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ABSTRACT

Since Bagnold proposed his dilatant fluid model in 1954,
several other constitutive laws have been put forward for *he
flow of granulur material under continuous shc 'r. One of the
serious limitations of these laws is that they “ave not been
fully verified using reliable field or experimental data.
Most experiments have been either general or performed under
limited conditions. The field studies, on the other handg,
have been more qualitative only providing information on some
mean flow parameters.

This study examines some of the fundamental ideas on the
mechanics of high concentration flows with a special focus on
debris flows from a large volume of available literature.

The various constitutive laws and steady flow solutions are
examined. In addition to this, the present study examines
three areas of hyperconcentrated flow research in the
laboratory. The first stage presents a new approach to
generating a steady, uniform flow of hyperconcentratd slurry
in a channel for a considerable duration. The second stage
discusses the development of a measuring device for a narrow
flume so that the velocity and the concentration profiles
along the depth can be measured. Finally, velocity and
concentration distributions have been measured for three near
uniform particle sizes with mean diameters of, 0.430, 0.335,

0.215mm and a mixture of these particles with a mean diameter



of 0.330mm. fThese measurements have bheen made at various
mean volumetric concentrations ranging from 2.5% to 40%. The
general behavioral *i1end of these mixtures are discussed and
comparisons are made with well known steady flow solutions
using dilatant flow models and Bingham plastic models.

The measured velocity profiles appear to range from
parabolic at lower mean concentrationa to approach almost
linear profiles at higher concentrations. The laboratory
flows considered in this study indicate that digpersive
stresses are less than 5% of the total stress. Turbulence
plays a major role in the dispersion of the particles even at
volumetric concentrations approaching 40%. The particle size
plays a dominant role in the dispersion mechanism with the
velocity profiles approaching semi-logarithmic for low mean
concentrations. The slopes of the velocity profiles deviate
from that observed in clear water flows displaying a

decreasing trend with concentration of the von Karman'’s

constant.
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1 INTRODUCTION

1.1 Nature of the Problem

The cycle of erosion and subsequent deposition is a nat-
ural process that shapes the surface of the earth. The
varying geologic features are a reflection of these ongoing
denudation and construction processes of nature. One of
these natural processes is debris flow.

The steep slopes of mountains generally have numerous
channels carved on their faces that meet the gradual valley
slopes at their feet that enter the gentler slopes of the
alluvial fans. These alluvial fans have continuously been
the most attractive areas for human habitation. The fertile
soils as well as the gentle topography make these alluvial
fans very attractive for agriculture as well as for
residential development. In many heavily populated areas
this may be the only space available for settlement. Sirnce
these developments in the alluvial fans lie in nature’s
dumping grounds, they have to reckon with possible floods and
torrents which may be heavily freighted with mud and debris
rushing out from the mountains.

In almost all the disastrous events of this nature the
wisest choice would be to abandon the hazardous areas and
move to a safer location. This is a discreet alternative not
only based on common sense but also based on the lessons
learned from all the past experiences of this nature. Though

reasonable in most cases, these choices fail to be practical



when it comes to moving and relocating the developed homes
and people. The catastrophic event is eventually forgotten
and a new sequence of developments start only to be struck by
devastation one more time. This has been the story of many
areas in North Central Utah, especially around the area of

Farmington (Jeppson, 1985).

1.1.1 Documented debris flows

Debris flows and other associated phenomena of mass
wasting and material transport are part of many ongoing geo-
logical processes associated with mountainous regions. 1In
other words, these events have been reshaping landscapes for
a long time and will continue to do so for a long time to
come. In most cases the majority of these episodic events
occur in the mountains and remote areas and normally may
never get noticed until they directly or indirectly affect
lives.

One of the earliest references to mudflow was made by
McGee (1897) where it was called sheet flood. Blackwelder
(1928) gave an interesting account of mudflows in Utah. Some
of the accounts related by people who witnessed the flow

paint a very graphic picture.

“ The typical mudspate consists of mire
charged with a great number of rock-splinters

and blocks, but sometimes it may be composed



almost entirely of clean stones ranging in

size from a peppercorn to large boulders. ..

“enormous boulder will float in thig thick
porridge like cork on water or iron on

quicksilver. ..

“Operating with a minimum water, the mudspate
liquefies itself automatically when, during
its descent, it becomes too thick. Sloping
for a while, it dams the water runlet in the

gully and this proceeds several times...

“When left on an even slope, the middle of the
mud runs faster, because there is less
friction, while the slides, retarded by
friction, deposition takes place, giving rise

to an embankment...”

In May, 1941 the resort town of Wrightwood in the Southern
California mountains4was partly covered by mudflows which
occurred for a week(Sharpe & Nobles, 1953). The debris was
carried down 15 miles on a very gentle slope of 75 ft per
mile with occasional surges whose fronts moved nearly at

speeds of 15ft/sec.



Curry (1966) gave an account of the alpine mudflows of
August, 1961 at the head of Mayflower Gulch in the Tenmile
Range of Central Colorado. An extended rainfall of 24.5 cm
over 24 hours initiated the mudflow that advanced in pulses
at lém/sec. Study showed that such events occurred in this
area every 150-400 years. Older deposits were observed as
concentric low ridges and mounds which were the remains of
the lobate toes

Many of these events have also been reported in Canada.
To June 1984, 41 such events had been reported with the first
one being reported in 1963 (VanDine, 1985). On July 1967,
alpine mudflows were observed (Broscoe & Thompson, 1969) on
the ridges above Steele Creek, St Elias Range, Yukon. Four
areas, namely, tne Squamish Highway, Lower Fraser Valley,
Coquihalla Freeway and Kicking Horse Pass have been
identified as the locations of major debris flow activity in
Southern B. C. (Hungr et al., 1987). Some of these events in
these areas have resulted in loss of life and property
damage. The creeks around Howe Sound, Southwest B.C. were
responsible for the debris flow events of 1981 and 1983
(Russell, 1988) where 12 lives were lost. The debris flow
event of Dec. 1980 around Hope (Miles & Kellerhals, 1981,
Church & Miles, 1987) were responsible for damage to major
highways and railway lines. Another study of alluvial fans
of the Canadian Rockies (Jackson et al., 1987) showed

evidence of the effects of past debris flow events.



Besides North America, debris flows are equally
widespread in the European Alps, the Himalayas (Nash et al.,
1987) and the Andes. These problems have been reported in
Czechoslovakia (Midriak, 1985), China (Zhang et al, 198%),
Indonesia (Legowo, 1985) and many other mountainous areas of
the world. Several debris flow studies in Japan are probably
some of the most detailed work done in this area. Every
summer, the valleys in Mt. Yakedake in the Northern Japan
Alps experience many mud and debris flow events. Suwa and
Okuda (1980) have given extensive report of the nature of
these events. One survey indicated that close to 63000
creeks in Japan were potential sources of debris flows
(VanDine, 1985). 1In many of these cases there has been

significant damage to property and life.

1.1.2 Extent of destruction

Some of the largest damages due to Aebris and mud flows
have been documented in South America. “he avalanche in
Nevados Huascerone in the Peruvian Andes in 1970 involved 70
x 10° m3 of rock and debris that flowed down, traveling 16 Km
of horizontal distance in 3 minutes. The damage was catas-
trophic (Plafker & Eriksen, 1978).

The damage from the 1983 debris flow in Utah was

estimated as in excess of 250 million U.S. dollars with 2
million people sustaining direct damages. 22 out of 28

counties in the state were declared national disaster areas



(Jeppson, 1985). 1In the Canadian context up to 1984, 17
lives were lost and damage to bridges, roads and property was
estimated at above 100 million dollars (VanDine, 1985). The
rigsk is even more in Japan where close to 90 lives are lost
each year (Takahashi, 1981). This significant loss to life
and property necessitates the establishment of effective
mitigative measures. These measures can be realized only
when the flow of highly concentrated fluid is sufficiently
understood. Appendices A-C discuss some general concepts in

debris flows.

1.1.3 Objectives of the study

As a true debris flow is only possible under field
conditions, laboratory studies represent only idealized
situations covering a small band of a large spectrum of high -
concentrated fluid flows. However, laboratory studies
present the possibility of controlled investigations. This
study was approached with two objective. The first objective
was to investigate the state-of-the-art in debris flows and
establish a framework of the present understanding of high
concentrated flows. The second objective was to generate and
study debris flows in the laboratory. There is a practical
difficulty in achieving, in a laboratory setting, the
concentration range and particle gradation observed in a
typical field debris flow. As one of the major component of

the second objective included the measurement of velocity and



concentration distributions in open channel flows,
hyperconcentrated flows were studied. Although
hyperconcentrated flows carry small.. sediment load than
debris flows, these flows represented the closest
approximations to real debris flows that could be measured in

the laboratory.



2 MECHANICS OF DEBRIS FLOWS

2.1 Introduction

The study of the behavior of a fluid requires that a
suitable constitutive law be defined before a prediction can
be made of any specific flow field. Because of the non-
Newtonian nature of debris flows, the synthesis of a suitable
constitutive law has proved to be a rather complex task.
Debris flow presents itself as having a wide variation in its
constituents and, therefore, its fluid properties. Thus, any
comprehensive constitutive law will have to accornicdate this
variant nature of the fluid.

The flow of debris surge in a channel has three distinct
regions of inhomogeneity. The gravely head, the viscous
trunk and the turbulent tail comprise a flow situation that
is far from any idealized slurry flow. It is probably more
accurate to describe the flow by three different constitutive
relations. But practically speaking, in the absence of a
more comprehensive method of determining the properties of
the fluid, this additional regard to details would probably
not be a prolific effort. As a start, a simple approach will
most likely lead to a better understanding of the mechanics

of debris flows.
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2.2 Initiation of Flow

The initiation of debris flows have been related to the

following three reasons (Takahashi, 1981):

1. Landslide turning into debris flows

2. Breaking of naturally built dam turning into debris
flows

3. Appearance of surface water stream during heavy

rainfall mobilizing accumulated debris

The third reason can be looked at from a simple stability
point of view and some general initiation criteria can be
determined. Bagnold’s(1954) limiting slope criteria is
exactly the same as Eq.(3-3.6) except that he writes ¢ as ¢,
where ¢ is the static internal friction angle and ¢; is the
dynamic angle of internal friction.

Takahashi(1978) gives tha initiaticn criteria for a non-

cohesive debris flow which has been reviewed by Chen(1987).

2.3 Debris Flow Modeling

The flow of sediment water mixture is essentially a
multiphase flow, and the behavior of the fluid phase and the
solid phase and their interactions will have to be understood
and then modeled. At the microscopic level, the non-uniformly

distributed grains are going through inelastic collisions,
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losing energy at each contact. As they travel at a meun
longitudinal velocity, they carry fluctuating components with
them. During all this time, they constantly interact with the
fluid matrix exchanging momentum. The degree of this
interaction will vary with the particle concentration of the
mixture,

As one grain approaches another, one would expect a local
increase in fluid pres:iure and a squeezing out of fluid into
adjacent pores. As the fluid escapes, it dissipates energy .
At the same time, it cushions the particle collisions
resulting in further energy loss as well as the transfer of
momentum from one particle to the other. 1In a two particle
collision, Davis et al.(1986) found that as two spheres
approach each other, the interparticle fluid is expelled and
there is a severe increase in the pressure which results in an
elastic repulsion of the spheres. The result showed that
these particles finally approached an equilibrium spacing
dictated by the effect of viscosity and the negative fluid
pressure generated as the particles move away. It has yet to
be found what extensions of this microscopic behavior can be
made to multi-particle collisions, similar to that experienced
in debris flows.

The above multi-particle dynamics combined with
statistical approximations have been one of the approaches to
modeling granalar flows. Several attempts have been made in
the case of dry granular flows(Lun et! al, 1984; Ogawa, 1978).

These microstruct.re¢ theories analyze, in detail, the dynamics
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of individual particle colligion and, with the use of
statistical averaging, determine the continuum propertics.

Bagnold’s(1954) theory was the first approximate attempt
to analyze this flow. One of the problems in directly
applying most of these theories to debris flows is that they
consider dry flow situations and thus avoid the inclusion ot
fluid and particle interactions. Bagnold’'s theory considers
the case of neutrally buoyant spheres. Since Boagnold
considers only the geometric and the kinematic conditions, the
interactions of the fluid and the particles do not appear in
his theory. Ackermann and Shen(1982), Shen and
Ackermann(1982) proposed a theory where they not only account
for the inelastic collisions and the surface friction ot the
particles, but also the viscous dissipation in the
interstitial fluid in the form of drag as the grains move
through the fluid containing them.

In addition to the above approaches, there are other
rheological approaches (Goodman-Cowin, 1972; McTigue, 1978;
Sayed & Savage, 1983) that are based on the mechanics of
continuous media. These approaches involve the analysis of a
mixture of the grain and fluid as a whole without considering
the individual microstructure involved in the continuum. The
drawback is that the parameters involved in these models have
to be determined experimentally.

From the above discussions it is clear that a good

constitutive model for debris flow should account for its



frictional nature, its viscous nature and the sediment fluid

interaction.

2.3.1 Frictional Nature of Granular Material

The problems of mobility in avalanches and slope
movements have been studied in great detail at the University
of Alberta (Hungr, 1981;De Matos, 1987). Hungr and
Morgenstern (1984a & b) conducted two sets of experiments to
investigate the hypothesis of mechanical fluidization.
Mechanical fluidization which attempts to explain the high
mobility of stirzstroms is based on the premise that at high
strain rates Coulomb’s friction law breaks down because of a
change 1n the type of particle contact. This results in a
reduction .f the apparent friction coefficient of the shearing
mass which allows rock avalanches to move at steady velocities
over flat slopes.

The first experiment involved sand and polystyrene beuds
flowing down a flume at velocities up to 6m/s with a typical
depth of 10cm. Measurements of surface velocity, surface
acceleration, depth of flow, mean deasity, bed shear, normal
shear and mean velocity were made using a high speed camera
and three load cells. Hungr and Morgenstern (1984a)
discovered from these experiments that the internal friction
angle of the granular material studies showed no systematic
dependence on the strain rate. In order to extend this
finding to conditions with higher levels of normal and shear

stresses, ring shear tests were also carried out on two types
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of sand, wet and dry, sand-rock flour mixtures and polvatyrens
beads. These tests werc carrvied ont at circumferential
velocities of 2m/s at normal stroasses of up to 200 kba.  mhe
results from this experiment indicated that the trict ion angle

was again independent of strain rate and normal stress.

2.3.2 Dpilatant fluid model
Bagnold’'s earlier interests were on the mechanics ol thie
bed load transport of sediment. This interest motivat od
Bagnold to perform the classical experiment with ncutrally
buoyant, uniform 0.13 cm spherical wax beads suspended in
water and glycerine-water-alcohol mixture (Newtonian fluid)
and sheared in a coaxial rotating cylinder (Bagnold, 1954). A
flexible rubber was used to form the inner wall of the
cylinder. In this say Bagnold was able to measurc the normal
pressure in the radial direction as well as the torque. This
experiment involved the shearing of various concentrations of
grains in the rotating cylinder. Bagnold defined the
following three regimes of flow behavior based on the degree
of shear rate:
i macroviscous
ii transitional
iii grain inertia
The ratio between the stress in the inertial regime and
the viscous stress was defined as the dimensionless shear

group N where
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Al2p, D2 gy
N = ay (2_3.1)

is the mass density of the particle

is the viscosity of the interstitial fluid

is the particle diameter

> o T DO

is the linear concentration of the particles

| %p|

Y

)

Figure 2-1 Definition sketch for Bagnold’s(1954)

analysis of sheared granular material

If the mean center to center spacing of two particles is

defined as bD and the distance of separation between two

particles is Sp (Figure 2-2) then

bD = D + s (2-3.2)
or

S
b= 1 + —5’- (2-3.3a)

or

(2-3.3Db)
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where A is s The volume concentration is expressed as
p
Cy = = e 2
voop o (1 + l)3 He
A

where C, is the maximum possible concentration i.e. large A.

For uniform spheres with cannonball packing this is found to
be n/3V2 = 0.74.

Bagnold developed expressions for the two limiting
regimes namely macroviscous and grain inertia regimes.
These are defined based on the relative degree of shear rate
in the flow. This can directly be translated in terms of N
i.e. larger the N value, the bigger the importance of inertia
hence the grain inertia regime. When N is low, there is more
viscous effects than inertial effects and hence macroviscous
regime.

In the macroviscous regime (N < 40) the viscosity is
dominant and the normal and shear stresses are linear

functions of the velocity gradient du/dy.

du
P = a,A3/2y (3y) cos ¢a (2-3.5a)
where P is the normal stress and ay is a constant for the flow

in the macroviscous regime. 1In the grain inertia regime (N >
450) the interstitial fluid has less influence in momentum
transfer and the main effects are due to the grain-to-grain
interaction. Bagnold attributed the primary mechanism for

momentum transfer to the collision of one layer of particles
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moving over a slower layer of particles. By using the analogy
similar to the kinetic theory of gases, Bagnold gave the

following expression for the normal dispersive pressure:

P = ajps lf(k)D2(%§)2 cos ¢g (2-3.5Db)

From experiments, Bagnold found that the normal

dispersive stress was related to the grain shear stress by

Ty = P tan ¢q (2-3.6a)
or
Ty = ajpsAD? (%5)2 sin ¢4 (2-3.6Db)
wher _
aj is a constant to be determined from experiment for

the grain inertia regime (Bagnold gave a;=0.042)
Ps density of the particles

f(A) is an unknown function of A

This grain shear stress is in addition to other fluid stresses
such as turbulent stress. However, at high concentration,
Bagnold argued that turbulence was damped. Equations (2-3.6)
is also called Bagnold’s dilatant fluid model. The
presence of dispersive pressure was attributed to a
"statistically preferred anisotropy in the spatial particle
distribution" (Savage, 1984). The region in between the
macroviscous and the quasistatic region has been defined by
Bagnold as the transition region. 1In terms of N it lies in

the range 40< N < 450.



For debris flow in the inertial regime, Takahashi (1978)
uses the Equations (2-3,5b) and (2-3.6a) with a modification
in the value of the constant aj;. The value of aj, according
to Takahashi, ranges between 0.35 to 0.5 determined from his
flume experiments. 7. s is different from 0.042 given by
Bagnold. Julien and Lan(1991) find from the analysis of
Bagnold’s and other data that the value of aj; is 0.0087,
assuming turbulent stress in negligible to dispersive stress.
This discrepancy probably illustrates the limitation of
Bagnold’s dilatant fluid model to adequately describe debris
flow. The important assumption in Bagnold‘s theory is that

the particles are uniformly dispersed. This means that in a
steady open channel flow the gravitational shear given by T =

Poar 9y Sin Ois a straight line. However, the dynamic shear
given by Equation(2-3.6b) is parabolic in nature. Therefore,

it appears that a uniformly distributed model results in an

inconsistent shear prediction.

