order

([8]). Thus, without calculating the Jacobians or the Hessians, we can get the same

order of accuracy as the Gaussian second order filter [2]. Furthermore, Julier and
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Uhlmann have extended the algorithm to manipulate even higher order properties 

of the distribution [9].

Now we present a method to obtain the smoothed values x f  and P j f , k =  

1, . . . ,  N.  Notice that, for the linearized system (3.7), we have

Q f t
P c kx k + i  ~  P \ { x k nfc)(Xfc-|_i Xfc+i) |x i ,  . . . , Xfc] ^ ^ ~ Q x  '

Thus, using (3.10), we get

Jk — Pxkxk+1Pk+V • (3.11)

Hence, the unscented smoothing algorithm can be described as follows

1. Similarly to the UF, compute the set of the translated sigma points from the 

augmented covariance matrix P f

af(k\k)  e— 4n rows or columns from ±  y j  (2 n  +  7  ) P f  

X o ( k \ k )  =  X f

X i { k \ k )  =  t r f ( A ; |f c )  +  X f

2. Evaluate x (̂fc +  l|fe) =  F[xi{k\k), uk+1], for i — 0 , . . . ,  4n.

3. Compute x k+i, Pk+i, xk+i, and Pk+1 using the UF.

4. Compute

PxkXh+l =  ^ ~ ^ h \ X o { k \ k )  -  x k}[xo(k +  l| fc) -  x k+1f

-j 4 n

+  5 $^[*<(*1*) ~  *k}[Xi(k +  1 \k) -  xfe+1f}
i - 1

5. Compute x f ,  Pjf, Jk starting with k =  N  and using the backwards recursions 

given in (3.8), (3.9) and (3.11).

The recursions (3.8) and (3.9) are based on the linearization. Thus, unlike the UF, 

this smoothing method is dependent on the accuracy of the approximation with the
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linearized system (3.7). However, compared to the EKF smoothing, it still has the 

advantage of not requiring the calculation of the Jacobians.

3.2.3 Comparisons

To examine the effectiveness of the EKF and the UF, we apply both methods to data 

generated from numerical simulations. We consider a two degree of freedom airfoil 

oscillating in pitch and plunge, according to the model expressed by the system of 

ODEs given in equation 2.16. We simulate a chaotic aeroelastic response [12] of an 

oscillating airfoil with cubic restoring forces in the pitch and plunge:

M  ( a )  =  /3 a a  +  j3 a s a 3 ,

G(e) =  ^ + ^ 3,

with the spring constants Pa — ^  — 1, ftcfi =  50 and /% =  0.01.

A fourth order Runge-Kutta scheme was employed to solve the equivalent ODEs 

system given in equation 2.17. The two filters were implemented in discrete time 

starting from the same initial guess. We suppose that the coefficients of the system 

are known, but only a few transient values of a  and £ are observed. Hence, the 

observations space contains only the noisy observations for the plunging deflection 

£ and the pitch angle a. The discrete form corresponding to the system (2.17) is 

given by

X k + i  =  f {a Q,x k) +  v k+1 

1 0 . . .  0 

0 1 . . .  0
V k + l X k +1 +  W k + l ,

where oo is a constant vector containing the values of the parameters. Here, x k  is an 

eight dimensional vector corresponding to X  in (2.17), and yk is a two dimensional 

vector corresponding to the noisy observations for the plunging deflection and the 

pitch angle. The noises vk+i, wk+1 are as in the general description (3.1), and /  is 

a polynomial function. The dimension of the state space is 8 and the dimension of
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the observation space is 2.
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Figure 3.1: Pitch motion: the noisy (..), clean (-), smoothed and predicted signals 
using the EKF and the UF (~ -)
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Figure 3.2: Plunge motion: the noisy (..), clean (-), smoothed and predicted signals 
using the EKF and the UF (- -)

The results presented in what follows are obtained by averaging one hundred 

Monte Carlo trials. The performances of the two filters are compared on the basis 

of the mean square error, and the UF and EKF estimated covariance matrices.

Figs. 3.1 - 3.2 show the pitch and plunge smoothed and predicted values gener­

ated by the EKF and the UF, respectively. The original noisy time series has signal 

to noise ration SNR—3. The predictions start at n — 500. Both graphs indicate 

that the UF produces more accurate smoothed values than the EKF. However, the 

accuracy of the predictions for these chaotic signals is comparable for both filters.

In Figs. 3.3 - 3.4, we compare the mean square estimation errors (MSEs) es-
50
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Figure 3.3: Pitch motion: the EVARs for the UF (- -) and the EKF (..) compared 
with the MSEs for the UF (-) and the EKF
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Figure 3.4: Plunge motion: the EVARs for the UF (- -) and the EKF (..) compared 
with the MSEs for the UF (-) and the EKF (.-.)

timated using the UF and the EKF (i.e. the diagonal elements of Pk) with the 

variances (EVARs) estimated using the Monte Carlo simulations. We notice that 

the EVARs corresponding to the UF is considerable smaller than the one corre­

sponding to the EKF for both the pitch angle and the plunge deflection. Moreover, 

the values of the MSE and the EVARs corresponding to the UF are similar, but 

the EVARs are larger than the MSEs for the EKF. The UF smoothing mean square 

errors and the variances are compared in Figs. 3.5 - 3.6, and we observe again that 

the values are very close.

In conclusion, the UF estimates its mean square errors accurately and thus we

can be confident in the filter estimates. The results for the EKF are less accurate,
51
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Figure 3.5: Pitch motion: the EVARs (-) and the MSEs for the UF smoothing
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Figure 3.6: Plunge motion: the EVARs (-) and the MSEs (.-.) for the UF smoothing 

and they tend to underestimate the mean square errors.

3.3 The UF and the EKF as parameter estimators

In this section, we consider aeroelastic models that can be expressed in the discrete 

state-space form (3.1), with h a linear function and /  a polynomial or a continuous 

piece-wise linear function. Supposing that the parameters of the system are un­

known, and only a few transient observations yi, ■ ■ ■ , V n  are recorded during a wind 

tunnel test, we are interested in estimating the parameters of the system. Then, 

using the estimated values, we determine long term predictions for the state vari­

able Xk- Here, we present two methods using the UF or the EKF as parameter 

estimators.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



First, the state space is augmented to include the system parameters:

1 f[xk,ak] vk+1= + S
i'1ak-\-1 Ofc

Vk+1 — h[Xk+i,  Ofe+i] +  Wk+1-

Here, ak is the vector formed with the parameters of the system at time k, and vk+i, 

v^ h , and wic+i are uncorrelated Gaussian white noises. The EKF or the UF can be 

directly applied to the new system, and together with the filtered values xk, we can 

estimate the parameters d*.

After applying the filter to the given noisy observations, we use the predictor 

to study the asymptotic behavior. We fix the parameters to be the last values 

estimated using the filter a0 =  cln■ For the predictor, we have the following state- 

space formulation:

2-fe+l =  /(•Efc>®o)
(3.12)

Uk+i ~  k[xk+i, a0] T  'Wk+i'

Under the detectability and the stabilizability hypotheses for the linear Kalman 

filter, the effects of the initial guesses are forgotten for a sufficiently large number of 

data, and the computations are stable ([1]). Unfortunately, it is difficult to extend 

these results to the nonlinear case. Even as a linear dynamics parameter estimator, 

the EKF can have convergence problems [13]. When estimating nonlinear dynamics, 

the convergence of the EKF or the UF depends on the initial guess. A general result 

for the convergence of the EKF is given in Theorem 4.1 in [21]. Provided that the 

initial estimation error is small enough, this theorem establishes sufficient conditions 

for the estimation error to be bounded. Thus, although it can produce very accurate 

predictions, the estimation method based on EKF or UF requires an extensive filter 

tuning.

Next, we consider a dual method by running simultaneously two filters, one

for the state variable xk and the other for the parameters ak. The state-space
53
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representation for the state variable is (3.12), and for the parameters is

a k + i  —  o-k +  v [ l v  (3 1 3 )

U k + 1 =  h ( a k + i , X k + 1) +  W k + i -

At each time step k, the current estimate is used in the EKF or UF which 

corresponds to the system (3.13). Then, the EKF or UF current estimation a* 

replaces the vector ao in (3.12).

The dual EKF has been used for estimating linear dynamics [17]. For the non­

linear case, various dual combinations of the EKF and the UF have been compared 

and better performances of the UF are reported [26]. However, no theoretical proof 

of the unconditional convergence is known. From our experience, the results are also 

strongly dependent on the initial guess. In what follows, we present results obtained 

using the previous two methods applied to numerically simulated and experimental 

data.

3.3.1 Simulated aeroelastic data

We consider the same simulated data as described in Section 2.4.3. Comparing the 

performance with the results obtained using nonlinear time series models, we obtain 

a better assessment of the parameter estimation methods based on the EKF or the

UF.

C ubic spring m odel

Now, we apply the UF directly for the noisy data shown in Figs. 2.13, 2.14. The 

training set contains data from k — 1 to k =  250. In order to check the performance 

of the UF, we run a Monte Carlo simulation. After tuning the filter, we apply the 

filter to 50 different sets of data simulated using the clean data given in Figs. 2.13 

and 2.14, and additive white noise with variance 0.053 and 0.082, respectively (i.e. 

similarly to the noisy data displayed in Figs. 2.13, 2.14 ). For the pitch and plunge

motions, the clean signal and the average of the filtered signal are plotted in Fig.
54
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3.7. The results of the filtering are comparable with the performance of the wavelet 

de-noising reported in Fig. 2.15.

■ o .

- a .

Figure 3.7: Cubic spring model: clean (-) and filtered (- -) signal with the UF
x 1 O 3

3.5

t=
£3_ 1 .5

0.5

Figure 3.8: Cubic spring model: EVARs (-) and the UF MSEs (- -)

In Fig. 3.8, we present the estimations of the mean square errors (MSEs) cal­

culated using the UF, together with an estimations of the same variances (EVARs) 

using the Monte Carlo simulations. We have plotted only the results for the pitch 

motion since the results for the plunge motion are similar. We notice that the per­

formances of the filter are excellent, the UF estimations of the variances are very 

accurate. Thus, the filter can be regarded to perform good predictions.

The results of the predictor are reported in Figs. 3.9-3.12. We observe that the 

long term predictions are accurate, not only for the plunging and pitching motions, 

but also for their derivatives (hidden variables). For the pitch and the plunge mo­

tion, the predictions are similar to the results obtained using EXPAR models and 

displayed in Figs. 2.16-2.17.

The UF can be used also to predict the divergent signals. To illustrate this, we 

generate noisy divergent signals corresponding to the pitch and plunge motions. The 

signal corresponding to the pitch motion is displayed in Fig. 3.13 (dots). Since the
55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



w v w w w v
DISCF?ETE MON  ENSION/ML T11V1E

Figure 3.9: Cubic spring model pitch motion: clean and predicted signal 
using UF

Figure 3.10: Cubic spring model a :  clean and predicted signal using UF

Figure 3.11: Cubic spring model plunge motion: clean and predicted signal 
using UF

Figure 3.12: Cubic spring model clean and predicted signal using UF
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Figure 3.13: Unstable oscillations of the pitch angle (..) and the UF prediction
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results for the plunge are similar, we present only the predictions obtained for the 

pitch angle. The training set contains the first 294 observations (dots). Looking only 

at this transient data, it seems that the asymptotic state of the system might be a 

LCO. However, the UF accurately predicts the long term behavior of this divergent 

system. The filtered signal (solid line, k — 1 to k =  294) and the predictions (solid 

line, k — 295 to k — 1500) for the pitch motion are displayed in Fig. 3.13.

F reeplay m odel

As in the cubic spring case, we apply the UF directly to the noisy data displayed in 

Figs. 2.18 and 2.19, and we perform again a Monte Carlo simulation. The training 

set contains data from k =  1 to k — 295. For the pitch angle and the plunge 

displacement, the clean signal and the average of the filtered signal are plotted in 

Fig. 3.14. Fig. 3.15 displays the average of the variance calculated using the UF 

(MSEs) together with the estimations of the same variance using the Monte Carlo 

simulations (EVARs).

i ri/1

Figure 3.14: Freeplay model: clean (-) and filtered (- -) signal with the UF

Here, the UF is dealing with a continuous piece-wise linear function. Despite 

the fact that this function is not differentiable, the performances of the filter are 

excellent. Moreover, if we compare the results displayed in Figs. 2.21 and 3.14, we 

notice that the UF is better than the wavelet filters.

The results of the predictor are presented in Figs. 3.16-3.19. We see that the 

long term predictions are very accurate, not only for the plunging deflection and 

the pitch angle, but also for their derivatives (hidden variables). The results are 

better than those obtained using the EXPAR models and the noisy signals. They 

are comparable to the results for the clean pitch motion, shown in Fig. 2.20. Thus,
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Figure 3.15: Freeplay model: EVARs (-) and the UF MSEs (- -)

Figure 3.16: Freeplay model, a: clean and predicted signal using UF
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Figure 3.17: Freeplay model, a :  clean and predicted signal using UF

Figure 3.18: Freeplay model, £: clean and predicted signal using UF

Figure 3.19: Freeplay model, clean and predicted signal using UF
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the UF is less sensitive to the signal-to-noise ratio, but we need extra information 

concerning the structure of the nonlinearities in order to implement this method.

3.3.2 Experimental data

Now, we compare the results obtained using the UF or EKF, with those obtained 

using EXPAR models and reported in Section 2.4.4. In order to apply the UF or the 

EKF as parameter estimators and predictors, we consider the state-space form [11] 

of the following mathematical model which corresponds to the experimental data:

(3.14)

The term ka (a) denotes the nonlinear spring stiffness associated with the pitching 

motion, and it can be approximated by a polynomial [11].

m  m xab V c£ 0 V +

W
i

0 £ - L
+ =

m xab Ia
a

a 0 Cq, a 0 ka (a) a M

Figure 3.20: Experimental damped oscillation: pitch motion, the UF predic­
tion

First, we present the results obtained for the pitch motion when the aeroelastic 

system exhibits a steady damped oscillation (data from the file DN04A.dat). For 

the plunge motion, the quality of the prediction is similar and it is not reported 

here. In the UF approach, the training set contains the observations from k =  160 

to k — 409. The measured signal (solid lines), the filtered signal (dashed lines, 

k =  160 to k =  409) and the predicted signal (dashed lines, k =  410 to k — 900) are 

displayed in Fig. 3.20. The results obtained using an EXPAR model are slightly 

more accurate (see Fig. 2.30), but the UF also gives a correct prediction for the 

asymptotic state of the aeroelastic system.

We also compare the results obtained with the EKF against those obtained
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Figure 3.21: Pitch motion: experimental data filtered data using the UF ’x-’ and 
the EKF

N O N -D IM E N S IO N A L

Figure 3.22: Plunge motion: experimental data filtered data using the UF ’x-’ 
and the EKF

with the UF for the LCOs displayed in Figs 2.28 and 2.29. First, the state space 

is augmented with the parameters, and the EKF or the UF are used as learning 

algorithms on the training set (see Figs. 3.21, 3.22). Then, the parameters are 

fixed, and the filters are used for predictions (see Figs. 3.23, 3.24).

The training set contains only the transient observations corresponding to t  =  

100 — 350. Both EKF and UF accurately predict the amplitude and the frequency of 

the LCO, but the long term predictions produced by the EKF are slightly shifted (see 

Figs. 3.23, 3.24). However, for the training set, the results obtained with the EKF 

are slightly better than those corresponding to the UF. Since the goodness of the 

fit depends on the initial guess, and thus on the tunning of the filters, it is difficult 

to conclude which filter has the best performance. Nevertheless, for the aeroelastic 

data considered here, both EKF and UF give reliable long-term predictions.

For the plunge motion, the long term predictions obtained using the dual EKF

and the dual UF are presented in Fig. 3.25. The results obtained for the pitch

motion are very similar. The training set contains the observations from t  =  100
60
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Figure 3.23: Pitch motion: experimental data predicted data using the UF ’x-’ 
and the EKF
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Figure 3.24: Plunge motion: experimental data predicted data using the UF ’x-’ 
and the EKF

to t  — 350. We run two filters in parallel, one for the parameters and the other for 

the state variable. We notice that excellent results are obtained with both methods. 

Looking at Figs. 3.25 and 3.24, we conclude that, in general, the accuracy of the 

predictions for the dual method is comparable to the one obtained with the previous 

method. However, the phase shift error in the predictions using the dual EKF is 

reduced. This dual approach requires less tuning that the first method presented in 

this chapter.

Figure 3.25: Plunge motion: experimental data predicted data using the dual 
UF ’x-’ and EKF
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3.4 The EM algorithm

In this section, we consider a two degree of freedom airfoil oscillating in pitch and 

plunge with either polynomial restoring forces or freeplay structural nonlinearities. 

We consider mathematical models that can be expressed by the system of ordi­

nary differential equations 2.16 or 3.14. Now, we propose a method for parameter 

estimation based on the expectation maximization (EM) algorithm [16].