2.3.3 Dilatancy

One concept that is important in granular flow is the
concept of dilatancy. Dilatancy was first proposed by
Reynolds (1885) whc defined it as the nature of granular
material to change the volume due to a change in grain
arrangement. When a closely packed grain mass is sheared, the
particles overriding each other cause the increase in volume
of the mass. From experiment Bagnold (1954) found the

dispersive stress to be proportional to the square of the
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velocity gradient (shear rate). Therefore, during shearing of
these kinds of material, the normal stress (dispersive stress)
has a tendency to increase the thickness of the shear layer.
Thus the sheared granular material gets its name “"dilatant *

material (Savage, 1987)

2.3.4 Bagnold’s shear vs turbulent shear

Bagnold’s model and the turbulent shear models are based
on the ideas similar to the kinetic theory of gases. Both use
this analogy to describe the shear between two layers of fluid
in motion. Therefore a close examination reveals that both
the equations have similar forms. Bagnold's dilatant fluid

model which can be written as

Ty = ajpsAh2D? (35)2 sin Qg (2-3.6Db)

is a non-Newtonian fluid model. One of the turbulent shear
models can be written as (Schlichting, 1968)
T = px2y? (3—3)2 (2-3.7a)
where
T is the turbulent shear
Pe is the density of the fluid
Ky is the von Karman constant

Yy is the distance from the wall
gives a clear indication of the non-Newtonian nature of

turbulent flows. 1In the case of dilute sediment mixtures Ky

may be a function of sediment concentration C, (vanoni,
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1975). In high concentration flows A is also a function of
Cy. In sediment transport turbulence is responsible for
suspending the sediment particles. Similarly, in debris
tlows the dispersive pressure is responsible for dispersing
the sediment particles. 1In many cases of granular flows both
of these mechanisms are responsible for dispersion. O’Brien
and Julien (1985) have used this idea in their model for
debris flows. For the case of a highly sediment laden flow
with particle size sufficiently small to be suspended by

turbulence in water, Arai and Takahashi (1986) included a

turbulent shear 7y (analogous to the pure water turbulent
stress) to the grain shear Tg to give the total shear stress.

T =T+ Tg (2-3.8)

where

du

tt = “pm u'v! = pm lm2 @ (2"’3.7b)

du
dy

Pm = Pf + Cy (pg - pf), the mixture density, pf is the fluid
density and 1, is the mixing length. u' and v' are the
fluctuating velocity in the direction of flow and

perpendicular to it.

2.3.5 Quadratic Model of O’Brien and Julien
A general quadratic rheological model (Equation 2-3.9)

was proposed by O’Brien and Julien (1985).
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T=T +H 3‘3 + Cl(@ (2-3.9a)

K is the dynamic viscosity

C, is the turbulent-dispersive parameter

The first term T, considered the yield strength of the
fluid which was independent of the velocity gradient. The
second term accounts for the viscous interaction of the fluid
and the particles. The third term is a combination of
Equation 2-3.6b and Equation 2-3.7b and accounts for the
turbulent and the dispersive stresses. At sufficiently high
concentration, the presence of particles would dampen
turbulence but would increase dispersive stress. At low

concentration the effect of turbulence would be pronounced.

The constant C; was given as
Ci = P lp2 + a; pg A2 D2 (2-3.9b)

where Pm is the density of the mixture
1, is the mixing length
Julien and Lan(1991) rearranged the Equation (2-3.9a) in the

following non-dimensional form

*

T =1+ (1-147)a; D, (2-3.9¢)
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2 2 2

T-1 . In N A D
Where T* = a Td = pm 2 2 DV = P‘“""“‘_‘S —— "“‘au
p g aj ps A2 D oo 9y

They used the data of Bagnold(1954), savage and McKeown (1983)
and Govier et. al. (1957) and fit their Equation(2-3.9a) to
get T,, U, C;. They used this to plot Dv* vs T and get a good
fit with the above three sets of data. This model definitely
is more physically based than some of the other available

models. However, it needs to be verified by further

measurements.

2.3.6 Bingham plastic and Pseudo-plastic fluid models
The Bingham plastic fluid model has been observed to
describe the flow of mud and fine grained debris under low
shear rates (0’Brien and Julien, 1985, Major and Pierson,
1990, 1992). The Bingham plastic fluid model is characterized
by a linear relation between the shear stress and the rate of
strain. The yield stress Ty, and the viscosity P are the two

parameters.

du

t:’ty'f'uay (2‘3.10)

Yano & Daido (1965) used Bingham fluid model to describe the
flow of mud. Johnson (1970) used this model to describe the
flow of a steady debris flow in a circular channel. while
studying the failure of tailings dams, Jeyapalan et al. (1983a
& b) considered the case of flow in the laminar flow regime

and used the Bingham model. Other unsteady debris flow models
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also have employed the Bingham plastic constitutive equation
(Schamber & MacArthur, 1985; MacArthur & Schamber, 1986).
The two parameters in the Bingham model are determined
from experiments. These have been shown to depend on the
sediment concentration and particle size. This will be
discussed later.
The model that did not generate as much enthusiasm was

the pseudoplastic or the power law fluid model

T = u(g-;)" (2-3.11)

where Il is the apparent viscosity and M is the flow behavior
index which, in this case, is less than one. Yano and Daido
(1965) have studied this in the case of mudflows. Other
studies (Thomas 1963) failed to find any improvement over the

Bingham model.

2.3.7 Coulomb viscous model
Generally speaking a highly concentrated mixture of solid

and fluid tends to follow the Mohr-Coulomb criteria defined by

T=C+ O,tan ¢ (2-3.12)

where c is the cohesion

o, is the normal stress

¢ is the angle of internal friction



The first term ¢ is the cohesion and the second term
describes the frictional resistance. 1In this equation the
normal stress component O, can be dependent on the strain rate.
This model is generally believed to be good for flow with
small velocity. Johnson(1970) proposed that the total dynamic
resistance is a combination of vield, frictional resistance
and viscous resistance and called it the coulomb vigcous

model

T=c¢C + 0, tan ¢ + pgg (2-3.13)

v is the viscous resistance

35 is the shear rate

For continuous deformation 6, is dependent on the shear rate,

therefore, Johnson’s addition of the last term would appear
redundant. It is one of the earliest models for debris flows.
It, however, provides a plausible insight into the problem,

In the viscoplastic models, the central assumption is
that the continuous matrix is responsible for the yield
strength and the viscous behavior of the debris and mud flows.
Therefore, the properties of the matrix determine the dynamic
resistance to shear as indicated by each form of the equation.
One of the important drawbacks of these models is that these
models fail to explicitly include the interparticle and

particle-fluid dynamics. The effects of the interstitial
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fluid is expressed through the rheological parameters., These
effects are, however, dealt with in more explicit terms in the
microstructural approach(Shen and Ackermann(1982), described
later on, where the details of the collision and the partition

of energy is considered.

2.3.8 Generalized viscoplastic fluid model
In an attempt to describe a more general form of a

constitutive equation for debris flows Chen(1983) started
first with a generalized Bingham plastic fluid model to be
discussed in section 2.4.3. Three limiting regimes of flow
were defined:

gquasi static

macroviscous

grain inertia
Quasgistatic state is an incipient state where the behavior
is predominantly plastic. 1In the macroviscous state the
mixture flows at low shear rates and the interstitial fluids
are dominated by viscosity. The grain inertia regime is
characterized by rapidly flowing granular materials where
grain to grain interaction dominates the flow with the
interstitial fluid playing a minor role. These regimes have
been defined along similar lines as defined by Bagnold
(section 2.3.2). Later Chen (1985a) presented a general model
for debris flow which he called the generalized viscoplastic

model. Chen(1988a) indicated that “a generally applicable
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model which can realistically describe the rheological

properties of debris flows should possess":

i the ability to describe the dilatancy of the
mixture
ii soil yield criteria such as those developed by
Mohr-Coulomb
iii the ability to describe the role of the
intergranular fluid
In order to satisfy the first two requirements, Chen
proposed a model with both rate dependent (i.e. which has a
shear rate term) and rate independent (i.e. which has a yield
term) parts. This logic stems from the fact that a general
solution should be able to describe all the regimes of flow
i.e. guasistatic to grain inertia. Tf the flow was in a
quasistatic flow (i.e. incipient flow) regime, then the rate
dependent part would be less important and the rate
independent part would dominate. At the other limit, if the
flow was in a dynamic state, (i.e. the state of high shear
rate) the rate dependent part would be more important. The
third reqguirement is met by extending McTigue’'s(1982) equation
where the rheological parameters are related to the
interstitial fluid and its unknown particle concentrations.
The generalized viscoplastic flow (GVF) equation in 3D
expressed in cartesian tensorial notation is given as (Chen,
1988c) :

Tij = - P 8;5 + sDjy /NIIp, + 2 wy 14 1Ip, ) (M1)72 D 4
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+ 4y 14 111 22 pop s (2-3.14)
and
8 = ¢ cos ¢ + p sin ¢ (2-3.15)
where
Tij is the total stress tensor
p is the dynamic pressure
94 is the Kronecker delta
[ describes the yield
is cohesion
o is the static angle of internal friction
Dj 4 is the rate of deformation tensor given by
Di; = %;—4: . % (2-3.16)

u; are the velocity components and

Xi describe the coordinate axes

IIDI = -21_ Dl]‘ Dl]' (2"3.17)

which is the second invariant of the deviatoric rate-of-

deformation tensor where
1
Dij. = Dij - '3‘ Dii (2-3.18)

. . . 1
1.e. stress less the isotropic component 3 Dii-

[VEY is the consistency index



Ry

Ho is the cross consistency index

n is the flow behavior index

DDy, is the tensor product of the rate of
deformation tensors in indicial

notation

In the above GVF Equation(2-3.14) the scecond, thitd and
the fourth terms respectively represent the plasticity,
viscosity and the dilatancy of the mixtures.

In the case of one-dimension. ' simple shear flow
situation the only ncn-zero velocity gradient is du/dy with u
being the longitudinal velocity component, y is the vertical
coordinate normal to the bed and positive upwards, the
plasticity term reduces to &. The final equationsg for shear

stress T and normal stress P are:

T =5 + |4 (—g}‘-‘-)“ (2-3.19)
P=-p+ |y (%-3-)" (2-3.20)
S =ccos ¢ + p sin ¢ (2-3.21)

The expression for s was given by Kanatani (1982) for
isotropic, ihcompressible granular material.

In the above equations M may vary from 1 to 2 as the flow
changes from » macroviscous state to a grain inertia state.

The consisten.. and the cross-consistency terms given below
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were determined using the form similar to the derivation of

Kreiger & Dougherty(1959).

1

By = A; (1- Ke,) “B/K (2-3.22)

"

My = Ay (1- KC,) B/K (2-3.23)

where K, often written as 1/C,, is the ratio of the volume of

the sediment particle plus the bound water to that of sediment

particle. B is the intrinsic viscosity similar to the

theoretical value given by Einstein(i.e. 2.5). A, and A, are

numerical constants expressed by Chen(1988c) as:

Ay = ag pgt D2y 2o -B/K (2-3.24)
2, = - ag psn—l D2(n-1)uw2—n c. B/ (2-3.25)
where
an is Bagnold’s a; and a, for debris flow in the grain
inertia(nN=2) and macroviscous (N=1) regimes,
respectively (explained in Chen, 1986).
dq is the dynamic angle of internal friction.

The pressure p is modeled by Chen (1987) in a
differential form developed from an equation of state under

isothermal condition as:

1
dp = 2~ (2-3.26)



K is the compressibility of the mixture, p is the bulk density
of the flow, dp=(ps—py)dC, and m’ is an exponent. Since p is
dependent on Cy, a variety of relations between p and C, can
be had from Equati... (2-3.26) by varying K and m’'. McTigue

(1982) has used the following form of p:

p = o (C,2 - c?) (2-3.27)
where &’ is a constant 2 0 and C; is the concentration at the
free surface. The form of p in Equation (2-3.27) can be
obtained from Equation (2-3.26) by assuming m‘=-1. Thus
Equation (2-3.26) appears to be a somewhat general form for
expressing p. Chen has attempted to define the various
parameters of this model. Despite Chen's effort to generalize

the rheology of debris flow, the model ends up having many

parameters which are difficult to determine.

2.3.9 Ackermann and Shen’s Model

The interaction between grain and fluid has often been
ignored in granular flows until Shen and Ackermann (1982)
included the viscous dissipation by drag as well as
dissipation due to inelasticity and surface friction. Their

constitutive relation for inertial granular flow is given as

T= Mgy, (2-3.28)
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Con (1+8)3 (0.05 + 0.08pg)3 (A 3)1/279
e & p.07 2 (201

2 r 1+A dy
(2-3.29)
3cgpr (1 - €2 pe(1 +e)  pA(l o+ e)?
+ + -
2Aps 8 2n 8
(2-3.30)

where € is the coefficient of restitution, Ws is the
coefficient of kinetic friction and Cyq is the drag
coefficient of the particle as it moves through the

interstitial fluid.

2.4 Choice of a model

The next big question in debris flow modeling is which
model do I choose. The models thet have been developed so far
range from a simple viscoplastic model (Bingham plastic) to
highly theoretical models like the ones used in the study of
rapid granular flows (Savage, 1979; McTigue, 1978). The
simple models tend to operate satisfactorily within a narrow
range while the theoretical model becomes too clumsy to be
practical. Most of the work so far has been done using simple
models (Chen, 1986). Some Japanese researchers have been
using the dilatant fluid model in the form used by
Takahashi(1978) in the modeling of debris flows in Japan. In
dealing with the simple models, it is often more difficult to
decide which one of the models gives a true description of the

flow. In many cases the decision can be made solely by trial
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and error procedure. Rickenmann(1991) suggests that if
appropriate apparent viscosity is evaluated, even a Newtonian
model is adequate for debris flows in steep channels.

Yamaoka et al. (discussed in Chen, 1986) have attempted to
define a boundary between a material behaving as a dilatant
fluid or a Bingham fluid. Their method does not have any

theoretical basis but relies on experimental data. They

define a roughness Reynolds number Rg= Uxkg /vy,
where

U« =‘Vgh sin 0 (2-4.1)

h is flow depth

0 is the channel slope

kg is the roughness size

g is the acceleration due to gravity

Vyw = Hy/py which is the kinematic viscosity of water

The second parameter represents the importance of the particle

size D and concentration C, and is defined as

D'y =\ (ps/py-1) gD A/v, (2-4.2)

such that D'. decreases as D and C,, decrease. Their finding
was: -

Rg > 70 and D's > 1500 dilatant fluid

350 < D'« < 800 Bingham Fluid

800 < D'x < 1500 transition

I ¢ 250 Newtonian fluid



There appears to

a good choice.
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be no definite guidelines as to what is

2.5 Viscosity studies in suspensions

For infinitely dilute suspensions (C=0.05),

Einstein(1906) gave

Mo = My (1 + 2.5C, ) (2-5.1)

where M, is the viscosity of water. For higher

concentrations, several extensions have been made to account

for the size and shape
equations, cne for non

uniform particles.

non uniform Wa

uniform Uy

Using the data of wWard

variations. Roscoe(1952) proposed two

uniform particles and the other for

= Wy (o - Cp )72 (2-5.2)

b (1 - 1.35¢C, )25 (2-5.3)

i

and Whitmore (1950) with 50% particles

of sizes 150micron to 190 micron and Eilers’ (1941) study of

sizes 3.4micron and 6.0micron, Roscoe showed that Equation (2-

5.1) and (2-5.2) agreed well with the measurements.

An empirical approach has been used further by Thomas (in

Bradley & McCutcheon, 1985) for particles sizes of 0.1 to 20

microns and concentrations up to 30% to give the apparent

viscosity as
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P i2s Cy + 10.05 ¢,2
Hy
0 062 1.875 ¢, .
+ 0.062 exp (1_ T Cv) (2-5.4)

Similarly, Do Ik Lee(1969) gave the following expression

- 2
ua = “w (l - CV ) (2.5 + 1.9Cv + 7.7 CV ) (2_5.5)

Chen (1986) used the expression for relative viscosity
proposed by Kreiger & Dougherty (1959) in his GVF model

o = (1 - Kc,)B/K (2-5.6)

where K, often written as 1/Ce.is the ratio of the volume of
the sediment particle plus the bound water to that of sediment
particle. B is the intrinsic viscosity similar to the
theoretical value given by Einstein(i.e. 2.5). Both the

parameters B and K can be functions of shear rates.



3 MECHANICS OF STEADY DEBRIS FLOWS

The solutions of steady debris flows in the past have
been presented under three different conditions. The normal
practice has been to empirically correlate the velocity or the
flow rate with physical parameters like the catchment area,
particle size, depth of flow, slope and the intensity of
rainfall.

The second form of debris flow analysis involves the use
of one of the constitutive equations to get an integral
solution of a steady, uniform debris flow with specific
boundary conditions.

The third approach uses the steady Saint Venant'’s
equation. In this approach one of the constitutive equations
is used for modeling the flow resistance and the Saint
Venant’'s equation is solved for a spatially varied flow

situation (DeLeon and Jeppson, 1982).

3.1 Empirical approach

The earliest methods of predicting mudflows attempted to
use Chezy's equation which worked satisfactorily with
streamflows but not so well with mudflows. Some experiments
were conducted with artificial mudflows in a natural

environment in Kazakhstan (Gol’din & Lyubashevskiy, 1966) and

Ys= Y

the importance of the term was recognized to give the

Ym

channel mean velocity as
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U = 3.15 h1/6 p1/3 A (X" Tn (3-1.1)
T
where h is the average depth of flow (m)
D is the diameter of a rock in the flow (m)
Ys is the specific wt. of rocks
Ym is the specific weight of mud and rock mass

Equation(3-1.1) does not use slope as one of its variables.
Sribney’s modified Chezy’'s formula which includes the effect

of slope of the channel is given as (Takahashi 1981):

- C -1/2
U=n[9§ (PsPy) Cy + 1] (3-1.2)
Pw (Ps+Py) (1-Cy)
where
I = 6.5 h2/3(gin 09)1/4 (3-1.3)

and other symbols have their usual meaning. This formula has
been found to yield satisfactory results in the debris flows
in the Kamikamihori valley in the study done by Okuda et.

al. (1980).

Takahashi(1981) has pointed out the study of Tsubaki and

others done in 1972 in a flume of slope sin 6= 0.383 and
0.285. The dsg of debris was 8mm and 0.32mm with a mixing
ratio of 1:1.

The velocity of the front of the flow is given by

U=2.5 (gh sin 6)90.5 (3-1.4)
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Recent studies of debris flows in Hunshui Gully in the

Yuannan Province, China (Zhang et al., 1985) show a cor-

relation between velocity and the depth of flow h and slope S,
U = 21 ho-48 SOO.S (3-1.5)
This is very similar to the Chezy'’s equation for steady

uniform flow in a wide channel:

U = Cch g h SO (3‘1.6)

where Cqp is the dimensionless Chezy'’s coefficient. The

Manning’s equation

U = n—l*- h2/3 s00-5 (3-1.7)

where n* is the Manning's roughness, has also been used to
estimate a mean velocity in a channelized debris flow (Chen,
1983) . Equation (3-1.7) and the integrated form of the semi-
logarithmic equation for turbulent flow in a channel discussed
later in the text Equation (3-2.29) can be combined to give
the following expression for n* in terms of the equivalent

sandgrain roughness kg (Ranga Raju, 1981) in SI units

1/6

ks
n* = 25 6 (3"1.8)



3.2 Uniform flow using rheological models

In this section the solutions for debris flows using the
following more prominent rheological models will be reviewed.
i Bingham plastic and pseudoplastic
ii Dilatant fluid model

iii Generalized viscoplastic model

3.2.1 Bingham Plastic and power law models

The rheclogical relation for Bingham plastic fluid may be

written as

du
T =1, + U ay (2-3.10)

For uniform flow in open channels with linear shear

distribution we have

T = vh sin 9(1—%) (3-2.1)

where h is the depth of flow, y is the distance from the bed
and sin O is the slope of the bed.

In the simplest form, Equation(2-3.10) is used with
Equation(3-2.1) and integrated with the boundary condition u=0

at y=0 to give

u = ;%‘75 y sin 8 [(h - y/2) - Ty] (3-2.2)
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In order to locate the point where the plug starts(h,) with

du
u=Up,, and dy ° 0

d 1 .
@ = 0= ;[ Yo sin 8(h - hy) - 1, ] (3-2.3)
or
T
ho = h - —— (3-2.4)
Ym Sin 6

3.2.1.1 Chen’s analysis
Chen(1983) gave a solution for a generalized Bingham plastic
model. It is one form of the generalized viscoplastic model

which Chen later proposed. The model is given as:
du
T=T, + H ( dy )‘ (3-2.5)

du
for It 2 Ty and dy = 0 for It < Ty

where |17 and N are referred to as the consistency index and
flow behavior index, respectively. For a general case, when
T,#0 and mM=1 Equation (3-2.5) can be solved. Equation (3-
2.1) is used to model the shear in the mud debris flow, where
p is the bulk density of the mixture, g is the gravitational
acceleration, sin O = S, is the slope of the bed, h is the
depth of flow perpendicular to the bed. If h, is the depth at
which © = 1, then

T, = ¥So (h - hy) (3-2.6)



Incorporating this in Equation(3-2.5) yields,

du [pg sin 0 (ho—y)]lh]
dy M1

for 0 £y € hg ; and gﬁ = 0 for hoy €y < h

Assuming that pand p; do not change over the depth in the
tlow, which is an idealization, the Equation(3-2.7) can be

integrated with boundary condition u=0 at y=0 to give

S N\
uo= = (93——9) T h e [1 - (l—'g*)"] (3-2.8)
M« \ H1 o

for 0 £y £h

(o]

+1
where N+ = L
n
So ¥
and u= > (39—‘3-) o (3-2.9)
M= \ K1

for h, £y £ h

The mean velocity for the section is obtained by integrating

Equation (3-2.8) over y and dividing the result by h gives

Im o\ h
U, = = (9—9—5—9) " (f)" [1 . A (—f)] h™  (3-2.10)
M= Hi 2n+1

The normalized form of Equations(3-2.8) is

39
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= for 0s ¥ g 2o (3-2.11a)
Um 'n h h ~ h :
1 - lo
2n+1 h
When the yield is negligible (i.e. h/hg = 1) and q=1,
Equation (3-2.11la) can be written as
u 3y A }
o = h (1 2h) (3-2.11b)
The normalized form of Equations(3-2.9) is
e i— for 22 ¥ g1 (3-2.12)
Un ~ h =~ h*~ )

The parameter h,/h indicates the relative strength of the
yvield Ty against the bed shear Tp Chen(1983) refers to h,/h as

the yield stress index.

3.2.2 Dilatant £luid model

The concept of dispersive stress was first introduced by
Bagnold(1954). This model described by Equations(2-3.5b) and
(2-3.6) have been used by Takahashi(1978) in the analysis of
steady uniform debris flow.

In a channel of depth h, say, a layer above a distance Yy
from the bed starts moving. The effective normal stress at

impending motion is given as:



On = Ysat (h-y) cus 0 - y, (h-y) cos 0 (3-2.13)

The first term is the normal component. of the stress due to

the body force. The second term isg the hydrostatic streasa in a

flow inclined to the bed of slope sin 8.
Replacing Yg;,c by [yw + (Yg - yw)Cv] the above cxpressions

yield

On = Cy(¥s - Y) (h-y) cos 0O (3-2.14)

Similarly, the gravitational shear component T for uniformly

distributed particle solid mixture is given as

T = Ysat (h-y) sin @ (3-2.15)

replacing Yga+ by [y@ + (Ys - Yw)CV] the above expression can

be written as

t= [v + s-%)Cy] (h-y) sin @ (3-2.16)
By combining Equation(3-2.16) with Bagnold’s model for fully

inertial flow in open channels yields

H

ajPs }"2 D2 (%)2 cos g Cv¥s - Tw) (h-y) cos 6

(3-2.17)

ajps A D? (%5)2 sin ¢4

[%+ Ys=T)Cy] (h-y)sin 6 (3-2.18)

where
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aj is a constant

Ps is the grain density

Yo is the unit weight of the fluid

A is the linear concentration defined by

-1
Ce
A = [( = )”3—1] (3-2.19)
v

Coo is the volumetric grain concentration in

static debris bed

Cy is the volume concentration of solids

in debris flow

0 is the slope angle of the flow surface
dg is the dynamic angle of friction
D is the particle diameter

On solving Equation(3-2.17) with the boundary condition u=0 at

y=0 yields

. 1/2
2 g sin 0 P 1
- = ‘———{c 1 - Fw 2Th3/72 _ (h-v)3/2
u 30 {ai sin o v Cv)ps]} k[ (h-y) ]

(3-2.20)

where h is the depth of flow. The mean velocity is given by

. 1/2
2 g sin 0O p } 1
U=——‘—jc 1 - cy)t = h3/2
" 5D {ai sin ¢4 + v)Ps] A

Making use of Bagnold’'s experiments Takahashi(1978) deduced

(3-2.21)
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Cy < 0.81 Co ;i a; = 0.022

i

0.066 (A- 12) + 0.022

for C, 2 0.81 Cy ; a4

The normalized velocity profile can be written as

u 2 _ (1 - PR B}
ot 3 {1 (1 h) } (3-2.22)

The above expression is typical of a dilatant fluid model.
This expression can also be arrived at by writing the momentum
equation for non-accelerating flow in a channel and
integrating it to obtain the 1;, component of the stress.

This component after equating with Ackermann and Shen'’s

equations (Egs.2-3.28 to 2-3.30) can be integrated to give the

same normalized expression as (3-2.22).

3.2.3 Generalized viscoplastic model
Chen used the GVF model and gave an effective stress
version of the equations of motion as

_— T]
Pnd (h-y) sin 0 = ¢ cos O + psin ¢ + G?j
(3-2.23)
and

n
- p'glh-y) cos 6 = - [T (%5) (3-2.24)
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where p is the effective dynamic pressure and p'=p,-Py-

Solving Equations(3-2.23) and (3-2.24) simultaneously for u

gives
] *g sin B\lM
uo= (9-—9—-——) ho [1 - (1-%)“*] (3-2.25)
L Hi o
for 0 £y € hg
+1
where Ne = —~
n
. [1—(p'/pm) ctn 0 sin ¢J
P 1+ (U1 /1y) sin o
* sin 0 l/l’] *
and u= L (—"—L—-—) hy" (3-2.26)
N+ K1
for ho €y £h
These equations are almos+ . .ctly the same as the solutions

presented earlier for generalized Bingham plastic

fluid (Equations 3-2.8 and 3-2.9). The equation for the mean
velocity is also same as Equation(2-2.24). An alternative
form of the equations of motion for flow with concentrations
varying in the vertical direction has been given by Chen(1987,
1988a & b) using the differential form of the GVF model. The
details of the generalized solutions for the viscoplastic

debris flow can be found in the paper by Chen(1988a & b).
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3.2.4 Arai and Takahashi’s Equation
Assuming a linear shearing stress and 1, = K,y where

K, is the Karman constant, Equations 2-3.6, 2-3.7, 2-3.8 are

used to give the velocity distribution in the channel as

(3-2.27)
U Ky Yo + \on?‘ + 0

Y ks A/ :
Y= 3 Yo= 3557 ux = Yg h sin 6

2 - AZ E_l__‘::’iﬂ_?i QS_ D 2 3-2.28
¢ Ky? Pm (h) ( )

k; is the equivalent sand grain roughness of the bed, 0 is
the bed slope and ¢4 is the dynamic angle of friction. For
vanishing concentrations, ¢ tends to zero and Equation (3-
2.27) reduces to the velocity profile for rough turbulent

clear water flow in a rectangular channel

e T e (3-2.29)
Ux X kS
v

It can be observed from Fig.3-1 that the presence of
particles in the fluid has the effect of increasing the
friction in the fluid and hence reducing the velocity. It is
interesting to note that the nature of the profile remains

unaltered.
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Figure 3-1 Dimensionless velocity profiles for
sediment water mixtures using turbulent
dispersive model with D=0.215mm

3.2.5 Turbulent diffusion of sediment
After writing continuity equations for both fluid and

sediment, Hunt (1954) gave the following sediment diffusion

equation.

g—f; ¢ C(1-C)w = 0 (3-2.30)

where C is the concentration at a depth y and w is the fall
velocity. When the concentration of sediment is small and
the motions of particles and the fluid are identical, i.e
momentum diffusion rate and particle diffusion rate are

equal, Rouse(1937) solved Equation (3-2.30) to give the
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following equation for the vertical distribution of sediment

particles
C d - a__\|? x o -
= = [(——y—l) (d 2 a)] (3-2.31)
w
where z = -
Brous

This equation shows that the sediment concentration C at any
point y depends on the depth of flow d, the reference
concentration Co at a distance a from the bed. 2 represents

the ratio between the fall velocity w to the product of von

Karman constant K, the shear velocity usx, and the ratio of
sediment diffusivity to the momentum diffusivity X. Einstein
and Chien (1955) found that Equation (3-2.31) was not able to
reproduce the concentration distributions at mean
concentrations beyond 3% by volume. Woo and Julien(1988)
numerically solve Equation (3-2.30) in the concentration
range 4 to 20% by volume. The following expression for the
fall velocity for hindered settling wy given by Richardson

and Zaki (1954) was used.

W = w{l-C)& (3-2.32)

o, which depends on the particle Reynolds number and particle
shape, decreases from 4.65 to 2.35 as the particle size
increases from silt to gravel. Winterwerp et al. (1991) have
examined Equation (3-2.31) with modified % using wp instead

of w. By using the measured concentration Co, W and Co were



solved iteratively using Equations (3-2.31) and (3-2.32).
The use of wp in Equation (3-2.31) resulted in concentration

distributions that were c’oser to their measurements.
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4 LABORATORY MEASUREMENTS OF HYPERCONCENTRATED FLOWS

4.1 Introduction

A major limiting factor in our understanding of debris
flows has been the lack of measurement of its hydraulic
properties. There is a general dea. h of field observations
because the incidental occurrences usually find the observer
unprepared. Furthermore, conventional measuring techniques
are primitive and new techniques have yet to be tried and
implemented (Pierson 1985). Unlike studying streamflow, the
very dense nature of debris flow poses most of the
difficulties in the field for making reliable measurements of
velocity and concentration profiles. 1In larger scale events
the safety of those in the field is a serious concern.

In debris and mud flows, the general practice has been
to borrow ideas from granular flow theories and adapt them to
the individual flow ~egimes. This has called for a serious
experimental approach to define the mechanics of these flows.
The high concentration fluid behaves very differently from
the ordinary Newtonian fluid. Several constitutive laws have
been proposed for these fluids but the lack of reliable
velocity measurements has made it difficult to confirm the
validity of these constitutive laws. The concentration
distribution of the particles is also of equal importance
because it gives us the shear distribution in the flow.

Because of the complex nature of the flows, it is essential
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to conduct experiments in the laboratory under controlled

conditions with as few constraints as possible.

4.1.1 Past Experiments
4.1.1.1 Velocity and Concentration

Most of the earlier experiments on debris flows focussed
on understanding the rheology of the fluid (Sayed 1981, Kang
and Zhang 1980, O’ Brien & Julien 1988, Ghahramani-Wright
1987) using either viscometers and shear cells or using flow
in open channels (Johnson 1970, Savage 1979, Takahashi 1980,
Tsubaki and Hashimoto 1983, Ghahramani-Wright 1987,
Winterwerp et. al. 1990). 1In some of these cases actual
debris flow deposits have been used while others have used
ordinary sand and clay in their respective works.

Debris flows in the field have been observed to be
predominantly unsteady. However, steady flows are also
possible. One of the many difficulties of studying debris
flows in the laboratory is the generation of the flow under
controlled conditions. The unsteady flow, in principle, may
be easier to generate but very difficult to record. The
measurements are difficult because of the very short duration
of the flow and the need to work with long channels. One
trial conducted in a preliminary study with 15L of saturated
sand water mixture, released suddenly on a slope of 25
degrees, travelled as a surge, a distance 4.25m in 4 sec.
These problems have been dealt with, with some degree of

success, in a few studies (Hirano & Iwamoto 1981, Davies



51

1988, Chi-Hai et. al. 1990) by arresting the flow in a belt
driven flume.

Velocity and concentration distributions have been more
difficult to measure than the rheological properties.
Because of the highly abrasive nature of the flow, it is not
possible to use standard probes used in the study of
Newtonian fluid flow. The few measurements that have been
made are sketchy and of short duration. Yano and baido
(1965) measured the velocity distribution in a clay slurry
(Cy<13%), using a modified pitot tube. The dynamic and
static pressure needed to inject water into the flow to
prevent clogging of the tube, gave the required velocity.
Wang (1990) used a similar method combined with tracer
particles to measure velocity profiles and radioisotope
concentration meter to measure concentration profiles.
Takahashi (1978) made velocity and concentration measurements
in a channel inclined at 10° to 20° with Cw 33% to 44%.
Debris flow was generated by passing a constant discharge
over a saturated mass which failed and flowed down in a
quasi-steady manner. Velocity was measured using close-up
photographs of particle movement in contact with the wall.
Arai and Takahashi (1983) injected salt into a flow and
measured the conductivity change at points downstream using
two or three serial probes. The velocity was given by the
time lag between two points. Hirano and Iwamoto (1981)
measured velocity and concentration profiles in a bore using

cine-camera. The concentration was determined by counting
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particles in contact with the wall. The velocity
distribution appeared to be almost uniform and the
concentration was found to be smaller near the bed. It is
vet to be confirmed how representative these measurements are
because they were obtained by tracking particles next to the
wall. An optical sensor method has been tried in the case
of dry granular flows (Savage 1979). 1In this technique, two
optical sensors were arranged side by side next to a
transparent wall. A cross correlation of the output of the
two sensors gave the velocity of the particle. This,
however, has the same limitations as the photograph.c
technique. Recently Winterwerp et al. (1990) used an
electromagnetic flow meter for their measurement. They
report turbulent flow in 30 c¢m deep, 30 cm wide and 9m long
flume with specific flow rates of 10-150 m2/s and laminar
flow in 4.5 cm deep, 11.8 cm wide and 1.5 m long flume with
specific flow rates of 1-5 m2/s. It is interesting to see
that even at high mean concentration, the equilibrium slope
in a large flume is almost an order of magnitude smaller than

in the case of the small flume.

4.2 Present study‘
4.2.1 Preliminary Works

Several trials were made in the earlier stages of the
study to understand the physical behavior of granular
materials. Since the primary interests were to generate a

flow and improve the slurry handling capabilities in the
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laboratory, various trials were made to define the
appropriate conditions suited to debris flow generation. One
of the aims of the trial was to find an appropriate flume and
the method of producing a flow. In order to improve an
overall preliminary understanding of granular flows, both dry

and wet granular flows were examined in the lab.

4.2.1.1 Dry Granular Flows

Poorly sorted cand 0.% mm median diameter was used in
this experiment. Sand was released suddenly by opening a
swivel gate at the upstream end of a flume in the form of a
dam break. Two sizes of plexiglass flumes were used. The
small flume was 1.35m long, 1l6cm wide and 2lcm high. The
large flume was 4.25m long, 15cm wide and 0.54m high.
Sandpaper with roughness 0.5mm was glued to the bed of the
flumes. The volumes of the material released in the large
flume was around 20L and 2L in the small flume. The flumes
were inclined at 20-30° and the surges were studied using a
video camera and an ordinary camera with 35mm lens and
varying shutter speeds.

The main aim of this exercise was to observe the general
behavior of dry granular material. The first observations
were of the nature of the surges, the inverse grading in the
flow (Plate 4-1) as well as segregation on the deposits
(Plate 4-2). Note the fine sand on tne bed in Plate 4-1. It

was observed that the surge front was a cloud of fines with
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Plate 4-1 1Inverse y:x:i‘ny in dry granular flow (flow 1 to r)

Plate 4-2 Segregation on the surface of dry granular flow
deposit (flow from top to bottom)
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the main flow trailing behind. It was interesting to note
from the streak lines on the flow surface that the dry
granular flow had distinct shear layers next to the wall
(Plate 4-3) compared to saturated flow for which shear layer
was virtually missing (Plate 4-4). 1If it was present, it was
confined to approximately 5mm from the wall (which were the

Closest streak lines observed in the photograph)

4.2.1.2 Sand Water Mixtures

Studies similar to dry granular flows were done with
saturated sand water mixtures. The same two flumes were used
with the same roughness. It was observed in the large flume
that a volume of 20L of saturated mass produced a flow depth
of around 2cm as it flowed down. This gave some indication
regarding the flow depths achievablc. in the laboratory with
small volumes.

The surces were well formed if the mass was kept
agitated before the gate was released. Otherwise progressive
rotational failures, very similar to slope failures, were
observed once the gate was opened. Several attempts were
made to deflect away from the bed that part of the main flow
next to the wall and study the streak lines at the centre of
the channel through the plexiglass walls of the flume.
Photographic problems were encountered as a result of poor

lighting in the area of flow deflection. The large flume,
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Plate 4-3 sShear layer near the wall in dry granular flow

Plate 4-4 Shear layer near the wall in a flow of saturated
sand water mixture
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therefore, gave some qualitative information on the shear
layer next to the wall as described earlier and inverse
grading in the flow deposit and the surge front (Plate 4-5),
It also opened up possible avenues for future investigation
such as the run-out distances for debris flows (Plate 4-6).
In the last stage of the preliminary study, a conveyor
belt driven flume 3m long and 25 cm wide, very similar to
that used by Hirano and Iwamoto(1981), was tried. Since the
flume leaked and the particles produced unwanted abrasion in
between the belt and the flume bed, this technique was not
pursued seriously. However, this technique holds significant

promise for future studies of unsteady surges.