The EM algorithm is especially useful when it is easier to calculate the likelihood 

of the model using not only the observed data Yobs, but also the hidden data Yhid. In 

our case, only the pitch angle and the plunging deflection can be measured, but the 

aeroelastic model involves also their derivatives. Hence the EM is based upon a data 

augmentation scheme, such that the observed data are a mapping of the augmented 

data Y ^  =  nr(T0«s), where Yaug =  {Yobs, Yhid}. The algorithm starts with an initial 

guess do for the unknown parameters and iteratively compute the estimation 9*. 

Each iteration consists of two steps: the expectation (E) and the maximization (M) 

step.

Using the current estimation 9n of the parameters, the E-step computes the con­

ditional expectation of the augmented data log-likelihood Q{9\9„) — E[logp(9\Yaug) | 

Yobs, 9n}- Sometimes an approximation is needed during the E-step. Then, to justify 

the convergence of the algorithm, it is important to notice that, the negative of the 

free-energy is maximized [16] with respect to the distribution component:

Qn+i =  argmax d (Q ,9 n),
Q

where

d(Q ,9) =  J  Q(Yhid) logp{0 \Yaug)dYm  -  J  Q(Ym ) log Q(Yhid)dYhid.

The M-step performs a maximization with respect to the parameters 9:

9n+i =  argmax<2(0|0n).
u
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In term of the M-step can be expressed as:

dn+i =  argm ax$(Q n+1, 8 ).
0

Hence, an approximation can be used in either the E-step or the M-step as long as 

£  is increasing.

The main advantage of using the EM-algorithm is the guaranteed convergence 

([28]), [16]). However, depending on the initial guess, the algorithm can only con­

verge to a local maximum, and it is slower than the methods discussed in Section 

3.3. Various strategies for choosing the initial guess are proposed in [4], and methods 

for accelerating the convergence are presented in [15].

The EM algorithm is a classical method for estimating the parameters of linear 

systems [23]. For a general nonlinear dynamics, the EM algorithm has been applied 

using the EKF smoothing [6], and it has been used in conjunction with neural 

networks [27]. The smoothing was done using the UF and an approximation based 

on a neural network for the backwards dynamics. In the next two subsections, we 

present the implementation of the EM algorithm for an aeroelastic system with 

freeplay and polynomial restoring forces.

3.4.1 The freeplay model

Let us consider a two degree of freedom airfoil oscillating in pitch and plunge with 

freeplay nonlinearities. The mathematical model is expressed by the system 2.16 

and the nonlinearities are given by the formula 2.18.

Introducing four new variables, and taking into account the freeplay nonlinearity, 

the integro-differential system (2.16) can be reformulated [12] as follows:

X't — A X t +  Fi if X t (l) <  a /,

Xf — B X f +  F<i if ctf <  X t(l)  <  ctf +  5,

X't =  A X t +  F3 if X t(l) > a f  +  5,
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where a /  and 6  are constants, and W(l) =  a  is the first component of the eight 

dimensional vector X  =  \a, £, ol ,U\, W2 , 0J3 , Here, cui, W2, W3, W4 are the four 

new variables introduced to eliminate the integral terms C i ( t )  and Cm(1), A, B  are 

8 x 8 matrices, Fj, i — 1 , . . . ,  3 are eight dimensional vectors. Hence, we have three 

linear systems that can be solved analytically. With a sufficiently small sampling 

step t ,  the solution can be expressed as

X t+T =  A i{r )X t +  bi(t) if X t(l)  <  a f ,

X t+T — A%(t )X f +  &2(t) if (Xf <  -X't(1) <  o;/ +  5, (3.15)

X t+T =  A i(r)X t +  b3(r) if -Xt(l)  >  «/•

Since in practice only a  and £ can be measured, we associate with the system 3.15 

the following linear discrete switching state-space system:

%k+1 =  Ash+1Xk +  bSk+1 +  ujt+i, (3.16)

yk =  Gx*, +  wk, (3.17)

where 5*, is a discrete random variable given by

1 if xfc(l) < a f ,

Sk+\ — 2 if af  <  Xfe(l) <  af  +  5,

3 if xfc(l) >  a f .

Here, A,, i — 1,2,3 are 8 x 8  matrices, A 3 — A 1, bi, i  ~  1,2,3 are eight-dimensional 

vectors, yk — [a, £]4 is the two-dimensional observation vector, xk is the eight­

dimensional state vector, vk ~  N (0, Qsk) and wk ~  1V(0, R) are independent Gaus­

sian white noise vectors, Qi,  i  =  1 , 2 , 3  are 8 x 8  matrices, 72 is a 2 x 2 matrix, and 

C  is the 2 x 8  matrix
1 0 0 . . .  0 

0 1 0 . . .  0
c

Suppose that we know a /  and 5 (e.g. we determine the thresholds a f  and a f + 6  using
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the non-parametric method presented in Section 2.3 and illustrated in Figs. 2.26, 

2.27), thus the values of the switching variable S* are known. We also assume that, 

conditional on Si =  i, we have X\ ~  lV(/ij,Ej), for i — 1, 2,3. Hence, the unknown 

parameters of the previous model are 0  =  {A*, hi, Qit R, m , E,, i =  1 ,2,3}.  Once the 

parameters are estimated, we can predict the future values of Xi, i =  iV+1, lV-i-2,. . . ,  

and we can then determine the asymptotic state of the aeroelastic system.

We estimate the parameters 0  using the EM algorithm. First, we augment 

the data with the hidden variables Xj, i =  1 , . . . ,  N  and we calculate the complete 

log-likelihood:

log(L) =  logP (x i, . . . , x N, y i , . . . , y N, S i , . . . ,  SN) =  lo g P (yN\yN- i , . . .  ,y 1: x N, 

. . . , x 1 , S N, . . . , S i )  +  . . .  +  lo g P (y i\x N, . . . , X i , S N, . . . , S i )  +  lo g P {x N\xN^i, 

. . . , x i , S N, . . . , S i )  +  . . .  +  lo g P (x i|5 v , • ■ ■, Si) +  log P ( S N, S'v-i, • • •, Si).

Using the equations (3.16) and (3.17), we obtain:

N  N

log(L) =  —51Vln(27r) -  - J ^ ln ( |P |)  -  -  ~  C xi)tR - l (yi -  Cxi)
2=1 ■ 2=1

-  i £ lnd ^ l )  -  \  -  A SiXi-i -  b s ifQ s 'ix i -  A SiXi-i -  hSi)
i=2 i=2

-  -  ^(®i ~ l t Sl) +  l ogP(SN, . . . , S i ) .

The EM algorithm iteratively maximizes E  =  E[log(L)\yi, . . . ,  yn, Si =  i i , . . . ,  Sn — 

in]. Using the previous formulas and tr(A B ) =  tr(B A ), where tr  is the notation for 

the trace of a matrix, we get

N  1 N
E  =  -51Vln(27r) -  — log(|P |) -  - ^ t r [ P  l {ynytn -  y n ^ C 1 -  C xn\Ny*n

n=1
V w

+  CPnC1)] -  2 E l o g ( l ^ l )  -  2 X > ^ r „ 1(-Pn -
n~ 2 n=2

+  A ^ P n -iA l  -  xn|jv6  ̂ -  6i„x(j|Ar +  Ainxn„ljw6*n +  &*X-xjv^L +  6in^ J ]
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-  \  l o g d E i x l )  -  h r lE ^ iP i  -  M i ^ V  -  ® i | j v / 4  +  M i i M i J ]

Here, Pn =  £[a;„x* |y i , . . . ,  r/v], Pn,„-i =  |2/i, • • •, S/iv], and z njN =  £ [z n|

y i , . . . ,  ytf] are the smoothed values. They can be calculated using the Kalman 

filtering and smoothing [23]. For the M-step, analytical update equations for the 

parameters 0  can be found taking derivatives with respect to the parameters 0  in 

the previous formula for E  [23].

1

0.5

O
-0-5

N O N -D IM E N S IO N A L

Figure 3.26: Pitch: clean data filtered or predicted data using the UF

Figure 3.27: Plunge: clean data filtered or predicted data using the UF

We apply the EM algorithm for the simulated noisy data displayed in Figs. 

2.18, 2.19. The training set contains the first 300 observations, and is used for 

parameter estimation. In Figs 3.26 and 3.27, we compare the clean signal with 

the filtered signal (the first 300 observations) and the predicted signal (the last 700 

observations). The amplitude and the frequency of the limit cycle oscillations are 

accurately predicted. The results reported in Figs. 3.16 and 3.18 are slightly better 

than those presented here, but the tuning required for the methods presented in 

Section 3.3 is very extensive. Moreover, the results obtained using the EM algorithm 

are more accurate than those obtained with the EXPAR or SETAE models displayed
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in Figs. 2.22, 2.23.

3.4.2 The polynomial model

Now, we consider the model 3.14 corresponding to a wing section with two degrees 

of freedom and a control surface. The system of ordinary differential equations 3.14 

can be rewritten in a state-space form [11]. Using the Euler integration scheme, the 

associated discrete system can be expressed as:

X k +1 =  Axk +
02x4

[x i ( l ) , x l ( l ) , x i ( l ) , x l ( l ) ] t  +
02x1

B b

1 0 0 0
V k + l  = X k + l  +  w k + 1-

0 1 0 0

Here Xk =  [a, £, a ,  £*]* is the state of the system at time step k, and yk+i — [ck, 

is the observation vector. We assume that the white noise vectors, v k and W k ,  

are Gaussian and from uncorrelated white sequences. The 4 x 4  matrix A, the 

2 x 4  matrix B , the two dimensional vector b , and the two covariance matrices 

corresponding to the noise vectors Vk and Wk represent the unknown parameters of 

the aeroelastic system.

The previous system has a nonlinear state equation. The EKF or the UF can be 

used for filtering, smoothing and prediction. Moreover, for the E-step, the likelihood 

and the conditional expectation of the likelihood can be approximated based on the 

linearization of the previous system as presented in (3.7). The formulas are similar to 

those reported in the previous section, but we have to use the EKF or UF smoothing 

(see Section 3.2.2) to compute the conditional expectations x„|at, variances Pn, and 

covariances Pn>n̂ i.

We illustrate the parameter estimation based on the EM algorithm for the ex­

perimental data recorded at the Texas A&M University. First, we consider the data 

displayed in Figs. 2.28 and 2.29. In order to compare the learning algorithm with 

the neural network approach in [25], the training sets are formed with the observa­

tions corresponding to k =  200 — 300. Looking only at the training sets, one may
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Figure 3.28: Pitch: experimental data predicted data using the EM algorithm 
and the UF ’x-’ or the EKF
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Figure 3.29: Plunge: experimental data predicted data using the EM algorithm 
and the UF ’x-’ or the EKF

guess that the signals may eventually decay to zero. However, both implementa­

tions of the EM algorithm accurately predict the LCO with the correct amplitude 

and frequency. The results obtained using the EM algorithm with the UF or the 

EKF smoothing are displayed in Figs. 3.28, 3.29. Practically no tuning was needed 

to obtain these results. Thus, this method is an attractive alternative to a neural 

network approach. Similar results are obtained using the transient observations cor­

responding to k — 100 — 350 for training, as in Figs. 3.21 - 3.24. From the graphs 

displayed in Figs. 3.28, 3.29, we notice the similarity of the results obtained using 

the UF and EKF.

Finally, we present the results obtained using the EM algorithm and the UF for

the experimental data displayed in Fig. 3.30. These data have been also recorded

at the Texas A&M University (the file DN04F.dat). The training set corresponds

to A; =  250 to k =  519 as indicated by the two vertical lines shown in Fig. 3.30. The

predictions (dashed lines) start at k — 520 and they are in good agreement with

the experimental data (solid lines). The results obtained for the pitch motion are
68
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Figure 3.30: Plunge: experimental data filtered or predicted data using the EM 
algorithm and the UF

similar and are not reported here.

In Fig. 3.31, we present the estimations of the likelihood corresponding to each 

iteration of the EM algorithm. One attractive feature of the EM algorithm is the 

monotonic increasing of the estimations of the likelihood, even for this nonlinear 

case. In addition, this method is guaranteed to converge at least to a local maximum. 

On the other hand, the results are still dependent on the initial guess and the 

algorithm converges rapidly at the beginning, and then deteriorates with a slow 

convergence.

-i

Figure 3.31: Estimation of the likelihood using the UF
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Chapter 4

Ergodicity in models with hidden  

Markov switching

4.1 Introduction

In the previous chapters, we have discussed methods for parameter estimation and 

prediction for nonlinear aeroelastic models. In this chapter, instead of a threshold 

switching, we consider models with Markovian switching. We present two different 

models with hidden discrete Markov switchings: one with mutually independent 

observations, and the other with Markovian observations given the sequence of the 

states of the hidden Markov switching. For both models, we study the ergodic 

properties of the prediction filters corresponding to the hidden Markov models.

A HMM is formed by a hidden Markov chain { S n, n >  1} and a stochastic process 

{Yn,n  >  1}, with distributions depending on {S n, n >  1}. Usually, the hidden 

sequence {Sn, n  >  1} is a finite homogeneous Markov chain, and the observations 

, n >  1} are mutually independent given the sequence {5 n, n >  1}.

E xam ple 4.1 An example of a HMM is a model ([12]) with observations {Yn , n  >

The material presented in this chapter was submitted for publication in [14]
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1} of the form

Yn =  h(Sn) +  Vn,

where { Vn,n  >  1} is a Gaussian white noise sequence independent of { Sn, n  >  1}, 

with symmetric and positive definite covariance matrix D,  (i.e. Vn ~  Ar(0, D)),  and 

h is a mapping from the finite set S  to

Two classical inference methods for HMMs are the forward-backward and the 

Baum-Welch algorithms ([13], pp. 329-333). During the forward part of the forward- 

backward algorithm, the prediction filter, { P . ( 5 n|Tn_ i , . . . ,  i i ) }  is computed, where 

(D, T, P .)  is the probability space. The backwards part uses the filtered values for 

smoothing. The Baum-Welch algorithm is a special case of the expectation max­

imization (EM) algorithm, and is used for parameter estimations. To infer the 

posterior probabilities of the hidden states in the E step, the forward-backward al­

gorithm is applied. Hence, for estimation problems in HMMs, the ergodic properties 

of the prediction filter are of a special interest.

Different assumptions can be made about the state space and the distributions of 

{S'n, n >  1} and {Yn,n  >  1}. Under compactness or local compactness hypotheses, 

the existence of an invariant probability distribution for the prediction filters is 

proved in [10] and [16]. Kaijser [9] studied the ergodicity of the filter under the 

assumption of subrectangularity, and his approach is based on the dependence with 

complete connections.

The first model considered here is a HMM similar to the one presented in [12]. 

With this model, we associate a random system with complete connections (RSCC), 

and as a consequence of the properties of the RSCC, we obtain the ergodicity of 

the Markov chain formed by the prediction filter. Our methods are related to the 

approach in [9], but we work under different hypotheses, and we illustrate how the 

Ionescu Tulcea - Marinescu ergodic Theorem [6] can be applied for HMMs.

The focus of this chapter is in the switching state-space models (SSM), which 

are a generalization of the HMMs and the state-space models. Since the hybrid rep­

resentation combines discrete and continuous dynamics, they are capable to model

many complex phenomena ([5], [15]). A SSM is formed with the observation process
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{Y „,n  >  1} and two hidden Markov chains: the finite Markov chain { Sn, n  >  1} 

and the state process { X n, n  > 1 } .

E x a m p le  4.2 As a generalization of example 4.1, we consider the following hybrid 

model with observations {Yn, n >  1} and two sequences of hidden states {5 ra, n >  1} 

and {X n, n  >  0} with X 0 ~  N(fi,  E):

Here { S n, n  >  1} is a homogeneous Markov chain with values on a finite set S, 

A  is the m  x  m  transition matrix, C(i),  i 6  S,  are the d x m  output matrices 

for the state-space model, and H  is the symmetric and positive definite covariance 

matrix of the normal distribution corresponding to the independent random vectors 

W n, n >  1. The noise sequences {W„, n >  1} and {Vn, n >  1} are independent. 

Moreover, the sequences {Sn, n >  1} and { X n, n >  0} are independent. Conditional 

on { S n, n >  1}, Vn, n >  1, are Gaussian and mutually independent such that, if 

Sn =  i, i € S,  then Vn ~  N ( 0 ,R{i)),  where R(i) is the d x d  symmetric and positive 

definite covariance matrix.

Since the SSM are mixture models with an exponentially increasing number 

of components, deterministic inference algorithms become intractable rapidly. For 

example, if we attempt to implement the EM algorithm for the model (4.1) - (4.2) in 

the E step, we need to use approximations for the smoothing. A possible solution is 

to use a stochastic algorithm, namely the Gibbs sampler [3]. This approach is based 

on an iterative algorithm. At each step I, we draw a sample (A„(Z)} for the state 

variable. Then, using the prediction filter {P . (S,„|Fn_ i , X n_i(Z). . . ,  Yi, Xi(Z))}, we 

draw a sample for the hidden sequence {Sn,n  > 1 } .