4.3 Steady Debris Flows

For both steady and unsteady debris flows, the main
difficulty in the laboratory lies in generating
representative flows. Unsteady flows are of shorter duration
and may require significant channel length. Steady debris
flow, on the other hand, requires a long duration before any
direct measurements can be made. Without recirculating, his
would require large volumes of material to be fed

continuously.
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Plate 4-5 Segregation in the surge front of a saturated

granular fiow. Surge frozen at high shutter speed
(flow top to bottom)

P

Plate 4-6 Run-out after flume exit (flow left to right)
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4.3.1 Experimental Arrangement

The objective of the study was to generate a steady,
uniform flow of a highly concentrated sand-water slurry,
initially, without mixing any clay or silt size particles. In
order to avoid using large volumes of the material, but at
the same time generate the flow for a long duration
(typically two hours), & continuous pumping system (Plate 4-
7, Fig. 4-1c) was designed (Mainali & Rajaratnam 1991). The
channel was on a slope of 28.6% which was slightly above a
slope at which sediment started -o deposit on the bed. Hou
roughness was provided by gluing sand paper cloth having an
equivalent roughness of 0.56mm. A mixture of sand and water
in a hopper was pumped using a Seepex eccentric screw pump
35-6L BN/110-1531-203-111 which, when pumping water, operated
at 86 to 375 RPM producing d:scharges of 3L/s to 12L/s
respectively. The maximum discharge was reduced by
approximately 15% when the concentration of the mixture was
around 20%. The stator was made of soft natural rubber and
the rotor was a hardened tool steel 0.64 m long. Mixing took
place at the upstream end of the flume when the fluid poured
from the hose into the flume and when the fluid entered the
rectangular hopper at the downstream end of the flume. The
system was first started with some water and then sediment
was gradually added into the hopper. At steady state, there
was some deposit of sediment that remained in the upstream

corners of the hopper. As this deposit did not grow and as
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Plate 4-7 Continuous pumping system for steady uniform
debris flow

N,

Plate 4-8 Downstream hopper for adding sediment and mixing
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there was nowhere in the system for deposition to take place,
the slurry was assumed fully mixed. The system could be
gradually emptied by opening the bypass valve. Since the
discharge was limited by the pump capacity, a narrow
plexinlass flume 4.25m long, 5lmm wide and C.54m high was
used to aclhiieve a depth of flow up to 4.9 cm. This
limitation of chann ! width, however, made it possible to
mount a sampler at the end of the flume (Fig. 4-1c) and - .

measurements at the channel center and side.

4.3.2 sSampler Development and Calirration

In the early stage ol the study several photographic
techniques were tried. The goal was to obtain streak lines
using a 35mm camera and light colored sand, wnich could then
be calibrated for velocity measurement. The drawback of this
technique was that the veloci:y measured was of particles
moving next to the wall and the concentration profile had to
be measured independently. Freezing the motion with a high
speed camera and counting particles yielded concentration
values of little confidence. Another attempt to obtain data
was to use video motion pictures photographed at 2000 frames
per second. This method although promising initially,
resulted in images of poor resolution. Owing to thes~
difficulties, the direct sampling technique was tried.
Several tube designs having a variety of lips were tried. It
was discovered that the tube had to be short in order to

prevent choking and it had to have sharp edged lips to



increase the capture efficiency. The sampler finally used
had a square opening of area (a) of approximately lcm? and
was 5cm long. It was slightly tapered away from the
direction of flow and diverted the sample into a graduated
container (Plate 4-9). Plate 4-9 also shows the inner
construction of the side sampler. Fig. 4-la & 4-1b show th
view from the end of the channel looking upstream. The
centre sampler had a knife edge flow deflector to pass the
flow down the channel from areas other than the opening.
This size of sampler was finally adopted because any opening
smaller than this choked the sampler. The above sampler
worked well for flows with a volumetric concentration
approaching up to 50%. This sample was collected in a
graduated container (plate 4-10) and weighed. The sampling
time was noted using a stop watch. Despite being tapered,
the sampler flowed full without trapping air.

Since the flow velocity at the flume exit was 3-3.5m/s,
it came out of the flume almost as a jet. As the flow was
inertia dominated, the jet travelled in a straight line for
abcut one half the channei width, away from the edge of the
flume, before it assumed its standard trajectory. The
sampier was mounted on a graduated rod which could be moved
vertically allowing samples to be taken at any point in the
flow (plate 4-10). At any point in the flow three samples
were taken and the mean of these three readings was used.

Plate 4-11 is a view of the sampler looking downstream and

Plate 4-12 gives a view of a typical sample that is collected

63



Plate 4-9 Centre and side samplers with tapered duct and
surface floats

Plate 4-10 sampling of flow

64
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and weighed. Note the distinct segregation of particles in
the mixture following settling. The sampler was calibrated
with pitot tube measurements with water flcwing in the
channel. Of the three samplers used, #5 produced less than
5% error and therefore was not calibrated (Fig. 4-2c). For
sampler #2 and #3 the profile had to be shifted slightly to
match the pitot tube readings (Fig.4-2b).

1t was found that for sampler #3 if 0.2s was added to
each of the measured time of collection, the new velocity
profile matched the pitot tube reading very well as shown in
Fig. 4-2b. For sampler #2 approximately 0.2 sec had to be
deducted to match the profile. TIf the sampler malfunctioned
either due to trapped air pocket or if the sampler was choked
by rubber strippings from the rotor, distinct outliers were
observed in the velocity profiles as indicated by the point
in Fig 4-2b at a depoth of Z.25cm. The above figures show two
sets of readings of water flow using the sampler and pitot
tube which indicate good repratability for both these
measuring techniques. The small difference in the velocity
measurement using pitot tube and the sampler demonstrated
that the disturbance of introducing a 1 cm? cross section
sampler was smaller than anticipated. There were also
concerns regarding the accuracy of the measurements when
averaging was performed by such large sampling space me- ng
through the depth in such small increments i.e. when 8 to 10
readings were taken in a depth of 2 to 3 cm using a 1 c..-

sampler. The author believes that the excellent matching



throughout the depth of these two sets of profiles described
earlier show that the change in velocity gradients recorded
by pitot tube measurements are preserved by this new sampling
technique. Thig alleviates some of the concerns regarding
the accuracy of measurements. The ideal procedure would be
to make measurements using - non-intrusive technique. Thi-,
however, is yet to be developed. Fig. 4-2c also shows that
the velocity profile measurements using a pitot tube 0.5 cm
away from the channel center is almost the same as that at
the center of the channel. This shows that there is almost
no influence of the side wall at the channel center. This
was also confirmed by comparing the streak lines of white
sand particles at the centerline and next to the wall. These
streak lines were observed on a surface photograph of the

slurry flowing in the channel. The streak lines were clearly

equal in length throughout the channel width and were shorter

only within 5mm from the wall. The secondary circulation in
the narrow channel caused the reduction of wvelocity near the
free surface. Similar effect can be observed in the case of
a sand water mixture although this effect is suppressed when

the concentration is high.

4.4 Velocity and Concentration Measurements

Once the sample was collected and weighed, the

information at hand included the volume of the sample (V},

the mass of the sample (m), the sampling time (t) and the

7¢



sampler area (a). The velocity and cencentration at a

location in the flow was then evaluated using the following

equations:
u = —a—‘i (4-4.1)
cy = T [g- _ 1] (4-4.2)
where m is in grams and V is in ml,. This location was taken

as the centre point of the sampler. In order to use the
Equation(4-4.1), the sampler had to be flowing full for
velocity measurement. Therefore, the velocity at the surface
of the flow had to be evaluated independently. As the
concentration measurement, Equation(4-4.2) derived from
Equation (C-3.4) from Appendix C, required only the volume
and mass of the sampler, the sampler didn’t have to flow full
as long as a representative sample was taken. Therefore, a
sample could be skimmed from the surface of the flow and the
concentration determined. The velocity at the surface was
determined using a camera with a 35mm lens, a Minolta 5200i
flash which had multiple strobing capability of up to 10
flashes at 50 Hz and a square polyethylene surface float
12.5mm on each side and approximately 2mm thick of specific
gravity 0.92 (Plate 4-9). Several images of the float were
captured in a single frame as it moved down using the
multiple flash with the camera wide open Plate(4-13). The

flow is from right to left. This process proved to be

71



Plate 4-13

Surface velocity using a float (flow right
left)

P



reasonably difficult. The difficulty lied mainly in

synchr onizing the release of the float and triggering the
flash. The success rate was low therefore only two
neasurements were made, one for low concentration and one for
high concentration. The surface velocities for the rest of
the measurements were eventually extrapolated based on these
two measurements, The surface velocity measurements
gl401Cm32.8 and gl594Cml5.4 for particle D2 (Fig.4-10a)were
done using the above described technique. Here gql401 stands
for specific discharge 1401 cm?2/s and Cml5.4 stands for the
profile mean concentration by volume of 15.4%.

The present set of experiments were performed using four
sizes (D1 to D4), three of which (D1-D3), were uiformly graded
silica sand particles. Size D4 was mixed in the laboratory
taking equal portions of sizes Dl to D3. Figure 4-3 gives
the sieve analysis results for the four particle cizes.
Velocity and concentration profiles were measured for each
particle size at several mean concentrations. One of the
limitations of the set-up was that the mean concentration for
any run could not be predetermined. This would have been
possible if the mass of sand and the volume of water in the
system could have been predetermined. The mass of sand in
the system could not be fixed. This would require a lot more
effort and time before each run to completely dry the sand.
If the effort had been made to dry the sand, then the volume

of water in the system would not have been
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diffi-ult to fix. On the other hand, even if both the masses
of sand and water had been fixed, there were still two
ditficulties in bulk sampling of the flow in oirder to get a
mean concentration and velocity for the whole system.
4. The flow wes coming out of the channel at a velocity of
about 3 m/s which made it impossikble to collect it in
a small container without splashing the sample
b. As the total volume in he system was cmall (around 80-
100 Liters), fluctua .c0n in discharge could be
noticed 1f more than 4 or 5 liter of sluiry was
extracted from the system. This limited the general

sampling volume.

The mean concentrations and the unit discharges were
therefore evaluated by integrating the measured profiles.
This procedure has been adopted because it was discovered
that the magnetic flow meter which is normally calibrated for
water flow did not produce accurate discharge measurements
when a slurry was flowing through it. The performance was
obviously better when the magflow meter was placed in the
vertical line (Fig. 4-1c). The possible explanation for this
could be that in the horizontal line the particle
concentration is more close to the bottom boundary. This
results in a non symmetrical velocity profile which appears
to invalidate the factory calibration factors. When the
magnetic flow meter was put in the vertical line, the mixture

flowing through the pipe was better mixed which possibly gave



a more symmetrical velocity distribution that resulted in a
flow similar to that achieved during the factory calibration.

The velocity ond concentration profiles were measured at
the centre of the channel and at 0.5 cm from the wall. The
mea.urements next to the wall were made only for paiticle
size D1. Figures 4-4 to 4-6 give the normalized velocity and
concentration profiles. y is the vertical location above the
bed, u is the velocity at this location, h is the depth of
fiow, U is the integrated mean velocity at the section, Cis
the integrated mean concentration for the section. The
details for these rung are presented in Tables 4-1 to 4-3.
The group names Cl to C6 do not indicate any particular
significance.

Similar sets of data have also been presented for
measurements at the centre of the channel. Figures 4-7 to 4-
8 represent normalized velocity and concentration profiles
for particle size D1 (=0.430 mm). Tables 4-4 to 4-5 present
all the data for the profiles given in Figures 4-7 to 4-8.
The specific discharge is given as q, Yum represents the
height above the bed where the velocity is equal to the

section mean velocity Up., Yio represents the height above the

bed where the concentration is 10% of the concentration at

the bed, C,. The group designation such as group 6.45
represent the approximate magnetic flow meter reawing in L/s

maintained through the runs.
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4-1

summary of velocicy and concentration

profiles for group Cl, Channel Side

(q=10305 cm/u Cin=22.5 h = 3.9]gq=990sq cm/s Cm=29.7 h = 3.9
Um= 2.64 Um= 2.56
y/h u/Um u Cv/Cm (v Cw y/h u/Um u Cv/Cm Cv Ccw
2.64 2.56
(m/s) (%) (%) (m/s) (%) (%)
1030¢gl030Cm22.5 wall (q 990Cm29.7
0. 0. 1.29 1.84 41.3 65.1) 0.1 0.5 1.18 1.55 46.8 69.9
0.2 0.6 1.60 1.78 40.0 63.8] 0.2 0.6 1.55 1.51 45.5 68.9
0.3 0.8 2.14 1.65 37.1 61.0( 0.3 0.7 1.91 1.52 45.7 69.1
0.4 0.9 2.50 1.46 32.8 56.4) 0.4 0.9 2.22 1.47 44.1 67.7
0.4 1.1 2.87 1.29 29.0 52.0| 0.4 1.0 2.49 1.38 41.7 65.4
0.5 1.2 3.25% 0.94 21.1 41.4{ 0.5 1.1 2.88 1.19 35.9 59.8
0.6 i.3  3.40 0.63 14.2 30.5| 0.6 1.3 3.30 0.92 27.5 50.2
0.7 1.4 3.8 0.30 6.7 16.1| 0.7 1.4 3.%58 0.57 17.2 35.5
0.7 1.3 3.48 0.33 7.4 17.4| 0.8 1.4 3.63 0.24 7.2 17.1
1.0 1.3 3.50 0.16 3.5 8.8 1.0 1.4 3.65 0.12 3.5 8.8
g=1020sq cm/s_ Cm=31.2 h = 4.0|q=1059sg cm/s Cm=30.8 h = 4.1
Um= 2.58 Ums= 2.57
y/h u/Um u cv/Cm Cv Cw y/h  u/Um u Cv/Cm Cv cw
2.58 2.57
{m/s) (%) (%) (m/s) (%) (%)
wall (ql1020¢(ql020 wall (gl059Cm30.8
0.1 0.5 1.35 1.43 44.9 68.3| 0.1 0.5 1.31 1.42 44.0 67.6
0.2 0.7 1.74 1.47 46.3 69.5{ 0.2 0.7 1.71 1.46 45.5 ¢68.8
0.3 0.8 2.09 1.42 44.8 68.2| 0.3 0.8 2.03 1.48 46.0 69.3
0.4 0.9 2.43 1.38 43.5 67.1§ 0.3 0.9 2.41 1.42 44.0 67.6
0.4 1.0 2.69 1.31 41.2 65.0( 0.4 1.0 2.69 1.35 41.9 65.6
0.5 1.0 2.59 1.31 41.2 65.0{ 0.5 1.1 2.83 1.24 38.6 62.4
0.6 1.1 2.85 1.00 31.5 55.0| 0.6 1.3 3.23 1.00 31.2 54.5
0.7 1.3 3.38 0.68 21.4 42.0] 0.6 1.3 3.22 0.77 23.8 45.3
0.7 1.4 3.58 0.42 13.1 28.6}| 0.7 1.4 3.49 0.49 15.3 32.4
0.9 1.4 3.58 0.33 10.4 23.5{ 0.9 1.3 3.36 0.37 11.4 25.5
1.0 1.4 3.60 0.17 5.2 12.7] 1.0 1.3 3.45 0.18 5.7 13.8

79



H

(]

ug/n

51 01 S0
~ et o R
- a
- <&
¢ B
= [
— e
e
- o N
o r
‘4 = . .
A = , "Qzw b o |
A . 0 ocwOTPe O
o S GZUWDLBOTD o
= | TrgzwdLzETh o
Tm.mmcapmiu .
#C O

3pTs Teuueyd ‘g9 gg=a8dors ‘gD dnoab ‘1g 8ToTIaRd ‘BaINIXTW I53EM
Fues wicjtun Apesls 103 A3TO0TaA-Y3ided pPozTTeWION ©G-§ 2InbBTJ

/i




81

«n

[go]

w/AD
0s°¢ 00°¢ 06° % 00°T 0S°0 00°0
I GG | ..b»»~>-b>-.»._»thu\er\rmpnhnh_h-— o.o
Um i
0O L
a |
o T
o B i
DO A
B O L
QL - G-
| Y S°0
= 3 L
TQZUWDT b
0" QCU2T¥6 o 0 "o . A
S STwWOLBOTD o s ]
T°8TWILZETR o C .
€ 8TWO.507h g ]
i
~0°1
27Ts Teuueyd '$9°8Z=2dotrs ‘gzD dnoab ‘1g a71oT3xed ‘2INIXTW I23eM
TUES WI0ITUR APPI3S ICI uCTIeIjuaduo)-yadsg paziTewioN ds-p 2i1nb1d

q/&



Table 4-2

summary ot velocity and concentrat ron

protiles for group O, Channel dide
L. oilsq em/y Cm 20,0 h- 350010870 vmy/s cme 24 h VL9
Um= <.71 U 2000
y/h u/Um 1 Ccv/Cm Cv Cw y/h [SWARH 1 vv/em oy "
2.71 2.9
(m/s) (%) (%) (m/ ) ) \;T ‘(‘\-)
q 941Cm20.0 qlog/emns .5
0.1 0.6 1.7 1.87 37.3 61.2 0.1 0.5 1.42 1.76 45,0 08.4
0.2 0.7 1.94 1.74 134.8 658.6| 0.2 0.0 1.79  1.71 43.7 wol.3%
0.3 0.9 2.36 1.53 30.7 S4.0| 0.3 0.8 2,27 1.61 41.0 b4.H
0.4 1.0 2.76 1.26 25.3 47.3 0.4 0.9 2.46 1.%8 40..2 64.1
0.5 1.2 3.12 1.03 20.6 40.7 0.4 1.1 2.95 1.32 114 87,4
0.6 1.3 3.51 0.68 13.» 29.4 0.5 1.2 3.2 0.97 24.7 46.%H
0.7 1.3 31.58  0.47 9.3 21.4 0.6 1.3 1.4 0,67 17,1 34,4
0.8 1.3 3.%58 0.28 5.7 13.8] 0.7 1.3 .67 0.36 9.2 2.1
1.0 1.3 3.50 0.14 2.8 7.1 0.8 1.3 $.76 . 0.29 7.5 17.6
1.0 1.3 1.7%  0.1% 3.7 9.2
gq=1057sq cm/s Cm=28.3 h= 4.00|g=1327sq cm/s Cm=28.1 h= 4.50
Um= 2.71 Um= 2.96
yYy/h u/Um u cv/Cm Cv Cw y/h u/Um ! Cv/Cm (v Cw
2.71 2.96
{(m/s) (%) (%) (m/s) (%) (%)
q1057Cm28.3 ql327Ccm28.1
0.1 0.5 1.30 1.54 43.7 67.3 0.1 0.6 1.89 1.59 44.7 68.2
0.2 0.6 1.71 1.57 44.5 68.0] 0.2 0.8 2.35 1.57 44.1 67.6
0.3 0.7 1.97 1.58 44.9 68.3 0.2 0.9 2.55 1.53 42.9 66.6
0.4 0.9 2.46 1.49 42.2 65.9 0.3 1.0 2.93 1.43 40.3 64.1
0.4 1.0 2.73 1.38 39.1 63.0( 0.4 1.1 3.11 1.32 37.0 60.8
0.5 1.1 3.07 1.21 534.4 658.1 0.4 1.1 3.31 1,20 33.8 57.%
0.6 1.3 3.44 0.78 22 1 42.9 0.5 1.1 3.33 1.06 29.9 53.1
0.7 1.3 3.2 0.51 14.5 31.0| 0.6 1.1 3.15 0.97 27.2 49.7
0.7 1.3 3.64 0.32 9.3 20.7 0.7 1.2 3.60 0.67 18.7 137.9
1.0 1.3 3.60 0.16 4.5 11.1 0.7 1.3 3.7 0.50 13.9 30.0
0.8 1.2 3.66 0.38 10.7 24.1
1.0 1.2 3.60 0.19 5.3 12.9
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Table 4-3 Sunmmary

of velocity and concentration

profiles for group C3-4, Channel Side
g=1236sgq cn/s  Cm=5.3 h= 4.30/q=1442sq cm/s  Cm=6.8 h= 4.60
Ums= 2.90 Um= 3.15
y/h u/Um u Ccv/Cm Cv Cw y/h  u/Um u Ccv/Cm Cv Cw
2.90 3.15
(m/s) (%) (%) {m/s) (%) (%)
gl236Cm 5.3 gl442Cm 6.8
0.1 0.8 2.36 2.32 12.3 27.1} 0.1 0.8 2.53 2.24 15.2 32.3
0.2 0.9 2.64 2.12 11.3 25.2 0.1 0.9 2.79 1.96 13.3 28.9
0.2 1.1 3.14 1.56 8.3 19.3 0.2 1.0 3.13 1.74 11.8 26.2
0.3 1.1 3.18 1.35 7.2 17.0 0.3 1.0 3.29 1.44 9.8 22.4
0.4 1.1 3.31 1.10 5.9 14.2 0.3 1.1 3.48 1.24 8.4 15.6
0.4 1.2 3.44 0.88 4.7 11.5| 0.4 1.1 3.44 0.98 6.7 15.9
0.5 1.1 3.26 0.79 4.2 10.5}| 0.5 1.1 3.44 0.°5 6.4 15.4
n.6 1.2 3.54 0.61 3.2 8.1 0.5 1.1 3.45 0.79 5.4 13.1
0.6 1.2 3.48 0.57 3.0 7.6 0.6 1.1 3.60 0.60 4.1 10.1
0.7 1.2 3.37 0.41 2.2 5.5 0.7 1.1 3.58 0.46 3.1 7.9
0.8 1.0 2.82 0.30 1.6 4.1 0.7 1.1 3.57 0.44 3.0 7.5
1.0 0.9 2.0 0.15 0.8 2.5 0.8 1.1 3.55 0.30 2.0 5.2
1.0 1.0 3.25 0.30 2.0 5.2
group C5-6, Channel Side
g=1157sq cm/s Cm=5.6 h= 4.00{g=1305sg cm/s Cm=12.2 h= 4.30
Ums= 2.92 Ums= 3.06
y/h u/Um u cCv/Cm Cv Cw y/h  u/Um u cv/Cm Cv cw
2.82 3.06
(m/s) (%) (%) (m/s) (%) (%)
gll57Cm 5.6 gl305Cml2.2
0.1 0.8 2.31 2.14 12.0 26.5] 0.1 .8 2.37 1.95 23.7 45.2
0.2 0.8 2.48 1.90 10.7 24.1% 0.2 .9 2.60 1.87 22.8 43.9
0.2 1.0 3.01 1.56 8.7 20.2§ 0.2 0.9 2.78 1.57 19.1 38.5
0.3 1.1 3.21 1.31 7.3 17.3 0.3 1.0 3.00 1.36 16.5 34.4
0.4 1.1 3.29 1.04 5.8 14.1 0.4 1.1 3.34 1.19 14.5 31.0
0.5 1.2 3.40 0.96 5.4 13.14{ 0.4 1.1 3.49 0.97 11.8 26.2
0.5 1.2 3.44 0.79 4.4 11.01 0.5 1.1 3.49 0.84 10.3 23.3
0.6 1.2 3.4A 0.53 2.9 7.5 0.6 1.2 3.53 0.72 8.8 20.3
0.7 1.1 3.27 0.48 2.7 6.8 0.6 1.2 3.56 0.64 7.8 18.4
0.8 1.1 3.24 0.34 1.9 4.9 0.7 1.1 3.45 0.50 6.1 14.7
1.0 1.0 3.00 0.16 0.5 2.4 0.8 1.1 3.47 0.42 5.2 12.6
1.0 1.1 3.45 0.21 2.6 6.6
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Figqures 4 9 to 4-10 and Tables 4-6 to 4-7 give the detai:
plots and dara for the normalized velocity and concentrat ion
profiles for particle D2 (=0.335mm) .

Figures 4-11 to 4-12 and Tables 4-8 to 4-9 give the
detail plots and data for the normalized velocity and
concentration profiles for particle D3 (=0.215mm). Another
variable, Yems, is introduced here to normalized the
concentration profile. yem represents the height above the
bed where the concentration is equal to the mean
concentration for the profile, Cp. The normalizing variables
in all the above plots have been chosen mainly to obtain the
least scatter of data.

Figures 4-13 to 4-14 ard Tables 4-10 to 4-11 give the
detail plots and data for the normalized velocity and
concentration profiles for particle D4 (=0.330mm). It 1is
important to note here that although the mean particle
diameter of D4 is about the same as D1, D4 represents a
sample with a much severe particle gradation than the other
three sizes which are approaching uniform gradation. The
consequences of this can be seen in the differing nature of
the velocity and concentration profiles between particles D1

and D4. This will be discussed later.
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4.5 Limitations and Discussions

In order to get an adequate depth of flow, the width of
the channel used was small. However, the velocity profile at
the centre and at 6.5mm from the centre (Fig. 4-15) show a
very small change in the preofile. This shows that at high
velocities the cffect of the side wall was confined to the
immediate wall region and the centreline profile could
approximate a wide channel behavior. This was also observed
by Takahashi (1980) in his study.

The question as to whether the calibration was adequate
using water will have to be studied further. The ideal
method would be to calibrate it using the fluid under
consideration. But this posed a practical problem and a
simple technique has yet to be developed.

One other variable that was not explored was the slope
of the channel. All the experiments were carried out at a
slope of 28.6%. There were two reasons for this. The first
reason was that it was the intention to make measurements at
a slope close to the slope at which deposition started. This
slope of 28.6% proved to be very close to this equilibrium
slope. The second reason was the shortage of head room in
the laboratory. Any slope larger than above required
headroom in the laboratory at least a foot which was not

available.
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4.6 Error Analysis
The present measuring technique involves possible errors
at several stages of measurement before the final velocity

and concentration are evaluated. These are

1 measurement of sampler opening area (a)

2 measurement of volume of sample collected (V)

3 measurement of sampling time (t)

4 representativenz2ss of the sample (possible error

due to position and size of the sampler)

The sampler opening involved uncertainty in the
measurement of two lengths to give the area. The uncertainty
in time is assumed equal for turning the stop watch *"on" and
"off". 1In order to perform a sensitivity analysis, several
possible differences in reaction time can be tried. An
equally important contributor of error is the sampler
position and size. Since the measured velocity is assumed to
be at the centre of the sampler, error could be introduced as
a result of the flow having a vertical velocity gradient
(du/dy). The difference in velocity (Au) between the centre
and the side of the sampler of width d' can be written in a

Taylor expansion as

f 2 v 2
pu = 28 (i—) . Lu (9——) (4-6.1)

In this experiment with a typical du/dy=130/sec,d?u/dy?=20/m
sec and d'+ .005m, the second term is negligible compared to

the first. However, this error above the centre would
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approximately be balanced by the error (equal but opposite in
the case of a straight line velocity profile) below the
centre of the sampler. Therefore, the resulting error is
probably very small but quite difficult to quantify. We
assume that in the process of calibrating the sampler and
taking at least the mean of three measurewments, (his eiior
has been minimized. For uncorrelated variables in the
function u = u{a,Vv,t) and Cy = Cy(V,m), where m is the mass of
the sample collected, the deviations can be written as

(Bevington, 1969)

042 = Ga2 (3—‘;)2 + 02 (33)2 + G2 (g‘t’)z (4-6.2)
0,2 = Oy (%{}’—)2 + On? (%L;")Z (4-6.3)
where u = gyg (4-4.1)
Cv=flgg[$- 1] (4-4.2)

with m in gm and V in mL. o is the standard deviation for

the variables shown as subscripts. The normalized variances

can be written as

Varéu) - Va{QV) N Varé@i N Varét) (4-6.4)
u \’ a t
var (Cy) 1 m’
= var{(m) + ——75 Var (V) (4-6.5}
Cy2 (m-v2)2 (m-v2) 2



The typical values of each variable and their corresponding

variances are given in Table 4-12.

Table 4-12
Var (u) | Var (Cy)
v {var(v)| a |Var(a) t [|Var(t)| m | Var(m) u? 2
m) | m1)2 | (em?) | (en2)2] (sec) | (sec)?| (gm) | (gm)2
700 25 0.98 1 1.68-5) 1.75 ) 0.03 | 1000 1 0.0099} 0.0001




5 DISCUSSION OF EXPERIMENTAL RESULTS

5.1 Introduction

The results of the experiments presented earlier show a
range of behavior of slurry at different mean concentration,
the size of particles as well as the grading of the
particles. The three sizes of nearly uniform particles used
were D1 to D3 with D1 the coarsest(0.430mm), D2 in the mid
size(0.335mm) and D3 the finest(0.215mm). The size D4 was
more or less an equal proportion mixture of all these three
sizes (0.330mm) .

General trends in the concentration and velocity
distributions will first be discussed before analyzing the

data.

5.2 General Trends
5.2.1 Concentration distribution

One of the primary reasons for selecting three different
sizes of uniform particles and one non-uniform mixture was to
see if there was significant difference in the dispersibility
of these sediments. It is essential to see if the expected
trend is displayed by the general distribution of velocity
and concentration before they can be reflected in the
constitutive behavior. One such trend is how the
concentration profile responds to the particle size and the

mean concentration.
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On examining Fig 4-4 to 4-8 which represent measurements
made next to the wall as well as the centreline for particle
D1, the largest size, a consistent bottom layer of high
sediment concentration is present. The concentration is
higher in this layer and very quickly the profile tapers off
near the surface. For smaller mean concentration this bottom
layer is not as prominent (Fig.5-1b to 5-7b) and the profiles
lose their similarity as shown by the scatter in the
dimensionless concentration profiles. This separation of the
profile is more apparent in Figures 4-4b, 4-5b,4-7b and 4-8b.
The separation is such that the profile with the smallest
mean concentration appears to separate the most. This trend
is observed in the concentration profiles for all the other
particle sizes but in varying degree. This trend appears to
be the result of a difference in the dispersibility of
particles at low concentrations. The relatively larger
concentration of the particles near the bed with almost
linear and rapid tapering off of the profiles indicate a
considerable reduction in the dispersion of these large
porticles at low concentrations. This indicates a “bed lcad”
type movement similar to that seen in sediment transport. At
this stage, because the supply of sediment is small, most of
the sediment stays close to the bed. As the supply of
sediment increases i.e. the concentration gets higher, a

better dispersion is indicated by more rounded profiles.
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Dispersion is also directly related to the particle
size. Fig. 5-8b and 5-9b show significantly better
dispersion of particles D3, even in the case of larger
concentration which show considerable thickening of the
bottom layer. These profiles show relatively smaller
concentration gradients even in the lower mean concentration
ranges which suggests a possibility of more than one
dispersing mechanisms in effect. There is a possibility in
this particle range that turbulence is also responsible for
dispersion.

The last particle size D4 displays some interesting
behavior as a result of a more severe particle gradation. If
the concentration profiles gq1060Cm24.7 (Fig. 5-4b),
glig83cm23.9 (Fig. 5-5b) for particle Dl as well as profile
ql112Cm36.6 (Fig. 5-6b) for particle D2 is ccmpi ~¢d Lo the D4
profiles with similar mean concentrations ql672Cn.1.6 {Fig.
5-11b) and gl1322Cm37.2 (Fig. 5-10b), it can be observed ihat
the D4 profiles show a smaller concentration near the bed but
better dispersion away from the bed. This is more obvious if
the dimensionless plots Fig. 4-7b to 4-10b is compared to
Fig. 4-13b and 4-14b. The better dispersion of D4 mixture is
possibly due to the presence of the D3 fines which may have
changed the properties of the interstitial fluid and thus

increased dispersion.



143

(s/m) XA3TooT®ea

00°S 0s° Vv 00° v 0s°¢ 00" ¢ 0s°¢ 00°¢ 0S°T

.................................. e e e, 6" WHEUNQMHNV v
: S°LTWOZBETD o

T PEWOTLETD m |
_ oo R L P
................... e e e B 4 g NﬂEUMHMHU . £

sx3us> Tauueyd ‘gy-9 dnoab ‘g9 gg=adols ‘gd a1oT3aed ‘SanixTw
Isjem pues wlojTun Apesais 103 A31ooTaa-yidsa eg-¢ 8ianbtd

YT T T

IARSRARRRARARSRRRRRAR]

YT YT

IRARARARARESRARNARERE!

bty

G-

2

qadsp

(mD)



144

(%) AD ‘UOTILIJUSBOUOD

0S 0}4 o€ 0C 0T 0
® = ] = . w - LE
. - % = v u.mﬁuﬂm; :W

. -~ & i v i g Lzudz8eTb o it
- [ £
. S a - A . T peudILcTD w | £
_ - v
¢ - - w T LEWDIEETD 5 w
® T o B O NP . 5
* ul
. 0 - ) v 9 CPWOLCTETID o
,,,,,,,, . e g a —

ax3ued Tauueyd ‘6P 9 dnoab ‘g9-gz=2dols ‘€d 910T3IIRd ‘SaANIXTW
I83eM pues wiojtun Apeais 103 uotrjexjusduod-yideq dg-g danbig

gl

yadep

(wd)



145

(s/wm) K3ToOTSA

00°S 0S¥ 00°7v 05" ¢ 00" ¢ 0s°¢ oo°¢ 0S°1T 00°T 05°0 00°0

9I3uUaDd TauUueyDdD
I@3em v

1 ! T

,,,,,,,,,,,,,,,,,,, weéss;§ewzsz:§;:wé;;sé: ¢* LTWO8S8TDh v
” : ” € €QWO0vLIP o
T EEUWOLYLTID w
G GeudTI89Tb o
G EPWOEHSTD o

*

‘06°L dnoab ‘g9 gg=o9doTsS ‘€ @1o1T3aed ‘BaINIXTU
1103Tun Apeais 103 AJToOoTsA-yadsg eg-g 2anbtyg

yadep

(md)



146

(%) 40
0S 0y 0t

‘goT3eIU8DVOD
0c 0T

(=]

_ ,», 1

| . E
g g e :
- v . €£7LTuDgS8TD v | E

S O S g RS ah STl

0
’
|

...........................................................................................................................................................

...........................................................................................................................................................

i

TTOTTTTIIYTY YT YT T Iy T I TY

€ ETWOOPLID o
T CEWOLYLID m
G GEWwdDI89Th o
G EPWOEPSTID o

1

LASERARSRRRRRERERENSARERRARENR]

A

IR Aasaninananashtanansl

21qusd Touueyd ‘Q6°L dnoib ‘g9-gz=adols ‘¢d a1oT3aed ‘sanixXTw
I33eM pues wxojTtun Apea3s 103 uoT3eIjuUddUOD-yidea -G 2anbTg

S°0

yadep

(ud)



147

(s/w) X3Foor®a

00°7 08°¢ 00°¢

0s°¢ 00°¢ 0s°'T

00°T

0s°0

._-—wkr.—

I 1 : i | AU W VAN W VU VU T S S
p ! = ~ m _ _

@13u8d Tauueyd ‘Gt°'9 dnoab

‘¢9-gz=ado1s

................................................

T°GTWI0SETP o
8 LTWOE9ETD
Z°Lewozzelb g
8 8EWI9TETD o

‘'#q aT1oT3aed

'2IN3IXTW

Islem pues t1a0jTun Apee3s 103 A3T00Te9A-yadeqg eQI-g @anbrtg

yadep

(wo)



148

(%) AD ‘TWOTIVIIUSOUOD
0s ov 0¢g 0¢ 01

(e

t

- R R .e.ieé;é:?sé;ia:i,.;w —
o< > = ,_ e W
o om . 8" LZWIEIETD o |
¢ 3 o = | 27 LEwDZZETD w

. = o m | 8°8EWOSTETD o |
..... e .. Yo S - ]

® < |
T —

a13ued Touueyd ‘Sp 9 dnoab ‘g9-gz=odols ‘pd 9TOTIxed ‘IANIXTU
197eM pues wIojTun Apeais I03 UOTIeIJUSDUOD-Y3Idea dO0T-§ 2anbt4

b e b rhrrrrrees

un
o

—

wn
~—

yadep

(wd)



149

(s/m) KX3roorTea
00°S 0S¥ IV 7 0s° ¢ 00° ¢ 0s°¢ 00°¢ 06°'1 00°T 08°0 00°0

9 " p2WDZLITD o
e .................... z .QNEUWNFHG a . b7/

S S — 8 LEWIEVITO m | £ -y

t
n

213u8> TauueyYd ‘Q6 (L dnoaxb ‘g9-°-gz=9doTS ‘¥a o72T3xed ‘LanixXTuw
I93em pues wiojtun Apea3is 103 AJITD0T3aA-YUIdeg PeII-6 2andig



150

(%) AD ‘UOT3IEI3U8DOUOD
0S %74 0t 0¢ 0T

[sw)

[

- T R “ 9 pTWOZLITD o |
] = . j N
_ 12T 6TWOSZLID o )

| - * ! |
- 5 . | 87 LEWDEVOTD m w

a - .
= R *
| Z .
] o .
" = .
a a L 2

913uU8d Tauueyd ‘Qe° L dnoib ‘g9-gg=2dols ‘vd 87oT3IRd ‘@aINIXTUW
I93eMm pues uxojTun Apea3ls 103 uoTjeajuaduod-yideg diIl-§ 2andbrg

: ' . . |
I’rrnﬁfrr}'rnwmr*'wmhmﬁﬂmmﬁrrrnrm{'mr rm{’rnn n17+1’rfrrrrn*nnv rrre

n

yadap

(wd)



151
5.2.2 Velocity distribution

Dimensicnal velocity profiles are presented in Figures
5-1a to 5-1la. A closer examination of these profiles gives
us some indicaticn rf the general behavior of the slurry when
the mean concentra! . on and the particle sizes are changed.

It can be seen in these distributions that the velocity
gradients are laryer in high concentration flows. The low
concentration miwtures show smaller gradients. The velocity
profiles also sh.w a trend towards approaching constant
velocity gradien's ‘or larger concentrations. This is more
obvious for larger particle size. As the particles get
smaller, this trend to approach constant velocity gradient is
apparent only at much higher mean concentrations. The
velocity distribucions for the parcicle size D4 show a
behavior vi:at iz in between what is observed for particles
D1, D2 and D3. These¢ obvious dual behavior that can be
confirmed in the dimensionless plots Fig. 4-6a to 4-1l4a are
the similarities in the velocity profiles in the high
concentration and the lower concentration ranges.

In summary, the velocity profilas in Figures S5-la .o 5-
lla display two distinct behaviors. As the mean
concentration is increased to a certain value, the velocity
profiles become nearly linear. The concentration at which
the velocity profile begins to get linear appears to increase
with a decrease in particle size. This nature indicates that
above a certain mean concentration the dominant dispersinyg

mechanism changes for each particle size.



The nearly linear measured velocity profiles (which
means constant velocity gradients) suggest that the total
shear stress is independent of shear rates. This would
suggest that the viscosity is increasing with depth to
account for the increase in shear stress. This will be
oxamined in Appendix E. Below a certain concentration (19%
for D1, 30% for D2, 40% for D3 and 35% for D4) the velocity
profiles are nonlinear irdicating that the total shear ig
dependent on the velocity gradient. Most conceptual models
describing debris flow in the inertial regime comprise of a
rate dependent part and a comparatively less important rate
independent part in defining a constitutive behavior. 1In
order to estimate a shear-strain rate relations some curve
fitting attempts have been made in the Appendix E.