The second model considered in this chapter is a SSM. For this case, we study 

the ergodic properties of the prediction filter used in every step of the Gibbs sampler. 

Our approach extends the methods applied for HMMs in [12].

A n -  +  W n, Wn ~  1V(0, H ) , n >  1.

Yn = C ( S n) X n + Vn.

(4.1)

(4.2)
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4.2 Random Systems with Complete Connections

In this section we summarize some results concerning the random systems with 

complete connections [8].

D efin itio n  4.1 A random system with complete connection (RSCC) is a quadruple 

{(W , W ), (X, X), u, P } , formed with

1. the measurable spaces (W, W) and (X, X);

2. the (W x X, W) measurable map u : W  x X  W;

3. the transition probability function P from (W, W) to (X, X).

Let define recursively the maps uW : W x X n - > W :

u("+1)(w ,x(n+1)) =
u(w, x i ), if n =  0,

u{vf'n'>{w ,x W ),x n+1), i f n > 0 ,
(4.3)

where x ^  =  (sq, . . .  ,x n) £ X n, for any positive integer n. We also define

P(w, A) ,  if r =  1,
Pr( w , A ) = t  (4.4)

f x  P(w,  dx i) ■■■ Jx  P(mx(r~^, dxr)lyi(xM), if r >  1,

P r i ’w^A) — Pn+T- i (w , X ^ 1 x A) (4.5)

for any positive integers r, n and any w £  W , A  £  Xr. Here, and whenever no 

confusion is possible, we denote by w xn the element (w, x ^ )  £ W .

D efin ition  4 .2  The homogeneous RSCC {(W, W), (X, X),u,  P }  is uniformly er­

godic if for any positive integer r there exist a probability Pr°° on Xr such that

lim P ?(w ,A ) — Pr°°(A),n->- oo

uniformly with respect to w  €  W , A  £ Xr, and r.

D efin ition  4 .3  The RSCC {(IT, W), (X, X), u, P }  is a RSCC with contraction if

(W,d)  is a separable metric space, r\ <  oo, R\  <  oo, and there exists a positive
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integer k such that rk <  1. Here, for any positive integer j  we have

d{w x ® , w"x® )
sup f  P f i w ^ d x ^ ) ^ ^  

Jxi  d ( w , w )

\Pj(w , A) -  Pfiw  , A)\
Rj  =  sup sup — -̂----JT-, J7T----------- •

A&0„'*w” d ( w , w )

The following result reveals the probabilistic meaning of the quantities defined 

in 4.3 -4.5.

T h eorem  4.1 Let {(W,  W), (X,  X), u, P }  be a RSCC. For any w 0 €  W  there exist 

a probability space (fi, E ,P wo) and two sequences of random variables {£„, n >  1} 

and {r„ , n >  0} defined on fi and with values on X  and W  respectively, such that 

r0 =  wo, and for any positive integers m, n, r  and any set A  £  %T we have rn =

w0^ nK

■Pt»o([£ni • • • ! 6i+r—l] ^ A) ~  Pfi(w0, A)

Pwo([tn+m, ■■■, fn+m-H-l] € A|£(n>) -  P«o([&»+m> ■ ■ • , f„+m+r-l] £ i*|f(B), T(n))

=  P™(Tn,A),  Pw0 a.S..

Moreover, the sequence {t„, n >  0} is a homogeneous Markov chain whose initial 

distribution is concentrated in Wq and whose transition operator is given by

Uf ( w)  -  L  P(w,  dx)f (wx) ,

for any bounded, measurable, real valued function f  defined on W .

P r o o f .  See Theorem 1.1.2 in  [8]. □

R em ark 4.1 The Markov chain {rn, n  >  0} is called the Markov chain associated

with the RSCC. For any bounded, measurable, real valued function f  defined on W
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and any positive integer n, the iterates of the operator U are given by

Unf(w)  — f  Pn(w,dx^n'>) f ( w x ^ ) ,  w € W.
J x n

R em ark 4.2 If {(W,  W), (X , X), u , P }  is an RSCC with contraction and (IF, d) is a 

compact space, then the associated Markov chain is compact (see Proposition 3.2.3 

in [8]).

Let Y  =  Ur>oXr. For any A  e  X we denote by Yn(A) the set of the elements 

of Y  which contain among their components at least n which belong to A. Let 

W) be the collection of bounded, measurable, real valued function /  defined 

on W  for which there exist a sequence { ln,n  >  0} of positive numbers such that, 

for any positive integer n, any x ^  € Yn(A), w , w" e  IF we have

\ f { w x {r)) -  / ( w ' x ^)I <  ln.

P ro p o sitio n  4.1 Let {(IF, W), (X, X), u, P }  be a RSCC for which there exist A 0 € 

X and a positive integer v such that

1 . There exists 7  >  0 such that for all w € IF we have Pf{w,  j40) <  7 ;

2. If, for any positive integer n, we define

an =  sup \P(w x̂ T\  A) — P{w"x[r),A)\,
w ,w" eYn (a0),Aex

then we have Yln>0 a” <  00 •

For any positive integer h and all w', w" e  W,  e  Yn(A0) and f  e  B L;Ao(W, W) 

we have

\Uhf ( w ' x ^ )  -  Uhf ( w " x ^ ) \  <  - ( o s c / ) $ > , ■  +  ln,
7 3>n

where osc /  =  sup„;UJ6Wr \f(v)  -  f { w ) |.

P r o o f . See Proposition 2.4.1 in [8]. □
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4.3 Hidden Markov Models

We begin with some definitions and notations. For any set A we denote the indicator 

function by 1 a- Let S' =  { 1 , . . . ,  M }  be a finite set, and let lB(Kn ) be the collection 

of the Borel sets on Rn, for any integer n >  0. We define the following L l norms

n n

IMIl =  ^   ̂\u i\i ll^lll =  ^ ^ ^ 5 3
i=l ~J~U i=1

where u =  (u*) G K", and Z  =  (ZiJ) is a n x n matrix. Let || ■ || be the Euclidian 

(L2) norm on M" and || • ||2 be the corresponding L2 matrix norm:

||Z ||2 -  max \\Zx\\ =  p{Z tZ ) 1/2, 
ll*ll=i

where p(-) denotes the spectral radius of the matrix (which is equal to the maximum 

eigenvalue of the matrix, for any symmetric and non-negative definite matrix). By 

definition, the matrix Z  is primitive with index of primitivity r, if Z T has only 

positive entries and r is the smallest integer with this property.

We define
M

W  =  {w  G Rm : W i >  0,* G S, J 2 wi =  1}, (4.6)
i -1

and consider on W  the topology induced by the Euclidian space MM. Let W denote 

the collection of the Borel sets on W.  If L{W)  denotes the set of real-valued, 

bounded and Lipschitz continuous functions defined on W,  then L ( W ) is a Banach 

space for the norm || • | |bl  defined by ||flr||j5L =  ||p|| +  s(g), where

llsll =  sup |p(p)|, s(g) =  sup  ■
P&W iV-iP £w  ^

For any bounded linear operator V  from L(W)  to L ( W ) : let

\\V\\B L  =  sup \\Vg\\BL.
li B L =  1

For the first model, we consider the same HMM as in [12], which is formed
79
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by the unobserved random sequence {Sn,n >  1}, and the observations sequence 

{Yn, n >  1}, defined on the probability space (fi, S', P .)  with values in S and in 

respectively. We suppose that the sequence {S„,n >  1} is a homogeneous 

Markov chain with the initial probability distribution p . =  (p.*), and the transition 

probability matrix Q  =  (<?,J ), i, j  £ S. Hence, for any i , j  £ S and any integer n >  1, 

we have P .( S i  =  i) =  p.®, and P .(S „ +i =  j \Sn =  i) =  qhj. We also suppose that the 

observations {Yn,n >  1} are mutually independent given the sequence {S„,n >  1}, 

that is, for any i i , . . . i n £ S  and any sets An, . . . 4̂1 £ 'B (Kd), we have

Moreover, the conditional probability distribution of the observation Yn given that 

{ S n — i}  is absolutely continuous with respect to a non-negative and <r-finite mea­

sure A, and it has a positive density 6.  =  (b1, . . . ,  hMy .  Thus, for any A £ H (Md) 

and any integers n >  1, i £ S, we have

R em ark 4.3 The HMM presented in example 4.1 satisfies all the previous assump­

tions. In addition, this model corresponds to the Bayesian network displayed in Fig.

4.3.1 The forward - backward and the Baum - Welch algo­

rithms

Let suppose the matrix Q and the vector p . are unknown. To estimate the pa­

rameters 9 =  {<2, p .} , we use a special case of the EM algorithm, which is the 

Baum-Welch algorithm [4]. Augmenting with the hidden variables, we have

n
P .O ' £ A n, . . . , Y 1 £ A 1 \Sn =  i n , . . . , S 1 =  it) =  J ] p ,( y fc £ Ak\Sk =  ik).

k=1

1 .2 .

N

log P.(H i, S i , . . .  ,Y n , S n ) =  y ^ l f q ^ i )  lo g P ,(5 i)  +  E E
n=l
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N
x  logP .(F„|S„ =  i) +  E E E i .  i](5n)l{j}(‘S'n-l) lo g P • {Sn =  i\Sn- l  =  j)-

n=2 ieS jeS

Since the values of {S„, n =  1 , . . .  N }  are unknown, we condition the previous equa­

tion with respect to the observations {Fn, n — 1 , . . .  N}.

E logP„(F1,S'1,...,y}v,S,JN) F i , . . .  ,Fjy
JV

= 53 ̂  ^  lo§pt+Y1
i£S n=l

N
5 3  E[S„ -  i l F , . . . ,  y w] log 6*(F„) +  5 3  l o g 5 3  E[Sn =  i, S„_x =  i | F i , . . . ,  YN]
ies i jzs  n=2

Taking the derivatives with respect to the parameters 6, we obtain the following 

M-step:

i,7 S n = 2  E[Sn =  j, Sn- i  — i]Yi, - . . ,  Fv] j _  pro _  » | y  y  1 
« = —  — — pr:-------- u s — - p . - * | F 1, . . . , F iVj.

2 _ m = 2  L1-5" - !  ~  ® e l i  ■ • • ) F/VJ

The necessary expectations are then computed in the E-step using the forward- 

backward algorithm [4].

The forward part recursively compute a n =  (a£, i G S), where

a in =  P . (Sn =  i ,Y1, . . . , Y n)

=  P .(F n |Sn =  i ) 5 3 a t 1P .(S „  =  =  j )  =  &’ (F„) 5 3
jes jes

for n =  2 , . . .  N.  The initial values are a\  =  p»6*(Fi), i G S. In the backward step, 

we start with fi%N =  1, i G S, and we compute /?„ =  (,5*, * G S ), n  =  JV — 1 , . . .  1:

^  =  P .(F n+1, . . . , F JV| S „ - t )

=  5 3 ^ +1P .(F n+i|S„+i =  j ) P . ( S B+1 =  j \Sn =  ») =  5 3 ^ +1^ (F n+1) ^ .
jes  jes

Using {an, pn, n =  1 , . . . ,  N},  we compute the expectations needed in the M-step:

a* 8*
E[Sn =  i\Yu . . . ,  Yn ]

Y ljeS  a hfin 
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p r o  - A c -  j \ y  Y  1 —  B [ O n - 1 — J i  * li • • ■ j * iVJ
S i te s  S i e s  a n - l^ fc,l̂ (^ » )^n

For numerical stability, especially for large AT, it is better to work with some 

normalized versions of { a n,j3n,n — 1 ,..  - , N } .  For example, corresponding to 

{a'n, i E S} ,  we have the filter {P .(5 „  =  i\Yx, . . . , F„), i  G 5 } , n =  1 , . . . , JV:

p .( 5 B =  t |y i) . . . , y „ ) =
S j 6S ^ (^n)Pn

Here, p„ =  (p*), i E S  is the prediction filter, p  ̂ =  P .(5 „  =  . . . ,  Fj). We

have pi =  p . and for n >  1

Q*ff.(Fn)pn 
Pn+1 bl(Yn)pn ’

where H .(y) =  diag(6‘(?/)), for any y E Md [12]. To emphasize the dependency with 

respect to the initial condition and the observations, we use the same notation as in 

[12], and we have

Pn+i -  f [Y n , ■ • • ,Fi,pi] = = M n i - pi, (4.7)
eW ^ip!

where e =  (1, . . . ,  l )4 is a M-dimensional vector, • denotes the projective product 

[11] and for any integers n > l ,  Mnj  — QtB.(Yn) ■ ■ • QtB,(Yi).

4.3.2 Geometric ergodicity of the prediction filter

Notice that (p„, n >  1} is a Markov chain with the transition probability

H(pn+1 G E\pn = p )  =  ^ 2 p j f  V { y ) l E(f[y,p])\ {dy) ,  
jes

for any n  >  1, E  G W and p G W.

For any real-valued, bounded and (W, $(/£)) measurable function g defined on
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W ,  and any p €  W,  we have

Ug{p) =  E.[g(j)n+1)\pn =  p} =  ^ f  ¥{y)g(f[y,p])X{dy),  (4.8)
j e s  ^

U*g(p) =  E.[p(p„+i)|pi =  *>] =  J ]  p V 1,i2 • •
ti,...,*»es (4 9)

x  [  bk (y1) - - -b in{yn)g(f[yn, . . . , y 1 ,p})X{n){dyin'>),
J  $nd

where (K”d, $  (M"d) , A ^) is the product measurable space, A ^ =  A <g> . . .  ® A, and 

y [n) =  (y\, y l ) \  for any n >  1.

It is easy to verify that the quadruple {{W,  W), (Rd, !B (Rd) ) , u, P }  is a RSCC, 

where u : W  x Rd -»  IF,

» (M )  = / M  =

P i f , E ) ~ Y ' p >  f  VO)A(rf»), (4.10)
jes Je

for allp  =  (p1, . . .  ,pM)4 £ W, y  £ Md, and (Rd). For any n >  1, P  £ “B (Rnd)

and p  €  IF, we define recursively the maps : W  x  (Md)n —> W  and the transition 

probability functions P„:

u{n)(p, (pi, . .. ,! /„ ))  =  py{n) =  / [y „ ,.. . , y u p}, y* £ Rd,p  £  IF, (4.11)

P„(p,P) =  £  Phqiui2 - - -qin- uin [  bk (y1) - - -b i”(yn) \W (d y W ) .  (4.12)
h,-,ines Je

Comparing (4.10) with (4.8) and (4.12) with (4.9), we notice that

Ug(p) — [  g{f[y,p])P(p,dy) ,
J  R<<

U ng{p) =  [  g ( f [ y n, Vi ,p])P»(p,dy(n)).

Furthermore, using (4.10)-(4.12), it is easy to show that for any probability distribu­

tion p . £ IF, the random sequences {pn+i, n >  0} with p x — p» and {Y„,n  >  1} are

associated with the previously defined RSCC on the probability space (0 , fF, P ,(-|p i
83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



=  p .)  (see Theorem 4.1).

Throughout this subsection, we suppose the matrix Q  is primitive with index 

of primitivity r. As a consequence, the Markov chain { S n, n >  1} is geometrically 

ergodic with a unique invariant probability distribution n,  =  (w*) on S. Thus, from 

Theorem 4.3 in [7] there exists positive constants ai, di and cx <  1, c\ <  1 such 

that Qn =  the n-th power of the matrix Q, satisfies

for any n >  1 and any i , j  £ S. As in [12], let min+ denote the minimum over 

positive elements, and let

Now we establish two important properties of the previously defined RSCC.

P ro p o sitio n  4 .2  The RSCC  {(W, W), (Kd,®  (Md) ) , u, P }  is uniformly ergodic.

PROOF. For any integers n, k >  1, every p  e  W  and E  £ ¥> (Rkd), from (4.12), we

get

Pfc> ,  E ) =  ■ • • Qih 'ik+1 /  b”  (2/0 • • • (yk) \ W  (dyW).
i, ..cc J  &

P f ( E )  =  J 2  /  hhM  • ■■bik(yk) X ^ ( d y ^ ) .
i i , - A e s  Je

Using (4.13), it is easy to prove that lim ^oo T^(p, E) =  Pjp(E),  uniformly with

respect to p, E  and k. Thus the RSCC is uniformly ergodic. 0

P rop osition  4 .3  If A <  oo, then {(W^W), (Md, “B (Rd)) , u , P }  is an RSCC with
84

max
i,i'es

(4.13)

(4.14)

mm /

e =  min+ql’T A =  max 
ijes  ies

h,—,ik+i&S

Let
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contraction.

PROOF. Replacing in (4.10) and using the definition of the || • ||i, we obtain

R\  — sup sup \p ( j > , E ) - p (P ’E)\ < 1<OQ  (4.15)
Be®(R<i)p^p ,p,p e w  lb P lli

From Lemma 2.2 in [11], we get

IIf [ y , p ]  -  f [ y , p ] Hi < %)IIp-p Hi p ,p  e W , y e  Md.