All the profiles from Figures E-21 to A-24 that display
distinct positive exponential trends have been plotted in
Figure 5-12. The data covers the range of volume
concentration from 10% to almost 50% and is displayed in an
ex nential band. Figure 5-12 also shows the concentration
according to Equation 2-5.5. The band of data distinctly
shows that the apparent viscosity from velocity and
concentration measurement is 60 to 70 times that given by Do
Tk Lee (1969) at a me.n volumetric concentration of 40 %.

This high viscosity which appears to be much larger than the
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laminar viscosity suggest that a significant portion of it 1is
probably of turbulent viscosity.

The results from the measurements presented in this
thesis clearly indicates that the viscosity of a mixture is
not only dependent on the particle concentration of the
mixture but also on the mechanism of dispersion.

The velocity profiles also experienced a negative
velocity gradient, similar to the velocity profiles exhibited
by clear water, for lower mean concentrations in the regions
clnce to the surface. This trend is believed to be due to
the secondary flow effects. For larger mean concentrations,
the negative gradients usually turned slightly positive which
showed a reduction in the secondary flow effects as

concentration increased.

5.2.3 Shear distribution

Figures 5-13 to 5-16 show the normalized driving shear
distribution calculated by integrating the concentration
profiles. For larger particles i.e. DIl (Fig. 5-13) and D2
(Fig. 5-14) the shear profiles show a variation in the shear
gradients which is indicated by the curvature in the
profiles. The curvature increases with decreasing mean
concentration where the distribution of the particles are not
uniform throughout the depth. As the dispersion increases,
the resulting concentration profiles becomes more uniform and

the shear gradients approach a constant value. This is
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obvious in the case of D3 (Fig. 5-15). The mixture D4 also
produced alnost constant shear gradient with very little
scatter (Fig. 5-16). The profiles for mixture D4 display a
clear influence of the finer particles in enhancing

dispersion.

5.3 Analysis of Experimental Data

5.3.1 Tctal shear versus grain shear

Equation(2-3.6b) was used - = ‘@ stimate the size of the
grain shear for each measured ..~ 1+ . Aj was taken, as
given by Bagncid, to be 0.042 © . .3 taken as 0.32.

Figs. 5-17 to 5-20 show the ratio of grain shear velocity
profiles for the four particle sizes. Although Bagnold’s
grain shear expression (2-3.6b) was for uniformly distributed
particles, its use ir the above figures is only to give
estimate of at least an order of magnitude of the dispersive
stresses in the measured profiles. It can be seen from Fig.
5-17 to 5-20 that the dispersive stress is less than 10% and
ranges from 2 to 8% in most cases. This seems to show that
dispersive stress is not the dominating dispersion mechanism
in the present study.

If a flow with Cy=40% is considered the driving shear

per unit width in terms of the flow depth h can be written as

T = 4657 h (€£-3.1)
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and Bagncld’s grarnular shear can be written in terms of

velocity gradient du/dy, and particle size D as

Tg = 1082 (5;) D (5-3.2)

For the grain shear stress to be 75% of the total shear

Equations (5-3.1) and (5-3.2) give

)2 p2 = 3.23 h (5-3.3)

e

(

If a 30 c¢m deep flow having a mean velocity of 3m/s with
a mean gradient of 10-5 is considered, the particle size would
have to be around 9cm for the grain shear to be 75% of the
total shear. This flow depth and particle size is rather
difficult to achieve in the laboratory setting. This
suggests that larger flow depths and larger particles are
essential for dispersive stress to be dominant which 1is more

likely to be found in field condition.

5.3.2 Velocity distribution

Figs. 5-21 to 5-24 show the normalized velocity profiles
for the four particle sizes. Table 5-1 gives the details of
all the normalizing variables. The velocity profiles have

been truncated at the top to neglect the changes in the
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Table 5-1 Details of the measurements
Particle D1

q(cmz,s, 1084 1225 1183 1060 1355 1417 1095 1533 16han IERE
Cm 27 26 24 25 22 16 13 11 1 3
u(Ns/m2) 3.1E-03 3.0E-03 2.5E-03 2.7E-03 2.2E-03 1.76-03 1.5E-03 1.4E-03 1.1 0% 1.1 0
h(cm) 3.8 4.1 4 3.5 4 4.1 3.4 4.2 4.4 4.2
v' (cm) 2.5 2.8 2.5 2.2 2.5 2.2 1.0 R A 1.9
ylt m) 2.8 2.8 2.7 2.6 2.6 2.6 AR A 2]
T, m2) 148.4  158.9  150.7 133 146.8  140.4  111.2 133,32 1207 18,1
U'm(m/s) 2.18 2. 2.27 2.32 2.68 2,73 2.72 3.2 .04 2.8l
Um(m/s) 2.85 2.9 2.96 3.03 3.39 3.46 2.85 3.64 J.64 1.03
Rex 84.0 90.2 101.4 91.1 111.6  138.1  138.7  1lel.7 187.0  184.1
Re 50697 59346 65210 56151 82175 105207 79190 131471 156899 124216
Particle D2

g(em2/s) 1131 1112 1304 1586 1401 1366 1594 1329

Cm 39 37 40 31 33 1 J 14

p(Ns/m2) 8-9E-03 6.9E-C3 1.0BE-02 4.1E-03 4.8E-03 1.9E-04 1.6E-03 1.6E 03

h(cm) 4 4 4.7 4.9 4.6 4 4.4 3.9

y' (cm) 2.3 2 3.4 3.1 3.4 2 2.8 2

v10(cm) 3.67 3.8 4.6 3.8 4 3.2 3.4 3.z

tb(N/mz) 177.5  173.2  211.1 199.6 191.3  141.8 149 129.7

U'm(m/s) 2.23 2.14 2.27 2.57 2.59 2.89 3.21 3.1

Um(m/s) 2.83 2.78 2.78 3.24 3.05 3.41 3.62 3.41

Rex 33.9 42.8 32.4 75.1 62.9 124.6  147.1 143.6

Re 20868 25836 21243 58548 44758 92364 121370 105103

Particle D3

q(cmz,s) 1313 1543 1331 1681 1371 1747 1382 1740 1382 1858
Cm 43 44 37 36 34 33 28 23 19 17
u(Ns/mz) 1.4E-02 1.5E-02 7.3E-03 6.2E-03 5.4E-03 5.0E-03 3.2E-03 2.4E-03 1.5E-03 1.4E-03
h(cm) 4.1 4.8 3.9 4.8 4 4.8 3.9 4.7 2.9 4.8
y'{(cm) 2.9 3.2 2.3 2.9 2.3 2.6 2.3 2.9 2.3 2.9
yem(cm) 3 1.9 2 2.5 2 2.5 2 2.4 2.1 2.5
tb(N,mz) 188.5 222.5 169.7 205.5 168.7 200.3 153.1 175.7 138.2  166.6
U'm(m/s) 2.74 2.74 3 3.13 3.07 3.26 3.16 3.4 3.64 3.53
Um({m/s) 3.2 3.22 3.41 3.5 3.43 3.64 3.54 3.7 3.54 1. K7
Re« 23.1 22.3 40.3 £1.6 53.0 62.8 82.7 113.0  123.% 144.8
Re 16240 17137 29507 43041 39522 54472 62793 98541 93827 133412

Particle D4

qlcm2/s) 1649 1316 1322 1725 1363 1350 1672

Cm 38 39 37 29 28 25 25
p.(Ns/mz) 7.8E-03 8.7E-03 7.3E-03 3.GE-03 3.3E-03 2.7:-03 2.6E-03
h(cm) 4.8 4.1 4 4.6 3.8 3.8 4.4
y' (cm) 3.2 2.9 2.9 2.9 2.6 2.3 2.2
ycom{cm) 3.1 2.8 2.7 2.5 2.1 2 2.3
‘tb(N/mZ) 210.3 181.5 174.3 183.9 149.6 145.1 1€7.1
U'm{m/s) 2.84 2.74 2.83 3.3 3.17 3.07 3.41
Un(m/s) 3.44 3.21 3.31 3.7% 3.59 3.55 3.8
Rex 41.8 35.0 40.5 80.9 80.1 93.1 102.7

Re 34282 24758 29102 70732 60262 69987 88973




profiles due to the secondary flow effects. U', represents
the mean velocity of the truncated profile, y is the position
above the bed, y' is the height above the bed to the point
where the velocity profile is truncated. The profiles were
truncated primarily to remove scatter as well as to study
only the region with consistent trends.

Figures 5-21 to 5-24 include the velocity profiles for a
dilatant £luid, Equation (3-2.22) (Takahashi, Shen and
Ackermann), and a laminar Newtonian fluid equivalent to the
Bingham plastic fluid with ry=o (Equation 3-2.11b). The plots
show that the dilatant fluid model as well as the laminar
Newtonian model fail to reproduce the steeper gradients
observed in the measured profiles. The measured velocity
profiles with lower mean concentrations show a significant
transfer of streamwise momentum to the clower bed region
resulting in a more uniform profile reminiscent of turbulent
flow.

Generalized Reynolds' criteria have been suggested to
apply to non-Newtonian fluids to define laminar and turbulent
flow conditions. It is more appropriate in non-Newtonian
fluids to appeal to experiments to establish the validity of
turbulence criteria. However, visualization presents a
problem in slurry flow. When derarture from Newtonian
behavior is small, Reynolds’ criteria based on an apparent
viscosity may sometimes be adequate. Table 5-1 shows

apparent viscosities for each mean concentration calculated

170



using Eq. (2-5.5). Note that g is the integrated unit

discharge at a section. Roughness Reynolds number Res
(=u«kspn/H) and Reynolds number (R) given by Unhpe/ll are also
presented in Table 5-1. The large Reynolds number and Re.
suggest that the measured flows are rough turbulent or, in
some cases, transitional turbulent. As discussed earlier, at
a certain mean concentration turbulent dispersion of sediment
appears to dominate over other dispersion mechanisms
resulting in a nonlinear velocity distribution. For large
Reynolds number when the particles are small (D3), or when
the particles are graded with fines present (D4), turbulent
dispersion persists even at large concentrations (Fig.5-23
and Fig 5-24).

Figure 5-25 to 5-28 show semi-log plots for the
particles D1 to D4. Some of the velocity profiles display
logarithmic behavior typical of turbulent flow shown by Eq.
(5-2.29). The slopes, however are different than that
observed in clear water flows. These semi-log plots display
a continuous shift of the profiles to the right indicating
increasing bed friction with concentration. Figure 5-29

shows the variation of x with Cy calculated from Figures 5-25

to Figure 5-28. Although Figure 5-29 shows a large scatter,

there is a decline in the value of x with concentration.
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5.3.3 Concentration distribution

The concentration profiles for the large particle sizes
(D1 and D2), although continuous in nature, display some
stratification with a large mixing zone (Fig. 5-1lb to Fig. 5
7b). For these cases, density stratification has the eftec!
of suppressing turbulence which probably explaing why the
velocity profiles are linear at lower mean concentration (279
for D1 and 30% for D2) as compared to the finer particles
(46% for D3 and 44% for D4). The dependence of particle size
on stratification and turbulence suppression was also
observed by Winterwerp et. al (1990).

In all the analyses presented so far the evidences
indicate that the flows studied in the laboratory were
turbulent. In other words, turbulence was mainly responsible
for the dispersicn of particles in the fluid. 1In order to
further illustrate this, the vertical distribution of
sediment particles given by Equation(3-2.31), according to
Rouse (1937), is plotted together with the measured data in
Figures 5-30(a-b) to 5-37(a-b). 1In Figures 5-30a to 5-37a
the fall velocities have been calculated using the mean
concentration for each of these profiles. As Rouse’'s
equation is for small concentration, it fails to reproduce
the shape of the measured concentration profiles. However,
if the fall velocity due to hindered settling is considered
as given by Equation(3-2.32), Rouse’'s equation is plotted in

Figures 5-30b to 5-37b. These distrbutions show a berter fit
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of the measured concentration profiles. This exercise is
merely to show tuuat turbulent diffusion theory with some
approximation is able to describe the mesured quantities.
The more suitable procedure would be to incorporate
Equation(3-2.32) into (3-2.30) and solve the differential

equation for the concentration distribution.

5.3.4 Manning’s eqQuation

The equivalent sand grain roughness for the bed in this
study was 0.56mm. This was estimated from velocity
distribution measurements made with water flowing in a wide
channel with the sandpaper glued to the bed. The Manning'’'s
roughness n* calculated using Equation(3-1.8) is 0.0112.

As discussed earlier, the flow of high concentration
fluid in a channel ha2s the effect of increased bed roughness.
This was observed in the study of semi-logarithmic profiles
Figures 5-25 to 5-28. Manning’s roughness n* can be
calculated for the flows in the present study using
Equation(3-1.7). Figures 5-38 and 5-39 show the variation of
Manning’s n* with specific discharge q and the mean volume
concentration Cy. Although n* appears to scatter between
0.017 to 0.024, there is no obvious increase with g.

However, n* appears to increase slightly with Cy.
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6 DISCUSSIONS AND CONCLUSIONS

A review of the previous chapters in the field of debris
flows shows that there still is a wide area of this field
that needs more conclusive research. Though the physical
process appears to be known well, there are many aspects cf
the mechanics of debris flow processes that still have to be
understood better. The study of the mechanics of debris
flows especially presents some difficulty in that it overlaps
other areas like geomorphology, geology, hydrology., fluid
flow, rock and soil mechanics in considerable detail. Key
concepts from these areas as well as the mechanics of
granular flows have to be understood well in order to explain
debris flow mechanics to a satisfactory detail. The
following areas of debris flow mechanics has attracted the

attention of researchers for some time:

i The particle support mechanism
ii The reverse grading mechanism
iii The development of constitutive relations

iv The mechanics of debris flow in channels

Each of these areas can be examined by considering research

from the standpoint of theoretical, experimental and field

work.
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6.1 Theoretical

Previous studies of the theoretical aspects of particle
support mechanism and the reverse grading in debris flows
have attempted to explain these processes with a few
inconclusive theories among which some do merit considerable
attention. However, further research is needed to identify
more sound and conclusive explanations for these mechanisms.

The development of constitutive equations is one area of
debris flow which has received considerable attention. Most
attempts have focussed on rheologic approaches that are
varying in their degree of complexity. The rheological
approaches have resulted in equations that require a variety
of parameters, the numbers and types of which depend on the
the degree of complexity of the constitutive equations.

These equations provide ample room for the determination of
these parameters for a range of flow situations, if one
desires. An alternate avenue of research that can be pursued
is to investigate the use of simpler models and and their
sensitivity when applied to channel flows. There is a need
to incorporate the rheological formulations in the
conservation equations in a compatible form such that the
flow parameters that define resistance are represented
realistically for the case of open channel routing. This
leads to the next approach of research which is inevitable if

any of these parameters are to be evaluated or tested.
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6.2 Experimental

A review of previous works show that there is an extreme
dearth of reliable experimental data against which some of
the constitutive models that have been proposed can be
tested. There is also a need for experiments to determine
the different parameters like the viscosity and yield
strengths. Experiments designed to provide a relation
between the particle concentration and the flow parameters
are essential. Other experiments that focus on the channel
flow both on the straight and the curved reaches have yet to
be investigated. The experimental aspect of the research of
debris flow faces a bigger problem in the design of accurate
measuring techniques as well as in representing actual flow
situations in the laboratory without introducing the problems

of scale effects. This needs careful study.

6.3 Field studies

This aspect of the research is probably more difficult
to conduct than the above two. Debris flow events are
episodic events and therefore considerable time may pass by
before a researcher gets the opportunity to witness an actual
event, This demands preparedness and, therefore, is
expensive. As discussed earlier, a complete study of debris

flow involves several areas of material science. Therefore,
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research in this area is better accomplished by a joint
effort of a multi-discipline-research team with a broad base
of cooperation between the various groups.

Field data is invaluable in determining the accuracy of
the mathematical models. Therefore, field measurements of
velocity, discharge, concentration, yield, viscosity and
particle size distribution are some of the measurements that
are required. There is a need also for research in designing
appropriate field measuring strategies as well as instruments

for measuring these properties.

6.4 CONCLUSIONS

This study gives an overview of the present
understanding in the field of debris flow. The need for
measurements, either in the laboratory or the field, under a
variety of conditions is identified. The difficulty in
designing a measuring device which is suitablle for the
abrasive environment probably is one of the main reasons for
this dearth in debris flow measurement.

The experimental portion of this study is presented in
three stages. The first stage involves the setting-up of a
continuous, high concentration sand-water mixture pumping
system for generating a steady uniform flow. 1In the second
stage a sampling device is developed to sample the mixture

from the flow. Finally, this sampler is used to make



velocity and concentration distribution measurements in a
open channel flow ¢« sand-water mixture for four particle
sizes and several mean particle concentrations. As the
sampler was calibrated using water, there is sufficient room
for the improvement in the calibration procedure of this
measuring device.

The velocity profiles appear linear above a certain mean
concentration which is strongly dependent on grain size. The
influence of the velocity gradient in any particular flow,
especially in a large mean concentration, appears to be less
than that suggested by dilatant fluid models. Large Reynolds
number suggests that the flows are turbulent which are also
confirmed by some semi-logarithmic velocity profiles. The
role of turbulence in dispersing the particles are more
pronounced for smaller grain size (D3). The presence of the
fines in the graded particles (D4) enhances dispersion. The
shift in the semilogarithmic profiles with increasing mean
concentration is reminiscent of rough turbulent flows with
increasing roughness. Preliminary results show a gradual
decline in the value of k from the clear water value with
increasing concentration. The concentration profiles are
similar, more uniform and show less scatter for the finer
grain size and the graded particles. For the larger particles
there is a tendency towards stratification resulting in the

suppression of turbulence.
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The vertical shear stress approaches a linear
distribution as the concentration profiles become uniform.

Otherwise the distribution displays some curvature.
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APPENDIX A

A.1 Favorable conditions for debris flows

A close observation of debris flow events seems to indi-
cate that there are three particular regions where debris

flows are more prevalent

1. semi arid regions
2. alpine regions

3. volcanic regions

In the semi arid regions the main source of moisture is the
sudden “cloudburst” phenomenon that brings large amounts of
rain in a small basin. The moisture seeps into the soil and
the increased pore water pressure reduces the shear strength
of the soil mass and helps mobilize the mostly unconsolidated
soil and rock debris overlying a relatively stable bedrock.

The alpine mudflows appear to get most of their moisture
from snowmelt and, in some cases, the bursting of glacial
dammed lakes i.e. glacial lake outburst floods (GLOF) also
known as Jokulhlaup (Jackson, 1979). In both the alpine as
well as the semiarid debris flow events, sparse vegetation
and intermittent water supply appear to be some of the
favorable conditions.

The volcanic debris flows known as lahars normally

originate on the slopes of volcanoes. These can be mobilized
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accompanying an active eruption or shortly after one (Sharpe,

1968). Lahars can be formed, according to Costa (1984), by
1. mobilization by rainfall
2. rapid melting of snow and glaciers
3. rapid drainage of crater lakes by expulsion
4. pyroclastic flows that incorporate water

from melting eroded snow moving downwards
5. mobilizing of saturated material moving

down a volcano triggered by an earthquake

Normally, debris flows are the results of some form of
slope failure. There isn‘t an unanimous opinion about the
exact mechanism of how a slide develops into an active debris
flow. But the general belief is that the material collects
moisture and as it moves down the slope, it either liquefies

or dilates further increasing its mobility (Hampton, 1972).

A.2 Definitions
A.2.1 Introduction

Mass transport with its broad implications requires
clear distinctions between the various processes included in
this topic. For our special interest it is appropriate to
discuss those mass transport processes that move relatively
faster and fall within the category of mud and debris flows.
A general classification will be given later after the

different terms are better understood.
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In many instances, when these masses are transported

from one point to the other, it is quite difficult to define
clear cut boundaries between each of these different types of
movements. This is mainly due to the variety of methods of
transport and the material found in different locations. Fo:
instance the term mudflows and debris flows are very often
used inter-changeably in the older literature. At what point
can a mudflow be called debris flow and how this boundary can
be recognized is a difficult task. But, however, depending
on the nature of the flow and the composition, different

terms have been coined and have remained in use.

A.2.2 Debris slides and debris avalanches

Debris slides have been explained as the movement of
relatively unconsolidated material which consist of different
kinds of rock fragments and other fines. They are
unsaturated and what distinguishes them from debris
avalanches is the fact that they have a lower moisture
content. In both these cases the initial failure could be
either rotational or translational resulting in an immediate
disintegration of the mass. The early definitions of these
terms were given by Varnes(1958) where debris slides and
debris avalanches have been included as flows, presumably
with the intrinsic assumption that these processes undergo

continuous deformation.



A.2.3 Debris flows and debris torrents

As the mass of soil and debris moves down the slope, it
accumulates moisture and becomes saturated, the terminology
changes from debris avalanche to debris flow (Swanston, 1971,
1974 & Swanston and Swanson, 1976). An important distinction
is made here by Swanston (1971) in between the flow of debris
on a normal unconfined sloping surface and the flow in
regular steep drainage channels. 1In the case of the channe-
lized debris flows termed debris torrents, the mud and debris
is confined in between the side walls and moves down the

channel in regular pulses.

A.2.4 Mudflows

As the term irdicates, mudflows, normally have come to
represent the flow ot fine cohesive material down a slope in
almost the same manner as debris flows except that they do
not contain the larger variation in particle sizes.
Normally, the term debris flow indicates the presence of
large variation in the particle fragments. Mudflows are
distinguished by the presence of at least 50% sand, silt and
clay size particles (Varnes, 1958).

It has to be pointed out that the earlier definition
(Sharpe, 1968) of mudflows appears to be the same as debris
flows defined here and, to a certain degree, this definition
is still being used. This is partly because a clear cut

boundary is hard to define.



APPENDIX B

B Clasgsifications

B.1 Classification of Sediment-Water Flows

Most of the previous classifications of sediment gravity
flows are based on type of material, movement mechanism, and
the concentration of the sediment. This study will tocus
mainly on that group of sediment gravity flows which involves
the mixtures of sediment and water flowing in high
concentrations. One such classification based on this
approach has been given by Pierson and Costa(1987). It is
important to understand that for all flow phenomena it is not
essential that the material be sediment or the interstitial
fluid be water. There are many other flow situations where
the interstitial fluid is air or, in the case of lunar
slides, an absence of air (Howard, 1973). These types of
flows are associated with granular material (Savage, 1987)
where the interstitial fluid density is low and the main flow
is governed by the interparticle stresses, friction and
collision. Common examples of these flows are grain flows
(savage, 1979; Sayed and Savage, 1983), dry dense-snow
avalanche and airborne powder snow avalanche (Hopfinger,
1983), flow of medicine tablets and other industrial granular
flows.

Sediment-water flows can be grouped into three main

bands
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1 ordinary streamflow

ii hyperconcentrated flow

iii granular flow

Pierson and Costa(1987) further divide the above

cranular flows into slurry flows and granular flows. Since
the basic constitutive laws for both of these flows can be
conceptually put in the same class, it is quite sufficient to
merely define che whole regime as granular flows. All the
other forms of flows involving water and sediment can be

accommodated in on¢ of these basic band: .

B.1l.1 Streamflow

In the strict sense, streamflow is water and entrained
sediment and air flowing as a multiphase flow. For low
sediment concentration, the flow behaves essentially as
Newtonian fluid.

As the concentrations of the sediment increases, the
particle interaction increases. If clay particles are
present in the flow, they begin to form flocks due to the
presence of electrochemical forces. These flocks tend to
give strength to the fluid and, as a result, introduce yield
strength i.e. the applied stress would rave to break these
bonds and allignments before any deformation of the fluid can
take place. This initial stress is the yield stress typical
of many non-Newtonian fluids. The concentration at which
this occurs is depencent on the type of clay mineralogy as

.ell as the particle size distribution. Yield strength has
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been experienced in concentrations as low as 3% in smectite
suspensions (Hampton, 1972) and at higher percentage in other

clay minerals.

B.1.2 Hyperconcentrated f£flows

while studying high coucentration stream flows, Beverage
& Culbertson (1964) defined hyperconcentration as
concentration with more than 40% sediment by weight. They
suggested an upper limit of 80%. Different names like mud
floods or non-cohesive mudflows{Kurdin, 1973) have been
given to these flows. Often, especially in Chinese
literature (Fan and Dou 1980, Fei 1983) the implications of
higher concentrations is that the mixture possesses yield
strength. They also prefer to classify debris flows as a
type of hyperconcentrated flow. O’ Brien and Julien(1985)
prefer to do the same. In this text hyperconcentration will
be referred to flows with suspension of fines with little or
no shear strength and with sand size or larger particles
allowed to settle and even move as bed load. This obviously

would imply a reduction in the fall velocity as well.

B.1.3 Granular flows

This condition describes the flow which possesses high
concentrations of solids. The mixture may be saturated,
unsaturated or dry. In the unsaturated case it may be
partially dry with air filling some of its voids. 1In the

saturated case, they exhibit free draining nature during
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continuous detormation. 1In other words, because they are in
a process of continuous deformation, the pore water can

fre- maintain hydrostatic conditions throughout the flow.
Any excess pressure will immediately be dissipated because
water can flow freely.

A general classification according to Savage(1984)
describes three limiting flc'7 regimes for granular flows:

i Quasi-static

ii Macroviscous

iii Grain Inertia
These classifications are extensions of the classification
given earlier by Bagnold(1954). Bagnold defined a regime
called macroviscous regime where the particle concentration
and the strain rates are small and the interstitial fluid
plays a prominent role in determining the viscous nature of
the flow. Davies(1986 1988) hypothesizes that certain types
of debris flows fall in this category of granular flows.

When sufficient stress is applied to a granular mass
such that the frictional bonds are broken, the mass starts to
flow. This flow, mainly confined to shear bands along the
shear plane, involves multiparticle blocks moving relative to
one another. This slow deformation maintained for a long
period of time defines the quasistatic regime.

The grain inertia regime is where the strain rates are
high enough that the momentum transfer is predominantly by
grain to grain interaction. Friction plays a minor role.

There are several suggestions (Bagnold, 1954; Takahashi,



224

1981; Chen 1985a) that debris flow is an inertial flow.
Debris avalanche and debris slides fall in this region as
well. Many of the high inertial flows such as rock
avalanches called Sturzstroms (Hsu, 1975), are characteristic
of this regime. Because of the high inertia Sturzstroms have
a tendency to ride up the other side of the valley when a
rockfall event does occur as witnessed in the Frank slide,

Alberta(Cruden & Krahn, 1978)



APPENDIX C

C Characteristics Of Debris Flows

C.1 Debris Sources

Debris flows occur under the condition that there is an
ample supply of unconsolidated mud and rock fragments, a
large intermittent supply of water and, preferably, sparse
vegetation. In many cases sparse vegetation may not be
necessary for debris flows to occur. Since debris flows are
the product of slope failures, the source of debris is either
some kind of a slide, slump or a debris avalanche. There are
many factors responsible for triggering these failures.
Bursts of heavy rain and, in some cases, seismic forces are
two main triggering factors.

Many of these mass wasting processes are exacerbated by
logging, road building and forest fires (Swanston, 1971).
This is prevalent in the Western Cordillera in North America.
Many of the steep slopes and the high reliefs in this region
have been further steepened by erosion creating a very
unstable state. Logging, road building and residential
developments disturb the delicate balance existing in these
slopes which results in slides and avalanches that debris
flows thrive on. Logging also contributes organic debris to
the stream. An equally important source of debris is the

massive erosive nature of the flowing debris. The highly
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erosive movements have the ability to scour a few meters of

material from the bed (Nasmith and Mercer, 1979).

C.2 Composition of Debris Flows

Very often debris flows have been described as
resembling wet concrete. Even though the appearance is
similar to concrete, the composition of a debris flow varies
greatly in that it is a poorly sorted multiphase flow with
air and water entrained in it. The particle sizes vary from
finer materials to boulders supported in a matrix of
dispersed fines. The matrix could also contain wood, bark
from trees and anything it picks up on its way. Depending on
the source of debris, the flow could be mudflow with
predominantly tine material or it could be rock fragments
dispersed in a matrix of water and fines. In the Myunmorea
Rockslide, the debris ranged from clay size to blocks of at
least several hundred cubic meters in volume which, in most
part, were granular and with some cohesion (Kojan and
Hutchinson, 1978). In the Nevados Huascaran avalanches of
Peru the debris flow contained angular blocks of rocks
constituting 10-15% of the total volume. The matrix material
was typically medium-grey gravelly mud. A representative
sample showed 10.6-39.1% gravel, 46.0-72.3% sand and 3.5 to
24.4% combined silt and clay(Plafker and Ericksen, 1978).
The mudflow in Wrightwood, California had material that was

light grey and consisted of silt, sand and pebbles less than
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1 inch in diameter. The largest boulders were 6 ft. in

diameter (Sharp & Nobles, 1953)

C.3 Nature of Flows

The similarity between debris flows and water flows is
that they both flow as fluids. Besides that there are
certain features of the flow of debris that are quite
different from ordinary stream flow. These features can be
studied by first examining the physical behavior, velocity of

flow and the slope of the bed.

C.3.1 Physical Behavior

Debris flow has a characteristic way of moving down its
path. The flow is made up of a succession of surges of a
steep front loaded with bouldery fragments. In the mudflow
of Wrightwood, California, at the time of maximum frequency,
the surges came at intervals of a few seconds to tens of
minutes (Sharp and Nobles, 1953). Later they were less
frequent with a period of a few hours. There are also
suggestions (Li et. al., 1983; Davies, 1986) that the surges
are a result of some inherent properties of the fluid and
open chanel flow instabilities. Similar behavior of flow was
observed by Curry(1966). The series of lobate pulses lasted
for one hour with each unit of pulse having ten or more less

distinct flow pulses. In the observations of Broscoe and
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Thompson (1969), the mudflow moved into the fan in a series of
arcs of circles with increasing radii. The fronts were
observed to be 6-8 ft. high. 1In all these observations, the
noise accompanying the release of the pulses of viscous rock-
charged mud were characteristic of the failure of a dam which
had impounded the material. The surges have been attributed
to (Sharp & Nobles, 1953):

i periodic sloughing of debris in source area

ii temporary choking of channels

iii caving of undercut banks

iv friction between the moving debris and the

channel

C.3.2 Velocity

The velocity of debris flow has been observed to vary
from 0.5 m/s to 20 m/s. The reasons for this wide range of
velocity is due to the fact that the sorting, the geometry of
the channel including the slope, size and sinuosity can have
large variations. Table C-1 gives the observed velocities of
some of the debris flows. In one observation in Japan
(Okuda, et al, 1980)the velocity on the upper reach was over
10 m/s but, in the fan area the velocity was rarely found to
exceed 5 m/s.

The discussion of velocity leads us directly to the
question of turbulence in debris flow. The large velocities
would tend to indicate the possibility of turbulence in the

flow. There have been only a few refarences to turbulence in
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debris flows. Bagnold(1954, p 60) indicates that the
presence of clay size particle tends to dampen turbulent
eddies. This is further emphasized by Johnson(1970, p 142)
in the study of kaolin-water slurries. 1In their observations
of debris flow in Wrightwood, California, Johnson(1970)
suggests that the choppy surface seen in many mudflows was
the result of "shear turbulence". In most cases the

turbul ence was dampened by the presence of suspended clay and
silt. Johnson suggests that only muddy water flowed
turbulently and the turbulence observed in the crdinary flow
was mainly when the flow churned over a small fall or
constriction. On reaching straight walled channels, the
churning was observed to disappear entirely. In the study of
debris flows as Bingham material, Enos (1977) has attempted
to outline the threshold between laminar and turbulent flow.
These observations, however, appear to lack any conclusive
guidelines.

Turbulent flow was observed by Pierson(1981, 1985) in
the debris flow at Mt. Thomas, Newzealand and Rudd Canyon,
Utah. At Mt. Thomas once the velocity increased to 3 to 5
m/s, the flow turned distinctly turbulent with standing waves
often throwing mud and stones in the air. In Rudd Creek,
Utah the turbulence was apparent at a concentration by weight
approaching 70%. 1In this flow a large percentage of fines
and clay content was present. The turbulent flow was
recognized in both these cases visually. There was no formal

criteria set to define these boundaries.
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C.3.3 Slopes

Although debris flow occurs in steep slopes, it is
important to note that it has the ability to flow in very
gentle slopes. Some observed slopes range from 2% to 32%
(Costa, 1984). In the debris flow in Mt. Thomas, New Zealand
(Pierson, 1981) the channel slopes ranged from 5-7°. 1In
Steele Creek, Yukon (Broscoe and Thompson, 1969) the slope
was 13-32° and in Wrightwood, California the slope was 1° to
9¢ (Sharpe & Nobles, 1953).

This is clearer if a simple stability analysis is

performed in a unit width and length of saturated,

cohesionless planar soil at height h, slope sin 0 with the
soil having an internal angle of friction ¢ (Fig. C-1).

According to Mohr-Coulomb friction criteria, the limiting

shear strength 7, for a non-cohesive soil material is
T, =o0tan ¢ (C-3.1)

The effective normal stress 6 = © - u, with

u = Yh cos 6 (C-3.2)
p w
G =Wcos 0 (C-3.3)

W is the weight of the material concerned. The bulk unit

weight of saturated material is given as
Your = Y, * oy, - ¥,)Cv (C-3.4)

where Y, is the unit weight of water and Y, is the unit weight

of solids and C, is the volume concentrations of the mixture.
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W sin6

W cosf

Figure C-1 Definition sketch of mass of debris flowing

down a slope

The component of the weight of debris parallel to the bed is

Wsin®= {v,+c( - %) }hsin @ (C-3.5)

For limiting equilibrium condition replacing T, by W sin 8 in

Equation (C-3.1) yields

c, (v, - 71,

tan ¢ (C-3.6)
Cv(‘Ys - Yw) + Yw

tan 0 =

It can be observed from Eq. (C-3.6) that since the expression
multiplying tan ¢is < 1, tan B0is always less than tan ¢ i.e.
the slope required for the flow of dispersed grains is always
smaller than that required for frictional sliding of an

undispersed grain aggregate.



The small slopes involved in debris flows have been
evident in submarine conditions. 1In submarine debris flow
deposits in the Canary Basin off * < coast of Spanish Sahara
the slope was estimated as 0.1° (Embly, 1976). Similarly,
submarine slumps have also been found to occur in very gentle
slopes (Morgenstern, 1967),

This tendency of mudflows to occur in slopes
considerably flatter than those corresponding to limiting
equilibrium for residual strength on the sliding surface was
studied by Hutchinson and Bhandari(1971). They attribute
this increased mobility to the undrcined loading of the front
of the mud slides by debris discharged from steeper slopes at

the back.

C.4 Important Concepts in Particle Support Mechanism

The ability of debris flows to carry coarse particles of
various sizes and move over far distances and small slopes
with surprising competence has intrigued many researchers.
Observations of actual mud and debris flow. show surprisingly
large boulders floating in the fluid matrix. Pierson(1981)
observed boulders of up to half a meter floating at the flow
surface. Broscoe & Thomson (1969) observed boulders 13
ft.across in the mudflow. Sharp & Nobles (1953) report
boulders 2-3 ft. diameter moving with the debris front
travelling for almost 15 miles before being deposited. In

order to explain these observations, various mechanisms
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including turbulence for particle support in debris flows

have been suggested.

C. 4.1 Dispersive stress

Much of the mechanisms behind debris flows were still
unexplained until the concepts of dispersive stress was
proposed by Bagnold(1954). Bagnold conducted experiments
with particles sheared in a rotating cylinder and defined two
flow regimes namely macroviscous and grain inertia. 1In
the grain inertia regime stresses were generated as a result
of collisions of particles as one layer moved to overtake the
other adjacent layer of particles. The stresses generated in
this process were a normal stress called the dispersive
stress and a shear stress. With an analysis roughly similar
to the kinetic theory of gases Bagnold showed that the normal
stress was proportional to the square of the shear rate and
the particle diameter. This was an attractive concept in
that it attempted to give some rationale to the supporting
mechanism for the coarce clasts in sediment-water gravity
flow. There is some evidence in observations of actual
debris flow (Pierson, 1981) that dispersive pressure is not
the only mechanisr involved in the support of particles.
Solid clasts were observed to be floating even when the
debris was static indicating the mobilization of some

additional suprort mechanisms.



C.4.2 Matrix Strength in Debris Flows

When a particle is supported in a stationary slurry, it
is observed that if it is pushed, it has a tendency to sink a
little and remain in that position without either bobbing
back up to the surface or sinking to the bottom. This was
observed by Johnson (1970) whose inference from this was that
there must be another support mechanism, beside dispersive
force. Johnson called this support mechanism matrix
gtrength.

The exact origin of matrix strength is still not very
certain. It is, however, speculated (Hampton, 1975) that the
network of flocculated clay particles throughout the fluid
are responsible for this strength. Flocculation is the
result of net attractive forces between two clay particles.
The minimum strength required to break this network of
flocculated particle has been defined as the matrix strength.
The implication inherent to this theory is that it is
essential for clay to be present in the flow. It has been
pointed out (Hampton, 1975) that the strength of the matrix
is also a function of clay mineralogy and other variables.

Hampton(1975) studied the stationary competence of
slurry before and after it had been sheared at different
rates and brought to rest. Hampton found that the competence
decreased after shearing and concluded that there is a
presence of matrix strength in debris flows even though the
strength decreased after shearing. Shen and Xie(1985)

inserted rotors 2.1 cm and 3.1 cm diameter into clay slurry



and calculated the bearing strength of the slurry both in
static and in a state of being sheared. They found that the
strength of the slurry was more than due to buoyancy in
static case and decreased gradually as the shearing was
started. At high shear rates, the yield strength virtually
disappeared. This showed a shear rate dependence of the
matrix strength.