Hence,
ri =  f  " /[g .p ]- /[» ■ ? ']Ilip ^ dy) <  A  <  oo. (4.16)

4 1  ̂ lb p  !u
For n >  2r, from the first inequality in Theorem 2.1 and the inequality 5 in [12], we 

get

„ =  s„p [
pj p̂\p,pr $  ill

<  e“rA r( l  -  R)nlr~2.

Thus, for n sufficiently large, r„ <  1, and together with (4.15) and (4.16), this 

implies that we have an RSCC with contraction. 0

R em ark  4 .4  If the observation conditional densities bl are Gaussian for any i  e  S  

(as in example 4.1), then A <  oo (Example 4.2 in [12]).

Now, we return to the Markov chain {pn}  associated with the RSCC. Using the 

previous proposition, and the fact that (W, || ■ ||i) is a compact space, we obtain that 

{pn}  is a compact Markov chain (see also Remark 4.2). Furthermore, let define

Un =  - J 2 u k, n > l .
n *=i

T heorem  4.2 The Markov chain {pn, n >  1} is geometrically ergodic. If  A <  oo 

and Q°° is the unique invariant probability distribution for the chain {pn, n >  1},
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



then we also have lim ^oo \\Un -  U°°\\Bl  =  0 . In addition, there exists positive 

constants C  and 8  < 1 ,  such that for any function g £ L(W)

\\Ung -  U°°g\\BL < C 8 n\\g\\BL.

Here, for any bounded and measurable real-valued function g, U°°g is defined by

U°°g =  f  g(p)Q°°(dp).
Jw

L em m a 4.1 Let c =  max{cl5 c2}, with — (1 — R ) 1̂  and c\ as defined in (4-13). 

There exists a positive constant K  such that for any positive integer n > r  +  1, 

g £  L{W) and pi,  p2 E W

|^</(pi) -  Ung(p2)I <  n K c n\\g\\BL.

PROOF OF L e m m a  4 .1 . W e follow  the sam e ideas as in  th e proof o f Theorem  3.5 

in  [12]. U sing th e second inequality in  Theorem  2.1 and th e inequality (5) in  [12], 

we obtain a result sim ilar to  Proposition  3.7 in  [12]:

. m ax /  . . .  /  \g{ f[y„, . . . , yi ,Pi ))  - g{f [yn, - - - , yh P 2))\
j &d j- î (4-17)

x  hH( y i ) . . .  btn{y„)X(dyi ) . . .  \ { d y n) <  2s{g)<%~l+1~T,

for any p ositive integers n , I such th a t n >  I +  r — 1, and any function  g £  L(W).

Now  we express

l^gipi )  -  Ung{p2) =  V  p{l qh'h • ■ • q^- 1̂  f  bix (m)---  V" (yn)
h ,.,in es J^nd

X (g( f [Vn , • ••,  2/i, P i]) -  g ( f [ y n, ■ • ■, 2/1, P2]) A(fl) ( dy {n)) +  (Pi1 ~  P21)

X qilM ■■■q1 [  bH{yx) . . . b ln(yn)g{f[yn, . . . , Pi,p2])A(n) (dy{n)) . 
Jig?1*

Let Ti and T2 denote the first and the second term, respectively. Using (4.17), we
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get:

|H | <  2s ( g ) c r r. (4.18)

For any positive integer I <  n -  1 and any sequence z l t . . . ,  zi € decomposing 

g{f[yn, •••, yi ,P2}), we obtain:

k i < E  E
fe=2

q l k > i k + l  .  .  .  q l n - 1 >*»

/  '■■ /  IpC/bni • • • ! Pfci Z k —h  • ■ ■ ) 1̂jP2]) g i f i V n j  ■ • ■ i V k + l t  %ki • • • j ^1)P2])|

&ifc (y*) (y„)A(dyfc) . . .  A(dyn) +  E  ^  -  &  \ q ™  • • ■

[  b h ( y i ) • • • &in(y„) |y ( / [ y n , • • • , y i , p 2]) - y ( / [ y n , • • ■,2/2 , ^ , p 2]) lA (n) (dy (n))
J Snd

+ . E i*I+i

[  . . .  f  | g(f[yn, ■■■, VI+1, Zi, ■. •, *1,P2]) I &i,+1 (l/i+i) • • • bin (y„)A(dyi+i ) . . .  X(dyn). 
JUt* J  Ri

The inequality (4.17) and pi,  p % £ W  yields

|T2|<2S(y)Ecrfc-rE
fc=2 «*es

+  2s(y )c£  r |b i  - P 2 II1

+  M I  E
*1+1 es hsS

Using (4.13) and I =  n — r, we get

|E2| <  ||pi —P2 II1 ^2 s(g)Mai(n — r — l)cn r 1 +  2 s{g)<% 1 rH-||y||Maie? . (4.19)

Since ||pi — P2 II1 <  2 , adding (4.18) and (4 .19), we get the conclusion. □

proof OF T h e o r e m  4 .2 . Using Lemma 4.1 and proceedings as in the proof of 

Corollary 3.6 in [12], it can be shown that there exists a unique invariant probability 

distribution Q°° for the Markov chain {pn, n >  1}. Moreover, for any positive integer
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n >  1, all g G L(W),  and any z  G W,  we have

\Ung{z) -  U°°g\ <  K\\g\\BLncn/ ( l  -  c)"2.

If A <  oo, the properties of the associated RSCC allow us to state stronger results 

concerning the convergence of Un. As we have already mentioned, the Markov chain 

{pn, n >  1} is compact and by Theorem 3.2.2, in [8], the Ionescu Tulcea-Marinescu 

ergodic Theorem applies ([6]).

Furthermore, Lemma 4.1 implies that any eigenfunction g G L(W)  of U,  corre­

sponding to an eigenvalue 7  with I7 I =  1, is a constant function. Hence, 7  =  1 is the 

only eigenvalue of modulus 1 of U and the subspace f ? ( l )  =  {<76 L(W)  : Ug =  g}  is 

one dimensional. Thus, we obtain the stated conclusions from the Ionescu Tulcea- 

Marinescu ergodic Theorem and Theorem 3.2.4, in [8]. □

4.4 The hybrid models

Now consider a model formed by the unobserved random sequence {S n, n >  1}, and 

the observed sequences {Yn, n >  1} and { X „ ,n  >  0}, defined on the probability 

space (Q, UF, P .)  with values in Rd and Mm, respectively. Let Xd and Am be two non­

negative and a-  finite measures on (Md,UB(Md)) and (KTO, 33(R™)), respectively. We 

suppose that the conditional probability distribution of the observation Yn given 

that {S n — i, X n =  x } is absolutely continuous with respect to Ad and it has a 

positive and continuous density

P.(H„ e  Ay\Sn =  i , x n =  x ) =  [  bt (y,x)Xd{dy),
J A y

for any integer n >  1, i € S, Ay €  UB and x  G Rro. Moreover, the observations 

{Yn,n  >  1} are mutually independent given the sequences {S n, n >  1} and { X n, n >  

0}:

P®(Fn ^ Ani . . . ,  Yi G Ai  jiSy! =  zn, X n — xn . . . ,  S\ — Xx — X\ ,
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X q — i&o) — J*J|[ P®(F& ^ A& \&k — Xfc — %k)i
k=l

for any integer n >  1, any i i , . . . i n e  S,  all x 0, . . .  xn € Mm, and any sets A n, . . .  A± G 

H (Rd). We also suppose that { X n, n >  0} is a Markov chain, and there exists a 

positive, and continuous function a(-, ■) such that for all x  G K™, and A x G 25 (Rm)

P® G Ax\Xn — 3?) — I u(y, :c)Am(di/), n ^  0,
Jax

P • (- f̂n+i € A x\Xn =  x, 5 re-|_i, Yn, 5n, . . . ,  Y\, S \ ) =  P® G A^l-Xn — x ) ,  

for any n >  0. Let PJ(a:, Ax) =  P ,(X „  G Ax\X0 =  x).

R em ark  4 .5  The Bayesian network corresponding to this model is displayed in 

Fig. 1.3.

We define the prediction filter wn =  (in*), n >  1, where uq =  p ., and for any 

n >  2, wfn =  P .(5 n =  i | y^_i ,X„_i , . . . ,  Pi, Afi). For any i/ G Rd and x  G Mm, let 

b,(y, x) =  (6’ (y, r ) )  and B,(y,  x) — diag{bl {y,x)).  It is easy to prove that

Q‘.B.(Pn,X n)mn
a  '■ (4-20)

We now write an equation similar to (4.7):

wn+1 =  F[Yn, X n . . . ,  Yu X u in,] =  ■ *A’lWl =  • inl5 (4.21)
e K niiWi

where for any integers i >  j ,  K i j  =  QtB,(Yi, Xi) ■ ■ • QtB»(Yj, Xj).

In practice, the matrix Q, the initial probability p , and the vector b, might be

unknown, and only some estimations Q, p ., b, might be available. Thus, corre­

sponding to (4.20) we have

QtB. iY^X ^W n
w»+i ^   F f v  " y T - .’ n - 1’ (422)3Cn)wn

and i£i =  p .. Similarly to (4.21) we can write th„+1 =  F[Yn, X n , Yi ,X i ,  ith],
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R em ark  4.6 The model (4.1) - (4.2) in example 4.2 is a mixture model, and the 

number of components increases exponentially with n. The Gibbs sampler can be 

used for inference. Hence, we draw samples (Jf„(Z) ,n  >  0}, I — I , . . .  ,L  and then, 

for each sample, we calculate the prediction filter w„(l) =  (u£(i)), n > 1. At any 

step I, the model formed with {5„, Yn, X n(l)} satisfies all the previous assumptions. 

For any i €  5 , we have

b*(y, x) =  (27r)-d//2[det R(i ) } ~ 1/2 exp[ - ( y  -  C(i)a;)<if(f)“1(y -  C(i)x)/2],  

a(y, x) — (27r)“m̂ 2[det H ] ~ 1/ 2 exp [-(y  -  Ax)tH ' l (y -  Ax)/2),

where Ad and Am are the Lebesgue measures on Md and Mm, respectively. Here,

wi =  p ., w^l )  =  P»{Sn = i \ Y n- 1, X n- 1 { l ) , . . . , Y 1 , X l (l)), n >  2.

Let us denote V — ffi™ x W,  and V =  S  x Rm x R.d x W,  where W  is given in 

(4.6). Then (V, d) and (V,d)  are metric spaces, where

d((xi,pi ),  (x2 ,p2)) =  ||xi -  ar2|| +  Ibi - P 2II1,

d ( ( h X i , y 1, p i ) , ( j , X 2 , y 2 , P2 }) =  Ibi - x 2\\ +  \\y1 - y 2 W +  \ i ~ j \  +  Ibi — P2j|l-

It is easy to show that the topology induced by the metric d on V  is the the topology 

induced by the Euclidian space Wn+M, and the topology induced by the metric d on 

V  is the topology induced by the Euclidian space Rd+m+M+1. Let V and V be the 

collection of the Borel sets on V  and V,  respectively. For any positive integer n, let 

An(m+rf) — (Aj 0  Am) 0  . . .  0  (Ad 0  Am) be the product measure on . We use

the notation (y,  x ) ^  for the sequence (y[,  x\,  . . .  ,y*, x\  )* € R.n(m+rf) . We denote by 

C°°iy) the real-valued , bounded and continuous functions on V,  and by L(V)  the 

set of real-valued, bounded and Lipschitz continuous functions defined on V.  Then, 

L(V)  is a Banach space for the norm j| • \\BL defined by \\g\\BL — Ibll +  s(g), where

Ibl l  =  SUP b ( * , P ) l .  s(g) =  sup  ̂ m ^ ’ nl ^  11 •
(x,p)EV [x,p) {̂x ,p') lb  P 111 T lb  ® II
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Similarly, let C°°(V) denote the real-valued, bounded and continuous functions on 

V,  and L(V)  the set of real-valued, bounded and Lipschitz continuous functions 

defined on V.  Then L (V ) is a Banach space for the norm || • \\bl with

||ff||= m ax  sup \g{i ,x,y,p)\ ,

\ g { i , x , y , p ) ~  g ( i , x \ y ' , p ) \

ieS (x,y,p)£Rd+™xW

s(g) =  max sup
Up -  P'h  +  Ik - * ' | |  +  II y -  v’ II'

4.4.1 Ergodicity of the Markov chain {w n+i , X n, n >  0}

In this case, {wn,n >  1} is not a Markov chain, but {w n+i , X n,n  >  0} is a Markov 

chain with the transition probability

n(ie„+ 2 e  y , x n+1 e x \ w n+i =  p , x n =  x') =  ^ 2 ^  [  [  V { y , x )
jes  Jx  Jwi (4.23)

x a ( x , x ) l Y (F[y,x,p])Xd(dy)Xm(dx), 

for any n >  0, Y  G W , X  G and (x ,p) G V.  We have

Ug(x0 ,p) =  E . [g(Xn+i ,w n+2) \Xn =  x 0 ,wn+i =  p]

=  T V  /  bj (y ,x)a (x ,x0)g {x,F[y,x,p})  Xd+m(d ( y ,x ) ) ,
j e s  J  ]R*+™

(4.24)

Ung(x0 ,p) =  E . \c/(Xn, wn+1) \X0 =  x0, w l =  p]

=  Y '  pnqil,h . . . q in- uin [  bi l {y1 , x 1)a(x1 , x 0 ) - - -b in{yn,x n) (4 .25)
i , ,~Ces K ’

x a(xn,x n- i ) g  (xn,F{yn,x n . . .  , y i , x x,p]) \ n(d+m) (d(y, x ){n)) ,

for any real-valued, bounded and (V, ®(1Z)) measurable function g defined on V,  

any (xq  , p )  G V,  and any n >  1.

For any E  G 23(Rm+d), (x,p) € V,  and { y , x )  G Rm+d, we define the mapping u 

and the transition probability function P;

u((x ,p ) , { y ,x ) )  =  (x ,F[y ,x ' ,p })  =  ~ &f(y ’ (4-26)
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M  .

P((x ,p ) ,E))  =  j^ V {y ,x ' )a (x  ,x)Xm+d{d(x ,y)).  (4.27)

It is easy to verify that the quadruple {(V, V), (I8P+d, ®(Mm+d)),'u, P }  is a RSCC. 

For the maps u^  : V  x M”(m+d) - » ^ w e  have the following formula

u{n) {(x0 , p ) , {y 1, x 1, . . . , y n,x n)) =  (xn,F[yn,x m . . .  , y u x i , p } ) . (4.28)

Throughout this section (x$ ,p )( y ,x )^  denotes ((a;0,p), ( y . x ) ^ ) .  For the model 

considered here, the transition probability functions Pn are

Pn((x0 ,p), E) =  Y h  p V 1’’2 • ■ ■ qin~u,n f  btn (yn, xn)a(xn, a;n_i)
Je (4.29)

■••bn (yi,xi)a(xi,xo)Xn(d+m){d(y,x){n)), 

for any n >  1, E  E ® (Rn(d+m)) and {xQ,p) E V\ Hence, for any integers n, k >  1,

P«((xo,p);JE) =  P„+fc_i ((x0,p ),R (n- 1)Cd+m) x E)  =  p ^
*1.—.»fc+i6S

x / j /  Pl+1(pfc,a:fe+n_1)a(2:fc+„-i,a;fc+n_2) • • •6,2(y1,a;n)a(a:n,a:„_1)

• ■ • n(^i, XQ̂ Xf-d (dy( Afcm (d(xk+n—ii - - •, s-n)) ^ A(n_i)ro (dx  ̂ , (4.30)

where (a?o,p) G F , and £ e ! B  (Rfc(d+m)). Comparing (4.27) with (4.24) and (4.29) 

with (4.25), we notice that

Ug{x0 , p ) =  /  p (a:, P[p, x,p]) P  ((z0, p), d(y, a:)),
JWd+m

tPgixoiP)  =  /  P (a:n, P[p„, . . . ,  pi, xi,p]) Pn ((a:0,p), d(p, a:)(n)) .
,/Rn(d+TO)

Moreover, using (4.26)-(4.30), it is easy to verify that for any (x0, p .)  €  F , the ran­

dom sequences { ( X n,wn+i ) ,n  >  0}, with (X o ,^ )  — (a;o,p.), and {Fre,n  >  1} are 

associated with the previously defined RSCC, on the probability space (Q, T, P a(-|w1 

=  p ., Xo =  Xq) (see Theorem 4.1).
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Now we make the following assumptions.

A s s u m p t io n  A  The Matrix Q is positive.

A s s u m p t io n  B The Markov chain { X n,n  >  0} is geometrically ergodic such that 

there exists a probability distribution 7r*, a positive real number px <  1, and a real 

valued, non-negative, 'B(M)) measurable, 7ix-integrable function G  with

properties:

1. \\P%(x0, •) -  itx(')\\ <  G{xo)px> for all xo € R™, and n >  1;

2. For all i ' e P :

3. The function Gi(x)  — G(x)+p(x)  is II(-, \x ,p') integrable, for any (x ,pf) G V.

Since a positive matrix is a primitive matrix with index of primitivity r — 1, the 

Markov chain {S„,n >  1} is geometrically ergodic and the inequality (4.13) is true. 

Using Theorem 3.5 in [11], it is easy to show that

for any positive integer n >  1 and any sequence (x , y ) (-n') G Mrê +ml.

P rop osition  4 .4  There exists a positive constant C such that for any function 

g G L(V),  any positive integers n, h, and k >  n

F[yn, xn, . . . ,  ?/i, xu p j -  F[yn, xn, . . .  , y u x u p}   ̂ <  2(1 -  e)", (4.31)

Uhg ( ( x 0 ,p ) ( y , x ){k)) -  Uhg ( (x 0 , p ) ( y , x ) {k)  ̂ <  C (1  -  e)" ||£ r ||BL,

f o r  a l l  ( x q ,p),  (x0 , p )  G V a n d  a l l  s e q u e n c e s  ( y ,  x ) ^  G Kfe(d+m).

P r o o f . For any positive integer n, let

an =  sup P  ((ar0, p)(y , x )'[h), X ) -  P  ( (a^,p  ) (y, x )'{k), a )  | ,
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where the supremum is taken over all k >  n, (x0 ,p), {x0 , p )  e  V, ( y , x ) ^  e  * (* * » ),  

and X  G ®(Rd+m). Then, replacing in (4.27) and using (4.31), we get

an <  2(1 -  e)n, (4.33)

and then
V " '  ^  r \  4  —  (
y , a n <  2---------- <  OO.

7l>  1

Using (4.31), we can easily show that

9 {{x0 , p ) ( y ,x ){k)) -  g((x0 ,p' ){y,xYk)) <  2s(# )(l -  e)n.

Applying Proposition 4.1 with Aq =  Mm+d and i' =  1 we get

OO

Uhg {{x0 ,p)(y, x) (k)) -  XJhg ((a4,p')(</, x )(fc))  <  4||5 || ^  % +  2s(# )(l -  e)n.
j —n

Hence, the conclusion of the proposition is just a direct consequence of the previous 

inequality and (4.33). □

P rop osition  4 .5  If g €  C°°(F), then U{g) €  (^“ (F).

P roof. Obviously for any g G C'°°(F)

llb^ll <  llsll <  oo.

Now we prove that Ug is continuous. Let us arbitrary fix (xq ,p) G F  and consider 

any sequence {(x„,pn) ,n  >  1} C F , such that

lim ||pn -  p||i =  0 , lim \\xn -  z 0[| =  0 .n->oo n—K»

Replacing in (4.24), we get

Ug{xn,pn) -  Ug(x0 ,p) =  Y V  /  V(y ,x )a (x ,xn)g (x ,F[y ,x ,pn] ) \ d+m{d(y,x))
jeS J  K<*+™
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j£S

Hence,

~  T V  /  V{y,  x)a(x, x0)g(x, F[y, x, p]) Ad+m(% , x)).

I Ug(xn,p„) -  Ug(x0 ,p)\ < Y ] W n -P^\  /  V{y ,x )a {x ,xn) \g(x ,F[y ,x ,pn])\
jes J®d+m

Xd+m(d{y,x)) +  Y V  /  &3'(y,x)(a(x,a:ri) -  a(a:,x0))£r(a:,F[y,a:,pre])
jeS \Js-d+m

Xd+m(d{y,x)) + YV /  W{y,x)a{x,xo)g(x ,F[y ,x,pn])\d+m(d(y,x))
j e s  I Js.d+™

-  /  V{y, x )a {x ,x 0) g ( x ,F [ y , x ,p ] ) \ d+m(d{y,x))
JRd+m

For the first term, we have

E k - V l  /  fi7'(y, i)a (x , x„) |p(2:, F[y, a;,p„]) | Ad+m (<%, z))
,c<? ./«<*+”>jes

< \\g\W\pn -  p\U  - >  o .
n->oo

Let (Sn(rc) =  0 (2:, x 0) -  a(x,a:n) and S+(x) =  m ax{a(s,x0) -  a(a;,xn),0 } , for any 

2; G Rm. Notice that lim ^oo 5+ (x) =  0, and 5+(2;) <  0 (2:, 2;0), for any i e P ,  

Hence, by the Lebesgue’s theorem of dominated convergence [1]

\\Px{xn,-) ~  Px(*o,-)|| =  f  % { x ) \ x m {dx) ^ 2  j  5+{x ) \m (dx)
J K™ J M™

Thus, using Lemma 2.1.1 in [8]), for the second term, we get

Y V  /  b>(y, x)6n(x)g(x, F[y, x ,p n])Xd+m (d(y,x))

-*  0 . 
n-^00

jes

^  Ikllll-Px^n) ') -  Oil 0.n—>00

Since g €  C,00(F ), the Lebesgue’s theorem of dominated convergence implies that 

the third term also goes to 0 when n —t 00 . Thus lim ^oc |Lg(2;n,pn) — L/ (̂m0, p) | =  

0, and, since (x Q, p ) G V was arbitrarily chosen, Ug is continuous. □
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P ro p o sitio n  4.6 For any positive integers k, n and any (xo,pi), {x'^pfi) € V  we 

have

IIAfc ((m0,p i ) , ( 4 ,  Pa)) II <  iaxc” - 1 +  2pn£ 1 ( g {x 0) +  G(xq)) ,

where C\, a% are defined in (4-18), px is defined in assumption B, and for any 

X  €  $(M*(ro+d))

K  ((*o,P i), (x'0 ,P2 )) (X) =  P£ ((x0 ,Pi ) ,X))  -  P£  ( ( 4 ,p2), A ) )  .

p r o o f .  For any positive integers k, n and any (x0,pi), (x'0 ,p 2) € V, A%((x0 ,pi), 

P2)) is a signed measure on !B(Mfc(m+d))). Let Rfc(m+d) = X + U X ~  be

a Hahn decomposition of R*(m+d) with respect to Ajf((£0,P i), (xq,P2))-

For any x  €  Km and any sequence i i , . . . ,  i* G S, let

giiu- ’ik)(x) =  /  b,k (yk, xk)a(xk, xk- i )  (yu Xi)a(x1,x)Xkid+m) (d(y ,x) ik)) . 
Jx+

The Fubini’s theorem [1] implies that g is a measurable function. Moreover, we have

0 <  < 1 ,  x €  Rm. (4.34)

Replacing in (4.30), we get 

||A£((xo,Pi), (x'0,P2))|| =  2Al((x0 ,Pi), {x'0 ,p2) ) { X +) =  2 

qik,lh+1 [  £(‘2’"-’’*+l)(2:„_i)fl(x„-i, Xn_2) . . .  a{x\,  x0)A(„_1)m (dx(n_1))

P i  Q n - l Q  
•1,-A+iSS

P21 fln-iV3’’3 ■ ■ • 9‘*’’*+1 [  g(-%2' - ’,k+l)(xn^1)a{xn- i , x n- 2) ■
c t/]R(Tl — 1)771iii—i*s+i6S

a(x1;Xo)A(n_1)m ( d x ^ )  < 2  J 2  Pi t e - i  -  * i2 W2'i3 • • • qik'ik+i
*ii—4/t+ies

[ ^ (*2> - i** + i) (x „_1) a ( x „ _ i , x n _ 2) ■ • • a ( x 1 , x 0 ) A ( „ _ 1)ni ( d x ( n _ 1 ) )

+  2 Y ]  P21 kn-l2 -  7T!2 k !2’’3 • • • f  g & ’- ’̂ +i) (x^fi jaixn_i, X„_2)
u,..,H+ies ils(^ 1)m
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• ■ • a{xu xQ)A(„_1)m { d x ^ )  +  2 ] T  ■ • • <Iik,ik+1
i2,...,ik+ies

I g & ’-M+l )  {xn_ x) a { x n- i , X n- 2 ) • • • a ( x i ,  X0) \ n - l ) m  ( d x (n~ 1})

-  [  g(%2’- ’lk+l)(xn- i ) a { x n- i : x n- 2) • • • a ( x i ,  x'0) \ n - i ) m  ( d x ^ ^ )

As a consequence of the inequalities (4.13) and (4.34), the first two terms are less 

than 2aic"_1. The third term can be written as

T3 =  2 Y  Kh qi2’i3 ---<lik’ih+1\ [  g{i2’- ’h+l)(xn-i) ( p T \ ^  dx„_i)
hr-tik+i^S ®

-  7cx (dxn-i )  +  nx {dxn- i )  -  P ^ i x ' o ,  dxn- 1)

Hence, Lemma 2.1.1 in [8], the assumption B and (4.34) imply

?3 <  2p^ 1 ( g (x0) +  G(x0) j  . □

T h eorem  4.3  1. There exists positive constants K  and p <  1, such that for any 

function g €  L(V),  (x0 , p ), (x'0,p  ) £ V  and any positive integer n >  2 , we have

llPgixoiP) -  Ung(x0 , p )| <  K p n ( l  +  G{x0) +  G(x’0)'j \\g\\BL- (4.35)

2. There exists a positive constant K i  independent of g £ L(V) and (xo,p) £ V,  

and a constant T(g), such that for any positive integer n >  2

\Ung(x0 ,p) -  T(p)| <  K r ^ M B L  (1 +  G(x0) +  p(x0) ) . (4.36)

Moreover, u — ^2n>0 {Ung — r(p)) is a solution of the equation u — Uu — g — F(p).

PROOF. 1. Let us choose any positive integers 1 <  no <  rq <  n  and define 

X  =  R"i(m+<i) and Y  =  R(m-n0+i)(m+d)_ For any g €  L (Y^  (X0jj3) G y ,  we have

Ung{x0 , p ) =  [  Pm ((x 0 , p ) ,d ( y ,x )(-nl)) Un~nig ((x0 ,p ) ( y ,x ) (-ni)) ,
J x
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/  Pni { (xo,p),d(y,x){nl)) Un nig ({x 0 ,p){yno, x no, . . . , y ni, x ni))
Jx

=  Jy P : U o +i ((**>,p ),d (y ,* )(Bl- no+1)) ((^0 ,p )(j/^ )(ni- no+1)) •

Using the previous two equations, we write

Ung(x0 , p ) - U ng(x0 , p ' ) =  [  Pni ((x0 , p ) , d (y ,x ){nl)) U n nig ({x0 ,p)(y,  x)(ni))
Jx

-  J  Pm {[x0 , p ) , d { y , x ) {nl)  ̂ Un~nig ( (x 0 lp ) { y , x ) {ni)  ̂ =  Pni((x0 ,p),

d {y ,x ){nl)) Un nig ( ( x 0 ,p ) (y ,x ){ni}) ~ U n nig y { x 0 ,p){y„0 , x no, . . .  , ynix. 

+  J  P„"“_„0+1 ((*o,P), d(y, x ) ^ ~ n^ )  \ u n^ g  ((*„, p)(y, x ) ^ ° +1^  -  

Un~nig ( ( x 0 , p ) ( y ,  x)("1-no+1)) ] +  j f  P^ _ nQ+1 ((x0 ,p), d(y, 

Un~nig ((x'0 :p ) ( y ,  X) ^ - ^  -  j f  P ^ _ no+l ((x '0 , p ) , d ( y ,  x ) ^ 0+ i ^  

Un- nig^(x 0 , p ) ( y , x ) ^ - no+1^ -  j f  Pni { (x0 , p ' ) , d ( y , x ) W )  Un- ^ g [ { x 0 , p )  

(y, x ) (ni) j  - u n~m g(^x'0 , p ) { y no, x no,

From Proposition 4.4, we get

\Ung{x0 ,p) -  Ung(x'0 ,p')\ <  3C(1 -  e ^ - ^ U U  +  \Jy Un~ni9(  

(x0 , p ) ( y , x Y nl- n°+V)A% _ no+1 ((*o ,p)dx'0 , p ) , d ( y , x ) ^ - n^ )

Obviously, for any (y, x )ni_no+1 €  Y

\Un~nig ({x0 , p ) ( y ,x )(-nl~no+1))\ <  ||g||.

Hence, Lemma 2.1.1 in [8] and Proposition 4.6 yield

\ fY K - n 0+i ( ( x o ,p ) , ( ^ , p ' ) , d ( y ,x ) ^ +1) )u " -" ^ ((x o ,p )(y ,x )^ 1-"'-+1))

(4.37)
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< M \  (4a1c"0_1 +  2pnr l (G{x0) +  G ( 4 ) ) )

For n >  2, taking n0 =  [n/2\,  n\ =  n -  1, p =  m axjc^2, p^2, (1 -  e)1/2} <  1, and 

i f  =  max {3C +  4ai/cf, 2 /p |-}, the previous inequality and (4.37) imply

l^nff(so,p) -  Ung{xG, p )  \ <  K p n ( l  +  G{x0) +  G(x'0)) \\g\\BL-

2. Proceeding as in the proof of Lemma 1, page 252 in [2], we get the conclusion of 

the theorem using the inequality (4.35) and the assumption B. □

C orollary  4 .1  Under the probability measure P . ,  the Markov chain {wn+i, X n}  has 

a unique invariant probability distribution v, and for any g G L(V),  we have

proof. The proof follows the ideas in [17] and in the proof of Proposition 2, page 

253 in [2]. From the previous theorem, we can see that g —y Y(g) defines a positive 

linear functional on L(V).  Let Lc(V) =  {g G L(V) : g has compact support}. 

Then, by the Riesz representation theorem [1], there exists f ,  a positive Radon 

measure on V,  such that for all g €  LC(V),  we have

Now we extend (4.38) to L(V).  For all positive integers s >  1 and all non­

negative real number t, let define

Hence, for any t±, t2 €  M+, we have |<3>s(ti) — <3>„(t2)| <  2 \t\ — t2|/s . Choose any

g €  L(V),  g >  0, and for any positive integer s >  1 and all (x,p) G V,  define
99
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1 if 0 <  f <  s /2

$s(t) — —2t / s  +  2 if s / 2  <  t  <  s

0 if t  >  s.
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hs(x,p) =  g (x ,p )fB{x,p),  where f„(x,p) =  <M||x|| +  Iblli)- Then h s is a bounded 

continuous function with ||hs|| <  |b(|. Moreover, for any (xi ,pi) ,  (x2,p2) G V,  we 

have

\ f s (X l , P l )  -  f s(X2,P2) \  <  2 |||x i|| -  ||a:2 || +  |b l ||l  -  I MI l l / s

<  2 (llbii -  IMIJI +  libilh -  M i l )  Is  < 2  (||xi -  x2|| +  |b i -  P2II1) / s .

Hence, if (xi ,pi) ^  {x2 ,p2), then

IM *i»Pi) -  hs{x 2 ,P2)\ <  \fs{xi ,pi )\ \g{xi ,pi)  - g ( x 2 ,P2)\
l b i - P 2||i +  l b i - x 2|| l b i - P 2||i +  l b i - x 2||
, \g{X2 , P 2 ) \ \ f s { X u P l )  -  f s {X 2 , P 2 ]\ ^  , 2 f|

+  i f e . - B i k + i ^ r  £  + * w

Thus, hs € LC(V) for any positive integer s >  1, and l|/rsJlsi <  3|b ||sL . From 

(4.36), for any (x0,p) G V,  we get

Unh8(x0 ,p) -  [  hs(z)v(dz) 
Jv

<  K i z  I b l M l  +  G(x0) +  fi(x0)).
1 -  p

Since hs converges non-decreasingly to g, as s —> 00 , passing to the limit in the 

previous inequality, for any (xo,p) G V,  we obtain

Ung{x0 ,p) -  [  g(z)v(dz)  <  K \ ^ —  |b l|sz,(l +  G(x0) +  p(x0)).
J v  1 — p

Together with (4.36), this proves that for any g G L(V),  g >  0, we have

/  g{z)v(dz) -  r b )  <  oo.
Jv

Choosing g(z) =  1 for all z  G V,  we get v(V)  =  1, and thus v  is a probability. 

Any function g £  L(V) can be written as a difference of two positive functions 

9  =  9 + ~ 9 ~ with

g+ {z) =  {\g{z)\ +  g { z ) ) / 2 , g~(z) =  {\g{z)\ -  g{z)) /2,  z £ V .
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If g G L(V),  then \g\ G L(V),  and as a consequence g+ and g €  L(V).  Hence, for

any g G L(V)

f  g{z)v{dz) =  r(£r).
J v

Now we prove that v  is an invariant probability for the Markov chain {w„+i, 

X n, n >  0}. Let TI”(*[-) be the n -  step transition probability function ( for n =  1, 

is given in (4.23)). For any g G L{V),  we have

lim Ung(-) =  lim f  g(z)Un(dz\■) =  f  g(z)v(dz).
n-¥  oo n ~ > o o J y  J y

The previous equality implies that, for any (x,p) G V  the probabilities IIn(-|(a;,f>)) 

converge weakly to v. Hence, for any g G C°°{y) ,  we have

lim f  g(z)Un(dz\-) — f  g(z)v(dz)  =  lim Ung(-).
n—kco J y  J y  n —¥ oo

From Proposition 4.5, we know that for any function g G C°°(y) ,  we have Ug G 

C°°(V).  Hence, for any function g G C°°(14) and any z  G V,  we can write

[  g(z)v{dz) — lim Un+1g(z)  =  lim Un{Ug)(z) =  f  Ug(z)v(dz).
J y  n-Foo n—koo J y

Thus, the probability v is an invariant probability for the Markov chain {ro„+i, X n}.