Davies (1986, 1988) disagi-2es with this idea and argues
that when the flow is stationary, the unyielding structure of
the mixture transfers the excess weight of the particles to
the bed. However, cnce the flow starts, then by definition,
yield has been overcome and therefore there is no longer a
matrix that can transfer the stress to the ground. Any
excess weight would increase the shear rate of the flow.
Davies argues that even in a case of plug flow, the shear
stress is not transferred to the ground through the rest of
the unyielding matrix but, rather, results in the increase of
the shear rate in the continuously deforming flow. A fluid
is not able to act as both solid and fluid at the same time.
This argument, in principle, appears quite reasonable.
However, some serious investigation isolating buoyancy and
yield strength needs to be done before confirming either of
these arguments.

It is interesting to note at this point that according
to Curry(1966) the flow in the Tenmile Range, Colorado had
2.5 ft. boulders in it but the clay content was as low as

1.1% and the water content was 9.1%. This raises the
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question of how much clay is really required for yield
strength to be of significance if that is indeed responsible

for the large competence of debris flows

C.4.3 Buoyancy in Debris Flow

Among all the particle support mechanisms, buoyancy
stands out as the most obvious mechanisms (Johnson, 1970;
Hampton, 1975, 1979; Middleton & Hampton, 1976; Rodine and
Johnson, 1976; Pierson, 1981; Sassa, 1985). The generally
accepted theory was that the matrix was composed of a
homogeneous mixture of clay, water and fine silt. The clasts
present in the flow was dispersed in this fluid. The
buoyancy, in the Archimedian sense is the weight of the
displaced fluid. However, Rodine & Johnson(1976) suggested
that the buoyancy was determined by the total displaced
material which comprised of the matrix °'nd particles of sizes
smaller than the particular clast in question i.e. similar to
a pyramid effect. One of the serious shortcomings of these
analyses is that the contribution of dispersive pressure is
not included. The presence of matrix strength and the
failure to include dispersive pressure renders this analysis
more suitabl @ a slurry at rest.

The othe: _rgument of Hampton and Pierson that is
equally gquestionable is the increase in buoyancy due to pore
pressure above hydrostatic(Sassa 1985, Davies 1986). They
suggest that the increase in buoyancy is due to pore pressure

being above hydrostatic. To demonstrate the effect of pore
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pressure causing increased mobility and competence, Pierson
(1981) measured pore pressure and its dissipation in
containers following the mixing of slurry. In this
measurema2nt, because the pore pressure in a variety of mixes
taok . minutes to several hours to dissipate, Pierson
concluded that for the time scale of a debris flow event,
this was adequate mechanism to support clasts in addition to
simple buoyancy and dispersive pressure. However, in a
continuously deforming medium where the pores are
continuously breakiug and reforming, there is ample
opportunity to immediately dissipate the excess pore
pressure. The fluid and the grains would adjust to any
excess pressure. In other words, the mixture would be free
draining “n Pierson’s (1981) case, the pore pressures were
measured .n a stationary mixture where there is indeed a
possibility of excess pore pressure being present. This also
questions the validity that excess pore pressure is
responsible for the high mobility of debris flows. The
liquefaction. of stationary saturated mass due to pore
pressure .ncrease, on the other hand, is quite acceptable
(Sassa, 1985). In other words, excess pore pressure is
probably more important in reducing shear strength of the
material during initiation but its contribution to mobility

during continuous shear is questionable.



C.4.4 1Inverse Grading

The snout of a surge of debris shows that the larger
particles have a tendency to move laterally and vertically
resulting in the reverse grading of the particles. This
phenomenon of the migration of clasts to the margins is
sometimes called segregation. Reverse grading is of
interest not only in the case of subaerial flows but also in
subaqueous flows (Middleton & Hampton, 1976; Middleton,
1970). 1In submarine environments one of the ongoing
geological processes is the formation of sedimentary rocks.
It has been observed in certain rocks that the sequence of
particle grading is fine at the bottom to coarse on the top
(Fisher & Mattinson, 1968). In subaerial flows the evidence
of this reverse grading can be best observed in deposit: - .
debris (Fisher, 1971). It is observed that inversely grad«d
deposits of debris flows can be found where there are no
planes of erosion. This helps to invalidate the theory that
reverse grading may have been caused by a few sequences of
debris flows.

There have been a few qualitative explanations given for
the reason behind reverse grading. Bagnold's dispersive
stress has been suggested as one of the main mechanisms for
segregation. The expression for dispersive pressure shows
that it is directly proportional to the second power of the
particle diameter and the velocity gradient. Therefore an
increase in diameter would mean an increase of dispersive

pressure. Together with this, an increase in velocity



gradient increases the dispersive pressure. Since the
velocity gradient ig the largest near the bed, there is a
large dispersive pressure there causing the particle to move
upwards.

Middleton(1970) offered another mechanism for
segregation and called it kinetic sieving. 1In Kkinetic
seiving the finer particles move in between the larger
particles and thus displace them upwards. Middleton has
offered no further explanation. Suwa et. al.(1985) verified
this experimentally as one of the causes for size segregation
in debris flows.

There have been few attempts to explain segregation
using analytical reasoning(Takahashi, 1980; Hashimoto &
Tsubaki, 1983; Savage and Lun, 1988). Takahashi explains
segregation using the dilatant fluid model (Bagnold, 1954)
Hashimoto and Tsubaki use a concept which they proposed
earlier (Tsubaki et al., 1982) to explain the mechanism
involved in a solid-liquid shear flow at high concentrations
and high shear rates. Their model proposes that a particle
in such shear flows experiences two forces from the
surrounding particles namely, the collision force and the
contact force. Both these analyses write an equation of
vertical motion of a particle larger than the surrounding
particles. The analyses show that a particle with a diameter
larger than the average diameter of the surrounding particles

has a tendency to segregate upwards.
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APPENDIX D

D.1 Rheological properties of debris flows

Most of the models described so far for defining debris
flows involve two important parameters, viscosity and yield,
in their equations. The models with higher order dependence
on the shear rate require the determination of the nature of
this dependence which has been termed the flow-behavicr index
(Chen, 1985a).

One very practical difficulty arises in determining the
property of a debris flow. The debris flow is in the form of
a slurry which may have large variation in clast sizes in a
mixture of fine matrix. The measurement of viscosity of the
actual mixture is very difficult mainly because the standard
viscometer cannot use such mixtures. Johnson(1970) used the
integrated form of the velocity profile in a semicircular
channel to estimate a viscosity. This technique assumed that
the boundary shear across the channel was uniform. This
method is questionable because boundary shear in a
semicircular channel varies across the section unlike 2 wide
rectangular channel (Replogle, 1964).

In practice, the viscosity of the mixture is normal ly
taken as the viscosity of the matrix fluid after the he.vier
clasts have been removed. The largest particle size that can
be used for viscosity measurement is dependent on the method

that is used to determine the viscosity and yield strength.
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D.1.1 Fluid viscosity and shear strength under field
conditions

The . iscosity of debris flows with high sediment
concentrarion is generally expressed in several different
ways. S-: ~f the earlier estimates(Sharp & Nobles, 1953,
Curry, 19 -ere made assuming the fluid to be Newtonian.

The Newtoni.: friction law

T=H gﬁ (D-1.1)

was integrated in a wide open channel of velocity Up,, at the
top and zero at the bed with a flow depth of h. If the
specific gravity of the fluid is Y, and the channel is

inclined at a slope of 6°, the equation used to estimate

viscosity was:

_hhsin® (D-1.2)
“ 2 Uma.x ’

Costa(1984) reported the viscosity of actual recorded debris
flow in the range between 200 to 30000 poise. This represents
viscosity 3 000 000 times the viscosity of water. An inflated
Newtonian viscosity was used by Lang and Dent(1987) in their
numerical simulation. One would have to be cautious in taking
this approach especially in the light of the non-Newtonian
nature of debris flows.

A field estimate of the viscosity can also be made from

an equation derived from Bingham fluid approximation for fluid
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flowing in an open channel with a plug. The following

equation was given by Johnson(1970) .

T, W [W ]2
v _p | A
= -1 D-1.3
M= 200k LW, ( )
where
Ty is -~e shear strength

Wy is the width of the plug
Upax 18 the maximum velocity of the plug
We is the width of the channel

A simple rheological approach is to estimate the apparent

viscosity, W, of the fluid

H, = r/g—; (D-1.4)

which is usually estimated using one of the several
viscometers available. Similarly, there have been some
approximate relations presented for field conditions to
estimate the shear strength. Costa(1984) has given a summary
of the equations given by Johnson for the yield strength

calculations. The first method was using the thickness of the

equilibrium deposit (tg) to estimate the yield strength:

T, = tq Yo Sin 6 (D-1.5)
The second method uses the dimension of rhe plugged channel.
The properties of the channel plugged by a debris flow can be

used to estimate the yield strength:
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_ dp Yn Sin 0 (D-1.6
v = 24y o)
&) -

where d is the depth of the plug.

T

The third technique involves the use of the height of the
largest deposited boulder D; flowing and the volume fraction
of the boulder submerged in debris(n). This assumes that the
transport of large boulders is mainly due to the small density
difference between the fluid and the solid, and the
consolidation in the flowing matrix is negligible. This
gives:

T, = 0.219 D Yp(l - n) (D-1.7)
If the boulder is flowing half submerged, n=0.5. The other

symbols have their usual definitions.

D.2 Viscosity and yield measurements in debrig flows

Our present state of knowledge in debris flows, suggests
that the best approach to study debris flow is to examine an
actual flow or at least a physically simulated flow. This
would then give more confidence to our modelling efforts. Two
parameters that have been examined by some researchers
(O’Brien and Julien, 1986; Ghahramani-Wright, 1987; Phillips
and Davies, 1989, 1991) are the viscosity and yield strength.
O‘'Brien and Julien designed a concentric cylindrical
viscometer to measure the viscosity and the yield strength

using remolded mud from deposits from the Colorado Rocky
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mountain. They compared their measurements to the Bingham
plastic model. The experiment shows that when less than 20%
by volume of sand <0.5mm in diameter is added to a fine slurry
of mud, the viscosity of the mixture of the matrix fluid with
silt and 5 to 6% clay is unaltered. Similar observation was
made by Major and Pierson(1990) for shear rates > 5 sec-!.
Ghahramani-Wright (1987) studied the viscosity and yield
strength of bentonitic slurry. Since this study involved a
comparatively low concentration slurry i.e. 1.4 to 11.9% by
wt., the use of the fairly sophisticated Weissenberg
Rheogoniometer was possible. The measurement showed that
after shearing was stopped, there was some retained stress.
Ghahramani-Wright concluded that bentonitic slurry behaved as
viscoplastic fluid and called this retained stress the yield

stress defining the total stress as

T =T + Ty =Ty fmp(g—yll (D-2.1)

where

T is the total shear
T, is the yield stress
Ty is the viscous stress
m, and M are parameters which vary with concentration. For

shear rate greater than 1, Ghahramani-Wright found that both

the yield stress T, and the viscosity N could be expressed as:

(D-2.2)

i

Ty =a’ - b’ 1ln
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b= mp(% - (D-2.3)
where both 1, and p are tunctions of shear rates. At shear
rates less than 1, both T, and | are constants. Considering
that actual debris flows are much higher in concentration than
the range studied by Ghahramani-Wright, the result is of
little consequence to our study. Other studies of viscosity
and yield strength for fine particles can be found in the
literature(Fei, 1983)

All these studies consider pr=dominantly very fine
particles. The sand added in O’B.::2n and Julien’s study was
below 0.5mm. Recognizing the poorly sorted nature of debris
flow, Phillips and Davies(1989, 1991) studied the rheological
properties of debris flow. This study was carried out in a
large 30° inverted cone and plate type viscometer with actual
debris flow samples. Clasts up to 35mm was tested in a small
scale model and clasts up to 120mm in a large scale model.
Yield stress measured by them was in the range of 15 to 300
Pa and depended on the volume concentration. The apparent
viscosities which were shear rate dependent ranged from 0.4
to 1800 Pa s. Although they did not define an explicit
relationship for apparent viscosity, they made several
interesting observations. One of the comments was that their
data envelope did not suggest either Bingham Plastic or
viscoplastic behavior and at low shear rate the behavior was

more likely yield dilatant.



247

One of the important outcomes from all these studies
shows that debris flows display a range of behavior and it is
quite difficult to describe one single model for the complete
range of flows with our present state of knowledge. This view
is also shared by Major and Pierson (1992). All the studies
described above have emphasized the importance of conducting
experiments in the shear rate range commonly found in the
field, i.e. <50 s-!. One of the main veasons for the low
shear rates has been to prevent overestimation of the vield
stresz which varies with shear rate.{(Maa, 1990). This problem
of overestimation has mostly been experienced in the case of
cohesive sediment where yield stress is a result of
electrochemical bonding. Therefore it is necessary to
maintain appropriate shear rate in simulated debris flows
where the clay content is high. However, in many debris
flows, the clay content is normally found to be low.

In the case of non-cohesive granular flows, the important
question is whether the constitutive behavior of a test debris
flow is representative of a prototype. In other words, it has
yet to be fully investigated what range of shear rate is any
constitutive relation valid for and how critical is the shear
rate in any relation. Another fact is that laboratory flows
tend to have larger shear rates but considerably smaller
normal and shear stresses than in the field. This is one of
the most obvious limitations of simulated debris flows in the
laboratory where it is not practical to generate flows of

large scale.



APPENDIX E

E.1 Curve fit

Two important informacion were examined in the velocity
distribution measuremer:. The nature of the profile was
expected to provide sorv -+ .ndication of the influence of the
boundary. The nature ¢ tie vertical velocity gradient in
the flow combined with the shear distribution acquired from
the concentration distiibution measurements should provide
some reflection of the influence of the velocity gradient in

general constitutive behavior of tk. fluid.

In.>.uL.y the velocity gradients were obtained by simply
using the discrete measured value~ of the velocity. Ti.ls,
however, resulted in a highly discontinuous loral gredients.
The velocity gradients were, therefore, evaluated by first
fitting a second order polynomial to the measured velocity

profile (Figure E-1 to E-8) with u in cm/s and y in cm.

u=Db] + by + b3 y2 (E-1)

This was done after neglecting the top regions of the
profiles which were influenced by the secondary flows. Table
El to E4 give the details of the polynomial velocity fit.
Tables E1 to E4 also give the velocity gradients obtained by

differentiating the polynomial profiles.

= b2 + b4 Y (E—Z)
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Table E1 Polynomial velocity and velocity gradient for
particle D1, channel centre

u=by + b2y + b3yl [Ausdy = by + by y
q Particle Dl
(emi/s)l C'm | b1 | bp | by | R by | by

1087 38.7 84.3 80.4 20.3 0.9942 80.4 40.6
1060 36.5 90.7 126 .4 9.3 0.9992 126.4 18.6
1095 19.2 191.9 143.3 -22.1 0€.9999 143.3 -44.2
1423 4.8 196.4 164.7 -33.4 0.9978 164.7 -66.8
1225 37.8 89.5 82.4 15.7 0.998¢ 82.4 31.4
1183 36.9 79.2 116.9 4.6 0.9988 116.9 9.2
1355 32.5 134.5 109.3 5.8 0.9996 109.3 11.6
1417 26.5 176.5 117.1 -4.6 0.9948 117.1 -9.2
1533 15.3 212.1 117.4 -11.3 0.9988 117.4 -22.6
1638 7.5 200.6 156.8 -24.9 0.9909% 156.8 -49.8

Table E2 Polynomial velocity and velocity gradient for
particle D2, channel centre

u=>bl + by + b3 yz lau/ay = by + bgy
q v Particle D2
(em?/s)| C'm | k1 | b2 | b3 | R by | by
1131 48.7 104.2 142.5 -20.5 0.9985 142.5 -41
1112 47.9 115.7 119.5 -7.3 0.9969 119.5 -14.6
1366 29.9 218.5 89.1 3.8 0.9956 89.1 7.6
1329 19.7 237.1 144.6 -33.9 0.9995 144.6 -67.8
1304 47.5 20.3 153.7 -13.8 0.9951 153.7 -27.6
1401 40.8 75.7 128.6 -7 0.9976 128.6 -14
1586 42.9 125.6 84.2 3.75 0.9953 84.2 7.5
1594 21.5 199.1 135.7 -16.9 0.9955 135.7 -33.8
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mable E3 Polynomial velocity and velocity gradient for
particle D3, channel centre
u=b1+b2y+b_‘,y2 [du/dy = b2 + by y
q Purticle D3
(em?/s)f C'm | b1 | »2 ] b3 | R b2 by
1313 46.4 155.3 78.1 9.2 0.9988] 78.1 18.4
1331 39.2  236.3 113.9 -19.1 0.9985] 113.9 -38.2
1371 36.5 258.3 96.6 -15  0.9968| 96.6 -30
1382 30.1 280.6 88.6 -14.9 0.994 88.6 -29.8
1382 24.9 284.4 70.5 -5.2 0.9969) 7.5 -10.4
1543 45.9 160.6 87.5 -2.7 0.9951] 87.5 -5.4
1681 37.4 261.9 63.4 -4.8 0.9967| 63.4 -9.6
1747 35.5  266.8 100.1 -16.7 0.9969} 100.1 -33.4
1740 26.4 266.6 108.9 -~18.3 0.9986| 108.9 -36.6
1858 20.7 257.5 120.9 -18.7 0.9953] 120.9 -37.4
Table E4 Polynomial velocity and velocity gradient for
particle D4, channel centre
u=b1+b2y+b3y2 Eu/ay=b2+b4y
q Particle D4
(em/s)f C¢'m | b1 [ b2 | b3 | R b2 by
1316 45.9 136.1 103.9 0.1 0.9987]| 103.9 0.2
1322 44.2 105.8 152.5 -12.1 0.9995]| 152.5 -24.2
1363 32.9 228.6 108 -10.8 0.9981 108 -21.6
1350 31.2  239.1 102.9 -9.8 0.9991| 102.9 -19.6
1649 45.9 109.3 127 -5.8 0.9996 127 -11.6
1725 35.0 250 88 -7.7 0.9997 88 -15.4
1672 29.7 251.8 100.4 -10.5 ,.9989| 100.4 -21
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E.2 Vviscosity

In Chapter 5 it was concluded that for the ~ases where
the velocity profiles wevre nearly linear, the increase in
shear with depth was the result of a change in viscosity with
depth. Fic re E-10 to E-13 shows the viscosity varying with
concentration for each profile and particle size. The
viscosity was calculated by dividing the shcur at a point
with the velocity gradient at that point obtained from the
polynomial velocity fit. When plotted against the measured
point concentration, the exponential nature of the curve is
apparent., It can be seen that at a given concentration, the
viscosity is different for each profile. Furthermore, there
are two distinct trends shown by the negative and positive
exponential curves. These trends are probably an indication
of different mechanisms for viscosity. At lower
concent .cion or smaller particle size the turbulent
component of the viscosity may be dominating. But at higher
concentration or larger particle sizes the positive
exponential curves indicate viscosity trends similar to those
displayed by Equations 2-5.4 to 2-5.6.

The negative exponiential curves displayed in E-10 to E-
13 is mainly for lower concentrations where the velocity
profiles are approaching that of clear water where the flow
is more turbulent. This suggests t = possibility that the
two regimes displayed by the nnsitive and negative

exponencial curves could be for laminar and turbulent flows,.
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