Suppose that there exists also other probability measure v , such that for all 

g G L(V)  and any positive integer n >  1

[  g{z)v'{dz)  =  [  I f 1 g{z)v {dz).
J v  J v

Hence, by the Lebesgue’s theorem of dominated convergence, we have

[  g{z)v (dz) =  lim f  Ung{z)v'{dz)  =  f  Y{g)v\dz )  =  r(g) =  f  g(z)v(dz).
J v  n-i-00 J y  J y  J y

We arbitrarily choose a compact set K  C V  and for any positive integer s >  1, let

define the functions 4>s{z) =  1 — m in(l, sd(z,  K)),  z  G V.  It is easy to prove that
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4>a G L(V)  and non-increasingly lims_>.oo 4>s =  Ik- Hence

n(K) =  lim I <f>s{z)v(dz)  =  lim / ^s(jz)z/(dz) =  i / (K) .
S H - O O j y  S - i - O O j y

From the uniqueness theorem [1], we get v =  v . □

4.4.2 The model with misspecified parameters

For any vectors j / g t f  and x G R™, we define

max6% , a)  ̂ ,
% ,  x) =  - ^ - y -  A_i(s )  =  min /  d_1(y ,x)6*(y,x)Ad(dy) e =  min+^J

minfr7 (j/, a;) *eS Jv* JJ65
jes

. . .  Yl A^ . i (x k)a(xk, x k^i)Xm{dxr) . . .  Xm(dx2y x (dx1).
JS.m J K”» fe=2

P ro p o sitio n  4 .7  / /  the stochastic matrix Q is primitive with index of primitivity 

r, then for any pi,p? G W , and any integers k, I such that k >  I +  r  — 1, and any 

sequence yk, xk, . . . ,  yi, xi, we have

F[yk, x k, . . . ,  yi, x i ,p i \  -  F[yk , x k, . . . ,  yh x u p 2] ^ < e  r6 (yh x t) ■ ■ • <5(yi+r_i,

[k,l]
m i -   ̂ [fi(yi+(i—l)r+lj X[+(i—l)r-t-l) ' ' ' d(2/J4-jr—i, Xi+i,—i)] )||Pl 7̂ 21117

i = l

F[yk, x k, . . . ,  yi, x t,pi] -  F[yk, x k, - . . ,  yi, x h p 2]

[kA - ~ _  \
— ^ | |  — e (?//-!-(«—1)1—1-1 ? ®J+(i—l)r+l) ' ' ' ̂ {Vl+ir-li 2'M-ir—l)] J 1

i = l

where [k, t] is the maximum number of disjoints blocks of length r in the set { I , . . . ,  

k}.

P roof. For any p  G W,  we have

F[yk, xk, . . . , y h xh p} =  Q*B(yk, xk)- - -  QfBfa,  x t) - p.
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Using this equation, the proof is a consequence of Theorem 3.5 in [11]. □

R em ark  4 .7  If r =  1, i.e. Q is positive, then  we have

F[yk, x k, . . .  , yh xi,pi\ -  F[yk, x k, ■ ■ ■ , y i ,xh p 2] <  2(1 ~ i ) k~l+1. (4.39)

T h e results stated  in Proposition  4 .7  allow us to  obtain  an upper bound for the 

a.s. exponential rate o f forgetting o f th e in itia l condition  for (4.22).

A s s u m p t io n  A' T he M atrix Q  is prim itive.

T h eorem  4 .4  Under the assumptions A' and B, if the stochastic matrix Q is prim­

itive with index of primitivity r, then for any pi,  P2 & W  and any positive integer I 

we have

lim  sup i  log  || F[Yk, X k, . . . , Y h X u px] -  F[Yk, X k, . . . , Y h X h p2] ||i
fc—>00 &

<  r~l lo g ( l  — R)  <  0, P . a .s.

P roof. Under th e  sta ted  assum ptions, the M arkov chain {S k, X k,Yk} is geom etri­

cally  ergodic, w ith  a unique invariant probability  d istribution <r, on  S  x  x  Rm . 

For any i G S,  we have a’(dydx) =  p'bt (x,y)Xd{dy)'Kx{dx).

A s in th e proof o f Theorem  2.2 in [12], using P roposition  4.7, we get

l im s u p i  log  || F[Yk, X k, . . . , Y h X h pf\ -  F[Yk, X k, . . . , Y h X;,p2]||i <  lim su p ^
k-±oo ™ k —t  OO ™

[* ,/]

x
3=1

IA J / \

Y M ( i  ~  ^ r [ ^ ( ^ I + ( t - l ) r + l ) ^ + ( « - l ) r + l )  •  •  •  S(Yl+ir~l, ^-l+ir-l)]  1 J  =  r  1 
»=1 '  '

x limsupL-1 Y ,  log b - - l ) r + l > - ^ J + ( i - l ) r + l )  ‘ ' ‘ ^Ol+ir-1 > -X’f+ir-l)] 1
L ~ > o o  i = 1  \

Moreover, the ergodic theorem yield

L M

U m  —  ] j P l o g ( l  -  e r [ ( i ( F j + ( j _ i ) r + i ,  A J + ( j _ x ) r + 1 )  ■ • • 5 ( Y i +ir_ i ,  A i+2> _ i ) ] _ 1 )  =
3—1 ii~l
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bh  ( 2/ 1 , x i)  ■■■bir {yT, x r) Y [ a { x i ,  x i- 1)Xd{dy1)Xm {dx2) • • • Xd{dyT)Xm(dxr )-irx {dxi)
i=2

From the Jensen inequality, we obtain

1 L - M 
lim — V 'lo g  ( l  -  er[£(FJ+(i_i)r+i ,X ;+(i_1)7.+i) • ■ ■ 5(Yl+iT+uX l+ir+1)] -1) < ^

I-y00 £/ ' V / . ~
t=l *i=l

. .  . y ]  nhqiuh ■ ■ ■ qir- uir log [  . . .  f  /  . . .  /  (1 -  e’’[5 (2/2, 2:2) ■ • • % r, ^r)]_1)
r~~ J  Rm yjgd ,/Ri

— 1
r

&*1 (2/1, rcx) • ■■bir(yr ,x r)Xd(dyi) • • • Ad(dyr) J][a(a;j,a:i_ 1) Am(<i:Er) . . .  Am(£fe2M atei)
i=2

m m  , r r r /  r
=  V  • ■ • liilqiuh • • ■ qir~uir log( 1 -  er /  . . .  n  xt)bH{yt , x t)

.. r \ M  M

Xd{dyt) ] a fo , 2̂ 1) Xm(dxr) . . .  Xm{dx2)irx (dxi) ) <  ] P . . .  /r’Y 1’’2 • • •
' i=2 ' *1=1 ir=l

log/ l  — er /  . . .  TT A _1(Xi)a(3:i , a^-i) A,„(da:r) . . .  Xm (dx2)'rrx (dx1) J
V J  r  J k™ i=2 /

=  log(l -  R) <  0 . □

A ssu m p tion  C The Matrix Q  is positive.

Now we study the ergodic properties of the stochastic process {w n, n >  1} defined 

in (4.22). It is easy to show that under the true probability measure P .  correspond­

ing to the true values Q,  p . and bt , the Markov chain {Sn, A„, Yn, wn, n >  1} has 

the transition probability

n ( i , A , F, 2j\ij x , 1/ ,  p  ) P® (t^n+i ji  G A, ^ A? iXn-j-i F A| z, A n 

=  x , Y n =  y , w n =  p )  =  qhJ J  J  bj ( y , x ) a ( x , x ) l z (F[y',x ,p] )Xd{dy)Xm(dx),

for any b >  1, j  €  S, Z 6  W, A  6  F  6  23(Krf) and ( i ,x , y  , p )  G F . For

any real-valued, bounded and ^V, measurable function g defined on F , any
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n >  1 , and any (i0 , x 0 , y 0 ,p), ( i ,x ' ,y ’, p )  £  V,  we have

U g ( i , x ' ,y ' , p )  =  E . <?(Sn+l; -^n+lj ^ri+l) $ n + l)

=  Y ) q i’j /  ^’(y,a:)a(x,a/)# ( j , x , y ,  F [ y ' , x , p } )  \ d+m (d{y, x ) ) ,
~f~s j  «<*+"> v 7

^ 9  (̂ 0; ^o, yo? p) E ffl y - N n + i ; h -̂xi, wn.j_x) jSx h)x p? -̂ fx hx yo

=  £  qio’h qiui2. f  bn (yu x x)a{xi, x0) (y„, z n)a(xn, x„-i)
. -c j  E”(d+™)

y(ira, 3̂ , ŷ , ̂ [pyj—x? 3?n—15 • • • j yi, ̂ 1? *0, Vo5p])-̂ n(d+m) (d(y, ) ■ (4.40)

P ro p o sitio n  4.8 Under the assumptions A', B and C, if g £  C'°°(V'), then U(g) £ 

C°°(V).

P r o o f . T he proof is sim ilar to  th e proof o f P roposition  4.5 .□

T h eorem  4.5 Under the assumptions X , B and C, we have:

1. There exists positive constants K  and p <  1, such that we have

\Ung(i ,x 0 , y 0 ,p) -  Ung(i ,x'Q, y  ,p ) \  <  K p n (n  +  G(x0) +  G ( 4 ) )  ||y ||s i,

f o r  a n y  f u n c t i o n  g £ L(V),  a n y  ( i , X o , y a , p ) ,  ( i \ x 0 ,y '0 , p )  £  V  a n d  a n y  p o s i t i v e  

i n t e g e r  n  >  2;

2. There exists a positive constant K i  independent of g £  L(V) and (i, xq, yo,p) £ V,  

and a constant T(g) depending only on g, such that

\Ung(i ,x0, y0 , p ) -  f(y) |  <  K i ^ ~ - ^ \ \ g ^ B L  (n +  G(x0) +  p{x0) ) ,

for any positive integer n  >  2. Moreover, u =  ’%2n>0 (Ung — f  (y)) is a  solution of 

the Poisson equation u -  Uu =  g — t(g) .

P roof. 1. N otice th a t the follow ing decom position  holds

Ung{i,XQ,yQ,p) -  Ung{i ,x'Q, y  , p )  =  ( u ng{i,XQ,ya,p) -  Ung(i , x 0 , y Q,p))
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+ ( u ng( i ,x 0 , y 0 ,p) -  Ung(i,x'0 ,y'0 , p )^  +  ( u ng{i ,x0 ,y'0 , p )  -  Ung{i , x 0 ,y'0 ,p')^

To estimate the first term, let us take 1 <  nO =  [n/2\ <  n. We have

T, - Ung{i ,x0 , y 0 ,p) - U ng(i,x'0 , y 0 ,p) <  Ung(i ,x 0 , y 0 ,p) -  E
h,...,ine s

. . .  qin- 1’in /  bXl (yi, xi )a(xi ,  s 0) • • ■ b,n (y„, xn)a(xn, xn- i  )g ( in, xn, Un,
J ^ n ( d + m )  \

F '[V n —l i  %n—1 • • ■ 5 VnQi ̂ nOj 0̂? 2/Oj P\ J ̂ n(d-\-m) ^  1 Q Q •••

qin-uin / 5*1 x 1)a(x1, So) ■ ■ • b'n{yn, xn)a(xn,x n^ ) g I in,s„,  yn, F[y„_i
J]gn(i+m) \

S„-1 • • •,t/»o,^no,^o,2/o,p]')An((i+m) (d(r/,s)(n)) -  E  g ^ Y 1’*2 ■ . .g ’"-1’*"
'  * i ,. . . ,* n e s

/  b*1 (y i , s i )a(s i ,  Sg) ■ • ■ bln(j/„, s„)a(s„, s „ _ i ) g 1 i„, xn,yn, F[yn- i ,
JjjTl̂ +TO) \

s „ - i . . . , 2/„o,s„o,so,yo,p]'jA„(d+ro) {d{y ,x){n)) +  E  g’- V 1’’2 _ _

/  &ix(j/1 ,S i)a (s i, So) • • ■ bSn(?/„,S „ ) a ( s „ , I  i n, s „ ,y n, F [y „ _ i,

• ■ ■ 5 2/n07 n̂O? 0̂5 2/Oj p] J (d(y, s ) (n)) -  Ung{i, x0, y0, p)

^n—1

For any x G Rm and any sequence i l3 . . . ,  in- no + x  € 5 , let

f c f r n0+I (*) =  f  bh (tfi> x i )a(x i ’x) ' - '  bin ~n0+1 (y„-„o+i, s„_n0+i)

® ( s n —n O + 1? %n-no)g  71O+I5 S ^ —n O -f- l , ? / n —n O - f l j  ^ [ y n —-nQ? ^ n —nO ■ • • i V h  ^ 1 ;

y0,p ]) A(„_„o+i)(d+m) (<% s ) (n"n0+1))

Using (4.39), we obtain 

7 \  <  4 s ( g ) ( l  -  e ) ” - " °  + ,2n.Oj®nO+l -yin— 1
• • • H in [

s„0-i)a(zn o-i, xn0- 2) ■ ■ ■ a(x1, s 0)A(„_n0+i)ro (d(x)(n n0+1)) -

n*7i0v)In (
&xo,yo,p ^

HnO
*nOi"’!*n€5
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fJlnQ-flnO+1
• • • q i n ~ U in  /  9 i t y o i n ( X n O - l ) a ( x n O - l ,  S n O - a )  • ■ ■ a ( ® i ,  x ' 0 )/̂ (nO— l)m

A (re_ n O + l)m  ( d ^ " - 0* 1) )  <  4 * ( f f ) ( l  -  I ) " " " 0 +  £  '  ‘ '

I [  9 X y Q;pn(xn0- i ) P f - l {xQ, d s „ o -l)  -  [  9 l t w t  ( X n O ~ l ) P f ~ l  ( 4 -  dz„o_ l)
| J k "» J E m

Since for any a; E Mra,

f e : r n0+iM i < im i>

from Lemma 2.1.1 in [8] and assumption B, we have

Pi <  4s(5)(1 -  e)"-"° +  Iblb^0- 1 ( g ( x 0) +  G ( x 0) )  .

Let ( w  =  m ax{(l -  e)1/2, (px)1/2}  and amax =  max{4,/?^2}. We get

T\  <  IkllBiflmaxCmaj; ( l  +  G ( x 0) +  G (^0))  ■ (4.41)

Replacing in (4.40) and using (4.39), it is easy to show that for the second term

T2 = Ung (i ,x 0 , y 0 , p ) - I P g & x ^ y ^ p )  < 2 s ( g ) ( l - e ) n l . (4.42)

To estimate the third term, we use the same decomposition as in the proof of 

Theorem 3.5 in [12], For any positive integer n l <  n — 1, and any zi G Md+m,

1 <  I <  we have

nl
Ung(i, x'0, y0 , p )  -  Ung(i’, x0, y „ , p ) | < Y 2  Y 2

1=1 i i , . . . , i n e S

(qhH -  ?* -tl)

M - u i n  /  ( y u  X i ) a ( x u  x ’0) - - -  {yn, x n ) a { x n , :rn _ - i )
J]gn(d-pm )

Q (̂ n-5 ^n; Un j ^fyn—1? *^n~l • * • ? Vh 1 ? * ■ ■ j ^15 ^0 5 Vqi P ' } ) - 9 {  ̂ ni Vn-i

e [j /n- i ,  xn- i . . . ,  y l+1, X l+I,2i, . . . ,  Si, Xo, j/o, p '] ) )  A„(d+ml (d(p, x ) (n))

+ E (9,,n -  q' 'n )qt u t 2 . . . q tn- uin [  bh ( y i , X i ) a ( x i , x 0)
J-g n (d + m )
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• b n ( 7̂1? 3̂ n)(X(3?7x, X ji—i j f f  |^n? Vn:  ̂ l y n —1 ? ^n—l * • ■ ? 2/nl+l ? ^nl+1 ? %u\ 5

. ,  2:1 , :Cq, j/q, p  ] J An(d+m) (d(y, )̂

Elementary calculations and the inequalities (4.39) and (4.14) yield

qil,i‘+1 .. . (1 — e)n_i_1 +  ||g||
nl

T s < 2 s ( g ) Y :  E  h <A
/ = !  ii,...,in£S

x E *nl+l ,«nl+2 1 5?Ti
. /  .

_*,*»1+1 * »*nl+l
H nl+ l  Hnl+l

nl
<  2s (5)«i E 4

1 = 1

X (1 -  e)"-*-1 +  ||5 | |d ic f+1

Let dmax — max{ci, 1 — e} and n\ =  n  — 2. Then

T3 = Ung(i,x'0 ,y'Q, p ) - U ng(i',x'0 , y 0 , p )  <  2{n -  2)a1 \\g\\BLd^ĉ . (4-43)

Adding (4.41), (4.42), and (4.43), we get the inequality in the first part of the 

theorem, with p =  m a x -fc^ , dmoa:} and K  =  m ax{2di/dmoa:, 2/(1 -  e), amax}.

2. Proceeding as in the proof of Lemma 1, page 252 in [2], and using the first 

part of the theorem and the assumption B, we can easily prove the second part of 

the theorem. □

C orollary 4.2 Under the probability measure P . ,  the Markov chain {S n, X n,Yn, 

wn} has a unique invariant probability distribution f  on V, and for any function 

g e  L(V) we have

f  (g) =  [  g{z)r{dz).
Jv

P roof. Using Proposition 4.8, we can prove the corollary similarly to corollary 4.1.
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Chapter 5 

M onte Carlo approach for 

switching state-space models

5.1 Introduction

In recent years, various switching state-space models (SSMs) have been developed 

with applications across board ranges of disciplines from econometrics [8] to con­

trol engineering [18]. In this chapter, we are mainly concerned with the models 

introduced in [6]. They are represented mathematically by

X ?  =  AmX ? _ 1 +  u%, w™ ~  JV(0, Hm), m  =  1 , . . . ,  M  (5.1)

Yk =  CShX ^ + v k, vk ~ N ( 0 ,R ) ,  (5.2)

where {Yk, k =  1 , . . . ,  T }  is the sequence of observations, {X™, k — 1 , . . . ,  T,  to —

1, . . .  M }  are M sequences of real valued hidden state vectors, and {S k, k — 1 , . . . ,  T }

is a sequence of discrete hidden state vectors. The Bayesian network associated 

with these models is displayed in Fig. 1.4. Let denote F(t) =  {T], . . . ,  Yt}, X ^  =  

{ X 11, . . . , X r , . . . , X t1, . . . , X r } a n d 5 w =  { 5 i , . . . ,  5t}. The discrete switching state

The material presented in this chapter was previously published in [15]
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can take M  values, Sk €  M }, and has a homogeneous Markovian structure

specified by the initial probabilities 7r and the transition matrix $ . The zero-mean 

Gaussian noise vectors w™ and vk are uncorrelated with covariance matrices Hm, 

m  =  1 , . . . ,  M,  and R, respectively, and they are independent of the sequence Sp)- 

Am are the s x s transition matrices and Cm are the d x s  output matrices for the 

state-space model m.

If the state vectors and the noise vectors are concatenated into large state and 

noise vectors X k =  ({XkY , . . . ,  {XjYYY and Wk — {(wkY, (wffYY, the model 

(5.1) - (5.2) is equivalent with the following model [18]:

X k =  A X k^  +  Wk, Wk ~ N ( 0 ,H ) ,
(5.3)

Yk =  CShX k +  vk, vk ~  N (0, R),

where A =  diag(Tm), H  =  diag(Hm), m  =  1 , . . . ,  M,  and C'Sk =  (0, . . . ,  , . . . ,  0)*.

Notice that for M  — 1 (i.e. no discrete switching variable), we obtain a linear 

Gaussian state-space model. The Expectation Maximization (EM) algorithm, with 

the E step based on the Kalman filter and smoother can be applied for system 

identification [17]. On the other hand, if we keep only the observation sequence 

{Yk}  and the discrete switching variables {S k}, we are in the classical setting of 

hidden Markov chains. For learning the parameters, we can employ the Baum- 

Welch algorithm (see Chapter 4, Section 4.3.1).

The E step becomes intractable [6], if we attempt to implement the EM algorithm

for the switching SSM (5.1)-(5.2). To overcome this difficulty, approximate inference

methods are used (see [13] for a justification of the convergence of the variants of the

EM algorithm). One possibility is to use a variational approach [6]: an approximate

Q(S(t ), X(t )) of the posterior probability F(5('r),X(r )|Y(r )) of the hidden states is

constructed, and the Kullback-Lieber divergence between Q and P  is minimized in

each cycle of the EM algorithm. Other methods based on the Generalized Pseudo

Bayesian (GPB) algorithm ([8], pp. 99-109) have also been proposed. For example,

a first order GPB algorithm merges a mixture of Gaussians into a single Gaussian
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according to the formula:

M

E [X k\Yu . . . , Y k} =  J 2  p (Sk =  i\Yi, . . . ,  Yk)E[Xk\Sk =  i, Yx, . . . ,  Yfc].
i- 1

A better approximation can be achieved by a second order algorithm which merges 

Gaussian according to their two-step history:

M

E [ X k \Sk =  i , Y x, . . . , Y k\ =  Y l  P (S * =  = 3, Y k) E [X k \Sk =  z,
i - l

Sk- 1 = j , Y u . . . , Y k}.

Another closely related algorithm is the Interacting Multiple Models (IMM) algo­

rithm described in [1].

However, these models suffer the well-known problems associated with the EM 

algorithm, namely the possibility to be trapped in a local minimum and the slow 

rate of convergence. To some extent, deterministic annealing [21] and the acceler­

ated algorithms presented in [7], [11] and [12] have been proposed for solving these 

problems.

In this chapter, we apply a Monte Carlo EM (MCEM) algorithm [23] and we

approximate the expectations in the E step using a multimove Gibbs sampler [2],

In a purely Bayesian approach, the Gibbs sampler was previously used for a slightly

different model (see [8] pp.237-241). In the present study, the advantage of using the

Gibbs sampler is that once the simulated values for the discrete variables {S k k =

1, . . . ,  T }  are obtained, we can apply the Kalman filter and smoother. This allows us

to use the Rao-Blackwellised forms in the E step, and also to speed up the algorithm

by nesting [22]. Once the system parameters are estimated, we can also solve a

classification problem by assigning each observation Yk to the class i €  { 1 , . . . ,  M }

corresponding to the maximal probability P (S k — j\Y(r)) j  =  1, . . . , M .  In the

following section, we present the Gibbs sampler for the switching state-space models.

The proposed nested Monte Carlo EM (NMCEM) algorithm is the main contribution

of this chapter. We then discuss how the theoretical results presented in the previous
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chapter can be applied for the model (5.1) - (5.2). At each particular step i of the 

Gibbs sampler, we need the prediction filter {pk}, where Pi =  n and

r t+ i  =  P ( S k + i  =  m , X k( i ) , . . . , Y 1, X 1 (i)),  (5.4)

for any j  =  1, . . .  M, all k >  0 and any sample X(r)(i).

5.2 The Gibbs sampler

We define

/ ( 5 (T)|F(T)) := P (5 (r ) |l (T)), (5.5)

g (X iT)\YiT}) := P ( X {T)\Y{t)). (5.6)
T - 1

f {S{T) \X(T) ,Y(r)) := P(5(r)|A'(T),y(T)) — P ( S t \X(t ) ,Y(T)) P ( S k \Sk+i,
k~l

X ikhY{k)), (5.7)
M  r T—1

9 (-^(T)I^(T)>̂ (r)) :=  P(X(t)\S(t),Y(t)] —
m —1

x r + v  s ( k ) , Y ( k ) )

k = 1

(5.8)

The probabilities in (5.7) and (5.8) are calculated as in [2] (notice that in (5.8), 

we have only the Gaussian densities). The probabilities in (5.5) and (5.6) are in fact 

intractable, since they involve integration with respect to X(t ) and S(t) , respectively.

Starting with an initial guess S(x)(0), the multimove Gibbs sampler generates a 

sequence X(r )(l) , 5(t)(1), A"(r)(2), 5( ^(2) , . . .  such that S (t)(*) is drawn from /(5 (t ) | 

X (T) ( i ) ,  Y(t )) and X(T ) ( i  +  1) is drawn from g ( X ( r ) \ S { r ) { i ) ,  X(T))- This produces an 

homogeneous Markov chain {S(T)(i)>X(T)(i),t >  0}, and under appropriate regular­

ity conditions [19], we are eventually sampling from P(S(t), X(t)  |F(t)). We prefer 

to use a multimove Gibbs sampler, because of its faster convergence ([2]).

For any vectors y  6  Rd and x  =  ( x \ j  =  1 , . . . ,  M )  6  RMs, let b(y,x) —
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{ V{ y , x ) , j  =  1 , . . . ,  M) and B(y, x)  =  diag(V( y , x) , j  =  where

V (y ,x )  — (27t) dl2 det(i?) 1'/2exp ( - ( y - C j X j ) t R  1 ( y - C j X j ) / 2).

The probabilities in (5.7) can be expressed in terms of the transition matrix $  and 

the prediction filter pk — {p?k) , j  — 1, . . .  M, given in (5.4):

p(q _ . , q _ . y  v m Y k M AP (o k — — J, T(fc)) — • M ■
P i + i  2 2 i = i b‘ i Y k , X k H

Following [2], for the prediction filter, we write

& B ( Y j t , X k ) p k
Pk+l = k =  L . . . T -  1.

&*(!*, X*)Pfc

If •  denotes the projective product introduced in [10], then we have

pk+1 =  & B (Y k, X k) * p k, k =  l , . . . T  -  1. (5.10)

The probabilities in (5.8) can be calculated using the Kalman filter as reported 

in [2]. Here, instead of sampling according to these probabilities, we prefer to use 

the computationally more efficient simulation smoother presented in [4].

Now we study the convergence of the Gibbs sampler. In this case, strong con­

vergence results can be easily proved if the Markov chain {Spr)^)} is aperiodic and 

irreducible [19] (for instance, if the transition matrix $  is positive and it1 >  0, 

t =  l , . . . ,  M).  Under these conditions, we can state the following results:

T heorem  5.1 (i) {X(T)(i)} is an ergodic Markov chain with the invariant distri­

bution g(X^T') \Y^T))■ For any initial value 1 ^ ,  we have

[  I<?Wpf(T)\y (T)) -  g (X {T)\Y(T))\ d X {T) <  C q \
J R ‘ M T

where 0 <  q < 1, C  >  0, and <jrW{X^r)\Y^)) is the posterior distribution of X(T) (*)■

(ii) For any real-valued function h{X(T)) with E 3
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initial density (^cdI^x)) there exists a constant Ch such that

[h(X{T))\YiT)] -  Es [h(X(T))\Y[T)] < Chq\

(Hi) The Markov chain {X(T)(s)} is geometrically <p mixing.

P roof. The proof is very similar to the proof of Theorem 1 presented in [3] or [16]. 

Here we will outline only the main points.

First, we notice that if {S(r)(i)} is aperiodic and irreducible, since it has a finite 

support, it is uniformly geometrically ergodic and geometrically <j) mixing. 

Secondly, {Spr) (i)} and {X(T) (*)} are two Markov chains with kernels

H(S'(T),S(T)) =  [  f  {S'(T) \X(T), Y{T))g{X(T) IS'ct), Y(T))dX(T),

M  M

K ( X \ T), X m ) =  E -E  g{X'(T)\S(r), Y{T)) f ( S {T) |X(T), Tpr)) •
Si=l St =1

Hence, f(S(r)\Y(T)) and g(X(r)\Y(T)) are stationary distributions (in fact they are 

the unique invariant distributions) for the Markov chains {5(r)(*)} and {^pr)(*)}- 

The posterior distributions at step i, /W and gb) are derived from the kernels:

M  M

fU (S 'm \YiT)) =  X ) - E  
Si=l S t - 1

g({}(X \ t ) \Y {T)) -  f  K ( X \ t ) , X {T)) g ^ ( X m IY(T))dX (T).
J KsMr

Finally, the following duality principle holds

M  M

g U {X [T)\Y{T)) =  E  E  9(XiT)\Sm ,Ym )f® (S m \Ym ).
Si=l St=1

The main idea of the proof is to transfer some of the properties of {fS(r)(i)} to 

{X(T)(f}} using this duality . □

C orollary 5.1 For any function h such that F 9[|h(X (r ) ) |2
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following convergence in distribution as I  oo:

i 1
-  E*{h{X[T))\Ym ]) y A/"(0, o'ffj,

i=l
oo

0 <  ah =  Var9 (/i(X(T))) +  2 ^ C o v 9 (h (X (T)(0 ) ) , h (X {r)(i))) <  oo.
*=i

P ro o f. This is a direct consequence of the geometric ^-mixing property of the 

Markov chain {^(r) (*))}• □

R em ark  5.1 A similar result can be formulated for the Markov chain {S(r)(i), 

X(t)(*))} with the stationary distribution P(S{t), ^(t)|T(t)) =  g{X(T)\S(T),Y(r)) 

f(S(T)\Y(T))-

R em ark  5.2 A very important consequence of the theorem is the fact that the 

ergodic theorem applies, and we can approximate

1 1 

i ~  1

for I  sufficiently large and E 9 \h(X{T))\ Y(.( T ) <  oo. The central limit theorem in

the corollary allows us to monitor the convergence by estimating the variance a h.

5.3 The learning algorithm

Let the parameters of the model (5.1) - (5.2) be 9 — {R,  tt, A m, Cm, Hm, Qm, fim, 

m  — 1 , . . . ,  M }.  Here, jim and Qm are the mean and the covariance of the hidden 

Gaussian state variable Xj71 in the state-space model m.

5.3.1 The Monte-Carlo EM a lgo rithm

The EM algorithm is particularly suitable for learning the parameters of the switch­

ing SSM (5.1)-(5.2), because it is easier to calculate the likelihood of the augmented

data {5(t), X(T), F(T)} than the likelihood of the observed data {F(T)} (see [6] for
117
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detailed calculations). The algorithm starts with an initial guess 9q of the unknown 

parameters and iteratively compute the estimation 9*. Each iteration consists of 

two steps : the expectation (E) and the maximization (M) step.

Giving the current estimation 9n of the parameters, the conditional expectation 

of the augmented data log-likelihood is computed in the E-step:

For the mixture structure of the switching SSMs, any attempt to calculate the exact 

expectation in (5.11) becomes impractical [6]. To solve this problem, we propose an 

MCEM algorithm [23]. Instead of an exact E-step, we use an approximation

where {S(T)(1),X(t){1)}, I =  1, • • ■, Ln is a sample from P (S (r),X (T), |Ŷ t ), 9n). 

The M-step performs a maximization with respect to the parameters 9:

Q(9\9n) =  E [logP(5(T)^ (T ) ,E (r)|0)|F(T),0„]. (5.11)

9n+1 =  argmaxQ(0|0„). 
0

In our case, we maximize Q(9\9n) by setting

(5.14)

(5.15)

QT(n  +  1 ) =  E  fX ?  ( X r f  \Ym , 9 j  -  E  \X ? \Y m ,$n] E \{X ? Y
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(5.17)
T

fc=1 m =l k=1 (5.18)

M- ( n  +  l ) = JB [ x n y ( T ) , ^ ] ,  

?rm(n +  1) =  P  (Si =  m |r(T) A )  ,

(5.19)

(5.20)

(5.21)

5.3.2 The nested MCEM algorithm

In each cycle of the MCEM, we repeatedly apply random generators. Hence, com­

pared to any deterministic implementation of the EM algorithm, the MCEM is time 

consuming. Thus, any technique which is capable to improve the rate of convergence 

is very valuable. Here we propose a nested MCEM algorithm [22].

We consider two different augmented-data sets: YaUgi — (E(r), S(T)} and Yaug2 =  

(F(t), S (t),X (t)}. For acceleration, the nested MCEM algorithm will fix the aug­

mented data Yaugi and run several EM iterations conditional on these values. Notice 

that remark 5.2 allows us to use the following Rao-Blackwellised forms to estimating 

the expectations in (5.14)-(5.19):

E  [ l{m}(Sfc)X r |F (r)] «  Y . E  [l{m}(Sk( i) )X ? \S {T)(i),YiT)] /L n, (5.22)
?=i

Ln
E  [ l {m}(Sk) X ?  (XJ?? |y(T)] «

i= l (5.23)

Y(t ) / L n,
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E  [ X ?  PCD* |F(r)] lX ™ l%)«. %)] /L-  {5.24)
2 = 1

E [x? (xr0‘ l*CT)] «][> [X™ (xr-i)‘ |S(T)W^(T)] /Ln. (5.25)
2 = 1

We also have

Ln
P  (Sk =  m|F(r)) «  £  l {m} (Sfc(*)) / L„, (5.26)

P  (Sk =  m, Sfc_! =  ? |F(r)) «  £  l {m} (&(*)) 1M (Sfc_i(i)) /Ln- (5-27)

Hence, the E-step for this inner EM algorithm is based only on the Kalman 

smoother and the previous Rao-Blackwellised forms. As a consequence, it is com­

putationally more efficient. A formal proof of the faster rate of convergence for the 

nested EM is given in [22]. Now we present the algorithm in detail:

In itia lize  the parameters o f the m odel.

R epeat until log likelihood has converged:

Draw Ln sets of values S(x)(*)? X(T){i) for {S(T), Apr)} using th e  Gibbs 

sampler;

Calculate the conditional probabilities using formulas (5.26)-(5.27);

For t  “  1 to  X ne3ting do  

Inner E-step

Run Kalm an sm oothing recursions given the sam ple {5(r)(i)i* =

1; ••• i Ln};

Replace in the Rao-Blackwellised forms (5.22)-(5.25);

Inner M-step

R e-estim ate the param eters o f the m odel using the formulas

(5 .14)-(5.21).

Next, we discuss some issues concerning the implementation of the algorithm.

Following the suggestion given in [23], we increase the number Ln of data in the

Gibbs sampler at each new cycle of the MCEM algorithm. For the number of inner
120
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steps, we have tried several values (K nesting =  3, 5,7) with comparable results. Since 

the log likelihood is intractable, we apply a harmonic average to estimate its values

[14], and we apply the bridge sampling presented in [22] to monitor the convergence.

5.4 Asymptotic properties of the prediction filter

In the NMCEM algorithm, we apply the Gibbs sampler in every cycle of the EM 

algorithm. Since we do not know the real values of the parameters, we have to 

work with the estimates corresponding to each cycle of the EM algorithm. In this 

section, we consider a reduced set of parameters 6  =  { $ , 7r}, and we apply the results 

obtained in Chapter 4 to study the impact due to the inaccuracies in the estimates 

of 6  for a large number T  of observations.

For every positive integer i and for every set of values for X(T)(i), the values of 

S(t )(i) are drawn from f(S(r)\X(T){i), Y(T)) given in (5.7). Since we are working with 

a fixed set of values X ^)( i) ,  we omit the index i in order to simplify the notations. 

As we have already mentioned, the probabilities in (5.7) can be expressed in terms 

of the transition matrix $  and the prediction filter pn — (p£), j  — 1 , . . .  M, given in

(5.4). The exact values of the parameters 6  are in fact unknown, so that instead of 

(5.10), we consider an equation corresponding to the values 6 (n) at the n — step of 

the EM algorithm:

Pk+i(n) =  $ 4(n )B (yfc,X fc) • p k(n),

for any k =  1, . .  . T  — 1 , and pi(n) =  7r(n). To make explicit the dependency with 

respect to the initial condition and the observations, we denote

Pk+i(n) =  f n[Yk, X k, . . . , Y h Xi,pi(n)\,

for any positive integers k, I, such that k >  I.

A ssu m p tio n  I. The Matrix $  is primitive.

A ssu m p tio n  II. The matrix A — diag(Am), m  — 1 , . . . ,  M,  has only eigenvalues 

a  with |u| <  1.
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As a consequence of the first assumption, the Markov chain {S*} is geometrically 

ergodic with a unique invariant probability distribution p  =  (fi1), i — 1 , . . . ,  M. 

Under the second assumption, we study the properties of the Markov chain { X k =  

(X k, . . . ,  X jf) ,  k >  0}. From the normality and independence assumptions, we can 

easily prove that for any positive integer k >  1 and any x 0 £ W M

where H {k) — H  +  AHA* +  . . .  +  Ak~1H {Ak~1)t =  H  +  Fk.

Furthermore, Assumption II implies that the zero solution of the deterministic 

linear system xk+i =  Axk is asymptotically stable (Theorem 4.9, in [5]). Since the 

system is autonomous, the zero solution is also exponentially stable (Corollary 4.6, 

in [5]). Moreover, by Theorem 4.3, page 128 in [20] the Markov chain {X k, k >  0} 

is geometrically ergodic with a unique invariant probability distribution p. From 

Theorem 4.5, in [5], there exists positive constants 02 and 02 <  1, such that, for all 

k >  1,

L e m m a  5.1 For any positive integer I and any normal distributions N (m i , Z) and 

N{rri2 ,Z )  on with mi 7̂  fn2 , and the same symmetric and positive

definite covariance matrix Z, we have

P kx {x 0, ■) =  P ( X k\X0 =  x ) =  N (A kx 0, H{k)) (5.29)

|Afc||2 <  a24 - (5.30)

^ Z )  -  N (m 2 ,Z)\\ <  p(Z  x)1/2||mi -  m2||

Consequently, for 02 and c2 as given in (5.30) and any Xq, x 0 £ E sM, for the k —step 

transition probabilities P x(x0, ■) defined in (5.29), we get

IIP* (z0, •) -  P^ix'o, Oil < -  ^ | | .  (5.31)

P r o o f .  Let V — N (m \ ,Z )  -  N (m 2, Z) and

Qi(x)  =  (2tt) ,(/2 det(Z) 1,/2exp (—(x — m i f Z  1(x — m i ) / 2) ,
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Q2(x) — (27r) ^2det(Z)  exp (—(z -  m 2)tZ  l (x — rri2)/2)

Proceedings as in [9], page 47, from the Schwartz inequality, we get

I MI = [  \Qi{x) -  Q2 {x)\dx =  [  \ /Q i{x )  -  \ZQ2 {x) ( V Q i ( x ) +  V Q ^ x ) )
J m‘ J s ‘ v '

< ( / ; (V^iM  -  VQzOc)) ^  (\/QiW + -\AMz)) ^

=  ^ 2 - 2  J  ̂ 'S/Q i (x )Q 2 (x)dx  ̂ ^2 + 2 J  ̂ \ /Q i{x )Q 2 (x)dx^

Since

/  =  exp ( - (m i -  m2)4Z ^mx -  m2) / 8)
m

we obtain

IIHI <  ( ( ^ l  ~  m 2)tZ ~ l (m 1 -  m 2) ) 1/2 .

Let Z -1  =  Z^Zx be the Cholesky decomposition of the symmetric and positive 

definite matrix Z -1 . Thus \\v\\ <  ||Zi||2||mi — mall =  p(Z“ 1)1/'2||mi -  m2||.

To prove the second part of the lemma, notice that for any positive integer 

k, H[k) — H  +  Fk, with Fk being symmetric and non-negative definite. Hence, 

p{H~l )Ik — is also symmetric and non-negative definite. As a consequence, 

-  p(H'-1 ). The inequality (5.31) is thus a consequence of the first part of 

the lemma and (5.30). □

Notice that from the previous lemma, it is obvious that assumptions I and II 

can replace assumptions A' and B in the previous chapter. Moreover, assumption 

II ensures the asymptotic exponential stability of the Kalman filters applied for 

drawing the values of (i ) at each step i of the Gibbs sampler.

Let denote by A* (-) the Lebesgue measure on Rl , k >  1. For any vectors 

X i,x2,x  £  KMs, y £ ^  we define:

a(x2, Xi) =  (2ir) ~ sM / 2 J~J det(f f j ) ~ 1/ 2 exp (x{ — AjX^f H j 1 — A j x { j  /2
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e(n) =  . m in+«j=lmin bi(y, x)

mm /
jTgd

R(n) =  er(n) /  . . . TT A_i(a;fc)a(xfe, a;fc_ i)  AMs(da:r ) . • . \ M s { d x 2 ) p { d x i )
JR»M

As a consequence of Theorem 4.4 in chapter 4, we can prove that the prediction 

filter has an exponential rate of forgetting the initial conditions.

T h eorem  5.2 Under the assumptions I  and II, if the stochastic matrix &(n) is 

primitive with index of primitivity r, then for any positive integer I and any vectors 

p t) p 2 €  MM with positive entries that sum to one, we have

Moreover, from Corollary 4.2, we have the following result.

T heorem  5.3 Under assumptions I  and II, if the matrix $ (n ) is positive, then the 

Markov chain {Sk,Xk , Yk,pk(n)} has a unique invariant probability distribution m.

5.5 Applications

In order to asses the effectiveness of the proposed NMCEM, we compare our ap­

proach with the algorithms presented in [6] and [8].

5.5.1 Simulated data

First, we suppose that the model parameters are known and we apply the Gibbs 

sampler to solve a classification problem. As in [6], the SSMs and the switching

lim sup ^ log || f n[Yk, X k, . . . ,Y i ,  A;,pi] -  f„[Yk, X k, . . . , Y U X h p2\ ||i

<  -  log(l — R(n)) <  0 ,, Pa.s..
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process are defined as

* 2  =  0.99 X lk_x +  w l  w l ~ N ( Q ,  1),

X 2k =  0.9J£f_x +  w2k, w f ] ~  N ( 0,10),

Yk =  X ?  +  vk, vk ~ N (  0,0.1),

where the initial probabilities are 7r(0 =  nW — 0.5, and the transition probabilities 

are rfy1’1) =  <i>(2’2) =  0.95 and =  <3>(2’b =  0.05. We generate 200 sequences of 

length 200 from this model. A set of data and its true segmentation are displayed 

in Fig. 5.1.

Figure 5.1: Data sequence of length 200 with its true segmentation below it: the 
upper dots represent the switch state 2, and the lower dots the switch state 1

For each sequence, we run the Gibbs sampler described in Section 5.2. A point Yt 

is considered to be from class 1 or class 2 according to the values of the probabilities 

P(St =  m \Y i, . . .  ,Yr), m =  1 , 2. These conditional probabilities are estimated 

using (5.26). The histogram of the percent correct segmentations is displayed in 

Fig. 5.2(a). Compared with the results reported in [6], even with the annealed 

algorithm, we notice an significant increase of the percent correct segmentations. 

However, the Gibbs sampler is much slower than the variational approach and we 

could not use exactly the same data as in [6].

Now, for the same simulated data sets, we apply two merging methods: the 

IMM procedure, and the GPB algorithm. For the IMM approach, we use only the 

forward part of the algorithm and we classify according to P (S t — m\Yi, . . . ,  Yt), 

m  =  1 , 2 . The results are displayed in Fig. 5.2(b), and they are similar to the 

histogram presented in [6]. The average performance of the method based on the

Gibbs sample is about 10% better than the IMM method. For the GPB approach,
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Percent Correct Segmentation

Figure 5.2: Histograms of percent correct segmentations: (a) inference based on the 
Gibbs sample (b) Gaussian merging, IMM (c) Gaussian merging with approximate 
smoothing

we approximate the conditional probabilities P (S t — m \Y i, . . . ,  YT), m  =  1,2  using 

the merging method and the smoother presented in [8] pp. 106-109. The results are 

shown in Fig. 5.2(c), and they are obviously better than the ones displayed in Fig. 

5.2(b). However, the average of the percentage of the correct segmentations based

on the Gibbs sampler is still about 3.8% greater compared to the results shown in

Fig. 5.2(c).

We also tested other switching SSMs, and we have consistently obtained better 

results with the algorithm based on the Gibbs sampler than with the algorithm 

based on merging. Here we present the results obtained for the following SSM with 

M =  3:

X \  =  0 .99X 1^  +  w lk, w k ~  JV(G, 1), 

X 2k =  0 . 9 5 ^ !  +  w\, w l  ~  N {0,5),

X l  =  0.9Xl_l +  w l  w l ~ N {  0,10),

Yk =  X ?  +  vk, vk ~ N (  0,0.1).
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The initial probabilities are 7rW =  jfi2) =  tt® =  1/3 and the transition probabilities 

are =  $ (2,2) =  $(3,3) _  0.95 and <F(1’2) =  <F(1’3) =  $(2’1) =  $ (2’3) =  $ (3’1) =

$(3,2) _  0.025. In Fig. 5.3, we display a set of data and its true segmentation.

Figure 5.3: Data sequence of length 200 with its true segmentation below it: the 
upper, middle and lower dots represent the switch states 3, 2, 1, respectively

Percent Correct Segmentation

Figure 5.4: Histograms of percent correct segmentations: (a) inference based on the 
Gibbs sample (b) IMM (c) GPB with approximate smoothing

We generate 200 sequences of length 200 from this model. The histograms corre­

sponding to the method based on the Gibbs sample, the IMM algorithm and the 

GPB algorithm are reported in Figs. 5.4(a), 5.4(b) and 5.4(c), respectively. For this 

classification problem, the results obtained with the method based on the Gibbs 

sample are in average about 3.2% better than the GPB algorithm and 11.5% better 

than the IMM algorithm.
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5.5.2 Experimental medical data

We now consider the experimental physiological data displayed in Fig. 5.5(a), and 

we apply the NMCEM for system identification. This data correspond to a patient 

tentatively diagnosticated with sleeping apnea1. The respiration pattern is char­

acterized by a succession of no breathing, gasping breathing and normal rhythmic 

breathing (see also [6] and the references therein).

20

=  10

Q.

- 5 1000400 time 600 800200

15

Q.

-5 . 800 1000400 time 600200

Figure 5.5: Chest volume of a patient with sleep apnea, (a) Training data (b) Test 
set

It is shown in [6] that a switching SSM with M  =  2 components and the di­

mension of the state-space K  =  2 is the most suitable model for this data set. One 

component is specialized for the gasping and normal breathing, and the other com­

ponent models the data during periods of apnea. We use the same type of switching 

SSM and we apply the NMCEM for estimating the parameters. The results are very 

similar to those reported in [6]. The segmentation found is shown at the bottom of 

Fig. 5.5(a).

In Fig. 5.6, we compare the MCEM with the NMCEM for K nested =  3. By 

introducing a nesting approach, we reduce the time at least by a factor of two. Since

1Data are available online at http://www.physionet.org/physiobank/database/santa-fe.
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the likelihood is intractable, we can find only an estimation of the log likelihood for 

each cycle of the NMCEM. The final estimated value for the maximum likelihood 

is similar to the value of the lower bound obtained in [6]. .

The results for the test set are displayed in Fig. 5.5(b). Using the MCEM or 

the nested versions, we obtain estimations for the maximum log likelihood lower 

than the value of the bound reported in [6]. Our best values are around -0.75 nats 

per observation compared to -0.85 nats per observation reported in [6]. Also, the 

segmentation seems to be more accurate (see Fig. 5.5(b)), since it is capable of 

detecting possible apnea periods which were not noticed in [6].

S’

time <s>

Figure 5.6: Learning curves for a MCEM (solid line) and a NMCEM (dotted line)
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Chapter 6

Conclusions

The work presented in this thesis is common to many fields such as time series, pat­

tern recognition, machine learning, signal processing and system identification. The 

main contributions are the new approaches for predicting the nonlinear aeroelastic 

response, the study of the ergodic properties of the models with a Markov switching, 

and the improved stochastic algorithm for switching state-space models.

The illustrative case studies reported in Chapters 2 and 3 clearly demonstrate 

that the proposed approaches, based on nonlinear time series and the unscented 

filter, are capable of accurately predicting the limit cycle, damped, and unstable 

aeroelastic oscillations.

For the numerical simulated and the experimental aeroelastic data with polyno­

mial restoring forces, the amplitude dependent exponential autoregressive models 

seems to be very appropriate. The nonlinear time series model provides long term 

predictions of the same accuracy or sometimes even more accurate than the un­

scented filter.

For a freeplay model, the predictions obtained using the unscented filter are more

accurate than those obtained with nonlinear time series models. The unscented

filter also performs more effective de-noising than the wavelet filters. However, the

wavelet filters and the time series models do not require any information about the

structure of the dynamical system associated with the input data. To implement

the unscented filter method, even if no information about the system parameters is
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given, the specific type of the nonlinearities associated with the aeroelastic system 

must be known. Thus, the extra information seems to be the reason leading to a 

better performance.

A method capable of accurately determining the freeplay structure is of great 

interest in nonlinear aeroelasticity. In Section 2.3, we propose a non-parametric 

method for finding the threshold structure for an aeroelastic model with a freeplay. 

As for the future work, we plan to test this method for experimental data.

The nonlinear time series models and the unscented filter can be used as the key 

components in the expert data mining system presented in Fig. 1.1. Other methods, 

such as neural networks can be easily incorporated in the processing module of 

the system. The present investigation also opens up the opportunity for other 

applications in flight dynamics and active vibration control systems.

In Chapters 4 and 5, we study models with Markov switching. We are mainly 

interested on switching state-space models, but we present also an extension of a 

classical result concerning hidden Markov models.

A nested Monte Carlo EM algorithm, based on the Gibbs sampler, for learning 

the parameters of switching state-space models is developed in Chapter 5. The 

proposed new algorithm is a good alternative when the execution time is not critical 

and high accuracy is required. Under very reasonable conditions, we show that 

convergence properties for the Gibbs sampler can be proved. The ergodic properties 

established in Chapter 4 allow us to study the effects of the possible misspecifications 

of some of the model parameters, and to find sufficient conditions that ensure strong 

asymptotic results. The efficiency of the new nested Monte Carlo EM algorithm can 

be improved by using parallel computation.

The new approach is compared with three existing alternative methods, all of

them based on the EM algorithm but not involving random number generators.

Although our method is slower than the others, the results reported here for the

simulated and the experimental data are more accurate. We have studied several sets

of data corresponding to different switching state-space models, and the proposed

stochastic approach consistently provides a better classification when the parameter
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of the system are known. For system identifications, more tests need to be done, 

since the performance of the EM algorithm depends on the initial guess and better 

results can be only obtained as a consequence of a more inspired initialization algo­

rithm. The approach proposed here can also be applied to economical models with 

a Markov switching.
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